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Abstract 

 

Prediction of fracture and failure is a challenging research area. There are various 

methods available in the literature for this purpose including well-known finite 

element (FE) method. FE method is a powerful technique for deformation and stress 

analysis of structures. However, it has various disadvantageous in predicting failure 

due to its mathematical structure since it is based on classical continuum mechanics 

(CCM). CCM has governing equations in the form of partial differential equations. 

These equations are not valid if the displacement field is discontinuous as a result of 

crack occurance. In order to overcome this problem, a new continuum mechanics 

formulation was introduced and named as Peridynamics. Peridynamics uses integrals 

equations as opposed to partial differential equations of CCM. Moreover, it does not 

contain any spatial derivatives. Hence, its equations are always valid regardless of 

discontinuities. In this thesis, the applications of Peridynamics for marine structues are 

demonstrated. Particularly, the Peridynamic equations are rederived for simplified 

structures commonly used in marine structures including beams and plates. 

Furthermore, underwater shock response of marine composites is investigated. Finally, 

the peridynamic formulation for contact analysis which can be used for collision and 

grounding of ship structures is demonstrated. In order to reduce the computational 

time, several solution strategies are explained.   
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Chapter 1  

 

Introduction 

 

1.1 General Perspectives  

Peridynamic (PD) theory or Peridynamics (PDs) was first introduced by Dr. S. A. 

Silling at Sandia National Laboratories, USA. Peridynamics is a state-of the-art 

technique which is relatively new and promising tool. It is basically re-formulation of 

continuum mechanics theory introduced by the French mathematician Augustin Louis 

Cauchy more than 200 years ago and very suitable for failure analysis of structures 

due to its mathematical structure. It satisfies all the fundamental balance laws of 

classical (local) continuum mechanics; however, it is different in the sense that it is a 

nonlocal continuum theory which introduces an internal length parameter into the field 

equations. This internal length parameter defines the association among the material 

points within a finite distance through micropotentials. Removal of micropotentials 

between the material points allows damage initiation and growth through a single 

critical failure parameter regardless of the mixed-mode loading conditions. The 

creation of a new (crack) surface is based on a local damage measure. The local 

damage of a material point is defined as the ratio of the broken interactions to the total 

number of interactions.   
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Peridynamic equation of motion has a form of integro-differential equation rather than 

a partial differential equation as in the classical continuum mechanics (CCM) and so 

it allows the continuous usage of equations at the discontinuities like cracks. Although 

relatively new, it is successfully verified and utilized for modelling both metallic and 

composite structures (Madenci and Oterkus, 2014; Oterkus and Madenci, 2012; 

Oterkus et al., 2012). Hence, it is an excellent candidate to investigate complex 

problems in estimation of failure characteristics of materials and structures. As for the 

modelling of ship structures, PD results particularly advantageous with respect to 

CCM for the following reasons;  

1. The governing equation of PD theory is in integral form and not partial 

differential equation form. As a consequence, the formulation remains valid 

everywhere regardless to the presence of discontinuities in the domain (e.g. 

cracks).   

2. The concept of damage is naturally present in Peridynamics formulation. 

Therefore, there is no need for external crack growth criteria aimed to guide 

the crack or to specify its propagation behavior.   

3. Various studies (Ha and Bobaru, 2010; Kilic, 2008; Madenci and Oterkus, 

2014; Oterkus, 2010) have demonstrated that Peridynamics is a powerful tool 

for predicting complex material failure mechanisms such as crack nucleation, 

crack propagation, crack branching, coalition of multiple cracks and crack 

arrest.   

4. There is no need computationally expensive re-meshing procedures in order to 

re-define the crack boundary.   

5. In Peridynamic theory, there is no need for external equation aimed to treat the 

special case of material points located along interfaces.   

6. Multiple physical fields can be treated within the same Peridynamic 

framework.   

7. Peridynamics is equipped with a length-scale parameter called horizon, which 

allows to consider different length scales within the same domain, avoiding the 

burden of coupling different numerical tools (e.g. Finite Element Method at the 

macroscopic scale and Molecular Dynamics at the nanoscale). In other words, 

Peridynamic domain can be divided in regions where different length scales 
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are used. Hence, it can allow multi-scale analysis which bridges macro, micro, 

meso or nano scales.   

Different versions of Peridynamics are currently available in literature. Bond-based 

Peridynamic theory (Silling, 2000) is the original version and it is often regarded as 

straightforward, easy to comprehend/implement. The improved version of the 

Peridynamic theory is named as ordinary based theory (Silling et al., 2007) and it 

removes restrictions of the former. As a consequence, bond-based PDs is the special 

form of ordinary based PD theory. Both theories will be discussed in Section 2.4.   

 

1.2 Challenges  

Progressive failure analysis of structures is still a major challenge in the literature. 

There exist various predictive techniques to tackle this challenge by using both 

classical (local) and nonlocal theories. Peridynamic (PD) theory (nonlocal) is very 

suitable for this challenge, but computationally costly with respect to the finite element 

method (FEM). However, Finite Element Analysis (FEA) with traditional elements 

suffers from the following shortcomings;   

1. The interface between dissimilar materials is assumed to have zero thickness 

without any specific material properties; however, it presents a weak link and 

it is usually the location of failure. Therefore, it fails to appropriately model 

the interface between dissimilar materials.  

2. Failure is a dynamic process, and it requires re-meshing. It is computationally 

costly, and the crack growth is guided based on the linear elastic fracture 

mechanics (LEFM) concepts. It breaks down when multiple complex crack 

growth patterns develop.  

3. Stress and strain fields are discontinuous, and mesh refinement does not 

necessarily ensure accurate stress fields near geometric and material 

discontinuities.  

4. Finally, crack initiation is not resolved. The analysis always requires a pre-

existing crack.   
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However, in order to remedy or remove these shortcomings, Cohesive Zone Elements 

(CZE) and eXtended Finite Elements (XFEM) methods were developed. But, CZE 

method requires a priori knowledge of the crack path. In a complex analysis, it is not 

practical and the results are dependent on the mesh (structured or unstructured). 

Furthermore, the results are sensitive to the strength parameters in the traction-

separation law of the cohesive zone model. Determination of these parameters poses 

additional uncertainties. Although XFEM removed such uncertainties, it still requires 

an external criteria for crack propagation. Thus, the results depend on the criteria 

employed in the analysis. It also breaks down when multiple complex crack growth 

patterns develop.   

 

1.3 Advantages  

The PD theory overcomes the weaknesses of the existing methods, and it is capable of 

identifying all of the failure modes without any additional assumptions. The PD 

methodology effectively predicts complex failure in complex structures under general 

loading conditions. Damage is inherently calculated in a PD analysis without special 

procedures, making progressive failure analysis more practical. An extensive literature 

survey on PDs is given in a recently published textbook by Madenci and Oterkus 

(2014). A comparison study between Peridynamics, CZE, and XFEM techniques is 

given by Agwai et al. (2011). They showed that the crack speeds obtained from all 

three approaches are on the same order; however, the fracture paths obtained by using 

Peridynamics are closer to experimental results with respect to other two techniques.  

Another advantage of PD is its length-scale parameter, which does not exist in classical 

continuum mechanics.  Such a length-scale parameter gives PD a nonlocal character.  

Hence, it allows the capture of physical phenomena not only at the macro-scale, but 

also at various other scales. This characteristic can be established through the PD 

dispersion relations. The classical theory is only valid for a special case of a long 

wavelength limit; however, the PD shows dispersion behavior similar to that observed 

in real materials. Hence, it is proven to be acceptable to perform multi-scale analysis 

simulations.  
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Moreover, PD theory does not only deal with mechanical field problems, in fact the 

equations can also be used to describe other fields such as the thermal diffusion 

(Bobaru and Duangpanya, 2010; Oterkus et al., 2014), moisture diffusion (Han et al., 

2015), electric flow (Gerstle et al., 2008; S. Oterkus et al., 2013), porous flow (Katiyar 

et al., 2014) and corrosion (Oterkus et al., 2015), etc.   

 

1.4 Objectives  

PD theory is an excellent candidate to investigate complex problems such as the failure 

analysis of ship structures. As in the other theories, computational tools can be very 

suitable option for Peridynamic theory. However, one of the greatest challenge on 

implementing Peridynamic equations is the computational cost. Ships are big size 

structures and implementation of Peridynamics for these structures is not 

straightforward. In light of these, specific objectives of this study can be listed as;   

1. Development of basic Peridynamic codes suitable for the problems of interest.   

2. Performing validation studies against benchmark problems.   

3. Implementing contact analysis capability within the Peridynamic codes.   

4. Simulating ship-oriented problems in Peridynamic theory.   

5. Comparisons of the results against available data found in the literature 

including experimental, analytical and numerical studies.   

6. Investigating ways to reduce the computational time by introducing an updated 

Peridynamic formulations suitable for ship structures.   

Overall, current study aims to develop Peridynamic codes suitable for the problems of 

interest of complex structures like ship structures. In a general sense, it may bring a 

new dimension contrary to the existing analytical and numerical modelling tools for the 

analysis of marine structures. The capability of proposed approaches will be 

demonstrated by considering various problem cases.   
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1.5 Novelty of the Thesis  

This thesis has made novel and significant contributions to the current scientific 

literature, especially in the area of Peridynamic theory. Peridynamics is a new 

continuum theory and the number of available publications is rather limited with 

respect to other similar approaches. Moreover, the method uses non-conventional 

terminology which is mostly new to the researchers working in the area of structural 

mechanics. Hence, a new strategy has been followed to explain Peridynamics in simple 

terms by considering direct and indirect interactions.   

There are currently two fundamental formulations of Peridynamics which were 

developed by Silling (2000); Silling et al. (2007) and Madenci and Oterkus (2014). 

Although the final outcomes of these two approaches appear to be similar, there are 

also some important differences in both the derivation of equations and the 

relationships between important Peridynamic parameters. These differences are 

relatively unknown to the scientific community and this thesis highlighted them in 

brief terms.  

Although Peridynamics is a powerful technique in failure prediction, it is usually more 

computationally expensive with respect to some other techniques including finite 

element method. Therefore, any improvement in computationally efficiency will be 

very beneficial. In this thesis, a novel and efficient family member search algorithm is 

proposed.  

As explained in Chapter 3 of the thesis, peridynamic theory is very suitable for parallel 

programming. However, some structures of interest such as ship structures can still be 

very challenging by using 3-Dimensional discretization strategies. Hence, it is 

essential to develop formulations for parts of the structure which can be simplified by 

making beam, plate and shell type idealizations. In this thesis, a novel Peridynamic 

formulation is developed for both Timoshenko and Mindlin plate formulations which 

take into account transverse shear deformations (Diyaroglu et al., 2015b; Diyaroglu et 

al., 2014; E. Oterkus et al., 2013). The approach is based on utilization of Lagrangian 

formulation and the unknown peridynamic parameters are determined by comparing 

against equations of classical continuum mechanics for a special case of the length 
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scale parameter, i.e. horizon, converging to zero. This approach can also be used for 

other idealized structures.   

Since Peridynamic theory is a non-local continuum mechanics formulation, it is 

capable of capturing non-local effects which cannot be done by using classical 

formulation. This difference can easily be confirmed by determining wave dispersion 

characteristics (Oterkus et al., 2015). This information can also be used to determine 

the value of the length scale parameter. In this thesis, the wave dispersion 

characteristics of Timoshenko beam and Mindlin plate are derived for the first time in 

the literature (Diyaroglu et al., 2015b).   

In addition to the traditional metallic materials, the usage of composite materials is 

increasing in many different areas. In order to model composite structures, an extended 

version of the original Peridynamic formulation is required. This can be achieved by 

strengthening the fiber direction interactions and introducing an efficient methodology 

for the interaction of neighbouring plies (Madenci and Oterkus, 2014). In this study, a 

novel underwater shock analysis of composite marine structures is performed and can 

be very beneficial to predict the response of various naval vessels including naval ships 

and submarines subjected to extreme loading conditions (Diyaroglu et al., 2015a; 

Diyaroglu et al., 2015). The numerical results are verified against experimental 

findings. Moreover, a novel shock wave Peridynamic formulation is proposed as a first 

step for a fully-coupled fluid structure analysis.   

Finally, various improvements on contact analysis capability of Peridynamics are 

presented. This is especially important to perform collision and grounding analysis of 

ship structures. As mentioned earlier, peridynamics is fundamentally different with 

respect to classical theory which includes well-known finite element method (FEM). 

However, it is possible to implement Peridynamics within a commercial finite element 

(FE) software as explained in ref. (Macek and Silling, 2007). In this thesis, this 

approach is further extended by utilizing the currently existing contact analysis 

capability of the FE software.   
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1.6 Thesis Structure  

This thesis proposes several ways to implement PD theory for complex structures, e.g. 

ship type of structures.   

In Chapter 3, several solution methods to implement PD theory for complex structures, 

e.g. ship type of structures are proposed. The computational time can significantly be 

reduced by using correct method for the intended analysis because PD equations of 

motion are very suitable for parallel computing either by using a CPU (Central 

Processing Unit) and/or GPU - based (Graphics Processing Unit) architecture. 

Alternatively, the capability of already existing FE Software, e.g. ANSYS, can be 

exploited for modelling and solution purposes in PD theory. Furthermore, Peridynamic 

codes can be written in a more efficient way to reduce computational time.   

However, modelling/analyzing very large and complex structures such as aerospace 

and marine vehicles can still be computationally demanding. Hence, it is necessary to 

utilize structural idealizations to make the computations feasible. Peridynamic (PD) 

theory was originally introduced for the solution of deformation field equations 

(Silling, 2000) without any structural idealizations. Hence, the existing beam/plate 

theories should be incorporated in Peridynamic framework in addition to solid type 

model. Chapter 4 presents PD equations of motions for structural idealizations such as 

beams and plates, while accounting for transverse shear deformations for them. Such 

structures can be the part of a ship. In the same chapter, PD dispersion relations, which 

represent wave propagation characteristics of materials, are presented and compared 

with classical theory. It is found that PD theory is also capable of capturing very well 

- known properties of real materials for very small wave lengths. Thus, this property 

of PDs allows the use of idealized structures in micro or nano scales, such as for nano 

packaging.   

At the end, the last two chapters present PD models for marine structures applications.   
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Chapter 2 

 

Literature Review 

 

2.1 Introduction  

The trend in ship and offshore building industry is to construct ever bigger structures 

by means of their sizes and as a result of this strength of material must be satisfied 

under several loading scenarios. Apart from strength, toughness of material has 

become an important issue for big structures and both must have acceptable limits. 

Unfortunately, the attainment of both of these properties is not a simple issue and there 

are several studies on this. Ritchie (2011) indicated strength-toughness relationships 

for several engineering materials (Figure 2.1) and which for new state-of-art materials, 

i.e. metallic glasses, metallic-glass composites, as well as future trends of materials 

(indicated as white arrow in Figure 2.1). In this study, it is concluded that both of these 

properties is related with several length scales, i.e. nano to macro scale, and one should 

consider the effect of different length scales on material behavior.  
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Figure 2.1 Conflicts of strength versus toughness (Ritchie, 2011)  

Constructing ever bigger ship structures leads to the application of thicker steel plates 

in shipbuilding industry. Several attempts has been done in order to gain both strength 

and toughness of shipbuilding materials especially for thick steel plates. Recently, 

International Association of Classification Societies (2013) (IACS) has released new 

rule so-called "Requirement for Use of Extremely Thick Steel Plates" in January 2013. 

In this documentation, several requirements and recommendations are highlighted for 

the use of extremely thick steel plates, i.e. between 50mm and 100mm, concerning 

brittle fracture toughness and brittle crack arrest-ability.   

It is also important to express some commonly used phrases of fracture, damage and 

failure in here. So, one may be aware of the differences between them. As a summary 

(Ramesh and Chandra, 2012), fracture is a breakage of atomic bonds and formation of 

internal surfaces in a material, damage can be all irreversible changes within the 

structure by energy dissipating mechanisms and failure can be regarded as inability of 

a structure to perform its functionality under several loading and/or environmental 

conditions. Damage also encompasses fracture but it may not lead to a final failure of 

a structure. As an example, small cracks need to interact with each other and 

accumulate to cause a final failure. Analysis of different damage mechanisms and their 
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interactions with each other, so called damage progressive analysis, play an important 

role on final failure of a system.  

 

2.2 Fracture Toughness and Crack Growth  

There are several parameters describing fracture toughness of materials like energy 

release rate (G), stress intensity factor (K), J – integral, crack tip opening displacement 

(CTOD) and crack tip opening angle (CTOA). These parameters are related with 

material behavior which can be linear elastic, non-linear elastic or elastic-plastic. 

While measuring and evaluating these parameters, proper test methods must be 

adopted. A detailed research reviewing these issues from past to state-of-art 

developments has been done by Zhu and Joyce (2012). Their review is based on 

American Society for Testing and Materials (ASTM) standards. Usually fracture tests 

give too conservative results when compared with actual structures. That is why 

Bayley and Aucoin (2013) examined fracture behavior of welded single edge notched 

tension specimen using constraints and loading conditions encountered by ship 

structures in service. They examined large scale samples of hull structural material. 

They developed crack mouth opening displacement (CMOD) - CTOD transfer 

function utilizing Finite Element Method (FEM) simulations of these samples and this 

leads to the determination of fracture toughness values. So, the fracture toughness 

values of non-standardized tests specimens can also be determined using the same 

procedure. On the other hand, while measuring fracture toughness values of thick steel 

plates, large test specimens and so large testing machine with huge expenditures are 

necessary. This issue addressed by Yajima et al. (2011) and they used small sized 

center-notched tension test specimen using steel plate thickness as the specimen width. 

They accomplished to evaluate fracture toughness of 70 mm thick steel plate using this 

specimen.   

The relationship between microstructure of weld joints and fracture toughness was 

investigated by Leng et al. (2012). They performed several experiments including 

CTOD test, metallographic analysis and fracture surface analysis on high strength low 

alloy steel S335G10+N that is suitable for marine structures. Weld joints are subjected 

to different thermal cycles and experience crystallization and solid transformation 
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which lead to heterogeneity. So, samples from weld position (WP), fusion line (FL) 

and fusion line plus 2 mm (FL+2) are used in experiments. In their study, the average 

grain sizes of samples were measured and compared with the CTOD values that are 

listed in Table 2.1 and Table 2.2. It was observed that average grain size distribution 

is in agreement with CTOD values. The larger the CTOD is the smaller the average 

grain size will be.   

Table 2.1 CTOD values (Leng et al., 2012)  

Crack position WP WP WP FL FL FL FL+2 FL+2 FL+2 

Specimen S3553 S3554 S3557 S3556 S35510 S35511 S3551 S3552 S3559 

δu (mm) 0.583 0.455 0.623 0.596 0.531 - - 0.837 0.714 

δm (mm) - - - - - 0.889 0.925 - - 

Mean value (mm) 0.554 0.672 0.825 

 

Table 2.2 Average grain sizes (Leng et al., 2012)  

Sample number S3557B S3556B S3559B 

Average grain size 9.39 8.40 7.85 

 

In fracture mechanics, crack arrest toughness ( aK ) has also become an important 

parameter and it is to determine failure characteristics of materials along with crack 

initiation toughness ( cK ). After crack initiation takes place, it is important to arrest its 

propagation in order to prevent failure or fracture of the related structure. In fatigue 

study field, crack arrest toughness and/or crack retardation effects are also investigated 

for failure characteristics of structures under several variations of loads, i.e. sea 

loadings. An et al. (2014) investigated crack arrest fracture toughness ( IaK ) 

characteristics of thick steel base material and its heat-input weld for 50 mm thick high 

strength shipbuilding steel. They concluded that IaK  is a linear function of 

temperature. In their experiments, while base material (BM) satisfied IACS (2013) 

rule, this was not the case for the weld material. In addition, they obtained straight 

crack propagation path along the fusion line (FL) of weld and that is why some 

investigation of the material properties of the path, i.e. grain size, hardness, Charpy 

impact energy, was carried out and it is found that localized degradation of materials' 

strength and toughness in the impact notch region of the experimental setup can be the 

cause of it. One can see that it is also important to obtain satisfactory fracture toughness 
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values for weld joints of ship structures. Moon et al. (2013) carried out several 

experiments to obtain CTOD values of API 2W Gr.50 steel at welds and its heat 

affected zone (HAZ) using two types of welding, submerged arc welding (SAW) and 

flux cored arc welding (FCAW). Apart from a utilization of the crack initiation and 

arrest toughnesses, the crack tip opening displacement (CTOD) is a commonly used 

parameter for evaluating fracture toughness of structures in fracture mechanics. It can 

be related with J integral using plastic constraint factor, m, as   

yJ m                       (2.1) 

where   is CTOD value. From several experiments of two types of welding they 

concluded that plastic constraint factor based on the American Society for Testing and 

Materials (ASTM) standard, E1820, does not include the effect of weld process and it 

is too conservative. They also carried out Charpy impact and hardness tests of SAW 

and FCAW welding process and compared them with each other. They concluded that 

CTOD values have similar tendency with impact energy and hardness results.  

A comprehensive research has been made by Japan Ship Technology Research 

Association (JSTRA) to prevent failure in large container ships and the results are 

published by Sumi et al. (2013). They mainly focused on initiation of brittle crack, 

fatigue crack growth under several sea loading conditions and investigated crack arrest 

designs in deck structure of large container ships for thickness range of 50 – 75 mm 

steel plates. It is emphasized that allowable initial defects in the weld joints can grow 

in critical sizes and may cause brittle fracture. They also referred to guidelines 

published by ClassNK on Brittle Crack Arrest Design for countermeasures of brittle 

crack propagation. It has also shown that the most reliable method to prevent crack 

propagation along welded joints is a weld line shift shown in Figure 2.2.   



38 

 

Figure 2.2 Concept of weld line shift (Sumi et al., 2013)  

A more detailed research on fatigue crack growth has been done by Sumi (2014a) 

considering same locations and thickness range of container ships. In this research, the 

fatigue crack growth is simulated using two models namely the crack growth model 

based on RPK  and the simple crack growth model, i.e. Paris-Elber law, with random 

sequence of clustered loading, so-called storm model. Fatigue lives of RPK  criterion 

were found 2-3 times longer than the simple method. Because the retardation and 

acceleration effects cannot be considered with the latter one which does not properly 

take into account the increase of the plastic wake (Figure 2.3). Crack growth model 

based on RPK  is basically defined by Equation (2.2) and please refer to (Toyosada et 

al., 2004) for detailed discussion.   

 /
m

RPda dN C K                   (2.2) 

 

Figure 2.3 Formation of plastic wake during fatigue crack growth (Sumi, 2014b)  
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In the same paper, the effect of a slam-induced whipping stress on fatigue crack growth 

is also investigated since the longer marine structures mean more slam-induced 

vibratory stresses considering its flexible body. It is concluded that M-series specimens 

may be used in order to estimate fatigue crack propagation life under whipping stress. 

But still further studies are needed on this area.   

Quéméner et al. (2013) made fatigue crack evaluation of stiffened plate longitudinal 

elements located at bottom and deck regions of ships where critical bending stresses 

occur. First, critical crack lengths were evaluated for extreme bending moments which 

represent fracture resistance of members based on actual CTOD values and these 

critical lengths correspond to end of fatigue life of each component for which fatigue 

crack propagation becomes unstable. Another fatigue crack evaluation study for 

longitudinal elements of ship structures has been done by Wengang and Jonas (2013). 

They considered an effective method for fatigue crack propagation which is based on 

the narrow band spectral fatigue method and it is validated with full scale 

measurements of 2800 TEU container ship. In general, ships are subjected to several 

cyclic loads during the service life and it is hard to expect occurrence frequency of 

these loads. Additionally, other uncertainties such as residual stresses from 

manufacturing, corrosion, weld defects etc. can also make difficulties in fatigue 

analysis. So, it is highly probable that fatigue cracks may occur earlier than the 

expected. Different approaches are applied for fatigue strength assessment of ship 

structures. Fricke et al. (2012) performed several tests using two types of structures, 

i.e. web frame corners and the intersection between longitudinals and transverse web 

frames, under several loading conditions. All available techniques were applied to 

these models and they investigated both large and small scale specimens 

experimentally and numerically. In their analysis, fabrication-related conditions, 

welding induced pre-deformations and residual stresses were all included. At the end, 

strength behaviors of chosen complex welded structures were summarized.   

Mechanical properties of materials such as fracture toughness, strength and fatigue life 

can be improved with several techniques. In this respect, Rubio-González et al. (2011) 

studied duplex stainless steels which are used in different fields including ship 

industry. These steels have high strength and excellent fracture toughness as well as 

high corrosion resistance. They investigated relatively new laser shock processing 
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(LSP) technique and its effects on mechanical properties of these steels. It has already 

known that LSP technique especially increases fatigue crack initiation life and reduces 

fatigue growth rate of materials. This work confirmed that application of LSP on 2205 

duplex steel improved fatigue properties and no effect has been found on micro-

hardness and microstructure of material but improvement of fracture toughness was 

reported. Kim et al. (2012) studied mechanical properties of adhesive joints which 

used to join stainless steel sheets. Stainless steel sheets have been used at cryogenic 

temperature of -150C for their relatively high mechanical and low coefficient of 

thermal expansion (CTE) properties in containment system of LNG ships. But 

adhesives of steel sheets become quite brittle at that temperature and need to be 

reinforced to improve fracture toughness values. In this study the film-type epoxy 

adhesive was reinforced with randomly oriented aramid fiber mats. As fracture 

toughness values are influenced by mechanical properties as well as thermal residual 

stresses, both properties are investigated. It was found that aramid fibers could reduce 

the thermal residual stresses between the stainless steel and adhesive layer. Optimum 

volume fraction of the aramid fiber mats was found as 16.3% from double cantilever 

beam (DCB) tests of the adhesive joint. It was concluded that the adhesive reinforced 

with aramid fiber mat has higher load-carrying capacity and fracture toughness at 

cryogenic temperature of -150C than those of other choices such as polyester or glass 

fiber mats. Liquefied natural gas (LNG) ship’s containment system is mainly 

composed of dual barriers and insulation board. The insulation board must be reliable 

against leakage of LNG and have high thermal insulation performance. The reliability 

of insulation board considering sufficient fracture toughness at cryogenic temperature 

of -163C was studied by Yu et al. (2013). Conventionally, the polyurethane foam 

(PUF) reinforced with glass fiber (RPUF) is used for insulation board to increase 

fracture toughness. This implementation not only increases costs but also decreases 

thermal insulation characteristics. As a result, the volume fraction of a glass fiber is 

restricted to less than 0.5% and the sufficient fracture toughness is uncertain. This 

uncertainty can possibly lead to crack propagation in insulation board and induce 

leakage of LNG. Cracks usually initiate and propagate as a result of local tensile stress 

concentrations due to the temperature change. In this study, crack resistance of 

insulation board is increased with reinforcement of glass fiber polymer composite in 
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selective areas which have high stress concentrations. Mainly glass fiber reinforcement 

sustains high thermal stresses by high stiffness property. The tensile failure strengths 

of both conventional RPUF system and glass composite reinforcement were measured 

and safety factor of the latter one is calculated as 42% higher than the former by   

Failure strength of insulation board
Safety factor

Average thermal stress on insulation board
             (2.3) 

 

2.3 Marine Composites  

Marine structures must be built to have sufficient strength under several loading 

scenarios and varying environment conditions e.g. moisture, temperature and so. It is 

also important to minimize weight without any compromise to strength of structure. 

The optimization procedures for high strength and lightweight structures revealed that 

composite structures are the best way out. Apart from strength, toughness is also an 

important quantity for engineering structures and ensures high load bearing capacity 

for them. So, the future trend is to build both strong and tough structures. Unlike brittle 

materials, tough materials are high damage tolerable and so catastrophic failure does 

not occur. Composites are very complex structures because they are composed of 

combination of several constituent materials while each of which keeping its own 

property. The behavior of composite structures depends on their constituent materials 

as well as geometry, loading and environment conditions. So it is possible to build 

such composite structures both providing high strength and toughness values like 

metallic-glass composites in ref. (Ritchie, 2011) as well as lightness. Sandwich 

composite structures may take the stage on this part because they have ability to 

provide lightness in addition to strength and toughness especially for big structures 

like ships and aero planes.   

2.3.1 Failure modes  

In general, engineering structures are exposed to several loadings under different 

service conditions. So, cracks, which already exist in imperfect materials or emerge 

spontaneously in macro/micro or nano scales, propagate in the most energy favorable 

direction. It is generally accepted that there are fundamental loading conditions for an 
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already existing crack in the material and they are named as mode I-II and III loadings 

as shown in Figure 2.4. Although they are very fundamental and distinctive, in reality, 

they appear as combinations of those so called mixed mode loadings. The most 

common mixed mode loadings are mode I-II and mode I-III.   

 

Figure 2.4 Loading types   

Many experimental studies have been conducted in order to investigate crack 

propagation behaviors in isotropic, orthotropic or composite materials (Araki et al., 

2005; Benzeggagh and Kenane, 1996; Farshad and Flüeler, 1998; Hashemi et al., 

1990). In those, the most common experiments are the mode I double cantilever beam 

(DCB) test, mode II end loaded split (ELS) test, mode II end notched flexure (ENF) 

test and mixed mode bending (MMB) test (Figure 2.5).   

   

        a) DCB test    b) ENF test 
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c) MMB test 

Figure 2.5 Test methods   

As generally excepted, cracks propagate in mode I loading direction for isotropic 

materials (Griffith, 1921; Melin, 1991; Nuismer, 1975), i.e. Figure 2.6, however, this 

is not the case for more complex composite structures. Because cracks are usually 

constrained between plies in resin reach layers and they are forced to propagate 

through these layers.   

 

Figure 2.6 Crack propagation direction  

Researchers commonly use critical energy release rate (Gc) in order to determine 

fracture toughness and to investigate crack initiation, propagation characteristics of 

materials under several loading conditions (Charalambides et al., 1992; LEE, 1997; 

O’Brein, 1997; Williams, 1988). It is basically the estimation of amount of work that 
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is available for generating new crack surfaces within the bulk material. Three main 

loading conditions are related with three components of energy release rate, i.e. IG ; 

IIG ; 
IIIG , and those can be expressed in terms of stress intensity factors as   

2 , ,m m mG K m I II III                  (2.4) 

where 
m  is a parameter depending on material constants. The Griffith failure criterion 

states that the fracture occurs when the sum of the energy release rates exceeds critical 

energy release rate, cG . So, it is apparent that cG  is the material parameter.   

2.3.1.1 Composite failure  

In order to decrease the weight of marine structures, there is significant interest in 

replacing traditional metallic designs with composite materials. By doing so, it must 

be ensured that composite materials must show high resistance to extreme loading 

conditions. Failure behavior of composites are quite complex and can occur in 

different modes including fiber breakage, matrix cracking, fiber/matrix debonding and 

delamination. These failure modes can also be classified as   

I. Interlaminar failure: Progressive disbond of plies within the 

laminated stack. They are commonly denoted as delamination.   

II. Intralaminar failure: Formation of in-plane cracks, parallel to the 

reinforcement direction. These are often denoted as ply splits.   

III. Translaminar cracks: Tensile or compressive failure of the 

reinforcement fibers.  

and they can be seen in Figure 2.7.   

 

Figure 2.7 Failure modes in composite structures   
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2.4 Peridynamic Theory  

2.4.1 Introduction  

Peridynamic (PD) theory was first introduced by Silling (2000) at Sandia National 

Laboratories and it was structured as an extended version of classical theory. In 

classical continuum mechanics (CCM) theory, which is introduced by French 

mathematician Augustin Louis Cauchy, only neighboring interactions of an 

infinitesimal volume is considered with traction vectors, T, and PD theory further 

incorporates distant interactions, t  and t , in the most general sense. The length scale, 

which is termed as horizon, available in the theory designates extent of such 

interactions and classical theory can be recovered as it approaches to zero. Please see 

the Figure 2.8 for a comparison purpose.   

 

Figure 2.8 Comparison of CCM theory and PD theory   

The most remarkable property of PD theory is that the equation of motion (EOM) does 

not include any spatial derivatives as in CCM theory and in other nonlocal theories 

such as the Eringen’s nonlocal elasticity theory (Eringen, 1972). As a result of this, 

PD theory has several advantages against local, i.e. CCM, and other nonlocal theories. 

In fracture mechanics sense, PD theory is especially promising tool for failure analysis 

of structures because the formulation is valid everywhere regardless of the presence of 

discontinuities in the domain and it does not need any external crack growth criteria to 
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predict when and where the crack propagates. As a consequence, Peridynamics is a 

very powerful tool for predicting complex material failure mechanisms such as crack 

nucleation, crack propagation, crack branching, coalition of multiple cracks and crack 

arrest. This capability of Peridynamics has already been demonstrated in refs. 

(Madenci and Oterkus, 2014; Oterkus and Madenci, 2012; Oterkus et al., 2012) with 

various benchmark problems both for isotropic and anisotropic materials.   

As mentioned above, when PDs was first introduced by Silling (2000), the 

fundamental idea beneath it was to replace spatial derivatives of stresses from the 

equation of motion of CCM theory (Equation (2.5)) with an integral term.   

     ,, ,       & 1,2,3ij jt t i j   x u x σ b x               (2.5) 

in which comma sign represents differentiation in space. So, the new form of equation 

of motion is given by   

          , , , ,

x

xt d t


           x u x t x x u u t x x u u b x            (2.6) 

where  and x represent the density and position vector of the main material point in 

the undeformed configuration, respectively and t represents the time. By doing so, the 

solution procedure of discontinuities or cracks as well as representation of interfaces 

of different materials become no more challenging because they are already included 

in the nature of PD formulation. As in the CCM theory, the body is partitioned into 

many infinitesimal volumes and each volume is named as material point in 

Peridynamics. The main material point, x, which is a variable in acceleration term in 

the left hand side of Equation (2.6), interacts with other material points, x, named as 

family members of material point x, inside its domain of influence. Each interaction is 

referred as a bond in Peridynamics. The domain of influence, which is called horizon, 

H, is a sphere in three-dimensional body and its radius is denoted by . It is assumed 

that the material point x cannot see beyond its horizon (Silling and Askari, 2005).   
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2.4.2 The most general sense of Peridynamic theory  

Equation of motion of one material point can be derived by getting benefit of principle 

of virtual work as is done by Madenci and Oterkus (2014) in Peridynamic theory. 

When the body is deformed, each interaction or bond in PDs gains energy, which is 

called micropotential. Micropotential,  , of a bond is composed of two components 

as   

( )( ) ( )( ) ( ) ( )(1 ) (2 )
( , ,...)k kk j k j k k   y y y y               (2.7) 

( )( ) ( )( ) ( ) ( )(1 ) (2 )
( , ,...)j jj k j k j j   y y y y               (2.8) 

where y denotes the deformed position vector of a material point.   k j
  originates 

from every material point that interacts with the material point k and   j k
  originates 

from every material point that interacts with the material point j in a body. These 

interactions or bonds and micropotentials can be seen from Figure 2.9a. 

