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Abstract

Modern era of signal processing has developed many tedhaada for recording and pro-
cessing large and growing amount of data together with algos specialised for data
analysis. This gives rise to new challenges in terms of dategssing and modelling data
representation. Fields ranging from experimental scignastronomy, computer vision,
neuroscience mobile networks etc., are all in constantkdar scalableand efficient data
processing tools which would enable more effective anslggicontinuous video streams
containing millions of pixels. Therefore, the question @fithl signal representation is still
of high importance, despite the fact that it has been the @i significant amount of work
in the past. Moreover, developing new data processing rdstatso affects the quality of
everyday life, where devices such as CCD sensors from digitakcas or cell phones are
intensively used for entertainment purposes. Specificailg of the novel processing tools
is signal sparse coding which represents signals as limeabinations of a few representa-
tional basis vectors i.e., atoms given an overcompletéotiaty. Applications that employ
sparse representation are many such as denoising, coiopressl regularisation in inverse
problems, feature extraction, and more.

In this thesis we introduce and study a particular signatesgntation denoted as the
scalablesparse coding. It is based on a novel design for the dictyolearning algorithm,
which has proven to be effective fecalablesparse representation of many modalities such
as high motion video sequences, natural and solar imagesprbposed algorithm is built
upon the foundation of the K-SVD framework originally desggl to learn non-scalable dic-
tionaries for natural images. Tlsealabledictionary learning design is mainly motivated by
the main perception characteristics of the Human Visualeédy$HVS) mechanism. Specif-
ically, its core structure relies on the exploitation of gpatial high-frequency image com-
ponents and contrast variations in order to achieve vistethes objects identification at
all scalablelevels. The implementation of HVS properties is carried lmpintroducing a
semi-random Morphological Component Analysis (MCA) basetiisation of thescal-
able dictionary and the regularisation of its atom’s update na@dm. Subsequently, this
enablescalablesparse image reconstruction.



In general, dictionary learning for sparse representatieads to state-of-the-art image
restoration results for several different problems in tleé&fof image processing. Experi-
ments in this thesis show that these are equally achievgtdedommodating all dictionary
elements to tailor thecalabledata representation and reconstruction, hence modelitag d
that admit sparse representation in a novel manner. Fuontrer achieved results demon-
strate and validate the practicality of the proposed schmeaileng it a promising candidate
for many practical applications involving both tinsealabledisplay, denoising andcal-
ablecompressive sensing (CS). Performed simulations incdedéablesparse recovery for
representation of static and dynamic data changing over sinch as video sequences and
natural images. Lastly, we contribute novel approachesdalabledenoising and contrast
enhancement (CE), applied on solar images corrupted withl-dependent Poisson and
zero-mean additive white Gaussian noise. Given that sal@ @bntain noise introduced by
charge-coupled devices within the on-board acquisiti@iesy these artefacts, prior to im-
age analysis, have to be removed. Thus, novel image dega@sih contrast enhancement
methods are necessary for solar preprocessing.
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Chapter 1

INTRODUCTION

Effective mathematical modelling and representation of digital signals arefahe essential pre-

requisites for designing successful and practical solutions to many estinpatiblems, especially

to those arising in the field of signal and image processing. A priori modaurice data commonly

aims to capture and extract general characteristics of a signal in orpgesgerly address some of
the key processing challenges such as denoising, compressionyisadida for inverse problems,

data restoration, inpainting, feature extraction etc. Over the past cdigeeades, image processing
applications have undergone significant improvements as a result afeathemodels characterised
by their high ability to describe signals of interest.

One of the most effective modelling methods emerged with the introduction op#rsity and
overcompleteness notions which opened a new and an innovative fieldgd pnacessing research.
The sparse and redundant representations of data are based eauimption that a wide range of
signals (e.g., natural images) admit a sparse decomposition over a spswisantational basis
commonly denoted as dictionary. Successful sparse modelling primarilndepa the quality of
the chosen dictionary which is evaluated through its ability to code signals asaa iombinations
of its few elements i.e., atoms providing an effective low-dimensional reptasen. Specifically,
there are two main dictionary types:

» Analytic: based on a specific mathematical model of data, non adaptive andqmifiesh
representing signals by a particular class of mathematical functions whileendent of the
input signal content;

« Trained: generated via an algorithmic scheme as an example-based training peogaein
the set of training data of interest, highly adaptable to source data andd#gpen the input
signal’s content.

The main benefit of the former method is usually simple and fast implicit implementétgpacsi-
fying procedure since the signal of interest is just transformed in a doohaigiven mathematical
function. Some of these effective transforms include discrete cosingfdram (DCT) [4], wavelets



2 INTRODUCTION

[5], curvelets [6, 7], contourlets [8, 9], wedgelets [10] and morewkler, the representational effi-
cacy of this approach is limited by the type of its underlying model which is usablly to capture
specific range of the signal features complexity but not their full scadé¢tobutes. The shortcoming
of analytical methods was and still is tackled by means of Machine Learnijgdt¢hniques. Their
core premise promotes extraction of the complex signal composition straoghtdata as more ef-
fective than it is with a fixed mathematical description. As machine learningitdgts advance in
direct adaptation to divers high-dimensional data sets, generic modelar{ad/tic) are being more
and more replaced. This trend is in particular evident within the reseazalohtraining dictionaries
for the sparse signals representation where trained basis is marked wéthlainged flexibility and
the ability to adjust to specific signal data.

1.1 Adaptive Sparse Representations for Signals and Im-
ages

The two main key contributors and the pioneers in the area of learningeeldpiionaries forimage
representation are Olshausen and Field who established in [1, 12] andiatiseen an elementary
biological visual behaviour and signal sparsity notion. Their work waditilst one to promote the
idea and potentials of learning rather then using of-the-shelf dictionamdmelling the response
properties of receptive fields of simple cells in the mammalian primary visualxcorteeir results
revealed the potential of the example-based learning schemes for extraictiee basic structure in
complex data. Furthermore, their work defined a main structure for dicjidearning, motivating
a sparse representation community to provide a vast amount of sudisesgplied research.

In general, the sparse representation of a sigaeR" is provided as a linear combination of a few
prototype signal-atomd; belonging usually to an overcomplete dictionary mabix R™K which
includes a total oK elements. Specifically, atoms represent vector elements of an overcomplete
representation dictionary. Commonly, the sparse representation is asxmpgied version of the
original i.e.,y ~ Dx with the maximal representational error|gf— Dx||, < €. An error constraint
boundary is set with the value ef The divergence from the exact signal valjuean be measured
with the deviation formp = 1,2 and~ where for the proposed work we emplgy= 2. Sparse
representational coefficients of sigyadre held within vector.

Recent years have brought a considerable number of dictionaryriganethods where the so-
calledSparselandnodel [2, 13, 14] has led to numerous state-of-the-art algorithms feradmage
processing problems [13]. Instead of sparsifying the full im¥ge R°*P and implementing global
modelling, focus is shifted to a local processing where an imaggebroken down into a set df
extracted patcheg = [y;y»ys...yn] € R which are in turn sparsely represented.

Typically (but not necessarily) as already stated, it is assumed that @igtiDris overcomplete
i.e., the number of its basis vectors (atoms) is greater than the original sigina¢asion K > n). At
first glance, havingK > n and a full-rank matrix dictionarp can lead to an immeasurable number
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of solutions. However, for a practical implementation a single solution is mgstadipg. Thus,
specific constraints are necessary to be imposed within the sparse optimsatitems where the
sparse estimates each denoted aich contain the least number of non-zero coefficient represent
the most optimal solution. These are calculated through the following optimisdijective [2, 13]:

min|x|lq St. Vi {Hy—Dng} <e (1.1)

where|| ||, stands for the so calldg norm used to quantify the level of vector’s sparsity. That is, the
number of its non-zero coefficients:

min||xlo={i:% 0} (12)

Even though finding the exact solution of (1.2) is a NP-hard problem-{@égiarministic Polynomial-
time hard) i.e., combinatorial in nature, many algorithms have been devised ainiag &pprox-
imate sparse representation as a solution. Given the fixed version of tlemalig D and one of
the pursuit algorithms e.g., [15-19] one can estimate madrbontaining sparse approximations
{xi}iN:1 € R for each image patcyy. Hence, a set of weighted linear combinations of a few atoms
in D satisfactorily approximates each paigle Y where the full image approximation is denoted as
Y ~ DX. The applications of dictionary learning [20, 21] include areas sucltaasification [22],
efficient face recognition [23], inpainting [24], denoising [25, 26iper-resolution [27, 28], Morpho-
logical Component Analysis (MCA) [29, 30] and those designed forsspeolour image processing
[31, 32].

1.2 Stages in dictionary learning procedure

In order to deliver a dictionary adequately tailored for image procesgplication of interest, in
general, there are few key steps that need to be performed and settir&ven that the dictionary
is not defined by some theoretical model, one needs to train the dictionaryheveata from a
family of signals! which are expected to be used in the actual application. Unlike the prdisgec
dictionaries, trained ones need to be estimated meaning that they requisdexr grember of com-
putations imposing a higher processing load. Subsequently, this foressriation over a training
data structure limiting it to a set of a small patches, that is, low dimensional traimpats. Once the
data gathering is done, prior to training procedure, the dictionary is usnélblised by randomly
choosingK image patches and subsequently mapping them into each atom. Commonly, learning
process is composed out of two main iterative blocks which are perforoEmssively once the
initialisation is completed (see Fig. 1.1):

1. Sparse coding phaseestimation of the sparse coefficient representations;

1 Defined as a set of signals with specific mutual property.ulsioh or intersection of signal’s families is
possible. For instance, the set of animal-image-patchesuibset of real-image-patches.
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2. Dictionary update: estimation of the new dictionary elements i.e., atoms.

The way in which these two stages are implemented will depend on the type optingsation
objective settings. Sparse coding (with fixed dictionary) is defined las’aegularised problem.
Thel, employed norm and the correlation level of dictionaries column determinessimople or
complex method is necessary for the estimation of the sparse coefficientexample, withlg
norm which counts the number of the non-zero elements greedy algorittumas(il6-18, 33, 34]
representing various versions of matching pursuit sparse codingischéll be the best processing
choice. However, when using the (3 |x|) norm which measures the absolute sum of the sparse
coefficients, one of the best pursuing schemes are:

« For dictionary which basis vector elements i.e., atoms exhibit low correlatiodesimgthods
such as [35] or [36] are very effective;

» More often, the learned dictionary atoms will be correlated calling for mophisticated
methods such as basis pursuit [15, 37, 38] or so calido[39], just to name few.

This process can be viewed as a nested minimisation problem where spdiisg epresents a
minimisation of the number of the non-zeros elements in the sparse represenfajiven vector
for a fixed dictionary. However, high quality sparse representatioartigoon the dictionary update
scheme. Many were proposed where ones that have shown to havghastiimpact are:

» Method of Optimal Directions (MOD) [40, 41] - among the oldest dictionagriéng pro-
cedures, with a few alternating iterations converges to the desirable sdytisolving the
guadratic posed problem;

e So called Online dictionary learning [42, 43] where new atoms are geuexéa block-
coordinate descent methods using stochastic approximations free ofgiarauning;

» The K-SVD [13, 19] is the learning procedure with atom update basddeo8ingular-Value-
Decomposition (SVDXK times repeated once for each atom.

Focus of this thesis is placed upon the design and use of the data-diitiematies forscal-
able sparse representations and reconstructions. Specifically, a prededaroposed for learning
a dictionary capable of adapting both to a specific dataset and providinfjeitsivee scalablere-
construction. Current work oscalabledata recovery is only based on the conventional predefined
dictionaries such as Discrete Cosine Transform (DCT) [44]. Thusfingethat it is important to
offer an alternative one in a form of an adaptive dictionary sparseseptation. Given that natural
signals such as images are composed of meaningful and distinguishatidé fspguency structure
(i.e., low and high frequency components) we go further by exploiting #wtand incorporating it

2For vectorx € R" thelp, norm is defined afx|| = (3], |x|p)1/p for p> 1. In addition top norms there is
a pseuddy norm denoted alx|| defining vector’s number of a non-zero elements.
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into the dictionary learning scheme. In this work we mainly aim to reveal the fiatand effective-

ness of dictionary tailored to thezalablesparse representation. By introducing novel constraints to
the dictionary learning optimisation objective problem, we derive a completeigl sparse coding

data model. The proposadalablesparse training scheme is tested on real video sequences and also
on natural images sets.

1.3 Motivation

In modern video broadcasting networks, an image or a video source sitsed to numerous
clients with various receiver characteristics. These consumers diffeaply in accessible:

* Channel capacity;
* Display resolutions;
» Computing resources.

The interesting question is how to support and deliver a controlled qualiteafisplayed data over a
wide range of applications that differ in the user’s equipment heteritgeo@mmunication channels
and QoS demands? It would be appealing somehow for a video or an imagétsidpe processed
in a such a manner that would enable its optimal usability by all diverse clientseample, the
limited frequency space shared by mobile video streaming users woulddmivesfy exploited by
a genericscalablei.e., progressive data reconstruction such as proposed here. dBedbis type
of data reconstruction would potentially cut down the internet related eggen countries such as
South Africa where users are not entitled to the unlimited access to the interreeset monthly
payment. Instead, residents of South Africa have to pay for contertbyperwhich is extremely
expensive for people living in the third world country. Thus, implementingirmdled quality data
display i.e. scalabledata reconstruction would enable South Africans to enjoy more flexibly igttern
access for same amount of money. For instance, an internet user in aéhiddcountry would be
provided with several downloading options in terms of quality of displayea giging him or her a
control over the used internet content. This would be achieved by apptyogressive reconstruc-
tion framework on the source signal prior to its transmission, thus proditsiagaled representation
form. Once delivered at the client side e.g., in South Africa depending tecitwical specifications,
signal would be restored at different quality levels. Thus, signal’®derscalability is desirable
in many applications since it will be able to support heterogeneity in usewpmgnt, QoS de-
mands,communication channels and cut down the internet related expéfesesplore the problem
of scalablereconstruction within the adaptive sparse image or video representat@mntpe trained
representational dictionary.

Furthermore,the notion of data representational scalability combined togétheghe adaptive
sparse data representation could be effective for tackling the astroalaiata processing. One of
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the main challenges in terms of processing space data e.g., solar imagesdsfer mvagious types
of data processing approaches and combinations of various analytitraleformation due to the
heterogeneity of solar images and a high range of solar features tredy lliffer in the level of con-
trast and sharpness. For instance, denoising of astronomic imagesdétbeegreatest challenges
since, whether secured from telescopes, satellites, or other imagingsl@aguired images suffer
constantly from the ubiquitous presence of noise. Thereby, gaininggepunderstanding of what
is seen can be extremely difficult. In order to reduce the noise compomeiirth@rove the scientific
guality of the data which are subject to further analysis, a denoising stepries mandatory pre-
processing scheme. The denoising performance directly influeneesieghess of any further astro-
nomical data processing task such as contrast enhancement (CEl Qhis serves us a motivation
to take an alternative and more robust approach by adaptimgblesparse signal representation to
the solar image.

1.4 Contributions of the Thesis

This thesis makes following contributions:

1.

It tackles the problem of creating a novel dictionary training procedaifored toscalable
image restoration, offering a novetalablemodel for data that admits sparse representation
given that this kind of sparsscalablerestoration model (to the best of our knowledge) do not
exist;

. As a solution to thecalableimage restoration problem, this thesis provides in Chapter 3 a

new extension and upgrade of the K-SVD dictionary learning concept fion-scalable to
scalableadaptive image reconstruction by introducing for the first time semi-randotio-d
nary initialisation based on the MCA activity norm [13] and the regularisatidheolearning
dictionary process over its elements i.e., atoms. This is based on the integfatien-d/S
perceptual mechanism features.

. It establishes, discusses and shows practicality of new connectbmedn adaptive sparse

training dictionary method and spatial high and low image frequencies. Thiade pre-
serves main structural information of the image and its contrast which issegdsr effec-
tive scalableimage restoration (Chapter 5);

It provides the general outline of tisealablereconstruction mechanism for data represented
via trained dictionary and appropriate sparse representation togethetsiggiecific applica-
tion for various image processing problems (Chapter 3 and Chapter 4);

It demonstrates the processing effectiveness of the propasdablescheme for both com-
plete and overcomplete dictionary versions in Chapter 4. This is not theadtsthe non-
scalable K-SVD dictionary training schemes which performance depeantte mvercomplet-
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ness notion of the trained dictionary. Given that compsetglabledictionary is well suited
for the scalableimage restoration we promote it asealablerepresentational basis;

. The proposedcalabletraining design enforces novel spatial frequency distribution as a built-

in feature over trainedcalabledictionary. That is, it establishes novel allocation and distribu-
tion of spatial image structure i.e,. smooth and texture information within atoms of thedra
scalabledictionary.

. Itextends and applies the proposedlabletraining scheme to denoising of Gaussian additive

noise in Chapter 3 and Chapter 5 where the processing complexity of eomeal is opti-
mised by removing sparse coding dictionary stage and utilising SVD for the naisiction.
This is possible due to emphasise of the high frequency image information utiiskirong
the dictionary training process over the noisy image;

It extends and applies the proposs@dlabletraining scheme to CS where typical CS setup
is altered given that we employ trainedalabledictionary for signal’s representation instead
of predefined one i.e., analytic. We provide an alternative and novetli& e which joins
the training of the complete and regularisszhlabledictionary together with the CS image
sensing in Chapter 5.

. Chapter 6 represents the practicality of the propasediabletraining method for the solar

image processing applications. We introduce an extension of the sppresaetation with

the scalabledictionary learning concept to denoising solar images corrupted with a mixture
of pixel-dependent Poisson noise and white Gaussian noise. Unlike ipte€Zhbscalable
denoising is carried out within the Anscombe transformation domain. Thugrepose its
additional modifications;

Finally, Chapter 6 shows a novel extension of the integrated coetrthancement technique
originally proposed for curvelets in [45] to tlsealabledictionary learning approach. Specif-
ically, we illustrate a development of an universal joint contrast enlmentandscalable
denoising algorithm for solar image data. This algorithm aims to achieve featreetion in
different solar image types while minimising the processing complexity by takingrasge
of the completescalablesignal representation.

1.5 Organisation of the Thesis

The organisation of the thesis is as follows:

Chapter 1 describes the research objective and motivation together wittigimal contributions
that are presented in this work.

Chapter 2 provides a detailed review of the most important prior models in intagegsing
followed up with the existing work in pursuing methods based on sparsity inglmoirms which are
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the core of various learning dictionary methods. These are presentedgether with the analytic
dictionary representation approaches for image signals. In addition,lkvaldaut special signal
sensing method i.e., CS which represents one of the important processingdmétised on the
sparse signal representation. Finally, the list of various objective imagi@éygmeasures is given.

Chapter 3 establishes the foundation of the propaesathbledictionary learning aiming to sup-
port thescalablerepresentation of various video sequences, natural and astronomgsintégye we
provide a detailed problem statement of imagelablerestoration via sparse coding and proposed
approach for addressing it. Furthermore, we provide a general ouwffittee scalabledenoising
scheme and all accompanying modification addition, we illustrate an overvielv8fand its main
properties given that introduced design models HVS within the learning efabe scalabledictio-
nary.

Chapter 4 shows the effectiveness of the introdusealabledictionary learning scheme for
general imagscalablerestoration. Here we provide detailed explanation of the general simulation
setup and complete list of employed parameters. All stegsalfblerecovery procedure are shown
with achieved performance afcalablerestoration given several test video sequences and natural
images.

Chapter 5 centres around practical applicability of the propssatibledictionary scheme and
how it can be used for various restoration problems. In particular, esepiscalabledenoising and
CS performance once the integratiorsoélabledictionary is performed within these two procedures
replacing commonly used the non-scalable representational basis. hasthgdress the series of
guestions concerning the structure and processing effects of thesgwpesign.

Chapter 6 introduces the novel denoising and contrast enhancemaweeifork for solar images
corrupted with pixel dependent Poisson and zero-mean additive whitgstaa noise. Both process-
ing schemes are build upon the proposedlabledictionary training scheme.

Finally, Chapter 7 presents the research summary together with detailegstogg for future
work. All references can be found at the end of the thesis.






Chapter 2

BACKGROUND AND LITERATURE
REVIEW

There is a great deal of research on prior image modelling in the sigradgsing literature offering
various mathematical formulation for natural images. This chapter provick$eav of earlier image
prior models in Sec. 2.1 such as probabilistic, adaptive and sparse. Tdiliewsed by Sec. 2.2 which
introduces in detail essential elements of sparse based signal modellingarsitysinducing norms
and pursuing methods used to estimate sparse signal representatioB.3%ew Sec. 2.4 provide
detailed overview of analytic pre-specified mathematical models of imagexantpke-based train-
ing procedures, which core design revolves on providing sparsal basmge representation. One of
the very significant roles of sparse signal decompositions is given ireSewhere we overview the
compressive sensing i.e., joint sampling and compression scheme. Finall@.&eeviews several
objective image quality methods commonly used for image quality evaluation antfipadion.

2.1 Prior models in image processing

The effectiveness of signal processing applications directly depgmmdsosen prior models and their
ability to faithfully capture and represent structure of a specific signaitrsly. Thus, prior models
play an importation role for recovery of acquired and sampled signals whitimonly contain:

* Noise;
» Obscure or missing sensor data or;
» Any general type of uncertainty introduced within original data.

These distortions often make restoration of original data to be almost infeaditowever, such
problems can be addressed with introduction of proper mathematical prialsnatlich integrate
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additional constraints on solution by imposing prior knowledge or assumptiotise expected sig-
nal’s structure. For instance, in some subset space of signalN these constraints will define the
type of the recovered information i.e., another subset (family) of signas €. This implies that
only relatively small space within th@ will be relevant for restoration process.

Utilising the knowledge of scarce signals distribution for data of interestRNaepresents the
core of all signal processing techniques employed for the enhancam&iotation or representation
of signal data. Some examples of specific signal families are natural imagdis, gata, video
sequences, biomedical and neurological signals, space and sdias [goanned info and many more.
These signals are distinguished from one another through their asdquietemodel representing
an approximated mathematical description of the one signal’s family constinotey to separate
it from the remainder of) subset space &\. Thus, the principal aim of the signal modelling study
is to capture the behaviour of real data by constantly improving and cresimgnd more accurate
designs of signal prior models.

One of the most essential prior models for images are probabilistic onegy atik in 1980’s
[46] followed by alternative regularisation methods e.g., deterministic orje DL€ to the complex
nature of, for example, image data, probabilistic modelling was subject tdacingfinement to
the present day. This resulted in a strong framework tailored to incdgpeaaious sources of in-
formation providing meaningful outcomes. In the last decade, image esmamt algorithms have
increasingly made use of general image gradient statistics through paraietr of generalised
Gaussian distribution [48] or a mixture of Gaussians [11, 49, 50]. Theseble to capture and
model the natural images properties such as existence of spatial smeatbn&sning regions with
sharp edges which lead to a heavy-tailed gradient profile. In the eadanmeh and in some recent
work model distribution parameters are manually set and fixed over wholesithag, enforcing
identical image prior [51, 52]. However, different texture regions witthiea same image exhibit
different gradient statistic [53] suggesting that imposing one image prargiven image is not the
most optimal solution.

Adaptive image prior models various local levels of image structure and ésxéurhancing the
quality of restored image. As a result, they introduce more accurate prieafih existing image
texture [53, 54]. This is achieved by learning image priors from trainirgrgdes which characterise
specific information about the natural image subset of interest. Overall gl is to discover an
underlying source of a visual scene [55]. However, learning the peq distribution to account for
the signal’s behaviour, represents an immense processing problenus4):

» Complexity of images;

Their high dimensionality;

Complicated relation between pixel values;

* Non-Gaussian nature of the natural image [56-59].
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Some of the successful image modelling examples are the Fields of Expé&i} gefdemes [60, 61]

which efficiently incorporate non-Gaussian statistic behaviour of imagecifsglly, FOE gener-
ate filters suitable for denoising and inpainting [60, 61]. Core of the FOEeftiod design are

either parametric, student T distribution for the potentials defined on filteutsfp0] or high-order

Markov random field (MRF) training [61]. Overall, these and similar techegproved that in gen-
eral, a far better performance can be achieved with learning rather ittathes predefined methods
for prior models.

