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Abstract 

A discussion of identification methods employed in process control applications 
is carried out. The identification methods discussed range from explicit modelling 
techniques based on the relay experiment and the Phase-Locked Loop methods of non- 

parametric system identification, through to the implicit modelling techniques of sub- 

space identification and the model-free methods used in Iterative Feedback Tuning. 

For a given range of gain and phase margins, graphical methods are developed 

that show the viable gain margin and phase margin design pairings that are achievable 
by the use of a PI controller as the compensation element in a closed loop control 

system. Two further graphical methods that allow the parameters of a PID controller to 

be determined such that gain and phase margin design specifications can be met are 
discussed. 

Iterative tuning methods that allow the design of PI controllers to meet gain and 

phase margin specifications are developed. An extension of the iterative tuning method 

that allows the design of PI controllers to meet maximum sensitivity and phase margin 
design specifications is also discussed. 

The Phase-Locked Loop (PLL) method of system identification is used to carry 

out the closed loop identification and tuning of cascade connected control systems. The 

closed loop identification of multivariable systems using the PLL method of system 
identification and the design of a decentralised control system based on an extension to 

the exact gain and phase margin design method is discussed. 

The Iterative Feedback Tuning (IFT) method of restricted structure controller 
design is discussed. A new method, Controller Parameter Cycling (CPC), is introduced. 

The CPC method of controller tuning allows the determination of both the cost function 

gradient and Hessian from experiments that are carried out on the closed loop system. 

Thus, improved numerical techniques can be used by the CPC method over those 

employed in the IFT method. 
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0 Preface 

0.1 Motivation 

In process industries the PID control algorithm implemented in pneumatic, 

analogue electronic or digital formats is used predominately for the control of single 
loop, cascade or multiple loop and multivariable processes. The use of microprocessor 
based PID controllers has seen an increase in the number of manufacturers who offer an 

auto-tune function as standard on their products. The majority of commercially 

produced auto-tuners utilise the relay experiment of Astrom and Hagglund (1984) to 

identify the phase crossover point of the frequency response of the process that is to be 

controlled. Tuning of the PID controller is then carried out using the data obtained from 

the relay experiment and the application of a rule based method or a simple parametric 

model of the process is produced and the PID controller is tuned from the basis of the 

model. 

The Phase-Locked Loop (PLL) method of nonparametric system identification 

(Crowe, 1998; Crowe and Johnson, 1998; Johnson and Crowe, 1998) was developed as 

a direct result of research carried out on the relay experiment of Astrom and Hagglund 

(1984). The objective of the research was to provide a nonparametric identification 

method that would: 

i) have the ease of use of the relay experiment, 

ii) supply accurate estimates of the phase crossover point, and 

iii) provide more accurate estimates of the phase crossover point in the presence 

of measurement noise or process disturbance, than the relay experiment. 

It soon became apparent that the PLL method of system identification offered a greater 

flexibility in its use than did the relay experiment. 

The motivation for the research contained in this Thesis was to determine how 

the PLL method of nonparametric system identification could be utilised such that 

material improvements in the functionality offered by auto-tuners based on the PLL 

method would be achieved over that offered by relay based auto-tuners. 
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0.2 Achievements of the Research 

The work contained in this thesis builds and significantly extends the research into 

the Phase-Locked Loop method of non-parametric system identification as given by 

Crowe (1998). 

An extension to the Phase-Locked Loop (PLL) method of non-parametric system 
identification has been developed to allow the open loop identification of type 1 

processes. 

For an unknown linear time invariant process, connected in closed loop, a 

graphical method was developed showing the viable gain and phase margin design 

pairings that are achievable by using a PI controller. An enumeration technique was 

used to develop graphical methods that show the range of gain and phase crossover 
frequencies at which, using a set of derived equations, the parameters of a PID 

controller can be determined to achieve a specific gain and phase margin design. A 

theorem relating to the enumeration method was produced. 

A second graphical technique relating the PID controller gain parameter, kp, to 

the gain and phase crossover frequencies was developed. The use of the method allows 

the remaining integral and derivative gain terms, k; and kd, to be calculated from a set of 

equations such that a specific gain and phase margin design can be achieved. 

An iterative method was developed that allows the parameters of a PI controller 

to be determined such that a specified gain margin and phase margin design can be 

achieved. The iterative approach was extended such that the parameters of a PI 

controller could be found such that a specific maximum sensitivity and phase margin 

can be obtained. A theorem relating to the convergence of the iterative method was 

developed. 

A method was developed that allows the tuning of a cascade connected control 

loop to be carried out with the cascade system remaining in closed loop. The method 

allows for a test to be carried out ensuring that the cascade system will remain stable 

when the inner controller parameters are updated online. The application of the Phase- 

Locked Loop method of non-parametric system identification was extended to include 

the closed loop identification of multivariable processes. A method was proposed for 

vii 



the extension of the Fung et al (1998) exact gain and phase margin tuning method for 

use with multivariable processes. 
A model-free method for tuning restricted structure controllers was developed. 

The method known as Continuous Parameter Cycling (CPC) allows the gradient and 
Hessian of a cost function to be determined from experiments that are carried out on the 
closed loop system. The CPC method thus allows improved numerical routines to be 

used over those used in Iterative Feedback Tuning. Propositions relating to the 

extraction of the gradient and Hessian data and proofs of those propositions were 
developed. 

Two Journal and eight conference papers have been produced and published or 
have been accepted for publication that include the results of the research, they are: 

J. Crowe and M. A. Johnson, 1999, A New Non-Parametric Identification Procedure for 
Online Controller Tuning, American Control Conference, (3337 - 3341), San Diego, 

U. S. A., 2-4, June. 

J. Crowe and M. A. Johnson, 2000, Automated PI Controller tuning Using a Phase 

Locked Loop Identifier Module, IECON 2000, IEEE International Conference on 
Industrial Electronics, Control and Instrumentation, Nagoya, Japan, 22 - 28, October. 

J. Crowe and M. A. Johnson, 2000, Open and Closed Loop Process Identification by a 
Phase Locked Loop Identifier Module, ADCHEM 2000, IFAC International 

Symposium on Advanced Control of Chemical Processes, Pisa, Italy, 14 - 16, June. 

Crowe, J., M. A. Johnson and J. Wilkie, 2001, Recent developments in PID control for 

process control applications, CPACT conference in Advances in Process Analytics and 

Control, Glasgow, UK, 3-4, April. 

J. Crowe and M. A. Johnson, 2001, Automated PI control tuning to meet Classical 

Performance Specifications Using a Phase Locked Loop Identifier, American Control 

Conference, Arlington, Virginia, USA, 25 - 27, June. 
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J. Crowe and M. A. Johnson, 2001, PID Tuning for Classical Robustness Specifications 
by Enumeration Methods, IECON 2001, IEEE International Conference on Industrial 
Electronics, Control and Instrumentation, Denver, USA, 29 Nov. - 02 Dec. 

J. Crowe and M. A. Johnson, 2002, Automated Maximum Sensitivity and Phase Margin 
Specification Attainment in PI Control, Asian Journal of Control, Vol. 4, No. 4, 
December. 

J. Crowe and M. A. Johnson, 2002, Toward Autonomous PI Control Satisfying Classical 
Robustness Specifications, IEE Proceedings: Control Theory and Applications, Vol. 
149, No. 1, January 2002. 

Crowe, J., M. A. Johnson and M. J. Grimble, 2003, On the Closed Loop Identification 

of Systems within Cascade Connected Control Strategies, European Control 
Conference, University of Cambridge, UK, I-4 September. 

Crowe, J., M. A. Johnson and M. J. Grimble, 2003, PID Parameter Cycling to Tune 

Industrial Controllers -A new model-free approach, SYSID, 13th IFAC Symposium on 
System Identification, Rotterdam, The Netherlands, 27 - 29 August. 

0.3 Layout of the Thesis 

Chapter 1 begins with a categorisation of identification methods that are used in 

process industries into explicit, implicit and model-free techniques. Under the heading 

of explicit modelling methods the relay experiment and the Phase-Locked Loop (PLL) 

methods of non-parametric system identification are discussed, along with some 

extensions to the use and operation of the PLL technique of system identification. 

Under the heading of implicit modelling methods a brief introduction to sub-space 
identification is given. This acts as a bridge between the explicit modelling methods 

discussed and the model-free techniques that are employed in Iterative Feedback Tuning 

and Continuous Parameter Cycling. 
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The development of graphical methods to aid in the selection of gain margin and 

phase margin designs for PI and PID controllers is carried out in Chapter 2. For a PI 

controller and an unknown process, a procedure is developed that allows all of the 

achievable pairings of gain and phase margin designs, in a given range of values, to be 

presented graphically. Two semi-graphical methods were developed for an unknown 
process in closed loop with an unknown PID controller that allow the controller 
parameters to be determined such that a specific gain and phase margin design can be 

achieved. In the first method, by using an enumeration technique a graphical 

representation of candidate gain and phase crossover frequencies at which, using a set of 
derived equations, the parameters of a PID controller can be calculated that results in a 

specific gain and phase margin design being met. For the second graphical technique a 

method was developed that relates the PID controller gain parameter, kp, to the gain and 

phase crossover frequencies. By using the resulting graph and a set of derived equations 
the remaining integral and derivative gain terms for the PID controller are calculated 

such that a specified gain and phase margin is achieved. 
In Chapter 3 iterative design methods are employed to determine the parameters 

of PI controllers to meet classical measures of robustness. The iterative design of a PI 

controller, in closed loop with an unknown process, to meet a specific gain and phase 

margin is detailed. The iterative design method is further developed to allow the design 

of a PI controller such that a maximum sensitivity and gain margin specification can be 

achieved. 

The application of the Phase-Locked Loop (PLL) method of system 

identification is extended in Chapter 4 to carry out the closed loop identification of 

cascade and multivariable control systems. The tuning of a cascade connected control 

system operating in closed loop is detailed. The method allows tests to be carried out 

that ensure that the closed loop cascade system will remain stable when the inner 

controller parameters are updated. An extension to the exact gain and phase margin 

design method due to Fung et al (1998) that allows a gain and phase margin design to 

be carried out on a multivariable process is discussed. 

Chapter 5 begins with a discussion of the Iterative Feedback Method (IFT) of 

controller tuning due to Hjalmarsson et al (1994,1998). IFT utilises a series of 

experiments on the closed loop system to extract the gradient of the cost function with 
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respect to the controller parameters. Hence, by the use of a stochastic estimation routine 

the controller parameters can be determined that will minimise the cost function. Due to 

the somewhat general problem definition used by Hjalmarsson et al the simplicity of the 

method tends to be lost. A deterministic version of IFT due to Mahathanakiet et al 
(2002) that does not obscure the simplicity of the IFT method is also discussed. A new 

model-free iterative design method for restricted structure controllers termed 

Continuous Parameter Cycling (CPC), is introduced and discussed. The CPC method 

uses a time varying perturbation of the controller parameters to produce a time varying 

cost function. The gradient and Hessian data are then extracted from the time varying 

cost function. The availability of the gradient and Hessian data then allow improved 

numerical routines to be used, over those employed in IFT, to determine the controller 

parameters that will minimise the cost function. 

Chapter 6 contains conclusions on the work discussed in the preceding chapters. 

A discussion of future possible research directions resulting from the research reported 

in the thesis is also given. References close the thesis. 
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1 Closed Loop Identification Methods for Process Control Applications. 

1.1 Introduction. 

The object of the research presented in this thesis is to provide a suite of 
tools, operating in the frequency domain, that can be incorporated into an autotuner 
that will carry out the required: 
i) Identification 

ii) PID controller existence testing, and 
iii) PID controller design. 

Further, the autotuner should have as high a degree of autonomy as possible such that 

the operator only requires to enter the desired frequency domain specifications that 

the closed loop control system is required to obtain and the configuration of the 

control system, viz. Single loop, cascade loop, or multivariable. 

The three term or Proportional, Integral and Derivative (PID) controller is 

used extensively within the process industries to provide regulatory control of single 
loop, multi-loop (cascade) and multi-input multi-output control schemes. The 

technology in which the PID controller has been implemented has undergone many 

changes, ranging from pneumatic, analogue electronic, direct digital control and most 

recently as an algorithm within a programmable electronic system. Where there has 

been less of a change is in the methods used to tune the PID controllers to give an 

acceptable degree of control system performance. A review of the literature on rule 

based tuning methods for PID controllers (O'Dwyer, 1998a; 1998b) shows that there 

is an extensive range of tuning rules available that would provide the required degree 

of control system performance, and so it could be thought that PID controller tuning 

would not pose a problem. However, in practice it is found that the majority of PID 

control loops installed in the process industries are poorly tuned or that they are 

adjusted manually (Hersh and Johnson, 1997). In a typical process plant there are 

several hundred PID controllers in use. These controllers are used to control 

processes that in general have relatively long time constants ranging from a few 

minutes to a few hours. Hence for the control practitioner it may not be possible to 

provide the time necessary to tune an individual loop to the required degree of 

1 



control system performance and hence a compromise solution is attained. A further 

complication to the problem of providing a satisfactory control performance is that a 
process model may be necessary to carry out the controller tuning or at least an 
understanding of the dynamics of the process to be controlled is required. This 
information may not be readily available and hence some form of process 
identification shall be required. In carrying out the modelling of the process and the 
design of the PID controller a high degree of skill and knowledge is required by the 

control practitioner. PID controller design in the process industries commonly uses 
one of the experiment-based methods due to Ziegler and Nichols (1942); now 

routinely implemented as an autotuning function by most PID controller 

manufacturers. These experiment-based methods are the process reaction curve and 

ultimate period controller tuning methods. The Ziegler-Nichols paper, which was 

published in 1942, stated as the motivation for a rule-based PID controller design 

method that "the mathematics of control involves such a bewildering assortment of 

exponential and trigonometric functions that the average engineer cannot afford the 

time necessary to plough through them to a solution of his current problems ". This 

has been a driving force behind much of PID rule based design for the process 
industries ever since. Both the process reaction curve and ultimate period methods 

required an experiment to be carried out to identify certain parameters of the model 

of the process to be controlled followed by the application of a rule based controller 

tuning parameter selection. 

The utility of the Ziegler and Nichols methods is that the information 

supplied from relatively simple experiments allows the choice of the controller 

tuning parameters to be made by a rule based method. In recent years there has been 

a trend to introduce controller tuning methods that do not require a high degree of 

skill on the part of the control practitioner to implement a control scheme that gives 

an acceptable control performance. With the introduction of PID controllers based on 

electronic technology, Astrom and Hagglund (1984) introduced the first push-button 

auto-tune method. The method is based on the Ziegler and Nichols Ultimate Period 

method in which information relating to the process at the phase crossover frequency 

is required. In the Astrom and Hagglund method the experiment is carried out in 

closed loop with the controller replaced by a relay. The result of this is the generation 
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of a limit cycle at a frequency close to that of the phase crossover frequency of the 

process. By making measurements of the frequency and amplitude of the limit cycle, 
the data required by the Ziegler and Nichols Ultimate Period method is obtained. The 

advantages of the Astrom and Hagglund method is that the experiment is carried out 
in closed loop and that a stable limit cycle is achieved for the majority of processes 

met in process industries. 

From the literature on PID controller design methods, a way to relate the 
different PID controller design methods is to group them by the requirement to have 

either explicit, data driven or implicit models of the process available to the control 

system designer. In the subsequent sections of this chapter the process model 
identification methods shown in Figure 1.1 shall be discussed. 

Control System 
Design 

Identification Methods 

Explicit Model 
Methods 

Sub-Space 
Identification 

Model-Free 
Methods 

Iterative Feedback 
Tuning 

Parametric 
Methods 

Non-Parametric 
Methods 

Continuous 
Parameter Cycling 

Relay 
Experiment 

Phase-Locked 
Loop Method 

Figure 1.1: Closed Loop Identification Methods 
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The classification of the identification methods shown in Figure 1.1 begins by 

distinguishing between methods that are used to provide an explicit process model, 

either in parametric or non-parametric form, and methods that utilise either a data 

driven model or an implicit model of the process. Figure 1.1 serves to illustrate how 

the process modelling and controller synthesis methods discussed in the following, 

derive and utilise process identification methods ranging from explicit to sub-space 

or data driven to model free techniques. 

In the following, under the heading of explicit models, only non-parametric 

single and multiple point methods of closed loop identification shall be discussed. 

The reason for this is that parametric system identification in closed loop is more 
difficult to implement in practice since not only does the control signal to the process 

require to be persistently exciting but the reference signal must also be persistently 

exciting to obtain reasonable estimates of the model parameters (Ljung, 1987; 

Soderstrom and Stoica, 1989). From Figure 1.1 it can be seen that the non-parametric 
identification methods that shall be discussed are the relay method and the phase- 
locked loop method. The relay method is an inherently closed loop method and is 

discussed in the following section. The phase-locked loop method of system 
identification shall be discussed in section 1.3 along with the developments made to 

the method. 

In recent years there has been a great deal of research carried out in the area 

of model-free controller design methods. In the model-free controller design field 

two methods have been reported. In the first method reported the controller 

parameters are tuned such that a control performance cost function is minimised. By 

using response data collected from the closed loop process and re-injecting it back 

into the system, it is possible to provide estimates of the gradient of the cost function 

with respect to the controller parameters and hence, by the use of Netwon-like 

algorithms, the control performance cost function is minimised. This method of 

controller tuning was first reported by Hjalmarsson et al (1994,1998) where the term 

Iterative Feedback Tuning (IFT) was used to describe the method. The IFT method is 

discussed in section 1.5 of this chapter. A known problem with Iterative Feedback 

Tuning is that it does not provide a means of determining an estimate of the Hessian 

of the gradient of the control performance cost function. The method of Continuous 
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Parameter Cycling, reported in Chapter 5 of this thesis, shall be shown to allow the 
estimation of both the gradient and the Hessian of the control performance cost 
function and hence allow the use of improved (over the IFT method) numerical 
routines to provide optimal control solutions. 

The second method of so called model free controller tuning reported in the 
literature uses subspace identification methods (Favoreel et al, 1998). The subspace 
matrices obtained from the process input and output data can be used to design 

controllers (Favoreel et al, 1999; Woodley et al, 2001; Kadali et al, 2003) without 
the intermediate step of explicitly identifying a process model, thus giving rise to the 
term model free approach being used and adopted for subspace controller design 

methods. The subspace identification method is discussed briefly in section 1.4 of 
this chapter and serves as a link between explicit model methods and model free 

approaches. 

1.2 The Relay Method of Non-Parametric System Identification. 

The connection of a relay in closed loop with a class of systems that can be 

found in process industries shall, in general, result in the generation of a limit cycle 

with a frequency that is close to the phase crossover frequency of the system. The 

configuration of the relay experiment is shown in Figure 1.2. 

R(s) 

Gn(s) 

Relay Process 

Figure 1.2: Relay Experiment Setup. 

Y(S) 

A relay exhibits a non-linear behaviour and as such the analysis of a system 

within which a relay is used is relatively difficult to carry out. It is usual in the case 

of a relay system to utilise the describing function method (Atherton, 1975) to derive 
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a linear system representation of the non-linear relay. With such a description of the 

relay available, linear methods can then be employed to carry out the analysis of the 

system. The describing function method is based on the assumption that there is only 
one sinusoidal component present in the system. Thus if the closed loop system 
exhibits a low pass characteristic at the phase crossover frequency then the 
describing function method shall return accurate estimates of the phase crossover 
frequency and the process magnitude at that frequency (Shen et al, 1996a). However 

if the system does not have a low pass characteristic at the phase crossover frequency 

then substantial odd harmonic components can circulate in the closed loop and thus 
degrade the accuracy of the estimates obtained from the use of the describing 

function method. To reduce the harmonic content of the relay output a relay with the 

following characteristic was proposed (Shen et ad, 1996a): 

I+h : x(t)>h k 

y(t) = kx(t) -h< x(t) <h kk [_h 
x(t)<-h k 

(1.1) 

where y(t) is the relay output, x(t) is the relay input, h is the relay saturation limit and 

k is the gain of the linear section of the relay characteristic. It can be shown (Shen et 

al, 1996a) that if the gain, k, is chosen as 

k= 
h 
A 

(1.2) 

where A is the amplitude of the exciting sinusoid, there will be no harmonics other 

than the fundamental, present in the closed loop. However, there are a number of 

difficulties associated with the practical application of the Shen et al method. The 

choice of the gain k is system dependent and thus its value cannot be determined a 

priori. A further difficulty is that the value of k must be set slightly larger than the 

theoretical value given by equation (1.2) if a stable limit cycle is to be established. 

A similar proposal to that of Shen et al, viz. that there are no harmonics 

present in the relay output other than the fundamental, is given by Lee et al (1995). 

The method of Lee et al differs from that of Shen et al in that a non-linear element is 

added to the output of the relay. The function of the non-linear element is to provide 

a sinusoidal excitation of the process of peak amplitude 

x(t) > k 
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(1.3) 

where h is the relay height, and the frequency of the sinusoid is equal to that of the 
relay fundamental frequency. The practical implementation of the Lee et al method 
uses a standard relay experiment to determine the initial value for the excitation 
frequency and thereafter the non-linear function is used to extract the fundamental 
frequency of the relay oscillations. In order to reduce the harmonic content of the 
signals circulating in the closed loop to a minimum the switching of the frequency 

value is carried out at the zero point of the system excitation. 
The relay experiment is a very simple and elegant means of identifying a 

process at its phase crossover frequency. However in practical applications of the 

method there is the possibility of a static load disturbance occurring during an 
experiment. The occurrence of a static load disturbance during a relay experiment 

causes the relay output to have an unequal mark-to-space ratio, assuming that the 

process is type zero. Hence, under a static load disturbance condition the 
identification of the process phase crossover data will have a large error. 

Shen et al (1996b) observed that for a biased relay given by 

h+S : x(t)>O 
Yýt)= h-8 : x(t)<O 

(1.4) 

where x(t) is the relay input and h and 5 are the relay height and bias respectively, 

when excited by a sinusoid plus bias signal given by 

x(t)=Asinwot+Aa (1.5) 

gives rise to the same Fourier coefficients of the output waveform as a standard relay 

when it is excited by a sinusoid plus bias with the exception of a term 8. The term b 

is present in the case of a biased relay excited by a sinusoid plus bias. Hence it is 

possible to utilise this term to restore equality to the mark-to-space ratio of the relay 

output by making a suitable choice of b; Shen et al (1996b) give this value as 

-h 
Aa 
A 

(1.6) 

where h is the relay height, A is the peak amplitude of the system output and Aa is 

the value of the static load disturbance term. A difficulty in the practical 

implementation of this method lies in the fact that the load disturbance must be 
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detected during the identification so that its effect can be removed. A possible means 
of detecting the effect of a load disturbance would be to monitor the mark-to-space 
ratio of the relay output and to apply the bias, given by equation (1.6) to the standard 
relay, when an unequal mark-to-space ratio was detected. 

A further problem arises in the practical application of the relay method of 

system identification when noise is present in the output of the system being 

identified. The presence of noise causes the relay to switch spuriously, thus giving 

rise to inaccuracies in the estimate of the phase crossover point data. Astrom and 
Hagglund (1995) proposed the use of a relay with hysteresis to reduce the effects of 

noise on the switching of the relay. The value of the relay hysteresis is set such that it 

is greater than the peak value of the noise signal present in the system output. The 

describing function of a relay with hysteresis has both a real and imaginary 

component and thus no longer has zero as an argument, hence there will be a 

systematic error present in the estimation of the system phase crossover data. An 

obvious means of reducing this error is to make the hysteresis value as small as 

possible. 

The relay experiment of Astrom and Hagglund (1984) can be used to 

determine an estimate of the phase crossover data for a process. It is also possible to 

connect filters in cascade with the relay such that points other than the phase 

crossover point can be identified (Astrom and Hagglund, 1995). In particular if an 

integrator is used as the filter then a limit cycle at a frequency for which the phase 

shift of the process is -- (rad) will result. More generally the relay with hysteresis 
2 

can be used to identify points on the frequency response curve of a process other than 

the phase crossover point. Loh et al (2001) detail a method for processes that can be 

adequately modelled as 

Ku,, -Ls 
G 

pýsý=s l+sT 
(1.7) 

whereby, an iterative method is used to determine points on the frequency response 

curve of the process that have either a desired magnitude or phase angle. If a point 

with a certain magnitude is required to be identified then the iterative method 

specifies how the relay height should be changed to achieve that identification. 
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Similarly if a point with a certain phase angle is to be identified the method details 
the required changes to the relay hysteresis value. 

One of the benefits of the relay experiment is that a known point on the 
frequency response curve of a process can be identified. In the literature there are a 
number of extensions to the relay experiment that allow the identification of multiple 
points on the frequency response curve of a process. To identify multiple points of 
the frequency response of a process Bi et al (1997) utilise a parasitic relay that is 
locked to a multiple of the standard relay period. The parasitic relay experiment 
setup is shown in Figure 1.3 where the parasitic relay characteristic is described by 

u2(0)=ah 

U2(k) = 
u2 (k) = -ah x sign(u2 (k 

-1)) if u, (k 
-1) >0 

and u k< 0 

u2 (k) = u2 (k 
-1) otherwise 

where a is a multiplier for the standard relay height h. The relay height of the 

parasitic relay must be chosen carefully so that the limit cycle is not moved too far 

from the phase crossover point frequency, 0.1 to 0.3 is the stated range for a. 

It is also stated that it is possible to connect more than one parasitic relay with the 

standard relay without introducing too great an error in the frequency of oscillation to 

determine the phase crossover point. With this configuration it is possible to obtain 

an excitation of the process at the phase crossover point frequency and sub-multiples 

of that frequency. Each excitation frequency also generates odd harmonics of its own 
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frequency; hence the process can be excited at frequencies both above and below the 
phase crossover frequency. Since the process is excited by the test frequencies 

simultaneously, Fourier or Spectral analysis methods must be employed to extract 
the frequency response estimates of the process. 

The method of Bi et al (1997) requires the addition of an extra hardware 

component to facilitate the generation of harmonics that allow the identification of 
points other than the phase crossover frequency of a process. Wang et al (1997a) 
describe a method whereby the data from a standard relay experiment can be used to 
identify multiple points of the frequency response of a system. The method begins by 

recording the process excitation and output signals until the closed loop is in steady 
state. The data are then multiplied by an exponential term of the form 

f (t) 
= Cal 

this ensures that the data tend to zero as t -+ oo ;a necessary step for the next stage of 
the method. The process input and output data are then Fourier transformed and an 

estimate of the shifted frequency response of the process is given by 
A 
Y(jw+a) 

G(jw+a)= 
A 
U(jw+a) 

AA 

where Y(jco + a) and U(jw + a) are estimates of the shifted Fourier transforms of 

the process output and input signals respectively. It is possible to recover a non- 

shifted version of the estimate of the frequency response of the process by first 

A 
inverse Fourier transforming the shifted estimate, G(jw + a), such that the impulse 

response 
A 

g(t) = g(t)e -°' 

is obtained, thus the frequency response estimate can be recovered from the 

following 
A 00 

Go*w) = 
f(g(t)e°1 e, wtdt 

C; O 
The methods of Bi et al and Wang et al provide estimates of multiple points 

on the frequency response curve of a process. However with these methods it is not 

possible to determine the phase angle or magnitude of these points a priori. 
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A method was proposed by Schei (1994) in which a relay and a filter element, 
in this case an integrator, were connected around a process that was operating in 
closed loop. With this method there is no requirement to change between controlling 
the loop by means of the existing controller and the relay as in the relay experiment 
of Astrom and Hagglund. The experimental setup for the method of Schei is shown 
in Figure 1.4. 

j 

Figure 1.4: The Schei Relay Experiment, Monitoring of Phase Margin 

The relay experiment of Schei allows the set point term Ro(s) to be applied to 

the closed loop system, Gl(s), during testing such that there is no modification to the 

set point by the experiment setup. With this configuration Schei (1994) shows that it 

is possible to determine the phase margin of the forward transfer function of the 

closed loop system, Gl(s). 

If the circuit of Figure 1.4 is reconfigured to be that shown in Figure 1.5 then it can 
be shown (Schei, 1994) that the gain margin of the forward transfer function of the 

system connected in closed loop, Gi(s), can be determined. 

11 

r(S), 
---------------------- 



J 

Figure 1.5: The Schei Relay Experiment, Monitoring of Gain Margin 

The relay experiment due to Schei (1994) can thus be seen as a tool that 

allows the closed loop performance of a control loop to be relatively easily 

monitored. The methodology used by Schei has been extended by de Arruda and 

Barros (2003). In their method it is possible to identify either specified magnitude 

values of the forward path transfer function or specific sensitivity values for the 

system connected in closed loop, shown in Figure 1.6 as Gal(s). 

Figure 1.6: Relay Experiment to Identify Forward Loop Transfer Function 

The positive constant term, r, shown in Figure 1.6 is used to select the point on the 

forward transfer function that is to be identified. 
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Figure 1.7 shows the experimental setup that is proposed by de Arruda and 
Barros (2003) to identify points on the sensitivity function of a system connected in 

closed loop. 

J 

Figure 1.7: Relay Setup for Sensitivity Identification 

From the above discussion, it can be seen that by the application of relays, 
data that are required for non-parametric identification of systems in closed loop can 
be obtained. The benefits that are obtained by the use of relays to obtain this data are 

that the time taken to carry out the required identifications tends to be low and that 

the experimental setup is relatively easy to implement, both of which are essential 

when this type of work is being carried out on an operational plant or process. There 

is however the problem caused by the use of the describing function approach for 

providing a linearised model of the non-linear relay characteristic affecting the 

accuracy of the results obtained. However, as discussed previously, there are a 

number of methods available to overcome this problem. 

1.2.1 Summary Conclusions on the Relay Experiment. 

The relay experiment has been a fertile source of research for a number of 

years, as evidenced by the large body of publications produced on the subject. 

Modifications to the relay characteristic such that the error due to the use of the 

describing function method of linearising the relay characteristic is reduced have 
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been reported (Shen et al, 1996a; Lee et al, 1995). Improvements in the accuracy of 
the relay experiment in the presence of measurement noise have been discussed 
(Astrom and Hagglund, 1995), as has the use of relays when process disturbances are 
present (Shen et al, 1996b). The use of relays has been extended from their 

application in single loop identification and tuning to the identification and tuning of 
cascade loop and multi-input multi-output systems (Hang et al, 1994; Shen and Yu 
1994; Zhuang and Atherton, 1994; Palmor et al, 1995; Wang, 1997b). The relay 
experiment is a method that allows one point on the frequency response curve of a 

process to be identified. The extension of the relay experiment to the estimation of 

several frequency response points has been reported in the literature (Hagglund and 
Astrom, 1991; Bi et al, 1997; Wang et al, 1997a). The use of the relay experiment to 
determine the exact parameters of process models, of the type first and second order 

plus dead time, have appeared in the literature along with analytical methods to 

determine the output of a closed loop relay system for higher order systems (Kaya 

and Atherton, 2001; Panda and Yu, 2002). 

From this the question arises, "What potential future development can be 

achieved with the relay experiment? " Current research on the relay experiment 

would appear to be focusing on using the shape of the closed loop system response 

(Panda and Yu, 2002) to determine low order model parameters. These models are 

then utilised in some form of auto-tuning method to derive the parameters for PID 

controllers. However the question of how accurate a representation of the frequency 

response of the model obtained is in comparison to the actual process frequency 

response is not answered. It would appear that research in the relay experiment has 

now moved from obtaining accurate non parametric identification data to using the 

relay to obtain an accurate parametric model of the process. 

While relay experiment research now appears to be moving into parametric 

system identification, it would seem that parametric system research is progressing to 

model-free or data driven approaches. The relay experiment will continue to be used 

in proprietary auto-tune controllers since the information it supplies is sufficiently 

accurate to allow a rule based design to provide a satisfactory level of control system 

performance. Research into the relay experiment can be broadly categorised as: 

i) Modifications to the relay characteristic 
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ii) Operation of the relay experiment in noise or with process disturbances 

present 

iii) Multiple point estimation on the process frequency response curve 
iv) Cascade loop and multi-input, multi-output control system tuning 

methods. 

From the above it can be seen that there have been many avenues of research 
followed and that the relay experiment is still an active area for research. However, 

the evidence of the review above is that the initial simplicity of the Astrom and 
Hagglund (1984) method is now being lost and that additional complexity is being 

added to provide further utility from the method (Schei, 1994; de Arruda and Barros, 

2003). Further the published literature seems to show little evidence that the 

modified or more complex relay experiment methods are making a transition from 

theory to serious industrial application. 

1.3 The Phase-Locked Loop Method of Non-parametric System Identification. 

The relay experiment of Astrom and Hagglund (1984) is an elegant and 
fascinatingly simple method of identifying key system parameters on which to base 

PID tuning rules or to provide data for control loop monitoring purposes. Research 

into methods of overcoming the known operational problems of the relay experiment 
in the presence of noise and improving the accuracy of the identified data was 

discussed in the preceding section. The salient features of the relay experiment are 

that: 

i) It is easy to perform 

ii) It is carried out in closed loop 

iii) It returns relatively accurate results, and 

iv) Identification time is not protracted 

It was the intention of the initial Phase-Locked Loop method of system 

identification research to provide an identification method with all of the benefits of 

the relay experiment but also to provide the added flexibility of being able to identify 

any point on the frequency response curve of a system. The initial Phase-Locked 
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Loop (PLL) method of system identification (Crowe and Johnson, 1998; Johnson and 
Crowe, 1998; Crowe, 1998) represents a clear departure from the relay experiment. 

1.3.1 Phase-Locked Loop Identifier: Fundamental Theory and Properties. 

The research into the Phase-Locked Loop method of system identification began in 

1996. The results of the research were patented in 1998 (UK patent application 

number 9802358.3) with the first publication on the method following shortly there 

after (Crowe and Johnson, 1998; Johnson and Crowe, 1998). The initial spur for the 

development of the Phase-Locked Loop method of system identification was to 

answer the question "How could the relay experiment be carried out without using a 

relay? " The PLL is shown in block diagram form in Figure 1.8. The main 

components of the identification module, as shown in Figure 1.8, have the following 

functions: 

i) A feedback structure using a phase or gain reference at an input 

comparator. 

ii) A digital model of a Voltage Controlled Oscillator (VCO) that generates a 

process sinusoidal excitation path and a sinusoidal reference path. 

iii) A digital signal processing unit or Phase Sensitive Detector to extract the 

actual measured system phase or gain for supply to the comparator. 

iv) A digital integrator unit to ensure the identifier unit converges to the 

given system phase or gain reference. 

The digital process identifier, the signal processor block of Figure 1.8, comprises two 

conceptual processes. The inner process is that of a sine wave experiment. The outer 

process is a digital control loop containing two sub-processes: 

i) The extraction of phase and gain data from the output of the multiplier, 

and 

ii) The update process and the convergence of the overall digital control 

loop. 

This outer process or loop can be considered as a closed loop stability problem and is 

discussed in the following. 
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c------------------------------------------------------------------------------, 

Phase Sensitive Detector 
------ --, 

Digital Digital Signal 
Integrator Oscillator Processor 

i 

Phase or 
Gain 
Reference System 

Figure 1.8: Phase-Locked Loop Method Conceptual Diagram 

The inner sine wave experiment 

The outer digital loop acts as a supervisor for the inner loop comprising the sine 

wave experiment. The outer loop will update only when the phase shift (or process 

gain) estimate has steadied and is giving a consistent sequence of values. The speed 

at which these values settle will depend on the transient characteristics of the 

particular system. A second aspect of the inner sine wave experiment is that it is not 

practical to allow the k ih experiment to go to completion. This is accommodated in 

the analysis by defining: 

0k -l Oki t--+ao 
(1.8) 

where qk, is the estimate of Ok at time, t. It is usual to truncate the estimation 

. process at some t< oo and this estimate is denoted, Oki 

Phase and gain data extraction in the digital identifier module 

The duty of extracting phase (or gain) information from the sine wave experiment is 

performed by the Phase Sensitive Detector block of Figure 1.8 and this is a simple 

peaks and troughs operation. Whilst this enables the extraction of phase and gain 

data to be accomplished efficiently and accurately the question of loop convergence 

needs to be answered. 
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Identifier Convergence Theory 

If the inner process is considered to contribute to the outer digital process on 
completion of the sine wave experiment, the outer loop can then be given the discrete 

system representation of Figure 1.9. The integrator takes the common z-domain form 

shown in the Figure 1.9. The digital oscillator is modelled as a simple digital gain 
block with gain Kvco " The analysis of closed loop convergence is a quasi-steady state 

analysis. For this reason Figure 1.9 does not include the sine wave test loop. It is 

assumed that the sequence of converged outputs of the 1 DIG block can be obtained. 

or 

Phase 
Reference 

oe Uk k 
1 K vc, o 

(Dk 

DIG 

L0kt 

Figure 1.9: Outer Loop Digital Identifier System 

Lemma 1 Fixed Point Lemma 

If co. is a fixed point of the identification scheme, then 

r 
\ý#1-0 

Proof 

As Crowe (1998). 

The importance of the result is threefold: 

i) If the routine converges then it converges to the reference phase value. 

0 

ii) Whether co, = gor (for which Or = O(wr)) depends on the properties of the 

system but this result can be engineered by careful algorithm construction. 

iii) An analogous result and interpretation for a system gain reference is 

straightforward. 
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For a fixed point frequency, the algorithmic relationship of the phase-locked loop 
identifier (Figure 1.9) can be used to give: 

(a* 
-ýk+I)-(ý* -Wk)+KVCO%ký(0r -0k) (1.9) 

where 
0k1 Ok 

7lkr= r- Ok 

Theorem 1.1: Sufficient Conditions for Convergence 

The iterative process (1.9) satisfies 

[fi ((0 
- wk+I 1: 5 L, I- wo 1 

j=o 

where Lj = 1- Kvco 17 dO(wj=) 
k, dw 

and wi < wis < w, 

i) If there exists k such that for all k >k , Lk <1 then Iw, - wk 1-> 0 as 

k oo 

ii) If Lm = max {L, Y,.. < 1, then Im. - aok 1-* 0 as k 00 

From clauses i) and ii) it follows for L1 that 

Kvco 77 
do(coj. 

<1 
ki do) 

Proof of Theorem 1.1 

For a proof of Theorem 1.1 refer to Crowe (1998). 

Remarks 

0 

. 

Clause i) allows the Phase-Locked Loop identifier to wander before converging to 

the fixed point solution. Clause ii) is a special case of Clause i). In the case where 
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t -ý oo then 0k_0k and r7k, =1. The key to the speed of convergence lies in the 

appropriate selection oft (the cut-off point for the accuracy within (D DIG) and the 

selection ofK,. (. ()From the convergence analysis the bounds over which the digital 

controlled oscillator gain may be varied and convergence maintained are obtained 
from the following. Theorem 1.1 gives 

do(o)j,, ) 
KVCO q 1 < k dcv 

do (co 
' hence -1<1-Kvcoi 7_ <1 

k1 drv 

do( w = and -2< -Kvco <0 d ! k w 

do (co 
'= 

) 
0< Kvco 77 <2 

kt dw 

thus 0< Kvco < 
2 

d 
ra)ß_ 

si 
k dw 

The Phase-Locked Loop method of system identification has been shown to 

provide a high degree of identification accuracy (Johnson and Crowe, 1998; Crowe, 

1998) and is able to give more accurate results than the relay experiment of Astrom 

and Hagglund. However, in all of the simulation examples carried out, the relay 

experiment takes less time to achieve the identification albeit to a lower degree of 

accuracy. The main advantage that the Phase-Locked Loop method has over the relay 

experiment is that there is no restriction as to the point on the frequency response 

curve that is to be identified. The user can specify any phase angle or any magnitude 

value as a reference input to the identifier module. A further advantage of the Phase- 

Locked Loop method is that the intermediate points that are identified, as the error 

between the reference value and the actual value reduces, are accurate and can be 

used as estimates of the frequency response of the system being identified. 

In the literature there have been accounts of other variants of the Phase- 

Locked Loop technique (Balestrino et al, 2000; Clarke and Park, 2003). In Balestrino 

et a! the term Sinusoidal AutoTune Variation (SATV) is used to describe a Phase- 
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Locked Loop method. Comparing Figure 1.8 with Figure 1.10 it can be seen that 
structurally there is no difference between the Phase-Locked Loop method and the 
method described in Balestrino et al as SATV. Balestrino et al initialise the 
sinusoidal oscillator at a frequency close to the phase crossover frequency of the 
process being identified by the initial use of a relay experiment. However for the 
identification of points other than the phase crossover point no initialisation method 
is cited and it is assumed that there is no means to initialise the method for points 
other than the phase crossover point. In the Balestrino et al method the extraction of 
phase information is carried out using synchronous detection; a technique known to 

give good noise rejection properties (Soderstrom and Stoica, 1989). 

--------------------------------------------------- I 

Switch 

L lltr0l 

nusse 
cillctor 

LILIILIJ.. 

iIIHIIJIJ 

- ------ ---' 

Figure 1.11 shows the block diagram of a synchronous detector. As can be seen from 

the figure, the synchronous detector recovers the system phase angle and gain 

estimates by multiplying the system response by sine and cosine signals and then low 

pass filtering the resultant product terms. 
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G0 ovo) I sin(wot+(P(wo) 

sin(w0t) r--º1 G(s) X 
0.5 1 Gil wo) 1 (-cos(2 wot+tp(o 0)i +costp(wo)) 

ýxý 0.51 G(jcv) I cos((v(o 0) 

0.51 Go o)o) I (s in (2 w0 t+ (p (wo)) +s in (p (cv0)) 
X 

ýXý 0.5jG(jtv)jsin(cp(wo) 

VCO 

cos(wot) 

Figure 1.11: Block Diagram of a Synchronous Detector. 

Clarke and Park (2003) use the term "phase/frequency estimator" for the 

system shown in Figure 1.12. 

coo 

adaptive 
algorithm 

+ 

Od 

uO At 

sinewave G(J cg) phase 
generator J estimator 

Figure 1.12: Conceptual diagram of a phase/frequency estimator (Clarke and Park, 

2003). 