Micropotentials depend on material properties and relative positions of material points 

after deformation. Micropotential of a bond can be assumed as the average of those   

 ( )( ) ( )( )

1

2
k j j k                    (2.9) 

   

a) Micropotential of a bond   b) Strain energy density from 

micropotentials  

Figure 2.9 Micropotentials   
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Strain energy density function of a material point k is then found by summation of 

micropotentials of all bonds connected to that point as can be seen in Figure 2.9b and 

it is expressed as   

 ( ) ( )( ) ( )( ) ( )

1 1

2 2
k k j j k j

j

W V                (2.10) 

where V(j) is the volume of each member material point, j. Here, it is assumed that the 

material point k owns only half of the energy of bonds. In Peridynamic point of view, 

the potential energy of a body, which is composed of many material points (Figure 

2.10), can be expressed as the summation of strain energies of all material points in a 

body minus the total energy of external loads   

( ) ( ) ( ) ( ) ( ).k k k k k

k k

U W V V  b u              (2.11) 

where  k
b  denotes the body load on a material point k and  k

u  is the displacement 

vector of a material point k. Also, kinetic energy of a body can easily be expressed as   

( ) ( ) ( ) ( )

1
.

2
k k k k

k

T V u u               (2.12) 

in which  k
  represents density of the material point k.   

 

Figure 2.10 Body composed of many material points   

After determining the potential and the kinetic energies of a body, the EOM of one 

material point can be obtained by using principle of virtual work. The principle of 

virtual work states that the body must have a stationary point in time whenever the 

variations of Lagrangian (L) is equal to zero (Equation (2.13)). Here, the Lagrangian 

is basically the difference between the kinetic and potential energies, i.e. L T U  .   
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1

0

0

t

t

Ldt                  (2.13) 

Following the calculus of variations, Lagrange’s equation of motion is obtained as   

( ) ( )

0
k k

d L L

dt

  
     u u

              (2.14) 

Substituting Equations (2.11) and (2.12) into Equation (2.14) results in equation of 

motion of material point k in terms of micropotentials (please see the ref. (Madenci 

and Oterkus, 2014), pg. 24 - 26 for the detailed derivation procedure) as   
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                 (2.15) 

or in a more compact form   

( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )1

2 ( )

( )1
0

2 ( )

k j i k

k k k j k

j i i k k

j k k i

j k k k

j i k i k

V V V

V V V






  
 

  

  
 

  





y y
u

y y u

y y
b

y y u

          (2.16) 

In Equation (2.16), additional summation functions related with the material point i 

comes from the chain rule of differentiation as   

     

    
    i kk j k j

ik ki k

    


  


y y

u uy y
            (2.17) 
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Since 
  k j

  is composed of deformations of all bonds that are connected to the 

material point k, i.e.  i ky y , Equation (2.7) can be written in a slightly different 

form as   

( )( ) ( )( ) ( ) ( )( )k j k j i k

i

  y y               (2.18) 

The same is also true for micropotential 
  j k

  as follows   

     

    
    k ij k j k

ik kk i

    


  


y y

u uy y
            (2.19) 

and from Equation (2.8)   

( )( ) ( )( ) ( ) ( )( )j k j k i j

i

  y y               (2.20) 

Comparing Equations (2.19) and (2.20), an interesting inference can be done which is   

( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )j k i j j k k i

i i

    y y y y             (2.21) 

The similar observation can also be obtained with the following derivations. Let us 

change the order of summation indices in Equation (2.16)   

( )( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )( ) ( ) ( )

( ) ( )

( ) ( )

( )1

2 ( )

( )1
0

2 ( )

k i j k

k k i

j i j k k

i k k j

i k

j i k j k

V

V






  


  

  
  

  





y y
u

y y u

y y
b

y y u

           (2.22) 

and in a more simplified form, it is expressed as   

( )( )

( ) ( ) ( )

( ) ( )

( )( )

( ) ( )

( ) ( )

1

2 ( )

1
0

2 ( )

k i

k k i

j i j k

i k

i k

j i k j

V

V









 


  

 





u
y y

b
y y

             (2.23) 

Above equation may also be expressed in a slightly different form with introducing 

force density vectors, t(k)(j) and t(j)(k), as   
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( ) ( ) ( )( ) ( )( ) ( ) ( )( )k k k j j k j k

j

V   u t t b              (2.24) 

This equation is the very well-known Peridynamic equation of motion in the most 

general sense and it can also be called as non - ordinary state based PD theory. Here, 

the force densities can be written explicitly as   

( )( ) ( )
( )( )

( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

21 1 1

2 ( ) ( )

k i i
k i i

k j i

ij j k j j k

V

V
V V




 
    

   


t

y y y y
          (2.25) 

and   

( )( ) ( )
( )( )

( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

21 1 1

2 ( ) ( )

i k i
i k i

j k i

ij k j j k j

V

V
V V




 
    

   


t

y y y y
          (2.26) 

As shown in Figure 2.11, it is understood that the force density vectors of a bond, i.e. 

t(k)(j) and t(j)(k), result from summation of all bonds’ micropotentials that are connected 

to the material point k and its differentiations with respect to the deformation of a bond 

which is in question, i.e. bond k-j. Furthermore, force densities can be in any direction 

with different magnitudes.   

 

Figure 2.11 Force densities of a bond   

Equations (2.25) and (2.26) can also be expressed by means of strain energy densities 

of material points k and j, i.e. W(k) and W(j) respectively, as   
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 
( )

( )( )

( ) ( ) ( )

1 k

k j

j j k

W

V




 
t

y y
   and   

( ) ( )( ) ( )

1

2
k k i i

i

W V            (2.27) 

in which t(k)(j) is the force density, that material point j exerts on material point k.   

 
( )

( )( )

( ) ( ) ( )

1 j

j k

j k j

W

V




 
t

y y
   and   

( ) ( )( ) ( )

1

2
j i k i

i

W V            (2.28) 

in which t(j)(k) is the force density, that material point k exerts on material point j. Strain 

energy density at material point j, W(j), can also be expressed in a different form as 

similar to strain energy density at material point k, W(k), i.e. Equation (2.27), as   

( ) ( )( ) ( )

1

2
j j i i

i

W V     and   
 

( )

( )( )

( ) ( ) ( )

1 j

j k

k k j

W

V




 
t

y y
          (2.29) 

Thus, equating Equations (2.28) and (2.29) leads to the important inference that   

( )( ) ( ) ( )( ) ( )i k i j i i

i i

V V                 (2.30) 

Also be aware of the similarity of Equations (2.21) and (2.30). The inferred Equation 

(2.30) can have several physical meanings. Firstly, this equality is shown in Figure 

2.12 to make the understanding more physical. Here, bond k – j, which is in red color, 

is in question and its force densities depend on many other interactions as well. Now, 

let us introduce the horizon to a current theory in order to make the PD formulation 

simpler, cf. Figures 2.11 and 2.12. In Figure 2.12, the horizons of the material points 

k, j and i are shown and it is already mentioned in Section 2.4.1 that the material points 

outside the horizon region cannot see each other. However, in a more general sense of 

PD theory, it can be proved that there are still indirect interactions between the material 

points even if they are outside of their horizons. Please also note that the horizons are 

different than the circular form in the deformed state however they are shown as 

circular form in Figure 2.12 for the simplicity.   



53 

 

Figure 2.12 Direct and indirect interactions with micropotentials   

In Figure 2.12, force densities, t(k)(j) and t(j)(k), resulting from the interaction between 

material points k and j are shown. The force density, t(k)(j), has its property, i.e. the 

magnitude and the direction, from the micropotentials of all bonds which are 

connected to material point k, i.e. ( )( )k i

i

 , as in Equation (2.27). Since, the dashed 

green bonds are outside the horizon of point k, their micropotentials may be very small 

in magnitude and it is assumed that they are equal to zero, i.e. 
( )( ) 0k i  . On the other 

hand, the force density, t(j)(k), has its property, i.e. the magnitude and the direction, 

from the micropotentials of all bonds which are connected to material point k as well, 

i.e. ( )( )i k

i

 , as in Equation (2.28). Besides, Equation (2.30) tells us the force density 

t(j)(k) may also have its property from all bonds which are connected to material point 

j, i.e. ( )( )j i

i

 . Thus, micropotentials of dashed green bonds should not vanish 

because   

( )( ) ( ) ( )( ) ( ) 0i k i j i i

i i

V V                  (2.31) 

So, it is apparent that the micropotentials of bonds, which are outside the horizon 

region, can still have an effect on the force density of a bond. Because the material 

point j is actually a common point of the material points i and k such that its horizon 
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includes both material points i and k. So, in the light of these, it can be said that 
( )( )i k  

has its property from 
( )( )j i  or micropotential of dashed green bond is influenced by 

solid green bond’s micropotential as shown in Figure 2.12. As a result, even material 

points k and i are outside of their horizons, i.e. 
( ) ( ) 2i kx x    , energy of the 

dashed green bond can still contribute to force density t(j)(k) because of common 

material point j and it causes indirect interaction between i and k. The similar 

observation was also made by Silling (2010) with a different form of equation of 

motion which is in a linearized form. Silling (2010) introduced vector and double states 

in his work and explained their mathematical operations. Vector state basically 

involves infinite number of array of vectors and double state is an infinite number of 

second order tensors. We do not introduce the detailed expressions for states here but 

still the similarities can be observed between our work and ref. (Silling, 2010). 

Equation of motion in PD theory is introduced by Silling (2010) in a linearized form 

as   

      

        

( ) ( , )
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, , ,

, , ,

k k t i j

i j k t
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j k j i j i t j t dV dV
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 

    

     

 

 

u u u

u u b
          (2.32) 

where  K ,k j k i k   and  K ,j k j i j   are the double states or named as the 

modulus states of material points k and j, respectively. From the similarity of 

micropotentials and double states, cf. Equations (2.27) – (2.29) and (2.32), following 

equities can be established   

 
 

      
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


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 t u u

y y
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and   

 
 

      
( )( )

( )( ) ( )

( ) ( ) ( )

1 1
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j k i i

ij k j

V j k j i j i t j t dV
V






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 
 t u u

y y
        (2.34) 

As already mentioned before, Equation (2.34) includes indirect interactions between 

the material points i and k arising from the equity given in Equation (2.30). So, it can 
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be deduced that the modulus state  K ,j k j i j   has the same type of indirect 

interactions. This property was also emphasized by Silling (2010) with further 

modification in Equation (2.32) as   

   ( ) ( , ) 0 0( , ) , ( ) , ( , )k k t iC k i i t dV P k k t k t


  u u u b            (2.35) 

where   

      0 ( , ) , , , jC k i k j k i k j k j i j i k i j i dV


                  (2.36) 

and  

 0 ( ) , i jP k k j k i k dV dV
 

                  (2.37) 

So, the term 0 ( , )C k i  may be non-zero even if 
( ) ( ) 2i kx x     and this is because 

of the modulus state  K ,j k j i j   appearing in Equation (2.36) which defines the 

force state of material point j (Silling, 2010). It is also mentioned by Silling (2010) that 

the non-zero modulus state, i.e.  K ,j k j i j  , results from the horizon of material 

point j and it includes both of the material points i and k.   

2.4.3 Ordinary state based Peridynamics  

Indeed, non - ordinary and ordinary state based PDs published by Silling et al. (2007) 

following the simpler form of PD formulation which is named as bond – based PDs 

(Silling, 2000). Since the more general form of PDs, which can also be named as non 

– ordinary state based PDs, was already explained in Section 2.4.2, the following 

sections are structured so as to follow this towards the simpler form of PD theory. The 

PD force densities can be derived from micropotentials such that they may have any 

direction and magnitude in a bond (see the Figure 2.12). In a most general sense of PD 

theory, i.e. non – ordinary state based PDs, there is no constraint on the force densities. 

However, one must find the best solution in order to represent the continuum model 

of a structure considering the micropotentials or the strain energy density function of 

a material point.   
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2.4.3.1 The work done by Madenci and Oterkus (2014)  

Madenci and Oterkus (2014) proposed strain energy density function based on the idea 

that PD theory is just the extension of local interactions of CCM theory to a non – local 

sense. Please see the Chapter 3 of ref. (Madenci and Oterkus, 2014) for the expansion 

procedure to non – local interactions. This newly proposed strain energy density 

function (Equation (2.38)) results in ordinary state based PD formulation for 

continuum domain of solid materials. The difference between ordinary and non – 

ordinary state based formulations is just the direction of the force densities in a bond. 

In ordinary state based formulation, the force densities are aligned such that they are 

in the direction of the deformed position of a bond and they can still possess any 

magnitude (Silling et al., 2007) as shown in Figure 2.13.   

 

Figure 2.13 Ordinary state based theory with direct and indirect interactions   

The proposed strain energy density function of Madenci and Oterkus (2014) is   
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  

      y y x x x x
         (2.38) 

in which  k
  is the dilatation term   
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              

   
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d w s T V T  
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


y y
x x

y y
         (2.39) 

where   k j
s  is the stretch definition of a bond in PD theory and is expressed as   

  

       

   

j k j k

k j

j k

s
  




y y x x

x x
             (2.40) 

In Equation (2.38), T(k) represents temperature change of a material and  is the 

coefficient of thermal expansion. The terms a, a2, a3 and b are the PD material 

parameters and can be related to engineering constants by equating the strain energy 

densities of CCM and PD theories for simple loading conditions. As well as d ensures 

that the dilatation term remains non - dimensional. Following the procedure defined 

by Madenci and Oterkus (2014) (c.f. Chapter 4), material parameters can be expressed 

for three – dimensional structures as   

1 5

2 3
a



 

  
 

, 2 6a a , 2

3 9a a , 
5

15

2
b




  and 

4

9

4
d


          (2.41) 

Here,  and  are the bulk and shear moduli of a structure and they, for three – 

dimensional body, are 
 3 1 2

E






, 

 2 1

E






. Please see Chapter 4 of ref. 

(Madenci and Oterkus, 2014) for two and one – dimensional structures. Furthermore, 

  k j
w  is named as influence or weight function and it adjusts the influence of material 

points away from the main material point k. It may simply be expressed as   

  

   

k j

j k

w



x x

               (2.42) 

Now, the force densities can be derived from the Lagrange’s equation of motion. They 

already are given by Equations (2.27) and (2.28) in terms of strain energy densities. It 

can be realized from Equation (2.38) that the strain energy density is composed of 

scalar distance between the deformed form of material points, i.e.    j k
y y , and the 

following equity can be established   
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                  ( ) ( ), ,k kj k j k j k j k
W W    y y x x y y x x           (2.43) 

The similar equity is also given by Silling et al. (2007) for ordinary, elastic material. 

So, this leads to a slightly different form of force density expression   

   
 ( ) ( )( ) ( )

( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

1 1 j kk k

k j

j j j kj k j k

W W

V V

 
 

   

y y
t

y yy y y y
          (2.44) 

The similar equation can also be written for 
  j k

t  but we do not show this for 

simplicity and integrity of the section. Please see Chapter 4 of ref. (Madenci and 

Oterkus, 2014) for details. It is obvious from Equation (2.44) that the force density is 

oriented in the direction of deformed position of a bond and this is the property of 

ordinary state based PD theory. It also ensures the balance of angular momentum of a 

body. Substituting Equation (2.38) into Equation (2.44) leads to a force density 

expression of the ordinary state based theory as   

  

 ( ) ( )

( ) ( )

1

2

j k

k j

j k

A





y y
t

y y
              (2.45) 

with   
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k j

j k j k k j j

d a a T

A w

b T





  
        

     
  

y y x x x x

          (2.46) 

where   k j
  is the parameter defined by   

  

   

   

   

   

j k j k

k j

j k j k

 
 

 

y y x x

y y x x
             (2.47) 

2.4.3.2 The work done by Silling et al. (2007)  

The first ordinary state based PD formulation was proposed by Silling et al. (2007). 

The vector states and their mathematical operations are proposed in their work. Vector 

state is composed of infinite number of array of vectors. We do not introduce the 
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detailed expressions of states here, please refer to ref. (Silling et al., 2007) for more 

information.   

In this work, Silling et al. (2007) firstly proposed extension scalar state of bonds as   

e y x                  (2.48) 

in which y  and x  are the magnitude of position vectors in the deformed and un – 

deformed configurations, respectively. Please remember that states include 

information of all material points in a domain. Then, the dilatation term in PD theory 

is proposed as   

 
3

x e
m

                  (2.49) 

in which m is named as the weighted volume and is given by   

 m x x                  (2.50) 

where   is the influence function and the dot “ ” sign represents the dot product of 

two states. After defining the dilatation term, it is possible to decompose extension 

state into two parts as isotropic (
i

e ) and deviatoric (
d

e ) extension scalar states   

3

i x
e


    and   

d i
e e e                (2.51) 

Then, isotropic (
i

t ) and deviatoric (
d

t ) parts of force scalar state, t , are proposed as   

3i p
t x

m



    and   

d i
t t t                (2.52) 

and p is the Peridynamic pressure,   

3

t x
p


  .                (2.53) 

Please also note that the relation between the force scalar state, t  and the force vector 

state, T , which is   

tT M                 (2.54) 
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where M  is the deformed direction vector state which stores the relative unit vectors 

of deformed bonds. Silling et al. (2007) also proved the following relations for 

ordinary, elastic material.   

W
p




 


   and   

d

d

W
t

e





              (2.55) 

After above derivations, the strain energy density function for ordinary, elastic 

material is proposed as   

   
2

,
2 2

d d dk
W e e e

 
                 (2.56) 

This expression has the similarity with the classical form of strain energy density 

function. In light of Equations (2.52), (2.55) and (2.56), one may lead to an open form 

of force scalar state as   

3 dp
t x e

m
 


                 (2.57) 

where   

p k                  (2.58) 

in which k and  are the Peridynamic material constants for linear Peridynamic solid. 

These constants may be obtained by equating classical and PD strain energy densities 

while assuming spherical influence function,  , as   

15

m


                  (2.59) 

and it can be realized that k is simply a bulk modulus. Substituting Equations (2.58) 

and (2.59) into Equation (2.57) leads to   

3 15 dk
t x e

m m

 
                  (2.60) 

The similarity between force density function given in Equation (2.60) and the stress 

tensor of CCM (Equation (2.61)) is now apparent.   

2 dk  σ I                (2.61) 
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in which I is the identity matrix and d  represents deviatoric part of strain tensor. 

Finally, the equation of motion in PD theory is written by means of states as   

          , , , , ,

x

xt t t t dV t 



      x u x T x x x T x x x b x          (2.62) 

Here, the square brackets represent the force state vectors which are on the material 

points x and x  as well as the angle brackets are used to indicate the vector on which 

the force state operates. For example,  ,t  T x x x  is the force vector on a material 

point x which includes the effect of material point x  on a material point x. It is also 

worth mentioning that the balance of linear and angular momentums are satisfied for 

ordinary material and objectivity is also proved for ordinary, elastic material.   

2.4.3.3 Comparison of the results of refs. (Madenci and Oterkus, 

2014) and (Silling et al., 2007)  

Mainly, two approaches from refs. (Madenci and Oterkus, 2014) and (Silling et al., 

2007) proposed different strain energy densities. Madenci and Oterkus (2014) based 

their function to CCM which is a non – local extension of local function and they 

derived PD force densities by exploiting Lagrange’s equation of motion. On the other 

hand, Silling et al. (2007) firstly verified the linear and the angular momentums as well 

as the objectivity for an ordinary material. Moreover, the PD terms such as dilatation, 

isotropic and deviatoric parts of extension scalar states, force scalar states and pressure 

were derived. Thus, the strain energy density function, similar with the classical 

theory, was proposed in order to derive the explicit form of force scalar state. Both 

approaches are complete and it has already been proven that they can reach similar 

results. However, it may be remarkable to point out some differences of both 

approaches. Before proceeding the following subsections, the person, who is 

unfamiliar with the bond based PD theory, should take a look at Section 2.4.4.   

Influence function  

Let us first define the some frequently used PD terms. Relative position of two points 

in the reference configuration is   

 ξ x x                 (2.63) 
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and their relative displacement is   

   , ,t t η u x u x                (2.64) 

Then, the deformed form of a bond can relatively be expressed as ξ η . Now, Silling 

et al. (2007)’s equations can be expressed in a more precise form. Extension scalar 

state of a bond, Equation (2.48), can be rewritten as   

e y x    ξ ξ ξ ξ η ξ              (2.65) 

and weighted volume of a point or its horizon, Equation (2.50), is expressed by using 

the dot product expression for states as   

2

x

m dV


  ξ ξ                (2.66) 

Now, it is easy to rewrite dilatation term of a material point (Equation (2.49)) as   

 
3

x

dV
m

 


   ξ ξ ξ η ξ              (2.67) 

Isotropic (
i

e ) and deviatoric (
d

e ) parts of the extension scalar state, i.e. Equation 

(2.51), can also be rewritten as   

3

i
e




ξ
ξ    and    

3

d
e


   

ξ
ξ ξ η ξ            (2.68) 

The magnitude of force vector for a bond ξ  then becomes   

 
3 15

3

k
t

m m

 
 

 
     

 

ξ
ξ ξ ξ ξ ξ η ξ            (2.69) 

and it can also be rearranged as similar with Equation (2.46),   

  
15 15

3
3

t k
m m

  
 

 
     

 

ξ ξ
ξ ξ ξ η ξ           (2.70) 

In Equation (2.70), the influence function,  ξ , is the unknown term and so the term 

m. This term is proposed as   ξ  (Equation (2.42)) by Madenci and Oterkus 

(2014) and this can also be deduced by using the equaity of the ordinary state based 
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and the bond based theories. Please see Section 2.4.4 for the details of bond based PD 

theory. In bond based PDs, there is only one material parameter, c, which is generally 

called as bond constant given in Equation (2.122). Rearranging this equation leads to   

4

18

c
k


                 (2.71) 

Bulk modulus can also be written in a slightly different form introducing the constraint 

on a Poisson’s ratio, which is 1/4, as   

 
2

3 1 2 3

E E
k


 


               (2.72) 

Then, the shear modulus in the bond based PD theory becomes   

 
3

2 1 5

E k



 


               (2.73) 

Substituting Equation (2.73) into Equation (2.70) leads to   

  
9k

t
m
  ξ ξ ξ η ξ               (2.74) 

where the dilatation term, , cancels out and the ordinary based force density 

transforms into a bond based force density. Substituting Equation (2.71) into Equation 

(2.74) results in force density expression in terms of PD bond constant c as   

 
4

2

c
t

m


  ξ ξ ξ η ξ              (2.75) 

The very well – known properties of the bond based force densities are;  

1. They are aligned in the direction of the deformed position of a bond as in the 

ordinary state based theory   

2. Their magnitudes are equal to each other in a bond (Silling and Askari, 2005), 

please see the Figure 2.14.   

Thus, it is apparent that the pairwise force function, f, in a bond based PD theory is the 

twice the force density, t, so that the following equity holds   

1

2
t ξ f                 (2.76) 
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Substituting Equations (2.75) and (2.120), which is the pairwise force function in a 

bond based theory, into Equation (2.76) leads to an influence function term as   

 
4c

c
m




 
  

ξ η ξ
ξ ξ η ξ

ξ
            (2.77) 

4

m



ξ

ξ
                (2.78) 

In Equation (2.78), the influence function is expressed in terms of the weighted 

volume, m, and it is noticed that the following equity holds   

s ξ ξ                (2.79) 

Here, the subscript s denotes the spherical horizon because the influence function can 

only be spherical if it only depends on the undeformed length of a bond, i.e. ξ  (Silling 

et al., 2007). Substituting Equation (2.66) into Equation (2.78) while taking into 

account the relation given in Equation (2.79) leads to   

2

4

x

s

s

dV







 ξ ξ

ξ
ξ

              (2.80) 

and the infinitesimal volume in the integration can be expressed, considering the 

spherical horizon, as   

24dV r dr     with   r  ξ               (2.81) 

Then, the integration becomes   

4

0

4

4 s

s

r r dr

r











ξ               (2.82) 

Now, it can be proved that the influence function may take the form of   

r


                   (2.83) 

as proposed by Madenci and Oterkus (2014). Substituting Equation (2.83) into the 

right hand side of Equation (2.82) results in   
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3

0

3

4

s

r dr

r r







 


ξ                (2.84) 

which is the same result as given by Madenci and Oterkus (2014).   

Dilatation  

In light of the influence function, , and the weighted volume, m, proposed by Silling 

et al. (2007), the Equation (2.66) can be rewritten as   

3

0

4m r dr



                  (2.85) 

and integrating this results in  

5m                  (2.86) 

Substituting Equations (2.84) and (2.86) into the dilatation, θ, term, i.e. Equation 

(2.67), leads to   

 4

3

x

dV




   ξ η ξ               (2.87) 

and with the following equity,   

4

x

dV


  ξ                (2.88) 

the dilatation term can also be expressed as   

 
3 x

x

dV

dV










 







ξ η ξ

ξ

              (2.89) 

This is the dilatation of a material point proposed by Silling et al. (2007). It can now 

be compared to the form proposed by Madenci and Oterkus (2014), i.e. Equation 

(2.39). However, Equation (2.39) must be converted to a more appropriate form for a 

comparison purpose. Firstly, let us define the following equity,   
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34 3

x

dV


                 (2.90) 

Then, converting the summation into an integration and considering the material 

parameter d, i.e. Equation (2.41), as well as the influence function , i.e. Equation 

(2.84), lead to a dilatation term as   

3 x

x

H

dV

dV





   
 

 






ξ η ξ ξ η ξ

ξ ξ η ξ
             (2.91) 

Please also note that the temperature change, T(k), of a material point was ignored. 

Equation (2.91) can further be simplified considering 1





ξ η ξ

ξ η ξ
 for very small 

deformations as   

3 x

x

H

dV

dV









  
 
 







ξ η ξ

ξ
              (2.92) 

This defines the dilatation of a material point proposed by Madenci and Oterkus 

(2014).   

Force function  

The derived force function by Silling et al. (2007) can be rewritten by substituting the 

influence function  ξ , i.e. Equation (2.84), and the weighted volume m, i.e. 

Equation (2.86), into Equation (2.70) as   

 

4

3 5 15k

t

  



 
 



ξ η ξ

ξ
ξ              (2.93) 

and considering Equation (2.88) leads to   
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 3 5 15

x

k

t

dV

  



 
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



ξ η ξ

ξ
ξ

ξ

             (2.94) 

This is the force function derived by Silling et al. (2007). It can now be compared with 

the form derived by Madenci and Oterkus (2014), i.e. Equations (2.45) – (2.47). 

However, it must be converted to a more appropriate form for a comparison purpose. 

Firstly, the scalar force function is defined as   

1

2
t A                 (2.95) 

where A is the parameter given in Equation (2.46). Then, considering the material 

parameters a, b and d, i.e. Equation (2.41), as well as the influence function , i.e. 

Equation (2.84), gives the parameter A as   

 

3 4

3 5 30

2 3

k

A

  
 

 

 

 
 

              (2.96) 

with   


 



ξ η ξ

ξ η ξ
                (2.97) 

Substituting Equation (2.96) into Equation (2.95) and using the equities given in 

Equations (2.88) and (2.90) result in   

 3 5 15

x x

k

t

dV dV 

  
 

 

 

 
 

 

  ξ
             (2.98) 

Please also note that the temperature change, T(k), of a material point was ignored. 

Equation (2.98) can further be simplified considering 1   for very small 

deformations as   
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 3 5 15

x x

k

t

dV dV 

  
 

 

 

 

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  ξ
             (2.99) 

This defines the scalar force function on a material point derived by Madenci and 

Oterkus (2014).   

Strain energy density function  

The proposed strain energy density function of Silling et al. (2007) can be rewritten by 

substituting the influence function  ξ , i.e. Equation (2.84), the Peridynamic 

material constant , i.e. Equation (2.59) and the deviatoric part of extension scalar 

state 
d

e , i.e. Equation (2.68), into Equation (2.56) as well as with the help of Equation 

(2.86) and by using the dot product expression for the states as   
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ξ

        (2.100) 

and with the equity given in Equation (2.88), it can also be expressed as   
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        (2.101) 

This is the strain energy density function proposed by Silling et al. (2007). It can now 

be compared with the form proposed by Madenci and Oterkus (2014), i.e. Equation 

(2.38). However, it must be converted to a more appropriate form for a comparison 

purpose. Converting summation into an integration and considering the material 

parameters a and b, i.e. Equation (2.41) as well as the influence function , i.e. 

Equation (2.84), lead to   

 
4

2 2

2

4

1
15

91

2 2

xH

dV

W




 




 
   

 
  

 ξ η ξ
ξ

         (2.102) 
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Please also note that the temperature change, T(k), of a material point was ignored. 

Equation (2.102) can further be simplified with the help of equity given in Equation 

(2.88) as   
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This defines the strain energy density function of a material point proposed by 

Madenci and Oterkus (2014).   

As a summary, please see the Table 2.3 for a comparison purpose.   

Table 2.3 Comparison of functions of ordinary state based PDs  

 The work done by 

 Silling et al. (2007) Madenci and Oterkus (2014) 
Assumed 
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2.4.4 Bond based Peridynamics  

As mentioned in Section 2.4.3, bond based PDs is the simplest form and the very first 

PD theory found by Silling (2000). In the bond based theory, force densities, i.e.   k j
t  

and   j k
t , are aligned such that they are in the direction of deformed position of a 
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bond as in the ordinary state based theory however they are also equal in magnitude, 

as shown in Figure 2.14.   

 

Figure 2.14 Bond based theory   

In order to satisfy above mentioned assumptions for the force densities, each bond 

must be individual which means that their force functions should not be affected from 

other bonds unlike the non – ordinary and the ordinary state based PD theories. 

Individual bonds are depicted as red color in Figure 2.14. Thus, micropotentials of a 

bond only depend on its own material points’ deformations given by   

( )( ) ( )( ) ( ) ( )( )k j k j j k  y y             (2.104) 

( )( ) ( )( ) ( ) ( )( )j k j k k j  y y             (2.105) 

Then, the average micropotential of a bond and the strain energy density function of a 

material point k can be expressed using Equations (2.9) and (2.10) while substituting 

the micropotentials given by Equations (2.104) and (2.105) into these equations. 

Implementing Lagrange’s equation of motion leads to EOM for a material point k as   

( )( ) ( )( )
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 u b
y y y y

       (2.106) 

Please compare Equations (2.23) and (2.106). It is now apparent from Equation (2.106) 

that the PD force densities given by Equation (2.107) are equal to and opposite to each 

other in a bond.   
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1

2 ( )
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


 
t

y y
        (2.107) 
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So, the following equity can be written.   

( )( ) ( )( )k j j k t t               (2.108) 

Then, the equation of motion given by Equation (2.24) takes the form of   

( ) ( ) ( )( ) ( ) ( )k k k j j k

j

V  u f b             (2.109) 

where 
( )( )k jf  is named as the pairwise force function and is given by   

( )( ) ( )( )2k j k jf t               (2.110) 

Silling (2000) also proved that there also exists scalar valued function such that   

   ( )( ) ( ) ( ) ( )( ) ( ) ( ), ,k j j k k j j k    y y y y ξ           (2.111) 

Thus, according to Equations (2.107), (2.110) and (2.111), the following equity holds.   
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The pairwise force function can now be found by using the equity given in Equation 

(2.108) as well as with the help of force densities 
( )( )k jt , given in Equations (2.45) – 

(2.47), and 
( )( )j kt . The latter can similarly be defined as   
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with   
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where   j k
  is   
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So, it is clear that parameters A and B must be equal to each other therefore the PD 

material constants must vanish as follows.   

0ad                 (2.116) 

and the pairwise force function takes the form of   
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Substituting the value of the influence function w, i.e. Equation (2.84), into Equation 

(2.117) results in   
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where   k j
s  is the stretch of a bond given by Equation (2.40). Furthermore, mostly 

used bond based PD parameter in the literature is the bond constant, c and it can be 

defined as   

4c b               (2.119) 

Introducing this into Equation (2.118) results in a most common form of pairwise force 

function, which is also introduced by Silling and Askari (2005), as   
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It is now clear that there is only one PD material parameter, which is c, in the bond 

based PD theory. In view of Equations (2.41), (2.116) and (2.119), the bond constant 

c can be obtained for three – dimensional structures as   
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1

4
v              (2.121) 

or   

4
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1

4
v              (2.122) 

It is, for two – dimensional structures, obtained as   
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3
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v              (2.124) 

where h represents the thickness of a structure and the bulk modulus for two – 

dimensional structures is defined as  2 1E   . The bond constant given in 

Equation (2.124) can only be used for plane stress conditions. Gerstle et al. (2005) also 

derived PD bond constant, c, for plane strain conditions as   

  3
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E
c
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
   with   

1

4
v             (2.125) 

Moreover, one dimensional structures has the bond constant of   

2

2E
c

A
               (2.126) 

in which A is the cross – sectional area of a one – dimensional bar. Please see Chapter 

4 of ref. (Madenci and Oterkus, 2014) for more details on derivations of these bond 

constants.   

2.4.5 Damage in Peridynamic theory  

In PD theory, damage introduction is a quite straightforward process. The stretch, s, is 

monitored for each bond during solution procedure and the interaction between 

material points is terminated whenever it exceeds some critical value, cs . The force – 

stretch relationship, which is in the linear form, is shown in Figure 2.15 for a bond 

based theory.   
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Figure 2.15 Force – stretch relationship   

The termination of an interaction between material points is also commonly named as 

“bond breakage” in PD theory. This is achieved by introducing history dependent 

failure parameter,    
( , )

j k
H x x t , into Peridynamic force function as   
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with   
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This failure parameter is valid for a bond based theory however similar relation can 

also be defined for an ordinary state based theory but it is not shown here, please refer 

to Chapter 6 of ref. (Madenci and Oterkus, 2014). After defining the failure parameter 

in PD theory, the local damage of each material point x is introduced in order to 

indicate crack formation in a body. It is simply the ratio of the amount of broken 

interactions to the total amount of interactions and can be expressed as   

 

( , )

, 1 H

H

t dH

t
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 

  




x x

x             (2.129) 

Crack formation with the local damage value can be seen in Figure 2.16. It is now 

apparent that the damage is treated as part of the constitutive model of PDs through 
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irreversible breakage of interactions and there is no need any complicated special 

algorithms.   