Back in 1990 a completely new area of image processing research eniemgeldicing com-
pletely new concepts for learning of image based priors. These new mgddiias were based on
the mammalian primary visual cortex functionality principles, the so-called tiwedfelds studied
first on animals by [62—67]. Main efforts of neurophysiologists werested in understanding func-
tionality principles of hierarchically ordered visual cortex areas startiitly striate cortex\{ 1) and
followed up by extra-striate visual cortex ar&é3, V4 [66]. AreaV 2 shares a long physically border
with V1 where the mapping of the visual field onf@ represents the mirror image of thd map
[66]. V2 area provides an input f&f4 which contains many colour selective cells with complex
spatial and orientation tuning. In particular, many different experimettingts have been made
to account for the properties of the receptive field¥ hresulting in a physiologically description
and characterisation [62-67] ¥fL area as:

* localised- cell’s response to visual stimuli happens in a confined and restrictee spgion;
« oriented- organised subfields of cells are elongated along a specific direction;
» bandpass cell’s response is restricted to bandwidths in the range of 1 and 2 octaves

This implies that visual cortex have evolved to efficiently capture and septevisual scenes with
V1 receptive fields cells exhibiting primarily these three response propettispired with these
findings, computer vision researches have invested a great deébuftefdesign coding strategies
for visual scenes using the characterised structure of natural imadesionally, aim was to attain
greater insights on cortex visual processing especialylmarea [12, 68, 69]. The research was
focused on delivering basis code for image representation denoeditls basis functionsl; while
utilising unsupervised learning tools. The proposed basis code woulkdwstlibe similar to the
response characteristics of the biological receptive fields cells [{0HBvever, none of them suc-
ceeded until Olshausen and Field suggested new coding approaé&h fitpioting algorithms that
learn sparse image code. The core of their approach is estimation of thal iraage representation
denoted withX where each elememnt € X in [69, 74] exhibits maximal sparseness. Discovery of
this sparse code was based on two global objectives defined for the @piimiproblem:

1. Preserve image information by measuring the dodielelity of its image description;

2. Control sparsity degree of the image representa{i@md its relevance in relation to the first
optimisation objective.
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X; image will be represented by a small code elemenk; activity; most of the
number, that is, sparsely represented. time elements are inactive

Fig. 2.1 Visualisation of image sparse coding and code elenvaetivity (adapted from [1]).

Results of solving this generally outlined optimisation challenge showed thattthe®bjectives are
sufficient and necessary for generating representational basitoadtiised orientedandbandpass
code members; similar to those typically found in the mammalian primary visual cortex [1, 12].
The trained code basis could stay fixed for different natural images thhe same family of signals
since well designed code will span complete image space. In contradiciere$x; should stay
statistically independent as much as possible [72] over the space spaitheéde code while dy-
namically changing from one image to another. Thereby, in accordancttmation theory [73],
the image information is preserved with coefficients which exhibit significaptlyced statistic de-
pendency. The nature of coefficient values is described in [1, IRjllastrated in Fig. 2.1 showing
their unimodal probability distribution peaked around zero (see Fig. 2This implies that most
of the coefficients values will be inactive (see Fig. 2.1a) where only fenuaed for sparse image
representation. Thus, the image inherent structure is going to be captiiheal small number of
statistically independent events [69], that is, basis functions. Specifibasigpwas set on employ-
ment of the various sparsity inducing norms aiming to achieve as sparsesaisip@nd high quality
image sparse representations.

2.2 Sparsity inducing norms and pursuing methods

The concept of sparsity prior gained a great deal of interest oncecdrbe clear that it can be
employed as an additional regularising term for many ill-conditioned problemarious areas of
electrical engineering, statistics, and applied mathematics [2, 75]. Bemirttbduction of sparse
approximation problems, undetermined systems of equations sutk as with: (i) A full rank
matrix A € R™™ (n < m); (i) Observed signab € R"; (iii ) Unknown signalx € R™; seemed to
be unsolvable with infinitely many possible solutions due to the (number of eqiafimumber of
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Fig. 2.2 Variations ofx|P function for different values of sparsity norm definipgariable.
For p~ 0 or p = 0 |x|P exhibits the nature of the counting function turning intc®x = 0
or 1 elsewhere (adapted from [2]).

unknowns) relation. For any undetermined systems of equations, odirifaly many, a single and
unique solution is the only practical outcome. The single solution was possiat&aio once a new
i.e., sparsity measuring norm was imposed on the type of the solution nature.
In general, the optimisation problem for estimation of some unknown veatan be expressed
as:
min |X||,orm SUbject toAx = b. (2.2)

Before the discovery of sparsity norms, quite often these kinds of iexaerd regularisation problems

in (2.1) were addressed by introducing square norm|jxé,. The role of this so calley Euclidean
norm [76] is to control the energy of the unknown solution vegtddue to its simplicity and convex
nature of optimisationl, norm was extensively used in many engineering areas resulting in unique
and nonsparse solution, that is with many non-zero entries [13, 76,T§kKhonov regularisation
[78], for instance, is most commonly employed for tackling linear inverselpros such as (2.1).
However, it was shown that many problems can be solved by assumingiafpaidhe final solution

is sparse. This led to introduction of the sparsity measures [79] and nor(@slinreplacingl,
energy one. Thus, the optimisation problem (2.1) is turned into estimation of tkienally sparse
representatiow of the observed signal [75] as:

min |[|x||, subject toAx ~b. (2.2)

where now norni|||, : R" — R represents a counting function for the estimation of non-zero com-
ponents of its argument Unlike the energy nornp which is convex in nature and can be easily
solved by applying many different standard convex analysis algoritharsyjmg exact solution of

l|lo norm (i.e.,lo norm) turns up to be an NP hard problem combinatorial in nature [80—-8%.dD

the offered solutions was convexification of the solving approachfoorm, that is introduction of
thel, norm denoted ax||; = ¥ [xi|. This redefined sparsity norm leads to the satisfying and unique
solution whenevex is sufficiently sparse.
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In general, there are various sparsity measures that can be useslithessanplesty norm which
provides clear definition of the sparsity notion, but as already stated i®drail problem. Instead
of using strondo measure one can resort to weaker sparsity norms denotgavagch quantify the
trade off between the non-zero entries and ltheenergy of the signal’s reconstruction error. For
0 < p< 1thisis estimated via:

I\, = SupN (&,x) - £P 2.3)
e>0

wheree limits the maximal number of non-zero entries aXde, x) is the number of entries ir
surpassing. This kind of weakl, norms are commonly preferred by the mathematical analysis
groups. However, they also represent a non-convex optimisatiotepnoBurthermore, for ¥ p <

o there is a different definition df, norm given as:

m 1/p
IXll, = (z mp> . (2.4)
K=1

For all introduced, norms in (2.3) and (2.4)g represents their boundary case wiger O:
- p - m p
Il = fim I = fim > xd®- (2.5)

As p approaches zero, the scalar weight functimg® turns into counting function of non-zero
elements irx. This is graphically depicted in Fig. 2.2. lllustrated nature of varlguerms provoked
many questions concerning whether it is possible to compute and recamse sgplution, can it
be unigue and if so, under what conditions. Many theoretical studiesrddrate that if the final
solution is sparse enough there are pursuit techniques which can estif8ates] or at least arrive
to its approximated version [86, 87].

The analysis and measurement of both the sparse solutions plausibility ignéngss together
with the pursuit algorithms performance is carried out via estimation of:

1. Spark
2. Mutual Coherence

The former one denotes the smallest number of columns in mAtibe., sparkA) [2, 13] that
are linearly dependent [38]. The significance of this measure for thdatian and evaluation of
signal’s sparse representation was especially emphasised in [88].velpwalike the rank of the
matrix A which represents the largest number of the linearly independent colwalos)ation of
spark demands combinatorial search tools. Thus, estimatiospafk{A) is an NP hard problem
calling for an alternative and simpler but still effective measure of spassequality and uniqueness
[2, 13]. One of the very simple approaches is the later one i.emtiieal coherencf83, 38, 86, 89]
defined as the maximal absolute product between two different normalseiddements of a matrix
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A or atomsd; andd; of a representational dictionaBydenoted ag((D):
u(D) = m#aX}ddej | (2.6)
i#]

For example, any orthogonal matrx has themutual coherencequal to zerqu(A) = 0. But in

the case of overcomplete matrices (commonly used in a sparse researchritynthis value will
inevitably be greater than zero i.¢((D) > 0. Well designed dictionaries will haye(D) close to
zero, as much as possible, resulting with a unique sparse decompositamyfsignal at hand and
avoiding representational ambiguity [2, 13]. Furthermore, by estimatiayal coherencene can
also approximately assaparkvalue by using this rather simple relation between these two terms
[38]:

spark(D) > 1+ “(1[)) (2.7)

Usingsparkandmutual coherenct evaluate effectiveness of algorithms used for solving sparse ap-
proximation problems is of great importance given the non convex natunaigy sparsity measures
[87].

There are several major classes of effective computational techrigsegmed specifically for
estimation of sparse representations. The most popular are greedit filL8s19, 33, 34] for solv-
ing lp norm and convex relaxation methods [15, 37, 38] addressing; therm type of solutions.
The greedy strategy is the simplest one given that the estimation of the appted sparse signal
representatior is formulated as series of inner products of the observed diganadl elements of rep-
resentational basi&. Specifically, Orthogonal Matching Pursuit i.e., OMP provides approxithate
solution for one of the two optimisation problentise sparsity constrainesiparse coding problem:

i:mxinnb—Axug st. [|x[lo < To, (2.8)
or for theerror constrainedsparse coding problem defined as:
X = min|x]lo st. b —Ax|3 < &. (2.9)

To parameter sets the upper constraint for the total number of non-zerontteiméhe approximated
solutionX while € stands for the representational error threshold. For any of the gp@misation
problems (2.8) or (2.9) the main task of the greedy OMP algorithm is to calcukatgpiroximated
solutionX. Given the input parameters matrxwith elements{a;} ;, observed vectdb and one
of the stopping criteria parameters i.&,0r €, the OMP greedy procedure is given as:

1. INITIALISATION:
» Set iteration counter to zemmunt= O;

« Set the initial solutiox® = 0;

« Set the initial residual® = b — Ax® = b%;
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« Set the initial support set (i.e., indices sétfx°) = 0;

2. ITERATION PHASE - for each iteration incremecauntby one and:

Greedy selection step: find the elemagexhibiting the highest correlation to the cur-
rent residual ak := maxc|agr|;

« Update support set 4&°unt — count-1 -

« Orthogonalization step: project sigrato the space spanned with the selected elements
in 1°€°" and compute currenU™ = A%, .b;

+ Update residual as©u" = p — Axcount

« Stop if |[reeunt| < g or [|[xeuN| | =T

Thus, the elementsg; which are most suitable for sparse representation are chosen in safuen
order where finallyb will be represented as a linear combination of at misélements fromA.
We can directly see from the algorithm’s setup that instead of promoting stihasearch, OMP
[16-19, 33, 34] starts in stag®unt= 1 with the initial solutionxg = 0 and initial representational
residualro = b. For every sequential stageount= count+ 1) the criteria for choosing matrix
element that will join sparse representatiorbodre based on finding the maximal projection onto
the current residual adding the indef newly chosen elemers to the support secoun. After
estimating the current sparse approximatié?t™ the residual is updated for the next iterative stage.
Stopping rule is either defined via predetermined number of afipni®.16) or by achieving some
predefined representational ereof2.9). The implementation of OMP is simple making it one of the
most appealing pursuit algorithms.

Another way to approach the search for sparse solution is by regtiamisd thelg norm using
its continuous or smooth approximation sucH-asorm which is its most efficient convex approxi-
mate [2, 37, 90]. Solving the problem withsetup is addressed via linear programming (LP) tools
[2, 35—-38]. These algorithms are able to reach the global solution gia¢sparse pursuit becomes
a well-defined optimisation objective ontenorm is introduced. Alternative methods for solving
thel; optimisation objectives are provided in a form of iterated shrinkage algorifain®2] with
setup highly similar to that of OMP.

2.3 Analytic Dictionary Design

Data can be modelled with an analytic representation formulated as the peedefathematical
model. Unlike representations established via trained dictionary, the analgtigsentational struc-
ture is fixed aiming for efficient and reliable data approximation and reptatsen [93]. This kind
of dictionaries are commonly characterised with well defined structure taaigg forward, fast
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implementation. Given that these bases are defined as a specific trarigforinea a set of transfor-
mational functions, they represent implicit dictionaries. Specific exampée®/avelets [5, 94, 95],
Curvelets [7, 8, 96], Contourlets [8, 9], Bandelets [97, 98].

Wavelets provide an efficient image multi-scale representation which cagturecovers impor-
tant high frequency information. Thus, wavelets are employed to soleugaproblems in image
processing [5]. The basis wavelet functions are scaled versionipogtiealled mother function [94]
which form is not defined a priori and depends on the particular applicafitarting with continu-
ous and advancing with discrete wavelet transform [94] wavelets heameibtroduced in all areas of
signal processing. One of the greatest impacts happened with introda€ti®tEG 2000 [99, 100]
compression standard which incorporates wavelet algorithms. Furtheroemoising is based on
the unitary wavelet coefficients generating well known shrinkage algosifli01-104]. Next, there
is wavelet based super resolution [105, 106] which represents theekmlution images by relat-
ing wavelet coefficients to the desired super-resolution image. Intergstpace research exploits
wavelets for the representation and processing of the astronomical ifi@gés

One of the recent wavelet based denoising techniques is so called catiabdiltering BM3D
[108-110], an effective tool for removing Gaussian noise fromugaied natural images. The method
is based on processin@Jatch arrays (“groups”) formed out from similab2mage blocks. Given
a reference block (i.e., any block in the image), the method uses a block ngagiiroach to group
the reference block with any other satisfying the condition of high mutual sityilgx predefined
dissimilarity threshold). After constructing tleenumber of ® arrays, noise attenuation is done by
hard tresholding coefficients obtained via th# ttansform of the grouped blocks. Fast and efficient
implementation of the algorithm [108] is achieved by utilising the wavelet tramsforer the ®
patches arrays. The second time when transformation is repeated, ther filtening is exploited
in transform domain to remove any residual noise. Subsequently, thesimwvagivesn estimates
submitted to the aggregation block which restores the denoised image. BN\p&itex high degree
of similarity among image patches (i.e., formdd &rray [108]) where the) transform is able to
highly sparsify the content of the true signal in the transformation domaiis. rékults in effective
separation noise from image throughout shrinking.

New multiscale image representations such as curvelet [7, 8, 96], consd8rl8], bandelets [97,
98] and directionlets [111, 112] have emerged as an answer to limitingntiespef the wavelet-like
systems. Some are a fixed number of the directional elements in wavelet lolegisrident of scale,
highly lacking in anisotropic elements. This restriction is especially evident withésiaontaining
objects that do not display isotropic scaling [113]. The new range of maliigcansformations
(i.e., curvelet, contourlets, bandelets, directionlets) exhibit very higletitreal sensitivity and are
considerably anisotropic. The curvelet transform was a breakghrmuthe harmonic based signal
analysis by being able to represent 2-D piecewise-smooth functions viasowrve discontinuities
at an optimal rate [14]. Specifically, for curvelet basis one can defgmeaific location, orientation
and scale. Unlike wavelets, they are localised along curves over aragtoingjliptical region while
exhibiting oscillatory characteristics along region’s width and smooth oneg #f®length [14].
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One of the state-of-the-art methods [45] for contrast enhancemastrohomic images is based
on the multiplication of the absolute curvelet coefficient vadwdth themodification functiony(|x|)
defined with (2.10). Given that curvelet transform is well-adopted toessmt images containing
edges one can achieve better understanding of image content by egtitsctimain features where
pixel values are transformed via curvelt transformation. Given a noisyemis standard deviatiam
and its curvelet transformation, one can define the transformationa fantpe curvelet coefficients
Tmin and Tmax i.€., the thresholds where the following modification will only enhance edgein th
image without amplifying the noise or the largest coefficient (representmgttbhngest edges) [45,
114]:

1 if X< Tmim
, p . .
X—T-r::ln g}m) + % if Tmin < X < 2Tmin,
ye(X) = i . (2.10)
(ﬁ) if 2Tmin < X < Tmax
1 if X > Tmax

The lower boundTyin is defined as at leasttimes larger than the noise standard deviatrior
each sub-band decomposition leyd#5, 114]. Thec is set within the range 2 ¢ < 6. The upper
bound, Tmax IS either set tdlmax = Kmo (Kn is heuristically set to 10 [45, 114] enabling transform
of all coefficients that fall under 10 times signal-to-noise ratio) omtgx = Mcl whereM is the
largest curvelet coefficient within each sub-band of the transfordthl an1 [45]. The degree of
transformation nonlinearity is controlled lyyset to 0.5 in [45]. The algorithm is derived from a
similar wavelet-based contrast enhancement method [114].

One of the challenges with curvelet application is their discretization leadingriocomplex
algorithms. The introduction of contourlets [8] bypassed these issues ilag many similar
characteristics as curvelet with one main difference. Instead of beiiigeddan continues space,
they are directly provided in discrete one simplifying algorithms intended forgpeesentation of
discrete signals, bringing low computational complexity and lower redurydaDontourlets were
firstly introduced by [8] and later improved with [9] and with its multi-dimensionaifiation i.e.,
surfacelets [115]. The core of the contourlet transform implementatiomlgepyramidal band-pass
image decomposition which is subsequently subjected to a directional filtedBy [1

Bandlets were introduced to compensate for the lack of the adaptivedranaion given that
curvelet and contourlets are non-adaptive transforms [97, 98]. [M&atus is on identification of
geometric regularities within the image divided into dyadic regions of compal@aécomplexity.
Some of regularities are edges and directional occurrences negckssadaptive optimisation of the
bandlets basis to the image. The final dictionary contains atoms which are kgt dafor given
image representation.

Lastly, directionlets represent a multi-directional and anisotropic tramstoeated to address
problem of standard wavelet transform [111, 112]. That is, its inabilitprvide sparse repre-
sentation of image’s 1-D discontinuities such as edges and countersti®ilets are effective in
capturing a geometrical coherence of these objects by matching them witspanding anisotropic
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basis functions. For instance, they can be employed for image compresslatirectional image
interpolation [112].

2.4 Dictionary Learning Design

Designing dictionary training procedure for sparse signal reprets@maequires trade off [93] be-
tween two opposite aims:

« Optimising and reducing computational complexity of dictionary’s training sehe

* Achieving satisfying adaptability to different signal’s family which requicesplex learning
process.

The later goal is highly influenced by pursuing methods described in Sed ey represent the core
of the learning sparsity-based processing methods and are geneealygtetised with costly signal
computations. Still, these are to some extent simplified by incorporktiagd|, sparsity measures
leading to more efficient and less complex dictionary training [2, 14]. Onttier tiand, the analytic
approach for signal’s sparse representation (Sec. 2.3) providédeaveriety of dictionaries with
fast implementation overcoming complexity issues of learning-based ahy@smadowever, in some
cases their predefined nature limites them in terms of achieving full adaptabilitydresentation of
various types of data. Thus, the alternative for sparse signal eegged®on formulated as a dictionary
training, based on a set of examples, is necessary to address sonmsedirttigtions.

A critical factor for significant improvement of many image processing agpdios is an intro-
duction of the adaptive sparse coding paradigm [1]. It relies on thevgston that signals (e.qg.,
natural images) admit a sparse decomposition over a learned represetthtsis (dictionary).
These types of trained dictionaries i.B.,c R™K, integrated together with the sparseland model
[2, 13, 14], has led to numerous state-of-the-art algorithms for deweage processing problems
[23-28, 31, 32].

Commonly, the representation of imayec R**P, is broken down into a set dfl extracted
patches{yi}iN: 1 € R" which are in turn sparsely represented. Typically (but not necesksirily
assumed that dictionafp is overcomplete i.e., the number of its basis vectors (atoms) is greater
than the original signal’s dimensioK (> n). Given one of the pursuit algorithms e.g., [15-18] and
a dictionaryD, one can estimate matrix containing sparse approximatio{vs}iN:1 € RX for each
y;. Hence, a set of weighted linear combinations of few atoni3 satisfactorily approximates each
patchy; from Y denoted a¥ ~ DX. The applications of dictionary learning [19, 20] include areas
such as classification [21, 22], efficient face recognition [23], infam [24], denoising [25, 26],
super-resolution [27, 28] and those designed for sparse colour ipragessing [31, 32]. Among
the most popular learning methods we can find the Method of Optimal Directi@®j, Online
Dictionary for Sparse Coding, the K-SVD algorithm and several more.



22 BACKGROUND AND LITERATURE REVIEW

One of the first methods that have introduced adaptive sparsificaticegganto signal repre-
sentation is Method of Optimal Directions (MOD) firstly introduced in [40, 4YJOD carries out
dictionary learning by utilising th& sparsity measure. However, the defined optimisation problem
is not the most effective given its combinatorial and non-convex naflinégs leads to, at the best
case, a local minimum solution while altering between krgparse-coding method and dictionary
update stages defined as a quadratic problem solved via the Moomms@gseudo-inverse. Even
though the solution convergence takes only several iterations, the ddevofshe MOD method is
demanding matrix inversion and its high complexity.

Unlike classical batch dictionary learning algorithms which in each iteratiod teease whole
training set, the work in [42, 43] introduces an online dictionary learniogguiure. It is able to ef-
fectively handle great data sets composed up to million training samples bgsping small subset
of these data instead of the full batch. Optimisation problems with these largeelateommonly
represent a serious computational challenge. In [42, 43] this is adtdxy integrating stochastic
approximations within the dictionary training stages. The sparse codingeés @esd1 regularised
linear least-squares optimisation objective solved via a Cholesky-basedriamikgion of the LARS-
Lasso algorithm [116]. Each dictionary element is updated via means dé-btmrdinate descent
with warm restarts applied to solve the convex optimisation problem leading tdabal @ptimum
solution. Online learning method is successfully applied to inpainting [42 déBlpising and demo-
saicking tasks [117] etc.

One of the most recent and effective methods for training a generic dacyidor sparse signal
representation is the iterative K-SVD algorithm [13, 19] representingnargdisation of the K-means
[11, 118] clustering (i.e. vector quantization) scheme. The link betweese tined seemingly differ-
ent methods have been noted in [119]. In general, clustering can Imedlefs an extreme case of
sparse coding where its training sign{ajﬁ}:\'zl can be represented with only one basis element, that
is, code word{dk}E:1 allowing only single signal atom decomposition. The distance norm used to
assign code word to a sample signdfimeasure i.e., the nearest neighbour assignment. As K-means.
K-SVD represents a two stage iterative method designed to estimate the most optimbook i.e.,
dictionaryD. The first stage is reserved for sparse coding i.e., the assignmerirgteining signal
to its closest code word. The second updates new codebook using aleas of all training signals
that belong to one of the tot#l cluster. However, unlike K-means, K-SVD introduces a linear atom
decomposition of the given training signal with likewise two stage iterativersehistegrating differ-
ent and more complex optimisation objective to better fit the data. The neargbour assignment
and mean value estimation are omitted.

K-SVD's goal is to learn (train) the adaptive dictionary for a sparse imageesentation given
a set of image patches while alternating between sparse-coding and dictigniate stages [13,
19]. Interestingly, during dictionary update step both dictionary atoms page representation are
estimated which accelerates the algorithm convergence. At first, theesmgmesentation of the
original signalYis captured via OMP (Sec. 2.2) that in this case solves the sparsity optimisation
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problem:
rr;(in{HY—DxHé} st. Vi [xille < To (2.11)

given the current estimation of the dictionddywhich is kept fixed during this process. The expres-
sion ||xi||, accounts for the number of non-zero elements in each vectoy the means of thi
pseudo norm as explained in previous section Sec. 2.2. The reptesertaor (i.e., the penalty
term) in (2.11) can be further expressed as:

i—1
|Y —DX||z = % lyi — Dxil| (2.12)

breaking down the optimisation objective defined in (2.11) into N separatsespptimisation prob-
lems for each image patgh.

For the second update stage the optimisation objective is formulated diffet@gn the fixed
sparse matrix and the dictionarp, the second stage updates one athrat a time and all sparse
coefficient entries associated with it denoted<%\,sthat is thejy, row in X. Bearing this in mind, the
representation error can be formulated as:

( ;d> and

Thereafter, K-SVD preforms updates of dictionary element by carrgimgthe SVD [120, 121]
decomposition of the error matrkx; which denotes a representation error ofNipatches without
the atomd; (i.e., aK rank -1 matrix). The SVD’s role would be to calculate the closest rank-
1 approximation of theE;j, thus reducing the overall error value. However, this approach would
result in new and non sparse veckérrsince there is no sparsity constraint introduced during SVD
estimation. This is solved by introducing new teuy compromising of indices that identifies all
image patcheg; which current sparse representation includes atgm

IY —DX|2 = - _HE, di XTH (2.13)

K
Y - z deT
k=1

wj:{i|1§i§K,ij(i);£O}. (2.14)

Usingw; a new matrixQ; € R¥* |1 s introduced which entries indexed@s; (i),i) have value one.
All others are set to zer®; is used to redefine the optimisation problem in (2.13) via multiplication:

[EiQi—dpd e = [Ef-dp&

[ (2.15)

Multiplication achieves necessary shrinkage whéreontains only non-zero entries being reduced
to \wj | size. LikewiseEJR includes only errors of patches which emptbyfor its current representa-
tion. Now SVD can be applied where new valuesdpind each non-zero entry ®f will preserve
the sparsity notion. Afterwards, the newly estimated dictioraig used as the input for the first
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sparse coding stage. Both iterative steps use the same set of overlappinty patches. Once
iterative learning is completed, each signa¥iis given byy; ~ Dx;.

