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Abstract

Modern era of signal processing has developed many technical tools for recording and pro-

cessing large and growing amount of data together with algorithms specialised for data

analysis. This gives rise to new challenges in terms of data processing and modelling data

representation. Fields ranging from experimental sciences, astronomy, computer vision,

neuroscience mobile networks etc., are all in constant search for scalableand efficient data

processing tools which would enable more effective analysis of continuous video streams

containing millions of pixels. Therefore, the question of digital signal representation is still

of high importance, despite the fact that it has been the topic of a significant amount of work

in the past. Moreover, developing new data processing methods also affects the quality of

everyday life, where devices such as CCD sensors from digital cameras or cell phones are

intensively used for entertainment purposes. Specifically, one of the novel processing tools

is signal sparse coding which represents signals as linear combinations of a few representa-

tional basis vectors i.e., atoms given an overcomplete dictionary. Applications that employ

sparse representation are many such as denoising, compression, and regularisation in inverse

problems, feature extraction, and more.

In this thesis we introduce and study a particular signal representation denoted as the

scalablesparse coding. It is based on a novel design for the dictionary learning algorithm,

which has proven to be effective forscalablesparse representation of many modalities such

as high motion video sequences, natural and solar images. The proposed algorithm is built

upon the foundation of the K-SVD framework originally designed to learn non-scalable dic-

tionaries for natural images. Thescalabledictionary learning design is mainly motivated by

the main perception characteristics of the Human Visual System (HVS) mechanism. Specif-

ically, its core structure relies on the exploitation of thespatial high-frequency image com-

ponents and contrast variations in order to achieve visual scene objects identification at

all scalablelevels. The implementation of HVS properties is carried outby introducing a

semi-random Morphological Component Analysis (MCA) based initialisation of thescal-

able dictionary and the regularisation of its atom’s update mechanism. Subsequently, this

enablesscalablesparse image reconstruction.



x

In general, dictionary learning for sparse representations leads to state-of-the-art image

restoration results for several different problems in the field of image processing. Experi-

ments in this thesis show that these are equally achievable by accommodating all dictionary

elements to tailor thescalabledata representation and reconstruction, hence modelling data

that admit sparse representation in a novel manner. Furthermore, achieved results demon-

strate and validate the practicality of the proposed schememaking it a promising candidate

for many practical applications involving both timescalabledisplay, denoising andscal-

ablecompressive sensing (CS). Performed simulations includescalablesparse recovery for

representation of static and dynamic data changing over time such as video sequences and

natural images. Lastly, we contribute novel approaches forscalabledenoising and contrast

enhancement (CE), applied on solar images corrupted with pixel-dependent Poisson and

zero-mean additive white Gaussian noise. Given that solar data contain noise introduced by

charge-coupled devices within the on-board acquisition system these artefacts, prior to im-

age analysis, have to be removed. Thus, novel image denoising and contrast enhancement

methods are necessary for solar preprocessing.
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Chapter 1

INTRODUCTION

Effective mathematical modelling and representation of digital signals are oneof the essential pre-

requisites for designing successful and practical solutions to many estimation problems, especially

to those arising in the field of signal and image processing. A priori model ofsource data commonly

aims to capture and extract general characteristics of a signal in order toproperly address some of

the key processing challenges such as denoising, compression, regularisation for inverse problems,

data restoration, inpainting, feature extraction etc. Over the past couple of decades, image processing

applications have undergone significant improvements as a result of enhanced models characterised

by their high ability to describe signals of interest.

One of the most effective modelling methods emerged with the introduction of the sparsity and

overcompleteness notions which opened a new and an innovative field of image processing research.

The sparse and redundant representations of data are based on the assumption that a wide range of

signals (e.g., natural images) admit a sparse decomposition over a specific representational basis

commonly denoted as dictionary. Successful sparse modelling primarily depends on the quality of

the chosen dictionary which is evaluated through its ability to code signals as a linear combinations

of its few elements i.e., atoms providing an effective low-dimensional representation. Specifically,

there are two main dictionary types:

• Analytic : based on a specific mathematical model of data, non adaptive and pre-specified,

representing signals by a particular class of mathematical functions while independent of the

input signal content;

• Trained: generated via an algorithmic scheme as an example-based training procedure given

the set of training data of interest, highly adaptable to source data and dependent on the input

signal’s content.

The main benefit of the former method is usually simple and fast implicit implementation of sparsi-

fying procedure since the signal of interest is just transformed in a domainof a given mathematical

function. Some of these effective transforms include discrete cosine transform (DCT) [4], wavelets
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[5], curvelets [6, 7], contourlets [8, 9], wedgelets [10] and more. However, the representational effi-

cacy of this approach is limited by the type of its underlying model which is usuallyable to capture

specific range of the signal features complexity but not their full scale ofattributes. The shortcoming

of analytical methods was and still is tackled by means of Machine Learning [11] techniques. Their

core premise promotes extraction of the complex signal composition straight from data as more ef-

fective than it is with a fixed mathematical description. As machine learning algorithms advance in

direct adaptation to divers high-dimensional data sets, generic models (i.e.,analytic) are being more

and more replaced. This trend is in particular evident within the research area of training dictionaries

for the sparse signals representation where trained basis is marked with theenlarged flexibility and

the ability to adjust to specific signal data.

1.1 Adaptive Sparse Representations for Signals and Im-

ages

The two main key contributors and the pioneers in the area of learning adaptive dictionaries for image

representation are Olshausen and Field who established in [1, 12] a relation between an elementary

biological visual behaviour and signal sparsity notion. Their work was the first one to promote the

idea and potentials of learning rather then using of-the-shelf dictionary bymodelling the response

properties of receptive fields of simple cells in the mammalian primary visual cortex. Their results

revealed the potential of the example-based learning schemes for extraction of the basic structure in

complex data. Furthermore, their work defined a main structure for dictionary learning, motivating

a sparse representation community to provide a vast amount of successfully applied research.

In general, the sparse representation of a signaly∈Rn is provided as a linear combination of a few

prototype signal-atomsd j belonging usually to an overcomplete dictionary matrixD ∈ Rn×K which

includes a total ofK elements. Specifically, atoms represent vector elements of an overcomplete

representation dictionary. Commonly, the sparse representation is an approximated version of the

original i.e.,y ≈ Dx with the maximal representational error of‖y−Dx‖p ≤ ε. An error constraint

boundary is set with the value ofε. The divergence from the exact signal valuey can be measured

with the deviation formp = 1,2 and∞ where for the proposed work we employp = 2. Sparse

representational coefficients of signaly are held within vectorx.

Recent years have brought a considerable number of dictionary learning methods where the so-

calledSparselandmodel [2, 13, 14] has led to numerous state-of-the-art algorithms for several image

processing problems [13]. Instead of sparsifying the full imageY ∈ Rb×b and implementing global

modelling, focus is shifted to a local processing where an imageY is broken down into a set ofN

extracted patchesY = [y1y2y3 . . .yN] ∈ Rn which are in turn sparsely represented.

Typically (but not necessarily) as already stated, it is assumed that dictionary D is overcomplete

i.e., the number of its basis vectors (atoms) is greater than the original signal’sdimension (K > n). At

first glance, havingK > n and a full-rank matrix dictionaryD can lead to an immeasurable number
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of solutions. However, for a practical implementation a single solution is most appealing. Thus,

specific constraints are necessary to be imposed within the sparse optimisationproblems where the

sparse estimates each denoted asx which contain the least number of non-zero coefficient represent

the most optimal solution. These are calculated through the following optimisation objective [2, 13]:

min
x

‖x‖0 s.t. ∀ i
{
‖y−Dx‖2

2

}
≤ e (1.1)

where‖‖0 stands for the so calledl0 norm used to quantify the level of vector’s sparsity. That is, the

number of its non-zero coefficients:

min
x

‖x‖0 = {i : xi 6= 0} (1.2)

Even though finding the exact solution of (1.2) is a NP-hard problem (Non-deterministic Polynomial-

time hard) i.e., combinatorial in nature, many algorithms have been devised aiming for an approx-

imate sparse representation as a solution. Given the fixed version of the dictionary D and one of

the pursuit algorithms e.g., [15–19] one can estimate matrixX containing sparse approximations

{xi}N
i=1 ∈ RK for each image patchyi . Hence, a set of weighted linear combinations of a few atoms

in D satisfactorily approximates each patchyi ∈ Y where the full image approximation is denoted as

Ŷ ≈ DX. The applications of dictionary learning [20, 21] include areas such as classification [22],

efficient face recognition [23], inpainting [24], denoising [25, 26], super-resolution [27, 28], Morpho-

logical Component Analysis (MCA) [29, 30] and those designed for sparse colour image processing

[31, 32].

1.2 Stages in dictionary learning procedure

In order to deliver a dictionary adequately tailored for image processing application of interest, in

general, there are few key steps that need to be performed and addressed. Given that the dictionary

is not defined by some theoretical model, one needs to train the dictionary over the data from a

family of signals1 which are expected to be used in the actual application. Unlike the pre-specified

dictionaries, trained ones need to be estimated meaning that they require a greater number of com-

putations imposing a higher processing load. Subsequently, this forces a restriction over a training

data structure limiting it to a set of a small patches, that is, low dimensional traininginputs. Once the

data gathering is done, prior to training procedure, the dictionary is usuallyinitialised by randomly

choosingK image patches and subsequently mapping them into each atom. Commonly, learning

process is composed out of two main iterative blocks which are performed successively once the

initialisation is completed (see Fig. 1.1):

1. Sparse coding phase: estimation of the sparse coefficient representations;

1 Defined as a set of signals with specific mutual property. Inclusion or intersection of signal’s families is
possible. For instance, the set of animal-image-patches isa subset of real-image-patches.
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Fig. 1.1 Dictionary learning process.



1.2 Stages in dictionary learning procedure 5

2. Dictionary update: estimation of the new dictionary elements i.e., atoms.

The way in which these two stages are implemented will depend on the type of the optimisation

objective settings. Sparse coding (with fixed dictionary) is defined as alp
2 regularised problem.

The lp employed norm and the correlation level of dictionaries column determines howsimple or

complex method is necessary for the estimation of the sparse coefficients. For example, withl0
norm which counts the number of the non-zero elements greedy algorithms such as [16–18, 33, 34]

representing various versions of matching pursuit sparse coding scheme, will be the best processing

choice. However, when using thel1 (∑i |xi |) norm which measures the absolute sum of the sparse

coefficients, one of the best pursuing schemes are:

• For dictionary which basis vector elements i.e., atoms exhibit low correlation simple methods

such as [35] or [36] are very effective;

• More often, the learned dictionary atoms will be correlated calling for more sophisticated

methods such as basis pursuit [15, 37, 38] or so calledLasso[39], just to name few.

This process can be viewed as a nested minimisation problem where sparse coding represents a

minimisation of the number of the non-zeros elements in the sparse representation of given vector

for a fixed dictionary. However, high quality sparse representation depends on the dictionary update

scheme. Many were proposed where ones that have shown to have the highest impact are:

• Method of Optimal Directions (MOD) [40, 41] - among the oldest dictionary learning pro-

cedures, with a few alternating iterations converges to the desirable solutionby solving the

quadratic posed problem;

• So called Online dictionary learning [42, 43] where new atoms are generated via block-

coordinate descent methods using stochastic approximations free of parameter tuning;

• The K-SVD [13, 19] is the learning procedure with atom update based onthe Singular-Value-

Decomposition (SVD)K times repeated once for each atom.

Focus of this thesis is placed upon the design and use of the data-driven dictionaries forscal-

able sparse representations and reconstructions. Specifically, a procedure is proposed for learning

a dictionary capable of adapting both to a specific dataset and providing its effective scalablere-

construction. Current work onscalabledata recovery is only based on the conventional predefined

dictionaries such as Discrete Cosine Transform (DCT) [44]. Thus, wefind that it is important to

offer an alternative one in a form of an adaptive dictionary sparse representation. Given that natural

signals such as images are composed of meaningful and distinguishable spatial frequency structure

(i.e., low and high frequency components) we go further by exploiting that fact and incorporating it

2For vectorx ∈ Rn the lp norm is defined as‖x‖= (∑n
i=1 |x|p)

1/p for p≥ 1. In addition top norms there is
a pseudol0 norm denoted as‖x‖ defining vector’s number of a non-zero elements.
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into the dictionary learning scheme. In this work we mainly aim to reveal the potential and effective-

ness of dictionary tailored to thescalablesparse representation. By introducing novel constraints to

the dictionary learning optimisation objective problem, we derive a completely novel sparse coding

data model. The proposedscalablesparse training scheme is tested on real video sequences and also

on natural images sets.

1.3 Motivation

In modern video broadcasting networks, an image or a video source is transmitted to numerous

clients with various receiver characteristics. These consumers differ primarily in accessible:

• Channel capacity;

• Display resolutions;

• Computing resources.

The interesting question is how to support and deliver a controlled quality ofthe displayed data over a

wide range of applications that differ in the user’s equipment heterogeneity, communication channels

and QoS demands? It would be appealing somehow for a video or an image signal to be processed

in a such a manner that would enable its optimal usability by all diverse clients. For example, the

limited frequency space shared by mobile video streaming users would be effectively exploited by

a genericscalablei.e., progressive data reconstruction such as proposed here. Secondly, this type

of data reconstruction would potentially cut down the internet related expenses in countries such as

South Africa where users are not entitled to the unlimited access to the internetfor a set monthly

payment. Instead, residents of South Africa have to pay for content perbyte which is extremely

expensive for people living in the third world country. Thus, implementing controlled quality data

display i.e.,scalabledata reconstruction would enable South Africans to enjoy more flexibly internet

access for same amount of money. For instance, an internet user in a thirdworld country would be

provided with several downloading options in terms of quality of displayed data giving him or her a

control over the used internet content. This would be achieved by applying progressive reconstruc-

tion framework on the source signal prior to its transmission, thus producingits scaled representation

form. Once delivered at the client side e.g., in South Africa depending on itstechnical specifications,

signal would be restored at different quality levels. Thus, signal’s generic scalability is desirable

in many applications since it will be able to support heterogeneity in users’ equipment, QoS de-

mands,communication channels and cut down the internet related expenses.We explore the problem

of scalablereconstruction within the adaptive sparse image or video representation given the trained

representational dictionary.

Furthermore,the notion of data representational scalability combined togetherwith the adaptive

sparse data representation could be effective for tackling the astronomical data processing. One of
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the main challenges in terms of processing space data e.g., solar images is a need for various types

of data processing approaches and combinations of various analytic datatransformation due to the

heterogeneity of solar images and a high range of solar features that hugely differ in the level of con-

trast and sharpness. For instance, denoising of astronomic images is oneof the greatest challenges

since, whether secured from telescopes, satellites, or other imaging devices acquired images suffer

constantly from the ubiquitous presence of noise. Thereby, gaining a proper understanding of what

is seen can be extremely difficult. In order to reduce the noise component and improve the scientific

quality of the data which are subject to further analysis, a denoising step becomes mandatory pre-

processing scheme. The denoising performance directly influences effectiveness of any further astro-

nomical data processing task such as contrast enhancement (CE). Overall, this serves us a motivation

to take an alternative and more robust approach by adaptingscalablesparse signal representation to

the solar image.

1.4 Contributions of the Thesis

This thesis makes following contributions:

1. It tackles the problem of creating a novel dictionary training procedure tailored toscalable

image restoration, offering a novelscalablemodel for data that admits sparse representation

given that this kind of sparsescalablerestoration model (to the best of our knowledge) do not

exist;

2. As a solution to thescalableimage restoration problem, this thesis provides in Chapter 3 a

new extension and upgrade of the K-SVD dictionary learning concept from non-scalable to

scalableadaptive image reconstruction by introducing for the first time semi-random dictio-

nary initialisation based on the MCA activity norm [13] and the regularisation of the learning

dictionary process over its elements i.e., atoms. This is based on the integration of the HVS

perceptual mechanism features.

3. It establishes, discusses and shows practicality of new connections between adaptive sparse

training dictionary method and spatial high and low image frequencies. This upgrade pre-

serves main structural information of the image and its contrast which is necessary for effec-

tive scalableimage restoration (Chapter 5);

4. It provides the general outline of thescalablereconstruction mechanism for data represented

via trained dictionary and appropriate sparse representation together withits specific applica-

tion for various image processing problems (Chapter 3 and Chapter 4);

5. It demonstrates the processing effectiveness of the proposedscalablescheme for both com-

plete and overcomplete dictionary versions in Chapter 4. This is not the casewith the non-

scalable K-SVD dictionary training schemes which performance depends on the overcomplet-
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ness notion of the trained dictionary. Given that completescalabledictionary is well suited

for thescalableimage restoration we promote it as ascalablerepresentational basis;

6. The proposedscalabletraining design enforces novel spatial frequency distribution as a built-

in feature over trainedscalabledictionary. That is, it establishes novel allocation and distribu-

tion of spatial image structure i.e,. smooth and texture information within atoms of the trained

scalabledictionary.

7. It extends and applies the proposedscalabletraining scheme to denoising of Gaussian additive

noise in Chapter 3 and Chapter 5 where the processing complexity of noise removal is opti-

mised by removing sparse coding dictionary stage and utilising SVD for the noise reduction.

This is possible due to emphasise of the high frequency image information utilisation during

the dictionary training process over the noisy image;

8. It extends and applies the proposedscalabletraining scheme to CS where typical CS setup

is altered given that we employ trainedscalabledictionary for signal’s representation instead

of predefined one i.e., analytic. We provide an alternative and novel CS scheme which joins

the training of the complete and regularisedscalabledictionary together with the CS image

sensing in Chapter 5.

9. Chapter 6 represents the practicality of the proposedscalabletraining method for the solar

image processing applications. We introduce an extension of the sparse representation with

thescalabledictionary learning concept to denoising solar images corrupted with a mixture

of pixel-dependent Poisson noise and white Gaussian noise. Unlike in Chapter 4scalable

denoising is carried out within the Anscombe transformation domain. Thus, wepropose its

additional modifications;

10. Finally, Chapter 6 shows a novel extension of the integrated contrastenhancement technique

originally proposed for curvelets in [45] to thescalabledictionary learning approach. Specif-

ically, we illustrate a development of an universal joint contrast enhancement andscalable

denoising algorithm for solar image data. This algorithm aims to achieve featureextraction in

different solar image types while minimising the processing complexity by taking advantage

of the completescalablesignal representation.

1.5 Organisation of the Thesis

The organisation of the thesis is as follows:

Chapter 1 describes the research objective and motivation together with theoriginal contributions

that are presented in this work.

Chapter 2 provides a detailed review of the most important prior models in image processing

followed up with the existing work in pursuing methods based on sparsity inducing norms which are
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the core of various learning dictionary methods. These are presented alltogether with the analytic

dictionary representation approaches for image signals. In addition, we talk about special signal

sensing method i.e., CS which represents one of the important processing methods based on the

sparse signal representation. Finally, the list of various objective image quality measures is given.

Chapter 3 establishes the foundation of the proposedscalabledictionary learning aiming to sup-

port thescalablerepresentation of various video sequences, natural and astronomic images. Here we

provide a detailed problem statement of imagescalablerestoration via sparse coding and proposed

approach for addressing it. Furthermore, we provide a general outlineof the scalabledenoising

scheme and all accompanying modification addition, we illustrate an overview ofHVS and its main

properties given that introduced design models HVS within the learning stageof thescalabledictio-

nary.

Chapter 4 shows the effectiveness of the introducedscalabledictionary learning scheme for

general imagescalablerestoration. Here we provide detailed explanation of the general simulation

setup and complete list of employed parameters. All steps ofscalablerecovery procedure are shown

with achieved performance ofscalablerestoration given several test video sequences and natural

images.

Chapter 5 centres around practical applicability of the proposedscalabledictionary scheme and

how it can be used for various restoration problems. In particular, we presentscalabledenoising and

CS performance once the integration ofscalabledictionary is performed within these two procedures

replacing commonly used the non-scalable representational basis. Lastly,we address the series of

questions concerning the structure and processing effects of the proposed design.

Chapter 6 introduces the novel denoising and contrast enhancement framework for solar images

corrupted with pixel dependent Poisson and zero-mean additive white Gaussian noise. Both process-

ing schemes are build upon the proposedscalabledictionary training scheme.

Finally, Chapter 7 presents the research summary together with detailed suggestions for future

work. All references can be found at the end of the thesis.





Chapter 2

BACKGROUND AND LITERATURE

REVIEW

There is a great deal of research on prior image modelling in the signal processing literature offering

various mathematical formulation for natural images. This chapter provides areview of earlier image

prior models in Sec. 2.1 such as probabilistic, adaptive and sparse. This isfollowed by Sec. 2.2 which

introduces in detail essential elements of sparse based signal modelling i.e., sparsity inducing norms

and pursuing methods used to estimate sparse signal representation. Sec.2.3 and Sec. 2.4 provide

detailed overview of analytic pre-specified mathematical models of images and example-based train-

ing procedures, which core design revolves on providing sparse based image representation. One of

the very significant roles of sparse signal decompositions is given in Sec. 2.5 where we overview the

compressive sensing i.e., joint sampling and compression scheme. Finally, Sec. 2.6 reviews several

objective image quality methods commonly used for image quality evaluation and quantification.

2.1 Prior models in image processing

The effectiveness of signal processing applications directly dependson chosen prior models and their

ability to faithfully capture and represent structure of a specific signal’s family. Thus, prior models

play an importation role for recovery of acquired and sampled signals whichcommonly contain:

• Noise;

• Obscure or missing sensor data or;

• Any general type of uncertainty introduced within original data.

These distortions often make restoration of original data to be almost infeasible. However, such

problems can be addressed with introduction of proper mathematical prior models which integrate
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additional constraints on solution by imposing prior knowledge or assumptionson the expected sig-

nal’s structure. For instance, in some subset space of signalsΩ ⊂ RN these constraints will define the

type of the recovered information i.e., another subset (family) of signals from Ω. This implies that

only relatively small space within theΩ will be relevant for restoration process.

Utilising the knowledge of scarce signals distribution for data of interest over RN represents the

core of all signal processing techniques employed for the enhancement,restoration or representation

of signal data. Some examples of specific signal families are natural images, audio data, video

sequences, biomedical and neurological signals, space and solar photos, scanned info and many more.

These signals are distinguished from one another through their associated prior model representing

an approximated mathematical description of the one signal’s family constructedin way to separate

it from the remainder ofΩ subset space ofRN. Thus, the principal aim of the signal modelling study

is to capture the behaviour of real data by constantly improving and creatingnew and more accurate

designs of signal prior models.

One of the most essential prior models for images are probabilistic ones, dating back in 1980’s

[46] followed by alternative regularisation methods e.g., deterministic one [47]. Due to the complex

nature of, for example, image data, probabilistic modelling was subject to constant refinement to

the present day. This resulted in a strong framework tailored to incorporate various sources of in-

formation providing meaningful outcomes. In the last decade, image enhancement algorithms have

increasingly made use of general image gradient statistics through parametrization of generalised

Gaussian distribution [48] or a mixture of Gaussians [11, 49, 50]. Theseare able to capture and

model the natural images properties such as existence of spatial smoothness containing regions with

sharp edges which lead to a heavy-tailed gradient profile. In the early research and in some recent

work model distribution parameters are manually set and fixed over whole image thus, enforcing

identical image prior [51, 52]. However, different texture regions withinthe same image exhibit

different gradient statistic [53] suggesting that imposing one image prior over given image is not the

most optimal solution.

Adaptive image prior models various local levels of image structure and textures enhancing the

quality of restored image. As a result, they introduce more accurate prior for each existing image

texture [53, 54]. This is achieved by learning image priors from training examples which characterise

specific information about the natural image subset of interest. Overall, final goal is to discover an

underlying source of a visual scene [55]. However, learning the prior i.e., distribution to account for

the signal’s behaviour, represents an immense processing problem [54]due to:

• Complexity of images;

• Their high dimensionality;

• Complicated relation between pixel values;

• Non-Gaussian nature of the natural image [56–59].
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Some of the successful image modelling examples are the Fields of Expert (FOE) schemes [60, 61]

which efficiently incorporate non-Gaussian statistic behaviour of image. Specifically, FOE gener-

ate filters suitable for denoising and inpainting [60, 61]. Core of the FOE modelling design are

either parametric, student T distribution for the potentials defined on filter outputs [60] or high-order

Markov random field (MRF) training [61]. Overall, these and similar techniques proved that in gen-

eral, a far better performance can be achieved with learning rather than with the predefined methods

for prior models.

Back in 1990 a completely new area of image processing research emergedintroducing com-

pletely new concepts for learning of image based priors. These new modelling ideas were based on

the mammalian primary visual cortex functionality principles, the so-called receptive fields studied

first on animals by [62–67]. Main efforts of neurophysiologists were invested in understanding func-

tionality principles of hierarchically ordered visual cortex areas starting with striate cortex (V1) and

followed up by extra-striate visual cortex areasV2,V4 [66]. AreaV2 shares a long physically border

with V1 where the mapping of the visual field ontoV2 represents the mirror image of theV1 map

[66]. V2 area provides an input forV4 which contains many colour selective cells with complex

spatial and orientation tuning. In particular, many different experimental attempts have been made

to account for the properties of the receptive fields inV1 resulting in a physiologically description

and characterisation [62–67] ofV1 area as:

• localised- cell’s response to visual stimuli happens in a confined and restricted space region;

• oriented- organised subfields of cells are elongated along a specific direction;

• bandpass- cell’s response is restricted to bandwidths in the range of 1 and 2 octaves.

This implies that visual cortex have evolved to efficiently capture and represent visual scenes with

V1 receptive fields cells exhibiting primarily these three response properties. Inspired with these

findings, computer vision researches have invested a great deal of effort to design coding strategies

for visual scenes using the characterised structure of natural images.Additionally, aim was to attain

greater insights on cortex visual processing especially inV1 area [12, 68, 69]. The research was

focused on delivering basis code for image representation denoted asD with basis functionsdi while

utilising unsupervised learning tools. The proposed basis code would structural be similar to the

response characteristics of the biological receptive fields cells [70–73]. However, none of them suc-

ceeded until Olshausen and Field suggested new coding approach [1, 12] promoting algorithms that

learn sparse image code. The core of their approach is estimation of the natural image representation

denoted withX where each elementxi ∈ X in [69, 74] exhibits maximal sparseness. Discovery of

this sparse code was based on two global objectives defined for the optimisation problem:

1. Preserve image information by measuring the codeD fidelity of its image description;

2. Control sparsity degree of the image representationX and its relevance in relation to the first

optimisation objective.
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xi

(a) Given a large set of code elements
xi image will be represented by a small
number, that is, sparsely represented.

xi

xiP

(b) The probability distribution of each
code elementxi activity; most of the
time elements are inactive

Fig. 2.1 Visualisation of image sparse coding and code elements activity (adapted from [1]).