The adaptive algorithm block in Figure 1.12 implements 

dwo (tý 
_ -Ke(t) = K(Arg(G(Jevo) - qa 

dt 

and is thus seen to be an integrator with gain K. If the system shown in Figure 1.12 is 

compared with that in Figure 1.8 then no structural difference can be identified, so 

far as the functions of the individual blocks are concerned. However it should be 

borne in mind that the Phase-Locked Loop identifier of Crowe and Johnson operates 
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in discrete time whereas that of Clarke and Park operates in continuous time. In the 

Clarke and Park method, phase detection is carried out by the use of a Hilbert 

transform. A Hilbert transform is a filter that has unity gain for all frequencies and a 

phase shift of - 
'r (rad) at all positive frequencies and a phase shift of 

z (rad) at all 
22 

negative frequencies. The data extraction method using the Hilbert transform is 

explained by means of the following. Assume that a process is excited by a signal 

s; (t) = sin (co,, t) 

If the process is given by G(s), then the resultant steady state output will be 

S0(t)= IG(jcv(, )sin( 
0t +q$(wo)) 

(T(irn_)I rin/cn_t-+rn(cnJ 

Gjwo)lcos(g(wo)) 

ý(wo) 

I G0co, ) I sin(tp(w)) 

With reference to Figure 1.12 it can be seen that 

G(j wa ýCOSO(C0, )= I#{ (- co s(w� t+ O(wo )) co s wo t) 

+sin(w0t+q$(oo))sinwot) (1.10) 

G(jw0) sin g5(w0) =I 
)(sin (w0t + 0(0n ))cos 

Cv0t 
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Figure 1.12: Conceptual Diagram of a Hilbert Transform Based Phase Detector. 



+ (- cos(w,, t + q5(cv0 )) sin wot)) (1.11) 

From equations (1.10) and (1.11) it is seen that the phase angle and magnitude of the 
frequency response of G(s) at the excitation frequency, co, are readily obtainable. In 
Clarke and Park (2003) it was demonstrated that the Hilbert transform phase detector 

gave an improved performance with regard to noise rejection than did zero crossing 
detection methods and hence delivers an improved performance. 

From the work of Balestrino et al and Clarke and Park it can be seen that 

structurally there is no difference between the Phase-Locked Loop identification 

methods that were first reported by Crowe and Johnson (1998,1999). The main 

contribution of Balestrino et al was to use the simple expedient of initialising the 
Phase-Locked Loop identifier at a frequency close to the phase crossover frequency 

by the use of a relay experiment. The main contribution of the work by Clarke and 
Park was to carry out an assessment of possible phase sensitive detectors. The 

detectors that were compared were the zero crossing, synchronous demodulation and 
Hilbert Transform phase sensitive detectors. The candidate phase sensitive detectors 

were compared in terms of linearity, excitation amplitude dependence, harmonic 

content and noise rejection properties. The phase sensitive detector that gave the best 

performance against the selection criteria was the Hilbert Transform phase sensitive 
detector. 

The Phase and Magnitude Detector Employed by Crowe and Johnson. 

In the Phase-Locked Loop method of Crowe and Johnson the estimation of 

phase and gain data is carried out using a maximum and minimum peak value 

detection method. The process is excited by a cosine signal and the VCO generates 

not only the cosine excitation signal but a sinusoidal signal, both these signals after 

scaling, are used as multipliers of the process response. The extraction of the phase 

and magnitude data is then carried out using the maximum and minimum values of 

the multiplier outputs. This method employs the result that if a signal of the form 

v(t) =I )(sin (2wot + q$(wo )) 
- sin q (w0 )) 

the output of the multiplier, is sampled at its maximum and minimum values then 
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G(jo 
0 

sin q$ o0 
V 

`tmax J+ V(tmin l 

2 
Similarly if a signal of the form 

v(t) =I 
)(cos(2Co0t 

+ q$(CV0 )) + cos 0(w0 )) 

is sampled at its maximum and minimum values then 

IG(jc 
,, cos0(wa)= 

V(tmax 
)+ 

V(tmin ! 

2 

(1.12) 

(1.13) 

Figure 1.13 shows the phase detector block diagram and details of the results (1.12) 

and (1.13) are given by Crowe (1998). Inspection of equations (1.12) and (1.13) 

show that the phase and gain data are easily derived. 

1 G(i w0) 1 cos(wot+Q, (wo) 
0.51 G(j wo) 1 (-cos(2 wot+cv(wo))+cosqi(wo)) 

cos(wot) U(s) X 
'DIG ýI G(J CD, I cos((p(l)o)) 

0.51 G(I co,, ) I (sin(2 wot+gv(wo))-sin(p(wo)) 
X 

(DDIG 

vco 

sin(wot) 

Atan2 (P(O0) 

G(1 w) I sin(ý0 (wo) (X, Y) 

Figure 1.13: Block Diagram of the PLL Phase Detector Used by Crowe and 
Johnson. 

1.3.2 Phase-Locked Loop Method for Identification of Type 1 Processes. 

The Phase Locked Loop method of process identification, has been applied to 

a number of process identifications carried out both in open and closed loop 

configurations. A criticism that has been levelled at the method of Crowe and 

Johnson of Phase Locked Loop identification is that it is not possible to identify 

processes that are of type 1, viz. integrating type processes (Clarke and Park, 2003). 

The initial concept for the Phase Locked loop method was that it should be, as far as 
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possible, a direct replacement for the relay experiment but be more flexible in its 

application to process identification. Thus it was always assumed that the phase 
locked loop method would be used to identify processes connected in closed loop 

and thus in its present form can be used to identify type 1 processes in closed loop. 

However, in an effort to overcome this criticism and to allow open loop 

identification of type 1 systems to be carried out, a modification to the digital signal 

processor of the Crowe and Johnson Phase Locked Loop identifier is proposed. 
In the Crowe and Johnson PLL identifier the Voltage Controlled Oscillator 

(VCO) is only allowed to update when the estimates of the process magnitude and 

phase angle have settled to within a specified tolerance. At that point in time, 

irrespective of where the VCO output waveform is in its cycle, the VCO frequency is 

updated and a signal at the updated frequency is initiated. The effect of this is 

twofold: 

i) An offset is produced in the output of type 1 processes, and 
ii) The offset produces an additional term at the excitation frequency in the 

output of the multiplier within the phase detector. 

The additional term in the multiplier output prevents the estimates of magnitude and 

phase angle from settling and so the Crowe and Johnson PLL identifier fails to 

identify the type 1 process to a sufficient degree of accuracy. The cause of the offset 

is due to the fact that an integer number of excitation cycles have not been passed to 

the process and hence the integral term in the process has an output that will be 

different from zero. 

A simple modification of the update timing logic within the digital signal 

processor such that an update of the VCO frequency is only allowed at the end of a 

complete excitation cycle remedies the problem. The modified Crowe and Johnson 

PLL identifier is used to identify the critical point data for the process 

Gp(s)= 
1 

s(s+l)2 

The evolution of the phase angle, magnitude and frequency are shown in Figures 

1.15,1.16 and 1.17 respectively. The simulation was carried out using 

Matlab/SimulinkTM with an update and stopping tolerance of 0.002. The theoretical 

values for the magnitude and frequency at the critical point or phase crossover point 
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for Gp(s) are 0.5 and 1.0 (rad. s"1), respectively. From Figure 1.14 it can be seen that 
the desired phase angle is accurately attained after approximately 208 (s). The 

estimated phase angle was -3.1404 (rad) which is within the required stopping 
tolerance and gives an error in the estimated phase angle of 0.038% 
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Figure 1.14: Evolution of Phase Angle with Time - Type 1 Process. 

The evolution of the magnitude response can be seen from Figure 1.15, with the 

phase crossover point magnitude found as 0.5022. The percentage error between the 

theoretical value of phase crossover point magnitude, 0.5, and that found using the 

Crowe and Johnson PLL identification method is 0.44%. 
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Figure 1.15: Evolution of Identified Magnitude - Type 1 Process. 

The evolution of the excitation frequency is shown in Figure 1.16, with the final 

value of excitation frequency being 0.9977 (rad. s-1). The error between this value and 

the theoretical value of 1.0 (rad. s"1) is 0.23%. From this and other simulations carried 

out the modification to the Crowe and Johnson PLL identifier now allows the open 

loop identification of type 1 systems. However, closed loop identification remains 

the preferred method of carrying out identification for process control applications 

either with the controller being known or unknown. 
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Figure 1.16: Evolution of Excitation Frequency- Type 1 Process. 

1.3.3 Closed Loop Phase-Locked Loop Identification Methods. 

In almost all practical situations, process control system identification will 

occur in closed loop. Two different identification situations can occur: 

i) The transfer function of the controller and the process are both unknown, 

or 

ii) The transfer function of the controller is known but that of the process is 

unknown. 

The use of the Phase-Locked Loop method of process identification shall now 

be discussed where it shall be shown that the identification method, when applied to 

a closed loop system, has a similar ease of implementation as the relay experiment. 

In Figure 1.17 an unknown process GP (s) in a unity feedback configuration with an 

unknown controller G, (s) is shown. 

29 

130 140 150 160 170 180 190 200 210 



azb(G2 (jwk )) 

azg(Gv (Jwk)) 

iHILII1 

Fl DIG 

; Identifier 2 

i------------------------------- ------- }-------------- 

1 I wo n 
-00 

Phase - VC 0 
Integrator Reference +, 

1, 
1, 

------------------- --- --- ----------- - Identifier 1 

"+ ( 01(s) 

U(S) X(S) Y(s) 

G, (jwk I 

I G2 (jw, I 

arg(G, (l wk )) 

IG, (1», 1 

Figure 1.17: PLL Identification of an Unknown Process in Closed Loop with 

an Unknown Controller. 

From Figure 1.17 it can be seen that two Phase-Locked Loop identifiers are used to 

carry out the identification of the unknown process, Gp(s). The controller, Ge(s), is 

also assumed to be unknown. It should be noted that there is only one excitation 

signal, generated by Identifier 1 and that the multiplier in Identifier 2 receives its 

VCO signal from Identifier 1. By this construct both PLL identifiers are 

synchronised to one excitation signal. Two identifications are carried out 

simultaneously, the first identification between U(s), the reference input, and X(s), 

the controller output. The second identification is carried out between U(s) and Y(s), 

the process output. 

Using the identity s=j co , 
it is readily shown that (Crowe and Johnson, 2000b) 

arg u (jro) - arg u(i0) = arg(GP G*w» 

= 
JGP (jo)ý 

u(jco) u(jco) 

(1.14) 

(1.15) 
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Hence by performing simultaneous identifications between the reference input and 
the controller output and between the reference input and the process output, it is 
possible to identify the process when it is connected in a closed loop configuration 
with an unknown controller. 
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IG(Jwk 
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---------- 
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i+ 
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arg(1- G(I C), k 
}} 
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Figure 1.18: PLL Identification of an Unknown Process in Closed Loop with 

a Known Controller. 

From Figure 1.18 it can be seen that only one Phase-Locked Loop identifier is used 

to carry out the identification. Since the controller transfer function and excitation 
frequency are known it is possible to determine the controller magnitude and phase 

angle at each excitation frequency. With this knowledge and the identification of the 

closed loop system between the reference input, U(s), and the process output, Y(s), it 

follows from Figure 1.18, setting s= jw that the closed loop transfer function is 

(Crowe and Johnson, 2000b) 

G(jw)_ 
Y(jw) 

_ 
G, (. lwýv(Iw) 

U(jw) 1+G, Gwk'v(. lw) 

using equation (1.16) 

(1.16) 
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Gp = 
(. . 0j) 

(1.17) 
1- G(jw))G, (. 1 w) 

to simplify the following notation let 

O(w) = az'g(G(lw)) 

then equation (1.16) can be represented by 

G(ic, )= IG(iv)(cos o(v)+i sin m(om)) 
hence 

1- G(jw1= V(1- IG(jü cosO(co))2 + JO(c»)2 (1.18a) 

/ 
IsinI 

w 
arg(l - G(Jw)) = tan-' 

1- IG1J 

IýI 

°0'týý))ý] 
(1.18b) 

Thus if the closed loop transfer function is identified and the transfer function of the 

controller is known, then it is possible to identify the process as: 

IG, (joj)l 
= G(jco)I 

1- GlIaJIIG. IIoJi 
(1.19) 

(1.20) arg(Gp (Jv)) = arg(G(Jco)) - arg(1- G(Jw)) - arg(G, (Jw)) 

Thus by carrying out an identification between the reference input and the process 

output and with full knowledge of the controller it is possible to identify the process 

when it is connected in a closed loop configuration. 

1.3.4 Use of the Phase-Locked Loop Method on Processes with Measurement 

Noise and Non-linearity. 

In the applications of the Phase-Locked Loop method of system identification 

that have been discussed previously in this thesis, there has been no mention of the 

practical difficulties that may be encountered when using the method to identify a 

physical process. 

For any physical process, the measurements taken from that process will be 

contaminated by noise to some degree. If no effective means of removing or 
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reducing the measurement noise is utilised then the data obtained from a noise 

contaminated measurement will be inaccurate. In Crowe (1998) a method of 

reducing the effect of measurement noise on the operation of the Phase-Locked Loop 

identifier is discussed. The method discussed utilises a Kalman filter to mitigate the 

effects of measurement noise on the data obtained from the Phase-Locked Loop 

identifier. A shortcoming of the technique is the increased identification time 

required to carry out the identification when measurement noise is present. However, 

the data obtained from the Phase-Locked Loop identification using a Kalman filter 

for measurement noise reduction is accurate. 

In any physical process, and depending on the operating point of that process, 

there will be some degree of non-linearity. In the following a non-linear process shall 

be represented by a Hammerstein structure, viz. a static non-linearity followed by a 

dynamic linear model. In the majority of control applications within the process 

industries, the final control element is usually a control valve. A control valve can 

have a number of non-linear characteristics associated with it. Thus the non- 

parametric identification of a control valve with an associated non-linearity, in 

combination with a linear process model can adequately represent the type of 

problems to be found in the identification of physical processes. Saturation is a non- 

linear characteristic such that an increasing input signal produces no increase in the 

output signal. This type of non-linearity is usually the result of specifying too small a 

control valve or process pipe diameter, thus restricting the maximum flow through 

the valve to be below the required flow. When the control signal to a valve is cycled 

through its full range and the valve position is recorded then it can be seen that there 

is hysteresis in the characteristic of the valve position. The hysteresis effect can be 

reduced by using a valve positioner in the control loop. A third effect that can be 

caused by control valves is a dead zone non-linearity. This type of non-linearity is 

characterised by requiring a certain change in the input signal before any change in 

output signal is detected, thereafter there is a linear relationship between input signal 

and output signal. All process non-linearities are not attributable solely to the control 

valves, there are processes that are inherently non-linear. The titration curve used to 

carry out the neutralisation of an acid by an alkali exhibits a strong non-linearity. 
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In the case of a process that exhibits control valve induced non-linearity in its 

characteristic, then maintenance of the control valve should first be carried out prior 
to any process identification or controller tuning being carried out. If this is not done 
then the identification and tuning of the process will help to mask the underlying 
valve problem that may have severe consequences in terms of safety and lost 

production in the longer term. The maintenance of the control valve will also serve to 

reduce the non-linearity of the process. 
When a process includes a non-linearity then care must be taken in the 

application of the Phase-Locked Loop identifier. Firstly, the magnitude of the 

excitation signal must be carefully chosen such that the non-linear process is 

identified at an operating point that is representative of that to be used in the physical 

process. If the process were to be controlled over a number of defined operating 

points, then identification at each of the defined operating points would have to be 

carried out. Secondly, the identification configuration must be carefully chosen. 
Consider the following example of the identification of the phase crossover 
frequency of the combination of a dead zone non-linearity and a linear time invariant 

process. The characteristic of the dead zone non-linearity used in the example is 

given by 

(() h 

y(t) =0 lx(t)+h 

x(t)>_ h 

-h<x(t)<h 
x(t) S -h 

where y(t) is the output of the dead zone non-linearity, x(t) is the input to the dead 

zone non-linearity and 2h is the width of the dead zone. The example linear time 

invariant process is given by 

10 
Gp (s) _ (1 + 0.2sXl + 0.7sXl + s) 

It can be shown that the describing function of the dead zone non-linearity is given 

by 

N(A, h)=I 1- 
h 

II 1-? sin-l 
hJ 

ý All n IAJ 

where A is the peak value of the excitation sinewave and h is as described above. 
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From the describing function it can be seen that its value is real and depends on the 

magnitude of the excitation signal. Consider the open loop identification of the phase 

crossover frequency of the combination of the dead zone non-linearity and the 

process, Gp(s) using the Phase-Locked Loop method. The results of the identification 

are given in Table 1.1. 

Table 1.1: Open Loop Identification of Non-linear Process 

Magnitude 
Phase angle 

(rad) 

Frequency 

(rad. s 1) 
Time 

(s) 

Theoretical 0.6425 -3.1416 3.6841 - 
Actual 0.6682 -3.1414 3.674 237 

The dead zone width is 0.2 and the peak excitation magnitude is unity. The 

theoretical values shown in Table 1.1 were calculated using the describing function 

of the non-linearity in combination with the process Gp(s). As can be seen from 

Table 1.1 there is an error of -0.27% in the identified frequency and an error of +4% 

in the identified magnitude. The error in the identification is due to the harmonics of 

the excitation signal that are generated by the dead zone non-linearity. The error 

could be reduced by using a filter within the Phase-Locked Loop identifier as 

discussed by Clarke and Park (2003) or by using Fourier data extraction techniques 

as discussed in Crowe (1998). 

If now the same combination of dead zone and process, Gp(s) is identified in 

closed loop with the controller given by 

G, (s)=0.791+ 
1 

+0.21s 
0.85s 

the following results, as shown in Table 1.2, are obtained 

Table 1.2: Closed Loop Identification of Non-linear Process 

Magnitude 
Phase angle 

(rad) 

Frequency 

(rad. s-1) 

Time 

(s) 

Theoretical 0.6927 -3.1416 3.6841 - 

Actual 0.7227 -3.1410 3.6647 220 
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From the results of Table 1.2 it can be seen that there is an error of -0.53% in the 
identified frequency and an error of +4% in the identified magnitude. The 
identification error can be reduced by the use of a filter or by Fourier data extraction 
techniques as stated above. 

As can be seen by comparing the results given in Tables 1.1 and 1.2, there is 

a difference both in the Theoretical and identified values of the magnitude of the 

combined process at the phase crossover frequency. The describing function for the 

dead zone non linearity is purely real and hence has a phase angle of zero. Thus the 

phase crossover frequency of both the open and closed loop identifications is in good 

agreement with the theoretical values. However, The describing function of the dead 

zone non-linearity has a dependence on the magnitude of the excitation. In the open 
loop identification the excitation magnitude is set at unity but in the closed loop 

identification the magnitude of the excitation depends on the frequency response of 

the control sensitivity function, given by 

C(S)= Gc(S) 
1+Gp(s)N(A, h)Gc(s} 

At the phase crossover frequency the controller output signal magnitude is 

approximately 1.75 although the closed loop reference signal has a magnitude of 

unity. Hence the identification configuration has a direct effect on the identified data. 

Since the combined process will be operated in closed loop, a closed loop 

identification strategy should be employed. This will ensure that the non-linearity 

will be excited at magnitudes that are at the appropriate values for the closed loop 

and that any magnitude dependence of the non-linear elements of the combined 

process is included in the identification to reduce the effect of the harmonics of the 

excitation frequency. 

The above brief discussion shows that where there is a significant non- 

linearity present in the process to be identified, then the identification should be 

carried out in closed loop. In order to increase the identification accuracy either a 

filter or Fourier data extraction techniques should be employed. 
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1.3.5 Summary Conclusions on the Phase-Locked Loop Method. 

The Phase-Locked Loop (PLL) method of system identification (Crowe and 
Johnson, 1998; Johnson and Crowe, 1998; Crowe, 1998) was the direct result of 

research into non-parametric system identification methods and in particular the 

relay experiment of Astrom and Hagglund (1984). The application of the PLL 

method of system identification retains the simplicity of, but does not have any of the 

failings of the relay experiment. In simulated identification trials the PLL method has 

shown that accurate estimates of the required frequency response curve points are 

produced, regardless of the process frequency response characteristics. The PLL 

method of system identification has been extended to the closed loop identification 

of single-input single-output systems as reported by Crowe and Johnson (2000b) and 

Crowe et al (2001). Further extensions of the applicability of the PLL method to the 

identification of cascade systems and multi-input multi-output system are discussed 

subsequently in Chapter 4. In all of the identification trials carried out, where 

comparisons have been carried out against the relay experiment, the PLL method has 

taken a longer time to find the estimate of the point on the frequency response curve; 

albeit to a higher degree of accuracy. This may not be too great a failing since all of 

the identification data that is produced as the PLL approaches the required estimate is 

accurate and can be used to gain further information about the frequency response of 

the process being identified. Coupled to this is the ease with which a desired point 

can be found, both from the standpoint of the connection of the PLL to the system 

and the selection of a desired frequency response point or points to be identified, 

makes the PLL a viable tool for non-parametric system identification. 

1.4 Subspace Identification. 

Much of modem control theory is based on having a state space or transfer 

function representation of the system to be controlled available so that a controller 

design may be carried out. If such a model is not available then an identification of 

the process must be carried out before a controller design can be undertaken. Thus an 
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explicit model of the process is either available or must be identified. In subspace 
identification the model of the process that is obtained already has the necessary 

structure to allow many of the modern design methods such as LQG, H'; ' and 

Predictive control to be carried out using input and output data, from the system to be 

controlled, and subspace identification. Thus subspace identification is also termed a 

model-free approach in the literature since it is a data driven approach. 

Assume that the states of a linear time invariant system are being supplied 

from a state estimation carried out by a Kalman filter. The state equations for the 

system can then be written as 

Xk+l = Axk + Buk + Kek (1.21) 

Yk =CXk +DUk +ek (1.22) 

where the process inputs, outputs and states are given respectively by Uk, yk and Xk. 

The steady state gain of the Kalman filter is given by K and ek is an unknown white 

noise sequence with covariance given by 

S= E{ekek } 

If it is assumed that there are n-states, 1-inputs and m-outputs then the matrices are 

AER""n, BER""r, CER''x", DER"`' and KERnxm 

If the measurements of the inputs and outputs from the system Uk and Yk for 

1={0,1, ... , 
2i+j-2} are available, then the data block Hankel matrices for Uk, 

represented by Up and Uf, with i-block rows and j-block columns are defined as 

uo ul ... ui-1 

ul u2 """U. 

Up 
... ... ... ... 

ui-1 ui ... ui+j 

ui Ui+l """ ui+j-1 

U_ 
ui+1 Ui+2 """ ui+j 

f 
... ... ... ... 

U2i-1 U21 ... U2i+j-2 

where the subscripts p and f refer to past and future. Each block element in the above 

data Hankel matrices is a column vector of inputs, viz. u, _[u, 0 u,, """u; r_, 
T 
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Similar data block Hankel matrices for yk, represented as Yp and Yf, can be defined. 

The past and future state sequences are defined as 
XP =L Xo xl ."" Xi-1 

Xi- =Lx; xi+i ... xi+ j-I 
I 

The matrix input-output equations used in subspace identification (Favoreel et al, 
1998) are obtained by recursive substitution of equations (1.21) and (1.22) 

Yp =F, Xp +H; Up +HSEp 

Yf =F. Xf +H1Uj. +HSE, 

These equations represent the effect of the state xk, the deterministic input Uk and the 

unknown stochastic input ek on the outputs yk. The system related matrices are 

defined by 

c 
CA 

CA'-' 
L _j 

D0 """ 0 

CB D """ 0 
H; _ 

CAi-2 B CA'-'B """D 

I0 """ 0 

CK I """ 0 
s H; 

I CAr-2K CAr-3K "". 

where F is the extended observability matrix, H; and His are the lower triangular 

Toeplitz matrices containing the impulse response of the system due to the 

deterministic input Uk and the unknown stochastic input ek respectively. 

The subspace identification problem can also be stated as follows: given the 

past inputs and outputs Wp and the future inputs Uf, find an optimal prediction of the 

future outputs Yf. If a linear predictor is used, then 
A 

Yf = LK, Wp + L, Uj- 

39 



where 
Yp 

WP =U 
P 

A 
The least squares prediction Yf of Yf can be found by the solution to the following 

least squares problem: 

minYf - 
EL. Lu 

WP 2 

L, Lu Uf 
F 

where the subscript F denotes the Frobenius norm. For a matrix, C= [Cik]' the 

Frobenius norm is given by 

nn 
ICII 

CJk 

j=1 k=1 

The solution to this problem is the orthogonal projection of the row space of Yf into 

the row space spanned by Wp and Uf, defined as (Favoreel et al, 1998) 

AW P Yf=Yr 
Uf 

=Yf /Uf Wp +Yf l 
WP 

Uf 

L. WP L�U j 

f[WT _YWT UT 
Wp 

UT pfu 

l[WT 
Pfl 

f 

(1.23 ) 

The numerical implementation of the projection, equation (1.23), can be carried out 
in a numerically robust manner by using a QR-decomposition (Favoreel et al, 1998). 

An implementation of subspace identification was briefly discussed in the 

above section. Subspace methods of controller design are termed model free methods 

in that they are data driven, using input and output data from the system to be 

controlled to allow a controller to be designed without the explicit step of model 

identification being carried out. The literature on the use of subspace methods for 

controller tuning shows successful applications for LQG (Favoreel et al, 1998; 

Favoreel et al, 1999), H. (Woodley et al, 2001) and predictive control (Kadali et al, 

2003) design methods. Subspace methods of controller tuning illustrate the transition 

from explicit model methods to the model -ftee method of Iterative Feedback Tuning. 
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1.5 Iterative Feedback Tuning 

A short introduction to Iterative Feedback Tuning is given in this section to 

complete the overview of the model-free controller tuning methods. A brief reference 
to the frequency domain version of Iterative Feedback Tuning due to Kammer et al 
(2000) is also given. The IFT method shall be revisited in Chapter 5 where new and 

original contributions to the method are detailed. 

In IFT the derivative of a control performance cost function with respect to the 

controller parameters is obtained by carrying out experiments on the closed loop 

system (Hjalmarsson et al, 1994; Hjalmarsson et al, 1998) and using the data 

recorded from those experiments in further special experiments. Thus after each set 

of experiments have been completed, an un-biased estimate of the cost function 

gradient is available. The estimate of the gradient is then used in a stochastic 

estimation algorithm that by repeated application of the method yields the controller 

parameters that give the optimal value of the cost function. The discussion of 

Iterative Feedback Tuning given in Hjalmarsson et al, (1994) and; Hjalmarsson et al, 

(1998) is based on a somewhat broad problem formulation. The salient features of 

that method are: 

i) a system description involving a stochastic process output disturbance 

ii) a two degrees of freedom control law 

iii) the use of a stochastic optimisation approach, and 

iv) a restricted structure control law 

The benefit of the method to industrial control practitioners can be seen from the fact 

that no process model is required during the tuning process and that all of the 

experiments are carried out in closed loop. At each iteration of the Iterative Feedback 

Tuning method the current controller parameters remain fixed and are only updated 

at the end of an iteration. By repeated application of the Iterative Feedback Tuning 

method the performance of the closed loop system should improve as the optimal 

value of the cost function is approached. 
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A frequency domain version of the IFT method has been described by 
Kammer et al (2000). In Kammer et al use is made of Parsevals Theorem to transfer 

the cost function to the frequency domain. The transformed cost function is then 
differentiated with respect to the controller parameters. The derivative terms in the 

cost function gradient expression are recovered by the use of spectral analysis of the 

closed loop signals and it is assumed that there is full knowledge of the controller 

available. 

The Kammer et al method is the frequency domain version of the 

Hjalmarsson et al method. However the Kammer et al method does have a benefit 

over the Hjalmarsson et al method in that it is possible to determine estimates of the 

Hessian of the cost function and so improved numerical methods can be 

implemented to provide the controller parameter update. 

1.6 Summary Conclusions. 

A discussion of the relay experiment of Astrom and Hagglund (1984) in relation to 

recent international research activity was given. The conclusion from this discussion 

is that the latest research results tend to be increasing the application areas of the 

relay experiment at the expense of the simplicity of the method. Additionally there 

appears to be no literature that supports the view that an increase in industrial use of 

the new relay experiment application areas is being made. 

The Phase-Locked Loop (PLL) method of system identification was discussed and an 

extension to the PLL method allowing the open loop identification of type 1 

processes was given. The identification of single-input single-output processes 

connected in closed loop was detailed. The literature is beginning to show increased 

interest in the PLL method of system identification and a discussion of the 

contribution of this research was given. 

Subspace identification was discussed briefly, acting as a bridge between the explicit 

modelling techniques of the relay experiment and the PLL method and the model- 

free techniques used in Iterative Feedback Tuning (IFT) and Continuous Parameter 

Cycling. A brief introduction to IFT was given. 
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2 Testing for the Existence of PID Controllers that can Achieve Specified 

Classical Robustness Measures. 

2.1 Introduction. 

The design of a PID controller can be carried out relatively easily if there is 

an accurate model of the process available for the designer to perform an off-line 

controller design and simulation of the resulting closed loop control system. 
However, especially in the process industries, an accurate model of the process to be 

controlled is seldom available and an environment supporting the identification, 

design and simulation cycle is rarely to be had. It is then not surprising that few 

control loops in process industries are operating satisfactorily and that some 

processes are controlled manually (Hersh and Johnson, 1997). 

The data obtained from carrying out a step test on the open loop process can 
be used to determine first or second order plus dead time process models (Seborg et 

al, 1989). Similarly frequency response data can be obtained relatively simply from 

the process, by the use of the Ziegler and Nichols ultimate period method or by a 

relay experiment, to allow the design of PID controllers to be carried out. For a large 

class of industrial plant these methods will provide sufficiently accurate process data 

to allow the design of a PID controller to be carried out that will give an acceptable 
level of control system performance. However there is reluctance on the part of 

process owners to allow tests to be carried out on process equipment that may result 

in either lost production or in the production of off-specification product. 

Faced with the problem of having to design a controller to meet certain 

design requirements, how is the control practitioner to carry out this task when no 

process model is available and the process owner is reluctant to allow tests to be 

carried out? Additionally there is the problem of determining whether the required 

design requirements can in fact be met prior to the design being carried out. The first 

of these problems can be alleviated by the use of closed loop testing to reduce the 

production of off-specification product, so long as the test signals are not of too great 

a magnitude and the testing is not over an extended period of time. Thus it would be 

possible to determine a process model and carry out the design. However, the 
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problem still exists of knowing whether the design requirements can in fact be 

attained prior to using the model in the design. What is required is a method that 

allows the designer to see what designs are achievable for a particular process and 
allows the freedom to choose a candidate control design from those that meet the 

requirements of the design. 

A review of the literature on PID controller tuning to achieve gain margin and 

phase margin robustness measures gives rise to Figure 2.1; this shows how the 

various methods can be categorised. 

Classical Robustness 
Measure PI PID 

Controller Design 
Methods 

Non-Parametric 
Models 

Single Point II Multiple Point 
Methods Methods 

Generalised Phase Locked Loop 
Design Point Method 

Method 

Specific 
Design Point Loop Shaping 

Method 

Parametric 
Models 

Simultaneous 
Optimisation Equations 

Approximate 
Solution 
Method 

Figure 2.1: Categorisation of PID Controller Tuning Methods by Model Type Used. 

With reference to Figure 2.1 the first distinction that is made between PID 

controller tuning methods is whether the process is given by a parametric or non- 

parametric model representation. A number of PID controller tuning techniques have 

been developed that require the availability of a parametric model of the process to 
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allow the design of a PID controller to meet the required gain margin, phase margin 

or maximum sensitivity specifications and in Figure 2.1 the classification of these 

methods is considered under either optimisation methods and methods that either 

solve a set of simultaneous equations exactly or provide an approximate solution. 

Simultaneous Equations 

An accurate parametric process model is required for the gain margin and 

phase margin tuning method proposed by Fung et al (1998). In this method the set of 

simultaneous equations relating to the specification of the gain margin and phase 

margin of the forward path transfer function of the compensated system are solved 

by a graphical means. This method shall be discussed subsequently in this chapter. 

An extension of the method is proposed in Tan et al (1999) such that the parameters 

of a PID controller can be established that will return a required gain and phase 

margin design. The method as discussed does however lose the benefit of a graphical 

interpretation of the results since the method simply returns a set of controller 

parameters. There is a trade-off required by the method in that five unknown 

parameters are required to be determined by the method, those being the three PID 

controller parameters and the gain crossover and phase crossover frequencies of the 

forward path of the compensated process. However the system of equations derived 

at the gain and phase crossover points of the compensated process only provide four 

equations and thus a possibly infinite set of solutions. The trade-off that is used is to 

set the frequency of the phase crossover point of the compensated system as a 

constant times the phase crossover frequency of the uncompensated process. The 

constant used is in the range 0.5 to 2. By this means the number of unknown 

parameters is reduced to four and a unique solution can be obtained. 

Approximate Solution Method 

The method employed by Fung et al and extended by Tan et al allows both 

the gain margin and phase margin to be met, however an accurate model of the 

process to be controlled is required to be available. The method discussed in Ho et al 

45 



(1995) uses an approximate parametric model of the process to be controlled. The 

process model used is first order plus dead time and both the PI controller and the 

process model are given in time constant form. The equation set used by Ho et al 
differs from that used by Fung et al. The difference comes from the way that Ho et al 

expresses the gain margin and phase margin conditions for the transfer function of 
the compensated forward path of the system to be controlled. For the gain margin 

and phase margin equations the complex nature of these equations is expressed using 

angle and magnitude criteria whereas Fung et al split the equations into their real and 
imaginary components. The equations resulting from the method used by Ho et al are 

non-linear due to the presence of an inverse tangent function. This does not present 

any great difficulty in itself since it would be possible to solve the equation set using 

a numerical method. However the goal of Ho et al was to achieve an analytic 

solution and to achieve that goal an approximation for the inverse tangent function is 

introduced. Thus by approximating the inverse tangent function by a linear function, 

an analytic solution for the PI controller parameters can be found. Ho et al extended 

the PI tuning method to PID controllers by using a second order model plus dead 

time, expressed in time constant form, of the process to be controlled. The PID 

controller is given as an interacting type. Ho et al then utilises the model pole with 

the largest time constant to cancel the controller zero introduced by the derivative 

term. Thus by setting the controller derivative time constant to be equal to the largest 

time constant of the model poles the problem collapses to that of designing a PI 

controller as previously posed and solved by Ho et al. This method of controller 

tuning to meet gain and phase margin specifications has a number of potential 

problems. A model is used to represent the process to be controlled, if the model is a 

good representation of the process in the frequency range of interest then the method 

will give good results. However, the poorer the fit of the model to the process then 

the worse will be the resulting controller design with respect to achieving the 

required design specification. The approximation to the inverse tangent function is 

valid only for a limited set of conditions and so if the conditions are violated then the 

method will not perform as well as expected. 

46 



Optimisation 

The methods due to Fung et al, Tan et al and Ho et al are used to design PID 

controllers such that a specific gain and phase margin are achieved. These methods 

are characterised by the requirement to have a parametric system model available to 

allow a set of simultaneous equations to be solved either exactly or by using 

approximations as shown in Figure 2.1. 

The maximum sensitivity of a system can be used as a guide to the closed 
loop time domain behaviour of the system (Astrom et al, 1998). The method 
developed by Astrom et al (1998) utilises a parametric model of the process. The PI 

controller that is designed is specified in terms of the proportional and integral term 

gains, kp and kl respectively. The method begins by defining a circle centre (-1,0) 

and radius 1/MS on the Nyquist diagram of the frequency response of the 

compensated system, where MS is the desired maximum sensitivity. The circle 

represents a constraint on the frequency response curve such that the distance from 

the circle centre to any point on the frequency response curve cannot be less than 

1/MS, thus if the parameters of a PI controller can be found such that the frequency 

response curve of the compensated system is tangent to the circle then the maximum 

sensitivity of the closed loop system will be MS. The method can be augmented to 

include a constraint on the peak overshoot by defining a circle C, whose centre and 

radius are such that the peak overshoot, Mp circle, and maximum sensitivity, MS 

circle are contained within C. The function that is to be optimised to provide the 

largest value of k1, is given by 

(2.1) f(kp, k;, w)= C+ kp -j 
k' 

Gp(jw 
2 

with the constraint that 
2 

f(kp, kl, w)> (2.2) 
MS 

The constraint (2.2) has the geometrical interpretation that for a fixed o), equation 

(2.2) represents an ellipse in the kp-k; plane. If the value of co is now iterated over the 

range 0 <_ w< cc , then it is found that the ellipses form an envelope that defines the 
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boundaries of the set of PI controller parameters that satisfy the constraint on 
maximum sensitivity. This situation is illustrated in Figure 2.2 

kp 

Figure 2.2: Envelope generated by the sensitivity constraint 

kp 

The left hand envelope shown in Figure 2.2 has a continuous derivative. In carrying 

out the generation of the ellipses a situation can arise where a corner occurs in the 

envelope. The corner corresponds to multiple points on the frequency response curve 

of the compensated system that are tangent to the 1/MS circle; thus giving rise to the 

possibility of there being multiple sets of controller parameters that yield a solution 

to the problem. An envelope with a corner is illustrated by the right hand diagram of 

Figure 2.2. In Figure 2.2 stabilising solutions are represented by the bold curves. The 

optimisation of equation (2.1) subject to the constraint (2.2), following some 

simplifications based on the total differential of f (k 
p, 

k; 5 co), results in an equation 

that can be solved numerically to derive the frequency at which the controller 

parameters are to be calculated. The optimisation method was extended to allow the 

determination of the parameters of a PID controller to meet a maximum sensitivity 

constraint by Panagopoulos et al (1999). In this extension the constraint condition is 

augmented to include constraints on the curvature and rate of change of the phase 

angle of the frequency response of the forward transfer function of the compensated 

system. By including a constraint on the curvature, ensuring that it is negative, 

guarantees that the frequency response of the forward path of the compensated 
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system is tangent to the 1/MS circle at only one point. The constraint calling for the 

rate of change of phase angle of the frequency response of the forward path transfer 
function of the compensated system to be negative is used to ensure that at high 

frequency there is no undesirable phase lead present. The constraints on curvature 

and phase angle do however increase the complexity of the optimization problem and 
in certain circumstances the ratio of integral to derivative controller parameters is 

less than four, hence the PID controller cannot be implemented in series form 

(Astrom and Hagglund, 1995). 

The above methods all rely to a certain degree on having an accurate 

parametric model of the process available. If there is no parametric model of the 

process available then, as shown in Figure 2.1, methods have been developed to 

utilise a non-parametric model of the process in the design of a controller that will 

return a required gain margin, phase margin or maximum sensitivity. In the literature 

there is a distinction drawn between non-parametric methods that require only one 

point of the frequency response of the transfer function of the process to be identified 

and methods that require multiple points. 

Generalised Design Point Methods 

In single point tuning methods a particular point is identified on the 

frequency response of the process transfer function. The aim of the design is to be 

able to move that point, by the use of a compensation element, to some other desired 

identified point. The ultimate frequency method of Ziegler and Nichols (1942) is a 

single point method that relies on being able to identify the particular point on the 

frequency response curve of the process at which the phase crossover occurs. By 

identifying this point and then by the application of a rule based method the 

parameters of a PID controller can be chosen that will in general give an adequate 

degree of control for the closed loop system. The generalisation of that method and 

the frequency domain interpretation of moving a general point on the frequency 

response curve of the process to a desired point of the compensated frequency 

response curve is due to Astrom and Hagglund (1984). 
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Specific Design Point Method 

In the Astrom and Hagglund method, specific design points are able to be 

achieved by the use of PI or PID controllers as the compensation elements of the 
closed loop system. The design points that are used are the gain margin and phase 
margin. However, the gain margin and phase margin cannot both be achieved by the 

same controller design as in the methods provided by Ho et al, Fung et al and Tan et 
al. 

Loop Shaping 

In addition to achieving a specific design point, single point non-parametric 

methods can be used to shape the frequency response of the forward transfer function 

of the compensated process such that a design specification that minimises the 

maximum sensitivity locally can be attained. The method described by Astrom and 
Hagglund (1995) causes the frequency response of the forward path of the 

compensated system to have a gradient that is orthogonal to the line 

1+ GP (jws )G. (jws) 
, where GP (jws) and G, (jws) are the frequency responses of 

the process and the controller, respectively, at the design point frequency o. 

In an effort to improve on the design results achieved by single point design 

point methods, multiple point methods have been reported. By identifying two points 

on the frequency response of the process by means of a relay experiment and a relay 

experiment with hysteresis Shin et al (1997) employ a pole placement strategy to 

attain a desired damping ratio for the closed loop system. Multiple point non- 

parametric identification is also used in the phase locked loop design point methods 

that are described in the following sections of this chapter. 

From the preceding discussion it can be seen that there are a number of 

competing PID controller design methods available. The problem associated with 

these methods is that until a design has been carried out it is not possible to know 

whether or not that design will be achievable. In the following sections of this 

chapter, methods shall be described that show the gain and phase margin design 

pairings that are achievable for an unknown process. The tool that shall be used to 
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allow this to be undertaken is the Phase-Locked Loop identifier discussed in Chapter 
1. In section 2.2 an automated method is described that returns, in a graphical format, 

the range of achievable gain and phase margins that a PI controller acting on an 
unknown process can provide. A discussion of a method that allows achievable gain 
and phase margin ranges for an unknown process controlled by a PID controller to be 

calculated is carried out in section 2.3. Conclusions close the chapter. 

2.2 Classical Robustness Measures: Automated Existence Testing. 

Determining the controller parameters for a PI controller based on the 

specification of the gain margin or phase margin is a classical method of controller 
design (Wilkie et al, 2002). In general there is no direct relationship between the gain 

margin of a process and the time domain response of the closed loop system. In 

Ogata (1997) it is stated that the connections between gain and phase margin and the 

time domain response of the closed loop system are laborious and not of much 

practical use. However, it is found in practice that a satisfactory time domain closed 
loop response is usually obtained with gain margins in the range 2 to 5 and phase 

margins in the range 30° to 60° (Astrom and Hagglund, 1995). The gain margin and 

phase margin are decoupled measures of robustness and are used in connection with 

single input single output systems, having no direct applicability to multi-input 

multi-output systems. If a process given by Gp(s) is controlled by a controller Ge(s) 

then the gain margin and phase margin are given, respectively, by 

GM = J(Jo)-7 
1 

kýc (o-7r 
(2.3) 

oPM = r+arg(Gp(Jwl )G, (jwl )) (2.4) 

where w, is the frequency at which 

arg(G p 
(J w-, )G, (jo-, )) - -r (2.5) 

and col is the frequency at which 

Gp(*w, )G, 
. 
1w, I=1 (2.6) 

The gain margin and phase margin are used to establish the stability of the closed 

loop system and also its robustness to process changes. 
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In the following, automated methods shall be discussed that allow the 
existence of the classical robustness pairings of gain margin and phase margin to be 

shown graphically. 

2.2.1 Automated Existence Testing of Gain Margin and Phase Margin Pairings 
Achievable by PI Controllers. 

In the method due to Fung et al (1998) a parametric model of the process is 

assumed to be available. The method allows a test to be carried out that shows if a PI 

controller can provide a specified gain margin and phase margin for the given model. 
The method due to Fung et al shall now be detailed. 