 

Figure 2.16 Local damage (Madenci and Oterkus, 2014)  

Here, it is crucial to define the critical stretch value, cs  and it can be expressed in terms 

of the critical energy release rate, cG , of a material. Firstly, the total strain energy 

required to remove all of the interactions across a newly created crack surface, A, is 

determined. Figure 2.17 shows these interactions and the following equation defines 

the total strain energy of those.   
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1 1
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K J
c

c j k k j
k j

W c s V V
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  x x           (2.130) 

 

Figure 2.17 Interactions across crack surface (Madenci and Oterkus, 2014)   
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In order to determine the value of critical stretch, 
cs , the total strain energy, cW , given 

in Equation (2.130) is equated to corresponding critical energy release rate value, 

which can be mode - I critical energy release rate ( IcG ), as   

   
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          (2.131) 

Based on the expressions derived by Silling and Askari (2005) and Madenci and 

Oterkus (2014) for the critical energy release rate, it is evident that   
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  (2.132) 

Finally, the critical stretch can be expressed as   

5

4

10
   for 3D

4
   for 2D

Ic

c

Ic

G

c
s

G

ch









 



            (2.133) 

 

2.5 Shortcomings and Concluding Remarks  

In this section, the importance of failure prediction in ship structures is introduced and 

some commonly used terms and methods in crack propagation and prevention 

processes are mentioned. Then, the interest in marine composites is pointed out. The 

properties of composite structures are explained (Oterkus et al., 2016). It is evident 

that their failure prediction procedure is even more complicated than the isotropic 

structures like steel. Taking into account the complexity of the failure prediction 

process and the abundance of the crack related terms and formulations in the literature, 

the necessity for a new simpler theory is obvious and inevitable. In this regard, the new 

theory, Peridynamics, is introduced in order to make the failure prediction procedure 

much simpler and to find a remedy for the solution procedure of equation of motion, 

which has derivatives in the classical sense. This new theory replaced derivatives with 
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integration and pave the way for handling more complicated structures like composites 

and even composite sandwiches. The idea beneath the theory and the derivation of its 

equations including all of its types were explained in detail. As a result, it is apparent 

that damage prediction is quite a straightforward procedure in PD theory because of 

the nature of its equations. One of the aim of this thesis is to prove that PD theory has 

a bright future in the fracture mechanics sense.   
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Chapter 3  

 

Solution Methods 

 

3.1 Introduction  

In Section 2.4, PD theory was explained deterministically including its types and 

equations of motion. The PD equation of motion can be solved getting the benefit of 

several solution procedures and numerical methods. In order to obtain accurate results 

and solve the problem in a more efficient way, one must choose the best solution 

method. In this section, several ways of solving PD equations of motion as well as how 

and when to choose the best way are discussed.   

 

Figure 3.1 Solution methods for different problem types   
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Firstly, the problem type must be defined as shown in Figure 3.1. It can either be 

static/quasi – static or dynamic. In static or quasi – static problems, PD equations can 

be solved directly with matrix equations or Adaptive Dynamic Relaxation (ADR) 

technique can be benefitted to converge static solution. Besides, if the problem is 

dynamic, which means that the acceleration and/or inertia effects are important, it can 

either be solved with explicit or implicit solution methods.   

 

Figure 3.2 Solution methods for a chosen numerical method   

On the other hand, the convenient numerical method must be chosen to discretize and 

solve the PD domain as shown in Figure 3.2. Since the PD equation of motion is in 

integro – differential form, it is very convenient for meshless discretization methods 

and most of the researchers choose this way. However, Finite Element (FE) method 

can also be implemented to some PD problems.   

Lastly, it is discussed how the PD codes can be accelerated. They can simply be 

accelerated by coding them in a more efficient way. In this regard, a very effective 

procedure for a family member search of a material point is introduced. Furthermore, 

parallel programming procedures can also be incorporated to PD codes. When solving 

a PD problem without matrix equations, e.g. solving with ADR, explicit or meshless 

methods, it is very simple to parallelize the PD code especially in the time integration 

section. By doing so, PD codes can be made applicable to complex and big problems.   
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3.2 Different Problem Types  

3.2.1 Static or quasi – static problems  

PD equation of motion is introduced in a dynamic form in Equation (2.109) however 

it is also possible to solve static or quasi – static problems in PD theory. In the 

literature, the most common way of solving these problems is to use Adaptive 

Dynamic Relaxation (ADR) technique. Apart from that PD matrix equations can also 

be directly solved using the methods for solving the linear system of equations, 

explained in Section 3.2.1.2.   

3.2.1.1 Adaptive dynamic relaxation technique  

In dynamic relaxation (DR) method, artificial mass, M and artificial damping, C, 

matrices are introduced to the dynamic equation of motion of the system which is   

  MU CU KU F                  (3.1) 

where K and U are the stiffness matrix and the displacement vector of the system, 

respectively. In dynamic relaxation technique, the mass and damping matrices are 

chosen such that the solution of dynamic equation of motion, i.e. Equation (3.1), 

converges to a steady state part of the transient response which is   

KU F                   (3.2) 

In dynamic relaxation technique, explicit time integration scheme is used and the 

unknowns, U, of Equation (3.1) become the solution of a static problem (Equation 

(3.2)) after a certain number of time steps. The convenient choice of time step size is, 

1t  .   

However, in dynamic relaxation technique, it is tricky to select the fictitious damping 

matrix which ensures the convergence of Equation (3.1) to Equation (3.2). For that 

reason, Adaptive Dynamic Relaxation (ADR) technique was introduced by 

Underwood (1983) in which damping matrix is determined at each time step 

adaptively. As for making the ADR solution method more clear, Madenci and Oterkus 

(2014) rearranged Equation (3.1) in a more appropriate form for PD theory as   

dc DU DU F                  (3.3) 
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with   

            k k j j k j k
j

V  F t t b                (3.4) 

where D is the fictitious diagonal density matrix and cd the damping coefficient. The 

diagonal elements of D is chosen based on Greschgorin’s theorem. Please refer to 

Section 7.5 of ref. (Madenci and Oterkus, 2014) for more details on ADR technique.   

The advantage of ADR technique is to use the dynamic EOM in order to obtain the 

static or quasi – static solution for a related PD problem. Since the explicit time 

integration scheme is used, each bond interaction can be handled independently and 

thus there is no need for matrix equations to solve a system. On the other hand, the 

convergence of the static solution can take too many time steps depending on the 

characteristics of a problem. For some problems, it can be tedious and direct solution 

of matrix equations can be a better solution option, especially for the problems 

including bending deformations.   

3.2.1.2 Direct solution  

Static and quasi - static problems in physics mean that they do not include any 

acceleration and/or inertia terms. However, in reality, very small acceleration and/or 

inertia effects always exist, while applying the intended load to a structure. When 

acceleration and inertia terms have no significant effect on the results, they can be 

ignored in the physical representation of a problem. Hence, in order to solve static or 

quasi – static problems in PD theory the acceleration term, u , can be omitted from the 

equation of motion, i.e. Equation (2.109), which can be rewritten as   

( )( ) ( ) ( ) 0k j j k

j

V  f b                  (3.5) 

Equation (3.5) can be named as local static PD equation since it only shows the static 

equation of one main material point, which interacts with other member material points 

in its horizon,  , as shown in Figure 3.3.   
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Figure 3.3 Family members of a main material point, 1k     

In order to find the deformation of a body, other material points in a body must also 

be considered as the main material point. By doing so, the global static PD equation 

can be obtained in a matrix form as   

KU B                   (3.6) 

in which K, U and B are the global stiffness, the displacement and the body load 

matrices of a body. The global static PD equation, i.e. Equation (3.6), can now be 

solved directly to find the unknown displacement vector, U, by taking the inverse of 

stiffness matrix as   

1U K B                   (3.7) 

However, calculating 1
K  can be tedious for big and complex structures, which 

include many material points. In this regard, the solution methods can be exploited for 

simultaneously solving the linear system of equations. Such well-known and effective 

direct solution methods are Gaussian elimination, LU decomposition, Cholesky 

decomposition, QR decomposition and etc. As a result, the static and quasi – static 

problems can be solved directly by using the global static PD equation, given in 

Equation (3.6). Directly solving static PD equation may lead to very fast results for 

some problems compared to ADR method. However, an ill-conditioned stiffness 

matrix may arise regarding with the horizon size and the number of material points 

(Bobaru et al., 2009). Moreover, the three-dimensional and complex problems may 

construct very large matrices and working with them can be very challenging. In these 
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cases, the solution time of direct solution method can be too long. Hence, the solution 

capability of already existing FE software can be exploited by creating the PD model 

in their framework. For more information, please refer to Section 3.3.1.2. On the other 

hand, iterative methods, in which solution is converged iteratively, may be used to 

solve Equation (3.6). However, it is commonly believed that iterative methods can be 

unreliable and they may exhibit slow convergence characteristics.   

3.2.2 Dynamic problems  

In dynamic problems, the acceleration and/or inertia terms have significant effects on 

the results of a problem so that they cannot be ignored as in static problems. Hence, 

PD EOM given in Equation (2.109) can directly be used to solve the dynamic 

problems. In the solution procedure, two different solution methods can be used, i.e. 

either explicit or implicit time integration schemes. Each method has disntictive 

advantages and disadvantages. Therefore, the best method must be chosen depending 

on the type of a problem. In general, explicit time integration scheme has small time 

step sizes and does not solve matrix equations. On the other hand, implicit time 

integration scheme uses larger time step sizes but matrix equations must be solved.   

3.2.2.1 Explicit Method  

Explicit time integration scheme is usually the preferred method for Peridynamic 

analysis since it does not solve any matrix equations. The dynamic PD EOM given in 

Equation (2.109) is used for the explicit time integration scheme and it can be rewritten 

for the thn  time step as   

  ( )( ) ( ) ( )

( )

1n n n

k j j kk
jk

V


 u f b    and   0,1,2,...n               (3.8) 

where n indicates the time steps and zeroth step is just beginning of the analysis. 

Equation (3.8) is solved for the unknown term acceleration of material point k, i.e. 
 
n

k
u

, while summing the force functions,   k j
f , for each bond interaction. After that, the 

velocity of material point k, i.e. 
 

1n

k


u , which is for the next time step, n+1, can be 

obtained using the forward difference method as   
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     
1n n n

k k k
t   u u u                  (3.9) 

where t  indicates time step size. Then, backward difference method is used to obtain 

the displacement of material point k, i.e. 
 

1n

k


u , for the next time step as   

     
1 1n n n

k k k
t   u u u                (3.10) 

Acceleration of each material point, i.e. 1,2,3,...k  , can be calculated from Equation 

(3.8) individually. For this reason, there is no need for matrix equations. Above 

explained steps, i.e. Equations (3.8) through (3.10), are solved until the desired time t 

is reached,   

t n t                  (3.11) 

On the other hand, explicit time integration scheme can only be used for very small 

time step sizes and it may become unstable for larger time step sizes. The stability 

condition for explicit time integration scheme in PD theory is derived by Silling and 

Askari (2005) using the von Neumann stability as   

 

   

 

2
k

j
j

j k

t sf
c

V
x x


  




              (3.12) 

in which sf  is the safety factor and it can be taken as 1sf  . Safety factor ensures the 

stability of the analysis especially in nonlinear problems.   

3.2.2.2 Implicit method  

Implicit time integration scheme has the advantage of allowing the use of larger time 

step sizes. It is unconditionally stable for linear problems and it may also be the choice 

for nonlinear problems. However, it does not remain stable for very long times 

especially in large deformation analyses. Several implicit integration schemes are 

introduced in the literature, e.g. trapezoidal rule, Wilson   method, Newmark   

method, etc., and they can be used for solution of several types of problems. 

Specifically, Newmark   or Newmark’s method is very common and is available in 

many software packages like ANSYS.   
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In implicit Newmark’s time integration scheme, the PD equation of motion, provided 

in Equation (2.109), should be rewritten in a matrix form. The static PD equation given 

by Equation (3.6) can be extended with an additional acceleration term, U , as   

 DU KU B                 (3.13) 

where K, U and B are the stiffness matrix, the displacement vector and the body load 

vector, respectively.   

While applying the implicit time integration steps or solving the problem quasi –

statically, which is explained in Section 3.2.1.2, the failure can be incorporated by 

breaking the bonds. This is achieved by calculating the stretch of each bond and then 

checking the value of this against the critical stretch value, 
cs . The stretch of each 

bond can be calculated as   

  

  

 

 

 

 

 
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x k

y k

k j

x jk j

y j

u

u
s C S C S

u

u

 
 
 

    
 
 
 

ξ
            (3.14) 

where   
Cos

k j
C   and   

Sin
k j

S   as well as   indicates the angle of a bond with 

respect to x axis. Moreover, the bond is broken if    ck j
s s .   

Newmark’s implicit time integration scheme can be advantageous over explicit 

scheme because of the larger time step sizes. Newmark’s method is unconditionally 

stable in linear problems. However, it may become unstable in nonlinear analyses such 

as in large deformation and material nonlinearity problems. Implicit time integration 

schemes can be made more stable while checking the residuals after each time step 

and using the equilibrium iterations (Bathe and Baig, 2005). This may be achieved by 

using Newton-Raphson iterative method. FE software package, ANSYS, uses this 

methodology. On the other hand, one needs to solve the huge matrix equations in 

Newmark’s method and also in other implicit time integration schemes. There are 

many methods, which may solve huge matrix equations as explained in Section 

3.2.1.2. However the capability of ANSYS solver can also be exploited to solve these 

huge matrix equations as explained in Section 3.3.1.2.   
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3.3 Numerical Methods  

PD equation of motion or static PD equation can be solved numerically with different 

type of discretization methods for various cases. The most commonly used methods 

are the quadrature formula methods (Emmrich and Weckner, 2007, 2006; Emmrich et 

al., 2013; Kilic, 2008), the midpoint method (Emmrich and Weckner, 2007; Madenci 

and Oterkus, 2014; Silling and Askari, 2005) and, recently, the finite element (FE) 

method (Chen and Gunzburger, 2011; Du et al., 2013a, 2013b; Emmrich and Weckner, 

2007; Zhou and Du, 2010).   

However, most researchers prefer the meshless midpoint rule since it is simple and 

easily applicable to discontinuities available in a body. In this section, firstly, the 

application of midpoint meshless method is introduced preceding the discussion about 

meshless domain in FE software, ANSYS. Apart from that the FE method can also be 

used for the PD solution of a body and there are few attempts in the literature. Hence, 

the applicability and the advantages of this mesh method are also explained.   

3.3.1 Meshless methods  

As mentioned in Section 3.3, solving PD domain using a meshless method is the most 

prevalent approach in the literature since the discontinuities can easily be represented 

without a mesh dependency.   

3.3.1.1 Direct solution with midpoint method  

The PD EOM is in integro-differential form and it can also be written in terms of 

summations as in Equation (2.109). Hence, the assumption used is that the infinite 

number of volumes composes the PD domain. From this point of view, the body can 

numerically be discretized into very small cubic volumes in three – dimension, 

quadratic areas in two – dimension or lines in one – dimension. Thus, each material 

point represents the center of each volume, area or line in Equation (2.109). The 

discretized form of two dimensional PD domain can be seen in Figure 3.3. In this 

figure, the main material point k and its volume are denoted by number 1 and  1
V , 

respectively. The main material point or the material volume,  1
V , interacts with other 

member material volumes, i.e.    2 3
, ,...V V etc., in its horizon, . Summing up the force 
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interactions, i.e. 
 ( )( )k j j

Vf , individually for each main material point, i.e. 1,2,3,...k  , 

leads to an unknown term of PD equation. This term is displacement U in ADR 

technique or in direct solution method as well as it is acceleration term 
 
n

k
u  in explicit 

method or n
U  in implicit method. The more detailed explanations for direct 

application of meshless method can be found in ref. (Silling and Askari, 2005) or in 

Chapter 7 of ref. (Madenci and Oterkus, 2014).   

3.3.1.2 FE software  

It is explained in Section 3.3.1.1 how the body can be discretized into many small 

finite volumes and how the force interactions are established between the material 

volumes. The same modelling procedure can also be achieved by any commercial FE 

software so that the meshless PD domain of a body is constructed. Thus, the solution 

and the post – processing capabilities of any FE software can be exploited in PD 

analyses. This procedure was first implemented by Macek and Silling (2007) by using 

the commercial FE software, ABAQUS. Furthermore, ANSYS can also be the 

preferred FE software for meshless implementation of PDs.   

In order to solve the static problems in an FE software, the global static PD equation 

(Equation (3.6)) is constructed with truss elements. The dynamic problems may also 

be solved with an FE software and this is achieved by creating the mass elements on 

the nodes. This procedure forms diagonal mass matrix, M, for a PD domain. Similarly, 

multiplying both sides of dynamic PD EOM, given by Equation (3.13), with the 

volume of main material point, i.e. V , constructs such equation as given below.  

 MU K U F                (3.15) 

where M is the diagonal mass matrix of a bond, which is   

VM I                 (3.16) 

In the commercial FE software, ANSYS, the three dimensional LINK180 element can 

be used to model the bond interactions between the nodes and MASS21 element can 

be used to introduce the mass of a material volume. In this regard, LINK180 elements 

are created between the main material node k and its family member nodes j as in 

Figure 3.4a. Then, sequentially taking each node as a main and creating again the 
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LINK180 elements for its family members lead to network of truss elements in 

ANSYS as shown in Figure 3.4b. This procedure actually creates the global stiffness 

matrix for a body. Moreover, if the dynamic problem is intended to be solved, 

MASS21 elements are introduced onto the nodes. This procedure creates diagonal 

mass matrix for a body.   

                 
 a) Link elements between the main           b) Network of link elements of a body 

     node and its family members   

Figure 3.4 PD discretization with LINK180 and MASS21 elements in ANSYS   

While solving PD problems in ANSYS, the failure can also be incorporated with a 

bond breakage procedure. This is achieved by calculating the stretch value of each 

bond and checking it against the critical value, cs . If the stretch value of a bond 

exceeds the critical value, i.e.    ck j
s s , it is broken with EKILL command. Thus, 

LINK element is deactivated in ANSYS.   

In this section, it is briefly explained how the meshless PD domain can be created in 

any FE software and particularly in ANSYS. This introduces several advantages for 

solving PD meshless models. The capability of FE software in solving huge matrix 

equations can be utilized and its post – processor can be used for visualization of the 

bonds. For example, visualization of the bond interactions between material points 

along with their deformations can give better ideas while investigating the crack tips 

and openings in more detail. On the other hand, Newton – Raphson iterative scheme 

can be incorporated to the Newmark’s method in ANSYS in order to solve nonlinear 

problems implicitly. Thus, the residuals of nonlinear PD equations are minimized in 

each step so that more stable solutions are obtained with larger time step sizes. Another 

point which is worth to mention is that the PD static equation or dynamic EOM, which 
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are introduced by Equations (3.6) and (3.13), can be solved with nonlinear option in 

FE software which allows larger deformations for truss elements. As a result, Equation 

(3.13), which is a linearized form of PD equation, converges to a nonlinear form of PD 

EOM, i.e. Equation (2.109).   

3.3.2 Finite element method  

Recently, the finite element (FE) method has attracted the researchers’ attention for 

the solution of PD equations. Emmrich and Weckner (2007) compared all of the 

solution methods including the FE method by solving one-dimensional (1D) PD 

problem. In this problem, solution does not contain any discontinuities and it is found 

that FE method has the best accuracy amongst the others. However, it actually requires 

more computational time to solve the matrix equations. Although it is a common sense 

that meshless methods are the most convenient methods for PD problems with 

discontinuities, FE method with discontinuous piecewise finite element polynomials 

can solve these problems readily. Besides, the solution does not involve any jump 

terms as in the classical theory of elasticity because the governing equation of PD 

theory is derivative – free. Hence, discontinuous FE spaces are automatically 

conforming for the variational formulation of the PDs (Chen and Gunzburger, 2011) 

as in the case of continuous piecewise polynomials for smooth solutions. Chen and 

Gunzburger (2011) derived discontinuous piecewise - constant/linear and continuous 

piecewise - linear Galerkin finite element methods for 1D PDs. The convergence 

behaviors of these polynomial functions are studied for problems which have either 

smooth or discontinuous solutions. It is found that hybrid finite element spaces, which 

constitutes from both continuous and discontinuous FE functions, can be used 

effectively for problems with discontinuities in order to reduce computational time. 

Moreover, local gird refinement approach may also be considered for more robust 

results. Qiang Du et al. (2013a) studied a posteriori error estimation for PD problems 

comprised of discontinuous and continuous finite element functions and theoretical 

error estimations are verified with 1D and 2D numerical experiments. Following this, 

an adaptive FE method for PD models are proposed by Qiang Du et al. (2013b) and it 

is observed that the theoretical results of error estimations are independent from the 

horizon size, , provided that initial mesh size is smaller than / 6 . Thus, horizon size 
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becomes merely a material parameter which only depends on nature of the material 

behavior. Finally, the convergence of PD – FE solutions to classical differential 

equations is indicated by Zhou and Du (2010) while both the mesh parameter, h, and 

the horizon size approach to zero.  

To sum up, the above mentioned studies prove the strength and applicability of FE 

method for PD problems. In solving static problems, a body can be constructed with 

PD –FEs and naturally boundary elements are also formed. As a result, the global 

stiffness, displacement and force or body load matrices are built up. Applying the 

desired displacement boundary conditions to boundary elements of a body and/or 

applying the body loads to actual elements of a body lead to the PD construction of a 

problem with FE method.   

It is apparent that solving PD problems with FE method may require less elements than 

the meshless method material volumes. Furthermore, very thin structures, e.g. plates, 

can be modelled with PD – FEs with the help of very thin rectangular prism form of 

PD – FE. On the other hand, discontinuities may also be represented in PD – FE 

method by using discontinuous FE functions instead of continuous ones and they are 

very convenient for derivative – free PD theory. However, there still can occur mesh 

dependency in crack propagation problems.   

 

3.4 More Efficient PD Codes  

Researchers are always in quest of very efficient and fast PD codes. This of course will 

make the PD theory more applicable to engineering structures and make it more 

ubiquitous. The in - house PD code mainly consists of 4 parts as;   

1. Coordinate part; A body is composed of many small finite volumes and the 

center of each volume is represented by a material point. In this part, material 

points are created while specifying their locations in the coordinate system.   

2. Family member search part; Family member points, which reside inside the 

horizon of each main material point, are determined and family member array 

is created.   
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3. Surface correction part; Horizon is usually truncated near the boundaries of a 

surface and this results in reduction of a material point stiffness. Hence, this 

stiffness reduction near free surfaces must be corrected. This procedure is 

explained in detail in Chapter 4 of ref. (Oterkus and Madenci, 2012).   

4. Time integration part; PD domain of a problem is solved in time using one of 

the time integration methods.   

In an in – house built code, the most time consuming parts are the family member 

search and time integration parts. In this section, two ways are proposed to improve 

the PD codes in these parts. Performing family member search in a very efficient way 

is demonstrated and argued that the search time can be reduced significantly. Then, 

the parallel programming procedures are discussed to reduce the solution time in the 

time integration part. Both or either one of these methods allow us to solve very 

complex problems effectively.   

3.4.1 Family member search  

Family member search for each main material point can be made very effective while 

partitioning body into many regions. By doing this, the time spent in the search of 

family members may be reduced dramatically. For example, the family search time of 

a rectangular prism, which is composed of 100 100 100   material points in each 

direction, i.e. x, y and z, with a total of one million points, can be reduced roughly from 

2300 seconds to 5 seconds. As a result, such significant time reduction allow us to 

model very complex 3 – dimensional structures in PDs.   

3.4.1.1 Two – dimensional code  

In order to achieve such reduction in time, a body, which is composed of many material 

points, should first be partitioned into many regions in the 1st (coordinate) part of a 

code, shown in Figure 3.5.   
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Figure 3.5 Regions in a 2 – dimensional body   

In Figure 3.5, an example 2D body is shown. There, material point and region numbers 

are denoted by black and red colors, respectively. In constructing each region, 

particular attention is paid to locate 3 points along each direction, i.e. x and y, except 

the last regions. The reason of such partitioning is related to the horizon size, which is 

chosen as 3 x   , where x  denotes the distance between adjacent material points. 

By doing this, family members of each main material point can only reside in its own 

and neighboring regions. It is also advised to define some region parameters in the 1st 

(coordinate) part of the code. In Figure 3.5, these parameters are shown and 

summarized as   

ncl: Number of regions or number of columns along x – axis.   

nrw: Number of regions or number of rows along y – axis.   

lstncl: Number of points in the last region or in the last column along x - axis.   

lstnrw: Number of points in the last region or in the last row along y - axis.   

nrgn: Total number of regions.   

region: An array which gives the first material point’s number for each region.   

Then, in the 2nd (family member search) part of the code, the family members for each 

material point should be decided. While family member arrays are created, the 

advantage of region partitioning is benefitted. Thus, the search time can be reduced 
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dramatically. Firstly, the main region’s number and its neighboring regions’ numbers 

are defined and searched for the family member points. For example, if the region 14 

is chosen as a main region from Figure 3.5, the search for its family members is only 

done inside its neighboring regions, which are 8, 9, 10, 13, 15, 18, 19 and 20. Figure 

3.6 shows such a search for the main material point 109 and these regions are also 

numbered locally which are depicted in blue color.   

 

Figure 3.6 Family member search for a main material point 109   

From this aspect, the main material point’s number, which is in the main region, and 

the related family member numbers inside its horizon can be decided. Moreover, this 

family member search procedure can further be reduced to a pink colored rectangle 

area, shown in Figure 3.6. This is done by numbering the material points in each region 

in base 3 which is depicted in pink color numbers in Figure 3.6. For example, the main 

material point 109 possesses the numbers 1 and 2 in x and y directions, respectively. 

So, it is apparent that the borders of pink colored rectangle take also the same numbers 

in base 3. Thus, the family member search is only done in the pink colored rectangle 

area which includes 7 7  points.   
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3.4.2 Parallel programming procedures  

PD codes, which are written by using any programming language, e.g. C, C++, 

FORTRAN or Java, can be solved or run with any computing facility available. This 

can be our desktop/laptop computer or high performance computing (HPC) facility. 

Generally, researchers tend to solve big and complex problems in HPC which can be 

made available by universities. However, without any modification to our regular 

codes, the advantage of such high performance computing facility can not be taken 

completely and even no improvement may be observed with such facilities compared 

to our desktops. In this regard, small modifications in our codes make possible to solve 

or run very huge problems. Moreover, we may not need to use HPC facility at all such 

that only desktops/laptops may be sufficient to solve such big problems. Nowadays, 

desktops/laptops include many central processing units (CPUs) and relatedly many 

cores in their architectures. As well as graphical processing units (GPUs) of computers 

have been improved above and beyond the expectations. Either one of or both of them 

can be employed in order to solve huge and complicated problems in our personal 

desktops/laptops.   

In this section, the possibility of improving our codes and making them more efficient 

for huge problems are explained with the help of parallel programming procedures. In 

a common sense, engineers and researchers are not keen on engaging with parallel 

programming issues because they are considered complicated and time consuming. 

However, simple modifications may lead to a dramatic increase in computational 

speed.   

3.4.2.1 General information  

In order to solve huge and complex problems in our desktops or laptops within a 

reasonable time, PD codes must be modified to benefit from all processors available 

in the architecture. By doing such modifications, the parts of a problem can be solved 

independently by each processor, so-called the parallel programming procedure. The 

parts can either be the instructions of a code or be the huge data of a code which is in 

the form of arrays or matrices. In regular or serial solution procedure, the parts are 

executed or solved sequentially with only one processor. Figure 3.7 shows the 

difference between serial and parallel programming procedures.   
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Figure 3.7 Types of programming procedures   

Bearing in mind that the parts of a problem can be the instructions of a code and/or be 

the data in it. Hence, there are several ways of doing parallel programming and they 

can be named as single instruction multiple data (SIMD), multiple instruction single 

data (MISD) and multiple instruction multiple data (MIMD) procedures. Effectively, 

SIMD parallel programming type can be used to execute 4th (time integration) part of 

any PD code in which arrays with the huge data can be solved concurrently with many 

processors. In this method, all processors execute the same instruction, which is the 

time integration part, of a code.   

To be more precise, whenever any PD code does not solve matrix equations, it is very 

simple to parallelize 4th (time integration) part of a code. The solution methods, which 

do not include matrices, are ADR and explicit methods as well as the meshless 

methods. In these methods, we do not have to solve linear equations simultaneously. 

More clearly, the force functions,   k j
f , are summed individually for each member 

material point, j, in time integration part and the unknown term, i.e. the acceleration or 

displacement term, is calculated. Due to independent calculation of the unknown term 

for each main material point k, SIMD parallel programming type is very convenient 

for the 4th (time integration) part of a code.   

 

 



96 

 

3.5 Conclusion  

In this section, several solution methods in solving PD problems are demonstrated. 

These methods are firstly separated into groups. The first group shows the solution 

methods considering the problem types, i.e. static and dynamic problems and the 

second group comprises of numerical discretization methods. Each solution method is 

explained throughout the chapter while considering how and when to use them. It is 

believed that presenting such methods in one chapter may ease the understanding of 

PD theory. The literature can of course touch upon some methods in some extent 

regarding with the solution of an intended PD problem but the abundance of references 

may lead to a misunderstanding of PD theory. In addition to solution methods of PD 

theory, improving the PD codes and running them in a more efficient manner are also 

discussed. In this regard, the very efficient family member search method and the 

parallel programming procedures are introduced. All of these may give researcher an 

opportunity to solve very complex and big problems easily in PD theory. In the 

following chapters, the solution capacity of PD theory in solving such problems are 

demonstrated.   
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Chapter 4  

 

Simplified Structures  

 

4.1 Introduction  

In Section 3.4, the very efficient ways of improving PD codes are explained in order 

to model large and complex structures. By using these methods, i.e. an efficient family 

member search algorithm and parallel programming procedures, the computational 

time can significantly be reduced. However, modeling very large and complicated 

structures such as aerospace and marine vehicles can still be computationally 

demanding. Therefore, the focus of this chapter is to propose PD eqautions of idealized 

or simplified structures such as beam and plate type of structures which accounts for 

transverse shear deformation. Thus, utilizing such simplified structures in PD 

modelling of engineering structures can make the computations more feasible. 

Moreover, the wave dispersion relations of such simplified structures can be obtained 

in PD theory and compared against the classical theory results. Dispersion relations 

basically show the wave propagation characterics of a structure in different wave 

lengths. The length scale parameter, which is a horizon, available in the PD theory 

gives a nonlocal character and the wave characteristics obtained may differ from the 

classical theory results in small scales such that the PD theory shows dispersion 

behavior similar to that observed in experiments of real materials. Hence, this property 
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of PD theory allows the modelling of physical phenomena not only at the macro-scale, 

but also at the various small scales, which leads to multi – scale analysis simulations.   

 

4.2 Peridynamic Equations of Motions  

In Section 2.4.2, it is explained how the PD equation of motion (EOM) can be obtained 

from principle of vitual work by using Lagrange’s equation of motion. Futhermore, 

Madenci and Oterkus (2014) obtained an ordinary state based PD theory from the 

proposed strain energy density function, 
( )kW , which is for three dimensional (3D) 

structures, in Section 2.4.3.1. Relatedly, the obtained PD force density function, 
  k j

t

, given by Eqaution (2.45) is in 3D form and also substituting this into a PD equation 

of motion, i.e. Eqaution (2.24), results in 3D form of PD EOM. However, using the 

same force function,   k j
t , with different PD material parameters leads to PD EOM 

for one and two dimensional structures, named as simplified structures. Please also see 

the Section 2.4.4 for simplified structures in a bond based PD theory. Basically, in 

obtaining PD material parameters for such simplified structures, Madenci and Oterkus 

(2014) followed the procedure of equating the strain energy densities of CCM and PD 

theories for simple loading conditions, explained in Chapter 4 of Madenci and Oterkus 

(2014).   

On the other hand, the equation(s) of motion for a simplified structure can also be 

obtained directly from proposed strain energy density function, which is in one or two 

dimensional form. Then, Lagrange’s equation of motion can be benefitted to obtain 

the governing EOM in PDs. This is actually the similar procedure followed in Section 

2.4.2 but now it is extended for simplified structures. Figure 4.1 shows the steps that 

must be followed in derivation process of E(s)OM with the related Peridynamic 

material parameter(s) for a simplified structure.   
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Figure 4.1 The steps of a derivation procedure for PD equations of a simplified 

structure  

The aim of this section is to derive equation(s) of motions for beam and plate type of 

simplified structures in PDs and these include Timoshenko beam and Mindlin plate 

theories. Recently, Taylor and Steigmann (2015) proposed a plate model by using an 

asymptotic analysis based on a bond based PDs. However, their formulation is only 

capable of capturing transverse deformations of thin plates. Moreover, O’Grady and 

Foster (2014a, 2014b) developed a non – ordinary state based PD model for Euler 

beam and Kirchhoff – Love plate formulations by disregarding the transverse shear 

deformations. Therefore, the focus of this section is to present new PD formulations 

that are valid for thin and thick beams and plates. Briefly, the proposed formulations 

account for transverse shear deformations on a structure and the formulations are based 

on the bond based PD theory.   
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4.2.1 Timoshenko beam  

4.2.1.1 Kinematics in PD theory  

In Timoshenko beam theory, it is sufficient to use a single row of material points along 

the beam axis, x, in order to represent PD beam in a meshless discretizaton form as 

shown in Figure 4.2. Here, the shape of horizon is line however each material point 

has two degrees of freedom which are the transverse displacement, w , along z axis 

and the rotation of a material point,  , about y axis. Below, the kinematic equations 

of a Timoshenko beam are derived based on the bond based PD theory.   

 

Figure 4.2 Kinematics of a Timoshenko beam in PD theory  

In Figure 4.2, all of the rotations are in positive directions considering the sign 

convention adopted. Furthermore,   k j
  represents the slope of a bond between the 

material points, k and j, as well as   denotes the shear rotation of each material point. 

Firstly, the slope of a bond can be expressed as   

  

   

  

j k

k j

k j

w w





                  (4.1) 

where   k j
  represents the distance between the material points, i.e. 

      k j k j
x x  

. This expression is very much similar to its classical counterpart, i.e. w x  , in the 
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limit of horizon approaches to zero, i.e. 0  , and it can basically be obtained from 

Taylor series expansion up to a first order term as   

 j k j k

dw
w w x x

dx
      and   

( )( )

j k

k j

w wdw

dx 


               (4.2) 

Apart from that, the shear rotations of material point k and j can be proposed as   

 ( ) ( )

( ) ( ) ( ) ( )

( )( )

sgn
j k

j j j k

k j

w w
x x 



 
    
 

              (4.3) 

 ( ) ( )

( ) ( ) ( ) ( )

( )( )

sgn
j k

k k j k

k j

w w
x x 



 
    
 

              (4.4) 

It is obvious that the shear rotations of material points are very much similar to their 

classical counterpart, i.e. w x     , in the limit of horizon approaches to zero, i.e. 

