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Abstract

When a structure is subject to cyclic loads there is a possibility of it failing due to

ratchet or incremental collapse. In many engineering structures the demonstration of

non-ratcheting behaviour is a fundamental requirement of the design and assessment

process. Whilst it is possible to use incremental finite element analysis to simulate

the cyclic response for a given load case to demonstrate shakedown or ratchet, it does

not yield any information on the safety factor. In addition, there are several practical

problems in using this approach to determine whether or not a component has achieved

shakedown. Consequently several direct methods which find the loads at the shakedown

and ratchet boundaries have been developed in the past 3 decades.

In general, lower bound methods are preferred for design and assessment

methodologies. However, to date, the lower bound methods which have been proposed

for shakedown and ratchet analysis have not been fully reliable and accurate. In this

thesis a lower bound shakedown and ratchet method which is both reliable and accurate

is proposed.

Previously proposed elastic plastic lower bound ratchet methods are revisited and

modified to understand the limitations in current methods. From this, Melan’s theorem

is reinterpreted in terms of plasticity modelling and shown to have the same form

as a non-smooth multi yield surface plasticity model. A new shakedown method is

then proposed based on the non-smooth multi yield surface plasticity model. The

new shakedown method is extended using a two stage process to determine the

ratchet boundary for cyclic loads in excess of the alternating plasticity boundary.

Two simplified variants of the ratchet method are also proposed to decrease the

computational expense of the proposed ratchet method.

Through several common benchmark problems the proposed methods are shown

to give excellent agreement with the current upper bound methods which have been

demonstrated to be accurate. The flexibility of the shakedown method is demonstrated

by extending the method to incorporate temperature dependent yield, hardening and

simplified non-linear geometric effects.
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1 Introduction

This thesis presents the development of an accurate, reliable, strict lower bound direct

shakedown and ratchet method. In general, the demonstration of the shakedown

behaviour of a structure is an important part of the design process, as the alternative

ratcheting behaviour can be a serious form of failure and is generally catastrophic

in nature. Therefore having both accurate and reliable methods for ascertaining if

a structure has achieved shakedown is of interest in many engineering sectors, in

particular the electricity generation and nuclear sectors.

Given the current simulation/analysis capabilities of commercial finite element

software, it might be difficult to understand why showing shakedown behaviour requires

the use of specialist methods such as those proposed here. However there are a number

of difficulties in using the Finite Element Method for the demonstration of shakedown

behaviour:

It can require a large number of cycles. If using standard incremental Finite

Element Method the number of cycles that may be necessary to show a strict

shakedown behaviour can be large, sometimes thousands or tens of thousands of

load cycles.

What is a suitable criteria for shakedown? When using finite elements the

software will generally report on the plastic strains in the structure. To show

shakedown it must be demonstrated that there is no accumulation in net plastic

strains from one cycle to the next cycle. However given that the procedure is

always subject to numerical error it is necessary to define sufficient criteria for

the check on plastic strains.

It can be computationally expensive. Due to the two problems mentioned above,

the overall cost of demonstrating shakedown behaviour can be computationally

expensive compared to specialist shakedown and ratchet methods.

A method which can accurately determine whether or not shakedown has been achieved

in a computationally efficient manner would be beneficial to the design and structural

integrity assessment processes.

This thesis is separated into 6 sections which demonstrate the progression of the

research from understanding the current methods through to development of a new

approach to the lower bound shakedown and ratchet problems:

Section 2 introduces the phenomena of shakedown and ratchet. The section describes

the mechanisms involved in shakedown and ratchet and discusses using Finite
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Element Analysis (FEA) to determine the shakedown/ratchet behaviour. The

idea of bounding theorems is introduced and the section concludes with a review of

the various analysis methods currently used to determine shakedown and ratchet

boundaries.

Section 3 proposes and implements a method similar to the current “state of the

art” elastic-plastic lower bound methods, to explore the reasons for current

elastic-plastic lower bound methods being unreliable. The shakedown and ratchet

problem is posed in a manner in which it may be solved using the Finite Element

Method. Several benchmark problems are studied to identify the likely source of

instability and errors in the results obtained by the method.

Section 4 builds on the findings of Section 3. Melan’s theorem is revisited and

discussed in the context of material behaviour and finite element modelling. By

defining a material model from Melan’s theorem and plasticity theory, the lower

bound shakedown and ratchet problems are shown to have the same form as a

particular class of material model. Section 4 continues by proposing the residual

stress condition as a stress state which is shared by all of the load cases considered

in the shakedown and ratchet problem, which is important for the application of

the material model in a FEA.

Section 5 proposes and implements a new shakedown method based on the class of

material model which was demonstrated to have the same form as the lower

bound shakedown theorem in Section 4. The proposed method is tested with

several common benchmark problems. After demonstrating the accuracy of the

new shakedown method it is extended to include temperature dependent yield,

hardening effects and simplified non-linear geometry effects.

Section 6 extends the shakedown method developed in Section 5 to the ratchet

boundary beyond the alternating plasticity boundary. The proposed method

is tested with several common benchmark problems. After demonstrating the

accuracy of the new ratchet method it is extended to include temperature

dependent yield strength.

Notation

In this thesis it has been necessary to use mixed notation. The tensor notation used

is the indicial notation, where indices are repeated Einstein summation is assumed.

Matrices are denoted by [ ] for square matrices and { } for vectors. For square matrices
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subscripts are used in some cases when a particular element of the matrix is being

referred to i.e. [A]αβ is the element in matrix [A] at row α and column β.

10



2 Shakedown and Ratchet

The review of literature here gives a general background to the shakedown and ratchet

problem along with key topics such as bounding theorems and methods for finding

the load condition at the various shakedown and ratchet boundaries. As the focus

of this research is the development of a ratchet method, the review of the current

methods focuses on the “augmented limit” methods, as these are the only methods

which are currently able to give the elastic and plastic ratchet boundaries. Other

literature covered is intended as an overview of other areas of interest but not discussed

in detail.

2.1 Bree Diagram

Shakedown and ratchet are terms used to describe the long term elastic or elastic-plastic

response of a structure subject to cyclic loads. These behaviours are usually introduced

through the Bree Problem (Bree 1967). The Bree problem is a common benchmark

used in shakedown and ratchet research as it represents a simple analytical problem

which demonstrates all 5 idealised long term responses a structure may exhibit under

cyclic loading.

The Bree problem was designed to consider the shakedown/ratchet behavior of a

pressurized shell, of elastic-perfectly plastic material, subject to cyclic thermal gradient.

In order to allow analytical solution of the system, it is simplified to a plane stress plate

with a cyclic thermal gradient through its thickness and constant uni-axial tension. To

give cyclic thermal stresses due to the cyclic thermal gradient, the plate is constrained

to remain in plane section. A schematic diagram of the Bree problem is given in figure

1a.

Under the constant load from the uni-axial tension and the cyclic load from the

cyclic thermal gradient, the Bree problem can exhibit 5 long term elastic or elastic-plastic

cyclic responses. The responses are generally shown on a graph of normalised constant

load v.s. normalised thermal load, in both cases normalised against the yield strength

of the material making up the plate. A typical graph for the Bree Cylinder with each

type of cyclic response identified is shown in figure 1b. The 5 responses may be defined

as follows:

Elastic During the initial cycle of load the stress everywhere in the structure remains

in the elastic domain and no yielding occurs. A time independent state of plastic

strain exists i.e. εp
ij (t) = 0 everywhere in the structure with a cyclic stress such

that |σij (t)| ≤ σy.
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Elastic shakedown During the initial load cycles the the structure undergoes plastic

straining but does not collapse. After a finite number of load cycles the stress

everywhere in the structure remains within the elastic domain during the whole

load cycle i.e. |σij (t)| ≤ σy and the plastic strain becomes time invariant εp
ij(t) =

Constant everywhere in the structure.

Plastic shakedown During the initial load cycles the structure undergoes plastic

straining but does not collapse. After a finite number of load cycles a closed

plastic strain cycle exist somewhere in the structure i.e. εij
p (t + ϕ) = εij

p (t)

where ϕ is the period of a load cycle. Everywhere else in the structure, the

stresses cycle within the elastic domain and a time invariant plastic strain exists.

Ratchet or incremental collapse During the initial load cycles the structure

undergoes plastic straining but does not collapse. During each successive cycle of

load there is an increase in the plastic strain over every point in a section of the

structure.

Limit or collapse During the initial cycle of load the structure collapses due to gross

plastic deformation.

12
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2.1.1 Effect of Hardening On Shakedown Boundaries

The basic Bree problem considers prefect plasticity. In certain situations this may be

overly conservative. The effect of unlimited hardening was considered by Melan (1938),

Maier (1972) and Ponter (1975). When considering hardening there are two basic

groupings of the hardening behaviour. Isotropic hardening increases the magnitude of

the yield stress and kinematic hardening allows the yield surface to displace in stress

space to accommodate increased stresses.

The effect of unlimited isotropic hardening is to result in elastic shakedown

behaviour under all circumstances; i.e. there would be no alternating plasticity or

ratchet boundary in the Bree diagram. This is due to the yield surface being able

to increase in size to accommodate any magnitude of elastic stress range. When

considering unlimited kinematic hardening the yield surface remains the same size,

thus the elastic range of the material remains the same and therefore the alternating

plasticity limit will remain as for the perfect plasticity case. Ratchet will however never

occur under the effects of unlimited hardening as an alternating plasticity mechanism

will always be able to develop, which results in a stabilised plastic strain cycle.

The use of unlimited hardening leads to the conclusion that ratchet would never

occur in a structure. However ratchet has been observed in practice (see for example

Indermohan and Reinhardt 2012), therefore it is known that the behaviour described by

unlimited hardening is unrealistic. Limited hardening has been consider by a number

of sources (see for example Weichert and Gross-Weege 1988, Polizzotto et al. 1991,

Corigliano et al. 1995a, Corigliano et al. 1995b, Nguyen and and Pham 2005). Under

the effects of limited isotropic hardening the elastic range of the material is bounded

by twice the hardened yield strength. Thus there will be an alternating plasticity

boundary. As the hardening is limited the maximum stress that can be support by a

section is limited, if this limit is reached over an entire section of the component for

any combination of load points ratchet will occur. With limited kinematic hardening

the elastic range of the material remains unchanged thus the alternating plasticity limit

will be the same as for the perfectly plastic case. The limited hardening does however

result in a limit to the maximum stress which can be supported by a section of the

component. If this maximum stress is reached over an entire section of a component

for any combination of load cases, ratchet will occur.

The description of shakedown/ratchet provided by limited hardening is more

consistent with observed component behaviour than unlimited hardening. However,

recently the usefulness of this description has been questioned, see (Indermohan and

14



Reinhardt 2012). It was noted in (Indermohan and Reinhardt 2012) that under the

effect of limited hardening, whilst ratchet will be predicted the plastic strains at the

resulting ratchet boundary can be large. Practically, if large plastic strains are necessary

to allow shakedown to occur it should be questioned whether shakedown would be

achieved before some other failure mechanism occurrs. In such circumstances accurate

predictions of plastic strains would be useful when considering structural deformation

and rupture. However, few methods provide accurate plastic strains when considering

hardening, as the link between hardening and plastic strains are ignored. Therefore at

present it is not clear if the use of hardening in shakedown/ratchet methods is fully

developed and applicable to practical design considerations.
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2.2 Boundary Names

There is no general consensus in the literature for the names given to the different

boundaries on the Bree diagram. Figure 2 shows a collection of Bree diagrams with

various different names given to the boundaries commonly in use. As is evident from

the figures, some naming conventions use the name ratchet boundary to mean different

parts of the ratchet response.

Constant stress/yield strength

Alternating Plasticity
Ratchet

Constant stress/yield strength

Elastic Shakedown

Ratchet

Constant stress/yield strength

Elastic Shakedown

Ratchet

Plastic Shakedown

Figure 2: Differing Boundary Names

As shakedown and ratchet are discussed individually in this thesis, it is at times

necessary to separate the ratchet boundary into 2 distinct parts: the elastic ratchet

boundary and the plastic ratchet boundary (see figure 3), signifying which shakedown

region they bound. This avoids confusion as to which part of the ratchet boundary

is being referred to. In all cases, where reference is made to the ratchet boundary,

it is meant that both the elastic and plastic ratchet boundaries are being referred

to. In addition, it is necessary to separate the elastic shakedown boundary into the

alternating plasticity boundary and the elastic ratchet boundary. The names of the

various boundaries used in this thesis are summarised in figure 3.

Constant stress/yield strength

Elastic Shakedown

Ratchet

Constant stress/yield strength

Alternating Plasticity

Plastic Ratchet

Elastic Ratchet

Figure 3: Naming Convention for Boundaries

2.3 Using FEA for Shakedown and Ratchet Analysis

Demonstrating shakedown or ratchet behaviour is, fundamentally, a plasticity problem.

Whilst most of the theorems in the field (see Section 2.4) are based on stress or strain
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energy, the fundamental formulations of the theorems are based on plasticity arguments.

With the technology available today (i.e. the Finite Element Method), and increasing

computational abilities making elastic plastic analysis ever cheaper, it might be difficult

to understand why an engineer seeking to determine the shakedown or ratchet behaviour

would not just use elastic plastic FEA.

In some cases using elastic plastic FEA might be the most appropriate solution

method, however there are a number of limitations with that approach. Consider

a structure subject to an arbitrary cyclic load case. Assume that the structure

was simulated in an elastic plastic FEA for x cycles and demonstrated a shakedown

behaviour. Whilst shakedown has been demonstrated, and this may satisfy some design

codes, the safety factor against the onset of ratchet has not been determined. In general

this is not possible from a single FEA. It is necessary to conduct several more elastic

plastic analysis with higher loads to find the load case at which ratchet first occurs.

This leads to relatively high computational expense and effort when trying to identify

the ratchet boundary and thus obtain knowledge of safety factors.

Consider a situation where the structure is simulated for x cycles and does not

show a strict shakedown behaviour. If this is the case it might be tempting to assume

that the applied load lies outside the ratchet boundary. However this may not be

the case. Depending on the complexity of the component and load cycle, showing

strict shakedown in a component may require thousands of load cycles to be simulated.

Only when a constant stabilised plastic strain increase over each cycle is found may

the behaviour be identified as ratcheting. Thus complex components/load cycles may

require large computational effort to identify the shakedown or ratchet behaviour for a

single load case. Given that this does not give an indication as to the margin of safety

to ratchet, several of these analysis will be needed to identify the ratchet boundary,

leading to potentially excessive computational cost.

The difficulties of the two previous problems are exacerbated by the numerical

accuracy of the computational solution methods. Any numerical solution method

utilising computational methods is subject to the numerical accuracy possible with the

computer architecture and hardware. Given the large number of iterations an elastic

plastic FEA may take, accumulated numerical error can result. This can produce what

appears to be a ratchet strain which is actually nothing more than accumulation in

numerical error. This further complicates identifying the shakedown/ ratchet response.

This also results in another problem. What should be the required level of accuracy

when determining whether the magnitude of a plastic strain has stabilised from one

load cycle to the next?
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Given the potential problems when trying to identify the ratchet boundary using

elastic plastic FEA, a method for finding the ratchet boundary directly in a single

analysis would be beneficial. To do this the conditions which lead to the onset of ratchet

must first be defined. This is the purpose of the bounding theorems for shakedown and

ratchet.

2.4 The bounding theorems for shakedown and ratchet

The bounding theorems for shakedown and ratchet have been in development since

the late 1930s, when they were used in analytical solutions for shakedown and ratchet.

The lower bound theorems seek to define an equilibrium solution, for a given load case,

for which a shakedown behaviour exists. The upper bound theorems seek a kinematic

solution, for a given load case, which minimises the ratchet strain energy.

2.4.1 Elastic Shakedown

Melan’s static shakedown theorem (Melan 1936), commonly referred to as Melan’s lower

bound shakedown theorem, considers time invariant equilibrium stress fields and may

be expressed:

If a structure is subject to an arbitrary cyclic load case P (t) which results in fully

elastic stresses σe
ij(t)in equilibrium with that load case, the structure will shakedown if

a time invariant residual stress field, ρc
ij , can be defined such that when superimposed

with the elastic stresses σe
ij(t), the resulting equivalent stress |ρc

ij + σe
ij(t)| everywhere

in the structure remains within the elastic region during the entire load cycle.

Koiter gave the general proof for the kinematic shakedown theorem (Koiter 1960),

commonly referred to as Koiter’s upper bound shakedown theorem, which considers

kinematically admissible strains and may be expressed:

If, a set of cyclic external influences Pj applied on the surface S of the structure

results in an admissible cyclic displacement field uj on S, shakedown will not occur if

the work dissipated W by a set of kinematically admissible plastic strains, εp0
ij , is less

than the work done on the structure.

That is shakedown will not occur if:

ˆ ˆ

PjujdSdt >

ˆ ˆ

W (εp0
ij )dV dt (1)

Thus the problem reduces to minimising the following inequality:
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ˆ ˆ

U (Pjuj) dSdt ≤

ˆ ˆ

W (εp0
ij )dV dt

where U (Pjuj) is the work done in the structure by (Pjuj), W (εp0
ij ) is the work

energy dissipated by (εp0
ij ) and V is the volume of the structure

Both the Melan and Koiter theorems assume linear kinematics and an

elastic-perfectly plastic material and do not necessarily give appropriate shakedown

boundaries for all practical situations, such as large structural deformations and strain

softening materials. Several extensions to the Melan and Koiter formulations have been

proposed to overcome these and other limitations, for example: unlimited kinematic

hardening (Melan 1938, Maier 1972 and Ponter 1975); limited kinematic hardening

(Weichert and Gross-Weege 1988, Polizzotto et al. 1991, Corigliano et al. 1995a,

Corigliano et al. 1995b, Nguyen and and Pham 2005); geometric non-linearity (Maier

1972, Weichert 1986 and Gross-Weege 1990); material damage (Hachemi and Weichert

1992); non-associative flow rules, for example (Maier 1969 and Boulbibane and Weichert

1997) and cracked structures (Huang and Stein 1996 and Belouchrani et al. 2000).

2.4.2 Extended Shakedown Theorems

The elastic shakedown theorems are sufficient for cyclic loads below the alternating

plasticity boundary. If the cyclic loads are higher than those necessary to cause a

reverse plasticity mechanism in the structure, additional conditions must be placed on

the plastic strain cycle.

Melan’s elastic shakedown theorem was extended to allow for cyclic loads above the

alternating plasticity boundary by Gokhfeld (1980). Gokhfeld’s theorem applies to a

structure subject to a load case P (t) that must be separated into constant and cyclic

components, P c and P̂ (t). Application of these loads results in development of fully

elastic stresses σc
ij and σ̂ij (t) in equilibrium with their respective load. The theorem

states that the structure will shakedown if:

A time invariant residual stress field, ρc
ij + ρij , and time varying residual stress

field, ρ∆
ij(t), can be found such that when superimposed on the elastic stresses σc

ij and

σ̂ij (t), the resulting equivalent stress
∣∣∣ρc

ij + ρij + ρ∆
ij(t) + σc

ij + σ̂ij (t)
∣∣∣ remains within

the elastic region during the entire load cycle everywhere in the structure with the

additional constraint that the varying residual stress field is limited to the regions of

the structure where the magnitude of the cyclic stresses are great enough to result in

alternating plasticity and must vanish over the cycle i.e. ρ∆
ij(t) = ρ∆

ij(t + ϕ) where ϕ is
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the period of one cycle and k is an integer.

A detailed discussion of the static shakedown and static extended shakedown theorems

and the necessary requirement of the closed cyclic solutions, or post transient plastic

strains, may be found in (Pollizzotto 1993a,b,c,d).

A general extension to Koiter’s upper bound shakedown theorem, to include the

plastic ratchet boundary, has recently been given by Ponter and Chen (Ponter and

Chen 2001). It may be summarised as follows:

If a structure is subject to a set of external influences, which results in a

kinematically admissible strain history, for elastic or plastic shakedown to exist it

must be shown that the plastic dissipation resulting from the stress-strain cycle does

not exceed the structure’s potential to dissipate that energy: therefore an upper bound

ratchet multiplier Yrat is given by:

ˆ ˆ (
σy − Y ratσ̂ij

)
ε̇p

ijdtdV = 0

2.4.3 Naming Convention for Methods Based on Bounding Theorems

Many sources refer to methods based on these bounding theorems as being lower bound

“stress based” or upper bound “strain” based methods (within the usual limitations of

the finite element method). However lower and upper bound have stricter definitions.

For instance, a lower bound method should never give a converged solution above the

actual ratchet/shakedown load.1 Conversely in the case of an asymptotically converging

upper bound it should approach the actual ratchet/shakedown load from above and

never give a solution below the actual ratchet/shakedown load.

It is therefore necessary to have a means of representing this difference. If the

method is based on stresses and is a “stress based” lower bound, it will be referred

to as a lower bound method. If it satisfies the strict definition of the term “lower

bound” then it will be referred to as a strict lower bound method. For upper bounds,

those based on strain will be upper bound methods, if they satisfy the more stringent

definition of “upper bound” they will then be referred to as strict upper bound methods.

2.5 Augmented Limit Methods

The methods which have so far been able to define the plastic ratchet boundary have

been the methods which are based on performing an augmented limit analysis, by either

repeated elastic analysis or elastic plastic analysis. This is due to it being shown that

1For an example of a “lower bound method” which gives non-conservative result see the ratchet
boundary given by the lower bound Linear Matching Method in section 6.4.2 and appendix A.
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the lower bounding theorems for limit, shakedown and ratchet are analogous to each

other, where different load cases are used, (Melan 1938 and Ponter and Chen 2001).

In general, the augmented limit type ratchet methods use the same solution strategy.

This requires the load to be decomposed into constant and cyclic parts. The post

transient stresses and plastic strains are found for the cyclic loads to give a closed plastic

strain cycle. These stresses are then added to the constant load and an augmented limit

analysis is performed based on the combined post transient stresses and the constant

stress. This is basically the method used in (Bree 1967), where analytical solutions for

the cyclic stresses were known, and was suggested in (Gokhfeld 1980). The conditions

for the post transient stresses and plastic strains and the use of a limit based shakedown

solver for ratchet is given in (Polizzotto 1993c,d)

2.5.1 Elastic Compensation method

The elastic compensation method is a direct limit load method which was extended

to be a shakedown method. This method does not give the plastic ratchet boundary

however it forms the basic idea for a number of the direct ratchet methods. The elastic

compensation method was developed from a concept given by Marriott (1988) and

introduced by Mackenzie and Boyle (1993), also (Nadarajah et al. 1993 and Shi et al.

1993), as a direct limit method based on the lower bound limit theorem see (Lubliner

1990). In this method a series of linear elastic analysis are conducted with altered

elastic modulus to approximate the stress redistribution due to plasticity, allowing the

approximation of lower bound limit load multiplier.

The concept which leads to the elastic compensation method is relatively simple

and may be summarised as follows; for static equilibrium to exist in a structure made

from elastic-perfectly plastic material, the stress everywhere in the structure must be

less than or equal to the yield strength of the material. Consider a structure subject

to an arbitrary load P which results in a fully elastic stress of σij . If the equivalent

stress |σij| > σy the redistribution of stress in the structure may be approximated by

reducing the elastic modulus, E, of the material according to:

En = En−1 σr
∣∣∣σn−1

ij

∣∣∣
(2)

where n is the current increment.

Thus for points in the structure where the equivalent stress is below the normalised

stress σr the stiffness increases, and decreases for points in the structure where the

equivalent stress is above the normalised stress σr. Therefore the stress will redistribute
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from the higher stressed regions to the lower stressed regions as would be the case in

an elastic plastic analysis.

To calculate the resulting limit load multiplier it is observed that the structure

behaves in a linear manner for a given iteration. Therefore the limiting lower bound

limit multiplier would be given by the point in the structure with the highest stress:

Y =
σy

max
(∣∣∣σn−1

ij

∣∣∣
)

By continuing this process of modifying the elastic modulus and calculating the limit

load multiplier the stress should redistribute and produce larger limit load multipliers.

The highest limit load multiplier calculated in this manner during the analysis is

identified as the limit load multiplier for the structure subject to load P . More recent

research on variations of this method can be found in (Yang et al. 2005, Chen et al.

2008).

The extension to shakedown, see (Mackenzie et al. 2000) assumes that the load case

may be decomposed into a constant load P c and a set of proportionally time varying

loads P̂ (t). Therefore to satisfy Melan’s theorem the load case need only be checked

at the mid point of the cycle, when the proportional loads are at their maximum, and

at the end of the cycle, when only the constant load is applied to the structure2.

By applying the load P c to the structure the stress in the structure due to load

P c may be directly calculated. The stress due to both P c and P̂ (t) may be found by

superposition of the fully elastic stress which results result from P̂ (t) onto the stress

caused by P c. If the equivalent stress at either point exceeds yield, the stress due to

P c can be redistributed using the same modulus adjustment procedure as used in the

limit load method.

The lower bound shakedown multiplier may then be calculated by scaling the elastic

stresses in equilibrium with the constant load and the constant plus cyclic loads until

they satisfy Melan’s theorem for each material point. As in the limit method, the

lowest shakedown multiplier in the structure for that given iteration is stored and the

analysis continues to the next iteration. The highest of the stored limit load multipliers

obtained during the analysis is identified as the lower bound shakedown multiplier.