If it assumed that the process Gp(s) is to be controlled using the controller 
Ge(s) given by 

Gi(s)=kp + 
k; 

Then, using the substitution sjw, it can be seen that the forward transfer function of 

the system is given by 

G, (. 1 w)G p 
(jw) =kp-j 

k` (GpR (a) + jG 
pl (a )) (2.7) w 

where GpR(a) and Gp1(w) represent the real and imaginary components of Gp(jw), 

respectively. Using equations (2.3), (2.5) and (2.7) it follows that 

GpR ` 
(w-ir ) GPI (w-2r) 

k1 

p_ GM (2.8) 
Gpl 

GpR( j 
lki 

0 ýw-ý 

Solving equation (2.8) for kp and ki gives 

kp =- 
cos q$ 

(Co, ) 

GMIGp(jw-, ý 

0)-IT Sin Op\o-, 
c) 

k; =- GMI Gp(j w-, r 

(2.9) 

(2.10) 

52 



where OP (co ) and IGp (jo, 
rý represent the phase angle and magnitude of the 

frequency response of the process at the phase crossover frequency. 
From equations (2.4), (2.6) and (2.7) it follows that 

G (COI GPI (co, ) 
pR) k 

-COS 1P= 
OPM 

(2.11) 

1)_ 

GPR(01) k; - sinOpm GPI \ 
(a) 

(1 

Solving equation (2.11) for kp and ki gives 

k _cos I((PM 
-01, (wl)) 

p= Gp (j a1ý 
(2.12) 

k= w1 sin(OP, r - OP (wi )) 
(2.13) IGP Go), I 

where Op (w, ) and I represent the phase angle and magnitude of the 

frequency response of the process at the gain crossover frequency. 

If a PI controller exists that can achieve both the required gain margin and 

phase margin then equations (2.9) and (2.12) must be equal as must equations (2.10) 

and (2.13). Motivated by the forms of equation pairs (2.9), (2.10) and (2.12), (2.13) 

Fung et al then formed two complex functions such that 

COST 
(Cý) 

wsrngJ)(co) 

.f 
ýwý _-p- .1 

(2.14) 
GMIG, (jwl GMIG, (Iwl 

-r>arg(Gp(jo)) >-7r 
2 

- -Co 

S(1$PM - 
0p (Co)) 

+. 
co sin(Y'P_1! - 

0p (w)) 

f2 (ý) (2.15) 
9 

--> arg(G, 
(ja) 

> -z +OPM 

2 

Thus by plotting functions (2.14) and (2.15) on the same complex plane, if there is an 

intersection, this corresponds to the real and imaginary parts of fi and f2 being equal. 

Hence the parameters kp and kl of the PI controller are equal and can be read directly 

from the graph. Additionally, if there are multiple solutions then these solutions are 

all present on the graph as intersections of the fl(w) and f2(ro) curves. This allows a 
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choice to be made as to the particular set of controller parameters that are to be used 
to implement the controller. 

The method of Fung et al shall now be used to design a PI controller for the 
process given by 

G�(=)=(i-oas) (I+S)' 

The controller shall be of the form 

G(s)=k 
p+k; s 

The process has a right-half plane zero and is used to illustrate some of the points of 
the implementation of the Fung et al method. The design requirement is to have a 

gain margin of 3 and a phase margin of 45°. Figure 2.2 shows the graph resulting 
from plotting the functions f and f2. From the graph it can be seen that there are two 
intersections of the fl and f2 curves. The intersections relate to controller parameters 
that satisfy the design requirement and are shown in Table 2.1. From Table 2.1 it can 
be seen that the controller parameters both achieve the design objective. In Astrom 

and Hagglund (1995) it is shown that the integral of the error, following a 
disturbance, is minimised by having the largest possible value of integral gain, k;. 

Following from this, the particular choice of controller parameters that would be 

used to implement the design can be based on achieving the desired design 

requirements and also choosing to minimise the integral of the error such that an 

improvement in the disturbance rejection properties of the closed loop system is 

obtained. 
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Figure 2.2: Exact Gain Margin and Phase Margin Method 

To maximise the size of the integral term for this example, the controller chosen 

would have the parameters given by Controller 2 of Table 2.1. 

Table 2.1: PI Controller Parameters 

Process: Gp (s) 
= 

1-0.2s 
(l+s)3 

Controller 1 Controller 2 

kp k; kp k; 

0.0755 0.3026 0.7914 0.5121 

Gain Margin 
Phase Margin 

(degree) 
Gain Margin 

Phase Margin 

(degree) 

Required Actual Required Actual Required Actual Required Actual 

3 3 45 45 3 3 45 45 
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The gain crossover frequency and phase crossover frequency when using Controller 
2 parameters were determined as 0.471 (rad. s 1) and 1.01 (rad. s ), respectively. 

The method of Fung et al shows, by means of graphical results, all of the 
possible PI controller parameters that satisfy the design objective of achieving a 
specified gain margin and phase margin. The controller designer only knows that a 
particular gain margin and phase margin design is achievable at the end of the 
design. Hence a redesign may have to be undertaken, once more with no guarantee 
that the particular design will be viable. This may not be too much of an 
inconvenience since a model of the process is required for the method and hence the 
design is able to be carried out off-line. However, if there is no process model 
available this represents a major problem. Due to the use of the Phase-Locked Loop 

identifier it is possible to extend the method of Fung et al so that by carrying out 

non-parametric identifications of the process to be controlled all of the possible 

viable gain margin and phase margin pairings can be determined. The results shall be 

given in a graphical form for ease of presentation and use by control practitioners. 
The significance of this is that an online design method for PI controllers can be 

implemented allowing the possibility of providing the controller designer with a set 

of viable gain and phase margin pairings prior to carrying out the design. By this 

means a choice as to the desired versus the achievable gain and phase margin design 

specifications can be carried out prior to the final design being attempted. 

The tool that is used to carry out the non-parametric identifications utilised by 

the method is the Phase-Locked Loop identifier that was discussed in Chapter 1. In 

the method of Fung et al a model of the process is assumed to be available to carry 

out the design method. In the method to be described a non-parametric identification 

of the process is carried out on-line in closed loop. From the identification data a 

model is produced that relates frequency to the controller parameters kp and k; at that 

frequency and is calculated using equations (2.9), (2.12), (2.10) and (2.13). Assume 

that the process to be identified is, Gp(s), then the phase angle range over which the 

identifications are carried out is defined by 

-ir <arg(Gp(jw))<-- +- (2.16) 
23 
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The number of identifications that are carried out in this phase angle range is user 

selectable. The trade-off that must be made relates the number of identifications 

carried out to the accuracy of the resulting gain-phase margin pairing graph produced 
by the method and obviously the time required to carry out the method. The data 

determined from the identification step is then split into two sets. One set of data 

relates to the approximate phase angle range 

-< arg(G p 
(j w)) <-f (2.17) 

2 

and the other to the phase angle range 

-7v+- <arg(Gp(jc v))<--+ (2.18) 
323 

The choice of the frequency range is governed by the choice of the maximum value 

of phase margin that is to be used in the design. In this case the maximum phase 

margin is 60°, hence the use of n/3 in (2.18). In the method of Fung et al curves 

relating to the equations 

and 

fl ýw) = kp_, (w) + jkl_, {U)ý 

f2(cv}=kp, (co) + jk,, (w) 

are plotted and the intersections, if any, give the solution set for the controller 

parameters to achieve the required design specification. The new method follows this 

basic idea. The values of the curvesfi and f2 are calculated at the chosen phase angles 

within the phase angle range (2.17) and (2.18) respectively. This gives a rough 

estimation of the fi - f2 curves over the required frequency ranges. The curves so 

obtained are only accurate at the specified frequency points and their values are 

required at intermediate points. This is carried out using cubic-spline interpolation. 

The method then continues by comparing the data from the fi - f2 curves, over the 

desired gain margin and phase margin ranges, and recording any intersections. The 

results of the search are then displayed by means of a graph relating viable gain 

margin and phase margin pairings. The algorithm for the method is now detailed: 

Algorithm 2.1: Viable Gain Margin and Phase Margin Pairings 

Step 1: Initialisation. 

Select the desired gain margin, GM, and phase margin, Opm, ranges. 
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Select the number of identification points in the range 

-7r <arg Gp(jC)))<--+Opm 
2 

Step 2: Identification and Data Splitting Step. 

Identify the process at the required phase angles and record the corresponding 
frequency and magnitude data. 

Split the data to correspond to the frequency ranges -'c < arg 
(G, (jo4) < -)7 and 2 

-+ pM < arg Gpj ýv)) <-+ FPM for use in calculating, respectively, the fl (oo) 
2 

and f2(o) curves. 

Step 3: Search Step. 

Choose a search interval RGM = (GM 
min , GMm. ) and Rgpm = 

(ýPMmi� 
, OPMmax )" 

Search through the space RAM x ROPM to find locations where 

fi (w) = kp_x (co) + 
.1k; ', 

(a) is equal to f2 (w) = kp, (a) + jk,, (a) 

Record the locations as the candidate solution gain-phase margin pairs. 
0 

2.2.2 Case Studies for the Automated Existence Testing of Gain Margin and 

Phase Margin Pairings 

The viable phase and gain margin pairing method shall now be applied to two 

processes. In the case studies the processes that shall be used are given by 

G, (s)- 
(l-0.2s) 

(l+s)3 

G2 (s) =16 (s+l) 

The process Gi(s) is non-minimum phase, having a right half plane zero. It is 

included to provide a link with the example showing how the Fung et al method is 

used earlier in this Chapter. The process G2(s) is a high order non-oscillatory process 

and is representative of a large class of system that are met in the process industries. 
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In the following case studies all of the required identifications are carried out in 

closed loop using the Phase-Locked Loop identification method. 

Case Study 2.1. 

The gain margin and phase margin ranges are selected as 2 to 5 for the gain 

margin and 30° to 60° for the phase margin. The process identifications were 

selected to be carried out at phase angles in the range -30° to -180° and sixteen 

equally spaced points on the frequency response curve of the process were identified. 

Table 2.2: Identification Results for Case Study 2.1 

1-0. ý G, (s) _ 
'? s) 

(l+s) G, 
0.5303 

s 

Magnitude Phase Angle (rad) Excitation Frequency (rad. s) Time (s) 

0.9605 -0.5240 0.1647 233 

0.9318 -0.6978 0.2213 395 

0.8953 -0.8722 0.2791 524 

0.8519 -1.0473 0.3386 676 

0.8030 -1.2215 0.40 839 

0.7498 -1.3960 0.4641 938 

0.6930 -1.5704 0.5309 1029 

0.6335 -1.7449 0.6016 1123 

0.5697 -1.9204 0.6770 1160 

0.4953 -2.0943 0.7567 1220 

0.4537 -2.2690 0.8431 1311 

0.3954 -2.4436 0.9360 1376 

0.3381 -2.6179 1.0389 1464 

0.2904 -2.7921 1.1497 1538 

0.2428 -2.9666 1.2744 1634 

0.2013 -3.1414 1.4127 1699 
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The identifications were carried out in closed loop with the controller tuning 

parameters being derived from the results of a relay experiment and the application 

of Ziegler and Nichols ultimate period tuning rules for a PI controller. The results of 
the identification are shown in Table 2.2. The time taken to carry out the 
identification of all sixteen points took approximately 28 minutes. This identification 

time is not considered to be excessive since highly accurate estimates of the process 
frequency response curve are obtained and the identification was completed in closed 
loop. Figure 2.3 shows the identified data compared with the actual Nyquist curve for 

the process GI(s). 

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

-v. v 

Figure 2.3: Actual and Identified Frequency Response for Process Gi(s). 

From Figure 2.3 it can be seen that there is good agreement between the identified 

and actual frequency response of the process. Figure 2.4 shows the results from the 

application of the viable gain and phase margin method for the process Gi(s). In 

Figure 2.4 the viable pairings of gain margin and phase margin are represented by the 
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shaded region of the graph. From Figure 2.4 it is possible to see that there are certain 
regions within which it is not possible to design a PI controller such that a viable 
gain margin and phase margin pairing will be attained. Verification of the method 
has been carried out in part by using the Fung et al method and testing several gain 

and phase margin pairings to ensure that the Fung et al results agree with the results 

of Algorithm 2.1. The solution of the particular specification used in the previous 

example (gain margin of 3 and phase margin of 45°) is shown by the intersection of 

the hairlines in Figure 2.4. 

5 

4.5 

4 

bA 
Cd 

3.5 
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7L 

25 

Figure 2.4: Viable Gain and Phase Margin Pairings for G1(s) 

Case Study 2.2. 

In this case study the process G2(s) is used in closed loop with a controller the 

parameters of which were determined from a relay experiment and the application of 

Ziegler and Nichols ultimate period method rules for a PI controller. The range of the 
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gain margin and phase margin over which the viable gain margin and phase margin 
method was applied was 2 to 5 for the gain margin and 30° and 60° for the phase 
margin. The process identifications were selected to be carried out at phase angles in 

the range -30° to -180° and sixteen equally spaced points on the frequency response 
curve of the process were identified. Table 2.3 details the results of the identification 

section of the application. 

Table 2.3: Identification Results for Case Study 2.2 

G2 (s) =1 (S+I)' G, (s) = 0.9372 + 
0.1077 

s 

Magnitude Phase Angle (rad) Excitation Frequency (rad. s) Time (s) 

0.9771 -0.5232 0.0874 399 

0.9594 -0.6976 0.1167 534 

0.9378 -0.8729 0.1464 743 

0.9111 -1.0474 0.1762 996 

0.8835 -1.2213 0.2064 1189 

0.8481 -1.3963 0.2369 1378 

0.8116 -1.5710 0.2679 1583 

0.7722 -1.7458 0.29932 1760 

0.7326 -1.9199 0.3317 1986 

0.6923 -2.0947 0.3639 2151 

0.6530 -2.2693 0.3972 2335 

0.6017 -2.4430 0.4312 2537 

0.5519 -2.6183 0.4664 2635 

0.5096 -2.7928 0.5021 2852 

0.4658 -2.9666 0.5391 3051 

0.4228 -3.1413 0.5762 3171 

As can be seen from Table 2.3 the time to carry out the identification was 

approximately 53 minutes. This time is not considered to be excessive since the 

identification was carried out in closed loop and the excitation magnitude can be 

maintained at a relatively low level. The data obtained from the identification gives 
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an accurate estimate of the frequency response of the system G2(s) as can be seen 
from Figure 2.5. 

-0.5 0 0S 

-V. 7 

Figure 2.5: Actual and Identified Frequency Response for Process G2(s). 

From the data obtained in the identification phase of the method the viable gain and 

phase margin pairs were determined. The viable pairings for gain margin and phase 

margin are represented in Figure 2.6 by the shaded region. Verification of the results 

shown in Figure 2.6 have been carried out for a number of the viable pairings using 

the method of Fung et al with the results being in good agreement. 
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Figure 2.6: Viable Gain and Phase Margin Pairings for G2(s) 

As can be seen from Figure 2.6 if a gain margin and phase margin design are 

attempted for a gain margin of 3 and a phase margin of 45° then no PI controller can 

be found that will fulfil that requirement. However if the phase margin is increased to 

600, as shown in Figure 2.6, then that design can be achieved by the use of a PI 

controller. 

The benefit of this method is that for an unknown process a map of 

achievable gain and phase margins can be obtained. With this knowledge, designs 

will only be carried out for viable gain and phase margin pairings. Additionally the 

identifications that are carried out are in closed loop and hence cause the least 

disruption to the process. 
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2.3 Testing for the Existence of PID Controllers to Meet Gain and Phase 

Margin Design Specifications. 

In the previous section a method that returns the map of gain margin and 

phase margin pairs that are achievable by the use of a PI controller with an unknown 

process was presented. A graphical means of data presentation, for this type of 

problem, is to be recommended in that the data are readily visible and it is easy to see 

where solutions are possible. In the following sections two methods that return a 

graphical representation of the possible phase crossover frequencies and gain 

crossover frequencies from which the gain margins and phase margins can be 

determined are discussed. In the following sections it shall be assumed that the 

process is unknown and that the identifications necessary to implement the methods 

shall be carried out in closed loop. 

2.3.1 Testing for the Existence of PID Controllers to Meet Gain and Phase 

Margin Design Specifications by an Enumeration Method. 

In this section the PI controller method due to Fung et al (1998) shall first be 

generalised and then an extension of the generalised method shall be described that 

can be used to determine the parameters of PID controllers to meet gain margin and 

phase margin specifications. 

In the PI controller tuning method of Fung et al (1998) a graphical approach 

is taken to solving the combined equation set given by (2.8) and (2.11) as 

GpR 
wir (wir l Gplýw-ýý 

l 

l GM 
r 

Co 
-ýr l 

G 

Gp1(w-n) pR 

- 0- kp 
= 

0 

(WI l 
GPI 

\(1 GpR) 
ki 

- COS(PM 

1 

G (CO l- 
GPR (W1) 

pl\ 11 
- sin IPM 

W1 

(2.19) 

Equation (2.19) is derived from the Nyquist geometry of the forward transfer 

function of the compensated process at the phase crossover point and the gain 
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crossover point. The process to be controlled is given by GP (s) and the PI controller 

has the structure 

kp + 
k; 

Solutions for kp and kl were found from equation (2.13) such that 

-COSOI)(CO_; r 
) 

kp= (2.20a) 
GMIGp(jco_�1 

ki =- _, r sin qp (0)-, ) 

GMIGp(jü)-�1 

k _cos I(OPM 
-0y(o1)ý 

p= GP (jw1 1 
(2.21a) 

k=w, sin (g511-o (a » 

(jw1 (2.21b) 
IGP 1 

The key observation made by Fung et al was that when equations (2.20a) and (2.21 a) 

were equal and when equations (2.20b) and (2.21b) were equal then the PI controller 

satisfying the given gain margin and phase margin specification had been found. The 

novel representation and interpretation was given by defining two complex functions 

such that 

Kip (w j+ JK» (w-j 
. 
f, :R1-C 

f2(w1) =K2P(o1)+jK21(0)1I 12 : R' -),. C 

with 
-cosO, 

(w-, 
t 

GMIGP(jw-,, 

-, r 
sin Op 

(co-ßr 1 
Klr ýý-ýý _- GM G 'w p(-, rl 

K 2P _ 
CoS(5PM -c 

(0), » 

2P 
{wl 

l 

ßGp (. % 
. w11 

K21 \ 
(w1 

) 
l_ d'1 sin(q$n, l -0p(w, ýý 

(2.22a) 

(2.22b) 

(2.23a) 

(2.23b) 
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The complex functions f, and f2 were drawn as curves in the C space. When 

f, (w_, )= f2 (t») then this intersection was interpreted as a solution point 

prescribing a potential PI controller gain pair, kp, k; which satisfied the given 
specification. 

In the Fung et al method the functions f, (w) and f2 (w) do not necessarily 
have to have the form prescribed by equations (2.22a), (2.22b), (2.23a) and (2.23b). 
Two variations are possible; if equation (2.19) is re-ordered as 

GpR 
lw-ir 

GpR(w1) 

GPI (w-, 

Gpr (w1 

Then it can be shown that 

GPI 
`co-j 

-I 
Co 

l GM Gp! o)_1l 

O)l 
kp- COS OPM 

GpR (w-ir ) k; 0 
C0_ 

GpR(ol) 
SinOpm 

co l 

O1Gp1 
( 
\0-ßr cos0� 

C3_2r 
GPI 

`w1 GM kip 
= 

-7rGpR\tv-kc/`; pl(01)-o1G R`a1) P1\a-it) P 

(2.24) 

(2.25a) 

G� (_ 
1)-G (co )cos 

Gm PR\ -ýrJ01 
k=ww (2.25b) li -ýr 1 

-ýcGpR`w-7rX pI(w1)-w1GpR( 1! `Jpl`Lý-ýr) 

k= 
(O 

lCJpR(a , r)Sin 
g1.11 

2p 
w-, 

rGp1(v_, 

X 
pR (Col 

)- 
&IGpR 

(c 

-z 

) 
pl \''l J 

k= Cv CO1 

GPI Sin OPM 

2r ýr (0-ir G 
p1 

((V 

-; r 

)6r 

pR `co 1) -W1 
GPR (co 

-n l 
3p, (co 

1) 

The particular solutions for kp and k; are found by solving equation (2.24) as 

-1 
Al. kp 

_ 
GM 

A3. k' 
- COS OPM 

]=[0 rA [A4j[k, j[-SinýPM 

(2.26a) 

(2.26b) 

(2.27a) 

(2.27b) 
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where the A 1. , A2. , A3. and A4. are the row entries of equation (2.19). If now 
functions are defined such that 

.f 
(k1p(o, a1), k1j(w_,, a1)) 

=ktp(w-ý, w1)+jk11(w-,, w1) 
f2 (02-; 

r 3 
a)1 

)= (k2p(üj-� 
co, 

), k2i 
\03-7r , 

031 
lý 

=k2p(w-ff5wl ) +. D(09-, rIwl 
) 

where f,.: RxR --- C, i=1,2 

The condition for a possible solution can be given by a norm condition that is 

equivalent to the two functions intersecting. 
lifl\03-x 

, Col)-f2(CO-7r30)Ix=ý (2.28) 

This restatement of the Fung et al method leads to an enumeration method whereby 

the (a., 
r , w, ) space is systematically traversed and the norm condition of equation 

(2.28) is tested to find possible PI controllers (Crowe and Johnson, 2001b). 

The second variation of the method can be found if equation (2.19) is given 

by 

G 
(w l Gp1(w-') 

pR\ -, r1 _1 03 

-" 
R 

(wl G GM 
P G 

(wl 

_ pl \1! 
1 

k 
P- 

- SiII bPM 

rl 
GPR (a-, 

r} GPI \oj-, 1 

_ [k1] 
0 

Co 
-ir ) (w G 

- 1 p1 G 
(co l 

pR\ 1l 
COS c PM 

Co 1 

From equation (2.29) it can be shown that 

CO_ 
GlO 

pm 
UMAR( 1/ 

+ o1 Gp1(w, )Sin YPM 

kip 

w-Ir Gp] 
`co - 

Xýpj 
`co l1+ w1GpR \(9-7r) pR `Co 1! 

Gpl(oil)_G 
sn CJM PR 

(W- 
ýt 

ý OPM 

k31 
- -ýrW l (CO ý( (l (-� YpR rl 

-ýG1 -ýr 
G1 

`w1) 
+ cO1GpR `ý11 

(2.29) 

(2.30a) 

(2.30b) 
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Co 
GpR (0-, 

) 

4p __ 
cos ' OP"' 

(cGm l (2.31 a) Gp/ (0') 

-ýr 
Ki 

pl 1l+WIGpR(°_�r C)1pR`0) 
1! 

Gp/ (0_ff )cosOpM 
ka; ( ý( (2.31 b) 

_XGpll-v-ýt/`Tp/((o1ý+WIGpR`(v-irI 
3pR(Col 

1 

The particular solutions for kp and k; are found by solving equation (2.29) as 

-1 A' kp 
_ 

GM (2.32a) 
[A;. 

k' 
- sin PM 

A2. kp 
=o (2.32b) [A3 k; 

- COSq$p, 

where again A 1. , A2.. , Al. and A4. are the row entries of equation (2.19). If in this 

case functions are defined such that 
f3Wir4)1 )= (k3p(W-fr'oil)'k31 (0)-z 

, 031 

= kip (w-z 
9 o1) + jk3i (w-, 

c 9 wi 
) 

f4 
`0)-, ,W1)= 

(k4p(w-� 
w1 1, 

k4 
i 

(W-7r 
, M1 lý 

= k4 
p 

(Co-z 
9 

CÜl 
)+ 

. 
Ik4i 

(03-z 
'O)l 

) 

where f.: Rx R-+ C, i=3,4 

The condition for a possible solution can be given by a norm condition that is 

equivalent to the two functions intersecting, viz. 
If4(ß-n, 

¬1 
)l 

=0 (2.33) 

The enumeration method described for PI controllers is a generalisation of the 

method described by Fung et al (1998). It is possible to extend the enumeration 

method to find the parameters of PID controllers to meet specified gain and phase 

margins (Crowe and Johnson, 2001b). The PID controller that shall be used is given 

by 

G, (s)=kp + 
k' 

+skd 
s 

(2.34) 

and the process is represented by, Gp(s). In the subsequent analysis the substitution 

s= jw 
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shall be used. Thus the process, Ge(s) can be represented by 

Gp(J»)=GpR(co)+ jGp1(o) 

At the phase crossover frequency of the forward path of the compensated system, 

w_,. , the design requirement is to ensure that 

Gp (J a-», kn +j w_zkd - 
k; 1 

cv_, t 
GM 

(2.35) 

where GM is the required gain margin. Representing equation (2.35) by its real and 

imaginary components gives 

l 
GpR 

(CO-7r 
w-7r ! 

Gpl (o3-, 
r) _ w-ýr Gpl l 
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_1 

G 
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- k, _ 
GM (2.36) 
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kd 

At the gain crossover frequency of the forward path of the compensated system, wl , 

the design requirement is to ensure that 

G, (j o1kp+j wl kd - 
k' 

_- cos 0PM -J Sin 0PM (2.37) 
(DI 

By considering the real and imaginary components of equation (2.37) the following 

representation results 

G 
(wl Gplýwlý 

_w G 
(w kp- 

pR l111 pI l1 1lp 
- CO S OPM 

k; GPRI(tv1) 

[_SPM] 

G1(1) olGpR 
(0)1 

lL 
kd 

01 

Equations (2.30) and (2.32) can be combined to give 
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With an obvious notation (2.39) is given by 

1 
GM 

kp 0 
k; = 
kd - CosOPM 

- Sin OPM 

(2.38) 

(2.39) 
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Ax=Yo (2.40) 

Equation (2.39) is under-determined, the unknowns are (kp,, k; 
, kd, co. _,, a 1), and 

hence there are an infinite number of solutions. 

The purpose of the PID controller design is to produce a set of controller 

parameters that stabilise the process under control and also provide a desired gain 

and phase margin. If equation (2.40) is going to provide a solution to the design 

problem then the number of unknowns must be reduced. In the enumeration method 

to follow, the method that is used to reduce the number of unknowns is to traverse 

the (w_, 
)w, 

) space systematically using different subsets of equation (2.40) thus 

reducing the number of unknowns to three (k41, 
, k; , kd). The subsets of equation 

(2.40) and their explicit solutions are given by 
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The solution of equation (2.41 b) is given by 
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(2.41b) 
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The solution of equation (2.42b) is given by 
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The solution of equation (2.43b) is given by 
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The enumeration approach is formulated as the following algorithm. 

(2.44a) 

(2.44b) 
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Algorithm 2.2: Enumeration Search Method 

Step 1: Design Specification. 

Select the desired gain margin, GM, and phase margin, 0, 
, 

for the control design. 

Compute YD =10- cos opm - sin IPM 
GM 

Step 2: Solution Step. 

Solve equation (2.41 a) for explicit formulas for kip, k11 and kid. 

Solve equation (2.42a) for explicit formulas for k2p, k2i and k2d. 

Solve equation (2.43a) for explicit formulas for kip, k3i and k3d. 

Solve equation (2.44a) for explicit formulas for k4p, k4i and k4d. 

Step 3: Search Step. 

Choose a search interval R_, 
r = (Orrin 

, 
wmax) and RI = (Comin 

1 1, 
(max 1} 

Search through the space R, x R, to find locations where 

cos(0, 
(o 

1)-oPM) COSo(v_�) 

IGP(je, GM, GP(jw-�1 

Record the locations as the candidate solution frequencies. 

Step 4: PID Parameter Evaluation. 

Substitute the candidate solution frequencies into the equations of Step 2 and record 

the controller parameters. " 

It is easily seen that the enumeration method is a generalisation of the 

procedure introduced by Tan et al (1999). The algorithm that forms the enumeration 

method returns the parameters of a PID controller to meet a specified gain margin 

and phase margin. A proof shall now be given that shows that the PID controller 

parameters found in Step 4 of the algorithm when coupled with the candidate 

solution frequencies found in Step 3 of the algorithm do in fact allow a solution of 

equation (2.39). 
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Theorem 2.1: PID Controller Parameters to give a Desired Gain Margin and 
Phase Margin. 

Assuming that a specified gain margin and phase margin are achievable for a 

particular process that is to be controlled by the use of a PID controller and if two 

frequencies exist, w_, r and co,, such that 
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then a solution to equation (2.46) has been found. It can be shown that 

kp 

Gpl \ 
rw1 l- GPR (wI) 

w1GpR 
(O)1 

k. 11, 
W1 

-- 
kd 

COS q$(wI) COS q$ 

Sin q$(co l) 
- 

IG, (jwlýcos g(w-, } 

GMIGp(jw-', ý sin qs(c°1) 

GMIGp(jcv-nýcosO(cv, )cosoPM - 
IGp(jw, lcoso(w-ýý 

GMIGp(jcv-, 
rýsinO(cw1) 

GMIGp(jw-, 
rýsin 

0(w, )sin qpp -GMIGP(jw-, rýsin 
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GMIGp(jw, ý sin0(wv, ) 
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ý sin O(wºý 

FPM 
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From the equality 
Cos(OP(0), 

)-OPM) 

I (ja 

it follows that 

COS 0p (Ct)_ý ) 

GMIGp(jw-, 
r 

GMIGP(ja)-, 1 cos( (o, )- 
PM 

)=I Gp(je, 1cosop(w-�) 

and hence 

(2.48) 

(2.49) 

(2.50) 
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GMIGp(1w, (cot) 
-qPM 

)-IGp(. 1w, 1cosgp(w-, ) =0 (2.51) 

substitution of equation (2.51) into equation (2.50) results in 

GMIGP(jco-, 
rýcos(O(w, 

) 
-OPM 

) 
-IGp(jco1 cos 0(o)-,, ) 

GMI GP (jw-,, sin O(aaI) -sin FPM 

=- Sin c4 yM (2.52) 

The same result, equation (2.45), is achieved regardless of the particular 
partition chosen, viz. equation, (2.41a), (2.42a), (2.43a) or (2.44a) can be used in the 

proof. 

0 

Comment 

i) This result, equation (2.45), is stated in Tan et al (1999) although no 

proof is given. 

2.3.2 Case Studies for the Design of a PID Controller by an Enumeration 

Method 

The enumeration method shall now be utilised in the design of a PID 

controller given by 

G, (s)=kp +' +skd 

The controller shall be designed such that a gain margin of 3 and a phase margin of 

60° shall be obtained for the candidate processes given by 
-s 

G3(5ý 
e 

(s+lXs+3)2 

-2s 
G4 (s) 

=2e 

s +s+5 Xs+l) 

The process G3 (s) is used to represent a large class of processes that are to be found 

in the process control industry. An oscillatory process with a time delay is 

represented by the process G4(s). All of the identifications were carried out with the 
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system in closed loop with a known controller. The identifications were carried out 
using the Phase-Locked Loop identifier method. 

The PID controller, Ge(s), can provide a maximum phase lag of - 
7r (rad) and 2 

a maximum phase lead of 
Ir (rad). If the phase margin to be designed is given by 
2 

OPM then the search for a candidate controller should start from the frequency at 

which 

op CWmin/= 

2 
+S"'PM (2.53) 

Similarly the frequency at which the search for a candidate controller should stop is 

given by 

Op 
(Wmax 

3, r 
!2+ 

OPM (2.54) 

Thus the frequency range over which the search for a candidate controller will be 

carried out is found by identifying the process Gp(s) such that equations (2.53) and 

(2.54) are true. 

Case Study 2.3 

The process is that given by G3(s) and the design gain margin and phase 

margin are to be 3 and 60° respectively. The frequency ranges for both R1 and R_, 

are given by 

\CUmin 9 
0)max 

) 

where wm; n 
is 0.1973 (rad. s 1) and wm.. is 1.6407 (rad. s-1). The results from the 

application of the enumeration method are shown in Figure 2.7. The form of the 

graph shown in Figure 2.7 requires an explanation. Figure 2.7 represents a contour 

map of the 1-Norm 
L=IY4 - SiOpm 

where Y4 is calculated using equation (2.48). The graph is generated by applying the 

rule that if a 1-Norm calculated at a particular pair of enumeration frequencies is 
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greater than a preset tolerance, in this case 0.001, then the 1-Norm is set equal to the 
preset tolerance. 

[A1"; A2"; A3"] 

1.6 

1.4 
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0.4 

0.2 L- 
0.2 

Figure 2.7: Candidate frequencies for controller parameter calculation. 

A contour map is then generated for the calculated 1-Norm values. Hence Figure 2.7 

gives the frequencies at which it is possible to calculate the parameters of a PID 

controller that will ensure that the specified design is met. To illustrate the 

enumeration method the results of a choice of frequencies where, 

01 = 0.45 (rad. s 1) and co-, = 1.3552 (rad. s") are shown in Table 2.4. 
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Table 2.4: Candidate values for the compensated process G3 (s)Gc (s) 

Candidate phase and gain crossover frequencies 

Phase Crossover Frequency 

(rad. s 1) 
Gain Crossover Frequency 

(rad. s 1) 

1.3552 0.45 

Candidate PID Controller Parameters 

kp kl kd 

6.0833 4.0693 2.203 

Achieved Gain Margin and Phase Margin 

Gain Margin 
Phase Margin 

(deg. ) 

Required Achieved Required Achieved 

3 3 60 60 

The results presented in Table 2.4 are for the partition given by [Ai. ; A2. ; A3. ] and 

are the controller parameters that return the lowest value of the 1-Norm 

L=IY4 -Sin q$M 

The results for partitions [A1. ; A2. ; A4. ], [A1. ; A3. ; A4. ] and [A2. ; A3. ; A4. ] returned 

exactly the same results. From Figure 2.7 it can be seen that there are two curves that 

provide candidate frequencies at which the PID controller parameters can be 

calculated to give the desired gain and phase margin specification. The upper curve 

in Figure 2.7 does however return candidate frequencies that have little difference 

between the phase crossover frequency and the gain crossover frequency. Thus, the 

PID controller parameters that are calculated using candidate frequencies from the 

upper curve are characterised as having large values for the k; and kd terms. Large 

integral gain is desirable for disturbance rejection (Astrom and Hagglund, 1995) 

however, the large derivative gain tends to increase the rise time of the closed loop 

response of the system. For this reason the lower curve is chosen to provide the 

candidate design frequencies. 
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Case Study 2.4 

The process is that given by G4(s) and the design gain margin and phase 
margin are to be 3 and 60° respectively. The frequency ranges for both R1 and R_, 

are given by 

R-ir Rl = 
(Comin 

5 
(max 

) 

where CUmin is 0.1640 (rad. s"1) and COmM is 1.2223 (rad. s-1). The results from the 

application of the enumeration method are shown in Figure 2.8. 
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Figure 2.8: Candidate frequencies for controller parameter calculation 

Similar graphs are returned from the enumeration method for the other partitions, of 

equation (2.39) and the controller parameters generated are exactly the same. From 

the figure it can be seen that there are two curves for the candidate design 
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frequencies. The upper curve results in integral and derivative gain terms that are 
relatively large due to the gain and phase margin frequencies being very close 
together. The results of the enumeration method for this particular design are given 
in Table 2.5. From the table it can be seen that the design requirements have been 

met. The results quoted are for the controller parameters that return the lowest value 
of the 1-Norm 

L=IY4 Sin OPM 

Table 2.5: Candidate values for the compensated process G4 (s)Gc (s) 

Candidate phase and gain crossover frequencies 

Phase Crossover Frequency 

(rad. s ') 
Gain Crossover Frequency 

(rad. s 1) 

0.7752 0.25 

Candidate PID Controller Parameters 

kp kl kd 

1.3689 1.2532 0.4158 

Achieved Gain Margin and Phase Margin 

Gain Margin 
Phase Margin 

(deg. ) 

Required Achieved Required Achieved 

3 3 60 60 

2.3.3 Testing for the Existence of PID Controllers to Meet Gain and Phase 

Margin Design Specifications by a Graphical Means. 

In the PI controller tuning method of Fung et al there was a match between 

the number of unknowns (kp, k;, co, co, ) and the number of available equations, 

there is therefore the possibility of there being a unique solution, no solution or 

multiple solutions. If the equation set is now extended to include the controller term 

kd then the situation arises where there are five unknowns (kp, k;, kd, w_, ý , w, ) and 

only four equations. Thus there are in general an infinite number of solutions to the 
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problem. To resolve this problem Tan et al set the frequency co-, of the 

compensated process, such that 

co_, = a(t) (2.55) 

where aE [0.5,2] and w, is the phase crossover frequency of the process to be 

controlled. Following the design method of Tan et al, from this point onwards, there 

is a loss of the graphical interpretation in the PI controller tuning method due to Fung 

et al. The PID controller that shall be used is given by 

G, (s)= kp +'+ skd (2.56) 

and the process is represented by, Gp(s). In the subsequent analysis the substitution 
S=Ja) 

shall be used. Thus the process, Gp(s) can be represented by 

Gp( o))=GpR( 
)+jGp1(o) 

where GpR(C)-, 
r)=IGP(i w-, r coscp{CO-)r) 

and GPI (o)-, 
r)=JGp`. 

lo)-, 
ýsin OP 

`co-j 

At the phase crossover frequency of the forward path of the compensated system, 

o, the design requirement is to ensure that 

"d- 
ký; 

ý=-1 
G, (j w_, ý 

kp+j w_ k 
GM 

where GM is the desired gain margin. Equation (2.57) has the solution 

-coso 
(Ci_, ) 

kp 
GMIGp (jw_, 1 

k; 
co_, rkd- _ 

w- 

sin 0p (o)-, ) 

GMI Gp (j w-, ý 'T 

(2.57) 

(2.58) 

(2.59) 

Similarly at the gain crossover frequency of the forward path of the compensated 

system, o),, the design requirement is to ensure that 

Gp (jot kp+j wl kd 
k, 

=- cos OPM J sin OPM 

tvI 

where qPM is the desired phase margin. 

(2.60) 
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Solving equation (2.60) yields the following 

k =-eos(Op(0)I)-0PM) 
n, (2.61) JGP (jo), y 

[oIkd 
-_ 

s'n j) -MX, (2.62) 
w I(jo), 

The positive solutions of equations (2.59) and (2.62) then give the controller 
parameters kd and k; as 

-1 X1x 
--x w, w-Z kd =-- (2.63) 

0)-2r 01 W-7r 0)1 

k; = (w-, X, - wl X-te t 9' 
_ 

w-" (2.64) 
0)-ir co1 

There is still the resolution of the two equations for kp, since there can only be one 
value of kp. The method advocated by Tan et al is that a search is begun downwards 

from the phase crossover frequency, w_,,, of the forward path of the compensated 

process until a frequency is found, co,, such that 

k 
p, =k p_, 

-cos((p(0) - OPM) 
- COS0, 

(Co-, 
rý (2.65) 

Icp(jo, 1 GMIG (jw-� 1 
When the frequency co, is found such that equation (2.65) is true, it is then a simple 

matter to calculate the remaining controller parameters using equations (2.63) and 
(2.64) for kd and k; respectively. 

In the design method of Tan et al the graphical representation of the PI controller 
design method given by Fung et al is lost. It is however possible to provide a 

graphical method of finding a suitable co, frequency such that the design of the PID 

controller can be carried out, in part, using a graphical means. 

In the following method the process shall be considered to be unknown and 

the identifications required shall be carried out in closed loop. The Phase-Locked 

Loop identifier shall be used to carry out the identifications required by the method. 

Introduce two functions such that 
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f (v)= 

and fb (CO) 
= 

-COS0, 
(Cw) 

GMI Gv (. 1 wl 

- cos(gp(Co) - 
o, 

" 
) 

I Gvý 
these are of course the equations previously found for k 

p_ý and k 
p, . 

An identification 

process phase angle range is now specified, with the corresponding lower and upper 
frequencies given by: 

w,, is defined such that 

and is defined such that 

q$p(wmm) 
,7 

+OPM 

2 

,c Op (wmax) 32+ opm 

and O pm is the design phase margin and zp (co) is the phase angle of the process. The 

phase angle range is now divided into an equal number of divisions and identification 

of the process is carried out. The data returned by the identification is the frequency 

and process magnitude for the particular phase angle. To allow continuous curves fQ 

and fb to be drawn intermediate data are required. These data are furnished by the use 

of cubic-spline interpolation between the identified data points. Thus the curves fa 

and fb can now be drawn to a base of frequency. The design method is implemented 

by the use of the following algorithm. 

Algorithm 2.4: Graphical Design of PID Controllers 

Step 1: Initialisation. 

Select the desired gain margin, GM, and phase margin, cPM. 

Select the required closed loop bandwidth. 

Select the number of identification points in the 

37z 
- +opm <arg(Gp(j 

\<- ýT +opm 
22 

Step 2: Identification Step. 

range 
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Identify the process at the required phase angles and record the corresponding 
frequency and magnitude data. 

Use cubic-spline interpolation to generate the data to produce fa and fb curves. 
Step 3: Controller design Step. 

From the graph determine the phase crossover frequency corresponding to the closed 
loop bandwidth frequency (gain crossover frequency) and the PID controller 

parameter, kp. 

Use that data to calculate the remaining controller parameters k1 and kd. 

Step 4: Testing 

Implement the controller design on the plant and test for acceptable control 

performance. 

If control performance is acceptable, then stop 

Else choose new gain crossover frequency and repeat at step 3. 
0 

The above algorithm shall now be used in the following case studies to demonstrate 

the use of the graphical design method. 

2.3.4 Case Studies for the Gain and Phase Margin Design of PID Controllers by 

a Graphical Means. 

The PID graphical design method shall now be utilised in the design of a PID 

controller given by 

Gi(s)=kp +' +skd 
s 

The controller shall be designed such that a gain margin of 3 and a phase margin of 

60° shall be obtained for the candidate processes given by 

-S 

G3 (s) -e (s+lXs+3)z 

-zs 
G4 (s) 

=e (s2 
+s+5 Xs+1) 
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PID controllers are considered to give an acceptable control performance where the 

process to be controlled has dynamics that are of second order or can be adequately 

represented as second order (Astrom and Hagglund, 1995). Processes with dynamics 

greater than second order, oscillatory and processes with time delays are considered 

to be difficult to achieve an acceptable level of control system performance using 
PID control. In the following case studies, the processes are all third order with time 

delays. Additionally the model G4 (s) has an oscillatory mode. By showing that the 

control performance achieved by the tuning methods when applied to these models is 

acceptable, it is expected that the method will perform well when used to tune a 

physical process. 

The processes used and the design requirements in these case studies, are the same as 

were used in the previous case studies. This allows a comparison of the results of the 

two methods to be carried out. 

Case Study 2.5 

The two functions fa and fb are plotted over the range 0.1973 (rad. s 1) to 1.6407 

(rad. s 1) and are shown in Figure 2.57. 
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Figure 2.9: Candidate frequencies for PID controller design for process G3(s). 