When it comes down to the denoising application the goal is to remove zeroadddive white
Gaussian noise from corrupted natural images [25] where a training setnposed of overlapped
patches extracted from a noisy image. Unlike the purely representatiiendic training [19], the
denoising optimisation problem is formulated as an error-based minimisatio2g]t3,

minxilo st. Vi {llyi—Dx[3} <e (2.16)

The representational erreris closely tied to the noise power’ ase = Cno? [13, 25] whereC is
used as an empirical optimisation constant. Once this phase is finished(spdirsg and dictionary
update), the reconstruction is carried out by averaging all the spdrp#iches aiming to remove
random noise. The relation between the described K-SVD algorithm andrtip@sed work is
detailed in Chapter 3 aiming to emphasise the introduced extension of the K-@\tBefscalable
reconstruction and its implications in relation to denoising.

2.5 Compressive Sensing

Sparse signal decomposition plays an important role in the reconstructiomrpance of the com-
pressive sensing (CS) [15] which addresses the problem of sigrjailfst compression and sampling.
With CS the data acquisition is done below the Nyquist rate [15, 122, 12Rjrdsbas a linear mea-
surement process calculating inner products (measurements) betwesantpked signay and a
group of random vectors denoted ¢g which numberS is considerably smaller than the original
signal’'s dimensiom. This group of random vectors composes the specially designed meesiire
matrix ® € R>" which takes random undercomplete set of samplas= RS (S<< n) asycg= Py.

Over the past few years this framework has gained an increased frgspesially in the area of
image processing e.g., [124, 125], video [126, 127] and medical apphsg128] by introducing
innovative and revolutionary signal processing mathematics. Furthertinerevell approximated
recovery ofy from its random measuremenygg is possible only under the sparsity assumption.
That is, if the source signalis K sparse (compressible) in some usually predefined transform basis
Y e.g., Discrete Cosine Transform (DCT) [44], wavelets [126], colegtef128] etc. If this holds,
we can restore the original signal achieving the satisfactory level tdreg®n quality with one of
the non-linear pursuit algorithms e.g., [15, 16, 18, 129] given &#yO(K log n)[123] number of
samples, that is, measuremggt. This further implies the potential of significant cost reduction in
digital data acquisition. For instance, sampling of a grayscale iMagearried out as follows. The
imageY is considered to be rearranged into column vegterRE (B = b x b) sampled as:

Ycs=®y+e (2.17)
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where each sampigs[k] (1 < k < S S<< B) represents a sum of randomly sampled measurements.
Thatis, a subset taken froyrafter its linear random projection to the space spanned by measurement
vectors® = {qbk}fzl € RB. Due to the nature of the measurement process where we have compres-
sion of the signal at the same time when sampling, a perfect reconstructioa ofiginal signal is

not possible. Thus denotes an acceptable deviation in the representation accuracy. Fuutber
assuming that we can approximagtby a sparse vectorc RB, containing in totaK << B non-zero
coefficients, belonging to some linear transformation dordaimRE*E, we can denote CS as:

Ycs= ®PWx+e (2.18)

The second important concept upon which CS relies in order to obtaistreigmal reconstruction is
incoherent sampling. That is, vector elements of both representatiaiadl sensing basf® should
exhibit low coherence satisfying the so-called Restricted Isometry RyofiP) [123]. [15][123]
show that once RIP is achieved, in theory, the lossless recovery oigthe g from ycs measure-
ments is possible. Thus, given a fixed transform mattiand a random sensing matdxsuch as
zero-mean Gaussian or withl independent identically distributed (i.i.d.) entries, the coherence
will be low hence RIP will be satisfied. However, in practice the retrievaheforiginal signaly
from the condensed dayasis an NP hard problem [15][123]. This calls for non-linear sub-optimal
solutions whose goal is to minimise the following optimisation function:

min|X||,  subject toycs= (¢x, ¥X) (2.19)
X

that recovers being consistent with the sampled data. Commonly, minimisation is performed over
one of two different, normsi.e., eithelp (p=0) orl; (p=1) sinceS< < B [122] data is undersampled.

As stated in Sec. 2.2, the accounts for the absolute sum of non-zero entries per sparse igygffic

lo is solved by some of the existing greedy algorithms previously introducedirSewhich further
detailed summary can be found in [129] whereas linear programming (LPg ioathjunction with

the basis pursuit [123] solvésminimisation.

Furthermore, a small number of recent publications challenge the typicddyG8king into
consideration learned dictionaries [130, 131] rather than commonly disdteeshelf ones e.g., [44,
126]. Results in [131] back up this research direction by putting fonaacheme that jointly trains
and optimises an overcomplete non-parametric dictionary together with thenSigenatrix®.

2.6 Image quality measures

Due to the acquisition procedures, various processing techniquestessign, transmission and re-
production, digital images suffer a high level of distortion. In ideal casaario, the quantification
of visual image quality would be carried out through subjective evaluatimweder, this kind of
guality assessment is usually time-consuming and expensive. This caltsdbjextive image qual-
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ity methods in order to achieve a more comprehensive and time-efficient inuadjey ggvaluation.
Their aim is to develop quantitative measures for estimation of errors visibilitydsa distorted and
original reference image. If the original (distortion free) image is knowernwill be able to compare
the distorted image against it with one of the so caliédreferenceobjective image quality metrics.
One of the most popular and simpldgli-referencequality assessment is the the mean squared er-
ror (MSE) which estimates the averaged squared intensity differenamigofal, that is reference

Y € RP*P and its noisy version i.eY s € RP*P image pixels:

b—-1b-1

MSE= bZ;Z) —Yos(i, ). (2.20)

Directly related to MSE is peak signal-to-noise ratio or PSNR which is defingtBiras

(2.21)

2
PSNR= 10log;q (MAX >

MSE

where MAX represents the highest pixel intensity value commonly set to @5hé 8 bit images.
These measures MSE and PSNR are widely used given their simple andchelematical formu-
lation and calculation. However, they do not always reflect the actuatiseped visual quality
since two distorted images can have different type of visual erros etlegyihave same MSE [132].
Thus, besides these standard objective image quality assessments thaiteeinativeull-reference
guality measure, so-called Structural Similarity Index (SSIM) [133] whidegainto account the
degradation of structural information while relying on the hypothesis deggrhuman visual sys-
tem (HVS) perceptual characteristic. The authors of SSIM assume Wati$ihighly adapted for
structural information extraction. This is incorporated by local compa$@ixel intensities which
luminance and contrast are normalised. In this manner the SSIM quantifideghee to which im-
age structural information is degraded while calculating a quality index rgrfgom O (denoting
highest distortion) up to 1 (denoting no distortion). The higher the SSIMxindkie gets, the more
successful retrieval of the HVS perception information is within the redtonage.

If the reference image is not available, which happens frequently itipgaone needs to restore
to anon-referencer so called “blind” image quality method. Many of these algorithms assume that
distortion which can be found in the image is known. However, for manytised@pplication this
cannot hold. Thus, non-reference methods which assume no knewédige distortion affecting
the image are crucial for practical applications such as the blind image qualkty (BIQI) [134]. It
exploits natural scene statistics (NSS) [135] to establish anwoereferencéramework which is able
to identify the most probable distortion within the image followed by its quantificafidre BIQI
method is trained to first classifies images into five different distortion caesg@PEG, JPEG2000,
white Gaussian noise, blur, fast fading), and then assesses the gtid#yrnage based on statistical
evaluation of distortion proportion. BIQI provides a quality index betweamnd 100, with O being
the best quality and 100 the worst one.
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2.7 Summary

This chapter presents the review of relevant literature to this thesis. ¥gpioar models for data
are illustrated with the emphasis on the sparse data representation andse#atedmodels of data.
We define norms such &g or I; which play an important role as an additional regularising terms
for optimisation problems that involve solving undetermined systems of equakarthermore, we
present the existing work on two major classes of effective computatioctatitpies designed for
estimation of sparse representations i.e, greedy pursulpjfand convex relaxation methods (fg).

In particular, we provide a detailed overview of OMP initialisation and iteratiwasp given that the
proposed work builds on method which utilises this greedy scheme. Nexisaugsd two important
data modelling approaches i.e., analytic and trained method. Former one relies predefined
mathematical models which are characterised with well defined structuraraighsforward, fast
implementation such as wavelets, curvelet, contourlets and bandlets. Hpdietienary learning
methods take different modelling approach by utilising the adaptive spadsggcparadigm. As we
show, this results with various learning methods such as MOD, online dicfitesmning procedure.,
K-SVD etc., which aim to provide sparse representational basis diredtpmised for representa-
tion of specific data. Next we introduce one more method based on spstesel@composition,
compressive sensing which tackles the problem of signal’s joint compnessd sampling. Finally,
several image quality measures are given together with their definitionasWISE, PSNR, SSIM
(full-referencemethods) and BIQIf(ll-referencemethod).






Chapter 3

DICTIONARY LEARNING FOR
SCALABLE SPARSE IMAGE
REPRESENTATION

3.1 Introduction

The advancement of the internet and internet related applications is ciyistaanging the way in
which we consume media. As a result, we have continuing evolution of bastdg technology
which clients differ primarily in accessiblei)(channel capacity;ii() display resolutions;ii{) and
computing resources. Thus, one of the main challenges is to effectiyghpgiand deliver a con-
trolled quality of the displayed data of a wide range of applications taking irdoust the existing
broadcasting transmission networks and heterogeneity in receivaifsegnt. For example, mobile
video streaming users need to cope with the limited frequency space. Thiecdlfferent approach
to deliver multimedia content i.e., an adaptive processing of a video or an isiggd that would
provide various levels of transmitted signal’s quality and bandwidth effigigDoe of the appealing
solutions would be a genergralablei.e., progressive data reconstruction. Prior to transmission,
the source signal would be subjected to progressive reconstructimedrork resulting with scaled
quality representation. At the client’s side, signal would be restoredsitadide quality level due to
its adaptive representation form. Conclusion follows that signal’s geseail@bility is desirable in
many applications since it will be able to support heterogeneity in usergmegut, QoS demands
and communication channels.

One of the attempts to progressively reconstruct signal as more its measuseare acquired
is proposed in [44]. Ascalablesignal representation is achieved using an analytic approach with
the conventional DCT dictionary being utilised as a signal's representhtiasa. Thereby, [44]
demonstrates another application of implicit sparse signal decompositi@mped in signal’s DCT
transform domain. Given that DCT transformation is fixed and cannotdbetad to the data at
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hand, [44] is intended to establish progressive signals recovery withitmtahsformation domain in
combination with the specially designed signal sampling procedure. Furtherbhoincrementally
acquiring more and more samples at the clients side, one is able to prasgdiableimage or video
display, that is, the representation of the refined quality.

However, if we refer to the adaptive representational techniquesfdiatnages and videos, we
conclude that the existing dictionary learning algorithms are able only to ditpdagntire scene at
once. This learning approach assumes solely fine resolution as theaefational output failing to
retrieve image gradually, that is, of the arbitrary i.e., scaled but of satighma acceptable visual
guality. This is due to the none structured nature of the dictionary learnsigrderhich is not cus-
tomised well to achieve progressive signal reconstruction in time. Thus tweft of our knowledge
a procedure for learning a dictionary capable of adapting both to a spdatfi-set and providing
its effectivescalablereconstruction is still missing. Alternatively, if redesigned, a learning dbase
approach could yield a dictionary finely tailored to tealable that is, progressive reconstruction
task while being properly fitted to the signal’s spatial characteristics. §ubsady, after finding a
direct sparsifying transform in the spatial signal’s domain an image woulddbementally updated
and improved as a new representational information would become avaitaible geceiver side.
Thereby, we find that it is important to offer an alternatsaalabledata recovery in a form of an
adaptive dictionary sparse representation. This together with the dhlengs technical properties
are one of the main motivations for following proposition of an adapedableimage restoration
scheme.

This chapter provides a detailed representation of novel adaptive dictitnaining scheme for
progressive i.e scalablerestoration of trained data. Presented work is based on publishedatesea
in [136]. General modeling aspects of the proposed adaptiveealdbletraining scheme are given
in Sec. 3.2. Sec. 3.3 overviews main perception characteristic of the Hursaal Bystem (HVS)
which are utilised and integrated in the proposed/ablerestoration scheme. Key components of
the proposed adaptive dictionary learning schemesd¢atableimage reconstruction, its regularised
sparse dictionary learning framework together with the algorithm flowsaathbleimage reconstruc-
tion mechanism are illustrated in Sec. 33kalabledenoising scheme with its detailed description
is introduced in Sec. 3.4 Finally, Sec. 3.5 discusses the computational camplethe proposed
scalablescheme while Sec. 3.6 provides the summary.

3.2 Sparse Based Scalable Representation

The core structure of the proposed dictionary training design revohoemd the regularisation of
the K-SVD atoms update stage. The aim is to provide dictionary capableilitbtany sparse based
scalableimage reconstruction. Novel dictionary should be able to provide the atistorof the

main visual object elements at the first layer of #ualableimage recovery. Motivation for the
proposed learning design stems from the fact that we as humans canhalgéets and edges from
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the visual scene by filtering information about contrast variations andrpaiteentation from the
incoming light. This sensitivity of the Human Visual System (HVS) is shown withdbetrast
sensitivity function map originally introduced in [137][138]. Furthermattee HVS features are
proven to be essential modelling elements for many image processing, commayieics [139], the
morphological component analysis methods [29][30] and image qualitgsssat tools [140][133].
Thus, in order to achieve efficiestalablerestoration we impose the learning model that incorporates
the main HVS properties such as HVS's high sensitivity to contrast light infiomand to the
patterns orientation [141][142] at high spatial frequencies.

The modelling of HVS properties is carried out by mostly exploiting the scesi®’gl contrast
information with special emphasise on the high-frequency components [Th is achieved by
introducing MCA semi-random initialisation of the proposszhlabledictionary and regularisation
of the atom’s update stage of the trained dictionary. Specifically, we emphhgispenalisation
of the low and high spatial frequency components of the dictionary, impdkd¢earning model
that assimilates the main HVS system properties. Furthermore, we aim to minimisadhataof
information necessary for dictionary training and signatalablerecovery by implementing the
boundary case in terms of the dictionary size i.e., we train complete insteadafaremplete dic-
tionary. This is in synergy with the goals of the proposed method at the toslyoa small reduction
in the overall reconstruction image quality. In general, dictionary learmingdarse representations
leads to state-of-the-art image restoration results for several differeblems in the field of image
processing. We show that these are equally achievable by accommodhtigi@nary elements
to tailor thescalabledata representation and reconstruction, hence modelling data that adreé spa
representation in a novel manner.

3.3 Main Characteristics of the Human Visual System

In order to strengthen the motivation for the proposedlabledictionary training design here we
overview some essential findings in the research of early HVS visionthéumore, considerable
amount of work within the image processing area is rooted in the physiolagpsytho-physics of
early study carried out in the field of human vision, which mainly focuses on:

» How visual mechanisms transduce light arriving at the eye;
« How visual mechanisms code the patterns of light arriving at the eye.

Firstly, in order to understand what types of visual information can beatbg human visual mech-
anisms it is essential for us to understand the “hardware” of the HVSjgshtdie human eyeball.
Fig. 3.1 illustrates its cross section schematic [3][143]. Concretely, thiseijpdded in two sections,
firstly theanterior section containing:

1. Cornea responsible for two-thirds of the eye’s refractive power;
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Fig. 3.1 Structure of the human eye (adapted from [3]).

2. Lens:. provides subtle focal adaptation for visual targets at closest digtarieeinches up to
20 feet;

3. Iris: contains central element pupil that release incoming light into eye’s cavity;
andposteriorwith:

1. Sclera meant to prevent damages of the eye’s interior while enabling approxiplad¢eical
shape of the eyeball;

2. Choroid: a middle layer in charged for the regular blood supply to the eye’s cellolapo-
sition;

3. Retina: this interior layer is composed of photoreceptor cells and their associatadlin
tissues.

For the work presented in this thesis the most relevant is understandiegraf's functional prop-
erty and mechanism responsiveness of its photoreceptor cells. Salbgifinage of the visual scene
is formed on retina at the moment when light hits its photoreceptors. This gmnsitige area is
organised into the basic visual coding units, the so called receptive fieldse fields are further
organised in an antagonistic way which represents a fast respondingfphe visual processing
system [3]. Their response functions in the following manner. Uporalstiotal incoming light in-
formation is being filtered in a way that the absolute intensity light information is dlocovspletely
cancelled. On the other hand, contrast aspects of visual scenergarbasmitted into further sec-
tions of visual processing implying that during the recognition of the visterhe at hand, receptive
fields primarily respond to contrast than to simple light intensity.

For example, Fig. 3.2 illustrates several types of light intensity stimulus amding responses
of the retina’s photoreceptor cells. The dark intensity in Fig. 3.2(a) orcdingr raised uniformly
(Fig. 3.2(b)) in comparison to this one will generate the base firing respans of the retina. How-
ever, Fig. 3.2(c) through Fig. 3.2(e) show how firing rate of the cells i®asrd just by introducing
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Fig. 3.2 Contrast processing properties (adapted from [3]).

simple bar pattern contrasts thus showing cells response as a functiontidstaather than just
the absolute intensity. Thus, the objects in the visual scene are detecadgiy the information
which is detected as a contrast between the object and its backgrouadndae point that Fig. 3.2
demonstrates is that as long as the relative contrast difference remagentlegthe luminance in
Fig. 3.2(d) is increased both for the background and the bar) so willédé&rihg rate. Once the
contrast between the background and the objects (in this case bar in tfX@) is increased so
shall be the response rate. Further experiments on HVS contrast\egniit2] provide additional
proofs in terms of how human visual mechanisms function at different $fi@tuencies. Given
specific test patterns i.e., a spatially localised grating patch with a backggoatinlg of altered ori-
entation, it was shown that HVS exhibits higher tuning sensitivity at high $pegtguencies than at
low spatial frequencies [142]. Overall, these HVS tuning particularitid®] $erve as a modelling
foundation for the proposed dictionary training design.

3.4 Problem statement and proposed approach

As Sec. 3.2 points out, the classical dictionary learning techniques for greatp videos sparse
representation are inefficient when it comes dowsdalabledata restoration which would enable
incremental improvement of the signal’s displayed quality. Thus, we fonusddressing this im-
portant matter by building on the conventional K-SVD algorithm [19]. THetsm is delivered by
altering and redesigning:

1. The K-SVD original initialisation setup;
2. The K-SVD dictionary atom’s update;
3. The K-SVD image or video frame restoration procedure.

What follows is the detailed description of the proposed adaptive dictideaming scheme facal-
ableimage reconstruction where we adhere closely to the notation used in fr@g & the original
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K-SVD properties are restated in order to provide adequate comparbamedn the introduced de-
sign and the conventional, that is, necalableone.

3.4.1 Scalable reconstruction mechanism

In general, we are given a finite set Nftraining signals i.e., overlapping image patches of size
v/nx +/n. For each patch, this block pixel format is commonly transformed into its colientor
version asY = [y1,...,yn] wherey; € R". The classical configuration of the K-SVD algorithm aims
to approximate representation of these signals in a compact, precise ase &g as weighted
linear combinations of a few dictionary elements, that is the columns of dictiamatyix D =
[dy,...,dx] € R™K, Each column element represents a basis representational vectorit€datiee
learning of dictionanD is completed, each signal M is sparsly represented and approximated by
Vi~ Dx;.

Note however that this conventional approach is not capable of provédmiableimage recon-
struction that would be based on progressive recovery of each inageyp. Meaning that each
patch would be incrementally, step-by-step updated as a new informatiooefficient entriesx;
would be available. For instance, one can fdal < a < |K/m| = s} number of recovery layers
for each patch leading to reconstructed image denotég.akhe value oimcan vary and arbitrarily
take on different values i.e.,<L m < K where lower values ahlead to a greater number s¢alable
recovery layers, that is, to a greatevalue. Thusm is set as the scaling parameter which value
depends on the number of the dictionary atoi'sind the desired degree of teealablerestora-
tion. This leads to a progressive image restoration provided as a sequidncimage layers each
generated as a combination of the truncated versions of sparse reptieseX and dictionaryD.

At the beginning of the progressive recovery, the base layéas rebuilt out of the firsim sparse
coefficients entries per patch. That is, for each patele take[x; [1] x; [2]... X; []] ... X; [m]] while
remaining entries are set to zexp= 0 for m< j < K. These are combined together with the first
m corresponding atoms i.¢d1,do, ... dj..., dm| leading to a compression rate mf'n. Afterwords,
while reconstructing each subsequent layg(a > 1) additionalm coefficients are added. That is,
Xi[1] Xi[2]... i []] ... xi[am] (xi = 0 foram < j < K) and[d1,d2,...,dam] producing compression
ratio of (ma) /K.

In order to better illustrate the proposed procedure, truncated instahaesngle sparse coeffi-
cient vectorx; for image patcly; are depicted in Fig 3.3. Starting from Fig 3.3a to Fig 3.3c we can
see what information is used for recovery of the first three layers:

» ForL; we keep the firsin coefficients entries and discard the remainsng— m= (s—1)m
(set to zero value);

* ForLy we keep the first@ coefficients entries and discard the remairsng-2m= (s—2)m
(set to zero value);
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Fig. 3.3 Truncated representations of sparse coeffigjarged to generatescalablerecov-
ery layers of image patc).

* ForLsz we keep the first® coefficients entries and discard the remairsng- 3m= (s—3)m
(set to zero value);

Coefficient entries are being eliminated, that is, set to zero until we reatheleovery layet_g
(Fig 3.3d) where the full restoration quality is reached by keeping alficosit entries.

3.4.2 General elements of scalable design

Let us consider the case when we take a conventional sparse repteseX of an imageY and
apply the previously describextalablereconstruction mechanism. The question follows: is this
going to guarantee acceptable recovery quality at every lay2iThe answer is negative and this is
illustrated later in Chapter 4 with experimental results. Thus, what shouldre that is, introduced
in the dictionary learning procedure so that is structured in a way whiatessfully restores visual
scene over different layets,?

One of the solutions which we offer is motivated with the well-known charestieof the HVS
perception mechanism. Primarily, HVS exhibits high sensitivity to the high canaaistions in the
scene [124, 125]. Proposed regularised atom’s update is a modelliagoraof this specific HVS
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feature. Specifically, human eyes tend to pay more attention to the edgeslgjeangiven the high
firing rate of the visual cortex neurons at the moment of perception metrangbjects are primarily
identified by their bounding shapes [126, 128] (see Sec. 3.3). Thusder to facilitate effective
scalablerecovery, it is important to ensure that the main object shapes (bousidareidentified
from the beginning of thecalableimage reconstruction. To some extent, this would resemble the
process of object recognition procedures which highly exploit (fortég&) image high frequency
information [127]. Hence, spatial higher frequencies should be meear toscalabledictionary
learning. We incorporate this by appropriately favoring the significantalishanges associated
with the edges in the image (i.e., the texture) during the trainirsgalabledictionaryDgc. This and
subsequently the sparse adaptealableimage representation is achieved by introducing:

1. MCA based semi-random initialisation of the dictiondy, at the very beginning of the
training procedure;

2. Aregularisation scheme over the second K-SVD iterative stage i.e., tiedeuprocedure of
the dictionary’s atoms which enforces the high frequency componernitgdhe regularised
atom’s update.

Overall, we impose an a priori assumption on the solution i.e., exploitation amdrigasf high fre-
guency components from the training image patches should be emphasiseafarced during the
atom’s update. This naturally leads to the concept of the regularisation wiogides an effective
scalableimage reconstruction model that incorporates main HVS perception sengititgcteris-
tic. Furthermore, introduced atom’s update is encoding existing knowladtfeedhuman perceptual
mechanism with regular sparsity regularisation leading to prefagal@blesolution. The following
terms will be used in the remainder of this paper:

« Y € R™N - matrix with N overlapping image patchgse R";

» Dsc € R™K - proposedscalabledictionary;

« D e R™K - conventional non-scalable dictionary obtained using standard K-3y/Dd];
» K - the number of dictionary atoms g or D;

« X € RN _sparse representational matrix containing sparse coefficient vegtoiR<.

3.4.3 Dictionary initialisation

In classical K-SVD, prior the two training stages, diction&rys commonly initialised witlK ran-
domly extracted image training patchgg19] taken from the set of totdll. Thus, the initial dic-
tionary is not characterised with any specific structure in terms of atoms distribover baseé.
There is just an unsystematic combination of image patches. In contrastiqodiationary initiali-
sation we divide th& training patches in two different classeésandC,. What distinguishes these
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Fig. 3.4 Smooth and texture classification via tresholding.

classes from each another is their content wikgris composed out of smooth afg out of texture
image content, respectively. Classification is achieved by taking advaoittige training set data’s
morphological component features. Thus, as a classification critericuse/¢he activity measure
similar to TV norm [144][145] originally used within the K-SVD MCA setup [1&hd defined as:

Activity(yi) ZZZ i [§, K =vili — LK]| (3.1)

+Z ZIy. 3K =il k=1]].