2.5.2 Linear Matching Method (LMM)

As with the elastic compensation method, the Linear Matching Method (LMM) has it

roots as a method for finding the limit state of the structure. In (Ponter and Carter

2For problems including transients, the stress may need to be checked at various other points when
the magnitudes of stresses and/or plastic strains are at local maxima and minima in the history.
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1996) an early form of the LMM is presented. It was demonstrated that the adjusted

modulus methods could be interpreted as a non-linear programming technique and

the strain fields resulting from an elastic analysis, similar to the elastic compensation

method, may be used to calculate a monotonically reducing upper bound to the limit

solution, based on the upper bound limit theorem (Martin 1975).

A number of key differences exist between the LMM and the elastic compensation

method including the use of incompressible strain fields in the method given in (Ponter

and Carter 1996) and the ability to prove convergence of the upper bound see (Ponter

and Carter 1996). A similar proof for the convergence of the lower bound is not

available, and there are examples, see (Yang et al. 2005 and Chen et al. 2008), of

the lower bound multiplier being non-convergent.

The method was modified to give the elastic shakedown boundary in (Ponter and

Carter 1997). In the implementation given in (Ponter and Carter 1997), the shakedown

load cycle is decomposed into a constant load and a proportional time varying load.

The stress resulting from the constant load only and the summation of the constant

load and the maximum cyclic load is tested and the modulus is adjusted depending

on whether one or both of the stress conditions violate Melan’s theorem. As with the

limit load version of the LMM, convergence of the upper bound shakedown multiplier

can be proven (Ponter and Carter 1997).

In (Ponter et al. 2000), the method is generalised where both the strain rate of

the linear elastic material is matched to the strain rate of the non-linear solution and

the yield condition simultaneously. It was also discussed in (Ponter et al. 2000) that

the method may be reinterpreted as a numerical programming technique in which a

dual minimisation is applied to converge on a least upper bound of the shakedown

problem. In (Ponter and Engelhardt 2000) this method is extended to the shakedown

boundary. In this method the solution is matched as in (Ponter et al. 2000) for an

arbitrary cyclic load case. A constant residual stress is calculated based on the matched

values of shear modulus at the points on the cycle where Melan’s theorem is violated

and a corresponding strain field calculated. These solutions are then utilised in the

calculation of the upper bound shakedown multiplier. This becomes the basis for the

LMM.

In (Ponter and Chen 2001), Koiter’s upper bound shakedown theorem is generalised

to give an upper bounding theorem for the shakedown solution in excess of alternating

plasticity, i.e. to give the ratchet boundary (see Section 2.4 for a discussion on the

extended theorem). A method for applying the upper bound ratchet theorem of (Ponter

and Chen 2001) was given in (Chen and Ponter 2001a). This is the ratchet variant of
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the LMM.

The minimisation of the bounding theorem given in (Ponter and Chen 2001) requires

that a closed plastic strain history can be found. This is difficult to do whilst also finding

a constant residual stress and upper bound multiplier that leads to a minimisation in

the inequality given in (Ponter and Chen 2001). Thus the ratchet variant of the LMM

is split into two distinct stages. The first stage finds a closed plastic strain cycle which

results from a prescribed cyclic load history by repeated matching of the load history

in turn and accumulation of the ratchet strain per increment. The second stage of the

ratchet form of the LMM is the addition of the constant load to the structure whilst

minimising the inequality in (Ponter and Chen 2001) by the same process as used in

the shakedown form of the LMM.

The LMM has seen continued development: see for example (Chen and Ponter

2001b) for the first published use in 3D, (Chen et al. 2003, Chen and Ponter 2004,

Chen and Ponter 2005a, Chen and Ponter 2006, Chen et al. 2011 and Gorash and

Chen 2012) for extensions to allow the assessment of creep effects and (Chen and

Ponter 2005b and Ponter et al. 2006) for applications including contact.

The LMM’s core is an upper bound method, however lower bound estimates were

possible for the shakedown version of the LMM due to the proportionality of the load

case. More recently a lower bound approximation to the ratchet form of the LMM has

been proposed (Ure et al. 2011) and developed (Chen et al. 2013 and Ure et al. 2013).

This approximation uses the residual stress fields and cyclic stresses generated by the

upper bound LMM and scales the elastic cyclic stress solutions until the resulting total

stress fields satisfy Melan’s theorem. However cases have been found in which this lower

bound produces results in excess of the upper bound solution, this is demonstrated in

APPENDIX A, thus it is not a strict lower bound. The lower bound is dependent on

the behaviour of the upper bound solution. This can lead to residual stress fields which

are amenable to lower bound solution but which are not necessarily a good description

of the physics of the problem.

The use of upper bound methods can result in a number of problems. For instance,

an upper bound solution must be shown to be converged to result in a high level of

confidence in the solution. In the case of the LMM, the method can show convergence

for secondary ratchet mechanisms, i.e. ratchet mechanisms that take place at constant

loads greater that the limiting ratchet case. In such cases convergence needs to be made

stricter. This results in the problem of what convergence criteria are appropriate for all

problems. The lower bound estimate was developed to increase the confidence in the

upper bound solution but it has already been discussed that it is not entirely reliable.
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Thus, whilst it has been shown that good agreement with non-linear FEAis possible,

reliability in the accuracy is highly dependent on the convergence controls placed in

the method.

2.5.3 Non-cyclic Method

The non-cyclic method was introduced in (Reinhardt 2008) as a lower bound alternative

to the upper bound LMM. Reinhardt noted that an upper bound method can only be

accepted if it has fully converged, which may result in a number of problems (this is

demonstrated in appendix A). A strict lower bound however would be beneficial as

any solution found could be used in design. In practice this would be the highest load

found.

The method proposed in (Reinhardt 2008) is based on the lower bound extended

Melan’s theorem, see (Gokhfeld 1980). The load history is decomposed into a constant

load and a series of symmetric cyclic loads. Note that symmetric refers to the plastic

strains which will result due to the load history, thus the general loading need not be

fully symmetric, however the two points of interest must be. Therefore the two points

in the load cycle reduce to a fully reversed stress cycle with zero mean stress. The

symmetry of the load cycle, as the method is lower bound, implies that if the stress

causes a reverse plasticity cycle the plastic strain caused by the positive part of the load

cycle will be completely reversed by the negative part of the load cycle. However the

stress distribution of the cyclic loads must still be found. For example, if the fully elastic

cyclic stress range causes the equivalent stress to go beyond yield, the solution will not

satisfy the extended Melan’s theorem. Thus in the non-cyclic method of (Reinhardt

2008), the load range is applied to a finite element model with elastic perfectly plastic

material properties. This redistributes the load throughout the structure such that the

cyclic stress range is limited to yield, thus satisfying the extended Melan’s theorem.

If m fully reversed load cycles are identified, the first reversed load cycle is applied to

the structure in a FEA with elastic perfectly plastic material properties. The equivalent

stress is then found. This equivalent stress is subtracted from the current yield strength

of the material and the result becomes the new yield strength for the material. This

process is repeated for the remaining reverse load cycles identified. If at any time

collapse occurs, this indicates that the load cycle cannot result in a stable plastic strain

cycle and ratchet is assumed, although this may not be the case as this approach is

generally overly conservative. If collapse does not occur the constant load is added to

the structure in a limit analysis using the yield strength from the last cyclic solution.

The constant load which results in limit is identified as the constant load at ratchet.
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In (Reinhardt 2008) this method was demonstrated as being lower bound, however

numerical instability was likely due to the yield strength of the material being reduced

to zero in parts of the structure in which a reverse plasticity cycle occurs.

In (Adibi-Asl and Reihardt 2008) the Elastic Modulus Adjustment Procedure

(EMAP) was used to replace the elastic plastic limit analysis used in the original form

of the method in (Reinhardt 2008). EMAP see (Adibi-Asl et al. 2006) is a repeated

elastic analysis similar to those used in the elastic compensation method and the LMM

thus is not subject to the same type of numerical instability as the traditional elastic

plastic analysis techniques used in (Reinhardt 2008).

The EMAP procedure, like the LMM, uses incompressible strains during the analysis.

The procedure used to match the response of the elastic analysis to the non-linear

solution is not as robust as that of the LMM with only the stress being matched. This

matching is obtained through the use of an adjusted elastic modulus: in this form of

the EMAP the relationship used to adjust the elastic modulus is:

En = En−1


 σrn+1

∣∣∣σn−1
ij

∣∣∣




q

where

σrn+1

=




´

V

∣∣∣σn−1
ij

∣∣∣
2

dV

V




1/2

and

q =

ln

(
2(σr)2

|σn−1
ij |

2
+(σr)2

)

ln

(
σr

|σn−1
ij |

)

In the same manner as in the elastic compensation method, the modulus is adjusted

for several iterations. During each iteration a lower bound limit load multiplier is

calculated. The lowest multiplier in the structure calculated during the iteration is

stored. Once the EMAP procedure has reached a “converged” state, the largest stored

limit load multiplier is identified as the constant load ratchet multiplier.

The use of the EMAP in the limit analysis used to identify the constant load

at the ratchet boundary provides a stable solution method. However there is no

convergence proof for the lower bound multiplier calculated in this way, and based

on the results given in (Adibi-Asl and Reihardt 2009) the convergence behaviour of the

lower bound multiplier is relatively poor. Whilst this does not affect the suitability
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of any of the calculated multipliers to be used as a lower bound, it does suggest that

the results of the method may not reach full convergence, and thus the results could

be overly conservative in certain conditions. Questions therefore still remain about the

overall accuracy of this approach. Despite the use of EMAP, the method presented

in (Adibi-Asl and Reihardt 2008) was shown to be generally overly conservative in

multi-axial stress states as the addition of the stresses is based upon uniaxial arguments

(Adibi-Asl and Reihardt 2009), thus any beneficial effects of a multi-axial stress state

are not accounted for.

In (Adibi-Asl and Reihardt 2009) a number of developments were made to the

method. The load history is decomposed into a constant load and a single fully reverse

load cycle. That is, the extremes in the stress history must be described by just two

points which give a maximum and minimum and the fully elastic stresses must be the

negative of each other i.e. σ̂max
ij = −σ̂min

ij . The reduced yield strength is calculated

on the addition of the cyclic and constant loads in a component basis, thus removing

the possibility of overly conservative results of the method presented in (Reinhardt

2008). This form of the method is what is now most commonly referred to as the

Non-Cyclic Method. Further details of the work are given in (Adibi-Asl and Reinhardt

2011a, Adibi-Asl and Reinhardt 2011b), in which reasonable agreement with the LMM

was demonstrated. Due to the use of non-linear cyclic solutions and lower bound limit

analysis, this method is a strict lower bound. However the requirement of separating

the load cycle into just two extreme points is potentially limiting with regard to the

assessment of complex structures/load cycles.

2.5.4 Hybrid Method

Whilst the non-cyclic method is a lower bound, which is advantageous to design, it

has a number of limitations. It is limited to a fully reverse cyclic load case and the

lower bound repeated elastic limit analysis does not necessarily converge. In (Martin

and Rice 2009) the hybrid method was introduced as an adaptation of the non-cyclic

methods presented in (Reinhardt 2008) and (Adibi-Asl and Reinhardt 2009).

The non-cyclic method was limited to a fully reversed load cycle to allow the

stabilised cyclic stresses, (which satisfy the extended Melan’s theorem), to be estimated

using a single elastic-plastic FEA. However, for more complex structures/load histories

it may be difficult or impossible to identify just two points in the load cycle which

capture all the necessary maximums and minimums in the cyclic load history, stress

history and plastic strain history. To overcome this limitation, the Hybrid Method

decomposes the load history into a constant load and an arbitrary set of cyclic loads,
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Direct Cyclic Analysis (DCA), see (Nguyen-Tajan et al. 2003), is then used to find the

fully stabilised cyclic solution, if one exists, for the cyclic loads only. This is equivalent

to finding the post transient solutions as suggested in (Polozzotto 1993c,d). By using

DCA to find the stabilised cyclic solutions the method can consider an arbitrary set of

cyclic loads. However to pass the solutions of the DCA step into the limit analysis a

post processing step must take place, which results in a bottle neck in the process and

can hamper the user-friendliness of the analysis.

Once the stabilised cyclic stresses are known, an augmented limit analysis is

conducted to identify the additional constant load the structure can support without the

onset of ratcheting. Repeated elastic analysis could be used, (several advantages and

disadvantages to this have already been covered in this Section) but instead the Hybrid

Method uses a reduced yield strength elastic plastic limit analysis as in (Reinhardt

2008), making use of a similar multi-axial summation of the stress components as in

(Adibi-Asl and Reinhardt 2009). The Hybrid Method assumes the limit analysis used

to obtain the constant load at ratchet may be conducted using the stresses from the

constant load only whilst adjusting the yield stress based on the superposition of the

stresses obtained from the cyclic solutions. For example consider Melan’s theorem for

a two point load cycle:

∣∣∣ρc
ij + σc

ij +
(
ρij + ρ∆,1

ij + σ̂1
ij

)∣∣∣ ≤ σy ,
∣∣∣ρc

ij + σc
ij +

(
ρij + ρ∆,2

ij + σ̂2
ij

)∣∣∣ ≤ σy

thus since
(
ρij + ρ∆,m

ij + σ̂m
ij

)
is known, a maximum allowable

∣∣∣
(
ρc

ij + σ̂c
ij

)∣∣∣ may be

calculated and this maximum allowable is used as the yield strength in the elastic-plastic

limit analysis. In the Hybrid Method, the maximum allowable
∣∣∣
(
ρc

ij + σ̂c
ij

)∣∣∣ is calculated

at the beginning of the limit analysis only, and thus does not take into account any

redistribution of stress in the structure due to plastic straining of the material. Thus

the solutions may become non-conservative, see the results in (Martin and Rice 2009).

The stress in the limit analysis, and thus the direction of the plastic strain, is based

only on the constant load. Whilst this does not affect the applicability of the solutions

to Melan’s theorem, it may result in a plastic strain direction which does not limit the

strain energy in the structure based on Melan’s theorem and may not find the maximum

allowable constant load as a result. Due to the possibility of non-conservative results

this method is classified as a stress based lower bound.
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2.5.5 UMY/LDYM

Both the isotropic Uniform Modified Yield method (UMY) and “anisotropic” Load

Dependent Yield Modification method (LDYM), see (Abou-Hanna and McGreevy

2011), are numerical implementations of the simplified ratchet method proposed by

Gokhfeld (1980). The simplification used in this method occurs during the cyclic

analysis. In the other methods mentioned thus far, the cyclic solutions required a

non-linear analysis to redistribute the cyclic stress such that it satisfied the Extended

Melan’s theorem completely. However in the UMY and LDYM methods a single elastic

analysis is conducted for the cyclic solutions.

Consider a load case (as in the non-cyclic method) that may be decomposed into

a fully reversed cyclic load and a constant load. In the UMY and LDYM method

the cyclic load amplitude is applied to the structure and the resulting elastic stress

distribution is stored. The stored stress field is analysed and at material points where

the equivalent stress is beyond yield it is scaled back, to give an adjusted cyclic stress

σA,adj
ij which has an equivalent stress equal to yield strength of the material, i.e.

σA,adj
ij (t) =





σ̂A
ij (t) for

∣∣∣σ̂A
ij (t)

∣∣∣ ≤ σy

Qσ̂A
ij (t) for

∣∣∣σ̂A
ij (t)

∣∣∣ > σy where Q = σy

|σ̂A
ij

(t)|

This approach simplifies the cyclic solutions; however by doing this the stress beyond

yield is not redistributed to the rest of the structure. This results in a cyclic stress field

which is not in equilibrium to the applied cyclic load and as a result, if the simplification

is applied (i.e. if the cyclic stress is in the plastic shakedown region) then the cyclic

stresses used in the ratchet analysis are not sufficient to satisfy the extended Melan’s

theorem. This was alluded to in (Gokhfeld 1980) with the statement being made that

when using this approach there is the possibility of over estimation of the constant

load at ratchet. Thus it would appear that this was a known issue. It is however

not discussed in the literature concerning the UMY and LDYM methods. The results

presented in (Abou-Hanna and McGreevy 2011) agree with this as they show results

in excess of the upper bound LMM. This point is discussed further in Section 6.

Once the cyclic stresses are known, the UMY and LDYM methods calculate a

modified yield strength as in the Hybrid Method. The UMY method calculates the

modified yield strength at the start of the ratchet analysis only, thus may result in

non-conservative or overly conservative results as is the case with the Hybrid Method.

The LDYM method recalculates the modified yield strength at the beginning of each
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iteration, thus removing the possibility of non-conservatism due to the changing of the

constant stress direction. This does not remove the possibility of non-conservatism due

to the simplified cyclic stress description.

In both the UMY and LDYM methods the ratchet analysis reduces to a limit

analysis with reduced yield strength, as in the Hybrid method. The UMY and LDYM

methods are therefore susceptible to the same instabilities as the other conventional

elastic-plastic limit based ratchet methods. These instabilities stem from the use of the

radial return method, (see Section 3.6 for further discussion). Thus whilst the UMY

and LDYM methods are relatively computationally inexpensive, there are known issues

with the approach which makes these methods insufficient as a strict lower bound. Thus

they are only a stress based lower bound and non-conservative results may be given by

these approaches.

2.5.6 General Observations for Augmented Limit Solution Methods

The augmented limit methods are currently the only methods available for finding

the ratchet boundary for cyclic loads beyond the alternating plasticity boundary for

structures where analytical solutions for the stress distribution that results from loading

are not available. A conventional analysis is an approach where the loads are prescribed

and the result, for those loads, is found by simulating the load history. The shakedown

methods, however, are inverse methods. That is the loads, at which shakedown occurs,

are found rather than being prescribed. Thus the shakedown methods are relatively

computationally inexpensive. The ratchet solutions, in comparison, are not inverse as

they require prescribed cyclic loads to be defined to allow the stabilised cyclic stresses

to be found. The ratchet method can therefore be thought of as partially inverse, as

the cyclic load must first be prescribed. This increases the computational cost relative

to the shakedown methods, considerably so for the LMM and the Hybrid method.

This review of the current lower bound ratchet methods shows that a general,

reliable, strictly lower bound ratchet method is not available. Whilst the upper bound

methods are in most cases reliable, a partially inverse, accurate, strictly lower bound

method would result in increased confidence in the calculated ratchet boundary. Such a

method would be of practical interest to the designer and structural integrity engineer.

Generality in the methods, i.e. making the methods fully inverse, hardening etc.,

is currently difficult to achieve as all of the current solution strategies require the

separation of constant and cyclic loads. In the case of the elastic-plastic methods

the separation continues into the limit solution. To allow a general method to be

developed for elastic-plastic solution strategies, it would be necessary to first devise a
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method for consideration of both cyclic and constant loads during the limit solution.

In addition, if the method can be defined such that it allows for the incorporation

of more of the underlying mechanics then further extensions to improve upon the

generality of the method, such as making the ratchet method fully inverse, hardening

etc., should, theoretically, be possible. This additional requirement would suggest that

an elastic-plastic method would be the most appropriate, as it allows for incorporation

of implicitly integrated plastic strains and strain fields which are physically meaningful,

rather than the kinematically admissible strain fields found by the repeated elastic

solution methods.

The aim here is to provide a method to act as a coherent basis for a more general,

fully inverse, elastic-plastic ratchet method. In particular the research will focus on the

development of an elastic-plastic method which allows consideration of constant and

cyclic loads during the limit solution used to find the constant load at ratchet.

2.6 Mathematical Programming Methods

There are a number of methods based on mathematical programming techniques. Here

a brief overview of the methods are given with references to more detailed discussions

of the methods.

2.6.1 Iterative penalization

The iterative penalization method reduces to minimising the dissipated energy in the

strain cycle described by m admissible cyclic loads corresponding to vertices in the load

history. The minimization of the dissipated energy takes place over m admissible cyclic

loads with respect to the structural displacement and the plastic strain increments with

constraints on the normalisation of external work and compatibility of the final strains.

The minimisation is done over the whole volume of the structure with the summation

of the dissipated energy obtained via a weighted Gauss summation. The solution to the

minimisation problem can be achieved in a number of ways, see for example (Carvelli

et al. 2000 and Maier et al. 2001)

2.6.2 The LISA Project

The European LISA project see (Staat and Heitzer 2001) defined a direct shakedown

method based on the Primal-Dual algorithm. This algorithm utilises the duality in the

upper and lower bound shakedown theorems to define a minimisation problem for the

elastic shakedown boundary. The LISA project was defined for shakedown considering

kinematic hardening using a two surface hardening model.
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The two surface hardening model forgoes the usual relationship between the

increment in plastic strain and the increment in backstress through a hardening

modulus, instead using a bounded surface for the backstress. The resulting hardening

modulus is referred to as the two surface model, the first surface being the yield surface

displaced by the backstress and the second being the bounded surface, given by the

maximum allowable backstress plus yield strength. Thus the yield surface is allowed to

displace inside the bounded surface until the backstress becomes large enough that the

yield surface touches the bounded surface and the magnitude of the backstress is then

limited to the maximum value. This allows for a simplified incorporation of limited

kinematic hardening into the shakedown method.

Further work based on the LISA project has been conducted by the originators, for

example, comparisons to experimental tests to validate lower bound estimates given by

the method (Lang et al. 2001), comparisons to experimental tests to validate hardening

(Heitzer et al. 2003), the incorporation of temperature dependent yield strength (Vu

and Staat 2007).

2.6.3 Interior Point Algorithm

This shakedown method, see (Simon and Weichert 2011) for recent developments,

utilises the same primal dual relationship as is used in the LISA project, but solves

the minimisation problem using the interior point algorithm. The interior point

algorithm is of interest as it is capable of solving numerical problems involving large

numbers of degrees of freedom in a relatively computationally efficient manner. The

implementation given in (Simon and Weichert 2011) uses a tailored form of the

interior point algorithm to achieve solution times which are many times quicker than

other optimisation based mathematical programming methods. The drawback of this

approach is that the incorporation of hardening and other effects such as in (Weichert

and Gross-Weege 1988, Weichert 1986 and Hachemi and Weichert 1992) cannot be

directly implemented in the method without reformulation of the method to allow for

these effects.

2.6.4 General Comments

Numerical programming methods have thus far not been extended to the plastic ratchet

boundary. This is a limitation in a number of applications of practical interest. Further,

whilst the methods do provide a relatively efficient means of identifying the shakedown

boundary, the methods don’t model certain aspects of the problem. This may be

illustrated with the extensions some of the methods have been given to include hardening.
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Whilst the methods give a bounded result for the hardening behaviour, the actual

hardening law is not considered and the relation between plastic strain and backstress

through a hardening modulus is not considered. Some important physical information

about the hardening behaviour is thus lost in the method. This could result in backstresses

which are impossible to achieve in the “real” component as hardening models for use in

shakedown problems must saturate (i.e. the hardening modulus reaches zero) leading

to the possibility that the backstress is not necessarily associative to the total plastic

strain after the hardening modulus has saturated.

2.7 Post Process Methods

The augmented limit methods and the mathematical programming methods require,

to varying degrees, the use of user programming to be incorporated into conventional

analysis methods, such as finite element software. The post processing methods however,

do not require the use of user programmed functionality to be implemented in a

standard Finite Element Method. They do however, generally, require the use of user

programming in the post processing application. This is however generally an easier

task than user programmed functionality for the FEA. As such the post processing

methods are easier to implement that the augmented limit methods and the mathematical

programming methods.

The non-linear superposition method was introduced in (Muscat et al. 2002, 2003).

The method utilised non-linear analysis and superposition of elastic loads to estimate a

lower bound ratchet boundary. A similar method more recently proposed by (Abdalla

et al. 2006, 2007a, 2007b, 2007c, 2008, 2009) has seen limited development to include

simplified hardening models. The method is a strictly lower bound method based

on “built in” material models in most commercially available finite element software

packages. The method is relatively simple. The load case is first separated into constant

and fully reversed cyclic parts. The constant load is applied to the structure with an

elastic plastic material model and in the next step the cyclic stress amplitude is added

to the structure/component during an elastic perfectly plastic limit analysis. For each

solution, the stress distribution is written to disk to allow post processing to take place.

On completion of the limit analysis an elastic analysis is performed for the cyclic load

range, this stress is also written to disk for post processing.

In the post processing procedure, the stress fields for the elastic-plastic analysis and

elastic analysis are retrieved. Starting at the lowest cyclic load range the elastic cyclic

load range is then scaled to the equivalent value it would have had during the elastic

plastic analysis and subtracted from the elastic plastic stress field at the corresponding
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cyclic elastic plastic stress solution. If the equivalent stress is less than yield, for

that cyclic stress range, the system satisfies Melan’s theorem and thus shakedown is

achieved. By repeating this at successively higher cyclic load ranges the cyclic load at

which shakedown does not occur can be found.

Whilst the post-processing methods are considerably easier to implement than the

augmented limit analysis and the mathematical programming methods, there are a

number of disadvantages. As the method finds the residual stress field by post process

methods such that when the first unloading causes yielding in the structure the analysis

identifies that loads as the shakedown load. However the stress at the unloaded state,

in the case of the elastic ratchet boundary, will, in general, redistribute further to

accommodate greater cyclic loads whilst satisfying Melan’s theorem. As a consequence

the elastic ratchet boundary is generally overly conservative when found by this method.

