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Abstract 
 

Operations and maintenance (O&M) costs account for up to one third of the levelized cost of 

energy of wind farms. Wind turbine component failures lead to significant repair costs and 

revenue losses, making the use of operational knowledge crucial for reducing associated costs 

and risks. However, uncertainty persists due to a lack of quantified reliability of wind turbines 

and their components, particularly for newer turbine generations. This gap directly impacts 

O&M decision-making, as simulations and calculations depend on accurate reliability inputs. 

The increasing size and further evolving technology of wind turbines further complicate 

projections, which are essential for future wind farm planning and competitive auction bidding. 

This thesis presents a series of analyses, which address the research question “How can 

operations and maintenance data be utilised more efficiently to further reduce costs and risks 

during wind farm planning as well as operation?” For this, a comprehensive review of existing 

reliability data, highlighting the shortcomings of previous studies, is provided and advantages 

and limitations of different reliability assessment methods are investigated. A detailed 

economic life cycle simulation and assessment framework is developed, integrating a cost-

revenue model that accounts for CAPEX, OPEX, and revenue factors, as well as wake and 

blockage effects for offshore wind farms in the German North and Baltic Seas. A digitalisation 

workflow is introduced to transform unstructured, non-standardised maintenance reports into 

machine-readable data classifying components worked on during turbine visits. The feasibility 

of using text classifiers for preprocessing maintenance reports is evaluated, demonstrating their 

potential to reduce manual data processing efforts. Furthermore, the impact of classification 

methods on reliability key performance indicators is analysed.  

The thesis utilises a unique dataset of 1335 onshore and offshore turbines with rated capacities 

of up to 9 MW, which covers maintenance records from 2006 to 2024, offering a highly diverse 

and recent data resource compared to previous studies. A thorough analysis of failure rates, 

repair times, and maintenance resource requirements is conducted, providing O&M simulation 

input for 29 subsystems, covering major component replacements, further corrective 

maintenance as well as preventive maintenance interventions. Failure behaviour over time for 

the entire wind turbine system and key subsystems is analysed using Nelson-Aalen plots, while 

the influence of covariates is assessed with a non-homogeneous Poisson process (NHPP) 

model. A comprehensive analysis of component failures within the pitch and converter 

subsystems is conducted comparing electrical and hydraulic pitch systems as well as low-

voltage and medium-voltage power converters, respectively. Finally, the thesis compares the 

developed reliability modelling approaches against a previously published study and the impact 

of these models on O&M simulations is assessed, highlighting the limitations of average failure 

rates and the advantages of NHPP regression modelling.  

The results indicate that although onshore wind turbines experience lower failure rates per 

turbine and year, their failure rates per megawatt of rated turbine capacity per year are higher 

than those of offshore turbines. The pitch, control, and converter subsystems are identified as 

the most critical with respect to high failure rates. The analysis reveals distinct reliability 

patterns across wind turbine subsystems over wind turbine operating age. While some 

subsystems follow a classical bathtub curve, others transition directly from early failures to 

deterioration, highlighting the need for time-dependent, subsystem-specific reliability 
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modelling rather than assuming uniform failure behaviour. The results of NHPP regression in 

combination with a covariate selection process confirm that multiple factors significantly 

influence wind turbine and subsystem reliability. Newer turbine commissioning years 

generally enhance reliability, reflecting technological and design advancements. However, 

higher rated turbine capacity negatively impacts reliability, aligning with previous findings that 

larger turbines experience higher failure intensities. These opposing trends underscore the 

advantages of NHPP modelling in separating and quantifying individual covariate effects. 

Additionally, subsystem design choices are found to be a key determinant of reliability. 

Keywords: wind turbines, operations and maintenance, reliability analysis, failure rate, 

corrective and preventive maintenance, maintenance reports, field data, failure data, reliability 

modelling, Nelson-Aalen plot, non-homogeneous Poisson process, digitalisation 
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1 Introduction to the thesis  
 

This chapter presents an introduction to the thesis covering background of onshore and offshore 

wind energy trends (Section 1.1.1) and operations and maintenance (Section 1.1.2), the 

motivation and challenges (Section 1.2) as well as the aim and objectives for this thesis (Section 

1.3). The key scientific publications forming the foundation of this thesis are presented in 

Section 1.4 and a thesis outline is provided in Section 1.5.  

1.1 Background 

1.1.1 Onshore and offshore wind energy trends 
New installations in the onshore and offshore wind market in 2023 led to passing the milestone 

of 1000 GW wind energy capacity installed worldwide (see Figure 1). While onshore wind 

energy is with 92.6% making up most of the installed capacity, offshore wind energy gains 

increasing importance. The global offshore market is projected to grow from 10.8 GW in 2023 

to 37.1 GW by 2028, expanding its share of new global installations from the current 9% to 

20% by 2028 [1]. In Europe, over 85 GW of offshore wind capacity is anticipated to be 

developed between 2024 and 2030 [2].  

In 2023, wind energy accounted for 19% of the total electricity consumption in the EU-27. This 

share was considerably higher in several countries, reaching 56% in Denmark, 36% in Ireland, 

31% in Germany, 29% in the UK, and 27% in both Spain and the Netherlands [2]. 

 

Figure 1. Newly installed and total capacity available worldwide for onshore and offshore wind 

energy (status 2023) [1] 



 

2 

 

The first offshore wind farm “Vindeby” was built in Denmark in 1991. Extreme cost reductions 

have been achieved since that time: While early offshore wind farms still received a fixed, 

state-financed feed-in tariff, there are currently wind farms under construction that manage 

completely without subsidies and even paid surcharges tendering for offshore areas. In 

Germany, for example, the Federal Network Agency awarded bids totalling EUR 12.6 billion 

for four areas with a total capacity of 7,000 MW in 2023 [3]. 

This was made possible by the immense technical development of wind turbines, among other 

things. While the ‘Vindeby’ wind farm was built with wind turbines with a nominal output of 

0.45 MW, the models currently being installed in European waters already have a rated power 

of 15 MW. The trend of offshore and onshore turbine size from 1980 to 2030 are illustrated in 

Figure 2.  

 

 

Figure 2. Trend of onshore and offshore turbine size from 1980 to 2030 [1] 

Especially projections for future wind turbine sizes were repeatedly wrong. Siemens Gamesa 

is currently installing its SG DD-276 prototype of 21.5 MW rated capacity. Larger wind 

turbines deliver a higher energy yield. This means that more electricity can be generated with 

fewer turbines in a wind farm. Manufacturers are therefore building ever larger rotors. The 

largest wind turbine currently in use comes from the Chinese state-owned China Railway 

Rolling Stock Corporation (CRRC). It has a rated capacity of 20 MW and was recently put into 

operation in China. The pursuit of records is actively underway: the Chinese company 

Mingyang Smart Energy is building one with a rated power of 22 MW. Chinese manufacturers 

Goldwind, Shanghai Electric and China State Shipbuilding Corporation (CSSC) announced a 

wind turbine with 26 MW last autumn, while Dongfang Electric announced one with 26 MW 

as well [4]. 

While this turbine growth enables economies of scale for capital expenditure (CAPEX), 

operational expenditure (OPEX) for such big assets is difficult to predict. Currently, there 

remains uncertainty during the operations and maintenance (O&M) phase due to the 

unquantified reliability of wind turbines (WTs) and their components. This directly impacts 



 

3 

 

the modelling of O&M processes, as field-based and WT technology-specific data is lacking, 

particularly for newer turbine generations. The increasing size of WTs and evolving platform 

technologies further complicate projections. Nevertheless, these projections are crucial for 

both, optimising O&M of already existing wind farms (WFs) and future WF planning to 

successfully prepare bids for upcoming auctions. The described situation provides the context 

for this thesis. Since OPEX make up for around 25% of levelized cost of energy (LCoE) [5], a 

better understanding of reliability is an opportunity for further cost and risk reduction.  

1.1.2 Operations and maintenance 
O&M is by far the longest phase in a wind energy project. While in the past WFs were designed 

for 20 years of operation, nowadays longer operation is planned for and lifetime extensions of 

up to 35 years are discussed (compare e.g. [6], [7]). Therefore, the project’s economic success 

is also determined by O&M performance. NREL assumes a net OPEX reduction of 17% and 

31% through wind farm economies of scale, turbine scaling, advanced O&M strategies, 

improved vessel accessibility, and remote maintenance strategies for offshore and onshore 

wind energy assets, respectively [5]. To achieve these numbers further research in the field of 

O&M is required. Especially tackling the point of improved O&M strategies, analysing 

existing WF data to support decision making plays an important role.  

Operators of WFs collect different types of data during operation: operational data including 

turbine and meteorological parameters being organised within the supervisory control and data 

acquisition (SCADA) system and maintenance data in form of service reports or invoices. 

While SCADA data is more easily accessible and therefore often used in research [8], 

maintenance data is highly confidential and seldomly shared. This results in few publications 

which present real-world failure data (e.g. [9], [10], [11], [12], [13]).  

Many O&M simulation tools have been developed to analyse and improve WFs’ O&M (e.g. 

[14], [15], [16], [17], [18], [19]). Those come with two limitations: On the one hand, each tool 

is only applicable for scenarios which are already known and implemented. Each time new 

logistic concepts or O&M strategies are developed, an update of those tools is required. On the 

other hand, the simulation output is heavily dependent on the input data. As abovementioned 

failure data is typically quite old, the simulation results need to be interpreted with care.  

1.2 Motivation and challenges 

The main motivation for this thesis stems from insufficient and outdated publicly available 

failure data for OPEX modelling. IEA Wind Task 33 found widespread industry recognition 

of the importance of collecting and analysing reliability data to optimise both profit margins 

and LCoE [20]. The initiative draws the conclusion that the absence of standards for reliability 

data is hindering industry progress in addressing reliability challenges.  

In the past, the main focus of WF developers was on the turbine supply agreement including 

logistics of installation and commissioning. A lot of effort was invested in synchronising the 

commissioning date of the turbines with grid availability to earn money with fed-in electricity 

from day one of operation. As most WF operators have concluded a full maintenance contract 

with the original equipment manufacturer (OEM) and therefore availability and warranties 

were contractually agreed on, reliability data was of minor interest during contract negotiations. 

However, more and more owners and operators of WFs realise that this information is highly 

relevant to become independent of the OEMs. While larger utilities start to maintain WFs with 
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their own service teams, also smaller operators want to better understand their asset reliability 

and reasons for downtime. This is typically hindered by the lack of available and standardised 

reliability data. 

Clifton et al. [21] elaborate that the digitalisation of the wind energy sector provides enhanced 

reliability, cost savings, new business models, and more cost-effective integration of wind 

energy as an energy source. The authors conclude, however, that digitalisation also presents 

three major challenges that must be addressed: 

1. Data – creating FAIR data frameworks 

2. Culture – connecting people and data to foster innovation 

3. Coopetition – enabling collaboration and competition between organisations 

This thesis will contribute to the three identified challenges by [21]. Specifically, it aims to 

provide reliability data to the public focusing on the FAIR principle, which stands for findable, 

accessible, interoperable and reusable. The aspects are addressed by publishing results in well-

known open access wind energy journals, utilising existing standards and guidelines for data 

preprocessing, describing meta data, and discussing uncertainties and limitations. 

Consequently, people and data will be connected which supports innovation in the research 

community and coopetition is strengthened as industry stakeholders can benchmark reliability 

key performance indicators (KPIs) against their peers. Utilising operational knowledge of a 

large and diverse WT fleet will foster reliability improvements and optimisation of WFs’ O&M 

strategies.  

1.3 Aim and objectives 

Based on the forementioned background (Section 1.1) as well as motivation and challenges 

(Section 1.2) regarding optimising O&M of onshore and especially offshore wind farms, this 

thesis aims to derive novel field-data based reliability models of wind turbine subsystems and 

components to support decisions for design optimisation, O&M strategies, and lifetime 

extension initiatives. 

To achieve this overall aim, the following objectives are defined: 

• Investigate and classify existing reliability figures for onshore and offshore wind 

turbines and derive suitable reliability assessment methods and metrics  

• Develop a framework for economic feasibility studies of offshore wind farms 

considering relevant input parameters to quantify their impact on output  

• Assess the challenges of deriving reliability metrics and evaluate the impact of 

differently applied methods for preprocessing and digitalisation of maintenance reports  

• Develop reliability models of wind turbine subsystems and selected components based 

on real-world O&M data 

• Evaluate the impact of using different reliability inputs for O&M simulations by 

comparing the developed reliability models with previous published ones 

1.4 Scientific publications and collaborations 

The thesis is composed of a portfolio of research works that have been published in peer-

reviewed conference proceedings and scientific journals. The main publications which are 

underlying this thesis are listed below in chronological order: 
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• Marc-Alexander Lutz, Julia Walgern, Katharina Beckh, Juliane Schneider, Stefan 

Faulstich, Sebastian Pfaffel, 2022. “Digitalization Workflow for Automated 

Structuring and Standardization of Maintenance Information of Wind Turbines into 

Domain Standard as a Basis for Reliability KPI Calculation”. IOP Journal of Physics 

Conference Series (WindEurope Annual Event 2022), doi: 10.1088/1742-

6596/2257/1/012004. 

• Julia Walgern, Katharina Fischer, Paul Hentschel, Athanasios Kolios, 2023. 

“Reliability of electrical and hydraulic pitch systems in wind turbines based on field-

data analysis”. Energy Reports, 9, 3273-3281, doi: 10.1016/j.egyr.2023.02.007. 