0  . Moreover, from Equations (4.3) and (4.4), the average transverse shear 

rotation of a bond,   k j
 , can be derived as   

 ( ) ( ) ( ) ( )

( )( ) ( ) ( )

( )( )

sgn
2

j k j k

k j j k

k j

w w
x x

 




  
    
 

             (4.5) 

where the material point k is a point of interest and the  ( ) ( )sgn j kx x  function 

imposes a positive average shear rotation on a bond according to Figure 4.2. On the 

other hand, considering the material point j as a point of interest, the average shear 

rotation,   j k
 , of a bond can be written in a similar manner with Equation (4.5) as   

 ( ) ( ) ( ) ( )

( )( ) ( ) ( )

( )( )

sgn
2

k j j k

j k k j

k j

w w
x x

 




  
    
 

   or   
( )( ) ( )( )j k k j             (4.6) 

where the  ( ) ( )sgn j kx x  function now imposes the negative average shear rotation 

on a same bond according to Figure 4.2. As a result, the force densties, i.e. ( )( )
ˆ

k jt  and 

( )( )
ˆ

j kt , arising from the shear deformations,   k j
  and   j k

 , are formed in opposite 

directions but they have the same magnitudes in the same bond, as shown in Figure 

4.3. Hence, the force densities can be assumed as   
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 ( )( ) ( )( )

1
ˆ

2
k j s k jt c     and    ( )( ) ( )( )

1
ˆ

2
j k s j kt c               (4.7) 

where sc  is the Peridynamic material parameter, which can also be named as shear 

bond constant because of its relation to the shear deformation. In Equation (4.7), ( )( )
ˆ

k jt  

represents the force density on a material point k and likewise ( )( )
ˆ

j kt  is the force density 

on a material point j in the same bond. It is now obvious that these force densities are 

compatible with the bond based PD theory. Thus, the pairwise force function, ( )( )
ˆ

k jf , 

related with the shear deformations of a bond can be derived from the force densities 

as   

( )( ) ( )( )
ˆ ˆ

k j j kt t     with    ( )( ) ( )( ) ( )( )
ˆ ˆ2k j k j s k jf t c                (4.8) 

in which ( )( )
ˆ

k jf  is the pairwise force function of bond k – j and it is on the material 

point, k.   

 

Figure 4.3 The force functions of a Timoshenko beam  

Furthermore, the bending strain or curvature of a bond, i.e.   k j
 , between the material 

points, k and j can simply be proposed as  

( ) ( )

( )( )

( )( )

j k

k j

k j

 




 
   
 

                 (4.9) 

where the material point k is a point of interest. It is apparent that Equation (4.9) is 

very much similar to its classical counterpart, i.e. x    , in the limit of horizon 
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approaches to zero, i.e. 0  , and it can basically be obtained from Taylor series 

expansion up to a first order term as   

 j k j k

d
x x

dx


       and   

( )( )

j k

k j

d

dx

 




             (4.10) 

On the other hand, considering the material point j as a point of interest, the curvature, 

  j k
 , of a bond can be written in a similar manner with Equation (4.9) as   

( ) ( )

( )( )

( )( )

k j

j k

k j

 




 
   
 

   or   
( )( ) ( )( )j k k j               (4.11) 

As a result, the force densties, i.e. 
( )( )k jt  and 

( )( )j kt , arising from the bending 

deformations,   k j
  and   j k

 , are formed in opposite directions but they have the 

same magnitudes in a same bond, as shown in Figure 4.3, and so they can be assumed 

as   

 ( )( ) ( )( )

1

2
k j b k jt c     and    ( )( ) ( )( )

1

2
j k b j kt c             (4.12) 

where bc  is the another Peridynamic material parameter which can also be named as 

bending bond constant because of its relation to the bending deformation. In Equation 

(4.12), the force densities are compatible with the bond based PD theory. Thus, the 

pairwise force function, ( )( )k jf , related with bending deformations of a bond can be 

derived from the force densities as   

( )( ) ( )( )k j k jt t     with    ( )( ) ( )( ) ( )( )2k j k j b k jf t c              (4.13) 

in which ( )( )k jf  is the pairwise force function of a bond k – j and it is on the material 

point, k. Please also be aware that the relations given by Equations (4.8) and (4.13) are 

similar with the relations given by Equations (2.108) and (2.110) in Section 2.4.4.   

After defining the main kinematic variables of the Timoshenko beam theory, the strain 

energy density function can be decomposed into two parts as   

     
PD PD bending PD shear

k k k
W W W                 (4.14) 
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where 
 
PD bending

k
W   and 

 
PD shear

k
W   represent the bending and the shear strain energy 

densities of a material point k. These strain energy densities can now be proposed as   

          

          

2

1

2

1

1 1

2 2

1 1

2 2

PD bending

bk k j k j j
j

PD shear

sk k j k j j
j

W c V

W c V

 

 


















            (4.15) 

where the summation function involves all the member material points, j, that are in 

the horizon of a main material point, k. Thus, the total potential energy of a beam is 

defined by summing all the main material volumes’, i.e. 
 k

V , strain energy densities 

over the domain with also considering the energies of external loads as   

        

          

 

2

1

2
1

( ) ( ) ( )

1

1 1

2 2

1 1 ˆ
2 2

b k j k j j
jPD

k
k

s k k kk j k j j k
j

c V

U V

c V b w b

 

  











 
 

 
 

  
 





         (4.16) 

in which 
 

ˆ
k

b  and 
 k

b  denote the body loads with units of “force/per unit volume” and 

“moment/per unit volume”, respectively. Hence, they represent both the transverse 

load,  p x , and the moment load,  m x , of the classical beam theory. Then, the total 

kinetic energy for a beam body can be proposed with the help of its classical form as   

PD PD PD

rotational translationalT T T                (4.17) 

with   

    

    

2

1

2

1

1

2

1

2

PD

rotational k k
k

CCM

translational k k
k

I
T V

A

T w V





















              (4.18) 

Thus, the Lagrangian can be expressed as   
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         

    

        

 

2 2

1 1

2

( ) ( )

1 ( )( )

2
1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 ( )( )

1 1
  

2 2

1 1

2 2
  

1 1 ˆsgn
2 2 2

PD PD

k k k k
k k

j k

b k j j
j k j

k
k

j k j k

s j k k k kk j j k
j k j

L T U

I
V w V

A

c V

V

w w
c x x V b w b


 

 




 
 



 

 



 





 

 

  
     
 
   
        

  

 







                 (4.19) 

It is now obvious that the Lagrangian is functions of 
 k

w  and  k
  and the Euler – 

Lagrange equations take the form of   

   

   

0

and

0

k k

k k

d L L

dt w w

d L L

dt  

 
 

 

 
 

 

               (4.20) 

Substituting Equation (4.19) into Equation (4.20) yields the EsOM of a Timoshenko 

beam in PD theory as   

     

          

( ) ( ) ( ) ( )

( ) ( ) ( )

1 ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1( )( ) ( )( )

ˆsgn
2

1
sgn

2 2

j k j k

s j k kk j
j k j

j k j k j k

b s j k kk j k j j
j jk j k j

w w
w c x x V b

w wI
c V c x x V b

A

 




   
 

 





 

 

  
     

 

     
          

   



 

                 (4.21) 

or they can also be expressed in the form of pairwise force functions, i.e. ( )( )
ˆ

k jf  and 

( )( )k jf , which are given by Equations (4.8) and (4.13), as   

   

          

( )( ) ( )

1

( )( ) ( )( ) ( ) ( ) ( )

1 1

ˆ ˆ

1 ˆ sgn
2

k j kk j
j

k j k j j k kk j k j j
j j

w f V b

I
f V f x x V b

A




 





 

 

 

   



 
         (4.22) 
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In order to prove the validity of Peridynamic EsOM, given by Equations (4.21) or 

(4.22), it is shown that their classical counterparts, given by Equation (4.23), can be 

recovered in the limit of horizon size approaches to zero, i.e. 0  .   

2

2

2

2

w
w kG p

x x

I w EI
kG m

A x A x




 
 

  
   

  

  
    

  

             (4.23) 

Therefore, the transverse displacement and the rotation of material point j, i.e. 
 j

w  and 

 j
 , are expressed in terms of main material point’s degrees of freedom, i.e. 

 k
w  and 

 k
 , by using Taylor series expansions while ignoring the higher order terms as   

 

 

2

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) (, , )( )

2

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ), ,

sgn

sgn

1

2

1

2

j k k k j j k k k j

j

x xx

k k k j j k kx xx k j

w w w x x w

x x

 

    

  

 



 

          (4.24) 

Substituting Equation (4.24) into PD EsOM, i.e. Equation (4.21), and performing some 

algebraic manipulations result in   

     

          

( ) ( ) ( )( ) ( )

1

2

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

1

, ,

, , ,

1

1

2
ˆ

1 1

422

1

xx x

xx x x

s k k k j kk j
j

b k k j s k k k k j kk j k j j
j j

x

w

w

w c V b

I
c V c V b

A

 

 




    





 

 

  

 
     

 



 
 

                 (4.25) 

where the infinitesimal volume of material point j, i.e.  j
V , can also be expressed as 

( ) ( )( )j k jV A   . There, 
( )( )k j  represents the spacing between two consecutive 

material points and it approaches to differential reference distance, i.e. 
( )( )k j d    

while converting the summation functions into integrations as   

 
0

2

0

, , ,

0

, ,

1

ˆ

4

xx x

xx x x

s

b s x

w c Ad b

I
c A

w

d c Ad bw
A



 

   


      

  

 
     

 



 

          (4.26) 
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and performing the integrations in Equation (4.26) yields the PD EOM as   

2 2

2

2 2 4 2

2

ˆ
2

2 62 1

s

s b s

A w
w c b

x x

I A w A A
c c c b

A x x

 


    
 

  
   

  

   
      

    

          (4.27) 

It is now obvious that the obtained PD EsOM have the same form with their classical 

counterparts, given by Equation (4.23), for Timoshenko beam theory. The body loads, 

b̂  and b , substitute for the transverse load, p, and the moment load, m, of the classical 

beam theory, respectively. Therefore, it can be concluded that the proposed potential, 

U, and kinetic, T, energy expressions given by Equations (4.16) and (4.17) – (4.18), 

are suitable for representation of the Timoshenko beam problem.   

Finally, equating the coefficients of the unknown functions, i.e. w and , in the PD 

EsOM to the coefficients of that in the classical equation yields the relationships 

between the PD material parameters, sc  and bc , and the shear and Young’s moduli, G 

and E, as well as the second moment of the cross sectional area, I, and the shear 

correction factor, k, as   

2

2 2

2

2

4

s

b

kG
c

A

EI kG
c

A A







 

               (4.28) 

As a result, PD EsOM, given in Equation (4.21), along with shear and bending bond 

constants, i.e. sc  and bc , given in Equation (4.28) can be used for Timoshenko beam 

problems.   

Surface corrections   

Above, the Peridynamic material parameters, sc  and bc , are derived under the 

assumption that the main material point, k, has a horizon which is completely 

embedded inside the beam body. Hence, the material points’ stiffnesses in a beam are 

effected from the free surfaces or material interfaces as reductions. These reductions 

should be corrected with a surface correction coefficients.   
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The surface correction coefficients for a material point, k, in a beam can be calculated 

as   

 

  

CCM

shear
s k PD shear

k

W
S

W 


x
   and   

 

  

CCM

bending

b k PD bending

k

W
S

W 


x
          (4.29) 

where  s k
S  and  b k

S  represent surface corrections for shear and bending Peridynamic 

material parameters, i.e. 
sc  and 

bc , respectively. In order to find these parameters for 

near surface points, the simple loading conditions are considered as explained below.   

Firslty, the beam is subjected to a simple shear loading,  , as shown in Figure 4.4. 

Under such loading condition, the shear strain energy density function, for any material 

point k, can be calculated from Equation (4.15) as   

        

2

1

1 1

2 2

PD shear

sk k j j
j

W c V 






     with     k j
             (4.30) 

It can be seen from Figure 4.4 that the material point, which is located nearly to the 

free surface, has a truncated horizon so that its shear stiffness is not complete.   

 

Figure 4.4 A beam subjected to a simple shear loading  

Furthermore, the strain energy density of the same point can be calculated in classical 

theory as   

21

2

CCM

shearW kG    with                  (4.31) 

As a result, substituting Equations (4.30) and (4.31) into Equation (4.29) leads to a 

shear loading surface correction factor  s k
S  for a material point, k.   
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Secondly, the beam is subjected to a constant curvature,  , as shown in Figure 4.5. 

Under such loading condition, the bending strain energy density function, for any 

material point k, can be calculated from Equation (4.15) as   

        

2

1

1 1

2 2

PD bending

bk k j j
j

W c V 






     with     k j
            (4.32) 

It can be seen from Figure 4.5 that the material point, which is located nearly to the 

free surface, has a truncated horizon so that its bending stiffness is not complete.   

 

Figure 4.5 A beam subjected to a constant curvature loading  

Furthermore, the strain energy density of the same point can be calculated in classical 

theory as   

21

2

CCM

bending

EI
W

A
    with                  (4.33) 

As a result, substituting Equations (4.32) and (4.33) into Equation (4.29) leads to a 

bending loading surface correction factor  b k
S  for a material point, k.   

Moreover, the surface correction factors, which are calculated for the material points j 

and k, can have the different values, therefore averaging these leads to the bond’s 

surface corrections as   

   

2

s sk j

s

S S
S


    and   

   

2

b bk j

b

S S
S


             (4.34) 

4.2.2 Mindlin plate  

A two dimensional structure is basically considered as the extension of a one 

dimensional structure through second dimension, which is y – axis.   
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4.2.2.1 Kinematics in PD theory  

In order to model Mindlin plate in PD theory, many rows of material points are 

modelled on the midplane and it is sufficient to use only single layer of material points 

in the thickness direction. Moreover, the shape of horizon is also a circle as in 2D plate 

theory. Plate bending behavior can be represented by considering Mindlin plate 

formulation which is an extension of Timoshenko beam formulation. In addition to the 

transverse displacement, w and rotation, x , there is an additional rotational degree of 

freedom, 
y  for each material point, as shown in Figure 4.6.   

 

Figure 4.6 Kinematics of a Mindlin plate in PD theory  

In Figure 4.6, all of the rotations are in positive directions considering the sign 

convention adopted. Furthermore,  j
  and  k

  represent the rotations with respect to 

the line of action between the material points k and j. Thus, considering the material 

point k as the point of interest, the average transverse shear rotation of a bond,   k j
 , 

can be proposed as   

  

   

  

   

2

j k j k

k j

j k

w w  




 
                (4.35) 

Equation (4.35) is given with respect to a line of action and the rotations,  j
  and  k



, can be transformed to the coordinate axes, x and y, as   
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( ) ( ) ( )

( ) ( ) ( )

cos sin

cos sin

j x j y j

k x k y k

    

    

 

 
              (4.36) 

In this regard, Equation (4.35) can also be rewritten as   

   ( ) ( ) ( ) ( )( ) ( )

( )( )

( )( )

cos sin cos sin

2

x j y j x k y kj k

k j

j k

w w        




  
          (4.37) 

where “  ( ) ( ) ( )( )j k j kw w  ” represent the slope with respect to the line of action 

between the material points j and k. On the other hand, considering the material point 

j as a point of interest, the average shear rotation,   j k
 , of a bond can be written in a 

similar manner with Equation (4.35) as   

  

   

  

   

2

k j k j

j k

j k

w w  




  
    

 
             (4.38) 

As a result, the force densties, i.e. ( )( )
ˆ

k jt  and ( )( )
ˆ

j kt , arising from the shear deformations, 

  k j
  and   j k

 , are formed in opposite directions but they have the same magnitudes 

in a same bond as in Timoshenko beam formulation, and so they can be assumed as   

 ( )( ) ( )( )

1
ˆ

2
k j s k jt c     and    ( )( ) ( )( )

1
ˆ

2
j k s j kt c             (4.39) 

where sc  is the Peridynamic material parameter which is related to a shear deformation 

or shear bond constant. Thus, the pairwise force function, ( )( )
ˆ

k jf , related with the shear 

deformations of a bond can be derived from the force densities as   

( )( ) ( )( )
ˆ ˆ

k j k jt t     with    ( )( ) ( )( ) ( )( )
ˆ ˆ2k j k j s k jf t c              (4.40) 

in which ( )( )
ˆ

k jf  is the central force which is on the material point, k.   

Furthermore, the bending strain or curvature of a bond, i.e.   k j
 , between the material 

points, k and j can be proposed as   

( ) ( )

( )( )

( )( )

j k

k j

k j

 




 
   
 

               (4.41) 
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where the material point k is a point of interest. Again, Equation (4.41) is given with 

respect to a line of action and it can be rewritten along the coordinate axes, x and y, by 

using Equation (4.36) as   

( ) ( ) ( ) ( )

( )( )

( )( ) ( )( )

cos sin
x j x k y j y k

k j

k j k j

   
  

 

    
       
   

           (4.42) 

On the other hand, considering the material point j as a point of interest, the curvature, 

  j k
 , of a bond can be written in a similar manner with Equation (4.41) as   

( ) ( )

( )( )

( )( )

k j

j k

k j

 




 
   
 

   or   
( )( ) ( )( )j k k j               (4.43) 

As a result, the force densties, i.e. 
( )( )k jt  and 

( )( )j kt , arising from the bending 

deformations,   k j
  and   j k

 , are formed in opposite directions but they have the 

same magnitudes in the same bond, as in Timoshenko beam theory, and so they can 

be assumed as   

 ( )( ) ( )( )

1

2
k j b k jt c     and    ( )( ) ( )( )

1

2
j k b j kt c             (4.44) 

where bc  is the another Peridynamic material parameter which is related to a bending 

deformation and it can also be named as bending bond constant. The pairwise force 

function, ( )( )k jf , related with the bending deformations of a bond can be derived from 

the force densities as   

( )( ) ( )( )k j k jt t     with    ( )( ) ( )( ) ( )( )2k j k j b k jf t c              (4.45) 

in which ( )( )k jf  is the central force which is on the material point, k.   

After defining the main kinematic variables of the Mindlin plate theory, the strain 

energy density function can be expressed as   

     
PD PD bending PD shear

k k k
W W W                 (4.46) 

where 
 
PD bending

k
W   and 

 
PD shear

k
W   represent the bending and the shear strain energy 

densities of a material point k. These strain energy densities can now be proposed as   
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          

          

2

1

2

1

1 1

2 2

1 1

2 2

PD bending

bk k j k j j
j

PD shear

sk k j k j j
j

W c V

W c V

 

 


















            (4.47) 

where 
 j

V  represents infinitesimally small volume and it is in the form of 
   j j

V A h  

where 
 j

A  is the surface area of the material point j. In Equation (4.47), the summation 

function involves all the member material points, j, that are in the horizon of a main 

material point, k. Thus, the total potential energy of a plate is defined by summing all 

the strain energy densities of the main material volumes, i.e.  k
V , over the domain 

together with the energies of external loads as   

        

          

 

2

1

2
1

( ) ( ) ( )

1

1 1

2 2

1 1 ˆ
2 2

b k j k j j
jPD

k
k

s k k kk j k j j k
j

c V

U V

c V b w b

 

  











 
 
 
 
   
 





         (4.48) 

or in an open form   

    

   
    

 

2

( ) ( ) ( ) ( )

1 ( )( ) ( )( )

2

( ) ( )

( )( )

1
( ) ( ) ( ) ( )

( ) ( )

( )

1 1
cos sin

2 2

1 1

2 2 cos sin cos sin

2

ˆ

x j x k y j y k

b k j j
j k j k j

j k

j kPD

s k j j
j

x j y j x k y k

k x k

k k

c V

w w

U c V

b b
w

h h

   
  

 




       











     
        

    

 
 
  
 

  
  
 

 





 

 
1

( )

k
k

y k

k

V

b

h






 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



                 (4.49) 

in which 
 

ˆ
k

b  denotes the body load related to the transver direction force as well as 

 x k
b  and 

 y k
b  denote the body loads related to the x and y direction moments. 

Moreover, they have the units of “force / unit area” and “moment / unit area”, 

respectively. Hence, they represent both the transverse load,  ,p x y , and the moment 
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loads,  ,xm x y  and  ,ym x y , of the classical plate theory. Then, the total kinetic 

energy can be proposed with the help of its classical form as   

PD PD PD

rotational translationalT T T                (4.50) 

and they can be expressed as   

    
3

2 2

( ) ( ) ( )

1

2

( ) ( )

1

1

2 12

1

2

PD

rotational x k y k k

k

PD

translational k k

k

h
T A

T h w A


 











 







            (4.51) 

in which 
 k

A  represents the infinitesimally small incremental area of each material 

point and h represents the thickness of the plate. Thus, the Lagrangian can be expressed 

as   

    

    

3
2 2

2

( ) ( ) ( ) ( ) ( )

1 1

2

( ) ( ) ( ) ( )

1 ( )( ) ( )( )

( ) ( )( ) ( )

1 ( )( )

1 1
   =

2 12 2

1 1
cos sin

2 2

cos1 1
     

2 2

PD PD

x k y k k k k

k k

x j x k y j y k

b k j j
j k j k j

x j y jj k

s

j j k

L T U

h
A h w A

c V

w w
c


  

   
  

 

  



 

 









 

 

     
        

    


  

 




   

    

   

 

2

( ) ( )

1

( ) ( ) ( )

( )

sin cos sin

2

ˆ

x k y k

k j j k
k

k x k y k

k k k

V V

b b b
w

h h h

    


 





 
 
 
 
   
  
  

  
 
   
 
 



                 (4.52) 

It is now obvious that the Lagrangian is a function of  k
w ,  x k

  and  y k
  so that Euler 

– Lagrange equations take the form of   
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( ) ( )

( ) ( )

( ) ( )

0

0

and

0

k k

x k x k

y k y k

d L L

dt w w

d L L

dt

d L L

dt

 

 

 
 

 

 
 

 

 
 

 

               (4.53) 

Substituting Equation (4.52) into Equation (4.53) yields the EsOM of a Mindlin plate 

in PD theory as   

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 ( )( )

3
( ) ( ) ( ) ( )

( ) ( )

1 ( )( ) ( )( )

( ) (

( )( )

ˆcos sin
2 2

cos sin cos
12

1

2

j k x j x k y j y k

k s j k

j j k

x j x k y j y k

x k b j

j j k j k

j

s j k

w w
hw c V b

h
c V

w w
c

   
  



   
    

 











   
     

 

     
        

     








) ( ) ( ) ( ) ( )

( ) ( )

1 ( )( )

3
( ) ( ) ( ) ( )

( ) ( )

1 ( )( ) ( )( )

( ) (

( )( )

cos sin cos
2 2
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cos sin sin
12

1
          

2

k x j x k y j y k

j x k

j j k

x j x k y j y k

y k b j

j j k j k

j

s j k

V b

h
c V

w w
c
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

   
    

 











  
    

 

     
        

     








) ( ) ( ) ( ) ( )

( ) ( )
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cos sin sin
2 2

k x j x k y j y k

j y k

j j k

V b
   

  






  
    

 


                 (4.54) 

In order to prove the validity of Peridynamic EsOM, it is shown that their classical 

counterparts, given by Equation (4.55), can be recovered in the limit of horizon size 

approaches to zero, i.e. 0  .   

 

 

2 2
2

2 2
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12 2 2
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D D D k Gh m

x
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y




 
     

 
     

  
     

    

  
       

 

  
       

 

        (4.55) 
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Therefore, the transverse displacement and the rotations of the material point j, i.e. 

 j
w , 

 x j
  and 

 y j
 , are expressed in terms of main material point’s degrees of 

freedom, i.e. 
 k

w ,  x k
  and  y k

 , by using Taylor series expansions while ignoring the 

higher order terms as   
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        (4.56) 

The summation functions given in Equation (4.54) can simply be converted into 

integrations and the infinitesimal volume of material point j, i.e.  j
V , can be expressed 

as 
( ) ( )( ) ( )( ) ( )( )j k j k j k jV h     . There, 

( )( )k j  represents the spacing between two 

consecutive material points and 
( )( )k j  the angle between two consecutive bonds. 

These expressions approach to differentials as 
( )( )k j d    and 

( )( )k j d   . 

Thus, the conversion process from summations to integrations can be achieved by “

2

0 0

....h d d

 

    ” expression. Substituting Equation (4.56) into PD EsOM, i.e. Equation 

(4.54), and converting the summation functions into integrations result in   
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       (4.57) 
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It is now obvious that the obtained PD EsOM have the same form with their classical 

counterparts, given by Equation (4.55). As mentioned before, the body loads, b̂ , xb  

and yb , substitute for the transverse load, p, and the moment loads, xm  and 
ym , of the 

classical plate theory, respectively. Therefore, it can be concluded that the proposed 

potential, U, and kinetic, T, energy expressions given by Equations (4.48) – (4.49) and 

(4.50) – (4.51), are suitable for representation of the Mindlin plate problem.   

Finally, equating the coefficients of the unknow functions, i.e. w, x  and 
y , between 

the PD EsOM and the classical equations yields the relationships between the PD 

material parameters, sc  and bc , and the Young’s modulus, E, as well as the shear 

correction factor, 2k , as   

2

3

9

4
s

E
c k


    and   

2
2

2

3 27

4 80
b

E h
c k

 

 
  

 
            (4.58) 

with   

1

3
                   (4.59) 

Again, the constraint on the Poisson’s ratio is found and it is the same value with the 

2D plate under in – plane loads problem. Hence, the flexural rigidty, D, and the shear 

modulus, G, are defined as   

 

3 3

2

3

3212 1

Eh Eh
D


 


   and   

 
3

2 1 8

E E
G


 


           (4.60) 

As a result, the PD EsOM, given in Equation (4.54), along with shear and bending 

bond constants, i.e. sc  and bc , given in Equation (4.58) can be used for Mindlin plate 

problems.   

Surface corrections   

The surface correction are again the two dimensional extended form of Timoshenko 

beam problem. Here, the strain energy density of a Mindlin plate can be separated into 

two parts that are the bending and shear energy densities. Strain energy density due to 

bending in the classical theory can be expressed as   
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   2 2 21 1
2

2 2

CCM

bending x x y y xyk
W x D


    

 
    

 
           (4.61) 

where the curvatures are; 
,x x x  , 

,y y y  , and 
, ,xy x y y x    . Its counterpart in 

the PD theory can be expressed in discretized form as   

           

2

1

1

2 2

PD b
bending k k j j k j

j

c
W x V 





              (4.62) 

Considering pure bending loading along the x and y directions, i.e. 0x yM M  , and 

0xyM  , results in curvatures   

0x y      and   0xy  .              (4.63) 

The classical and PD strain energy densities for this loading condition become   

    2 21
2

2

CCM

bending x x y yk
W x D                   (4.64) 

and   

            

2
2 2

1

1
cos sin

2 2

PD b
bending x yk j k j

j

c
W x V    





            (4.65) 

Hence, the surface correction factor for pure bending can be defined as   

     
  

CCM

bending k

b k PD

bending k

W x
S x

W x
               (4.66) 

On the other hand, the strain energy density due to transverse shear deformation in the 

classical theory can be written as   

       2 2
21

2

CCM

shear x yk
W x Gk h                 (4.67) 

where 
,x x xw    and 

,yy yw   . Its counterpart in the PD theory can be expressed 

in discretized form as   

           
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PD s
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j

c
W x V 





              (4.68) 
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Applying pure shear loading along the x – direction, i.e. 0xQ   and 0yQ  , results in 

shear angles   

0x   and 0y  .                 (4.69) 

Then, classical and PD strain energy densities for this loading condition become   

    
2

21

2

CCM

shear xk
W x Gk h                (4.70) 

and  

          
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1

1
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2 2
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shear xk j k j

j

c
W x V  
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

              (4.71) 

Similar results can also be obtained for pure shear loading along the y – direction as   

    
2

21

2

CCM

shear yk
W x Gk h                (4.72) 

and   

          
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1
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2 2
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j
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W x V  
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              (4.73) 

Similar to pure bending, the correction factor for pure shear loading can be obtained 

as   

     
  

CCM

shear k

s k PD

shear k

W x
S x

W x
               (4.74) 

The surface correction factors for material point j and material point k can have 

different values; therefore, the surface correction factors for an interaction between 

material point j and material point k can be taken as their average   

     
2

b bk j

b

S x S x
S


               (4.75) 

and   

     
2

s sk j

s

S x S x
S


               (4.76) 
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4.2.3 Boundary conditions  

The boundary conditions are imposed through a nonzero volume of fictitious boundary 

layers. This necessity arises because the PD field equations do not contain any spatial 

derivatives; therefore, constraint conditions are, in general, not necessary for the 

solution of an integro-differential equation. However, such conditions can be imposed 

by prescribing constraints through a fictitious boundary layer. In simplified structure 

theories, displacement or rotation constraint is introduced outside the actual material 

with introducing a fictitious boundary layer, 
cR , as shown in Figure 4.7. The size of 

this layer is equivalent to the horizon. An external load, such as a moment or a 

transverse load, can be applied in the form of body loads through a layer within the 

actual material, R . This layer can be 1/3 of the horizon size.   

       

   (a)      (b)  

Figure 4.7 Application of boundary conditions in Peridynamics: (a) beam and (b) 

plate  

4.2.4 Critical values  

The incorporation of damage to a Mindlin plate theory is a bit different than the usual 

calculations given in Section 2.4.5. In order to include failure in the material response, 

again the response functions, i.e. force – stretch/curvature relations, in the governing 

equations for the Mindlin plate should be modified through a history – dependent 

scalar value function,    
( , )

j k
H x x t  as   

     ( )( ) ( )( )
ˆ ,k j s k jj k
f c H x x t                (4.77) 

and   
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     ( )( ) ( )( ),k j b k jj k
f c H x x t                (4.78) 

and it is defined as   

                    , '  , '1 if and
,

0 otherwise

c ck j j k k j j k

j k

x x t x x t
H x x t

      
  



                 (4.79) 

Critical curvature and angle values can be expressed in terms of the critical energy 

release rate of the material. In order to find these relationships, the total strain energy 

required to remove all of the interactions across a newly created crack surface, A, 

shown in Figure 2.17, must be determined and equated to the corresponding critical 

energy release rate value.   

The total bending strain energy required to remove all of the interactions across the 

new crack surface A is   

   
2

( ) ( ) ( ) ( )
1 1

1

2

K J
c

bending b c j k k j
k j

W c V V
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 

  x x            (4.80) 

The total bending strain energy, 
c

bendingW , can be equated to the mode – I critical energy 

release rate, IcG , in order to determine the value of the bending critical curvature as  
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K J
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 x x

           (4.81) 

Based on the expression derived by Silling and Askari, 2005 and Madenci and Oterkus 

(2014) for the critical energy release rate, it is evident that   
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

 
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 x x

             (4.82) 

Finally, the critical curvature can be expressed as   

4

4 Ic
c

b

G

c h



                 (4.83) 
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Similarly, the total shear strain energy required to remove all of the interactions across 

the surface A is   

   
2

( ) ( ) ( ) ( )
1 1

1

2

K J
c

shear s c j k k j
k j

W c V V

 

   

 

  x x            (4.84) 

This total shear strain energy, c

shearW , can be equated to the mode – III critical energy 

release rate, IIIcG , in order to determine the value of the critical shear angle as   

   
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K J

s c j k k j
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 x x

           (4.85) 

By using the relationship given in Equation (4.82), the critical shear angle can be 

obtained as  

4

4 IIIc
c

s

G

c h



                 (4.86) 

 

4.3 Peridynamic Dispersion Relations  

4.3.1 Introduction  

Dispersion relation is basically the propagation bevahiour of a wave in a structure at 

very small length scales. In classical theory only special case in the long wavelength 

limit can be captured; however, the PD theory results shows the dispersion behavior 

similar to that observed in real material experiments. In principle, the length – scale 

parameter, i.e. horizon, is the advantage of the PD theory over the classical continuum 

mechanics. The horizon size introduces PD theory a nonlocal character. Hence, 

physical phenomena can be captured not only at the macro – scale, but also at other 

scales.   

It is proven that multi-scale analysis simulations can be performed with PD theory and 

also with the proposed simplified structures given in this section. With the increase of 

use of micro and nano structures in engineering systems, i.e. micro-electro-mechanical 
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systems (MEMS) and nano-electro-mechanical systems (NEMS), it is inevitable to 

take advantage of simplified structures, such as beam, plate etc., in these systems.  

The advantage of Peridynamic theory over the other non local theories is that there is 

no need to deal with adaptation of appropriate boundary conditions to non local effects. 

Because EsOMs do not involve any derivatives of stresses or displacements. Thus, PD 

theory of simplified stuructures can take the place of non local theories explained here. 

Micro and nano structures can be easily modelled with the simplified theories of PDs. 

There have been already some attempts found in the literature for the application of 

Peridynamic theory to micro or nano structures. However, EsOMs for Timoshenko 

beam and Mindlin plate have not been used before in the literature. These theories are 

very important to utilize the Peridynamic theory for MEMS and NEMS because they 

also have the ability of modelling thick structures. The purpose of this section is to 

show dispersion relations of simplified structures in order to prove the applicability of 

PD theory for small scale simplified structures.   

4.3.2 Timoshenko beam  

The governing equation of motion for Timoshenko beam is given in Equation (4.21) 

in summation form and it can also be expressed in integral form when the elements of 

summation go to infinity as   
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 
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 
 
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    
   

 

   
   

 

     
    

 



 

         (4.87) 

where w  and    indicate member material points inside the horizon of w and  . The 

differential volume has the form of dV Ad . Equation (4.87) can also be expressed 

in the limit of horizon approaches to zero, 0  , as given in Equation (4.26), which 

is the similar form with the classical theory of elasticity. However, the long range 

forces have also effect in Peridynamic theory for which the horizon values are not 

equal to zero.   

Again, Peridynamic dispersion relations are compared against the classical 

Timoshenko theory. In the derivation of these dispersion relations, the wave number, 
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the wave frequency and phase velocity of the wave are denoted by  ,  , and  , 

respectively. The relationship among these parameters is   . The compressional 

and shear wave speeds are defined by 2

c E   and 2

s G  , respectively, where 

G and E are the shear and Young’s moduli of the material. The wave number is related 

to the half-wavelength,  , by the relationship    .   