Additionally, post-processing is, generally, relatively computationally expensive and

may result in bottle necks in the assessment process.
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3 Formulation of a Modified Yield Ratchet Method

In Section 2.5 it was noted that current lower bound methods are less accurate and

reliable than the current upper bound methods. In this chapter a modified yield ratchet

method, similar to the Hybrid Method, is formulated. The aim here is to remove a

number of the assumptions that are included in the other methods of this type, see

(Martin and Rice 2009 and Abou-Hanna and McGreevy 2011). By doing so the methods

should consistently satisfy the extended Melan’s theorem and remove the possibility of

non conservative results discussed in Section 2.5. However it will be shown that whilst

improvement can be made over the Hybrid Method there are still large errors in the

calculated ratchet boundaries.

The work in this chapter requires a number of assumptions about the structure’s

behaviour to allow the formulation of the method. These assumptions are as follows:

Assumption 1 The load history can be partitioned into constant and cyclic parts

Assumption 2 The cyclic loads lie within the ratchet boundary

Assumption 3 The constant load is applied under load control

Assumption 4 Perfect plasticity is assumed throughout

Assumption 5 All material properties are temperature independent.

Assumption 6 The cyclic loads may be described by superimposed elastic stresses

from the unstrained state, i.e non-linear geometry effects may be ignored

3.1 Separation of Constant and Cyclic Solutions

When considering ratcheting there are two unknown parts of the problem. Firstly, for

a shakedown condition to exist it must be shown that the cyclic loads can be supported

by the structure whilst resulting in a closed plastic strain cycle. The second part of the

problem is to find the magnitude of constant load the structure can support without

causing ratchet. When using conventional finite elements it is difficult to solve for both

the cyclic and constant solutions at the same time. It is therefore necessary to separate

the load case into cyclic and constant parts and consider their actions in two stages.

The load case must then be separated into both cyclic and constant parts. The

requirement of a constant load for these methods to show a suitable safety margin

against ratchet may, in some cases, render the method unsuitable for a particular

problem. Such cases would be when the load case has no discernible constant load. In

such cases it may be difficult to adequately define a constant load which would show a
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suitable margin of safety against ratchet. However, developing a reliable lower bound

method which requires the separation of constant and cyclic loads extends knowledge

of the field of research.

The extended Melan’s theorem requires that the stress in the structure at all times

remains below the yield strength of the material. It is therefore theoretically necessary

to know the full cyclic load history. This is, however, impractical. Given that the

actual load history may not be known, or is difficult to define, a further decomposition

of the cyclic loads is prudent. Given that the overall aim is to show that there is a time

invariant plastic strain over the cycle of loading, it is only necessary to capture the

local maxima and minima in the load cycle. By doing so the maximum and minimum

in the plastic strain history will also be defined. Thus the load history is separated into

m distinct points which describe the maximums and minimums in the plastic strain

history.

3.2 Cyclic Solutions

3.2.1 Material Model

The cyclic solution relies on the assumption that if a stable cyclic solution exists it may

be found by repeated cycling of the cyclic loads in a non-linear FEA. Thus Stage 1 may

be done using standard FEA where the cyclic loads are cycled until the cyclic strains

over the cycle converge. That is the strain at all points in the cycle are the same from

one cycle to the corresponding point in the next cycle:

εT
ij(t) = εT

ij (t + ϕ) and εp
ij(t) = εp

ij (t + ϕ)

where εT
ij is the total strain.

If doing this using standard FEA it may be difficult to ascertain if the cycle has

converged during the Stage 1 analysis and care is required in ensuring the loads are

applied using appropriate amplitudes and that the finite element package solves for

the extremes in the load cases. If using built-in material models the analysis must be

post-processed to obtain the residual stress and any varying residual strains before the

ratchet analysis can start. The input and output tasks required for post processing

can be costly in both computational effort and time. It would also be possible to use

the direct cyclic procedure which is incorporated into the ABAQUS package, however

this process must also be post processed before its results may be read into the ratchet

analysis.

Given the potential difficulties and added cost in post processing Stage 1 it would be
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beneficial if an alternative method, which does not require the use of post processing,

could be developed. Assuming the cyclic loads at the m critical points may be described

by fully elastic stresses, σ̂m
ij , it is possible to use the residual condition and these

superimposed elastic stresses to define the load cycle.

The residual stresses and strains at point l in the load cycle are given by:

ρij +
θ=l∑

θ=1

ρ∆,θ
ij = Cijkq

(
εT r,l

kq − εp,l
kq

)

where εT r,l
kq is the total residual strain at point l and ρ∆,θ

ij is the varying residual

stress at load point θ

ρ∆,1
ij = 0 and ρ∆,θ

ij = ρr,θ
ij − ρr,θ−1

ij for 1 < θ ≤ m

and

Cijkq = λδijδkq + µ(δikδjq + δiqδjk) (3)

with:

λ =
vE

(1 + v) (1 − 2v)
and µ =

E

2 (1 + v)

The loaded points are given by the superposition of the elastic stress in equilibrium

with the cyclic loads:

σl
ij = ρij + σ̂l

ij +
θ=l∑

θ=1

ρ∆,θ
ij

Here attention is restricted to von Mises plasticity, giving the yield conditions:

f l =

∣∣∣∣∣ρij + σ̂l
ij +

θ=l∑

θ=1

ρ∆,θ
ij

∣∣∣∣∣− σy ≤ 0 for 1 ≤ l ≤ m

with:

∣∣∣∣∣ρij + σ̂l
ij +

θ=l∑

θ=1

ρ∆,θ
ij

∣∣∣∣∣ =

√√√√3

2

(
ρ′

ij + σ̂′l
ij +

θ=l∑

θ=1

ρ′∆,θ
ij

)(
ρ′

ij + σ̂′l
ij +

θ=l∑

θ=1

ρ′∆,θ
ij

)
(4)

where the superscript ′ denotes the deviatoric part of the stress.
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The plastic strain rate at a point l is given by, for Mises plasticity:

ε̇p,l
ij = γ̇lrl

ij = γl

ρ′
ij + σ̂′l

ij +
θ=l∑

θ=1

ρ′∆,θ
ij

∣∣∣∣∣ρij + σ̂l
ij +

θ=l∑

θ=1

ρ∆,θ
ij

∣∣∣∣∣

where γ̇l is the rate of change of the plastic consistency parameter

3.2.2 Solution Algorithms

In the algorithms that follow, the superscript n is the value of the variable at the last

converged solution at time t − ∆t, and the superscript n+1 is the value of the variable

at the current time t, the superscript trial is used for the trial values of the variables

before the application of the plasticity algorithms. The algorithm is defined for the

solution at the m extreme cyclic load points. If a solution is required between these

points, interpolation of the superimposed elastic stresses is required. The algorithm

starts at l = 1 and cycles through the critical load cases with l = m being the final

load case. The Stage 1 algorithms continue to loop until the residual stress and strain

remain constant over a number of cycles.

The stress at point l in the load cycle is given by:

ρij + ρ∇,trial
ij = Cijkq

(
εT r,ln+1

kq − εp,ln

kq

)

where

ρ∇,trial
ij =





ρ∆,l,trial
ij l = 1

∑θ=l−1
θ=1 ρ∆,θ

ij + ρ∆,l,trial
ij 1 < l ≤ m

f trial =

√
3

2

(
ρ′

ij + ρ′∇,trial
ij + σ̂′

ij
l
) (

ρ′
ij + ρ′∇,trial

ij + σ̂′
ij

l
)

− σy

If f trial ≤ 0 then: (elastic)

εpn+1

ij = εpn

ij

ρij + ρ∇,n+1
ij = ρij + ρ∇,trial

ij

and
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ρ∇,n+1
ij =





ρ∆,l,n+1
ij l = 1

∑θ=l−1
θ=1 ρ∆,θ

ij + ρ∆,l,n+1
ij 1 < l ≤ m

Else: (plastic)

rn+1
ij =

3

2

(
ρ′

ij + ρ′∇,trial
ij + σ̂′

ij
l
)

f trial

∆γn+1 =
f trial

3µ

where ∆γ is the increment in the plastic consistency parameter

εp,n+1
ij = εp,n

ij + ∆γn+1rn+1
ij

ρij + ρ∇,n+1
ij = ρij + ρ∇,trial

ij − 2µ∆γn+1rn+1
ij

and

ρ∇,n+1
ij =





ρ∆,l,n+1
ij l = 1

∑θ=l−1
θ=1 ρ∆,θ

ij + ρ∆,l,n+1
ij 1 < l ≤ m

The consistent Tangent modulus is then:

Ccon
ijkq = κδijδkq + 2θµ

(
Iijkq −

1

3
1ij1kq

)
−

4

3
µφrn+1

ij rn+1
kq

where:

µ =
E

2 (1 + v)
, κ =

E

3 (1 − 2v)
, θ =

σy

∣∣∣ρ̄′
ij + ρ′∇,trial

ij + σ̂ij
′l
∣∣∣

and φ = θ

Endif

If (l = m) then check convergence on ρ′
ij

If
(
ρ∆′,0

ij ≤ tolerance
)

then: Converged Goto Stage 2

Else ρij = ρij + ρ′∆,0
ij

Endif

endif
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3.3 Potential Difficulties in Implementation

Given the non-linear nature of the algorithms used to solve for the plastic strain

increment during the cyclic solutions, it is not guaranteed that the solver will converge

during every increment. It is then necessary to allow for cut backs in the solution

process. This potentially requires solutions at points between the m critical loaded

cases, at a point l, for which the elastic stresses are unknown. However, the elastic

stress at l between points θ and θ + 1 may be found by interpolation of the elastic

stress at points θ and θ + 1. To do so it is necessary to know the relative “distance”

between point l and points θ and θ + 1. To help with this, 1 unit of time during the

Stage 1 cyclic solutions is made equal to the difference between θ and θ + 1: i.e for a 2

extreme load cycle time, t=1 is at the first critical load case, t=2 is the second critical

load case and t=3 is back to the first critical load case. By knowing the number of

points in the load cycle and the current solution time, it is possible to use interpolation

to find the superimposed elastic stress required by the solution at any value of solution

time.

The use of time as a place holder for the solution process allows for the use of

automatic time stepping and cut backs during the Stage 1 cyclic solutions. Thus if

a stable stress configuration exists for the given loads, the solver should be capable

of finding the corresponding strain state. However care must be taken in ensuring

the solver solves for time= integer, as these points in time represent the critical load

cases. If the solver does not solve for these times the load cycle will not be adequately

described by the solution process. Therefore, when performing a Stage 1 analysis it

is necessary to specify time points for field or history outputs in the ABAQUS job

description to force the solver to solve for time= integer.

If the cyclic loads are large enough to cause the structure to reach a limit state

then the Stage 1 solution will fail due to loss of equilibrium. In this case, all that can

be determined from the solution is that the cyclic loads lie outside of the cyclic load

limit boundary. To obtain a ratchet solution the analysis will have to be restarted at

a lower value of cyclic load. It may also be possible for the cyclic loads to lie outwith

the ratchet boundary, see (Abou-Hanna and McGreevy 2011) for an example load case

where cyclic loads result in ratchet. If this is the case, the Stage 1 analysis will fail to

converge from one load cycle to the next. All that can be determined from a solution

in this case is that the cyclic loads lie between the ratchet and limit boundaries. For a

ratchet solution to be found, the cyclic load will have to be reduced and the analysis

started again.
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3.4 Ratchet Solution

The ratchet solution uses a modified yield strength similar to the Hybrid Method,

which adapted the process used in the Non-Cyclic Method from the method proposed

by Gokhfeld (1980). In the Hybrid procedure the modified yield strength is calculated at

the start of the ratchet solution, based on the original direction of the stress resulting

from the addition of the constant load, and is not updated thereafter. However, if

redistribution takes place in the structure, such that the normal directions of the stress

resulting from the addition of the constant load changes during the analysis, this can

result in stresses which do not satisfy Melan’s theorem, see (Martin and Rice 2009).

To overcome the problems which result in using a constant modified yield strength,

the proposed methods update the modified yield strength on a per iteration basis

(Method 1) or on a per increment basis (Method 2). Assuming a set of cyclic plastic

strains and stresses are found from the cyclic loads which result in a steady state

residual stress giving a time invariant residual of, ρij , and a series of varying residual

stresses of,ρ∆,l
ij , which satisfy

∑θ=m
θ=1 ρ∆,θ

ij = 0, the additional constant load the structure

can support may be found using the material model in Section 3.4.1.

3.4.1 Material Model

The Stage 2 ratchet analysis starts from an unstressed state, i.e. the strains present in

the model after Stage 1 are removed before starting the ratchet analysis. The ratchet

analysis may then be formulated as follows.

The constant residual resulting from the constant load only is given by:

ρc
ij = Cijkq

(
εT r

kq − εp
kq

)

The constant loaded stress is given by:

σc
ij = ρc

ij + σ̂c
ij

The total stress at a given point, l, in the load cycle is given by:

σl
ij = ρc

ij + σ̂c
ij + ρij +

(
θ=l∑

θ=1

ρ∆,θ
ij

)
+ σ̂l

ij

The structure must satisfy the loading and unloading conditions:

γl ≥ 0 , f l ≤ 0 , γlf l = 0
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and also on yielding the stresses must satisfy the consistency condition:

ḟ l = 0

with the yield condition:

f
(
σl

ij

)
=

√
3

2
σ′l

ijσ
′l
ij−σy = f l =

∣∣∣∣∣ρ
c
ij + σ̂′c

ij + ρij + σ̂l
ij +

θ=l∑

θ=1

ρ∆,θ
ij

∣∣∣∣∣−σy ≤ 0 for 1 ≤ l ≤ m

(5)

Thus the problem reduces to finding a constant stress which satisfies all of the yield

criteria. However the direction of plastic strain will be different for the m load cases,

requiring the constant stress to redistribute in different ways for the m different load

cases. This makes identifying a limiting case difficult as the resulting constant stresses

cannot be directly compared, due to their different directions.

3.4.2 Simplifying the yielding behaviour

The material model in section 3.4.1 is difficult to implement using standard plasticity

models as the direction of plastic straining for each load point differs. This makes

identifying the limiting point on the cycle difficult because the allowable constant stress

at each load point cannot be directly compared due to the differences in direction. In

order to identify a limiting case it is assumed that the plastic strain that occurs during

the Stage 2 analysis is based on the direction of the constant stress only, i.e.

rij =
3

2

σ′c
ij√

3
2σ′c

kqσ′c
kq

=
3

2

ρ′c
ij + σ̂′c

ij√
3
2σ′c

kqσ′c
kq

This allows the constant stress to be scaled by a factor X for each load case, to find

the maximum equivalent constant stress that can be supported by the material point

whilst satisfying Melan’s theorem 5, i.e.:

∣∣∣∣∣X
l
(
ρc

ij + σ̂′c
ij

)
+ ρij + σ̂l

ij +
θ=l∑

θ=1

ρ∆,θ
ij

∣∣∣∣∣− σy = 0 for 1 ≤ l ≤ m

where

X l =
−bl +

√
(bl)

2
− 4acl

2a

with:

a =
3

2
σ′c

ijσ
′c
ij , bl = 3σ′c

ij

(
ρ′

ij +

(
θ=l∑

θ=1

ρ′∆,θ
ij

)
+ σ̂′l

ij

)
and
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cl =
3

2

(
ρ′

ij +

(
θ=l∑

θ=1

ρ′∆,θ
ij

)
+ σ̂′l

ij

)(
ρ′

ij +

(
θ=l∑

θ=1

ρ′∆,θ
ij

)
+ σ̂′l

ij

)
− σy2

The constant stress must therefore satisfy the the yield condition:

f =

√
3

2
σ′c

ijσ
′c
ij − σy,mod ≤ 0

with

σy,mod = min

(√
3
2

(
X l
(
ρc

ij + σ̂′c
ij

))(
X l
(
ρc

ij + σ̂′c
ij

)))

= min
(
X l
)√

3
2

(
ρc

ij + σ̂′c
ij

) (
ρc

ij + σ̂′c
ij

)

Therefore if X < 1, the total equivalent stress violates the yield condition and

stress must redistributed to satisfy Melan’s theorem: i.e. redistribute such that X = 1.

Figure 4 gives a pictorial description of the simplified yielding behaviour.
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(a) Interaction of yield surfaces between
stage 1 and stage 2.
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(b) Stage two yielding calculation where
X≥1, i.e. yield function satisfied
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(c) Stage two yielding behaviour X≤1 i.e.
where redistribution is necessary to

satisfy Melan’s theorem

Figure 4: Pictorial description of simplified yielding behaviour during methods 1 and
2. Gray circle represents the von Mises yield surface of the mateiral
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3.4.3 Solution Algorithms

The following solution algorithms update the value of X during the solution process to

avoid the possibility of non-conservative results, as can occur in the Hybrid Method.

It is possible to do this every iteration or every increment.

Method 1 updates the value of X every iteration:

ρc,trialn

ij = Cijkq

(
εT rn+1

kq − εpn

kq

)

X is the smallest of:

X l =
−bl +

√
(bl)

2
− 4acl

2a

where:

a =
3

2

(
ρ′c,l

ij + σ̂′c,n+1
ij

) (
ρ′c,l

ij + σ̂′c,n+1
ij

)

and

bl = 3
(
ρ′c,l

ij + σ̂′c,n+1
ij

)(
ρ′

ij +

(
θ=l∑

θ=1

ρ′∆,θ
ij

)
+ σ̂′l

ij

)

and

cl =
3

2

(
ρ′

ij +

(
θ=l∑

θ=1

ρ′∆,θ
ij

)
+ σ̂′l

ij

)(
ρ′

ij +

(
θ=l∑

θ=1

ρ′∆,θ
ij

)
+ σ̂′l

ij

)
− (σy)2

Then

X = min
(
X l
)

σy,mod =

√
3

2
X
(
ρ′c,trial

ij + σ̂′c,n+1
ij

)
X
(
ρ′c,trial

ij + σ̂′c,n+1
ij

)
=

X

√
3

2

(
ρ′c,trial

ij + σ̂′c,n+1
ij

) (
ρ′c,trial

ij + σ̂′c,n+1
ij

)

f trial =

√
3

2

(
ρ′c,trial

ij + σ̂′c,n+1
ij

) (
ρ′c,trial

ij + σ̂′c,n+1
ij

)
− σy,mod

If f trial ≤ 0 then (elastic:

εern+1

ij = εer,trial
ij
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εpn+1

ij = εpn

ij

ρ′c,n+1
ij = ρ′c,trial

ij + σ̂′c,n+1
ij

ρc,n+1
ij =

1

3
tr
(
ρc,trial

ij

)
+
(
ρ′c,n+1

ij

)

Else: (plastic)

rn+1
ij =

3

2

(
ρ′c,trial

ij + σ̂′c,n+1
ij

)

f trial

∆γn+1 =
f trial

3µ

εpn+1

ij = εpn

ij + ∆γn+1rn+1
ij

ρ′c,n+1
ij = ρ′c,trial

ij − 2µ∆γn+1rn+1
ij

ρc,n+1
ij =

1

3
tr
(
ρc,trial

ij

)
+
(
ρ′c,n+1

ij

)

Endif

The consistent tangent modulus is then given by:

Ccon
ijkq = κδijδkq + 2θµ

(
Iijkq −

1

3
δijδkq

)
−

4

3
µ


2X + 2

c√
(b̺)2 − 4ac̺


 rijrkq−

4µ
X
∣∣∣ρ′c,trial

rs

∣∣∣
√

(b̺)2 − 4ac̺
rij


ρ̄′

kq +




θ=∑̺

θ=1

ρ′∆,θ
kq


+ σ̂′̺

kq




where ̺ is the load case which gave the smallest X:

µ =
E

2 (1 + v)
, κ =

E

3 (1 − 2v)
, θ =

σy
∣∣∣ρ′c,trial

ij + σ̂′c,n+1
ij

∣∣∣
and ϕ = θ

Method 2 updates the value of modified yield strength at the start of every increment

using the value of constant load from the last increment:
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ρc,trial
ij = Cijkq

(
εT rn+1

kq − εpn

kq

)

X is the smallest of:

X l =
−bl +

√
(bl)

2
− 4acl

2a

where:

a =
3

2

(
ρ′c,n

ij + σ̂′c,n
ij

)(
ρ′c,l

ij + σ̂′c,n
ij

)

and

bl = 3
(
ρ′c,l

ij + σ̂′c,n+1
ij

)(
ρ′

ij +

(
θ=l∑

θ=1

ρ′∆,θ
ij

)
+ σ̂′l

ij

)

and

cl =
3

2

(
ρ′

ij +

(
θ=l∑

θ=1

ρ′∆,θ
ij

)
+ σ̂′l

ij

)(
ρ′

ij +

(
θ=l∑

θ=1

ρ′∆,θ
ij

)
+ σ̂′l

ij

)
− (σy)2

Then

X = min
(
X l
)

σy,mod =

√
3

2
X
(
ρ′c,n

ij + σ̂′c,l
ij

)
X
(
ρ′c,n

ij + σ̂′c,l
ij

)
=

X

√
3

2

(
ρ′c,n

ij + σ̂′c,l
ij

) (
ρ′c,n

ij + σ̂′c,l
ij

)

f trial =

√
3

2

(
ρ′c,trial

ij + σ̂′c,n+1
ij

) (
ρ′c,trial

ij + σ̂′c,n+1
ij

)
− σy,mod

If f trial ≤ 0 then (elastic):

εern+1

ij = εer,trial
ij

εpn+1

ij = εpn

ij

ρ′c,n+1
ij = ρ′c,trial

ij + σ̂′c,n+1
ij
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ρc,n+1
ij =

1

3
tr
(
ρc,trial

ij

)
+
(
ρ′c,n+1

ij

)

Else: (plastic)

rn+1
ij =

3

2

(
ρ′c,trial

ij + σ̂′c,n+1
ij

)

f trial

∆γn+1 =
f trial

3µ

εpn+1

ij = εpn

ij + ∆γn+1rn+1
ij

ρ′c,n+1
ij = ρ′c,trial

ij − 2µ∆γn+1rn+1
ij

ρc,n+1
ij =

1

3
tr
(
ρc,trial

ij

)
+
(
ρ′c,n+1

ij

)

Endif

The consistent tangent modulus is then:

Ccon
ijkq = κδijδkq + 2θµ

(
Iijkq −

1

3
δijδkq

)
−

4

3
µϕrn+1

ij rn+1
kq

where:

µ =
E

2 (1 + v)
, κ =

E

3 (1 − 2v)
, θ =

σy
∣∣∣ρ′c,trial

ij + σ̂′c,n+1
ij

∣∣∣
and ϕ = θ

3.5 Applications

3.5.1 Implementation

The algorithms were implemented in the finite element software ABAQUS using the

user-subroutine UMAT. Other finite element software may also be used in a similar

manner. The job is submitted using m+5 steps, i.e:

Step 1 Apply constant load and solve for elastic stresses. Write stresses to statev

array.

Step 2 to m+1 Apply lth cyclic load and solve for elastic stresses. Write stresses to

STATEV array.
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Step m+2 Return geometry to unstressed state

Step m+3 Perform Stage 1 analysis. Write varying cyclic stresses to statev array.

Step m+4 Return model to unstressed state

Step m+5 Perform Stage 2 analysis

The constant load at the ratchet boundary is the largest load for which the Stage 2

analysis can find a stable solution.

3.5.2 Axi-symmetric Bree Cylinder

T=20

T+ T∆

R=365i

R =385o

F

P

Figure 5: Axi-symmetric Bree Problem

The axi-symmetric Bree problem analysed

in (Martin and Rice 2009) is used to

verify the proposed method. The Hybrid

Method solutions have been found using a

variation of the model proposed here and

show good agreement with the original

solutions in (Martin and Rice 2009),

verifying the use of the residual stress

state during the analysis. Note that little

redistribution of stress occurs in the Bree

cylinder, so little difference is expected

between the proposed method and the Hybrid Method. The LMM result have been

given as they have been previously verified and thus can be taken as an accurate

solution. A model was defined with the dimensions given in figure 5 using second

order reduced integration axi-symmetric elements. The mesh consisted of 10 elements

through thickness with the element height chosen to keep the elements square. The

material properties used were Young’s modulus 184GPa, Poisson’s ratio 0.3 and yield

strength 402.7MPa. The cylinder is subject to a constant mechanical load which

consists of an internal pressure, P, and corresponding axial thrust, F, to simulate end

cap pressure. The cyclic load is applied through a cyclic internal temperature; the

external temperature is fixed at all times to 20˚C. The temperature gradient is found

by thermal analysis, thermal conductivity 0.035W/mm, and the resultant cyclic stress

is found assuming a thermal expansion coefficient of 1.335x10−5˚C−1. The end of the

cylinder that has the end cap thrust applied is constrained to remain in plane section.

The results given in figure 6 show that both of the proposed methods produce

nominally the same results as the Hybrid Method due to the limited amount of redistribution
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Figure 6: Bree Cylinder Ratchet Boundaries From Various Methods

in the stress field. The results also show that the proposed methods do not overcome

the deviation of the calculated boundary from the LMM. It might at first be tempting

to say this is due to the method being a lower bound; however it is shown in figure

6 that the lower bound extension to the LMM is capable of producing a lower bound

closer to that given by the upper bound LMM.