• Julia Walgern, David Baumgärtner, Johannes Fricke, Niklas Requate, Athanasios 

Kolios, Martin Dörenkämper, Tobias Meyer, Lukas Vollmer, 2023. “Economic 

feasibility study for continued operation of German offshore wind farms”. IOP Journal 

of Physics Conference Series (EERA DeepWind conference 2023), doi: 10.1088/1742-

6596/2626/1/012031. 

• Julia Walgern, Katharina Beckh, Neele Hannes, Martin Horn, Marc-Alexander Lutz, 

Katharina Fischer, Athanasios Kolios, 2024. “Impact of using text classifiers for 

standardising maintenance data of wind turbines on reliability calculations”. IET 

Renewable Power Generation, 18(15), 3463-3479, https://doi.org/10.1049/rpg2.13151 

• Julia Walgern, Nils Stratmann, Martin Horn, Nathalene Then Wei Ying, Moritz 

Menzel, Fraser Anderson, Athanasios Kolios, Katharina Fischer, 2025. “Reliability and 

O&M key performance indicators of onshore and offshore wind turbines based on field-

data analysis”, submitted to Wind Energy for publication.  

• Katharina Fischer, Fraser Anderson, Julia Walgern, 2025. „Medium-Voltage versus 

Low-Voltage Converter Reliability in Wind Turbines: A Field-Data Based Study” 

PCIM2025. 

• Julia Walgern, Fraser Anderson, Athanasios Kolios, Katharina Fischer, 2025. “Field-

data based wind turbine reliability modelling: Quantifying effects of operating age, 

design and technological development”, submitted to Wind Energy for publication. 

At the beginning of each chapter, it is indicated on which publication the chapter is based.  

In addition, parts of the research work were presented at different conferences. Conference 

contributions and further involvement in publications and collaborative works during the 

research phase for the EngD degree which were not directly used for this thesis are listed in 

Appendix A. 

1.5 Thesis outline 

The rest of this thesis is structured as follows: 

Chapter 2 presents a literature review on O&M modelling (Section 2.1) as well as reliability 

modelling and existing input figures for O&M modelling (Section 2.2). Both parts are 

summarised, and research gaps are identified (Section 2.3). This chapter addresses the first part 

of objective 1 of the thesis. 

Chapter 3 presents the methodology approach followed within the thesis (Section 3.1) and 

introduces the dataset utilised for the overall thesis (Section 3.2). The chapter covers the second 

part of objective 1 of the thesis.  

https://doi.org/10.1049/rpg2.13151
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Chapter 4 introduces an economic life cycle simulation and assessment framework called 

ELSA. It is applied to a cumulative scenario that categorises all existing offshore wind farms 

in Germany based on size and key dimensions, in order to inform decisions regarding the 

business case for continued operation beyond their nominal service life. This chapter supports 

objective 2 of the thesis. 

Chapter 5 addresses the fact that due to the lack of structured and standardised data, 

maintenance data is often underutilised or requires significant manual effort. To tackle this, a 

digitalisation workflow is proposed and applied to real-world wind turbine service reports and 

invoices to streamline preprocessing of maintenance data.  

Chapter 6 examines the effectiveness of text classifiers in automating categorisation compared 

to manual labelling of maintenance reports. Discrepancies in failure rate KPIs from manual 

versus classifier-processed data and resulting uncertainties of both methods are analysed. Both 

Chapters 5 and 6 cover objective 3 of the thesis.  

Chapter 7 presents average failure rates of all subsystems of a wind turbine and compares 

reliability figures of onshore and offshore wind turbines. Additionally, corrective and 

preventive maintenance interventions, major component replacements, average repair times, 

and average number of required technicians for different maintenance interventions are 

evaluated. 

Chapter 8 seeks to determine the failure rates of two pitch system concepts – electrical and 

hydraulic – through statistical analysis of a large sample of onshore assets. The findings are 

classified based on turbine rating, seasonal effects, and the reliability performance of different 

manufacturers.  

Chapter 9 digs deeper into a study comparing medium-voltage and low-voltage power 

converter reliability making use of failure rates, visual analysis of seasonal patterns, and 

Nelson-Aalen plots to characterise the failure behaviour through time.  

Chapter 10 presents more detailed reliability analyses which explore temporal trends in failure 

behaviour and the effect of potentially influential factors (or so called “covariates”) on 

reliability. Nelson-Aalen plots are utilised to establish trends in failure behaviour through time 

and the non-homogenous Poisson process (NHPP) quantifies the effect of relevant covariates. 

Chapters 7, 8, 9, and 10 all address objective 4 of the thesis.  

Chapter 11 evaluates the impact of different reliability modelling approaches as input for O&M 

simulations. The two models developed within this thesis – average failure rates per MW per 

year and advanced multivariate reliability models – are compared to the most widely used 

reliability model to date. The advantages and limitations of each approach are outlined. Chapter 

11, along with Section 10.3.3, addresses objective 5 of this thesis. 

Chapter 12 summarises all chapters of the thesis (Section 12.1) and discusses the contribution 

of the thesis to knowledge, research, and industry (Section 12.2). The thesis concludes with 

future work and an outlook (Section 12.3) and provides concluding remarks (Section 12.4).  
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2 Literature review 
 

This chapter presents a general literature review dedicated to O&M strategies and modelling 

(Section 2.1) and published input figures for O&M modelling focusing especially on reliability 

data (Section 2.2). A summary and identification of research gaps is provided (Section 2.3). 

More tailored literature reviews for specific topics can also be found in the respective sections 

of the following chapters (see Sections 4.1, 5.2, ,6.2, 7.2, and 8.1).  

2.1 O&M strategies and modelling 

WFs are operated using two main maintenance strategies: preventive maintenance and 

corrective maintenance. Preventive maintenance is further divided into time-based (scheduled) 

and condition-based maintenance, the former typically conducted annually in summer to 

prevent failures. Corrective maintenance is performed when failures occur, which can lead to 

long downtimes depending on timing and conditions. To reduce corrective maintenance and 

associated downtimes, operators employ predictive maintenance by analysing data from 

SCADA systems or condition monitoring systems (CMS). CMS offer more detailed signals 

acquired by means of additional sensors but come with additional costs, making their economic 

feasibility dependent on balancing early fault detection against investment and monitoring-

service costs. 

During the operational phase of a WF, the choice of a maintenance strategy is primarily driven 

by the trade-off between lost revenue and increasing maintenance costs. Lost revenue is 

directly linked to the WF’s availability or to be precise its downtime. Downtime is driven by 

both, the actual repair time and the waiting period before maintenance can commence. The 

latter varies considerably between onshore and offshore maintenance [22]. For offshore wind 

farms (OWFs), both the preparation time – including staff, vessel and spare parts allocation – 

and the waiting time for favourable weather conditions can be significantly longer. 

Consequently, a comprehensive O&M strategy is essential, encompassing O&M facilities and 

ports, vessels and equipment, maintenance schedules and methodologies, replacement of 

critical components, and the supply of consumable such as oil, grease and filters. Additionally, 

effective monitoring of turbine blades, foundations, scour protection, and cables are critical 

components of a robust O&M framework.  

The optimisation of O&M strategies to minimise downtime and reduce costs is a highly 

relevant research topic. Existing literature explores various approaches of quantitative methods 

typically involving either mathematical optimisation or event-based stochastic approaches. 

Several simulation models have been developed to evaluate different aspects of O&M or O&M 

strategies as a whole (e.g. [14], [15], [16], [17], [18], [19]). Bendlin et al. review and classify 

various O&M tools based on their functions, including failure analysis, weather assessment, 

routing, scheduling, and economic modelling [23]. Commonly employed approaches include 

Monte Carlo methods, Weibull distributions, Markov chains, and Poisson processes. Next to 

academic tools, Shoreline provides a commercial simulation tool which is widely recognised 

within the industry [24]. All these models and corresponding studies depend on reliable input 

data. A review of input figures is presented in the next section. 
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2.2 Input figures for O&M modelling 

Next to power curves, weather data, vessel characteristics and hourly rates, failure data is 

decisive input for simulating O&M activities. While the former are typically available in the 

public domain, failure data in form of failure rates or more advanced reliability models are 

rarely published. This is due to strict confidentiality of maintenance data, the difficult question 

of data ownership between operators and OEMs and the fear of OEMs and operators to lose 

competitive advantage when sharing this information. The more data an organisation can 

analyse, the better assumptions can be derived for the development of future wind farms which 

can be decisive in competitive auctions. Nonetheless, a few studies about WT reliability have 

been published in the past: 

Tavner et al. and Spinato et al. analysed data of 6000 onshore WTs from Denmark and 

Germany recorded for 11 years before 2008 as part of the DOWEC project ([25], [9]). This 

data stems from two different initiatives, namely the Windstats survey in Denmark and 

Germany (often referred to as WSDK and WSD) [26] and a survey conducted by the 

Landwirtschaftskammer (LWK) in Schleswig Holstein in Germany [27]. Even though these 

studies are based on data from 1994 till 2008, due to the amount of collected data and the fact 

that failure rates per turbine and year as well as hours lost per failure are presented, these 

pioneering figures are still used regularly in the field of reliability research. 

The ReliaWind project assessed data of around 350 “modern turbines” being defined as WTs 

with a rated capacity >850 kW back in 2011 [10]. In contrast to the DOWEC project, 

ReliaWind published failure data in form of normalised failure rates and normalised hours lost 

for different subsystems. That allowed to understand which subsystems were failing most often 

but no exact numbers were provided, which could have been utilised for O&M simulations.  

Faulstich et al. published results of the Scientific Measurement and Evaluation Programme 

(WMEP) which covers data of 1500 onshore WTs collected from 1989 to 2006 [11]. The 

authors presented annual failure rates per turbine and year differentiated in minor and major 

failures accompanied by mean annual downtime per failure category.  

Carroll et al. were the ones presenting offshore failure rates for the first time [12]. For this 

study around 350 WTs of one OEM with a range of 2 to 4 MW rated capacity covering 1769 

WT years of operation were utilised. Next to failure rates per turbine and year, also repair times 

and spare part costs were published, which has made this publication the to date most 

prominent input for O&M simulations.  

Reder et al. presented a reliability analysis based on 4300 onshore WTs with rated capacities 

between 300 kW and 3 MW. They introduced an own taxonomy to cluster components and 

displayed normalised failure rates and downtimes for WTs smaller than and above 1 MW as 

well as for direct drive turbines [28]. 

The SPARTA initiative being sponsored by the Crown Estate and the Offshore Renewable 

Energy (ORE) Catapult is collecting performance and reliability KPIs of offshore assets and 

publishes reports with aggregated figures on a regular basis. Not each report is covering failure 

data. The Portfolio Review 2016 presented monthly repair rates per turbine [29] and also the 

last published review of 2020/21 showed average monthly component failures per turbine and 

per MW [13]. The studies are based on data of 1378 and 1505 WTs, respectively.  
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Anderson et al. present failure rates per turbine and year for different failure definitions based 

on data of one offshore wind farm covering roughly 600 turbine operational years [30].  

Further detailed reviews of published failure rate statistics are provided by Pfaffel et al. [31] 

and Cevasco et al [32].  

Next to these relatively famous but older studies, there are also more recent studies available 

presenting failure data for specific countries. Artigao et al. present normalised failure rates and 

downtime for onshore WTs in Spain [33]. The study is based on a dataset covering 75 WTs 

over a period of 11 years. Even though published in 2019, the data itself was recorded as early 

as 2001-2011. Sarma et al. analyse data of one Turkish onshore WF. The study is based solely 

on SCADA data recorded from 2017 till 2019. Therefore, only distributions of downtime are 

evaluated [34]. Moreover, a few publications focusing on specific subsystems are available 

(e.g. [35], [36]) which support root cause analysis but are of limited help when looking for 

O&M simulation tool input.  

2.3 Summary and identified research gaps 

While many O&M simulation tools are available – commercial and academic-driven ones – 

there is constant need to develop those further to incorporate newest technologies, strategies 

and research findings. All tools have in common that they rely heavily on available input 

figures. The output of each tool can only be as good as the utilised input is.  

Different reviews (e.g. [31], [32], [33], [34]) conclude that roughly 20 different initiatives were 

observed in the past publishing reliability statistics. The Windstats survey stands out due to the 

number of turbines included but is based on turbine technology which was installed before 

2008. The reliability study of Carroll et al. captivates with a multitude of details which are 

helpful for O&M modelling but is limited to small offshore WTs of one OEM. To the author’s 

best knowledge SPARTA is the only initiative still running and which includes newer turbine 

technologies. However, the last publication is from 2022 and figures of only few selected 

subsystems are presented. Therefore, all currently available studies are either old and thus 

based on outdated turbine technologies or provide limited possibilities to utilise the figures for 

O&M simulations as only normalised failure rates are provided to the public, not all subsystems 

of a turbine are covered, or the underlying dataset is too small and specific for generalising it 

to new use cases. Additionally, a comparison in magnitude of failure rates is difficult as no 

standardised taxonomy or failure rate definition is utilised [30]. Furthermore, most failure rates 

are presented per turbine and year making it difficult to apply those to WTs with higher rated 

capacities. While average failure rates in general are easy to interpret and utilise for O&M 

modelling, they come at the cost of detail. Reliability differs with age of assets (e.g. [11]) – 

normally represented by a bathtub curve [37] – and can be affected by different designs (e.g. 