Results of solving this generally outlined optimisation challenge showed that these two objectives are

sufficient and necessary for generating representational basis withlocalised, orientedandbandpass

code membersdi similar to those typically found in the mammalian primary visual cortex [1, 12].

The trained code basis could stay fixed for different natural images from the same family of signals

since well designed code will span complete image space. In contrast, coefficientsxi should stay

statistically independent as much as possible [72] over the space spannedwith the code while dy-

namically changing from one image to another. Thereby, in accordance to information theory [73],

the image information is preserved with coefficients which exhibit significantly reduced statistic de-

pendency. The nature of coefficient values is described in [1, 12] and illustrated in Fig. 2.1 showing

their unimodal probability distribution peaked around zero (see Fig. 2.1b).This implies that most

of the coefficients values will be inactive (see Fig. 2.1a) where only few are used for sparse image

representation. Thus, the image inherent structure is going to be capturedwith a small number of

statistically independent events [69], that is, basis functions. Specific emphasis was set on employ-

ment of the various sparsity inducing norms aiming to achieve as sparse as possible and high quality

image sparse representations.

2.2 Sparsity inducing norms and pursuing methods

The concept of sparsity prior gained a great deal of interest once it became clear that it can be

employed as an additional regularising term for many ill-conditioned problems invarious areas of

electrical engineering, statistics, and applied mathematics [2, 75]. Before the introduction of sparse

approximation problems, undetermined systems of equations such asAx = b with: (i) A full rank

matrix A ∈ Rn×m (n < m); (ii) Observed signalb ∈ Rn; (iii ) Unknown signalx ∈ Rm; seemed to

be unsolvable with infinitely many possible solutions due to the (number of equation)<(number of
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Fig. 2.2 Variations of|x|p function for different values of sparsity norm definingp variable.
For p≈ 0 or p= 0 |x|p exhibits the nature of the counting function turning into 0 for x= 0
or 1 elsewhere (adapted from [2]).

unknowns) relation. For any undetermined systems of equations, out of infinitely many, a single and

unique solution is the only practical outcome. The single solution was possible toattain once a new

i.e., sparsity measuring norm was imposed on the type of the solution nature.

In general, the optimisation problem for estimation of some unknown vectorx can be expressed

as:

min ‖x‖norm sub ject toAx ≈ b. (2.1)

Before the discovery of sparsity norms, quite often these kinds of inverse and regularisation problems

in (2.1) were addressed by introducing square norm i.e.,‖x‖2. The role of this so calledl2 Euclidean

norm [76] is to control the energy of the unknown solution vectorx. Due to its simplicity and convex

nature of optimisation,l2 norm was extensively used in many engineering areas resulting in unique

and nonsparse solution, that is with many non-zero entries [13, 76, 77].Tykhonov regularisation

[78], for instance, is most commonly employed for tackling linear inverse problems such as (2.1).

However, it was shown that many problems can be solved by assuming a priori that the final solution

is sparse. This led to introduction of the sparsity measures [79] and norms in(2.1) replacingl2
energy one. Thus, the optimisation problem (2.1) is turned into estimation of the maximally sparse

representationx of the observed signalb [75] as:

min ‖x‖0 sub ject toAx ≈ b. (2.2)

where now norm‖‖0 : Rn → R represents a counting function for the estimation of non-zero com-

ponents of its argumentx. Unlike the energy norml2 which is convex in nature and can be easily

solved by applying many different standard convex analysis algorithms, pursuing exact solution of

‖‖0 norm (i.e.,l0 norm) turns up to be an NP hard problem combinatorial in nature [80–82]. One of

the offered solutions was convexification of the solving approach forl0 norm, that is introduction of

thel1 norm denoted as‖x‖1 = ∑i |xi |. This redefined sparsity norm leads to the satisfying and unique

solution wheneverx is sufficiently sparse.
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In general, there are various sparsity measures that can be used beside the simplestl0 norm which

provides clear definition of the sparsity notion, but as already stated is an NP hard problem. Instead

of using strongl0 measure one can resort to weaker sparsity norms denoted aslp which quantify the

trade off between the non-zero entries and theL2 energy of the signal’s reconstruction error. For

0< p< 1 this is estimated via:

‖x‖lp
= sup

ε>0
N(ε ,x) · ε p (2.3)

whereε limits the maximal number of non-zero entries andN(ε ,x) is the number of entries inx

surpassingε. This kind of weaklp norms are commonly preferred by the mathematical analysis

groups. However, they also represent a non-convex optimisation problem. Furthermore, for 1≤ p≤
∞ there is a different definition oflp norm given as:

‖x‖p =

(
m

∑
k=1

|xi |p
)1/p

. (2.4)

For all introducedlp norms in (2.3) and (2.4),l0 represents their boundary case whenp→ 0:

‖x‖0 = lim
p→0

‖x‖p
p = lim

p→0

m

∑
k=1

|xk|p . (2.5)

As p approaches zero, the scalar weight function|xk|p turns into counting function of non-zero

elements inx. This is graphically depicted in Fig. 2.2. Illustrated nature of variouslp norms provoked

many questions concerning whether it is possible to compute and recover sparse solution, can it

be unique and if so, under what conditions. Many theoretical studies demonstrate that if the final

solution is sparse enough there are pursuit techniques which can estimate it[83–85] or at least arrive

to its approximated version [86, 87].

The analysis and measurement of both the sparse solutions plausibility and uniqueness together

with the pursuit algorithms performance is carried out via estimation of:

1. Spark;

2. Mutual Coherence.

The former one denotes the smallest number of columns in matrixA i.e., spark(A) [2, 13] that

are linearly dependent [38]. The significance of this measure for the validation and evaluation of

signal’s sparse representation was especially emphasised in [88]. However, unlike the rank of the

matrix A which represents the largest number of the linearly independent columns,calculation of

spark demands combinatorial search tools. Thus, estimation ofspark(A) is an NP hard problem

calling for an alternative and simpler but still effective measure of sparseness quality and uniqueness

[2, 13]. One of the very simple approaches is the later one i.e., themutual coherence[33, 38, 86, 89]

defined as the maximal absolute product between two different normalised basis elements of a matrix
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A or atomsdi andd j of a representational dictionaryD denoted asµ(D):

µ (D) = max
i 6= j

∣∣dT
i d j
∣∣ (2.6)

For example, any orthogonal matrixA has themutual coherenceequal to zeroµ(A) = 0. But in

the case of overcomplete matrices (commonly used in a sparse research community) this value will

inevitably be greater than zero i.e.,µ(D) > 0. Well designed dictionaries will haveµ(D) close to

zero, as much as possible, resulting with a unique sparse decomposition forany signal at hand and

avoiding representational ambiguity [2, 13]. Furthermore, by estimatingmutual coherenceone can

also approximately assessparkvalue by using this rather simple relation between these two terms

[38]:

spark(D)≥ 1+
1

µ(D)
(2.7)

Usingsparkandmutual coherenceto evaluate effectiveness of algorithms used for solving sparse ap-

proximation problems is of great importance given the non convex nature ofmany sparsity measures

[87].

There are several major classes of effective computational techniquesdesigned specifically for

estimation of sparse representations. The most popular are greedy pursuit [16–19, 33, 34] for solv-

ing l0 norm and convex relaxation methods [15, 37, 38] addressing thel1 norm type of solutions.

The greedy strategy is the simplest one given that the estimation of the approximated sparse signal

representationx is formulated as series of inner products of the observed signalb and elements of rep-

resentational basisA. Specifically, Orthogonal Matching Pursuit i.e., OMP provides approximated

solution for one of the two optimisation problems,the sparsity constrainedsparse coding problem:

x̃ = min
x

‖b−Ax‖2
2 s.t. ‖x‖0 ≤ T0, (2.8)

or for theerror constrainedsparse coding problem defined as:

x̃ = min
x

‖x‖0 s.t. ‖b−Ax‖2
2 ≤ ε . (2.9)

T0 parameter sets the upper constraint for the total number of non-zero elements in the approximated

solutionx̃ while ε stands for the representational error threshold. For any of the givenoptimisation

problems (2.8) or (2.9) the main task of the greedy OMP algorithm is to calculate the approximated

solutionx̃. Given the input parameters matrixA with elements{ai}K
i=1, observed vectorb and one

of the stopping criteria parameters i.e.,T0 or ε, the OMP greedy procedure is given as:

1. INITIALISATION:

• Set iteration counter to zerocount= 0;

• Set the initial solutionx0 = 0;

• Set the initial residualr0 = b−Ax0 = b0;
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• Set the initial support set (i.e., indices set)I0
(
x0
)
= 0;

2. ITERATION PHASE - for each iteration incrementcountby one and:

• Greedy selection step: find the elementak exhibiting the highest correlation to the cur-

rent residual aŝk := maxk

∣∣aT
k r
∣∣;

• Update support set asIcount= Icount−1∪ k̂;

• Orthogonalization step: project signalb to the space spanned with the selected elements

in Icount and compute currentxcount= A+
Icountb;

• Update residual asr count= b−Axcount;

• Stop if‖r count‖ ≤ ε or ‖xcount‖o = T0.

Thus, the elementsai which are most suitable for sparse representation are chosen in sequential

order where finallyb will be represented as a linear combination of at mostT0 elements fromA.

We can directly see from the algorithm’s setup that instead of promoting exhaustive search, OMP

[16–19, 33, 34] starts in stagecount= 1 with the initial solutionx0 = 0 and initial representational

residualr0 = b. For every sequential stage(count= count+1) the criteria for choosing matrix

element that will join sparse representation ofb are based on finding the maximal projection onto

the current residual adding the indexk̂ of newly chosen elementak to the support setIcount. After

estimating the current sparse approximationxcount the residual is updated for the next iterative stage.

Stopping rule is either defined via predetermined number of atomsT0 (2.16) or by achieving some

predefined representational errorε (2.9). The implementation of OMP is simple making it one of the

most appealing pursuit algorithms.

Another way to approach the search for sparse solution is by regularisation of thel0 norm using

its continuous or smooth approximation such asl1 norm which is its most efficient convex approxi-

mate [2, 37, 90]. Solving the problem withl1 setup is addressed via linear programming (LP) tools

[2, 35–38]. These algorithms are able to reach the global solution given that sparse pursuit becomes

a well-defined optimisation objective oncel1 norm is introduced. Alternative methods for solving

the l1 optimisation objectives are provided in a form of iterated shrinkage algorithms[91, 92] with

setup highly similar to that of OMP.

2.3 Analytic Dictionary Design

Data can be modelled with an analytic representation formulated as the predefined mathematical

model. Unlike representations established via trained dictionary, the analytic representational struc-

ture is fixed aiming for efficient and reliable data approximation and representation [93]. This kind

of dictionaries are commonly characterised with well defined structure and straight forward, fast
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implementation. Given that these bases are defined as a specific transformation i.e., a set of transfor-

mational functions, they represent implicit dictionaries. Specific examples are Wavelets [5, 94, 95],

Curvelets [7, 8, 96], Contourlets [8, 9], Bandelets [97, 98].

Wavelets provide an efficient image multi-scale representation which captures or recovers impor-

tant high frequency information. Thus, wavelets are employed to solve various problems in image

processing [5]. The basis wavelet functions are scaled version of their so-called mother function [94]

which form is not defined a priori and depends on the particular application. Starting with continu-

ous and advancing with discrete wavelet transform [94] wavelets have been introduced in all areas of

signal processing. One of the greatest impacts happened with introductionof JPEG 2000 [99, 100]

compression standard which incorporates wavelet algorithms. Furthermore, denoising is based on

the unitary wavelet coefficients generating well known shrinkage algorithms [101–104]. Next, there

is wavelet based super resolution [105, 106] which represents the low-resolution images by relat-

ing wavelet coefficients to the desired super-resolution image. Interestingly, space research exploits

wavelets for the representation and processing of the astronomical images[107].

One of the recent wavelet based denoising techniques is so called collaborative filtering BM3D

[108–110], an effective tool for removing Gaussian noise from corrupted natural images. The method

is based on processing 3D patch arrays (“groups”) formed out from similar 2D image blocks. Given

a reference block (i.e., any block in the image), the method uses a block matching approach to group

the reference block with any other satisfying the condition of high mutual similarity (a predefined

dissimilarity threshold). After constructing then number of 3D arrays, noise attenuation is done by

hard tresholding coefficients obtained via the 1D transform of the grouped blocks. Fast and efficient

implementation of the algorithm [108] is achieved by utilising the wavelet transform over the 3D

patches arrays. The second time when transformation is repeated, the Wiener filtering is exploited

in transform domain to remove any residual noise. Subsequently, the inversion givesn estimates

submitted to the aggregation block which restores the denoised image. BM3D exploits a high degree

of similarity among image patches ( i.e., formed 3D array [108]) where the 1D transform is able to

highly sparsify the content of the true signal in the transformation domain. This results in effective

separation noise from image throughout shrinking.

New multiscale image representations such as curvelet [7, 8, 96], contourlets [8, 9], bandelets [97,

98] and directionlets [111, 112] have emerged as an answer to limiting properties of the wavelet-like

systems. Some are a fixed number of the directional elements in wavelet basis independent of scale,

highly lacking in anisotropic elements. This restriction is especially evident with images containing

objects that do not display isotropic scaling [113]. The new range of multiscale transformations

(i.e., curvelet, contourlets, bandelets, directionlets) exhibit very high directional sensitivity and are

considerably anisotropic. The curvelet transform was a break-through in the harmonic based signal

analysis by being able to represent 2-D piecewise-smooth functions via smooth curve discontinuities

at an optimal rate [14]. Specifically, for curvelet basis one can define aspecific location, orientation

and scale. Unlike wavelets, they are localised along curves over an elongated elliptical region while

exhibiting oscillatory characteristics along region’s width and smooth ones along its length [14].
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One of the state-of-the-art methods [45] for contrast enhancement ofastronomic images is based

on the multiplication of the absolute curvelet coefficient valuex with themodification function yc(|x|)
defined with (2.10). Given that curvelet transform is well-adopted to represent images containing

edges one can achieve better understanding of image content by extracting its main features where

pixel values are transformed via curvelt transformation. Given a noisy image, its standard deviationσ
and its curvelet transformation, one can define the transformational range for the curvelet coefficients

Tmin andTmax i.e., the thresholds where the following modification will only enhance edges in the

image without amplifying the noise or the largest coefficient (representing the strongest edges) [45,

114]:

yc(x) =





1 if x< Tmin,
x−Tmin

Tmin

(
Tmax
Tmin

)p
+ 2Tmin−x

Tmin
if Tmin ≤ x< 2Tmin,(

Tmax
Tmin

)p
if 2Tmin ≤ x< Tmax,

1 if x≥ Tmax.

(2.10)

The lower bound,Tmin is defined as at leastc times larger than the noise standard deviationσ j for

each sub-band decomposition levelj [45, 114]. Thec is set within the range 2< c< 6. The upper

bound,Tmax, is either set toTmax= Kmσ (Km is heuristically set to 10 [45, 114] enabling transform

of all coefficients that fall under 10 times signal-to-noise ratio) or toTmax= Mcl whereMc is the

largest curvelet coefficient within each sub-band of the transform and l < 1 [45]. The degree of

transformation nonlinearity is controlled byp set to 0.5 in [45]. The algorithm is derived from a

similar wavelet-based contrast enhancement method [114].

One of the challenges with curvelet application is their discretization leading to very complex

algorithms. The introduction of contourlets [8] bypassed these issues whilehaving many similar

characteristics as curvelet with one main difference. Instead of being defined in continues space,

they are directly provided in discrete one simplifying algorithms intended for therepresentation of

discrete signals, bringing low computational complexity and lower redundancy. Contourlets were

firstly introduced by [8] and later improved with [9] and with its multi-dimensional variation i.e.,

surfacelets [115]. The core of the contourlet transform implementation liesin a pyramidal band-pass

image decomposition which is subsequently subjected to a directional filtering [113].

Bandlets were introduced to compensate for the lack of the adaptive transformation given that

curvelet and contourlets are non-adaptive transforms [97, 98]. Mainly, focus is on identification of

geometric regularities within the image divided into dyadic regions of comparablelocal complexity.

Some of regularities are edges and directional occurrences necessary for adaptive optimisation of the

bandlets basis to the image. The final dictionary contains atoms which are well tailored for given

image representation.

Lastly, directionlets represent a multi-directional and anisotropic transform created to address

problem of standard wavelet transform [111, 112]. That is, its inability toprovide sparse repre-

sentation of image’s 1-D discontinuities such as edges and counters. Directionlets are effective in

capturing a geometrical coherence of these objects by matching them with corresponding anisotropic
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basis functions. For instance, they can be employed for image compressionand directional image

interpolation [112].

2.4 Dictionary Learning Design

Designing dictionary training procedure for sparse signal representations requires trade off [93] be-

tween two opposite aims:

• Optimising and reducing computational complexity of dictionary’s training scheme;

• Achieving satisfying adaptability to different signal’s family which requirescomplex learning

process.

The later goal is highly influenced by pursuing methods described in Sec. 2.2. They represent the core

of the learning sparsity-based processing methods and are generally characterised with costly signal

computations. Still, these are to some extent simplified by incorporatingl0 andl1 sparsity measures

leading to more efficient and less complex dictionary training [2, 14]. On the other hand, the analytic

approach for signal’s sparse representation (Sec. 2.3) provides a wide variety of dictionaries with

fast implementation overcoming complexity issues of learning-based approaches. However, in some

cases their predefined nature limites them in terms of achieving full adaptability for representation of

various types of data. Thus, the alternative for sparse signal representation formulated as a dictionary

training, based on a set of examples, is necessary to address some of these limitations.

A critical factor for significant improvement of many image processing applications is an intro-

duction of the adaptive sparse coding paradigm [1]. It relies on the assumption that signals (e.g.,

natural images) admit a sparse decomposition over a learned representational basis (dictionary).

These types of trained dictionaries i.e.,D ∈ Rn×K , integrated together with the sparseland model

[2, 13, 14], has led to numerous state-of-the-art algorithms for several image processing problems

[23–28, 31, 32].

Commonly, the representation of imageY ∈ Rb×b, is broken down into a set ofN extracted

patches{yi}N
i=1 ∈ Rn which are in turn sparsely represented. Typically (but not necessarily) it is

assumed that dictionaryD is overcomplete i.e., the number of its basis vectors (atoms) is greater

than the original signal’s dimension (K > n). Given one of the pursuit algorithms e.g., [15–18] and

a dictionaryD, one can estimate matrixX containing sparse approximations{xi}N
i=1 ∈ RK for each

yi . Hence, a set of weighted linear combinations of few atoms inD satisfactorily approximates each

patchyi from Y denoted aŝY ≈ DX. The applications of dictionary learning [19, 20] include areas

such as classification [21, 22], efficient face recognition [23], inpainiting [24], denoising [25, 26],

super-resolution [27, 28] and those designed for sparse colour imageprocessing [31, 32]. Among

the most popular learning methods we can find the Method of Optimal Directions (MOD), Online

Dictionary for Sparse Coding, the K-SVD algorithm and several more.
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One of the first methods that have introduced adaptive sparsification process into signal repre-

sentation is Method of Optimal Directions (MOD) firstly introduced in [40, 41].MOD carries out

dictionary learning by utilising thel0 sparsity measure. However, the defined optimisation problem

is not the most effective given its combinatorial and non-convex nature.This leads to, at the best

case, a local minimum solution while altering between anyl0 sparse-coding method and dictionary

update stages defined as a quadratic problem solved via the Moore-Penrose pseudo-inverse. Even

though the solution convergence takes only several iterations, the down side of the MOD method is

demanding matrix inversion and its high complexity.

Unlike classical batch dictionary learning algorithms which in each iteration need to use whole

training set, the work in [42, 43] introduces an online dictionary learning procedure. It is able to ef-

fectively handle great data sets composed up to million training samples by processing small subset

of these data instead of the full batch. Optimisation problems with these large datasets commonly

represent a serious computational challenge. In [42, 43] this is addressed by integrating stochastic

approximations within the dictionary training stages. The sparse coding is posed as al1 regularised

linear least-squares optimisation objective solved via a Cholesky-based implementation of the LARS-

Lasso algorithm [116]. Each dictionary element is updated via means of block-coordinate descent

with warm restarts applied to solve the convex optimisation problem leading to the global optimum

solution. Online learning method is successfully applied to inpainting [42, 43],denoising and demo-

saicking tasks [117] etc.

One of the most recent and effective methods for training a generic dictionary for sparse signal

representation is the iterative K-SVD algorithm [13, 19] representing a generalisation of the K-means

[11, 118] clustering (i.e. vector quantization) scheme. The link between these two seemingly differ-

ent methods have been noted in [119]. In general, clustering can be defined as an extreme case of

sparse coding where its training signals{yi}N
i=1 can be represented with only one basis element, that

is, code word{dk}K
k=1 allowing only single signal atom decomposition. The distance norm used to

assign code word to a sample signal isl2 measure i.e., the nearest neighbour assignment. As K-means.

K-SVD represents a two stage iterative method designed to estimate the most optimal code book i.e.,

dictionaryD. The first stage is reserved for sparse coding i.e., the assignment of every training signal

to its closest code word. The second updates new codebook using mean values of all training signals

that belong to one of the totalK cluster. However, unlike K-means, K-SVD introduces a linear atom

decomposition of the given training signal with likewise two stage iterative scheme integrating differ-

ent and more complex optimisation objective to better fit the data. The nearest neighbour assignment

and mean value estimation are omitted.

K-SVD’s goal is to learn (train) the adaptive dictionary for a sparse image representation given

a set of image patches while alternating between sparse-coding and dictionary update stages [13,

19]. Interestingly, during dictionary update step both dictionary atoms and sparse representation are

estimated which accelerates the algorithm convergence. At first, the sparse representation of the

original signalYis captured via OMP (Sec. 2.2) that in this case solves the sparsity optimisation
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problem:

min
X

{
‖Y−DX‖2

F

}
s.t. ∀ i ‖xi‖0 ≤ T0 (2.11)

given the current estimation of the dictionaryD which is kept fixed during this process. The expres-

sion ‖xi‖0 accounts for the number of non-zero elements in each vectorxi by the means of thel0
pseudo norm as explained in previous section Sec. 2.2. The representation error (i.e., the penalty

term) in (2.11) can be further expressed as:

‖Y−DX‖2
F =

i=1

∑
N

‖yi −Dxi‖ (2.12)

breaking down the optimisation objective defined in (2.11) into N separate sparse optimisation prob-

lems for each image patchyi .

For the second update stage the optimisation objective is formulated differently. Given the fixed

sparse matrixX and the dictionaryD, the second stage updates one atomd j at a time and all sparse

coefficient entries associated with it denoted asx j
T , that is thejth row in X. Bearing this in mind, the

representation error can be formulated as:

‖Y−DX‖2
F =

∥∥∥∥∥Y−
K

∑
k=1

dkxk
T

∥∥∥∥∥

2

F

=

∥∥∥∥∥

(
Y−

K

∑
k6= j

dkxk
T

)
−d jx

j
T

∥∥∥∥∥

2

F

=
∥∥∥E j −d jx

j
T

∥∥∥
2

F
. (2.13)

Thereafter, K-SVD preforms updates of dictionary element by carryingout the SVD [120, 121]

decomposition of the error matrixE j which denotes a representation error of allN patches without

the atomd j (i.e., a K rank -1 matrix). The SVD’s role would be to calculate the closest rank-

1 approximation of theE j , thus reducing the overall error value. However, this approach would

result in new and non sparse vectorx j
T since there is no sparsity constraint introduced during SVD

estimation. This is solved by introducing new termω j compromising of indices that identifies all

image patchesyi which current sparse representation includes atomd j :

ω j =
{

i|1≤ i ≤ K,x j
T (i) 6= 0

}
. (2.14)

Usingω j a new matrixΩ j ∈RN×|ω j | is introduced which entries indexed as(ω j (i) , i) have value one.

All others are set to zero.Ω j is used to redefine the optimisation problem in (2.13) via multiplication:

∥∥∥E jΩ j −d jx
j
TΩ j

∥∥∥
2

F
=
∥∥ER

j −d jxR
T

∥∥2

F
. (2.15)

Multiplication achieves necessary shrinkage wherexR
T contains only non-zero entries being reduced

to
∣∣ω j
∣∣ size. Likewise,ER

j includes only errors of patches which employd j for its current representa-

tion. Now SVD can be applied where new values ford j and each non-zero entry ofx j
T will preserve

the sparsity notion. Afterwards, the newly estimated dictionaryD is used as the input for the first
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sparse coding stage. Both iterative steps use the same set of overlappingtraining patches. Once

iterative learning is completed, each signal inY is given byyi ≈ Dxi .

When it comes down to the denoising application the goal is to remove zero-meanadditive white

Gaussian noise from corrupted natural images [25] where a training setis composed of overlapped

patches extracted from a noisy image. Unlike the purely representative dictionary training [19], the

denoising optimisation problem is formulated as an error-based minimisation [13,25]:

min
xi

‖xi‖0 s.t. ∀ i
{
‖yi −Dxi‖2

2

}
≤ e (2.16)

The representational errore is closely tied to the noise powerσ2 ase= Cnσ2 [13, 25] whereC is

used as an empirical optimisation constant. Once this phase is finished (sparse coding and dictionary

update), the reconstruction is carried out by averaging all the sparsified patches aiming to remove

random noise. The relation between the described K-SVD algorithm and theproposed work is

detailed in Chapter 3 aiming to emphasise the introduced extension of the K-SVD for the scalable

reconstruction and its implications in relation to denoising.

2.5 Compressive Sensing

Sparse signal decomposition plays an important role in the reconstruction performance of the com-

pressive sensing (CS) [15] which addresses the problem of signal’sy joint compression and sampling.