The function fQ corresponds with the controller parameter kp_, and the function fb 

with the controller parameter kpl. It can be seen from Figure 2.9 that there are an 
infinite number of frequency pairs (co-, 

1 a) that could lead to viable PID controller 

parameters. To resolve this problem a design strategy must be formulated. If the 

closed loop bandwidth is first specified then this gives the required value of the gain 

crossover frequency cal, in Figure 2.9 this is the point marked (a), and in this case is 

chosen as 0.45 (rad. s-l). A vertical line is now drawn from (a) to intersect with thefb 

curve at the point marked (b) in the figure. From this point a horizontal line is drawn 

such that the controller parameter kp can be read from the vertical axis and the 

intersection of this line with the f, curve, point (d), gives the corresponding value of 

the phase crossover frequency, point (e). With the phase crossover and gain 

crossover frequencies determined it is now possible to calculate the remaining PID 

controller parameters namely k; and kd by using equations (2.59), (2.62), (2.63) and 

(2.64). The results of the design are shown in Table 2.6. 
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Table 2.6: Candidate design values for the compensated process G3(s)G, (s) 
Candidate phase and gain crossover frequencies 

Phase Crossover Frequency (rad. s") Gain Crossover Frequency (rad. s ) 

1.3512 0.45 

Candidate PID controller parameters 

kp k, kd 
6.0833 4.0694 2.2033 

Achieved Gain Margin and Phase Margin 

Gain Margin Phase Margin 

Required Achieved Required Achieved 

3 3 60 60 

The step response and disturbance rejection properties of the closed loop system are 

shown in Figure 2.10 along with a controller designed using Ziegler-Nichols rules for 

tuning a PID controller with the data supplied from a relay experiment. The 

percentage overshoot, when the graph method designed controller is used, is 

approximately 12% which is considered to be rather large. However, it is an 
improvement over that obtained using the Ziegler-Nichols controller. The rise time 

of the Ziegler-Nichols tuned loop is faster than that of the graph method designed 

controller. Both controllers give a settling time, 5% criterion, of approximately 8 (s). 

The closed loop response using the Ziegler-Nichols base controller is more 

oscillatory than that obtained using the graph method controller. From the figure it 

can be seen that the step response, produced by using the graph based method 

controller, although acceptable for process control applications could be improved 

upon. In the majority of process control applications movement of the set point is not 

carried out too often and hence disturbance rejection is considered as a better 

measure of control system performance. A disturbance of magnitude 0.15 is added to 

the process output at time t= 30 (s), the resulting response can be seen from Figure 

2.10. It can be seen that the effects of the disturbance have been removed by both 

controllers within approximately 10 (s), however the Ziegler-Nichols design based 

controller achieves a smaller integral square error figure than that of the graph based 

design controller. The closed loop response of the graph based design controller 
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could be improved if a wider bandwidth was chosen and a redesign carried out based 

on the wider bandwidth. 
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Figure 2.10: Closed loop response 

Case study 2.6 

The two functions fa and fb are plotted over the range 0.164 (rad. s I) to 1.2223 

(rad. s"l) for the process G4(s) and are shown in Figure 2.11. 
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Figure 2.11: Candidate frequencies for PID controller design for process G4(s). 

The closed loop bandwidth frequency was chosen to be 0.25 (rad. s-1) from this the 
following design data was derived as shown in Table 2.7. 

Table 2.7: Candidate design values for the compensated process G4(s)G, (s) 

Candidate phase and gain crossover frequencies 

Phase Crossover Frequency (rad. s) Gain Crossover Frequency (rad. s- ) 

0.7752 0.25 

Candidate PID controller parameters 

kp k; kd 

1.3689 1.2532 0.4158 

Achieved Gain Margin and Phase Margin 

Gain Margin Phase Margin 

Required Achieved Required Achieved 

3 3 60 60 
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The closed loop response and disturbance rejection properties of the graph method 
design controller and a Ziegler-Nichols PID rule base method controller are shown in 
Figure 2.12. 
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Figure 2.12: Closed loop response 

The step response of the graph method design controller is much improved over that 

of the Ziegler-Nichols method controller both in terms of percentage overshoot and 

settling time. A disturbance of magnitude 0.15 was added to the process output at 

time t= 50(s). The graph method designed controller removed the effect of the 

disturbance in approximately 12(s) whereas the Ziegler-Nichols based design 

controller does not deal with the effect of the disturbance as effectively. 
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2.4 Summary Conclusions 

Work based on an extension of the Fung et al (1998) exact gain and phase margin 

method was discussed that resulted in a technique that returns the achievable gain 

and phase margin pairings achievable by a PI controller acting on an unknown 

process. The identifications required by the technique are carried out in closed loop 

using the Phase-Locked Loop system identification module and the results are 
displayed in a graphical format. Additionally the PI controller parameters required 
for each gain and phase margin pairing are made available. Algorithms were 

presented that allow the semi-graphical design of PID controllers to meet specified 

gain and phase margins designs. In the first of the PID gain and phase margin design 

algorithms presented an enumeration technique is used to generate a graph showing 

candidate gain and phase crossover frequencies. Using a set of derived equations and 

the data from the graph the parameters of a PID controller can be calculated such that 

the design gain and phase margin can be met. In the second of the PID gain and 

phase margin semi-graphical design methods the method of Tan et al (1999) is 

extended. In this method a graph is generated such that the controller gain parameter, 

kp, is graphed against candidate gain and phase crossover frequencies. By using the 

data from the graph and a set of derived equations the remaining parameters of a PID 

controller able to meet the given gain and phase margin specification are calculated. 
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3 The Design of PI Controllers to Meet Classical Robustness Measures. 

3.1 Introduction. 

In Chapter 2, for an unknown process, graphical methods were developed that 

show the gain and phase margin ranges that are achievable using PI or PID 

controllers. The viable gain margin and phase margin method for PI controllers 
developed in Chapter 2 also returns values for the controller parameters to obtain the 

required gain margin and phase margin pairing. However, the method only gives the 

controller parameters for the first solution point and as shown in Chapter 2 there is 

the possibility of multiple solutions yielding controller parameters. The accuracy of 
the results obtained by the viable gain margin and phase margin method depends on 
how many frequency points are identified and also on how many gain margin and 

phase margin points are chosen in their respective range of values. To overcome this 

problem and to allow the online determination of PI and PID controller parameters to 

give the exact gain margin and phase margin design specifications required, 

automated design techniques are discussed in section 3.3 and 3.4. 

The classical frequency domain measures of gain and phase margin are used 

as measures of the relative stability of a system. Assume that a process given by 

Gp(s) is controlled by a controller Ge(s) then the gain margin (GM) and phase margin 

(cpM) are given, respectively, by 

GM =1 IGpC1w-7rxJJ W-, 1 

OPM =7r +arg(Gp(jv1)cCjw1)) 

where w, the phase crossover frequency, is the frequency at which 

arg(G p 
(ja)- 

, 
)G (J w-, j= 

-7r 

and Wi , the gain crossover frequency, is the frequency at which 

GpGwl)G, (jwl =1 

With a knowledge of the gain margin it is possible to calculate by how much the gain 

of the forward transfer function can be increased, at the phase crossover frequency, 

before the onset of instability. Similarly, knowing the phase margin of the forward 
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transfer function allows the calculation of how much phase lag can be introduced 
into the system, at the gain crossover frequency, prior to the onset of instability. 
A further frequency domain robustness measure is given by the maximum 
sensitivity. The sensitivity function of a closed loop system is defined as the transfer 
function between the set point and the error. The maximum sensitivity is found at the 
frequency for which the magnitude of the sensitivity function has the greatest value. 
Thus, for a system having a forward transfer function given by 

L(s) = Gp (s)G, (s) 

the sensitivity function is given by 

s(S)= i+L(s) 
and the maximum sensitivity is then given by 

MS = maxi S(jo 

The geometric significance of the maximum sensitivity is that it is the shortest 
distance from the (-1,0) point, of a Nyquist plot, to the frequency response curve of 

the forward transfer function of the system. As a robustness measure the maximum 

sensitivity gives a measure of the maximum value of non-linearity that can be 

introduced into a closed loop system before the onset of instability. Khalil (1992) 

shows that if the non-linearity can be bounded by two straight lines with gradients 

a= 
MS 

' (MS+1) 

ai= - 
MS 

(MS-1) 

then the closed loop system will remain stable. The maximum sensitivity can be used 

to modify the closed loop time domain response of a system (Astrom et al, 1998) and 

hence lends itself to being a candidate parameter for the specification of the control 

performance that a PID controller is required to provide. In particular if the value of 

designed or achieved maximum sensitivity is reduced then the time domain response 

of the closed loop system becomes less oscillatory with an increase in the rise time. It 

should be noted that the observation in Astrom et al (1998) is based on experimental 

evidence; no theoretical basis is given to support the observation. Typically the range 

of values used for the maximum sensitivity to be achieved by a particular controller 

97 



design is in the range 1.2 to 2. A method to determine the parameters of a PI 

controller to meet a maximum sensitivity and phase margin design specification is 

discussed in section 3.4. 

For all of the methods described in the following sections of the chapter it 

shall be assumed that the process to be controlled is unknown and that the controller 
is known. The identifications that are required are carried out using the Phase- 

Locked Loop identifier described in Chapter 1. In implementing the design methods 

of this chapter, certain prescribed points on the frequency response curve of the 

unknown process require to be identified. In section 3.2 the Phase-Locked Loop 

identifier configuration required to carry out these identifications is discussed. 

The design equations, for the tuning methods discussed in this chapter that 

require to be solved, are discussed in section 3.1.1 and 3.1.2. Conclusions close the 

chapter. 

3.1.1 Gain Margin and Phase Margin as Controller Design Specifications. 

The objective for the controller design is to fmd a PI controller that satisfies 

given classical robustness measures of phase margin and gain margin. The design is 

concerned with finding a new PI controller, denoted by G7, (s), in cascade with an 

unknown process, denoted Gp(s), such that the new forward path satisfies both the 

gain margin and phase margin specifications. Nyquist geometry shall be used to 

derive the required design equations. A new PI controller is introduced such that 

Gnc(s)= kp + 
k; 

(3.1) 

The new controller can be considered to be a virtual controller, since at all times 

during the design phase the original controller is kept in the loop. The original 

controller would only be replaced or updated at the end of the design phase. The 

forward path of the new compensated system will be given by 

Gf1(s)=Gp(s)G�, (s)=Gp(s kp + 
ki (3.2) 
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In the frequency domain with s=jw, and introducing a Cartesian form for the 

unknown plant GP (jw) =G pR 
(w) + jG 

p, 
(w) obtain from equation (3.2) 

Gfp(ja')=GP (jw kp + 
k, 

jw 

=(GPR`w)+jGp1(w) kp + 
k' 
Jw 

(O))k Gl ( w)ki GpR (wýi 
= GpR 

p+w+J 
Gpl (a»kp 

- (3.3) 

The specified gain margin is denoted by GM, thus the phase crossover point is given 

as 

s_Z 
1+ 

j0 
GM 

and this occurs at the forward path transfer function frequency ofw_,,. Hence using 

equation (3.3) 

Gfp(Jw-,, )= GpR(w-,, )kp 4 

-1 GM+jO 

+J Gpl (co-, 
lkp - 

O-Ir 

Equating the real and imaginary parts of equation (3.4) gives 

GpR (w-z )k; 

GpR 
rw l Gp, 

k_1 

p GM 

Gpl 
GpR (w-, ) 

lki 

0 ýý-ý 

(3.4) 

(3.5) 

The specified phase margin is denoted by OPM and this occurs at the forward 

path transfer function frequency a. when l(jw, I. The phase angle at this point 

is q (wl )=-, T + FPM 
, thus the gain crossover point is given as 

s, = e-i(; r-mPM) = _e>oPM = -cos0PM - 
.l 

sin OPM (3.6) 

thus using equation (3.3) gives 

(' l= 
[GPR G1(1)k; 

'G 
(col l_ GPR ( 1)kGfpJ r\w1lJkp 

+ .l pIJ p 0) 1+1 

99 



=- COS qPM J SinqPM (3.7) 

Equating the real and imaginary parts of equation (3.7) yields 

GpR (WI ) GPI (w1 

k [_cýsq$PM1 
_rl-G 

wpR1 
(cot) k; 

P- 

sin OI, M 
(3.8) 

G 
pl \w1 1 

01 

The equation set (3.5) and (3.8) are the key equation pairs needed in the specification 

of the new PI controller. Although these equations are linear in the PI controller 

gains kp and ki, the equations are non-linear being dependent on the unknown process 
transfer function Gp(s) and the frequencies c v, co, . 

3.1.2 Maximum Sensitivity and Phase Margin as a PI Controller Design 

Specifications. 

In this section the design is concerned with finding a new PI controller, 
denoted by G,, (s), in cascade with an unknown process, denoted Gp(s), such that the 

new forward path satisfies the maximum sensitivity and phase margin specifications. 
The resulting design equations are exactly the same for the phase margin as are given 
in equation (3.8), hence only the design equations for the maximum sensitivity shall 
be developed in this section. Nyquist geometry shall be used to derive the required 

design equations. 
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C 

Figure 3.1: Tangency condition on maximum sensitivity 

The new PI controller is introduced such that 

Gn, (s) = kp + 
k; 

0 

(3.9) 

The new controller can be considered to be a virtual controller, since at all times 

during the design phase the original controller is kept in the loop. The original 

controller would only be replaced or updated at the end of the design phase. The 

forward path of the new compensated system will be given by 

Gfp (s)=Gp(s)Gnc(s)=Gp(s kp + 
k' 

(3.10) 
s 

In the frequency domain with s= jw, and introducing a Cartesian form for the 

unknown plant GP (jw) =G pR (w) + jG p, 
(co) obtain from equation (3.10) 

. 
- pR 

(w)k. 
(3.11) G. p 

(j w) - 
GpR (m)k 

p+ 

GPI (w}k` 
+jGp, (a»kp G 

(v w 
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It is desired to find a PI controller Gn, (s) such that the compensated process meets a 

given maximum sensitivity, MS specification. As can be seen from Figure 3.1, 

Nyquist geometry gives the following relationship for the maximum sensitivity point 

SMJ 1- 
1 

cos 9S -i1 sin Bs (3.12) 
MS MS 

and this occurs at the forward path transfer function frequency ofws . Hence using 

equation (3.11) 

GfP \. ý 
r'ws 

= 

[GPR(WS)kP 

+ 
GPI (ws )k; 

+ .%" 
GPI 

(o), 
l 
lkp 

- 
GPR (O's )k; ý 

CUs ws 

_- 1- 
I 

cos BS -j 
1M 

Equating the real and imaginary parts of equation (3.13) gives 

GpR(cos ) 

GPI (ws) 

GPI (cos 

cos kp 
GpR(wsý Lkif 

1 
MS 
1 

0s1L MS 

cos 9s 

sin Bs 

(3.13) 

(3.14) 

where ws is the frequency at which the new compensated forward path is tangent to 

the 1/MS circle and O is the angle between the negative real axis the -1 point and 

the point where the new compensated forward path locus is tangent to the 1/Ms 

circle. 

3.2 Automated Identification for PI Controller Design. 

In the methods discussed in the introduction to Chapter 2a requirement was 

that an explicit process model was available to allow the controller design to be 

undertaken. It is however interesting to note that in almost all of the literature cited 

no mention is made as to how the process model is to be obtained. In this section the 

Phase-Locked Loop identification method, described in Chapter 1, is used to carry 

out the required identifications. The identifications required shall be carried out in 

closed loop with the process considered to be unknown. 

102 



In the automated PI controller design method to follow, gain margin, phase 

margin and maximum sensitivity specifications will be given and data sought for the 

unknown process at specific frequencies. To achieve these frequencies, the Phase- 

Locked Loop identifier structure of Figure 3.2 has to be modified according to the 
identification case. 

Switch 

4 F- 

1+G, (. 
i''k 

Os 

---" 

iý 
ýý 

arg(G (Jwk)) 

IGp(jcok I 

I 

ii ----------; 
II 

arg(LTnJ. /O, 

JII 

Kll'n 
1(o, 

II 
L ----------- I 

IG(lw. I 

- --------- 

arg{G, (j cok 

x' IGc(, ý'ýky I'i 

--------------------------------------------------- 
DIG 

Digital 
Tntraratnr 

V C0 

+ -----_ --- IIr 
------------------------ Identifier 

G (s) 

U(s) 

1 

--- --------------- ' 

G (s ) 

X(S) Y(S) 

Figure 3.2: Closed loop identification - known controller. 

------------ 

ug(i-r(>cor)) " 

ý Il-(_iljCJrý 

------------ 

However, the identification always retains the existing PID controller in the loop, 

and uses a parallel computation to place specifications on the new compensated 

forward path, G f, 
(s) = GP (s)G�, (s) to find the required frequencies. 

In the following it shall be assumed that the process to be controlled is 

represented by Gp(s) and that the controller is represented by Ge(s). The compensated 

forward path of the closed loop system is represented by Gj(s)=Gp(s)G, (s). 

3.2.1 Gain Crossover Frequency Identification. 

Using the substitution sjw, the frequency at which 
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G 
fp 

jw= JG 
p 

(jco)G,, G'coý= 1 

is required and is defined as the gain crossover frequency, col. The Phase-Locked 

Loop identifier identifies GC,, (je) and uses 

G 'w= 
I (ioý 

) 
1-G c'L 

(jco)G, (:: 

to compute GP (�w). In Figure 3.2 with the reference input set to 1 and the Switch in 

position 2, the identification of G, (jco) can then be used to evaluate the reference 

error equation, 

ek =1-IGp`fo x IGn, (Jo) 

since the controller G�, (s) is considered to be known. When this error is zero, the 

frequency found is w, (Crowe and Johnson, 2002b; Crowe and Johnson, 2000a ). 

3.2.2 Phase Crossover Frequency Identification. 

The frequency at which 

arg(G, (J a» = arg(G p 
(Jw)G�, (Jw» = -7r 

is required and is defined as the phase crossover frequency, co-, Thus, the Phase- 

Locked Loop identifier identifies GcL (ja) and uses 

arg(G p 
(j»)) = arg(G, (je))- arg(l - GcL (. 1 w)) - arg(G, (J co)) 

to compute arg(G p 
(im)). In Figure 3.2 with the reference input set to -i (rad) and the 

Switch in position 1, the identification of arg(G p 
(jw)) can then be used to evaluate 

the reference error equation, 

ek = -ý - 
(arg(G 

p ̀ fwk 
)) + arg(Gnc (Jwk ))) 

When this error is zero, the frequency co, is found (Crowe and Johnson, 2002b; 

Crowe and Johnson, 2000a). 

104 



3.2.3 Maximum Sensitivity Frequency Identification. 

The Nyquist geometry for the maximum sensitivity case is shown in Figure 3.1. The 

angle O between the negative real axis, the -1 point and the point where the 

compensated forward path is tangent to the 1/ MS circle, is not known a priori and 

an estimate must be constructed. However, from Figure 3.1 it can be seen that, 

- Osý and the procedure for estimating Os uses this identity (Crowe and ý s=2 

Johnson, 2001a; Crowe and Johnson, 2002a). From Figure 3.3, it can be seen that 

generally, G f, 
(je) intersects the 1/ MS circle at two points, with frequencies CO 

and COB . These intersections occur where, 

1 
=I1+Gfp(JwAII+Gfp(jw8 (3.15) 

MS 

From these two locations the angles 8, and 82 can be found 

-ý 
IIm(G. 

ý 
(. 1wB 

01 =tan_ (3.16a) 

_p 
(jwa) 

[__Im(Gf 
IRe Gf 

-1 \, 
W A 

02 an (3.16b) 
1-IRe G fp(jwAý 
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Re 

C. 

Figure 3.3: Intersection of the Gj(ko) locus and the 1/Ms circle 

The values of 01,02 are then used to calculate the angles, t' and V2 that can be used 

to form a bound on Os . It 
follows that, 

B (3.17a) 

/T iV 2= B2 (3.17b) - 2 

An estimate on the angle yrs is constructed using the geometric mean angle of 

yi1 and 2' 
(3.18) qf s= ii Vf 2 

and, from this, 

OS =- l/' (3.19) 
2 
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It should be noted that the mean estimator for yui favours the smaller of the two 

angles yr, and y'2 . The above explanation leads to the identification steps needed to 
find frequencies and system data to design for a maximum sensitivity specification. 
To implement this identification, two frequency identification steps are needed. 

Step 1 

The forward path data at the two frequencies 0A and wB are needed. These are the 

intersection points of the Nyquist plot of G fp 
(s) and the 1/ Ms circle (see Figure 

3.3), and these points occur at the condition, 

I 

M 
(, , -G, r =I1+Gp(iWA nc4/WAý =11 +Gp(Jwaln, (JWB (3.20) 

S 

Thus, in Figure 3.2 with the Switch in position 3 and a reference input of 1/MS they 

are found using the Phase-Locked Loop identifier module and a reference error given 
by 

I 
ek =M -I1+Gp(jwk)Gnc(JWk1 (3.21) 

s 

From the reference error equation (3.21) it is obvious that when the Phase-Locked 

Loop identifier drives the reference error to zero it will not automatically seek the 

second frequency at which the magnitude of the forward path equals 1 /MS. To ensure 

that both frequencies are found the following method is used. To find the frequency 

cOA the Phase-Locked Loop identifier is initialised at a frequency below COA and when 

finding wB the identifier is initialised at a frequency higher than CB. In the examples 

given later in the chapter when finding wA the initialising frequency chosen is the 

gain crossover frequency of the forward path transfer function Gfp(s) and when 

finding wB the initialising frequency is the frequency at which 

Arg(Gp (jo-, )) = -r 

Using this reference error, the Phase-Locked Loop identification automatically 

produces values of IGfpCjWAI, arg(G fP(jcOA)) and IGfp(jWBý 
, arg(Gfp (jWB)). 
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Step 2 

Using the estimate of OS 
, the frequency ws can be found. This frequency is 

identified using the condition, 

-1 [_Im(G 
(f)x G�, (jo4ý 

tan-1 - 3.22 
1- Re Gp(jw)xGn, (jw)1 

A 
In Figure 3.2 with the Switch in position 4 and a reference input of 8S , the Phase- 

Locked Loop identifier module framework will be driven to find ws by using a 

reference error equation, 

-1 
IImGp(. lwk)XGnc(. la k)1 

ek = 
(8S )-tan 

(3.23) 
1- IRe UP GO)k )x G�, (jo)k 

l 

As can be seen it is the extensive identification flexibility of the Phase-Locked Loop 

module that enables these various frequency points to be found. 

3.3 Gain Margin and Phase Margin: Automated PI Controller Design. 

The Phase-Locked Loop module is used in the automated PI control design 

procedure to perform the identification steps of the routine. The identification steps 

are performed in closed loop with the existing controller, Ge(s) left in place. The 

process is assumed to be unknown and denoted by Gp(s). The new Pi controllers will 

be given by, 

Gnc(s)=kp+k, 

The forward path of the new compensated system will be given by, 

G fp(s)=Gp(s)G�c(s)=Gp(s kp + 
k; 

s 

Thus, by combining equations (3.5) and (3.8) a generic equation suite for the new PI 

compensator gains, kp, k; is given by 
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{w-ýý 
GpR w_ 

l GPI { 

ýrl 
a) 

GM 
Gw_ 

GPR w-n 
pl) -- 0 

-7r 
kp 

Gl 
Gp1(w1) ki 

cos 
pR 

{1I OPM 

Co 1 

Gpl (of) 
- 

GPR (cot) 

- sin OPM 

Co 1 

This can be written succinctly as, 

[X]K =YD 

0 =[kP k; ]T 

YD =-1U -COSOPM -Sll1OPM 
GM 

(3.24) 

Using this equation suite and the Phase-Locked Loop identification module an 

automated PI controller design routine can be constructed. 

Algorithm 3.1: Automated PI Controller Design for Desired Gain Margin and 
Phase Margin Specifications. 

Step 1: Design Specification. 

Select the desired gain margin, GM and phase margin cPM , 
for the control design. 

Compute yD =-10- cosgPM - Sm (5PM GM 

Step 2: Initialisation Step 

Initialise counter n=0 
Choose initial PI controller gains (can be those already used with the closed loop 

system): kp (0), k; (0) 

Step 3: Identification Step 

Step 3a: Phase crossover frequency identification 

Use Phase-Locked Loop to find w_7r (n) for the forward path Gh, (s) = GP (s)G�c (s) 

And use known kp 
(n), k! (n) 

to solve for G 
pR 

(fo-j, G 
pl 

(m, 

Step 3b: Gain crossover frequency identification 

Use Phase-Locked Loop to find co, (n) for the forward path G fp 
(s) = GP (s)G�c (s) 
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Use known kp (n), k; (n) to solve for G 
pR 

(°--'r ), G 
pl 

(co, 

Step 3c: Convergence test step 

Compute Y(n) =-1 0(n) - cos OPM (n) 
- sin OPM (n)] 

GM (n) 

If IIY" 
- Y(nýl < tol , then STOP. 

Step 4: Controller update calculation 
Use 0r 

, 
o),, GpR(w-, 

r 

)'Gpl (0)_jr )' GPR (w GpI (w1) 

Form [X]K=Y' 

Solve as K= [XR X� 1 Xn Y° 

Update, n: = n+ 1, kp (n + 1) = KI, k; (n + 1) = K2 

Go to Step 3 

3.3.1 Gain Margin and Phase Margin Design Algorithm Convergence Proof 

9 

In the previous section an algorithm was proposed that returns the gains of a 
PI controller such that a specified gain margin and phase margin can be achieved by 

using that controller as the compensation element. In this section a proof is proposed, 

that shows that under a relatively weak set of conditions, the algorithm shall return 

controller gains that converge to a fixed point solution of the equation set (3.24). 

The forward path transfer function of the compensated system is given by 

Gfp(s)=G (s)Gnc(s) 

where the new controller is 

G(s)=k 
p+k; 

From this it can be seen that the independent variables of the problem are kp and k;. 

Hence define 

kP 
K= 

k 

where KE9i 

For a given KE92 the Phase-Locked Loop identifier is used to find 
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and 

This is written as 

ß_7r (kp 
, 
ki 

ol(kp, k; ) 

co, (K) _ w-7c 
[0)1 

where o), (K): 93+ 93' 
, and w1, (K) is non-linear. 

The next step is to calculate an updated value of K using least squares, hence define 

x( )=X(U)-, 
r, w, ) 

where X (a 
,): 

91' -+ 91'. The updated controller gains are thus found from 

Kn+l =LXT \cov)X\wvl]_1 
XT(wv)yD 

=. r(wj =s(w, (K,, )) =8(KnJ 
where f: 93 +-92, c) + __> Jq 

+ and g: Jq 
+ _>9j2. 

Theorem 3.1: Sufficient Conditions for Convergence 

Assuming suitable problem set-up assumptions are valid, then for the gain 

margin and phase margin PI tuning algorithm the basic convergence relationship is 

n 
11K. -K�+iII:!! ý fl i. i 

IIK* -Ko 
j=0 

where pi = sup 11 ((Ki +ai(K* - Ki)III 
O<aj <1 

The sufficient conditions for the convergence are: 

(a) 3 j, >_0 such thatVj>_ il uj satisfies, p I<1. 

(b) Ipj I <1 for allj =0,1, """, oo . 

Proof 

i) K* = g(K=) and K�+, = g(K� 
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ii) K. - K�+, = g(K") - g(Kn) and hence IIK* 
- K�+, jj = jjg(K, )- g(Kjj 

Applying Luenberger's mean value inequality result (Luenberger, 1969) gives 
IK. 

-Kn+lII: 5 p 
IlK, 

- 
KnII 

where u,, = sup I+ a(K. - K� ))ýI 
0<a<1 

iii) Repeated application of this inequality yields 

n 
IK* 

- Kn+l 11 < Flpj JJK* 
- Ko JI 

=o 

where , uj = sup Ilg (Kj 
+aj(K. -K 0<aj <1 

iv) Proof of clause (a) 

nn 

JfJ Write [I pi nj 
j=0 j=jl+1 j=0 

n 

= k1 P. i 
J=h+l 

n 

Thus if Ipj I<1 for all j>j, then as n -+ oo, U pj -* 0 and convergence follows. 

v ) Clause (b) is a special case of clause (a). " 

This theorem is a classic contraction mapping result. Satisfaction of the result 

depends on a number of properties; the existence of a closed region, denoted 

Oc 91 +, through which the iterates, B travel, and conditions on the Jacobian, 

ag 
= g'(0) over this closed region which incorporates 9*. Schwarz (1989) links 

ae 

the contraction property to the necessary and sufficient condition that the spectral 

radius of the Jacobian, g'(8) must satisfy p(g'(9)) <1 over the closed region, O. 

However, the particular difficulties associated with fording analytical conditions for 

the convergence of the autonomous PI algorithm include the function of a function 

implicit in the relation, g(8), where the Jacobian can be expressed as, 

a 
g (B)= äe- 
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[äl-[äw ]"[ 
ae 
ao)v ] 

the complexity of the function f(. ) and the indirect computational access to the 

function, co.. 

3.3.2 Implementation and Case Study Results for the Gain and Phase Margin 

Design Method 

The candidate processes were chosen to demonstrate the ability of the tuning 

method to achieve both a gain margin and phase margin specification using a PI 

controller; these repeat processes are given by 

G, (s) =16' G2 (s) 
(s + 1) 

-S e 

(s+lXs+3)2 

PI controllers are known to give a satisfactory closed loop control system response 

where the dynamics of the process are of first order (Astrom and Hagglund, 1995). 

Where a process has dynamics greater than first order or includes a time delay, then 

it is difficult to tune a PI controller to give an acceptable level of closed loop system 

performance. By applying the tuning method to the models G, (s), a high order non- 

oscillatory process and G2(s), a third order process with a time delay and achieving 

an acceptable level of closed loop system response, when the method is applied to a 

physical process similar results will be obtained. The processes, G, (s) and G2 (s) are 

representative of those found in the process industries. 

Case Study 3.1 

The required design specification for the compensated forward path for 

process G, (s) was chosen as a gain margin of 3 and a phase margin of 60°. The 

controller parameters together with the gain margin, phase margin, phase crossover 

frequency and gain crossover frequency for the initial and final values derived from 

the design simulation carried out for the process G, (s) are shown in Table 3.1. 
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Table 3.1: Initial and achieved values for the compensated process 
Gl (s)G, (s) 

Initial Values 

Phase Gain 

Gain Phase Margin Crossover Crossover 
kp k; 

Margin (Degrees) Frequency Frequency 

(rad. s 1) (rad. s 1) 

0.9372 0.1077 2.2 85.5 0.5309 0.1839 

Achieved Values 

0.4265 0.1545 3.0 60.0 0.4312 0.1565 

The initial PI controller parameters were derived using a relay experiment followed 

by the application of Ziegler-Nichols tuning rules for a PI controller. This method of 

determining the initial tuning parameters means that the tuning algorithm is starting 

from a relatively long way from the desired tuning parameters. The choice of gain 

margin and phase margin values were made so that the resulting compensated system 

would have good stability robustness and good robustness to process parameter 

variations. 

The progress of the gain and phase margin design method is shown in the 

following graphs for gain margin, phase margin, kp, kl and 1u, . The graphs are plotted 

to a base of algorithm iteration number. In order to relate the iteration number to the 

time taken to complete an iteration use is made of the following data: 

i) the average time taken to identify the gain crossover point of the 

compensated forward path was 3 21 s). 

ii) the average time taken to identify the phase crossover point of the 

compensated forward path was 187(s). 

Using this data and Algorithm 3.1, it can be seen that each iteration of the algorithm 

takes an average of 508(s). The settling time (2% criterion) for the process Gi(s) is 

approximately 12(s) hence each iteration of the algorithm takes on average 42 

settling time periods for this particular process. 
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Figure 3.4: Evolution of gain margin 

Figure 3.4 shows how the gain margin of the compensated forward path of 

the process G, (s)G, (s) evolves as a new iteration of the algorithm is completed. It 

can be seen that after approximately twelve iterations of the algorithm, that the gain 

margin is within 5% of the desired value and is within 2% after approximately 

twenty-three iterations. 

115 

5 10 15 20 25 30 35 40 
Iteration Number 



90 

85 

80 

. 
)75 

bA 

70 
CA 

a 65 

60 

55 L 
0 

Figure 3.5: Evolution of phase margin 

Correspondingly Figure 3.5 shows how the phase margin evolves as an iteration of 

the PI controller gain margin and phase margin algorithm is completed. From Figure 

3.5 it can be seen that the phase margin is practically attained after five iterations of 

the algorithm. This type of behaviour, fast attainment of the desired phase margin, 

has been a feature of all of the simulations that have been carried out on 

representative processes from the process industries. Correspondingly, the attainment 

of the desired gain margin has been seen to be much slower, as seen by the number 

of iterations of the algorithm required to reach convergence. 
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Figure 3.6: Evolution of PI controller parameter kp 

Figure 3.6 shows how the value of the PI controller parameter kp evolves as the 

algorithm is executed. From this it can be seen that there is an initial large change in 

value followed by a more gentle convergence to the final value. The corresponding 

evolution of the PI controller gain term, k1, is shown in Figure 3.7. Again as can be 

seen from the figure there is an initial rapid change in the parameter value followed 

by a more subdued change towards the final value. 

117 

5 10 15 20 25 30 35 40 
Iteration Number 



0.17 

0.16 

0.15 

0.14 

0.13 

0.12 

0.11 

0.1 
0 

Figure 3.7: Evolution of PI controller parameter k; 

In the above the evolution of the controller parameters, and the resulting gain margin 

and phase margin, were shown. In Theorem 3.1 it was stated that the sufficient 

conditions for convergence are: 

i) 3 j, >0 such that `d j >_ jlu, satisfies I, u j 
I< 1. 

ii) lpl <1 for all i =0,1, """, oo. 

With the results of the simulation now available it will be possible to construct an 

estimate of p for each iteration of the algorithm. Let the estimate of p be given by 

A IIK' 
- 

Kn+l II 

< 

n J-KnIl n 
where n is the iteration number. Knowing the value of K. and K the estimate of ,u 

can now be constructed. Figure 3.8 shows the evolution of p with each iteration of 

the algorithm. 
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Figure 3.8: Evolution of, un. 

From Figure 3.8 it can be seen that the estimate of it satisfies both clause (a) and 

clause (b) of Theorem 3.1 for each iteration of the algorithm. It can also be seen from 

Figure 3.8 that there are more iterations shown than were shown in the convergence 

graphs for the controller parameters and the gain and phase margin graphs, this was 

carried out to ensure that the behaviour shown in Figure 3.8 was representative of the 

estimate of u. 

The closed loop step response and disturbance rejection properties of G, (s) in closed 

loop with the initial controller 

Gc1(s) = 0.9372 + 
0.1077 

s 

and final controller GcF (s) = 0.4265 + 
0.1545 

s 

are shown in Figure 3.9. A unit step is applied at time t=0 (s) and a disturbance of 

magnitude 0.15 is applied at time t= 100 (s). 
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It can be seen that the initial controller gives a sluggish response with no overshoot 
whereas the final controller gives an under-damped response with an overshoot to the 
initial step of approximately 8%. However the response does have a shorter settling 
time and removes the disturbance effect more quickly than the initial poorly tuned 

controller. 
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Figure 3.9: Closed loop response with initial and final PI controllers 

Gain and phase margin specifications are better suited to a robustness specification 

rather than to a time domain closed loop response specification. Hence it is difficult 

to say, without knowing the initial tuning requirement, if the initial controller settings 

are better than the final settings as far as the time domain response of the closed loop 

system is concerned. However as far as the robustness of the closed loop system to 

process gain variations are concerned the final controller settings are much improved 

over the initial controller parameters. 
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Case Study 3.2 

The initial controller settings for the following simulation example were 
based on Ziegler-Nichols tuning parameters for a PI controller with the data for the 
tuning rules supplied from a relay experiment. The initial and final PI controller 
tuning parameters are given in Table 3.2, along with the corresponding values of gain 

and phase margin and phase and gain crossover frequencies. 

Table 3.2: Initial and achieved values for the compensated process 
G2(s)Gc(s) 

Initial Values 

Phase Gain 

Gain Phase Margin Crossover Crossover 
kp k; 

Margin (Degrees) Frequency Frequency 

(rad. s 1) (rad. s 1) 

7.064 1.938 2.33 92.0 1.2443 0.3046 

Achieved Values 

3.5687 3.0777 3.0 60.0 1.0 0.3436 

The progress of the gain and phase margin design method is shown in the following 

graphs for gain margin, phase margin, kp, ki and p,. The graphs are plotted to a base 

of algorithm iteration number. In order to relate the iteration number to the time 

taken to complete an iteration use is made of the following data: 

iii) the average time taken t identify gain crossover point of the compensated 

forward path was 186(s). 

iv) the average time taken t identify phase crossover point of the 

compensated forward path was 126(s). 

Using this data and Algorithm 3.1, it can be seen that each iteration of the algorithm 

takes an average of 312(s). The settling time (2% criterion) for the process G2(s) is 

approximately 6(s) hence each iteration of the algorithm takes on average 52 settling 

time periods for this particular process. 
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Figure 3.10: Evolution of the gain margin 

The gain and phase margin for the design were chosen to be 3 and 60° respectively. 

From Figure 3.10 it can be seen that the gain margin is within 5% of the desired 

value within approximately ten iterations of the algorithm and within 2% after 

twenty-five iterations. Thus it can be seen that it takes a relatively large number of 
iterations to reach the desired value of gain margin 
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Figure 3.11: Evolution of the phase margin 

Figure 3.11 shows that the phase margin is practically achieved after approximately 

five iterations. The evolution of the controller parameters is given in Figures 3.11 

and 3.12 for kp and k; respectively. 
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Figure 3.12: Evolution of the PI controller parameter kp 

As can be seen from Figure 3.12 there is an initial large change in the value of kp 

followed by a very much slower change as the algorithm moves the controller 

parameter towards the converged value. 
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Figure 3.13: Evolution of the PI controller parameter kl 

From Figure 3.13 it can be seen that after an initial large change in the value of k1, 

this is followed by a relatively slow change towards the converged value. 

In a similar fashion to the previous case study the estimate of the parameter p was 

constructed and is shown in Figure 3.14. 
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Figure 3.14: Evolution of, uz. 

From Figure 3.14 it can be seen that the evolution of the estimate of p supports 
A 

clause (a) of Theorem 3.1. Since after an initial few iterations where, 'u, > 1, after 

A 

iteration five it can be seen that , u� < I. 

By referring to Figure 3.15 it can be seen that the step response of the closed loop 

system with the final controller is improved over that obtained with the initial 

controller, as is the disturbance rejection property. As noted above it is difficult to 

compare the time domain responses of the initial and final closed loops since the 

design specifications are more to do with the stability robustness and robustness to 

process change properties than the time domain step or disturbance rejection 

properties of the two closed loops. 
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Figure 3.15: Closed loop response with initial and final PI controllers 

The closed loop response of the final controller has less overshoot and an improved 

disturbance rejection over that of the initial controller. As can be seen from Table 3.2 

there is an improvement in both the gain margin and phase margin of the 

compensated system using the final controller over that using the initial controller. 

3.4 Maximum Sensitivity and Phase Margin: Automated Pi Controller Design 

In the automated PI controller design method to follow, phase margin and 

maximum sensitivity specifications will be given and data sought for the unknown 

process at specific frequencies. To find these frequencies, the Phase-Locked Loop 

identification method shown previously in Figure 3.1 shall be utilised according to 

the identification case. However, the identification always retains the existing PID 

controller in the loop, and uses a parallel computation to place specifications on the 
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new compensated forward path, G fP 
(s) = GP (s)G�c (s) to find the required frequency, 

where Gnc (s) is a newly calculated controller. 

Using equations (3.14) and (3.8) in the maximum sensitivity and phase 

margin design equations leads to a set of generic equations for the new PI 

compensator gains, kp and k; 
, 

GpR \ 
(ws l 

GPI (ws 
) 

l 
Co 

s 

G CV _ 

GPR 
(Ws / 

plý sý w 
(WI l 

GPI (w1) 
GpR() 

k 

kp 
01 

G w1) _ 
GPR (wl 

PI( 1I 
(01 

- 1- 
1 

cos B 
MS S 

-1 sin Bs 
ms 

-COsgPM 

- Sin Opm 

(3.25) 

With obvious notational identification this set of equations can be written compactly 

as, 

IX�IK=PD (3.26) 

The equations (3.25), (3.26) form the PI design component of the full algorithm. In 

the next section, the steps taken to ensure a viable sequence of iterates are explained 

and finally the full algorithm is given. 

3.4.1 Phase Margin and Maximum Sensitivity Design Theory and Algorithm 

In general there are an infinite number of values that 8S can take between an 

upper and lower bound. First experimental trials with the automated algorithm lead 

to a realisation that it was essential to generate a sequence of points that bounded at 

least a subset of the possible values of Os. To ensure that this occurred, it was 

necessary to limit the size of updates that could be taken by the algorithm. 

Consequently, the algorithm was re-constructed so that the locus of G fp 
(j cri) 

intersected the 1/ MS circle at two points, as in Figure 3.3. To ensure that this 

occurred, the term 1/ MS in the equation suite, (3.25) was replaced with a reduced 

value d given by, 
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d= x7. 
Ji (3.27) 
MS 

where KT = 
j(i 

-G1 
(jw cos(r +0)), +ýGfn(jwsýsin(r+0)), 

and 0= arg(Gp (j0k)) when 

-I 
I (j wk 

9s =tan (3.28) 
1-IReGfp(jwký 

and cos is the frequency at which (3.28) occurs. The geometric mean for d is taken 

although the geometric mean could be replaced by a weighting factor on 1/ MS . 
Using estimates for O and d the equation set (3.25) was reformulated as, 

G (w 
Gpl`ýsJ 

pR` sll 1-dCOSBs 

S 

GPI (cos )- GpR Cos 
w k -d sin es 

G 
GpI(sw1) 

pR 
(Col 

! 

[ 
p 

Lki , Cosh PM 

091 
(_ 

GPR(a)1) 
G, 

`w1 Jl 
- Sin OPM 

m1 

(3.29) 

With this constructional device in place, the full algorithm description can be given. 

Algorithm 3.2: Automated PI Controller Design for Desired Maximum 

Sensitivity and Phase Margin Specifications. 

Step 1: Design Specification. 

Select the required maximum sensitivity Ms and phase margin cpM for the 

controller design. 

Step 2: Initialisation Step. 

Initialise counter n=0 

Choose the initial PI controller gains: kp (0) and k; (0) 

Set the convergence tolerance, tol 

Step 3: Identification Step. 

Step 3a: Gain Crossover Frequency Identification. 
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Use the Phase-Locked Loop to find w, (n) for the forward path G fP 
(s) =Gp (s)G�c (s) 

Use kp (a), k; (n) to solve for GpR (Co, ) 
and G 

p, 

(w1) 

Step 3b: Maximum Sensitivity Frequency Identification. 