SubsequentlyActivity is normalised in a way which sets its range from 0 to 1. These values are
reflecting the degree of “smoothness” and “textureness” in each imdgle [i8]. The higher the
Activity the higher the level of the texture will be within the patch. Thus, the classificaiper-
formed as tresholding using heuristically set vadud his value is taken from [13] where it is shown
that it provides the best possible classification performance for smodtkeature element based
separation. Specifically, classifying parameikdndicates classification of patches into two classes
CiorCy. Thatis:

* y; € Cy for Activity(y;) <A;
* y; € C, for Activity(y;) > A

Thresholding procedure of the initialisation is depicted in the Fig 3.4. Theretfe firstK /2 atoms
of the proposed dictionars. are initialised by randomly choosing/2 image patches from th&
class, that is, the smooth group. The rest of K@ atoms are randomly picked from tke class
i.e., the texture group. Fig. 3.5 shows general structure of the dictidargnce the initialisation
is completed. In this way, we enforce semi random initialisation which directiyrots and effects
the starting dictionary structure by placing low frequencies (smooth imagse)aséthin its first half
of d; atoms (1< j < K/2). Lastly, the remaining half of dictionafpsc (K/2 < j < K) is filled
with high ones i.e., the texture components. In return, this sets a foundatifumtfeer design which
is organised around applying proposed regularisation scheme anelgsebsly tuning dictionary
learning to the main HVS perception characteristic.
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Fig. 3.5 Structure of the dictiona)sc after the semi random initialisation.

3.4.4 Sparse coding

The first of the two iterative dictionary learning stages i.e., sparse codicgnmsnonly posed as a
constraint optimisation problem originally defined in [19] as:

. 2 .
rr;(ln{||Y—DX||,:} st. Vi [Ixillo < To (3.2)

given the current estimation of the dictionddywhich is kept fixed during this process. Once the
signaly; €Y (i=1, ...,N) is extracted from the original imag¢ its pixel based representation is
mapped into its sparse representatipcommonly via [13, 16]. If we train a complete dictionary
as proposed in [136, 146, 147], OMP is not needed for the spadiegcetep. That is, the exact

solution for the scalable dictionary is attained via simple matrix inversion as:

X — DLy (3.3)

Solution for the sparse vectar is attained by retaining up to fir§y largest non-zero coefficient
entries obtained after matrix inversion (3.3) while setting the rest of th{& of Ty) entries ofx; to
zero. Each of K entries;[j] corresponds to one of the atomise Dsc (j=1....,K) where non-zero
entry x;[j] # 0 means that particular atod) participates in the sparse representation of the signal
yi [19]. Given that both dimension and number of atdfnare relatively small, the matrix inversion
does not impose any additional computational complexity on the dictionanjidgaatyorithm. Fur-
thermore, we relax the sparsity constraint, permitflpdo take a higher value than in [19] where
the relationTy << nis still maintained. This allows thecalablesignal recovery to be established
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while introducing aly value on an empirical basis that still promotes the sparsity prior of the signal.
However, the approach could be applied for overcomggten which case we would need OMP.

3.4.5 Regularised dictionary update

Once the stage described in Sec. 3.4.4 is completed, we move to the updatefstagh atom
dj. Usually, the new basis atonly is estimated by processing a current representational residual
E;j (Sec. 2.4, (2.13)) constructed in order to account for the error df alhtches when the atom
d; is removed. The proposed regularisation scheme is integrated during nbuction of the
error matrixg; in (2.13) where we redefine its original structure originally introduced @j Ythile
keeping the rest of processing steps unaltered.

As already stated in Sec. in; in (2.13) represents coefficients entries from kherow in X
wherex-"r i] # 0 denotes that the sparse approximation for the pgtafcludes atondy given that
its associated coefficient entry is of non-zero value. Prior to update, dyés set to zero while the
remaining atoms are kept fixed. Error matixis subject to shrinking which will result in reduction
of her compositional structure to one which only contains error columnseqfdtches that use atom
dj. Update of the pai{dj,xﬂ is obtained via SVD decomposition [19] of such interchanged matrix.

Shrinking is necessary in order to preserve the sparsity constrainfngehat new vectoxjT is not
going to be fully filled after SVD rather just its original non-zero entriesir®ing is performed by
identifying all patches that at the moment of the update use djasw; in (2.14) followed with the
formation of the matrixQ; sizeN x |wj \ Multiplying (2.13) withQ; achieves necessary shrinking.

However, as already stated, this is insufficient to generate dictionaryetaifor thescalable
image restoration. That is why we decide to redefine the structure &fjt{®13) by introducing the
special regularisation scheme. The proposed procedure is mainly matijatee HVS functional
mechanism properties discussed in Sec. 3.3. To reiterate, the high fitingfrine visual cortex
neurons at the moment of perception is associated with detection of theddgesbject. Given that
the object shape plays the most important role during visual recognitif@ctieé scalablescheme
should achieve its identification at the beginningsoélableimage restoration. For this task spatial
higher frequencies are significant [139] and should be accordinglioiéed. Firstly, we address
this by introducing the semi-random initialisation of the dictionBy (Sec. 3.4.3). Secondly, we
appropriately favour the significant changes associated with the edgesimage patches (i.e., the
texture) during thég training. This is carried out by dividing the current sparse approximsadn
all patches irg; (2.17) on two batches as:

K
K K
ER= (Y- didf—w Z dxt | Q). k# . (3.4)
k=1 k:§+1

SuperscripR stands for regularised and p#@ip, v1] denotes regularisation terms. Each batch corre-
sponds to the low and high frequency components of the training image patche
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« First batch (withvg) contains only atoms initialised from tli& smooth class;
» Second batch (witkr;) contains only atoms initialised from ti@ texture class;

This separation is plausible due to semi-random initialisation described in 3¢8. Further, by
introducing:

« Y| =YQ

K/2 .
- DXV = (52 dodk )
high, high
» DX = (ZE:K/ZHde‘kr) Qj.
we can provide a more compact representation and rearrange the@dogroor matrix (3.4) as:
ER = <Y  —VoDI2X o _ leQ‘cghx'j“gh) , (3.5)

whereY ; represents a subset of the image patghdsom Y identified with indices given inw;.
Superscriptdow andhigh denote smooth and texture frequency content associated with the weight
pair [Vo, v1] which regularises contribution of their representational residual coemsrio theE'f.
Consequentially, this separation controls the type of the information uséukfdy atom’s update.

We have to stress that proposed design and establishing dictibgawith the desirablescal-
ablerestoration property is only possible with the specific combination of intrativegularisation
parameters. Firstly, in order to avoid any degeneracy of the learnegsgagation that might hap-
pen with addition of the weight pajwo,v1], a constraintp + vi = 1 is introduced. Thus, a various
regularisation paird/, v1] have been tested under this constraint. Experimental outcomes show that
carefully integrated regularisation over the smooth and texture image contpasable to yield the
appropriate dictionary for thecalabledata representation.

For all atomsj = 1, ..., K, the update stage in the proposedlabledictionary learning algorithm
is summarised as:

1. STEP 1 - Initialise dictionary as described in Sec. 3.4.3;
2. STEP 2 - Perform sparse coding as simple matrix inversion shown ir8 3et;

3. STEP 3 - Allocate corresponding image patches which current spapseximation, given as
a linear superpositioDscx; includes atond; as it is done in [19], map them accordingly with
wj and denote as a subset of patckgsthat is a subset of sparse coefficieXis

4. STEP 4 - In contrast to [19], split each current sparse approximat@neni; of the subset
matrix X j, associated with atom;, in two using binary vectorg o, Thigh ¢ RK as:

o xlow — y;Tlow and x9" — x; Thigh;
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whereT!oW, Thigh ¢ RX are binary vectors that cancel axyl] element forl > % (associated
with the dictionary elements initialised with clasg) andl < % (associated with the dictionary
elements initialised with class,) as follows:

0 if I>X

- K

. Thigh[|) — 0 if I<3,
1 if 1>X%

.

In this way the smooth and texture patch content are extracted finally as:
lowy low.
. Dsoe/vxjow,

» DX},

where each®" € X' andx"" € X" originate fromx; identified withi € wy;

5. STEP 5 - After decomposing sparse representation;aiccordingly form newly proposed
representational residual error term associated with atpas (3.5);

6. STEP 6 - Perform rank-one approximatiorEd}?i.e., SVD and set the eigenvector correspond-
ing to the largest eigenvalue as neyand the] (A)j‘ largest eigenvalues as the new non-zero
entries for thex). (as in [19]);

7. STEP 7 - Keep redundant atoms (unlike [19]): mutually coherentamdlyrused ones;

8. STEP 8 - Repeat STEPs 2, 3, 4, 5, 6 and 7 until the full number of itasasaeached.

All five steps are illustrated in Fig. 3.6.

Proposed regularisation plays an important role given that wevglaisdv, control which spatial
frequency content will be added to tEé. Consequently, the SVD decomposition (STEP 4) gener-
ates new basis atoms of tkealabledictionary Dsc based on the controlled information contained
within EJR. We have observed that by keeping more of the original high frequieiay(vy < 0.5)
and suppressing the lower ong ¢ 0.5) the algorithm regularises the learning process which effec-
tively generates dictionas suitable forscalablerepresentation. Correspondingly, 1&st2 atoms
will exhibit more edge like features with the higher amount of the contragiti@an. This enables
recovery of the basic image objects shapes from the basellayesulting in a learning procedure
which is tailored to the characteristics of HVS, that is, being in synergy witihtimean sensitivity
to contrast and pattern variation in the visual scene.

3.4.6 Denoising and scalable dictionary scheme

Trained dictionary is specialised for representation and reconstrudt@smecific class of signals
i.e., those that admit sparse representation over learned dictionary. THhissirthyat it will be in-
efficient at reconstructing noise. Thus, the main idea behind spared Hasoising procedure is
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that a sparse approximation of a noise via trained dictionary will automaticalgbleeto reduce
considerable amount of distortion while keeping the original signal informafidat is why, prior

to presenting thecalabledenoising process, we inspect the way in which noise is removed during
the classical K-SVD dictionary training. Commonly, noise is iteratively disearthroughout two
stages:

1. While performing sparse coding, OMP stops when the current ajppated sparse solution
reaches the sphere of radiy®Co in the patches space. This radius constrains the acceptable
level of the recovered noise strength ifee||5 < Cno?. Going bellow this boundary would
result in direct noise reconstruction where C is a heuristically set cdrestaio stands for
the noise standard deviation;

2. During the dictionary’s atom’s update, noise is removed via SVD decdtigpuothat estimates
new “average” direction for each atom which is least influenced by therten.

The conventional K-SVD denoising energy minimisation problem [26, 27vsgas:

2
o (3.6)

+3 [IDxi —yil3
|

{)/(\i, 6,%} = argx_rgi)rll_ HYi —yinOisy

In the proposedcalabledenoising setup the complex minimisation task (3.7) is simplified by re-
laxing the regularisation process with the introduction of the propssathbledictionary Ds. as

follows:
{650, )//\|} = argDrIlier)\ Hyi _ yinoisy

2
;3 IDsox il (37)
In (3.7) we decide to:

« Discard the sparse coding phase;

« Introduce the proposestalabledictionaryDsg;

while merely performing noise removal during thealabledictionaryDgc update. Our detailed study
of denoising scheme in [25, 26] suggests that the initial sparseness.&eydhe average number
of the non-zero coefficient$x;-||, stays nearly fixed during the dictionary training and denoising
procedure in the classical K-SVD setup. Thatis, the one establishetheffest OMP sparse coding
over the initialised dictionary [25]. Furthermore, we impose assumption thaidiise less distorts
texture than smooth image components due to the high-frequency naturatexXtime information.
Specifically, oscillatory components of the scene exhibit regularity in ternigeedfequency content
that repeats to some extent over the image. On the other hand, noise imrandaloes not show
consistency in its change meaning that it will have a higher impact on imagewpaids do not
exhibit periodic spatial variations.
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Justification for this is provided in Sec. 5.3.2 where we illustrate how varigesdénoise distort
smooth and texture image blocks based on their estimated standard deviatieamef after noise is
introduced. Thus, we promote the idea that after the initial matrix invebsierDL_ Y (substitute for
OMP given the completBsc), we could neglect subsequent ones during the dictionary learning while
still obtaining satisfactory denoising results given that texture informatiewgils for the modified
dictionary update. That s, enforcement of the high frequency spargent for the restoration of the
noisy image will suppress more of the noise and preserve original informiaten efficient manner.
For this setup, the coefficient entrixei?: are only updated during the SVD decomposition employed
for the atom’s update. Hence, the introduced modification is expected ti iresuconsiderably
shorter computational processing time while achieving comparable qualityaaedwith the non-
scalable K-SVD denoising scheme. However if we would maintain the classicailihed dictionary
instead of the proposdd. design like:

(05} -agyr

2
2+IZHDXi —vil5 (3.8)

the denoising results would not be satisfying since the texture and smooth infageation are
treated as equally important during the dictionary update step where thigt béhess distorted high
frequency components is not taken into account.

3.5 Computational Complexity

The proposedcalabledesign does not incur the cost of the original dictionary learning in [2B, 1
in case of training strictly representative dictionary over the noise freeamagjven that there
are no additional transforms employed but just linear separation of therdvwhigh frequencies
components via semi-random initialisation and introduced error matrix recatiarigas shown in
Sec. 3.4.5) the computational complexity remains of the same order as thatcohthentional non-
scalable K-SVD. That is, the number of operations per pixel is &t{lhTol ) wherel stands for
the number of iterations. By setting the number of atdtms n and replacing OMP via simple
matrix inversion, we manage to even decrease the processing demandachiieléng good signal
recovery (typically in [13, 19K is equal to 2, 3n or 4n). This is in particular transparent in relation
to scalabledenoising given that sparse coding stage is removed. More details oaspiog time
necessary for denoising are shown in Sec. 5.3.2.

3.6 Summary

This chapter represents a complete outline of the proposed training schetrarfing of the adap-
tive dictionaryDgc specially customised fascalableimage representation. The propossdlable
scheme is discussed in detail where we show its main eight processing Bramsto discussion
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we illustrate the main features of the HVS perception mechanism which repsebke core of the
introduced regularisation for the second stage ofdteabletraining scheme i.e., atom’s update.
Furthermore, we provide the full description of the newly introduced sandom MCA base®s
dictionary initialisation. Lastly, we compare the traditional sparse basedgieg@nergy minimi-
sation problem and propose simplified one which incorporatesdalkabledictionary training pro-
cedure. This nevscalabledenoising setup employes solely SVD decomposition for noise removal
followed up with the processing complexity discussion.






Chapter 4

THE SCALABLE RESTORATION
PERFORMANCE

In this chapter we demonstrate the effectiveness of the propsasdabletraining method foiscal-
able restoration of noise free video sequence’s frames and natural im&gssalabledictionary
Dsc. The presented work is published in [136, 147]. At first, Sec. 4.1lidesvdetailed overview of
simulation data, definitions and values of all parameters while the layout stHiablerecovery is
described in Sec. 4.2. Sec. 4.3 shows the analysis of comprehenpisngental tests which are
carried out to identify the most suitable combination of variables i.e., reguiangaarameters for
training the most effectivecalabladictionaryDg.. At first, we compare thecalableestimates for
seven different regularisation paiig,Vv1] previously defined in Sec. 3.4.5 both for complete and
overcompletescalabladictionaryDg.. The objective quality assessment and visualisation of the ex-
perimental results for the proposedalabletraining with complete dictionaridsc and restoration
scheme against its non-scalable K-SVD counterpart is provided in S&c.Hnally, we provide
summary in Sec. 4.5.

4.1 General training setup

The overall performance of the proposszhlableK-SVD method is evaluated in the set of experi-
ments applied to:

« Standard CIF high motion video test sequences “Stephan” and “Tengte&solution 35X
288 and a frame rate of 30Hz;

« Several natural images of size 51512;

Variables and parameters for all simulations are summarised in Tab. 4.1 togétinéheir values,
roles and effects. Prior to processing, every video frame is broken ddo N = 96,945 or every
natural image intd\N = 255,025 overlapping rectangular (or square) patches of size3 ixels.
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This patch size is adopted as a standard over the sparse image processingnity in order to
provide fair comparison with benchmark methods. Thus, the vectorised siiomeaf the signals
used for thescalableDg dictionary learning algorithm is = 64 pixels. Bothscalableand non-
scalable dictionarieBsc; andD containK = n atoms with redundancy factor= K /n= 1. However,

in Sec. 4.3 during the initial experimental phase we additionally utilise the avgriete dictionary

size withK = 2n andr = K/n = 2. This aims to show that for the effectiveness of the proposed
scalablescheme dictionary’s overcompletness does not play an important roleisTimeSec. 4.3 for
bothK = nandK = 2n we achieve highly comparable or equal restoration quality. Thus, complete
dictionary Dy is the most optimal for the proposedalablescheme both in terms of restoration
quality and simplifying processing complexity. Sparsity threshold Idgelk set to 10 both for
training and reconstruction phase. This provides the best proces&otiveness (in terms of PSNR
values) for the proposestalablelearning design after testing the wide range of sparsity levels e.g.,
To=[4,5,6,...,26,27,28]. The total numbes of progressively recovered laydrsg is defined with
scaling parametan= 4 as|K/m| = s= 16 for every layer oScalablepatch recovery and therefore
image witha=1,...,16. During each dictionary initialisation phase (Sec. 3.4.3) we appoint the valu
of A= 0.27 for Activity measure as defined in [13]. In addition, the original work [13] defines
provided value ofA as the most optimal for classification of image patches into smooth and texture
ones. The proposed thesis employees the same size of the image patd&s abys, given that

the authors of the [13] have already carried out many simulations to estimate#t®ptimal value

of Awe concluded that it is redundant to repeat same testing for the proposkd

Table 4.1 Table of parameters

Parameter Definition Role

N = 96,945 Number of image patches Limits the size of the training set for frames size 35288

N = 255025 Number of image patches Limits the size of the training set for images size 51212
n==64 Constant integer Dimension of image patch vector and each atom

K=64 Number of dictionary atoms Limits the size of the representational baBig andD
K/n=r=1 Redundancy factor Defines overcompleteness of the dictionary

vo=1 15t regularisation parameter Weights smooth patch sparse presentation for the atomatepd
v1=0 25t regularisation parameter Weights texture patch sparse presentation for the atondlatep
A=0.27 Activity measure Threshold value for classification of smooth and texturegenpatchey;
To=10 Sparsity level Limits number of the non-zero entries per each sparse cieeffig
I e{1,...,64} Integer index Defines the entry for a sparse coefficiant

m=4 Scaling parameter Defines total number cfcalablelayers

|K/m] =s= 16 | General scalability level Total number of thescalablelayersL,

L=9 CS scalability level Limits number ofscalablerecovery layers for CS setup

S1 < $,...,< S | Progressive CS samples Limit number of samples per each G&alablerecovery layer
S=g5 =50 Maximum number of CS samplesLimits the total number of the CS samples

4.2 Scalable recovery layout

Starting from the firsscalablelayer of the processed video frame or image i.e., base layehe
scalablereconstruction is carried out using only first= 4 entries per each sparse coefficignt
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which represents approximately26% of full sparse information. This first level of truncated co-
efficients fromX for the recovery of the base layes is denoted withX; € R4*N_ Along this,
we employ a truncated version of trained dictionBxy denoted a®, containing only firstm = 4
atoms i.e.[d1d2d3d4]. The remaining recovery levels e.fp, L3 etc., are progressively enhanced by
adding four (i.e.m) additional entries in each previous version of truncated represerahtiector
xj and likewise four (i.e./m) additional atoms.

In general, nevgcalablelayerl, of the each image patchis a result of the progressive recovery.
It starts by first taking alim(a— 1) entries from the sparse coefficiegtwhich were employed for
the estimation of thg; scalableversion at the levdl, ;. Next, by adding subsequemtvalues from
the sparse coefficients level L, is restored. These values are indexed as:

* x[m(a—1)+1];

* x[m(a—1)+2|;

* Xx[m(a—1)+mj,.

The scalablereconstruction alt, is denoted aBgx"@ with x"@ € XM The end result is that each
recovered patch at the new laygywill contain the firstm(a— 1) reconstructed elements as patches
in La_1 and newly estimatedn. For the shown case, this is done until the fiha$ restoration
level is attained where (given the compl&g) where full sparse representation is employed for its
reconstruction i.e X1 = X and all atoms in dictionarpi® = Ds.. The scheme of recovery can be
illustrated as:

 L; = D X1: 4 atoms per dictionary and 4 entries per sparse coefficient;

* L, =D2X,: 8 atoms per dictionary and 8 entries per sparse coefficient;

+ L3 =D3X3: 12 atoms per dictionary and 12 entries per sparse coefficient;

+ Ly = D2 X4: 16 atoms per dictionary and 16 entries per sparse coefficient;

* L13= D{3X3: 52 atoms per dictionary and 52 entries per sparse coefficient;
e Lig= Dé§X14: 56 atoms per dictionary and 56 entries per sparse coefficient;
* L5 = DL2X15: 60 atoms per dictionary and 60 entries per sparse coefficient;

* L1g = D18X 6 64 atoms per dictionary and 64 entries per sparse coefficient.
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Fig. 4.1 Scalable recovery scheme for each sparse coeffigien
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Graphic illustration ofscalablei.e., progressive recovery scheme is depicted in Fig. 4.1. Finally, it
is important to reiterate that unlike the classical i.e., non-scalable sparsendigtiearning where
practice is to train an overcomplete dictionaly > n, r > 1), we promote training of a complete
one i.e.,K = n. The main reasons for this arise from our experimental observationgvainé
introduced in the following section (Sec. 4.3).

4.3 Regularisation

Prior to establishing the proposedalabletraining and restoration scheme, we perform exhausting
simulations in order to provide the most effecta@alabletraining setup, that is, the most effective
dictionary D for scalableimage restoration. This is carried out by evaluating performance of the
proposedscalablescheme in Sec. 3.4 given various regularisation parameters|gawvs| denoted
with B and listed as:

1. Py Vo, va] =[0,1] ;

2. Py [vo,v1) =1[0.1,0.9] ;
3. Py [vo,v4] = [0.3,0.7);
4. Py [Vo,v1] = [0.5,0.5];
5. B [vo,v1] = [0.7,0.3];
6. Ps: [vo,v1] = [0.9,0.1] ;
7. Pyt [vo,va] = [1,0].

Furthermore, we test these seven parametgrs;| pairs for both the complet&(= 64) and over-
complete K = 128) versions of thecalabledictionaryDs.. This serves to validate a generalisation
of the introduced regularisation scheme which effectiveness andgsiogdrend for imagscalable
recovery are not biased given the different number of dictionary atblote that, when training the
overcomplete dictionaripsc sparse coding stage is carried out via OMP instead of proposed matrix
inversion (Sec. 3.4.4).

In order to asses restoration effectiveness of these two dictionade¢b@reven parametrization
setups we employ the standard objective quality assessment i.e., PSNRitegttlan alternative
quality measure, so-called Structural Similarity Index (SSIM) [133]. Itasigned to quantify the
degree to which image structural information is degraded by calculatingiéydqodex ranging from
0 (denoting highest distortion) up to 1 (denoting no distortion). This measwsecially appealing
for the evaluation of the proposestalableimage restoration framework due to the fact that the
SSIM is based on modelling of the HVS characteristics discussed in SeS@e8ifically, it takes
into account local pixels distortions of the luminance and contrast informafiom higher the SSIM
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index values get the more successful retrieval of the HVS perceptiomation at eaclscalable
layerL, will be. This should result in a better visual information thus providing peegive image
recovery of better quality. Each PSNR and SSIM value is estimated by comgparery restored
scalableframe or image layet, against its original image/frame versidhused for training the
scalabledictionaryDsc. In addition, following results omit four remainirjgo, v1] weight pairsi.e., :

. [0.2,0.8];

[0.4,0.6];

0.6,0.4];

0.8,0.2];

since they result with a similar performance as their neighbourhood values.

The results of experimental simulations for complete dictioriagyare introduced in Fig. 4.2
and Fig. 4.3. They illustrate the averaged PSNR and SSIM estimates atrewevery layei., of
scalablerestoration given the high motion video sequences “Stephan” and “Tefipgé&ther with
10 averaged iterations of the natural images i.e., “Boat” and “Pepparstidocomplete dictionary
with K = 64 number of atoms. Similarly, Fig. 4.4 and Fig. 4.5 illustrate same testing setugefor th
overcompletd®s. (K = 128) where fom= 4 we have in tota= 32 scalablerecovered layerk,. As
we can see, out of seven preserfetegularisation (K i < 7) scenarios (Fig. 4.2, Fig. 4.3, Fig. 4.4
and Fig. 4.5), thé results with the dictionary that is most effectively tailored to shalablesparse
image representation both for the complete and overcomplete version afspdips. given that,
overall, results with the highest PSNR and SSIM restoration values. Ndtalklcarves in Fig. 4.2
converge to the same PSNR value at the finglrestoration level since at this level we include all
information for the image’s recovery. Lastly, the SSIM results in Fig. 4.3Rigd4.5 forK = 64
andK = 128 respectively, furthermore emphasise the effectiveness d#theenario in terms of
preserving the structural information of an image or a frame at everyeeedscalablelayerL,.