With CS the data acquisition is done below the Nyquist rate [15, 122, 123] designed as a linear mea-

surement process calculating inner products (measurements) between thesampled signaly and a

group of random vectors denoted asϕk which numberS is considerably smaller than the original

signal’s dimensionn. This group of random vectors composes the specially designed measurement

matrix Φ ∈ RS×n which takes random undercomplete set of samplesyCS∈ RS (S<< n) asyCS= Φy.

Over the past few years this framework has gained an increased interest especially in the area of

image processing e.g., [124, 125], video [126, 127] and medical applications [128] by introducing

innovative and revolutionary signal processing mathematics. Furthermore, the well approximated

recovery ofy from its random measurementsyCS is possible only under the sparsity assumption.

That is, if the source signaly is K sparse (compressible) in some usually predefined transform basis

Ψ e.g., Discrete Cosine Transform (DCT) [44], wavelets [126], counterlets [128] etc. If this holds,

we can restore the original signal achieving the satisfactory level of restoration quality with one of

the non-linear pursuit algorithms e.g., [15, 16, 18, 129] given onlyS = O(K log n)[123] number of

samples, that is, measurementyCS. This further implies the potential of significant cost reduction in

digital data acquisition. For instance, sampling of a grayscale imageY is carried out as follows. The

imageY is considered to be rearranged into column vectory ∈ RB (B= b×b) sampled as:

yCS= Φy+e (2.17)
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where each sampleyCS[k] (1≤ k≤ S,S<< B) represents a sum of randomly sampled measurements.

That is, a subset taken fromy after its linear random projection to the space spanned by measurement

vectorsΦ = {ϕk}S
k=1 ∈ RB. Due to the nature of the measurement process where we have compres-

sion of the signal at the same time when sampling, a perfect reconstruction ofthe original signal is

not possible. Thus,e denotes an acceptable deviation in the representation accuracy. Furthermore,

assuming that we can approximatey by a sparse vectorx ∈ RB, containing in totalK << B non-zero

coefficients, belonging to some linear transformation domainΨ ∈ RB×B, we can denote CS as:

yCS= ΦΨx+e (2.18)

The second important concept upon which CS relies in order to obtain robust signal reconstruction is

incoherent sampling. That is, vector elements of both representationalΨ and sensing basisΦ should

exhibit low coherence satisfying the so-called Restricted Isometry Property (RIP) [123]. [15][123]

show that once RIP is achieved, in theory, the lossless recovery of the signal y from yCS measure-

ments is possible. Thus, given a fixed transform matrixΨ and a random sensing matrixΦ such as

zero-mean Gaussian or with±1 independent identically distributed (i.i.d.) entries, the coherence

will be low hence RIP will be satisfied. However, in practice the retrieval ofthe original signaly

from the condensed datayCS is an NP hard problem [15][123]. This calls for non-linear sub-optimal

solutions whose goal is to minimise the following optimisation function:

min
x̃

‖x̃‖lp
sub ject toyCS= 〈ϕk,Ψx̃〉 (2.19)

that recovers̃x being consistent with the sampled data. Commonly, minimisation is performed over

one of two differentlp norms i.e., eitherl0 (p=0) orl1 (p=1) sinceS<<B [122] data is undersampled.

As stated in Sec. 2.2, thel1 accounts for the absolute sum of non-zero entries per sparse coefficient.

l0 is solved by some of the existing greedy algorithms previously introduced in Sec. 2.2 which further

detailed summary can be found in [129] whereas linear programming (LP) in the conjunction with

the basis pursuit [123] solvesl1 minimisation.

Furthermore, a small number of recent publications challenge the typical CSby taking into

consideration learned dictionaries [130, 131] rather than commonly used off-the-shelf ones e.g., [44,

126]. Results in [131] back up this research direction by putting forwarda scheme that jointly trains

and optimises an overcomplete non-parametric dictionary together with the CS sensing matrixΦ.

2.6 Image quality measures

Due to the acquisition procedures, various processing techniques, compression, transmission and re-

production, digital images suffer a high level of distortion. In ideal case scenario, the quantification

of visual image quality would be carried out through subjective evaluation. However, this kind of

quality assessment is usually time-consuming and expensive. This calls for an objective image qual-
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ity methods in order to achieve a more comprehensive and time-efficient image quality evaluation.

Their aim is to develop quantitative measures for estimation of errors visibility between distorted and

original reference image. If the original (distortion free) image is known we will be able to compare

the distorted image against it with one of the so calledfull-referenceobjective image quality metrics.

One of the most popular and simplestfull-referencequality assessment is the the mean squared er-

ror (MSE) which estimates the averaged squared intensity differences oforiginal, that is reference

Y ∈ Rb×b and its noisy version i.e.,Yns∈ Rb×b image pixels:

MSE=
1

b×b

b−1

∑
i=0

b−1

∑
j=0

[Y (i, j)−Yns(i, j)]2 . (2.20)

Directly related to MSE is peak signal-to-noise ratio or PSNR which is defined in[dB] as:

PSNR= 10log10

(
MAX2

MSE

)
, (2.21)

where MAX represents the highest pixel intensity value commonly set to 255 for the 8 bit images.

These measures MSE and PSNR are widely used given their simple and clearmathematical formu-

lation and calculation. However, they do not always reflect the actually perceived visual quality

since two distorted images can have different type of visual erros even ifthey have same MSE [132].

Thus, besides these standard objective image quality assessments there is an alternativefull-reference

quality measure, so-called Structural Similarity Index (SSIM) [133] which takes into account the

degradation of structural information while relying on the hypothesis regarding human visual sys-

tem (HVS) perceptual characteristic. The authors of SSIM assume that HVS is highly adapted for

structural information extraction. This is incorporated by local comparisonof pixel intensities which

luminance and contrast are normalised. In this manner the SSIM quantifies thedegree to which im-

age structural information is degraded while calculating a quality index ranging from 0 (denoting

highest distortion) up to 1 (denoting no distortion). The higher the SSIM index value gets, the more

successful retrieval of the HVS perception information is within the restored image.

If the reference image is not available, which happens frequently in practice, one needs to restore

to anon-referenceor so called “blind” image quality method. Many of these algorithms assume that

distortion which can be found in the image is known. However, for many practical application this

cannot hold. Thus, non-reference methods which assume no knowledge of the distortion affecting

the image are crucial for practical applications such as the blind image quality index (BIQI) [134]. It

exploits natural scene statistics (NSS) [135] to establish a truenon-referenceframework which is able

to identify the most probable distortion within the image followed by its quantification.The BIQI

method is trained to first classifies images into five different distortion categories (JPEG, JPEG2000,

white Gaussian noise, blur, fast fading), and then assesses the quality of the image based on statistical

evaluation of distortion proportion. BIQI provides a quality index between 0and 100, with 0 being

the best quality and 100 the worst one.
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2.7 Summary

This chapter presents the review of relevant literature to this thesis. Various prior models for data

are illustrated with the emphasis on the sparse data representation and relatedsparse models of data.

We define norms such asl0 or l1 which play an important role as an additional regularising terms

for optimisation problems that involve solving undetermined systems of equations. Furthermore, we

present the existing work on two major classes of effective computational techniques designed for

estimation of sparse representations i.e, greedy pursuit (forl0) and convex relaxation methods (forl1).

In particular, we provide a detailed overview of OMP initialisation and iteration phase given that the

proposed work builds on method which utilises this greedy scheme. Next, we discuss two important

data modelling approaches i.e., analytic and trained method. Former one relies on the predefined

mathematical models which are characterised with well defined structure and straight forward, fast

implementation such as wavelets, curvelet, contourlets and bandlets. However, dictionary learning

methods take different modelling approach by utilising the adaptive sparse coding paradigm. As we

show, this results with various learning methods such as MOD, online dictionary learning procedure.,

K-SVD etc., which aim to provide sparse representational basis directly customised for representa-

tion of specific data. Next we introduce one more method based on sparse data decomposition,

compressive sensing which tackles the problem of signal’s joint compression and sampling. Finally,

several image quality measures are given together with their definitions suchas MSE, PSNR, SSIM

(full-referencemethods) and BIQI (full-referencemethod).





Chapter 3

DICTIONARY LEARNING FOR

SCALABLE SPARSE IMAGE

REPRESENTATION

3.1 Introduction

The advancement of the internet and internet related applications is constantly changing the way in

which we consume media. As a result, we have continuing evolution of broadcasting technology

which clients differ primarily in accessible: (i) channel capacity; (ii ) display resolutions; (iii ) and

computing resources. Thus, one of the main challenges is to effectively support and deliver a con-

trolled quality of the displayed data of a wide range of applications taking into account the existing

broadcasting transmission networks and heterogeneity in receiver’s equipment. For example, mobile

video streaming users need to cope with the limited frequency space. This callsfor different approach

to deliver multimedia content i.e., an adaptive processing of a video or an imagesignal that would

provide various levels of transmitted signal’s quality and bandwidth efficiency. One of the appealing

solutions would be a genericscalablei.e., progressive data reconstruction. Prior to transmission,

the source signal would be subjected to progressive reconstruction framework resulting with scaled

quality representation. At the client’s side, signal would be restored at desirable quality level due to

its adaptive representation form. Conclusion follows that signal’s genericscalability is desirable in

many applications since it will be able to support heterogeneity in users’ equipment, QoS demands

and communication channels.

One of the attempts to progressively reconstruct signal as more its measurements are acquired

is proposed in [44]. Ascalablesignal representation is achieved using an analytic approach with

the conventional DCT dictionary being utilised as a signal’s representational base. Thereby, [44]

demonstrates another application of implicit sparse signal decomposition performed in signal’s DCT

transform domain. Given that DCT transformation is fixed and cannot be adapted to the data at



30DICTIONARY LEARNING FOR SCALABLE SPARSE IMAGE REPRESENTATION

hand, [44] is intended to establish progressive signals recovery within the transformation domain in

combination with the specially designed signal sampling procedure. Furthermore, by incrementally

acquiring more and more samples at the clients side, one is able to provide ascalableimage or video

display, that is, the representation of the refined quality.

However, if we refer to the adaptive representational techniques, bothfor images and videos, we

conclude that the existing dictionary learning algorithms are able only to displaythe entire scene at

once. This learning approach assumes solely fine resolution as the representational output failing to

retrieve image gradually, that is, of the arbitrary i.e., scaled but of satisfying and acceptable visual

quality. This is due to the none structured nature of the dictionary learning design which is not cus-

tomised well to achieve progressive signal reconstruction in time. Thus, to the best of our knowledge

a procedure for learning a dictionary capable of adapting both to a specific data-set and providing

its effectivescalablereconstruction is still missing. Alternatively, if redesigned, a learning based

approach could yield a dictionary finely tailored to thescalable, that is, progressive reconstruction

task while being properly fitted to the signal’s spatial characteristics. Subsequently, after finding a

direct sparsifying transform in the spatial signal’s domain an image would beincrementally updated

and improved as a new representational information would become available at the receiver side.

Thereby, we find that it is important to offer an alternativescalabledata recovery in a form of an

adaptive dictionary sparse representation. This together with the diversclient’s technical properties

are one of the main motivations for following proposition of an adaptivescalableimage restoration

scheme.

This chapter provides a detailed representation of novel adaptive dictionary training scheme for

progressive i.e.,scalablerestoration of trained data. Presented work is based on published research

in [136]. General modeling aspects of the proposed adaptive andscalabletraining scheme are given

in Sec. 3.2. Sec. 3.3 overviews main perception characteristic of the Human Visual System (HVS)

which are utilised and integrated in the proposedscalablerestoration scheme. Key components of

the proposed adaptive dictionary learning scheme forscalableimage reconstruction, its regularised

sparse dictionary learning framework together with the algorithm flow andscalableimage reconstruc-

tion mechanism are illustrated in Sec. 3.4.Scalabledenoising scheme with its detailed description

is introduced in Sec. 3.4 Finally, Sec. 3.5 discusses the computational complexity of the proposed

scalablescheme while Sec. 3.6 provides the summary.

3.2 Sparse Based Scalable Representation

The core structure of the proposed dictionary training design revolves around the regularisation of

the K-SVD atoms update stage. The aim is to provide dictionary capable of facilitating sparse based

scalableimage reconstruction. Novel dictionary should be able to provide the restoration of the

main visual object elements at the first layer of thescalableimage recovery. Motivation for the

proposed learning design stems from the fact that we as humans can detect objects and edges from
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the visual scene by filtering information about contrast variations and pattern orientation from the

incoming light. This sensitivity of the Human Visual System (HVS) is shown with thecontrast

sensitivity function map originally introduced in [137][138]. Furthermore,the HVS features are

proven to be essential modelling elements for many image processing, computergraphics [139], the

morphological component analysis methods [29][30] and image quality assessment tools [140][133].

Thus, in order to achieve efficientscalablerestoration we impose the learning model that incorporates

the main HVS properties such as HVS’s high sensitivity to contrast light information and to the

patterns orientation [141][142] at high spatial frequencies.

The modelling of HVS properties is carried out by mostly exploiting the scene’svisual contrast

information with special emphasise on the high-frequency components [142]. This is achieved by

introducing MCA semi-random initialisation of the proposedscalabledictionary and regularisation

of the atom’s update stage of the trained dictionary. Specifically, we emphasise the penalisation

of the low and high spatial frequency components of the dictionary, imposingthe learning model

that assimilates the main HVS system properties. Furthermore, we aim to minimise the amount of

information necessary for dictionary training and signal’sscalablerecovery by implementing the

boundary case in terms of the dictionary size i.e., we train complete instead of theovercomplete dic-

tionary. This is in synergy with the goals of the proposed method at the cost of only a small reduction

in the overall reconstruction image quality. In general, dictionary learning for sparse representations

leads to state-of-the-art image restoration results for several different problems in the field of image

processing. We show that these are equally achievable by accommodating all dictionary elements

to tailor thescalabledata representation and reconstruction, hence modelling data that admit sparse

representation in a novel manner.

3.3 Main Characteristics of the Human Visual System

In order to strengthen the motivation for the proposedscalabledictionary training design here we

overview some essential findings in the research of early HVS vision. Furthermore, considerable

amount of work within the image processing area is rooted in the physiology and psycho-physics of

early study carried out in the field of human vision, which mainly focuses on:

• How visual mechanisms transduce light arriving at the eye;

• How visual mechanisms code the patterns of light arriving at the eye.

Firstly, in order to understand what types of visual information can be coded by human visual mech-

anisms it is essential for us to understand the “hardware” of the HVS, thatis, the human eyeball.

Fig. 3.1 illustrates its cross section schematic [3][143]. Concretely, the eyeis divided in two sections,

firstly theanterior section containing:

1. Cornea: responsible for two-thirds of the eye’s refractive power;
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Fig. 3.1 Structure of the human eye (adapted from [3]).

2. Lens: provides subtle focal adaptation for visual targets at closest distances of 4 inches up to

20 feet;

3. Iris : contains central element pupil that release incoming light into eye’s cavity;

andposteriorwith:

1. Sclera: meant to prevent damages of the eye’s interior while enabling approximate spherical

shape of the eyeball;

2. Choroid: a middle layer in charged for the regular blood supply to the eye’s cellular compo-

sition;

3. Retina: this interior layer is composed of photoreceptor cells and their associated neural

tissues.

For the work presented in this thesis the most relevant is understanding of retina’s functional prop-

erty and mechanism responsiveness of its photoreceptor cells. Specifically, image of the visual scene

is formed on retina at the moment when light hits its photoreceptors. This photosensitive area is

organised into the basic visual coding units, the so called receptive fields.These fields are further

organised in an antagonistic way which represents a fast responding part of the visual processing

system [3]. Their response functions in the following manner. Upon arrival, total incoming light in-

formation is being filtered in a way that the absolute intensity light information is almost completely

cancelled. On the other hand, contrast aspects of visual scene are being transmitted into further sec-

tions of visual processing implying that during the recognition of the visual scene at hand, receptive

fields primarily respond to contrast than to simple light intensity.

For example, Fig. 3.2 illustrates several types of light intensity stimulus and according responses

of the retina’s photoreceptor cells. The dark intensity in Fig. 3.2(a) or anyother raised uniformly

(Fig. 3.2(b)) in comparison to this one will generate the base firing response rate of the retina. How-

ever, Fig. 3.2(c) through Fig. 3.2(e) show how firing rate of the cells is increased just by introducing
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Fig. 3.2 Contrast processing properties (adapted from [3]).

simple bar pattern contrasts thus showing cells response as a function of contrast rather than just

the absolute intensity. Thus, the objects in the visual scene are detected given only the information

which is detected as a contrast between the object and its background. One more point that Fig. 3.2

demonstrates is that as long as the relative contrast difference remains thesame (the luminance in

Fig. 3.2(d) is increased both for the background and the bar) so will be the firing rate. Once the

contrast between the background and the objects (in this case bar in the Fig. 3.2(e)) is increased so

shall be the response rate. Further experiments on HVS contrast sensitivity [142] provide additional

proofs in terms of how human visual mechanisms function at different spatial frequencies. Given

specific test patterns i.e., a spatially localised grating patch with a backgroundgrating of altered ori-

entation, it was shown that HVS exhibits higher tuning sensitivity at high spatial frequencies than at

low spatial frequencies [142]. Overall, these HVS tuning particularities [142] serve as a modelling

foundation for the proposed dictionary training design.

3.4 Problem statement and proposed approach

As Sec. 3.2 points out, the classical dictionary learning techniques for images and videos sparse

representation are inefficient when it comes down toscalabledata restoration which would enable

incremental improvement of the signal’s displayed quality. Thus, we focus on addressing this im-

portant matter by building on the conventional K-SVD algorithm [19]. The solution is delivered by

altering and redesigning:

1. The K-SVD original initialisation setup;

2. The K-SVD dictionary atom’s update;

3. The K-SVD image or video frame restoration procedure.

What follows is the detailed description of the proposed adaptive dictionarylearning scheme forscal-

ableimage reconstruction where we adhere closely to the notation used in [19]. Some of the original
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K-SVD properties are restated in order to provide adequate comparison between the introduced de-

sign and the conventional, that is, nonscalableone.

3.4.1 Scalable reconstruction mechanism

In general, we are given a finite set ofN training signals i.e., overlapping image patches of size
√

n×√
n. For each patch, this block pixel format is commonly transformed into its column vector

version asY = [y1, . . . ,yN] whereyi ∈ Rn. The classical configuration of the K-SVD algorithm aims

to approximate representation of these signals in a compact, precise and sparse way as weighted

linear combinations of a few dictionary elements, that is the columns of dictionarymatrix D =

[d1, . . . ,dK ] ∈ Rn×K . Each column element represents a basis representational vector. Onceiterative

learning of dictionaryD is completed, each signal inY is sparsly represented and approximated by

yi ≈ Dxi .

Note however that this conventional approach is not capable of providing scalableimage recon-

struction that would be based on progressive recovery of each image patchyi . Meaning that each

patch would be incrementally, step-by-step updated as a new information on coefficient entriesxi

would be available. For instance, one can form{a|1≤ a≤ ⌊K/m⌋= s} number of recovery layers

for each patch leading to reconstructed image denoted asLa. The value ofmcan vary and arbitrarily

take on different values i.e., 1< m≤ K where lower values ofm lead to a greater number ofscalable

recovery layers, that is, to a greaters value. Thus,m is set as the scaling parameter which value

depends on the number of the dictionary atom’sK and the desired degree of thescalablerestora-

tion. This leads to a progressive image restoration provided as a sequence of La image layers each

generated as a combination of the truncated versions of sparse representationX and dictionaryD.

At the beginning of the progressive recovery, the base layerL1 is rebuilt out of the firstm sparse

coefficients entries per patch. That is, for each patchi we take[xi [1] xi [2] ... xi [ j] ... xi [m]] while

remaining entries are set to zeroxi = 0 for m< j ≤ K. These are combined together with the first

m corresponding atoms i.e.[d1,d2, ... d j ..., dm] leading to a compression rate ofm/n. Afterwords,

while reconstructing each subsequent layerLa (a> 1) additionalm coefficients are added. That is,

[xi [1] xi [2] ... xi [ j] ... xi [am]] (xi = 0 for am< j ≤ K) and [d1,d2, ...,dam] producing compression

ratio of (ma)/K.

In order to better illustrate the proposed procedure, truncated instancesof a single sparse coeffi-

cient vectorxi for image patchyi are depicted in Fig 3.3. Starting from Fig 3.3a to Fig 3.3c we can

see what information is used for recovery of the first three layers:

• For L1 we keep the firstm coefficients entries and discard the remainingsm−m= (s−1)m

(set to zero value);

• ForL2 we keep the first 2mcoefficients entries and discard the remainingsm−2m= (s−2)m

(set to zero value);
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(a) “L1” (b) “L2” (c) “L3” (d) “Ls”

Fig. 3.3 Truncated representations of sparse coefficientxi used to generates scalablerecov-
ery layers of image patchyi.

• ForL3 we keep the first 3mcoefficients entries and discard the remainingsm−3m= (s−3)m

(set to zero value);

• ...;

Coefficient entries are being eliminated, that is, set to zero until we reach last recovery layerLs

(Fig 3.3d) where the full restoration quality is reached by keeping all coefficient entries.

3.4.2 General elements of scalable design

Let us consider the case when we take a conventional sparse representationX of an imageY and

apply the previously describedscalablereconstruction mechanism. The question follows: is this

going to guarantee acceptable recovery quality at every layerLa? The answer is negative and this is

illustrated later in Chapter 4 with experimental results. Thus, what should be done, that is, introduced

in the dictionary learning procedure so that is structured in a way which successfully restores visual

scene over different layersLa?

One of the solutions which we offer is motivated with the well-known characteristic of the HVS

perception mechanism. Primarily, HVS exhibits high sensitivity to the high contrast variations in the

scene [124, 125]. Proposed regularised atom’s update is a modelling variation of this specific HVS
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feature. Specifically, human eyes tend to pay more attention to the edges of anobject given the high

firing rate of the visual cortex neurons at the moment of perception meaningthat objects are primarily

identified by their bounding shapes [126, 128] (see Sec. 3.3). Thus, inorder to facilitate effective

scalablerecovery, it is important to ensure that the main object shapes (boundaries) are identified

from the beginning of thescalableimage reconstruction. To some extent, this would resemble the

process of object recognition procedures which highly exploit (for thistask) image high frequency

information [127]. Hence, spatial higher frequencies should be more relevant toscalabledictionary

learning. We incorporate this by appropriately favoring the significant visual changes associated

with the edges in the image (i.e., the texture) during the training ofscalabledictionaryDsc. This and

subsequently the sparse adaptivescalableimage representation is achieved by introducing:

1. MCA based semi-random initialisation of the dictionaryDsc at the very beginning of the

training procedure;

2. A regularisation scheme over the second K-SVD iterative stage i.e., the update procedure of

the dictionary’s atoms which enforces the high frequency components during the regularised

atom’s update.

Overall, we impose an a priori assumption on the solution i.e., exploitation and learning of high fre-

quency components from the training image patches should be emphasised and enforced during the

atom’s update. This naturally leads to the concept of the regularisation whichprovides an effective

scalableimage reconstruction model that incorporates main HVS perception sensitivitycharacteris-

tic. Furthermore, introduced atom’s update is encoding existing knowledge on the human perceptual

mechanism with regular sparsity regularisation leading to preferredscalablesolution. The following

terms will be used in the remainder of this paper:

• Y ∈ Rn×N - matrix with N overlapping image patchesyi ∈ Rn;

• Dsc∈ Rn×K - proposedscalabledictionary;

• D ∈ Rn×K - conventional non-scalable dictionary obtained using standard K-SVD [1][15];

• K - the number of dictionary atoms inDsc or D;

• X ∈ RK×N - sparse representational matrix containing sparse coefficient vectorsxi ∈ RK .

3.4.3 Dictionary initialisation

In classical K-SVD, prior the two training stages, dictionaryD is commonly initialised withK ran-

domly extracted image training patchesyi [19] taken from the set of totalN. Thus, the initial dic-

tionary is not characterised with any specific structure in terms of atoms distribution over baseD.

There is just an unsystematic combination of image patches. In contrast, priorto dictionary initiali-

sation we divide theN training patches in two different classesC1 andC2. What distinguishes these
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Fig. 3.4 Smooth and texture classification via tresholding.

classes from each another is their content whereC1 is composed out of smooth andC2 out of texture

image content, respectively. Classification is achieved by taking advantageof the training set data’s

morphological component features. Thus, as a classification criterion weuse the activity measure

similar to TV norm [144][145] originally used within the K-SVD MCA setup [13]and defined as:

Activity(yi) =
n

∑
j=2

n

∑
k=1

|yi [ j,k]−yi [ j −1,k]| (3.1)

+
n

∑
j=1

n

∑
k=2

|yi [ j,k]−yi [ j,k−1]| .

Subsequently,Activity is normalised in a way which sets its range from 0 to 1. These values are

reflecting the degree of “smoothness” and “textureness” in each image patch [13]. The higher the

Activity the higher the level of the texture will be within the patch. Thus, the classification is per-

formed as tresholding using heuristically set valueA. This value is taken from [13] where it is shown

that it provides the best possible classification performance for smooth and texture element based

separation. Specifically, classifying parameterA indicates classification of patches into two classes

C1 or C2 . That is:

• yi ∈C1 for Activity(yi)≤ A;

• yi ∈C2 for Activity(yi)> A.

Thresholding procedure of the initialisation is depicted in the Fig 3.4. Thereafter, the firstK/2 atoms

of the proposed dictionaryDsc are initialised by randomly choosingK/2 image patches from theC1

class, that is, the smooth group. The rest of theK/2 atoms are randomly picked from theC2 class

i.e., the texture group. Fig. 3.5 shows general structure of the dictionaryDsc once the initialisation

is completed. In this way, we enforce semi random initialisation which directly controls and effects

the starting dictionary structure by placing low frequencies (smooth image areas) within its first half

of d j atoms (1≤ j ≤ K/2). Lastly, the remaining half of dictionaryDsc (K/2 < j ≤ K) is filled

with high ones i.e., the texture components. In return, this sets a foundation for further design which

is organised around applying proposed regularisation scheme and subsequently tuning dictionary

learning to the main HVS perception characteristic.
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Fig. 3.5 Structure of the dictionaryDsc after the semi random initialisation.