Use the Phase-Locked Loop to identify WA (n) and r. ßß (n) for the forward path 
Gfp(s)=Gp(s)Gnc(s) 

Use kp (n) 
and k; (n) to solve for G 

pR 
(o-A), G1 (WA)' G 

pR 
(W 

B) and G1 (W 
B) 

Calculate Ol (WA ), 62 (WB) and 9s (8, 
, 82 

Use Phase-Locked Loop with 8S (019 02) to identify cos (n). 

Calculate d using equation (3.27) and cos (n) 
. 

Step 3c: Convergence Test Step. 

Compute Y(n), YD where, 

Y(n) = [-(1- d cos Os (n)), -d sin Os (n), - cos qpp (n), - sin OPM (n)]T 

yD (1/MS)cosBs(n)), -(1/Ms)sinO (n), -cos FPM, -Sin 
0PM]T 

If 1y D- Y(n)l < tol then STOP. 

Step 4: Controller Update Calculation. 
Use COS, Col, GPR(WS), Gpl 

\coS), 
GpR (00 

and GPI(col) 

Form [Xn]K=YD 

Solve as K=[XnXn]IXpYD 

Update n: =n+ 1, kp(n+1)=K1, k; (n+1)=K2 

Go to Step 3" 

Remarks 

i) The controller initialisation step can sometimes use the existing closed 

loop controller parameters. 

ii) The main complexity of the algorithm resides in the inner iterative 

routines being run to find the non-parametric data for the process. These 

routines are subject to inner convergence tolerances. If these tolerances 
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are too stringent, then the Phase-Locked Loop module is slow to 

converge. Experience has shown that low values of convergence accuracy 

give satisfactory solutions. 

3.4.2 Convergence Theorem 

The algorithm for the design of a PI controller that achieves a desired 

maximum sensitivity and phase margin was discussed in the above section. A 

theorem and associated proof is proposed in this section that shows that under a 

relatively weak set of conditions that the algorithm will provide controller gains 

such that convergence to a fixed point solution of the equation set (3.25) is 

obtained. 

The forward path transfer function of the compensated system is given by 

Gfp(s)=Gp(s)Gn, (s) 

where the new controller is given by 

Gnuýsý=kp+' 

From the equation for the new controller it can be seen that the independent variables 

of the problem are kp and k1. Hence define 

K=I 
k°J 

L 

where KEA 

+ the Phase-Locked Loop identifier is used to find For a given K 93' 

and 

This is written as 

u's(kp, k1) 

wl (kp, k1 ) 

w,, (K)= [: 1 
where co, (K): 91+ -> 91+ and co, (K) is non-linear. 

The next step is to calculate an updated value of K using least squares, hence define 

I 
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X(O)V) = X( 
.' 1) 

where X (w,, ) : 93 + -* 93'. The updated controller gains are thus found from 

Kn+l =LXT 
(0,, )X\cv! 

J_1XT(w 
)yD 

= f(coj = f(co,, (K,, )) = 

where f: 31+t 2, cý,, Al' 91' and g: 1 + 91 2. 

Theorem 3.2: Sufficient Conditions for Convergence 

Assuming that suitable problem set-up assumptions are valid, then for the 

maximum sensitivity and phase margin PI tuning algorithm the basic convergence 

relationship is 

n 

IK. - Kn+l II [Ii p 
)K. 

- Ko 1I 
>=o 

where Pi = sup Ilg '(Kj + aj 
(K* 

- Kj 
0<a, <1 

The sufficient conditions for the convergence are: 

(a) 3 j, >_ 0 such that `d j >_ jl p, satisfies Ipj I<1. 

(b) I"jI <1 for allj =0,1, """, oo. 

Proof 

The proof follows exactly that given for Theorem 3.1 of section 3.3.1 of this chapter. 

3.4.3 Implementation and Case Study Results 

A prototype auto-tuner was implemented using MatlabTM, and the simulation 

results for two candidate processes are reported. The candidate processes are given 

by 
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G, (s) =16 (s+i) 
and G2(s)_ 

e -S 

(s+lXs+3)2 

The first process, Gl (s), represents a broad class of systems found in the process 
control industries that are characterised by having a high order and non-oscillatory 
response. The second process to be studied, G2(s), represents non-oscillatory 
processes with time delays. The justification of the choice of model to demonstrate 

the tuning method has been discussed previously in section 3.3.2 of this thesis. 

Case Study 3.3 

The process to be used in this study is given by 

G, (s) =16 (s + 1) 

The desired phase margin and maximum sensitivity design that is to be attained is 

60° and 1.7 respectively. The initial controller parameters were derived from the 

Ziegler-Nichols rules for tuning a PI controller and the data required by the method 

was obtained from the results of a relay experiment. Table 3.3 details the values of 
i) The controller tuning parameters 
ii) The maximum sensitivity and 
iii) Phase margin and tangency angle 

for the initial and final values of the design. 

Table 3.3: Initial and converged controller results 

kp k; 
Maximum 

Sensitivity 

Phase margin 

(degrees) 

Tangency 

angle BS (deg) 

Process Gl (s)G, (s): Initial Values 
--- 0.9372 0.1077 F 11.91 7 85.5 - 

Process Gl (s)G, (s): Achieved Values 

---- --- - 0.4671 0.1591 F 11.70 T 60.0 18.0 F 
The initial tuning of the PI controller, G, (s), resulted in the algorithm having to start 

relatively far from the desired design values of maximum sensitivity and gain 
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margin. The aim of the design was to achieve a controller that gives the closed loop 

system good stability robustness and disturbance rejection properties, hence the 

choice of design phase margin and maximum sensitivity, respectively. 
The progress of the gain and phase margin design method is shown in the 

following graphs for maximum sensitivity, phase margin, kp and k;. The graphs are 

plotted to a base of algorithm iteration number. In order to relate the iteration number 

to the time taken to complete an iteration use is made of the following data: 

v) the average time taken to identify the gain crossover point of the 

compensated forward path was 325(s). 

vi) the average time taken to identify the intersection(s) of the required 

maximum sensitivity and the compensated forward path was 379(s). 

Using this data and Algorithm 3.2, it can be seen that each iteration of the algorithm 

takes an average of 704(s). The settling time (2% criterion) for the process GI(s) is 

approximately 12(s) hence each iteration of the algorithm takes on average 58 

settling time periods for this particular process. 
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Figure 3.16: Evolution of the maximum sensitivity 
Figure 3.16 shows how the maximum sensitivity of the new compensated forward 

path evolves during the progress of the algorithm. It can be seen that the design 

maximum sensitivity is within 5% of the desired value after 22 iterations and within 
2% after 37 iterations of the algorithm. However, as can be seen from Figure 3.16, it 

takes a large value of further iterations to achieve the exact value required. 
Figure 3.17 shows how the phase margin of the compensated forward path evolves 
during the progress of the algorithm. It can be seen that the required phase margin is 

exactly attained after approximately 65 iterations of the algorithm. This is a recurring 
feature of the results obtained using this algorithm, in that the required phase margin 

is achieved more rapidly than is the maximum sensitivity. 

90 

85 

80 
aý 
aý 

. 75 

cd 

Q 
r 

70 

65 

60'- 
0 10 20 30 '40 50 60 70 80 90 100 

Iteration Number 

Figure 3.17: Evolution of the phase margin 

Figures 3.16 and 3.17 are typical for the algorithm convergence showing a large 

number of iterations required to achieve the design values to a high degree of 

135 



accuracy. Figures 3.18 and 3.19 show how the controller parameters evolve with 
each iteration of the algorithm. 
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Figure 3.18: Evolution of controller parameter kp 
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Figure 3.19: Evolution of the controller parameter ki 

In Figure 3.20 it is possible to compare the step and disturbance rejection 

performances of the initial and final PI controllers in closed loop with the 

process G, (s). A unit step is applied at time t=0 (s) and the disturbance of 

magnitude 0.15 is applied at time t= 70 (s). As would be expected for this design the 

set point tracking capability of the designed controller, although acceptable for 

process control, could be improved upon. However the results do confirm, in this 

case, that if the maximum sensitivity is reduced then the closed loop response to a 

step input becomes less oscillatory with a reduced overshoot; as stated in Astrom et 

al (1999). The disturbance rejection is seen to be acceptable. 
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Figure 3.20: Closed loop response of the initial and final PI controllers 

By reference to Figure 3.21 it can be seen that the desired design phase margin and 

maximum sensitivity have been achieved. The frequency range shown for the 

forward path of the system is 0.1 to 10 (rad. s 1). 
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Figure 3.21: Nyquist diagram showing the forward path of the compensated process 

Case Study 3.4 

The process used for this case study is given by 
-S 

G2 (s) e 
1 (s + lXs + 3)2 

Process G2(S)was chosen since it is representative of processes found in the process 

industry that can be characterised as having a time delay and are non-oscillatory. The 

initial values for the parameters of the controller Ge(s) were chosen so that the 

algorithm would be required to start from a relatively large distance from the final 

values. Table 3.4 details the initial and final values of the controller parameters and 

the phase margins and maximum sensitivities for the design. The desired maximum 

sensitivity specification and phase margin for this design are 1.7 and 60° 

respectively. 
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Table 3.4: Initial and converged controller results 

kp k; 
Maximum 

Sensitivity 

Phase margin 

(deg) 

Tangency 

angle 0, (deg) 

Process G2 (s)G, (s): Initial Values 
7.064 1.938 1.82 92.0 - 

Process G, (s)G, (s): Achieved Values 
4.1478 3.2371 1.70 60.0 16.9 

The aim of the design was to achieve a controller that gives the closed loop system 

good stability robustness and disturbance rejection properties hence the choice of 

design phase margin and maximum sensitivity, respectively. 

The progress of the gain and phase margin design method is shown in the 

following graphs for phase margin, maximum sensitivity, kp and k1. The graphs are 

plotted to a base of algorithm iteration number. In order to relate the iteration number 

to the time taken to complete an iteration use is made of the following data: 

vii) the average time taken to identify the gain crossover point of the 

compensated forward path was 231(s). 

viii) the average time taken to identify the intersection(s) of the required 

maximum sensitivity and the compensated forward path was 264(s). 

Using this data and Algorithm 3.2, it can be seen that each iteration of the algorithm 

takes an average of 495(s). The settling time (2% criterion) for the process G2(s) is 

approximately 6(s) hence each iteration of the algorithm takes on average 82 settling 

time periods for this particular process. 

The evolution of the phase margin and maximum sensitivity are shown in 

Figures 3.22 and 3.23 respectively. 
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Figure 3.22: Evolution of the phase margin 

From Figure 3.22 it can be seen that the phase margin design specification is exactly 

attained after a very few iterations of the algorithm. 
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Figure 3.23: Evolution of the maximum sensitivity 

The evolution of the maximum sensitivity is shown in Figure 3.23. It can be 

seen that after an initial large change in the sensitivity that there is a long slow 

movement towards the exact required value. 
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Figure 3.24: Evolution of the controller parameter kp 

From Figure 3.24 it can be seen that the rate of change of the parameter, kp, is 

practically zero after 10 iterations. 
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Figure 3.25: Evolution of the controller parameter k; 

From Figure 3.25 it can be seen that there is a similar reduction in the rate of 

change of the k; parameter after approximately ten iterations of the algorithm. Hence 

in this case it would be considered that the algorithm had converged, in a practical 

sense, after approximately ten iterations. 

The step and disturbance rejection properties of the closed loop system are 

shown in Figure 3.26. A unit step is applied as the set point to the closed loop system 

at time t= 0(s). A step disturbance in the process output is introduced at time t= 

40(s). As can be seen the disturbance rejection properties of the closed loop are 

satisfactory as is the set point tracking. 
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Figure 3.26: Closed Loop Response of the compensated system G2(s) 

The final figure of this section, Figure 3.27, shows that the maximum sensitivity and 

phase margin designs have been achieved. The frequency range used for the 

frequency response of the forward path of the compensated system shown in Figure 

3.26 is 0.1 to 10 (rad. s 1). 
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Figure 3.27 Nyquist diagram of the compensated forward path for process G2(s) 

3.5 Summary Conclusions. 

The Phase-Locked Loop method of system identification in closed loop was 

extended to show how the module can be used in an automated PI controller design 

algorithm for identifying the critical features of a new compensated forward path of 

the process. Two automatic PI controller design algorithms were introduced to 

achieve: 

i) Gain margin and phase margin specifications, and 

ii) Maximum sensitivity and phase margin specifications. 
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In the maximum sensitivity and phase margin PI design algorithm considerable care 

was required to ensure that the design progressed through a sequence of convergent 

iterations. 
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4 Closed Loop Identification and Tuning of Cascade and Multi-Input 

Multi-Output Control Systems. 

4.1 Introduction. 

The autotuning of PID controllers using the relay experiment of Astrom and 

Hagglund (1984) has been extensively reported in the literature (Yu, 1999) and is 

widely applied in industrial practice as evidenced by the number of PID controller 

suppliers offering such a capability as standard in their PID controllers. The Astrom 

and Hagglund autotuner was applied to tuning single-input single-output (SISO) PID 

control systems. The extension of the relay experiment to the autotuning of advanced 

control strategies such as cascade (Hang et al, 1994) and multi-input multi-output 

systems (MIMO) (Shen and Yu, 1994; Wang et al, 1997b) has been widely 

researched and reported. 

In the following section, the application of the Phase-Locked Loop 

identification method to the closed loop tuning of cascade connected systems shall be 

proposed. Following from this the closed loop identification and controller design of 

MIMO systems shall be investigated. Conclusions close the chapter. 

4.2 The Cascade Control System Paradigm. 

In process industries the manufacture of a product frequently follows 

a sequence of operations carried out in order. Thus, the next process in the sequence 

is generally fed directly from the output of the previous stage. Hence over a small 

section of the production process there will typically be one variable that is able to be 

manipulated, several process measurements and one output variable that is to be 

controlled. If the intermediate process variables are subject to disturbances then it is 

a logical development that inner control loops will be used to attenuate the effects of 

these disturbances on the outer process loop. 

In a cascade connected control strategy a secondary or slave measurement is 

used such that the slave measurement indicates the presence of the disturbance effect 

more quickly than the measured output of the process. A slave controller is then used 
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to attenuate the disturbance effect at that point with the intention of reducing its 

effect on the primary or controlled variable of the process. If the slave controller 
design is such that the disturbance effects are sufficiently reduced, the outer or 
master controller can be tuned to provide the required reference tracking and robust 
stability properties for the closed loop system. A cascade connected control system is 

shown in Figure 4.1. 

--------------------------------------------------- d(s) 

U1(s) E, (s) th(s) Y2 (IV) 

ýý + YI(s) 

Figure 4.1: Cascade Connected Control System. 

The supply disturbance is shown entering the system as d(s). The cascade connected 

control system, shown in Figure 4.1, is characterised as having an inner or slave 

control loop and an outer or master control loop. The slave loop is nested within the 

master loop and the set point for the slave loop is derived from the controller output 

of the master loop. From Figure 4.1 it can be seen that the master controller is shown 

as Gc1(s) and the slave controller is shown as Gc2(s). The process controlled by the 

slave controller is denoted as Gp2(s) and the outer loop process is shown as Gpl(s). 

From Figure 4.1 it can be seen that 

Y2 (s) =G p2 
(s)Gc2 (sXU1 (s) 

- Y2 (s)) +d (s) (4.7) 

and hence Y2 (s) = T2 (skl, (s) + S2 (SM S) (4.8) 

T2 s) = 
Gp2 (s)Gc2 (s) 

4.9 where 
ý 

l+Gp2 
Cv 
slý(ýc2 

(l 
sl 
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and Sz (s) =1 (4.10) 
1+Gp2(s); 2 

(s) 

From equations (4.8) and (4.10) it can be seen that the slave controller Gc2(s) is used 
to attenuate the effects of the disturbance term via the slave loop sensitivity function 
S2(s). 

An analysis of the outer or master loop shows that 
(s)= G (4.11) PI 

(SXT 
2(S)Gcl 

(SXR(S) 
- Yl (S)) + S2 (S)d(S)) 

hence (1 + T2 (s)G 
p, 

(s)G,, (s))Y1 (s) = T2 (s)G 
p, 

(s)G,, (s)R(s) + S2 (s)G 
p, 

(s)d(s) 

and Y, (s) = 
(1 

+ T2 (s)p, (s)G1 (S))-] T2 (s)py (s)G1 (s)R(s) 

+ý1+T2(sK1 
(s) 

c1(s))'S2(s p1\Sl""\Sl 

(4.12) 

Assuming that the controller G2(s) has sufficiently attenuated the slave loop 

disturbance term, d(s), the master loop controller may be tuned to give an acceptable 

reference tracking and stability robustness for the closed loop system. The successful 
design of cascade controllers can thus be seen to require that the disturbance 

rejection properties, the reference tracking and robust stability requirements are 

specified. Hence the designs of the master and slave controllers have differing 

requirements (Eker and Johnson, 1996). 

If a model of the disturbance is available and the disturbance term can be 

measured then a feed forward design can be employed. It can be shown that feed 

forward, combined with feedback control strategies offer an improvement in 

disturbance rejection over feedback only control strategies (Seborg et al, 1989). 

Consider Figure 4.2, where a disturbance term, L(s), is seen entering the system. It is 

assumed that the disturbance term is measurable and that the transfer function, GD(s), 

of the disturbance is known. The feed back controller is given by Ge(s) and the feed 

forward controller is given by Gj(s). The transfer function of the transmitter that 

measures the disturbance term is given by GT(s). 
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Figure 4.2: Combined Feed Back, Feed forward Control Scheme. 

From Figure 4.2 it can be seen that 

Y(s) =Gp (s)u(s) + GD (s)L(s) 

U(s) = G, (s)E(s) + Gif (s)GT (s)L(s) 

E(s) = R(s) + Y(s) 

Thus substituting equations (4.15) and (4.14) into equation (4.13), obtain 

(4.13) 

(4.14) 

(4.15) 

Y(s) = Gp (sXG, (s)(R(s) - Y(s)) + Gff (S)GT (s)L(s)) + GD (S)L(S) 

Hence, 
(I + G. (s)G, (s))Y(s) = G. (s)G, (s)R(s) + (Gp (s)Gff (s)GT(s) + GD (SWS) 

(4.17) 

It can be seen from equation (4.17) that the effect of the disturbance will be 

eliminated if the feed forward controller is 

G ff(S) 
Gn (S) 

-- Gp 
`SX3T `SI 

(4.18) 

Equation (4.18) may prove to be non-causal depending on the properties of the 

transfer functions of the disturbance, disturbance transmitter and the process. In such 
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situations, one solution is to use the static gains of the transfer function elements to 

design the feed forward controller. 

4.3 Auto tuning of Cascade Control Loops. 

Cascade control loops are commonly found in the process industries where 

there is a requirement to reduce the effects of process disturbances. With a large 

installed base of cascade connected control systems an effective means of tuning 

these controllers to provide the required degree of control system performance is 

required. The relay experiment of Astrom and Hagglund provides such a technique 

for single-input, single-output PID control loops. The extension of the relay 

experiment to the tuning of cascade control loops has been proposed by Hang et al 

(1994). In Hang et al (1994) a sequential tuning method is employed that first of all 

tunes the slave or inner loop of the cascade system and then the outer or master loop 

is tuned to complete the process. The method of Hang et al (1994) comprises the 

following steps to complete the cascade control system tuning process. 

Algorithm 4.1: Cascade Control Loop Sequential Tuning. 

Step 1: Initial Controller Configuration 

The master control loop is set to manual mode. 

Step 2: Slave Control Loop Tuning. 

The slave controller is replaced by a relay and the slave loop is closed around the 

relay. 

The frequency and magnitude of the resultant oscillations in the slave loop are 

recorded once a stable limit cycle has been established. 

Ziegler-Nichols ultimate period method or Refined Ziegler and Nichols tuning rules 

for PID controller design are used to determine the slave loop controller parameters. 

Step 3: Slave Loop Controller Implementation. 

The slave controller is re-instated into the slave loop with the parameters set to those 

calculated in Step 2. 

Step 4: Master Control Loop Tuning. 
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The master loop controller is replaced by a relay and the master loop is closed around 
the relay. The slave loop being already closed around the slave controller. 
The frequency and magnitude of the resulting oscillations of the master loop are 
recorded once a stable limit cycle has been established. 
Ziegler-Nichols ultimate period method or Refined Ziegler and Nichols tuning rules 
for PID controller design are used to determine the master loop controller 

parameters. 

Step 5: Master Loop Controller Implementation. 

The master controller is re-instated into the outer loop with the parameters set to 

those calculated in Step 4. 

Remarks 

0 

After the above procedure has been carried out both the slave and master controllers 

are in closed loop. 

Further fine tuning of the slave and master loops can be carried out using the relay 

experiment and Refined Ziegler and Nichols tuning rules due to Hang et al (1991). 

4.3.1 Closed Loop Identification of Processes in Cascade Connected Control 

Systems 

The method of Hang et al (1994) identifies the critical point for the slave loop 

and the critical point for the master loop, with the slave loop closed, and hence 

allows the use of single point tuning methods to provide the parameters of the master 

and slave PID controllers. To improve the performance of the tuning provided by this 

method either, an improvement in the identification method used can be made or an 

improved set of tuning rules can be utilised. In the following the Phase-Locked Loop 

method of system identification shall be used to identify: 

i) The inner loop process, shown as Gp2(s) in Figure 4.1 

ii) The outer loop process, shown as Gpl(s) in Figure 4.1 

111) The composite process, shown as Gi(s) in Figure 4.1, and 

By carrying out the above identifications the existence testing methods discussed in 

Chapter 2 and the gain margin and phase margin method or the maximum sensitivity 
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and phase margin design method of Chapter 3 can be applied to the design of cascade 

connected control systems. The application of this design methodology will allow: 
i) A greater design freedom as to the method to be used, and 
ii) Provide a means that shows that the design requirement is achievable. 

From Figure 4.1, and assuming that the disturbance term is zero, it can be seen that 

(Crowe et al, 2003a) 

U2(s) = G, 2(sXG,, 
(sXR(s) 

- Y, (s)) - 
Y2(s)) 

Y2 (s) = Gp2 (s)U2 (s) 

Y, (s) = G1 (sP2 (s)U2 (s) 

Substitute equations (4.20) and (4.21) into equation (4.19) to give 

U2 (s) = Gc2 (sXGc, (sXR(s) 
-Gp, 

(s)G 
p2 

(s)U2 (s)) 
-G p2 

(s)U2 (s)) 

hence (i + Gc2 (s)G2 (sXi + Gc1(s)G1 (s)j)u2 (s) = Gc1(s)Gc2 (s)R(s) 

and thus 
U2 (S) = 

Gc1 CssYJc2 (s) 

R) l+G sý (1 s 1+G sý 
( 

sl c2C /` p2C c1C ! `Jp1C l 

Substitute for U2 from equation (4.20) into equation (4.22) to give 

Ys=G., 

(s)G., (s)G2 (S) 

R(s) Y2 

1+G sý (J s l+G sý (l sO c2 

(/ý 

p2 

( 
cl 

(lý 

pl( 

) 

and hence 
Y2 (s1 = 

G. 1(s)Gý,, 
(s)G 

p2 
(s) 

RJ 1+G 
(sý( (s 

1+G 
rsý (J (s)) 

c2 ` lý p2 l cl \ lý pl \1 

From equations (4.22) and (4.23) it can be seen that 

'r8lGvz (ja))) ='BI R 
ÜaJ1 ar R 

ýý» 
l 

Y2 
(jw 

GpzWwý 

R2 
(jw 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

Equations (4.24) and (4.25) show that if two simultaneous identifications are carried 

out between the reference input and the output of the slave controller, Gc2(s), and 

between the reference input and the output of the inner loop or slave process, Gp2(s), 

then it is possible to identify the inner loop process represented by Gp2(s). 

Referring to Figure 4.1 it can be seen that 
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U, (s) = G,, (sXR(s) 
-Y (s)) (4.26) 

Y' =G 

G2(sl'_T2`s) 
Us (s) 

p' 
(s) 

ls 1' 
ýý (4.27) 

z(2(s) 
Substitute (4.27) into (4.26) to give 

U=G- 
Gý (s)l (s; 

2 
(s)G1)2 (s) 

Us4 ý(s) G,, 
1+G (si; 

2 
( 1(} (. 28) 
`s) 

hence (1 + Gc2 (s)Gp2 (sXi + Gc, (s)GP, (s))kl, (s) = 
(1 + Gc. 2 

(s)Gp2 (s))Gc1(s)R(s) 

(4.29) 

and thus 
u (s) 

- 

(i 
+ Gc2 (s)G 

p2 

(s))G., (s) 

(4.30) 
R(s) 1+ Gc2 (s)2 (s 1+ Gc1(s)G 

p, 
(s)) 

Substitute for U, from (4.30) into (4.27) to give 

Y 
Gp' (s)G 

p, 
(s»1 (s)G,, (s) 

4.31 R(s) '(s) =1 
+Gcz (s; 2 (s 1+Gcl (sk1pl (s)) 

hence 
Y (s) 

- 
GPI (s)GP, (s); 1(s)G,, (s) 

(4.32) 
R(s) 1+ Gc2 (s)G 

p2 

(s 1+ Gc1 (s}G 

p, 

(s) 

From (4.32) and (4.30) it can be seen that 

arg(G', (J w)) =arg 
L' (j� ý- arg 

U' (j� ) (4.33) 
RR 

Y 

G, 
i(. 

Imý= 
Ü 

(4.34) 

vo R 

ý 

From equations (4.33) and (4.34) it can be seen that the simultaneous identifications 

required to be carried out such that the composite process G p1(s) can be identified 

are from the reference input to the output of the master controller, G1(s), and from 

the reference input to the output of the outer loop process, Gpi(s). It should be noted 

that the proposed identifications are carried out with no prior knowledge of the 

master or slave controllers being required. 
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In Crowe (1998) it is shown that the Phase-Locked Loop method of system 
identification can be used, albeit with an extended identification time, in the presence 
of step like load disturbances. Thus, there is no loss of generality in assuming that the 
disturbance term is zero during the course of the identification procedure. The 

necessary steps in carrying out an identification using the Phase-Locked Loop 

method are given in Algorithm 4.2. 

Algorithm 4.2: Closed Loop Identification of Cascade Connected Control 

Systems Using the Phase-Locked Loop Method. 

Step 1: Initialisation. 

Choose the reference value, phase or gain, that locates the required point on the 

frequency response of the inner process. 
Set the initial value of the integrator gain and choose the update and stopping 

tolerance values. 

Step 2: Inner Process Identification. 

Carry out simultaneous identifications between the master loop reference input and 

the slave loop controller output and between the master loop reference input and the 

slave loop output. 

Record the results of the identification. 

Step 3: Composite Process Identification. 

Carry out simultaneous identifications between the master loop reference input and 

the master loop controller output and between the master loop reference input and the 

master loop output. 

Record the results of the identification. 

Remarks 

0 

The composite process refers to the series connection of the inner closed loop 

transfer function and the transfer function of the outer process. 

In Chapter 1, Figure 1.18 the configuration of the Phase-Locked Loop Identifiers 

required to implement the identification is shown. 
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Case Study 4.1 

The inner and outer processes of a cascade connected control system will be 
identified using the Phase-Locked Loop method. The structure of the system is that 

shown in Figure 4.1 where the transfer functions of the processes are given by 

2e-) 7s 
Gp2ts1) _ 

s+2Xs+4 

G 
p1(s) = 

0. le-O. ls 

(s+0.1)2(s+0.5) 
and the inner and outer controllers are of PI type and are given, initially, by 

Gc2 =2.818+ 
1.401 

s 

Gc1 = 0.1323 + 
0.0054 

s 

The parameters of the PI controllers were derived from the results of a relay 

experiment following the method of Hang et al (1994) and the application of the 

Ziegler and Nichols ultimate period tuning rules. The identification of the inner and 

outer processes shall be carried out with both the inner and outer loops closed and 

shall employ the Phase-Locked Loop identifier configuration shown in Figure 1.18 

of Chapter 1. 

Inner Process Identification 

The first identification that shall be carried out is that of the inner process Gp2(s) 

at the phase crossover point, viz. the point at which the process phase shift is -ic 

(rad). The simultaneous identifications that were carried out were: 

i) From the reference input to the inner controller output, and 

ii) From the reference input to the inner process output. 

Table 4.1 details the results for the identification. 
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Table 4.1: Inner Process Identification Results. 

2e -o. 7. ß Gp2 (s)= 
(s+2Xs+4) 

Theoretical 

w_, r 
(rad. s 1) 

2.441 

I(do); 

0.1352 

Identification Time (s) 

- 
Identified 

o-) O-ff (rad. s I GO 
-7r 

Identification Time (s) 

2.4425 0.1352 979 

The initial identifier frequency was chosen as 0.1(rad. s"1) and 0.2 was the peak 

magnitude of the excitation, the peak magnitude remained unaltered during the 

identification process. As can be seen from Table 4.1 the identified data is highly 

accurate, the phase crossover frequency is within 0.06% of the theoretical value and 

the identified magnitude is for all practical purposes exact. The time taken to carry 

out the identification was 979 (s), this may at first seem to be rather excessive 
however it should be noted that the Phase-Locked Loop method supplies the 

identification data of points on the frequency response curve of the process being 

identified as it approaches the desired or reference process identification point. 

Additionally, since the process was considered to be unknown the identification was 

initialised at a relatively low frequency of 0. l (rad. s 1), compared with the phase 

crossover frequency of the process. The identification was carried out in closed loop 

with the transient response of the closed loop system having a marked effect on the 

identification time. This was due to the long settling time required at each change of 

identification frequency. The accuracy of the points identified by the Phase-Locked 

Loop identifier can be seen from Figure 4.3 where the Nyquist curve of the actual 

process is compared with the identified points of the inner process as the identified 

data approaches the reference phase shift of -it (rad). The frequency range over 

which the Nyquist diagram was plotted was from 0.1(rad. s-1) to 2.4425(rad. s-1). From 

Figure 4.3 it can be seen that there is an extremely good match between the identified 

points and the Nyquist curve of the actual process. 
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Figure 4.3: Inner Process Nyquist Diagram and Identified Data Points. 

Composite Process Identification. 

Z5 

The second Identification that was carried out was the identification of the composite 

process, shown as GP', (s) in Figure 4.1, at the phase crossover point. The Phase- 

Locked Loop identifier was initialised such that the excitation frequency was 0.1 

(rad. s-1) with a peak magnitude of 0.2. The excitation peak magnitude was not altered 

during the course of the identification. Table 4.2 details the results of the 

identification. As can be seen from Table 4.2 the identified phase crossover point of 

the composite process was identified to a high degree of accuracy, better than 0.05%. 

The time to achieve the identification was relatively long. However, as can be seen 

from Figure 4.4 there are other points accurately identified as the Phase-Locked 

Loop identifier converges to the desired reference point. 

159 



Table 4.2: Outer Process Identification Results. 

G 
G 

pl 

(S) 
= 

p2 
sUc2 sG 

pl \sl 
I+ Gp2 (s)(TC2 (s) 

Theoretical 

w, ý 
(rad. s 1) 

_ _ 
ýýýr IGP. ( Identification Time (s) 

0.2081 2.9193 - 
Identified 

w_f (rad. s 1) IGpj (do)Ir Identification Time (s) 

0.2080 2.9194 2206 

The time to perform an identification using the Phase-Locked Loop identifier 

is dependent on the characteristics of the process being identified. In this case study 

the processes involved have relatively long time constants and the tuning of the 

controllers produce an oscillatory response to set point changes with an extended 

settling time. All of the above add to the time required to carry out the identification. 

However it should be noted that the data from the identification method is very 

accurate and could be used in a multi-point PID controller design method. 
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Figure 4.4: G 
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(s) Nyquist Diagram and Identified Data Points. 

4.3.2 Cascade Controller Gain and Phase Margin Design. 

1 

0 

-1 

_2 

-3 

-4 

-5 

-6 

_7 

_g 

-9 

The initial design of the PI controllers used in Case Study 4.1, Gc, (s) and Gc2 (s), 

was carried out using a relay experiment and the application of the Ziegler and 

Nichols ultimate period method for PI controllers. Further the initial tuning followed 

the sequential tuning method of Hang et al (1994). In the following the design of PI 

controllers shall be carried out such that the disturbance rejection property of the 

initial Ziegler and Nichols PI controller design of the cascade system of Case Study 

4.1 shall be improved upon. In Case Study 4.1 no prior knowledge of the controllers 

was required, however in the following algorithm it is assumed that the master 

controller is known. If it is not then it can be identified using the Phase-Locked Loop 

technique. All of the identification steps required to complete the design shall be 

carried out with the cascade system in closed loop. Additionally, a test shall be 
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employed to ensure that the controller tuning parameters can be implemented on line 

without the closed loop system becoming unstable. Motivated by the Hang et al 
(1994) sequential tuning method and the incorporation of a new identification tool, 

algorithm 4.3 shall be used to implement the identification and tuning method. 

Algorithm 4.3: Closed Loop Identification and Tuning of a Cascade Connected 

System. 

Step 1: Initialisation. 

Choose the phase margin, q pp , and gain margin, GM, ranges that are required for the 

inner and outer loops. 

Choose the number of points to be identified on the frequency response curves of the 
inner and composite processes. 

Step 2: Inner Process Identification. 

The inner process frequency response is identified at the required number of points in 
AA 

the phase reference range -ir(rad) to -n/2+ O pm (rad), where OPM is the largest value 

of the required phase margin range. 
Step 3: Inner Loop Viable Gain Margin and Phase Margin Pairing. 

The data supplied by Step 2 is used by the Viable Gain Margin and Phase Margin 

Pairing Algorithm, Algorithm 2.1 of chapter 2. 

The required gain and phase margin are chosen on the basis of obtaining the largest 

value of integral gain available from the PI controller parameter set found (Astrom 

and Hagglund, 1995). 

Step 4: Slave Loop Stability Test. 

Use the Phase-Locked Loop method to identify the outer process Gpl (s), such that the 

phase error is given by 

ek = -7r - arg(Gcl (jw)) 
- arg(Gc2 (jam)) 

- arg(G p2 
(. 1 o)) 

- arg(Gpl (je)) + arg(l + Gc2 (jw)G 
2 
(Jw)) 

Using the data supplied from the above identification of Gp1(s), the known controller 

parameters and the identification data for Gp2(s) determine if 
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IGo 
I Gý2 (jW-, 

r 
)G2 (jÜJ-7r 

, 1CJ -, 
1 

-, 
IGP, (jc-, 1 <1 1+ Gc2CJw-ýk'n2CJw-; r 1 

where co-, r 
is the frequency at which 

arg(Gp, (jo )) - -if - arg(G� (jwff ýý 
- arg(Gý2 (j-)) 

arg(Gp2 (1o)-, + arg(l + Gc2 (J0-, 
r 

)G2 (JU); 
it)) 

If IG1G2ýJ0, 
)G2 

ýJý-ý I1+Gc2Gw-)r 
X'p2(Jw-z 

Then go to Step 5 

Else the design is continued with the outer loop on manual at Step 5 or go to step 3. 
Step 5: Composite Process Identification. 

The composite process frequency response is identified at the required number of 

points in the phase reference range -ir(rad) to -iC12+9$; M (rad), where FPM is the 

largest value of the required phase margin range. 
Step 6: Outer Loop Viable Gain Margin and Phase Margin Pairing. 

The data supplied by Step 5 is used by the Viable Gain Margin and Phase Margin 

Pairing Algorithm, Algorithm 2.1 of chapter 2. 

From the data supplied by the gain and phase margin pairing algorithm a choice of 

gain and phase margin is made that gives an acceptable time domain response for the 

cascade connected loop. 

Case Study 4.2 

0 

For this design exercise a gain margin and phase margin specification shall be 

used to determine the parameters of the inner and outer PI controllers. The first step 
in the design is to determine the gain margin and phase margin pairings that can be 

achieved using a PI controller in the inner control loop. The automated existence 

testing of gain margin and phase margin pairings achievable by PI controllers has 

been described in Chapter 2. For this case study the range of the gain margin was 

chosen to be from 2 to 5 with the range for the phase margin chosen as 30° to 60°. In 

order to utilise the automated testing method the inner process, Gp2 (s), must be 
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identified at a number of points on its frequency response. The inner process was 

identified at sixteen equally spaced points over a phase angle range of -7t (rad) to -n/6 
(rad), using the Phase-Locked Loop identification technique. The results of the 

identification are shown in Figure 4.5 

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 

-v. ß.. 1 

Figure 4.5: Nyquist Diagram for Gp2(s) Showing Identified Data Points. 

From Figure 4.5 it can be seen that the identified data is in very good agreement with 

the theoretical values. However the time taken to carry out the identification can be 

considered to be excessive. The average identification time per point was 196(s) with 

the identification of all sixteen points taking approximately 53 minutes. Although 

this may seem to be a long length of time to be carrying out tests on the system it 

should be remembered that the cascade control system is at all times during the 

identification operating with both the inner and outer loops closed. In addition to this 

the magnitude of the excitation signal can be kept to a relatively low level, thus 

reducing the upset to the process being controlled during the identification phase. 
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Also note that the identification method and the gain and phase margin pairing 
algorithm require very little input by an operator for the initialisation, thus expensive 
manpower is not needed during this phase of the design process. Table 4.3 shows the 

results from the identification, it should be noted that only the data at the identified 

points is presented since this is the only identification data supplied to the gain 
margin and phase margin pairing algorithm. 

Table 4.3: Identification Results for Inner Process, Gp2(s) 

2e-o. 'S 
Gp2(s)= 

s+2Xs+4 

Magnitude Phase Angle (rad) Excitation Frequency (rad. s) Time (s) 

0.2447 -0.5233 0.3628 607 

0.2412 -0.6978 0.4853 1011 

0.2366 -0.8722 0.6086 1152 

0.2308 -1.0467 0.7340 1499 

0.2244 -1.2220 0.8612 1681 

0.2171 -1.3964 0.9881 1749 

0.2092 -1.5709 1.1199 1994 

0.2022 -1.7456 1.2535 2101 

0.1937 -1.9196 1.3947 2257 

0.1846 -2.0942 1.5288 2426 

0.1762 -2.2689 1.6679 2569 

0.1682 -2.4434 1.8242 2637 

0.1586 -2.6184 1.9698 2801 

0.1561 -2.7926 2.1223 2927 

0.1436 -2.9673 2.2764 3060 

0.1363 -3.1416 2.4392 3139 

Figure 4.6 shows the results from the gain margin and phase margin pairing 

algorithm based on the data supplied from the identification of the inner process, 

Gp2(s). 
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Figure 4.6: Viable Gain Margin and Phase Margin Pairings for the Process Gp2(s). 

The shaded region in Figure 4.6 represents the viable gain margin and phase margin 

pairings that can be achieved by a PI controller and the inner process, Gp2 (S). The 

next stage of the design is to choose the gain margin and phase margin pairing that 

will give the largest value of integral gain for the PI controller. This choice is made 

on the basis that the integral of the error is inversely proportional to the integral gain 

and thus will improve the disturbance rejection properties of the closed loop system 

(Astrom and Hagglund, 1995). From the data generated from the gain margin and 

phase margin viable pairing method, the gain margin and phase margin pairing that 

resulted in the largest value of integral gain was a gain margin of 2 and a phase 

margin of 60°. The resulting PI controller is given by 

Gc2 (s) = 2.8248 + 
2.9339 

s 
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One of the objectives of this control system design is to be able to keep the system in 

closed loop at all times. It is thus necessary to show that the parameters of the inner 

controller can be updated to those of the newly designed controller and that the 
closed loop cascade system will remain stable. Before the parameters of the inner 

controller can be updated online it will be necessary to show that 

JG 
z(1o'-z)Gp2(Iw-ýý Gýý(jco-; 

r 
ý IG 

nl 
(1w-ný <1 I I+ Gc2 (1w-, 

T 
»P2 (f0-ir 

where o) -, T 
is the frequency at which 

arg`G,, (jo_, ýý+ arg(Gc 2(J w-, r 
)1 + arg(Gp2 (j_, ))+ arg(GP, (1 w-ý iý 

- arg1+Gc2(jw-7r )G 
2(ioj-,, 1)=-ý 

(4.35) 

To find the frequency a, the Phase-Locked Loop Identifier is configured to 

identify the outer process Gp 1 (s) such that the phase error is given by 

ek = -Jr - arg(GcI (Jo)) 
- arg(Gc2 (Jz))- arg(Gp2 (Je)) 

- arg(Gp1 (je)) + arg(1 + Gc2 (jo)p2 Go))) 

(4.36) 

Using the data from Table 4.3, the known controller parameters and an initial 

identification of Gpi(s) at a frequency of 0.3628 (rad. s-1) it can be seen that the initial 

frequency is too high since the calculated phase angle of the cascade connected 

system forward path is -3.8544 (rad). Thus an identification of the inner process at a 

range of lower frequencies is required to be carried out. Five points were chosen to 

be identified in the range 10° to 30°; Table 4.4 shows the results of the identification. 
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Table 4.4: Identification Results for Inner Process, Gp2(s) 

2e -0.7s G 
p2 

(s) 
_ (s+2Xs+4) 

Magnitude Phase Angle (rad) Excitation Frequency (rad. s) Time (s) 

0.2497 -0.1741 0.1203 538 

0.2491 -0.2622 0.1810 708 

0.2477 -0.3486 0.2404 844 

0.2469 -0.4361 0.3016 974 

0.2449 -0.5240 0.3622 1150 

Cubic splines are used to interpolate between the data points shown in Table 4.4, 

thus two look-up tables are formed: 

i) Phase angle vs. frequency, and 

ii) Magnitude vs. frequency 

Since during the identification process the frequency of excitation is always known 

this can be used to drive the look-up table to provide the frequency response data 

required for the process Gp2(s). Since the controller parameters are known it is 

possible to calculate their frequency response for a given frequency. The Phase- 

Locked Loop identifier is now configured to identify the outer process Gpl (s) and is 

given the phase reference, 0ref, as shown in equation (4.36). The identification gave 

the following results 
I 

arg(G pl 
(jw-, )) = -2.6672 (rad) 

at a frequency of 

w, = 0.2093 (rad. s"1) 

Using the above data and the known controller parameters and the identification data 

for the inner process, the magnitude of the forward path of the cascade system is now 

found as 
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IGiG. 2C. 1w, )Gpz(Jw, 
ýJw I(j-w 

, 
0.3977 IX'pzýJw 

Since this value is less than unity it will be possible to update the controller online 
and the closed loop cascade system shall remain stable. Should it not be possible to 
update the controller online the outer control loop could be placed on manual and the 
design continued or a possible redesign of the inner controller would be required. 
To compare the performance of the cascade control system operating with the new 
inner controller, Gc2 (s), against the performance with the original inner controller, 
Gc2(s), the following test was carried out. A step input was applied to the closed loop 

cascade system with the original controller settings at time t=0(s), followed by a step 
load disturbance of magnitude 0.15 applied to the inner loop at time t=300(s). The 
integral of the square of the reference error of the master controller was then 

calculated, using 

00 
I, = 

fe; (t)dr 

T=O 

where e 1(t) is shown in Figure 4.2. 