[28]) or operation (e.g. [38], [39]). All these aspects are not covered in simple average failure 

rates.  

Therefore, this thesis aims for collecting and analysing failure data of a diverse and recent WT 

fleet with sufficient size to generalise findings. Moreover, failure rates will be presented per 

WT and year, but also per WT rated capacity (in MW) and year to ease the process of 

extrapolation for future WT generations. Next to providing failure rates, more advanced 

reliability models will be developed to address (i) temporal trends in failure behaviour and (ii) 

the effect of potentially influential factors on failure behaviour. To assure applicability and 
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interpretability common standards will be applied for data preprocessing. Additionally, a 

digitalisation and classification workflow will be introduced to speed up the process between 

recording data and publishing failure data as a lengthy labelling process hinders providing 

statistics of up-to-date turbine technology.  
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3 Methodology approach and utilised datasets 
 

This chapter presents the methodology approach for reliability modelling (Section 3.1) and 

utilised datasets for this thesis (Section 3.2). The dataset described within this chapter provides 

an overview of the overall dataset used for the thesis and subsets for specific research are 

further described in respective chapters (see Sections 5.3.2, 6.3.1, 7.3.2, 8.2.2, 9.2, 0). 

Similarly, the methodology outlined in this chapter covers only the generic approach utilised 

for this thesis and further details are provided in the following chapters (see Sections 4.2, 5.3, 

6.3.2, 7.3.1, 8.2.1, 9.3, 10.2.1). 

3.1 Methodology approach for reliability modelling 

In order to understand what the real problems of WF operators regarding reliability are and to 

provide as realistic reliability KPIs as possible, a field-data based approach is followed within 

this thesis. The term “field data” describes O&M data directly recorded within or documented 

for a WF. This can be either operational data in form of time-series data or maintenance reports. 

In this thesis, the focus is on the latter. From maintenance reports, it can be derived when and 

what has happened on a WT and which measures have been taken, which is important and 

necessary information for reliability modelling.  

Figure 3 displays the workflow which is utilised for this thesis. First, the data collection needs 

to be initiated and organised. In general, specific projects - either publicly or industry-funded 

ones - are required to establish a cooperation with WF operators who can provide failure data. 

As failure data is highly confidential, a trustworthy relationship needs to be built first. As soon 

as both parties are aligned which data sources of which WF shall be shared, typically a platform 

is provided to the operator to upload data. Within this thesis project, data of different operators 

and WFs was collected which is further described in Section 3.2.  
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Figure 3. Workflow of the methodological approach 

Maintenance or failure data comes typically in the form of Excel sheets or PDFs. Therefore, a 

second step is to digitalise especially content of PDFs and bring all different data sources in 

one common format. Information such as work order description, spare parts, affected WT, the 

date, time and duration of the maintenance action, number of technicians involved, and follow-

up tasks / recommendations are transferred to a standardised template which can be fed into 

the reliability data base. Details about digitalisation of maintenance reports can be found in 

Chapter 5. 

Third, preprocessing of data is a huge task. The main aim is to convert typically free text of 

work order descriptions, recommendations and spare parts in machine readable and 

standardised codes which can be utilised for data analyses. Within this thesis, two standards 

are applied for labelling the datasets to guarantee interoperable and reusable results: On the 

one hand, the reference designation system for power plants RDS-PP (Application Guideline 

Part 32: Wind Power Plants) [40] is utilised. It allows to clearly identify components 

independent of turbine type and technology as well as terminology used by technicians. RDS-

PP codes are hierarchically organised, which supports clustering components in different 

subsystems, and follow the general rule “from large to small”. Therefore, codes become longer 

the more information of the component is available. On the other hand, it needs to be identified 

and labelled if the maintenance activity is corrective or preventive and which maintenance 

action has been taken. For this, the State-Event-Cause-Code ZEUS [41] is applied. It is also 

organised in a hierarchical way so that different levels of detail describing the maintenance 

action can be captured. Both standards make data and corresponding analysis results of 
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different assets comparable. For further information regarding the preprocessing see also 

Chapters 5 and 6. 

Fourth, plausibility checks are required after the preprocessing is finalised. Especially 

completeness and correctness of the dataset is evaluated. The following questions are typically 

guiding the assessment: 

• Is data for each WT of the WF available? 

• Are there data gaps between first and last service report? Can these be explained? 

• Are all subsystems / component categories covered by the dataset? 

• Does the dataset contain all severity levels of maintenance actions? 

• Are some reports saved twice / referring to the same maintenance intervention? 

• Does the recorded duration of a WT visit make sense? 

• Are information like time and coordinates in a common format (summer/wintertime; 

WGS vs. UTM)? 

In some cases, queries must be clarified with the data provider before starting the data analysis 

itself.  

Fifth, failure rate calculations are a simple approach to obtain a first overview of the dataset as 

part of the reliability analysis (see Section 7.3.1.2 for utilised equations, etc.). Next to 

calculating failure rates per WT and year as done in most available publications, within this 

thesis failure rates per WT rated power (in MW) and year are assessed. This facilitates the 

comparison of different assets with WTs of different sizes as well as inter- and extrapolating 

reliability figures. Additionally, failure rates per month to examine seasonal patterns or failure 

rates per year of operation to evaluate changing failure behaviour over time can be calculated. 

Moreover, comparing failure rates of different data subsets can reveal influences of design 

parameters. 

Failure rate analysis is a straightforward and easily interpretable method; however, it primarily 

relies on comparative evaluation of results and visual analysis for drawing conclusions. 

Therefore, the last step of the workflow covers methods of advanced multivariate reliability 

modelling, which enable separating and quantifying effects of e.g. design, technological 

development, operating age and environmental and load conditions on WT reliability.  

An important aspect of analysis is the examination of failure patterns over time. While in 

reliability modelling often a Weibull analysis is referred to, within this thesis a non-

homogeneous Poisson process (NHPP) regression is utilised. The primary reason for this 

limitation is that Weibull analysis is only appropriate for evaluating non-repairable systems or 

components. Such analysis requires knowledge of the component's age at the time of failure, 

which is typically unknown beyond the first replacement. It is also unknown in cases when the 

maintenance history available for analysis starts some time after the wind turbine's 

commissioning, i.e. in case of left-censored data. In contrast, NHPP regression models are well-

suited for analysing repairable systems, where failures are treated as recurrent events followed 

by system repairs. This method effectively handles left-censored data as knowing the WT’s 

operating age at the time of failure is sufficient to draw conclusions about failure intensity over 

time.  
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In reliability analyses of repairable systems, failure intensity varies over time, typically 

following the characteristic pattern of a bathtub curve [37]. Figure 4 illustrates the three distinct 

phases of reliability trends, which collectively form the characteristic shape of the bathtub 

curve of repairable systems: 

• Early failures, which are characterised by a decreasing failure rate (δ<1) 

• Constant failures, which are described by a constant failure rate (δ=1) 

• Deterioration failures, which are defined by an increasing failure rate (δ>1) 

The parameter δ is referred to as the shape parameter and is derived from the power-law process 

governing the failure intensity 𝜆0 [42]: 

𝜆0 = (
𝛿

𝜐
) (

𝑡

𝜐
)

𝛿−1

 (3.1) 

Herein, δ>0 determines the phase of the bathtub curve, while 𝜐>0 represents the scale 

parameter. 

 

Figure 4. Bathtub curve for repairable systems describing failure intensity over time [43] 

Trends in failure behaviour through time are assessed by utilising the Nelson-Aalen estimator, 

which is a non-parametric estimator of the cumulative intensity function Λ0 in case of censored 

or incomplete data [42]: 

𝛬0 = ∑
𝑑𝑖

𝑛𝑖
𝑡𝑖≤𝑡

 (3.2) 

Herein, 𝑑𝑖 is the number of failure events at time 𝑡𝑖 and 𝑛𝑖 is the total number of turbines at 

risk at 𝑡𝑖. The log-log plot of the cumulative intensity function versus time – referred to as 

Nelson-Aalen plot – is utilised to identify the shape parameter δ in a power-law process. The 

value of δ corresponds to the slope of the resulting line (cf. Figure 5). 
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Figure 5. Derivation of the shape parameter δ utilising Nelson-Aalen plots [44] 

Utilisation of the Nelson-Aalen estimator has the following advantages: 

• Non-parametric: In comparison to parametric methods (e.g. Weibull, Exponential) the 

Nelson-Aalen estimator does not assume any specific distribution for failure time 

stamps, making it flexible for real-world datasets for which failure distributions are 

unknown or complex. 

• Censored data: Can incorporate left-censored (e.g. data is not available from 

commissioning onwards) or right-censored data (e.g. turbines that have not failed yet) 

without biasing the cumulative intensity function.  

• Interpretation: Provides a stepwise estimate of the cumulative intensity function over 

time, which is intuitive and easy to visualise via Nelson-Aalen plot. 

• Exploratory analysis: Allows for quick comparison of cumulative failure intensity 

across subsystems, turbine types, or operational conditions before moving to regression 

models. 

Another important aspect of failure analysis is the identification of relevant influences on 

reliability, so called covariates. For this, a covariate vector 𝑥 is included in the equation 

describing the failure intensity of the NHPP [45]: 

𝜆(𝑡) = 𝑧 𝜆0(𝑡)exp (𝛽1𝑥1 + ⋯ +  𝛽𝑛𝑥𝑛) (3.3) 

Next to the baseline failure intensity 𝜆0(𝑡) and the factors influencing reliability, 𝑧 is 

accounting for heterogeneity that cannot be explained by the set of observable covariates. The 

parameters 𝛽𝑖, δ, 𝜐, and 𝑧 are estimated using the maximum likelihood method. For the 

covariate selection procedure, likelihood ratio statistics and a subsampling procedure are 

utilised and correlated covariates are handled by principle component analysis (PCA) as 

described in [46] and [47].  

In order to analyse reliability of current technologies being present in WFs, the described 

workflow needs to be repeated regularly so that always recent data is included in the results 

and respective conclusions can be drawn.  

3.2 Dataset description 

The largest part of the dataset utilised for this thesis has been collected and preprocessed during 

the last five years and is continuously growing. It comprises in total 1335 onshore and offshore 

wind turbines covering 5539 WT operational years. Key characteristics of the dataset are 

visualised in Figure 6 and presented in Table 1.  
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Figure 6. Key characteristics of the dataset 

The distribution of onshore and offshore data is presented both in terms of the number of WTs 

and total WT operating years. While the dataset includes a greater number of onshore WTs, it 

encompasses more offshore WT operating years. The turbines in this dataset were 

commissioned between 1997 and 2020, with the majority representing modern turbine 

technology. This is reflected in the distribution of WT sizes: Only 10% of the WTs have a rated 

capacity below 2 MW, most fall within the 2-4 MW range, and 30% exceed 5 MW. Since the 

dataset is derived from maintenance reports, only WT generations that have been in operation 

for at least two years are included, limiting the maximum rated capacity to 9 MW. The 

evaluated failure data spans from 2006 to 2024. The offshore subset includes turbines from 

four different OEMs, while the onshore subset covers nine OEMs. The dataset originates from 

wind farms across seven different countries. 

Table 1. Key characteristics of the dataset 

 Offshore Onshore 

WT operational years considered 3056 2483 

Number of WT OEMs covered 4 9 

Rated capacity considered Up to 9 MW 

Available data period 2006-2024 

Number of countries covered 7 

 

Compared to datasets used in previous reliability studies (summarised in Section 2.2), this 

dataset provides unparalleled diversity, scale, and recency. Various data subsets are employed 

in each chapter, corresponding to different studies. Detailed descriptions of the respective 

dataset utilised are provided in the subsequent chapters. 

  



 

17 

 

4 Economic life cycle simulation and assessment 

framework: case study of the economic feasibility for 

continued operation of German offshore wind farms 
 
With a large number of wind farms already deployed in German waters and aiming to achieve 

a minimum of 70 GW of offshore wind capacity by 2045, investigating the potential for 

extended operation of existing assets is an important task. This chapter documents the 

development of a life cycle cost/revenue framework capable of incorporating CAPEX and 

OPEX related elements, revenue factors, and deployment location specific aspects, in order to 

support decisions on the business case for continued operation beyond the nominal service life. 

The framework called ELSA (Economic Life cycle Simulation and Assessment) is developed 

and applied to a cumulative scenario, which classifies all existing offshore wind farms in 

Germany with respect to size and key dimensions. Outcomes of the analysis support the case 

for extended operation, while highlighting the importance of wake effects to AEP, the 

magnitude and variability of O&M costs and finally the influence of CAPEX and financial 

modelling. The material of this chapter has been peer reviewed and published in 1. 

4.1 Introduction 

The German government plans for accelerated expansion of offshore wind energy. In order to 

meet set climate objectives, Germany is aiming for a rated capacity of offshore wind turbines 

(WTs) of at least 30 GW by 2030 and at least 40 GW by 2035. In 2045, a minimum of 70 GW 

of generation are targeted [48]. To achieve those targets, next to building new offshore wind 

farms (OWFs) it will be crucial to keep existing OWFs in operation beyond their design 

lifetime of typically 25 years. This will bridge the time required for strengthening existing 

supply chains for meeting the set capacity targets. The newest amendment to the Wind Energy 

at Sea Act (Windenergie-auf-See-Gesetz (WindSeeG)) allows a one-time extension of the 

permit period by a maximum of ten years under special conditions, provided that the immediate 

subsequent use of the wind farm area is compatible with the site development plan published 

by the Federal Maritime and Hydrographic Agency (BSH) (cf. [49], [7], [6]). For further 

planning purposes, it is essential to understand if continued operation of German OWFs is 

economically viable since permit extensions will only be pursued if they are financially 

justified. Therefore, this work presents a feasibility study analysing the economic situation of 

German OWFs, aiming to provide decision support for planning the future use of currently 

occupied sites and informing the development of the site development plan and associated 

timelines.  