In this regard, dispersion relations are determined by considering a wave propagating 

in the x direction. Therefore, wave solutions for material points located at x and x  can 

be expressed as   

   
0,

i x t
w x t w e

 
  and    sgn( )

0,
i x t x x

w x t w e
                (4.88) 

   
0,

i x t
x t e

 
 


  and    sgn( )

0,
i x t x x

x t e
  

 
               (4.89) 

in which 0w  and 0  represent the amplitudes of waves and   is the phase difference 

between the material points located at x and x . The  sgn x x   function here 

represents both the left and right going wave. Substituting these wave solutions into 

the PD equations of motion given in Equation (4.87) leads to a homogeneous set of 

equations for 0  and 0w  and for a nontrivial solution to exist, the determinant of their 

coefficient matrix must vanish, resulting in the wave dispersion relation as   
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           (4.90) 

The terms appearing in Equation (4.90) are defined as   
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1 cosB d
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
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and   
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0

sinB i d


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and they are dependent on the phase difference and the horizon. As suggested by 

Silling (2000), in the limit of long wavelength (or small  ), these integrals can be 

analytically evaluated by considering the first three terms of the Taylor series 

expansion of the cosine and sine functions   

   
2 4

cos( ) 1 ...
2! 4!

 
                  (4.94) 

and   

   
3 5

sin( ) ...
3! 5!

 
                  (4.95) 

With the evaluation of these integrals and considering the PD material parameters, the 

determinant from Equation (4.90) can be expressed as  
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
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                 (4.96) 

in which   is the Poisson’s ratio. The nondimensional wave frequency and wave 

number, pd  and  , respectively, are defined as   

pd

s

h


     and   h                (4.97) 

The non-dimensional geometric parameters, m and t, are defined as   

2Ah
m

I
  and 

h
t


                (4.98) 

Disregarding the higher order terms of the horizon simplifies the wave dispersion 

relation for long wavelength limit (or small  ) as   

    4 2 2 2 42 1 2 1 0pd pd k mk k                      (4.99) 

As expected, this equation recovers the nondimensional wave dispersion relation in 

the classical theory (Amirkulova, 2011) for a long wavelength limit. It leads to four 
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different values for wave frequency, which represent two waves traveling to the right 

and two waves traveling to the left of the beam. Therefore, there are two distinct modes 

that can propagate in a Timoshenko beam (Reis, 1978). The first mode yields zero 

frequency ( 0 ) when the wave number is equal to zero ( 0  )   

      
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2 2
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

      (4.100) 

and the second mode can be expressed as  

      
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2 2
2 2 41 1 2 1

2 2 2 2

c pcm d
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 
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 
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

      (4.101) 

The wave dispersion relations for long wavelength limit are shown in Figure 4.8 and 

Figure 4.9 for the specified values of 200 GPaE  , 37850 kg/m  , 5 / 6k  , 

710  mh  , 0.3  , and horizon size, 810  m  .   

   

   (a)             (b) 

Figure 4.8 Classical wave frequency dispersion for the (a) first and (b) second modes  

As can be seen from Figure 4.8b, the wave number of the second mode is real for 

3.16 . This indicates that the first mode is a propagating mode for any wave 

frequency, while the second mode only propagates for wave frequencies 3.16  and 

is exponentially attenuated for 3.16 , as discussed by Reis (1978). Therefore, 

3.16  is the cut-off frequency for the second mode.   
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The variations of nondimensional phase speed,  / k   and  / /E G 

, as a function of the wave number are shown in Figure 4.9 for the first and second 

modes.   

   

   (a)             (b) 

Figure 4.9 Classical wave speed dispersion for the (a) first and (b) second modes  

The phase speed,  / k   or  / /E G  , converges to unity as the wave 

number,  , increases. Hence, the phase speed for the first mode,  / k  , 

converges to the shear wave speed, s , of the CCM, since   





   and  

sk k



 


             (4.102) 

Moreover, the phase speed for the second mode,  / /E G  , converges to the 

compressional wave speed, c , of the CCM, since   

cE

G







               (4.103) 

As a summary, for long wavelength (or small wave number,  ), the resulting wave 

dispersion relations are the same as that of the classical theory (Amirkulova, 2011). 

As expected, both theories yield the same relationship for long wavelength.   

For specified values of 200 GPaE  , 37850 kg/m  , 5 / 6k  , 710  mh  , 0.3 

, and finite horizon size, 810  m  , the evaluation of the determinant without any 

simplification leads to the variation of the wave frequency,  , as a function of the 
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wave number,  , for the first and second modes as shown in Figure 4.10. For both 

modes, the PD wave dispersions level off as the wave number increases. However, the 

wave frequency always increases linearly according to the classical theory (CCM). 

Similar to the dispersion curves found by Silling (2000), it is apparent that the PD 

theory captures the experimentally observed characteristics of real materials.   

   

(a)                                                               (b) 

Figure 4.10 Comparison of PD and CCM wave frequency dispersions: (a) first mode 

and (b) second mode  

The variation of the normalized phase speed,  / s k   as a function of wave number, 

 , for the first mode is shown in Figure 4.11a. As shown in Figure 4.11, both PD and 

CCM predict zero speed in the limit as   approaches zero. The phase speed of the 

CCM reaches a constant value close to the shear wave speed of a bar for short 

wavelengths (or relatively large wave numbers). For the second mode, both theories 

predict comparable results for the long wavelengths (or relatively small wave 

numbers) while classical phase speed reaches the compressional wave speed, c , of a 

bar for short wavelengths (or relatively large wave numbers), as depicted in Figure 

4.11b. However, the phase speed decreases as the wave number increases according 

to the PD theory as observed in real materials.   
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                                       (a)                                                               (b)  

Figure 4.11 Comparison of PD and CCM wave speed dispersions: (a) first mode and 

(b) second mode.  

4.3.3 Mindlin plate  

The governing equation of motion for Mindlin plate is given in Equation (4.54) in 

summation form and it can also be expressed in integral form when the elements of 

summation go to infinity as   
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       (4.104) 

Where w , x   and 
y   indicate member material points inside the horizon of w , x  

and 
y . The differential volume has the form of dV h d d   . Equation (4.104) can 

also be expressed in the limit of horizon approaches to zero, 0  , as given in 

Equation (4.57), which is the similar form with the classical theory of elasticity. 

However, the long range forces have also effect in Peridynamic theory for which the 

horizon values are not equal to zero.   
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Again, Peridynamic dispersion relations are compared against the classical Mindlin 

theory. In the derivation of these dispersion relations, the wave number, the wave 

frequency and phase velocity of the wave are denoted by  ,  , and  , respectively. 

The relationship among these parameters is   . The compressional and shear 

wave speeds are defined by 2

c E   and 2

s G  , respectively, where G and E are 

the shear and Young’s moduli of the material. The wave number is related to the half-

wavelength,  , by the relationship    .   

In this regard, as in the case of a beam, dispersion relations are determined by 

considering a wave propagating in the x direction. Therefore, wave solutions for 

material points located at x and x  can be expressed as   
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in which 0w , 0x  and 
0y  represent the amplitudes of waves and  cos   is the 

phase difference between the material points located at x and x . Substituting these 

wave solutions into the PD equations of motion given in Equation (4.104) leads to a 

homogeneous set of equations for 0x , 
0y  and 0w  and for a nontrivial solution to 

exist, the determinant of their coefficient matrix must vanish, resulting in the wave 

dispersion relation as   
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The terms appearing in Equation (4.108) are defined as  
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where the terms iM  with 1,.....,11i   are dependent on the phase difference and the 

horizon. Evaluation of these integrals yields Bessel functions of the first kind, J0() 

and J1(), and Struve functions, H0() and H1().   

As indicated bySilling (2000), in the limit of a long wavelength (  ) or for a very small 

wave number ( 0  ), the integrals in Equations (4.109) – (4.119) can be simplified 

by using the first three terms of the Taylor series expansion for cosine and sine 

functions   
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Substituting the relationships given in Equations (4.120) and (4.121) into integrations 

given in Equations (4.109) – (4.119) and solving the determinant equation given in 

Equation (4.108), while ignoring higher order terms of horizon size, yield the 

dispersion relationship for a long wavelength limit in the PD theory   
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               (4.122) 

with the constraint on Poisson’s ratio ( 1 3  ).  

This relationship is equivalent to the dispersion relationship obtained from the classical 

theory (CCM). Moreover, roots of Equation (4.122) correspond to three different 

natural frequencies. Soedel (2004) explained that the lowest of these frequencies is the 

one that the transverse deflection mode dominates and other two are considered as 

shear modes.   

Shown in Figure 4.12 are the nondimensionalized phase speed ( / s  ) dispersion 

relationships with the change of wave number ( /h  ) for three different wave modes 

for the long wavelength limit while considering the following properties of a plate; 

2 5 (6 )k    and 1 3  .   
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(a)             (b) 

Figure 4.12 Classical (a) phase speed and (b) wave frequency dispersions  

Variations similar to those in Figure 4.12 and comparisons with Rayleigh – Lamb 

waves, which have the property of waves in a plate with infinite extent, can be seen in 

ref. (Stephen, 1997). Also, in ref. (Stephen, 1997), 1  is named as the lowest flexural 

mode, 2  as the thickness – shear mode, and 3  as the thickness-twist mode. In Figure 

4.12a, when the wave number ( /h  ) reaches the value of two, which means the wave 

length is now comparable with the thickness of a plate, all the phase speeds become 

flat.   

Figure 4.12b shows the nondimensionalized wave frequency (   / /s h   ) 

dispersions with the change of wave number ( /h  ) for three wave modes of the CCM 

or for the PD theory in the long wavelength limit. As a summary, for long wavelength 

(or small wave number,  ), the resulting wave dispersion relation is the same as that 

of the CCM (Soedel, 2004). Thus, both theories give the same relationship for long 

wavelength.   

For specified values of 200 GPaE  , 37850 kg/m  , 85 10  mh   , 2 5 (6 )k  

, 1/ 3   and finite horizon size, 810 m  , the evaluation of the determinant without 

any simplifications leads to the variation of the wave frequency,  , as a function of 

the wave number,  . Figure 4.13 shows comparisons of nondimensionalized phase 

speed (  2/ s k  ) as a function of wave number, / (2 / )   , for the first three 

modes; lowest flexural mode 1 , thickness-shear mode 2 , and thickness – twist mode 

3 .   
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   (a)              (b) 

 

(c) 

Figure 4.13 Comparison of wave speed dispersions: (a) lowest flexural mode 1 , (b) 

thickness – shear mode 2 , and (c) thickness-twist mode 3   

As observed in Figure 4.13a, both the classical and PD theories estimate zero speed in 

the limit as wave number,  , approaches zero, whereas the classical theory phase 

speed nearly approaches the Rayleigh surface wave speed, 0.9274s   , for 

Poisson’s ratio of 0.30   as wave number,  , increases (Stephen, 1997). In Figure 

4.13b – c, both theories estimate comparable results for the long wavelengths (or 

relatively small  ). However, PD theory captures the feature of real materials that 

phase velocity decreases as the wave number increases.   

Also comparisons of wave frequency dispersions for increasing wave number are 

shown in Figure 4.14. As a characteristic of real materials, dispersion curves of the 

peridynamic theory for all modes level off as the wave number increases and exceeds 

a value of 2   (Silling, 2000). Thus, PD theory captures the experimentally observed 

feature of real materials, which are always dispersive as a result of long-range forces.   
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   (a)      (b) 

 

(c)  

Figure 4.14 Comparison of wave frequency dispersions: (a) lowest flexural mode 1 , 

(b) thickness – shear mode 2 , and (c) thickness – twist mode, 3   

 

4.4 Benchmark Problems  

In order to validate the proposed peridynamic formulations, simple loading cases are 

first considered for which analytical solutions are also available.   

Lastly, a plate with a center crack under bending is considered to show the capability 

of Mindlin plate theory in capturing the crack propagation behavior.   

4.4.1 Timoshenko beam  

In order to obtain the static solutions, the adaptive dynamic relaxation (ADR) 

technique is used and the horizon size is chosen as 3.015 x   , where x  is the 

uniform grid spacing.   
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The length of the beam is 1mL  , with a cross sectional area of 20.1 0.1mA   . Its 

Young’s modulus is specified as 200GPaE  . Only a single row of material 

(collocation) points are necessary to discretize the beam. The distance between 

material points is 0.01mx  . The left edge is constrained by introducing a fictitious 

region with a size of  . The beam is first subjected to transverse loading, as shown in 

Figure 4.15. The loading is applied to a single material point at the right end of the bar 

as a body load of 9 3ˆ 5 10 N/mb    for the transverse loading, corresponding to a 

transverse load of 55 10 NP   .   

   

  (a)      (b) 

Figure 4.15 (a) Timoshenko beam subjected to transverse loading and (b) its 

discretization  

Under the transverse loading case, the analytical solutions for the transverse 

displacement and the rotation are given as   
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As shown in Figure 4.16, the PD and the analytical solutions also agree well with each 

other. This verifies that the PD equations of motion accurately captures the 

deformation behavior of a Timoshenko beam.   
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Figure 4.16 Variation of (a) transverse displacement and (b) rotation along a 

Timoshenko beam subjected to transverse force loading  

4.4.2 Mindlin plate  

In order to obtain the static solutions, the adaptive dynamic relaxation (ADR) 

technique is used and the horizon size is chosen as 3.015 x   , where x  is the 

uniform grid spacing.   

As shown in Figure 4.17, the length and width of the plate is 1mL W   with a 

thickness of 0.1 mh  . The Young’s modulus of the plate is specified as 200GPaE 

. Only a single row of material (collocation) points in the thickness direction is 

necessary to discretize the domain. The distance between material points is 

0.01mx  . The left edge is constrained by introducing a fictitious region with a size 

of 3 x . The loading is applied to a single row of material points at the right end of the 

plate as a resultant body load of 
83.33 10 N/mxb    for bending loading.   

   

  (a)     (b) 

Figure 4.17 (a) Mindlin plate subjected to pure bending loading and (b) its 

discretization  
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The peridynamic solutions of the transverse displacement and the x direction rotation 

for bending moment loading are compared with finite element (FE) solutions by using 

a shell element, which is suitable for thick shell structures, available in commercial 

software, ANSYS.   

As depicted in Figure 4.18, the PD and the FE solutions agree well with each other. 

This verifies that the PD equation of motion given in Equation (4.54) can accurately 

capture the deformation behavior of a Mindlin plate.   

   

Figure 4.18 Variation of (a) transverse displacement and (b) rotation along a Mindlin 

plate subjected to pure bending loading  

4.4.2.1 Mindlin plate with central crack  

Crack growth in a square plate with an initial central crack aligned with the x – axis, 

as shown in Figure 4.19, is analyzed. The length and width of the plate are 1mL W   

with a thickness of 0.1 mh  . Plate thickness to crack length ratio is 2 0.5h a  , 

which has the properties of a thick plate, where 2a is the initial crack length. The 

Young’s modulus of the plate is specified as 3.227GPaE   and the shear modulus is 

1.21GPaG  . Only a single row of material (collocation) points in the thickness 

direction is necessary to discretize the domain. The distance between material points 

is 32 10 mx    . The horizon size is chosen as 3.015 x   .   
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(a)  

 

(b) 

Figure 4.19 (a) Mindlin plate with a central crack subjected to pure bending loading 

and (b) its discretization  

The material is chosen as polymethyl-methacrylate (PMMA), which shows a brittle 

fracture behavior. Mode – I fracture toughness of this material is given as 

1.33 MPa m  (Ayatollahi and Aliha, 2009) and mode – III fracture toughness is given 

as 7.684 MPa m  (Farshad and Flüeler, 1998). The critical energy release rates of 

mode – I and mode – III can be found from   
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             (4.124) 

In order to show simple mode – I crack growth, a bending moment loading is applied 

through a single row of material points at the horizontal boundary regions of the plate. 

Small increments of resultant body loading of 250 N/myb    are induced in order 

to achieve stable crack growth. Under the applied uniform bending, the crack starts to 

grow at the end of nearly 66000 time steps, and as expected, it propagates towards the 

edges of the plate, as shown in Figure 4.20.   
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       (a)       (b) 

   

        (c)        (d) 

Figure 4.20 Crack evolution at (a) 66000th, (b) 67000th, (c) 68000th and (d) 69000th 

time steps  

 

4.5 Conclusion  

In this section, PD theories for simplified structures are derived while using a proposed 

procedure. These structures are very important to model complex and big structures 

such as ships and aeroplanes. Here, the proposed PD Timoshenko beam and Mindlin 

plate theories are new to the literature and this brings many advantages for modelling 

engineering structures. Since they have the ability of capturing transverse shear 

deformations, the thick beam and plate structures can be represented with these 
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theories. As a result, such thick engineering structures can only be modelled with a 

single layer of material points in the thickness direction and this brings computational 

advantage on PD simulations of complex structures. Moreover, the Timoshenko beam 

and Mindlin plate theories can be extended considering ordinary based PD theory. By 

doing this, the constraint on Poisson’s ratio for the plate theory can be removed.   

Apart from that, PD dispersion relationships were also obtained for simplified 

structures and it was concluded that the wave dispersion characteristics, which are also 

observed in experiments, of real materials can be captured with PD theory. However, 

using the classical theory can not incorporate such characteristics to a material 

behaviour because it does not have a length – scale parameter as in the PD theory. 

Hence, the classical theory is incapable of capturing phenomena occurring at lower 

scales that can affect the macro scale behavior. On the other hand, the horizon 

parameter in Peridynamics, which defines the domain of influence of peridynamic 

interactions, serves as a length – scale parameter. Due to this parameter, PDs is capable 

of capturing phenomena occurring at different length scales, including the nano – 

scale.   

After establishing the PD equation(s) of motion(s) for simplified structures, they are 

validated with simple benchmark problems. Furthermore, the expressions for critical 

curvature and shear angle values in terms of mode – I and mode – III critical energy 

release rates of the material were also utilized to predict crack growth in a plate under 

pure bending.   
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Chapter 5  

 

Underwater Shock Response of 

Marine Structures  

 

5.1 Introduction  

In recent years, composite structures have found extensive application area in marine 

field. Especially, they have received a lot of interest in military applications, such as 

naval ships, submarines and torpedoes (Mouritz, 2001), because these structures may 

be exposed to extreme loading conditions in their life time and their design must resist 

such conditions without any compromise from its weight. In this sense, composites are 

the best option with their high strength and low weight properties. Besides, they are 

also advantageous over metallic structures with their high corrosion resistance and low 

noise transmission behaviours (Kalavalapally et al., 2006). After all, composite 

materials took a lot attraction from the designers because of such superior 

characteristics. However, several types of material, which possess different 

mechanical characteristics, are involved in their design and construction process. 

Hence, they are rather complex and understanding dynamic behaviour of composite 

materials is not easy especially under extreme loading conditions. Therefore, various 
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studies concentrate on investigating dynamic deformation and/or failure 

characteristics of composite structures under shock loading conditions.   

In order to get quick solutions without any computational cost in the initial design 

stage (Li et al., 2013), analytical solutions were proposed to investigate dynamic 

behaviour of composite structures exposed to underwater shock loading. Librescu et 

al. (2004) investigated the dynamic response of composite sandwich panels 

analytically while considering several effects such as anisotropy of the face sheets, 

orthotropy of the core layer, geometrical nonlinearities and initial geometric 

imperfections. Later on, Librescu et al. (2006) incorporated the effect of core layer on 

induced pressure-time history to the structure from both air and underwater explosions. 

In these two parametric studies, comparisons were done for several geometrical and 

mechanical configurations of sandwich panels which also include the effect of charge 

weights and stand-off distances. Lam et al. (2003) developed an effective semi-

analytical method to study composite laminated pipeline subjected to underwater 

shock loading. In their analysis, fluid-structure interaction effect was considered and 

pipeline was modelled with Reissner-Mindlin assumptions assuming that it is a thick 

cylindrical shell. Finally, results were obtained by using modal analysis technique. 

Schiffer and Tagarielli (2014) developed analytical models, which incorporate 

cavitation effect on the fluid-structure interaction phenomena, for predicting dynamic 

behaviour of fiber reinforced laminated circular and clamped composite plates. 

Optimal design procedure for selection of plate geometries and its constituents were 

accounted for the developed analytical model. Wang et al. (2013) developed a novel 

analytical technique, which uses three-dimensional elastic fundamental equations 

instead of laminated plate theories, in order to obtain exact solution to the underwater 

explosion (UNDEX) problem. In this study, dynamic elastic response of laminated 

plates is obtained by using state space-numerical inversion of Laplace transform (SS-

NILT) method with considering fluid-structure interaction effects and results were 

compared with both finite element (FE) analysis and experiments from the literature. 

Panciroli and Abrate (2012) formulated dynamic response of composite structures 

which also incorporates the effect of core layer for straight and curved beams as well 

as for cylindrical and spherical shell structures. Moreover, geometric nonlinearities 

were considered for plates. Since the formulations were derived in curvilinear 
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coordinates, they can easily be extended to different geometries using the same 

kinematic assumptions. They also found that higher modes are effective for curved 

structures whereas they are negligible for plates and beams. These analytical studies 

are limited in beam, plate or shell geometries and difficult to implement for more 

complex structures. Moreover, no damage evolution predictions have been done 

analytically so far. Therefore, several numerical studies were carried out for more 

complex structures exposed to underwater shock loading. Gong and Lam (1998) 

studied transient stress response of submersible stiffened cylindrical composite hull by 

using finite element and boundary element methods. Fluid-structure interaction was 

also included with doubly asymptotic approximation (DAA) method and from 

comparisons against its steel counterpart, it was found that composite hull dissipates 

higher kinetic energy. Young et al. (2009) investigated the effect of fluid – structure-

interaction (FSI) on the dynamic response of sandwich composite structures. They 

used two-dimensional Eulerian – Lagrangian FSI solver in order to capture complex 

phenomena such as shock-bubble interactions, phase changes within the fluid and 

cavitation effects. Thus, it was concluded that UNDEX loading may lead to a very 

complex impact on the structure rather than uniform loading. However, both studies 

didn’t consider any damage in the structure. Some limited damage prediction analyses 

were carried out numerically by McCoy and Sun (1997) and Kalavalapally et al. 

(2006). McCoy and Sun (1997) performed stress analysis of hollow composite 

cylinder with FE method and FSI effects are also included. The effective modulus 

theory, which separates thick composite laminate section into a periodic sublaminate 

stacking sequence instead of considering each individual lamina, is used for dynamic 

application. After all, delamination damage can be predicted if radial stress reaches 

some particular value. Kalavalapally et al. (2006) made some optimization analyses 

for both metallic and composite models of torpedoes and it is found that composite 

model is stronger and lighter than its metallic counterpart. They also used maximum 

stress and strain failure criteria for damage prediction. However, both studies lack to 

show full perspective of damage evolution process and final failure considering each 

constituent of composite structures. Recently, the detailed failure and damage 

characteristics of composite structures were studied extensively for underwater shock 

loading by using FE method. Motley et al. (2011) numerically investigated initial 
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failure loads of fully submerged composite plates while taking the advantage of 

Hashin’s failure initiation criteria. A more complex study was carried out by Batra and 

Hassan (2007) for a laminated composite plate subjected to underwater shock loading 

and an FE computational framework, which incorporates rate-dependent damage 

evolution equations, was developed. Thus, evolution of several damage types, i.e. 

fiber/matrix debonding, matrix cracking, fiber breakage and delamination, can be 

predicted in the structure. Moreover, LeBlanc (2011) used a commercial FE software, 

i.e. LS-DYNA, in which specific material model incorporating progressive damage 

property is used. Hereby, final failure characteristics of a circular composite plate were 

found to be in agreement with experimental results obtained from conical shock tube 

test setup. Gauch et al. (2012) investigated the effect of preloading, which may be a 

hydrostatic pressure experienced by submersible vehicles, on the response of structure. 

Material damage and delamination were observed in thin E-Glass reinforced 

composite plates by using similar material model as in ref. (LeBlanc, 2011), which 

incorporates degradation of a composite material stiffness during the simulation. Wei 

et al. (2013b) proposed progressive degradation model in order to analyse different 

damage mechanisms in composite structures and they compared their results with 

experimental observations obtained from underwater shock tube. Later on these results 

were improved by considering strain-rate effects on mechanical behaviour of 

constituents of composites (Wei et al., 2013a).   

Experiments are also carried out in order to gain better understanding on dynamic and 

damage behaviour of composite structures under shock loadings. Hence, some of the 

above mentioned analytical and numerical studies were supported by experiments. In 

general, experiments were carried out using either explosives directly or with shock 

tubes in laboratory scale. Shock tubes are more favourable than using explosives 

(Arora et al., 2012) because field experiments can be expensive, dangerous and 

harmful to environment (Bachynski et al., 2011). In experiments, small target 

dimensions may lead to small impacted region and subsequently localized damage 

(Latourte et al., 2011). Therefore scaling relations, which considers plate dimensions, 

explosive intensity and other parameters, are pretty important. Bachynski et al. (2011) 

derived scaling relations for composite structures in order to make laboratory scale 

experiments. Espinosa et al. (2006) developed a novel experimental setup, which is 
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based on scaling analysis, in order to represent full field experiments in laboratory 

scale. Other kinds of shock tube test setups have been used in the literature, e.g. 

(Avachat, 2012; LeBlanc, 2011; Schiffer et al., 2012), to understand deformation and 

failure characteristics of composite structures. Mouritz (2001) carried out prototype-

scale experiments and showed the effect of stitching on improving damage 

characteristics, especially delamination damage, of Glass/vinyl ester composites. 

Arora et al. (2012) carried out large scale field experiments and investigated failure 

mechanisms of E-Glass fiber reinforced sandwich panels and laminated tubes. 

Latourte et al. (2011) investigated failure modes and damage mechanisms of 

composite laminated and sandwich structures using shock tube defined by Espinosa et 

al. (2006). Their study also confirmed the performance improvement of composite 

sandwich panels under shock loadings. Avachat and Zhou (2013) used novel gas-gun 

based Underwater Shock Loading Simulator (USLS) for investigating damage 

characteristics of composite structures and comparisons were done with FE 

simulations perfomed by Avachat (2012).   

In summary, several numerical techniques based on FE analysis technique were used 

collaboratively with experimental studies in order to develop most powerful numerical 

model. However, numerical studies, which have been carried out to date, only used FE 

analysis technique. FE analysis greatly suffers from mesh sensitivity in impact 

analyses (Raimondo et al., 2012) and its equation of motion is based on local 

continuum theory which needs additive kinematic relations and/or damage evolution 

equations for the damage prediction analysis. In this section, Peridynamics is used for 

the first time in literature for analysing underwater shock responses of composite 

structures. The governing equations of peridynamics are in the form of integro-

differential equations, which naturally incorporates damage into the structure, and no 

additional equations are needed. Moreover, its numerical implementation is done by 

meshless approach which does not result in unrealistic energy dissipations as in the FE 

theory (Raimondo et al., 2012). In this regard, we first briefly explain implementation 

of peridynamic formulation for composite structures. Then, peridynamic analysis of a 

4-ply composite structure subjected to underwater shock loading is carried out and 

results are compared against a previous study done by Batra and Hassan (2007). Since, 

only numerical results were provided by Batra and Hassan (2007), Peridynamic 
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computational results are further verified with the experimental results given by 

LeBlanc (2011) where conical shock tube (CST) test setup was used. Furthermore, in 

the latter case, a more complex 13-cross ply composite structure is analysed.   

 

5.2 Peridynamic Theory for a Composite Lamina  

In this section, we briefly explain Peridynamic formulation of a two-dimensional 

composite lamina, which shows anisotropic material property, explained in Chapter 5 

of ref. (Madenci and Oterkus, 2014). Lamina constitutes from fibers and matrix 

materials. Fibers are oriented along x1 axis and fiber orientation angle is defined as  

with respect to a reference axis, x, as shown in Figure 5.1. The directional dependent 

property of composite lamina is provided by introducing fiber direction bonds in 

addition to arbitrary direction bonds. In Figure 5.1, the main material point, i, interacts 

with other material points, p and q, through arbitrary direction bonds while it is also 

connected with material point, q, through fiber direction bond inside its horizon, Hx.   

 

Figure 5.1 Fiber orientation with respect to x axis  

Due to the fact that two types of interactions or peridynamic bonds are defined for the 

composite lamina, the bond constant, c, which is available in the original PD theory, 

is replaced by directional dependent bond constant,  c  , as   

 
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c c
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
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 


                 (5.1) 
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where  , 
Fc  and 

Ac  are referred as angle of the peridynamic bond with respect to x 

axis, fiber direction bond constant and arbitrary direction bond constant, respectively. 

As mentioned earlier in Section 2.4.4, the bond constants, 
Fc  and 

Ac , can be obtained 

in terms of engineering material constants by equating strain energy densities based 

on the CCM and PD theories for simple loading conditions. Following the procedure 

defined by Oterkus and Madenci (2012), the bond constants are expressed as   
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where 1E  and 2E  are the Young’s moduli along the fiber direction and perpendicular 

to the fiber direction, respectively. In Equations (5.2) and (5.3), Q, h, Vq and 
qi  define 

the number of material points in the fiber direction, the thickness of the lamina, the 

incremental volume of material point q and the reference distance between material 

points q and i in the undeformed configuration, 
qi q i  x x , respectively. The force-

stretch relationship for a composite lamina can be written by slightly modifying the 

force – stretch relation given in Section 2.4.4 as   

 c s





y y
f

y y
                  (5.4) 

The force – stretch relationships, which are along the arbitrary and fiber directions, are 

linear in PD theory, as shown in Figure 5.2. Failure has direct relationship with critical 

parameters or stretches of the peridynamic bonds. The critical stretches of fiber 

direction and arbitrary direction bonds can be determined based on experimental 

measurements of different lay-up configurations as indicated by Oterkus et al. (2012). 

Failure of arbitrary and fiber direction bonds, shown in Figure 5.2, are directly related 

with matrix and fiber failures, respectively, in the material. Moreover, it is assumed 

that fiber and arbitrary direction bonds are failed at the same stretch value under 
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compression because microbuckling is the dominant failure mechanism for fiber-

reinforced composites under compression loading.   

 

Figure 5.2 Force-stretch relationships in a composite lamina  

After defining the critical stretch values, failure is incorporated by terminating the 

interactions between material points or generally speaking by breaking the bonds in 

Peridynamics. Thus, the Peridynamic force relation given in Equation (5.4) is further 

modified by introducing the history-dependent failure parameter,  ,t x x , as   

   , t c s 


 


y y
f x x

y y
                 (5.5) 

and  
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 1 if , for all 0

,
0 otherwise
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
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where cs  and ts  represent critical stretches of the peridynamic bonds in compression 

and tension, respectively. They can either be related to arbitrary direction bonds, i.e. 

Ats  and Acs , or fiber direction bonds, i.e. Fts  and Fcs , depending on which bond is 

being evaluated. Thus, failure parameter,  ,t x x , is split into two parts, i.e. for 

matrix  ( A ) and fiber ( F ) failures, and each type of failure parameter is further 

integrated into the horizon of a material point in order to find the local damage,  , t x

, at a material point as   
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As a result, local damage of a material point is characterised for both matrix ( A ) and 

fiber ( F ) damages in the material.   

 

5.3 Peridynamic Theory for a Composite Laminate  

Peridynamic formulation of a two-dimensional composite lamina was further extended 

to a three-dimensional composite laminate as is done by Oterkus and Madenci (2012). 

A laminate constitutes from more than one lamina with particular mechanical property 

stacked at different orientation angles. Thus, laminate can resist complex loading 

conditions with improved stiffness properties (Kaw, 2006). However, the resin-rich 

layer, which strongly bonds laminae to each other, is responsible for cracking and 

delamination (Madenci and Oterkus, 2014). In PD theory, the thickness direction 

deformations of a laminate are provided by additional peridynamic bonds, i.e. 

interlayer and shear bonds, between plies. In Figure 5.3, two plies of a laminate are 

shown with peridynamic bonds. The main material points, i, in both plies are connected 

with interlayer bond as well as shear bonds between plies connecting the main material 

point i in the kth ply with family members of i, i.e. p and q, in the (k+1)th ply and the 

same follows for the main material point i in the (k+1)th ply. In total, four types of 

peridynamic bonds exist in a laminate. While in-plane bonds, i.e. fiber and arbitrary 

direction bonds, resist in-plane normal and shear deformations, thickness direction 

bonds, i.e. interlayer and shear bonds, resist transverse normal and shear deformations.   
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Figure 5.3 Peridynamic bonds in a composite laminate  

Interlayer and shear bonds are related with bond constants Nc  and Sc , respectively. 

Equating the strain energy densities based on the CCM and PD theories for simple 

loading conditions, they are obtained in terms of the engineering material constants as 

derived by Oterkus and Madenci (2012)   
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where Em, Gm are the elastic and shear moduli of the matrix material, respectively and 

V  is the incremental volume of the material point, i. The force-stretch relationships 

for interlayer bonds and shear bonds are expressed as   

N Nc s
 


 

y y
f
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               (5.10) 

and  
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f
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               (5.11) 

where Nf  and Sf  are the peridynamic forces for normal and shear deformations, 

respectively and , x represent shear angle of the diagonal shear bonds and spacing 

between material points on the plane of the lamina, respectively. It is apparent that 
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peridynamic force for shear deformation, i.e. Equation (5.11), is different than the 

usual since it relates the force density with shear angle, , instead of the stretch, s, of 

the bonds. Figure 5.4 shows the diagonal shear bonds in deformed and undeformed 

configurations of the fictitious plane between the plies of a laminate. When the 

diagonal shear bonds in the fictitious plane deform, the change in angles between the 

perpendicular edges of the undeformed form of fictitious plane are ii  and 
pp  and 

they can be defined as  

ii
ii

u

h
                  (5.12) 

and  

pp

pp

u

h
                  (5.13) 

where iiu  and 
ppu  represent the relative displacements of corners, i and p, in the plane, 

respectively and they are also nearly equal to the change in length of diagonal shear 

bonds. In the light of above derivations, average shear deformation of fictitious plane 

is approximated by averaging the shear angles ii  and 
pp  as   

2

ii pp 



                 (5.14) 

 

Figure 5.4 Diagonal shear bonds in deformed and undeformed configurations  

Similar with in-plane bonds, force-stretch relationships of interlayer bonds and force-

shear angle relationships of shear bonds are linear, as shown in Figure 5.5. Failures of 
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peridynamic bonds are related with critical stretches of interlayer bonds, 
Ns , and 

critical angles of diagonal shear bonds, S . Since it is assumed that the plies are 

bonded with resin-rich matrix material, delamination is the dominated failure 

mechanism between plies of a laminate. Accordingly, mode – I and mode – II crack 

propagations are related with transverse normal and transverse shear deformations, 

respectively. Thus, Oterkus and Madenci (2012) proposed formulations for critical 

parameters of interlayer and shear bonds as  

2 IC
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G
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h E
                 (5.15) 

and 

IIC
S

m

G

hG
                  (5.16) 

where ICG  and IICG  are the mode – I and mode – II critical energy release rates of the 

matrix material. The underlying idea on derivations of Equations (5.15) and (5.16) is 

that energies required to break all interlayer or shear bonds between the plies of a 

laminate are the same with mode – I or mode – II critical energy release rates, 

respectively. It is also important to note that the interlayer bonds are assumed to fail 

only in tension because of the predominant mechanism of the delamination between 

the plies of a laminate.   