A similar test was carried out on the cascade system this time operating in closed 
loop with the inner controller using the updated PI controller, G2 (s) 

. Table 4.5 

shows the results of the comparison for the two tests. 

Table 4.5: Integral Square Error (ISE) Comparison 

Gc2 (s) = 2.818 + 
1.401 

GcJs) = 2.8248 + 
2.9339 

S s 

ISE ISE 

Step and Load Step and Load 
Step Only Step Only 

Disturbance Disturbance 

12.64 13.84 10.46 10.72 

From Table 4.5 it can be seen that the results using the new design for the inner 

controller results in an improvement in the overall performance of the cascade 

system as far as the load disturbance rejection property is concerned. Figure 4.7 
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allows a comparison to be carried out between the closed loop response of the 
cascade system using the original inner and outer controllers and that obtained when 
the inner controller is replaced by the updated controller, Gc2 (s). 
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Figure 4.7: Cascade System Step and Load Disturbance Response with Gc2 (s) 
. 

Table 4.6 gives a frequency domain comparison between the original inner loop 

Ziegler and Nichols ultimate period method compensated forward path and the gain 

and phase margin compensated forward path. 
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Table 4.6: Gain and Phase Margin Data for the Inner Forward Path 

Forward Path G 
p2 

(s)G. 
2 
(s) G 

p2 
(S)Gc2 (s) 

Gain Margin 2.39 2 

Phase Crossover Frequency (rad. s) 2.2427 2.0144 

Phase Margin (degree) 113 60 

Gain Crossover Frequency (rad. s) 0.4633 0.8540 

From Table 4.6 it can be seen that the design gain and phase margin values have 

been attained. The bandwidth, as defined by the gain crossover frequency, of the gain 

and phase margin compensated system can be seen to be increased over that of the 

original compensated forward path. 

Having tuned the inner loop PI controller, a similar design process will now 

eb carried out for the outer controller. However, the design intent for the master loop 

controller is to produce an improvement in the time domain response of the closed 

loop cascade system and to improve the stability robustness properties. In this case, 

the closed loop identification of the composite process shown as GP, (s) in Figure 

4.2 is carried out. Again sixteen points on the frequency response curve of the 

composite process G,, (s) are identified for use by the gain and phase margin viable 

pairing method. The phase angle range chosen for the identification is from 

- (rad) to -; r (rad). The results of the identification are shown in Table 4.7. The 
6 

time taken to complete the identification of all sixteen points was approximately 4 

hours and 36 minutes. The length of time taken to complete the identification may be 

considered to be lengthy however the identification was carried out in closed loop 

with low excitation magnitudes used hence the disruption to the process would be 

minimised. The excitation frequencies required to carry out the identification are 

very low and thus have a long period. 
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Table 4.7: Identification Results for Composite Process, G'1(s) 

S= 

Gp2(S)G'2 (S) 

G' Gs 
p1 

} 

1+G (s(s p'ý 
p2` )`ß(lrc2` 

} 

Magnitude Phase Angle (rad) Excitation Frequency (rad. s) Time (s) 

19.004 -0.5232 0.0226 2527 

18.259 -0.6977 0.0305 3623 

17.335 -0.8724 0.0387 5025 

16.263 -1.0469 0.0473 6365 

15.068 -1.2214 0.0564 7599 

13.783 -1.3960 0.0661 8680 

12.443 -1.5707 0.0766 10067 

11.082 -1.7450 0.0879 11391 

9.7479 -1.9195 0.1004 12036 

8.4338 -2.0942 0.1142 12726 

7.2182 -2.2686 0.1295 13269 

6.0598 -2.4430 0.1466 13820 

5.0225 -2.6177 0.1660 14813 

4.1069 -2.7929 0.1873 15253 

3.3213 -2.9675 0.2120 15995 

2.6382 -3.1420 0.2396 16527 

Further the amount of operator input required whilst the identification is being 

carried out is minimal requiring only the input of the identification range and the 

number of points to be identified. The identification is then carried out autonomously 

by the Phase-Locked Loop identifier module. The results of the identification are 

shown graphically in Figure 4.8 where it can be seen that the identified data are in 

good agreement with the theoretical frequency response curve of the composite 

process, GPI (s) 
. 
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Figure 4.8: Frequency Response of Composite Process, G 
pi 

(s) 

) 

When the identification phase is complete the data obtained is used by the 

gain margin and phase margin viable pairing routine. The results of this are shown in 

Figure 4.9. The shaded region of the figure represents the viable gain and phase 

margin pairings that can be achieved by a PI controller acting on the composite 

process, G 
p, 

(s). 
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Figure 4.9: Gain and Phase Margin Pairings for the Composite Process, G1 (s) 

The design objective is to choose a viable gain margin and phase margin pairing that 

will produce an improvement in the time domain step response of the closed loop 

cascade system. To achieve this, the gain and phase margin pairing chosen was a 

gain margin of 4 and a phase margin of 60°. This choice of gain margin and phase 

margin resulted in a PI controller given by 

0.0031 
Gc, (s)=0.0712+ 

s 

The comparison test between the new outer loop PI controller and the original 

Ziegler and Nichols tuned controller was made on a similar basis as the inner 

controller comparison, viz. a step input applied at time t=0(s) and a load disturbance 

of magnitude 0.15 applied to the inner loop at time t=300(s). The results of the 

comparison test are shown in Table 4.8. 
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Table 4.8: Time Domain Step Response Comparison 

G1 (s) = 0.1323 + 
0.0054 

S 
G'1(s) = 0.0712 + 

0.0031 

s 

Rise Time (10% - 90%) 10 (s) 15 (s) 

Peak Percentage Overshoot 35% 7.3% 

Settling Time (±2%) 94 (s) 77 (s) 

From Table 4.8 it can be seen that there is an improvement in the settling time of the 

gain and phase margin compensated system of approximately 17 (s) over the initial 

Ziegler and Nichols ultimate period method. The peak percentage overshoot of the 

gain and phase margin compensated system has been reduced by approximately 28% 

from the original value. From Table 4.8 it can be seen that the Ziegler and Nichols 

ultimate period tuning method gives the better rise time between the two 

compensated systems. However the improvements in the peak percentage overshoot 

and the settling time of the gain and phase margin compensated system are felt to 

outweigh the reduction in rise time. Figure 4.20 shows the comparison between the 

step and disturbance responses of the cascade systems. From Figure 4.20 it can be 

seen that the final tuning of the cascade system has a slower rise time and a reduced 

level of peak percentage overshoot to that of the cascade system using the outer loop 

PI controller tuned using Ziegler and Nichols ultimate period tuning rules. The load 

disturbance rejection properties show that the new tuning settings do give a faster 

rejection of the disturbance than the initial Ziegler and Nichols ultimate period 

version along with a reduction in the integral of the square of the reference error. 
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Figure 4.20: Closed Loop Response of Cascade Control System. 

4.4 Identification and Tuning of Multivariable Control Systems. 

In the process industries when there is a requirement to control interacting 

multi-input multi-output systems, decentralised control using PID controllers is often 

chosen as the control methodology (Palmor et al, 1995) over a full matrix 

multivariable control system that would deliver a potentially improved control 

performance. Decentralised control is still chosen since its simpler structure is easier 

to implement and understand by industry-based control practitioners. There is also a 

benefit to be derived from the reduced vulnerability of the control system to actuator 

and sensor failure since in decentralised control systems only one loop is affected by 

the failure. In the case of single-input single-output systems the relay experiment of 

Astrom and Hagglund has been used extensively as the basis for auto-tuning PID 

control systems. When the relay experiment is applied to the non-parametric 
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identification and tuning of multivariable control systems there are effectively three 
methods reported in the literature: 

i) Independent relay feedback 

ii) Sequential relay feedback, and 
iii) Simultaneous decentralised relay feedback. 

Independent Relay Feedback. 

In independent relay feedback a relay is connected to each input in turn. The 

corresponding output is closed around the relay with all other loops left open. The 

identification process is continued until each loop has been identified. This method 

of multivariable system identification allows particular points of the system 
frequency response matrix to be identified on a column by column basis. Figure 4.21 

shows how independent relay feedback identification can be implemented on a two- 

input, two-output system. 

rl (s) uI (s) 

+ Yý ist Relay + 
921(S) 

$12(5) 

+ Y2 (S) 
uz(s)-0 g22(s) E 

Figure 4.21: Independent Relay Feedback. 

Sequential Relay Feedback. 

In sequential relay feedback each loop is identified using a relay experiment 

and a PID controller is designed on the basis of the information supplied from that 
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relay experiment. As each loop is identified it is subsequently closed by the newly 
designed PID controller. The procedure of identification, PID controller design and 
loop closure around the new controller continues until all loops are closed. The 
procedure is then iterated until the controller parameters have converged. A popular 
choice of controller tuning technique is a rule based method such as the Ziegler and 
Nichols ultimate period method. Use of the Ziegler and Nichols ultimate period 
method of PID controller tuning can lead to unstable designs (Yu, 1999). Yu (1999) 

proposes that a detuning factor is applied to the Ziegler and Nichols ultimate period 
rules such that stable controllers may result from the design. Figure 4.22 shows the 

conceptual diagram of sequential relay feed back identification and tuning for a two- 
input, two-output system. 

r1 

r2 

Figure 4.22: Sequential Relay Feedback Conceptual Diagram. 

Simultaneous Decentralised Relay Feedback. 

The conceptual diagram for decentralised relay feedback applied to a two-input, two- 

output system is shown in Figure 4.23. As can be seen from the figure both process 
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inputs are connected to relays and the corresponding process outputs are closed 
around the relays. 

r1 

r: 

Figure 4.23: Conceptual Diagram for a two-input, two-output process. 

Palmor et al (1995) discusses a method that allows the identification of a desired 

critical point in the gain space of a two-input, two-output multivariable system. In 

Figure 4.24 the curve shown as (1) represents the case where the two loops have little 

or no interaction, hence the system becomes unstable when any of the two loop 

gains, K1gli(0) i=1,2, exceeds their single-input single-output critical gains. 
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Figure 4.24: Stability Boundaries: Three Special Cases (Palmor et al, 1995) 

The other two curves, shown as (2) and (3) in Figure 4.24, represent the general 

cases where coupling between the two loops exists. 
Palmor et al (1995) state that stable limit cycles are generated, each with the 

same period, if the ratio of the relay heights is equal to a constant. Hence by 

modifying the relay height ratio it is possible to move the critical point along the 

stability boundary. Palmor et al, define a desired critical point in the gain space by 

selecting a particular angle, shown as 0 in Figure 4.24, or by selecting a particular 

weighting factor. The weighting factor determines the weighting of loop two relative 

to loop one. If the weighting factor is chosen to be greater than unity then loop two 

will produce an improved control performance over that produced by loop one, by 

ensuring that loop two has a larger critical gain than that of loop one. The 

relationship between 0 and the weighting factor, Cd, is given in (Palmor et al, 1995) 

as, 
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tan =C =K2 , 
922(0) ýý (4.37) 

Kj, gjj(O) 

where K, 
cr 

and K2" are the critical gains of loop one and loop two respectively and 

g� (0) and 922(0) are the zero frequency gains of the leading diagonal elements of 

the two-input, two-output multivariable process. The zero frequency gains g� (0) 

and 922(0) require to be identified. To accomplish this Palmor et al carry out two 

experiments. With the relays connected in closed loop and the system oscillating at a 

critical frequency, the set point input of loop one is given a non-zero value with the 

set point input of loop two made equal to zero. The average values of the 

multivariable system input and output signals are then calculated, such that 

y= G(O)u 

1T T 

T 
Jj'i (t)dt 

T 
Ju, (t)dt 

- where, y= 1T 
and u1T (4.38) 

T 
JY2 (t)dt 

T 
Jut (t) t 

00 

and T is the period of the critical frequency. The experiment is carried out once 

again, this time with the set point input of loop one made equal to zero and the set 

point input of loop two made non-zero, this leads to 
1212 

yy= G(0 uu (4.39) 

The superscripts in equation (4.39) represent the experiment number. From equation 

(4.39) it is possible to calculate the values for the zero frequency gains of the 

elements of the two-input, two-output multivariable process. 

The next step in the procedure is to choose the desired critical point either by 

selecting a desired od or by selecting a desired weighting factor, Cd. The relay 

heights are now selected, assume that the relay heights are chosen as hl and h2 for 

relay 1 and relay 2 respectively. From this point the Palmor et al decentralised relay 

feedback method follows the following steps: 
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i) The first experiment is carried out using the relay heights h1 and h2 and 
the peak amplitudes of the limit cycles in loop one, al, and loop two, a2, 
are recorded as is the limit cycle frequency. 

ii) In the second experiment the relay heights are swapped over and the peak 
amplitudes of the limit cycles in loop one, al, and loop two, a2, are 
recorded as is the limit cycle frequency. By using this technique the 

critical points identified should be on opposite sides of the desired critical 
point. From the results of the two relay experiments a new value for the 

relay height ratio is calculated from 

h, 
(4.40) h2 

Cd _b 922(o) 

al al 

where b= a2 1 a2 2 and c=a-b 
h` 

and the subscripts 
1hl a2 

1 
h2 

1 
h2 

1 
h2 

2 

on the bracketed terms refer to the experiment number. 
iii) The error between the desired critical point and the identified critical 

point is now tested. If 10 - Od I< to' then stop. 

iv) If the error tolerance is not met then the decentralised relay experiments 

are continued at step i) using the relay heights calculated in step ii). 

When the desired critical point has been identified then the tuning of the 

decentralised controllers is carried out using a rule based PID controller tuning 

technique. It should be noted that when the desired critical point has been identified, 

there is only one critical frequency hence both decentralised PID controllers will 
have the same values for their integral and derivative time constants. 

In the above, the methods all employ the steps of non-parametric 

identification followed by controller tuning using the application of a rule based PID 

method. Additionally all of the methods lead to the design of decentralised PID 

controllers. In the tuning method reported by Wang et al (1997b) a different 

approach is taken to determining the PID controller parameters. The identification of 
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the multivariable process is accomplished by the use of decentralised relay 

experiments. However, the aim of the identification is to provide data for two points 

on the frequency response curves of each element of the transfer function matrix of 
the process so that a first order plus dead time model of each element of the process 

transfer function matrix can be determined. The zero frequency gains of the elements 

of the transfer function matrix are required as are the critical frequency gains of the 

elements of the transfer function matrix. The critical frequency being the frequency 

of the resulting limit cycle oscillations set up by the decentralised relay experiment, 

with the assumption that there is only one frequency present. To carry out this 

identification Wang et al employ a biased relay in one of the loops and standard 

relays are placed in all of the remaining loops to form a decentralised relay 

experiment. By using a biased relay, asymmetrical waveforms are generated at the 

inputs and outputs of the multivariable process. If it is assumed that the multivariable 

process to be identified is given by Gp(s) and it is of dimension mxm, then the 

required gains are extracted from the process input and output data using the 

following (Wang et al, 1997b). 
Tr 
lu 

, 
(t)alt 

0 

U(o)_ 

T,, 
jum (t)dt 

0 

Tý 

. vß(t)dt 

Y(o) 

T, 
lYrn (t)dt 
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TC 

Ju1 (t)e°'dt 

0 

and U(jwc 

T,, 

JUm (t)'°'a't 
0 

T, 

f 
y, (t}e 'ýý` dt 

0 

Y(jwe}- 
T, 
JYm (t}e -'w°` dt 

0 

hence obtain Y(O) =Gp (O)U(O) 

Y(o, ) =G, (w, )`jw ) 

where TT and 4 are the critical period and critical frequency respectively. 

As in the method of Palmor et al (1995), because the process inputs and outputs are 

vectors it is not possible to directly determine the transfer function matrix element 

gains from one experiment. To overcome this difficulty, Wang et al carry out m-1 
further decentralised relay experiments, calculating the transfer function element 

gains as above for each experiment. Thus after m-decentralised relay experiments 

have been carried out, the following are obtained 
IYI (0) 

... Y' (0)1 = Gp (0)[U'(O) U' (0)1 

IYI (iW, ) 
... 

Y' (jo, )] = Gp (jo, )[U'(jw, ) 
... U' (jw, )] 

where the superscript denotes the experiment number. 

From the above the transfer function gains at zero frequency, Gp(0), and the critical 

frequency gains, Gp(j roe), are found. The final stage in the Wang et al method is the 

design of the controller for the multivariable system. Using the identification data for 

the frequency response of the transfer function matrix, obtained from the 

decentralised relay experiments, first order plus dead time models of the individual 

transfer function elements are fitted to the data. The objective of the Wang et al 

controller design method is to produce a de-coupled closed loop system and to have 

an acceptable control system response from the independent loops. Consider the 
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multivariable control system shown in Figure 4.25. The process, Gp(s), is m-input m- 
output and the controller K(s) is a full matrix controller. 

R (s) + ýý E(s) U(s) y(s) 

E ýý K(s) ý-ý' G. (s) 

Figure 4.25: Multivariable Control System 

For the system shown in Figure 4.25 it can be shown that 

Y(s) = 
(Imxm 

+Gp (s)K(s))-' Gp (s)K(s)R(s) (4.41) 

where I,,, xm is the mxm identity matrix. 
It is known that the product or sum of two diagonal matrices returns a diagonal 

matrix as does the inverse of a diagonal matrix. Hence in equation (4.41) to ensure 
that the closed loop system is de-coupled the matrix Gp(s)K(s) must be made 
diagonal, viz. 

Gp(s)K(s)=diag[qil], i=1,2, ... ,m 
Assuming that de-coupling can be achieved, the design of the diagonal controllers of 

the full matrix controller can be carried out having knowledge of the leading 

diagonal elements of the transfer function matrix. In Wang et al the design of the 

controllers on the leading diagonal of the full matrix controller is carried out using 

the method proposed by Ho et al (1995) where analytical expressions are given that 

enable a PI controller to be designed to produce a specified gain margin and phase 

margin. With the diagonal controllers designed, it remains to determine the off- 

diagonal controllers. The off-diagonal controllers are designed such that for any 

column, i=12, ... , m, the off-diagonal controllers are given in terms of their 

respective diagonal controllers, thus 
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The above off-diagonal controller design method is discussed in "Industrial Digital 

Control Systems" (Warwick and Rees, Eds., 1988) where the authors of the method 

are given as Boksenbom and Hood (1949). All of the above methods utilise a relay 

experiment or some combination of relay experiments to identify the multivariable 

process. In the following a decentralised controller design method is discussed that 

assumes the availability of a process model. 
Gain margin and phase margin design is an accepted method of specifying 

frequency domain characteristics of a single-input single-output control system. In 

Ho et al (1995) the extension of gain margin and phase margin design to a 

multivariable process controlled by a decentralised PID control system is discussed. 

In classical gain and phase margin design two points are specified and the frequency 

response curve of the compensated forward path of the control system is required to 

pass through those points. In the method by Ho et al this idea is developed such that 

the Gershgorin Band is shaped such that it passes through two specified points. The 

two points are defined in a similar manner to the gain and phase margin of single- 

input single-output systems. 
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k, k; 

Figure 4.26: Typical Nyquist Diagram with Gershgorin Circle Shown at the Phase 

Crossover Frequency (Ho et al, 1995). 

The diagram shown in Figure 4.26 is used to define the multivariable gain margin, 

GM'. 

GM'-- (4.42) 
qii %ý-ýr;; + 

lq 
ki 

k. h i 

where w_, ii 
is the frequency at which arg(q;; (jw_, 

11 
)) 

= -'r and q; l(j w) is the 

compensated forward path frequency response diagonal element, q;; (s). From 

equation (4.42) and Figure 4.26 it follows that the gain margin, GM, is given by 
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GM'= 1 
I Iq 

ki I k. k=i 

(_TM GM lqki 

1+k. h i 

jqj; ýý 

Iq 
ki 

hence GM = GM' 1+k, k*' (4.43) 
qii 

(l 
o)-, 

r;; 

I Igh 

and thus GM = GM ' 1+ k, k *i (4.44) 1911 Gw 
-IriT 

where GM =1 and equation (4.44) follows from equation (4.43) since 
q i; l 0i-,, 

decentralised control is used. 
The diagram shown in Figure 4.27 is used to define the multivariable phase margin, 
OPM 
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(-1, 

1: Iq 
Lk *-i 

Gershgorin ( 

Figure 4.27: Typical Nyquist Diagram with Gershgorin Circle Shown at the Gain 

Crossover Frequency (Ho et al, 1995). 

From Figure 4.27 it can be seen that OA is equal to OB and both are equal to unity. If 

a line is drawn from the centre of AB to the point 0, then it can be seen that 

Sin 

OPM 
- 

OPM 

2 

hence 

llqk, (i. 

i,, 
k, k*i 

21q,, jco1 

Y'PM =0' +2Sin-1 

Equation (4.45) can be written in the form 

lqk, (jo), 

k, kýi 

Ig11 ýýý; II 
(4.45) 
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1 Igki [(/wi;; 

, /, 
1 k, k*; OPM =Y 

P->M +2 sin - igi, 
i 
(jW, 

1 
1 (4.46) 

where w, is the frequency at which I (Jwl,, ý 
=1 and q;; (j w) is the compensated 

forward path frequency response of the diagonal element, q<i(s). 
In the next stage of the method by Ho et al the decentralised controllers are designed. 

Specifying the multivariable gain margin, GM', and phase margin, OPM 
, 

for each 
loop, the PID controllers for each loop are then designed from the gain margin, GM, 

and phase margin, 0, obtained from equations (4.44) and (4.46) employing the 

single-input single-output gain and phase margin PID controller design equations 

given in Ho et al (1995). 

4.4.1 Closed Loop Identification of Multivariable Processes. 

In the above, a discussion of the methods used to extend the application of the 

relay experiment to the non-parametric identification of particular points on the 

frequency response of the transfer function matrix of multivariable processes was 

undertaken along with a discussion of decentralised and full matrix PID controller 

design from the data obtained by those identifications. In the sequel an extension of 

the Phase-locked Loop method of non-parametric system identification, to the 

identification of multivariable processes connected in closed loop shall be carried 

out. It shall be shown that there is no restriction as to the controller configuration in 

that, decentralised or full matrix controllers may be employed. In Chapter 2, the 

exact gain and phase margin controller design method of Fung et al (1998) was 

discussed. An extension of the exact gain and phase margin controller design method 

to multivariable systems shall be developed. 

Consider the multivariable system shown in Figure 4.28. 
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R(s) + E(s) 

ý-º ý K(s) 

Figure 4.28: Multivariable Control System 

U(s) 

Gf, (S) 
Y(s) 

In the sequel it will be assumed that the process transfer function matrix is square 

and is dimension mxm, 

From Figure 4.28 it can be seen that 

Y(s) = GP (s)U(s) (4.47) 

U(s) = K(s)E(s) (4.48) 

E(s) = R(s) -Y(s) (4.49) 

From equations (4.47) to (4.49) it follows that 

Y(s) = 
(I + Go (s)K(s))-'GP (s)K(s)R(s) (4.50) 

From equations (4.47) to (4.49) it can also be shown that 

Ups, -(I +K(s)Gpcs, r'KcS, Rcs, ý4.5ý> 
In equation (4.50) let 

T(s) = 
(I + GP (s)K(s))-'GP (s)K(s) (4.52) 

and in equation (4.51) let 

C(s) = 
(I + K(s)G p 

(s))-' K(s) (4.53) 

Substitution of equations (4.52) and (4.53) into equations (4.50) and (4.51) 

respectively, gives 
Y(s) = T(s)R(s) 

U(s) = C(s)R(s) 

hence using equations (4.54) and (4.55) it follows that 

T -' (s)Y(s) =C- (s)U(s) 

thus Y(s) = T(s)C-'(s)U(s) 

(4.54) 

(4.55) 

(4.56) 
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but from equation (4.47) 

Y(s) = GP (s)u(s) (4.57) 

Thus from equations (4.56) and (4.57) it follows that 

Gp (s) =T (s)Q-' (s) (4.58) 

Proof of Equation (4.58) 

T(s)Q^ (s)=(f + (i(s)K(s))'G(s)r, (x)t/+K(s)G(e)) ' K(s)J 
Q +Go(x)K(s)J'Gv(s)K(s)K-' (sXi + K(t)[; p 

(s)) 

=(/+Go(s)X(. e))'G'p (sXi + K(s)Gv (s)) (4.59) 

Using Householders matrix identity 

(B+CDE)-' =B-' -B-'CD(D+DEB-'CD)'DEB-' 

Comparing (B + CDE)-' to (I 
+ GP (s)K(s)) -' gives B=I, C= GP(s), D=I and E= 

K(s), where I is the identity matrix. 

Hence (I 
+Gp (s)K(s))-' =I-Gp (sXi + K(s)G 

p 
(s))-' K(s) (4.60) 

Substituting equation (4.60) into equation (4.59) gives 

T (s)C'-1(s) =Gp (sXI + K(s)G 
p 

(s)) 
-Gp 

(sXI + K(s)G 
p 

(s))-' K(s)G 
p 

(sXI + K(s)G 
p 

(s}) 

-Go(+)lI'ý+KIsJGr(s)t//+K(s)Ge(+))-' K(aýk: p 
(snl+K(s)Gv(s))) 

Co(+)l' + K(s)%v (s)-ll+ K(s)C: 
r(s)l 

'K(s)Ga (s) 

-(I+K(s)Ge 
(s))K(s)Ge (+)K(+)Ge(s)l 

= Gp (s)ý + K(s)Gp (s) 
- 

ýI 
+ K(s)Gp (s))-' 

. (,. Kc=x. p (s)r Kc=x, (s)*c=ko (s)t 
-Go(s)l' + K(s)Gp (s)-(/+X(s); 

o(s)J-' 
C! + KIsW 

v 
(s))K(+)Gv (s)l 

Gp (s)ý + K(s)Gp (s) 
- K(s)Gp (s)l 
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Thus it can be seen from equation (4.58) that if the matrices T(s) and C(s) can be 
identified then it is possible to construct an estimate of the process transfer function 

matrix, Gp(s). Recall equation (4.54) in expanded form 

Y1(S) t., 
(S) 

t12(s) ... 

Y2 
("s) 

t21 
(s) 

t22 
`S) ... 

. 
ym 

(S)] 
L 

tml 
(S) 

tm2 
(S) 

... 

tl 
m 

(S) 
ri 

(s) 

t2m 
(S) 

r2 
(S) 

tmm(S) rm( 
) 

(4.61) 

It is not possible to determine T(s) directly from equation (4.61). However if m- 
identifications are carried out such that for each identification i, i=1, ..., m the 

excitation applied to the multivariable closed loop system reference input is such that 

ri(s1_ 
r, (s), j=i 

`i O, j#i 

Then, after m-identifications the following equation can be constructed 

t1l 
('S) 

t12 
`'S) ... tl 

m `S) ill `'s) Y1 S) ... Y7 
(Sy 

t21 
(s) 

t22 
`s) ... t2m 

`S) . 
Y2 

('S) 
YZ 

('S) 
... y2 \`S) 

x 

tml 
(S) 

tm2 
('S) 

... tmm 
('s) 

y \s) ym `'s) ym (s) 

r, (S) 0001 

0 r2(s) """ 0 

00". (4.62) 

000 rm (s) 

where the superscript refers to the identification test number. Thus from equation 

(4.62) it can be seen that the matrix, T(s), will be given by 
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(y(s)' (y(s)") 

... yý (s) . 
rl 

(s)) 
r2 

(s)) 
yam 

(s) 

(y(s)") (y(s)) 
... 

(y'(s) 

ri (S) rz (S) 
rm (s) 

T(s) =I 

y ", i 
(s)y 2, (s) y: (s) 

rl 
(S) 

J r2 
(s)) ... 

rm 
() 

(4.63) 

Using a similar reasoning and a similar excitation strategy it can be shown that the 

matrix C(s) can be obtained from 

uý(Sý ui (sý 
ui (S) 

r 
(s) 

r2 
(s) ... 

rm`s) 

(u(s)" u2 `sl 
(u'(s) 

ri 
(s) 

r2 
(s) ... 

rm 
('s) 

C(S) =I 

uni ``) u, 
(s) 

um `s) 

rl 
(s) 

r2 
(s) ... 

rm 
(S) 

(4.64) 

By carrying out specific identifications on the closed loop system equations (4.58), 

(4.63) and (4.64) show that it is possible to construct an estimate of the frequency 

response of the multivariable process transfer function, GP(s). It should be noted that 

there is no requirement on having any knowledge of the controller structure or 

parameters to perform the closed loop identification. 
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4.4.2 The Phase-Locked Loop Method Applied to Closed Loop Multivariable 

Process Identification. 

In the above, it is shown that by carrying out specific identifications it is 

possible to produce an estimate of the frequency response of a multivariable process 
transfer function matrix. In Figure 4.29 an unknown multivariable process, Gp (s) 

, 
is 

shown in a feedback configuration with an unknown controller, K(s). It is assumed, 

for the purpose of description that the process is square and of dimension 2x2. The 

extension of the method to higher dimensions will be seen to be readily 

accomplished. From Figure 4.29 it can be seen that four Phase-Locked Loop 

identifiers are connected to the closed loop system. The excitation signal is shown 

connected to the system via a switch. The purpose of the switch is to connect the 

excitation signals to the particular reference inputs depending on the test number. If 

the test number is one, then the following reference inputs will be applied 

R(S) r, (S) 

01 

similarly if it is test number two then 

R(s) =[r: (s)J 
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ta, 

PLL 1 
1tcitauon 

Test 2 
Data2 Test 1 7R 

S\ nt h. ri 

PLU 
i 

Data3 
Synch. 

PLL; 
" Jr 

U1 

K(s) 
U, 

2 
T 

t-1 

Gp(s) 

Figure 4.29: PLL Identification of an Unknown Multivariable Process in Closed 

Loop with an Unknown Controller. 

Only one excitation signal is generated and applied to the closed loop system by the 

Phase-Locked Loop (PLL) identifiers. From Figure 4.29 it can be seen that there is a 

connection between the PLL identifiers shown as, Synch. The function of this 

connection is to transmit the excitation signal between all of the PLL identifiers. 

Hence by this construction the PLL identifiers are synchronised to a single excitation 

signal and thus all of the required identifications are carried out in parallel. At each 

of the identifications a column of the matrices T(s) and C(s) is obtained. Then, after 

each identification, the position of the switch is changed over and a new 

identification is initiated for the remainder of the T(s) and C(s) columns. When all of 

the elements of the T(s) and C(s) matrices have been identified an estimate of the 

frequency response of the multivariable process transfer function matrix is 

constructed. This process is repeated until the PLL identifiers have obtained a 

converged estimate of a particular point on the frequency response of a chosen 
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process transfer function element. It should be noted that all of the process transfer 
function elements are identified however one must choose a transfer function 

element for which a particular frequency response curve point is sought. The 

identification process is captured in Algorithm 4.4. 

Algorithm 4.4: Multivariable Process Closed Loop Identification. 

Step 1: Initialisation 

Choose the reference phase angle. 

Choose the multivariable process transfer function element that the reference phase 

angle refers to. 

Choose the initial excitation frequency o k, excitation magnitude and stopping 

tolerance values. 

Set the column index counter, n, to 1 

Step 2: Excitation and Identification 

Apply the identification excitation to reference input, n, with all other reference 

excitations set equal to zero. 

Use the Phase-Locked Loop identifiers to identify between the reference input, n, 

and the multivariable process 

Tn \J 
('wk l= YI tJwk Y2 {JWk) 

... .lll rn \jwk) 
rn 

(jcok 
! 

outputs to obtain 

Ym 
(f0)k 

lT 

rn(wk) 

the vector 

Use the Phase-Locked Loop identifiers to identify between the reference input, n, 

and the inputs to 

C 
.n 

rljwk l= UI {>wk 
l 

rn 
GC9k ý 

Step 3: Increment 

n: =n+l 

the multivariable process to 

U2WO)k) Um(JWkl 
T 

rn(jwk) 
... 

rn( wkl 

If n# m+l go to Step 2 

else go to Step 4 

Step 4: Process Transfer Function Matrix Evaluation 

obtain the vector 
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Form the matrix T(j using the following 
T GO)k) 

= [T 
I 
GCO) T2(J0)k) ... Tm (J wk )] 

Form the matrix COW using the following 
C(jwk) 

- 
[C. 

1 
(J0 

k) 
C. 

2 
(ick) 

... C. 
m 

(Jük)] 

Obtain the matrix, Go*, from G(j ok) =T (j wk )C(i»k Y 

Step 5: Test for Convergence to the Reference Value 

If I reference -arg(guv(j a)) I< Tol then Stop 

The Phase-Locked Loop identifier system calculates the next excitation frequency, 

Ok. 

Reset n to 1 

Go to Step 20 

Case Study 4.3: Identification of a Multivariable Process 

In this case study a multivariable process connected in closed loop with a full 

matrix controller will be identified. The multivariable process (Wood and Berry, 

1973) is given by the following transfer function matrix 

12. ße-S 

G(s)= 
(1+16.7s) 

6.6e 
(1+10.9s) 

-18.9e-3S 
(1+21s) 

-19.4e-3S 
(1 + 14.4s))J 

The controller transfer function matrix is given by (Wang et al, 1997b) 

0.184 1+ 
1 

K(s) =(3.92s 

) 

- 0.06741 -1+0.796s1 4.23s J 

-0.0102 1+ 
1 

-0.804s 0.445s 

- 0.066 1+ 
4.25s 

In carrying out the identification using the Phase-Locked Loop identification method 

the initial integrator gain was set to be 0.2, the initial identification frequency was 

chosen as 0.1 (rad. s"1). A reference phase angle of -ln (rad) for process transfer 

function element (1,1) was chosen. The choice of this element was made since the 

frequency required to obtain a phase angle of -it (rad) is the largest and hence all of 

the other elements will have phase angles that are greater than -it (rad) at the end of 
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the identification. The results of the identification are shown graphically in Figures 
4.30 to 4.33 inclusive where the identification data is plotted against the 

corresponding Nyquist curve of the process transfer function element. 

14 

-v 

Figure 4.30: Nyquist Diagram for Process Transfer Function Element g p,, 
(s) 

It can be seen from Figure 4.30 that the identified data is in good agreement with the 

theoretical frequency response. Similarly Table 4.9 allows a numerical comparison to 

be carried out between the identified data and theoretical data calculated on the basis 

that the frequency at which the identified data was obtained is accurate data for the 

identification. The identification took approximately 30 minutes. This time is not 

considered to be excessive since the identification was carried out in closed loop and 

the intermediate points obtained from the identification are good estimates of the 

frequency response of the process transfer function. 
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Table 4.9: Identification Data for Transfer Function Element g p,. 
(s) 

Magnitude Phase Angle (rad) Frequency 
Time (s) 

Actual Identified Actual Identified (rad. s-1) 

6.5759 6.5758 5.1519 5.1520 0.1 332 

1.5158 1.5158 -1.9542 -1.9537 0.5021 690 

1.0328 1.0328 -2.2297 -2.2288 0.7397 976 

0.5014 0.5015 -3.0592 -3.0575 1.5276 1265 

0.4765 0.4761 -3.1410 -3.1394 1.6074 1508 

0.4759 0.4760 -3.1431 -3.1415 1.6095 1797 

n 

-1 

Figure 4.31: Nyquist Diagram for Process Transfer Function Element gP12 (s) 

Good agreement is obtained between the identified data and the theoretical frequency 

response curve of element (1,2) of the process transfer function matrix. Table 4.10 

shows the numerical results from the identification. 
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Table 4.10: Identification Data for Transfer Function Element g p12 
(s) 

Magnitude Phase Angle (rad) Frequency 
Time (s) 

Actual Identified Actual Identified (rad. s-1) 

8.1257 8.1257 1.7152 1.7153 0.1 332 

1.7845 1.7845 0.1591 0.1596 0.5021 690 

1.2142 1.2142 -0.5839 -0.5831 0.7397 976 

0.5889 0.5890 -2.9808 -2.9792 1.5276 1265 

0.5597 0.5598 -3.2218 -3.2206 1.6074 1508 

0.5589 0.5589 -3.2281 -3.2263 1.6095 1797 

n 

-2. 

-v 

Figure 4.32: Nyquist Diagram for Process Transfer Function Element gP21(s) 
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Table 4.11: Identification Data for Transfer Function Element g p21(s) 

Magnitude Phase Angle (rad) Frequency 
Time (s) 

Actual Identified Actual Identified (rad. s-) 

4.4618 4.4616 4.7548 4.7548 0.1 332 

1.1863 1.1863 -4.9046 -4.9042 0.5021 690 

0.8124 0.8124 -0.3419 -3.4126 0.7397 976 

0.3957 0.3955 0.3624 0.3638 1.5276 1265 

0.3761 0.3760 -0.1992 -0.1978 1.6074 1508 

0.3756 0.3755 -0.2140 -0.2122 1.6095 1797 

el 

_A 

_A_ 

Figure 4.33: Nyquist Diagram for Process Transfer Function Element g p22 
(s) 
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Table 4.12: Identification Data for Transfer Function Element g,,, (s) 

Magnitude Phase Angle (rad) Frequency 
Time (s) 

Actual Identified Actual Identified (rad. s-1) 

11.066 11.065 1.8778 1.8779 0.1 332 

2.6580 2.6579 0.2020 0.2025 0.5021 690 

1.8134 1.8133 -0.5546 -0.5539 0.7397 976 

0.8810 0.8811 -2.9666 -2.9650 1.5276 1265 

0.8374 0.8372 -3.2082 -3.2067 1.6074 1508 

0.8363 0.8362 -3.2146 -3.2129 1.6095 1797 

4.4.3 Gain and Phase Margin Controller Design for Multivariable Processes. 

In the above the identification of a multivariable process in closed loop with a 

full matrix controller was carried out using the Phase-Locked Loop method. In this 

section the design of a decentralised controller for a multivariable process based on 

the specification of gain and phase margins shall be undertaken. The multivariable 

process shall be given by (Wood and Berry, 1973) 

12.8e-s -18.9e-3S 

G (s)- (1+16.7s) (1+21s) 

p 6.6e-'S -19.4e-3S 
(1+10.9s) (1+14.4s)) 

The initial controller shall be a full matrix controller given by (Wang et al, 1997b) 

0.184 1+ 
1-0.0102(1+ 1 

K(s) = 
3.92s 0.445s 

- 0.0674(1- + 0.796s - 0.066 1+- 
4.23s 

Case Study 4.4 

- 0. ß04s 
l 

! Ss 

The extension of gain and phase margin design for multivariable processes was 

reported by Ho et al (1995). In this case study it shall be shown that if the 
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multivariable process can be identified then it is possible to use a modification of the 
Fung et al (1998) method to carry out a gain margin and phase margin design. 

The design objective is to provide the parameters for a decentralised PI based control 

system for the Wood and Berry (1973) process, such that: 

i) a gain margin of 5 and a phase margin of 60° will be achieved by 

controller kl 1(s), and 

ii) a gain margin of 3 and a phase margin of 30° will be achieved by 

controller k22(s). 

The first step will be to identify the multivariable process at a sufficient number of 
frequency response curve points. In this case thirteen points were chosen in the range 

-60° to -180° for the process transfer function matrix element gp,, (s). The results of 

the identification are shown in Tables 4.13 to 4.16 inclusive for each transfer 

function matrix element. To allow a comparison of the accuracy of the identified data 

with the actual plant data the identification results are shown graphically on Figures 

4.34 to 4.37 inclusive. 
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Table 4.13: Identification Data for Transfer Function Element g p,, 
(s) 

Magnitude Phase Angle (rad) Frequency 
Tim 

Actual Identified Actual Identified (rad. s-' ) 
e (s) 

7.2669 7.3267 5.2303 5.2365 0.0858 4039 
5.7221 5.7777 5.0574 5.0614 0.1184 6466 

4.250 4.2962 4.8827 4.8872 0.1681 10092 

3.0237 3.0597 4.7075 4.7119 0.2434 12515 

2.1547 2.1802 -1.7482 -1.7455 0.3465 13036 

1.5790 1.5978 -1.9231 -1.9192 0.4760 13658 

1.2110 1.2261 -2.0986 -2.0934 0.6226 14007 

0.9696 0.9802 -2.2739 -2.2699 0.7789 14943 

0.8019 0.8124 -2.4508 -2.4425 0.9427 15778 

0.6827 0.6897 -2.6252 -2.6187 1.1078 16786 

0.5926 0.6016 -2.8012 -2.7922 1.2767 17450 

0.5238 0.5308 -2.9746 -2.9674 1.4447 17826 

0.4684 0.4740 -3.150 -3.1408 1.6158 18219 
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Table 4.14: Identification Data for Transfer Function Element gp, 
Z 

(s) 

Magnitude Phase Angle (rad) Frequency 
Tim ( 

Actual Identified Actual Identified (rad. s-1) 
e s) 

9.1716 9.1731 1.8201 1.8207 0.0858 4039 

7.0523 7.0552 1.5980 1.5971 0.1184 6466 

5.1513 5.1534 1.3425 1.3434 0.1681 10092 

3.6288 3.6287 1.0338 1.0354 0.2434 12515 

2.5732 2.5774 -5.6153 -5.6117 0.3465 13036 

1.8814 1.8806 0.2425 0.2447 0.4760 13658 

1.4413 1.4422 -0.2207 -0.2175 0.6226 14007 

1.1533 1.1530 -0.7048 -0.7005 0.7789 14943 

0.9535 0.9526 -1.2068 -1.2023 0.9427 15778 

0.8117 0.8096 -1.7096 -1.7042 1.1078 16786 

0.7045 0.7057 -2.2220 -2.2153 1.2767 17450 

0.6226 0.6222 -2.7304 -2.7219 1.4447 17826 

0.5568 0.5575 -3.2471 -3.2389 1.6158 18219 
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Table 4.15: Identification Data for Transfer Function Element g p21(s) 

Magnitude Phase Angle (rad) Frequency 
Time (s) 

Actual Identified Actual Identified (rad. s-1) 

4.8204 4.8188 4.9306 4.9313 0.0858 4039 

4.0425 4.0441 4.5428 4.5414 0.1184 6466 

3.1618 3.1639 4.0352 4.0369 0.1681 10092 

2.3278 2.3290 3.3690 3.3710 0.2434 12515 

1.6893 1.6922 -3.7375 -3.7347 0.3465 13036 

1.2491 1.2492 -4.7124 -4.7098 0.4760 13658 

0.9622 0.9624 0.5005 0.5046 0.6226 14007 

0.7720 0.7707 -0.6227 -0.6161 0.7789 14943 

0.6393 0.6404 -1.7895 -1.7846 0.9427 15778 

0.5447 0.5416 -2.9596 -2.9529 1.1078 16786 

0.4730 0.4719 -4.1528 -4.1449 1.2767 17450 

0.4183 0.4184 -5.3371 -5.3264 1.4447 17826 

0.3741 0.3744 -0.2583 -0.2509 1.6158 18219 
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Table 4.16: Identification Data for Transfer Function Element g p,, 
(s) 

Magnitude Phase Angle (rad) Frequency 
Time (s) 

Actual Identified Actual Identified (rad. s-1) 

12.2051 12.205 1.9938 1.9946 0.0858 4039 

9.8149 9.8102 1.7460 1.7455 0.1184 6466 

7.4072 7.4138 1.4583 1.4591 0.1681 10092 

5.3226 5.3237 1.1185 1.120 0.2434 12515 

3.8123 3.8207 -5.5541 -5.5510 0.3465 13036 

2.8006 2.8005 0.2877 0.2896 0.4760 13658 

2.1505 2.1493 -0.1859 -0.1827 0.6226 14007 

1.7228 1.7199 -0.6769 -0.6734 0.7789 14943 

1.4252 1.4267 -1.1838 -1.1789 0.9427 15778 

1.2137 1.2119 -1.69 -1.6854 1.1078 16786 

1.0537 1.0542 -2.2050 -2.1988 1.2767 17450 

0.9314 0.9304 -2.7153 -2.7073 1.4447 17826 

0.8330 0.8342 -3.2337 -3.2251 1.6158 18219 

208 



Figure 434: Frequency Response for Process Transfer Function Element g pl, 
(s) 
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Figure 4.35: Frequency Response for Process Transfer Function Element g p12 
(s) 
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Figure 4.36: Frequency Response for Process Transfer Function Element gP21(s) 
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Figure 4.37: Frequency Response for Process Transfer Function Element gP22 (s) 

With the identification complete the controller design can now be undertaken. 