Several operations and maintenance (O&M) simulation tools have been presented in the past. 

The Operation and Maintenance Cost Estimator (OMCE) of the Energy Research Centre of the 

Netherlands (ECN) focusses on calculating future O&M costs for offshore wind farms during 

 
1 Julia Walgern, David Baumgärtner, Johannes Fricke, Niklas Requate, Athanasios Kolios, Martin Dörenkämper, 

Tobias Meyer, Lukas Vollmer, 2023. „Economic feasibility study for continued operation of German offshore 

wind farms”. IOP Journal of Physics Conference Series (EERA DeepWind conference 2023), doi: 10.1088/1742-

6596/2626/1/012031 [212] 
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the operational phase [14]. The Norwegian offshore wind cost and benefit model (NOWIcob) 

[15] and Offshore TIMES developed by Fraunhofer IWES [17] are O&M logistics models 

predicting availability, costs and revenue utilising an event-based Monte Carlo simulation. 

However, all of these tools do not take CAPEX and financing related elements into account 

and are therefore not sufficient to determine the overall economic feasibility of an offshore 

wind farm. In comparison, Shafiee et al. [18] have developed a whole life cost analysis 

framework for offshore wind farms considering, in addition to the O&M phase, the 

development phase, installation and commissioning as well as decommissioning. Utilising 

historical cost figures as a baseline scenario, a combined multivariate regression / neural 

network model predicts costs and identifies key cost drivers of future projects. A deterministic 

approach is followed. Similarly, Ioannou et al. [19] have published a parametric life cycle 

techno-economic model considering all phases of offshore wind farms using the ECN’s OMCE 

for O&M cost predictions. Results show cumulative cost return profiles and identified break-

even points comparing different investor strategies. None of the publications above consider 

wake losses in their economic studies. Therefore, this work develops an economic life cycle 

simulation and assessment (ELSA) framework incorporating the O&M simulation tool 

Offshore TIMES and sophisticated wake loss calculations.  

The chapter is outlined as follows: First, an introduction to the different models contributing to 

the ELSA framework for the economic feasibility study is given and required input parameters 

and related assumptions are described (Section 4.2). Afterwards, the profitability of each 

German OWF is analysed and generalised, and anonymised results are discussed and presented 

(Section 4.3). Last, a summary of main conclusions as well as an outlook to future work are 

given (Section 4.4). 

4.2 Methodology 

Within this study, the economic feasibility analysis is based on two major models contributing 

to the ELSA framework (see Figure 7): The O&M cost model “Offshore TIMES” [17] is 

utilised to simulate each OWF. It requires inputs such as reliability and O&M figures, the 

logistics concept, weather data and WT and wind farm (WF) information, to compute 

operational expenditure (OPEX) and annual energy production (AEP). Together with further 

input parameters such as the chosen feed-in tariff, available electricity price, capital 

expenditure (CAPEX), weighted average cost of capital (WACC) and repayment plan, yearly 

total project costs and total project revenue are estimated within the life cycle cost and revenue 

model which was developed within this thesis. Comparing those two quantities, the 

profitability of an OWF can be assessed: 

 

𝑝𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 = 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑖 −  𝑂𝑃𝐸𝑋𝑖 − (𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑑𝑒𝑏𝑡𝑖 + 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖) (4.1) 

 

Herein, all quantities are given in Euros and 𝑖 denotes the time step. While revenue and OPEX 

are calculated with hourly resolution in the first place, for the profitability calculation both 

quantities are aggregated to yearly sums as residual debt and interest are derived from CAPEX 

on a yearly basis. Total project costs and revenue are derived using a net-present value 

approach. 
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In order to consider not only AEP from an O&M perspective, wake losses are calculated with 

a numerical weather model and are further input parameters for the life cycle cost and revenue 

model.  

Additionally, the maximum design life of the wind turbines is estimated by assessing fatigue 

loads of the rotor-nacelle-assembly (RNA) using generic turbine models and by analysing 

design-related reserves of the foundations. This provides technical boundaries for the economic 

assessment.  

 
Figure 7. Economic feasibility analysis: workflow, inputs and outputs of the Economic Life cycle 

Simulation and Assessment (ELSA) framework 

Different publications have been used as a basis for required input parameters (see [50], [12], 

[51]). Any inputs have been discussed with several OWF operators for verification and have 

been adapted where necessary. For this purpose, structured expert elicitation similar as in [52] 

was applied. Approximately ten stakeholder interviews with different entities were conducted 

using a previously defined questionnaire with around 50 questions.  

All utilised input parameters for the analysis and relevant assumptions are presented and 

discussed in the following subsections. 

4.2.1 Wind turbine and wind farm information 
Currently in 2022, there are 28 OWFs including 1537 WTs installed in Germany. All relevant 

information required for the analysis is presented in Subsection 4.2.1.1In order to perform an 

economic feasibility analysis for each existing OWF but to reduce the amount of computational 

effort for determining the maximum design life by means of fatigue loads and dealing with the 

limited amount of publicly available information required as inputs, the WFs and turbine types 

are classified into three generic WT types. The clustering process and maximum design life 

considerations are outlined in Appendix B. The long-term yield potential of each OWF is 

investigated with the numerical Weather Research and Forecasting model (WRF) [53], which 

maps both the site-specific and the large-scale meteorological influences on the yield potential. 

This is important to understand how the WTs and WFs impact each other and how much AEP 

is reduced due to wake losses (cf. Subsection 4.2.1.3). 

4.2.1.1 Considered offshore wind farms  

Within this study all German OWFs are considered which were installed by 2022. An overview 

of the OWFs and their key characteristics can be found in Table 2. 
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The table is divided into three categories depending on the location of the OWF. This is 

indicated by the column “ROP Area” referring to the area defined by the maritime spatial plan 

(ROP) [54]: OWFs which are built in the German Exclusive Economic Zone (EEZ) of the 

North Sea (N-…) or Baltic Sea (O-…), and OWFs which are not defined by the ROP (indicated 

as “ROP area: none”). Furthermore, the commissioning date, the installed capacity of the WF, 

the WT rated power, the respective number of turbines and the WT manufacturer and type are 

summarised.  

4.2.1.2 Generic wind turbine types and maximum design life 

In total 1537 WTs are installed in German OWFs, with rated capacities ranging from 2.3 MW 

to 9.0 MW. A total of 13 different power classes are installed, in some of which there are further 

differences in terms of rotor diameters and hub heights.  

Table 2. Overview of German offshore wind farms installed by 2022 

Wind farm ROP 

area 

Year of 

Commis

-sioning 

Installed 

capacity 

in MW 

WT rated 

power in 

MW 

No of 

WTs 

WT manu-

facturer 

WT type 

alpha ventus N-2 2010 60 5 12 Adwen & 

REPower 

AD 5-116 & 5M 

BARD 

Offshore 1 

N-6 2013 400 5 80 BARD  Bard 5.0 

Dan Tysk N-5 2014 288 3.6 80 Siemens SWT-3.6-120 

Meerwind N-4 2014 288 3.6 80 Siemens SWT-3.6-120 

Amrumbank 

West 

N-4 2015 288 3.6 80 Siemens SWT-3.6-120 

Borkum 

Riffgrund 1 

N-2 2015 312 4 78 Siemens SWT-4.0-120 

Nordsee Ost N-4 2015 295.2 6.15 48 Senvion 6.2M126 

Trianel WF 

Borkum I 

N-2 2015 200 5 40 Adwen AD 5-116 

Global Tech 1 N-8 2017 400 5 80 Adwen AD 5-116 

Gode Wind 01 N-3 2017 330 6 55 Siemens SWT-6.0-154 

Gode Wind 02 N-3 2017 252 6 42 Siemens SWT-6.0-154 

Nordsee One N-3 2017 332.1 6.15 54 Senvion 6.2M126 

Sandbank N-5 2017 288 4 72 Siemens SWT-4.0-130 

Veja Mate N-6 2017 402 6 67 Siemens SWT-6.0-154 

Borkum 

Riffgrund 2 

N-2 2019 448 8 56 MHI Vestas V164 

Deutsche 

Bucht 

N-6 2019 260.4 8.4 31 MHI Vestas V164 

Hohe See N-8 2019 497 7 71 Siemens SWT-7.0-154 

Merkur 

Offshore 

N-2 2019 396 6 66 GE Haliade 150-6MW 

Albatros N-8 2020 112 7 16 Siemens SWT-7.0-154 

Trianel WF 

Borkum II 

N-2 2020 202.56 6.33 32 Senvion 6.2M152 

Kaskasi N-4 2022 342 9 38 Siemens SG 8.0-167 DD 

Baltic 1 O-4 2011 48.3 2.3 21 Siemens SWT-2.3-93 

Baltic 2 O-3 2015 288 3.6 80 Siemens SWT-3.6-120 

Wikinger O-1 2017 350 5 70 Adwen AD 5-135 

Arkona Becken 

Südost 

O-1 2019 384 6.4 60 Siemens SWT-6.0-154 
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Borkum 

Riffgat 

none 2014 113.4 3.6 30 Siemens SWT-3.6-120 

Butendiek none 2015 288 3.6 80 Siemens SWT-3.6-120 

Nordergründe none 2017 110.7 6.15 18 Senvion 6.2M126 

In order to estimate the economic feasibility of all German OWFs with reasonable effort, the 

existing WTs installed in the WFs are assigned to three representative generic WT models. A 

description of the clustering process is presented in Appendix B.  

 

Within the project, the generic turbine models were used to investigate the technical feasibility 

of a service-life extension with respect to fatigue loads of the RNA based on selected load 

cases. In addition, reserves in the remaining lifetime of the foundations were assessed, mainly 

based on comparing new and old design-standards. Various aspects of and decision bases for 

lifetime extension are part of current research (see e.g. [55], [56], [57]). While the presented 

procedure is not suitable for final evaluation of lifetime extension, it gives a rough estimation 

of the fatigue reserves related to the known design assumptions and the assumption on offshore 

wind conditions. This allows for simple assessment of technical maximum design life, which 

is utilised as boundary condition for the economic analysis. Further details fall outside the 

scope of this thesis but can be found in [58]. The key finding is that operation beyond 25 years 

is technically likely if economic conditions are feasible, including the need for potential 

additional replacement or maintenance costs. 

 

4.2.1.3 Future yield potential and wake effects  

The generated energy of each OWF is computed using the respective power curve and 

meteorological ERA5 reanalysis data [59]. However, the future yield of most existing German 

OWFs will decrease due to the wake effects from newly installed wind farms. The estimation 

of the development of wake losses within the service life of the WFs analysed in this study is 

based on two states of offshore wind deployment in different years: the year 2021 as 

representation of the current state of deployment and the year 2031 as representation of the full 

deployment of wind energy within the vicinity of the existing WFs. For the estimation of wake 

losses, data was available from a simulation in [58] describing the full deployment outlined in 

[6] to be realised approximately in 2040. This scenario is used as representative for the wake 

losses for the existing WFs in 2031, as WFs planned to start operation after 2031 will be located 

so far away that their influence can be neglected. The simulations in [58] are conducted with 

version 4.3 of the WRF model [53] using the Fitch wind farm parametrisation [60] for 

estimating the energy yield and the influence of the WFs on the wind field. Figure 8 visualises 

the reduction of wind speed in the two selected deployment states compared to a simulation 

without any wind energy deployment. Wake losses are calculated for these two states of 

deployment relative to a gross production estimate, which is calculated with the wake 

engineering model suite FOXES [61], using the modelled wind fields without any wind farm 

deployment as input. Further information about the assumptions made about the state of the 

OWF deployment in 2031 and beyond and the model details can be found in [58]. The 

simulation results used for estimating the wakes for the state of deployment in 2031 are 

identical to Scenario 09 described in [58]. 
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Figure 8. Simulated mean wind speed reduction in the German Bight under current wind farm 

deployment (2021, left) and for the future scenario of deployment used to project the wake losses 

(approx. 2040, right) 

4.2.2 Operations and maintenance costs 
Next to the investment costs, the O&M costs account for around 30% of the levelized cost of 

energy (LCOE) (cf. [19], [18], [50]). These consist to a large extent of corrective maintenance 

and annual planned maintenance. The required input for both maintenance measures cannot be 

broken down on a wind farm-specific basis, but approximations can be made based on turbine 

class and size. 

The Offshore TIMES software developed by Fraunhofer IWES is used to determine the related 

O&M costs. It is a holistic, time series-based software for the investigation and planning of 

OWFs. It simulates the performance of maintenance tasks and the associated logistics of an 

OWF over its entire lifetime in order to determine important performance indicators such as 

the availability of the WTs or the O&M costs. The failure of WT’s subsystems has a major 

impact on the maintenance work to be carried out on a WT. The reliability of these systems is 

simulated stochastically in Offshore TIMES. This means that the failure of a subsystem occurs 

with a certain probability depending on the type of failure. For this reason, the Offshore TIMES 

model uses a Monte Carlo simulation technique based on time steps, in which the maintenance 

and logistics of an OWF are simulated over several years of operation at variable time 

resolution (e.g., hourly). A simulation scenario is iterated in several Monte Carlo runs in order 

to be able to make a statistically significant evaluation across all simulation runs in later 

analyses. Offshore TIMES distinguishes between costs for technicians, vessels and repair costs. 