To reiterate, they is associated with thB!2" elements, which capture spatial low-frequencies.
These atoms represent a compositional structure of patches extractddifge, smooth, low-variance
areas, lacking in harsh edges e.g., the tennis field in the “Stephan” seqoerthe sky background
in the “Tempete” sequence. On the other handweights the contribution of thQicgh atoms that
contain higher spatial frequencies, that is, the areas of high detail witi cweatrasting edges such
as the audience in “Stephan” or the flower object in “Tempete”. This sgegi@iency separation is
possible due to introduceiktivity factor accountable for the semi-random initialisation (Sec. 3.4.3).
By looking at(3.5) in Sec. 3.4.5, witlP; parametrization|(o, v1] = [1,0]), we can conclude that the
regularisation process will in each iteration:

high

» Cancel texture sparse approximatlb@ighx ]

from the subtraction process given the=0;

« Keep the smooth paRg¥X'*" with vo = 1.
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Fig. 4.2 Averaged PSNR scalable results given the seveerdiff setups for regularisation
parameter$vo, v1] andK = 64 number of dictionanDsc atoms.

This will determine the final content of the regularised error mzﬁt‘j?wvhere the texture patches
(Activity(yi) > 0.27) are dominant information being directly included into the error synthatier
than being just a part of the representational residual as the cartedAdivity(y;) < 0.27).

The presented training scheme is done only once given the smagieng frame(first frame for
either of video sequences) or a singfiaining image(for natural images) in order to generate the
Dgc dictionary. Subsequently, while reconstructing each incoming frame wsingke Dy trained
over thetraining framethus, not training any new dictionary. This approach considerablycesdu
the computational complexity of theealablesparse video representation, since training is done only
once instead for each incoming frame. This is immensely important in the corftesaletime
scalableimage/video applications development. It is necessary to mention that in jevieza the
video scene undergoes significant changes with respect teaiheng frame a new training frame
should be inserted. This is necessary in order to accommodate for tirewid#sin the compositional
structure of the previous frames and newly changed one.
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Fig. 4.3 Averaged SSIM scalable results given the sevegreéifit setups for regularisation
parameter$vo, v1] andK = 64 number of dictionanDsc atoms.

Next, we compare in detail restoration results for both complete and ovelemapalableDg.
dictionary where training stage employs the most effedtiyer;| weight pair i.e. P regularisation
scenario. As stated, the number of atoms for the overcomplgtdictionary isK = 128 { = 2) thus
having greater number of the recovery levids'm| = s= 32 than the complete scheme. The scaling
factormis same i.e.m= 4. The averaged PSNR comparison at e\&glablerecovery level,
for both the complete and overcomplstalablescheme is given in Tab. 4.2 and Tab. 4.3 for video
sequence “Stephan” and “Tempete”, respectively. Likewise, Talartd4rab. 4.5 illustratecalable
outcomes for the natural images “Boat” and “Peppers”. In all four talelesry two recovery levels
of the overcompletscalableDg. dictionary are compared against one of the complete recovery level

e.g.,.

1. L; andL, of overcompletds. are compared againki of completeDg;

2. Lz andL4 of overcompletdDg; are compared against of completeDg;
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Fig. 4.4 Averaged PSNR scalable results given the seveereift setups for regularisation
parameters$vo, v1] andK = 128 number of dictionarpsc atoms.

3. Ls andLg of overcompletdg. are compared againkg of completeDsgg;

4, ...

5. Ly7 andLyg of overcompletdDg; are compared againki, of completeDg;

6. Log andLsp of overcompletddg; are compared againkis of completeDg;

\l

. L1 andL3» of overcompletdg. are compared againkig of completeDse.

This aims to show that effectivecalableperformance can be achieved with complete as with over-
completeDg. dictionary.

On average, when all testing results are taken into account, the diffepétie highest recovered
layers i.e.L1¢ (for completeDgo) andLs; (for overcompletéddso) goes around:

* 0.15[dB] for scalableframe restoration (Tab. 4.2 and Tab. 4.3);
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Fig. 4.5 Averaged SSIM scalable results given the sevegréffit setups for regularisation
parameter$vo, v1] andK = 128 number of dictionarpsc atoms.

* 0.66[dB] for scalablenatural image restoration (Tab. 4.4 and Tab. 4.5);

in favour of the overcompletBg. dictionary. However after detailed assessment of all four tables,
conclusion follows that thecalableperformance of the complefgs; overruns the overcomplete
D¢ at all compared recovety, levels (bold tabular values) except for the fihak that isLz, for
“Stephan” and “Tempete” and almost all levels for “Boat” and “Peppe€@dnclusion follows that
redundancy is not crucial for sparse based scalable image restaraéipthe proposed trained dic-
tionary Dsc. Given that restoration quality is highly comparable and that we consideuadary
case for the sparse image representation basis i.e., lesser number dfataims which:

» Minimises the amount of information necessary for training and signalsvesy, that is,
directly achieves dimensionality reduction;

» Lowers computational complexity by having the redundancy-efl together with a simple
matrix inversion as a substitute for the OMP;
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we chose to train complete balg. with K = 64.

4.4 Scalability Performance

The comparison of the restoration quality is done for the proposed cometptiarisedcalable*SC
K-SVD” which integrates regularisation scenaRpand conventional complete non-scalable “NSC
K-SVD” algorithm. Thescalablerestoration of the image over both both “SC K-SVD” and “NSC
K-SVD” trained dictionary is carried via recovery layout introduced irc.S&2. Both PSNR and
SSIM estimates are provided at every restoration Idyg}. In particular, Fig. 4.6a and Fig. 4.6b
illustrate the PSNR estimates for video sequences “Stephan” and “Templeile” kig. 4.6¢ and
Fig. 4.6d provide PSNR outcomes for “Boat” and “Peppers” images. Sheaults are averaged
over all frames given each sf= 16 recovery{La};i1 layers and over 10 iterations for each of the
natural images. However, minor exception is the “Stephan” sequencé rhimes are, prior to
averaging results both for “SC K-SVD” and “NSC K-SVD”, divided intodwroups:

1. First group:[1,27( - total of 270 frames;
2. Second group271,30( - total of 30 frames.

The frame separation is carried out in order to demonstrate the variationqoahty of the restored
image, when a new object is introduced in the frame 271. GiverDggandD (i.e., non-scalable
dictionary ) are trained over thiaining framewhich does not contain a newly introduced visual
object we would expect certain degradation in the restoration quality. hlig@ation is confirmed
with depicted results for “SC K-SVD” and “NSC K-SVD” which show thatoera new image object
appears e.g., the tennis net in the “Stephan” sequence a noticeable dngsoalablerecovery
quality can be noticed in Fig. 4.6a for the second frame gf@uf 300 On average, with the intro-
duction of the new object, “SC K-SVD” PSNR declines forl.84[dB] and “NSC K-SVD” PSNR
declines for= 1.02[dB]. However, “SC K-SVD” still outperforms the “NSC K-SVD” for.83 [dB].
Furthermore, Fig. 4.6 clearly demonstrates that the propssalhbleregularised scheme consid-
erably outperforms the standard [19] over all recovery letglsvhile achieving an average gain
of:

=

. 1132 [dB] for “Stephan” video sequences given its first 270 frames @&8p);

N

. 8 [dB] for “Tempete” video sequences given all frames (Fig. 4.6b);
3. 1269 [dB] for “Boat” natural image averaged over 10 iterations (Fig. 4.6¢)
4. 1345 [dB] for “Peppers” natural image averaged over 10 iterations @-6g).

Note that “NSC K-SVD” is not specialised faicalablerestoration which explains the low values
at ever recovery laydr, except at the last one, that is, we provide comparisoscafablevs. non
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Table 4.2 Averaged PSNR quality assessment for scalalleraéen given the “Stephan”
video sequence for two sizes of of scalable dictioriagy K = 64 andK = 128.

Overcompletdg. dictionary | CompleteDg dictionary
K=128| Stephan[dB] | K=64| Stephan [dB]
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Table 4.3 Averaged PSNR quality assessment for scalalileaésn given the “Tempete”
video sequence for two sizes of scalable dictioriagy K = 64 andK = 128.

Overcompletds. dictionary | CompleteDsc dictionary
K=128| Tempete[dB] | K=64| Tempete [dB]
e gz
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Table 4.4 Averaged PSNR quality assessment for scalalileaésn given the “Boat” im-
age for two sizes of scalable dictionddy; K = 64 andK = 128.

OvercompletdDg. dictionary | CompleteDg dictionary
K =128 Boat [dB] K=64| Boat[dB]
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Table 4.5 Averaged PSNR quality assessment for scalaltleraésn given the “Peppers”
natural image for two sizes of scalable diction®y, K = 64 andK = 128.

Overcompletég. dictionary | CompleteDg dictionary
K =128 Peppers [dB] | K=64| Peppers [dB]
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Fig. 4.6 Average PSNR of the scalable reconstructed vidgoseguences and two natural
images given for each layér, of the scalable reconstruction using the scalable and non-
scalable K-SVD algorithm.

scalable method. Thereby, we prove superiority of the propssalhbletraining scheme over the
non-scalable [19] in terms cdcalableframe or image recovery. Overall, only in the case when all
the information on the sparse coefficients is availaiiig € R®4*N), the regular K-SVD algorithm
has a slight advantage over the proposed scheme both for shown ggleanses and natural images
(Fig. 4.6).

In addition, based on the SSIM index properties briefly discussed in éwiopis section, SSIM
index values shown in Fig. 4.7 quantify the degree of structural informdggnadation in a frame or
an image at eackcalablereconstruction levdl,. Once again, these estimates are averaged over all
frames for both testing video sequences and over 10 iterations givemaagal image. Likewise in
the case of PSNR evaluation, in Fig. 4.7a, for the “Stephan” sequercmsee that the proposed
scalablemethod surpasses in general the non-scalable. 8t @irst frame group) and.P8 (second
frame group). Similarly, we can see in Fig. 4.7b, the SSIM difference.®t €or the “Tempete”
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Fig. 4.7 Average SSIM index of the scalable reconstructéewitest sequences and two
natural images given for each layley of the scalable reconstruction using the scalable and
non-scalable K-SVD algorithm.

sequence over all recovery levélgbetween two dictionary learning algorithms. Lastly, for natural
images SSIM values fascalablereconstruction show advantage 089 for “Boat” (Fig. 4.7¢) and
0.4 for “Peppers” (Fig. 4.7d). Interestingly, in case of “Stephan” videquence SSIM evaluation
we have a different trend than the one shown for PSNR where, onsaviteh to the second frame
group i.e.,[271, 300 the PSNR quality assessment shows a high drop especially for the restoratio
levelsLig, Lis, L1 (Fig. 4.6a). In contrast, Fig. 4.7a denotes a high similarity in the SSIM values
for L14,L15,L16 at around ®4 given both frame groups, meaning that the structural information of
the image is preserved once thealablerestoration is done despite the fact that we have new visual
object in the scene.

Visualisation of the results is provided in:

* Fig. 4.8 and Fig. 4.9 for “Stephan” video sequence;

* Fig. 4.10 and Fig. 4.11 for “Tempete” video sequence;
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 Fig. 4.12 for the image “Boat”;
 Fig. 4.13 for the image “Peppers”;

in order to present the subjective perceptual quality ofsttedablerecovery for frames and natural
images. Once again, note thatsdblablerestorations for video sequences are performed over the sin-
gle trainedscalabledictionaryDgc given the firsttraining frame. In particular, Fig. 4.8a (“Stephan”)
and Fig. 4.10a (“Tempete”) illustrate tlsealablereconstruction outcomes at every recovery léyel

for the so-calledraining frame. The restoration of last frames for both video sequences amsho
in Fig. 4.9a (“Stephan”) and Fig. 4.11a (“Tempete”), respectively. Bmaring the restoration

of training frame against the last one in both sequences we can observe the aigsaabus in the
restoration quality when the new object containing the high-frequendgobstructure is introduced
(i.e., the tennis net in Fig. 4.9a) or the more spatial low-frequencies aeslagd, the background in
“Tempete” in Fig. 4.11a.

Furthermore, from these figures one can notice that the promxsddblescheme is able to
recover the video sequence frame at a recovery leyéD?. € R©69716 andX, ¢ R16*Ny whereas
non-scalable K-SVD [19] fails to show asgalablecharacteristics overall up to5 (D32 € R(64%60
andX 5 € R(®9~N) for “Stephan” and_g (D8, € R®4*32 andXg € R(32*N) for “Tempete”. It should
be said that the “NSC K-SVD” does show slight visual scalability with the "Tet@psequence.
However, this is still far from the performance of the proposed methodck#eis its reconstruction
efficiency consistent for quite different video sequences, hermeisy its processing stability and
robustness. Similarly, for natural images, the introdusealablemethod recovers full image scene
in Fig. 4.12a at level; for “Boat” (D, € R®4*28 andX; € R®*N) or in Fig. 4.13a at levelg
for “Peppers”. Non-scalable K-SVD [19] is able to restore full imagky @mce it collects all sparse
information at the level ;5 for any of shown images in Fig. 4.12b and Fig. 4.13b.

4.5 Summary

We have presented a full overview and experimental results of simulatiop wéich evaluates the
performance of the proposedalabletraining method foscalableimage restoration. At first, we ex-
plain main elements of the training setup followed with the comprehensive list dbgatptraining
parameters. In addition, we illustrate tbealablerestoration scheme starting with the fissalable
layerL; of the processed image. Progressive recovery continues by auding additional entries
per each sparse coefficient and atoms of dictiomyyuntil the lastscalablelevel Li¢ is reached.
Sec. 4.3 explains the selection process of training regularisation parampatevy, vi|, is, that isR.
The tested video sequences and natural images results suggest thasttbé&entive version oécal-
able dictionary Dg i.e., the most effectivecalablerecovery is achieved witRy = [vp,v1] = [1,0]
for both complete and overcomplefig.. Finally, the proposedcalabletechnique is tested over
two different video test sequences, “Stephan” and “Tempete” aiming nodstrate its practical
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(b) Non-scalable training frame, “Stephan” test sequence (“NSC R*$V

Fig. 4.8 Visual assessment of the scalable reconstrucsimig the scalable and non-scalable
K-SVD at every recovery level,.

(b) Non-scalable last frame i.e., 300th, “Stephan” test sequence (KNSED")

Fig. 4.9 Visual assessment of the scalable reconstrucsioig the scalable and non-scalable
K-SVD at every recovery level,.

utilisation for dynamic data changing over time given single trained complete dicyién.. More-
over, we addscalableestimates for two conventional images, “Boat” and “Peppers”. Experithenta
resalts show that the proposschlableapproach for learnin@s. dictionary forscalableimage re-
covery, significantly outperforms or it is highly comparable with the clas3{c8VD setting for
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(a) Scalable training frame, “Tempete” test sequence(“SC K-SVD")

==l L 14] L13ESEl 1 12 L11] L]

(b) Non-scalable training frame, “Tempete” test sequence (“NSC K-$VD

Fig. 4.10 Visual assessment of the scalable reconstructsimy the scalable and non-
scalable K-SVD at every recovery leug.

(b) Non-scalable last frame i.e., 260th, “Tempete” test sequence (“NSVEK’)

Fig. 4.11 Visual assessment of the scalable reconstructsomg the scalable and non-
scalable K-SVD at every recovery leug).

the all aforementioned experimental data achieving best gain.821dB] (0.37 SSIM) for tested
video sequences and .43 [dB] (0.4 SSIM) for tested natural images. Thereby, we show that the
proposedscalabletraining scheme achieves better performance than the non-scalablerpatinte
Visual subject quality assessment leads to the same conclusion.
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(b) Non-scalable restoraiton “Boat” image (“NSC K-SVD”)

Fig. 4.12 Visual assessment of the scalable reconstrucisimg the scalable and non-
scalable K-SVD at every recovery leug.

(a) Scalable restoraiton “Pepperes” image (“SC K-SVD")
VA 1 TRV 1 2R L 11

(b) Non-scalable restoraiton “Pepperes” image (“NSC K-SVD”)

Fig. 4.13 Visual assessment of the scalable reconstructsimy the scalable and non-
scalable K-SVD at every recovery leve].






Chapter 5

APPLICATION OF SCALABLE
SPARSE REPRESENTATIONS

This chapter focuses on specific applications of the propssaldbletraining and image reconstruc-
tion design published in [136, 146, 147]. We consider two applicationsidmg in Sec. 5.3.2 and
compressive sensing in Sec. 5.3.3 ussieglabledictionaryDgc instead of the regular non-scalable
D representational basis. In addition, Sec. 5.3.3 discuses and analysgrititere of the proposed
design.

5.1 Application to image processing 1: denoising

This section demonstrates advantages of the proposed scheme basathbledictionary learning
for image denoising application previously introduced in Sec. 3.4.6. Wasa#se denoising perfor-
mance of the proposed scheme (denoted as “SC”) against non-saadaigidete dictionary based
denoising (denoted as “NSC”) and non-scalable overcomplete dictigkar256 and = K/n = 4)
based denoising, which is the original algorithm proposed in [25] (denotie following as “Org”).
For the aforementioned algorithm setups, we discuss objective qualitysasset and time process-
ing complexity.

Unlike Sec. 3 where dictionary training is done only once over the firserfoée frame in the
video sequence, for the denoising the dictionary is trained for each ingamoisy frame. This is
necessary given the random nature of the introduced noise (likewi€&Jingnd plausible due to a
fact that denoising is rarely done online. So, keeping the complexity verisloot as essential as in
compressive sampling and communications applications. The performatieembposedcalable
K-SVD denoising scheme in Sec. 3.4.6 is evaluated in the set of experimesits wa introduce five
different standard deviations of white Gaussian additive naise[20,40,60,80,100 within every
frame and image. The results are presented for two video sequenceStephdn” and “Tempete”
and averaged over all frames. Denoising estimates for two natural imagéBoat” and “Peppers”
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are averaged over 10 iterations. The restoration of eseaiablelevel L, is carried out in the same
way as in Sec. 3.4.6 except for the setup denoted as “Org” where wahjsistve final level of image
recovery. That is, the one with all (in this cas€)= 256 dictionary elements i.e., atoms and full
sparse representation matXx These results represent the upper bound for the rest of the shown
results given that denoising is the most effective with the “Org” overcoremletionary with the
redundancy factor=K/n= 4.

Starting from Tab. 5.1 to Tab. 5.4 we can see tabular comparison for denaistcomes at
everyscalablerecovery layel, for all mentioned image/video examples. Additionally, each level
L, is compared against the denoising estimates of the overcomplete K-SVD sicherferg” (red
tabular bold values) in order to emphasise the effectiveness of thegadgralablescheme at every
scalablerecovery layer. From the provided results conclusion follows that P&lifes of the “SC”
at the final restoration levdl;g (Tab. 5.1 to Tab. 5.4) are, at most cases, comparable or surpass
(black bold values) denoising performance of the classical K-SVD setige the noise reaches
value ofo = 60. This better performance indicates that the higher frequencies armfleenced
by the noise since they are enforced as the most important training infornfatitime dictionary
Dsc. Thus, contributing most to the restored frame or image unlike in the convahe8VD. This
directly implies that sparse approximation obtained via the propsxsaebledictionary incorporated
within the denoising procedure is more efficient in noise reduction than thgemerated via more
complex conventional K-SVD. Overall, the proposed method achieves betteising performance
with lowest and highest gain of D[dB] and 57 [dB], respectively.

In order to further validate the practicality of the proposedlabledenoising design we perform
an additional testing where the sparse coding stage is also discardeth&@tassical non-scalable
K-SVD scheme. After simulations final estimates show that restoration “N$@lity, previously
presented in Tab. 5.1 to Tab. 5.4, drops for 2[dB] Hence, the newlyduted regularisation scheme
is more effective when it comes down to noise removal given that out oténative stages for dictio-
nary learning over the corrupted image we only keep atom’s regulariskdelpl he greatest benefit
of the scalabledenoising is direct reduction of both, computational complexity and prowetme
where Tab. 5.5 shows the total denoising run times in seconds for two ima&ge siz

1. 352x288 - size of the video sequences frames;
2. 512x512 - size of the conventional images.

lllustrated times are outcomes of processing on the MS Windows operatiegrsiystalled in DELL
computer with 64 bit Intel core, 8GB RAM memory andl@GHz processor. The number of itera-
tions for the provided results is fixed and set to sixteen. Based on thagaeerun times shown in
Tab. 5.5 we can see reduction in:

1. approximately 6.5 times for data of size 352x288 when comparing “SCOwg”™

2. approximately 7.3 times for data of size 512x512 when comparing “SCOwg";
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3. approximately 10.8 times for data of size 352x288 when comparing “SNSE”;
4. approximately 11 times for data of size 512x512 when comparing “SCR&C";

provided that we achieve still highly comparable (lower levels of noise)ettebresults (higher
levels of noise). The forth column of the Tab. 5.5 illustrates the time for the eratrix formation

per each iteration. These numbers are aiming to show that introduced nipatifiohthe atom’s

update in the form of a new error matrix scheme influences processindeatyn a minor scale
by being increased on average for two seconds.

Finally, Fig. 5.1, Fig. 5.2, Fig. 5.3 and Fig. 5.4 illustrate visual preview fosiatiulation data at
the recovery level 14 after the noiser = 40 is removed given thecalable non-scalable complete or
overcomplete K-SVD scheme. After additional subjective quality assessmgecan conclude that
provided results are highly comparable where, as emphasised, pdapesigod “SC” puts consider-
ably less computational demands than both classical K-SVD setups.

Table 5.1 Averaged PSNR quality assessmenséalabledenoising via thescalableand
non-scalable K-SVD dictionary, “Stephan” sequence.

Scalable recovery levels
Lis Lis Lig L3 L1z L1 Lio Ly Lg Ly Lg Ls Ly L3 [ [}
SC | 28.71| 28.73 | 28.74 | 28.75 | 28.71 | 28.71 | 28.50 | 28.47 | 27.79 | 27.67 | 26.37 | 26.18 | 24.34 | 24.13 | 21.57 | 21.07
NSC | 28.88 | 28.58 | 28.22 | 27.66 | 26.93 | 26.57 | 26.17 | 25.90 | 25.39 | 25.05 | 24.37 | 23.97 | 23.11| 22.75| 21.08 | 20.46
Org 29
SC [ 24.30] 24.32] 24.34] 24.36 | 24.36 | 24.38 | 24.34 | 24.35 | 24.18 | 24.17 | 23.76 | 23.71 | 22.88 | 22.79 | 21.02 | 20.68
NSC | 24.64 | 24.52 | 24.35 | 24.00 | 23.60 | 23.14 | 22.84| 22.68 | 22.45 | 22.28 | 21.97| 21.66 | 21.17 | 20.78 | 20.07| 19.51
Org 24.73
SC [ 21.93] 21.96 ] 21.98] 22.00 | 22.01 | 22.03 | 22.03 | 22.05 | 22.00 | 22.01 | 21.86 | 21.84 | 21.48 | 21.45 | 20.35 | 20.13
NSC| 22.31 ‘ 22.28 ‘ 22.13 ‘ 22.03 ‘ 21.90‘ 21.87‘ 21.70‘ 21.56‘ 21.38‘ 21.18‘ 21.02‘ 20.86‘ 20.52‘ 20.28‘ 19.70‘ 19.29
Org 22.32
SC [ 20.49] 20.51 ] 20.54] 20.56 | 20.58 | 20.60 | 20.61 | 20.63 | 20.61 | 20.63 | 20.57 | 20.58 | 20.41 | 20.40 | 19.72 | 19.58
NSC | 20.78 | 20.79 | 20.72 | 20.69 | 20.66 | 20.66 | 20.64 | 20.61 | 20.45 | 20.41| 20.30 | 20.21| 19.96] 19.79 | 19.39 | 19.07
Org 20.75
SC | 19.45] 19.48] 10.52] 19.55] 19.57 | 19.60 | 19.62 | 19.65 | 19.66 | 19.68 | 19.67 | 19.68 | 19.60 | 19.61 | 19.17 | 19.10
NSC | 19.63 | 19.64 | 19.63 | 19.64 | 19.64 | 19.64 | 19.60 | 19.60 | 19.57 | 19.55| 19.50 | 19.48 | 19.35| 19.31| 18.99 | 18.77
Org 19.59

o | PSNR[dB | Alg.

20 22.14

40 16.13

60 12.56

80 10.05

100 8.13

Table 5.2 Averaged PSNR quality assessment for scalableisieg via the scalable and
non-scalable K-SVD dictionary, “Tempete” sequence.