This is an indication that there is a fundamental limitation to the vector summation

type of direct ratchet methods such as the Hybrid Method, the UMY and LDYM

methods, and the methods presented in this section. In the Bree cylinder analysis all of

the methods were able to find the ratchet condition. The ratchet condition in this case

is the stress throughout the section reaches yield at some point in the load cycle. This

is shown in figure 7, which gives the equivalent stress in the structure for ∆T=500 at

the T=20 and T=520 points on the load cycle. It can be seen that the inner portion of

the cylinder is limited by the T=20 load case and the outer portion of the cylinder is

limited by the T=520 load case. This indicates that with the current vector type lower

bound methods no further improvement can be achieved on the ratchet boundary, thus

the method must be fundamentally altered if greater agreement with the LMM is to

be achieved.
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(Avg: 75%)
SDV55
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Figure 7: Total Equivalent Stress ∆T=500˚C:
Left: 20˚C, Right 520˚C

3.5.3 Pressurised two bar

Figure 8: Pressurised Two Bar Problem

The pressurized two bar structure is

shown in figure 8. Bar 1 has an

internal radius of 2.00mm and an external

radius of 2.68mm. Bar 2 has an

internal radius of 2.00mm and an external

radius of 3.22mm. Bar 2 is twice

the length of bar 1 and both have

the same material properties: Young’s

modulus 210GPa, Poisson’s ratio 0.3,

yield strength 200MPa and thermal expansion coefficient 1.17x10-5˚C−1. The ends

of the cylinders are constrained to remain in plane section at all times. The model

was defined in 3D using second order reduced integration elements, with six elements

through the thickness of bar 2, and 3 through the thickness of bar 1.

The load cycle is described by a constant load which consists of internal pressure,

P, applied to bar 2 and axial force, F, distributed between both bars by a plane section

constraint. The cyclic load is applied as a varying temperature, above the reference

temperature, in bar 2, with the temperature uniform throughout the bar. Bar 1 remains

at all times at the reference temperature. The pressure and axial force are considered

for three separate conditions, where the force in Newtons divided by the pressure in

MPa equals 10, 15 and 20. This is done to test the proposed methods under varying
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extents of multi-axial stress conditions. The ratchet boundaries, as determined by the

proposed methods, the Hybrid Method and the LMM, are given in figure 9 to figure 11.

The LMM solutions are presented as they agree closely with the verified DCA results

given in (Martin and Rice 2009).

The results show that the proposed methods give different results to the Hybrid

Method for the varying degrees of multi-axial stress condition. In most of the points

considered the proposed Method 1 produces results below that of the Hybrid Method.

This can be attributed to the consistent tangent modulus becoming ill conditioned in

the complex stress fields, resulting in a premature failure of the Stage 2 limit analysis.

The proposed Method 2 produces a boundary more consistent with the upper bound

LMM than the Hybrid Method in all of the conditions analysed. Note that both of

the proposed methods avoid the possibility of the non-conservative results seen in the

Hybrid Method for F/P=20, figure 11, at a cyclic temperature above approximately

140˚C. This is attributed to the Hybrid Method not accounting for redistribution in

the stress and as suchnot representing the effective weakening of the structure caused

by the redistribution in the stress field .
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Figure 9: Pressurised Two Bar Ratchet Boundaries by Various Methods with F/P=10
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Figure 10: Pressurised Two Bar Ratchet Boundaries by Various Methods with
F/P=15
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Figure 11: Pressurised Two Bar Ratchet Boundaries by Various Methods with
F/P=20
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3.5.4 Plate with Hole

Figure 12: Plate with Hole Problem

The plate with hole is square with edge

length L. The hole is centrally located

with a radius a, such that a/L=0.1. The

depth d of the plate is such that d/L=

0.005, see figure 12 for a schematic of

the geometry. Symmetry is used to

model only one eighth of the plate. The

load case analysed is constant pressure P

applied on one set of the free ends plus temperature cycled throughout the structure

from to θ0 to θ (r, t), see equation 6, where θ0 is assumed to be 0˚C. At all times the

free ends of the plate are constrained to remain plane.

θ (r, t) = θ0 + (∆θ (t) − θ0)
ln
(

5a
r

)

ln (5)
(6)

The plate material properties are assumed to be temperature independent and

isotropic. The elastic modulus E= 208GPa, Poisson’s ratio, v = 0.3, coefficient of

thermal expansion, α = 5x10−5◦C−1 and yield strength, σy=360MPa .
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Figure 13: Plate with Hole Ratchet Boundary by Various Methods

The ratchet boundaries obtained from several methods are shown in figure 13.

The LMM result have been previously verified by elastic plastic FEA (see Ure et.
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al. 2011) and may be taken as accurate. Figure 13 shows that the proposed Method 1

becomes unstable at relatively low cyclic loads. A number of possible reasons for this

are discussed in 3.6. The proposed Method 2, however, shows a more stable solution,

similar to the lower bound LMM with a cyclic temperature ratio of 0.5. In general

Method 2 finds a ratchet boundary more consistent with the upper bound LMM than

the Hybrid Method. This is attributed to the increase in modified yield strength in

the majority of the structure that occurs on redistribution of the constant load, as

illustrated in figures 14a and 14b.

(Avg: 75%)
SDV1
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(MPa) Method 2
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(MPa) Hybrid Method

(Avg: 75%)
S, Mises

+8.216e-02
+5.358e+00
+1.063e+01
+1.591e+01
+2.119e+01
+2.646e+01
+3.174e+01
+3.701e+01
+4.229e+01
+4.757e+01
+5.284e+01
+5.812e+01
+6.339e+01

(c) Constant equivalent residual stress
due to cyclic loading,|ρ| (MPa), for

∆θ
100

=0.5

(Avg: 75%)
S, Mises

+7.564e+00
+4.048e+01
+7.339e+01
+1.063e+02
+1.392e+02
+1.721e+02
+2.050e+02
+2.380e+02
+2.709e+02
+3.038e+02
+3.367e+02
+3.696e+02
+4.025e+02

(d) Constant equivalent residual stress,|ρ|
(MPa), for ∆θ

100
=1.0

(Avg: 75%)
S, Mises

+7.509e+01
+1.005e+02
+1.259e+02
+1.513e+02
+1.767e+02
+2.021e+02
+2.275e+02
+2.529e+02
+2.783e+02
+3.037e+02
+3.291e+02
+3.545e+02
+3.799e+02

(e) Constant equivalent residual stress,|ρ|
(MPa), for ∆θ

100
=2.5

Figure 14: Plate with Hole Stresses
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It can be seen that Method 2, whilst accounting for redistribution, starts to deviate

significantly from the LMM results for temperature ratios above 0.5 but then tends

toward the LMM results beyond a temperature ratio of approximately 1.5. The cyclic

stress solutions from Stage 1 with a temperature ratio of 0.5 indicate that the region

of residual stress from Stage 1 is highly localized around the bore of the hole, with

the residual stress elsewhere being relatively low, as shown in figure 14c. The results

at temperature ratio 1 show that regions of residual stress are starting to form at the

edge of the plate, as shown in figure 14d. When the cyclic temperature ratio is 2.5, the

residual stress zones at the centre of the plate and also at the edges of the plate result

in full reverse yielding at the residual state: i.e. cause reverse plasticity as shown in

figure 14e. This suggests that when the residual stress is small, as in figure 14c, the

effect of the cyclic solution on the Stage 2 ratchet analysis is negligible. As the cyclic

temperature increases, the residual stress increases at the points where the constant

load is applied. This appears to have a larger impact on Stage 2. As the residual stress

at the loaded faces becomes large and causes reverse plasticity, the effect this has on the

ratchet analysis is reduced. This suggests that the regions of residual stress which result

in plastic strains that are not carried over to the Stage 2 impact on the application of

the constant load. By removing the plastic strains from the analysis before performing

the limit analysis, the compatibility of the problem is not fully accounted for. Whilst

compatibility is not a necessary condition required for Melan’s theorem, it is enforced

in the FEA. This indicates that not preserving the compatibility between Stage 1 and

Stage 2 could be a source of the discrepancy between the proposed methods and the

LMM results.

3.6 Discussion

From the results presented in figures 9 to 11 and figures 14c to 14e, it is clear that

Method 1 is highly unstable. This is accredited to the per iteration update of X

which can result in a rapidly changing consistent tangent modulus. The results from

Method 2 are generally in better agreement with the LMM than the Hybrid Method.

Also the non-conservative results present in the Hybrid Method, as shown in figure 11,

are not seen in the Method 2. This can be attributed to updating the modified yield

strength, or X, and thus ensuring the constant stress consistently satisfies the extended

Melan’s theorem. However in general the results from Method 2 are still unreliable and

potentially overly conservative.

It has been demonstrated by the lower bound approximation of the LMM that it

should be possible to find residual stress fields which satisfy Melan’s theorem closer to
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the upper bound solutions. The results for the pressurized bar, F/P=20, show that

the stress condition for this particular stress field is predominantly uniaxial. Under

these conditions the results show reasonable agreement with the upper bound LMM,

an exception is the point at 50°C. Yielding first occurs in bar 1 at a cyclic temperature

of approximately 84°C and reverse plasticity at 168°C. Beyond 168°C bar 1 becomes

perfectly flexible to additional strain caused by the thermal load in bar 2. After 168°C

the stress cycle in bar 1 is the same for all cyclic temperatures. Thus the cyclic stress

contribution during the Stage 2 analysis remains constant, and the Stage 2 results for

constant pressure are the same for cyclic temperature greater than 168°C. In general,

for all of the load cases these points show better agreement with the LMM. Due to

the reverse plasticity mechanism in bar 1 it becomes perfectly flexible to additional

constant load. It is then reasonable to assume that below this temperature a possible

source of the difference to the LMM is an error in the compatibility internally in each

bar and between the two bars.

The result for the Bree cylinder show differences to the LMM for cyclic temperatures

considerably below the first yield and reverse plasticity loads. At these points

compatibility issues caused by cyclic solutions should not occur, as no plastic strains

result from the cyclic loads. However the plane section constraint on the free end

of the cylinder could have an impact on the stress state and normal directions that

results from a given plastic strain direction. In the actual structure the direction of the

plastic strains would be given by the combination of constant plus cyclic load, thus the

normal directions would be rij = 3
2

σ′

ij√
3
2

σ′

kq
σ′

kq

. The normal directions used in the Stage

2 analysis are for the constant load only, i.e rij = 3
2

σ′c
ij√

3
2

σ′c
kq

σ′c
kq

. The difference in normal

directions could have an impact on the axial strain in the parts of the structure that

yield. This would affect the plane section constraint and the resulting redistribution

of stress. The same argument could also be applied to the stresses in bar 2 in the

pressurized two bar structure, giving a possible reason for the greater deviation of the

results below the alternating plasticity boundary for F/P=10 and F/P=15.

Therefore two problems with the proposed methods are identified:

Problem 1 An error in the plastic strain direction during Stage 2 due to the separation

of constant and cyclic stresses during the Stage 2 analysis. This was necessary to

identify a single limiting value for X.

Problem 2 Compatibility problems which result from removing the plastic strains

from Stage 1 before starting Stage 2. This would further contribute to the extent

of problem 1.

56



Whilst maintaining the plastic strains from Stage 1 to solve problem 2 would be

relatively easy, using the actual plastic strain direction would make identifying a limiting

case for X more difficult, as the direction of plastic strain would be different for the

different cyclic loads. The results from Methods 1 and 2 therefore suggest it is necessary

to consider the actual plastic strain directions when finding a constant stress which

satisfies the yield condition given in equation 5.
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4 Melan’s Theorem as a Class of Material Model

In Section 3 it was shown that the Hybrid method and Methods 1 and 2 were limited

in accuracy by their formulation. It was discussed that whilst Method 1 and Method 2

were able to find stress fields which satisfied Melan’s theorem, several other problems

limited their accuracy.

Loss of Compatibility: Whilst compatibility is not strictly necessary for Melan’s

theorem it is of utmost importance when considering a FEA. When Stage 1 of

the Hybrid Method, Method 1 and 2 is completed, the strains are set back to

an un-strained state. Doing so causes the reloading of the structure to take a

different load path than it would if the strain from Stage 1 were to be used as the

starting point of Stage 2.

Error in Plastic strain Direction: The plastic strain direction used in the Stage 2

analysis is given by the constant load only i.e.:

rij =
3

2

ρ′c
ij + σ̂′c

ij√
3
2σ′c

kqσ′c
kq

However the “actual” plastic strain direction which would occur due to the

application of both the cyclic and constant load is:

rij =
3

2

σ′
ij√

3
2σ′

kqσ′
kq

therefore the redistribution stress field results in plastic strains which do not

accurately model the “actual” redistribution.

The result of these 2 problems is a limiting effect on the amount of redistribution

which can take place in the constant stress field, which can result in premature failure

of the Stage 2 limit analysis. This results in the excessively conservative results of

Methods 1 and 2. The compatibility problem may be easily overcome by retaining the

strains from the end of Stage 1. However doing so will not fully resolve the problem

and premature failure due to limited redistribution could still occur.

When multiple load cases must be considered simultaneously, as in Melan’s Theorem,

it is necessary to apply assumptions to allow the application of standard material

models. To allow the multiple load cases to be compared simultaneously to identify

a limiting case, it is necessary to assume a common plastic strain direction for all

load cases. Thus the plastic strain direction during Stage 2 is assumed to be given
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by the constant load only. To improve the final solution given by the ratchet method,

it is necessary to find a way of considering numerous load cases simultaneously whilst

maintaining an accurate description of plastic strain with respect to all of the load cases.

In this chapter Melan’s Theorem and the Extended Melan’s Theorem is reinterpreted

in such a way to allow this.

4.1 Melan’s Theorem and Plasticity Theory

Melan’s Theorem can be formally expressed as:

Consider a structure is subject to an arbitrary set of time varying loads P (t), which

can be described by fully elastic stresses σ̂ij (t), and these loads result in a constant,

self-equilibrating, residual stress, ρij. Shakedown will occur if, under the combined

action of the residual, ρij plus elastic σ̂ij (t) stresses, the yield condition is not violated

anywhere in the structure at all times in the load cycle i.e.:

|ρij + σ̂ij (t)| ≤ σy for all t (7)

Assuming the load cycle can be adequately modelled by two load extremes P 1 and

P 2, which result in fully elastic stress fields of σ̂1
ij and σ̂2

ij , then Melan’s Theorem may

be defined as:

∣∣∣ρij + σ̂1
ij

∣∣∣ ≤ σy (8)

and

∣∣∣ρij + σ̂2
ij

∣∣∣ ≤ σy (9)

The problem then reduces to finding a residual stress field which satisfies both

of the yield criteria in equations 8 and 9. However from the results of the Hybrid

Method and Methods 1 and 2 it is also necessary to maintain correct descriptions of

the plastic strains in the structure to prevent premature failure of the analysis and

overly conservative results. If the loading on the structure is such that the first point

on the load cycle, P 1, is the only point in the load cycle which violates yield for a

particular material point, then the response of that material point, assuming perfect

plasticity, may be defined as:

σ1
ij = Cijkq

(
εT,1

kq − εp
kq

)
(10)

where σ1
ij is the stress at load point 1.
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Any plasticity must obey the Kuhn-Tucker loading and unloading conditions i.e.

γ ≥ 0 , f ≤ 0 , γf = 0

and also on yielding the stresses must satisfy the consistency condition:

γḟ = 0

with the yield condition:

f
(
σ1

ij

)
=
∣∣∣σ1
∣∣∣− σy

The plastic strain rate is assumed to be:

ε̇p
ij = γ̇

δf1

δσ1
ij

(11)

If the loading on the structure is such that the second point on the load cycle, P 2,

is the only point in the load cycle which violates yield for a particular material point,

then the response of that material point, assuming perfect plasticity, may be defined

as:

σ2
ij = Cijkq

(
εT,2

kq − εp
kq

)
(12)

Any plasticity must obey the Kuhn-Tucker loading and unloading conditions i.e.

γ ≥ 0 , f ≤ 0 , γf = 0

and also on yielding the stresses must satisfy the consistency condition:

γḟ = 0

with the yield condition:

f
(
σ2

ij

)
=
∣∣∣σ2
∣∣∣− σy

The plastic strain rate is assumed to be:

ε̇p
ij = γ̇

δf2

δσ2
ij

(13)

Therefore if only one point in the load cycle violates Melan’s theorem at each

material point the problem may be accurately solved using standard material models

with the appropriate cyclic stress used to define σm
ij . However consider the case when
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both load points violate Melan’s theorem for a particular material point. The loaded

stress and strain conditions are given by:

σ1
ij = Cijkq

(
εT,1

kq − εp
kq

)
and σ2

ij = Cijkq

(
εT,2

kq − εp
kq

)
(14)

Any plasticity must obey the Kuhn-Tucker loading and unloading conditions i.e.

γl ≥ 0 , f l ≤ 0 , γlf l = 0 for l = 1, 2

and also on yielding the stresses must satisfy the consistency condition:

γlḟ l = 0 for l = 1, 2

with the yield condition:

f
(
σl

ij

)
=
∣∣∣σl

ij

∣∣∣− σy for l = 1, 2

The net plastic strain rate is assumed to be the combined total for both load

conditions and is given by Koiter’s rule:

ε̇p
ij =

θ=2∑

θ=1

γ̇θ δf θ

δσθ
ij

(15)

Therefore Melan’s theorem may be thought of as a special case of plasticity model

where numerous load cases contribute to the net plastic strain rate. To solve for

the material response described by equations 14 to 15 it is necessary to implement

a plasticity model which deviates from the traditional single yield surface plasticity

models commonly available in finite element software.

4.2 The Extended Melan’s Theorem and Plasticity Theory

The extended Melan’s Theorem was formally expressed in Section 2.4 and is summarised

as:
∣∣∣ρc

ij + ρij + ρ∆
ij (t) + σ̂c

ij + σ̂ij (t)
∣∣∣ ≤ σy (16)

with

ρ∆
ij(t) = ρ∆

ij(t + ϕ) (17)

in regions of the structure where the cyclic stresses are sufficient to cause reverse

plasticity.

Consider a structure subject to a constant load P c and is also subject to a cyclic
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load P (t) which can be considered as having two load extremes P 1 and P 2. If reverse

plasticity is present then both load conditions violate the the yield functions given by

the extended Melan’s theorem and the strains and stresses at the extreme points in the

load cycle may be expressed as:

σ1
ij = Cijkq

(
εT,1

kq − εp,1
kq

)
and σ2

ij = Cijkq

(
εT,2

kq − εp,2
kq

)
(18)

where εp,1
ij 6= εp,2

ij in some part of the structure due to the alternating plasticity

mechanism.

Any plasticity must obey the Kuhn-Tucker loading and unloading conditions i.e.

γl ≥ 0 , f l ≤ 0 , γlf l = 0 for l = 1, 2

and also on yielding the stresses must satisfy the consistency condition:

γḟ l = 0 for l = 1, 2

with the yield condition:

f
(
σl

ij

)
=
∣∣∣σl

ij

∣∣∣− σy for l = 1, 2

The net plastic strain at the constant residual state, i.e. cyclically unloaded, is

assumed to be the combined total for both load conditions, i.e. the net plastic strain

rate from loading and unloading which results at the shakedown condition, and is given

by Koiter’s rule:

ε̇p
ij =

θ=2∑

θ=1

γ̇θ δf θ

δσθ
ij

(19)

Therefore the extended Melan’s theorem may also be thought of as a special case

of a plasticity model where numerous load cases contribute to the net plastic strain

increment. Here, however, there is an added complication of the plastic strain being

different from one load case to another.

4.3 The Residual Stress as a Shared State for all Load Cases

In Sections 4.1 and 4.2 it was shown that both Melan’s theorem and the extended

Melan’s theorem may be taken as a plastic material model in which numerous load

cases contribute to the net plastic strain. However to solve the model with two different

stress conditions would require a special finite element which could calculate both

stress conditions at the same time. In this Section the residual stress is proposed as a
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common material state to all load cases, thus allowing the problem to be solved using

conventional finite elements.

4.3.1 Shakedown

First consider the pure shakedown problem. If the cyclic load case may be expressed as

m extreme points in the load cycle, which may be described by fully elastic stresses σ̂l
ij

with l = 1, 2..m, the total loaded stress at point l in the load cycle may be expressed

as:

σl
ij = ρij + σ̂l

ij (20)

The solution may then be carried out by converging on the residual stresses and

strains with the loaded conditions calculated by superposition of the fully elastic cyclic

stresses. The problem may then be defined as:

ρij = Cijkq

(
εT r

kq − εp
kq

)
(21)

The loaded conditions are then given by:

σl
ij = ρij + σ̂l

ij (22)

Any plasticity must obey the Kuhn-Tucker loading and unloading conditions i.e.

γl ≥ 0 , f l ≤ 0 , γlf l = 0 for all l

and also on yielding the stresses must satisfy the consistency condition:

γlḟ l = 0 for all l

with the yield condition:

f
(
σl

ij

)
= f

(
ρij + σ̂l

ij

)
=
∣∣∣ρij + σ̂l

ij

∣∣∣− σy for all l

and the net plastic strain rate is assumed to be due to all load cases and given by

Koiter’s Rule:

ε̇p
ij =

θ=m∑

θ=1

γ̇θ δf θ

δσθ
ij

(23)

To implement the material model given in equations 21 to 23 in a FEA, it is

necessary to integrate the model to give γl and define the consistent tangent modulus
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to preserve the quadratic rate of convergence of the global Newton-Raphson solution

procedure. This will be done for Mises plasticity in 5.2.

4.3.2 Reverse Plasticity

If the load case is such that the structure goes beyond the alternating plasticity

boundary the residual condition changes due to the alternating plasticity, inducing

a varying residual stress. However the load cycle may still be described by the constant

residual if the varying residual stresses and strains are known. Assume that the

structure is subject to a constant load P c which results in fully elastic stresses σ̂c
ij

and is also subject to a cyclic load P (t) which may be described by two extremes in

the load case given by P 1 and P 2, which result in fully elastic stresses σ̂1
ij and σ̂2

ij

respectively.

The constant residual stress may be expressed as:

ρc
ij + ρij = Cijkq

(
εT r

kq − εp
kq

)
(24)

where εp
ij is made up of a constant residual strain due to the cyclic loading and a

constant residual strain due to the constant load.

The loaded conditions are then given by:

σl
ij = ρc

ij + ρij +
θ=l∑

θ=1

ρ∆,θ
ij + σ̂c

ij + σ̂l
ij for l = 1, 2 (25)

Any plasticity must obey the Kuhn-Tucker loading and unloading conditions i.e.

γl ≥ 0 , f l ≤ 0 , γlf l = 0 for l=1,2

and also on yielding the stresses must satisfy the consistency condition:

γḟ l = 0 for l = 1, 2

with the yield condition:

f
(
σl

ij

)
= f

(
ρc

ij + ρij +
∑θ=l

θ=1 ρ∆,θ
ij + σ̂c

ij + σ̂l
ij

)
=

∣∣∣ρc
ij + ρij +

∑θ=l
θ=1 ρ∆,θ

ij + σ̂c
ij + σ̂l

ij

∣∣∣− σy for all l

and the net plastic strain rate is assumed to be due to all load cases and given by
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Koiter’s Rule:

ε̇p
ij =

θ=m∑

θ=1

γ̇θ δf θ

δσθ
ij

(26)

Note also that for alternating plasticity and the assumed two point load cycle:

ρ△,1
ij + ρ∆,2

ij = 0 (27)

with

θ=m∑

θ=1

ε△,θ
ij = 0 (28)

where ε△,θ
ij is the varying residual plastic strain at load point θ.

To implement the model in a FEA it must be integrated to give γl. However in this

case a set of ρ∆,l
ij which gives

θ=m∑

θ=1

ρ∆,θ
ij =0 is also an unknown and it is difficult to find

both simultaneously. It is therefore easier if the cyclic solution is found first and the

results of that analysis are used to find the constant stress solutions.