Consider the system shown in Figure 4.38. From Figure 4.38 it can be seen that 

U2(s)=K22(sXR2(s)-Y2(s)) (4.65) 

and Y2 (s) = g22 (s)U2 (s) 
- g21 (s)Ul (s) (4.66) 

thus (1 
+ g22 

(s)K22 (s))U2 (s) 
= K22 (s)R2 (s) 

- g21 
(s)K22 (s)Ul (s) 

hence, U2 
(s) 

R s)- 
g21(s)K22 (s) 

U, (s) (4.67) 
2 
(s) = (1+922(S)K22 (sýI (1+922(s)K22(S)) l 2( 

Now Y, (s) = g� (s)U, (s) + g12 (s)U2 (s) (4.68) 

Substitution of equation (4.67) into equation (4.68) gives 

Ys=ss+ 912 (s)K22 (s) 
Rs_ g12 (s)g,, (s)K� (s) 

U1 {sý 
'() g"{ '{) 1+ slK sll 2() 1+ slK sl 

{ 
g22{ ! 22{ 1! 

{ 
g22{ ! 22{ )} 

or ys=g `s1 
_ 

g12 ýsýg21 ýsýK� (s) 
Us+ 912 ̀s)K22 

ýsý 
RZ ̀s) 1`ý "`J (1+ (slK 

sll 'tl (1+ (slK rsll 
922 `) 22 i !/` 922 \1 z2 l 1! 
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(4.69) 
Similarly it can be shown that 

Yz (s) - 911(s) - 
912(S)921 (Y)KI 

I 
(s) 

U+ g21 ýýs)K1I (s) 
Rs 

g, I sK s 
(s) 

l+ sK s '`1 

(4.70) 

R 

R 

Figure 4.38: Decentralised 2-Input 2-Output Control System 

Equation (4.69) can be considered to represent the system between Ul (s) and Yl (s) in 

Figure 4.38 as the sum of the control signal Ul (s) filtered by the transfer function 

Gi (s) = 91, (s) 
- 

912(s)g21(s) 

I (s) 
(s) + 22 K22 

and a disturbance term. The disturbance term being given by 

di(s)= 912(5) R2 (s) 
1 

+922(6) 
K22 (s) 

(4.71) 

(4.72) 

Similarly the system between U2(s) and Y2(s) in Figure 4.38 can be considered as the 

sum of the control signal U2(s) filtered by the transfer function 
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G2(5)=922(s) - 
912(S)g21(s) 

--(S)+911 (s) 
KI, 

and a disturbance term d2(S) = 
921(S) R, (s) 

K 
+gýý(s) 

11(s) 

(4.73) 

(4.74) 

If the controllers Kl 1 (s) and K22(s) are known and there is identification data that 

allows the multivariable process transfer function elements to be adequately 

represented over a given frequency interval then it will be possible to carry out the 

required design using equations (4.71) and (4.73) as the target processes. 
To implement the Fung et al (1998) method, or as it is more generally known, the 

Exact Gain and Phase Margin method on a 2-input 2-output system the following 

new algorithm was utilised. 

Algorithm 4.4: Exact Gain and Phase Margin Design for a 2-input 2-Output 

Process. 

Step 1: Initialisation. 

The existing controller parameters are retained or use Exact Gain and Phase Margin 

method with Kl 1 (s) = K22(s) =l. 

Set the minimum and maximum values for the frequency range of interest. 

Set loop one and loop two gain and phase margin desired values GM1 Opml and 

GM2 OPM2 

n=0 

Step 2: Controller K, 1(s) Tuning Parameters. 

Form two complex functions such that 

COSgp(Co) 

. 
fi(w) =-GM1 1Gp CJ 

"w -J 
oi sin 0, (co) 

GM1(Gp (jo 

--> arg(Gp(jai) > -; r 2 
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f2 
COS(OPM, - op (0» 

+m 
sin(op., - op (w» 

(0) 

.ý G(Jo (i$ 

ir 

-- >argGp`p»))>- r+OPM 
2 

where 

and 

op (m) = arg(G, (jo» 

IGoG*cod=1G, (jwM 
Plot the functions on the same complex plane, if there is an intersection, this 

corresponds to the controller parameters. 
Note and store the controller parameters kpl and kil. 

Step 3: Controller K22(s) Tuning Parameters. 

Form two complex functions such that 

cos 0 (ow) 

fll0/-- 
- 

GM2IGp{jwl 
j 

oi sin 0, (co) 

GM2 I (jo) 
l 

--> arg Gp (p»)) > -7r 2 

f2 (0) 
=- 

Cos(OPM2 -0p 
(0))) 

' 
CO sin 

(OPM, 

IG 
p 

(jo Ij JGP (jcvý 

-2 >argGp(jw) > -r+OPM 

where 

and 

op (o)) = arg(G2 
GO))) 

Go(ivd=1G=(iWM 
Plot the functions on the same complex plane, if there is an intersection, this 

corresponds to the controller parameters. 

Note and store the controller parameters kp2 and k12. 

Step 4: Tolerance Checking and Updating. 

If I kp2(n) - kp2(n-1)l < tol and I kpl(n) - kpl(n-1)I < tol and I k12(n) - ki2(n-l)I < tol 

and I k; l(n) - k; 1(n-1)f < tol then STOP 

Else n: =n+ 1 

go to Step 2, using the new controller parameters for both controllers. 0 

-TP\w// 
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Remarks 

i) There is an assumption that both gain margins and phase margins can be 

met. 
ii) There is an assumption that if a solution exists the method will converge 

towards that solution. 

The above algorithm was used to design the decentralised control system for the 

Wood and Berry (1973) process. Two representative graphs, for the controller 

parameters, are shown in Figures 4.39 and 4.40. 

0.16 
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kp1 

Figure 4.39: Exact Gain Margin and Phase Margin Loop One. 
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Figure 4.40: Exact Gain Margin and Phase Margin Loop Two. 

The results from the tuning experiment are shown in a tabular format in Table 4.17. 
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Table 4.17: Exact Gain and Phase Margin Design Results 

Iteration 

Design Requirements 

(Loop One) 

Design Requirements 

(Loop Two) 

Index 
Gain Margin =5 

Phase Margin = 60° 

Gain Margin =3 

Phase Margin = 30° 

kpi ki1 -kp2 -ki2 
0 0.2295 0.0123 0.0779 0.005 

1 0.3915 0.0338 0.0809 0.0144 

2 0.3909 0.0318 0.0788 0.0123 

3 0.3912 0.0325 0.0784 0.0123 

4 0.3913 0.0326 0.0786 0.0123 

5 0.3912 0.0325 0.0786 0.0123 

6 0.3912 0.0326 0.0786 0.0123 

From Table 4.17 it can be seen that the results converged after six iterations of the 

algorithm. To get the accuracy of the results shown in the Table the Zoom facility 

was used on the graphs produced. The initial tuning of the decentralised controllers 

was calculated using the method of Ho et al (1995) and requiring a gain margin of 5 

and phase margin of 600 for loop one and a gain margin of 3 and a phase margin of 

30° for loop two. To allow a comparison between the time domain performance of 

the Exact Gain and Phase Margin method and the Ho et al (1995) method the 

following step test was carried out. At time t= 0(s) a step input was applied to the 

reference input of loop one. At time t= 150(s) a step input was applied to the 

reference input of loop two. The results of the step tests are shown in Figures 4.41 

and 4.42. 
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Figure 4.41: Step Response for Loop One; Ho vs. Exact Gain and Phase Margin. 

From Figure 4.41 it can be seen that the response of Loop one when tuned using the 

exact gain and phase margin method gives a faster rise and settling time than that 

obtained using the Ho et al (1995) method. After the step input was applied to Loop 

two the interaction effects were removed more quickly by the controller tuned using 

exact gain and phase margin than that tuned using the Ho et al (1995) method. 

However neither method reduces the peak amplitude of the interaction term greatly. 
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Figure 4.42: Step Response for Loop Two; Ho vs. Exact Gain and Phase Margin 

From Figure 4.42 it can be seen that there is a strong interaction between the two 

loops. The controller tuned using the Ho et al (1995) method is seen to be very slow 

at removing the effects of the interaction. However it does produce an interaction 

term with a reduced peak amplitude compared with that produced by the controller 

tuned using exact gain and phase margin design. When the step input is applied to 

loop two the response of the controller tuned using exact gain and phase margin is 

better as regards rise time and settling time to the controller tuned using the Ho et al 

(1995) method. 

4.5 Summary Conclusions. 

The sequential tuning method for cascade connected control systems due to Hang et 

al (1994) was discussed. The sequential tuning method of Hang et al is not carried 

out entirely in closed loop. The Hang et al method is only carried out in closed loop 
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after the initial tuning has been performed and subsequent re-tuning is required; only 
then is closed loop tuning carried out. To overcome this problem and allow closed 
loop tuning of cascade connected control systems to be performed a method was 
introduced that allows: 

i) The closed loop identification of the processes within a cascade 

connected control system. 
ii) The introduction of a test for closed loop stability when the inner 

controller parameters are to be updated. 
The new method was employed to carry out the gain margin and phase margin 
design of a cascade connected control system. Further work is required to find a 
design method that combines the use of classical robustness measures with achieving 

an acceptable control system performance in the time domain for the closed loop 

cascade system. 

The PLL method of system identification was extended to allow the identification of 

the elements of a transfer function matrix of a multivariable process connected in 

closed loop. The method is relatively easy to implement requiring only additional 

PLL identifiers and a switch to change over the excitation signal. The exact gain and 

phase margin PI controller design method due to Fung et al (1995) was extended to 

allow the design of de-centralised controllers for multivariable processes. A design 

example was carried out using the extended exact gain and phase margin design 

method. 
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5 Continuous Parameter Cycling Method of Model-Free Controller Design 

5.1 Introduction 

Today in the Process Industries, the first choice for a control algorithm is still 
usually PID although this situation is changing slowly (Blevins et al, 2002). The 

main reason for this lies in the fact that most industry based control practitioners 
have an understanding of how the closed loop performance of particular processes 

will be affected by changes in the PID controller parameters. Where there is a gap in 

the process knowledge, rudimentary parametric and non-parametric data may be 

determined by performing step tests, by the application of a relay experiment 
(Astrom and Hagglund, 1985; Yu, 1999) or using a phase locked loop test (Crowe 

and Johnson, 1998; 1999). If the control practitioner has such parametric or non- 

parametric data then rule based methods can be used to determine a PID controller 
(O'Dwyer, 1998a; 1998b). 

Process operators are often under economic pressure to maximise the 

production from industrial processes and to reduce the cost of production. One means 

of helping to achieve these goals is to benchmark the existing controller against some 
form of performance index value (Harris, 1989; Thornhill et al, 1999). This type of 

approach entails the acceptance of a simple mathematical index as capturing desired 

control performance. For example, the Harris (1989) method uses the minimum 

variance criterion as a benchmark index function for controller performance 

assessment. It is a short step from minimum variance indices to LQ and LQG cost 

functions as the benchmark criterion. The use of LQ and LQG cost functions has lead 

to recent research focussing on: 

i) More extended benchmarking formulations and 

ii) Restricted structure control problems. 

A key problem with both LQ/LQG benchmarking and restricted structure 

areas has been a requirement for an explicit parametric process model on which to 

base the necessary computations. In quite a different approach, particularly to the 

solution of restricted structure controller problems, Hjalmarsson and colleagues have 

performed cost function optimisation using only input and output data from the 
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process without the intermediate step of having to produce an explicit process model 
(Hjalmarsson et al, 1994; Hjalmarsson et al 1998). This technique is called Iterative 
Feedback Tuning (IFT). A frequency domain version is given by Kammer et al 
(2000). This avoidance of an explicit identified process model in the method has 

often led this approach to be termed a model-free approach. 
The key step in Iterative Feedback Tuning is the computation of the cost 

function gradient so that the cost function can be optimised with respect to the 

controller parameters. This is not a new idea; in the early work on adaptive control 

systems Newton-like algorithms employing the gradient of a cost function with 

respect to the controller parameters were used (Talkin, 1961; McGrath et al, 1961; 

Narendra and McBride, 1964). Iterative Feedback Tuning is discussed in Section 5.2. 

Hjalmarsson and colleagues would also like to compute second order information 

residing in the cost function Hessian. Unfortunately, the Hjalmarsson IFT method is 

rather cumbersome at extracting the desired second order information, and this 

difficulty was one of the motivating reasons for looking again at the IFT method. 
Hence, this discussion also follows the theme of optimising a cost function using an 
implicit model or model-free approach. However instead of using special system 

inputs to compute gradients, controller parameter cycling is used to find the same 

quantities, and also produce the second order Hessian information in a much more 

direct manner. The theory of the new method that is used to minimise an LQ cost 

function online with respect to the parameters of a restricted structure controller is 

given in Section 5.3 of the chapter, along with a discussion of some implementation 

issues. In section 5.4, application examples are given for the design of restricted 

structure decentralised (PID) controllers, based on the controller parameter cycling 

method, for a multivariable process. Conclusions close the chapter. 

5.2 Iterative Feedback Tuning 

The seminal papers for the Iterative Feedback Tuning method due to 

Hjalmarsson et al (1994); Hjalmarsson et al (1998) use a system description 

involving a stochastic process output disturbance, a two-degree of freedom control 

law, a stochastic optimisation approach and a restricted structure control law. In IFT 
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the derivative of a control performance cost function with respect to the controller 

parameters is obtained by carrying out experiments on the closed loop system 
(Hjalmarsson et al, 1994; Hjalmarsson et al, 1998). For an iteration of the algorithm 

the current controller is utilised and is only updated at the end of the present 
iteration. Thus the data required for the method is able to be gathered while the 

process is operating in closed loop and the controller is updated on each iteration to 

improve the performance of the closed loop. Consider the closed loop system shown 

in Figure 5.1, where the system is controlled by a two-degrees of freedom controller, 

hence 

U(s) = Ger (s)R(s) 
- Gil, (s)Y(s) (5.1) 

where R(s) is a deterministic reference signal. The disturbance input v(t) is a zero 

mean stationary random process. The controller Gc(s)={Gcr(s), Gcy(s)} consists of a 

reference controller, G, r(s), and a feedback controller, G, (s). The controller is 

characterised by a tuning parameter vector such that 

pER 
nv (5.2) 

where np represents the number of tuning parameters of the two degrees of freedom 

controller, Ge(s). 

T7/ % 

The notation for the time domain signals y and u are given as yt(p) and ut(p). 

The subscript t denotes the dependence of these signals on time and the dependence 

on the controller parameters is given using the vector, p. Following the method in 
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Hjalmarsson et al (1998) a desired output response, y, " (p), is defined. The error 
between the desired response and that produced by the closed loop system given in 
Figure 5.1 will be 

YP =Y -Y`ý s= 
G`r(s)Gp(s) 

R s- Yds +1+ 
Gay (s; 

1Vs 
sý 

}(p) ý} 
1+G(s(s) 

() ý} 

n 
(s) 

() 

where the subscript s denotes a dependency on the Laplace variable. 
The cost function that is to be minimised is given by 

(5.3) 

2 
J(P) = 2N 

E 
(Ly 

y, ())2 + Al (LdU, (p))2 
ý 

(5.4) 

where E{. 1 denotes expectation with respect to v(t). 

The optimal controller parameter vector p that minimises J(p) in equation 

(5.4) is defined as 

mint P l°w. 
r. i. p 

(5.5) 

The cost function of equation (5.4) comprises two cost components. The first cost 

penalises any error between the closed loop response and the desired response and is 

weighted by the time domain filter term Ly. The second cost component penalises the 

control effort and is weighted by the time domain filter term L. In equation (5.4) the 

relative contribution between tracking the desired output and the control effort is 

adjusted by the term A. In the sequel the filter terms Ly and Lu shall be assumed to be 

unity. 

If the closed loop response and sensitivity functions of the closed loop system 

shown in Figure 5.1 are defined by 

G, (sX 3, 
r 

(s) 

Ts(P) 
1+G sý (J sl pC 1' ,() 

(5.6) 

and S (P) =1 (5.7) 
1+G, (s)G, (s) 

Then substitution of equations (5.6) and (5.7) into equation (5.4) and taking the 

expectation gives 
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Nd 
Ap)=-Eý, 

- T(p)r, )' + 2N 1=1 2 

+A1Eý (ur (P))Z ý 
(5.7) 

2N , _, 
The first term in equation (5.7) is the tracking error, the second term relates the 
contribution to the cost function of the disturbance and the final term relates to the 
control effort. 

The minimisation of equation (5.4) is carried out by obtaining an expression 
for its gradient with respect to the controller parameter vector, p. Thus, 
differentiating equation (5.4) gives 

aJ 
_1E 

ay ý+Nu au! 
a 

('o) 
N Y, ýP) 

a 
(p) 

1(P) a 
(P) (5.8) 

If the gradient of the cost function is available then the value of p that minimises the 

cost function, J(p), can be obtained using the following Newton-like algorithm. 

pi+l = p; - Y; RI-' 
aJ (p1 
ap 

(5.9) 

where y is a positive real scalar that determines the step size and R is a positive 

definite matrix that approximates the Hessian of J(p). It is not possible to solve 

equation (5.8) for the gradient since it involves taking the expectation of unknown 

quantities. It is shown by Robbins and Monro (1951) that it is possible to determine 

the value of p that will minimise the cost function, J(p), using a stochastic 

approximation algorithm of the form given by (5.9) so long as there is an unbiased 

estimate of the gradient term available. In order to calculate the gradient given by 

equation (5.8) the following terms are therefore required to be available or made 

available by experiment: 

i) Y' (p) and u, (p) 

ii) the gradients 
" (p) and 

au' (p) 
öp ap 

iii) unbiased estimates of the product terms y, (p)ay' (p) and u, (p) au` (p) 
ap ap 
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The innovation in the Hjalmarsson et al method was to define a set of tests 

such that the terms in the gradient equation could be determined from the closed loop 

system itself. Three tests on the system are carried out, the first and the third tests 

simply collect data from the closed loop system operating with the current controller. 
The second test consists of taking the recorded closed loop output from the first 

experiment subtracting it from the reference input and using that signal as the 

reference input for the second test. If for each of the three sets of test data of length N 

data is gathered and denoting the reference data as 
ýjj ýj 

=1,2,3 

and the corresponding output data as 
{yJ(p1)); j = 1,2,3 

Then for test one obtain 

r; l =r 

giving rise to the output 

y1(Pi) = T(P)r+S(P))vll 

For test two obtain 

r12 =r -YI(Pt) 

giving rise to the output 

Y2 (() = T(P) (r - y1(pi)) +S(P%v12 

For test three obtain 
rl3=r 

giving rise to the output 

Y3(pi) = T(p)r+S(P1 v13 

The tests result in an exact realisation of 

; (pi) i(1)-Yd 

and it is shown in Hjalmarsson et al (1998) that 
A 

C, y (_ 1 aGýr (pi) aGcy Jy3(pi) 

+ 
aGýy (P; »2 (P; 

ap 
P; ) Gp Op äp aP 

is an unbiased estimate of 
P(P; ý 
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The three tests described give rise to corresponding control signals such that 
0 u 1(P; ) = SPE XG, (p. )r 

- Gay (pi 

U2 (pi) =S(P; 
XG, (p. Xr-Y1(P; ))-Gcy(p, )? 

u3(Pi)= S(P, XG, (p. ) 
-Gay(Pi)v 

The above control signals are used to derive the estimates of the input related data 

required for the solution of the gradient equation (5.8). The control signals result in 

an exact realisation of 

u(P, ) =u1(P; ) 

while in Hjalmarsson et al (1998) it is shown that 

au (p-)= 
r1 

aGý. 
r (, 

i)_ 
aGcy Ju 3 (P; )+ öGcy (P; )u 2 (P; 

aP Gcr (P; ) aP aP ap 

is an unbiased estimate of 

äP (P; ) 

Thus an estimate of the gradient, based on the test results obtained from the closed 

loop system, can be obtained from 

aJ (P) =1 yt (P} (3y+au, (P} au, (P) 
ap N t_1 ap ap 

Thus Hjalmarsson et al have constructed a method that allows the controller to have 

its parameters updated whilst still connected in closed loop with the system that 

allows the cost function, equation (5.4), to be minimised. All of this is carried out 

without the explicit generation of a process model and since the controller 

parameters are updated iteratively the term Iterative Feedback Tuning (IFT) has been 

used by the originators of the method to refer to this method of controller tuning. 

5.2.1 A deterministic LQ optimal Control Problem 

In the above discussion on Iterative Feedback Tuning, the simplicity of the method is 

obscured by the rather general formulation of the problem. The salient features of the 
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Hjalmarsson et al, (1994) and Hjalmarsson et al (1998) Iterative Feedback Tuning 

method are given as: 
i) a system description involving a stochastic process output disturbance 

ii) a two degrees of freedom control law 

iii) use of a stochastic optimisation approach (Robbins and Munro, 1951), 

and 

iv) a restricted structure control law 

A simpler approach to the method was adopted by Mahathanakiet et al (2002) where 

a deterministic version of Iterative Feed back Tuning was formulated. Consider 

Figure 5.2 where the system is assumed to be single-input, single-output and the 

controller implements a one degree of freedom control law. 

R(s) E(s) Controller U(s) 

C(P) 
Process 

Go(s) 

Y(s) 

Figure 5.2: Unity feedback control loop 

The controller C(p) is given in terms of the controller parameter vector, ,o c= R' , 

where n, is the number of controller parameters. The notation for the time signals e, 

u, and y are given as, et(p), u, (P) and yt(P) " The subscript t denotes the 

dependence of these signals on time, and the dependence on the controller parameter 

is given using the vector, p. The Iterative Feedback Tuning optimisation problem is 

now formulated using the reference error and control signals of Figure 5.2, the LQ 

cost function to be minimised is given by 

�(P) 
2T ff 

((e, ýPýý2 + A(u, ýPýýZ fir (5.10) 

Where, e, ER, u, E R, AE R', pE R"° and n, is the number of controller 

parameters. The relative contribution between the error and control signals is 

adjusted by means of X. 
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If equation (5.10) is now differentiated using Leibniz's Theorem for Differentiation 
of an Integral (Abramowitz and Stegun, 1972) the gradient function of the simplified 
problem is given by 

aj 
=1 

fI ý (P)+21Hauf(P)'daP 

TaP ý aP J 

The Generic Optimisation Problem 

min J(p) 
w. r. t. pER°' 

with 

i) {p; >0, i=1,.. , nc} 

ii) C(p) closed loop stabilising. 

(5.11) 

This is seen to be a fixed structure or restricted structure LQ optimal control problem 

(Grimble and Johnson, 1988). Incorporating a limit process Tf - oo yields the steady 

state optimisation problem. The condition p, >O ensures that the PID controller 

parameters are positive. 

In order to find the optimal value of the cost function the gradient expression, 

equation (5.11), must be available. To construct the gradient expression the 

following time domain signals are required: 

1) e, (p), u, (P) 
ii 

ae, (P) and 
au, (P) 

aP aP 

The above time domain signals are found using the following closed loop system 

relationships. Consider Figure 5.2 

Y= 
Go (Sy, 

S 
(p) 

R(s) = To (s)R(s) Ys (P) 
1+G sk, Go (s(p) 

where To(s) is the complementary sensitivity function. 

ES (p) =1 R(s) = So (s)R(s) 
l+Go(sxS(p) 

where So(s) is the sensitivity function. 

(5.12) 

(5.13) 

230 



U., (, ) = 
C, (P) 

- R(s) = So (s)C, (p)R(s) (5.14) 1+ Go (SY ", (P) 

In equations (5.12) to (5.14) inclusive a simple notation for the Laplace transforms of 
the time signals yt(p), er(p), and u1(p) was introduced. The subscript s denotes the 
dependence of these signals on the Laplace variable. 
From equation (5.13) it can be shown that 

a 
äP'°ß _ -(i + co (s)C, (p))-2 Go (S) äpPý R(S) 

I ac, (P)]To (S)So (s)R(S) 
C, (P) aP 

_ _r 
i acs (p)1 

To (S)ES (P) ýs. i s> c 

From equation (5.14) it can be shown that 

(1+Go(s)C, (a))aC: 
(P)_CS(P)Go(s)acs(P) 

aus (p) 
_ 

(p a1 °R (s) 
ap (1 + Go (sX, 

s 
(P))2 

cocs (P) 

Clp R(s) 
(1 + Go (sk, 

s 
(p))' 

(p)] 

aPV)l Cs (p ýo (S)R(S) 
L cs (n) 

aC 

ri acs (v)lso (s)C, (P)Es (S) (5.16) lc (P) a, o ý 
In equations (5.15) and (5.16) there is a term of the form 

Ggrad (S) 
rsl 

= C, 

1 acs (P) 
(5.17) 

S 
(P) aP 

The calculation of Grad(s) is carried out as follows. Assume that in Figure 5.2 a PID 

controller is being used, thus 

ut (P) = Kpe1(p) + K; 
t de(p) Je(p)dr+Kd 

0 
dt 
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Us(p)= K +K' +K sE P 
s, 

ds 
(p) 

+ 
P2 

+ Pas ES (P) (5.18) 
s 

and hence 

US(P) = CS(p)E, (p) (5.19) 

where pE 

and n, is the number of controller parameters. 
From equations (5.18) and (5.19) it can be seen that 

CS(0)= P, +P2+Pas 
s 

hence 

Grad (s) -: - 
1 acs Co) 

g cs (p) ap 

1 

l11 GýQd(S)- 

A+2+ AS 
s 

ss 

The time signals required to calculate the gradient given by equation (5.11) are 
derived from experiments on the closed loop system. Consider Figure 5.3 where it 

can be seen that the reference error En)(s), generated during the first experiment, is 

used as the reference input for the second experiment. Thus in the second experiment 

the following signals are available 

y(2) (s) = To (s)E(' (s) 

and U(2) (s) = So (sK(p)E(1)(s) 
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R1 (s) 

E1 (s) 

E(l) (S) 
). 

F-4 C(p) 
(f l) (S) 

Figure 5.3: The Iterative Feedback Tuning Innovation 

Go(s) 

Y, 1) 

It is now possible to formulate an algorithm for the generation of the gradient as 

given by equation (5.11) as follows 

Algorithm 5.1: The IFT Gradient Sub-Step Algorithm. 

Step 1: Set up the controller at the 0 step 

Use Pk = p(k) in C(p) 

Step 2: Response Generation 

Run the closed loop system and record the time signals et(pi and ut(p/. 

Run the closed loop using et(pl, ) as the reference input and record the time signals 

Yt(pc) and ut(pk) 

Step 3: Processing the Responses 

Filter the signals yt(pi and ut(pk) such that 

aEs (P) 
= _Gg, ad (s)Ys (p) and 

aUS (P) 
_ Ggrad (s)Us (P) 

ap ap 
Step 4: Compute the Gradient 

Use the time domain signals et(pk), 

compute the gradient. 

öe, (p) 

ap P=P(k 

ut(pc) and 
öu, (P) 

to 
aP 

L=P(k) 

0 
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5.3 The Parameter Cycling Method of Tuning Industrial Controllers. 

In the above two similar approaches to Iterative Feedback Tuning were discussed. In 
Hjalmarsson et al (1994) and Hjalmarsson et al (1998) the description of the Iterative 
Feedback Tuning method employed a stochastic system description with a two 
degree of freedom controller. However the general formulation of the problem led to 
the simplicity of the method being obscured. In an effort to add clarity to the Iterative 
Feedback Tuning method Mahathanakiet et al (2002) investigated the IFT method 
using a simple deterministic LQ cost function. Leibniz's Theorem for the 
Differentiation of an Integral (Abramowitz and Stegun, 1972) was used to derive the 

gradient function for the simplified problem. The gradient was then constructed 

using system responses and special input signals. In this section, a quite different 

approach is taken to the gradient and Hessian generation step. 

5.3.1 Generating the Gradient and Hessian 

A classical gradient computation would be based on perturbing the gain 

vector from p(k) to p(k)+dp and calculating the respective cost functions J(p(k)) and 

J(p(k)+Ap), so that numerical differences could be used to calculate an expression 

for the gradient, viz. 

cJ 
_ 

J(p(k) +AP(k)) -J(P(k)) 
ap(k) 4p(k) 

Further numerical perturbations can be used to calculate the Hessian information. It 

would then be possible to use a steepest descent or Newton method to calculate 

updated controller parameters. This method suffers from the problems of large 

numbers of gain perturbations and system response generations to calculate a 

gradient and a large number of gradient iterations to attain the (local) minimum. In 

the following a method of perturbing the gain is given such that estimates of both the 

gradient and the Hessian are obtained (Crowe et al, 2003b). This allows improved 

numerical routines, over steepest descent, to be used to reduce the number of 

iterations required to achieve convergence to the minimum of the cost function. 
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R(s) E(s) Controller 
C(P) 

Figure 5.4: Unity feedback control loop 

U(s) Process Y(S) 

Consider the unity feedback system shown in Figure 5.4. It is assumed that the 

controller is characterised by means of a parameter vector, p, such that 

pE 91 ný 

where n, is the number of controller parameters. 

If now it is assumed that the controller parameters are perturbed by an amount 
Ap(t0)E flnC 

then Taylor's Theorem gives, 
L 

+R2( ) J(p+Ap(to))=J(p)+Ap(to)T 
W 
ap 

J(P+Ap(to))=J(P)+Ap(to)T aJ + öp 

where in equations (5.20) and (5.21) 

and 

is a third order residual, 

and 

1 AP(te )T H(P)OPCte) + R3 C) 
2 

ES ný 

ap 
R2() =1 Ep(to)TH(ý)Ap(to) 

2 

R3(ß) 

2 

H, l =aJ9HE 33 ", ""° 
äp; äpi 

lei i< 
pi +Api(ta) Z =1,..., nc 

(5.20) 

(5.21) 
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It should be noted that the perturbation of the controller parameters is time varying. 
Using these Taylor expansions, gradient and Hessian extraction is given by two new 

results. Sinusoidal function orthogonality plays a key role in the proof of the 

propositions. For the gradient result it is useful to define a set of integers that will 
define multiples of a fundamental gain perturbation frequency, wo. Introduce a set of 

nc integers, denoted sG(nc) with sG(nc) = {n;, n, # nj , i, j E=- [1,. n]}. 

Proposition 5.1: Gradient extraction 

Consider a time-varying controller gain vector perturbation 

Ap(to) E JR"ý 

where 
Apr(ta) = 6f sin f, cooto, 45i E 91, Yl, E . 

SG(na); j = 1,.., n, . 

Set 

2, r To = 
wo 

then for 

i =1,.., nc, 

To 87 aJ 
. 
22 J(p + Op(toýýsin n; wotodto =+ O(hm (5.22) 

° wo aPi 

where 
S= max{ Si, i=l,.. nc } 

max 

Remarks 

0 

The result requires a suitable selection of the perturbation integration period, To, then 

2'r 
the fundamental frequency is calculated as wo =T 

0 
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Proof of Proposition 5.1 

From Taylor's Theorem 

J(P + Ap) = J(p) + gyp' 
ýp 

+2 4pT H(ý)AP 

with H;; ý azJ 
p<ý< p+Op 

ap; ap; 
Thus if the perturbation is made time-varying, 

n, n, 

J(P+opftA»=J(P)+1 AP; (to) aJ + 11 E H; (ý(tA»AP; (to)AP; (to) 
i=1 3P; 2 1=1 , =I 

Let the perturbation be given by 

then 

OP; (te)=6; sinn; wotA 

nc 

J(p + Ap(teýý = AP) + S; sin(nºwote 
l=1 api 

Use To = 
21r 

, then 
co 0 

I n, n, 

2 
i=1 

wOtOls 
(nj 

oo t0/ +j 

j=1 

jSiSjHj(ý(tO)1sin\ni 

To To 

fj(P+AP(tA))sin(nlct)ot, )dt, = J(P) jsin(n, ooto )dto 
00 

aj TO n` a. J To 

fsin2(nIalýtA)dtA + 1,6j Jsin(nJwýtjsin(nIwOt)dtA 
aPi 

o j=1 apj 
o j#i 

n, n, To 

+I6,8 JH((tA))sin2(nIwot)sin(nJootA)dtA 
2 

i=1 j=1 0 

(5.23) 

Resolution of the identities in equation (5.23), gives 
To 

a) 
Jsjn(n; 

coote late 
0 

[_cos(nja. otA)1T0 
n, wo 0 

cos(2n; ir) 
-- + 

n; Coo 

1 
=o (5.24) 

nilo 
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TO 

wo b) f sin 2 (n vt)dtsin 
(2n; wo t)1T0_ 

02 4n; wo 0 

9 sin (4n; r) ' 
wo 4n; wo wo 

TO 
n, sin((ni + n; 

To_21r )Ot0) Oot4 

ýý Jsin(n1o)0(o)Sin(n; 
Cooto'to - 

Sin((/1j - 00 

- 2nß -n; )Do 2jig +n; o 0 

with ný ý n? 

sin(2(nj -n; 
), ) sin(2(nj +n; ýz) 

=0 (5.25) 
2(i ý-n; o0 2 ný + n; o 

To 
d) JH ( (t4)) 

sin 
2(net 

0)s lnjw0tAýt0 <B<o0 

0 

where B is a finite bound. Thus R2 () is dominated by S, where 

m 
lax 

11 ... 

=, 
_M nc 

C j2 

} 

and is written as D(gmax (5.26) 

Substitution of equations (5.23) to (5.26) inclusive, into equation (5.23) gives 

Jo 
J(p + AP(t4))sin n; wotodto =+ 

0lgmax 
00 aP, 

. 

Sinusoidal function orthogonality also plays a key role in the result for the extraction 

of the Hessian information. The Hessian is symmetric and has n, (ne, -1)12 

unknown elements. For an orthogonality based on a sine perturbation of the gain 

parameters and a cosine extraction of the Hessian, introduce a set of n, (n,, -1) l2 

integers, denoted 3 Y' (n 
,). 

Given the set of gain excitation multiples, sG (ne) then 

the set 3 H' (n, ) comprises integers, n0 such that 

i) nj = n; + nj 

ii) ný # n;, i, 

238 



iii) n., # n;, - nj, for all pairs (i, j), (i,, j, ) where i =1,... nß; j=i,.., n, and 

i, =1,... n,; j, = i,.., nc . 

Proposition 5.2: Hessian extraction 

Consider a time varying controller gain vector perturbation Op; (to) 
, such that 

LPº (to) = 8, sin njwOto 

with 

8; E f., n; E sc (n, ) ;i =1,.., nc . 
Set 

2, r To = 
coo 

Define a set of n, (n, - 1)/2 integers such that: 

i) nj = n; + nj 

ii) nj ý n,, i, 

iii) nj # n;, - n,, 

for pairs (i, j) and (il, jl) where i =1,.., n, ;j =1,.., nc and i, =1,.., nc ; j, =1,.., nc 

then, 

1To J(p+Ap(te))cosn, ýo Otodto = 

[_6j'i )aIi 
+O(Sm ) (5.27) 

4wo ap; ap; 
1 i=j 

where f ý1 
, j) =2 

otherwise 
0 

Proof of Proposition 5.2 

From Taylor's Theorem 

J(p +A (t4 J(P) +AT OA J+1 APT (t0 )H, 
j 
(P)A T (t4) + R3 () ap 2 
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where P, < ý; < p; + Op; (to 

If it is assumed that the perturbation is given by, 

OP; (to) = (5; sin n; co, to 

with S; E 9i 
, and n; E3G, i =1, ... ,n then 

J(p + oP(to ))_ J(n)+ 
"` ÖJ S, sin (n, woto 
º=r aP; 

+1 SiSjH,, ( 
)sin(niwota)sn(nI1c9ota +R3(4) 

i=1 j=l 

To find the (i,, j, )" element of H13 , 
introduce the frequency n, , where i, =1,.., n, 

and j -1,.., n hence using T- 
27r 
wo 

To 

JJ(p+Ap(tA))cos(n, 
ý. iý vote 

}to 
= 

0 
Tof n` ÖJ To 

J(p) 
J COS(Yl; 

1ii 
C)0te to + i5i fsin(n1wot )cos(n, 

ýiý 
Cote 

)to 

0 i=1 oP10 

1 n, n` To 

+ 2: 2: 8,81H 
ij 

(p) Jsin (n 
cootA 

)Sin (nj 
o0te 

)cos(ni, 
I, CO0tA Ito 

2 
j=1 J=1 0 

To 

+ 
JR3(4(tA))cos(n 

to 
PtA 

,, l, O-)O 

0 

Resolution of the Identities in equation (5.28) 

2 )r To = T0 Slll(Yl; 
ý>lC)DtO 

°o 

a) jcos(n;, 
i, woto 

PtA 
=-=0n 

o) 

To 

b) Jsin(n, oOtA)cos(nQ, woto 
ite 

= 

0 
2, r To = 

j COS((n; - nýOOtA) COS((f, + nj,,, 
ýoot, 

(ni_n'ili 
'0 

(n, 
+ njJJ 0 0 

when n; # n,, j, 

(5.28) 

(5.29) 
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-1F 
cos((n; - n,,,,, 

)2; 
r) cos((n; + n; 

ý + 2 r1. -n. » +n j, 0 ýJ, 
yo 

+11+ 
1=0 

(5.30) (Iij 
+ n, 

ii, 0 

when n, = n. r t, ii 

To 
fsin(n1co0te)cos(n;,. 

i, wore 
)to 

0 

1s(n1ot 
= o)cos(n; oote)dto 

0 

To 
=2 

Jsin(2n, wotA»to 
0 

TO =2; 
r 

cos(2n; woto) wo 
2 2nw 4n. ýv 

[- cos(4n1 r)+ cos(0)]= 0 (5.31) 
rooo 

To 

c) I, = 
$sin(nIoOtA ) sin 

(ni 
CO to)cos(n; j, conto 

)dtA 

0 
1j[cos((ni 

_- 
)0 

to 
}- (i 

+f 
ýO 

to 
)]COS(nill, 

00 
2 

assuming that n.. # n; + nj and n;, j, # n; - n, , then 

1 sin((,, -n> n, 
lj, 

)vOtA) 
sin((nº -nl +nº>>>), ote 

22 (nj 
-nj - n. Po 2 »; -nj +n, 

ý1 Po 
2, r )1T0=_ 

si n((n, + nj - n, 
l Jl 

ý0tA 
sin((ni + nj + niýl, OOtA WO 

--=0 (5.32) 
2n; +nj -n; lil o 2n; +nJ +n'if! o0 0 

whenever n. # n; +nf with n.. # n; - nj . This covers all of the non-selective 

cases. 

Now choose n;, j, = n; + nj with n;, j, # n; - nj , then 

i To 
d} I, _- 

Jcos((n1 
- n1)0to 

)cos(n;, 
j. ovoto 

kdto 
20 
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I To 

- COS 
2 ((p1 

+nj0 to 
1`tit0 

0 

The first integral is zero since n; Ij, 
# n, - nj 

TO = WA 
1 t0 sm (2(11, 

+ nj A wo 7l 

224 ii; + n, 00 Zwo 

Substitution of equations (5.29) to (5.33) inclusive, into equation (5.28) gives 
f 
Jo 
To AP + Ap(te)) co s n, ý o)o to dto = 

S181ff f(i, j) a2J 
3 + 0(gma, 

4wo Jap1op1 

where J)= 
1i=j 

2 otherwise 

(5.33) 

0 

The proofs of the propositions define the sets sc (n, ), s3 '(n, ), and it is useful to 

note that other variants of the propositions are possible. For example, cosine 

perturbation of the gain elements followed by cosine extraction of the Hessian 

elements can be constructed. In this case, the integer set denoted sH '-'(n, ) which 

specifies the frequencies used by the cosine Hessian extraction functions has to be 

defined. Thus, 3H` (nc) has nc (ne, -1) l2 integers n; ý such that, 

(i) nlý 0 sG (nc ) 

(ii) nlý =nl +ni- 

(iii) n .. #n tý lljl 

(iv) nl "# nt 1-n j1 for all pairs (i, j), (il , j1) where i =1.... nc ;j=i,.., nc and ý 

il = 1,... nc; jl =1 1'.., nc 

Apart from these theoretical issues, other numerical considerations are necessary to 

convert the theory into working algorithms as outlined in the next section. 
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5.4 Implementation Issues 

5.4.1 Numerical Selections for the Algorithm 

Selection of Tf, To, wo In the calculation of the cost function it is not practical to 

allow the online experiment to continue for an infmitely long time. Thus, the 
integration period is fixed to Tf =5* r(dominant), where it is assumed that the system 
has settled to within 1% of the steady state value after this time has elapsed, and then 

set To =Tf. This gives the frequency of the basic perturbation frequency as, 

2, r wo - 
TO 

Selection of Gain Perturbation Amplitudes. 

The selection of the gain perturbation amplitudes 45; E 93 will be problem dependent. 