Required inputs, related assumptions and insights from stakeholder interviews are presented in 

the following subsections. 

4.2.2.1 Vessels and technicians 

Two exemplary logistics strategies were proposed as a basis for discussion for the stakeholder 

interviews and agreed on for the analysis. These are listed in Table 3. In Concept I, two crew 

transfer vessels (CTVs) per WF are used, which can be chartered in the home port as needed. 

In Concept II, a service operation vessel (SOV) is permanently stationed at the OWF instead, 

in order to directly handle work that arises. A jack-up vessel (JUV) typically applied for major 

component changes is used in both concepts.  
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Table 3. Logistics concepts 

 

 

 

 

The following values for personnel and vessel costs as well as vessel characteristics were used 

for the analysis after discussion in the stakeholder interviews (cf. Table 4 and Table 5). A day 

rate covers a 12-hours technician shift.  

Table 4. Vessel and technician costs in Euro 

Cost type Day rate Annual rate 
Mobilisation 

cost 

Technician 500 - - 

CTV 3,500 - - 

SOV - 7,000,000 - 

JUV 
320,000 / 

75,000 

- 1,500,000 / 

750,000 

 

Table 5. Vessel characteristics 

Vessel type Velocity 
Capacity 

for tech-

nicians 

Maximum 

wave height 

Maximum 

wind speed 

Mobilisation 

time 

Maximum 

time offshore 

CTV 20 knots 12 1.5 m 15 m/s 1 day 1 day 

SOV 20 knots 50 2.5 m 15 m/s - unlimited 

JUV 11 knots 20 2.0 m 10 m/s 2 weeks 2 weeks 

 

Most inputs regarding the logistics concepts were evaluated as suitable during the stakeholder 

interviews. The proposed logistics concepts were implemented in this way, with the WFs close 

to the coast being maintained using CTVs (Concept I) and those further away using an SOV 

(Concept II). In addition, the choice of JUV was differentiated according to turbine size. For 

repairs of the 3.6 MW turbine, a smaller JUV with lower cost rates (75,000 € per day) is 

sufficient. Furthermore, the interviews revealed that work during the night shift is not used in 

practice. It is therefore excluded in the study. 

4.2.2.2 Corrective maintenance 

Based on a field data study for OWTs by Carroll et al. [12] on mean turbine subsystem failure 

rates, average repair times, average material costs and number of technicians required per 

maintenance measure, trends for different WT generations were captured in the stakeholder 

interviews where quantifiable. Subsequently, assumptions were made for the inputs to the 

O&M cost model based on the available information. An initial overview of generic inputs that 

formed the basis for discussion in the interviews can be found in [12]. 

Based on the stakeholder interviews, the respective inputs were verified and adjusted as 

necessary. The main findings from the interviews and any adjustments to the input parameters 

are summarised below: 

First, the assumptions regarding annual average failure rates of WT subsystems were found to 

be appropriate. In order to better adapt the reliability models of the generic turbines to the real 

WTs, a distinction was made between turbines with gearbox (generic turbines with 3.6 MW 

and 5 MW) and direct drive (generic turbine with 7.5 MW). In addition, the failure rate per WT 

Vessel type Concept I Concept II 

CTV 2 - 

SOV - 1 

JUV 1 1 
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and year for the gearbox in newer turbines (5 MW) was reduced (-50%) based on information 

from the stakeholder interviews. In addition, the replacement of the entire "hub" subsystem 

was removed as a possible corrective maintenance. 

Second, the assumptions for active repair times at the WT were evaluated as roughly realistic. 

Even if some operators consider shorter repair times to be possible, the majority of interviewed 

operators agreed with these assumptions, so that they were retained for all subsystems. Also, 

for components of the largest generic turbine the repair times themselves remain in the same 

order of magnitude. However, fewer suitable weather time windows and a lower availability 

of the necessary ships – and with that longer waiting times – can be observed for larger 

components due to the required logistic. 

Third, the material costs were evaluated as appropriate for older turbines (corresponding to the 

generic 3.6 MW class). For larger turbine types, higher material costs are often observed, and 

corresponding input parameters were adjusted (5 MW class: + 50%; 7.5 MW class: +75%). 

Likewise, there are large differences depending on the turbine OEM and availability in practice, 

which, however, could not be included in the simulation in the generic consideration of the 

present study. 

4.2.2.3 Planned maintenance 

Next to corrective maintenance, also the input parameters for annual planned maintenance have 

been discussed within the stakeholder interviews and have been defined (see Table 6). 

Table 6. Input parameters for annual planned maintenance 

Description Value 
Required vessel type CTV / SOV 

Required number of technicians 8 / 6 
Required maintenance time per WT 24 h / 48 h 

Material costs 20,000 € 

 

Based on the feedback obtained in the stakeholder interviews, also the parameters for annual 

maintenance have been differentiated by WT size. The larger turbines (5 and 7.5 MW class) 

are maintained with more modern and efficient maintenance campaigns (i.e. with eight 

technicians in 24 h) compared to the 3.6 MW turbines (i.e. with six technicians in 48 h).  

Additionally, most of the existing OWFs have full maintenance contracts with the OEMs for 

the first three to five years covering all occurring maintenance measures for a fixed price. An 

order of magnitude of 90,000 € per MW per year [50] has been estimated as realistic, although 

this figure can vary greatly depending on the WF and the portfolio size of a developer. 

4.2.3 Remuneration 
In order to estimate the revenue of each OWF, a differentiation between two time periods for 

the commissioning date of the WFs and the associated remuneration is necessary: 

• Commissioning date up to and including 2020 with fixed remuneration per MWh 

• Commissioning date from 2021 onwards with remuneration according to tender 

The respective remuneration assumptions are outlined in the following subsections. 
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4.2.3.1 Subsidies 

The remuneration according to the Renewable Energies Act (EEG) for OWFs with 

commissioning dates up to 2020 depends on four factors [62]:  

• Year of commissioning 

• Water depth at the location of the respective plant 

• Distance to the German administrative territory 

• Selected subsidy model (basic model or compression model; for WFs commissioned in 

2020 only the basic model can be selected [62]) 

The remuneration for the compression model for a WF is shown in Figure 9 in green. For the 

same WF in blue the respective remuneration is shown if the base model is chosen instead. 

Such time series have been created for each WT and then aggregated for each WF. While the 

compression model offers a higher initial remuneration of 19.4 ct/kWh for a shorter period, the 

basic model provides 15.4 ct/kWh over a longer duration. After the initial period, both models 

receive the statutory 3.9 ct/kWh. Consequently, WF operators must decide between higher 

short-term subsidies or lower long-term subsidies.  

 

 
Figure 9. Exemplary remuneration of a WF with compression and basic model 

Both funding models include an extension of the funding period based on water depth and 

distance to the administrative territory of the Federal Republic, which is derived from the 

following equation: 

 
𝑡𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑠𝑢𝑏𝑠𝑖𝑑𝑦 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = (𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑝𝑡ℎ>20 𝑚 ⋅ 1.7 + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑣𝑒 𝑏𝑜𝑟𝑑𝑒𝑟 ⋅ 0.5) 𝑚𝑜𝑛𝑡ℎ𝑠 (4.2) 

 

Herein, the water depth is specified in meters and the distance to the administrative border is 

specified in sea miles. This extended support period is always granted with the increased initial 

remuneration of the basic model, regardless of whether the basic or compression model was 

chosen. 

The geo-positions of all WTs (at sea) have been obtained from the market master data register 

[63]. In addition, also the commissioning dates for the respective turbines are documented 

there. Where necessary, this list was corrected in consultation with the WF operators. In order 
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to expand it to include the water depth of each individual WT, the water depths for all geo-

positions were determined from the BSH's GeoSeaPortal [64]. A map with the administrative 

borders of the Federal Republic of Germany was obtained from the Federal Agency for 

Cartography and Geodesy [65] and used to determine the shortest distance to the geo-position 

of each individual WT. The support models chosen by the WF operators are not known. 

However, it can be assumed that most operators have chosen the compression model, as this 

allows a sooner repayment of the loans and thus results in a reduction of interest costs.  

The remuneration for OWFs with commissioning from 2021 onwards results only from the 

surcharge value of the respective auction of the WF. 

In addition to the remuneration through a fixed support model or the value of the tender, it is 

always possible to sell the electricity to the electricity market. It is generally assumed that the 

electricity will be sold to the electricity market if the electricity price exceeds the current price 

of the subsidy. 

4.2.3.2 Electricity price forecast 

Hourly electricity prices for the years 2010-2018 from [66] are used to model the electricity 

price. For a forecast into the future, these electricity prices are used repeatedly from 2019 

onwards to continue the time series. In addition, the values in the years from 2019 onwards are 

multiplied by an annual factor so that they represent the average electricity prices from a study 

of Patzack et al. [67]. For the transition period 2019 to 2024, which are not examined in the 

study, a linear progression of the factor is assumed between year 2018 and the first forecast 

year of the study 2025. This approach results in the preservation of the hourly volatility of 

electricity prices from 2010-2018, but at the same time a prediction can be made for the future 

on the development of the annual price level. The annual mean of the electricity prices is shown 

in Figure 10.  

 
Figure 10. Yearly average of the electricity price time series used between 2010 and 2045 

4.2.4 Capital expenditure 
The level of investment costs is an important parameter that significantly contributes to whether 

a WF can be operated economically. The investment costs of OWFs depend on many factors, 

such as the size and location of the WF, the competitive situation, the contractual conditions or 

the exchange rate. Due to the large number of influencing factors and the high sensitivity of 

such data, an individual definition for each existing German OWF in the North Sea and Baltic 

Sea has not been possible. Instead, an estimate has been made based on a publication by BVGA, 

The Crown Estate and ORE Catapult, which break down a wide range of items for CAPEX for 
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a British OWF [50]. The cost breakdown relates to a generic UK OWF with a rated capacity 

of 1,000 MW and a commissioning date in 2022. The costs quantified include development 

and project management, wind turbine, balance of plant, installation, and commissioning. In 

total, the investment costs for this generic wind farm amount to £2,370,000/MW. Based on 

these key figures, trends for different WF generations were to be captured in stakeholder 

interviews. While in principle 2,800,000 €/MW was considered appropriate for many and 

especially younger WFs, there were only few comments on older WFs. These comments were 

very specific and therefore cannot be generalised to all older WFs. Thus, in the further course 

of the economic analysis, uniform investment costs per MW have been assumed for all existing 

WFs. Due to similar reasons, a uniform and constant WACC of 5% as published by [50] and 

judged as realistic during the stakeholder interviews has been applied to all OWFs. 

4.3 Results and discussion 

The results of the profitability analysis of all German offshore wind farms show that the 

economic viability depends strongly on the electricity price that can be achieved after the 

period with guaranteed remuneration according to the EEG. Preliminary simulations with 

historical (i.e., low) electricity prices have shown that in such a scenario there would be no 

economic viability after the expiry of the EEG subsidy. Simulations with electricity price time 

series taking into account forecasts with continuously rising electricity prices usually lead to 

economic business cases beyond the approval period of 25 years of operation. Thus, it can be 

assumed that most wind farm operators will not only aim for 25 years of operation, but also for 

up to 10 years of continued operation according to the WindSeeG, as long as the electricity 

price rises sufficiently. It should be mentioned that the assumptions regarding the electricity 

price increase have been made in a way that leads to a conservative assessment of the economic 

viability of wind farms.  

It must be considered that it can make economic sense not to repair a WT in the event of damage 

to major components towards the end of its service life, but to continue operating the WF with 

a reduced number of turbines and power output. Especially the lack of certain WT spare parts 

can become a major challenge. In the following subsections, some of the partial results of the 

profitability analysis are discussed in more detail. 

4.3.1 Future yield potential and wake effects 
Depending on the location of the existing WF, wake effects have a significant influence on the 

annual yield. While in 2022 wake losses in a range of approx. 7% to 31.5% can be observed 

for different existing WFs, in 2031, considering planned expansion scenarios, wake losses of 

up to 50% can be expected for a few existing WFs. Strongly varying effects can be observed: 

While some existing WFs are only slightly affected by the expansion, other areas will be 

confronted with doubling of the wake effects. Figure 11 gives an overview of mean annual full 

load hours expected in 2031 compared to the current scenario in 2021.  
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Figure 11. Distribution of mean annual full load hours of the analysed OWF (assuming 100% 

availability) in the two simulated expansion scenarios in 2021 and 2031 

Note that the yearly full load hours that contribute to the feasibility study may vary due to 

different wind conditions in each year. Depending on the cost situation and financing, this 

reduction can have a strong influence on the economic viability of the WFs.  

4.3.2 O&M costs 
The economic viability also depends decisively on the O&M costs incurred. These in turn vary 

depending on the reliability of the WTs and their subsystems, the logistics concept, but also 

the distance of the WF from the coast. In the analysis results, average O&M costs per year and 

MW of around 50,000 € to 220,000 € can be observed. These results are in a similar order of 

magnitude as the assumptions from the study by [50] and the analysis of [68]. As O&M costs 

vary significantly for different OWFs, it should be taken into account that especially for older 

and smaller WFs as well as for WFs located further away from the coast, higher O&M costs 

are to be expected compared to WFs with a more recent commissioning date typically having 

a larger WF and WT nominal capacity. Additionally, differences in O&M costs per MW can 

be explained by different turbine technologies evaluated within this study.  