Therefore, whether solving the shakedown or ratchet problem, Melan’s theorem

can be thought of as a special type of plasticity model in which multiple load cases

may contribute to the net plastic strain at the shakedown state. To solve for the

plastic strains with conventional finite elements it is necessary to identify a stress and

strain condition common to all load cases. The common stress and strain condition

proposed is the constant residual strain and corresponding stress the material models

proposed in 4.3.1 and 4.3.2 are integrated into suitable forms for implementation within

conventional FEA methods.
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5 Non-smooth Multi Yield Surface Plasticity for

Shakedown: The EMSP Method

5.1 The Material Model

In this section attention is limited to Mises plasticity: plastic flow which is incompressible

and associative in nature, also referred to as J2 plasticity. In this Section a number of

other assumptions will be applied unless otherwise stated:

Assumption 7 Perfect plasticity is assumed throughout

Assumption 8 All material properties are temperature independent

Assumption 9 The cyclic loads may be described by superimposed elastic stresses

from an unstrained state, i.e non-linear geometry effects may be ignored

Consider a structure subject to an arbitrary load case which can be described by m

load extremes. The material response for Mises plasticity may be described by:

ρ̇ij = Cijkq

(
ε̇T r

kq − ε̇p
kq

)
(29)

where ε̇p
ij is made up of a constant residual strain rate due to the cyclic loading and

a constant residual strain rate due to the constant load and:

Cijkq = λδijδkq + µ(δikδjq + δiqδjk) (30)

with:

λ =
vE

(1 + v) (1 − 2v)
and µ =

E

2 (1 + v)

The loaded stress rates are given by:

σ̇l
ij = ρ̇ij + ˙̂σ

l
ij for l = 1, 2..m (31)

with the yield functions:

∣∣∣ρij + σ̂l
ij

∣∣∣− σy ≤ 0 for all l

where:

∣∣∣ρij + σ̂l
ij

∣∣∣ =

√
3

2

(
ρ′

ij + σ̂′l
ij

) (
ρ′

ij + σ̂′l
ij

)
(32)
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and the net plastic strain rate is assumed to be due to all load cases and given by

Koiter’s Rule:

ε̇p
ij =

θ=m∑

θ=1

γ̇θ δf θ

δσθ
ij

(33)

For Mises plasticity:

δf l

δσl
ij

= rl
ij =

δ
(∣∣∣ρkq + σ̂l

kq

∣∣∣− σy
)

δ
(
ρij + σ̂l

ij

) =
3

2

ρ′
ij + σ̂′l

ij∣∣∣ρkq + σ̂l
kq

∣∣∣
(34)

with

γl ≥ 0 , f l ≤ 0 , γlf l = 0 and γlḟ l = 0

Let the set of yield surfaces at which yielding occurs be defined as the set of active

yield criteria:

Qact where f = 0 and γ ≥ 0 (35)

A complete treatment of the solution to the above model with the incorporation of

hardening effects will be given in Section 5.6.2. Here let:

[g]αβ =
[
rα

ijCijkqrβ
kq

]
(36)

where

α ∈ Qact and β ∈ Qact (37)

which gives the tangent modulus as:

Eep
ijks = Eijks −

∑

α

∑

β

[G]αβ

(
Cijoprα

op

) (
Cksqrrβ

qr

)
(38)

where
∑

α,β,ς∈Qact

[g]αβ [G]βς = δας (39)

It is possible to describe equation 32 pictorially, see figure 15. The set of m yield

functions may be visualized as a series of von Mises yield surfaces off-set by the negative

of the superimposed elastic stresses, i.e. −σ̂l
ij. For the residual stress to satisfy Melan’s

theorem it must lie in the region where all of the yield criteria overlap, shown as the

shaded region in figure 15. The shaded region is bounded by a yield surface which is

piecewise described by the yield surfaces formed by Melan’s theorem. The yield surface

ABC is defined by the critical load case 1 and yield surface CDA is defined by the critical
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load case 2. The shakedown problem then reduces to finding a residual stress which

satisfies the piecewise yield surface ABCDA. However, this piecewise yield criteria is

not smooth and there is the potential for corners to appear in the yield surface. At

these corners the solution becomes singular, as there are numerous possible solutions

for the direction of plastic flow depending on the stress conditions. Therefore to find

the residual stress condition a robust iterative procedure is required.

σ1'

σ2'

�ˆ

2
σ- ˆ

B

C

D

A

Figure 15: Melan’s Theorem as Offset Yield Surfaces

5.2 Solution Scheme: The EMSP Method

The numerical method based on the material model given in Section 5.1 is given the

name EMSP, were the “MSP” parts stands for multi surface plasticity and the “E” is

elastic for elastic shakedown. The iterative solution procedure follows closely the works

of Simo and Hughes (2000) in their Non-Smooth Multi yield surface plasticity model,

with some alteration due to possible changes to the active yield surfaces not catered

for in Simo and Hughes model, see Section 5.3. These changes are necessary when

material points have behaviours close to the alternating plasticity boundary. Only the

algorithms necessary to implement the shakedown solution method will be presented

in this section. For a complete formulation of the integration scheme see Section 5.6.2,

where the scheme is developed in full including the effects of hardening.

The algorithms are presented in the form of the material calculations required in

a Finite Element procedure. Stress and internal variables are calculated, based on

the displacements and total strains which have been updated based on the results of

the previous iteration, to be provided back to the solver for the calculation of nodal
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forces and equilibrium checks. The shakedown solution method requires fully elastic

stresses which are in equilibrium with the m critical load cases. In order to obtain these

solutions and use them in the shakedown solution, they are found during the first m

steps of the solution procedure and written to an internal state variable array ready for

use in the shakedown solution method which takes place in step m + 2. The general

procedure is:

Step 1 to m Load the model with the loads for critical load case m and solve for the

elastic stresses. Write these stresses to the state variable array.

Step m+1 Return model back to unstressed state.

Step m+2 Perform Shakedown solution using results from steps 1 to m.

The lower bound solution method uses incrementally increasing loads until the solver

cannot find a stable solution. This shakedown procedure incrementally increases the

superimposed load based on a lower bound multiplier Y . The largest value of Y for

which the solver can find a stable solution is taken as the lower bound multiplier at the

shakedown boundary. In this case, the multiplier Y is made equal to the step time for

step m + 2, and thus the inbuilt solution controls in the Finite Element package may

be used to set the convergence parameters on the lower bound multiplier.

The algorithms that follow have been obtained using a backward Euler integration

scheme, the quantities at the end of the previous increment are given the superscript

n, the quantities at the end of the current increment are given the superscript n+1 and

trial quantities (i.e. initial guesses based on initial strains) are given the superscript

trial. For plastic cases a local iterative procedure is used to find ρn+1
ij and εp,n+1

ij , where

the current iteration number is ζ.

1. Compute the trial elastic quantities

ρtrial
ij = Cijkq

(
εT r,n+1

kq − εp,n
kq

)

f l =
∣∣∣ρij + Y σ̂l

ij

∣∣∣− σy =

√
3

2

(
ρ′

ij + Y σ̂′l
ij

) (
ρ′

ij + Y σ̂′l
ij

)
− σy for l = 1, 2..m

2. Check yield conditions

IF
∣∣∣ρtrial

ij + Y σ̂l
ij

∣∣∣− σy ≤ 0 for all Qζ
act THEN

ρn+1
ij = ρtrial

ij

εp,n+1
ij = εp,n

ij
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ELSE :

k = 0

Qζ
act =

{
α ∈ l where

∣∣∣ρtrial
ij + Y σ̂α

ij

∣∣∣− σy > 0
}

ρn+1,ζ
ij = ρtrial

ij

εp,n+1,ζ
ij = εp,n

ij

△γl,n,ζ = 0

goto 4

ENDIF

3. RETURN Values back to Solver

4. Evaluate Residuals

ρn+1,ζ
ij = Cijkq

(
εT r,n+1

kq − εp,ζ
kq

)

Rζ
ij = −εp,ζ

ij + εp,n
ij +

∑

α∈Qζ
act

△γα,ζrα,ζ
ij

rl,n,ζ
ij =

3

2

ρ′ζ
ij + Y σ̂′l,ζ

ij∣∣∣ρkq + Y σ̂l,ζ
kq

∣∣∣

α ∈ Qζ
act and β ∈ Qζ

act

5. Check Convergence

f l,ζ =

√
3

2

(
ρ′

ij + Y σ̂′l
ij

) (
ρ′

ij + Y σ̂′l
ij

)
− σy for l = 1, 2..m

IF fα,ζ ≤ TOL1, for α ∈ Qζ
act

Check if any deactivated yield criteria require reactivating

IF f l ≤ TOL1 for all l

Solution Converged

ρn+1
ij = ρζ

ij

εp,n+1
ij = εp,ζ

ij
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RETURN values to solver

ELSE

Qζ+1
act =

{
α ∈ m where

∣∣∣ρtrial
ij + Y σ̂l

ij

∣∣∣− σy > 0
}

Continue

ENDIF

ELSE

Continue

ENDIF

6. Compute Elastic and Tangent Moduli

[gαβ ]ζ = rα,ζ
ij Aijkqrβ,ζ

kq

[
gαβ

]ζ
=
[
gζ

αβ

]−1

Cijkq = E−1
ijkq

Aζ
ijkq = Cijkq +

∑

α

△γα
δrα,ζ

ij

δ
(
ρζ

kq + Y σ̂α
kq

)

δrα,ζ
ij

δ
(
ρζ

kq + Y σ̂α
kq

) =
3

2

(
1ijkq − 1

31ij1kq

)

∣∣∣ρζ
st + Y σ̂α

st

∣∣∣
−

rα,ζ
ij rα,ζ

kq∣∣∣ρζ
st + Y σ̂α

st

∣∣∣

7. Calculate the increment to the plastic consistency parameters

△2γα,ζ =
∑

β

[
gαβ

]ζ (
fβ,k − rβ,ζ

ij Aζ
ijkqRζ

kq

)

△γ̄α,ζ+1 = △γα,ζ + △2γα,ζ

IF △γα,ζ+1 < 0

Remove α from Qact

Goto 4

ENDIF

8. Calculate Increment to plastic strains

△εp,ζ+1
ij = EijkqAζ

kqop

(
Rop +

∑
△2γβ,ζrβ,ζ

op

)
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9. Update iterative quantities

△γα,ζ+1 = △γα,ζ + △2γα,ζ

△εp,n+1
ij = εp,n

ij + △εp,ζ+1
ij

set ζ = ζ + 1

Goto 3

When using the solution scheme outlined here (inside the finite element solution

which is a global Newton-Raphson scheme), it is necessary to use a consistent tangent

modulus to preserve a quadratic rate of convergence for the FEA. For a detailed

discussion on the formulation of the consistent tangent modulus see Section 5.6.2. The

consistent tangent modulus may be calculated as follows

Ξijkq =


Cijkq +

∑

α

△γα
δrα,ζ

ij

δ
(
ρ̄ζ

kq + Y σ̂α
kq

)




−1

[
gαβ

]ζ
= [gαβ ]ζ

−1
=
[
rα,ζ

ij Ξijkqr
β,ζ
kq

]−1

δρn+1
ij

δεT r
kq

= Ξijkq −
∑

α

∑

β

[
gαβ

]ζ
Nα

ijNβ
kq

Nα
ij = Ξijkqrα

kq

The solution schemes presented in steps 1-9 make use of a local Newton’s method

for calculation of the plastic consistency parameters. The resulting set of simultainious

equations becomes indeterminate if there are more than six yield criteria actively

returning the yield surface during a single iteration. This does not however limit the

number of load points to six. The stresses may be filtered and if necessary applied in

several groups to give a bounding result, making sure to check all yield criteria before

passing the stresses back to the global equilibrium solution.

5.3 Pictorial Description of the Solution Scheme

The above solution scheme is designed to give residual stresses which consistently satisfy

Melan’s theorem whilst maintaining a constitutively accurate description of the plastic

strain increment. It may be described geometrically as in figures 16a to 16d. In these
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figures the load cycle is assumed to be described by two extremes and thus the piecewise

yield surface for the residual stress is made up of small sections of two off-set von Mises

yield criteria as discussed in section 6.1. Depending on the trial residual stress, there

are 6 possible behaviours of the solution scheme. Only five of these are considered in

the Simo and Hughes non-smooth multi yield surface plasticity model.

1. The trial residual stress lies inside the shaded region in figure 16a. The residual

stress therefore satisfies all of the yield conditions. If this occurs for all locations

in the structure the load case lies inside the shakedown boundary and no plasticity

calculation is necessary.

2. The trial residual stress is given by point B in figure 16b. In this case the trial

residual stress violates the yield condition for yield surface 1 (red solid line).

In this case the residual stress must be returned to the shaded portion of the

yield surface along a stress path consistent with the assumed material response

as shown in figure 16b by the dashed arrow starting at B.

3. The trial residual stress is given by point C in figure 16b. In this case the trial

residual stress violates yield function 2 (blue dashed line) and the stress must be

returned to the shaded portion of the yield surface. The residual stress is returned

along a stress path consistent with the assumed material response, as shown in

figure 16b, as the dashed arrow starting from C.

4. The trial residual stress is given by point D in figure 16c. This point lies in

the region bounded by the surfaces created by sweeping the vectors Cijkqr1
kq and

Cijkqr2
kq around the intersection of the two yield surfaces. In this case the trial

residual stress violates the yield function for both yield surfaces 1 and 2. The

residual stress must be returned to the singular point where the yield surfaces

meet. This must be done whilst maintaining the assumed material response with

respect to both of the yield surfaces.

5. In addition to the four basic trial conditions, given in items 1-4, it is possible

to change the condition of the stress during the process to return the stress to

the shaded region of the material. For instance, consider the trial residual stress

given by point E in figure 16c. At the trial condition the residual stress violates

the yield condition for both yield surfaces. However the path that the stress will

follow is dominated by yield surface 2 (blue dashed line) and the stress will return

along a path similar to that shown by the dashed arrow starting at E. Similarly if

the trial stress is described by point F the stress will return along a path similar

73



to the dashed arrow starting at F, as the yielding is dominated by yield surface

1 (red solid line).

6. If the yield surfaces and trial stress condition is given by point G in figure 16d

the trial stress condition violates yield surface 1 (red solid line). When the stress

is returned to yield surface 1, it in turn creates a stress condition which violates

yield surface 2 (blue dashed line). The stress conditions must therefore lie on the

intersection between the two yield surfaces and returns along a path depicted by

the dashed arrows starting at G. A similar but opposite scenario applies if the

trial residual stress condition is given by point H. This particular response would

not be captured in the multi yield surface plasticity model presented in (Simo and

Hughes 2000). To solve for this behaviour a change to the algorithms presented

in section 5.2 is required. In part 5 of the algorithms presented here all yield

functions are checked to ensure they are ≤ 0 and that those which are currently

active are ⋍ 0.
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ρij
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Figure 16: Possible Behaviours of the shakedown solution procedure
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5.4 Convergence

The solution scheme presented in Section 5.2 is highly non-linear. However the iterative

scheme for finding the plastic strain increment given in steps 1-9 is theoretically

unconditionally convergent (Simo and Hughes 2000), so long as the yield surfaces

overlap, i.e. the cyclic stresses are within the alternating plasticity limit. In cases

where this is not the case the local iterative scheme for the plastic strain increment

will fail, as is expected of a lower bound shakedown method. In such cases the time

increment is cut until the convergence criteria are met.

In general for the benchmark problems studies in this thesis, the number of iterations

required for the local iterative scheme to converge was less than 10. Note however that

matrix inversion is required and therefore this scheme can present a relatively large

computational cost. Therefore, to speed up the solution, if only one yield surface

was active the plastic strain increment necessary to satisfy Melan’s theorem could be

identified using a single yield surface model as discussed in Section 4.1. It would however

be necessary to check that no other yield surfaces became active during the solution

process.

The global convergence of the method is also, theoretically, unconditionally

convergent. However in practice it is dependent on the time step (Simo and Hughes

2000). Note also that the assumption is made that the direction of the plastic strain

increment is constant throughout the step. In most practical applications the structure

is likely to exhibit some level of stress redistribution and thus the direction of plastic

strain may change throughout the load increment. However with appropriately selected

load increments the error is likely to be negligible compared to other sources of error in

the finite element solution, and no bigger than the same source of error in a conventional

FEA utilising plasticity models.

Convergence studies showing the number of iterations to solution, as is usually

done with upper bound methods, are not presented here. This is because non-linear

material models, such as the shakedown and ratchet solutions proposed here, are

subject to non-linear solution controls. These solution controls may be selected to

show relatively quick or slow convergence of the methods and thus do not provide a

comparable assessment of the solution method.

If the global solution scheme fails to converge, the load increment must be cut

back to a smaller value to try and find a stable equilibrium configuration. Cut back

strategies may be chosen to be as simple or complex as the developer requires. For

the development code used during this research, the cut back strategies were relatively
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simple, with half the current time step being used if the iterative scheme given in steps

1-9 failed to converge. If the global Newton Raphson scheme failed, i.e. no equilibrium

solution was found, the finite element program was allowed to use the default cut back

strategies included with the program.

5.5 Applications

5.5.1 Implementation

The solution methods have been implemented in the commercial finite element program

ABAQUS (other packages could also be suitable) using a number of the available

subroutines, in particular the user subroutine UMAT. The solution procedures have

been split into several subroutines which are called from UMAT to keep the code

organised. The solution proceeds in a number of ABAQUS steps as discussed in Section

5.2.

5.5.2 Axi-symmetric Bree Cylinder
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Figure 17: Bree Cylinder Elastic Shakedown Boundary by Various Methods

The EMSP method was applied to the Bree problem introduced in Section 3.5.2.

The shakedown boundaries for the Bree problem given by the EMSP and the LMM are

shown in figure 17. The LMM results were obtained using the method of (Ure 2013),

using the same finite element mesh to allow direct comparison of the two methods.

The convergence tolerance used in the LMM solution was 0.00001. The results show
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that the MSP method gives good agreement with the LMM over the entire shakedown

boundary. There is slightly more discrepancy at the boundary to alternating plasticity,

however given that the alternating plasticity boundary is a localised stress effect it is

likely that the EMSP method captures this in a more complete manner. Using the

thermal stress in the cylinder at a cyclic temperature of 100ºC it can be shown that

the alternating plasticity boundary given by the EMSP method is in better agreement

than the upper bound LMM, (see equations 40 to 42).

Cyclic stress at 100ºC at maximum loaded integration point= 170.661MPa.

The total temperature at the alternating plasticity boundary may be calculated as

follows:

T+∆T = 100 ×
2 × σy

elastic cyclic stress
+ 20 (40)

thus

T+∆T = 100 ×
2 × 402.7

170.661
+ 20 (41)

Therefore the total temperature at the alternating plasticity boundary is:

T+∆T = 100 × 4.719 + 20 = 491.9ºC (42)

which is in better agreement with the MSP method’s result of 491.12ºC than the

upper bound LMM result of 496.64ºC.
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5.5.3 Pressurised Two Bar Model

The EMSP method was applied to the pressurised two bar problem introduced in

Section 3.5.3. The shakedown boundaries for the pressurised two bar problem are

given for the EMSP method and the LMM in figures 18 to 20. The LMM results

were obtained using (Ure 2013), using the same finite element mesh to allow direct

comparison of the two methods. The convergence tolerance used in the LMM solution

was 0.00001. From these results the EMSP gives excellent agreement with both the

lower and upper bound LMM shakedown results. Note that the EMSP method removes

the non-conservatism seen in the Hybrid Method shown in figure 11. In general the

EMSP method shows significant improvement in the predicted elastic ratchet boundary

(as defined in section 2.2) over the Hybrid Method and Methods 1 and 2.
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Figure 18: Pressurised Two Bar Elastic Shakedown Boundaries by Various Methods
with F/P=10

78



EMSP
LMM Lower
LMM Upper

Force (N)

C
y
li
c

T
em

p
er

at
u

re
(
ºC

)

1650160015501500145014001350130012501200

180

160

140

120

100

80

60

40

20

0

Figure 19: Pressurised Two Bar Elastic Shakedown Boundaries by Various Methods
with F/P=15
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Figure 20: Pressurised Two Bar Elastic Shakedown Boundaries by Various Methods
with F/P=20
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5.5.4 Plate with Hole
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Figure 21: Plate with Hole Elastic Shakedown Boundaries by Various Methods

The EMSP method was applied to the plate with hole problem introduced in Section

3.5.4. Results from the EMSP method and the LMM are given in figure 21. The LMM

results were obtained using (Ure 2013), using the same finite element mesh to allow

direct comparison of the two methods. The convergence tolerance used in the LMM

solution was 0.00001. From these results it can be seen that MSP gives excellent

agreement with the both lower and upper bound LMM results.

5.5.5 Pipe Intersection
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Figure 22: Pipe Intersection: Schematic

To demonstrate the capabilities of the

method for a complex 3D component,

the method is used to solve the pipe

intersection model studied in (Ure et

al. 2013). The problem consists of a

pipe intersection joined by a dissimilar

weld. A schematic of the problem is

shown in figure 22. The main pipe is

made from 316 stainless steel and has

a diameter of 240mm, the small pipe is
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made from SA508 steel and has a diameter of 33mm. The weld is considered to

have uniform material properties of inconel 82/182. All residual stresses and heat

effects induced by the weld are ignored. The material properties assumed for this

analysis are: 316 stainless steel, E=200000MPa, v=0.3, σy=220MPa and α=1.8x10−5;

SA508, E=200000MPa, v=0.3, σy =472MPa and α=1.4x10−5; and inconel 82/182,

E=200000MPa, v=0.3 σy =387.6MPa and α=1.5x10−5.

Figure 23: Pipe Intersection Mesh

The pipe intersection is subject to

a constant internal pressure and cyclic

temperature. The temperature is cycled

from, being the reference temperature

everywhere in the intersection, to the

first loaded point in the load cycle

with an internal temperature of 100˚C

and external temperature equal to the

reference temperature, to the second

loaded point in the load cycle where

there is a uniform temperature of 100˚C

everywhere in the intersection. The 3D

mesh used for the analysis is shown in

figure 23.

Results for this problem obtained by both the EMSP and LMM are given in figure

24. The LMM results were obtained using (Ure 2013), using the same finite element

mesh to allow direct comparison of the two methods. The convergence tolerance used

in the LMM solution was 0.00001.

The results presented in figure 24 show that the EMSP method gives excellent

agreement with the LMM. This demonstrates that the EMSP method can successfully

consider more than two load points and multiple material definitions.
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Figure 24: Pipe Intersection Elastic Shakedown Boundary by various methods

5.6 Extension of the Shakedown Method

The flexibility of this approach can be demonstrated by showing some of the possible

extensions to the method that are currently difficult if not impossible to implement in

other direct methods. Possible extensions include hardening and temperature dependent

yield strength and simplified non-linear geometric effects. Other extensions of interest

such as full non-linear geometry and/or temperature dependent material properties

would require the simultaneous simulation of cyclic and constant loads along with

consideration of the residual state at each deformed/temperature condition in the load

cycle. This is currently not possible with the method, however it is theoretically possible

to extend the method using element level formulations.

5.6.1 Temperature dependent yield

Whilst incorporating the effect of temperature dependent material properties on

the residual stress, is not yet possible in current shakedown and ratchet methods,

incorporation of temperature dependent yield strength is relatively simple. The

temperature at a particular point on the load cycle may be passed to the material

routines as a state variable. This may then be scaled as is done with any cyclic load. It
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may also be set up to be adjusted by a constant temperature. The yield strength used

at each cyclic point is then passed into the non-smooth multi-yield surface material

model based on the temperature at that load point. This will not alter the convergence

behaviour of the material model but will account for the reduction of yield strength at

elevated temperatures.

Plate with Hole: Temperature Dependent Yield

Figure 25: Plate with Hole

The plate with hole is square with edge

length L, the hole is centrally located

with a radius a, such that a/L=0.1. The

depth d of the plate is such that d/L=

0.005, see figure 25 for a schematic of

the geometry. Symmetry is used to

model only one eighth of the plate. The

load case analysed is constant pressure P

applied on one set of the free ends plus temperature cycled throughout the structure

from to T0 to T (r, t), see equation 43, where T0 is assumed to be 0ºC. At all times the

free ends of the plate are constrained to remain plane.

T (r, t) = T0 + (∆T (t) − T )
ln
(

5a
r

)

ln (5)
(43)

The plate’s elastic material properties are assumed to be temperature independent

and isotropic. The elastic modulus = 208GPa, Poisson’s ratio, v = 0.3, coefficient

of thermal expansion, α = 5x10−5˚C−1 the yield strength varies with temperature

according to σy (T ) = σy0 − 0.2 × T where the units of the yield stress are MPa and

σy0 = 360MPa.

Results from the temperature dependent yield version of the EMSP and the LMM

are given in figure 26. The LMM results were obtained using (Ure 2013), using the same

finite element mesh to allow direct comparison of the two methods. The convergence

tolerance used in the LMM solution was 0.0001. From the results in figure 26 it can

be seen that the EMSP gives excellent agreement with the upper bound LMM results.

In general the EMSP method is in better agreement with the upper bound LMM than

the lower bound LMM.
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Figure 26: Plate with Hole Elastic Shakedown Boundaries by Various Methods with
Temperature Dependent Yield

5.6.2 Hardening

It is possible to extend the shakedown method to incorporate hardening behaviour.

When considering shakedown/ratchet it is important that the hardening behaviour

saturates: i.e. the hardening modulus becomes zero at some γ. If this is not the case

then the structure will never ratchet, which is an unrealistic model of the structural

behaviour. Even with a hardening behavior which saturates, the simulation may allow

large values of plastic strain to occur in the structure and this may not be the desired

behaviour either: see (Indermohan and Reinhardt 2012). In such cases, limits can be

placed on the total allowable plastic strain. The material model is extended here with

attention restricted to linear and multi-linear kinematic hardening models and isotropic

hardening. As the EMSP method is a lower bound method, shakedown is implied for

any converged solution, therefore the same plastic strain results for all loaded points.

Thus it is only necessary to consider the hardening variables at the residual condition.