Scalable recovery levels

Lis Lis Lis L3 Lip L1 Lio Ly Lg L7 Le Ls [ L3 Lo L1
SC | 28.29| 28.3 | 28.21 | 28.21 | 28.03 | 28.02 | 27.73 | 27.7 | 27.27 | 27.22 | 26.63 | 26.55 | 25.62 | 25.49 | 23.86 | 23.56
NSC | 28.27 | 28.11| 27.97 | 27.81| 27.59 | 27.41| 26.99| 26.75| 26.25| 25.97 | 25.42| 25.15| 24.52 | 24.08 | 23.06 | 22.56
Org 28.40

SC [ 24.61 24.63 24.62] 24.64 | 24.61 | 24.62 | 24.56 | 24.56 | 24.45 | 24.46 | 24.28 | 24.27 | 23.92 | 23.88 | 23.01 | 22.87
NSC | 24.71 | 24.70 | 24.64 | 24.64 | 2458 | 24.49 | 24.29| 24.16 | 24.08 | 23.88 | 23.77| 2351 | 23.38 | 22.68 | 22.20| 21.72
Org 24.76

SC [ 22.59] 22.61] 22.63] 22.65 ] 22.65 | 22.67 | 22.66 | 22.67 | 22.64 | 22.66 | 22.6 | 22.61 | 22.48 | 22.47 | 22.07 | 22
NSC 22.59‘ 22.60‘ 22.60‘ 22.60‘ 22.58‘ 22.58‘ 22.53‘ 22.51‘ 22.44‘ 22.41‘ 22.29‘ 22.23‘ 21.96‘ 21.85‘ 21.51‘ 21.23
Org 22.52

SC [21.18] 21.2 | 21.23] 21.25] 21.27] 21.29] 21.3 | 21.32 | 21.32] 21.34 | 21.33 | 21.34 | 21.3 | 21.3 | 2113|2111
NSC| 21.12| 20.32 | 20.19| 19.35| 17.94| 15.79| 15.32| 15.29| 15.06 | 14.10| 14.00 | 13.75| 13.72| 12.22| 12.18] 11.62
Org 21.01

SC | 20.04] 20.07 ] 20.09] 20.12 | 20.14] 20.17 | 20.18] 20.21 | 20.22 | 20.25 | 20.26 | 20.28 | 20.27 | 20.28 | 20.22| 20.22
NSC| 19.92| 19.65 18.72| 17.86| 16.61| 16.01 | 15.35| 14.23 | 13.65| 13.63| 13.36 | 12.68 | 11.92] 11.38| 11.12] 10.92
Org 19.69

o | PSNR[dE | Alg.

20 22.12

40 16.07

60 12.55

80 10.07

100 8.14




72 APPLICATION OF SCALABLE SPARSE REPRESENTATIONS

Table 5.3 Averaged PSNR quality assessment for scalableisieg via the scalable and
non-scalable K-SVD dictionary, “Boat” image.

Scalable recovery levels

Lie Lis Lig Li3 L1z L1 Lo Lo Lg L7 Le Ls Ls Ls Lo L1
SC | 30.13| 30.14| 30.01| 30.02 | 29.82 | 29.82 | 29.49 | 29.49 | 28.94 | 28.94 | 28.06 | 28.06 | 26.60 | 26.59 | 24.57 | 24.55
NSC | 30.31 | 30.26 | 30.14 | 30.02 | 29.79| 29.59 | 29.31| 29.04 | 28.67 | 28.40 | 27.75| 27.29 | 26.39 | 26.01 | 24.50 | 24.15
Org 30.52

SC | 26.80] 26.83] 26.81] 26.84 | 26.80 | 26.82 | 26.74 | 26.76 | 26.60 | 26.62 | 26.25 | 26.26 | 25.47 | 25.48 | 24.05 | 24.06
NSC| 27.11 ‘ 27.13 ‘ 27.09 ‘ 27.09 ‘ 26.91 ‘ 26.87 ‘ 26.72‘ 26.56‘ 26.32‘ 26.23‘ 25.88‘ 25.84‘ 25.24‘ 24.83‘ 24.04‘ 23.71
Org 27.11

SC | 24.86] 24.80 [ 24.90 ] 24.93 ] 24.94] 24.97 | 24.95| 24.98 ] 24.93 | 24.96 | 24.80 | 24.82 | 24.39 | 24.41 | 23.49 | 23.51
NSC | 25.11 | 25.15 | 25.13 | 25.16 | 25.10 | 25.12 | 25.04 | 25.05 | 24.87 | 24.88 | 24.70 | 24.68 | 24.23| 24.12 | 23.54 | 23.34
Org 25.02

SC [ 23.46] 23.50 | 23.53] 23.56 | 23.58 | 23.62 | 23.63 | 23.67 | 23.66 | 23.69 | 23.62 | 23.65 | 23.42 | 23.45 | 22.89 | 22.92
NSC | 23.59 | 23.63 | 23.65 | 23.68 | 23.60 | 23.73 | 23.70 | 23.73 | 23.65 | 23.68 | 23.57 | 23.59 | 23.31 | 23.32 | 22.94 | 22.88
Org 22.83

SC | 22.37] 22.41] 22.44] 22.48] 22.51] 22.55] 22.57 | 22.61 | 22.62 | 22.66 | 22.63 | 22.67 | 22.53 | 22.56 | 22.22 | 22.26
NSC | 22.43 | 22.48 | 22.52 | 22.57 | 22.50 | 22.63 | 22.61 | 22.63 | 22.62 | 22.65 | 22.58 | 22.60 | 22.46 | 22.46 | 22.22| 22.21
Org 21.46

o | PSNR[dB] | Alg.

20 2211

40 16.09

60 12.55

80 10.05

100 8.15

Table 5.4 Averaged PSNR quality assessment for scalableisieg via the scalable and
non-scalable K-SVD dictionary, “Peppers” image.

Scalable recovery levels

Lis Lis Lis L3 L1 Lig Lio Lo Lg L7 Le Ls [ Ls Lo L1
SC | 31.94| 31.95| 31.97| 31.98 | 31.96 | 31.97 | 31.90 | 31.91 | 31.29 | 31.29 | 30.81 | 30.79 | 29.52 | 29.49 | 26.88 | 26.66
NSC | 31.99 | 32.00 | 31.98 | 31.85| 31.56 | 30.61 | 29.70 | 29.25| 29.08 | 28.98 | 28.74 | 28.43 | 27.89 | 27.52 | 26.32 | 25.82
Org 32.24

SC | 28.83] 28.86 28.88] 28.91 ] 28.91 | 28.94 | 28.94 | 28.96 | 28.71 | 28.74 | 28.50 | 28.61 | 28.00 | 28.00 | 26.23 | 26.07
NSC [ 29.04 | 29.09 | 29.04 | 29.08 | 28.60 | 28.71 | 28.67 | 28.60 | 27.88 | 27.89 | 27.82| 27.65 | 27.05| 26.99 | 26.07 | 25.49
Org 29.07

SC [ 26,54 26.59 | 26.62 | 26.67 | 26.66 | 26.71 | 26.72 | 26.76 | 26.70 | 26.74 | 26.72 | 26.75 | 26.52 | 26.54 | 25.41 | 25.33
NSC | 26.68 | 26.73 | 25.89 | 25.93 | 25.93 | 25.97 | 25.91| 25.94| 25.85| 25.86 | 25.14 | 25.14 | 24.85 | 24.83 | 24.65| 24.21
Org 26.05

SC [ 24.85 | 24.89 | 24.93 | 24.97 | 24.99 | 25.03 | 25.06 | 25.11 | 25.13 | 25.17 | 25.17 | 25.21 | 25.08 | 25.12 | 24.50 | 24.46
NSC | 24.70 | 24.74 | 19.06 | 19.07 | 18.98 | 18.99 | 18.99| 19.00 | 18.99 | 19.00| 18.99 | 18.99 | 17.31| 17.31| 17.27 | 17.16
Org 23.91

SC | 23.41] 23.46] 23.49] 23.53 | 23.56 | 23.60 | 23.63 | 23.67 | 23.70 | 23.74 | 23.77 | 23.81 | 23.80 | 23.83 | 23.55 | 23.54
NSC | 22.61| 22.66 | 22.14| 22.17| 22.19| 22.22| 17.23| 17.24| 17.24| 17.25| 17.23| 17.23| 13.54] 1353 13.27] 11.75
Org 22.13

o | PSNR[dE | Alg.

20 22.12

40 16.08

60 12.58

80 10.05

100 8.12

Table 5.5 Comparison of the processing time given three damgpschemes

Image size| Alg. | Total denoising run time [s] Error formation time [s]

Org 2897.6 1.26
352x288 | NSC 3515.7 2.61

SC 3251 4.42

Org 7565.5 1.59
512x512 | NSC 7337.3 1.58

SC 665.5 3.29

5.2 Application to image processing 2: compressive sens-
ing

Following closely the experimental layout suggested in [44], we investigateftbctiveness and the

performance of thecalableCS video acquisition scheme. However, unlike [44] we introduce the

proposedscalablelearned representational basis rather than a predefined one i.e.,/Dgrtitular,

the proposed framework aims for the frame-by-frame progressiveeG&ery while analysing the

implications of the sub-Nyquist CS paradigm in both Swmlableand adaptiverepresentational

domain. Likewise in previous experimental sections and as in [44], the imggedsssed block by
block. Mainly, we take into consideration two cases of thesC&ablerecovery:
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(c) “Org”

Fig. 5.1 Visual assessment for denoising via the scalalole;scalable complete and over
complete K-SVD for thd.15 recovery level given the firgtaining frame of the “Stephan”
video sequence far = 40.

1. With the proposedcalableK-SVD dictionary tailored to this task;
2. With the conventional non-scalable K-SVD dictionary.

Simulation of the CScalablesensing is performed sequentially in the sparse representation domain

X = [Xq,...,%n] € RN for each frame from either of two video sequences and for each gaen

ural image denoted &. Rather than taking the full number of measurements [15, 147] over every

incoming frame, CScalablesampling is carried out in incremental steps. Note that this is applicable

only for the CSscalablesensing scenario. Given the sufficient number of progressive mezasnots

per patch marked &8,s,,...,S_ (S < K) we are able to recover the frame or image gradually after

incrementally retrieving entries of sparse vector coefficien¥ mia OMP. Furthermore, each incre-

mental number of samples satisfies the fundamental result of the CS theory [2] that imposes the

limit on the minimal and necessary number of measurements for satisfactoay iIganstruction.
Unlike the conventional CS for our testing we apply specially structured lgagmpatrix ®. This

aims to achieve efficiergcalableacquisition of samples over each image layer commonly denoted

asycs= Py = ®PDgex. Implementation is carried out via the systematic non-adaptive approach as in

[124] that generates the structural sampling matrigptimally suited for thescalabletask in hand.

For each recovery step (as in [44]) we scale sampling matrix size-wise iritanisated versions as
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(b) “NSC K-SVD”

-

(c) “Org”

Fig. 5.2 Visual assessment for denoising via the scalalole;scalable complete and over
complete K-SVD for thd.15 recovery level given the firgtaining frame of the “Stephan”
video sequence far = 40.

®; € R3*K (1<i <L). Once the sampling is done we attain a group of samples each dengted as
The sampling is structured in a way that the basic level is collecte@ythat contains binary entries
generated from the Gaussian distribution. Remaining measurements aredsaiaplernoulli binary
distributed entries ob; consecutively added up to the basic layer fordbalablerestoration. Again,
starting from a base levek= 1 and withyzg= @1y = ®1Dsx (approximately sampling 15% of each
sparse coefficient denotedxasnd of original patch image sizg) we advance through enhancement
layers by uniformly collecting additional number of samples (&xs3,...,S. = S) in each step until

the total number o6 < n samples is reached. Hence, given the single trained dictiddgrgas in

Sec. 4.4) learned ovéraining frame for either of video test sequences, one can define an arbitrary
number of sampled layers over extracted image patches.

Fig. 5.5 shows reconstruction results obtained via the propadagtive scalabl€€S approach
averaged over the frames and several iterations over the natural istagésy with base level sam-
pling s; = 10 measurements and adding five more samples per each patch as fraveeyreco-
gresses (e.gsp = 15,53 = 20, etc.). We define in total nine sampling levels resulting in nine patches,
that is, frame or image reconstruction layers. Thus, the full number of uresagnts isS= 50
(K > 50) which accounts for roughly 80% of the information of the sampled signdlhe gap be-
tween the performance of the two methods is evident in Fig. 5.5 for the lagensled both at low
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(c) “Org”

Fig. 5.3 Visual assessment for denoising via the scalalolesscalable complete and over
complete K-SVD for thd_15 recovery level given the image “Boat” far = 40.

(e.g., 15%, 23% , 31% and 39%) and high subrates (47%, 55%, 62%aiAd%0%) of sampling
information. Specifically, thscalableCS restoration with the proposegalabletraining scheme
achieves gain of:

3.03 [dB] in the case of “Stephan” sequence frames;

2.96 [dB] in the case of “Tempete” sequence frames;

3.32 [dB] in the case of “Boat” natural image;

2.57 [dB] in the case of “Peppers” natural image.

We can see that the proposed design is successful for the subsangaiogs fat different rates
whereas the conventional non-scalable K-SVD has a comparablethetter performance as more
measurements are added.
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(c) “Org”

Fig. 5.4 Visual assessment for denoising via the scalalolesscalable complete and over
complete K-SVD for thd_15 recovery level given the image “Peppers” o= 40.

5.3 Discussion on the proposed design

Training the dictionary for thecalablesparse data representation and applying it to the denoising
and compressive sensing adopts a different approach than theigimalty introduced by K-SVD

[13, 19, 25]. Mainly, the atom update illustrated in Sec. 3.4.5 and denoisoppged in Sec. 3.4.6
together with the compressive sensing are grounded in the following assnsip

» The progressive and quality wise scaled recovery of the image/framdeattained via
learned dictionary by modelling the main HVS perception mechanism propenikete-
grating them during dictionary’s training;

» This implementation should be taken forward by MCA based semi-random iratialis allo-
cation, separation and regularisation of low and high spatial frequeinfemation captured
by the atoms during the dictionary training procedure;

» Texture image components are less distorted by noise than the smooth onésetimewly
introduced design SVD of proposed regularised error mElTiis sufficient for noise removal.
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Fig. 5.5 Averages PSNR of the scalable CS reconstructiomimtést video sequences and
natural images as a function of the number of acquired measnts expressed as % of the
total number of pixels in the image patch using the scaldBl€ K-SVD”) and non-scalable
(“NSC K-SVD”) algorithm.
These hypotheses give rise to a series of questions:
1. How are spatial frequencies distributed osealableand non-scalable dictionary’s atoms?;
2. Could this distribution be denoted as a built-in property of the trained dictemta
3. Does the proposed design properly adopts the HVS perception nimthatoperties?

4. To what degree noise effects smooth and texture image properties?

The following sections aim to look into some answers to these questions byimggisained dictio-
naries which are depicted in Fig. 5.6 and Fig. 5.7 for each of test vide®eeq and natural image.
There are fouscalablei.e., “SC K-SVD” (Fig. 5.6a, Fig. 5.6¢, Fig. 5.7a and Fig. 5.7c¢) and accord
ingly associated their non-scalable i.e., “NSC K-SVD” (Fig. 5.6b, Fig. 5gl,5.7b and Fig. 5.7d)
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Fig. 5.6 Scalable and non-scalable trained dictionarieghie first frame in each of two
video sequences.

counterparts. Visual differences between each “SC K-SVD” andCNMSSVD” pair might not be
so obvious and direct. However, in detailed discussion which follows we sim effective distinc-
tiveness between both kinds of dictionaries additional emphasisindgis better tailored to the
HVS perception system than the non-scalable, conventional dicti@hary

5.3.1 Distribution of the spatial frequencies

In Sec. 3.4.3 we gave a detailed explanation on semi-random dictionary init@liséhere we en-
force allocation and separation of the dictionaries atoms into smooth and tereseAs explained,
the classification criteria we use is formulated ®etivity norm in [13]. Thus, we further assess
the spatial frequencies distributions for both dictionary typessaalableDs; and non-scalabl®
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Fig. 5.7 Scalable and non-scalable trained dictionariethieach of two natural images.

by looking at and analysingctivity trend of atoms once the training is done (Fig. 5.6 and Fig. 5.7).
Fig. 5.8 illustrates this trend for used experimental data. Whether we cofisidees of the video
sequence (Fig. 5.8a and Fig. 5.8b) or some conventional images (Figutl&ig. 5.8d) we can con-
clude that classical K-SVD scheme results in dictionaries which do not angwpecific structural
features in terms of how smooth and texture information are learned, allca@agiedistributed. In
contrast, the proposed design shows clear distinction between atomsrtijat ca

» Low spatial frequencyActivity(dj)}j/2 <A=0.27,

 High spatial frequency/é\ctivity(dj)}j/2 >A=0.27,
where, to reiterate firdf /2 Dsc atoms contains smooth information while the rest are texture like.

Overall, proposed method successfully implements specific spatial distrilagiatuilt-in property
of thescalabledictionaryDgc unlike the classical K-SVD scheme.
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Fig. 5.8 Activity atom’s pattern for the dictionaries of the two video seqesnand two
natural images.

5.3.2 Contrast variation

Proper integration of the HVS sensitivity properties is done adequately ipribgosedscalable
design reinforces learning of the spatial high-frequency componsggsec. 3.4.5) which represent
regions of a high contrast variation [141, 142]. The way in which wéwéhnis is by showing the
composition structure difference of atoms bothBoandDs.. By examining in what ways atoms Df
andDgc differ in terms of their composition structure (i.e., contrast variation) weyw#ng credibility

of HVS properties modeling. This is taken forward by estimating contrasisleaptured within the
K = 64 atoms during dictionary learning procedure, that is, the atoms of didgésrsrch are shown
in Fig. 5.6 and Fig. 5.7. Assessment of the contrast levels is done by fitiddrgjandard deviation
(std) over the atom’s pixel intensity. Estimates are averaged over severahdigée trained over the
frames of the same video sequence or several times over the same imageofddsed computation
is adopted from [133] where authors ustel as a measure to estimate contrast levels if an image.
Likewise, in Fig. 5.9 we depict standard deviation values for contradsisle§@toms both fob and
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Fig. 5.9 Activity atom’s pattern for the dictionaries of the two video segesnand two
natural images.

Dsc given the same set of data as in previous section. We can notice distinchpgattthe contrast
levels of thescalable*SC K-SVD” dictionary for all shown results, similarly as in caseAdftivity
values shown in Sec. 5.3.1.

Specifically, for the firsK /2 atoms of each of the presentazhlabledictionarieDs. the contrast
is considerably lower with some slight fluctuations given all four exampledHig. 5.9a, Fig. 5.9b,
Fig. 5.9c and Fig. 5.9d with highest contrast variation @60 The remaining atoms reach quite
high contrast levels with a steep jump up to arourtBQcreating a distinct threshold in distributed
contrast variation over the all four presenteg dictionaries. The clear contrast variation borderline
which clearly splits atoms in two groups, e.g., those with low and those with highasbwariation,
is the final processing effect of the enforced semi-random initialisatidrregularisation. In case
of the conventionally K-SVD i.e., “NSC K-SVD” shown trend does not exitese results are in
the synergy with what was shown in the previous section (Sec. 5.3.1) ¢t the high spatial
frequencies (lask /2 atoms) usually denote areas of various textures, edges etc. within the image
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Fig. 5.10 Visual overview of the image patches size3®0used fostd noise impact analysis.
First row represents smooth image content while secondgepiets texture.

and commonly these areas are expected to posses higher contrastnanidtioh is implied by
the shown contrast threshold. Thus, this directly proves that propdesign complies with the
characteristic of the HVS perception mechanism [3, 143] given that it i& mificient in extracting
contrast information from the training images. In addition, this is significammesaproper visual
understanding of the scene in hand [138, 141, 142] depends on kdvcantrast variations are
captured with the image representational elements, that is atoms.

5.3.3 Noise distortion of the smooth and texture image patches

We posed assumption in Sec. 3.4.6 that noise affects more smooth than texigeecongponents.
Specifically, oscillatory components of the scene i.e., texture exhibit rétyularterms of the fre-
quency content that repeats to some extent over the image. Thus, naisergpresents random
signal (without any consistency in its change) should have a higher iropactage parts which do
not exhibit periodic spatial variations i.e., smooth one. This is shown by estignetiBnges irstd
variation before and after noise is added to specific image blocks of smodtiexture areas. Sev-
eral of these blocks are depicted in Fig. 5.10 where first row repieserooth and second texture
image blocks of size 38 30, respectively.

Table 5.6Stdvariation assessment averaged over group of smooth anadextage blocks
size 30x 30.

Smooth
0=0|0=20|0=40|0=60| 0=80| o =100
6.67 | 21.42 | 3582 | 57.59 | 70.44 80.22
Texture
0=0|0=20|0=40|0=60| 0=80| 0 =100
46.42| 50.11 | 56.85 | 67.21 | 76.40 84.47

Given the five noise levels as in Sec. 5.3.2, in Tab. 5.6 we show how adstjof the texture
and smooth image patches varies before and after noise is added. Gvandbth group we can
see relative jumps of 145, 2915, 5092, 6377, 7355 for each noise level from the initial noise
free level ofstd 6.67. In contrast, for texture areas this change is not that steep stadingibise
freestd of 46.42 with relative changes 0f39, 1043, 2Q79, 2989 and 38)5. Having these results
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we conclude that noise corrupts original smooth image content on a mueh $&@e than which is
case with the texture areas.

5.4 Summary

We have introduced in this chapter a practical integration of the prosusdablelearning andscal-

able sparse data representations together with experimental results for thicatipps: scalable
denoising and adaptivecalableCS. As in the previous chapter, testing is carried out over the two
video sequences “Stephan” and “Tempete” and two natural images “Bodt"Peppers”. Both of
implementations are realised by employing #mlabledictionary Dg; as a data representational
basis instead of the regular non-scalable In this way, the usual CS scheme is changed where
regularisedscalabledictionary Dgc replaces the predened basis. Furthermore, unlike classical de-
noising, itsscalableversion omits the sparse coding stage while noise removal is carried out via
SVD (Sec 3.4.6). Experimental results show that the propesathbledenoising achieves compa-
rable PSNR and SSIM results with both the non-scalable complete and oy#ete K-SVD with

best decreased computational demands fBtithes. Once the noise reaches standard deviation of
0 = 60, thescalabledenoising surpasses performance of the other two methods with the hagirest

of 5.7 [dB]. Results for adaptivecalableCS image sensing demonstrate that the proposed method
significantly outperforms the classical CS setting with non-scalable K-S\Viivdary. That is, adap-
tive scalableCS outperforms all benchmark methods given all nine sampling levels whilevirodp

the greatest gain of.32 [dB]. In addition, we provide a detailed discussion on structuralreiffees
betweerscalableand non-scalable dictionaries. We show that the proposed designeshispecial
type of spatial frequency distribution over trained atoms. Moreover,ongpare contrast variations
among atoms showing thBt; indeed reinforces learning of the spatial high-frequency components.
Thereby, it is is better tailored to the HVS perception system than the néabkralictionaryD.
Finally, we prove that noise affects more smooth than texture image compogaasiparing their
level of introduced noise distortion which justifies thealabledenoising noise removal approach.






Chapter 6

SCALABLE DENOISING AND
CONTRAST ENHANCEMENT OF
SOLAR IMAGES WITH POISSON
AND GAUSSIAN MIXTURE NOISE

6.1 Introduction

Observing and studying processes on the surface of the Sun is ieed@s a highly important task
primarily due to the potential catastrophic influences these processeawmungon life on the Earth.
For example, induced electric fields and currents that result from sailaiti@s can influence Earth’s
climate [148, 149] and cause permanent damage of power transmissisnpipielines, telecommu-
nications networks and satellites, metallic oil and gas pipelines [150-152F-@eténstance, in the

1%h century the great geomagnetic storm hit the Earth and caused the entirapghlegystem to

stop working. More recently, on March 13, 1989 a much smaller geomaggtetit closed down

the entire Hydro Quebec system [150, 151] resulting in a loss of 6 billionrdaitathe Canadian

economy.

Up until 196G the analysis of solar activity was performed manually by trained experts who
would compose appropriate solar features/spectra drawings baseditogridund-based telescope
observations [153]. Nowadays, numerous space-research missmreping with the challenge
of processing and understanding digital solar data generated frokoNaolar observatory satel-
lite, SOHO (The Solar and Heliospheric Observatory spacecraft), RSTEREO (Solar TErres-
trial RElations Observatory, a solar observation mission), Hinode (higipliyisticated observational
satellite equipped with three advanced solar telescope), the SDO (SolamigObservatory) mis-
sions, ESO (European Southern Observatory) ground-basen/atmsg etc. All space observatories
are specially designed and launched with the purpose of monitoring pescen the surface of the
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Sun. These up-to-date space apparatus are recording vast ambsaolaralata in four different
wavelengths i.e., visible, ultraviolet, infrared and X-ray [154] aiming to a@puarious solar fea-
tures such as prominence (arc of magnetism), filaments (prominence amsgan’s plane), flares
(strong emission of radiation), coronal massive ejection (colossal Egpl@f solar plasma into
space) [153-156].

Due to the conditions of observations (space atmosphere influencésaswosmic rays) and
instrumental errors (technical constrains of image acquisition proasg)ired solar images often
contain high level of measurement noise [153]. In particular, on boardanmaaquisition devices
such as space-borne telescopes, due to technical constraintsggd:itaupled devices (CCD), often
introduce significant level of noise and recorded images will contaimar6d % of bad pixels [155].
Measurement noise is usually modeled as Gaussian noise or as a mixtuiiesoilPand Gaussian
distribution (the former models arrivals of photons on the CCD detector, uinddatter models
readout noise most likely caused by electrons not being properly fusfer CCD readout) [153,
156]. The efficiency of removing this noise largely influences the pasbideng image processing
steps, e.g., contrast enhancement, which is used to extract hardly vesltleefs of interest from
images distinguishing them from all feature-unrelated structures whialidcshe ideally suppressed.