3.4.4 Sparse coding

The first of the two iterative dictionary learning stages i.e., sparse coding iscommonly posed as a

constraint optimisation problem originally defined in [19] as:

min
X

{
‖Y−DX‖2

F

}
s.t. ∀ i ‖xi‖0 ≤ T0 (3.2)

given the current estimation of the dictionaryD which is kept fixed during this process. Once the

signalyi ∈ Y (i = 1, . . . ,N) is extracted from the original imageY its pixel based representation is

mapped into its sparse representationxi commonly via [13, 16]. If we train a complete dictionary

as proposed in [136, 146, 147], OMP is not needed for the sparse coding step. That is, the exact

solution for the scalable dictionary is attained via simple matrix inversion as:

xi = D′
scyi . (3.3)

Solution for the sparse vectorxi is attained by retaining up to firstT0 largest non-zero coefficient

entries obtained after matrix inversion (3.3) while setting the rest of the of(K −T0) entries ofxi to

zero. Each of K entriesxi [ j] corresponds to one of the atomsd j ∈ Dsc (j=1,. . . ,K) where non-zero

entry xi [ j] 6= 0 means that particular atomd j participates in the sparse representation of the signal

yi [19]. Given that both dimension and number of atomsK are relatively small, the matrix inversion

does not impose any additional computational complexity on the dictionary learning algorithm. Fur-

thermore, we relax the sparsity constraint, permittingT0 to take a higher value than in [19] where

the relationT0 << n is still maintained. This allows thescalablesignal recovery to be established
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while introducing aT0 value on an empirical basis that still promotes the sparsity prior of the signal.

However, the approach could be applied for overcompleteDsc in which case we would need OMP.

3.4.5 Regularised dictionary update

Once the stage described in Sec. 3.4.4 is completed, we move to the update stageof each atom

d j . Usually, the new basis atomd j is estimated by processing a current representational residual

E j (Sec. 2.4, (2.13)) constructed in order to account for the error of allN patches when the atom

d j is removed. The proposed regularisation scheme is integrated during the construction of the

error matrixE j in (2.13) where we redefine its original structure originally introduced in [19] while

keeping the rest of processing steps unaltered.

As already stated in Sec. 2.4,xk
T in (2.13) represents coefficients entries from thekth row in X

wherexk
T [i] 6= 0 denotes that the sparse approximation for the patchyi includes atomdk given that

its associated coefficient entry is of non-zero value. Prior to update, atom d j is set to zero while the

remaining atoms are kept fixed. Error matrixE j is subject to shrinking which will result in reduction

of her compositional structure to one which only contains error columns of the patches that use atom

d j . Update of the pair
[
d j ,x

j
T

]
is obtained via SVD decomposition [19] of such interchanged matrix.

Shrinking is necessary in order to preserve the sparsity constraint meaning that new vectorx j
T is not

going to be fully filled after SVD rather just its original non-zero entries. Shrinking is performed by

identifying all patches that at the moment of the update use atomd j asω j in (2.14) followed with the

formation of the matrixΩ j sizeN×
∣∣ω j
∣∣. Multiplying (2.13) withΩ j achieves necessary shrinking.

However, as already stated, this is insufficient to generate dictionary tailored for thescalable

image restoration. That is why we decide to redefine the structure of theE j (2.13) by introducing the

special regularisation scheme. The proposed procedure is mainly motivated by the HVS functional

mechanism properties discussed in Sec. 3.3. To reiterate, the high firing rate of the visual cortex

neurons at the moment of perception is associated with detection of the edgesof an object. Given that

the object shape plays the most important role during visual recognition, effectivescalablescheme

should achieve its identification at the beginning ofscalableimage restoration. For this task spatial

higher frequencies are significant [139] and should be accordingly exploited. Firstly, we address

this by introducing the semi-random initialisation of the dictionaryDsc (Sec. 3.4.3). Secondly, we

appropriately favour the significant changes associated with the edges inthe image patches (i.e., the

texture) during theDsc training. This is carried out by dividing the current sparse approximations of

all patches inE j (2.17) on two batches as:

ER
j =


Y−v0

K
2

∑
k=1

dkxk
T −v1

K

∑
k= K

2 +1

dkxk
T


Ω j ,k 6= j. (3.4)

SuperscriptR stands for regularised and pair[v0,v1] denotes regularisation terms. Each batch corre-

sponds to the low and high frequency components of the training image patches:
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• First batch (withv0) contains only atoms initialised from theC1 smooth class;

• Second batch (withv1) contains only atoms initialised from theC2 texture class;

This separation is plausible due to semi-random initialisation described in Sec. 3.4.3. Further, by

introducing:

• Y j = YΩ j

• Dlow
sc X low

j =
(

∑K/2
k=1dkxk

T

)
Ω j ;

• Dhigh
sc Xhigh

j =
(

∑K
k=K/2+1dkxk

T

)
Ω j .

we can provide a more compact representation and rearrange the proposed error matrix (3.4) as:

ER
j =

(
Y j −v0Dlow

sc X low
j −v1Dhigh

sc Xhigh
j

)
, (3.5)

whereY j represents a subset of the image patchesyi from Y identified with indices given inω j .

Superscriptslow andhigh denote smooth and texture frequency content associated with the weight

pair [v0,v1] which regularises contribution of their representational residual components to theER
j .

Consequentially, this separation controls the type of the information used forthed j atom’s update.

We have to stress that proposed design and establishing dictionaryDsc with the desirablescal-

ablerestoration property is only possible with the specific combination of introduced regularisation

parameters. Firstly, in order to avoid any degeneracy of the learned representation that might hap-

pen with addition of the weight pair[v0,v1], a constraintv0+ v1 = 1 is introduced. Thus, a various

regularisation pairs[v0,v1] have been tested under this constraint. Experimental outcomes show that

carefully integrated regularisation over the smooth and texture image components is able to yield the

appropriate dictionary for thescalabledata representation.

For all atomsj = 1, ...,K, the update stage in the proposedscalabledictionary learning algorithm

is summarised as:

1. STEP 1 - Initialise dictionary as described in Sec. 3.4.3;

2. STEP 2 - Perform sparse coding as simple matrix inversion shown in Sec.3.4.4;

3. STEP 3 - Allocate corresponding image patches which current sparseapproximation, given as

a linear superpositionDscxi includes atomd j as it is done in [19], map them accordingly with

ω j and denote as a subset of patchesY j , that is a subset of sparse coefficientsX j ;

4. STEP 4 - In contrast to [19], split each current sparse approximation elementxi of the subset

matrixX j , associated with atomd j , in two using binary vectorsT low,Thigh ∈ RK as:

• xlow
i = xiT low and xhigh

i = xiThigh;



3.4 Problem statement and proposed approach 41

whereT low,Thigh ∈ RK are binary vectors that cancel anyxi [l ] element forl > K
2 (associated

with the dictionary elements initialised with classC1) andl < K
2 (associated with the dictionary

elements initialised with classC2) as follows:

• T low [l ] =

{
1 if l ≤ K

2 ,

0 if l > K
2 .

• Thigh [l ] =

{
0 if l ≤ K

2 ,

1 if l > K
2 .

In this way the smooth and texture patch content are extracted finally as:

• Dlow
sc X low

j ;

• Dhigh
sc Xhigh

j ;

where eachxlow
i ∈ X low

j andxhigh
i ∈ Xhigh

j originate fromxi identified withi ∈ ω j ;

5. STEP 5 - After decomposing sparse representation ofY j accordingly form newly proposed

representational residual error term associated with atomd j as (3.5);

6. STEP 6 - Perform rank-one approximation ofER
j i.e., SVD and set the eigenvector correspond-

ing to the largest eigenvalue as newd j and the
∣∣ω j
∣∣ largest eigenvalues as the new non-zero

entries for thex j
T (as in [19]);

7. STEP 7 - Keep redundant atoms (unlike [19]): mutually coherent and rarely used ones;

8. STEP 8 - Repeat STEPs 2, 3, 4, 5, 6 and 7 until the full number of iterations is reached.

All five steps are illustrated in Fig. 3.6.

Proposed regularisation plays an important role given that weightsv0 andv1 control which spatial

frequency content will be added to theER
j . Consequently, the SVD decomposition (STEP 4) gener-

ates new basis atoms of thescalabledictionaryDsc based on the controlled information contained

within ER
j . We have observed that by keeping more of the original high frequencyinfo (v1 < 0.5)

and suppressing the lower one (v0 > 0.5) the algorithm regularises the learning process which effec-

tively generates dictionaryDsc suitable forscalablerepresentation. Correspondingly, lastK/2 atoms

will exhibit more edge like features with the higher amount of the contrast variation. This enables

recovery of the basic image objects shapes from the base layerL1 resulting in a learning procedure

which is tailored to the characteristics of HVS, that is, being in synergy with thehuman sensitivity

to contrast and pattern variation in the visual scene.

3.4.6 Denoising and scalable dictionary scheme

Trained dictionary is specialised for representation and reconstruction of a specific class of signals

i.e., those that admit sparse representation over learned dictionary. This implies that it will be in-

efficient at reconstructing noise. Thus, the main idea behind sparse based denoising procedure is
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Fig. 3.6 Proposed training procedure forscalabledictionaryDsc.



3.4 Problem statement and proposed approach 43

that a sparse approximation of a noise via trained dictionary will automatically beable to reduce

considerable amount of distortion while keeping the original signal information. That is why, prior

to presenting thescalabledenoising process, we inspect the way in which noise is removed during

the classical K-SVD dictionary training. Commonly, noise is iteratively discarded throughout two

stages:

1. While performing sparse coding, OMP stops when the current approximated sparse solution

reaches the sphere of radius
√

nCσ in the patches space. This radius constrains the acceptable

level of the recovered noise strength i.e.,‖e‖2
2 ≤ Cnσ2. Going bellow this boundary would

result in direct noise reconstruction where C is a heuristically set constant andσ stands for

the noise standard deviation;

2. During the dictionary’s atom’s update, noise is removed via SVD decomposition that estimates

new “average” direction for each atom which is least influenced by the distortion.

The conventional K-SVD denoising energy minimisation problem [26, 27] is given as:

{
x̂i , D̂, ŷi

}
= arg min

xi ,D,yi

λ
∥∥∥yi −ynoisy

i

∥∥∥
2

2
+∑

i

µi ‖xi‖0 (3.6)

+∑
i

‖Dxi −yi‖2
2

In the proposedscalabledenoising setup the complex minimisation task (3.7) is simplified by re-

laxing the regularisation process with the introduction of the proposedscalabledictionaryDsc as

follows: {
D̂sc, ŷi

}
= arg min

Dsc,yi

λ
∥∥∥yi −ynoisy

i

∥∥∥
2

2
+∑

i

‖Dscxi −yi‖2
2 (3.7)

In (3.7) we decide to:

• Discard the sparse coding phase;

• Introduce the proposedscalabledictionaryDsc;

while merely performing noise removal during thescalabledictionaryDsc update. Our detailed study

of denoising scheme in [25, 26] suggests that the initial sparseness leveli.e., the average number

of the non-zero coefficients‖xi ·‖0 stays nearly fixed during the dictionary training and denoising

procedure in the classical K-SVD setup. That is, the one established after the first OMP sparse coding

over the initialised dictionary [25]. Furthermore, we impose assumption that thenoise less distorts

texture than smooth image components due to the high-frequency nature of thetexture information.

Specifically, oscillatory components of the scene exhibit regularity in terms ofthe frequency content

that repeats to some extent over the image. On the other hand, noise is random and does not show

consistency in its change meaning that it will have a higher impact on image partswhich do not

exhibit periodic spatial variations.
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Justification for this is provided in Sec. 5.3.2 where we illustrate how various level of noise distort

smooth and texture image blocks based on their estimated standard deviation before and after noise is

introduced. Thus, we promote the idea that after the initial matrix inversionX = D′
scY (substitute for

OMP given the completeDsc), we could neglect subsequent ones during the dictionary learning while

still obtaining satisfactory denoising results given that texture information prevails for the modified

dictionary update. That is, enforcement of the high frequency sparsecontent for the restoration of the

noisy image will suppress more of the noise and preserve original information in an efficient manner.

For this setup, the coefficient entriesx j
T are only updated during the SVD decomposition employed

for the atom’s update. Hence, the introduced modification is expected to result in a considerably

shorter computational processing time while achieving comparable quality as obtained with the non-

scalable K-SVD denoising scheme. However if we would maintain the classicallytrained dictionary

instead of the proposedDsc design like:

{
D̂, ŷi

}
= argmin

D,yi

λ
∥∥∥yi −ynoisy

i

∥∥∥
2

2
+∑

i

‖Dxi −yi‖2
2 (3.8)

the denoising results would not be satisfying since the texture and smooth imageinformation are

treated as equally important during the dictionary update step where the benefit of less distorted high

frequency components is not taken into account.

3.5 Computational Complexity

The proposedscalabledesign does not incur the cost of the original dictionary learning in [13, 19]

in case of training strictly representative dictionary over the noise free image. Given that there

are no additional transforms employed but just linear separation of the low and high frequencies

components via semi-random initialisation and introduced error matrix regularisation (as shown in

Sec. 3.4.5) the computational complexity remains of the same order as that of theconventional non-

scalable K-SVD. That is, the number of operations per pixel is stillO(nT0I) where I stands for

the number of iterations. By setting the number of atomsK = n and replacing OMP via simple

matrix inversion, we manage to even decrease the processing demands whileachieving good signal

recovery (typically in [13, 19]K is equal to 2n, 3n or 4n). This is in particular transparent in relation

to scalabledenoising given that sparse coding stage is removed. More details on processing time

necessary for denoising are shown in Sec. 5.3.2.

3.6 Summary

This chapter represents a complete outline of the proposed training scheme for training of the adap-

tive dictionaryDsc specially customised forscalableimage representation. The proposedscalable

scheme is discussed in detail where we show its main eight processing steps.Prior to discussion
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we illustrate the main features of the HVS perception mechanism which represents the core of the

introduced regularisation for the second stage of thescalabletraining scheme i.e., atom’s update.

Furthermore, we provide the full description of the newly introduced semi random MCA basedDsc

dictionary initialisation. Lastly, we compare the traditional sparse based denoising energy minimi-

sation problem and propose simplified one which incorporates thescalabledictionary training pro-

cedure. This newscalabledenoising setup employes solely SVD decomposition for noise removal

followed up with the processing complexity discussion.





Chapter 4

THE SCALABLE RESTORATION

PERFORMANCE

In this chapter we demonstrate the effectiveness of the proposedscalabletraining method forscal-

able restoration of noise free video sequence’s frames and natural images via scalabledictionary

Dsc. The presented work is published in [136, 147]. At first, Sec. 4.1 provides detailed overview of

simulation data, definitions and values of all parameters while the layout of thescalablerecovery is

described in Sec. 4.2. Sec. 4.3 shows the analysis of comprehensive experimental tests which are

carried out to identify the most suitable combination of variables i.e., regularisation parameters for

training the most effectivescalabledictionaryDsc. At first, we compare thescalableestimates for

seven different regularisation pairs[v0,v1] previously defined in Sec. 3.4.5 both for complete and

overcompletescalabledictionaryDsc. The objective quality assessment and visualisation of the ex-

perimental results for the proposedscalabletraining with complete dictionaryDsc and restoration

scheme against its non-scalable K-SVD counterpart is provided in Sec. 4.4. Finally, we provide

summary in Sec. 4.5.

4.1 General training setup

The overall performance of the proposedscalableK-SVD method is evaluated in the set of experi-

ments applied to:

• Standard CIF high motion video test sequences “Stephan” and “Tempete”at resolution 352×
288 and a frame rate of 30Hz;

• Several natural images of size 512×512;

Variables and parameters for all simulations are summarised in Tab. 4.1 together with their values,

roles and effects. Prior to processing, every video frame is broken down into N = 96,945 or every

natural image intoN = 255,025 overlapping rectangular (or square) patches of size 8× 8 pixels.
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This patch size is adopted as a standard over the sparse image processingcommunity in order to

provide fair comparison with benchmark methods. Thus, the vectorised dimension of the signals

used for thescalableDsc dictionary learning algorithm isn = 64 pixels. Bothscalableand non-

scalable dictionariesDsc andD containK = n atoms with redundancy factorr = K/n= 1. However,

in Sec. 4.3 during the initial experimental phase we additionally utilise the overcomplete dictionary

size withK = 2n and r = K/n = 2. This aims to show that for the effectiveness of the proposed

scalablescheme dictionary’s overcompletness does not play an important role. That is, in Sec. 4.3 for

bothK = n andK = 2n we achieve highly comparable or equal restoration quality. Thus, complete

dictionaryDsc is the most optimal for the proposedscalablescheme both in terms of restoration

quality and simplifying processing complexity. Sparsity threshold levelT0 is set to 10 both for

training and reconstruction phase. This provides the best processing effectiveness (in terms of PSNR

values) for the proposedscalablelearning design after testing the wide range of sparsity levels e.g.,

T0 = [4,5,6, . . . ,26,27,28]. The total numbers of progressively recovered layersLa is defined with

scaling parameterm= 4 as⌊K/m⌋= s= 16 for every layer ofscalablepatch recovery and therefore

image witha=1, ...,16. During each dictionary initialisation phase (Sec. 3.4.3) we appoint the value

of A = 0.27 for Activity measure as defined in [13]. In addition, the original work [13] defines

provided value ofA as the most optimal for classification of image patches into smooth and texture

ones. The proposed thesis employees the same size of the image patches as [13]. Thus, given that

the authors of the [13] have already carried out many simulations to estimate themost optimal value

of A we concluded that it is redundant to repeat same testing for the proposedwork.

Table 4.1 Table of parameters

Parameter Definition Role
N = 96,945 Number of image patches Limits the size of the training set for frames size 352×288
N = 255,025 Number of image patches Limits the size of the training set for images size 512×512
n= 64 Constant integer Dimension of image patch vector and each atom
K=64 Number of dictionary atoms Limits the size of the representational basisDsc andD
K/n= r = 1 Redundancy factor Defines overcompleteness of the dictionary
v0=1 1st regularisation parameter Weights smooth patch sparse presentation for the atom’s update
v1=0 2st regularisation parameter Weights texture patch sparse presentation for the atom’s update
A= 0.27 Activity measure Threshold value for classification of smooth and texture image patchesyi

T0=10 Sparsity level Limits number of the non-zero entries per each sparse coefficientxi

l ∈ {1, . . . ,64} Integer index Defines the entry for a sparse coefficientxi

m= 4 Scaling parameter Defines total number ofscalablelayers
⌊K/m⌋= s= 16 General scalability level Total number of thescalablelayersLa

L = 9 CS scalability level Limits number ofscalablerecovery layers for CS setup
s1 < s2, . . . ,< sL Progressive CS samples Limit number of samples per each CSscalablerecovery layer
S= sL = 50 Maximum number of CS samplesLimits the total number of the CS samples

4.2 Scalable recovery layout

Starting from the firstscalablelayer of the processed video frame or image i.e., base layerL1, the

scalablereconstruction is carried out using only firstm= 4 entries per each sparse coefficientxi
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which represents approximately 6.25% of full sparse information. This first level of truncated co-

efficients fromX for the recovery of the base layerL1 is denoted withX1 ∈ R(4)×N. Along this,

we employ a truncated version of trained dictionaryDsc denoted asD1
sc containing only firstm= 4

atoms i.e.,[d1d2d3d4]. The remaining recovery levels e.g.,L2, L3 etc., are progressively enhanced by

adding four (i.e.,m) additional entries in each previous version of truncated representational vector

xi and likewise four (i.e.,m) additional atoms.

In general, newscalablelayerLa of the each image patchyi is a result of the progressive recovery.

It starts by first taking allm(a−1) entries from the sparse coefficientxi which were employed for

the estimation of theyi scalableversion at the levelLa−1. Next, by adding subsequentmvalues from

the sparse coefficientsxi levelLa is restored. Thesemvalues are indexed as:

• x [m(a−1)+1]i ;

• x [m(a−1)+2]i ;

• . . .

• x [m(a−1)+m]i .

Thescalablereconstruction atLa is denoted asDma
sc xma

i with xma
i ∈ Xma. The end result is that each

recovered patch at the new layerLa will contain the firstm(a−1) reconstructed elements as patches

in La−1 and newly estimatedm. For the shown case, this is done until the finalL16 restoration

level is attained where (given the completeDsc) where full sparse representation is employed for its

reconstruction i.e.,X16 = X and all atoms in dictionaryD16
sc = Dsc. The scheme of recovery can be

illustrated as:

• L1 = D1
scX1: 4 atoms per dictionary and 4 entries per sparse coefficient;

• L2 = D2
scX2: 8 atoms per dictionary and 8 entries per sparse coefficient;

• L3 = D3
scX3: 12 atoms per dictionary and 12 entries per sparse coefficient;

• L4 = D4
scX4: 16 atoms per dictionary and 16 entries per sparse coefficient;

• . . .;

• L13 = D13
scX13: 52 atoms per dictionary and 52 entries per sparse coefficient;

• L14 = D14
scX14: 56 atoms per dictionary and 56 entries per sparse coefficient;

• L15 = D15
scX15: 60 atoms per dictionary and 60 entries per sparse coefficient;

• L16 = D16
scX16: 64 atoms per dictionary and 64 entries per sparse coefficient.
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Fig. 4.1 Scalable recovery scheme for each sparse coefficient xi.
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Graphic illustration ofscalablei.e., progressive recovery scheme is depicted in Fig. 4.1. Finally, it

is important to reiterate that unlike the classical i.e., non-scalable sparse dictionary learning where

practice is to train an overcomplete dictionary (K >> n, r > 1), we promote training of a complete

one i.e.,K = n. The main reasons for this arise from our experimental observations which are

introduced in the following section (Sec. 4.3).

4.3 Regularisation

Prior to establishing the proposedscalabletraining and restoration scheme, we perform exhausting

simulations in order to provide the most effectivescalabletraining setup, that is, the most effective

dictionaryDsc for scalableimage restoration. This is carried out by evaluating performance of the

proposedscalablescheme in Sec. 3.4 given various regularisation parameters pairs[v0,v1] denoted

with Pi and listed as:

1. P1: [v0,v1] = [0,1] ;

2. P2: [v0,v1] = [0.1,0.9] ;

3. P3: [v0,v1] = [0.3,0.7] ;

4. P4: [v0,v1] = [0.5,0.5] ;

5. P5: [v0,v1] = [0.7,0.3] ;

6. P6: [v0,v1] = [0.9,0.1] ;

7. P7: [v0,v1] = [1,0].

Furthermore, we test these seven parameters[v0,v1] pairs for both the complete (K = 64) and over-

complete (K = 128) versions of thescalabledictionaryDsc. This serves to validate a generalisation

of the introduced regularisation scheme which effectiveness and processing trend for imagescalable

recovery are not biased given the different number of dictionary atoms. Note that, when training the

overcomplete dictionaryDsc sparse coding stage is carried out via OMP instead of proposed matrix

inversion (Sec. 3.4.4).

In order to asses restoration effectiveness of these two dictionaries and the seven parametrization

setups we employ the standard objective quality assessment i.e., PSNR together with an alternative

quality measure, so-called Structural Similarity Index (SSIM) [133]. It is designed to quantify the

degree to which image structural information is degraded by calculating a quality index ranging from

0 (denoting highest distortion) up to 1 (denoting no distortion). This measureis specially appealing

for the evaluation of the proposedscalableimage restoration framework due to the fact that the

SSIM is based on modelling of the HVS characteristics discussed in Sec. 3.3.Specifically, it takes

into account local pixels distortions of the luminance and contrast information. The higher the SSIM
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index values get the more successful retrieval of the HVS perception information at eachscalable

layerLa will be. This should result in a better visual information thus providing progressive image

recovery of better quality. Each PSNR and SSIM value is estimated by comparing every restored

scalableframe or image layerLa against its original image/frame versionY used for training the

scalabledictionaryDsc. In addition, following results omit four remaining[v0,v1] weight pairs i.e., :

• [0.2,0.8];

• [0.4,0.6];

• [0.6,0.4];

• [0.8,0.2];

since they result with a similar performance as their neighbourhood values.

The results of experimental simulations for complete dictionaryDsc are introduced in Fig. 4.2

and Fig. 4.3. They illustrate the averaged PSNR and SSIM estimates at everyrecovery layerLa of

scalablerestoration given the high motion video sequences “Stephan” and “Tempete” together with

10 averaged iterations of the natural images i.e., “Boat” and “Peppers” for the complete dictionary

with K = 64 number of atoms. Similarly, Fig. 4.4 and Fig. 4.5 illustrate same testing setup for the

overcompleteDsc (K = 128) where form= 4 we have in totals= 32scalablerecovered layersLa. As

we can see, out of seven presentedPi regularisation (1≤ i ≤ 7) scenarios (Fig. 4.2, Fig. 4.3, Fig. 4.4

and Fig. 4.5), theP7 results with the dictionary that is most effectively tailored to thescalablesparse

image representation both for the complete and overcomplete version of proposedDsc given that,

overall, results with the highest PSNR and SSIM restoration values. Note that all curves in Fig. 4.2

converge to the same PSNR value at the finalL16 restoration level since at this level we include all

information for the image’s recovery. Lastly, the SSIM results in Fig. 4.3 andFig. 4.5 forK = 64

andK = 128 respectively, furthermore emphasise the effectiveness of theP7 scenario in terms of

preserving the structural information of an image or a frame at every recoveredscalablelayerLa.

To reiterate, thev0 is associated with theDlow
sc elements, which capture spatial low-frequencies.

These atoms represent a compositional structure of patches extracted from large, smooth, low-variance

areas, lacking in harsh edges e.g., the tennis field in the “Stephan” sequence, or the sky background

in the “Tempete” sequence. On the other hand,v1 weights the contribution of theDhigh
sc atoms that

contain higher spatial frequencies, that is, the areas of high detail with many contrasting edges such

as the audience in “Stephan” or the flower object in “Tempete”. This spatialfrequency separation is

possible due to introducedActivity factor accountable for the semi-random initialisation (Sec. 3.4.3).