However there are several considerations here, firstly the perturbation should not 

cause closed loop instability, and secondly, the size can be made to minimise the 

disturbance to the system outputs. This latter issue will be of particular concern to 

production personnel when conducting online experiments. Finally, the perturbation 

size is directly linked to the accuracy of gradient and Hessian extraction as given in 

the propositions. 

Selection of Orthogonality Integer Sets. 

Constructing sets sG (n, ) 
,sH 

c(n, ), s ; -C (n, ). A frequency multiple of coo must 

be assigned to each gain parameter perturbation, A p, (t). The choice of frequency 

multiples is dependent on the choice of whether a sine or cosine controller gain 

perturbation function is chosen. If only the gradient is to be extracted, then the rules 

for the construction of . sG(ne) are straightforward. If, however the Hessian is also to 

be extracted then the construction of the pair G (ne }, Hc (n, ) or the pair sG (n, ), 
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H` (ne) is a little more involved. Table 5.1 shows feasible frequency multiples for 

the case of a single PID controller, with three gains. 

Thus, for a sine perturbation and a cosine extraction function for the Hessian, the 
duplication of a frequency between the G (n, )and the set 3H"-H C (ne) is permissible 

(see for example in Table 5.1, that n2 =nil =4 in 3HC (n, )) 
- 

Table 5.1: Feasible frequency multiples 
sG(n, ) nl =2 n2 =4 n3 =5 

n1l=4 n12=6 n13=7 

`s 
(nc) n22 =8 n23 =9 

-- -- n33 =10 

SG (ne) nl =1 n2 =5 n3 =8 

n11 =2 n12 =6 n13 =9 

rcýc 
H (nc) n22 =10 n23 = 13 

-- -- n33 =16 

Selection of Integration Formula. 

The time scales over which the cost function is calculated and the parameter 

perturbation signals evolve are separate. The cost function is calculated in real time, 

whereas the parameter perturbation signal uses the time-domain, to . 
Standard 

numerical integration formulas are used to compute the two extraction integrals, 

To 
f J(p + Op(to ))sin n; wotodto 
0 

To 

and 
JJ(p + Ap(te )) cos nj wo to dto . 
0 
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These use the discrete time where to = kT 
,k=0,1,2, """, N, and T is the integration 

step size or sampling interval. Clearly, step size, T has to be chosen to achieve 
maximal accuracy from the integration method and provide sufficient resolution for 
the maximum frequency of the perturbation and extraction signals. 

Exploitation of Symmetry Properties. 

From the proof of Proposition 5.1 recall that with a time-varying parameter 
perturbation, Op(to )=8, sinn; woto ), the cost J(p + Ap(to )) is given by 

Rc 

J(p + Ap(taýý = J(p) + s; sin n; woto 
=1 

apt 

n 

+1 Si SjH,, (ý(tJsin(n; wote)sin{njwoteý+... 2 
i=1 j=1 

Thus it can be seen that the cost is composed of a sum of constant terms, 

cosinusoidal terms and sinusoidal terms. Since a sinusoidal function possesses odd 

symmetry and a cosinusoidal function even symmetry, the sum of odd symmetrical 

components and even symmetrical components returns an odd symmetrical 

component. Thus the cost function, J(p + Ap(to )), will also have odd symmetry. If 

the cost is determined over half of the time period, To, then by exploiting the odd 

symmetry property the entire time-varying cost can be constructed. Similarly if the 

parameter perturbation is cosinusoidal then it can be shown that the resulting cost 
function will posses even symmetry. Thus only half the time-varying cost function is 

required to be determined for either sinusoidal or cosinusoidal parameter 

perturbation. The time-varying cost function relating to the third iteration of the case 

study example discussed later in the chapter is shown in Figure 5.5. 
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Figure 5.5: Time-varying Cost Function Showing Odd Symmetry. 

From Figure 5.5 it can be seen that the axis of symmetry is about a vertical line 

drawn at the centre of the x-axis. It can be seen that only the first 10(s) of the time- 

varying cost function is required to be determined since symmetry can be employed 

to generate the remaining part of the cost function. 

5.4.2 The Controller Parameter Cycling Algorithm 

To create a new controller parameter cycling method, the optimisation Algorithm 1 is 

used with the estimates of the cost function gradient and Hessian from the theory of 

Propositions 1 and 2. In an application, the controller structure will be fixed a priori, 

. and can be used to def in ethe integer sets, ZG (n, ), 3H ̀ (n, ) or sG (n, ), 3H '-'(n 
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The new algorithm fords estimates of both the gradient and the Hessian and uses 
these in a Newton algorithm to determine the next set of controller parameters whilst 
minimising the cost function. It is known that Newton type algorithms are not 
globally convergent and if the algorithm is initialised outside the region of 

convergence, the parameter updates are chosen to move in the direction of the 

convergence region. Similarly if the Hessian estimate is negative definite then this 

cannot be used and additional steps are used for the parameter updates prior to the 

Hessian estimate becoming positive definite. This has been discussed by Ljung 

(1987) and involves replacing the Hessian by, HL,,,, = 
aJ T+ 

aI where aE 91 + 
ap ap 

This is known as the Levenberg-Marquardt procedure. When the Hessian becomes 

positive definite, the Newton method reverts to using the Hessian estimate in the 

parameter updates. The algorithm is given as follows. 

Algorithm 5.2: Optimisation by Controller Parameter Cycling 

Step 1: Initialisation, pE 91"c 

Choose cost weighting, X, cost time interval, Tf 

Set To =Tf, compute wo =2, r/To 

Choose perturbation sizes, {, 5; ,i=1,.., nc } 

Find sets, sG (nc ), sH c (nc) 9 sG (nc ), sH c (nc) as appropriate 

Determine N. set T= To /N 

Choose convergence tolerance, v 

Set loop counter, k=0, choose p(k) 

Step 2: Gradient and Hessian Calculation 

Calculate gradient, (k) (Proposition 1) 
P 

2 

And Hessian, Hy (k) =a, H gtnc"nc (Proposition 2) 
a Pl Pj 

If ä (k) <s and H(k) >0E Rtnc"nc then stop 
P 
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Step 3: Update Calculation 

Select or calculate the update step size, yk . 
If H(k) >0E 9"c"", compute p(k + 1) = p(k) - ykH(k)-1 

a 
(k) 

P 

T -1 
Else compute p(k + 1) = p(k) - 

C9ý (k} 
][aj 

(k} + ak, 
j (k) 

PP aP 

Set k= k+ 1 and go to Step 2 

Remarks 

0 

The implementation of Proposition 1 and 2 as numerical procedures involves 

exploiting the symmetry properties of the integrals to be evaluated and careful 

selection of the integration step size. 

5.5 Application Results for the Controller Parameter Cycling Method. 

An application of the method to a two input, two output system controlled by a 

decentralised PID controller system is reported in the sequel. 

5.5.1 Multivariable Process - Algorithm Setup 

The system to be controlled has the transfer function matrix (Zhuang and Atherton, 

1994), 

G(s) =11.5s+1 
0.15s+0.2 

d(s) 0.45s + 0.6 0.96s + 0.8 

d(s) = 2s4 +8s3 +10.5s2 +5.5s+1 

This system is considered to be typical of those found in process industries (Zhuang 

and Atherton, 1994). The PID controllers to be tuned are of the parallel type and are 

given as, 

K; r (s) = KP;; (s) + 
Kr,; (s) 

+ KD;; s 
s 
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where i =1,2 . 
Thus the number of parameters to be tuned, n, , is six and the fixed structure 

controllers are to be tuned such that the LQ cost function to be minimised is given by 

. 1= fofT (e(te(t) 
+ u(t)T Au(t))dt 

Algorithm Set-Up. 

In this case, unit weightings are given to the error terms, and equal weighting is 

given to each of the control terms using, A= diag{0.01,0.01} 
. The initial PID 

controller was derived using a relay experiment and Ziegler-Nichols rules. 
Throughout the tuning procedure the controller parameter perturbation size 

was, S; = 15 = 0.00 1, i =1,..., 6 . The cost function integration period was chosen to be 

Tf = 20, hence, To =Tf= 20, and wo = 0.17r (rad. s 1). The choice of the gain 

perturbation frequencies cannot be made in isolation from the choice of the Hessian 

extraction frequencies. The gain perturbation frequencies must be chosen such that 

the orthogonality properties of the sinusoids used can be exploited in the extraction 

of the gradient and Hessian data. Algorithm 5.3 details the steps required in deriving 

a set of gain and Hessian extraction frequencies for a sinusoidal gain perturbation, 

whilst Algorithm 5.4 gives similar details for a cosinusoidal gain perturbation. 

Algorithm 5.3: Selection of Frequencies for Hessian Element Extraction with 

Sinusoidal Gain Perturbation. 

Step 1: Initialisation 

Choose a set of gain perturbation integers 

c(' c_ 

IIl'I2,..., 
Inc 

1 

ordered such that 

I! <12<... <I� 

and n, is the number of controller parameters. 

S 
-Flag 

=0 
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D_Flag =0 
Step 2: Generation of Sum Terms 

Construct an nc x nc matrix, S, such that 

S(i, j) = 11+11 

where i =1,2, """, n; j =1,2, ... , nc 

Step 3: Generation of Difference Terms 

Construct an nc x nc matrix, D, such that 

I; 

where i =1,2, """, n, ;j =1,2,.. ", nc 

Step 4: Test for Extraction Frequency Conflict 

Step 4a 
For each of the leading diagonal elements of S, 

If S(i, i) = S(i, j) then S_Flag =1 

where i =1,2, """, n,; j =1,2, """, n, and i#j 

If S(i, i) = D(i, j) then S_Flag =1 

where i =1,2, """, n,; j =1,2, """, n, and i# j 

If S_Flag =1 then go to Step 1 

Else record the frequency given by S(i, i) 

Step 4b 
For each of the purely upper triangular elements of S, 

If S(i, jA = S(i,, jl 

Then If D(i, j)# S(i,, jl) 

Then D_Flag =1 

Else (S_Flag =1 and D_Flag = 0) 

where i =1,2, .. ", n,; j =1,2, ... , n,; il =1,2, ... , n,; j, =1,2, .. ", n, 

If S_Flag =1 then go to Step 1 

Else record the frequency given by S(i, j) 

If D_Flag =1 then record the frequency given by S(i, j) 
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Remarks 

The generation of the gain perturbation frequencies can be carried out using nested 
For Loops in a coded version of the algorithm. 
The algorithm can generate different sets of gain perturbation and Hessian extraction 
frequencies. 

It can be seen from Algorithm 5.3 that the selection of the gain perturbation 
frequencies and the frequencies that are used to extract the Hessian elements cannot 

be considered in isolation. 

Algorithm 5.4: Selection of Frequencies for Hessian Element Extraction with 

Cosinusoidal Gain Perturbation. 

Step 1: Initialisation 

Choose a set of gain perturbation integers 

3G (nc )= Jl, 12,..., Inc 

ordered such that 

h <I2 <"". <In, 

and n, is the number of controller parameters. 

D_Flag =0 

P_Flag =0 

S_Flag=0 

Step 2: Generation of Sum Terms 

Construct an nc x nc matrix, S, such that 

+I; 

where i =1,2, """, n,; j =1,2, """, n, 

Step 3: Generation of Difference Terms 

Construct an n, x n, matrix, D, such that 

Dýiý 1}= II; 
-I; 

where i=1,2, """, n,; j =1,2, """, 

Step 4: Test for Extraction Frequency Conflict - Gradient 
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For each of the gain perturbation frequencies sG(n, ), 

If I; = S(i, j) or I. = D(i, j) then P_Flag =1 

wherei =1,2, """, n; j =1,2, ... , nc 

If P_Flag =1 then got to STEP 1 

Step 5: Test for Extraction Frequency Conflict - Hessian 
Step 5a 
For each of the leading diagonal elements of S, 

If S(i, i) = S(i, j) then S_Flag =1 

where i =1,2, ---, n,; j =1,2, ---, nc and i: # j 

If S(i, i) = D(i, j) then S_Flag =1 

where i =1,2, """, n,; j =1,2, """, nc and iýj 

If S_Flag =1 then go to Step 1 

Else record the frequency given by S(i, i) 

Step Sb 
For each of the purely upper triangular elements of S, 

If S(i, j) = S(il, j, 

Then If D(i, j) # Sit , j, 

Then D_Flag =1 
Else (S_Flag =1 and D_Flag = 0) 

where i =1,2, ... , n,; j =1,2, ... , n,; il =1,2, ... , n,; Ji =1,2, ... , nc 

If S_Flag =1 then go to Step 1 

Else record the frequency given by S(i, j) 

If D_Flag =1 then record the frequency given by S(i, j 

Algorithm 5.3 was used to develop the Hessian extraction frequencies for a 

sinusoidal gain perturbation using the integer set, sG (ne) = {1,4,5,16,19,20). The 

results from the use of the algorithm are given in Table 5.2. 

0 
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Table 5.2: Hessian Extraction Frequency Integers 

sG6c) n, =1 n24 n35 n4=16 n5=19 n6=20 

n11 =2 n12 =5 n13 =6 n14 =17 n15 =18 n16 =19 

- n22 =8 n23 =9 n24 = 12 n25 = 23 n26 = 16 

3S -C (n 
.) H 

- - n3 3 =10 n34 =11 n35 14 n36 25 
, 

- - - n44 = 32 n45 =35 n46 = 36 

- - - - n55 =38 n56 = 39 

- - - - - n66 = 40 

5.5.2 Algorithm Results. 

The simulation was carried out using Matlab/SimulinkTM. The gain perturbation and 

the calculation of the cost function was implemented using SimulinkTM, while the 

estimation of the gradient, Hessian and updated controller parameters was carried 

out using Matlab, TM. Sinusoidal perturbation of the controller parameters was used in 

this example. Figure 5.7 shows the evolution of the cost function over the period 

to =TO 
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Figure 5.7: Evolution of Cost J(p + Ap(to )) 

12 14 16 18 20 

As can be seen from Figure 5.7 the cost exhibits odd symmetry as predicted since 

sinusoidal excitation of the controller parameters was used. Figure 5.7 was generated 

from the second iteration of Algorithm 5.2. The graphs of the cost function for 

subsequent iterations of the algorithm all have a similar form and show odd 

symmetry. 

Figures 5.6 and 5.7 below show the 2-norm of the cost function gradient and the cost 

function values for the algorithm iterations. 
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Figure 5.8: Evolution of the 2-Norm of the Cost Function Gradient. 
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Figure 5.9: Evolution of the Cost Function. 

For the first three iterations of the algorithm the Hessian estimate was negative 
definite and the Hessian was replaced by the Levenberg-Marquardt procedure with, 

aI = 0.0116 
. At the fourth iteration it was found that the algorithm returned negative 

values for the updated integral gain parameters for both controllers. Consequently the 

algorithm was adjusted using a[= 0.116. After two further iterations the Hessian 

estimate was positive definite and was used in the Newton update. Since the Hessian 

estimate was corrupted by noise its use had to be conservative. To do this the 

controller parameter update size was limited using, yk E (0, I). For the next two 

iterations, rk = 0.1 and the values of the 2-norm of the cost function gradient and 

cost function value decreased. For iterations 10 and 11, yk =1. After iteration 11, the 

cost function value and gradient 2-norm increased. The step size was reset at yk = 0.1 

and a new iteration 11 performed where the cost function value and gradient 2-norm 

decreased; the step size yk = 0.1 was retained for the remaining iterations. From 
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Figure 5.8 and 5.7 the evolution of the cost function gradient 2-norm shows that the 

minimum of the cost function is found after approximately 15 iterations of the 

algorithm when the cost function gradient 2-norm is 0(10-3 ). Thus, the controller 

parameters at iteration 15 give the minimum value of the cost function. In order to 

ensure that further iterations of the algorithm do attain a minimum, a large number of 

additional iterations were performed. It can be seen from Figures 5.6 and 5.7 that the 

cost function values tend to an asymptotic value and that the cost function gradient 2- 

norm limits at zero. The evolution of the controller parameters are shown in Figures 

5.10 to 5.12 inclusive. 

8.5 

8 

7.5 

7 
Cd 
Cd 

6.5 

6 

5.5 

Figure 5.10: Evolution of the Controller Parameter Kp 

As can be seen from Figure 5.10 the controller parameter Kp22 tends to wander during 

the first ten or so iterations of the algorithm. However, this did not cause any 

problems with the stability of the closed loop system and as can be seen after 
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approximately ten iterations of the algorithm the movement in value of Kp22 became 
less pronounced. 

3.5 
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Figure 5.11: Evolution of the Controller Parameter K1 

From Figure 5.11 it can be seen that for both controllers the evolution of the integral 

gain, K;, is relatively smooth. After an initial rapid reduction in the value of the 

integral gain for both controllers, the rate of change of K; fell to a low value 

approximately after iteration ten of the algorithm. 
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Figure 5.12: Evolution of the Controller Parameter Kd 

From Figure 5.12 it can be seen that there is an initial rapid change in the values of 
the controller derivative gains. The controller parameter K2 has a larger variation in 

its value than does Kdll, however the stability of the closed loop system was 

unaffected by the variations in the controller parameters during the course of the 

tuning algorithm. As can be seen from Figure 5.12 after approximately ten iterations 

of the algorithm the rate of change of the controller derivative gain parameters fell to 

a low value. 

From Figures 5.8 and 5.9 it can be seen that the 2-Norm of the gradient of the cost 
function tends to zero and that the value of the cost function tends to an asymptote as 

the number of algorithm iterations increases, however the time response of the final 

version of the decentralised controller cannot be inferred from the cost function or 

gradient values. The block diagram of the decentralised control system used in the 

assessment of the initial and final control system performance is shown in Figure 

5.13. 
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Figure 5.13: Decentralised Control System 

Yi (s) 
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A step input was applied to the reference input of Loop One at time t= 0(s) and a 

step input was applied to the reference input of Loop Two at time t= 100(s). Figure 

5.14 compares the closed loop step response for the output of loop one of the system, 

with the controller parameters set to the initial Z-N values and the final Controller 

Parameter Cycling method tuned values. As can be seen from Figure 5.14 the 

Ziegler-Nichols tuned controller gives a peak percentage overshoot of approximately 

50% compared with no overshoot from the Controller Parameter Cycling method 

tuned controller to the initial step input. Both controllers achieve similar rise times. 

The settling times achieved for the controllers are, based on a ±2% criterion, 12.5(s) 

for the Z-N controller and 4.5(s) for the Controller Parameter Cycling tuned 

controller. The Integral of the Square reference Error (ISE) was calculated during the 

simulation for both the Z-N tuned controllers and the Controller Parameter Cycling 

(CPC) tuned controllers. For the initial step input applied to the reference input of 

Loop One the Z-N tuned controllers had an ISE of 1.251. The corresponding value 

for the system using the CPC tuned controllers was 0.9012 for Loop One. 
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Figure 5.14: Closed Loop Response for Loop One. 

When the step input is applied to loop two the effect on loop one is much reduced 

when the CPC tuned controllers are used compared with the response when the Z-N 

tuned controllers are used. The Z-N tuned controllers give a percentage overshoot of 
13% and a percentage undershoot of 12%, this can be compared with a percentage 

overshoot of 5% and no undershoot for the CPC tuned controllers. The settling time 

for the Z-N tuned controllers is approximately II (s) compared with 3.5(s) for the 

CPC tuned controllers. The settling time was based on a ±2% criterion. The ISE 

figure for Loop One when a step input is applied to Loop Two is 0.05 for the Z-N 

tuned controllers compared with a value of 0.0072 when the CPC tuned controllers 

are used. Figure 5.15 shows the step response for the closed loop output of Loop 

Two when a step input is applied to the reference input of Loop One at time t= 0(s) 

and a step input is applied to the reference input of Loop two at time t= 100(s). From 

Figure 5.15 it can be seen that when a step input is applied to the reference input of 

Loop one that the interaction into Loop Two has a peak overshoot of 35.7% and a 
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peak undershoot of 33.5% for the Z-N tuned controllers compared with a peak 
percentage overshoot of 24% for the CPC tuned controllers. 
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Figure 5.15: Closed Loop Response for Loop Two. 

The settling time for the interaction disturbance is 12(s) for the Z-N tuned controllers 

and 28(s) for the CPC based controllers. The ISE term for the Z-N and CPC tuned 

controllers are respectively 0.3794 and 0.1663. Thus it can be seen that although the 

Z-N tuned controllers give a faster response than the CPC tuned controllers the 

disturbance rejection properties of the CPC tuned controllers are improved over the 

original Z-N tuned controllers. When the step input is applied to the reference input 

of Loop Two then from Figure 5.15 it can be seen that the peak percentage overshoot 

of the output of Loop Two using the Z-N tuned controller is approximately 51% 

compared with 24% for the corresponding figure using the CPC tuned controllers. 

The settling time for the closed loop system using the Z-N tuned Controllers is 5(s) 

compared with 30(s) for the system using the CPC tuned controllers. The settling 
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time was calculated using a ±2% criterion. The rise time of the closed loop output of 
Loop Two when the Z-N controllers are used is 2(s) compared with 3(s) for the 
system when the CPC tuned controllers are used. The rise time was based on the time 
taken for the output of Loop Two to go from 10% to 90% of its final value. The ISE 
for the step input applied at time t= 100(s) is 1.4686 for the system using the Z-N 

tuned controllers and 1.3447 for the system using the CPC based controllers. Thus 

although the Z-N tuned controllers give a faster response than is achieved using the 
CPC based controllers the CPC based controllers give an improved control 

performance as regards overshoot and ISE error reduction. 

5.6 Summary Conclusions. 

The method of Iterative Feedback Tuning has certain practical shortcomings; a 

particular one is that the generation of Hessian information is not a simple operation. 

In this chapter a new model-free procedure where the theory for generating the 

gradient and second order information arises from one unified theoretical framework 

was reported. The new method is termed Controller Parameter Cycling. 

In this chapter the development of a first version of a numerical algorithm for the 

new procedure was reported. Whilst the procedure was successful in tuning a 

multivariable decentralised PID controller, certain issues remain to be investigated 

further: 

(a) Experience with several examples has shown that many of the cost functions of 

fixed structure controllers are often very flat and it is necessary to ensure that 

sensible parameter updates are used in the routine. In the current version of the 

algorithm, the Levenberg-Marquardt procedure is used to try to ensure that 

successive parameter updates continue in the cost minimising direction; it would be 

useful to examine other procedures. 

The implementation of the gradient and Hessian extraction involves a heavy 

computational burden in terms of system runs and minimising iteration steps. 

Symmetry can be exploited to reduce the computational load and an intelligent 

strategy can be used to ensure the algorithm uses computed data to maximum effect 

in the sequence of iteration steps. 
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6 Conclusions 

6.1 Identification Methods for Process Control Applications 

A literature review was presented in Chapter 1 which showed that Astrom and 
Hagglund (1984) proposed a very simple and elegant closed loop experiment to 

compute the ultimate period method data for use in PID rule based design methods. In 
the Astrom and Hagglund method the PID controller is replaced by a relay, the period 
and magnitude of the resulting limit cycle is then used to calculate the parameters of a 
PID controller based on the rules supplied by Ziegler and Nichols. This represents an 
advance over the Ziegler and Nichols ultimate period method since the experiment is 

carried out in closed loop and a stable limit cycle is achieved for the majority of 

processes that are found in process industries. The Astrom and Hagglund relay 

experiment coupled with the availability of microprocessor based PID controllers 

effectively paved the way for the introduction of push-button auto-tuning. 

The literature survey proceeded to show how the simple relay experiment had 

been modified to overcome accuracy and implementation problems. However, the new 

relay configurations that are required have begun to lose the original simplicity of the 

Astrom and Hagglund (1984) relay experiment. Furthermore, if the published literature 

were to show that there was a widespread industrial acceptance of the new more 

complex relay experiment methods then this would vindicate the case for the added 

complexity however this does not appear to be the situation. 

It was this hiatus in the research associated with relay experiments that lead to 

the proposal of the Phase-Locked Loop (PLL) method of system identification The key 

features of the relay experiment are that it: 

i) Is easy to implement 

ii) Is carried out in closed loop 

iii) Returns relatively accurate results, and 

iv) Does not have extended identification times. 

264 



The initial goal of the research that produced the PLL method of system identification 

was to carry out the relay experiment without using a relay. Thus the intention was to 
identify the point on the frequency response curve of a process at which the phase angle 

was -t (rad). This point is known as the phase crossover point and the frequency at 

which it occurs as the phase crossover frequency, co_, The result of the research was the 

PLL identifier (Crowe and Johnson, 1998; Johnson and Crowe, 1998; and Crowe 1998). 

The PLL method of system identification encompasses the key features of the relay 

experiment. A presentation of the basic Phase Locked Loop identifier theory was 

presented in Chapter 1. 

Chapter 1 also gave a discussion of alternative versions of the PLL method of 

system identification. Balestrino et al (2000) use the relay experiment to obtain an 

estimate of the phase crossover frequency to initialise the Voltage Controlled Oscillator 

(VCO) frequency prior to carrying out the identification using the PLL Identifier. 

Clarke and Park (2003) have discussed a continuous time implementation of the PLL 

identification method. The contribution by Clarke and Park was to carry out a 

comparison between possible phase detection methods. The results of this comparison 

show that the Hilbert transform method of phase detection gives the best performance 

with regard to noise rejection over zero crossing and synchronous demodulation 

techniques. Some features of the PLL method were investigated in Chapter 1. In 

particular an extension to the basic PLL method was developed allowing the 

identification of type 1 systems in open loop. This was presented in Section 1.3. 

Recently there has been a trend to use data driven techniques that do not require 

an explicit model of the process to be produced for a subsequent controller design. In 

subspace identification input and output data from the process is used to provide an 

implicit model of the process in terms of a state space representation that can be used 

directly to provide a controller design. This technique and the associated technical 

literature were described in section 1.4 of Chapter 1 as a transitional stage from explicit 

to implicit to model-free methods of controller design techniques. 
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A literature review of the model-free Iterative Feedback Tuning (IFT) method was 
presented in Section 1.5 since the thesis made a major contribution to this research 
through the controller parameter cycling method presented in Chapter 5. 

6.2 Testing for the Existence of PID Controllers that can Achieve Specified 
Classical Robustness Measures. 

In Chapter 2, the Phase-Locked Loop (PLL) method of system identification was 
used to identify a number of points on the frequency response curve of the process. The 
data found from the identification was then used to determine the viable gain and phase 

margin pairs that are achievable over a given range of gain and phase margin values. 
The results from the application of the method are then presented in a graphical form 

that shows the gain and phase margin pairings that can be achieved by a Pi controller 

acting as the compensation element for a particular process. This method has two 

benefits: 

i) The viable gain and phase margin pairings are shown in a form that is easily 

used, and 
ii) A set of controller parameters relating to the gain and phase margin pairs is 

also generated. 

Thus the method allows the control system designer the freedom to choose a viable gain 

and phase margin pair and gives the assurance that the design specification can be met. 

This was the starting point for further research into this type of PID existence problem. 

The main achievements presented in the Chapter can be listed under the following 

topics. 

Graphical Design of PI Controllers: In Section 2.2.1 of the thesis, a method original to 

the author was discussed that allows the graphical representation of the viable gain and 

phase margin pairings that can be achieved by a PI controller acting on an unknown 

process. Additionally, the PI controller parameters to achieve the gain and phase margin 

pairings are given. A new Viable Gain Margin and Phase Margin Pairing algorithm was 

described in Section 2.2.1 and demonstrated successfully on two candidate processes; 
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one process having a right half plane zero and the other being high order, non- 
oscillatory. 

Enumeration Method for PID Controller Design: A new enumeration method was 
described in Section 2.3.1 allowing a semi-graphical approach to be used to determine 
the parameters of a PID controller that meets a gain and phase margin design 

specification. A theorem underpinning the enumeration method was proposed and a 
proof of the theorem was presented in Section 2.3.1. The Enumeration Search Method 

algorithm developed in Section 2.3.1 was demonstrated successfully, in Section 2.3.2, 

on two candidate processes; one process representing a large class of processes to be 
found in process industries and the other being an oscillatory process. 

Semi-Graphical Design of PID Controllers: In Section 2.3.3, a new semi-graphical 
technique was developed by the author to allow the PID controller parameter, kp, to be 

related to a range of gain and phase crossover frequencies at which, using a set of 
derived equations, the remaining controller parameters can be calculated to achieve a 
design gain and phase margin. The new algorithm for the Graphical Design of PID 

Controllers developed in Section 2.3.3 was successfully demonstrated using the same 

candidate processes as were used in section 2.3.2. 

6.3 The design of PID Controllers to meet Classical Robustness Measures. 

In Chapter 3 the problem of using the Phase Locked Loop identifier online to 

design PI controllers to meet specifications on (i) gain margin and phase margin or (ii) 

maximum sensitivity and phase margin was solved. The iterative method generated a 

sequence of PI controller parameters however, the original PI controller parameters are 

not updated. Use is made of the flexibility of the PLL identifier to identify the 

frequency response of the new controller in series with the existing process at the gain 

crossover and the phase crossover points. The data supplied from these identifications 

are supplied to a least squares algorithm that is used to calculate the next iterate of the 

PI controller parameters. The technique continues in this way until design requirements 

on gain margin and phase margin have been met. The method allows the control system 
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to remain in closed loop throughout the design process. The method also has the added 
advantage that the PI controller parameters are updated only at the end of the design. 
The second design method discussed in Chapter 3 is that of maximum sensitivity and 
phase margin design of PI controllers. The design algorithm that is employed for the 

maximum sensitivity and phase margin design is similar to that used for the gain margin 
and phase margin design method. In the maximum sensitivity and gain margin method 
the flexibility of the PLL method of system identification is utilised such that the points 

at which the frequency response curve of the compensated forward path, comprising the 

newly designed PI controller and the existing process intersects the 1/MS circle are 
identified. The algorithm is constructed to ensure that the frequency response of the 

compensated forward path always intersects the 1/MS circle at two points such that a 
bound is maintained on the tangency angle, 9s. In addition to the maximum sensitivity 

identifications the PLL is used to identify the compensated forward path at the gain 

crossover point. The data supplied by these identifications is supplied to a least squares 

routine that calculates an updated value for the new PI controller parameters. The 

algorithm continues in this way until the PI controller parameters are such that the 

design maximum sensitivity and phase margin design specifications have been met. As 

with the gain margin and phase margin PI design method the control system is in closed 

loop throughout the design and the controller parameters are only updated at the end of 

the design. The major achievements presented in Chapter 3 are for the following topics. 

Gain and Phase Margin Design: An automated PI controller design method was 

developed in Section 3.3 that allows the iterative determination of the parameters of a PI 

controller to achieve gain and phase margin specifications. The Gain Margin and Phase 

Margin: Automated PI Controller Design algorithm was demonstrated successfully in 

Section 3.3.2 on two candidate processes that are representative of those found in 

process industries. A theorem and its proof relating to the convergence of the algorithm 

were developed in Section 3.3.1. 

Maximum Sensitivity and Phase Margin Design: In Section 3.4 an automated PI 

controller design method was developed that allows the iterative calculation of the 

parameters of a PI controller to achieve maximum sensitivity and phase margin 
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specifications. The Automated PI Controller Design for Desired Maximum Sensitivity 

and Phase Margin Specifications algorithm was demonstrated successfully in Section 
3.4.2 on two candidate processes that are representative of those found in process 
industries. A theorem and its proof relating to the convergence of the algorithm were 
developed in Section 3.4.1. 

6.4 Closed Loop Identification and Tuning of Cascade and Multi-Input Multi- 

Output Control Systems. 

In process industries a common control paradigm is that of cascade control. A 

cascade control system is characterised as having an inner or slave control loop and an 

outer or master control loop. The relay method of Astrom and Hagglund (1984) has 

been applied to tuning of a cascade connected control system by Hang et al (1994). In 

Chapter 4 the Phase Locked Loop equivalence of the Hang et al relay procedure was 
investigated and reported upon. 

The extension of the PLL method to the identification of multivariable systems 

was reported in Chapter 4. This was shown to be relatively simple to implement and to 

give accurate estimates of the frequency response of the process transfer function 

elements. Having shown that the identification of a multivariable process can be 

accomplished in closed loop by the PLL method of system identification, an extension 

of the Fung et al (1995) controller design method to multivariable systems was used to 

carry out a gain and phase margin design for the example system of Wood and Berry 

(1973). 

The major achievements presented in Chapter 4 are for the following topics. 

Cascade Connected Control Systems: In Section 4.3.1 the Phase-Locked Loop (PLL) 

method was extended to the closed loop identification of the processes connected in 

closed loop. The algorithm Closed Loop Identification of Cascade Connected Control 

Systems Using the PLL Method was developed and demonstrated successfully on a 

cascade connected control system that is representative of those found in process 
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industries. In Section 4.3.2 the Closed Loop Identification and Tuning of a Cascade 
Connected System algorithm was developed and successfully demonstrated. A stability 
test was included that confirms that the closed loop cascade system will still be stable 
when the inner controller parameters are updated. 

Multivariable Control Systems: In Section 4.4.1 the extension of the Phase-Locked 

Loop system identification method to the closed loop identification of the individual 

transfer function elements of a multivariable process was discussed and developed. In 

Section 4.4.2 the Multivariable Process Closed Loop Identification algorithm was 

successfully demonstrated on the Wood and Berry (1973) column example. An 

extension of the exact gain and phase margin PI controller design method due to Fung et 

al (1998) was developed in Section 4.4.3. The Exact Gain and Phase Margin Design for 

a 2-Input 2-Output Process algorithm was developed and successfully demonstrated. 

6.5 Continuous Parameter Cycling Method of Model-Free Controller Design. 

In Chapter 5, the Iterative Feedback Tuning (IFT) method of Hjalmarsson et al 

(1994,1998) was presented. The key features of the IFT method were found to be: 

i) A system description involving a stochastic process output disturbance 

ii) A two degrees of freedom control law 

iii) The use of a stochastic optimisation approach, and 

iv) A restricted structure control law. 

However, a known problem with IFT is that extraction of the Hessian is difficult to 

perform using similar experiments to those used to extract the gradient. This is the 

problem that was addressed in Chapter 5. A totally different approach to obtaining the 

gradient and Hessian information was given. This was reported in Chapter 5 as the 

Continuous Parameter Cycling (CPC) method. (Crowe et al, 2003). CPC is a model-free 

approach to the design of restricted structure controllers. 

The CPC method employs a time varying controller gain perturbation. The time 

varying gain perturbation gives rise to a time varying cost function. By using sinusoidal 

controller gain perturbations the sinusoidal orthogonality can be employed to extract 
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both the gradient and the Hessian information from the time varying cost function. By 
employing a symmetry argument it was also possible to reduce the time by half over 
which the gain perturbation is applied. The CPC method of controller tuning was shown 
to have a unified theoretical basis and was demonstrated in Chapter 5 on a non-trivial 
example. 

The major achievements presented in Chapter 5 were as follows: 
i) To motivate the research, the method of Iterative Feedback Tuning (IFT) was 

reviewed in Section 5.2. A failing of the IFT method is that second order 
Hessian data cannot be easily generated by the method. 

ii) A new and original method, Controller Parameter Cycling, was proposed. The 

theory underpinning the new method was presented in Section 5.3 and 
implementation considerations were given in Section 5.4. 

111) In Section 5.5 the new CPC algorithm was demonstrated successfully on the 

non-trivial example of the design of a decentralised controller for a 2-input, 2- 

output multivariable process. 

6.6 Future Research. 

In previous chapters a number of tools are described to allow: 
i) The identification of a process in closed loop, whether it is a single, cascade or 

multivariable system. 

ii) Determining viable gain and phase margin PI controller designs. 

iii) Determining PID controller designs for particular gain and phase margin pairs. 

iv) Iterative design of PI controllers to meet gain and phase margin designs. 

v) Iterative design of PI controllers to meet maximum sensitivity and phase margin 

designs. 

vi) Model-free design of PID controllers. 

The above tools, when coupled with a suitable identifier, can be used to produce a 

controller design that will give an acceptable level of control system performance. 

However, a great deal of input would be required by a control engineering practitioner 

to carry out the required design steps. The key benefit of auto-tuners based on the relay 
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experiment is that they are effectively plug and play in their operation. The tools 
described above if appropriately organised could be used to implement an auto-tuner 
with a high degree of autonomy, however, before such an auto-tuner could be produced 
there are a number of areas that require further research. 

Improving the Phase Locked Loop Identifier. 

The Phase-Locked Loop (PLL) method of nonparametric system identification 
has been shown to be capable of performing closed loop identification of the frequency 

response of a process connected in a single-input single-output, cascade connected or 
multi-input multi-output control system. Two areas for further research are as follows. 

Guidelines for Excitation Signal Size: The PLL method gives a high degree of 
measurement accuracy even when process disturbances or measurement noise is 

present. The excitation magnitude can be set to a low value such that the impact of the 
identification on the process can be kept to an acceptable level. Guidelines for selecting 
the appropriate level are required. 

Initialisation for Reduced Identification Time: To perform PLL identifications the only 
input required by an operator is the phase or gain reference value, the excitation 

magnitude, the initial frequency for the voltage controlled oscillator and a gain value for 

the integrator. In practice it is found that an integrator gain value of 0.2 can be used for 

a wide range of processes. However an effective method of obtaining a set of initialising 

values that lead to a reduction in the identification time should be a topic for future 

research. 

Improving the PID Controller Design Methods. 

An Algorithm for Viable Maximum Sensitivity and Phase Margin Pairs: In Chapter 2 

graphical methods were discussed that allow the design of PI controllers such that all of 

the viable gain and phase margin pairings within a prescribed range are given. It is 

possible to extend this PI controller design method such that all of the viable maximum 
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sensitivity and phase margin pairings within a specified range can be determined. 

However, the tangency angle must be specified a priori. The effect of having a fixed 

tangency angle on the resulting maximum sensitivity and phase margin pairings requires 
further research. Likewise the effect that a fixed tangency angle has on the resulting PI 

controller parameters and the effect this has on the closed loop system time response 

requires to be investigated. 

Improved Selection for Controller Specification: Methods are required to aid the 

selection of a particular gain and phase margin or maximum sensitivity and phase 

margin pairing such that not only are the robustness measures met but also an 

acceptable time domain response is obtained for the closed loop system. Extensions to 

the semi-graphical gain margin and phase margin design of PID controllers are required 

such that selection methods are available to aid the choice of design frequencies relating 

to a particular phase margin and gain margin pair. The desirable outcome of such a 

selection method would be that the closed loop system has an acceptable time domain 

response in addition to having the desired robustness properties. These topics require 

further research. 

Faster Convergence For Iterative PID Design Methods: Iterative design methods that 

allow the design of PI controllers that give a specific gain and phase margin or 

maximum sensitivity and gain margin are discussed in Chapter 3. Extensions to these 

methods are required such that the number of iterations that are required to achieve the 

required design specification can be reduced. 

Faster Convergence for Iterative Maximum Sensitivity and Phase Margin Design 

Methods: The maximum sensitivity and phase margin iterative design method should be 

further researched to determine the effect of specifying a fixed tangency angle. This 

would certainly reduce the number of identifications required, however the effect this 

would have on the final PI controller design and on the closed loop system time 

response requires to be further investigated. 
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In Chapter 4, the use of the Phase-Locked Loop (PLL) method of system identification 

was applied to the identification of cascade and multivariable systems connected in 
closed loop. There are several areas for further research in this Chapter. 

Phase-Locked Loop (PLL) identification of cascade systems: The use of the Phase- 
Locked Loop (PLL) method of system identification was applied to the identification of 
cascade systems connected in closed loop. Gain and phase margin design of the inner 

and outer PI controllers of a cascade system was performed. If gain and phase margin or 
maximum sensitivity and phase margin are to be used as the design specification for a 
cascade control system, then a method is required such that the inner loop controller can 
be designed to mitigate the effects of a process disturbance. Similarly, the method 

should address the design of the outer loop controller to give an acceptable time domain 

response. These ideas should be further researched to give a new and original version of 
the controller design algorithm. 

Phase-Locked Loop (PLL) identification of multivariable systems: The use of the Phase- 

Locked Loop (PLL) method of system identification was applied to the identification of 

multivariable systems connected in closed loop. Gain and phase margin design of the PI 

controllers for a decentralised control system was performed. Further research should be 

conducted to apply a gain and phase margin or maximum sensitivity and phase margin 

as the design specification. The method should address the design of the loop controller 

to give an acceptable time domain response. 

Reduction of loop interaction in decentralised control design: An extension to the exact 

gain and phase margin design method of Fung et al (1998) was used to design a 

decentralised controller for a multivariable system. The time domain response of the 

closed loop system shows that a large interaction between the control loops still exists. 

A method is required that allows the design of a full matrix controller such that gain and 

phase margin designs can still be specified with the interaction between control loops 

being significantly reduced; this requires further research. 
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In Chapter 5 the new and original Controller Parameter Cycling (CPC) method was 
devised and discussed. There are various issues arising from this chapter for further 

research. 

Using Different Orthogonal Function Sets: The initial choice for the parameter 
perturbation was to use sinusoidal functions. This choice leads to a relatively large 

number of gain perturbations being implemented so that an accurate representation of 
the time varying cost function can be obtained. An investigation of other time functions 

that possess the required orthogonality properties is required to see if a reduction in the 

number of gain perturbations can be obtained and still achieve the required accuracy of 

representation of the time varying cost function. 

Improving The Levenberg-Marquardt Routine: The choice of the parameter a for the 

Levenberg-Marquardt routine requires a certain skill on the part of the operator to 

ensure that both the cost function and the cost function gradient continue to reduce 

when the Hessian estimate is non-positive definite. Guidelines are required to ensure 

that changes made to a continue to reduce the cost function and the cost function 

gradient. Similarly when the Hessian estimate is positive definite guidelines are 

required to ensure that an appropriate step size is chosen. These guidelines require 

further research input. 

Towards Autonomous PID Control - Developing a Phase Locked Loop Auto-tuner. 

The identification and PID controller tuning tools discussed above have been 

implemented using either LabVIEWTM or MatlabTM/SimulinkTM. If the tools are going to 

be used to form the basis of an auto-tuner then a common platform is required for their 

implementation. In addition, and depending on the platform choice, a range of Human 

Machine Interfaces (HMI) are required to be designed such that the operator is led 

through a simple procedure to allow single loop, cascade or multivariable controller 

design to be performed. The auto-tuner could be implemented in a Distributed Control 

System (DCS) as a function block that is called to commission new loops or to re-tune 

existing control loops or as a stand alone hardware unit that is connected into a control 
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system as required for identification or tuning duties. The further research needed to 
implement the above tools into an auto-tuner should consider the following practical 
issues: 

i) The method of connection to the process (physical interfaces, serial links, 

instrument bus systems, etc. ) 

ii) An estimation of the processor loading when used in a DCS either as a module 

that is called for an individual loop or as a function block having many 

instantiations. 
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