    

(a) Interlayer bond    (b) Diagonal shear bonds  

Figure 5.5 Force-stretch and force-shear angle relationships in a composite laminate  
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Peridynamic force relations given in Equations (5.10) and (5.11) are further modified 

by introducing the history-dependent failure parameter as   

 ,N N Nt c s

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y y
f x x

y y
              (5.17) 

where 
N  is the failure parameter for a mode I crack in delamination and it is defined 

as   
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where S  is the failure parameter for a mode II crack in delamination and it is defined 

as   
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Integrating each of the failure parameter inside the horizon of a material point as in 

Equation (5.7), local damage at a material point can be found for delamination damage 

related with mode I ( N ) and mode II ( S ) cracks in the material.   

Finally, all peridynamic force relations for composite lamina and laminate, i.e. 

Equations (5.5), (5.17) and (5.19), are summed and written in a summation form to 

solve the problem in three-dimensions as   
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where superscript k shows the ply number of a laminate and subscripts i, p are the 

material points in a lamina. For example, 
  
 k

i p
s  is the stretch between material points 

i and p in the kth ply and 
  
  k m

i p
  is the shear angle between material points i in the kth 

ply and p in the mth ply. Please also note that the bond constants, c, Sc  and Nc , are 

derived under the assumption that the horizon of the main material point, Hx, is 

completely inside the body. However, this is not generally the case for real problems 

because the horizon is usually truncated near the boundaries of a surface, as shown in 

Figure 5.6, and this results in a reduction in material point stiffness. Hence, the 

stiffness reduction of a material point near the free surfaces must be corrected by 

calculating the strain energy density of a material point with truncated horizon and 

equating it with CCM theory. Following this, surface correction factor of each bond is 

determined by averaging through the material points associated with the bond and the 

peridynamic force of the bond is further modified. The procedure of applying surface 

corrections can be viewed in detail in ref. (Oterkus and Madenci, 2012).   

 

Figure 5.6 Surface effects in the body  

As mentioned in Section 3.2.2.1, after obtaining the acceleration,  
 
k

i
u , from Equation 

(5.21), the velocity and displacement of each material point can be determined for the 

next time step by using explicit time integration schemes. The advantage of explicit 

schemes over implicit time integration methods is that there is no need to solve 

equation of motion using large matrices because each equation related to the main 

material point, i, can be solved independently. However, the explicit schemes are 

stable only if the time step size, t, is smaller than a particular value. The stability 
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condition for isotropic materials was given by Silling and Askari (2005) using von 

Neumann stability analysis and this can be slightly modified for a composite laminate 

as   
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where sf  is the safety factor, 0 1sf  , and   i p
  represents reference distance 

between material points p and i in the undeformed configuration, 
      i p p i
  x x .   

 

5.4 Damage Evolution in a 4 – Ply Composite 

Laminate  

In this section, damage evolution in a 4-ply composite laminate subjected to 

underwater shock loading is analysed using PD theory and the results are compared 

against a previous study done by Batra and Hassan (2007). In ref. (Batra and Hassan, 

2007), an FE computational framework based on additive damage evolution equations 

was developed in order to capture several damage types, i.e. fiber/matrix debonding, 

matrix cracking, fiber breakage and delamination, of a composite laminate under shock 

loading. The geometry, loading condition and mechanical properties of the composite 

plate used here are the same with ref. (Batra and Hassan, 2007).   

5.4.1 Geometry and loading condition  

A 4-ply composite plate, which can be a part of surface ship, with fibers of each ply 

are oriented along the x or x1 direction, 0  , is considered. All the edges of the plate 

are assumed to be clamped and in Peridynamics the displacement boundary condition 

is implemented by creating fictitious boundary region, which may have a depth of , 

as shown Figure 5.7. The length and width of the plate is specified as 22 cmL W 

, respectively and each lamina has a thickness of 10 mmh  . These geometrical 

properties are consistent with test plates, which have been used in experiments to date, 

subjected to air and underwater shock loadings (Batra and Hassan, 2007).   
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Figure 5.7 4-ply composite laminate under shock loading  

The chosen composite square plate can be a part of surface ship below the water line 

and if an explosive charge is detonated far from the target surface, the generated high 

pressure shock wave propagates towards the target, as shown in Figure 5.8. Whenever 

the shock wave strikes on a ship surface, it may cause sudden severe damage on the 

structure. For this reason, only the first impact of the shock wave can be considered 

with neglecting other effects, i.e. bubble pulsation, reflection of the shock wave from 

bottom or free surfaces and FSI.   

 

Figure 5.8 Schematic representation of underwater explosion phenomena  

Whenever the explosive charge is detonated in an open water, the pressure, P, rapidly 

increases to an extremely high value in a very small time range, which may be less 

than 10-7 s, and it is followed by an exponential decay function (Liang and Tai, 2006) 

which can be represented by an empirical expression as (Batra and Hassan, 2007)   

/

max( ) tP t P e                 (5.23) 
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where Pmax, t and  denote the peak pressure, time and the decay constant, respectively. 

The decay constant, , which depends on the explosive type, the weight of charge, W, 

and the standoff distance, R, between the charge and the target, can be expressed as   

21/3
1/3

2

A

W
K W

R


 
  

 
               (5.24) 

where K2 and A2 are parameters related with the explosive type. Their values for 

several types of explosives (Batra and Hassan, 2007) are given in Table 5.1.   

Table 5.1 Shock wave parameters  

 Explosive Type 

 TNT HBX-1 PETN Nuclear 

K1 52.12 53.51 56.21 1.06×104 

A1 1.18 1.144 1.194 1.13 

K2 0.0895 0.092 0.086 3.627 

A2 -0.185 -0.247 -0.257 -0.22 

 

The peak pressure, maxP , is extremely high in the vicinity of the charge and it decays 

with an increasing standoff distance between the charge and the target by   

11/3

max 1

A

W
P K

R

 
  

 
               (5.25) 

where K1 and A1 are also explosive type related parameters which can be obtained from 

Table 5.1. To sum up, the pressure profile for 64 kgW   of TNT, which is placed 

beneath the ship surface with a standoff distance of 10 mR   between the charge and 

the target, is obtained from Equations (5.23) – (5.25) as   

/0.424( ) 17.678 tP t e                (5.26) 

and it is plotted in Figure 5.9.   
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Figure 5.9 The pressure profile of the shock wave in an open water  

Furthermore, spherical shock wave propagates from the charge and it becomes nearly 

planar far away from the charge. However, Batra and Hassan (2007) assumed 

nonlinear pressure distribution, P(r,t), over the plate and it is expressed by a 

polynomial function, which is experimentally derived by Turkmen and Mecitoglu 

(1999), as  

 4 3 2( , ) 0.0005 0.01 0.0586 0.001 1 ( )P r t r r r r P t                (5.27) 

where r is the distance from the centre of a plate in “cm”, shown in Figure 5.7. 

Equation (5.27) is derived from air blast experiments and it is assumed that similar 

conditions may be satisfied underwater as well. Figure 5.10 shows the plot of 

polynomial function, Equation (5.27), at time which peak pressure,   maxP t P , is 

applied to the centre of a plate, r = 0, and diminishing property of the pressure values 

towards the edges can be observed from the figure.   
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Figure 5.10 The change in shock pressure towards the edges of a plate  

5.4.2 Mechanical properties and Peridynamic parameters  

Each ply of a laminated composite plate is composed of AS4 carbon fiber and PEEK 

matrix with a fiber volume fraction of 0.6fV   (Batra and Hassan, 2007) and all fibers 

are oriented along the x direction. The isotropic material properties of PEEK matrix 

and AS4 carbon fiber are given in Table 5.2 (Batra and Hassan, 2007). Furthermore, 

with an assumption of each material is homogeneously distributed over the plate, 

unidirectional lamina has the generalized properties shown in Table 5.3 (Hassan, 

2005).   

Table 5.2 Material properties of each element in a lamina  

 PEEK Matrix AS4 Carbon Fiber 

Young’s Modulus, E 6.14 GPa 214 GPa 

Shear Modulus, G 2.264 GPa 84.7 GPa 

Poisson’s Ratio,  0.356 0.263 

Mass Density,  1.44 1.78 
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Table 5.3 Material properties of the unidirectional lamina  

 AS4/PEEK 

Longitudinal Young’s Modulus, 1E  130.86 GPa 

Transverse Young’s Modulus, 2E  14.70 GPa 

Shear Modulus, 12G  5.44 GPa 

Major Poisson’s Ratio, 12  1/3 

Mass Density,  1640 kg/m3 

*Subscripts 1 and 2 denote the x1 and x2 axes, respectively. 

 

As for the numerical solution of the problem, laminated composite plate, shown in 

Figure 5.7, is discretised into many material points such that each lamina has a single 

layer of material points with a grid size of 31 10  mx     and each material point has 

a horizon radius of 3.015 x   , as in Figure 5.11.   

 

Figure 5.11 Discretization of a 4-ply composite plate  

Substituting values of geometrical and material properties as well as that of 

peridynamic parameters into Equations (5.2), (5.3), (5.8) and (5.9), properties of all 

types of bonds, i.e. bond constants Fc , Ac , Nc  and Sc , can be determined for a 

composite plate.   

As mentioned in Section 5.2, critical stretch values of fiber direction and arbitrary 

direction bonds may be determined from several experiments of different lay-up 

configurations of AS4/PEEK laminated composites as in ref. (Oterkus et al., 2012). 
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However, we are limited in number of experiments and failure strains can only be 

obtained from experimental stress-strain curves of an axially loaded AS4/PEEK 

unidirectional lamina specimen (cf. Figs. (2.9-11) in ref. (Hassan, 2005)) or from 

different configurations of 4-ply composites with identically oriented fibers in each 

ply (cf. Fig. 2.41 in ref. (Hassan, 2005)). Even, the strain rate effects of composites 

can also be observed from Figs. (2.18-21) in ref. (Hassan, 2005). Tensile failure strains 

of an axially loaded unidirectional lamina can be read as 0.01075 in the fiber direction, 

i.e. x1 direction, and as 0.0081 in the perpendicular direction to the fibers, i.e. x2 

direction. In the light of above considerations, critical stretch value of fiber direction 

bonds in tension is taken as 0.006Fts   and critical stretch value of arbitrary direction 

bonds in tension is taken as 0.004Ats  . Apart from that, fiber and arbitrary direction 

bonds are only allowed to fail in tension and no compressive failure is considered.   

As mentioned in Section 5.3, critical stretch value of interlayer bonds, i.e. Ns , and 

critical shear angle value of shear bonds, i.e. S , may be determined by substituting 

material properties of a PEEK matrix material, i.e. Em, Gm, ICG  and IICG , as well as 

thickness of a lamina, h into Equations (5.12) and (5.13). Critical energy release rates 

of PEEK matrix material are chosen from “APC-2 PEEK Thermoplastic Polymer 

Technical Data Sheet” (2012) where mode I and mode II interlaminar fracture 

toughness values of APC-2 PEEK/AS4 unidirectional tape are provided as 

21.7 kJ/mICG   and 22.0 kJ/mIICG  , respectively. Thus, critical values of interlayer 

and shear bonds are found as, 0.01488Ns   and 0.0188S  , respectively.   

5.4.3 Underwater shock analysis results of a 4 – ply 

composite laminate  

Underwater shock analysis of a 4-ply laminated composite plate is carried out for 230 

µs because at this instant complete failure takes place. The time step size for an explicit 

time integration is chosen according to Equation (5.22) as 87.12 10  st     with a 

safety factor of 0.5sf  . Peridynamic results are compared against FE results of ref. 

(Batra and Hassan, 2007). Peridynamic damage results are demonstrated for all 4 plies 

of a composite plate whereas FE results are only for three surfaces, i.e. top, middle and 
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bottom. The plies are numbered from bottom ply to top ply as 1st to 4th ply, 

respectively. While Peridynamic damage parameters represent matrix damage, fiber 

damage, delamination damages for mode I and mode II cracks, FE method has matrix 

cracking, fiber/matrix debonding, fiber breakage, and delamination damage variables. 

Hence, matrix damage in peridynamics is a combination of matrix cracking and 

fiber/matrix debonding damage variables of FE method. Moreover, delamination 

damage variable in FE method is a combination of mode I and mode II cracks of 

delamination damage in Peridynamics.   

5.4.3.1 Displacement evolution in time  

The evolution of vertical displacement values (
zu ) of central material points in each 

ply are the same and only one ply’s material point values are plotted against time in 

Figure 5.12a. The results are compared with FE results provided by Batra and Hassan 

(2007), shown in Figure 5.12b, and it is found that they are in good agreement although 

there is a difference between the two displacement values after 150 µs. However, it is 

also important to note that FE results have a tendency towards PD results from mesh 

1 to mesh 4 which show refinement in mesh sizes.   

   

   (a) PD theory  (b) FE method (Batra and Hassan, 2007)  

Figure 5.12 Comparison of the change of vertical displacement values of central 

point in time  

5.4.3.2 Matrix cracking damage  

Matrix damage ( A ) commences from the centre of horizontal edges of top ply at 

about 54 µs, which is along the fiber direction, and it propagates towards the both 

vertical edges until it is arrested nearly at 108 s, as shown in Figure 5.13. The matrix 
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damage in PD theory involves both matrix cracking and fiber/matrix debonding 

damage variables of FE method. These failure modes can also be identified in PD 

theory comparing both results by means of occurrence region and propagation 

direction. Hence, matrix cracking damage in PD theory is shown as encircled region 

in Figure 5.13. A similar matrix cracking damage behaviour is also observed for 2nd 

and 3rd plies and even if their emergence time is later than the top ply, they nearly 

reach the similar extent at the same time. Batra and Hassan (2007) also observed the 

matrix cracking damage variable at the same region of the top surface as shown in 

Figure 5.14b but its propagation path seems different than the PD theory which is 

shown in Figure 5.14a.   

 

Figure 5.13 Top ply matrix damage evolution in time  

   

             (a)Top ply in PD theory at 160 s        (b) Top surface in FE method at 160 s  

                                                           (Batra and Hassan, 2007)  

Figure 5.14 Comparison of top surface matrix damages  

Matrix damage emerges from the centre of bottom ply at about 108 s which is exactly 

the same observed time in FE method. Furthermore, propagation of damage is very 

fast along the fiber direction as in FE method. From the comparisons, shown in Figure 

5.15, it is observed that damage propagation behaviour and its path are very similar in 

both results.   
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(a) Bottom ply in PD theory  

 

(b) Bottom surface in FE method (Batra and Hassan, 2007)  

Figure 5.15 Comparison of bottom surface matrix damage evolution in time  

After the emergence of the matrix damage in the bottom ply, it also diffuses into upper 

plies and central matrix damage is observed in the second ply nearly at 130 µs, as 

shown in Figure 5.16a. The diffusion time of central matrix damage to the middle 

surface is about 125 µs in FE method and this is nearly the same observation time with 

PD results. Moreover, bottom and top surface matrix damage regions are similar in 

both results and this can be seen from Figure 5.14 and Figure 5.16 for 160 st  . It 

can also be noticed that even if the induced shock loading is circular and maximum at 

the centre of a top ply, central damage cannot be observed in the top ply at that time. 

Instead, bottom plies have the central damage and this is probably the result of wave 
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reflection from the bottom ply where compressive wave is transformed into a tension 

wave (Batra and Hassan, 2007).   

 

(a) Matrix damage evolution in bottom three plies in PD theory   

 

(b) Bottom surface in FE method (Batra and Hassan, 2007) at 160 s  

Figure 5.16 Comparison of bottom surface matrix damages  

Later in time, central matrix damage reaches the top ply nearly at 220 µs, shown in 

Figure 5.17, and this indicates that the wave reflected from the bottom surface has just 

reached the top surface.   

 

Figure 5.17 Matrix damage results of all plies at 220 s  
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5.4.3.3 Fiber/matrix debonding damage  

In FE method debonding damage propagates from the vertical edges towards the centre 

of the plate along the fiber direction and the similar propagation behaviour is also 

observed in PD theory for top three plies. It first evolves in top two plies at 108 s and 

propagates towards the centre while extending along the edges until nearly 160 s. At 

that time 2nd ply also has the similar damage with top two plies. This fiber/matrix 

debonding damage propagation behaviour is shown in Figure 5.18a and it is 

comparable with FE results, shown in Figure 5.18b. Besides, Batra and Hassan (2007) 

also observed debonding damage in all surfaces of the laminate instantaneously. The 

ideas developed here can also supported by commonly known behaviour of debonding 

damage that it usually occurs along the fibers rather than in the perpendicular direction 

to the fibers.   

 

(a) Matrix damage evolution of top three plies in PD theory   

 

(b) Debonding damage evolution in FE method (Batra and Hassan, 2007) 

Figure 5.18 Comparison of matrix damages in PD theory with a debonding damage 

in FE method  

5.4.3.4 Fibrer breakage damage  

Fiber damage ( F ) commences from vertical edges of the top two plies nearly at 108 

µs and it grows through the edges until 160 µs. The same damage behaviour at the 

edges is also observed in the 2nd ply with a little later emergence time but they are at 
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the same length at 160 s, as can be seen in Figure 5.19a from the plot of top three 

plies. These damage patterns are well comparable with FE method fiber breakage 

damage variable which emerges with a very small value from the edges of bottom 

surface at 160 s, as shown in Figure 5.19b. Furthermore, a similar damage pattern for 

the edges of bottom ply is also observed in PD theory but with a later emergence time 

which is about 180 s.   

 

(a) Fiber damage evolution of top three plies in time in PD theory   

 

(b) Bottom surface in FE method at 160 s (Batra and Hassan, 2007)   

Figure 5.19 Comparison of fiber damages at the edges  

On the other hand, central fiber damage develops at the bottom ply at 130 µs and it 

propagates along the perpendicular direction to the fibers, i.e. y axis. This propagation 

behaviour can also be seen in FE method for the bottom surface. The comparison of 

bottom surface central fiber damage propagation behaviour can be seen in Figure 5.20. 

Although the fiber damage initiation time in PD theory seems earlier than the FE 

results, the same propagation behaviour is captured. Furthermore, the central fiber 

damage grows quite fast in the bottom surface in less than 20 s in FE method. 

Similarly, in PD theory, it grows until 160 µs quite fast within 30 s. Apart from that, 

the further growth is observed in PD theory after 188 s and completed at 220 µs.   
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(a) Bottom ply in PD theory   

 

(b) Bottom surface in FE method (Batra and Hassan, 2007)   

Figure 5.20 Comparison of bottom surface fiber damage evolution in time  

Besides, fiber damage diffuses into upper plies with time, shown in Figure 5.21, and 

it reaches to the top ply at about 220 µs. In FE method, central fiber breakage damage 

variable gradually develops in the top ply until nearly 210 s but it still has very small 

value of 0.20 at that time. The fiber damage in the top surface at 160 µs is shown in 

Figure 5.22. Batra and Hassan (2007) also mentioned that the central damage in the 

top surface grows instantaneously to a very high value, i.e. to the order of 1.0, at about 

210 s. As a result, central fiber damage of the top ply at 220 µs in PD theory is well 

comparable with FE result of top ply at 210 s. Although, the damage plot of top 

surface is not provided for FE method at that time, the damage extent given in Figure 

5.22 can be compared with PD result, given in Figure 5.21.   
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Figure 5.21 Central fiber damage diffusion from bottom to top ply with time in PD 

theory  

 

Figure 5.22 Top surface central fiber breakage damage at 160 s in FE method 

(Batra and Hassan, 2007)  

5.4.3.5 Delamination damage  

As mentioned in Section 5.4.3, delamination damage can either be related with mode 

I ( N ) or mode II ( S ) cracks in PD theory. Mode II cracks emerge from the vertical 

edges of top three plies nearly at 108 µs with a very small extent and they develop 

through the edges with the inclusion of bottom ply cracks, as shown in Figure 5.23. 

The observed initiation place of delamination damage from the edges is also mentioned 

by Batra and Hassan (2007) in FE method. They support their idea with the given 

transverse shear stress values ( 13S ) for the top and bottom surfaces as shown in Figure 

5.24. The provided high stress values reveal that delamination may initiate from the 
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edges (Batra and Hassan, 2007). At the time of 148 s, delamination damage is also 

observed at the centre of bottom three plies in peridynamics as can be seen in Figure 

5.23. The central damage and the damage at the edges develop gradually in the 

perpendicular direction to the fibers, i.e. y axis, and severe delaminated regions are 

observed both at the edges and at the centre of the all plies at 220 s, as shown in 

Figure 5.23.   

 

Figure 5.23 Evolution of mode II delamination damage cracks in PD theory  

 

Figure 5.24 Transverse shear stress values for top (left) and bottom (right) surfaces in 

FE method at 160 s (Batra and Hassan, 2007)  

On the other hand, mode I delamination damage cracks emerge later than the mode II 

cracks from the vertical edges of middle plies at about 160 s and they are in a very 

small extent compared to mode II cracks. As the time progresses, the central region of 
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middle plies are also damaged. The delaminated areas as a result of mode I cracks are 

shown in Figure 5.25 at the end of 220 s.   

 

Figure 5.25 Mode I delamination damage cracks at all plies in PD theory at 220 s  

Batra and Hassan (2007) provided top view of the final delaminated regions from all 

surfaces at the end of analysis, i.e. at 220 s, as shown in Figure 5.26a. For comparison 

purposes, mode II and mode I delamination damage cracks as well as damage at each 

ply are combined and plotted in Figure 5.26b. As a result, an agreement between FE 

method and Peridynamics are evident by means of delaminated regions from the 

figures.   
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(a) Top view of delaminated regions in FE method (Batra and Hassan, 2007)  

 

(b) Top view of combined delamination damage of all plies in PD theory   

Figure 5.26 Comparison of delaminated regions at 220 s  

 

5.5 Damage Evolution in a 13 – Ply Composite 

Laminate  

In this section, damage evolution in a 13-ply composite laminate structure is 

investigated and the results are compared against experimental study done by LeBlanc 

(2011). In ref. (LeBlanc, 2011), CST (Conical Shock Tube) test setup is used to 
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replicate underwater shock phenomena. The geometry and mechanical properties of 

the composite plate used in this study are the same with ref. (LeBlanc, 2011).   

5.5.1 Geometry and loading condition  

The CST experimental setup used by LeBlanc (2011) is shown in Figure 5.27. Walls 

of the tube are very thick in order to provide rigid boundary conditions and the conical 

shape tube is filled with water. Shock wave propagates from the breech, at which 

charge is located, and strikes to the test plate. The test plate is constrained with fixed 

end cap using mounting fixtures and this ensures fully clamped air backed conditions. 

Test plate used by LeBlanc (2011) is shown in Figure 5.28 and it is clamped from the 

boundary region, which has the yellow colour in the figure, using bolts. The bolt holes 

are oriented such that they have an equal distance between each other and they have a 

radius of 4 mmr  . The inner and outer radii of the plate are specified as 

11.43 cmuR   and 13.2715 cmR  , respectively. The thickness of each lamina of the 

test plate is 0.254 mmh  .   

 

Figure 5.27 Representative CST test setup (LeBlanc, 2011)  
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Figure 5.28 Composite test plate  

As in the previous case, which is explained in Section 5.4.1, only the first impact of 

the shock wave is considered so that pressure generated by an incident shock wave 

alone is induced to the test plate. Practically, the walls of the CST confine spherical 

shock wave and only the conical section of the spherical wave is represented in the 

experiment as shown in Figure 5.29. For this reason, the charge with a spherical shape, 

which is used in open water experiments, is replaced with its conical sector in order to 

generate conical shape shock wave (Poche and Zalesak, 1992). While shock wave 

propagates along the tube, reflected waves from the rigid boundaries lead to 

intensification of shock pressure values. Thus, Poche and Zalesak (1992) derived a 

theoretical amplification factor (AF) based on the ratio of volume of spherical 

explosive to the volume of conical sector of it as  

 2

1

sin / 4
AF


                (5.28) 

in which  is the plane angle of the cone. However, Equation (5.28) underestimates 

the weight of an explosive charge which results in lower pressure values than expected 

from the CST setup. The reason of this performance decline is the elastic deformation 

losses which can occur along walls of the tube. In reality, practical AF is much lower 

than the theory and it can be calculated by considering weights of spherical (W ) and 

conical charges (w) as   

W
AF

w
                 (5.29) 
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Thus, the energy dissipation from the elastic walls can be calculated by using 

Equations (5.28) and (5.29).   

 

Figure 5.29 Shock wave in CST  

The CST test setup used by LeBlanc (2011) has the internal cone angle of 2.6    

and shock wave pressure values are measured by a transducer which is located at 0.5 

m in front of the test specimen as shown in Figure 5.27. Several experimental studies 

with CST were carried out by LeBlanc (2011) and it was mentioned that the maximum 

pressure value (Pmax) of 10.3 MPa can be measured at the transducer location using 

M6 blasting cap – 1.32 g TNT Equivalency. The pressure profile of this charge at the 

transducer location is plotted in Figure 5.30. However, the maximum pressure value 

(Pmax) of 11.7 MPa was measured at the transducer location for the test considered 

here. Unfortunately, the pressure profile was not provided for this level by LeBlanc 

(2011) as well as the profile at the test plate location, 5.25 mL  , rather than 

transducer location must be known in order to induce shock loading during the PD 

simulation. Hence, the empirical formulations of open water, given in Section 5.4.1, 

can be utilized.   
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Figure 5.30 Pressure profile at the transducer in CST (LeBlanc, 2011)  

In the light of Equation (5.25), it can be found that the maximum pressure, 

max 10.3 MPaP  , can be measured at the transducer location with 1.7283 kg TNT 

equivalency in open water. Thus, practical AF is found as 1309.318 from Equation 

(5.29). This value is also based on empirical Equation (5.25), but it is much closer to 

reality than theoretical AF. However, theoretical AF may also be found from Equation 

(5.28) as 7730.3. Theoretical AF is 5.9 times the practical one and this is in the order 

of dissipated energy from the walls of the tube by elastic deformation. Therefore, 

charge weight must be 5.9 times more than the weight found from theoretical AF.   

On the other hand, it can be clearly seen from Figures 5.9 and 5.30 that the pressure 

profile obtained from open water is much smoother than the experimental CST profile. 

Poche and Zalesak (1992) made some experimental comparisons between two profiles 

(cf. Figs. 8 and 9 in ref. (Poche and Zalesak, 1992)) and similar behaviour is observed. 

In their study, it is mentioned that the reason of distorted shock wave profile obtained 

from CST is the sound propagated through steel walls of the tube which also tends to 

re-radiate into water. However, high frequency energy, which appears to distort the 

pressure profile, does not contribute much to the total energy (Poche and Zalesak, 

1992) of the profile. Besides, based on comparisons, sharp peak in open water profile 

seems to be rounded off in CST profile (Poche and Zalesak, 1992). This rounded peak 

is also observed in the CST experiment done by LeBlanc (2011) as shown in Figure 
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5.30. Moreover, on the basis of CST experiments carried out by Poche and Zalesak 

(1992), it is observed that the shock wave nearer to explosive source shows more 

rounded peak than the far away wave and from here it may be deduced that while the 

shock wave becomes more planar, it does not interact much with the walls of the tube 

as in the spherical wave nearer the source.   

Considering the test that is carried out to find damage characteristics of a 13-ply 

composite plate done by LeBlanc (2011), 11.7 MPa peak pressure (Pmax) value is 

measured at the transducer location. By using Equation (5.25), it is found that the same 

maximum pressure, Pmax, can be measured at the same location with 2.39 kg TNT 

equivalency in open water and considering the practical AF value for the CST 

experiment, which was found as 1309.318, the same conditions can be replicated in 

the tube with 1.825 gr TNT Equivalency, which may be used in experiments carried 

out by LeBlanc (2011). Besides, it is found that shock wave has a peak pressure value 

of, Pmax = 10.3765 MPa, at the test plate location, 5.25 mL  . After this value is 

reached in a very small time range at the test plate location, it decays exponentially to 

zero value. The exponential decay function is provided in Equation (5.23) for open 

water and it takes the form of   

/0.15410.3765 tP e                (5.30) 

which is at the test plate location, 5.25 mL  . As Equation (5.28) is based on open 

water conditions and considering the above mentioned discrepancies between the 

pressure profiles, the peak pressure value is rounded off as in the Figure 5.30 and 

exponential decay function is slightly modified as   

/0.210.3765 tP e                (5.31) 

As a summary, whenever the shock wave reaches the test plate, pressure rises up 

linearly to a peak value (Pmax) between the time range of, 0 ms 0.04 mst  , then it 

constantly keeps its peak value until t = 0.08 ms before diminishing in the form of 

exponential decay function, Equation (5.31). This pressure profile, which 13-ply 

composite test plate resists, is shown in Figure 5.31.   
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Figure 5.31 Pressure profile at the test plate in CST  

Distribution of shock loading over the plate can either be uniform or non-uniform. In 

order to examine the shape of shock wave front, Poche and Zalesak (1992) carried out 

some measurements with two gages inside the CST test setup. Gages are placed to the 

same cross section at central axis of the tube and near the tube wall. The peak pressure 

values measured from two gages show slight difference in time. This may be rephrased 

as non-planar shock wave front inside the tube and it can be supported by several 

experimental studies done by Comtois et al. (1999); Langdon et al. (2005); Nurick and 

Shave (1996); Nurick et al. (1996); Teeling-Smith and Nurick (1991); Wierzbicki and 

Nurick (1996); Yuen and Nurick (2005) where response of structures under shock 

loading is investigated. Unlike the experiments carried out by Nurick and Shave 

(1996), Yuen and Nurick (2005) and Langdon et al. (2005), all other studies are related 

to circular plate structures as in here. Furthermore, the common failure mode is tensile 

tearing from the supports, shown in Figure 5.32. Teeling-Smith and Nurick (1991) as 

well as Nurick and Shave (1996) showed the complete tearing failure of clamped plates 

under uniformly distributed impulsive loading. Comtois et al. (1999) also expressed 

the importance of attachments on the damage behaviour of composites and severe 

tearing failure is observed for clamped specimens even the loading is less than the 

others. The importance of boundary conditions on the tearing failure was also studied 

by Nurick et al. (1996) for uniformly loaded plates in air blast loading. Most 
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importantly, Wierzbicki and Nurick (1996) observed transition from discing failure, 

which is in the form of disc in thin membranes preceded by tensile necking, to tearing 

failure with the increase of loading radius. They concluded that the more distributed 

load causes tearing failure at the clamped boundary. Lastly, from the experiments that 

were carried out by Yuen and Nurick (2005) as well as by Langdon et al. (2005) for 

stiffened plate structures under uniform and localised blast loadings, it was concluded 

that loading condition significantly designates the damage characteristics of structures 

and it must be ensured that no premature failure should occur during the design 

process. Moreover, tearing failure was observed from the boundaries of plates under 

uniform loading in these experimental studies. To sum up above findings explained in 

experimental studies, circular test plate structure with clamped boundary condition can 

indicate premature failure under uniform shock loading and the same behaviour, 

shown in Figure 5.33, is also observed in PD results for the test plate considered here 

under uniform shock loading. The conclusion drawn here that the damage evolution 

characteristics of a CST test plate can be captured by using non-uniform shock loading. 

This conclusion is also supported by LeBlanc (2011) from the numerical experiments. 

Since, it was observed that nearly planar shock waves are transformed into non-

uniform waves immediately after the impact to a test plate.   

 

Figure 5.32 Tensile tearing failure from the supports (Teeling-Smith and Nurick, 

1991)  

 

Figure 5.33 Premature failure of a test plate under uniform shock loading  
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Non-uniform shock pressure distribution is implemented over a test plate as explained 

in Section 5.4.1 and as given by Equation (5.27). However, the test plate radius, R, is 

slightly larger than what was used by Turkmen and Mecitoglu (1999). For this reason, 

the peak pressure, Pmax, is slightly extended over the central region of the test plate and 

final distribution takes the form as in Figure 5.34.   

 

Figure 5.34 The distribution of a shock pressure over the test plate  

5.5.2 Mechanical properties and Peridynamic parameters  

The test plate used by LeBlanc (2011) is Cyply® 1002, which is manufactured by 

Cytec Engineering Materials (“Cyply 1002 Reinforced Plastic,” 2002). It is a 13-ply 

composite plate which has a cross stacked configuration as 0 / 90 / 0 / 90 / 0 / 90 / 0   . 

The mid 0 ply, which is denoted by over bar, is the plane of symmetry of the laminate. 

Each ply is composed of cured epoxy matrix and parallel E-Glass filament materials. 

The isotropic material properties of epoxy matrix and E-Glass are given in Table 5.4 

(Kaw, 2006). Each material is homogeneously distributed over the plate and 

unidirectional lamina has the generalized properties shown in Table 5.5 (“Cyply 1002 

Reinforced Plastic,” 2002).   
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Table 5.4 Material properties of each element in a lamina  

 Epoxy Matrix E-Glass  

Young’s Modulus, E 3.792 GPa 72.40 GPa 

Shear Modulus, G 1.422 GPa 35.42 GPa 

Poisson’s Ratio,  0.30 0.20 

Mass Density,  1.28 2.54 

 

Table 5.5 Material properties of the unidirectional lamina  

 Cyply® 1002 

Longitudinal Young’s Modulus, E1 39.30 GPa 

Transverse Young’s Modulus, E2 9.70 GPa 

Shear Modulus, G12 9.70 GPa 

Mass Density,  1850 kg/m3 

*Subscripts 1 and 2 denote the x1 and x2 axes, respectively.  

 

As for the numerical solution of the problem, the laminated composite plate, shown in 

Figure 5.28, is discretised into many material points such that each lamina has a single 

layer of material points with a grid size of 31.32715 10  mx     and each material 

point has a horizon radius of 3.015 x   , as in Figure 5.35. Besides, fully clamped 

condition, which is ensured by mounting fixtures in the supported or boundary region 

(shown in yellow colour), is satisfied by only constraining bottom and top plies in z 

direction and leaving them free in other directions (x and y).   
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Figure 5.35 Discretization of a 13-ply composite plate  

Substituting values of geometrical and material properties as well as that of 

peridynamic parameters into Equations (5.2) – (5.3) and (5.8) – (5.9), properties of all 

types of bonds, i.e. bond constants Fc , Ac , Nc  and Sc , can be determined for the 

composite plate.   