By looking at(3.5) in Sec. 3.4.5, withP7 parametrization ([v0,v1] = [1,0]), we can conclude that the

regularisation process will in each iteration:

• Cancel texture sparse approximationDhigh
sc Xhigh

j from the subtraction process given thev1 = 0;

• Keep the smooth partDlow
sc X low

j with v0 = 1.
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(a) “Stephan” video sequence
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(b) “Tempete” video sequence
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(c) “Boat” image
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(d) “Peppers” image

Fig. 4.2 Averaged PSNR scalable results given the seven different setups for regularisation
parameters[v0,v1] andK = 64 number of dictionaryDsc atoms.

This will determine the final content of the regularised error matrixER
j where the texture patches

(Activity(yi)> 0.27) are dominant information being directly included into the error synthesis rather

than being just a part of the representational residual as the cartoon one (Activity(yi)≤ 0.27).

The presented training scheme is done only once given the singletraining frame(first frame for

either of video sequences) or a singletraining image(for natural images) in order to generate the

Dsc dictionary. Subsequently, while reconstructing each incoming frame we usesingleDsc trained

over thetraining framethus, not training any new dictionary. This approach considerably reduces

the computational complexity of thescalablesparse video representation, since training is done only

once instead for each incoming frame. This is immensely important in the context of real-time

scalableimage/video applications development. It is necessary to mention that in general, when the

video scene undergoes significant changes with respect to thetraining frame, a new training frame

should be inserted. This is necessary in order to accommodate for the difference in the compositional

structure of the previous frames and newly changed one.
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(b) “Tempete” video sequence
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(c) “Boat” image
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(d) “Peppers” image

Fig. 4.3 Averaged SSIM scalable results given the seven different setups for regularisation
parameters[v0,v1] andK = 64 number of dictionaryDsc atoms.

Next, we compare in detail restoration results for both complete and overcompletescalableDsc

dictionary where training stage employs the most effective[v0,v1] weight pair i.e.,P7 regularisation

scenario. As stated, the number of atoms for the overcompleteDsc dictionary isK = 128 (r = 2) thus

having greater number of the recovery levels⌊K/m⌋= s= 32 than the complete scheme. The scaling

factor m is same i.e.,m= 4. The averaged PSNR comparison at everyscalablerecovery levelLa

for both the complete and overcompletescalablescheme is given in Tab. 4.2 and Tab. 4.3 for video

sequence “Stephan” and “Tempete”, respectively. Likewise, Tab. 4.4and Tab. 4.5 illustratescalable

outcomes for the natural images “Boat” and “Peppers”. In all four tables, every two recovery levels

of the overcompletescalableDsc dictionary are compared against one of the complete recovery level

e.g.,:

1. L1 andL2 of overcompleteDsc are compared againstL1 of completeDsc;

2. L3 andL4 of overcompleteDsc are compared againstL2 of completeDsc;
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(a) “Stephan” video sequence
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(b) “Tempete” video sequence
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(c) “Boat” image
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(d) “Peppers” image

Fig. 4.4 Averaged PSNR scalable results given the seven different setups for regularisation
parameters[v0,v1] andK = 128 number of dictionaryDsc atoms.

3. L5 andL6 of overcompleteDsc are compared againstL3 of completeDsc;

4. . . .;

5. L27 andL28 of overcompleteDsc are compared againstL14 of completeDsc;

6. L29 andL30 of overcompleteDsc are compared againstL15 of completeDsc;

7. L31 andL32 of overcompleteDsc are compared againstL16 of completeDsc.

This aims to show that effectivescalableperformance can be achieved with complete as with over-

completeDsc dictionary.

On average, when all testing results are taken into account, the difference of the highest recovered

layers i.e.,L16 (for completeDsc) andL32 (for overcompleteDsc) goes around:

• 0.15[dB] for scalableframe restoration (Tab. 4.2 and Tab. 4.3 );
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(b) “Tempete” video sequence
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(c) “Boat” image
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(d) “Peppers” image

Fig. 4.5 Averaged SSIM scalable results given the seven different setups for regularisation
parameters[v0,v1] andK = 128 number of dictionaryDsc atoms.

• 0.66[dB] for scalablenatural image restoration (Tab. 4.4 and Tab. 4.5);

in favour of the overcompleteDsc dictionary. However after detailed assessment of all four tables,

conclusion follows that thescalableperformance of the completeDsc overruns the overcomplete

Dsc at all compared recoveryLa levels (bold tabular values) except for the finalL16 that isL32 for

“Stephan” and “Tempete” and almost all levels for “Boat” and “Peppers”. Conclusion follows that

redundancy is not crucial for sparse based scalable image restorationover the proposed trained dic-

tionary Dsc. Given that restoration quality is highly comparable and that we consider aboundary

case for the sparse image representation basis i.e., lesser number of trained atoms which:

• Minimises the amount of information necessary for training and signal’s recovery, that is,

directly achieves dimensionality reduction;

• Lowers computational complexity by having the redundancy ofr = 1 together with a simple

matrix inversion as a substitute for the OMP;
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we chose to train complete basisDsc with K = 64.

4.4 Scalability Performance

The comparison of the restoration quality is done for the proposed complete regularisedscalable“SC

K-SVD” which integrates regularisation scenarioP7 and conventional complete non-scalable “NSC

K-SVD” algorithm. Thescalablerestoration of the image over both both “SC K-SVD” and “NSC

K-SVD” trained dictionary is carried via recovery layout introduced in Sec. 4.2. Both PSNR and

SSIM estimates are provided at every restoration layer{La}. In particular, Fig. 4.6a and Fig. 4.6b

illustrate the PSNR estimates for video sequences “Stephan” and “Tempete” while Fig. 4.6c and

Fig. 4.6d provide PSNR outcomes for “Boat” and “Peppers” images. Shownresults are averaged

over all frames given each ofs= 16 recovery{La}16
a=1 layers and over 10 iterations for each of the

natural images. However, minor exception is the “Stephan” sequence which frames are, prior to

averaging results both for “SC K-SVD” and “NSC K-SVD” , divided into two groups:

1. First group:[1,270] - total of 270 frames;

2. Second group:[271,300] - total of 30 frames.

The frame separation is carried out in order to demonstrate the variation in thequality of the restored

image, when a new object is introduced in the frame 271. Given thatDsc andD (i.e., non-scalable

dictionary ) are trained over thetraining framewhich does not contain a newly introduced visual

object we would expect certain degradation in the restoration quality. This anticipation is confirmed

with depicted results for “SC K-SVD” and “NSC K-SVD” which show that once a new image object

appears e.g., the tennis net in the “Stephan” sequence a noticeable drop inthe scalablerecovery

quality can be noticed in Fig. 4.6a for the second frame group[271,300] On average, with the intro-

duction of the new object, “SC K-SVD” PSNR declines for≈ 1.84[dB] and “NSC K-SVD” PSNR

declines for≈ 1.02[dB]. However, “SC K-SVD” still outperforms the “NSC K-SVD” for 9.43 [dB].

Furthermore, Fig. 4.6 clearly demonstrates that the proposedscalableregularised scheme consid-

erably outperforms the standard [19] over all recovery levelsLa while achieving an average gain

of:

1. 11.32 [dB] for “Stephan” video sequences given its first 270 frames (Fig. 4.6a);

2. 8 [dB] for “Tempete” video sequences given all frames (Fig. 4.6b);

3. 12.69 [dB] for “Boat” natural image averaged over 10 iterations (Fig. 4.6c);

4. 13.45 [dB] for “Peppers” natural image averaged over 10 iterations (Fig.4.6d).

Note that “NSC K-SVD” is not specialised forscalablerestoration which explains the low values

at ever recovery layerLa except at the last one, that is, we provide comparison ofscalablevs. non
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Table 4.2 Averaged PSNR quality assessment for scalable restoration given the “Stephan”
video sequence for two sizes of of scalable dictionaryDsc, K = 64 andK = 128.

OvercompleteDsc dictionary CompleteDsc dictionary
K = 128 Stephan [dB] K = 64 Stephan [dB]

L32 30.62
L16 30.48

L31 28.93
L30 27.92

L15 29.14
L29 26.41
L28 26.16

L14 28.12
L27 25.86
L26 25.25

L13 26.87
L25 24.97
L24 24.67

L12 25.85
L23 24.13
L22 23.78

L11 24.77
L21 23.42
L20 22.91

L10 23.89
L19 22.39
L18 22.22

L9 23.06
L17 21.94
L16 21.50

L8 22.22
L15 20.36
L14 17.32

L7 20.34
L13 16.14
L12 15.03

L6 17.73
L11 13.79
L10 10.66

L5 14.29
L9 9.95
L8 9.51

L4 12.19
L7 8.92
L6 8.55

L3 10.77
L5 8.06
L4 7.36

L2 6.18
L3 5.90
L2 5.52

L1 5.30
L1 5.16
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Table 4.3 Averaged PSNR quality assessment for scalable restoration given the “Tempete”
video sequence for two sizes of scalable dictionaryDsc, K = 64 andK = 128.

OvercompleteDsc dictionary CompleteDsc dictionary
K = 128 Tempete [dB] K = 64 Tempete [dB]

L32 31.22
L16 30.95

L31 30.41
L30 30.00

L15 30.26
L29 29.41
L28 29.23

L14 29.27
L27 28.58
L26 28.24

L13 28.31
L25 27.84
L24 27.62

L12 27.87
L23 27.16
L22 26.44

L11 26.59
L21 26.15
L20 25.97

L10 25.94
L19 25.67
L18 25.26

L9 25.34
L17 24.89
L16 24.55

L8 24.66
L15 23.08
L14 22.16

L7 20.68
L13 21.20
L12 13.90

L6 18.44
L11 13.28
L10 13.15

L5 17.11
L9 12.89
L8 12.45

L4 15.81
L7 11.91
L6 11.69

L3 14.77
L5 11.03
L4 10.48

L2 10.75
L3 9.98
L2 9.51

L1 9.79
L1 9.09
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Table 4.4 Averaged PSNR quality assessment for scalable restoration given the “Boat” im-
age for two sizes of scalable dictionaryDsc, K = 64 andK = 128.

OvercompleteDsc dictionary CompleteDsc dictionary
K = 128 Boat [dB] K = 64 Boat [dB]

L32 34.01
L16 33.08

L31 33.20
L30 32.81

L15 31.81
L29 32.79
L28 32.25

L14 30.79
L27 32.19
L26 31.14

L13 31.21
L25 30.33
L24 30.27

L12 30.28
L23 28.64
L22 27.98

L11 28.36
L21 27.83
L20 27.10

L10 27.79
L19 25.74
L18 25.33

L9 27.36
L17 25.16
L16 24.72

L8 25.22
L15 22.82
L14 17.90

L7 22.02
L13 17.43
L12 16.73

L6 9.83
L11 13.24
L10 11.87

L5 9.39
L9 11.27
L8 10.61

L4 8.08
L7 10.27
L6 9.53

L3 6.83
L5 8.92
L4 7.57

L2 6.50
L3 7.23
L2 6.29

L1 5.80
L1 5.84
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Table 4.5 Averaged PSNR quality assessment for scalable restoration given the “Peppers”
natural image for two sizes of scalable dictionaryDsc, K = 64 andK = 128.

OvercompleteDsc dictionary CompleteDsc dictionary
K = 128 Peppers [dB] K = 64 Peppers [dB]

L32 35.78
L16 35.38

L31 34.59
L30 34.45

L15 32.82
L29 33.52
L28 31.57

L14 32.60
L27 30.62
L26 30.46

L13 32.00
L25 30.10
L24 30.06

L12 31.58
L23 29.96
L22 29.66

L11 30.86
L21 29.24
L20 29.01

L10 29.88
L19 28.70
L18 28.51

L9 29.52
L17 28.41
L16 28.25

L8 24.30
L15 24.20
L14 22.11

L7 15.61
L13 18.69
L12 16.08

L6 15.07
L11 15.06
L10 14.07

L5 12.37
L9 11.33
L8 10.99

L4 8.17
L7 9.99
L6 9.25

L3 7.08
L5 8.97
L4 7.97

L2 6.80
L3 7.68
L2 7.40

L1 6.35
L1 6.12
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(c) “Boat” image
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(d) “Peppers” image

Fig. 4.6 Average PSNR of the scalable reconstructed video test sequences and two natural
images given for each layerLa of the scalable reconstruction using the scalable and non-
scalable K-SVD algorithm.

scalable method. Thereby, we prove superiority of the proposedscalabletraining scheme over the

non-scalable [19] in terms ofscalableframe or image recovery. Overall, only in the case when all

the information on the sparse coefficients is available (X16 ∈ R(64)×N), the regular K-SVD algorithm

has a slight advantage over the proposed scheme both for shown video sequences and natural images

(Fig. 4.6).

In addition, based on the SSIM index properties briefly discussed in the previous section, SSIM

index values shown in Fig. 4.7 quantify the degree of structural informationdegradation in a frame or

an image at eachscalablereconstruction levelLa. Once again, these estimates are averaged over all

frames for both testing video sequences and over 10 iterations given each natural image. Likewise in

the case of PSNR evaluation, in Fig. 4.7a , for the “Stephan” sequence, we can see that the proposed

scalablemethod surpasses in general the non-scalable for 0.37 (first frame group) and 0.28 (second

frame group). Similarly, we can see in Fig. 4.7b, the SSIM difference of 0.27 for the “Tempete”
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(c) “Boat” image
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(d) “Peppers” image

Fig. 4.7 Average SSIM index of the scalable reconstructed video test sequences and two
natural images given for each layerLa of the scalable reconstruction using the scalable and
non-scalable K-SVD algorithm.

sequence over all recovery levelsLa between two dictionary learning algorithms. Lastly, for natural

images SSIM values forscalablereconstruction show advantage of 0.34 for “Boat” (Fig. 4.7c) and

0.4 for “Peppers” (Fig. 4.7d). Interestingly, in case of “Stephan” videosequence SSIM evaluation

we have a different trend than the one shown for PSNR where, once weswitch to the second frame

group i.e.,[271,300] the PSNR quality assessment shows a high drop especially for the restoration

levelsL14,L15,L16 (Fig. 4.6a). In contrast, Fig. 4.7a denotes a high similarity in the SSIM values

for L14,L15,L16 at around 0.94 given both frame groups, meaning that the structural information of

the image is preserved once thescalablerestoration is done despite the fact that we have new visual

object in the scene.

Visualisation of the results is provided in:

• Fig. 4.8 and Fig. 4.9 for “Stephan” video sequence;

• Fig. 4.10 and Fig. 4.11 for “Tempete” video sequence;
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• Fig. 4.12 for the image “Boat”;

• Fig. 4.13 for the image “Peppers”;

in order to present the subjective perceptual quality of thescalablerecovery for frames and natural

images. Once again, note that allscalablerestorations for video sequences are performed over the sin-

gle trainedscalabledictionaryDsc given the firsttraining frame. In particular, Fig. 4.8a (“Stephan”)

and Fig. 4.10a (“Tempete”) illustrate thescalablereconstruction outcomes at every recovery levelLa

for the so-calledtraining frame. The restoration of last frames for both video sequences are shown

in Fig. 4.9a (“Stephan”) and Fig. 4.11a (“Tempete”), respectively. By comparing the restoration

of training frame against the last one in both sequences we can observe the visual variations in the

restoration quality when the new object containing the high-frequency content structure is introduced

(i.e., the tennis net in Fig. 4.9a) or the more spatial low-frequencies are added i.e., the background in

“Tempete” in Fig. 4.11a.

Furthermore, from these figures one can notice that the proposedscalablescheme is able to

recover the video sequence frame at a recovery levelL4 (D4
sc∈ R(64)×16 andX4 ∈ R(16)×N) whereas

non-scalable K-SVD [19] fails to show anyscalablecharacteristics overall up toL15 (D15
sc ∈ R(64)×60

andX15∈ R(60)×N) for “Stephan” andL8 (D8
sc∈ R(64)×32 andX8 ∈ R(32)×N) for “Tempete”. It should

be said that the “NSC K-SVD” does show slight visual scalability with the ”Tempete” sequence.

However, this is still far from the performance of the proposed method thatkeeps its reconstruction

efficiency consistent for quite different video sequences, hence showing its processing stability and

robustness. Similarly, for natural images, the introducedscalablemethod recovers full image scene

in Fig. 4.12a at levelL7 for “Boat” (D7
sc ∈ R(64)×28 andX7 ∈ R(28)×N) or in Fig. 4.13a at levelL8

for “Peppers”. Non-scalable K-SVD [19] is able to restore full image only once it collects all sparse

information at the levelL16 for any of shown images in Fig. 4.12b and Fig. 4.13b.

4.5 Summary

We have presented a full overview and experimental results of simulation setup which evaluates the

performance of the proposedscalabletraining method forscalableimage restoration. At first, we ex-

plain main elements of the training setup followed with the comprehensive list of employed training

parameters. In addition, we illustrate thescalablerestoration scheme starting with the firstscalable

layerL1 of the processed image. Progressive recovery continues by addingm= 4 additional entries

per each sparse coefficient and atoms of dictionaryDsc until the lastscalablelevel L16 is reached.

Sec. 4.3 explains the selection process of training regularisation parameters pair[v0,v1], is, that isPi .

The tested video sequences and natural images results suggest that the most effective version ofscal-

able dictionaryDsc i.e., the most effectivescalablerecovery is achieved withP7 = [v0,v1] = [1,0]

for both complete and overcompleteDsc. Finally, the proposedscalabletechnique is tested over

two different video test sequences, “Stephan” and “Tempete” aiming to demonstrate its practical
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(a) Scalable training frame, “Stephan” test sequence (“SC K-SVD”)
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(b) Non-scalable training frame, “Stephan” test sequence (“NSC K-SVD”)

Fig. 4.8 Visual assessment of the scalable reconstruction using the scalable and non-scalable
K-SVD at every recovery levelLa.
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(a) Scalable last frame i.e., 300th, “Stephan” test sequence (“SC K-SVD”)
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L16 L15 L14 L13 L12 L11 L10 L9

(b) Non-scalable last frame i.e., 300th, “Stephan” test sequence (“NSCK-SVD”)

Fig. 4.9 Visual assessment of the scalable reconstruction using the scalable and non-scalable
K-SVD at every recovery levelLa.

utilisation for dynamic data changing over time given single trained complete dictionary Dsc. More-

over, we addscalableestimates for two conventional images, “Boat” and “Peppers”. Experimental

resalts show that the proposedscalableapproach for learningDsc dictionary forscalableimage re-

covery, significantly outperforms or it is highly comparable with the classicalK-SVD setting for
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(a) Scalable training frame, “Tempete” test sequence(“SC K-SVD”)
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(b) Non-scalable training frame, “Tempete” test sequence (“NSC K-SVD”)

Fig. 4.10 Visual assessment of the scalable reconstructionusing the scalable and non-
scalable K-SVD at every recovery levelLa.
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(a) Scalable last frame i.e., 260th, “Tempete” test sequence(“SC K-SVD”)
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(b) Non-scalable last frame i.e., 260th, “Tempete” test sequence (“NSC K-SVD”)

Fig. 4.11 Visual assessment of the scalable reconstructionusing the scalable and non-
scalable K-SVD at every recovery levelLa.

the all aforementioned experimental data achieving best gain of 11.32 [dB] (0.37 SSIM) for tested

video sequences and 13.45 [dB] (0.4 SSIM) for tested natural images. Thereby, we show that the

proposedscalabletraining scheme achieves better performance than the non-scalable counterpart.

Visual subject quality assessment leads to the same conclusion.
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(a) Scalable restoraiton “Boat” image (“SC K-SVD”)

L8 L7 L6 L5 L4 L3 L2 L1

L16 L15 L14 L13 L12 L11 L10 L9

(b) Non-scalable restoraiton “Boat” image (“NSC K-SVD”)

Fig. 4.12 Visual assessment of the scalable reconstructionusing the scalable and non-
scalable K-SVD at every recovery levelLa.
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(a) Scalable restoraiton “Pepperes” image (“SC K-SVD”)
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(b) Non-scalable restoraiton “Pepperes” image (“NSC K-SVD”)

Fig. 4.13 Visual assessment of the scalable reconstructionusing the scalable and non-
scalable K-SVD at every recovery levelLa.





Chapter 5

APPLICATION OF SCALABLE

SPARSE REPRESENTATIONS

This chapter focuses on specific applications of the proposedscalabletraining and image reconstruc-

tion design published in [136, 146, 147]. We consider two applications: denoising in Sec. 5.3.2 and

compressive sensing in Sec. 5.3.3 usingscalabledictionaryDsc instead of the regular non-scalable

D representational basis. In addition, Sec. 5.3.3 discuses and analyse thestructure of the proposed

design.

5.1 Application to image processing 1: denoising

This section demonstrates advantages of the proposed scheme based onscalabledictionary learning

for image denoising application previously introduced in Sec. 3.4.6. We assess the denoising perfor-

mance of the proposed scheme (denoted as “SC”) against non-scalablecomplete dictionary based

denoising (denoted as “NSC”) and non-scalable overcomplete dictionary(K = 256 andr = K/n= 4)

based denoising, which is the original algorithm proposed in [25] (denoted in the following as “Org”).

For the aforementioned algorithm setups, we discuss objective quality assessment and time process-

ing complexity.

Unlike Sec. 3 where dictionary training is done only once over the first noise free frame in the

video sequence, for the denoising the dictionary is trained for each incoming noisy frame. This is

necessary given the random nature of the introduced noise (likewise in [25]) and plausible due to a

fact that denoising is rarely done online. So, keeping the complexity very low is not as essential as in

compressive sampling and communications applications. The performance ofthe proposedscalable

K-SVD denoising scheme in Sec. 3.4.6 is evaluated in the set of experiments where we introduce five

different standard deviations of white Gaussian additive noiseσ = [20,40,60,80,100] within every

frame and image. The results are presented for two video sequences i.e., “Stephan” and “Tempete”

and averaged over all frames. Denoising estimates for two natural images i.e., “Boat” and “Peppers”
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are averaged over 10 iterations. The restoration of everyscalablelevel La is carried out in the same

way as in Sec. 3.4.6 except for the setup denoted as “Org” where we justobserve final level of image

recovery. That is, the one with all (in this case)K = 256 dictionary elements i.e., atoms and full

sparse representation matrixX. These results represent the upper bound for the rest of the shown

results given that denoising is the most effective with the “Org” overcomplete dictionary with the

redundancy factorr = K/n= 4.

Starting from Tab. 5.1 to Tab. 5.4 we can see tabular comparison for denoising outcomes at

everyscalablerecovery layerLa for all mentioned image/video examples. Additionally, each level

La is compared against the denoising estimates of the overcomplete K-SVD schemei.e., “Org” (red

tabular bold values) in order to emphasise the effectiveness of the proposedscalablescheme at every

scalablerecovery layer. From the provided results conclusion follows that PSNRvalues of the “SC”

at the final restoration levelL16 (Tab. 5.1 to Tab. 5.4) are, at most cases, comparable or surpass

(black bold values) denoising performance of the classical K-SVD setuponce the noise reaches

value ofσ = 60. This better performance indicates that the higher frequencies are less influenced

by the noise since they are enforced as the most important training informationfor the dictionary

Dsc. Thus, contributing most to the restored frame or image unlike in the conventional K-SVD. This

directly implies that sparse approximation obtained via the proposedscalabledictionary incorporated

within the denoising procedure is more efficient in noise reduction than the one generated via more

complex conventional K-SVD. Overall, the proposed method achieves better denoising performance

with lowest and highest gain of 0.1 [dB] and 5.7 [dB], respectively.

In order to further validate the practicality of the proposedscalabledenoising design we perform

an additional testing where the sparse coding stage is also discarded fromthe classical non-scalable

K-SVD scheme. After simulations final estimates show that restoration “NSC” quality, previously

presented in Tab. 5.1 to Tab. 5.4, drops for 2[dB] Hence, the newly introduced regularisation scheme

is more effective when it comes down to noise removal given that out of twoiterative stages for dictio-

nary learning over the corrupted image we only keep atom’s regularised update. The greatest benefit

of thescalabledenoising is direct reduction of both, computational complexity and processing time

where Tab. 5.5 shows the total denoising run times in seconds for two image sizes:

1. 352x288 - size of the video sequences frames;

2. 512x512 - size of the conventional images.

Illustrated times are outcomes of processing on the MS Windows operating system installed in DELL

computer with 64 bit Intel core, 8GB RAM memory and 2.40GHz processor. The number of itera-

tions for the provided results is fixed and set to sixteen. Based on the averaged run times shown in

Tab. 5.5 we can see reduction in:

1. approximately 6.5 times for data of size 352x288 when comparing “SC” vs “Org”;

2. approximately 7.3 times for data of size 512x512 when comparing “SC” vs “Org”;
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3. approximately 10.8 times for data of size 352x288 when comparing “SC” vs“NSC”;

4. approximately 11 times for data of size 512x512 when comparing “SC” vs “NSC”;

provided that we achieve still highly comparable (lower levels of noise) or better results (higher

levels of noise). The forth column of the Tab. 5.5 illustrates the time for the error matrix formation

per each iteration. These numbers are aiming to show that introduced modification of the atom’s

update in the form of a new error matrix scheme influences processing complexity on a minor scale

by being increased on average for two seconds.

Finally, Fig. 5.1, Fig. 5.2, Fig. 5.3 and Fig. 5.4 illustrate visual preview for allsimulation data at

the recovery levelL16 after the noiseσ = 40 is removed given thescalable, non-scalable complete or

overcomplete K-SVD scheme. After additional subjective quality assessment we can conclude that

provided results are highly comparable where, as emphasised, proposed method “SC” puts consider-

ably less computational demands than both classical K-SVD setups.

Table 5.1 Averaged PSNR quality assessment forscalabledenoising via thescalableand
non-scalable K-SVD dictionary, “Stephan” sequence.