To eliminate a potential variation of O&M costs resulting from a limited number of Monte 

Carlo iterations, it was investigated how many runs are required to obtain stable, meaningful 

results. Figure 12 illustrates how availability and O&M costs change with increasing number 

of Monte Carlo runs. Starting at around 200 runs both values start to converge and do not 

change any more relative to the values computed with 300 runs. With the aim of acquiring 

results of good accuracy with a reasonable computational effort, 300 runs have been 

determined as sufficient in the present study. 

 

  
Figure 12. Relative change in averaged availability (left) and O&M costs (right) dependent on 

number of Monte Carlo iterations 

Particularly for smaller WFs, independently performed maintenance cannot be carried out 

economically in some cases. To shed more light on this aspect, scenarios with costs for 
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corrective maintenance and costs for full maintenance contracts in the first five years of 

operation have been developed and compared. While for some existing WFs independently 

organised maintenance is more cost-effective, other WFs, especially older and smaller ones, 

benefit from full maintenance contracts. Figure 13 gives an overview of the expected 

profitability of existing German OWFs considering independently organised maintenance and 

full maintenance contracts, respectively. While for the scenario with independently organised 

maintenance, 82.1% of OWFs are profitable for at least 25 years, this share increases to 89.3% 

in case of applying full maintenance contracts. This results in only 17.9% in the one and 10.7% 

of German OWFs in the other scenario for which continued operation is not economically 

viable. Given the results presented here, but also others that cannot be disclosed for 

confidentiality reasons, it is clear that continued operation is economically attractive for most 

German OWFs (cf. Figure 13).  

 

 
 

Figure 13. Expected profitability of existing OWFs in case of independently organised maintenance 

(left) and full maintenance contracts (right) 

 

4.3.3 CAPEX and financing model 
Finally, the influence of CAPEX and financing models should be discussed more deeply. 

Depending on the existing WF, initial investment costs can vary greatly and how the WF is 

financed also plays a decisive role in the profitability analysis. However, as only few 

interviewees commented on these aspects, uniform investment costs and WACC assumptions 

were used (cf. Section 4.2.4). Nevertheless, these assumptions together with all the simulation 

results provide a coherent overall result, as continued operation beyond the approval period of 

25 years was also described as conceivable and financially attractive in the stakeholder 

interviews. Thus, based on both the simulation results and the stakeholder interviews, the 

conclusion can be drawn that continued operation is an attractive option for most existing 

German OWFs.  

4.4 Conclusions and outlook 

In this chapter, the economic feasibility for extended operation of German offshore wind farms 

has been investigated. A comprehensive economic life cycle simulation and assessment 

(ELSA) framework has been developed for this purpose that can be applied in different 
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portfolios of wind power assets. It covers a cost/revenue model which incorporates CAPEX 

and OPEX related elements, revenue factors, and deployment location specific aspects. To limit 

the level of granularity in the present study, a classification of all existing wind farms in 

German waters with respect to size and key dimensions has been used. As a key conclusion, 

the results support the case for extended operation for most German OWFs, while highlighting 

the importance of wake effects to AEP, the magnitude and variability of O&M costs and finally 

the influence of CAPEX and financial modelling.  

The outcomes of this study provide promising conclusions towards obtaining additional value 

from existing assets by means of service-life extension. However, certain assumptions should 

be addressed in order to increase confidence and further quantify the outcomes. More 

specifically: 

• The conclusions obtained rely heavily on the inputs provided. In this chapter, inputs 

have been mainly obtained from literature and interviews with stakeholders. More 

quantitative inputs from real wind farms including details about O&M activities and 

cost figures would provide more reliable results. 

• Reliability data is scarce in the literature or the public domain, while they rely 

significantly on the type of technology, the maturity of turbine concepts and the period 

of operation. The development and utilisation of improved reliability models taking 

into consideration also the effect of component age and loads would considerably 

reduce uncertainties in the analysis.  

• At the same time, maintenance logistics inputs are affected by the deployment location 

and the maturity of the supply chain. Continuous development and adaption of Offshore 

TIMES are essential to cover newest logistic concepts within the simulations.  

• Within this study the nominal service life of wind turbines is defined regardless of the 

nominal service life of major components such as blades, the gearbox or the generator. 

In case of a required replacement close to the end of service life, the decision strategy 

within the framework is not adjusted. Consequently, unrealistic costs can be included 

in the analysis when having a break-down in the last days of operation which would not 

occur in real life. To this end, higher fidelity models could be employed once relevant 

input data become available, investigating the effect of major replacements to the 

business case of service life extension. 
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5 Digitalisation and preprocessing of O&M data under 

consideration of standards and guidelines 
 

Maintenance data of wind turbines is an important information source for calculating key 

performance indicators. Also, it can be used for developing models for early fault detection. 

Both activities aim for supporting informed decisions in operations and maintenance. However, 

such data is rarely available in a structured and standardised format which hinders the 

interoperability of different enterprises. Consequently, maintenance information is often 

unused or only usable with considerable personnel effort. To digitalise wind farm maintenance, 

a digitalisation workflow is developed and presented in this chapter. The workflow consists of 

the steps optical character recognition, information extraction and text classification. The 

workflow is applied on real-world wind turbine service reports and invoices. First results for 

each step show good performance metrics and potential for further real-world application of 

the proposed method. The material of this chapter has been peer reviewed and published in 2. 

5.1 Introduction 

Up to 30% of the levelized cost of energy (LCOE) of wind turbines (WTs) are driven by the 

cost of operations and maintenance (O&M) [69]. In order to further decrease this share and to 

be able to perform informed and strategic decisions in the maintenance of WTs, key 

performance indicators (KPIs) based on maintenance information are crucial. Modern 

enterprises are embedded in a fast-paced environment which is dependent on data. In order to 

use this data and to ensure interoperability of different enterprises, a common structure and 

standards are necessary. Even though there are already standards and guidelines available for 

the communication of maintenance data and to classify affected components of a WT during a 

maintenance measure, such as Reference Designation System for Power Plants® (RDS-PP®) 

[40] or Reference Designation System for Power Systems (RDS-PS) [70], they have only been 

applied to a limited extent to date. This results in a variety of maintenance reports and formats 

and hinders communication between enterprises. Consequently, maintenance information is 

heterogeneous, unstructured and rarely standardised. Since utilisation of maintenance 

information is only possible with considerable personnel effort, KPI-driven maintenance 

optimisation or developing models for early fault detection is hindered and scarce within the 

wind energy domain. Even if standards are implemented at some point, historical data cannot 

be used for further analysis or reliability KPI calculation yet. To be able to use historical data 

and to speed up the usage of standards in the maintenance of WTs, a workflow for digitalisation 

of maintenance information (digitalisation workflow) (see Figure 14.) is proposed. The 

digitalisation workflow consists of the three steps optical character recognition, information 

extraction and text classification. It produces standardised, machine-readable maintenance 

 
2 Marc-Alexander Lutz, Julia Walgern, Katharina Beckh, Juliane Schneider, Stefan Faulstich, Sebastian Pfaffel, 

2022. „Digitalization Workflow for Automated Structuring and Standardization of Maintenance Information of 

Wind Turbines into Domain Standard as a Basis for Reliability KPI Calculation”. IOP Journal of Physics 

Conference Series (WindEurope Annual Event 2022), doi: 10.1088/1742-6596/2257/1/012004 [107] 
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information, in which WT components are classified according to the RDS-PP scheme. To 

validate the workflow, real-world WT service reports and invoices are used. 

The outline of the chapter is as follows: After the introduction (Section 5.1) the state of the art 

on digitalisation methods including optical character recognition, information extraction and 

classification is presented in Section 5.2. Furthermore, an overview of the challenges with 

current maintenance data of WTs and of available standards is given. In Section 5.3 the 

methods used for comparing WT service reports and for implementing the digitalisation 

workflow are outlined. Also, the dataset utilised for validating the digitalisation workflow is 

described. Afterwards, the results for the aforementioned methods are presented and briefly 

discussed (Section 5.4). In Section 5.5 the findings of the chapter are summarised and an 

outlook is given. 

5.2 State of the art on digitalisation methods and existing 

standards 

After describing the current situation on how maintenance information is recorded and stored 

within the wind industry, different approaches for digitalising data are reviewed. Afterwards, 

the following sub-chapters revise the state of the art of the individual steps of the proposed 

digitalisation workflow. 

5.2.1 State of the art on recording maintenance information 
Maintenance information are available in numerous maintenance documents. File formats can 

vary from documents which are structured already (Excel, CSV) to scans of letters in pdf or 

image format. Dependent on the document type, the depth of information about the 

maintenance measure differs: While maintenance reports or turbine logs can provide detailed 

failure and measure descriptions, invoices often give limited technical insights. A large 

heterogeneity of documents complicates the data processing and not from all documents the 

same information content can be extracted. Moreover, even within one type of document the 

depth of information can vary significantly. This is mainly related to data sovereignty: 

Dependent on which service enterprise (SE) is performing the maintenance service at the WT 

and which documentation has been agreed on, the information content differs substantially. A 

reduced information content hampers labelling the maintenance measure and the related WT 

component. Standardisation of different document types and their content is crucial to evaluate 

and communicate the data in an automated manner. As the majority of maintenance 

information is described in free text, text classification is required to label the affected 

component consistently and to make the information comparable (cf. [71]). 

5.2.2 State of research on approaches for digitalisation of maintenance 

information 
Recommendations on how to collect data for the purpose of reliability assessment are 

summarised in [20]. However, real-world data is often not collected according to this 

recommendation. Therefore, solutions to make use of this data are necessary. Approaches that 

aim to extract knowledge from natural language in maintenance data of different domains are 

summarised under the term Technical Language Processing [72]. Discovering KPIs from 

natural language in maintenance work orders is shown in [73]. Gao et al. focus on the extraction 

of performance metrics, e.g. mean time to failure, and therefore implement a pipeline for 

machine reading of unstructured maintenance work orders [74]. 
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Approaches that are specific to the wind energy domain can be seen in ([75], [76], [77]). 

Blanco-M. et al. show a text mining approach to assess the failure condition of WTs by using 

the maintenance history [75]. A domain ontology for wind energy is presented in [78]. Other 

methods combine WT sensor data and maintenance reports for the purpose of predictive 

maintenance [77]. Further approaches focus on textual information of accidents at WTs to 

generate knowledge ([79], [80]). However, none of the before mentioned approaches consider 

domain standards like RDS-PP [40] or RDS-PS [70] for describing the affected components in 

a uniform manner. Furthermore, these methodologies have not yet been adopted within the 

wind energy industry. 

5.2.3 Optical character recognition 
Optical character recognition (OCR) is a well-researched field for more than six decades ([81], 

[82]). Several reviews and books within this domain are available ([82], [83]). An evaluation 

of the performance metrics of various OCR approaches is provided in [84]. Different OCR 

tools such as ABBYY FineReader [85], OmniPage [86] or Tesseract [87] exist. A comparison 

of Tesseract to other tools is shown in [88]. 

5.2.4 Information extraction 
Information extraction aims at creating a structured representation of selected information out 

of text [89]. Information extraction is a major task in computer linguistics that is subdivided in 

several areas, e.g. template filling, named entity recognition, identification of relations and 

event detection [90]. An overview of the domain-specific information extraction is given in 

([89], [91]). The various applications are shown in [92]. Approaches to extract content and to 

derive relations out of PDF documents are shown in ([93], [94]). 

5.2.5 Classification 
Classification in the machine learning sense is the task to automatically assign categories to 

data points. Depending on the task, it can be distinguished between assigning one class to a 

data point (multi-class) and assigning several classes (multi-label). The domain standard that 

is considered in this work, RDS-PP®, contains a number of categories up to the four-digit range. 

Thus, relevant classification methods need to be able to tackle this amount of categories. Two 

types of classification models are suitable. First, support vector machine (SVM) is a one-vs-all 

approach that uses one classifier for each class ([95], [96]). Originally intended to perform 

binary classification (assigning one out of two classes) the SVM can be employed for multi-

label as well. Second, word embedding approaches map high dimensional and sparse co-

occurrence matrices based on the words that occur in the training data to a low dimensional 

latent vector space [97]. Most current approaches make use of this method. Language models 

such as BERT and other transformer variants ([98], [99], [100]) use pre-trained models and 

fine-tune on given data. They can be used, among other applications, to perform classification 

tasks. 

5.3 Methodology 

In this section the methodology for each step within the digitalisation workflow and the datasets 

used for validation are described. First, it is explained how wind turbine service reports are 

compared (Subsection 5.3.1). Second, the datasets used for validating the different steps of the 

proposed digitalisation workflow (Subsection 5.3.2) are described. Third, an overview of the 

implementation of the digitalisation workflow is given (Subsection 5.3.3). 
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5.3.1 Comparison of existing field data: wind turbine service reports 
An overview of initiatives that collected maintenance data of WTs for the purpose of reliability 

studies is shown in ([31], [101], [102]). Acquisition of data but especially evaluation is most 

efficient if same formats and structures are used. This can be the case for maintenance data 

being collected and structured by initiatives or for maintenance data recorded by the same SEs. 