As mentioned in Section 5.2, critical stretch values of fiber direction and arbitrary 

direction bonds may be determined from several experiments. However, in the absence 

of necessary experiments, it is assumed that the critical stretch value of fiber direction 

bonds ( Fts ) is high enough to provide material integrity during the analysis and critical 

stretch value of arbitrary direction bonds ( Ats ) can be found from critical stretch 

formulation of an isotropic material (Oterkus and Madenci, 2012)   

5

9

IC
At

m

G
s

 
                 (5.32) 

where GIC and m can be taken as mode I critical energy release rate and bulk modulus 

of the epoxy matrix material. Equation (5.32) may be valid because arbitrary direction 

bonds are distributed over two dimensional lamina homogenously. So, GIC value for 
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the epoxy matrix material in the lamina is approximately taken as 311.85 10  MPa-m  

and critical stretch value of arbitrary direction bonds is found as 22.1 10Ats   . Apart 

from that, arbitrary direction bonds are only allowed to fail in tension and no 

compressive failure is considered.   

As mentioned in Section 5.3, critical stretch value of interlayer bonds ( Ns ) and critical 

shear angle value of shear bonds ( S ) may be determined by substituting material 

properties of the epoxy matrix material, i.e. Em, Gm, ICG  and IICG , as well as the 

thickness of a lamina, h, into Equations (5.15) and (5.16). Mode I critical energy 

release rate (GIC) of the epoxy matrix material between the plies of a laminate is 

approximately taken as the same value given by Oterkus and Madenci (2012) as, 

32.37 10  MPa-mICG    and accordingly mode II critical energy release rate of the 

epoxy matrix material (GIIC) is chosen as nearly 3 times the ICG . In light of this, critical 

parameters between the plies of a laminate are found as 27.015 10Ns    and 0.1S 

.   

5.5.3 Underwater shock analysis results of a 13 – ply 

composite laminate  

Underwater shock analysis of a 13-ply laminated composite plate is carried out for 1 

ms and at this instant pressure profile nearly approaches to zero. However, damage 

results are demonstrated here until 0.452 ms because the bolt holes are fragmentized 

and plate is pulled apart from the mounting fixtures. The time step size for an explicit 

time integration is chosen according to Equation (5.22) as 87.69 10  st     with a 

safety factor of 0.5sf  . Peridynamic results are compared with damaged test plate 

after the CST experiment. Moreover, Peridynamic damage results are demonstrated 

for all 13 plies of a composite plate and the plies are numbered from bottom to top ply 

as 1st to 13th ply, respectively. Furthermore, peridynamic damage parameters represent 

matrix damage in a lamina and delamination damage for mode I and mode II types of 

cracks between the plies of a laminate.   
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5.5.3.1 Displacement evolution in time  

Before investigating damage characteristics of the test specimen, Peridynamic analysis 

is carried out without allowing damage in the structure in order to verify dynamic 

vibration behaviour under shock loading. By doing this, we can observe fundamental 

vibration behaviour of the test plate.   

Only in this analysis, bolt holes are disregarded and all plies are clamped from the 

supported region (shown in yellow colour in Figure 5.35), where x, y and z directions 

are all fixed. Moreover, uniform pressure distribution is considered over the plate for 

simplicity. During the analysis, the evolution of vertical displacement values (uz) of 

central material points in each ply are the same and only one ply’s material point values 

are plotted against time in Figure 5.36.   

 

Figure 5.36 Change of vertical displacement values of central point in time  

With regard to pressure profile given in Figure 5.31, whenever the peak pressure, Pmax, 

is reached just before the exponential decay at 0.08 ms, test plate deforms very little 

from the centre at which vertical displacement is in the order of 10-3 m. After a while, 

when the pressure decreases to a half way of the exponential decay, max / 2P P , at 

0.224 ms, central deformation of the plate takes its maximum value, 

23.58 10  mzu     and the contour plot of one ply is shown in Figure 5.37. Later in 

time, plate continues its vibration behaviour in a very similar manner, even if the 

pressure diminishes. Another important observation is that the test plate structurally 
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responds shock loading long after maximum impact, so that there is a time lag between 

loading and deformation as also being supported by LeBlanc (2011).   

 

Figure 5.37 Vertical displacements of the middle ply at 0.224 ms  

5.5.3.2 Matrix damage  

Matrix damage ( A ) of a 13-ply composite test plate is investigated under non-

uniform pressure distribution. Since the structural response to the shock loading is very 

late, no damage is observed until 0.08 ms. Matrix damage commences just before the 

shock loading decrease and it takes very critical values around the bolt holes in the top 

plies. Moreover, matrix damage is observed at the central region of four quadrants in 

the bottom plies. As a result of this, damage behaviours of top and bottom plies are 

very distinctive because while top plies are compressed under shock loading, bottom 

plies resist tensile stresses. These distinctive behaviours can also be observed for top 

and bottom plies of a 4-ply composite plate studied in Section 5.4.3.2. Matrix damage 

of all plies, when the loading is at the half way of the exponential decay, 
( ) max. / 2tP P

, at 0.224 ms, is shown in Figure 5.38. Furthermore, top views of top, middle and 

bottom plies are plotted in Figure 5.39 for comparison purposes. In light of Section 

5.4.3.3, damage in the bottom plies can be attributed to matrix cracking while it can 

be both matrix cracking and fiber/matrix debonding near the bolt holes in the top plies.   
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Figure 5.38 Matrix damage results of all plies at 0.224 ms  

   

   (a)        (b) 
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  (c)  

Figure 5.39 Top views of matrix damage results of (a) top, (b) middle and (c) bottom 

plies at 0.224 ms  

After a while, at 0.325 ms, the values of matrix damage in the vicinity of bolt holes 

rise but keep the same extent while damage is observed over the plate with very small 

values except at the middle region for the top plies. As for the bottom plies, damage 

increases to higher values at the centre of four quadrants, in the meantime critical 

matrix damage emerges right at the central region. This latter damage behaviour can 

be attributed to a reflected compressive wave which transforms into a tension wave at 

the bottom surface as also explained in Section 5.4.3.2. Figure 5.40 shows matrix 

damage results of all plies at 0.325 ms. Moreover, top views of top, middle and bottom 

plies are shown in Figure 5.41 for comparison purposes.   
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Figure 5.40 Matrix damage results of all plies at 0.325 ms  

   

    (a)      (b) 
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 (c) 

Figure 5.41 Top views of matrix damage results of (a) top, (b) middle and (c) bottom 

plies at 0.325 ms  

Furthermore, Batra and Hassan (2007) observed high shear stress regions, as shown in 

Figure 5.42, in their study of underwater shock problem of a 4-ply composite plate 

explained in Section 5.4. From this point of view, matrix damage, which is observed 

right at the centre of four quadrants in the bottom plies, as shown in Figure 5.41c, may 

be the result of high shear stresses occurred in these regions.   

 

Figure 5.42 In-plane shear stresses of top and bottom surfaces under shock loading 

(Batra and Hassan, 2007)  

As the time progresses, matrix damage takes very considerable values in all plies. 

However, damage characteristics between top and bottom plies are still 

distinguishable. Matrix damage in the bottom plies, which is observed at the central 

region and at the centre of four quadrants, diffuses sequentially into upper plies. 

Interestingly, central damage is faster than the latter one and it just reaches the middle 

ply at 0.452 ms. Moreover, damage in the vicinity of bolt holes is now spreaded to all 
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plies where top and bottom bolt holes are fragmentized dramatically. Thus, rupture of 

the plate from the top and bottom clamped regions is observed. Another point worth 

mentioning is that remarkable amount of damage propagates towards the centre from 

top and bottom bolt holes for all plies. All of the above described damage evolution 

characteristics are evident in the Figures 5.43 and 5.44 which are for 0.452 ms.   

 

Figure 5.43 Matrix damage results of all plies at 0.452 ms  
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  (a)                (b) 

   

   (c)      (d) 

Figure 5.44 Top views of matrix damage results of (a) top, (b) middle, (c) 4th and (d) 

bottom plies at 0.452 ms  

5.5.3.3 Delamination damage  

As mentioned in Section 5.5.3, delamination damage can either be related with mode 

I ( N ) or mode II ( S ) cracks in PD theory. Unlike the matrix damage, mode II or 

shear cracks ( S ) commences at a later time about 0.325 ms. Mode II cracks in 

delamination damage are especially observed at the clamped or supported region of all 

plies but are more considerable in the middle plies. Particularly, middle (7th) and 6th 

plies have extensive damage regions around the top, bottom, left and right sides of 

clamped region as shown in Figure 5.46. Apart from that, there are small interactions 
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with bolt holes and the vicinities of top and bottom bolt holes are delaminated 

considerably to a small extent, as can be seen from Figures 5.45 and 5.46.   

 

Figure 5.45 Mode II delamination damage cracks for all plies at 0.325 ms  

   

 (a)                (b) 

Figure 5.46 Top views of mode II delamination damage cracks for (a) middle and (b) 

6th plies at 0.325 ms   
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Later in time, at 0.452 ms, mode II delamination damage cracks takes very critical 

values and all plies are delaminated from the circumference of supported region, as 

shown in Figure 5.47, as well as very significant concentrations of the damage are 

evident around the bolt holes as shown in Figure 5.48. Interestingly, delamination 

damage also propagates towards the centre of the plate from top and bottom bolt holes 

and a similar propagation behaviour is observed in matrix damage results at 0.452 ms.   

 

Figure 5.47 Mode II delamination damage cracks for all plies at 0.452 ms  
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 (a)                (b) 

Figure 5.48 Top views of mode II delamination damage cracks for (a) middle and (b) 

6th plies at 0.452 ms  

Comtois et al. (1999) observed similar delamination damage as in Figure 5.48 from 

several experiments of circular specimens, which are either adhesively bonded or 

clamped, in air shock loading. They also emphasized more severe delamination 

damage for clamped specimens. Furthermore, damage propagates towards the inner 

region from the clamped areas and it spreads all over the specimen associated with the 

increase of charge weight. Please refer to ref. (Comtois et al., 1999) and cf. Figs. 6-9.   

Mode-I cracks in delamination damage ( N ) commence at the same time, t = 0.325 

ms, with mode II cracks. However, it is in very small amounts and concentrated around 

the circumference of unsupported region in top three plies, as shown in Figure 5.49.   

 

Figure 5.49 Mode I delamination damage cracks for top three plies at 0.325 ms  

As the time progresses, mode I delamination damage cracks concentrate around the 

bolt holes and they are very significant at the top and bottom holes from which damage 
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spreads along the circumference of unsupported region especially for the top plies as 

can be seen from Figures 5.50 and 5.51.   

 

Figure 5.50 Mode I delamination damage cracks for all plies at 0.452 ms  

   

  (a)      (b)  
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 (c) 

Figure 5.51 Top views of mode I delamination damage cracks for (a) top, (b) middle 

and (c) bottom plies at 0.452 ms  

5.5.3.4 Evaluation of results with respect to damaged test 

specimen  

During Peridynamic simulation, test plate is torn off from the mounting fixtures at 

0.452 ms and it reaches the complete damage state. Thus, the results are comparable 

with the image of damaged test plate provided by LeBlanc (2011), shown in Figure 

5.52, after the impact of underwater shock loading in CST test setup.   

All bolt holes of the test plate are damaged and the damage around the top and bottom 

holes are more considerable than the others as well as total rupture from the top takes 

place. Besides, propagation of damage from the top and bottom holes to the centre is 

quite significant. Similar damage behaviours can also be observed in PD theory matrix 

damage results (Figures 5.43 and 5.44). As we are not supplied other detailed images 

of the test plate, it is difficult to comment on central matrix damage results observed 

in bottom and middle plies. However, it is very well known damage characteristic of 

composite plates under shock loading, as also explained in Sections 5.4.3.2 and 5.5.3.2.   

In the test plate, delaminated areas can be seen more or less from transparent regions 

of the image because the image was lightened from the back (LeBlanc, 2011). 

Considerable amount of delamination can be observed at the top and right sides of the 

test plate. In addition to this, the vicinity of all bolt holes are delaminated. Interestingly, 



198 

 

delaminated areas are quite remarkable at the top and bottom bolt holes. Moreover, 

there is a propagation towards the centre. The unsymmetrical damage characteristic of 

the test plate is also notable for the delaminated areas. However, this property is very 

common in real materials due to the defects which may occur during the manufacturing 

processes. As for the PD theory results, mode II delamination damage cracks take 

place at the top, bottom, left and right sides of the plate quite significantly and 

accumulation around the bolt holes are evident (Figures 5.47 and 5.48). Furthermore, 

more extensive damage is observed at the top and bottom holes and the propagation 

from there to the centre is evident. On the other hand, mode I delamination damage 

cracks, which are around the top and bottom holes as well as along the circumference 

of the unsupported region (Figures 5.50 and 5.51), can exactly be observed from the 

experimental results. After all, PD theory and experimental results are well comparable 

for delaminated regions.   

 

Figure 5.52 Damaged test plate after the shock loading in CST (LeBlanc, 2011)  

 

5.6 Conclusion  

The capability of PD theory for the prediction of damage patterns of complex 

structures under shock loading is demonstrated with several examples. In the first case, 

damage evolution characteristic of simple composite structure, in which all fibers are 
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oriented in the same direction, is analysed and the results are verified with numerical 

study done by Batra and Hassan (2007). It is shown that PD theory is able to provide 

more detailed damage for the structure and it does not use any additional kinematic 

equations for the damage predictions as well as damage initiates and propagates 

spontaneously without any triggering effect or introducing pre-cracks. This superior 

capability of PD theory can also be combined with simple numerical implementation 

property. Since meshless approach is performed in the implementation, no mesh 

dependent errors are observed as in the FE methods. Lastly, damage prediction 

capability of PD theory is proven with experimental result given by LeBlanc (2011). 

In this case, the more complex composite structure with cross-ply configuration is used 

and damage evolution characteristic of each ply is demonstrated successfully, in 

conjunction with the detailed descriptions of when and where damage emerges as well 

as how it evolves by the progression of time, without any additional effort in the 

analysis. Furthermore, it is concluded that ultimate damage of the test plate can 

correctly be captured with Peridynamics. As a result, Peridynamics can be used as a 

very effective computational framework in order to capture complicated damage 

behaviours of composite structures. This is the first time in the literature that PD theory 

is used for the underwater shock problems and it is realized that Peridynamics is a very 

suitable tool for this purpose. By exploiting exceptional characteristics of PD theory, 

better understanding on damage behaviour of complex composite structures is gained 

so that damage tolerable structures can be designed with a minimal weight for extreme 

and/or complicated loading conditions.   
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Chapter 6  

 

Collision and Grounding Phenomena  

 

6.1 Introduction  

An accident can happen at any time, anywhere. It can happen due to human error, 

technical problems or harsh environmental conditions. In maritime sector, biggest 

accidents occur during ship-ship collision, ship-offshore structure collision and during 

grounding. All of these cases may result in undesirable and catastrophic consequences 

including human life loses, environmental problems such as oil spill, etc. As an 

engineer, it is important to take into account all the possible accidents during the design 

process in order to reduce the unexpected outcome of these accidents.   

In literature, various analytical solutions to predict ship collision and grounding 

phenomena are presented (Minorsky, 1959; Terndrup Pedersen and Zhang, 1998). In 

these studies, either external dynamics or internal mechanic of ship structures are 

investigated. External dynamic is mainly interested in ships and their motion before, 

during and after collision. However, internal mechanics is interested in structural 

response of the struck ship. The structural response of the ship may result in complete 

failure. Analytical solutions offer a quick method for representing the deformation and 

failure characteristics of a complex ship structures. However, several assumptions 

have to be made for analytical solutions. Many studies have been found on 
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experimental and numerical analysis of ship collision (Ehler and Romanoff, 2010). 

These studies are mainly focuses on collision of ships and grounding phonomena. In 

ship collision, the impact of bulbous bow of striking ship with the side structure of 

another ship is the main concern and the most critical scenario is when both ships are 

perpendicular during collsion, i.e. right angle collision. Most of the numerical and 

experimental studies focus on these critical scenarios. In most of these studies, striking 

bow is mostly assumed as a rigid body since it is composed of many stiffners. Some 

of the studies focus on the calculation of the absorbed energy resulting from 

penetration of a struck object and some concentrate on fracture patterns formed on the 

structure. For the studies related with grounding phenomena, the striking object is 

seabed, i.e. rock, shoal or reef. Depending on the striking object, the structure may fail 

in different forms. For instance, grounding of a ship onto sharp rock may lead to tearing 

failure which may result in total destruction of bottom plate. On the other hand, 

grounding on blunt objects, such as shoals, may result in denting failure of bottom 

structure. Even the ship collision does not cause any failure, it can affect the ship’s 

integrity which may result in hull collapse. For ship structures, it is also important to 

find crashworthiness of ship structures which is necessary for collision and grounding 

analyses. The crashworthiness of ship is the highest possible amount of energy that 

can be observed by the structure. The calculation is based on amount of energy that 

can be absorbed by the structure until fracture initiates for the side or bottom plating.   

As a result, ship structure possibly shows material and geometrical nonlinearities in 

numerical analyses for the above mentioned situations. Apart from that, detailed crack 

propagation behaviours should be investigated in order to find final failure point or to 

decide critical energy absorption limit of a ship structure. In this regard, although there 

are various experimental studies done in this field, it is obvious that performing an 

experiment of a real size ship structure is very expensive. Instead, a smaller size of the 

ship structure can be tested. However, this may not really represent the behaviour of 

the actual ship because of its complicated structure. Hence, computational tools can be 

a suitable option due to their flexibility and widely applicability for complex 

structures. In the literature, many FE analyses have been carried out however the 

accuracy of these studies is questionable since the approaches used in these studies are 

either in their development stage or strictly criticized by many other researchers. The 
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issues related with the finite element method for the failure prediction arise probably 

due to the governing equations that is based on. Because the spatial derivatives in its 

governing equation are not defined if there is any discontinuity within the structure 

such as a crack. Furthermore, the FE simulations also suffers from mesh sensitivity 

(Alsos et al., 2009) since failure is represented by deleting the failed element, 

according to an adopted criteria in simulations. Also, the failure criteria is very 

sensitive to selected element size. These conditions show that FE analysis is very rough 

and it definitely omits local fracture behaviours of a structure. Hence, the final failure 

expectations as well as the energy absorption calculations may possibly fail. To 

conclude, it is essential to use an advanced level tool which has superb capability for 

fracture and failure analysis of structures, i.e. Peridynamics. It is an excellent candidate 

to investigate complex problems such as the collision and grounding damage analysis 

of ship structures. Furthermore, in a general sense, it may bring a new dimension to 

the analysis of marine structures.   

6.1.1 Description  

In this section, it is shown that PD can be used to model damage and failure during 

ship collision or grounding. In this sense, stiffened plates are modelled both by using 

PDs and a FE solver, ANSYS, as explained in Section 3.3.1.2. In PD models, it is 

shown that a smaller horizon, 1.732 x   , can be used to represent the bending 

deformation of ship structures. It is also found that sufficient number of material points 

has to be used through the thickness of the plate in order to get accurate deformations. 

By using smaller size horizon and sufficient number of material points through the 

thickness direction, while exploiting the ANSYS solver for PD analysis, actual size 

stiffened and unstiffened panels can be modelled successfully. The panel dimensions 

and loading conditions for collision considered in the model are chosen according to 

previous studies ((Alsos and Amdahl, 2009) and (Alsos et al., 2009)). In these studies, 

actual sized ship structures are analysed experimentally and numerically.   

Finally, in order to simulate rock or bulbous bow structure impacting on ship 

structures, contact analysis capability of PD theory is investigated.  

It is shown that impact analysis by using PDs can be done in two different ways;   
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1. By using PD Fortran model while adding contact analysis capability,   

2. By exploiting the ANSYS contact capability for PD analysis.   

In the former one, the translational and also rotatory inertia effects of a rigid body are 

considered in addition to proposed model of Madenci and Oterkus (2014). Apart from 

that, the latter model uses contact and target elements of FE software, ANSYS, in order 

to incorporate contact capability to a current PD model. The latter modelling procedure 

is validated with a previous collision study (Alsos and Amdahl, 2009) for an 

unstiffened ship panel structure.   

 

6.2 Three Dimensional Plate Models  

PD models of several actual sized panel structures are solved by using the ANSYS 

solver as explained in Section 3.3.1.2. The problems are considered for static analysis. 

The optimum horizon size and the number of material points through the thickness 

direction are chosen.   

6.2.1 Plates subjected to in – plane loading  

6.2.1.1 Plate subjected to displacement constraint  

A relatively thick plate is subjected to a tension loading by means of applied 

displacement constraints to its vertical edges, as shown in Figure 6.1. The plate is made 

up of an isotropic material and its Young’s modulus as well as the Poisson’s ratio are 

given as 200 GPaE   and 1 4  , respectively. The length, width and thickness 

dimensions of the plate are, 1 mL W   and 0.2 mH  , respectively. The loading is 

applied as axial displacements onto the edges with a value of 0.001 mxu  . In order 

to implement such displacement constraints, the fictitious boundary regions are created 

along the vertical edges with a width of bn  , shown in Figure 6.2.   
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Figure 6.1 Tension loading by means of displacement constraints for a plate  

The horizon sizes are chosen as 3.015   and  1.733x x    , respectively. Moreover, 

the analyses are carried out for the number of material points; 20, 10 and 5 through the 

thickness direction of a plate and they represent the discretization sizes of 

/ 20, /10  and  / 5x H H H  , respectively. In Figure 6.2, the meshless discretization 

of PD plate model is shown for the model with 5 material points in the thickness 

direction.   

 

 

Figure 6.2 Meshless discretization of a PD model  

The x and y direction displacement results of the central midplane material points for 

the models with different horizon sizes,  , as well as with different discretization 

sizes, x , are shown in Figure 6.3. In these figures, horizon and discretization sizes 

are denoted by hor1 3.015 x  , hor2 1.733 x  , disc1 / 20H , disc2 /10H  and 

disc3 / 5H . Moreover, the classical theory results, solved by FE method, are shown 

in the figure for the comparison purposes.   
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(a) x – direction displacement results along the central x axis   

 

(b) y – direction displacement results along the central y axis   

Figure 6.3 Comparison of the displacement results on a central midplane  

The central x – displacements, shown in Figure 6.3a, are in agreement with each other 

as well as with the FE method results. However, some discrepencies can be seen in 

central y – direction displacement results, shown in Figure 6.3b. Chosing the horizon 

size of 1.733 x    instead of 3.015 x    may lead to very small changes in y 
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direction displacement results. However, these are in the acceptable ranges and it is 

also apperant that the number of material points, which are in the thickness direction, 

does not affect the results significantly. In light of these observations, the most 

efficient model, which has the values of hor2 1.733 x   and disc3 / 5H , can be 

chosen to model plates under tension loading and is depicted with a red line in Figure 

6.3b. In this case the least number of bonds or link elements are created in FE software. 

On the other hand, the computational burden of horizon value, 3.015 x   , is much 

higher than the 1.733 x    case and it can be restrictive for the analysis of larger size 

models which will be analysed later in Section 6.3. Futhermore, the other discretization 

sizes, i.e. / 20  and  /10x H H  , also increases the total number of material points 

and the total number of link elements in the model. However, they do not improve the 

accuracy of results significantly compared to the / 5x H   case, which can also be 

seen from the displacement plots in Figure 6.4.   

   

(a) x and y direction displacement plots for 1.733 x    and / 5x H     

   

(b) x and y direction displacement plots for 1.733 x    and / 20x H     

Figure 6.4 Displacement results for different horizon and discretization sizes of a 

plate model  
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As a summary, for 3D plates, the horizon value of 1.733 x    and the discretization 

size of / 5x H   can be chosen if tension loading is applied as displacement 

constraints to the boundaries.   

6.2.1.2 Plate subjected to forces through boundaries  

A relatively thick plate is subjected to a tension loading by means of applied forces to 

its vertical edges, as shown in Figure 6.5. The material properties and the geometrical 

parameters of the plate are the same with the model shown in the previous section, i.e. 

Section 6.2.1.1. However, the loading is applied as a line force through the vertical 

edges with a value of 45 10  N/mP   . In PD theory, the application of tension loading 

must be done by means of body load as  b P H x  , in which A denotes the cross 

sectional area. The body loads, b , are implemented through actual domain of a model 

with a width of bn x  , shown in Figure 6.6.   

 

Figure 6.5 Tension loading by means of applied forces for a plate model  

The meshless discretization of PD plate model can be seen in Figure 6.6. In PD model 

of a plate, the discretization sizes of / 20, /10  and  / 5x H H H   are used. 

Moreover, the horizon size is chosen as 1.733 x    for all cases. Since, it is 

mentioned in the previous section, i.e. Section 6.2.1.1, that using the horizon value of 

3.015 x    can make the computations restrictive. Besides, the acceptable 

displacement values can also be achieved with a horizon size of 1.733 x   , as shown 

Figure 6.3.   
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Figure 6.6 Meshless discretization of a PD model  

The x and y direction displacement results of the central midplane material points for 

the models with different discretization sizes, x , are shown in Figure 6.7. In these 

figures, the discretization sizes are denoted by, disc1 / 20H , disc2 /10H  and 

disc3 / 5H . Moreover, the classical theory results, solved by FE method, are shown 

in the figure for comparison purposes.   

 

(a) x – direction displacement results along the central x axis   
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(b) y – direction displacement results along the central y axis  

Figure 6.7 Comparison of the displacement results for a central midplane  

The central x – displacements, shown in Figure 6.7a, are in close agreement with each 

other as well as with the FE method results. However, the discrepencies are observed 

in central y – direction displacements compared to FE method results, shown in Figure 

6.7b. Again, these are in acceptable ranges and it can be concluded that the number of 

material points used in the thickness direction or the discretization size, x , does not 

affect the results significantly. Thus, chosing / 5x H   is reasonable by considering 

the total number of material points and the number of link elements compared to other 

discretization sizes. Comparison of the displacement plots for two different 

discretization sizes are also shown in Figure 6.8.   

   

(a) x and y direction displacement plots for 1.733 x    and / 5x H     
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(b) x and y direction displacement plots for 1.733 x    and / 20x H    

Figure 6.8 Displacement results for different horizon and discretization sizes of a 

plate model  

As a summary, for 3D plates, the horizon value of 1.733 x    and the discretization 

size of / 5x H   can be chosen if tension force loading is applied to the boundaries.   

6.2.1.3 Clamped plate  

After it is demonstrated that the three dimensional PD plate models with the horizon 

value of 1.733 x    and the discretization size of / 5x H   are capable of capturing 

accurate in – plane deformation behaviour, as given in Sections 6.2.1.1 and 6.2.1.2, 

the clamped plate under in – plane tension loading is studied. A relatively thick plate, 

which is clamped from its left edge, is subjected to a tension loading from its right 

edge, as shown in Figure 6.9. The material properties and geometrical parameters of 

the plate are the same with the models in the previous sections, i.e. Sections 6.2.1.1 

and 6.2.1.2. The clamped boundary condition is imposed through a fictitious boundary 

region, which is created at the left edge, with a width of cbn x   , as shown in 

Figure 6.10. On the other hand, the line force is applied through the right vertical edge 

with a value of 45 10  N/mP    and it can be converted to a body load of  b P H x 

. As mentioned before, it is implemented inside an actual domain of plate model with 

a width of lbn x  , as shown in Figure 6.10.   
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Figure 6.9 Clamped plate model under tension loading  

In PD model of the plate, only the discretization size of / 5x H   is used and the 

horizon size is chosen as 1.733 x    as mentioned earlier. Since, these are sufficient 

and computationally efficient values for modelling plate structures.   

 

Figure 6.10 Meshless discretization of a clamped plate model  

The x and y direction displacement results of the central midplane material points are 

shown in Figure 6.11. In these figures, the classical theory results are obtained by using 

FE method and compared with the PD results.   
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(a) x – direction displacement results along the central x axis  

 

(b) y – direction displacement results along the central y axis  

Figure 6.11 Comparison of the displacement results for a central midplane  

The central x and y displacements are in close agreement with the FE method results. 

Please also keep in mind that the discretization size, i.e. element edge length, of FE 

model is not same with the PD model discretization size. In FE model, the solid 

element’s average edge length is equal to /10x . A smaller discretization size is used 

in order to get closer results to analytical results. This is the reason that x – direction 

displacement result seems to be extended along the x axis in FE method. Furthermore, 

Figure 6.12 shows the plots of displacement results for PD theory and FE model. Even 
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though larger discretization size is used in PD model, the results are in good agreement 

with each other.   

   

(a) x and y direction displacement plots of a PD plate model   

   

(b) x and y direction displacement plots of a FE plate model   

Figure 6.12 Comparison of the displacement results for a clamped plate model  

Hence, the clamped 3D plate can be modelled successfully with the horizon and the 

discretization sizes of 1.733 x    and / 5x H  , respectively.   

6.2.2 Plates subjected to transverse loading  

In this section, transversely loaded plates are studied and it is shown that three 

dimensional PD models with proposed horizon and discretization sizes are able to 

capture the bending deformation behaviour successfully.   

6.2.2.1 Clamped thick plate  

A relatively thick plate, which is clamped from its left edge, is subjected to a transverse 

loading as shown in Figure 6.13. In this study, it is shown that 3D PD plate model with 
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the horizon value of 1.733 x    and the discretization size of / 5x H   can 

successfully capture the bending deformations of a thick plate. The material properties 

and geometrical parameters of the plate are the same with the models in the previous 

sections, i.e. Sections 6.2.1.1 – 6.2.1.2 and 6.2.1.3. The clamped boundary condition 

is imposed through a fictitious boundary region, created at the left edge, with a width 

of 
cbn x   , as shown in Figure 6.14. On the other hand, a line force is applied 

onto the right vertical edge with a value of 45 10  N/mP    and it can be converted to 

a body load of  
2

b P x  . This load is only applied to a single layer of material 

points, which are on the top layer of the right edge, in PD model. Moreover, the 

boundary layer for the body load has a width of lbn x  , as shown in Figure 6.14.   

 

Figure 6.13 Clamped plate model under transverse loading  

The meshless discretization of a PD plate model can be seen in Figure 6.14. The PD 

plate model has the horizon and discretization sizes of 1.733 x    and / 5x H  , 

respectively.   
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Figure 6.14 Meshless discretization of a clamped thick plate model  

The central x, y and z direction displacement results are plotted in Figure 6.15 for the 

material points on the pink, purple and red coloured dotted lines, respectively, as 

shown in Figure 6.14. Moreover, the PD results are compared with the classical theory 

results, obtained by FE method.   

 

(a) x – direction displacement results through the thickness direction  
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(b) y – direction displacement results along the central y axis  

 

(c) z – direction displacement results along the central x axis  

Figure 6.15 Comparison of the displacement results for a transversely loaded thick 

plate  

The x direction displacements taken from the right edge are in good agreement with 

FE method results. Thus, it can be concluded that in – plane bending behaviour of a 

clamped plate can be captured very well. Again, the discrepancy seen along the z 

direction is due to the FE model discretization size, i.e. element edge length, difference 

compared to the PD model discretization size. Furthermore, the central y 

displacements are in close agreement with the FE model results. Hence, the contraction 
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of a plate along y axis can also be captured well. Most importantly, the transverse 

direction displacements, shown in Figure 6.15c, are in also close agreement with the 

FE model results. Thus, the out – of – plane displacement behavior can also be 

successfully captured with the 3D PD plate model. In Figures 6.16 and 6.17, the plots 

of displacement results are shown for PD theory and FE model. The displacement 

results are in good agreement with FE model results although a larger discretization 

size is used in PD model.   

 

   

   (a)     (b) 

 

(c)  

Figure 6.16 (a) x and (b) y and (c) z direction displacement plots for a PD thick plate 

model  

   

       (a)       (b)  
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(c)  

Figure 6.17 (a) x and (b) y and (c) z direction displacement plots for a FE thick plate 

model  

As a summary, the in – plane and out – of plane bending behaviours as well as the 

contraction of a plate are successfully captured for 3D PD model of thick clamped 

plate modelled with horizon and discretization sizes of 1.733 x    and / 5x H  , 

respectively.   

6.2.2.2 Clamped thin plate  

In this section, the in – plane and out – of plane bending behaviours of clamped thin 

plate are investigated. A relatively thin plate, which is clamped from its left end, is 

subjected to a transverse loading as shown in Figure 6.13. The length, width and 

thickness dimensions of a plate are, 4 mL W   and 0.2 mH  , respectively. 

Moreover, the material properties are the same with the model in the previous section, 

i.e. Section 6.2.2.1. The clamped boundary condition is imposed through a fictitious 

boundary region with a width of cbn x   , as shown in Figure 6.14. On the other 

hand, the line force is applied in the same manner as in the previous thick plate model, 

i.e. Section 6.2.2.1. The magnitude of the line force is 45 10  N/mP    and it can be 

converted to a body load of  
2

b P x  . Since, the boundary layer for the body load 

has a width of lbn x  .   
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The PD thin plate model has the horizon and discretization sizes of 1.733 x    and 

/ 5x H  , respectively, as in the thick plate model.   

The central x, y and z direction displacement results are plotted in Figure 6.18 for the 

material points on the pink, purple and red coloured dotted lines, respectively, as 

shown in Figure 6.14. Moreover, PD results are compared with the classical theory 

results obtained by using FE method.   

 

(a) x – direction displacement results through the thickness direction   

 

(b) y – direction displacement results along the central y axis  
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(c) z – direction displacement results along the central x axis  

Figure 6.18 Comparison of the displacement results for a transversely loaded thin 

plate  

It can be observed from x direction displacement results that in – plane bending 

behaviour of a clamped thin plate is successfully captured with PD model. 

Furthermore, the amount of contractions of the plate along y axis are in good 

agreement between two solutions as can be seen from Figure 6.18b. It is also 

remarkable that the out – of – plane displacement behavior also captured well with the 

3D PD thin plate model since it is in close agreement with the FE model results. In 

Figures 6.19 and 6.20, the plots of PD displacements results are also shown for the 

comparison purposes along with FE model and they are in good agreement although a 

larger discretization size is used for the PD model.   

   

   (a)         (b) 
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(c)  

Figure 6.19 (a) x and (b) y and (c) z direction displacement plots of a PD thin plate 

model  

   

         (a)           (b)  

 

(c)  

Figure 6.20 (a) x and (b) y and (c) z direction displacement plots of a FE thin plate 

model  

As a summary, the in – plane and out – of plane bending behaviours as well as the 

contraction of a thin plate are successfully captured for the 3D PD model with 

discretization sizes of 1.733 x    and / 5x H  , respectively.   
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6.2.2.3 Stiffened plate  

One of the most prevalent ship structure, stiffened plate, is studied here and the in – 

plane and out – of plane bending behaviours are investigated. As shown in Figure 6.21, 

the stiffened plate structure is clamped from its left end and it is subjected to a 

transverse loading. The length, width and thickness dimensions of the top plate are, 

0.12 mL  , 0.144 mW   and 0.005 mH  , respectively. Moreover, the stiffener 

attached to it has dimensions of 0.024 ml   and 0.006 mh  . Its material properties 

are the same with the clamped thin model given in previous section, i.e. Section 

6.2.2.2. The clamped boundary condition is imposed through a fictitious boundary 

region with a width of cbn x   , as shown in Figure 6.22. On the other hand, a 

line force is applied in a same manner as the previous thin plate model, i.e. Section 

6.2.2.2. The total magnitude of the line force is 0.15 kNP   and it can be converted 

to a body load of  2b P W x  . Since, the boundary layer for a body load has a width 

of lbn x  , as shown in Figure 6.22.   