σ PSNRi [dB] Alg.
Scalable recovery levelsLi

L16 L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1

20 22.14

SC 28.71 28.73 28.74 28.75 28.71 28.71 28.50 28.47 27.79 27.67 26.37 26.18 24.34 24.13 21.57 21.07
NSC 28.88 28.58 28.22 27.66 26.93 26.57 26.17 25.90 25.39 25.05 24.37 23.97 23.11 22.75 21.08 20.46
Org 29

40 16.13

SC 24.30 24.32 24.34 24.36 24.36 24.38 24.34 24.35 24.18 24.17 23.76 23.71 22.88 22.79 21.02 20.68
NSC 24.64 24.52 24.35 24.09 23.60 23.14 22.84 22.68 22.45 22.28 21.97 21.66 21.17 20.78 20.07 19.51
Org 24.73

60 12.56

SC 21.93 21.96 21.98 22.00 22.01 22.03 22.03 22.05 22.00 22.01 21.86 21.84 21.48 21.45 20.35 20.13
NSC 22.31 22.28 22.13 22.03 21.90 21.87 21.70 21.56 21.38 21.18 21.02 20.86 20.52 20.28 19.70 19.29
Org 22.32

80 10.05

SC 20.49 20.51 20.54 20.56 20.58 20.60 20.61 20.63 20.61 20.63 20.57 20.58 20.41 20.40 19.72 19.58
NSC 20.78 20.79 20.72 20.69 20.66 20.66 20.64 20.61 20.45 20.41 20.30 20.21 19.96 19.79 19.39 19.07
Org 20.75

100 8.13

SC 19.45 19.48 19.52 19.55 19.57 19.60 19.62 19.65 19.66 19.68 19.67 19.68 19.60 19.61 19.17 19.10
NSC 19.63 19.64 19.63 19.64 19.64 19.64 19.60 19.60 19.57 19.55 19.50 19.48 19.35 19.31 18.99 18.77
Org 19.59

Table 5.2 Averaged PSNR quality assessment for scalable denoising via the scalable and
non-scalable K-SVD dictionary, “Tempete” sequence.

σ PSNRi [dB] Alg.
Scalable recovery levelsLi

L16 L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1

20 22.12

SC 28.29 28.3 28.21 28.21 28.03 28.02 27.73 27.7 27.27 27.22 26.63 26.55 25.62 25.49 23.86 23.56
NSC 28.27 28.11 27.97 27.81 27.59 27.41 26.99 26.75 26.25 25.97 25.42 25.15 24.52 24.08 23.06 22.56
Org 28.40

40 16.07

SC 24.61 24.63 24.62 24.64 24.61 24.62 24.56 24.56 24.45 24.46 24.28 24.27 23.92 23.88 23.01 22.87
NSC 24.71 24.70 24.64 24.64 24.58 24.49 24.29 24.16 24.08 23.88 23.77 23.51 23.38 22.68 22.20 21.72
Org 24.76

60 12.55

SC 22.59 22.61 22.63 22.65 22.65 22.67 22.66 22.67 22.64 22.66 22.6 22.61 22.48 22.47 22.07 22
NSC 22.59 22.60 22.60 22.60 22.58 22.58 22.53 22.51 22.44 22.41 22.29 22.23 21.96 21.85 21.51 21.23
Org 22.52

80 10.07

SC 21.18 21.2 21.23 21.25 21.27 21.29 21.3 21.32 21.32 21.34 21.33 21.34 21.3 21.3 21.13 21.11
NSC 21.12 20.32 20.19 19.35 17.94 15.79 15.32 15.29 15.06 14.10 14.00 13.75 13.72 12.22 12.18 11.62
Org 21.01

100 8.14

SC 20.04 20.07 20.09 20.12 20.14 20.17 20.18 20.21 20.22 20.25 20.26 20.28 20.27 20.28 20.22 20.22
NSC 19.92 19.65 18.72 17.86 16.61 16.01 15.35 14.23 13.65 13.63 13.36 12.68 11.92 11.38 11.12 10.92
Org 19.69
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Table 5.3 Averaged PSNR quality assessment for scalable denoising via the scalable and
non-scalable K-SVD dictionary, “Boat” image.

σ PSNRi [dB] Alg.
Scalable recovery levelsLi

L16 L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1

20 22.11

SC 30.13 30.14 30.01 30.02 29.82 29.82 29.49 29.49 28.94 28.94 28.06 28.06 26.60 26.59 24.57 24.55
NSC 30.31 30.26 30.14 30.02 29.79 29.59 29.31 29.04 28.67 28.40 27.75 27.29 26.39 26.01 24.50 24.15
Org 30.52

40 16.09

SC 26.80 26.83 26.81 26.84 26.80 26.82 26.74 26.76 26.60 26.62 26.25 26.26 25.47 25.48 24.05 24.06
NSC 27.11 27.13 27.09 27.09 26.91 26.87 26.72 26.56 26.32 26.23 25.88 25.84 25.24 24.83 24.04 23.71
Org 27.11

60 12.55

SC 24.86 24.89 24.90 24.93 24.94 24.97 24.95 24.98 24.93 24.96 24.80 24.82 24.39 24.41 23.49 23.51
NSC 25.11 25.15 25.13 25.16 25.10 25.12 25.04 25.05 24.87 24.88 24.70 24.68 24.23 24.12 23.54 23.34
Org 25.02

80 10.05

SC 23.46 23.50 23.53 23.56 23.58 23.62 23.63 23.67 23.66 23.69 23.62 23.65 23.42 23.45 22.89 22.92
NSC 23.59 23.63 23.65 23.68 23.69 23.73 23.70 23.73 23.65 23.68 23.57 23.59 23.31 23.32 22.94 22.88
Org 22.83

100 8.15

SC 22.37 22.41 22.44 22.48 22.51 22.55 22.57 22.61 22.62 22.66 22.63 22.67 22.53 22.56 22.22 22.26
NSC 22.43 22.48 22.52 22.57 22.59 22.63 22.61 22.63 22.62 22.65 22.58 22.60 22.46 22.46 22.22 22.21
Org 21.46

Table 5.4 Averaged PSNR quality assessment for scalable denoising via the scalable and
non-scalable K-SVD dictionary, “Peppers” image.

σ PSNRi [dB] Alg.
Scalable recovery levelsLi

L16 L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1

20 22.12

SC 31.94 31.95 31.97 31.98 31.96 31.97 31.90 31.91 31.29 31.29 30.81 30.79 29.52 29.49 26.88 26.66
NSC 31.99 32.00 31.98 31.85 31.56 30.61 29.70 29.25 29.08 28.98 28.74 28.43 27.89 27.52 26.32 25.82
Org 32.24

40 16.08

SC 28.83 28.86 28.88 28.91 28.91 28.94 28.94 28.96 28.71 28.74 28.59 28.61 28.00 28.00 26.23 26.07
NSC 29.04 29.09 29.04 29.08 28.69 28.71 28.67 28.69 27.88 27.89 27.82 27.65 27.05 26.99 26.07 25.49
Org 29.07

60 12.58

SC 26.54 26.59 26.62 26.67 26.66 26.71 26.72 26.76 26.70 26.74 26.72 26.75 26.52 26.54 25.41 25.33
NSC 26.68 26.73 25.89 25.93 25.93 25.97 25.91 25.94 25.85 25.86 25.14 25.14 24.85 24.83 24.65 24.21
Org 26.05

80 10.05

SC 24.85 24.89 24.93 24.97 24.99 25.03 25.06 25.11 25.13 25.17 25.17 25.21 25.08 25.12 24.50 24.46
NSC 24.70 24.74 19.06 19.07 18.98 18.99 18.99 19.00 18.99 19.00 18.99 18.99 17.31 17.31 17.27 17.16
Org 23.91

100 8.12

SC 23.41 23.46 23.49 23.53 23.56 23.60 23.63 23.67 23.70 23.74 23.77 23.81 23.80 23.83 23.55 23.54
NSC 22.61 22.66 22.14 22.17 22.19 22.22 17.23 17.24 17.24 17.25 17.23 17.23 13.54 13.53 13.27 11.75
Org 22.13

Table 5.5 Comparison of the processing time given three denoising schemes

Image size Alg. Total denoising run time [s] Error formation time [s]

352x288
Org 2897.6 1.26
NSC 3515.7 2.61
SC 325.1 4.42

512x512
Org 7565.5 1.59
NSC 7337.3 1.58
SC 665.5 3.29

5.2 Application to image processing 2: compressive sens-

ing

Following closely the experimental layout suggested in [44], we investigate the effectiveness and the

performance of thescalableCS video acquisition scheme. However, unlike [44] we introduce the

proposedscalablelearned representational basis rather than a predefined one i.e., DCT. In particular,

the proposed framework aims for the frame-by-frame progressive CS recovery while analysing the

implications of the sub-Nyquist CS paradigm in both thescalableand adaptiverepresentational

domain. Likewise in previous experimental sections and as in [44], the image isprocessed block by

block. Mainly, we take into consideration two cases of the CSscalablerecovery:
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(a) “SC K-SVD” (b) “NSC K-SVD”

(c) “Org”

Fig. 5.1 Visual assessment for denoising via the scalable, non-scalable complete and over
complete K-SVD for theL16 recovery level given the firsttraining frame of the “Stephan”
video sequence forσ = 40.

1. With the proposedscalableK-SVD dictionary tailored to this task;

2. With the conventional non-scalable K-SVD dictionary.

Simulation of the CSscalablesensing is performed sequentially in the sparse representation domain

X = [x1, . . . ,xN] ∈ RK×N for each frame from either of two video sequences and for each givennat-

ural image denoted asY. Rather than taking the full number of measurements [15, 147] over every

incoming frame, CSscalablesampling is carried out in incremental steps. Note that this is applicable

only for the CSscalablesensing scenario. Given the sufficient number of progressive measurements

per patch marked ass1,s2, . . . ,sL (si < K) we are able to recover the frame or image gradually after

incrementally retrieving entries of sparse vector coefficients inX i via OMP. Furthermore, each incre-

mental number of samplessi satisfies the fundamental result of the CS theory [2] that imposes the

limit on the minimal and necessary number of measurements for satisfactory signal reconstruction.

Unlike the conventional CS for our testing we apply specially structured sampling matrixΦ. This

aims to achieve efficientscalableacquisition of samples over each image layer commonly denoted

asyCS= Φy = ΦDscx. Implementation is carried out via the systematic non-adaptive approach as in

[124] that generates the structural sampling matrixΦ optimally suited for thescalabletask in hand.

For each recovery step (as in [44]) we scale sampling matrix size-wise into itstruncated versions as
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(a) “SC K-SVD” (b) “NSC K-SVD”

(c) “Org”

Fig. 5.2 Visual assessment for denoising via the scalable, non-scalable complete and over
complete K-SVD for theL16 recovery level given the firsttraining frame of the “Stephan”
video sequence forσ = 40.

Φi ∈ Rsi×K (1≤ i ≤ L). Once the sampling is done we attain a group of samples each denoted asyi
CS.

The sampling is structured in a way that the basic level is collected viaΦ1 that contains binary entries

generated from the Gaussian distribution. Remaining measurements are sampled via Bernoulli binary

distributed entries ofΦi consecutively added up to the basic layer for thescalablerestoration. Again,

starting from a base leveli = 1 and withy1
CS= Φ1y = Φ1Dscx (approximately sampling 15% of each

sparse coefficient denoted asxi and of original patch image sizeyi) we advance through enhancement

layers by uniformly collecting additional number of samples (e.g.,s2, s3, ...,sL = S) in each step until

the total number ofS< n samples is reached. Hence, given the single trained dictionaryDsc (as in

Sec. 4.4) learned overtraining frame for either of video test sequences, one can define an arbitrary

number of sampled layers over extracted image patches.

Fig. 5.5 shows reconstruction results obtained via the proposedadaptive scalableCS approach

averaged over the frames and several iterations over the natural imagesstarting with base level sam-

pling s1 = 10 measurements and adding five more samples per each patch as frame recovery pro-

gresses (e.g.,s2 = 15,s3 = 20, etc.). We define in total nine sampling levels resulting in nine patches,

that is, frame or image reconstruction layers. Thus, the full number of measurements isS= 50

(K > 50) which accounts for roughly 80% of the information of the sampled signalyi . The gap be-

tween the performance of the two methods is evident in Fig. 5.5 for the layers sampled both at low
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(a) “SC K-SVD” (b) “NSC K-SVD”

(c) “Org”

Fig. 5.3 Visual assessment for denoising via the scalable, non-scalable complete and over
complete K-SVD for theL16 recovery level given the image “Boat” forσ = 40.

(e.g., 15%, 23% , 31% and 39%) and high subrates (47%, 55%, 62%, 70%and 80%) of sampling

information. Specifically, thescalableCS restoration with the proposedscalabletraining scheme

achieves gain of:

• 3.03 [dB] in the case of “Stephan” sequence frames;

• 2.96 [dB] in the case of “Tempete” sequence frames;

• 3.32 [dB] in the case of “Boat” natural image;

• 2.57 [dB] in the case of “Peppers” natural image.

We can see that the proposed design is successful for the subsampling factors at different rates

whereas the conventional non-scalable K-SVD has a comparable but not better performance as more

measurements are added.
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(a) “SC K-SVD” (b) “NSC K-SVD”

(c) “Org”

Fig. 5.4 Visual assessment for denoising via the scalable, non-scalable complete and over
complete K-SVD for theL16 recovery level given the image “Peppers” forσ = 40.

5.3 Discussion on the proposed design

Training the dictionary for thescalablesparse data representation and applying it to the denoising

and compressive sensing adopts a different approach than the one originally introduced by K-SVD

[13, 19, 25]. Mainly, the atom update illustrated in Sec. 3.4.5 and denoising proposed in Sec. 3.4.6

together with the compressive sensing are grounded in the following assumptions:

• The progressive and quality wise scaled recovery of the image/frame can be attained via

learned dictionary by modelling the main HVS perception mechanism properties and inte-

grating them during dictionary’s training;

• This implementation should be taken forward by MCA based semi-random initialisation, allo-

cation, separation and regularisation of low and high spatial frequenciesinformation captured

by the atoms during the dictionary training procedure;

• Texture image components are less distorted by noise than the smooth ones thus the newly

introduced design SVD of proposed regularised error matrixER
j is sufficient for noise removal.
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(a) “Stephan” video sequence
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(b) “Tempete” video sequence
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(c) “Boat” natural image
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(d) “Peppers” natural image

Fig. 5.5 Averages PSNR of the scalable CS reconstruction for two test video sequences and
natural images as a function of the number of acquired measurements expressed as % of the
total number of pixels in the image patch using the scalable (“SC K-SVD”) and non-scalable
(“NSC K-SVD”) algorithm.

These hypotheses give rise to a series of questions:

1. How are spatial frequencies distributed overscalableand non-scalable dictionary’s atoms?;

2. Could this distribution be denoted as a built-in property of the trained dictionaries?

3. Does the proposed design properly adopts the HVS perception mechanism properties?

4. To what degree noise effects smooth and texture image properties?

The following sections aim to look into some answers to these questions by analysing trained dictio-

naries which are depicted in Fig. 5.6 and Fig. 5.7 for each of test video sequence and natural image.

There are fourscalablei.e., “SC K-SVD” (Fig. 5.6a, Fig. 5.6c, Fig. 5.7a and Fig. 5.7c) and accord-

ingly associated their non-scalable i.e., “NSC K-SVD” (Fig. 5.6b, Fig. 5.6d,Fig. 5.7b and Fig. 5.7d)
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(a) “SC K-SVD”, “Stephan” (b) “NSC K-SVD”, “Stephan”

(c) “SC K-SVD”, “Tempete” (d) “NSC K-SVD”, “Tempete”

Fig. 5.6 Scalable and non-scalable trained dictionaries for the first frame in each of two
video sequences.

counterparts. Visual differences between each “SC K-SVD” and “NSC K-SVD” pair might not be

so obvious and direct. However, in detailed discussion which follows we show an effective distinc-

tiveness between both kinds of dictionaries additional emphasising howDsc is better tailored to the

HVS perception system than the non-scalable, conventional dictionaryD.

5.3.1 Distribution of the spatial frequencies

In Sec. 3.4.3 we gave a detailed explanation on semi-random dictionary initialisation where we en-

force allocation and separation of the dictionaries atoms into smooth and textureones. As explained,

the classification criteria we use is formulated viaActivity norm in [13]. Thus, we further assess

the spatial frequencies distributions for both dictionary types i.e.,scalableDsc and non-scalableD



5.3 Discussion on the proposed design 79

(a) “SC K-SVD”, “Boat” (b) “NSC K-SVD”, “Boat”

(c) “SC K-SVD”, “Peppers” (d) “NSC K-SVD”, “Peppers”

Fig. 5.7 Scalable and non-scalable trained dictionaries for the each of two natural images.

by looking at and analysingActivity trend of atoms once the training is done (Fig. 5.6 and Fig. 5.7).

Fig. 5.8 illustrates this trend for used experimental data. Whether we consider frames of the video

sequence (Fig. 5.8a and Fig. 5.8b) or some conventional images (Fig. 5.8cand Fig. 5.8d) we can con-

clude that classical K-SVD scheme results in dictionaries which do not showany specific structural

features in terms of how smooth and texture information are learned, allocatedand distributed. In

contrast, the proposed design shows clear distinction between atoms that carry:

• Low spatial frequency:Activity(d j)
j=K/2
j=1 < A= 0.27;

• High spatial frequency:Activity(d j)
j=K
j=K/2 > A= 0.27;

where, to reiterate firstK/2 Dsc atoms contains smooth information while the rest are texture like.

Overall, proposed method successfully implements specific spatial distributionas a built-in property

of thescalabledictionaryDsc unlike the classical K-SVD scheme.



80 APPLICATION OF SCALABLE SPARSE REPRESENTATIONS

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dictionary atoms

A
ct

iv
ity

 v
al

ue
s

 

 
SC K−SVD
NSC K−SVD

(a) “Stephan”
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(b) “Tempete”
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Fig. 5.8 Activity atom’s pattern for the dictionaries of the two video sequences and two
natural images.

5.3.2 Contrast variation

Proper integration of the HVS sensitivity properties is done adequately if theproposedscalable

design reinforces learning of the spatial high-frequency components (see Sec. 3.4.5) which represent

regions of a high contrast variation [141, 142]. The way in which we verify this is by showing the

composition structure difference of atoms both forD andDsc. By examining in what ways atoms ofD

andDsc differ in terms of their composition structure (i.e., contrast variation) we verify the credibility

of HVS properties modeling. This is taken forward by estimating contrast levels captured within the

K = 64 atoms during dictionary learning procedure, that is, the atoms of dictionaries such are shown

in Fig. 5.6 and Fig. 5.7. Assessment of the contrast levels is done by findingthe standard deviation

(std) over the atom’s pixel intensity. Estimates are averaged over several dictionaries trained over the

frames of the same video sequence or several times over the same image. Theproposed computation

is adopted from [133] where authors usestd as a measure to estimate contrast levels if an image.

Likewise, in Fig. 5.9 we depict standard deviation values for contrast levels of atoms both forD and



5.3 Discussion on the proposed design 81

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Dictionary atoms

C
on

tr
as

t v
al

ue
s

 

 
SC K−SVD
NSC K−SVD

(a) “Stephan”

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Dictionary atoms

C
on

tr
as

t v
al

ue
s

 

 
SC K−SVD
NSC K−SVD

(b) “Tempete”

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Dictionary atoms

C
on

tr
as

t v
al

ue
s

 

 
SC K−SVD
NSC K−SVD

(c) “Boat”

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Dictionary atoms

C
on

tr
as

t v
al

ue
s

 

 
SC K−SVD
NSC K−SVD

(d) “Peppers”

Fig. 5.9 Activity atom’s pattern for the dictionaries of the two video sequences and two
natural images.

Dsc given the same set of data as in previous section. We can notice distinct pattern for the contrast

levels of thescalable“SC K-SVD” dictionary for all shown results, similarly as in case ofActivity

values shown in Sec. 5.3.1.

Specifically, for the firstK/2 atoms of each of the presentedscalabledictionariesDsc the contrast

is considerably lower with some slight fluctuations given all four examples i.e.,Fig. 5.9a, Fig. 5.9b,

Fig. 5.9c and Fig. 5.9d with highest contrast variation of 0.06. The remaining atoms reach quite

high contrast levels with a steep jump up to around 0.13, creating a distinct threshold in distributed

contrast variation over the all four presentedDsc dictionaries. The clear contrast variation borderline

which clearly splits atoms in two groups, e.g., those with low and those with high contrast variation,

is the final processing effect of the enforced semi-random initialisation and regularisation. In case

of the conventionally K-SVD i.e., “NSC K-SVD” shown trend does not exist.These results are in

the synergy with what was shown in the previous section (Sec. 5.3.1) given that the high spatial

frequencies (lastK/2 atoms) usually denote areas of various textures, edges etc. within the image
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Fig. 5.10 Visual overview of the image patches size 30x30 used forstdnoise impact analysis.
First row represents smooth image content while seconds onedepicts texture.

and commonly these areas are expected to posses higher contrast variations which is implied by

the shown contrast threshold. Thus, this directly proves that proposeddesign complies with the

characteristic of the HVS perception mechanism [3, 143] given that it is more efficient in extracting

contrast information from the training images. In addition, this is significant since a proper visual

understanding of the scene in hand [138, 141, 142] depends on how well contrast variations are

captured with the image representational elements, that is atoms.

5.3.3 Noise distortion of the smooth and texture image patches

We posed assumption in Sec. 3.4.6 that noise affects more smooth than texture image components.

Specifically, oscillatory components of the scene i.e., texture exhibit regularity in terms of the fre-

quency content that repeats to some extent over the image. Thus, noise which represents random

signal (without any consistency in its change) should have a higher impacton image parts which do

not exhibit periodic spatial variations i.e., smooth one. This is shown by estimating changes instd

variation before and after noise is added to specific image blocks of smooth and texture areas. Sev-

eral of these blocks are depicted in Fig. 5.10 where first row represents smooth and second texture

image blocks of size 30×30, respectively.

Table 5.6Stdvariation assessment averaged over group of smooth and texture image blocks
size 30×30.

Smooth
σ = 0 σ = 20 σ = 40 σ = 60 σ = 80 σ = 100
6.67 21.42 35.82 57.59 70.44 80.22

Texture
σ = 0 σ = 20 σ = 40 σ = 60 σ = 80 σ = 100
46.42 50.11 56.85 67.21 76.40 84.47

Given the five noise levels as in Sec. 5.3.2, in Tab. 5.6 we show how averagedstd of the texture

and smooth image patches varies before and after noise is added. Given the smooth group we can

see relative jumps of 14.75, 29.15, 50.92, 63.77, 73.55 for each noise level from the initial noise

free level ofstd 6.67. In contrast, for texture areas this change is not that steep starting from noise

freestd of 46.42 with relative changes of 3.69, 10.43, 20,79, 29.89 and 38.05. Having these results
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we conclude that noise corrupts original smooth image content on a much larger scale than which is

case with the texture areas.

5.4 Summary

We have introduced in this chapter a practical integration of the proposedscalablelearning andscal-

able sparse data representations together with experimental results for two applications: scalable

denoising and adaptivescalableCS. As in the previous chapter, testing is carried out over the two

video sequences “Stephan” and “Tempete” and two natural images “Boat”and “Peppers”. Both of

implementations are realised by employing thescalabledictionary Dsc as a data representational

basis instead of the regular non-scalableD. In this way, the usual CS scheme is changed where

regularisedscalabledictionaryDsc replaces the predened basis. Furthermore, unlike classical de-

noising, itsscalableversion omits the sparse coding stage while noise removal is carried out via

SVD (Sec 3.4.6). Experimental results show that the proposedscalabledenoising achieves compa-

rable PSNR and SSIM results with both the non-scalable complete and overcomplete K-SVD with

best decreased computational demands for 7.3 times. Once the noise reaches standard deviation of

σ = 60, thescalabledenoising surpasses performance of the other two methods with the highestgain

of 5.7 [dB]. Results for adaptivescalableCS image sensing demonstrate that the proposed method

significantly outperforms the classical CS setting with non-scalable K-SVD dictionary. That is, adap-

tive scalableCS outperforms all benchmark methods given all nine sampling levels while achieving

the greatest gain of 3.32 [dB]. In addition, we provide a detailed discussion on structural differences

betweenscalableand non-scalable dictionaries. We show that the proposed design achieves a special

type of spatial frequency distribution over trained atoms. Moreover, we compare contrast variations

among atoms showing thatDsc indeed reinforces learning of the spatial high-frequency components.

Thereby, it is is better tailored to the HVS perception system than the non-scalable dictionaryD.

Finally, we prove that noise affects more smooth than texture image components by comparing their

level of introduced noise distortion which justifies thescalabledenoising noise removal approach.





Chapter 6

SCALABLE DENOISING AND

CONTRAST ENHANCEMENT OF

SOLAR IMAGES WITH POISSON

AND GAUSSIAN MIXTURE NOISE

6.1 Introduction

Observing and studying processes on the surface of the Sun is recognised as a highly important task

primarily due to the potential catastrophic influences these processes can have upon life on the Earth.

For example, induced electric fields and currents that result from solar activities can influence Earth’s

climate [148, 149] and cause permanent damage of power transmission grids, pipelines, telecommu-

nications networks and satellites, metallic oil and gas pipelines [150–152], etc. For instance, in the

19th century the great geomagnetic storm hit the Earth and caused the entire telegraphic system to

stop working. More recently, on March 13, 1989 a much smaller geomagneticstorm closed down

the entire Hydro Quebec system [150, 151] resulting in a loss of 6 billion dollars to the Canadian

economy.

Up until 1960s the analysis of solar activity was performed manually by trained experts who

would compose appropriate solar features/spectra drawings based on their ground-based telescope

observations [153]. Nowadays, numerous space-research missionsare coping with the challenge

of processing and understanding digital solar data generated from Yohkoh solar observatory satel-

lite, SOHO (The Solar and Heliospheric Observatory spacecraft), TRACE, STEREO (Solar TErres-

trial RElations Observatory, a solar observation mission), Hinode (highly sophisticated observational

satellite equipped with three advanced solar telescope), the SDO (Solar Dynamics Observatory) mis-

sions, ESO (European Southern Observatory) ground-based observatory etc. All space observatories

are specially designed and launched with the purpose of monitoring processes on the surface of the
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Sun. These up-to-date space apparatus are recording vast amounts of solar data in four different

wavelengths i.e., visible, ultraviolet, infrared and X-ray [154] aiming to capture various solar fea-

tures such as prominence (arc of magnetism), filaments (prominence as seenon Sun’s plane), flares

(strong emission of radiation), coronal massive ejection (colossal explosion of solar plasma into

space) [153–156].

Due to the conditions of observations (space atmosphere influences, such as cosmic rays) and

instrumental errors (technical constrains of image acquisition process),acquired solar images often

contain high level of measurement noise [153]. In particular, on board image acquisition devices

such as space-borne telescopes, due to technical constraints of charged-coupled devices (CCD), often

introduce significant level of noise and recorded images will contain around 0.1% of bad pixels [155].