Very efficient denoising methods for natural images are based on theesgading paradigm al-
ready introduced in Chapter 2. This, so-called, sparseland modeldtasriamerous state-of-the-art
algorithms for additive white Gaussian noise removal such using the K-Saibitegy method and
sparse and redundant representation, with dictionaries trained oveorttupted image (Sec. 2.4).
Similarly, another denoising solution is provided for astronomical images ghrthwresholding of
multi-scales coefficients obtained with curvelet transform (Sec. 2.3) whiplkrformed within the
optimal range of curvelet coefficients values, hence preventing aisg mmplification. Collabo-
rative filtering via the BM3D algorithm (Sec. 2.3) is another highly effectdenoising method for
natural images that builds 3D “groups" of similar nonlocal 2D image patcaesformed together se-
guentially with the 2D and 1D transforms, whose coefficients are shruwhkedarned to the original
representative domain; finally, aggregation over local estimates yieldeghking image estimate.

Unlike Gaussian noise, Poisson noise, being signal dependent, is tosaigty with variance
stabilisation methods such as the Anscombe transform [45, 157, 158tististh Multi-scale Vari-
ance Stabilising Transform (MS-VST) [159] resulting in a transformed inveitfe uniform distri-
bution of unitary Gaussian variance. After the Gaussian noise is remoweme of the typical
Gaussian denoising algorithms [49, 160], the inverse Anscombe tram&operformed with the
state-of-the-art exact unbiased inverse method [157, 158]. Mdbkedftate-of-the-art methods for
astronomic image denoising and contrast enhancement are based ¢t waslecurvelet transform
and soft thresholding (see [45] and references therein). In pkntithie wavelet transform has been
extensively used on astronomic images given that is well suited to the complexdhical struc-
tures. However, wavelets in general perform poorly on anisotrogectdh Multiscale transforms,
such as curvelet and ridgelet, are proposed for anisotropic featnesthey exhibit high directional
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sensitivity and in B are localised along curves [45]. However, the digital curvelet trarmstdone
often fails to capture well key solar characteristics.

Solar image processing is exceptionally challenging given the images itllyefeimcontent and
features of interest, which are subject to a wide range of variation irepiiep, including variations
in grey scale contrast, pixel intensity, spatial morphology, edge definitidhchanges resulting
from differing viewpoints over time (observing the same featurefim@3D aspect) and particular
composition of the Sun’s atmosphere. Another problem is the vast numhmbffexent imaging
methods used for solar imaging. Thus, a single image processing solutisfgtrarcannot “catch”
all the solar features and lead to a satisfactory reconstruction. For &xatimg Discrete Wavelet
Transform [161] is good for representing edges and singularitiesy@eFourier Transform (DFT)
[161] for textures while curvelets are good for ridges and curvilineatures. One way of taking
advantage of different transforms is to iteratively combine them. Howelifégrent types of solar
images require different transform combinations to address specifiegsimg tasks, thus motivating
us to take an alternative and more robust approach by adapting sipneseatation to the solar
image.

The proposed work tackles the problem of extending the natural imageesearesentation with
the trained adaptive dictionary specialised $oalablehigh-motion video sequences and natural
images reconstruction i.e., tlesgalableK-SVD (introduced in Sec. 3) to denoising solar images
corrupted with a mixture of pixel-dependent Poisson noise and white @aussise. Secondly,
we propose CE scheme for solar images by redefining CE originally pedpfos curvelets and
astronomic imaging [45], adapting it to spatial sparse based represerdatiantegrating it with
our denoisingscalabletechnique (Sec. 3.4.6). This represents a comprehensive expafgan o
work originally introduced in [162] where we solely employ the conventiatertoising K-SVD
method. Furthermore, since we aim to downsize the processing complexitaofdenoising and
contrast enhancement, rather than overcomplete we use the completerspagsentation of solar
data as in Sec. 3, while achieving equal restoration quality.

In summary, the main contributions of the proposed research are following:

1. Extension of the sparse representation withgbalabledictionary learning concept to de-
noising solar images corrupted with a mixture of pixel-dependent Poisssa and white
Gaussian noise;

2. Extension and adaptation of the integrated contrast enhancementjtecioniginally pro-
posed for curvelets in [45] to trecalabledictionary learning approach;

3. Development of a universal joint contrast enhancemensaalibledenoising algorithm for
solar image data for feature extraction in different solar image types while mingrise
processing complexity by taking advantage of the com@et¢ablesignal representation.

One could argue that HVS based method for solar images denoising canibit sxib performance
given that solar images are nowadays processed automatically. HowevétVS modelling rep-
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resents a base line for modelling of many image computer based procesplitatagns as it is
pointed out in Sec. 3.2. Furthermore, in Sec. 6.4 we utilise the non-HV Sl masthods for per-
formance comparison where proposed HVS based method achieveseettemance that its non
HVS counterparts.

The image data set used in our simulations and importance of solar image emeands de-
scribed in Sec. 6.2. Sec. 6.3 introduces the proposed method for solaisidg and the joint
denoising-contrast enhancement for solar images corrupted with a moftdreisson and white
Gaussian noise. Comparison of simulation outcomes of the proposed dgramsifCE methods is
given in Sec. 6.4. Finally, we conclude the proposed work in Sec. 6.5.

6.2 Data Description

In this study, we use images captured by the Transition Region and Corgplar& (TRACE)
telescope in the 171 A Extreme Ultraviolet (EUV) spectral line and H-alpi#g (Mages in 656.28
nm wavelength taken from the Observatory de Paris with the original Fliigers:

* tri19990821.1800.0346.fits for EUV;
+ mh990821.070200.fits for HA.

TRACE telescope operates in a range of four main spectral lines whiebtrdifferent temperatures
(from about one million degrees C to about three million degrees C of solamplaand density
structures in the solar atmosphere [163]. EUV images are usually usécdorg coronal holes
[156] (the brighter arch-like features seen as loops, both large arltj anwfilaments which appear
as large (dark eyebrows) clouds of material, suspended above thewdee by loops of magnetic
field. Filaments are highly interesting structures with temperatures being tequag-hundredth of
that of the corona and density several times larger than correspondialgclorona values (where
they can be found). Filaments can also be traced in H-alpha images whiekeapsun light images
from a specific red line in the hydrogen spectrum at 6563 A [164]. Treéigct processes in the
chromosphere (1200 and 1800 km above the visible surface) whiehcmesequence of interacting
magnetic fields that produce immense heat. Besides filaments, these imagéassiffe into other
chromosphere features such as sunspots, flares and explorat@araictive regions [164]. For our
case study, we use EUV images for detecting filaments and H-alpha imagéstdoting the solar
disk. The aim of image enhancement in this case is to remove all textual asdlaomformation
[155] that are part of the solar image and to enable a clear distinction bethesolar disk surface
and solar image background [164].

Solar images are usually acquired with a high level of noise. This is due tanmstital effects
such as “dark” pixels (fabrication artifacts of CCD devices) or “hot"gbéx(high readout noise),
or image compression (causing Poisson noise statistics) [153]. Anothkerde for astronomic
image processing is caused by non-solar features which represarftueamce of cosmic rays or
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Fig. 6.1 Flowchart of the proposed joint image denoising @&dnethod.

high-energy electron or proton hit. For ground-based observatitituies, today’s state-of-the-art
communication technology (radio and TV metric and microwave wavelength)esobthe main
sources of distortions appearing in reconstructed solar radio imagéls [15
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6.3 The proposed method

Solar image denoising and enhancement are not trivial tasks due toénsainature of solar features
which differ in contrast and sharpens levels. Low contrast will meanttigatange of dark vs. light
is very small in the solar image where all tones can be very dark or just@rethe other, hand high
contrast will have a very wide range of dark vs. light intensities. Togetit® contrast, sharpness
plays an important role since high level of sharpness will appear as digtivisual solar features
with no blur whereas low sharpness will be shown as blurred and indistsal solar characteristic.
For instance, magnetograms have very high level of contrast and lopwrsss, white light faculae
have very low contrast and sharpness, coronal holes have hitlastand low sharpness, while EUV
loops have average contrast and high sharpness, and sunspaithdrigh contrast and sharpness.

This calls for a more general, adaptive signal processing method cadloigpturing the het-
erogeneity of solar images and adapting to a high range of solar featusgshtigely differ in the
level of contrast and sharpnes$herefor, firstly we propose a highly-adaptable denoising scheme
for removal of Poisson and Gaussian noise mixture from different typ@dar images. This scheme
utilises Anscombe transform and adaptealableK-SVD which is appealing candidate for this task
given that it achieves:

» Lower processing complexity than classical non-scalable K-SVD [136]

« Significant adaptivity and sensitivity to image’s spatial high frequenchéswhold important
information about solar features [136].

Following the general outline of the state-of-the-art methods for remduéieoPoisson noise, we
embed the following three steps within the proposed denoising method:

1. Nonlinear modified forward Anscombe transform;

2. Denoising of the non unite variance additive Gaussian noisscakableK-SVD within the
transformed Anscombe domain;

3. Performing the exact unbiased inverse of the Anscombe transform.

These aim to effectively stabilise the Poisson noise variance and to reneokentlaining Gaussian
noise from the Anscombe domain by exploiting the image spatial sparsity fealate that, con-
ventional denoising approaches for removing Poisson noise [15}, ,cdsBmonly, within the second
step as a remaining transformed noise assume the unitary Gaussian valtlana#y, this noise is

removed with some conventional non adaptive Gaussian denoising metHodsver, when the
mixture noise is introduced the unit Gaussian variance assumption carddaimme the Ancombe
transform is not designed to stabilise the variance of the noise mixture., Tfeuszmaining trans-
formed mixture noise cannot be approximated well with unit Gaussian variahicat is why we
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firstly introduce modified Anscombe transform followed with a simple blind estimaifaie re-
maining non-unitary Gaussian noise within the Anscombe domain. The estimatsgi&anoise
variance is used as the input parameter for the adagtiaableK-SVD denoising scheme.

Secondly, we propose contrast enhancement (CE) scheme tailoré forodification of the
spatial solar image sparse representation values within the Anscombe doMaistart with the
modification function (2.10) in Sec. 2.3, redefine its modification parametergThgh, Tmay and
alter the nonlinearity term for sparse coefficients which entries are smalégual thanly,;,. The
proposed CE scheme is carried out together with the proposed denaibgmme aiming to provide
CE of the denoised solar image. The general overview of the the prdpoakablebased denoising
algorithm and CE is given in Fig. 6.1. In the following, we describe each stahe proposed
algorithm.

6.3.1 Modified Anscombe transform

After the introduction of the Poisson noise, pixels in the image become randdables with a
Poisson distribution. Given that Poisson distributed data are deperdt@ original pixel intensity
values, it is necessary to pre-process data i..e, to remove the dataldepenf the noise variance.
That is, to make it constant throughout the whole image by applying varstabdising transforma-
tion such as the classical Anscombe transform definddas= 2/z+a= 2,/z+3/8. zrepresents
the intensity value of a pixel anél(-) its variance-stabilising transformation function [157, 158].
However, in practice the exact stabilisation and normalisation of noise amasible. Therefore,
the noise within the transformed image can be approximately described witragtareto-mean
Gaussian distribution with unit variance. This holds true for the imagesmedisolely with Pois-
son noise. Once the Gaussian noise is introduced together with Poisgoogased) the stabilisa-
tion effectiveness of Anscombe transform decreases due to the mixtises Mhereby, we modify
the traditional Anscombe transformation t6z) = 2\/z+2.7. The constant parametar= 2.7 is
obtained heuristically by testing a variance stabilisation effect of Anscomisforan while varying
parameter from a wide range of values starting witi&up to 10. The higher the variance stabil-
isation the more closer will transformed noise be described with the additivesa distribution.
This directly influences the effectiveness of the employed denoisingsizawalgorithm. Thus, we
evaluate the variance stabilisation indirectly by assessing the denoisirigreffiof the proposed
scalabledenoising method. Specifically, the modified Anscombe transform togethetveiscal-
ableK-SVD generalises well for both types of solar images providing, onameran enhancement
of roughly Q4[dB] for various levels of added Gaussian noise in comparison to the setupilisasu
the classical Anscombe.
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6.3.2 Blind noise estimation

As already stated, the transformed mixture noise cannot be treated as-@mesn Gaussian with
unit variance. Thus, unlike [157, 158] we introduce a simple blind noismason by calculating
the standard deviation of the transformed solar image within the Anscombe ddaraied ay,.
This value can be used as a rough noise estimate of Gaussian standatthmlayven that the
transformed solar image in the Anscombe domain is scaled within a range oflagqyntensity
values suppressing considerably the original image scale. Thus, rgsalttémsity variations in
the transformed solar image mostly originate from the random Gaussian fidiagis, the noise
which is not canceled by the modified Anscombe transform. For the prdme®ising method,
this approach together with the modified Anscombe transform proved to badbeeffective for
mixture noise removal within the Anscombe domain.

6.3.3 Scalable sparse-based denoising of transformed Gaussian noise

Once the noisy image is transformed using the modified Anscombe transftaitedén Sec. 6.3.1,

we propose that removal of the remaining random Gaussian noise isdcautigvith the adaptive
scalableK-SVD [136, 146, 147] wherey, is used as noise parameter input. As conventional K-SVD,
the algorithm uses overlapping noisy image patches for training. Howewéte non-scalable K-
SVD thescalableK-SVD [147] simplifies the denoising task by introducing the specially designe
scalabledictionaryDs.. Training phase obg representational basis discards the sparse coding step
(Sec. 3.4.6) and performs noise removal solely duringsttedabledictionary update via SVD. As
stated in Chapter 3, spatial higher frequencies are enforced as highiytamptraining information
during thescalabledictionary learning and denoising. Thus, gealableK-SVD providesscalable
representation ba$®,. which is capable of adapting to high frequency spatial image elements crucial
to recovery of main solar features. The reconstruction is performeddnaging all the sparsified
patches a¥ ~ DgoX.

6.3.4 Final image estimation

For this step we apply unmodified exact unbiased inverse transformatmopssed in [157] and
[158] where mapping of the Anscombe image piké¢t) values into the desired spatial one denoted
here ag is carried out by numerically evaluating the integral defined as the expectgt@ratoiE:

e{t@m = [ r@pay e

6.3.5 Contrast enhancement (CE) wittscalable K-SVD denoising

The scalablelearning scheme is structured to mimic the main Human Visual System (HVS) prop-
erties [136, 147] such as high sensitivity to contrast light information artidcscene’s patterns
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orientation. Given that the atom’s up date stage ofttaabledictionaryDg. favours the significant
changes associated with the edges in the image patches i.e., the spatialreighendies, it makes

it a good candidate for an edge enhancement, that is, for CE. Thusgthésitb modify the sparse
coefficients in order to emphasise the edges in the solar image via specialcatasfififunction.
Since curvelet transform is as well adapted to represent images cogtautges, the modification
function for sparse coefficients could be the one defined in Sec. 2\8eVéw, our experiments show
that when(2.10) is integrated with the proposedalabledenoising method for solar images, instead
of CE, it results with amplified noise and some additional visual artefactgebirewe redefine the
original modification function2.10) into one which rescales the absolute values of the non-zero
entries per each sparse coefficigntThe proposed CE does not amplifies the noise and does not in-
troduce artefacts. This will be demonstrated in Sec. 6.4.3 with the visualsasert of experimental
results.

As in [45] we define a lower constraint for transformation of sparsdficants asTyin = C-
oy where, instead ot = 3 [45], we set it toc = 8.75 and gy, is the estimated Gaussian noise
variance within the Anscombe domain as explained in Sec. 6.3.2. @ki®btained by testing
the range of values starting with 3 (minimal value which does not amplifies neisefined in
[45]) up to 15. ¢ = 8.75 provides the optimal thresholi,, which leads to the artefact free and
effective CE of solar images. The proposed CE is performed togetherthéthcalableK-SVD
image denoising procedure within the Anscombe transform domain in ordettreceimportant
features, such as edges, from the solar image. Once the final sppresantation is obtained via
scalableK-SVD image denoising we step sequentially through each sparse caffietor x;
and perform a transform of its entries using a modified versioyt@%|) denoted ays(|x|) where
subscripts stands for sparse.

Let X1g be the matrix sparse representation of the solar image estimated dgathbleK-SVD
image denoising in the Anscombe domaig,q represents one of the sparse coefficients Xy
with a total ofK entries, each denoted &gq. The upper modification constraifiaxis set specially
for each coefficient vectoty g to its absolute maximal non-zero entry valuelagx = \XQSX\. Given
the currently processed sparse veaigd, the proposed modification functiog is applied over its
non-zero coefficients entries as:

_ . \P Tmin—Xold H < .
Y1) = xnew — C ot <(X°'d o Tmin)” + ( Trin )) 1 Xold < T (6.2)

C [Xold| (%) it Tin < [Xold| < Tmax.

wherex"®" represents modified non-zero valyerepresents the degree of nonlinearity applied for
transformation of each non-zero entry xfig and is set to & as in [45]. Unlik€2.10), the CE
scheme for curvelets [45], we scale all absolute entries vakygs of all sparse coefficientgyq.
This is done by introducing two modification levels definedyiras Tmin and Tmax Since none of
the final non-zero entries are at the noise level. Furthermore, we simmﬁyft{ea:':& (%‘:)p to
(Xoid — Tmin)P. This aims to cancel effects of maximal entry valisg, on the first level of CE mod-
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ification for entriesxgg < Tmin While keeping the modification nonlinerity degrpe Similarly, for

the second level of CE modificatiofyin is replaced with the actual sparse coefficient entry value
Xold > Tmin. Finally, C is a constant heuristically set to 10 in order to magnify the effects of the
proposed CE within the Anscombe domain. The introduction of extra scalirsgnegerC empha-
sises the results of CE within a low-gray scale range, i.e., the Anscombe ddrham ensuring the
visibility of the applied CE in the spatial domain after the exact non-linear isvArsscombe. To
reiterate, we use the dictionaBg. for the CE task since it is especially adapted to learn the spatial
high frequency elements of the processed solar noisy image [136]. That ihe case with the
conventional overcomplete K-SVD due to its unstructured dictionary ustepe

6.4 Experimental results

The effectiveness of the proposed methods is demonstrated with restite fiypes of solar images
(Sec. 6.2) EUV and HA. Both images were captured on August 21, 199%it integer pixel
images of size 1024 1024 pixels (EUV) and 946& 939 pixels (HA). Fig. 6.2 shows their cropped
versions (size 512 512) which are used in our experiments to evaluate the performance of the
proposedscalableK-SVD denoising scheme for solar images.

We carry out set of the experiments where various levels of PoissoGanskian mixture noise
are introduced. The Poisson noise is generated from the given solae imege each input pixel is
interpreted as a mean parametesf Poisson distribution. The mixture noise is generated by adding
five different levels of white Gaussian additive noise to the image with pixe¢wi@éent Poisson noise.
We compare the proposedtalableK-SVD with the conventional, i.e., non-scalable K-SVD using
both complete K = 64) and overcompletek(= 128) versions of dictionaries arBM3D. These
algorithms are used for removal of remaining Gaussian noise within the Armcdomain. Besides
the standard objective quality assessment i.e., peak signal-to-noise BN&]Pwe consider an al-
ternative quality measure, the so-called Structural Similarity Index (SSHeg.(2.6). In particular,
for the evaluation of estimated solar image quality, SSIM takes into accountdalepiaels distor-
tions of luminance and contrast information, which we aim to restore from tsedmbe transform
domain. The higher the SSIM index value gets, the more successful attoiethe solar image
features will be, thus ensuring the effective removal of the GaussihPaisson noise mixture.

Prior to introducing the denoising and CE results first we discuss and jtistifypproach behind
Gaussian blind noise estimation within the Anscombe domain introduced in Sec. 6.3.2

6.4.1 Blind noise estimation discussion

As emphasised in Sec. 6.3.2, common assumption that transformed noise onmfesdomain has
unitary variance is not sufficient to provide effective denoising of @amxture. Thus, instead we
introduce a blind noise estimation by simply evaluating the standard deviation tftisformed
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(a) EUV image (b) HA image

Fig. 6.2 Noise free cropped solar EUV and HA images used inlsitions.

image i.e.gy. This approach proved to be very effective for the introduced solaabledenoising
being a result of our detailed observations following image histograms:

1. Original noise-free solar image histograms within the spatial pixel intensityath shown in
Fig. 6.3 with maximal image intensity of 1233 for EUV and 4095 for HA,

2. Histograms of EUV and HA images corrupted only with Poisson noise,&ebljio Anscombe
transformation shown in Fig. 6.4 where we can notice the effect of signifyjcahrunk pixel
range (0 8Q for EUV (= 15 times smaller; Fig. 6.4a) arjd 14( for HA (~ 30 times smaller;
Fig. 6.4b);

3. Histograms of EUV and HA images subjected to Anscombe transformatioradfiang both
the Poisson and Gaussian noise. Fig. 6.5 and Fig. 6.6 illustrate histograshsifferent
levels of Gaussian noise for EUV and HA respectively.

In Fig. 6.5 and Fig. 6.6 one can notice high dispersion of transformed itertsity. Further-
more, the original image intensity changes together with the Poisson ones amdsméhwith the
Anscombe conversion leaving Gaussian noise spikes as dominant traedfionage elements. Thus,
conclusion follows that the overall variation in the transformed image’s-gcaje intensity withing
the Anscombe domain is the result of the destabilised Gaussian noise varinea this, we es-
timate standard variations values and use them as an mptar scalabledenosing sccheme. A
complete overview of these transformed image standard variations valuesvidegl in Fig. 6.7.
Here we illustrated;, for both types of solar images. First we hase value for their noise-free
transformed version where = 0. Next we sequentially introduce ten different levels of Gaussian
noise which are denoted on x axis @d.e., the Gaussian noise standard deviation. These are in-
troduced together with Poisson noise. Note that in case of HA which (unliké) Enage contains
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Fig. 6.3 Histogram of the noise-free solar images pixehsiy values in the spatial domain.
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Fig. 6.4 Histogram of the solar images corrupted only with Boisson noise after the
Anscombe transformation.

two main elements, i.e., sun surface and its background, we only consideatkground noise
variations. The standard variation of the sun surface are almost ideioticaly given level of intro-
duced Gaussian noise:(46.75) thereby we omit them from analysis. However, for EUV denoising
we consider full image. Lastly, we provide a special mapping table Tab. Beteneach originally
introduced Gaussian noise leve[together with Poisson noise) is mapped in its approximated trans-
formed equivalenty, within the Anscombe domain. This evaluation of transformed noise can be a
suitable alternative for a real case scenario where usually the origihad of the introduced Gaus-
sian noise is unknown while Poisson pixel depended variations will be s&bilising Anscombe
transformation.
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Fig. 6.5 EUV solar image histograms after the Anscombe foamation of its noisy ver-
sions corrupted with the mixture of Poisson and the 4 levielseGaussian noise.

6.4.2 Denoising results

Tab. 6.2 and Tab. 6.3 provide PSNR and SSIM results for the EUV and Hgdnraspectively. The
shown values represent results averaged over 50 iterations. Notev¢ghptesent PSNR and SSIM
values for the highest reconstructed levels ofgbalablerecovery scheme i.el;6 for K = 64 and
Lz, for K = 128, that is, the fully recovered solar image. In particular, we can sesiin6l2 that :

» The completescalableK-SVD algorithm in general shows an average gain.82(iB]/0.09
SSIM against non-scalable complete K-SVI23)dB]/0.05 SSIM against non-scalable over-
complete K-SVD and @7[dB]/0.07 SSIM against the BM3D performance;

» The over completscalableversion in general shows the average gain.8#@B]/0.08 SSIM
against non-scalable complete K-SVD74dB]/0.05 SSIM against the non-scalable over
complete K-SVD and #{dB]/0.07 SSIM against the BM3D performance.
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Fig. 6.6 HA solar image histograms after the Anscombe taansdtion of its noisy versions
corrupted with the mixture of Poisson and the 4 levels of the<Sian noise.

Similar gains of the proposed method are achieved for the HA image (TabwbBe2g we can see
that:

» The completescalableK-SVD algorithm in general shows an average gain .64 B|/0.07
SSIM against non-scalable complete K-SVD4[AB]/0.07 SSIM against non-scalable over
complete K-SVD and B6[dB]/0.09 SSIM against BM3D performance;

» The over completscalableversion in general shows the average gain.67@B]/0.08 SSIM
against non-scalable complete K-SVD5[@B]/0.08 SSIM against non-scalable over com-
plete K-SVD and 207[dB]/0.1SSIMagainst BM3D performance.

In addition, we report the run times for evaluated setups in Tab. 6.4 ad@gr 50 iterations
for both solar images. lllustrated times are outcomes of processing on thepee#iting system
with 64 bit Intel core, 8 GB RAM memory and40 GHz processor. It is evident that BM3D outper-
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mixture noise examples.