The problem is assumed to be of the form:

ρ̇ij = Cijkq

(
ε̇T r

kq − ε̇p
kq

)

σ̇l
ij = ρ̇ij + ˙̂σ

l
ij
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ε̇p
ij =

∑

α

γ̇α δfα

δσα
ij

χ̇ij = −Dijkqη̇kq

η̇ =
∑

α

γ̇α δfα

δχij

with

γα ≥ 0 , fα ≤ 0 , γαfα = 0 and γαḟα = 0

Integrating the model with the backward Euler scheme:

ρn+1
ij = Cijkq

(
εT r,n+1

kq − εp,n+1
kq

)

σl,n+1
ij = ρn+1

ij + σ̂l,n+1
ij

εp,n+1
ij = εp,n

ij +
∑

α

∆γα δfα,n+1

δσα,n+1
ij

χn+1
ij = χn

ij − Dijkq∆ηn+1
kq

∆ηn+1
ij =

∑

α

△γα δfα,n+1

δχn+1
ij

Defining the trial state as

ρtrial
ij = Cijkq

(
εT r,n+1

kq − εp,n
kq

)

σn,trial
ij = ρtrial

ij + σ̂n,n+1
ij

εp,trial
ij = εp,n

ij

χtiral
ij = χn

ij
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△γn+1 = 0

∆ηn+1 = 0

the system becomes

ρn+1
ij = ρtrial

ij − 2µ
∑

α

∆γα δfα,n+1

δσα,n+1
ij

(44)

σα,n+1
ij = σα,trial

ij − 2µ
∑

α

∆γα δfα,n+1

δσα,n+1
ij

εp,n+1
ij = εp,n

ij +
∑

α

∆γα δfα,n+1

δσα,n+1
ij

χn+1
ij = χn

ij − Dijkq∆ηn+1
kq

∆ηn+1
kq =

∑

α

△γα δfα,n+1

δχn+1
ij

What remains is to define a method for calculating ∆γα.

Consider the change in strain energy that results on plastic straining of the structure:

Γ =
1

2

(
ρtrial

ij − ρij

)
Cijkq

(
ρtrial

kq − ρkq

)
+

1

2

(
χn

ij − χij

)
Dijkq

(
χn

kq − χkq

)

The change in energy of the structure should be minimised to give the equilibrium

condition. Thus:

(
ρn+1

ij , χn+1
ij

)
= ARG





Min

(τkq , χkq)
[Γ (τkq , χkq)]





The Lagrangian for the system is:

L =
1

2

(
ρtrial

ij − ρij

)
Cijkq

(
ρtrial

kq − ρkq

)
+

1

2

(
χn

ij − χij

)
Dijkq

(
χn

kq − χkq

)
+
∑

α

∆γαfα

The plastic consistency parameters ∆γ may then be found by utilising Newton’s
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method. The residuals are defined as:

δρij
L = −C−1

ijkq

(
ρtrial

kq − ρkq

)
+
∑

α

∆γα δfα

δσα
ij

= −εp
ij + εp,n

ij +
∑

α

∆γα δfα

δσα
ij

δχij
L = −D−1

ijkq

(
χn

kq − χkq

)
+
∑

α

∆γα δfα

δχij
= −χij + χn

ij +
∑

α

∆γα δfα

δχij

δγαL = fα

The increment in the solution variables are then given by:




δρkq

(
δρij

L
)

δχkq

(
δρij

L
)

δγα

(
δρij

L
)

δρkq

(
δχij

L
)

δχkq

(
δχij

L
)

δγα

(
δχij

L
)

δρkq

(
δγθ L

)
δχkq

(
δγθ L

)
δγα

(
δγθ L

)








∆ρkq

∆χkq

∆2γα





= −





δρij
L

δχij
L

δγαL





(45)

where θ , φ ∈ Ract and the Hessian matrix is defined as:

H =




δρkq

(
δρij

L
)

δχkq

(
δρij

L
)

δγφ

(
δρij

L
)

δρkq

(
δχij

L
)

δχkq

(
δχij

L
)

δγφ

(
δχij

L
)

δρkq

(
δγθ L

)
δχkq

(
δγθ L

)
δγφ

(
δγθ L

)




Thus





∆ρij

∆χij

∆2γθ





= −H
−1





δρkq
L

δχkq
L

δγφL





However δγφ (δγαL) = 0 for all φ and α thus the Hessian becomes difficult to invert

numerically.

The system in equation 45 is therefore rearranged:




δρkq

(
δρij

L
)

δχkq

(
δρij

L
)

δρkq

(
δχij

L
)

δχkq

(
δχij

L
)








∆ρkq

∆χkq





+





δγφ

(
δρij

L
)

δγφ

(
δχij

L
)





{
∆2γφ

}
= −





δρij
L

δχij
L





(46)

giving
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



∆ρkq

∆χkq





= −




δρkq

(
δρij

L
)

δχkq

(
δρij

L
)

δρkq

(
δχij

L
)

δχkq

(
δχij

L
)




−1


δγφ

(
δρij

L
)

δγφ

(
δχij

L
)





{
∆2γφ

}
−




δρkq

(
δρij

L
)

δχkq

(
δρij

L
)

δρkq

(
δχij

L
)

δχkq

(
δχij

L
)




−1


δρij
L

δχij
L





(47)

Also from equation 45

{
δρkq

(δγαL) δχkq
(δγαL)

}




∆ρkq

∆χkq





= − {δγαL}

giving:

[G]αφ

{
∆2γφ

}
= {δγαL} −

{
δρkq

(δγαL) δχkq
(δγα L)

}



δρkq

(
δρij

L
)

δχkq

(
δρij

L
)

δρkq

(
δχij

L
)

δχkq

(
δχij

L
)




−1


δρij
L

δχij
L





Rearranging

{
∆2γφ

}
= [A]φα {{δγαL} −

{
δρkq

(δγαL) δχkq
(δγαL)

}



δρkq

(
δρij

L
)

δχkq

(
δρij

L
)

δρkq

(
δχij

L
)

δχkq

(
δχij

L
)




−1


δρij
L

δχij
L









(48)

where:

[G]αφ =



{

δρkq
(δγαL) δχkq

(δγαL)

}



δρkq

(
δρij

L
)

δχkq

(
δρij

L
)

δρkq

(
δχij

L
)

δχkq

(
δχij

L
)




−1


δγφρij
L

δγφχij
L








and

[A] = [G]−1

Knowing ∆2γφ allows the calculation of ∆εp
kq and ∆ηkq:
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



∆εp
kq

∆ηkq





=




C−1
kqij 0

0 D−1
kqij







δρkq

(
δρij

L
)

δχkq

(
δρij

L
)

δρkq

(
δχij

L
)

δχkq

(
δχij

L
)




−1









δρij
L

δχij
L





+
{

∆2γφ
}




δγφ

(
δρij

L
)

δγφ

(
δχij

L
)









Attention is now limited to Mises plasticity in which δfα

δχij
= − δfα

δσα
ij

The iterative solution procedure can then be defined:

1. Compute the trial elastic quantities

ρtrial
ij = Cijkq

(
εT r,n+1

kq − εp,n
kq

)

f l =
∣∣∣ρij + Y σ̂l

ij − χij

∣∣∣− σy =

√
3
2

(
ρ′

ij + Y σ̂′l
ij − χij

)(
ρ′

ij + Y σ̂′l
ij − χij

)
− σy for l = 1, 2..m

2. Check yield conditions

IF
∣∣∣ρtrial

ij + Y σ̂l
ij − χn

ij

∣∣∣− σy ≤ 0 for l = 1, 2..m THEN

ρn+1
ij = ρtrial

ij

εp,n+1
ij = εp,n

ij

ELSE (system is plastic):

ζ = 0

Qζ
act =

{
α ⊂ l where

∣∣∣ρtrial
ij + Y σ̂n,trial

ij − χn
ij

∣∣∣− σy > 0
}

ρn+1,ζ
ij = ρtrial

ij

εp,n+1,ζ
ij = εp,n

ij

△γn,ζ = 0

goto 4

ENDIF

3. RETURN Values back to Solver

4. Evaluate Residuals
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ρn+1,ζ
ij = Cijkq

(
εT,n+1

kq − εp,ζ
kq

)

Rζ
ij =





−εp,ζ
ij + εp,n

ij +
∑

α △γα,ζrα,ζ
ij

−ηζ
ij + ηn

ij −
∑

α △γα,ζrα,ζ
ij





rl,ζ
ij =

3

2

ρ′ζ
ij + Y σ̂′l,ζ

ij∣∣∣ρζ
kq + Y σ̂l,ζ

kq

∣∣∣

α ∈ Qζ
act and β ∈ Qζ

act

5. Check Convergence

f l,ζ =

√
3

2

(
ρ′

ij + Y σ̂′l
ij − χij

) (
ρ′

ij + Y σ̂′l
ij − χij

)
− σy for l = 1, 2..m

IF f l,ζ ≤ TOL1, for l = 1, 2..m and
∥∥∥fα,ζ

∥∥∥ < TOL1

Solution Converged

ρn+1
ij = ρk

ij

εp,n+1
ij = εp,k

ij

RETURN values to solver

ELSE

Continue

ENDIF

6. Compute Elastic and Tangent Moduli

[g]ζαβ =

{
rα,ζ

ij −rα,ζ
ij

}[
Aζ
]

αβ





rβ,ζ
kq

−rβ,ζ
kq





[G]ζ =
[
gζ
]−1

[
Aζ

ijkq

]−1
=




C−1
ijkq 0

0 D−1
ijkq


+

∑

α

△γα




δrα,ζ
ij

δ
(

ρk
kq

+Xσ̂α
kq

) δrα,ζ
ij

δ(χkq)
−δrα,ζ

ij

δ
(

ρk
kq

+Xσ̂α
kq

) −δrα,ζ
ij

δ(χkq)




7. Calculate the increment to the plastic consistency parameters

△2γα,ζ =
∑

β

[G]ζαβ

(
fβ,ζ − rβ,ζ

ij Aζ
ijkqRζ

kq

)
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△γ̄α,ζ+1 = △γα,ζ + △2γα,ζ

IF △γα,ζ+1 < 0

Remove α from Qact

Goto 4

ENDIF

8. Calculate Increment to plastic strains




△εp,ζ+1
ij

△ηk+1
ij





=




C−1
ijkq 0

0 D−1
ijkq



[
Aζ

kqop

]

Rop +

∑
△2γβ,ζ





rβ,ζ
op

−rβ,ζ
op








9. Update iterative quantities

△γα,ζ+1 = △γα,ζ + △2γα,ζ

εp,n+1
ij = εp,n

ij + △εp,ζ+1
ij

ηp,n+1
ij = ηp,n

ij + △ηp,ζ+1
ij

set ζ = ζ + 1

Goto 3

An approximate form of the consistent tangent modulus can be defined as follows,

by ignoring the coupling between the residual stress and the back stress.

Differentiating the algorithmic form of the stress update (equation 44):

dρn+1
ij = Cijkq




dεT r
kq −

∑

α

d∆γα δfα,n+1

δσα,n+1
kq

−
∑

α

∆γα

δ

(
δfα,n+1

δσα,n+12

kq

)

δσα,n+1
ij

dσα,n+1
ij




(49)




C−1
ijkq +

∑

α

∆γα

δ

(
δfα,n+1

δσα,n+12

kq

)

δσα,n+1
ij




dρn+1
ij = dεT r

ij −
∑

α

d∆γα δfα,n+1

δσα,n+1
ij

dρn+1
ij =




C−1
ijkq +

∑

α

∆γα

δ

(
δfα,n+1

δσα,n+12

kq

)

δσα,n+1
ij




−1


dεT r

kq −
∑

α

d∆γα δfα,n+1

δσα,n+1
kq


 (50)
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let




C−1
ijkq +

∑

α

∆γα

δ

(
δfα,n+1

δσα,n+12

kq

)

δσα,n+1
ij




−1

= Ξn+1
ijkq

Differentiating the backstress update algorithm:

dχn+1
ij = dχn

ij − Dijkq



∑

α

d∆γα δfα,n+1

δχα+1
kq

+
∑

α

∆γα
δ

(
δfα,n+1

δχn+1

kq

)

δχn+1
ij

dχn+1
ij


 (51)

with dχn
ij = 0

dχn+1
ij =


D−1

ijkq +
∑

α

∆γα
δ

(
δfα,n+1

δχn+1

kq

)

δχn+1
ij




−1
(

−
∑

α

d∆γα δfα,n+1

δχn+1
kq

)
(52)

let


D−1

ijkq +
∑

α

∆γα
δ

(
δfα,n+1

δχn+1

kq

)

δχn+1
ij




−1

= ϕn+1
ijkq

Differentiating the algorithmic form of the consistency condition i.e.

δ
(
fβ
)

δσβ,n+1
ij

+
δ
(
fβ
)

δχn+1
ij

= 0

gives:
δfβ,n+1

δσβ,n+1
ij

dσβ,n+1
ij +

δfβ,n+1

δχn+1
ij

dχn+1
ij = 0 (53)

with Xσ̂′α
ij being constant over the step

dσα,n+1
ij = δρn+1

ij

Substituting equations 50 and 52 into 53:

δfβ,n+1

δσβ,n+1
ij

Ξn+1
ijkq


dεT r

kq −
∑

α

d∆γα δfα,n+1

δσα,n+1
kq


+

δfβ,n+1

δχij
ϕn+1

ijkq

(
−
∑

α

d∆γα δfα,n+1

δχn+1
kq

)
= 0

giving
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δfβ,n+1

δσβ,n+1
ij

Ξn+1
ijkq



∑

α

d∆γα δfα,n+1

δσα,n+1
kq


+

δfβ,n+1

δχij
ϕn+1

ijkq

(
∑

α

d∆γα δfα,n+1

δχα+1
kq

)
=

δfβ,n+1

δσβ,n+1
ij

Ξn+1
ijkqdεT r

kq

This gives

[g] {d△γn} =





δfβ,n+1

δσβ,n+1
ij

Ξn+1
ijkq



 dεT r

kq

where

[g]αβ =
δfβ,n+1

δσβ,n+1
ij

Ξn+1
ijkqd∆γn δfα,n+1

δσα,n+1
kq

+
δfβ,n+1

δχn+1
ij

ϕn+1
ijkq

δfα,n+1

δχn+1
kq

Thus

{d△γn} = [G]





δfβ,n+1

δσβ,n+1
ij

Ξn+1
ijkq



 dεT

kq

giving

d△γα =
∑

β

[G]αβ

δfβ,n+1

δσβ,n+1
ij

Ξn+1
ijkqdεT r

kq (54)

where

[G] = [g]−1

Substituting 54 into 50

dρn+1
ij = Ξn+1

ijkq


dεT r

kq −
∑

α

∑

β

[G]αβ

δfβ,n+1

δσβ,n+1
ij

Ξn+1
ijkqdεT r

kq

δfα,n+1

δσα,n+1
kq




thus

dρn+1
ij

dεT r
kq

= Ξn+1
ijkq


1 −

∑

α

∑

β

[G]αβ

δfβ,n+1

δσβ,n+1
ij

Ξn+1
ijkq

δfα,n+1

δσα,n+1
kq




Rearranged gives:

dρn+1
ij

dεT r
kq

= Ξn+1
ijkq −

α∑

α

∑

β

[G]αβ

{
̟β

kl

}
̟α

ij (55)

where

93



̟α
ij = Ξn+1

ijkq

δfα,n+1

δσα,n+1
kq

and

̟β
kq =

δfβ,n+1

δσβ,n+1
ij

Ξn+1
ijkq
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Example

Figure 27: Hardening Model Schematic

The hardening model was implemented

in ABAQUS using the user subroutine

UMAT (other FEA packages could also

be suitable). The example problem

chosen was the plate with uniform cyclic

temperature and pressure studied in

(Heitzer et al. 2000). The geometry

consists of a square plate fixed in the

vertical direction on the top and bottom

edges. The load cycle is defined by a

surface traction P and uniform cyclic

temperature T . The loads are assumed to vary both in and out of phase resulting

in a four point load cycle which may be expressed in pressure temperature space as

(0, 0), (0, T ), (P, T ) and (P, 0). The thermal loads are assumed to be applied slowly

enough that they may be considered quasi-static. The problem is summarised in figure

27.

The problem as studied in (Heitzer et al. 2000) considers the hardening effects in

a different manner to the proposed model. In (Heitzer et al. 2000) the hardening is

not related to the plastic strain through a hardening modulus, rather the back stress

is bounded. The result is that the plastic strain at the ultimate tensile strength is

not given in the material data. Thus the hardening modulus cannot be defined in the

current problem. Here two arbitrary equivalent plastic strains are chosen to coincide

with the ultimate tensile strength to show it has little or no impact on the resulting

ratchet boundaries. The material models defined in (Heitzer et al. 2000) are Young’s

modulus 200GPa, Poisson’s ratio 0.3, yield strength 205MPa and thermal expansion

coefficient of 1.6x10−5ºC−1. The hardening model is a bilinear kinematic model, which

varies from the initial yield strength at zero plastic strain to a maximum equivalent

backstress of 0.5σy , at an assumed equivalent plastic strain of 0.05. For completeness,

unlimited kinematic hardening is also considered with a hardening modulus of 2GPa and

the results for perfect plasticity are given for comparison. The shakedown boundaries

given by EMSP and Hietzer et al. (2000) are shown in figure 28.

From figure 28, the hardening form of the EMSP method agrees closely with the

results given by Hiezter et al. (2000). In this particular problem the backstress-plastic

strain relationship does not have an impact on the resulting boundaries. However
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MSP Limited Hardening

MSP Perfect Plasticity
Hietzer et al. Unlimited Hardening
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Figure 28: Shakedown Boundaries for Hardening Materials

in problems with displacement controlled loading and/or inplane constraints, the

backstress-plastic strain relationship could have an impact on the resulting boundaries

which could be an advantage to the hardening model used in the EMSP method.

Further research is required in this area to fully understand the potential impact on

the backstress-plastic strain relationship.

5.6.3 Non-linear Geometry

R

W

L

Figure 29: Short Pipe Problem

Non-linear geometry is of interest in a

number of engineering components, for

instance pipe bends. In such geometries,

changes in the shape of the component

could significantly alter the load path.

It was shown in (Maier et al. 1993)

that this could affect shakedown and

ratchet boundaries. To consider possible

non-linear geometry effects requires the

component shape to be simulated at

all of the cyclic load points. As with

temperature dependent material properties, it is difficult to formulate a method which

allows for the simulation of all cyclic points and incorporation of the non-linear
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relationship each imposes on the other whilst using conventional finite elements.

It is however possible to implement the simplified non-linear kinematic shakedown

process proposed in (Gross-Weege 1990). In this process the cyclic loads are linearised

i.e. the non-linear geometric effects due to the addition of the cyclic loads are assumed

to be negligible and may be represented by superposition of elastic stresses. Thus only

the deformed configuration of the residual+constant load condition need be simulated

and the cyclic stresses may be superimposed onto the residual+constant stresses in

the deformed configuration. This is easily achieved using a co-rotational form of the

proposed shakedown method. In practice, this requires the rotation of the cyclic stresses

to the current configuration. This may be done in ABAQUS using the ABAQUS utility

routine ROTSIG. However, under conditions where large thermal strains or large cyclic

loads may be present in the structure, the assumption that the cyclic loads result in

negligible geometric effects might be tenuous and this approach should be used with

caution in such situations.

The method is implemented in ABAQUS via the user subroutine UMAT. To

simulated the deformed configuration due to the constant load it is necessary to apply

the constant load to the structure. If the constant load is ramped over the analysis

step, an increment in the solution “time” can still be used as an increment in the lower

bound multiplier.

Example

The example presented here is a short pipe held between two rigid stiffened rings.

Figure 29 shows the dimensions of the pipe where W/R=1/200, L/R=1/10. The

material properties chosen for the study are perfectly plastic material with Young’s

modulus=2100GPa, Poisson’s ratio=0.3 and yield strength 360MPa. The load cycle

under investigation is constant internal pressure P plus varying internal pressure µP(t).

The geometric effects, as discussed above, must be simulated by applying the load onto

the finite element model. However there are three possible load cases which can be

applied to the model i.e. “Case A” P + µP, “Case B” P − µP and “case C” P. For

completeness all three cases are examined. The results of the shakedown simulations

are presented in figure 30 along with the ratchet boundary found by incremental FEA.

From figure 30 the proposed method agrees closely with the FEA solution for all

three cases at lower cyclic loads. As the cyclic load increases, the non-linear geometric

effects due to the cyclic loads increase. As the proposed method does not account for

the non-linear geometric effects due to the cyclic loads it produces larger errors as the

cyclic loads increase. However the close agreement for lower cyclic loads demonstrates
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Figure 30: Elastic Shakedown Boundary with Non-linear Geometry for Different Cases

the potential of the method if it can be extended to simulate the geometric effects for

all of the points on the load cycle.

5.7 Limitations of the Shakedown Method

The results presented in Sections 5.5 to 5.6.3 show that the EMSP method gives

relatively accurate solutions when compared to the LMM and other lower bound

methods under the conditions studied. However, as with any numerical method, there

are a number of limitations:

Number of load cases The method can consider an arbitrary set of load cases,

however due to the method used for integration of the plastic strains only 6 of the

load cases can actively require returning to their respective yield surfaces at once.

If more than six require limiting to their respective yield surfaces the problem

becomes indeterminate. This does not necessarily limit the EMSP method to

only consider load cycles with six or less load points. In many cases where there

are more than 6 points in the load cycle a bounding result could be gained for

each material point by using appropriate filters in the UMAT routine to select

the 6 most onerous points in the load cycle, which would allow bounding of

the result. Also if the combined residual plus superimposed stresses at two or

more load points have a similar normal direction only the load point with greater

magnitude of stress need be considered as this will bound the behaviour of the
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other points.

Geometric non-linearity The method can consider a simplified version of non-linear

geometry adjusted shakedown as demonstrated in Section 5.6.3. However the

proposed method does require the linearisation of the cyclic stresses. This limits

the proposed method to the consideration of cyclic loads which do not result in

significant geometry changes. It was demonstrated that this can result in large

errors for higher cyclic loads.

Temperature dependent material properties It is possible to consider a

temperature dependent yield strength, as in the case of the LMM method (see

Section 5.6.1). However any temperature effects on the stresses resulting from

that temperature are ignored (for example, both the Young’s modulus and

Poisson’s ratio of a material vary with temperature). This can result in a number

of important interactions which can effect the resulting shakedown and ratchet

boundaries (this is demonstrated in Appendix B). The inability of the method

to account for temperature dependent material properties could be a significant

limitation for use in practice. However, no other shakedown method is currently

able to account for this effect either, so it is not a limitation when compared with

other methods.

5.8 Benefits of the Shakedown Method

The EMSP method has a number of advantages over other direct shakedown methods.

Maintaining the constitutive model Many , if not all, of the other direct

shakedown methods are based on a purely mathematical interpretation of Melan’s

theorem. Whilst this allows for determination of the loads at the shakedown

boundary, the solution methods usually result in the loss of the underlying

assumed material response. When attempting to incorporate effects of additional

non-linear behaviour (beyond perfect plasticity) the loss of the underlying

material model makes it difficult to incorporate those effects. The EMSP method

preserves the underlying constitutive model and as such it has been demonstrated

that the EMSP method is easily extended to consider additional non-linear effects,

such as hardening.

Direct calculation of plastic strains Melan’s theorem does not require the

calculation of plastic strains, however knowledge of the plastic strains and

estimates of the displaced shape of the structure can be useful. Due to the EMSP
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method directly calculating the plastic strains during the shakedown analysis

these estimates are readily available as output from the material routines.

Strictness in the lower bound result The stresses calculated by the EMSP

method, due to the elastic plastic formulation, are strictly limited to be equal to

or below the assumed yield strength of the material at all load points considered.

This is not necessarily true of other methods. As such the EMSP methods is one

of the few direct methods which can consider an arbitrary load cycle that is also

a strictly lower bound method.

Stress range The EMSP method calculates a stress solution which satisfies both yield

and equilibrium at every increment in the solution. These stress solutions can

be used to calculate the stress range at each point in the solution and provide

estimates of the mean stress value used in many fatigue assessments.

Familiar solution behaviour Many of the current direct shakedown methods are

based on relatively abstract solution methods, which engineers in general are not

familiar with. The EMSP method is an elastic plastic method which behaves like

a limit solution. Thus if an engineer is familure with the use of plasticty in finite

element software, the application and solution behaviour of the EMSP would be

familiar.

The EMSP method also has a number of benefits over the more conventional methods

used for design against and assessment of ratchetting. For example, consider the

simplified methods used in many pressure vessel design standards. These methods are

usually based on elastic analysis and an interaction diagram based on the Bree problem.

When performing an assessment it is necessary to determine the ratchet plane and two

limiting points in the load cycle. This may result in a number of practical problems

for the engineer:

1. Are two load points adequate: Complex load cycles may not be fully bounded

by just two load points. Consider a load cycle where the principle stress at four

points form a perfect tetrahedron in principle stress space. In such a scenario all

four points in the load cycle will lie on the yield surface, thus reverse plasticity

may occur for stress ranges less than twice yield. When using the EMSP method

it is possible to consider an arbitrary number of load points and easily capture

this behaviour.

2. Where is the ratchet plane: The elastic analysis performed to obtain stresses

for a shakedown assessment may provide a set of stresses for which the position
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and orientation of the ratchet plane is not at first obvious. The position and

orientation of the ratchet plane does not need to be known when using the EMSP

method as it is naturally calculated during the solution of the EMSP method.

Much of the ambiguity which can result from the application of simplified

design/assessment methodology may be avoided when using the EMSP method.

Further the calculation of redistributed stresses over the ratchet plane will probably

result in greater accuracy in components which do not have a single axis of symmetry

(e.g. a pipe intersection).