Measurement noise is usually modeled as Gaussian noise or as a mixture of Poisson and Gaussian

distribution (the former models arrivals of photons on the CCD detector, whilethe latter models

readout noise most likely caused by electrons not being properly flushed after CCD readout) [153,

156]. The efficiency of removing this noise largely influences the post-denoising image processing

steps, e.g., contrast enhancement, which is used to extract hardly visible features of interest from

images distinguishing them from all feature-unrelated structures which should be ideally suppressed.

Very efficient denoising methods for natural images are based on the sparse coding paradigm al-

ready introduced in Chapter 2. This, so-called, sparseland model has led to numerous state-of-the-art

algorithms for additive white Gaussian noise removal such using the K-SVD learning method and

sparse and redundant representation, with dictionaries trained over thecorrupted image (Sec. 2.4).

Similarly, another denoising solution is provided for astronomical images through thresholding of

multi-scales coefficients obtained with curvelet transform (Sec. 2.3) whichis performed within the

optimal range of curvelet coefficients values, hence preventing any noise amplification. Collabo-

rative filtering via the BM3D algorithm (Sec. 2.3) is another highly effective, denoising method for

natural images that builds 3D “groups" of similar nonlocal 2D image patches transformed together se-

quentially with the 2D and 1D transforms, whose coefficients are shrunk and returned to the original

representative domain; finally, aggregation over local estimates yields the resulting image estimate.

Unlike Gaussian noise, Poisson noise, being signal dependent, is treatedusually with variance

stabilisation methods such as the Anscombe transform [45, 157, 158] or statistical Multi-scale Vari-

ance Stabilising Transform (MS-VST) [159] resulting in a transformed imagewith uniform distri-

bution of unitary Gaussian variance. After the Gaussian noise is removed with one of the typical

Gaussian denoising algorithms [49, 160], the inverse Anscombe transform is performed with the

state-of-the-art exact unbiased inverse method [157, 158]. Most ofthe state-of-the-art methods for

astronomic image denoising and contrast enhancement are based on wavelet and curvelet transform

and soft thresholding (see [45] and references therein). In particular, the wavelet transform has been

extensively used on astronomic images given that is well suited to the complex hierarchical struc-

tures. However, wavelets in general perform poorly on anisotropic objects. Multiscale transforms,

such as curvelet and ridgelet, are proposed for anisotropic featuressince they exhibit high directional
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sensitivity and in 2D are localised along curves [45]. However, the digital curvelet transform alone

often fails to capture well key solar characteristics.

Solar image processing is exceptionally challenging given the images inherently rich content and

features of interest, which are subject to a wide range of variation in properties, including variations

in grey scale contrast, pixel intensity, spatial morphology, edge definition and changes resulting

from differing viewpoints over time (observing the same features in 2D or 3D aspect) and particular

composition of the Sun’s atmosphere. Another problem is the vast number ofdifferent imaging

methods used for solar imaging. Thus, a single image processing solution/transform cannot “catch"

all the solar features and lead to a satisfactory reconstruction. For example, the Discrete Wavelet

Transform [161] is good for representing edges and singularities, Discrete Fourier Transform (DFT)

[161] for textures while curvelets are good for ridges and curvilinear features. One way of taking

advantage of different transforms is to iteratively combine them. However,different types of solar

images require different transform combinations to address specific processing tasks, thus motivating

us to take an alternative and more robust approach by adapting signal representation to the solar

image.

The proposed work tackles the problem of extending the natural image sparse representation with

the trained adaptive dictionary specialised forscalablehigh-motion video sequences and natural

images reconstruction i.e., thescalableK-SVD (introduced in Sec. 3) to denoising solar images

corrupted with a mixture of pixel-dependent Poisson noise and white Gaussian noise. Secondly,

we propose CE scheme for solar images by redefining CE originally proposed for curvelets and

astronomic imaging [45], adapting it to spatial sparse based representationand integrating it with

our denoisingscalabletechnique (Sec. 3.4.6). This represents a comprehensive expansion of our

work originally introduced in [162] where we solely employ the conventionaldenoising K-SVD

method. Furthermore, since we aim to downsize the processing complexity of solar denoising and

contrast enhancement, rather than overcomplete we use the complete sparse representation of solar

data as in Sec. 3 , while achieving equal restoration quality.

In summary, the main contributions of the proposed research are following:

1. Extension of the sparse representation with thescalabledictionary learning concept to de-

noising solar images corrupted with a mixture of pixel-dependent Poisson noise and white

Gaussian noise;

2. Extension and adaptation of the integrated contrast enhancement technique originally pro-

posed for curvelets in [45] to thescalabledictionary learning approach;

3. Development of a universal joint contrast enhancement andscalabledenoising algorithm for

solar image data for feature extraction in different solar image types while minimising the

processing complexity by taking advantage of the completescalablesignal representation.

One could argue that HVS based method for solar images denoising could exhibit sub performance

given that solar images are nowadays processed automatically. However, the HVS modelling rep-
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resents a base line for modelling of many image computer based processing applications as it is

pointed out in Sec. 3.2. Furthermore, in Sec. 6.4 we utilise the non-HVS based methods for per-

formance comparison where proposed HVS based method achieves betterperformance that its non

HVS counterparts.

The image data set used in our simulations and importance of solar image enhancement is de-

scribed in Sec. 6.2. Sec. 6.3 introduces the proposed method for solar denoising and the joint

denoising-contrast enhancement for solar images corrupted with a mixtureof Poisson and white

Gaussian noise. Comparison of simulation outcomes of the proposed denoising and CE methods is

given in Sec. 6.4. Finally, we conclude the proposed work in Sec. 6.5.

6.2 Data Description

In this study, we use images captured by the Transition Region and Coronal Explorer (TRACE)

telescope in the 171 Å Extreme Ultraviolet (EUV) spectral line and H-alpha (HA) images in 656.28

nm wavelength taken from the Observatory de Paris with the original FITS numbers:

• tri19990821.1800.0346.fits for EUV;

• mh990821.070200.fits for HA.

TRACE telescope operates in a range of four main spectral lines which reflect different temperatures

(from about one million degrees C to about three million degrees C of solar plasma) and density

structures in the solar atmosphere [163]. EUV images are usually used fortracing coronal holes

[156] (the brighter arch-like features seen as loops, both large and small) and filaments which appear

as large (dark eyebrows) clouds of material, suspended above the solar surface by loops of magnetic

field. Filaments are highly interesting structures with temperatures being equalto one-hundredth of

that of the corona and density several times larger than corresponding local corona values (where

they can be found). Filaments can also be traced in H-alpha images which represent sun light images

from a specific red line in the hydrogen spectrum at 6563 Å [164]. Theyreflect processes in the

chromosphere (1200 and 1800 km above the visible surface) which area consequence of interacting

magnetic fields that produce immense heat. Besides filaments, these images offer insight into other

chromosphere features such as sunspots, flares and exploration of solar active regions [164]. For our

case study, we use EUV images for detecting filaments and H-alpha images fordetecting the solar

disk. The aim of image enhancement in this case is to remove all textual and nonsolar information

[155] that are part of the solar image and to enable a clear distinction between the solar disk surface

and solar image background [164].

Solar images are usually acquired with a high level of noise. This is due to instrumental effects

such as “dark” pixels (fabrication artifacts of CCD devices) or “hot” pixels (high readout noise),

or image compression (causing Poisson noise statistics) [153]. Another challenge for astronomic

image processing is caused by non-solar features which represent aninfluence of cosmic rays or
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Fig. 6.1 Flowchart of the proposed joint image denoising andCE method.

high-energy electron or proton hit. For ground-based observation institutes, today’s state-of-the-art

communication technology (radio and TV metric and microwave wavelength) is one of the main

sources of distortions appearing in reconstructed solar radio images [153].
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6.3 The proposed method

Solar image denoising and enhancement are not trivial tasks due to the diverse nature of solar features

which differ in contrast and sharpens levels. Low contrast will mean thatthe range of dark vs. light

is very small in the solar image where all tones can be very dark or just grey. On the other, hand high

contrast will have a very wide range of dark vs. light intensities. Together with contrast, sharpness

plays an important role since high level of sharpness will appear as distinctive visual solar features

with no blur whereas low sharpness will be shown as blurred and indistinctvisual solar characteristic.

For instance, magnetograms have very high level of contrast and low sharpness, white light faculae

have very low contrast and sharpness, coronal holes have high contrast and low sharpness, while EUV

loops have average contrast and high sharpness, and sunspots arewith high contrast and sharpness.

This calls for a more general, adaptive signal processing method capableof capturing the het-

erogeneity of solar images and adapting to a high range of solar features that hugely differ in the

level of contrast and sharpness.Therefor, firstly we propose a highly-adaptable denoising scheme

for removal of Poisson and Gaussian noise mixture from different typesof solar images. This scheme

utilises Anscombe transform and adaptivescalableK-SVD which is appealing candidate for this task

given that it achieves:

• Lower processing complexity than classical non-scalable K-SVD [136];

• Significant adaptivity and sensitivity to image’s spatial high frequencies which hold important

information about solar features [136].

Following the general outline of the state-of-the-art methods for removal of the Poisson noise, we

embed the following three steps within the proposed denoising method:

1. Nonlinear modified forward Anscombe transform;

2. Denoising of the non unite variance additive Gaussian noise viascalableK-SVD within the

transformed Anscombe domain;

3. Performing the exact unbiased inverse of the Anscombe transform.

These aim to effectively stabilise the Poisson noise variance and to remove the remaining Gaussian

noise from the Anscombe domain by exploiting the image spatial sparsity features. Note that, con-

ventional denoising approaches for removing Poisson noise [157, 158], commonly, within the second

step as a remaining transformed noise assume the unitary Gaussian variance. Usually, this noise is

removed with some conventional non adaptive Gaussian denoising methods.However, when the

mixture noise is introduced the unit Gaussian variance assumption cannot hold since the Ancombe

transform is not designed to stabilise the variance of the noise mixture. Thus, the remaining trans-

formed mixture noise cannot be approximated well with unit Gaussian variance. That is why we
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firstly introduce modified Anscombe transform followed with a simple blind estimationof the re-

maining non-unitary Gaussian noise within the Anscombe domain. The estimated Gaussian noise

variance is used as the input parameter for the adaptivescalableK-SVD denoising scheme.

Secondly, we propose contrast enhancement (CE) scheme tailored forthe modification of the

spatial solar image sparse representation values within the Anscombe domain.We start with the

modification function (2.10) in Sec. 2.3, redefine its modification parameters i.e.,[Tmin,Tmax] and

alter the nonlinearity term for sparse coefficients which entries are smaller or equal thanTmin. The

proposed CE scheme is carried out together with the proposed denoising scheme aiming to provide

CE of the denoised solar image. The general overview of the the proposed scalablebased denoising

algorithm and CE is given in Fig. 6.1. In the following, we describe each stepof the proposed

algorithm.

6.3.1 Modified Anscombe transform

After the introduction of the Poisson noise, pixels in the image become random variables with a

Poisson distribution. Given that Poisson distributed data are dependent on the original pixel intensity

values, it is necessary to pre-process data i..e, to remove the data-dependence of the noise variance.

That is, to make it constant throughout the whole image by applying variance-stabilising transforma-

tion such as the classical Anscombe transform defined asf (z) = 2
√

z+a= 2
√

z+3/8. z represents

the intensity value of a pixel andf (·) its variance-stabilising transformation function [157, 158].

However, in practice the exact stabilisation and normalisation of noise are not possible. Therefore,

the noise within the transformed image can be approximately described with standard zero-mean

Gaussian distribution with unit variance. This holds true for the images corrupted solely with Pois-

son noise. Once the Gaussian noise is introduced together with Poisson (asproposed) the stabilisa-

tion effectiveness of Anscombe transform decreases due to the mixture noise. Thereby, we modify

the traditional Anscombe transformation tof (z) = 2
√

z+2.7. The constant parametera = 2.7 is

obtained heuristically by testing a variance stabilisation effect of Anscombe transform while varying

parametera from a wide range of values starting with 3/8 up to 10. The higher the variance stabil-

isation the more closer will transformed noise be described with the additive Gaussian distribution.

This directly influences the effectiveness of the employed denoising Gaussian algorithm. Thus, we

evaluate the variance stabilisation indirectly by assessing the denoising efficiency of the proposed

scalabledenoising method. Specifically, the modified Anscombe transform together withthe scal-

ableK-SVD generalises well for both types of solar images providing, on average, an enhancement

of roughly 0.4[dB] for various levels of added Gaussian noise in comparison to the setup that utilises

the classical Anscombe.
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6.3.2 Blind noise estimation

As already stated, the transformed mixture noise cannot be treated as a zero-mean Gaussian with

unit variance. Thus, unlike [157, 158] we introduce a simple blind noise estimation by calculating

the standard deviation of the transformed solar image within the Anscombe domaindenoted asσtr .

This value can be used as a rough noise estimate of Gaussian standard deviation given that the

transformed solar image in the Anscombe domain is scaled within a range of verydark intensity

values suppressing considerably the original image scale. Thus, resulting intensity variations in

the transformed solar image mostly originate from the random Gaussian noise.That is, the noise

which is not canceled by the modified Anscombe transform. For the proposed denoising method,

this approach together with the modified Anscombe transform proved to be themost effective for

mixture noise removal within the Anscombe domain.

6.3.3 Scalable sparse-based denoising of transformed Gaussian noise

Once the noisy image is transformed using the modified Anscombe transform detailed in Sec. 6.3.1,

we propose that removal of the remaining random Gaussian noise is carried out with the adaptive

scalableK-SVD [136, 146, 147] whereσtr is used as noise parameter input. As conventional K-SVD,

the algorithm uses overlapping noisy image patches for training. However,unlike non-scalable K-

SVD thescalableK-SVD [147] simplifies the denoising task by introducing the specially designed

scalabledictionaryDsc. Training phase ofDsc representational basis discards the sparse coding step

(Sec. 3.4.6) and performs noise removal solely during thescalabledictionary update via SVD. As

stated in Chapter 3, spatial higher frequencies are enforced as highly important training information

during thescalabledictionary learning and denoising. Thus, thescalableK-SVD providesscalable

representation baseDsc which is capable of adapting to high frequency spatial image elements crucial

to recovery of main solar features. The reconstruction is performed by averaging all the sparsified

patches aŝY ≈ DscX.

6.3.4 Final image estimation

For this step we apply unmodified exact unbiased inverse transformation asproposed in [157] and

[158] where mapping of the Anscombe image pixelf (z) values into the desired spatial one denoted

here asy is carried out by numerically evaluating the integral defined as the expectation operatorE:

E

{
f (z) |y}=

∫ +∞

−∞
f (z) p(z|y) (6.1)

6.3.5 Contrast enhancement (CE) withscalable K-SVD denoising

The scalablelearning scheme is structured to mimic the main Human Visual System (HVS) prop-

erties [136, 147] such as high sensitivity to contrast light information and tothe scene’s patterns
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orientation. Given that the atom’s up date stage of thescalabledictionaryDsc favours the significant

changes associated with the edges in the image patches i.e., the spatial higher frequencies, it makes

it a good candidate for an edge enhancement, that is, for CE. Thus, the idea is to modify the sparse

coefficients in order to emphasise the edges in the solar image via special modification function.

Since curvelet transform is as well adapted to represent images containing edges, the modification

function for sparse coefficients could be the one defined in Sec. 2.3. However, our experiments show

that when(2.10) is integrated with the proposedscalabledenoising method for solar images, instead

of CE, it results with amplified noise and some additional visual artefacts. Thereby, we redefine the

original modification function(2.10) into one which rescales the absolute values of the non-zero

entries per each sparse coefficientxi . The proposed CE does not amplifies the noise and does not in-

troduce artefacts. This will be demonstrated in Sec. 6.4.3 with the visual assessment of experimental

results.

As in [45] we define a lower constraint for transformation of sparse coefficients asTmin = c ·
σtr where, instead ofc = 3 [45], we set it toc = 8.75 andσtr is the estimated Gaussian noise

variance within the Anscombe domain as explained in Sec. 6.3.2. Valuec is obtained by testing

the range of values starting with 3 (minimal value which does not amplifies noise as defined in

[45]) up to 15. c = 8.75 provides the optimal thresholdTmin which leads to the artefact free and

effective CE of solar images. The proposed CE is performed together withthe scalableK-SVD

image denoising procedure within the Anscombe transform domain in order to extract important

features, such as edges, from the solar image. Once the final sparse representation is obtained via

scalableK-SVD image denoising we step sequentially through each sparse coefficient vectorxi

and perform a transform of its entries using a modified version ofyc(|x|) denoted asys(|x|) where

subscriptsstands for sparse.

Let Xold be the matrix sparse representation of the solar image estimated by thescalableK-SVD

image denoising in the Anscombe domain.xold represents one of the sparse coefficients fromXold

with a total ofK entries, each denoted asxold. The upper modification constraintTmax is set specially

for each coefficient vectorxold to its absolute maximal non-zero entry value asTmax=
∣∣xmax

old

∣∣. Given

the currently processed sparse vectorxold, the proposed modification functionys is applied over its

non-zero coefficients entries as:

ys(x
old) = xnew=





C|xold|
(
(xold −Tmin)

p+
(

Tmin−xold
Tmin

))
if xold ≤ Tmin,

C|xold|
(

Tmax
xold

)p
if Tmin < |xold| ≤ Tmax.

(6.2)

wherexnew represents modified non-zero value.p represents the degree of nonlinearity applied for

transformation of each non-zero entry ofxold and is set to 0.5 as in [45]. Unlike(2.10), the CE

scheme for curvelets [45], we scale all absolute entries values|xold| of all sparse coefficientsxold.

This is done by introducing two modification levels defined inys asTmin andTmax, since none of

the final non-zero entries are at the noise level. Furthermore, we simplify term x−Tmin
Tmin

(
Tmax
Tmin

)p
to

(xold −Tmin)
p. This aims to cancel effects of maximal entry valueTmax on the first level of CE mod-
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ification for entriesxold < Tmin while keeping the modification nonlinerity degreep. Similarly, for

the second level of CE modification,Tmin is replaced with the actual sparse coefficient entry value

xold > Tmin. Finally, C is a constant heuristically set to 10 in order to magnify the effects of the

proposed CE within the Anscombe domain. The introduction of extra scaling parameterC empha-

sises the results of CE within a low-gray scale range, i.e., the Anscombe domain. Thus, ensuring the

visibility of the applied CE in the spatial domain after the exact non-linear inverse Anscombe. To

reiterate, we use the dictionaryDsc for the CE task since it is especially adapted to learn the spatial

high frequency elements of the processed solar noisy image [136]. This isnot the case with the

conventional overcomplete K-SVD due to its unstructured dictionary updatestep.

6.4 Experimental results

The effectiveness of the proposed methods is demonstrated with results for two types of solar images

(Sec. 6.2) EUV and HA. Both images were captured on August 21, 1999 as 16-bit integer pixel

images of size 1024×1024 pixels (EUV) and 946×939 pixels (HA). Fig. 6.2 shows their cropped

versions (size 512× 512) which are used in our experiments to evaluate the performance of the

proposedscalableK-SVD denoising scheme for solar images.

We carry out set of the experiments where various levels of Poisson andGaussian mixture noise

are introduced. The Poisson noise is generated from the given solar image where each input pixel is

interpreted as a mean parameterλ of Poisson distribution. The mixture noise is generated by adding

five different levels of white Gaussian additive noise to the image with pixel-dependent Poisson noise.

We compare the proposedscalableK-SVD with the conventional, i.e., non-scalable K-SVD using

both complete (K = 64) and overcomplete (K = 128) versions of dictionaries andBM3D. These

algorithms are used for removal of remaining Gaussian noise within the Anscombe domain. Besides

the standard objective quality assessment i.e., peak signal-to-noise ratio (PSNR), we consider an al-

ternative quality measure, the so-called Structural Similarity Index (SSIM) (Sec. 2.6). In particular,

for the evaluation of estimated solar image quality, SSIM takes into account the local pixels distor-

tions of luminance and contrast information, which we aim to restore from the Anscombe transform

domain. The higher the SSIM index value gets, the more successful retrieval of the solar image

features will be, thus ensuring the effective removal of the Gaussian and Poisson noise mixture.

Prior to introducing the denoising and CE results first we discuss and justifythe approach behind

Gaussian blind noise estimation within the Anscombe domain introduced in Sec. 6.3.2.

6.4.1 Blind noise estimation discussion

As emphasised in Sec. 6.3.2, common assumption that transformed noise in Anscombe domain has

unitary variance is not sufficient to provide effective denoising of noise mixture. Thus, instead we

introduce a blind noise estimation by simply evaluating the standard deviation of thetransformed
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(a) EUV image (b) HA image

Fig. 6.2 Noise free cropped solar EUV and HA images used in simulations.

image i.e.,σtr . This approach proved to be very effective for the introduced solarscalabledenoising

being a result of our detailed observations following image histograms:

1. Original noise-free solar image histograms within the spatial pixel intensity domain shown in

Fig. 6.3 with maximal image intensity of 1233 for EUV and 4095 for HA;

2. Histograms of EUV and HA images corrupted only with Poisson noise, subjected to Anscombe

transformation shown in Fig. 6.4 where we can notice the effect of significantly shrunk pixel

range ([0 80] for EUV (≈ 15 times smaller; Fig. 6.4a) and[0 140] for HA (≈ 30 times smaller;

Fig. 6.4b);

3. Histograms of EUV and HA images subjected to Anscombe transformation after adding both

the Poisson and Gaussian noise. Fig. 6.5 and Fig. 6.6 illustrate histograms for4 different

levels of Gaussian noise for EUV and HA respectively.

In Fig. 6.5 and Fig. 6.6 one can notice high dispersion of transformed pixelintensity. Further-

more, the original image intensity changes together with the Poisson ones are minimised with the

Anscombe conversion leaving Gaussian noise spikes as dominant transformed image elements. Thus,

conclusion follows that the overall variation in the transformed image’s gray-scale intensity withing

the Anscombe domain is the result of the destabilised Gaussian noise variance. Given this, we es-

timate standard variations values and use them as an inputσtr for scalabledenosing sccheme. A

complete overview of these transformed image standard variations values is provided in Fig. 6.7.

Here we illustrateσtr for both types of solar images. First we haveσtr value for their noise-free

transformed version whereσ = 0. Next we sequentially introduce ten different levels of Gaussian

noise which are denoted on x axis asσ i.e., the Gaussian noise standard deviation. These are in-

troduced together with Poisson noise. Note that in case of HA which (unlike EUV) image contains
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Fig. 6.3 Histogram of the noise-free solar images pixel intensity values in the spatial domain.
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(b) HA

Fig. 6.4 Histogram of the solar images corrupted only with the Poisson noise after the
Anscombe transformation.

two main elements, i.e., sun surface and its background, we only consider thebackground noise

variations. The standard variation of the sun surface are almost identicalfor any given level of intro-

duced Gaussian noise (≈ 46.75) thereby we omit them from analysis. However, for EUV denoising

we consider full image. Lastly, we provide a special mapping table Tab. 6.1 where each originally

introduced Gaussian noise levelσ (together with Poisson noise) is mapped in its approximated trans-

formed equivalentσtr within the Anscombe domain. This evaluation of transformed noise can be a

suitable alternative for a real case scenario where usually the original value of the introduced Gaus-

sian noise is unknown while Poisson pixel depended variations will be stabilised using Anscombe

transformation.
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(a) σ = 20
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(d) σ = 80

Fig. 6.5 EUV solar image histograms after the Anscombe transformation of its noisy ver-
sions corrupted with the mixture of Poisson and the 4 levels of the Gaussian noise.

6.4.2 Denoising results

Tab. 6.2 and Tab. 6.3 provide PSNR and SSIM results for the EUV and HA image, respectively. The

shown values represent results averaged over 50 iterations. Note that,we present PSNR and SSIM

values for the highest reconstructed levels of thescalablerecovery scheme i.e.,L16 for K = 64 and

L32 for K = 128, that is, the fully recovered solar image. In particular, we can see in Tab. 6.2 that :

• The completescalableK-SVD algorithm in general shows an average gain of 0.32[dB]/0.09

SSIM against non-scalable complete K-SVD, 0.23[dB]/0.05 SSIM against non-scalable over-

complete K-SVD and 0.97[dB]/0.07 SSIM against the BM3D performance;

• The over completescalableversion in general shows the average gain of 0.84[dB]/0.08 SSIM

against non-scalable complete K-SVD, 0.74[dB]/0.05 SSIM against the non-scalable over

complete K-SVD and 1.4[dB]/0.07 SSIM against the BM3D performance.
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Fig. 6.6 HA solar image histograms after the Anscombe transformation of its noisy versions
corrupted with the mixture of Poisson and the 4 levels of the Gaussian noise.

Similar gains of the proposed method are achieved for the HA image (Tab. 6.2)where we can see

that:

• The completescalableK-SVD algorithm in general shows an average gain of 0.54[dB]/0.07

SSIM against non-scalable complete K-SVD, 0.4[dB]/0.07 SSIM against non-scalable over

complete K-SVD and 1.96[dB]/0.09 SSIM against BM3D performance;

• The over completescalableversion in general shows the average gain of 0.67[dB]/0.08 SSIM

against non-scalable complete K-SVD, 0.5[dB]/0.08 SSIM against non-scalable over com-

plete K-SVD and 2.07[dB]/0.1SSIMagainst BM3D performance.

In addition, we report the run times for evaluated setups in Tab. 6.4 averaged over 50 iterations

for both solar images. Illustrated times are outcomes of processing on the Delloperating system

with 64 bit Intel core, 8 GB RAM memory and 2.40 GHz processor. It is evident that BM3D outper-
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Fig. 6.7 Representation of transformed image intensity standard deviations for zero free and
mixture noise examples.

Table 6.1 Standard variation mapping scheme for noisy transformed image for two solar
image typesEUV andHA.