As stated before, in real world a variety of different templates is used. In order to understand 

which information content is available and needs to be considered within the digitalisation 

workflow, several service reports of WTs are compared and the available information content 

provided by different SEs is clustered into categories such as site name, WT-type or the text 

description of the maintenance measure (TDoMM). The dataset for this comparison consists 

of five different types of service reports, which have been recorded by five different SEs. 

5.3.2 Datasets used for the validation of the digitalisation workflow 
Two different datasets are used to evaluate the steps of the digitalisation workflow. The first 

dataset "invoices" is used for the validation of the steps OCR and information extraction. It 

consists of 152 invoices that have been issued by one SE to an operator of WTs. The invoices 

are available as scanned images. For the purpose of enterprise resource planning (ERP) the 

relevant information of the invoices, such as the issued date, the invoice number and the invoice 

total, are currently transferred manually into the ERP system. Next to the invoices, this 

information is also available. Therefore, the manually inserted information from the ERP 

system can be used as a ground truth to evaluate the performance of the first two steps of the 

digitalisation workflow. 

The second dataset "service reports" is used for the steps of information extraction and 

classification. It comprises of 4000 offshore WT service reports covering 240 operational 

turbine years. The service reports are provided in PDF format and contain the date of the 

measure, the number of technicians, the working hours, the materials used as well as the 

TDoMM. Initially, the TDoMM is not labelled with a domain standard such as RDS-PP. As a 

first step, the labelling according to RDS-PP is performed manually by a domain expert. Each 

TDoMM is labelled with one or more RDS-PP component categories depending on how many 

measures are undertaken at different WT components. Once all available TDoMMs within the 

WT service reports are labelled according to RDS-PP, a basis for training and testing the 

classifier is available. 

5.3.3 Digitalisation workflow 
The digitalisation workflow, depicted in Figure 14., consists of the three steps: OCR, 

information extraction and text classification. The different steps of the digitalisation workflow 

are theoretically described in Lutz et al. [71] and are briefly outlined again. 

At different stages of the digitalisation workflow, structured information can be archived. This 

can be the case following the steps of OCR and information extraction or after the classification 

step, which even allows for structured and standardised information being stored. Since 

archiving can be easily automated, this step is illustrated in Figure 14. as part of the 

digitalisation workflow but is not explained in the following. If maintenance information is 

present in the form of pictures or scans, at first it is necessary to apply OCR. By doing so, scans 

are converted, the output thereafter is machine-readable text. Next to providing semi-structured 

files like .csv or .txt, the output of the OCR can serve as input for the step of information 

extraction. The purpose of information extraction is to convert multiple different files into one 
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common structure where in same columns same information categories can be found, e.g. the 

date of the maintenance measure or the TDoMM. Thus, many different service reports can be 

converted into a single tabular form, e.g. a spread sheet. With the aforementioned steps, 

structured information is available. Since some information categories, such as the TDoMM, 

are often given as free-text information, those information still need to be standardised utilising 

predefined categories. By using text classification methods, this text can be classified into 

categories which are given by a domain standard (e.g. RDS-PP [40], RDS-PS [70] or State-

Event-Cause-Code (ZEUS) [41]). This results in structured and standardised maintenance 

information being available and usable for further analyses. 

 

Figure 14. Overview of the proposed digitalisation workflow 

5.3.3.1 Optical Character Recognition 

Maintenance data can be available in different formats. If data is available as scanned images 

or pictures, information can neither be extracted nor can the content of the data be searched. 

To be able to access the information, OCR is applied which converts images into text. The text 

can then be searched and further used. The OCR output can be used as input for the next 

digitalisation workflow step. As stated in Section 5.2, OCR is a well-researched domain. 

Therefore, OCR can easily be implemented into the digitalization workflow. In this work the 

authors use the OCR open-source engine Tesseract [87] as it provides a good performance in 

comparison to other tools [88]. 

5.3.3.2 Information Extraction 

Besides the output of the OCR, semi-structured files like .csv, .pdf or .txt can be used as input 

for the step of information extraction. In comparison to the definition of information extraction 

within the field of computer linguistics (see Section 5.2), information extraction within the 

proposed digitalisation workflow has the purpose of converting multiple different single files 

into one common structure in which same information categories can be found in same 

columns, e.g. the date of the maintenance measure or the TDoMM. Information extraction 

within the proposed workflow comprises of the sub-steps template filling and text 

preprocessing. The sub-step of text preprocessing is similar as outlined in [103]. Within the 

sub-step of template filling each part of the text is assigned to an information category, which 
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allows for transferring information in the same structure. With the aforementioned sub-steps, 

structured information is available. However, some information categories still need to be 

standardised, for instance the TDoMM. This can be achieved by using text classification 

methods, which are described in the next Section. 

5.3.3.3 Classification 

The data basis used for the classification is the dataset "service reports" containing around 4000 

service reports of WTs, which are manually labelled according to RDS-PP by a domain expert. 

RDS-PP is hierarchically structured (see Appendix C, Figure 55). An example for a possible 

classification of the TDoMM in WT service reports to RDS-PP is given in Table 24 in Appendix 

C. By analysing the dataset, it is found that on RDS-PP level two, around 55% of all service 

reports are represented by only three RDS-PP labels (see Figure 15.). Therefore, the dataset is 

imbalanced. 

 

Figure 15. Distribution of the ten most frequent RDS-PP labels on level 2 within the dataset “service 

reports” 

While on RDS-PP level one, 16 different categories are theoretically available, on level two 62 

RDS-PP categories can be used. Therefore, typical classifier choices are established methods 

such as SVM [95] and transformer variants such as BERT [98]. Transformer variants require a 

large corpus of domain-specific text which is not available for WTs. Consequently, SVM is 

used as classification method. Within the dataset each TDoMM is labelled with one or more 

RDS-PP components, which makes it a multi-label classification. 

In general, the text classification consists of four steps: 

• Text cleaning: E.g. removing special characters and lowercasing 

• Vectorisation: Each report is represented by a vector 

• Training: Splitting the data in train and test set and training a classifier on the train 

set to learn a mapping from text to RDS-PP label(s) 

• Evaluation: Test the classifier on the remaining test set 

Each TDoMM is transformed with TF-IDF (term frequency-inverse document frequency) 

[103], which assigns a value of information content to each word. This results in low values 

for frequent words, e.g. "the", and high values for relatively infrequent words, e.g. "nacelle". 

In particular, for each RDS-PP level one SVM is trained such that performance metrics for each 

level can be compared. In addition, one classifier is trained which is referred to as final. For 

the final classifier all given labels on all respective levels are used for training and prediction. 
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This classifier allows for labelling all TDoMMs without knowing which RDS-PP level is 

searched for and primarily serves as a reference point for now.  

Evaluation is performed with F1-scores. F1 is calculated from recall and precision as follows 

𝐹1 = 2 ∗ 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (5.1) 

 

Herein, TP, FP and FN refer to true positives, false positives and false negatives, respectively. 

F1 is a metric that is more robust towards class imbalance. Thus, it is the preferred choice over 

other metrics such as accuracy. A distinction can be made between micro F1, which aggregates 

contributions of all classes and is therefore weighted by label frequencies, and macro F1, which 

computes the metric independently for each class an then averages the results, thereby treating 

all labels equally regardless of their prevalence. Micro F1 is particularly suitable for evaluating 

classifier performance on imbalanced datasets where the frequent labels dominate, while macro 

F1 is more appropriate when equal importance should be given to all classes, including rare 

ones. 

5.4 Results and discussion 

5.4.1 Comparison of existing field Data: wind turbine service reports 
Different service reports of five SEs are compared. Results can be seen in Table 7. It can be 

noticed that some information categories are available in all service reports, e.g. the type and 

the identifier of the WT, the date and the TDoMM. However, the description of the TDoMM 

is not documented in a standardised way, for instance by using RDS-PP [40], RDS-PS [70] or 

ZEUS [41]. Instead, free text is used. Different information categories can be seen in service 

reports of different SEs. Also, the type of documentation format varies. The service reports are 

available as scanned images, Word documents, XML or PDF-files. The results of this 

comparison (see Table 7) support the assumption that maintenance data provided by different 

SEs differ significantly regarding the structure and information content. Furthermore, standards 

for classifying maintenance activities are rarely used. This raises the challenge as well as the 

demand of an automated digitalisation workflow. 

Table 7. Available information categories in service reports of different SEs 
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5.4.2 Digitalisation workflow 
In the following sections results for the different steps of the digitalisation workflow are 

presented. 

5.4.2.1 Optical character recognition 

OCR is conducted on the first dataset "invoices". As described in Section 5.3.2, 152 invoices 

are available as scanned images. After using OCR all invoices are converted to machine-

readable text. Since an automated evaluation of the feasibility of this process is only possible 

after the step of information extraction, results are described in the following Section 5.4.2.2. 

5.4.2.2 Information extraction 

After the step of OCR, the dataset "invoices" is further processed using the step of information 

extraction. As a result, all invoices are stored in the same structured format. This allows for 

comparing and validating the extracted information categories with the ground truth data 

exported from the ERP-system (see Section 5.3.2). The results can be seen in Table 8. 

Table 8. Results of OCR and information extraction for the first dataset “invoices” 

Number of invoices evaluated 152 

Share of correct entries [%] 94.5 

 

Next to the number of invoices evaluated, the share of correct entries is shown. One entry is 

defined as the content of a certain information category in one invoice such as the issuing date 

of the invoice or the amount of cost stated in the invoice. Out of all available entries being 

extracted a share of 94.5% is similar as listed in the ground truth and is therefore evaluated as 

"correct". 

Furthermore, information extraction is performed on the dataset "service reports". All different 

information categories in the WT service reports of the SE could be extracted and summarised 

in a common table. The content of each report is represented in a row of that common table. 

Same information categories are found in same columns. No ground truth data is available to 

validate automatically if all data is extracted correctly. Nevertheless, after carefully comparing 

the content of many service reports with the structured result manually, the authors believe that 

all service reports are extracted correctly. 

5.4.2.3 Classification 

For the TDoMMs of the dataset "service reports" single-label and multi-label classifiers for 

different RDS-PP levels are trained and tested. Classification results are depicted in Figure 16. 

Each level represents a level in the RDS-PP hierarchy. Figure 16(a) and (b) show results for 

multi-label and Figure 16(c) and (d) for single-label classification. Figure 16(a) and (c) refer to 

micro F1 while Figure 16(b) and (d) depict macro F1-scores. In both cases, multi-label and 

single-label, macro F1-scores are lower than micro F1-scores. This can be explained by the 

label imbalance in the dataset, i.e. that some labels occur more frequently than others (also see 

Figure 15.).  
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Figure 16. Micro and macro F1-scores of single-label and multi-label classifiers for different RDS-PP 

levels 

As a result, infrequent labels cannot be captured well by the classifier and the micro F1-scores 

are higher than the macro F1-scores. In the multi-label as well as in the single-label setting it 

can be seen that with ascending levels (from one to five) F1-scores decrease. This is expected 

since the number of data points that belong to a certain level decrease from level one to level 

five, while, at the same time, the level of annotation detail is increasing. Only classifier results 

for level five show outliers in this descending trend. Even though more RDS-PP labels are 

theoretically available for labelling the TDoMM in WT service reports, only 16 different labels 

are used for level five within the dataset. In comparison, over 70 labels are used for labelling 

on level four as information depth is rarely precise enough to label until level five. Therefore, 

the actual label space in level five is smaller than e.g. for level four leading to better classifier 

performance for level five. Inspecting the macro F1-scores, the results show higher scores for 

the single-label than for the multi-label setting. This can be explained by the fact that the single-

label setting reduces the problem to predicting only one affected WT component because multi-

label cases are not included in the training and test set. This effect cannot be observed when 

comparing the micro F1-scores which needs to be analysed further. Overall, the results indicate 

that a classification system can provide decision support in the annotation process and for 

certain RDS-PP levels an automatic labelling procedure is possible. 

5.5 Conclusion and outlook 

WT service reports are often heterogeneous. Their information content and information depth 

vary. Also, no uniform structure or standards are used for documentation. Data preprocessing 

as well as determining the maintained component are therefore essential steps for enabling 

further analyses. At the same time, these steps can only be performed manually so far, thus are 

time-consuming, and often require the knowledge of a domain expert. 

This chapter proposes a digitalisation workflow for maintenance information of WTs including 

the steps of OCR, information extraction and classification. Since OCR and information 

extraction show good results with an accuracy of around 95% or above depending on the 

dataset evaluated, the focus lies on classification of maintained components according to the 

standard RDS-PP. The process uses a SVM for text classification on a real-world dataset. First 
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classification results look promising with micro F1-scores showing high values. However, as 

not every component is maintained in the same frequency, the RDS-PP label distribution in the 

dataset is imbalanced. Thus, higher represented labels are captured better by the classifier. A 

lower macro F1-score is therefore seen. Beside the label distribution, investigations show that 

the level depth of assigned RDS-PP labels also has an impact on the classification performance. 

The digitalisation workflow allows utilising operational knowledge which was not accessible 

in the past. Furthermore, the results indicate that automated digitalisation of maintenance 

reports of WTs is possible and the usage of standards can be accelerated. Thereafter, KPIs can 

be calculated automatically which supports data-driven decision making. Further analyses and 

uncertainty evaluations for different datasets are planned to drive decisions for productive use. 

Also, classification for other guidelines and standards, e.g. ZEUS or RDS-PS, will be tested. 