5.9 Discussion

In this Section, a new shakedown method based on non-smooth multi-surface plasticity

has been proposed. This method has been shown to be a strict lower bound method

which gives reliable results for multiple load points. The method utilises a material

model which maintains a constitutively consistent description of the plastic strains in

the structure/components: in this aspect the method is unique. Through a number

of common benchmark problems and some more complex problems, the method has

previously been shown to give good agreement to the upper bound LMM, which has

been verified against non-linear FEA. Several extensions to the base EMSP method

have been proposed and implemented. Extensions include: the use of temperature

dependent yield strength; the consideration of non-linear geometry and hardening.

Despite the accuracy and reliability of this method, it still has several limitations.

These limitations originate from the use of a user programmed material model. When

using this approach it is only possible to solve for one stress-strain relationship at a time;

i.e. the residual stress and strain. However to solve for effects such as full non-linear

geometry and temperature dependent material effects in a computationally efficient

manner, it is necessary to consider several stress-strain relationships simultaneously.

However, at present, this is a limitation to most shakedown methods.
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6 Non-smooth Yield Surface for Ratchet

In Section 5 non-smooth multi yield surface plasticity was used to define a lower bound

direct shakedown method. The method is now extended to a lower bound direct ratchet

method. The ratchet method allows the elastic ratchet and the plastic ratchet boundary

(beyond the alternating plasticity boundary) to be determined. The extension of the

method is based on the separation of constant and cyclic loads given in (Gokhfeld 1980).

6.1 The Material Model

Throughout this Section a number of additional assumptions are made. These

assumptions are as follows:

Assumption 10 The load history can be partitioned into cyclic and constant parts

Assumption 11 The cyclic loads lie within the ratchet boundary

Assumption 12 The constant load is applied under load control

In cases where the varying stresses are large enough to cause alternating plasticity, it

is necessary to find a set of varying plastic strains and stresses which vanish over the

cycle. This is difficult to solve for at the same time as finding the constant residual

stress. If an elastic-perfectly plastic structure is subject to both a constant load and

varying load it is possible to consider the cyclic loads separately from the constant

load (Gokhfeld 1980). This allows a separate solution to find a set of varying residual

stresses and strains which vanish over the cycle and thus satisfy the supplementary

condition of the extended Melan’s theorem given in equation 17.

The use of simplified cyclic stresses to solve for the varying component of the residual

stress is suggested in (Gokhfeld 1980). The simplified measure was to ignore cyclic stress

above yield, although it is noted that the use of such simplified cyclic stresses can be

non-conservative in cases where the regions of application in the structure are “large”.

In (1993c,d) Polizzotto gave a more complete treatment of cyclic strains and stresses

in which post transient strains and stresses must be found whilst taking account of the

redistribution which occurs during the cycle. The post transient strains and stresses

may be found by repeated cycling of the fixed values of cyclic loads, i.e. a fixed value of

Z, in a full non-linear FEA. They can then be used in a modified shakedown procedure

to give the full ratchet boundary using an incrementally larger value of the ratchet

multiplier Y. It is possible for cyclic loads alone to cause either limit or ratchet failure

in which case no stabilised reverse plasticity cycle can exist. In this case the magnitudes

of the cyclic load must be decreased and the cyclic analysis must be started again.
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The cyclic stresses and strains for the ratchet solution proposed in this Section can

be found using the Stage 1 solution method used in Methods 1 and 2 of Section 3.

In this case the strains at the end of the cyclic solution form the starting point of the

ratchet solution. Thus the constant residual strains are the combined strains from both

the constant residual strain found in the cyclic solutions and the contribution to the

constant residual from the constant load found during the ratchet analysis, i.e

ρc
ij + ρij = Eijkq

(
εT r

kq − εp
kq

)

where

Cijkq = λδijδkq + µ(δikδjq + δiqδjk) (56)

with:

λ =
vE

(1 + v) (1 − 2v)
and µ =

E

2 (1 + v)

Using this and the solutions from Stage 1, the ratchet solution material model may

be defined as follows.

The loaded stresses are given by

σl
ij = ρc

ij + ρij + Y σ̂c
ij + Zσ̂l

ij +
θ=l∑

θ=1

ρ∆,θ
ij (57)

where Z is a fixed cyclic load multiplier.

The yield conditions are:

f l =

∣∣∣∣∣ρ
c
ij + ρij + Y σ̂c

ij + Zσ̂l
ij +

θ=l∑

θ=1

ρ∆,θ
ij

∣∣∣∣∣− σy ≤ 0 for l = 1, 2..m

with:

∣∣∣∣∣ρ
c
ij + ρij + Y σ̂c

ij + Zσ̂l
ij +

θ=l∑

θ=1

ρ∆,θ
ij

∣∣∣∣∣ =

√√√√3
2

(
ρ′c

ij + ρ′
ij + Y σ̂′c

ij + Zσ̂′l
ij +

θ=l∑

θ=1

ρ′∆,θ
ij

)(
ρ′c

ij + ρ′
ij + Y σ̂′c

ij + Zσ̂′l
ij +

θ=l∑

θ=1

ρ′∆,θ
ij

)

(58)
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and the net plastic strain rate is assumed to be due to all load cases and given by

Koiter’s Rule:

ε̇p
ij =

∑

α

γ̇α δfα

σα
ij

(59)

where

Qact where f = 0 and γ ≥ 0 (60)

and

α ∈ Qact and β ∈ Qact

The necessary constraints on the system become

γl ≥ 0 , f l ≤ 0 , γlf l = 0 and γlḟ l = 0

For Mises plasticity:

δf l

σl
ij

= rl
ij =

δ



∣∣∣∣∣∣
ρc

kq
+ρkq+Y σ̂c

kq
+Zσ̂l

kq
+

θ=l∑

θ=1

ρ∆,θ
kq

∣∣∣∣∣∣
−σy




δ


ρc

ij
+ρij+Y σ̂c

ij
+Zσ̂l

ij
+

θ=l∑

θ=1

ρ∆,θ
ij




= 3
2

ρ′c
ij

+ρ′

ij+Y σ̂′c
ij

+Zσ̂′l
ij

+

θ=l∑

θ=1

ρ′∆,θ
ij

∣∣∣∣∣∣
ρc

kq
+ρkq+Y σ̂c

kq
+Zσ̂l

kq
+

θ=l∑

θ=1

ρ∆,θ
kq

∣∣∣∣∣∣

(61)

Let the set of yield surfaces at which yielding occurs be defined as the set of active

yield criteria:

Following the works of Simo and Hughes, it is assumed that:

[gαβ ] =
[
rα

ijEijkqrβ
kq

]
(62)

is positive definite which gives the tangent modulus as:

Eep
ijkq = Cijkq −

∑

α

∑

β

[G]αβ

(
Eijoprα

op

) (
Ekqrsr

β
rs

)
(63)

where
∑

α,β,ς

[G]αβ [g]βς = δας (64)
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6.2 Solution Scheme: CMSP

The numerical method based on the material model given in Section 6.1 is given the

name CMSP, were the “MSP” parts stands for multi surface plasticity and the “C”

is cyclic for the cyclic stage 1 analysis. The ratchet solution may be thought of as a

shakedown solution in which the stress at the loaded points σm
ij is modified to include

the effect of any varying residual component from an alternating plasticity mechanism.

The integration and solution algorithms for this model are the same as for shakedown,

with the loaded stresses modified to take account of any cyclic varying residual stresses

and thus will not be repeated here. The general solution procedure is outlined below. In

step m+3 the cyclic and ratchet solution occur one after the other. If the time at which

the cyclic solution finish is tc then the multiplier Y may be defined as Y =steptime-tc.

In defining the ratchet multiplier Y in this way the automatic time stepping procedure

in the FEA may be used to control the convergence of the ratchet multiplier. The

largest value of Y for which the solver can find a stable equilibrium solution is taken

as the ratchet multiplier at the ratchet boundary. During the cyclic solutions it is

important to make sure the solver solves for the extremes in the load case. To do this,

time points may be set at every unit of time during the ratchet step m + 3 and using 1

unit in time as the difference between the last cyclic load to the next. This also allows

for interpolating the superimposed cyclic stress from one state to the other as necessary

if the solver cannot pass from one load point to the next in a single increment. The

general solution method can then be summarised as follows.

Step 1 Load the model with the constant load, write stresses to state variable array.

Step 2 to m + 1 Load the model with the loads for critical cyclic load case n and

solve for the elastic stresses. Write these stresses to the state variable array.

Step m + 2 Return model back to unstressed state.

Step m + 3

Cyclic Solution Perform cyclic solution using results from steps 2 to m + 1. If

constant residual has converged store step time as tc.

Ratchet Solution Y =Step time−tc. Perform Ratchet analysis to find maximum

value of Y.
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6.3 Examples

6.3.1 Axi-symmetric Bree Cylinder

The CMSP method was applied to the Bree problem introduced in Section 3. The

results presented in figure 31 shows that the CMSP produces a ratchet boundary that

agrees to within fractions of a percent with the upper bound LMM. The LMM results

have been found using (Ure 2013) with the same FE mesh with a convergence of 0.00001.

The agreement is better than that of the Hybrid Method and Methods 1 and 2 (see

figure 17). This suggests that the problems identified with plastic strain direction and

compatibility in Section 3.6 were the cause of the poor agreement between the LMM

and the Hybrid Method and Methods 1 and 2.
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Figure 31: Bree Cylinder Ratchet Boundaries from Various Methods
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6.3.2 Pressurised Two Bar

To test the CMSP method under varying degrees of multi-axial stresses, it was applied

to the pressurised two bar problem introduced in Section 3.5.3. The results presented

in figures 32 to 34 show that the CMSP agrees closely with the upper bound LMM

for all loads and the various extents of multi-axial stress studied. The LMM solutions

have been found using the LMM GUI developed by Ure using the same FE mesh with a

convergence tolerance of 0.00001. The slight difference close to the alternating plasticity

boundary is attributed to slight differences in job setup between the two methods. In

general the CMSP method gives better agreement with the LMM than the Hybrid

Method and Methods 1 and 2, see figures 18 to 20.
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Figure 32: Pressurised Two Bar Ratchet Boundaries by Various Methods with
F/P=10
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Figure 33: Pressurised Two Bar Ratchet Boundaries by Various Methods with
F/P=15
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Figure 34: Pressurised Two Bar Ratchet Boundaries by Various Methods with
F/P=20
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6.3.3 Plate With Hole

The CMSP method was applied to the plate with hole problem introduced in Section

3.5.4. The results in figure 35 show that the CMSP method agrees closely with the

upper bound LMM method. The LMM results have been found using the LMM GUI

developed by Ure using the same FE mesh. The convergence parameter used was

0.00001 and the number of cyclic solutions doubled over the default value to gain

convergence on the cyclic solutions. For this problem the CMSP gives results between

the lower and upper bound LMM boundaries over the range of cyclic temperature

studied.
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Figure 35: Plate with Hole Ratchet Boundaries from Various methods
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6.3.4 Pipe Intersection

The CMSP method is applied to the pipe intersection problem introduced in Section

5.5.5. For this problem the agreement with the upper bound LMM is not as good as

the previous benchmark problems studied. This is attributed to the poor accuracy of

the cyclic solutions given by the incremental FEA used in Stage 1. The accuracy of the

CMSP method can be significantly impacted by the convergence of the cyclic solutions.

In this problem strict convergence on the cyclic solutions was never achieved despite

the simulation of 1000s of load cycles. This illustrated the greatest limitation of the

CMSP method: it is reliant on incremental FEA to find the cyclic stresses. However

it is, theoretically, possible to find the cyclic solutions directly, at the same time as

solving for the constant residual stress, without the need for incremental finite element

solutions. This however would require significant changes to the solution process and

is outside the scope of the current research.
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Figure 36: Pipe Intersection Ratchet Boundaries by Various Methods
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6.4 Extension of the Ratchet Method

6.4.1 Temperature dependent yield strength

One of the further developments possible in the CMSP is incorporation of temperature

dependent yield strength. However any constant temperature must be included in the

cyclic solutions: i.e., a constant temperature may not be included in the constant load

case and scaled with the constant load to find the ratchet boundary, as the cyclic

solutions would require changing if the constant temperature they take place about

changes during the analysis. Thus the incorporation of temperature dependent yield

strength may be achieved without noticeable change in the computation cost. Whilst

it is possible to account for temperate dependent yield strength it is not possible to

account for full temperature dependence of material properties (see appendix B).

6.4.2 Pressurised Two Bar: Temperature Dependent Yield

Figure 37: schematic

The pressurized two bar structure is

shown below in figure 37. Bar 1 has an

internal radius of 2.00mm and an external

radius of 2.68mm. Bar 2 has an internal

radius of 2.00mm and an external radius

of 3.22mm. Bar 2 is twice the length of

bar 1 and both have the same material

properties: Young’s modulus of 210GPa ,

Poisson’s ratio of 0.3, the yield strength

is assumed to be temperature dependent and varies according to σy(T ) = 200MPa −

0.2857 × T and a thermal expansion coefficient of 1.17x10−5˚C−1. The ends of the

cylinders are constrained to remain in plane section at all times. The model was defined

in 3D with second order reduced integration elements, with six elements through the

thickness of bar 2 and 3 through the thickness of bar 1.

The load cycle is described by a constant load which consists of internal pressure,

P, applied to bar 2 and axial force, F, distributed between both bars by a plane section

constraint. The cyclic load is applied as a varying temperature, above the reference

temperature, in bar 2, with the temperature being uniform throughout the bar. Bar

1 remains at all times at the reference temperature. The pressure and axial force are

considered for three separate conditions: where the force in Newtons divided by the

pressure in MPa, F/P, equals 10, 15 and 20. This is done to test the proposed method

under varying extents of multi-axial stress conditions.
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Figure 38: Pressurised Two Bar Ratchet Boundaries by Various Methods with
Temperature Dependent Yield and F/P=10
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Figure 39: Pressurised Two Bar Ratchet Boundaries by Various Methods with
Temperature Dependent Yield and F/P=15
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Figure 40: Pressurised Two Bar Ratchet Boundaries by Various Methods with
Temperature Dependent Yield and F/P=20

The results presented in figures 38 to 40 show that the CMSP and Upper bound

LMM result agree closely. The LMM results were obtained using (Ure 2013) using the

same finite element model with a convergence parameter as 0.00001. Note the change

in ratchet behaviour compared to the temperature independent results given in figures

18 to 20. This is due to the reduction in the yield strength in the thicker bar, reducing

the constant load that it can support at elevated temperature. Also from figures 38

to 40, the lower bound LMM results exceed the CMSP and upper bound LMM results

beyond the alternating plasticity boundary.

To verify the boundary given by the CMSP and upper bound LMM, two points at

350˚C for F/P=20 at F=440 and F=600 were simulated with incremental FEA. The

results of the incremental FEA are presented in figures 41 and 42. Figure 41 shows

that there is a stabilised ratchet strain for F=600 at 350˚C for F/P=20. This indicates

that the lower bound LMM results are non-conservative indicating a non-strictness in

the lower bound LMM formulation, (see Appendix A for further discussion on this).

The results presented in figure 42 indicates a plastic shakedown solution verifying the

CMSP and LMM upper bound results.
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Figure 41: Strain Response Point A, F/P=20
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Figure 42: Strain Response Point B, F/P=20
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6.5 Simplified Variants of the Ratchet Method

Whilst the CMSP can give close agreement with the upper bound LMM, the cyclic

solutions can require a large number of cycles to be solved to obtain a closed plastic

strain cycle. Obtaining a closed plastic strain cycle is important for the convergence

of the ratchet method as illustrated in Section 6.3.4. Thus the requirement of an

incremental finite element solution to find the closed plastic strains can represent a

significant computational cost. In this Section a number of simplified cyclic stresses,

used in other methods, are explored.

The simplified cyclic stresses proposed here will have computational saving over

incremental cyclic solutions used in section 6.2. However the simplification of the

cyclic stresses may result in ratchet boundaries which are not as accurate as for the

complete cyclic solutions used in the CMSP. Other limitations may also result from

the use of the simplified stresses. Thus the aim of this Section is not to carry out

computational comparisons, but rather, to assess the accuracy and reliability of the

simplified cyclic stresses when used in conjunction with non-smooth multi yield surface

plasticity models for the ratchet solution.

6.5.1 Gokhfeld’s Cyclic Stress

When introducing the extended ratchet method in (Gokhfled 1980), Gokhfeld also

introduced a simplified cyclic stress description to allow for analytical solution for

complex components. When the stress in a structure exceeds yield, plastic strains

develop within the structure. These plastic strains act to redistribute the stress in the

structure such as to satisfy both yield and equilibrium, if possible. This redistribution is

non-linear in nature and is a complex function of component shape, material properties

and applied loading.

When the cyclic stresses go beyond the alternating plasticity boundary and reverse

plasticity cycles result, analytical solutions for the reversed plastic strain and the

resulting changing residual stress ρ∆
ij (t) are difficult to define. To overcome this problem

Gokhfeld introduced a simplification for the treatment of the cyclic stresses.

Consider a structure subject to an arbitrary load case. It is assumed that the load

case may be separated into constant and cyclic parts, P c and P (t), and the cyclic load

may be decomposed further into a mean load and a fully reversed cyclic amplitude,

P mean and P A (t). These loads result in corresponding elastic stresses (which maintain

equilibrium with the load) σ̂c
ij , σ̂mean

ij and σ̂A
ij (t). The simplification in the cyclic

stresses is then:
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σA,adj
ij (t) =





σ̂A
ij (t) for

∣∣∣σ̂A
ij (t)

∣∣∣ ≤ σy

V σ̂A
ij (t) for

∣∣∣σ̂A
ij (t)

∣∣∣ > σy where V = σy

|σ̂A
ij

(t)|

(65)

i.e. when the cyclic stress amplitude at a particular material point exceeds yield it

is assumed equal to yield, thus no elastic plastic analysis is required. Because the stress

cycle has to be separated into a mean and a fully reversed cyclic stress amplitude, it

limits the number of points which can be considered in the load cycle to 2.

The cyclic stresses must then satisfy the extended Melan’s theorem i.e.

∣∣∣
(
ρc

ij + ρ̄ij

)
+ σ̂c

ij + σ̂mean
ij + σA,adj

ij

∣∣∣ ≤ σy and
∣∣∣
(
ρc

ij + ρ̄ij

)
+ σ̂c

ij + σ̂mean
ij − σA,adj

ij

∣∣∣ ≤ σy

However, scaling down the stress for a particular set of material points, where

the equivalent cyclic stress amplitude exceeds yield, will result in a local violation of

equilibrium in the structure and may also lead to a loss of equilibrium with the applied

surface traction. This theoretically results in a cyclic stress description which does not

satisfy the stringent requirements of a lower bound solution. Scaling down the stress

at particular material points results in a portion of the energy in the structure being

lost. From Koiter’s theorem, this will theoretically lead to an over estimation of the

constant load at ratchet. It was, however, noted by Gokhfled that if the region of the

structure for which the assumption, in equation 65, is applied is small, the resulting

over estimation of the constant load at ratchet is likely to be limited.

Material Model and Solution Method: SMSP

The numerical method based on Gokhfeld’s simplified cyclic stress is given the name

SMSP, were the “MSP” parts stands for multi surface plasticity and the “S” is simplified

for the simplified cyclic stress. The cyclic stresses are found using an elastic analysis,

for both the mean stress and the cyclic stress amplitude. The simplified cyclic stress

amplitude, ±σA,adj
ij , as given in equation 65, can be calculated during the elastic

solution. The cyclic solution is then found by applying the cyclic stress amplitude

and the mean cyclic stress to the component whist satisfying Melan’s theorem i.e. the

cyclic solution is given by the following model.

Having found ±σA,adj
ij and σ̂mean

ij using an elastic analysis and the function given in

equation 65 the constant residual stress due to cyclic loading is given by:
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ρ̄ij = Cijkq

(
εT r

kq − εp
kq

)

The stresses at the loaded condition s are given by:

σ1
ij = ρij + σ̂mean

ij + σA,adj
ij , σ2

ij = ρij + σ̂mean
ij − σA,adj

ij

The yield conditions are:

f1 =
∣∣∣ρij + σ̂mean

ij + σA,adj
ij

∣∣∣− σy ≤ 0 ,

f2 =
∣∣∣ρij + σ̂mean

ij − σA,adj
ij

∣∣∣− σy ≤ 0

and the net plastic strain rate is assumed to be due to all load cases and given by

Koiter’s Rule:

ε̇p
ij =

θ=2∑

θ=1

γ̇θ δf θ

δσθ
ij

= γ̇1 δf1

δσ1
ij

+ γ̇2 δf2

δσ2
ij

with

γl ≥ 0 , f l ≤ 0 , γlf l = 0 and γlḟ l = 0 for l = 1, 2

This model can be integrated in the same manner as shown in Section 5.6.2.

The constant load is then added to the structure whilst satisfying Melan’s theorem

using the following procedure. The plastic strain is carried over from the cyclic solutions

to preserve as much of the compatibility as possible. The constant residual stress due

to cyclic loading is given by:

ρc
ij + ρij = Cijkq

(
εT r

kq − εp
kq

)

The stresses at the loaded conditions are given by:

σ1
ij = ρc

ij + ρij + σ̂c
ij + σ̂mean

ij + σA,adj
ij , σ2

ij = ρc
ij + ρij + σ̂c

ij + σ̂mean
ij − σA,adj

ij

The yield conditions are:

f1 =
∣∣∣ρc

ij + ρij + σ̂c
ij + σ̂mean

ij + σA,adj
ij

∣∣∣− σy ≤ 0 ,

f2 =
∣∣∣ρc

ij + ρij + σ̂c
ij + σ̂mean

ij − σA,adj
ij

∣∣∣− σy ≤ 0
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and the net plastic strain rate is assumed to be due to all load cases and given by

Koiter’s Rule:

ε̇p
ij =

θ=2∑

θ=1

γ̇θ δf θ

δσθ
ij

= γ̇1 δf1

δσ1
ij

+ γ̇2 δf2

δσ2
ij

with

γl ≥ 0 , f l ≤ 0 , γlf l = 0 and γlḟ l = 0 for l = 1, 2

This model is integrated using the same method as given in Section 5.6.2 thus the

procedure is not repeated here.

Examples

The material models and solution methods given in Section 6.5.2 were implemented in

ABAQUS using the user subroutine UMAT. The example problems studied were the

axi-symmetric Bree cylinder and plate with hole examples given in Sections 5 and 6.

See Section 5 for details of geometry and material properties.

Discussion

The results for the Bree cylinder given in figure 43 show that, as expected, for higher

values of cyclic load beyond the alternating plasticity boundary the method becomes

non-conservative. The results show a non-conservatism of 7% at the highest cyclic

load considered here. However, the method shows over conservatism for the plate

with hole example (see figure 43). In this case, the simplified cyclic stress fails to

capture the redistributed stress due to the plastic strains at the in-plane constraints

which result due to the cyclic loads. On addition of the constant load, this results in

an error in the direction of constant stress resulting in excess straining in this region

of the component. This reduces load carrying capacity, which in turn reduces the

constant load at the ratchet boundary. Whilst this cyclic stress description results in

computational savings, it generally shows relatively widely scattered results compared

to the CMSP and LMM boundaries. It is also limited to considering only two points

on the load cycle, which may not be sufficient to describe the ratchet mechanism.
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Figure 43: SMSP Results
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6.5.2 Non-Cyclic Stress

Whilst the simplified cyclic stress proposed by Gokhfeld does not require the use of

non-linear analysis techniques to find the “stabilised” cyclic stresses, the resulting

boundaries show scattered results compared to the more accurate solution given by

the CMSP method. A more serious problem is the possibility of a non-conservative

result. This is due to the stresses being simply scaled down in magnitude, resulting in

stress fields which do not maintain equilibrium. Here the stress measure used in the

non-cyclic method is implemented.

The non-cyclic simplification follows the same basic assumptions as for Gohkfeld’s

simplified cyclic stress i.e. the cyclic part of the load cycle may be separated into

a mean part and a fully reversed cyclic stress amplitude. In this case however, the

cyclic stress amplitude is applied in a non-linear elastic plastic analysis. By doing this,

if the stress exceeds yield it is allowed to redistribute in a manner which maintains

equilibrium throughout the structure. This should result in stresses which satisfy the

more stringent conditions of a lower bound method.

Material model and Solution method NMSP

The numerical method based on the non-cyclic stress is given the name NMSP, were

the “MSP” parts stands for multi surface plasticity and the “N” is for non-cyclic. The

cyclic stress amplitude is found using an elastic-perfectly plastic analysis, to allow

redistribution of the stresses if yield is exceeded, thus the first step of the solution

procedure is to solve for the cyclic stress amplitude using the following material model:

σA,adj
ij = Cijkq

(
εT r

kq − εp
kq

)

The yield condition is:

f =
∣∣∣σA,adj

ij

∣∣∣− σy ≤ 0

the plastic strain rate is given by:

ε̇p
ij = γ̇

δf

δσij

with

γ ≥ 0 , f ≤ 0 , γf = 0 and γḟ = 0
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Note that it is assumed that:

σA,adj
ij = −

(
−σA,adj

ij

)

This model is integrated and implemented using the radial return method. For a

detailed discussion on this process see, for example, (Simo and Hughes 2000). Consider

that if the cyclic load amplitude was to be reversed at this point the structure would

not return to zero strains as the addition of the plastic strain will result in a different

unload path in most complex components. Thus the plastic strain calculated at this

condition is a mix between a constant residual plastic strain and a varying residual

plastic strain. It is not possible to determine at this stage how much of the plastic

strain is constant and how much is varying. To find that the load would need to be

cycled, which is what the simplified stress is design to avoid.