Gaussian noise standard deviation
σtr

EUV HA

σ = 0 2.24 4.12
σ = 10 2.42 4.34
σ = 20 2.93 4.75
σ = 30 3.67 5.01
σ = 40 4.65 5.29
σ = 50 5.78 5.44
σ = 60 7.01 5.72
σ = 70 8.19 6.04
σ = 80 9.29 6.25
σ = 90 10.31 6.46
σ = 100 11.1 7.01

forms other four setups providing denoising in real time. However, the proposed completescalable

denoising shows remarkable advantage in reducing run time when comparedwith the non-scalable

K-SVD. Specifically, we can see time processing reduction for approximately 11 times when com-

pared both with the complete and overcomplete non-scalable K-SVD. Thus, unlike conventional

dictionary learning setup,the proposed solar denoising scheme reduces both computational complex-

ity and processing time. Overall, the proposedscalabledenoising method outperforms the denoisig

performance of the conventional, i.e., non-scalable K-SVD denoising andBM3D given complete or

overcompletescalabledictionaryDsc. In particular, when compared with the non-scalable K-SVD ,

the improvedscalabledenoising performance is achieved at lower denoising complexity given that
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Table 6.2 PSNR and SSIM comparison for denoising mixture of Poisson and Gaussian noise
introduced in EUV solar image given scalable, non-scalableK-SVD dictionary (K = 64 and
K = 128) and BM3D algorithm .

σ PSNRi [dB] Alg. PSNR[dB] SSIM

20 34.66

SC K=64 44.40 0.85
NSC K=64 44.00 0.83
SC K=128 44.56 0.84

NSC K=128 44.46 0.84
BM3D 43.53 0.8

40 29.46

SC K=64 42.77 0.79
NSC K=64 42.46 0.75
SC K=128 42.69 0.79

NSC K=128 42.68 0.74
BM3D 42.13 0.72

60 26.12

SC K=64 39.81 0.76
NSC K=64 39.71 0.75
SC K=128 39.74 0.76

NSC K=128 39.71 0.75
BM3D 39.21 0.7

80 23.67

SC K=64 37.16 0.76
NSC K=64 37.07 0.74
SC K=128 37.19 0.74

NSC K=128 37.09 0.65
BM3D 36.65 0.61

100 21.75

SC K=64 35.36 0.73
NSC K=64 34.57 0.39
SC K=128 35.54 0.72

NSC K=128 34.68 0.65
BM3D 33.13 0.69

the sparse coding step is removed from thescalableK-SVD iterative setup (Sec. 3.4.6). Furthermore,

the overcompletescalableK-SVD scheme slightly outperforms the complete one for 0.49[dB]/0.03

SSIM (EUV) and 0.11[dB]/0.003 SSIM (HA). This demonstrates that we can choose the denoising

setup for solar images with the completeDsc dictionary which will reduce processing complexity

while achieving comparable denoising results. Finally, note that the proposed scalabledenoising

scheme especially demonstrates better performance for the higher levels ofnoise in comparison to

non-scalable scheme and BM3D. In addition, the further validate the applicability of the proposed

completescalabledictionary denoising, we provide results for solely Gaussian denoising without

Poisson noise. We aim to show that proposedscalabledenoising for solar images is effective for dif-

ferent noise setups. Interestingly, in case of Gaussian denoising thescalabledenoising achieves the
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Table 6.3 PSNR and SSIM comparison for denoising mixture of Poisson and Gaussian noise
introduced in HA solar image given scalable, non-scalable K-SVD dictionary (K = 64 and
K = 128) and BM3D algorithm .

σ PSNRi [dB] Alg. PSNR[dB] SSIM

20 37.31

SC K=64 44.21 0.49
NSC K=64 44.15 0.44
SC K=128 44.25 0.49

NSC K=128 44.2 0.45
BM3D 43.56 0.45

40 35.92

SC K=64 43.40 0.49
NSC K=64 43.11 0.42
SC K=128 43.47 0.49

NSC K=128 43.10 0.42
BM3D 42.64 0.42

60 34.24

SC K=64 42.80 0.49
NSC K=64 42.21 0.41
SC K=128 42.90 0.5

NSC K=128 42.36 0.40
BM3D 39.98 0.37

80 32.67

SC K=64 41.98 0.48
NSC K=64 41.34 0.40
SC K=128 42.05 0.49

NSC K=128 41.77 0.41
BM3D 39.06 0.36

100 31.19

SC K=64 41.14 0.47
NSC K=64 41.01 0.39
SC K=128 41.44 0.48

NSC K=128 40.19 0.39
BM3D 38.49 0.35

average gain against over complete thescalablefor 0.21[dB]/0.97 SSIM (EUV) and 0.24[dB]/0.01

SSIM (HA). Tab. 6.5 and Tab. 6.6 illustrate the results for the conventionalremoval of additive Gaus-

sian noise where we can see that for EUV (Tab. 6.5):

• The completescalableK-SVD algorithm in general shows an average gain of 1.37[dB]/0.13

SSIM against non-scalable complete K-SVD,[1.9dB]/0.79 SSIM against non-scalable over

complete K-SVD and[1.65dB]/0.11 SSIM against BM3D performance;

• The over completescalableversion in general shows the average gain of 1.15[dB]/0.08 SSIM

against non-scalable complete K-SVD, 1.71[dB]/0.12 SSIM against non-scalable over com-

plete K-SVD and 1.43[dB]/0.11 SSIM against BM3D performance;
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Table 6.4 Comparison of the processing time given five denoising schemes.

Denoising setup Total denoising run time [s]
SC K=64 663.4

NSC K=64 7325.3
SC K=128 685.7

NSC K=128 7553.5
BM3D 9.8

Table 6.5 PSNR and SSIM comparison for denoising of Gaussiannoise introduced in EUV
solar image given scalable, non-scalable K-SVD dictionary(K = 64 andK = 128) and
BM3D algorithm .

σ PSNRi [dB] Alg. PSNR[dB] SSIM

20 35.79

SC K=64 47.19 0.86
NSC K=64 44.77 0.74
SC K=128 47.12 0.85

NSC K=128 44.62 0.73
BM3D 44.03 0.74

40 29.8

SC K=64 44.23 0.78
NSC K=64 43.48 0.73
SC K=128 44.06 0.77

NSC K=128 43.39 0.73
BM3D 42.95 0.75

60 26.24

SC K=64 42.00 0.75
NSC K=64 41.62 0.66
SC K=128 41.99 0.70

NSC K=128 41.13 0.63
BM3D 41.25 0.70

80 23.73

SC K=64 41.60 0.79
NSC K=64 40.41 0.63
SC K=128 41.69 0.69

NSC K=128 39.11 0.52
BM3D 40.54 0.65

100 21.82

SC K=64 40.92 0.78
NSC K=64 38.82 0.53
SC K=128 39.97 0.68

NSC K=128 38.01 0.46
BM3D 38.92 0.57

while for the conventional HA Gaussian denoising in Tab. 6.6 we have:
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Table 6.6 PSNR and SSIM comparison for denoising of Gaussiannoise introduced in HA
solar image given scalable, non-scalable K-SVD dictionary(K = 64 andK = 128) and
BM3D algorithm .

σ PSNRi [dB] Alg. PSNR[dB] SSIM

20 46.21

SC K=64 51.74 0.84
NSC K=64 32.88 0.39
SC K=128 51.64 0.83

NSC K=128 32.84 0.39
BM3D 45.27 0.53

40 40.21

SC K=64 48.41 0.71
NSC K=64 32.83 0.39
SC K=128 48.71 0.70

NSC K=128 32.85 0.39
BM3D 43.78 0.49

60 36.68

SC K=64 46.99 0.62
NSC K=64 32.81 0.39
SC K=128 46.91 0.61

NSC K=128 32.85 0.39
BM3D 41.55 0.45

80 34.17

SC K=64 45.92 0.55
NSC K=64 32.8 0.39
SC K=128 45.89 0.54

NSC K=128 32.87 0.38
BM3D 40.35 0.44

100 32.25

SC K=64 44.90 0.51
NSC K=64 32.78 0.38
SC K=128 44.97 0.50

NSC K=128 32.89 0.38
BM3D 39.69 0.43

• The completescalableK-SVD algorithm in general shows an average gain of 14.78[dB]/0.25

SSIM against non-scalable complete K-SVD, 14.73[dB]/0.26 SSIM against non-scalable over

complete K-SVD and 6.06[dB]/0.18 SSIM against BM3D performance;

• The over completescalableversion in general shows the average gain of 14.8[dB]/0.24 SSIM

against non-scalable complete K-SVD, 14.76[dB]/0.25 SSIM against non-scalable over com-

plete K-SVD and 6.1[dB]/0.17 SSIM against BM3D performance;

The averaged running times for Gaussian denoising are similar to those introduced in Tab. 6.4.

Visualisation of the results for the aforementioned denoising algorithms and theproposed method

is provided in Fig. 6.8, Fig. 6.9 for EUV and Fig. 6.10, Fig. 6.11 for HA image.We illustrate image



104
SCALABLE DENOISING AND CONTRAST ENHANCEMENT OF SOLAR IMAGES

WITH POISSON AND GAUSSIAN MIXTURE NOISE

estimates for the two levels of the Gaussian noise i.e.,σ = 20 andσ = 40, introduced together with

Poisson noise. At first, for EUV, all benchmark methods result in the over-smoothed image recon-

struction with noticeable granular structure once the high level of noise is removed. On the other

hand, the proposedscalablemethod succeeds to eliminate noise while recovering all significant de-

tails of the original solar images. The effective noise elimination and recovery of structural image

information is a result of thescalabledictionaryDsc training design [136] which puts emphasis on

learning the high frequency elements of the denoised image. Furthermore, by comparing the visual

estimates of both complete and overcompeltescalabledenoising we can see that almost identical re-

sults are achieved leading to the conclusion that the complete dictionary size i.e.,K = 64 is sufficient

for removing the Gaussian/Poisson mixture noise from the solar images. Similar conclusions can be

derived from Fig. 6.10 and Fig. 6.11 that shows the results for the HA image.

Lastly, in order to demonstrate the consistency and robustness of the proposedscalabledenoising

scheme given any type of distorted image i.e., natural image, video sequenceor solar one, similarly

as in Sec. 5.3.2, we provide following results. As we have seen in Sec. 5.3.2both complete and over

completeDsc dictionaries are able to achieve comparable restoration quality given various scalable

levelsLa. Likewise, we can discover the similar restoration pattern for solar images starting from

Fig. 6.12 up to Fig. 6.15 for EUV and from Fig. 6.16 up to Fig. 6.19 for HA. Unlike non-scalable K-

SVD which has highly unpredictable recovery behavior for allscalablelevelsLa except for the final

one i.e.,L16 andL32, the proposedscalabledenoising achieves effective performance for almost all

scalablelevelsLa for both completeDsc (Fig. 6.12, Fig. 6.13, Fig. 6.16 and Fig. 6.17) and over com-

pleteDsc (Fig. 6.14, Fig. 6.15, Fig. 6.18, Fig. 6.19) denoising scenario. For the EUV denoising we

can conclude that all denoisedLa levels starting withL1 up toL15 (for K = 64) andL1 up toL31 (for

K = 128) are almost equal in terms of restoration quality to the highest reconstructed estimates i.e.,

L16 andL32, respectively. This restoration pattern is present both for PSNR (Fig. 6.12 and Fig. 6.14)

and SSIM (Fig. 6.13 and Fig. 6.15) quality assessment. For HA we encounter similar situation where

some initialLa levels are going through some slight fluctuations but most of the recoveredscalable

levels still achieve comparable value to that of the highest estimate whether we inspect PSNR es-

timates (Fig. 6.16 and Fig. 6.18) or SSIM values (Fig. 6.17 and Fig. 6.19). Overall, these results

demonstrate that proposedscalabledenoising can be applied for wide variety of distorted images.

6.4.3 CE estimates

Visual performance of the proposedscalablejoint denoising and CE technique is shown in Fig. 6.20

for the HA image type corrupted by additive white Gaussian and Poisson noise. Specifically, we can

identify the solar disk which is emphasised via proposed CE scheme in the HA image for any tested

level of introduced Gaussian noise (Fig. 6.20a, Fig. 6.20b, Fig. 6.20c, Fig. 6.20d and Fig. 6.20e).

Solar disk is usually hard to detect due to textual and non-solar information that may be found in the

original image (Fig. 6.2) followed by a darkening of limb boundary area. This detection is a result

of applying the proposed modification functionys(|x|) (eq. 6.2) over thescalablesparse coefficients
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representation. The proposedscalableCE method provides a clear solar disk detection free of any

additional artifacts. This is also achieved when we use the over completescalableversion of the in-

troduced CE scheme, that is, when we train dictionaryDsc with K = 128 (see Fig. 6.21). Once again,

direct visual comparison of Fig. 6.20 and Fig. 6.21 serves as an evidence that complete dictionary

Dsc is equally effective as the over complete in terms of solar image CE. Thus, by utilising solely

a completeDsc dictionary we can achieve high quality CE while reducing processing complexity.

However, for the solar images which do not exhibit high level of contrastdifference as the HA image

does, the proposed joint denoising and CE fails. That is, for the tested EUV image we were not

able to enhance and extract filaments which represent solar structures of high importance for moni-

toring behavior of the Sun’s magnetic field. Furthermore, proposed CE fails fails if we introduced

the non-scalable dictionary training algorithm.

6.5 Conclusion

This chapter introduces the algorithm for denoising solar images corruptedwith the mixture of Pois-

son and Gaussian noise. Furthermore, we propose the algorithm for CE based on the special modi-

fication of the sparse coefficient representation generated via completescalabledictionaryDsc. Pro-

posed denoising is performed within the Anscombe transform domain instead of the spatial. Prior to

denoising we carry out modified Anscombe transform and blind noise estimation, thus customising

thescalabledenoising algorithm to effectively address Poisson and Gaussian mixture noise removal

from solar images. The proposed techniques are evaluated over two different types of solar images

i.e., EUV and HA, respectively. Interestingly, the proposed approach for removing Poisson and

Gaussian mixture noise for solar images viascalablecomplete K-SVD dictionary outperforms or it

is highly comparable (both objectively and subjectively) with its over complete version, the classical

i.e., non-scalable complete (best gain of 0.4[dB]) and over complete (best gain of 0.74[dB]) K-SVD

setting and BM3D (best gain of 1.4[dB]). In terms of joint CE and denoising proposed method is

highly effective with HA type of solar images which exhibits high level of contrast where we achieve

the detection of sun’s disk.
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(a) Noisy input imageσ = 20 (b) Scalable K-SVDK = 64

(c) Non-scalable K-SVDK = 64 (d) Scalable K-SVDK = 128

(e) Non-scalable K-SVDK = 128 (f) BM3D

Fig. 6.8 Performance comparison of introduced denoising algorithms for removal of Poisson
and Gaussian additive noise (σ = 20) from the solar EUV image.
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(a) Noisy input imageσ = 40 (b) Scalable K-SVDK = 64

(c) Non-scalable K-SVDK = 64 (d) Scalable K-SVDK = 128

(e) Non-scalable K-SVDK = 128 (f) BM3D

Fig. 6.9 Performance comparison of introduced denoising algorithms for removal of Poisson
and Gaussian additive noise (σ = 40) from the solar EUV image.
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WITH POISSON AND GAUSSIAN MIXTURE NOISE

(a) Noisy input imageσ = 20 (b) Scalable K-SVDK = 64

(c) Non-scalable K-SVDK = 64 (d) Scalable K-SVDK = 128

(e) Non-scalable K-SVDK = 128 (f) BM3D

Fig. 6.10 Performance comparison of introduced denoising algorithms for removal of Pois-
son and Gaussian additive noise (σ = 20) from the solar HA image.
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(a) Noisy input imageσ = 40 (b) Scalable K-SVDK = 64

(c) Non-scalable K-SVDK = 64 (d) Scalable K-SVDK = 128

(e) Non-scalable K-SVDK = 128 (f) BM3D

Fig. 6.11 Performance comparison of introduced denoising algorithms for removal of Pois-
son and Gaussian additive noise (σ = 20) from the solar HA image.
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(c) σ = 60
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(d) σ = 80
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(e) σ = 100

Fig. 6.12 Average PSNR of the scalable reconstructed solar image EUV given for each layer
La and Poisson and Gaussian noise mixture for five Gaussian noise levels of the scalable re-
construction using the complete (i.e.,K = 64) scalable and non-scalable K-SVD algorithm.
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(b) σ = 40
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(c) σ = 60
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(d) σ = 80
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(e) σ = 100

Fig. 6.13 Average SSIM of the scalable reconstructed solar image EUV given for each layer
La and Poisson and Gaussian noise mixture for five Gaussian noise levels of the scalable re-
construction using the complete (i.e.,K = 64) scalable and non-scalable K-SVD algorithm.
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(b) σ = 40
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(c) σ = 60
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(d) σ = 80
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(e) σ = 100

Fig. 6.14 Average PSNR of the scalable reconstructed solar image EUV given for each layer
La and Poisson and Gaussian noise mixture for five Gaussian noise levels of the scalable
reconstruction using the over complete (i.e.,K = 128) scalable and non-scalable K-SVD
algorithm.
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(b) σ = 40
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(c) σ = 60
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(d) σ = 80
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(e) σ = 100

Fig. 6.15 Average SSIM of the scalable reconstructed solar image EUV given for each layer
La and Poisson and Gaussian noise mixture for five Gaussian noise levels of the scalable
reconstruction using the over complete (i.e.,K = 128) scalable and non-scalable K-SVD
algorithm.
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(b) σ = 40
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(c) σ = 60
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(d) σ = 80
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(e) σ = 100

Fig. 6.16 Average PSNR of the scalable reconstructed solar image HA given for each layer
La and Poisson and Gaussian noise mixture for five Gaussian noise levels of the scalable re-
construction using the complete (i.e.,K = 64) scalable and non-scalable K-SVD algorithm.
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(b) σ = 40
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(c) σ = 60
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(d) σ = 80
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(e) σ = 100

Fig. 6.17 Average SSIM of the scalable reconstructed solar image HA given for each layer
La and Poisson and Gaussian noise mixture for five Gaussian noise levels of the scalable re-
construction using the complete (i.e.,K = 64) scalable and non-scalable K-SVD algorithm.
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(b) σ = 40
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(c) σ = 60
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(d) σ = 80
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(e) σ = 100

Fig. 6.18 Average PSNR of the scalable reconstructed solar image HA given for each layer
La and Poisson and Gaussian noise mixture for five Gaussian noise levels of the scalable
reconstruction using the over complete (i.e.,K = 128) scalable and non-scalable K-SVD
algorithm.
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(b) σ = 40
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(c) σ = 60
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(d) σ = 80
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(e) σ = 100

Fig. 6.19 Average SSIM of the scalable reconstructed solar image HA given for each layer
La and Poisson and Gaussian noise mixture for five Gaussian noise levels of the scalable
reconstruction using the over complete (i.e.,K = 128) scalable and non-scalable K-SVD
algorithm.
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(a) σ = 20 (b) σ = 40

(c) σ = 60 (d) σ = 80

(e) σ = 100

Fig. 6.20 Contrast enhancement results for the proposedscalablecomplete dictionary (K =
64) denoising method performed in the Anscombe transformation domain, given the the
solar HA image, corrupted initially by the mixture of Poisson and five different levels of
Gaussian noise.
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(a) σ = 20 (b) σ = 40

(c) σ = 60 (d) σ = 80

(e) σ = 100

Fig. 6.21 Contrast enhancement results for the over-complete dictionary (K = 128) variation
of proposedscalabledenoising method performed in the Anscombe transformationdomain,
given the the solar HA image, corrupted initially by the mixture of Poisson and five different
levels of Gaussian noise.





Chapter 7

CONCLUSION

This chapter provides the summary of the proposed work and its contributions together with the

future work. The remainder of the chapter is organised as follows. A summary of contribution is

provided in Sec. 7.1. The recommendation and future work is presented in Sec. 7.2.

7.1 Summary

This thesis addresses several questions related to sparse problems anddictionary learning with the

main focus on learning the dictionary forscalablesparse representation and restoration of natural, so-

lar images and video frames. The proposedscalablescheme is based on the Sparseland model which

in general assumes that signals e.g., images can be optimally represented via trained dictionary as

sparse linear combinations of its basis elements i.e., atoms. Unlike conventional approaches for

learning dictionaries adapted to the fine reconstruction of input data, the proposedscalablescheme

offers progressive restoration of data. The proposed work aims to offer different dictionary learning

design which will provide effective treatment of Sparseland signals that will better tackle various ap-

plication problems such as imagescalablereconstruction, denoising, compressive sensing, contrast

enhancement and more.

For this purpose, a newscalabletraining algorithm i.e.,scalableK-SVD is developed. The

proposed algorithm can efficiently train a dictionary from any type of image or video sequence set

which will yield theirscalable, that is, progressive representation. Introduced work offers a complete

scalabledictionary alternative to non-scalable K-SVD aiming to show that it will perform equally

or better than its counterpart. This is further demonstrated by implementing the proposedscalable

scheme within several practical applications in image processing.

First, in Chapter 3 we introduce a new algorithm for learningscalabledictionaries which incor-

porates MCA based dictionary initialisation, regularisation of atom’s update based on modelling the

HVS perception characteristic which shed new light on connections between adaptive sparse meth-
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ods and exploiting of high and low spatial frequencies. Additionally, we provide the outline of the

scalablereconstruction mechanism together with experimental results in Chapter 4.

Chapter 5 presents further contributions as variations of this algorithm forGaussian denoising

and compressive sensing application. Such variations are important for tackling the problem of pro-

cessing complexity and meaningful recovery of noise free structural information by emphasising the

significance of high frequency image information during the dictionary training process. We exper-

imentally demonstrate that this method can be applied to an important class of image processing

problems, which have not been addressed in this way before. Thus, welay the foundations for util-

ising principle ofscalabledictionary training andscalablesignal restoration among various image

application areas.

Finally, Chapter 6 illustrates the practicality of the proposed method for two solar image process-

ing applications i.e., denoising and contrast enhancement. The proposed variation of thescalable

training scheme is applied to remove adaptive Gaussian noise within the Anscombe transformation

domain while its modified version manages to achieve optimal contrast enhancement of solar image

which contains distinctive high and low spatial frequency elements.

Overall, we believe that the field of sparse image representation byscalablestructure dictionaries

has a great potential which is initially confirmed with the promising results presented for various

denoising setups, adaptive compressive sensing and solar image contrast enhancement.

7.2 Future work

There are many potential research directions for the above-describedwork and other questions which

have not been investigated yet and presented in this thesis. Since there is always opportunity for

improvement we shall list several such directions which we find promising and meaningful:

1. One of the important directions which we want to consider is applying the proposedscal-

able training method to the image scale-up problem, that is, single-image super-resolution.

Prior works such as [13, 165] are the first to explore the performanceof the sparse-based

super-resolution algorithms. In general they seek a sparse representation for each patch of the

low-resolution input. Subsequently, the coefficients of this representationare employed to gen-

erate the high-resolution output. Given the compressed sensing theoretical results (Sec. 2.5)

which emphasise that linear relationships between high-resolution signals can be recovered

from their low-dimensional projections, this is indeed possible since the low resolution image

represents a down sampled version of its high resolution counterpart. Furthermore, [13] sug-

gests that low and appropriate high resolution patch have almost equal sparse representation.

Both [13, 165] simultaneously train the two coupled dictionaries for high and low resolutions

patches of some specific image class. However, they utilise different dictionary training algo-

rithms. The effectiveness of super-resolution, that is, the recovery of a complicated texture

and a visually appealing reconstruction of the original signal is directly related to the em-
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ployed dictionary training scheme and accordingly matching low and high resolution image

patch position. This is meant to enforce the similarity of sparse low and high resolution repre-

sentations. Thus, we propose testing and adapting the developedscalabledictionary method

for this task. Given that the local sparse modelling naturally robust to noise[25] the proposed

testing would further consider super-resolution with noisy inputs.

2. Applying thescalabletraining dictionary scheme for image denoising when the level of noise

is very high and unclassified. Specifically, we aim to test both the proposedscalableschemes

in Chapter 5 and Chapter 6 in order to create an alternative way for addressing the image

enhancement scheme which would improve the quality of raw images generatedby a low

complexity optical setup that consist of MEMS (micro-electromechanical system) mirror and

a single photo detector. This system was originally built at the Strathclyde University engi-

neering lab. Given that the main disadvantage of this optical acquisition device is the imaging

performance, there is a significant room for the image quality improvement. Especially this

could be achieved with the proposedscalabletraining scheme which exploits the less distorted

high frequency image information. For example, the image quality of several raw scanned let-

ters via single-pixel optical imaging system is poor and highly distorted by an uncategorised

MEMS blur and noise which resembles to random salt-and-pepper introduced during a scan-

ning process. Several approaches for enhancing these acquired images [166, 167] were pro-

posed in several research papers. However, when compared to experimental raw images, there

are still noticeable distortions in contrast, luminance and noise-residual information. This mo-

tivates us to test our work for MEMS image enhancement given that the proposedscalable

method is based on utilisation of HVS high sensitivity to contrast and luminance information

which should be more effective for both MEMS denoising and deblurring.

3. Lastly, we propose adapting thescalabledictionary learning to visual object classification,

one of the most important image analysis problems that attempts to group image objects into

predesignated categories. Conventionally, image classification is performed as feature ex-

traction followed by some type of classifier. However, human perception studies show that

categories are defined by similarity to prototypes rather than by a list of extracted features

[168]. Prototypes enable humans to distinguish among roughly 30,000 different object cat-

egories. Furthermore, sparse image representation with dictionary learning originates from

neuroscience studies in human perception (Sec. 2.1). The resulting dictionary is a set of pro-

totypes i.e., atoms that are localised, oriented, and bandpass similar to those found in the

primary visual cortex and filtered to carry the structure of the signal itself.The potentials of

the dictionary learning method with sparse representation for image classification applications

has been shown in [169] and [170]. Thus, we propose an object classification algorithm using

and adapting the proposedscalablemethod for learning thescalabledictionaries. We assume

that this would result in an excellent discriminativescalabledictionary for image patches en-

suring that the images with similar discriminative features i.e., similar high or low frequency
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spatial content are classied in the same category. The novel classification approach will apply

thescalabledictionary learning on the positive and negative training sets to generate twodic-

tionaries that are fed into an SVM classier. The samescalabletraining method will be used

to generate ascalabledictionary for test images during the test phase.Final decision will be

based on the learnt structural similarities between training and testingscalabledictionaries by

the SVM.
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