 

Figure 6.21 A stiffened plate model under transverse loading  

The horizon and discretization sizes are chosen as 1.733 x    and / 5x H  , 

respectively.   
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Figure 6.22 Meshless discretization of a stiffened plate model  

In Figure 6.22, the pink, purple and red coloured dotted lines show where the x, y and 

z direction displacement results are extracted and they are given in Figure 6.23. 

Moreover, the PD results are compared with the classical theory results obtained by 

using FE method.   

 

(a) x – direction displacement results through the thickness direction  
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(b) y – direction displacement results through the thickness of a top plate  

 

(c) z – direction displacement results along the central x axis  

Figure 6.23 Comparison of the displacement results for a transversely loaded 

stiffened plate  

It can be observed from x direction displacement results, which are extracted from very 

close to the free end, that they are in good agreement with FE model results. Thus, it 

can be said that in – plane bending deformations can be captured successfully in PD 

stiffened plate model. Furthermore, the contraction of the stiffened plate along y axis 
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may reach considerable magnitudes towards to horizontal edges of a plate, as shown 

in Figure 6.23b and these are also captured in PD model. Finally, the out – of – plane 

displacements are measured along the x axis for the material points on the stiffener. 

By comparing against FE model results, it is apperant that 3D PD stiffened plate model 

results are very well in agreement with FE model results. Also, Figures 6.24 and 6.25 

show the displacement plots of PD theory and FE method stiffened plate models. It 

can be seen that PD theory very well captures the bending deformation behaviour of 

stiffened plate model even though larger discretization size is used in PD model 

compared to FE model.   

 

(a)  

 

(b)  

 

(c)  

Figure 6.24 (a) x and (b) y and (c) z direction displacement plots of a PD stiffened 

plate model  
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  (a) front view      (b) top view  

 

(c)  

Figure 6.25 (a) x and (b) y and (c) z direction displacement plots of a FE stiffened 

plate model  

As a summary, 3D PD stiffened plate model with the horizon and discretization sizes 

of 1.733 x    and / 5x H  , respectively, has a capability of successfully capturing 

in – plane as well as out – of – plane bending behaviours.   

 

6.3 Collision and Grounding of Ship Structures  

As mentioned in Section 6.1, collision of ships and grounding phenomena are studied 

by many researchers numerically and experimentally. In these studies, striking object 

is generally assumed as rigid body since it can either be bulbous bow of ship, which is 

composed of many stiffeners, or seabed topology, which can mostly be in the form of 

sharp rock. One of the most important studies in this regard are done by Alsos and 

Amdahl (2009) and Alsos et al. (2009), which present the experimental and numerical 

results, respectively. In experiments, the panels are loaded from its central region by a 

cone shaped indenter until failure of a plate, as shown in Figure 6.26, and the loading 
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direction is in the transverse direction to the ship panels. These experiments may 

represent the phenomena of grounding of a ship onto a sharp rock or bulbous bow 

impact on a ship side panel or the dropped object on a deck structure, as shown in 

Figure 6.27.   

 

Figure 6.26 (a) Experimental setup of indenter mechanism and (b) cone shape 

indenter acting on a plate (Alsos and Amdahl, 2009)  

    

(a) Ship grounding (Alsos and Amdahl, 2009) (b) Collision of rigid bulbous bow  

              (Klanac et al., 2010)  

 



228 

 

 

(c) Experimental study for the dropped object on a deck (Kozak, 2010) 

Figure 6.27 Collision and grounding phenomena  

In experiments, unstiffened and stiffened panels, which may represent the ship side or 

bottom shell structures of a ship, are used and the dimensions can be seen in Figure 

6.28b. Moreover, they are supported by strong massive steel boxes from their edges as 

shown in Figure 6.28a.   

   

 

Figure 6.28 (a) Panel structure supported with steel boxes from their edges and (b) 

the geometrical parameters of the panels used in experiments  

After all, the bending deformation behaviors of these panels are studied while rigid 

cone shape indenter penetrates with very small motion towards to them. Furthermore, 
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the force – displacement curves are plotted until final failure of panel structures is 

encountered.   

6.3.1 Transversely loaded ship panel structures  

In this section, the ship panel structures, which are studied in refs. (Alsos and Amdahl, 

2009; Alsos et al., 2009), are analysed by using 3D PD plate models. In the 

simulations, the cone shape indenter is not actually modelled. Instead, the loading 

resulting from its penetration is directly induced on central region of plate models. The 

magnitude of transverse loading is taken as 1500 kN as mentioned in ref. (Alsos and 

Amdahl, 2009) and it is given as maximum load until unstiffened panel suddenly 

fractures. Furthermore, the distribution of loading on a plate is determined considering 

its shape, and dimensions, given in Figure 6.29. The PD model of cone shape indenter 

and its impact on a plate are presented later in Section 6.3.2.   

 

Figure 6.29 The shape and dimensions of conical shape indenter (AbuBakar and 

Dow, 2013)  

6.3.1.1 Unstiffened panel  

In light of above considerations, which are made in Sections 6.3 and 6.3.1, the 

unstiffened panel structure is modelled as in Figure 6.30. A plate is clamped from its 

edges, which are depicted in black colour in Figure 6.30. The dimensions of the plate 

are given as 1200 mmL  , 720 mmW   and 5 mmH  , respectively, and the central 

loading is applied onto a plate with a span length of 280 mmsp  . Material properties 

are chosen according to the provided data in ref. (Alsos and Amdahl, 2009), so that 

isotropic steel material is used with the properties of 200 GPaE   and 1 4  .   
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Figure 6.30 Unstiffened panel under transverse loading  

The clamped boundary conditions are imposed through fictitious boundary regions 

with a width of cbn x   , as shown in Figure 6.31. On the other hand, distributed 

load has the magnitude of 1500 kNP   and it is applied as a body load in PD theory. 

The body load of each material volume can be calculated from the formulation of 

 2b P sp x  , which is only induced on a single layer of material points. Apart from 

that, PD model horizon and discretization sizes are chosen as as 1.733 x    and 

/ 5x H  , respectively, as proven earlier in Section 6.2 that these values can 

successfully represent bending behaviour of plates.   

 

Figure 6.31 Meshless discretization of an unstiffened panel  
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In Figure 6.32, the x, y and z direction displacement results for the material points on 

the central axes are shown. Moreover, the PD results are compared with the classical 

theory results obtained by using FE method.   

 

(a) x – direction displacement results along the x axis  

 

(b) y – direction displacement results along the y axis  
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(c) z – direction displacement results along the x axis  

 

(d) z – direction displacement results along the y axis  

Figure 6.32 Comparison of the displacement results for a transversely loaded 

unstiffened panel  

It is observed that x and y direction displacement results show remarkable agreement 

with each other. Hence, in – plane bending deformation behaviours are represented 

successfully in PD theory. Moreover, out – of – plane deformations, given in Figure 

6.32c and d, are also in agreement with FE model results. As mentioned by Alsos and 

Amdahl (2009), unstiffened plate show membrane deformations under such high level 

loading and this can also be seen in Figures 6.33 and 6.34 both for PD and FE model 

results.   
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    (a) Bottom view    (b) Top view  

 

         (c) Top view  

Figure 6.33 (a) x and (b) y and (c) z direction displacement plots of a PD model for 

unstiffened panel  
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 (a) Bottom view        (b) Top view  

 

         (c) Top view   

Figure 6.34 (a) x and (b) y and (c) z direction displacement plots of a FE model for 

unstiffened panel  

As a summary, the in – plane and out – of –  plane bending deformations of an 

unstiffened panel can be captured well with PD theory for such a high level of 

transverse loading. Note that this loading results in significant amount of transverse 

deformations which can only be solved in classical theory including geometrical 

nonlinearities. However, PD theory already has capability of capturing such 

geometrical nonlinearities in its mathematical model.   
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6.3.1.2 Stiffened panel  

In light of considerations made in Sections 6.3 and 6.3.1, the stiffened panel structure 

is modelled as shown in Figure 6.35. A plate is clamped from its edges which are 

depicted in black colour. The dimensions of the top plate are given as 1200 mmL  , 

720 mmW   and 5 mmH  , respectively, and the stiffener attached to it has the 

dimensions of 120 mml   and 6 mmh  . As in the unstiffened plate model, the 

loading is applied at the central region of the top plate with a span length of 

280 mmsp  , which corresponds to conical shape indenter. The material properties 

are specified as 200 GPaE   and 1 4  .   

 

Figure 6.35 Stiffened panel under transverse loading  

The clamped boundary conditions are imposed through fictitious boundary regions 

with a width of cbn x   , as shown in Figure 6.36. The distributed load has a 

magnitude of 1500 kNP   and it is applied as a body load in PD theory. The body 

load for each material volume can be calculated from  2b P sp x   and it is only 

induced on single layer of material points. Moreover, the horizon and discretization 

sizes are chosen as 1.733 x    and / 5x H  , respectively, since it was shown that 

these values can capture the bending deformations of plates.   
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Figure 6.36 Meshless discretization of a stiffened panel  

In Figure 6.36, the pink and red coloured dotted lines show where the plots of the x, y 

and z direction displacement results are extracted from and they are given in Figure 

6.37. In this regard, x direction displacements are plotted for the material points along 

the pink coloured dotted line whereas y and z direction displacements are plotted for 

the material points along the red coloured dotted line. These locations are chosen 

considering the critical deformations of a plate. Moreover, the PD results are compared 

with the classical theory results obtained by using FE method.   

 

(a) x – direction displacement results along the width of the plate  
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(b) y – direction displacement results along the length of the plate  

 

(c) z – direction displacement results along the width of the plate  
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(d) z – direction displacement results along the length of the plate  

Figure 6.37 Comparison of the displacement results for a transversely loaded 

stiffened panel  

It can be observed from x direction displacement results that in – plane bending 

deformations, which are observed on the top plate, can be captured accurately with PD 

theory. Furthermore, the stiffener of the plate shows out – of – plane deformations in 

the y direction and this behaviour, i.e. folding effect, is also captured with PD theory 

results as well as with FE model results. Lastly, out – of – plane deformations through 

the thickness direction for the stiffener and the top plate are shown in Figure 6.37c and 

d. As compared to FE model results, PD stiffened model is able to capture these effects 

as well. The deformation plots of both models are also shown in Figures 6.38 and 6.39.   

 

(a) Top view  
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(b) Profile view  

 

(c) Bottom view  

Figure 6.38 (a) x and (b) y and (c) z direction displacement plots for a PD model of a 

stiffened panel   

   

  (a) Top view     (b) Profile view  
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(c) Profile view  

Figure 6.39 (a) x and (b) y and (c) z direction displacement plots for a FE model of a 

stiffened panel   

As a summary, the in – plane and out – of – plane bending deformations of a stiffened 

panel can be captured with PD theory under such a high level of transverse loading. 

Note that this loading leads to significant amount of transverse direction deformations 

which can only be solved in classical theory including geometrical nonlinearities. 

However, PD theory already has the capability of capturing such geometrical 

nonlinearities in its mathematical model.   

6.3.2 Impact study  

In this section, we first discuss the ways of incorporating rigid body impact capability 

to current PD codes and then a benchmark problem, which models conical shape 

indenter shown in Figure 6.29, is solved. There are mainly two ways for modelling 

rigid targets in PD theory. One way is to add contact capability to a current PD code 

and the other one is to exploit contact capability of FE software.   

6.3.2.1 Improving current PD codes  

The contact analysis capability can be incorporated into current PD codes as explained 

in Chapter 10 of ref. (Madenci and Oterkus, 2014). Here, the procedure of treating 

material points when they are in contact with rigid body is discussed and the total 

reaction force on the rigid body is calculated. Please see this Chapter for more details.   
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The purpose of this section is to discuss how the rigid body motions can be dealt with 

after the total reaction force acting on it is calculated.   

Equations of motion for translational motion  

In rigid body dynamics, the translational motion of rigid body can basically be 

calculated from total forces acting on it as   

m GF a                   (6.1) 

where F, m and 
G

a  denote the total force acting on a rigid body, the mass and the 

acceleration of its centre of gravity. After the total reaction force acting on a rigid body 

is calculated, it is easy to find displacement vector, u , while using explicit time 

integration scheme as explained in Section 3.2.2.1.   

Equations of motion for rotational motion  

On the other hand, the rotational motion of rigid body can be calculated from total 

moments acting on it as   

 G GM H                   (6.2) 

where 
G

M  and 
G

H  denote the total moments about mass centre, G, and the rate of 

angular momentum, respectively. The angular momentum is calculated with respect to 

rotating axes, which rotates with an angular velocity of Ω , on the rigid body. Hence, 

Equation (6.2) can be expressed as   

 
xyz

   G G G
M H Ω H                 (6.3) 

where  
xyzG

H  denotes the rate of angular momentum relative to xyz axes on the rigid 

body. If the rotating axes are fixed to the rigid body’s centre of mass, G, the angular 

velocity, ω , can be expressed as equal to angular velocity of axes, Ω , i.e. ω Ω . 

Thus, the inertia, I, and the moment terms become constant so that Equation (6.3) can 

be rewritten as   

 
xyz

   G G G
M H ω H                 (6.4) 

or it is expressed with scalar terms as (Hibbeler, 2007)   
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       

       

       

2 2

2 2

2 2

x xx x yy zz y z xy y z x yz y z zx z x y

y yy y zz xx z x yz z x y zx z x xy x y z

z zz z xx yy x y zx x y z xy x y yz y z x

M I I I I I I

M I I I I I I

M I I I I I I

          

          

          

        

        

        







 (6.5) 

On the other hand, locating the coordinate axes to the principal axes of inertia can 

reduce Equation (6.5) to a form of   

 

 

 

x x x y z y z

y y y z x z x

z z z x y x y

M I I I

M I I I

M I I I

  

  

  

  

  

  







               (6.6) 

where xI , 
yI  and zI  denote the principal moments of inertia and Equation (6.6) can 

also be named as Euler equations of motion. Calculation of principal moments of 

inertia is a simple eigenvalue problem (Thornton and Marion, 2004) which can be 

expressed as   

  0ij ij ijI I                    (6.7) 

and the determinant of coeficient matrix of Equation (6.7) must vanish   

0ij ijI I                    (6.8) 

which leads to principal moments of inertia. Besides, eigenvectors, i.e. 
j , of Equation 

(6.8) results in orientation of each axis.  

Euler Angles  

Angular velocities, i.e. x , 
y  and z , of body axes can not be integrated in order to 

find angular displacements. For this reason, a set of generalized coordinates are 

selected to describe the orientation of the rigid body in terms of Euler angles, i.e.  , 

  and   (D’Souza and Garg, 1984). Thus, the x , 
y  and z  components of angular 

velocity can be expressed in terms of Euler angles. The definitions of these angles are 

not unique. Here, the study of Greenwood (1988) is taken as reference. As shown in 

Figure 6.40, Euler angles define the orientation of xyz coordinate system or body axes 

relative to the fixed XYZ system.   
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Figure 6.40 Definition for Euler angles (Greenwood, 1988)  

In order to define Euler angles, firstly, it is considered that two coordinate systems are 

coincident and then series of three rotations about the body axes, in a proper sequence, 

are performed. Thus, the final orientation of the axes or the body is found from these 

rotations as   

1. A positive rotation,  , about Z axis leads to primed coordinate system as  

    r R                   (6.9) 

and it can be expressed in an explicit form as  

cos sin 0

sin cos 0

0 0 1

x X

y Y

z Z

 

 

     
          
          

             (6.10) 

2. A positive rotation,  , about y  axis leads to double primed coordinate system 

as   

    r r                 (6.11) 

and in an explicit form as   

    

cos 0 sin

0 1 0

sin 0 cos

x x

y y

z z

 

 

      
         
          

             (6.12) 
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3. A positive rotation, , about  axis leads to final coordinate system, i.e. xyz, 

as   

    r r                 (6.13) 

and in an explicit form as   

1 0 0

0 cos sin

0 sin cos

x x

y y

z z

 

 

     
         
         

             (6.14) 

In light of above considerations, the final orientation of rigid body can be found from   

    r R                 (6.15) 

where   indicates the transformation matrix, which is in the form of           

and it can be rewritten in an explicit form as   

 

cos cos sin cos sin

sin cos cos sin sin cos cos sin sin sin cos sin

sin sin cos sin cos cos sin sin sin cos cos cos

    

            

           

 
 

   
 
    

                 (6.16) 

To conclude, any possible orientation of rigid body can be found by using Equation 

(6.15) while performing rotations in a proper order as defined above.   

Furthermore, the angular velocity, i.e. ω , of a body can be expressed by means of time 

rate of change of Euler angles as   

  ω ψ θ f                 (6.17) 

Equation (6.17) can also be expressed in the matrix form as   

    eJ                 (6.18) 

where e  and J denote the Euler – rate vector and  the transformation matrix, 

respectively. An explicit form of Equation (6.18) is   

 x
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1 0 sin

0 cos cos sin

0 sin cos cos

x

y

z

  

    

    

    
    

    
         

            (6.19) 

However, ψ , θ  and f  are the non – orthogonal components of ω . Therefore, J does 

not satisfy orthogonal transformation property, i.e.    
1 T

J J

 . Thus, the Euler – rate 

vector can be expressed from Equations (6.18) or (6.19) as   

     
1

e J 


    where    
1

1 sin tan cos tan

0 cos sin

0 sin sec cos sec

J

   

 

   



 
 

 
 
  

         (6.20) 

Note that  
1

J


 is singular for the cases of 90   . In such cases, the kinematic 

equations can be solved by four – parameter method based on quaternions. Thus, the 

singularity of matrix can be avoided by using four parameters (Fossen, 1987).   

Solution procedure in order to find final orientation of body   

In light of above discussed procedures, Equations (6.6) and (6.20) are solved 

simultaneously for Euler angles,  ,   and  , and then substituting these angles into 

Equation (6.15) results in final orientation of the body. In order to achieve these, 4th 

order Runge Kutta time integration method can be utilized. Runge Kutta method is 

basically derived from Taylor series expansions (D’Souza and Garg, 1984) and the 4th 

order method is used here in order to obtain good accuracy.   

In this regard, firstly, Equation (6.6) can be rearranged as   

 

 

 

x y z y z

x

x

y z x z x

y

y

z x y x y

z

z

M I I

I

M I I

I

M I I

I

 


 


 


 


 


 








              (6.21) 

and the angular velocities for the next time step can be obtained from   
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            (6.22) 

where 1if , 2if , 3if  and 4if  are the constants of Runge Kutta method with , ,i x y z . 

These constants can be expressed as   

 

 
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2 1 1 1

3 2 2 2

4 3 3 3

, , ,

, , ,
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   with   , ,i x y z         (6.23) 

Furthermore, Euler angles for the next time step can be obtained from   
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            (6.24) 

where 1kg , 2kg , 3kg  and 4kg  are the constants of Runge Kutta method with 

,  ,  k    . Keeping in mind that Euler angles are also the functions of angular 

velocities, i , the constants of Equation (6.24) can be expressed as   
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                 (6.25) 
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with ,  ,  k    . After obtaining Euler angles for the next time step, they are 

substituted into Equation (6.15) and the final orientation of the body can be obtained.   

Benchmark problem  

The impact of 3D cylindrical object to a rectangular plate, shown in Figure 6.41, is 

studied in order to verify that 3D rotations of rigid body can be represented in PD 

theory successfully with the above mentioned method. A cylindirical object has a nose 

with a half spherical shape. This object can be considered as any dropped object on a 

ship structure or the ship’s bow.   

 

Figure 6.41 Representative model for the impact study  

The length, width and thickness dimensions of a plate are, 0.20 mL  , 0.10 mW   

and 0.009 mH  , respectively. It has the Young’s modulus and the Poisson’s ratio of 

191 GPaE   and 1 4  , respectively. A cylindirical object has spherical nose with 

a diameter of 0.05 mD   and the cylinder’s length is given as 0.05 ml  . The mass 

densities of the plate and the rigid impactor are the same with 38000 kg m  . The 

discretization and horizon sizes of the plate for PD model are given as 0.001 mx   

and 3.015 x   , respectively. Figure 6.41 shows the orientation of a rigid body at the 

beginning of the analysis. It is inclined 45  with respect to a horizontal edge of the 

plate and the magnitude of its initial velcocity is assumed as 32 m/s0υ  which is also 

directed through 45  with respect to the horizontal edge. The time step size of explicit 

time integration scheme is chosen as 88.71 10  st     and the total number of time 

steps are 2000.   
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Figure 6.42 The vertical direction displacements of tip of a rigid body  

In Figure 6.42, the comparisons of tip point vertical displacements of a rigid body is 

given as the time progresses. The rigid rotations obtained with PD theory are in good 

agreement with FE method results. Moreover, the final orientation of the rigid body is 

found as 48.31  with respect to the horizontal edge of plate and it is 48.24  in FE 

model results. Thus, it can be concluded that the translational as well as the rotational 

motions of a rigid body can be represented using the procedure explained in this 

section along with the procedure defined in Chapter 10 of ref. (Madenci and Oterkus, 

2014).   

6.3.2.2 Incorporating contact capability of FE software  

Up to now, the Peridynamic plate models, given in Sections 6.2 and 6.3.1, are modelled 

in FE software, ANSYS, using link elements and they are solved using the solver 

capacity of FE software. As mentioned in Section 6.1.1, the contact capability of FE 

software can also be utilized to study impact problems in PD theory.  

To achieve this, 3D or 2D PD model is created in FE software, ANSYS, as usual using 

LINK180 and MASS21 elements as explained in Section 3.3.1.2. Then, the node to 

surface contact elements, i.e. CONTA175, are created on all nodes of the link elements 

while using ESURF command in ANSYS. Furthermore, the rigid target can also be 

modelled in any shape using target elements. These elements can be TARGE169 for 

2D models and TARGE170 for 3D models.   
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In solving impact problems, ANSYS uses Augmented Lagrangian method by default. 

This method is fundamentally based on pure penalty method and it ensures minimum 

penetration for the target elements while using Lagrange multipliers method for a 

robust convergence capability. In pure penalty method, the contact capability is 

achieved by stiffness of a spring element which is assumed to be located inside a 

contact element, shown in Figure 6.43.   

 

Figure 6.43 Contact and target elements in PD model  

Contact spring reacts rigid target with a contact force, nF , in the normal direction   

n n nF K u                 (6.26) 

where nK  and nu  represent the contact stiffness and the penetration distance, 

respectively. In this regard, it is important to define the stiffness of a spring inside a 

contact element for PD material points. It is proposed as   

 
2

k

n s

V
K c

x



                (6.27) 

where, sc  denotes the contact force constant and it can be taken as 100 times the value 

of bond constant, c, of a PD bond. Assuming larger values may result in too stiff 

contact elements and it may lead to convergence difficulties in FE software. On the 

other hand, the smaller values may lead to too much penetration of a rigid target 

element. Moreover, in Equation (6.27), x  represents the distance between actual 

material point and its image, which is assumed inside the target element, as shown in 
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Figure 6.43. The specified normal contact stiffness, 
nK , of contact element can be 

defined in ANSYS using the real constant parameter FKN. Besides, the contact 

elements can be offsetted towards the target elements using CNOF parameter with a 

value of 2x . This ensures creating contact elements on the surface of material 

volume as shown in Figure 6.43.   

To conclude, using the above procedure incorporates contact capability in FE software 

for a current PD model. Note that ANSYS uses implicit time integration scheme in 

dynamic problems in contrast to a model defined in previous section, i.e. Section 

6.3.2.1.   

6.3.2.3 Benchmark problem  

The contact procedure, explained in Section 6.3.2.2, is now studied for the impact 

problem defined in Section 6.3. The PD model of an unstiffened panel structure is 

created in ANSYS and its representative model can be seen from Figure 6.30. As in 

the figure, it is clamped from its edges whereas the transverse direction forces are 

removed in this case. The dimensions of the plate are taken as 1200 / 5 mmL  , 

720 / 5 mmW   and 5 mmH  , respectively. The material properties are chosen 

according to the provided data in ref. (Alsos and Amdahl, 2009), so that isotropic steel 

material has the properties of 200 GPaE   and 1 4  .   

The discretized PD plate model can also be seen in Figure 6.31 while keeping in mind 

that central body loads should be removed in this case. Instead the conical shape 

indenter is modelled in ANSYS using the target elements, i.e. TARGE170, and the 

node to surface contact elements, i.e. CONTA175, are created on all nodes of the link 

elements as can be seen in Figure 6.44. The geometrical parameters of a conical shape 

indenter can be seen from Figure 6.29 whereas the dimension of its radius is modified 

considering the dimensions of the plate and it has the value of 200 / 5 mmr  .   
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Figure 6.44 The PD model of a plate and a conical shaped rigid target  

The PD plate model has the horizon and discretization sizes of 1.733 x    and 

/ 5x H  , respectively. A rigid target indenter is moved vertically towards the PD 

plate model with a velocity of 10 mm/min
0
υ . It is also the same value used in 

experiments done by Alsos and Amdahl (2009). The loading condition is quasi – static 

and it is implemeneted in ANSYS using 90 steps in total.   

In Figure 6.45, the x, y and z direction displacement results for the material points on 

the central axes are shown. Moreover, the PD results are compared with the classical 

theory results obtained by using FE method.   

 

(a) x – direction displacement results along the central x axis  
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(b) y – direction displacement results along the central y axis  

 

(c) z – direction displacement results along the central x axis  
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(d) z – direction displacement results along the central y axis  

Figure 6.45 Comparison of the displacement results for the impact problem of an 

unstiffened panel  

It can be observed from Figure 6.45a and b that in – plane bending deformations are 

in agreement with FE model results as well as the out – of – plane bending 

deformations, which can be seen from Figure 6.45c and d. Furthermore, Figures 6.46 

and 6.47 show the deformation plots of the PD and FE models for comparison 

purposes.   

   

   (a)               (b)  
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              (c)  

 

(d)  

Figure 6.46 (a) x, (b) y and (c) z direction displacement plots as well as the 

perspective view of a PD model from ANSYS  
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        (a)          (b)  

 

     (c)  

Figure 6.47 (a) x, (b) y and (c) z direction displacement plots for a FE model of 

unstiffened panel  

To conclude, the bending deformations of a panel structure are successfully captured 

in the PD impact study while modelling the rigid target in FE software. Hence, the 

proposed model, which uses contact and target elements of FE software, is validated. 

As a result, it is proven that the PD theory can also be an excellent candidate for the 

collision analyses of ship structures.   
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6.4 Conclusion  

In this section, the plate structures are modelled in PD theory using FE software, 

ANSYS, and their bending deformations are validated with classical theory results for 

a particular value of horizon and discretization sizes, i. e. the number of material points 

in the thickness direction. It is also shown that PD theory can be used to model actual 

sized ship panel structures for collision and grounding phenomena. Furthermore, 

incorporating contact capability to current PD codes are studied considering rotational 

motion of a rigid target. Another option for this can be the use of contact capability of 

current FE software for PD model. The validity of this method is also demonstrated 

with a benchmark problem, which represents grounding phenomena of a ship structure.  

PD theory can be vital for investigating collision or grounding phenomena in a more 

detailed sense while including fracture especially for complex ship structures. For this 

reason, in the next step of this study, the damage capability can be added to current PD 

model in order to observe fracture characteristics of ship structures. By doing such 

kind of analyses, more durable ship structures can be manufactured.   

The main aim of this section is to bring a new dimension contrary to the existing 

analytical and numerical modelling tools used for collision and grounding damage 

analysis of ship structures.   
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Chapter 7  

 

Conclusions  

 

7.1 The Aim  

As it is obvious in the previous chapters of this thesis, Peridynamic (PD) theory has an 

extensive capability of simulating discontinuities, which may be in the forms of cracks, 

fracture and the material interfaces of materials. The main advantage of PDs is that the 

fundamental equations do not include any spatial derivatives of functions. Thus, any 

supportive or constraint equations do not need to be incorporated while dealing with 

an intended problem or domain. This intrinsic property of Peridynamics has made it 

prevalent in every field of solid mechanics but not much in marine structures yet. For 

the marine sense, the main concern of the researchers, generally, is the computational 

burden of PD applications. In this regard, the main aim of this study is to pave the way 

for applications of PD theory in the area of marine structures. In the below paragraphs, 

the main aims and achievements of each chapter are listed.   

In Chapter 2, after an extensive literature survey carried out on structural damage, the 

fundamental equations of Peridynamics are reviewed in a proper order from its general 

sense to the most basic form. Moreover, the differences between the proposed forms 

for its equations are compared.   
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In Chapter 3, the solution methods for the governing equations of Peridynamic theory 

are discussed considering the type of problem, which is intended to be solved. In this 

regard, the implementation of available methods in the literature are covered and their 

applications for PD models are discussed. The aim of this section is to show how the 

Peridynamic equations should be handled and correct some misunderstandings on PD 

theory. One of the biggest miscomprehension is its comparison with FE method. As 

mentioned in this chapter, finite element (FE) is a numerical method whereas PDs is a 

theory. Hence, the only realistic comparison can be made between PD theory and the 

classical theory. As it is shown that it is also possible to do FE implementation for PD 

theory. The other aspect of this chapter is to show how the big problems can be dealt 

with, while solving them in a very small time range. In this sense, exploiting the current 

capacity of computers, which means using the central processing units (CPUs) as well 

as the graphical processing units (GPUs), is disscussed.   

In Chapter 4, the governing equations for simplified structures are derived. The general 

purpose of this section is to present how the fundamental equations for these structures 

can be extracted, especially the most relevant ones for marine structures, e.g. beams 

and plates. It is believed that the derivations for such structures can be a big progress 

for applications not only for the marine structures but also for every kind of large and 

complex structures, such as aeroplanes. While doing sophisticated research on these 

structures, some interesting phenomenon, which is actually the characteristics of real 

materials observed by experiments, i.e. the dispersion characteristics of simplified 

structures are also studied. It is shown in later sections that the derived equations of 

simplified structures can actually capture these phenomenon without any additional 

effort meaning that without a need of any further modifications on the fundemantal 

equations. As a result, it is obvious that these simplified theories are also applicable 

for nano and micro technologies.   

Finally, the Chapters 5 and 6 are mostly devoted to the applications of Peridynamic 

theory for marine structures. In Chapter 5, the damage characteristics of marine 

structures under shock waves is studied by considering a complex composite structure. 

Here, it is shown that PD theory is able to capture the damage of such complex 

structures under extreme loadings. Furthermore, in Chapter 6, the applicability of PD 

theory for grounding and collision phenomena is demonstrated. The aim of this chapter 
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is to model three dimensional ship panels and show the behaviours of those under 

collision or grounding loadings. Besides, the applicability of contact property is 

discussed and validated with a benchmark problem.   

 

7.2 Future Studies  

Whilst doing research in each chapter for the above mentioned purposes, many other 

subjects are also covered which are not shown in this thesis in order not to ruin its 

integrity. Some of these studies are presented below along with the future ideas and 

recommendations.   

In Chapter 3, the implementation of PD theory in FE software, ANSYS, is discussed. 

In addition to those attempts, the damage problems for lamina, which is a single layer 

composite structure, were also studied for applications in ANSYS and the most 

fundamental damage chracteristics are captured for such structures. Figure 7.1 shows 

the crack propagation behaviours for different types of lamina, which is solved by 

exploting FE software, ANSYS, under simple loading conditions. This study can 

further be extended to include damage characteristics of composite laminates, which 

constitute from several layers of lamina on top of each other. To accomplish this task, 

transverse direction bonds, i.e. shear and normal bonds, of PD theory need to be 

represented in FE software and it is left for a future study.   

 

Figure 7.1 Crack propagations for different fiber orientations of lamina  

In Chapter 4, simplified theories for beams and plates are presented and these can be 

extended to ordinary state based PD theory. By doing this, the constraint on the 
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Poisson’s ratio for the proposed plate model can be removed and more general theory 

of plate can be obtained. Moreover, it is also possible to extend current models 

considering all degrees of freedom for each axis. For example, the axial and torsional 

deformations can be added to current PD beam and plate models. By doing this, 

buckling phenomenon can be captured with PD theory and this is left for a future study.   

In Chapter 5, the underwater shock response of marine composites are studied by 

inducing shock loading directly onto a structure. This study can be extended by 

modelling fluid, i.e. water, in PDs and coupling the effects of solid and fluid models, 

i.e. fluid – structure interaction (FSI), in PDs. In this regard, the work done by Demmie 

and Silling (2007), in which the explosive inside a conctrete shell structure is detonated 

to a gas form and finally fractures it, was replicated as shown in Figure 7.2.   

 

Figure 7.2 Explosion of concrete shell during time  

*The red, blue and green colours denote the gas, the TNT explosive and the concrete, 

respectively.   

The gas – solid interaction is able to be captured successfully and the foundings from 

here can be extended to the fluid – structure interaction case. As a preliminary study, 

the water shock wave propagation in a tube, shown in Figure 7.3, was carried out in 

PD theory and the FSI effects are left for a future study.   
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Figure 7.3 Underwater shock wave propagation as the time progresses   

In Chapter 6, the collision and grounding phenomena is studied considering the rock 

or the ship’s bow as a rigid striking object. It is also possible to model flexible striking 

objects for collision phenomenon such as representing the offshore structure’s legs. 

Apart from that, several researches have been carried out to find the effects of impact 

loadings of ice structures acting on ship and offshore structures. In this sense, the ice 

load acting on a ship or offshore structure has critical importance and numerical 

modelling of ice is important. The ice impact problem acting on a rigid target was 

studied for high impact velocities (Oterkus and Diyaroglu, 2014) and the damage 

occurred on ice structure was investigated as shown in Figure 7.4. However, the ice 

cube shown in here is modelled in a brittle sense, which is valid for only high impact 

velocities, and the complete model of ice is left for a future study. In a complete model, 

the visco – plastic characteristics should be included as well as the micro –structure of 

the ice shuld be taken into account.   
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Figure 7.4 Ice cube impact on a rigid target  

Finally, different physical fields can be represented in PD theory and some of these 

are presented with several research papers as mentioned in Section 1.3. In these 

studies, the advantage of PD theory in material interfaces is utilized and also the 

coupling of different physical fields is investigated. Each of these can be the subject 

of a futher study.   
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