Having found ±σA,adj
ij the, steady state cyclic stresses and strains can be calculated.

The steady state residual stress due to cyclic loading is given by:

ρ̄ij = Cijkq

(
εT r

kq − εp
kq

)

The stresses at the loaded conditions are given by:

σ1
ij = ρij + σ̂mean

ij + σA,adj
ij , σ2

ij = ρij + σ̂mean
ij − σA,adj

ij

where σ̂mean
ij is an optional mean stress that can be added to alter the cyclic profile

of the cyclic stresses.

The yield conditions are:

f1 =
∣∣∣ρij + σ̂mean

ij + σA,adj
ij

∣∣∣− σy ≤ 0 ,

f2 =
∣∣∣ρij + σ̂mean

ij − σA,adj
ij

∣∣∣− σy ≤ 0

and the net plastic strain rate is assumed to be due to all load cases and given by

Koiters Rule:

ε̇p
ij =

θ=2∑

θ=1

γ̇θ δf θ

δσθ
ij

= γ̇1 δf1

δσ1
ij

+ γ̇2 δf2

δσ2
ij

with

γl ≥ 0 , f l ≤ 0 , γlf l = 0 and γlḟ l = 0 for l = 1, 2
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This model can be integrated in the same manner as shown in Section 5.6.2, thus

it is not repeated here.

The constant load at the ratchet boundary can then be calculated. The steady state

resiudal stress due to all loading is given by:

ρc
ij + ρij = Cijkq

(
εT r

kq − εp
kq

)

The stresses at the loaded conditions are given by:

σ1
ij = ρc

ij + ρij + σ̂c
ij + σ̂mean

ij + σA,adj
ij , σ2

ij = ρc
ij + ρij + σ̂c

ij + σ̂mean
ij − σA,adj

ij

The yield conditions are:

f1 =
∣∣∣ρc

ij + ρij + σ̂c
ij + σ̂mean

ij + σA,adj
ij

∣∣∣− σy ≤ 0 ,

f2 =
∣∣∣ρc

ij + ρij + σ̂c
ij + σ̂mean

ij − σA,adj
ij

∣∣∣− σy ≤ 0

and the net plastic strain rate is assumed to be due to all load cases and given by

Koiter’s Rule:

ε̇p
ij =

θ=2∑

θ=1

γ̇θ δf θ

δσθ
ij

= γ̇1 δf1

δσ1
ij

+ γ̇2 δf2

δσ2
ij

with

γl ≥ 0 , f l ≤ 0 , γlf l = 0 and γlḟ l = 0 for l = 1, 2

This model is integrated using the same method as given in Section 5.6.2 thus is

not repeated here.

Examples

The material models and solution methods given in Section 6.5.2 were implemented in

ABAQUS using the user subroutine UMAT. The example problems studied were the

axi-symmetric Bree cylinder and plate with hole examples given in Sections 5 and 6.

See Section 5 for details of geometry and material properties.

Discussion

The results of both the Bree cylinder and plate with hole examples (see figure 44)

indicate that the NMSP produces a more consistent ratchet boundary than the Gokhfled
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simplified cyclic stress, generally between 1% to 4% of the CMSP method. This is

attributed to the redistribution of stress being simulated in the non-linear calculation

of σA,adj
ij . The discrepancies in the calculated boundary may be explained by the loss

of the constant residual plastic strain, caused by the simplified cyclic stress solution,

which does not simulate the redistribution fully. From compatibility, this will alter

the redistribution of constant stress through the structure but to a lesser extent than

the Gokhfled simplified stress, as a change in direction of the cyclic stress is partially

accounted for. Thus the total stress used in the non-cyclic stress simulation has less

error than in the case of Gokhfled simplified stress, resulting in ratchet boundary

solutions in closer agreement with the CMSP and LMM. The error shown here is

relatively small (<4% and conservative), however it is not possible to say if this is the

general case and the simplified stress is limited to considering only two point load cycles,

which in the general case may not be sufficient to describe the ratchet mechanism.

123



Alternating Plasticity
NMSP
CMSP

LMM Upper

Constant Pressure/Yield Strength, P/σy

M
ax

im
u

m
T

em
p

er
at

u
re

/1
00

ºC
,

∆
θ
/1

00
ºC

2520151050

1400

1200

1000

800

600

400

200

0

(a) Bree Cylinder Ratchet Diagram from Various Methods

Alternating Plasticity
NMSP
CMSP

LMM Upper

Constant Pressure/Yield Strength, P/σy

M
ax

im
u

m
T

em
p

er
at

u
re

/1
00

ºC
,

∆
θ
/1

00
ºC

0.90.80.70.60.50.40.30.20.10

3

2.5

2

1.5

1

0.5

0

(b) Plate with Hole Ratchet Diagram from Various Methods

Figure 44: NMSP Results
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6.6 Current Limitations of the Ratchet Method

The results presented in Sections 6.3 to 6.5.2 show that the CMSP method gives

relatively accurate solutions when compared to the LMM and other lower bound

methods under the conditions studied. However as with any numerical method there

are a number of limitations:

Number of load cases The method can consider an arbitrary set of load cases,

however only 6 of the load cases can actively require returning to their respective

yield surfaces at once. If more than six require limiting to their respective yield

surfaces the problem becomes indeterminate.

Separation of constant and cyclic loads As with all current ratchet methods the

proposed ratchet methods require the separation of the constant and cyclic load

cases to allow the two stage procedure to work. However many load cases may not

have a discernible constant load and it may be impossible to define a constant load

to show a suitable safety factor against ratchet. However using the CMSP method

as a basis and coupling this with element level formulations it is theoretically

possible to overcome this limitation and several others.

Hardening It is possible to consider hardening in the shakedown method as discussed

in Section 5.6.2, however in the ratchet method the separation of the constant

and cyclic load cases makes it difficult to consider the hardening behaviour of the

cycle. As the constant load is added the cycle will take place about a different

plastic strain (i.e. the residual plastic strain will change due to the addition of the

constant load). This means that the hardening variables will change, making the

cyclic solutions invalid. The cyclic solutions would require recomputing after each

iteration of the constant load solution to account for the change in the plastic

strains. This would result in a relatively computationally expensive method.

However the development of a method which solves the cyclic and constant parts

of the problem is theoretically possible utilising element level formulations.

Quality of the Cyclic Solutions The quality of the ratchet solutions are susceptible

to the quality of the cyclic solutions. This is demonstrated by the solutions for

the pipe intersection example (see figure 36). The results for ∆θ/100 higher than

2.0 showed reduced accuracy. The number of cycles can be relatively high for

complex components such as the pipe intersection, and given the highly non-linear

nature of the plastic straining and stress redistribution the method may be seen

as computationally expensive compared to other methods. However the simplified
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cyclic stress descriptions used by other methods could be used in place of the Stage

1 analysis. As with hardening and separation of the load case, the possibility

of extending this method using element level formulations could theoretically

overcome this limitation

6.7 Discussion

In this Section a new ratchet method has been proposed. This method is unique

in that it has been shown to be a strictly lower bound method which gives reliable

results for multiple load points, which has not been demonstrated for other lower

bound methods. The method utilises a material model that maintains a constitutively

consistent description of the plastic strains in the structure, and is again unique in this

aspect. Through a number of common benchmark problems and some more complex

examples, the method has been shown to give good agreement with the upper bound

LMM, which has previously been shown to be an accurate and reliable upper bound

method.

Despite the accuracy and reliability of this method, it still has several limitations.

These ultimately stem from the use of user programmed material models. When using

this approach it is only possible to solve for 1 stress-strain relationship at a time i.e. the

residual stress and strain during the shakedown and ratchet solutions. However to solve

for effects such as fully non-linear geometry and temperature dependent material effects,

in a computationally efficient manner, it is necessary to consider several stress-strain

relationships and their non-linear relationship to each other at the same time.

The separation of cyclic and constant parts of the cycle also makes it impossible to

consider fully cyclic load conditions that may cause ratchet. Again it is necessary to

separate the cyclic and constant parts because it is not possible to solve for multiple

stress-strain relationships at once. If element level formulations were used, with a

shakedown/ratchet method based on the EMSP/CMSP methods, it is theoretically

possible for the constant and cyclic parts of the structures response to be solved

simultaneously resulting in a more flexible and potentially more computationally

efficient method.
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7 Conclusion

Previously proposed modified yield ratchet methods have been revisited and two

alternative modified yield methods proposed, formulated and implimented. By

investigating the performance of these methods in benchmark problems, two basic

limitations in this approach to determining the ratchet boundary were identified: The

loss of compatability between solution stages and errors in the direction of plastic strain

on the addition of constant load.

Following this investigation, Melan’s theorem was reinterpreted in terms of plasticity

modelling. Melan’s theorem was shown to have the same form as a non smooth multi

yield surface plasticity model. A new lower bound direct shakedown method has been

proposed, the MSP method, based on non smooth multi yield surface plasticity.

The EMSP method utilises a non-linear finite element material model based on non

smooth multi yield surface plasticity. The EMSP method was demonstrated to give

good agreement with the upper bound LMM for the benchmark problems studied. The

method was extended to allow incorporation of simplified hardening models and the

incorporation of approximate non-linear geometry effects.

The EMSP method was then extended to give the ratchet boundary beyond the

alternating plasticity boundary. The CMSP method utilises cyclic FEA and the MSP

method. The CMSP method was demonstrated to give good agreement with the upper

bound LMM.

Two simplified variants of the CMSP method were developed to reduce the

computational cost of the method. The SMSP utilises Gokhfeld’s simplified cyclic

stress. The NMSP method utilises the non-cyclic stresses proposed by Reinhardt.

The EMSP and CMSP methods are unique in that they are strict lower bound

methods, reliable and capable of solving for more than two load points. The strict lower

bound and reliability of the method are due to maintaining a constitutively accurate

description of the assumed material response.

Whilst some limitation have been identified with both the MSP and CMSP methods,

it is theoretically possible to overcome all of the current limitations. This could be

achieved through the use of element level formulations and a material model based on

the MSP and CMSP methods.

The research presented here has developed lower bound shakedown and ratchet

methods which allow the determination of both accurate and reliable ratchet

boundaries.
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A LMM Observations

The LMM is an upper and lower bound shakedown and ratchet method, see section

2.5.2 for a more detailed description of the method. The original form of the LMM was

an upper bound. Whilst the upper bound form of the LMM has a convergence proof

there can be a number of problems when using the method for assessments.

Due to the upper bound nature of the method the results will, theoretically, always

be non-conservative. Thus for assessment purposes the method must be shown to be

fully converged in order to have confidence in the identified upper bound load multiplier.

However the convergence parameter used in the LMM is based on the difference between

consecutive multipliers. Thus if a convergence of 0.001 is set, if the multiplier changes

by less than 0.001 for 5 iterations in a row the solutions is deemed to be converged.

However the multiplier may change by 0.00099 for each of the five iterations. Therefore

a convergence parameter of 0.001 is set but the multiplier could have theoretically

changed by as much as 0.00495 over the five iterations and a similar change could

continue to occur for a significant number of iterations. Thus it is not always easy to

determine whether the upper bound method has converged. This is illustrated by use

of the plate with hole example studied in section 3.5.4, however for this study the free

edges of the plate are not constrained to remain plane. Figure A.1 shows the identified

ratchet boundary for converge parameters of 0.001 and 0.0001. Note that a significant

difference between the two boundaries can exist, more than the change in converge

parameters suggests would be the case.

The lower bound form of the LMM was added to provide a complementary lower

bound multiplier to aid in the assessment of whether the upper bound had fully

converged and thus increase confidence in the upper bound multiplier. In the case

of shakedown the linearity of the problem allowed for scaling of the stresses to give a

strict lower bound multiplier that has been demonstrated to be reliable and capable of

close agreement with the upper bound multiplier. It has been shown however, that in

general the lower bound takes longer to converge to the “actual” solution.

In the case of ratchet the problem is less well defined. The addition of the varying

residual stresses that occur due to reverse plasticity results in a series of yield surfaces

offset from each other. Thus the stresses are not necessarily being scaled down to the

same yield surface, or along the same load path depending on the choice of stresses

being scaled. In the case of a single stress being scaled along a single direction it may

not be possible to satisfy all of the yield criteria at the same time, thus the problem

becomes non-linear.
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Figure A.1: Upper Bound LMM Convergence

In the latest form of the lower bound LMM presented in (Chen et al. 2013) the

constant load alone is scaled down. However in doing so the resulting expression for

the lower bound multiplier does not give a single result. It results in a range for the

multiplier which will satisfy Melan’s theorem for a given point on the load cycle, all

points in the load cycle will have a different range of the multiplier which will satisfy

Melan’s theorem at that load point. However contrary to the claim in (Chen et al.

2013) there is no guarantee that these ranges overlap for all of the load cases and thus

it may not be possible to identify a single lower bound multiplier that satisfies all load

instances simultaneously. This is illustrated in figure A.2.

σ1'

σ2'
A

B

C

D

E

Figure A.2: Impossible Lower Bound
Configuration

In figure A.2 the yield surfaces for

the two load points are offset from each

other by the varying residual + cyclic

stresses. The total stress (given by CD)

lies within the red solid yield surface

associated with the second load instance,

which is possible due to redistribution

in the stress during solution. In the

case shown 1 . X2 . 1. However to

satisfy the first load case the constant

load (vector given by AB) must be scaled
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down along the constant load vector (i.e.

along DE) thus X1 ≪ 1. Thus both load cases cannot be satisfied by a single

multiplier thus the resulting multiplier should be X = 0, however by the current method

X = X1 ≫ 0. Thus the method if a condition such as this arises in the solution does

not represent a strict lower bound solution.

To illustrate this the plate with hole example studied at the start of this section

is repeated, without the in plane constraint on the free edges, whilst calculating the

lower bound multiplier, the results are presented in figure A.3. A further example of

this behaviour was observed in section 6.4.2 in which the lower bound gave excessively

non-conservative results. It is clear that the lower bound is capable of giving multipliers

that far exceed the upper bound, clearly illustrating the non-strictness of the lower

bound LMM. Thus it is difficult to have increased confidence in the upper bound

multiplier when using the lower bound multiplier, as the lower bound may be producing

a non-conservative result.
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Figure A.3: Lower Bound LMM Non-strictness
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B A Study of the effects of Temperature dependent material

properties

Temperature dependent material properties, specifically Young’s modulus and Poisson’s

ratio, could have a significant effect on the shakedown or ratchet boundary. Consider

that the demonstration of elastic shakedown is fundamentally the demonstration that

there exists a time invariant plastic strain in the structure. Consider then, that at a

particular temperature there is a non-uniform residual plastic strain in the structure and

this results in a given residual stress. On increasing the temperature in a non-uniform

manner throughout the structure the shear modulus of the material at the plasticity

strained region will reduce, thus unloading this region to part of the structure where

the shear modulus reduces by a lesser amount. Thus whilst there is a time invariant

residual plastic strain, the residual stress is not necessarily time invariant. This fact

is in contradiction to the assumptions in both the upper and lower bound shakedown

theorems that there is a time invariant residual stress. Thus the bounding theorems

may not be sufficient in cases where a change in temperature could induce a change in

the residual stress through a change in material properties.

To demonstrate this a 2D plane stress Bree cylinder, with the same dimensions

as in section 5.5.2, and meshed with 10 second order reduced integration elements,

with aspect ratio 1, through thickness is studied. The yield strength 402.7MPa, the

thermal expansion coefficient 1.335x10−5. The Young’s modulus is assumed to be

temperature dependent and varies according to E = 201GPa−0.0729GP a
◦C ×

(
T − T 0

)
◦C

and a Poisson’s ratio 0.26. An immediate difference, to the temperature independent

case, is observed in the elastic stresses resulting from the use of the temperature

dependent material properties. These stresses are not linear through thickness due

to the non-linear change in Young’s modulus through the thickness of the plate. Also

the point of zero elastic stress shifts toward the heated side of the plate. The effect

on elastic stresses is easily incorporated into current shakedown and ratchet methods

as the elastic solutions could be calculated using the temperature dependent material

properties and thus account for the asymmetry. Currently the LMM can account of

temperature dependent Young’s modulus on the elastic stress solutions.

Further to the change in elastic stresses caused by the temperature dependent

Young’s modulus is the aforementioned effect of a change in residual stress. The

Bree cylinder is loaded with the cyclic temperature equal to 900◦C with the expansion

coefficient of 1.335x10−5. This induces a residual plastic strain into the plate similar

to the residual plastic strain which would be present in the Bree cylinder. The plate
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is then cooled to find the residual stress at 0◦C. The expansion coefficient is then

set to zero, by use of the user subroutine UEXPAN and the plate reheated to 900◦C.

As the expansion coefficient is zero during the reheating any change in the residual

stress is induced by the change in material properties. Figure B.1 shows the residual

stress state across the thickness of the cylinder for varying temperatures during the

reheating process. This clearly indicates that a change in the residual stress is possible

due to a change in the elastic material properties of the material caused by a change in

temperature. This effect can not, currently, be simulated in any of the direct shakedown

or ratchet methods. This is due to the current methods being based on the assumption

of a constant residual stress and the use of conventional finite elements.
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Figure B.1: Change in Residual Stress Due to Temperature Dependent Young’s
Modulus

To ascertain whether these temperature induced changes in the stress states affect

the shakedown or ratchet boundary, incremental FEA was used to obtain the shakedown

and ratchet boundaries for the Bree cylinder. The results of the analysis are presented

in figure B.2. For comparison the analytical solution for temperature independent

properties are also included in figure B.2. As shown in the figure after the initial yield

at approximately 300◦C there is a gradual deviation of the temperature dependent

boundary away from the analytical temperature independent solution. At the analytical

shakedown boundary the difference is 3%. The ratchet boundary as given by the

temperature dependent Young’s modulus adjusted LMM is also given in figure B.2. This

shows a ratchet boundary that consistently predicts greater constant load at ratchet
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than the temperature independent solutions. This can be explained by the reduction

in thermal stress caused by the softening of the high temperature material, resulting

in less elastic strain energy for a given temperature. However the incremental finite

element results give a boundary which predicts a lower constant load at ratchet than

the LMM, this suggests that temperature dependent Young’s modulus has a further

effect on the resulting boundaries through some other mechanism than the elastic loads.

If the results are normalised in the usual manner, i.e. against yield stress the resulting

boundaries are shown in figure B.3. The ratchet boundary as found by the incremental

finite element solution is consistently lower than the analytical boundary with the

difference growing for the greater temperatures.
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Figure B.2: Bree Boundaries Temperature dependent Properties

A marked difference in the alternating plasticity boundary is also observed in both

figures B.2 and B.3 further demonstrating the complex interactions that takes place

due to the temperature dependent material properties. In this particular example the

difference is slight between the two boundaries. However the difference is sufficient

to allow an investigation of the reasons for the difference. If the only cyclic stress

was induced by the cyclic thermal load the alternating plasticity boundary should,

theoretically, be flat. The downward slope of the alternating plasticity boundary

observed for the incremental finite element solutions suggests that there are additional

cyclic stresses occurring during the load cyclic. Two possible sources of these additional

cyclic effects are a change in the constant load due to changing material properties and
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Figure B.3: Normalised Bree Boundaries Temperature dependent Properties

a change in the constant residual stress due to changes in the material properties.

For this study a constant load of 200MPa is chosen and the corresponding

temperature of 626◦C which lies inside the elastic shakedown domain for this particular

problem. The constant load is applied to a finite element model of the Bree cylinder,

the model is then heated with the linear temperature gradient whilst ignoring expansion

effects i.e. a thermal expansion coefficient of 0. The resulting stresses and the variation

in constant load, over the cycle, induced by the changing material properties is shown

in figure B.4. To explore the residual stress the Bree cylinder in loaded with the

constant load and cyclic temperature whilst accounting for expansion effects until the

cycle stabilises, approximately 4 cycles. The cylinder in then unloaded of all loads

and temperature. The cylinder in then reheated whilst ignoring the effects of thermal

expansion (through the use of user subroutine UEXPAN). The residual stress at 0◦C

and at 626◦C and the resulting variation in residual stress, over the cycle, induced by

temperature dependent properties is shown in figure B.4. From figure B.4 it is clear that

additional cyclic stresses occur due to the “constant” tensile load and the “constant”

residual stress. To find the total cyclic stress these additional cyclic stresses must be

added to the cyclic thermal load. From figure B.4 it can also be seen that the variation

in the stresses act in the same direction as the cyclic load, thus the additional variations

will result in a more damaging case for this particular problem.

From the incremental finite element model the total cyclic stress, over the cycle, is
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Figure B.4: Bree Cylinder Additional Temperature Induced Variations in Stress

found and shown in figure B.5. The cyclic stress from the cyclic temperature is found

by elastic plastic analysis and is shown in figure B.5. It can be seen that the total cyclic

stress is greater than the cyclic thermal stress from cyclic temperature alone. If the

effect of the variation in constant stress during the cycle is added to the cyclic thermal

stress, the resulting total cyclic stress is still less than the total cyclic stress found

by incremental FEA. If the variation in residual stress is added to sum of the cyclic

thermal stress and the variation in constant stress then the total cyclic stress matches

that of the incremental finite element model closely. This suggests that the change in

residual stress and constant stress over the cycle induced by temperature dependent

properties is an important factor in the determination of the shakedown and ratchet

boundaries.

Further to the effects descried by this point on the alternating plasticity boundary,

the change in material properties with temperature results in the elastic stress solutions

not being linearly related. That is an elastic stress solution at 100◦C cannot be scaled

to give the elastic stress solution at 200◦C. The same is true for temperature effects on

the constant load and residual stress.

A number of conclusions can be made from the example studied.

• Temperature dependent properties can result in a variation in the constant and

residual stresses during the load cycle

• In the case of the Bree cylinder studied here the variation induced in both the
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Figure B.5: Bree Cylinder Cyclic Stress with temperature dependent effects

constant and residual stresses are detrimental to the addition of constant load,

i.e. it adds to the total cyclic load reducing the size of the elastic core.

• Incorporation of the temperature dependent properties on the elastic loads only

can result in non-conservative results as the temperature dependent properties

tend to cause lower elastic strain energies in the thermal loads, as demonstrated

by the LMM results.

• The possibility of a variation in the residual stress during the cycle, not caused

by a change in plastic strain, results in the bounding theorem being invalid under

the effects of temperature dependent properties.

• The inability to scale elastic stress solutions for different temperatures requires a

new elastic solution for each temperature in the shakedown solutions. The same

argument may be extended to the calculation of the variation in constant load

and residual stress in a ratchet solution. Requiring a new analysis to determine

the temperature effects on the constant and residual stress at every point of the

ratchet analysis.

The above example has shown the importance of re-assessing the constant, thermal and

residual stresses at each point in the load cycle for every iteration of a shakedown and

ratchet solution where temperature dependent material properties are used. However

the current solution methodology used in shakedown and ratchet methods does not
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allow for the variation in residual stress during the cycle without an accompanying

change in plastic strain, nor do they allow for re-assessment of the superimposed stresses

during the solution. Thus at present the current methods cannot account of the effects

of temperature dependent material properties in a complete sense. Whilst the effect

of temperature on the example studied was slight this may not be representative of

the general case. The effect on the resulting boundaries is likely to be a function

of the geometry, boundary conditions, constraints and the rate of change of material

properties w.r.t temperature. Further research on this topic is required to gain an

understanding of the general case and the possible effects of temperature dependent

material properties on more complex structures and load cycles.

144



C Nomenclature

Nomenclature

Cijkl Elastic Modulus

Ccon Consistent tangent modulus

D Hardening modulus

E Youngs Modulus

Eep Tangent modulus

f Yield function

H Hassian matrix

L Lagrangian

l A point in the load cycle

m Number of points in the load cycle

P Set of externally applied loads

P c Constant loads

P̂ Cyclic loads

r Normal directions

S The external surfaces of a strucutre

T Temperature

t Time

ui displacement

V Volume of the structure

W Work done

Y Lower bound multiplier

Z Fixed Cyclic load multiplier

α Coefficient of thermal expansion
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χ backstress

δij Kronecker Delta

ε∆ Varying residual plastic strain

εer Elastic residual strain

εp Plastic Strain

εpθ Kinemmatically admissable plastic strains

εr Compatable residual strain

εT Total mechanical strain

εT r Total residual strain

Γ Energy function

γ Plastic consistenty parameter

λ Lamme’s constant

µ Shear modulus

ν Poiosson’s ratio

ρ residual stress

ρ Constant residual due to cyclic loads

ρc Constant residual stress

ρ∆ Varying residual stress due to alternating plasticity

ρ∇,trial
ij Accumulated varying residual stress at a given point in the load cycle

ρr Total residual stress due to cyclic loads

σ Total stress (i.e. resdiaul + elastic)

σA Cyclic stress amplitude

σA,adj Adjusted cyclic stress amplitude

σe elastic stress in eequilibrium with the applied load case

σ̂ elastic stress in equilibrium with the cyclic load
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σ̂c elastic stress in equilibrium with the constant load

σ̂mean Mean cyclic stress

σr Normalised Stress

σy Yield stress

ϕ Period of a load cycle

ζ Local itteration number in plasticity algorithims
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