Table 6.1 Standard variation mapping scheme for noisy foam&d image for two solar

image type€UV andHA.
. . . Oir

Gaussian noise standard deviati OV | HA
oc=0 2.24 | 4.12

o=10 242 | 4.34

o=20 2.93 | 4.75

o=30 3.67 | 5.01

o=40 4.65 | 5.29

o =50 5.78 | 5.44

o =60 7.01 | 5.72

o=70 8.19 | 6.04

o =80 9.29 | 6.25

o=90 10.31| 6.46

o =100 11.1 | 7.01

forms other four setups providing denoising in real time. However, thpgsed completscalable
denoising shows remarkable advantage in reducing run time when conwai#inetie non-scalable
K-SVD. Specifically, we can see time processing reduction for approxiynatetimes when com-
pared both with the complete and overcomplete non-scalable K-SVD. Thiike wonventional
dictionary learning setup,the proposed solar denoising scheme redithemputational complex-

ity and processing time. Overall, the proposedlabledenoising method outperforms the denoisig
performance of the conventional, i.e., non-scalable K-SVD denoisin@88D given complete or
overcompletescalabledictionaryDs.. In particular, when compared with the non-scalable K-SVD ,
the improvedscalabledenoising performance is achieved at lower denoising complexity givén tha
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Table 6.2 PSNR and SSIM comparison for denoising mixtureotg$dn and Gaussian noise
introduced in EUV solar image given scalable, non-scaldb®/D dictionary K = 64 and
K = 128) and BM3D algorithm .

| 0 [PSNR[dB]| Alg. | PSNRdB] | SSIM]
SCK=64 | 4440 | 0.85
NSCK=64 | 44.00 | 0.83
20 | 3466 | SCK=128| 4456 | 0.84
NSCK=128] 44.46 | 0.84

BM3D 4353 | 0.8

SC K=64 42.77 0.79
NSC K=64 42.46 0.75
40 29.46 SC K=128 42.69 0.79
NSC K=128| 42.68 0.74

BM3D 42.13 0.72

SC K=64 39.81 0.76
NSC K=64 39.71 0.75
60 26.12 SC K=128 39.74 0.76
NSC K=128| 39.71 0.75

BM3D 39.21 0.7

SC K=64 37.16 0.76
NSC K=64 37.07 0.74
80 23.67 SC K=128 37.19 0.74
NSC K=128| 37.09 0.65

BM3D 36.65 0.61

SC K=64 35.36 0.73
NSC K=64 34.57 0.39
100 21.75 SC K=128 35.54 0.72
NSC K=128| 34.68 0.65

BM3D 33.13 0.69

the sparse coding step is removed fromsbalableK-SVD iterative setup (Sec. 3.4.6). Furthermore,
the overcompletscalableK-SVD scheme slightly outperforms the complete one fd9{iB|/0.03
SSIM (EUV) and 011[dB]/0.003 SSIM (HA). This demonstrates that we can choose the denoising
setup for solar images with the complddg. dictionary which will reduce processing complexity
while achieving comparable denoising results. Finally, note that the prdmeséabledenoising
scheme especially demonstrates better performance for the higher lemelis®in comparison to
non-scalable scheme and BM3D. In addition, the further validate the apitilicaf the proposed
completescalabledictionary denoising, we provide results for solely Gaussian denoisingutith
Poisson noise. We aim to show that proposealabledenoising for solar images is effective for dif-
ferent noise setups. Interestingly, in case of Gaussian denoisisgalabledenoising achieves the
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Table 6.3 PSNR and SSIM comparison for denoising mixtureotg$dn and Gaussian noise
introduced in HA solar image given scalable, non-scalabBMD dictionary K = 64 and
K = 128) and BM3D algorithm .

| 0 [PSNR[dB]| Alg. | PSNRdB] | SSIM]
SCK=64 | 4421 | 0.49
NSCK=64| 44.15 [ 0.44
20 | 3731 | SCK=128 | 4425 [ 0.49
NSCK=128] 442 | 0.45

BM3D 4356 | 0.45

SC K=64 43.40 0.49
NSC K=64 43.11 0.42
40 35.92 SC K=128 43.47 0.49
NSC K=128| 43.10 0.42

BM3D 42.64 0.42

SC K=64 42.80 0.49
NSC K=64 42.21 0.41
60 34.24 SC K=128 42.90 0.5
NSC K=128| 42.36 0.40

BM3D 39.98 0.37

SC K=64 41.98 0.48
NSC K=64 41.34 0.40
80 32.67 SC K=128 42.05 0.49
NSC K=128| 41.77 0.41

BM3D 39.06 0.36

SC K=64 41.14 0.47
NSC K=64 41.01 0.39
100 31.19 SC K=128 41.44 0.48
NSC K=128| 40.19 0.39

BM3D 38.49 0.35

average gain against over complete skalablefor 0.21[dB]/0.97 SSIM (EUV) and ®4[dB]/0.01
SSIM (HA). Tab. 6.5 and Tab. 6.6 illustrate the results for the conventrenabval of additive Gaus-
sian noise where we can see that for EUV (Tab. 6.5):

» The completescalableK-SVD algorithm in general shows an average gain 87[dB]/0.13
SSIM against non-scalable complete K-SVD.9dB]/0.79 SSIM against non-scalable over
complete K-SVD and1.65dB]/0.11 SSIM against BM3D performance;

» The over completscalableversion in general shows the average gain.@8{HB]/0.08 SSIM
against non-scalable complete K-SVD71]dB]/0.12 SSIM against non-scalable over com-
plete K-SVD and 43/dB]/0.11 SSIM against BM3D performance;
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Table 6.4 Comparison of the processing time given five dempischemes.

Denoising setup Total denoising run time [s]
SC K=64 663.4
NSC K=64 7325.3
SC K=128 685.7
NSC K=128 7553.5
BM3D 9.8

Table 6.5 PSNR and SSIM comparison for denoising of Gausse introduced in EUV
solar image given scalable, non-scalable K-SVD diction#y= 64 andK = 128) and

BM3D algorithm .

[0 [PSNR[B/ [ Alg. | PSNRAB| | SSIM]
SCK=64 | 47.19 | 0.86
NSCK=64 | 44.77 | 0.74
20| 3579 | SCK=128 | 47.12 | 0.85
NSC K=128| 44.62 | 0.73
BM3D 4403 | 0.74
SCK=64 | 4423 | 0.78
NSCK=64 | 4348 | 0.73
40 29.8 SCK=128 | 44.06 | 0.77
NSC K=128| 43.39 | 0.73
BM3D 4295 | 0.75
SCK=64 | 42.00 | 0.75
NSCK=64 | 41.62 | 0.66
60 | 2624 | SCK=128| 41.99 | 0.70
NSC K=128| 41.13 | 0.63
BM3D 41.25 | 0.70
SCK=64 | 41.60 | 0.79
NSCK=64 | 4041 | 0.63
80 | 2373 | SCK=128| 41.69 | 0.69
NSC K=128| 39.11 | 0.52
BM3D 4054 | 0.65
SCK=64 | 4092 | 0.78
NSCK=64 | 38.82 | 0.53
100| 21.82 | SCK=128| 39.97 | 0.68
NSC K=128| 38.01 | 0.46
BM3D 38.92 | 057

while for the conventional HA Gaussian denoising in Tab. 6.6 we have:
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Table 6.6 PSNR and SSIM comparison for denoising of Gaussigse introduced in HA
solar image given scalable, non-scalable K-SVD diction#y= 64 andK = 128) and
BM3D algorithm .

| 0 [PSNR[dB]| Alg. | PSNRdB] | SSIM]
SCK=64 | 51.74 | 0.84
NSCK=64 | 32.88 | 0.39
20 | 4621 | SCK=128 | 51.64 | 0.83
NSCK=128] 32.84 | 0.39

BM3D 4527 | 053

SC K=64 48.41 0.71
NSC K=64 32.83 0.39
40 40.21 SC K=128 48.71 0.70
NSC K=128| 32.85 0.39

BM3D 43.78 0.49

SC K=64 46.99 0.62
NSC K=64 32.81 0.39
60 36.68 SC K=128 46.91 0.61
NSC K=128| 32.85 0.39

BM3D 41.55 0.45

SC K=64 45.92 0.55
NSC K=64 32.8 0.39
80 34.17 SC K=128 45.89 0.54
NSC K=128| 32.87 0.38

BM3D 40.35 0.44

SC K=64 44.90 0.51
NSC K=64 32.78 0.38
100 32.25 SC K=128 44.97 0.50
NSC K=128| 32.89 0.38

BM3D 39.69 0.43

» The completescalableK-SVD algorithm in general shows an average gain o7 8#1B]/0.25
SSIM against non-scalable complete K-SVD,73idB] /0.26 SSIM against non-scalable over
complete K-SVD and ®6[dB]/0.18 SSIM against BM3D performance;

» The over completscalableversion in general shows the average gain 08{¥8|/0.24 SSIM
against non-scalable complete K-SVD, 28[dB]/0.25 SSIM against non-scalable over com-
plete K-SVD and 61[dB]/0.17 SSIM against BM3D performance;

The averaged running times for Gaussian denoising are similar to thoseuicebth Tab. 6.4.
Visualisation of the results for the aforementioned denoising algorithms apddpesed method
is provided in Fig. 6.8, Fig. 6.9 for EUV and Fig. 6.10, Fig. 6.11 for HA imag. illustrate image
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estimates for the two levels of the Gaussian noised.e=, 20 ando = 40, introduced together with
Poisson noise. At first, for EUV, all benchmark methods result in the-ewveothed image recon-
struction with noticeable granular structure once the high level of noiserieved. On the other
hand, the proposestalablemethod succeeds to eliminate noise while recovering all significant de-
tails of the original solar images. The effective noise elimination and regmfestructural image
information is a result of thecalabledictionary D training design [136] which puts emphasis on
learning the high frequency elements of the denoised image. Furtherryarerriparing the visual
estimates of both complete and overcompetiglabledenoising we can see that almost identical re-
sults are achieved leading to the conclusion that the complete dictionary sike-k @4 is sufficient
for removing the Gaussian/Poisson mixture noise from the solar images. Siontdusions can be
derived from Fig. 6.10 and Fig. 6.11 that shows the results for the HA image

Lastly, in order to demonstrate the consistency and robustness of thespdspalabledenoising
scheme given any type of distorted image i.e., natural image, video sequesaar one, similarly
as in Sec. 5.3.2, we provide following results. As we have seen in Sec @B 2omplete and over
completeDg dictionaries are able to achieve comparable restoration quality given sadalable
levelsL,. Likewise, we can discover the similar restoration pattern for solar imagemgtadom
Fig. 6.12 up to Fig. 6.15 for EUV and from Fig. 6.16 up to Fig. 6.19 for HAliktnnon-scalable K-
SVD which has highly unpredictable recovery behavior fosalilablelevelsL, except for the final
one i.e. L1 andL3p, the proposedcalabledenoising achieves effective performance for almost all
scalablelevelsL, for both completdg. (Fig. 6.12, Fig. 6.13, Fig. 6.16 and Fig. 6.17) and over com-
pleteDs (Fig. 6.14, Fig. 6.15, Fig. 6.18, Fig. 6.19) denoising scenario. For the &thoising we
can conclude that all denoiséd levels starting with_; up toL15 (for K = 64) andL; up toLs; (for
K = 128) are almost equal in terms of restoration quality to the highest recotestrestimates i.e.,
L1 andLsp, respectively. This restoration pattern is present both for PSNR (Hig.a&hd Fig. 6.14)
and SSIM (Fig. 6.13 and Fig. 6.15) quality assessment. For HA we encaumitar situation where
some initialL, levels are going through some slight fluctuations but most of the recosesadable
levels still achieve comparable value to that of the highest estimate whethespexirPSNR es-
timates (Fig. 6.16 and Fig. 6.18) or SSIM values (Fig. 6.17 and Fig. 6.19¢rayvthese results
demonstrate that proposedalabledenoising can be applied for wide variety of distorted images.

6.4.3 CE estimates

Visual performance of the proposedalablgoint denoising and CE technique is shown in Fig. 6.20
for the HA image type corrupted by additive white Gaussian and Poissoa. ri&pecifically, we can
identify the solar disk which is emphasised via proposed CE scheme in the HA ioragny tested
level of introduced Gaussian noise (Fig. 6.20a, Fig. 6.20b, Fig. 6.26c6R20d and Fig. 6.20e).
Solar disk is usually hard to detect due to textual and non-solar informaabmidy be found in the
original image (Fig. 6.2) followed by a darkening of limb boundary areds dhtection is a result
of applying the proposed modification functig{|x|) (eq. 6.2) over thecalablesparse coefficients
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representation. The proposedalableCE method provides a clear solar disk detection free of any
additional artifacts. This is also achieved when we use the over conyoiefbleversion of the in-
troduced CE scheme, that is, when we train dictioriywith K = 128 (see Fig. 6.21). Once again,
direct visual comparison of Fig. 6.20 and Fig. 6.21 serves as an eeidbatcomplete dictionary
D¢ is equally effective as the over complete in terms of solar image CE. Thugijlising solely

a completeDg. dictionary we can achieve high quality CE while reducing processing coiityplex
However, for the solar images which do not exhibit high level of contidfgrence as the HA image
does, the proposed joint denoising and CE fails. That is, for the test&éilBdge we were not
able to enhance and extract filaments which represent solar structunigé émportance for moni-
toring behavior of the Sun’s magnetic field. Furthermore, proposed GEdds if we introduced
the non-scalable dictionary training algorithm.

6.5 Conclusion

This chapter introduces the algorithm for denoising solar images corrujfethe mixture of Pois-
son and Gaussian noise. Furthermore, we propose the algorithm foageld bn the special modi-
fication of the sparse coefficient representation generated via corspéddledictionaryDgc. Pro-
posed denoising is performed within the Anscombe transform domain instéael gpatial. Prior to
denoising we carry out modified Anscombe transform and blind noise estimétigs customising
the scalabledenoising algorithm to effectively address Poisson and Gaussian mixtisenemoval
from solar images. The proposed techniques are evaluated over tenedtftypes of solar images
i.e., EUV and HA, respectively. Interestingly, the proposed approacheimoving Poisson and
Gaussian mixture noise for solar images stalablecomplete K-SVD dictionary outperforms or it
is highly comparable (both objectively and subjectively) with its over completsion, the classical
i.e., non-scalable complete (best gain af{6B]) and over complete (best gain off/d[dB]) K-SVD
setting and BM3D (best gain of4[dB]). In terms of joint CE and denoising proposed method is
highly effective with HA type of solar images which exhibits high level of castwhere we achieve
the detection of sun’s disk.
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(b) Scalable K-SVIX = 64

(c) Non-scalable K-SVIK = 64 (d) Scalable K-SVIX =128

(e) Non-scalable K-SVIX = 128 () BM3D

Fig. 6.8 Performance comparison of introduced denoisiggrahms for removal of Poisson
and Gaussian additive noise & 20) from the solar EUV image.
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(a) Noisy input imager = 40 (b) Scalable K-SVIX = 64

(c) Non-scalable K-SVIK = 64 (d) Scalable K-SVIX =128

(e) Non-scalable K-SVIX = 128 () BM3D

Fig. 6.9 Performance comparison of introduced denoisiggrahms for removal of Poisson
and Gaussian additive noiseg & 40) from the solar EUV image.
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hﬂ' i ."m g

(a) Noisy input imager = 20 (b) Scalable K-SVIX = 64

.
:'= -
4

(c) Non-scalable K-SVIK = 64 (d) Scalable K-SVIX =128
(e) Non-scalable K-SVIX = 128 () BM3D

Fig. 6.10 Performance comparison of introduced denoidiggrighms for removal of Pois-
son and Gaussian additive noige<€ 20) from the solar HA image.
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(a) Noisy input imager = 40 (b) Scalable K-SVIX = 64

(c) Non-scalable K-SVIK = 64 (d) Scalable K-SVIX =128

e,

(e) Non-scalable K-SVIX = 128 () BM3D

Fig. 6.11 Performance comparison of introduced denoidigorighms for removal of Pois-
son and Gaussian additive noige<€ 20) from the solar HA image.
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Fig. 6.12 Average PSNR of the scalable reconstructed sokge EUV given for each layer
L, and Poisson and Gaussian noise mixture for five Gaussiae lavisls of the scalable re-
construction using the complete (i.&. = 64) scalable and non-scalable K-SVD algorithm.
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Fig. 6.13 Average SSIM of the scalable reconstructed swlage EUV given for each layer
L, and Poisson and Gaussian noise mixture for five Gaussiaa lewisls of the scalable re-
construction using the complete (i.&. = 64) scalable and non-scalable K-SVD algorithm.
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Fig. 6.14 Average PSNR of the scalable reconstructed sokge EUV given for each layer
L, and Poisson and Gaussian noise mixture for five Gaussiae teisls of the scalable

reconstruction using the over complete (il€.= 128) scalable and non-scalable K-SVD
algorithm.
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Fig. 6.15 Average SSIM of the scalable reconstructed swlage EUV given for each layer
L, and Poisson and Gaussian noise mixture for five Gaussiar tevsls of the scalable
reconstruction using the over complete (il€.= 128) scalable and non-scalable K-SVD

algorithm
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Fig. 6.16 Average PSNR of the scalable reconstructed solagé HA given for each layer
L, and Poisson and Gaussian noise mixture for five Gaussiae levisls of the scalable re-
construction using the complete (i.&. = 64) scalable and non-scalable K-SVD algorithm.
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Fig. 6.17 Average SSIM of the scalable reconstructed solage HA given for each layer
L, and Poisson and Gaussian noise mixture for five Gaussiaa lewisls of the scalable re-
construction using the complete (i.&. = 64) scalable and non-scalable K-SVD algorithm.
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Fig. 6.18 Average PSNR of the scalable reconstructed solagé HA given for each layer

L, and Poisson and Gaussian noise mixture for five Gaussiae teisls of the scalable

reconstruction using the over complete (il€.= 128) scalable and non-scalable K-SVD
algorithm.
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Fig. 6.19 Average SSIM of the scalable reconstructed solage HA given for each layer
L, and Poisson and Gaussian noise mixture for five Gaussiar tevsls of the scalable
reconstruction using the over complete (il€.= 128) scalable and non-scalable K-SVD

algorithm.
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(c)o =60 (d)o =80

.. () o =100

Fig. 6.20 Contrast enhancement results for the propssaldblecomplete dictionaryl =
64) denoising method performed in the Anscombe transfoomatomain, given the the
solar HA image, corrupted initially by the mixture of Poissand five different levels of

Gaussian noise.
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(e)a =100

Fig. 6.21 Contrast enhancement results for the over-comgletionary K = 128) variation
of proposedscalabledenoising method performed in the Anscombe transformaloonain,
given the the solar HA image, corrupted initially by the mipa of Poisson and five different
levels of Gaussian noise.






Chapter 7

CONCLUSION

This chapter provides the summary of the proposed work and its contributigether with the
future work. The remainder of the chapter is organised as follows. A suynafaontribution is
provided in Sec. 7.1. The recommendation and future work is presentet i’ 2.

7.1 Summary

This thesis addresses several questions related to sparse probledistianary learning with the
main focus on learning the dictionary fecalablesparse representation and restoration of natural, so-
lar images and video frames. The proposedlablescheme is based on the Sparseland model which
in general assumes that signals e.g., images can be optimally representaihei@d dictionary as
sparse linear combinations of its basis elements i.e., atoms. Unlike conventipmabehes for
learning dictionaries adapted to the fine reconstruction of input data, dpegedscalablescheme
offers progressive restoration of data. The proposed work aimseodifferent dictionary learning
design which will provide effective treatment of Sparseland signals thidbetter tackle various ap-
plication problems such as imagealablereconstruction, denoising, compressive sensing, contrast
enhancement and more.

For this purpose, a newscalabletraining algorithm i.e. scalableK-SVD is developed. The
proposed algorithm can efficiently train a dictionary from any type of imagéd®o sequence set
which will yield theirscalable that is, progressive representation. Introduced work offersrgbaie
scalabledictionary alternative to non-scalable K-SVD aiming to show that it will penfequally
or better than its counterpart. This is further demonstrated by implementingdhesgudscalable
scheme within several practical applications in image processing.

First, in Chapter 3 we introduce a new algorithm for learrsieglabledictionaries which incor-
porates MCA based dictionary initialisation, regularisation of atom’s updatedan modelling the
HVS perception characteristic which shed new light on connections betadsgptive sparse meth-
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ods and exploiting of high and low spatial frequencies. Additionally, weigeothe outline of the
scalablereconstruction mechanism together with experimental results in Chapter 4.

Chapter 5 presents further contributions as variations of this algorithi@dassian denoising
and compressive sensing application. Such variations are importantktintathe problem of pro-
cessing complexity and meaningful recovery of noise free structu@nrtion by emphasising the
significance of high frequency image information during the dictionary trgipnocess. We exper-
imentally demonstrate that this method can be applied to an important class of inoagsging
problems, which have not been addressed in this way before. Thuaywlee foundations for util-
ising principle ofscalabledictionary training andcalablesignal restoration among various image
application areas.

Finally, Chapter 6 illustrates the practicality of the proposed method for twoiswéae process-
ing applications i.e., denoising and contrast enhancement. The propasation of thescalable
training scheme is applied to remove adaptive Gaussian noise within the Arsd¢@nbformation
domain while its modified version manages to achieve optimal contrast enhamagselar image
which contains distinctive high and low spatial frequency elements.

Overall, we believe that the field of sparse image representatisaddgblestructure dictionaries
has a great potential which is initially confirmed with the promising results preddar various
denoising setups, adaptive compressive sensing and solar imagestentrancement.

7.2 Future work

There are many potential research directions for the above-deserdrké@nd other questions which
have not been investigated yet and presented in this thesis. Since th&vayis apportunity for
improvement we shall list several such directions which we find promisidgreeaningful:

1. One of the important directions which we want to consider is applying tbposedscal-
able training method to the image scale-up problem, that is, single-image supkrti@so
Prior works such as [13, 165] are the first to explore the performahdtee sparse-based
super-resolution algorithms. In general they seek a sparse refaseffor each patch of the
low-resolution input. Subsequently, the coefficients of this representatioemployed to gen-
erate the high-resolution output. Given the compressed sensing thdaesidss (Sec. 2.5)
which emphasise that linear relationships between high-resolution sigmalsecacovered
from their low-dimensional projections, this is indeed possible since the lepiuton image
represents a down sampled version of its high resolution counterpatheFuore, [13] sug-
gests that low and appropriate high resolution patch have almost equsé sppresentation.
Both [13, 165] simultaneously train the two coupled dictionaries for high andédsolutions
patches of some specific image class. However, they utilise different dicfitraining algo-
rithms. The effectiveness of super-resolution, that is, the recovfemycomplicated texture
and a visually appealing reconstruction of the original signal is directlye@lto the em-
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ployed dictionary training scheme and accordingly matching low and highutesoimage
patch position. This is meant to enforce the similarity of sparse low and highutes repre-
sentations. Thus, we propose testing and adapting the devedopkdbledictionary method
for this task. Given that the local sparse modelling naturally robust to [@2i$¢he proposed
testing would further consider super-resolution with noisy inputs.

2. Applying thescalabletraining dictionary scheme for image denoising when the level of noise
is very high and unclassified. Specifically, we aim to test both the propesdableschemes
in Chapter 5 and Chapter 6 in order to create an alternative way for saildgethe image
enhancement scheme which would improve the quality of raw images genésatedbow
complexity optical setup that consist of MEMS (micro-electromechanicétsysmirror and
a single photo detector. This system was originally built at the Strathclydestsity engi-
neering lab. Given that the main disadvantage of this optical acquisitionedievice imaging
performance, there is a significant room for the image quality improvemepecksly this
could be achieved with the proposschlabletraining scheme which exploits the less distorted
high frequency image information. For example, the image quality of sexmvacanned let-
ters via single-pixel optical imaging system is poor and highly distorted by eategorised
MEMS blur and noise which resembles to random salt-and-pepper ingddiwing a scan-
ning process. Several approaches for enhancing these acquirgekifi®6, 167] were pro-
posed in several research papers. However, when comparedetinegptal raw images, there
are still noticeable distortions in contrast, luminance and noise-residuatiafion. This mo-
tivates us to test our work for MEMS image enhancement given that tipogedscalable
method is based on utilisation of HVS high sensitivity to contrast and luminanaemation
which should be more effective for both MEMS denoising and deblurring.

3. Lastly, we propose adapting tlsealabledictionary learning to visual object classification,
one of the most important image analysis problems that attempts to group images otijec
predesignated categories. Conventionally, image classification is pedaméature ex-
traction followed by some type of classifier. However, human perceptiahestishow that
categories are defined by similarity to prototypes rather than by a list ofceadrdeatures
[168]. Prototypes enable humans to distinguish among roughl@0B0different object cat-
egories. Furthermore, sparse image representation with dictionary ligamginates from
neuroscience studies in human perception (Sec. 2.1). The resulting digtisra set of pro-
totypes i.e., atoms that are localised, oriented, and bandpass similar to thaseiriothe
primary visual cortex and filtered to carry the structure of the signal it3élé potentials of
the dictionary learning method with sparse representation for image classifiapplications
has been shown in [169] and [170]. Thus, we propose an objesifatasion algorithm using
and adapting the proposadalablemethod for learning thecalabledictionaries. We assume
that this would result in an excellent discriminatsealabledictionary for image patches en-
suring that the images with similar discriminative features i.e., similar high or lovuémcy
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spatial content are classied in the same category. The novel classifiggi@aeh will apply
thescalabledictionary learning on the positive and negative training sets to generatgidwo
tionaries that are fed into an SVM classier. The sawaabletraining method will be used

to generate acalabledictionary for test images during the test phase.Final decision will be
based on the learnt structural similarities between training and testalgbledictionaries by

the SVM.
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