The comparison of different classifiers and associated insights will be utilised to develop 

classifiers further considering application-specific requirements. 
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6 Impact of using text classifiers for standardising 

maintenance data of wind turbines on reliability 

calculations 
 

This chapter delves into the challenge of efficiently digitalising wind turbine maintenance data, 

traditionally hindered by non-standardised formats necessitating manual, expert intervention. 

Highlighting the discrepancies in past reliability studies based on different key performance 

indicators (KPIs), the chapter underscores the importance of consistent standards, like RDS-

PP, for maintenance data categorisation. Leveraging on established digitalisation workflows, 

we investigate the efficacy of text classifiers in automating the categorisation process against 

conventional manual labelling. Results indicate that while classifiers exhibit high performance 

for specific datasets, their general applicability across diverse wind farms is limited at the 

present stage. Furthermore, differences in failure rate KPIs derived from manual vs. classifier-

processed data reveal uncertainties in both methods. The study suggests that enhanced clarity 

in maintenance reporting and refined designation systems can lead to more accurate KPIs. The 

material of this chapter has been peer reviewed and published in 3. 

 

6.1 Introduction 

Maintenance data of wind turbines is essential for analysing operations and maintenance 

(O&M) activities and for calculating related key performance indicators (KPIs). Corresponding 

data can facilitate the optimisation of O&M through logistic concept improvements or the 

implementation of preventive maintenance strategies, reducing the levelized cost of energy 

(LCoE). However, maintenance data in the wind industry is seldom available in a machine-

readable and standardised format. As a result, this data is either overlooked or requires 

significant manual effort of a domain expert to process the information content.  

Numerous reliability studies based on manually labelled maintenance reports have been 

published to understand which components undergo maintenance. A comprehensive review of 

available reliability data is given in [32] and [31]. Some publications provide KPIs for all wind 

turbine subsystems (see e.g. [10], [12] and [29]), while others focus on specific subsystem such 

as the power converter (see e.g. [36], [104]), the pitch system (e.g. [35], [105]) or the main 

bearing (e.g. [106]). Direct comparisons between such studies can be challenging due to the 

different categorisation systems and variations in provided KPI definitions. For instance, 

Carroll et al. reported reliability figures from about 350 offshore wind turbines, identifying the 

“pitch / hydraulics” subsystem as the most frequently failing one [12]. In contrast, the System 

Performance, Availability and Reliability Trend Analysis (SPARTA) initiative noted the blade 

adjustment system as having the second highest monthly repair rate based on an analysis of 

1045 offshore wind turbines located in UK waters [29]. Given that Carroll et al. use annual 
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failure rates while SPARTA uses monthly repair rates, the studies base their findings on 

different KPI definitions. Moreover, the components included in the defined subsystems likely 

differ, complicating KPI comparisons. Anderson et al. highlight that even the definition of 

“failure” can vary in field-data based studies, impacting the KPI values [30]. One solution for 

uniformly defining subsystems and components of wind turbines is to employ standards and 

guidelines like the reference designation system RDS-PP for wind turbines [40] or RDS-PS 

[70]. Regrettably, these standards have not gained wide acceptance in the wind energy industry 

yet. Instead, many proprietary classification systems are in use which do not easily translate to 

the mentioned standards. 

Most of the reliability studies mentioned above rely on data recorded before 2015. The 

extensive manual effort required to preprocess maintenance information often results in 

significant delays between documenting site visits and publishing data-based findings. 

On the one hand, [107] developed a digitalisation workflow to standardise wind turbine 

maintenance information. This process involves optical character recognition, information 

extraction and text classification. After reviewing various classifier methods, they employed 

support vector machine (SVM) approach to train and test a text classifier to label service reports 

with RDS-PP components. As RDS-PP is organised in a hierarchical structure (cf. [107]), 

classification results for different levels have been presented and compared using F1 scores. 

While initial classification results displayed promising micro F1 scores, these were not 

explored further for productive application. Notably, training text classifiers for isolated RDS-

PP levels is of limited practical relevance, as only the combined levels provide insights into the 

affected components and subsystems.  

On the other hand, [108] analysed three different methods of labelling service reports, namely 

expert labelling, text classification and AI-assisted tagging in combination with a rule-based 

approach, to differentiate between predictive and corrective maintenance work orders. 

Afterwards, failure rates for the overall wind turbine system derived from the differently 

preprocessed datasets – making use of the simple categorisation of predictive and corrective 

activities – were compared. Results show that the AI-assisted tagging approach reduces data 

preparation time significantly, however, calculated KPIs are not reliable [108]. These findings 

are based on data of a single wind farm. 

In contrast, this chapter addresses the challenge of efficiently digitalising wind turbine 

maintenance data, traditionally hindered by non-standardised formats requiring manual expert 

intervention. This study investigates the efficacy of various text classifiers in automating the 

categorisation process of maintenance data against conventional manual labelling. The novelty 

of this research lies in the comprehensive evaluation of different text classifiers trained on 

diverse datasets and their impact on reliability KPI calculations. By comparing manual 

labelling with classifier-processed data, this chapter reveals the uncertainties in both methods 

and suggests improvements in maintenance reporting and designation systems to achieve more 

accurate KPIs. 

Within this chapter, different text classifiers, which classify the text descriptions of wind 

turbines’ maintenance measures into RDS-PP categories, and thus different wind turbine 

components and subsystems, are analysed and implications for real-world application are 

assessed. Uncertainty resulting from using text classifiers based on different training datasets 

varying in size and homogeneity is evaluated. Additionally, it is analysed how reliability KPIs 
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differ depending on the chosen preprocessing method comparing manual labelling against 

different text classifier results. Our findings offer recommendations for digitising wind turbine 

maintenance reports, making this study invaluable for researchers and practitioners processing 

text-based service reports to derive reliability figures or understand spare parts usage. 

The chapter is structured as follows: First, the state-of-the-art literature on text classification is 

discussed (Section 6.2). Second, an introduction of the used methods for classification but also 

for comparing classification results is given and the analysed dataset is described (Section 6.3). 

Afterwards, several text classifiers based on different training datasets are evaluated and 

compared and industry perspectives are presented based on conducted interviews. Next to the 

classifier performance itself, the impact on reliability KPI calculation and corresponding 

uncertainties are analysed and barriers to the adoption of text classifiers in the wind energy 

sector discussed (Section 6.4). Last, main conclusions are summarised and an outlook to future 

work is given (Section 6.5). 

6.2 State of the art literature on text classification 

Text classification, a fundamental task in natural language processing (NLP), involves 

assigning predefined categories to text data ([109], [110]). Over the past few decades, this field 

has witnessed significant advancements, driven by the evolution of machine learning and deep 

learning techniques. This literature review highlights the key developments and state-of-the-

art approaches in text classification. 

The initial methods for text classification relied heavily on traditional machine learning 

algorithms such as Naive Bayes, k-nearest neighbours (k-NN), and support vector machines 

(SVM). These algorithms typically used bag-of-words or term frequency-inverse document 

frequency (TF-IDF) representations of text. For instance, [95] demonstrated the effectiveness 

of SVMs for text categorisation, showing superior performance compared to other methods at 

the time due to its ability to handle high-dimensional data, while recently, [111] have shown 

the impactful application of such methods for fault diagnosis for control of critical 

infrastructure. 

To improve classification performance, extensive feature engineering was employed. 

Techniques like n-grams, part-of-speech tagging, and named entity recognition were used to 

extract meaningful features from text ([112], [113]). Ensemble methods, which combine 

multiple classifiers, were also explored [114]. The Random Forest algorithm, an ensemble of 

decision trees, proved effective for various text classification tasks due to its robustness and 

ability to handle large feature spaces [115]. 

The advent of deep learning marked a significant shift in text classification. Neural networks, 

particularly convolutional neural networks (CNNs) and recurrent neural networks (RNNs), 

demonstrated remarkable capabilities in capturing complex patterns in text data ([116], [117]). 

[118] introduced a CNN model for sentence classification that outperformed traditional 

methods by leveraging pre-trained word embeddings and convolutional filters to capture local 

dependencies in text. 

RNNs, especially long short-term memory (LSTM) networks [119] were effective in handling 

sequential data, making them suitable for text classification tasks. LSTMs addressed the 

vanishing gradient problem, enabling the capture of long-range dependencies [120]. This made 
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them particularly useful for tasks like sentiment analysis and document classification, where 

context plays a crucial role. 

The introduction of attention mechanisms further revolutionised text classification. Attention 

allows models to focus on relevant parts of the input sequence, enhancing their ability to 

capture context [121]. The Transformer model, introduced by [122] utilised self-attention 

mechanisms to process entire sequences simultaneously, rather than sequentially as in RNNs. 

This innovation led to significant improvements in both training efficiency and classification 

performance. 

BERT (Bidirectional Encoder Representations from Transformers), developed by [98], built 

on the transformer architecture and introduced bidirectional context understanding. BERT 

achieved state-of-the-art results on various NLP benchmarks by pre-training on a large corpus 

and fine-tuning on specific tasks. Its ability to understand context in both directions of a text 

sequence made it particularly powerful for text classification [123]. 

Recent developments in large language models, such as GPT-3 [124] and GPT-4, have further 

advanced text classification. These models, with billions of parameters, are pre-trained on 

diverse datasets and can be fine-tuned for specific tasks with minimal additional training [125]. 

Their deep contextual understanding and ability to generate coherent text have set new 

benchmarks in text classification performance. 

Transfer learning, where pre-trained models are fine-tuned on specific tasks, has become a 

dominant approach in text classification. Models like BERT, RoBERTa [126], and T5 [127] 

exemplify this trend. Fine-tuning these models on domain-specific data leads to substantial 

improvements in performance, as they leverage the rich knowledge gained during pre-training. 

The integration of text with other modalities, such as images and audio, has opened new 

avenues for text classification [128]. Multimodal models that combine textual and visual data 

are being explored for tasks like social media analysis and sentiment classification [129]. 

Hybrid approaches that combine rule-based systems with machine learning are also gaining 

traction, offering a balance between interpretability and performance. 

Text classification has found applications across various domains, including sentiment 

analysis, spam detection, topic labelling, and more [130]. The ongoing research focuses on 

improving model interpretability, handling low-resource languages, and reducing biases in text 

classification models [131]. Future directions include the development of more efficient 

models that require less computational power and the exploration of unsupervised and semi-

supervised learning techniques to leverage unlabelled data. 

In addition to text classifiers, the use of multimodal knowledge graph (KG) databases presents 

a promising approach for managing maintenance data of wind turbines. Knowledge graphs 

integrate heterogeneous data sources, including structured data (sensor readings, operational 

logs) and unstructured data (maintenance reports, technical manuals), enabling a holistic 

representation of information [132]. KGs can enhance data interoperability, facilitate advanced 

analytics, and improve decision-making processes by connecting related entities and capturing 

complex relationships [133]. For instance, in the healthcare domain, KGs have been used to 

integrate clinical data and literature, aiding in diagnosis and treatment planning [134]. 

Similarly, in wind turbine maintenance, a KG could unify data from various sources, providing 

a comprehensive view of turbine health and maintenance needs. A comparative analysis of text 
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classifiers and KGs could reveal synergies, such as using classifiers to populate KGs, ultimately 

improving data utilisation and operational efficiency in wind energy systems. 

This study advances the state of the art by integrating advanced text classification techniques 

with domain-specific fine-tuning to automate the categorisation of wind turbine maintenance 

data, a task traditionally requiring extensive manual effort. Unlike previous methods, our 

approach leverages the hierarchical structure of RDS-PP for precise component-level 

categorisation, enhancing the reliability and accuracy of maintenance logs. Additionally, by 

comparing classifier performance across diverse datasets and exploring the integration of large 

language models, we address scalability and adaptability challenges, providing a robust 

framework for standardising maintenance data and improving operational efficiency in the 

wind energy sector. 

6.3 Methodology and datasets 

The methodology for this study involves a structured approach with distinct steps to ensure 

clarity and reproducibility (see Figure 17). The text classifiers are built using maintenance 

reports collected from wind turbines, which are initially available in various formats including 

text files and PDFs. The research employs natural language processing (NLP) to automate the 

categorisation of wind turbine maintenance logs, enhancing reliability assessments. Initially, 

maintenance reports are digitised using optical character recognition (OCR), followed by text 

preprocessing to standardise formats. Term frequency-inverse document frequency (TF-IDF) 

vectorisation converts text data into numerical features for model training. Support vector 

machine (SVM) classifiers, optimised with Platt scaling for probabilistic outputs, are trained 

on manually labelled data adhering to the Reference Designation System for Power Plants 

(RDS-PP). The classifiers undergo rigorous evaluation through five-times four-fold cross-

validation, ensuring robust performance metrics, including precision, recall, and F1 scores. The 

classifiers then categorise maintenance activities, facilitating the calculation of failure rates and 

other key performance indicators (KPIs). Comparative analyses between classifier and 

manually derived KPIs reveal the models' efficacy. Industry feedback is incorporated to tailor 

classifier configurations, aiming for seamless integration into maintenance workflows, thus 

improving data-driven decision-making in wind turbine operations. 
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Figure 17. Workflow of the methodological framework 

 

6.3.1 Datasets 
The datasets employed in this analysis originate from 15,000 maintenance reports spanning 

342 wind turbines, both onshore and offshore. These reports represent approximately 800 

operational turbine years and are sources from two distinct operators. As respective wind 

turbines are located in different countries and maintenance is performed by different 

companies, the reports are generally available in English but in rare examples German and 

French language is used as well. Additionally, different turbine types are included in the 

analysis which naturally leads to terminology variance. This is further exacerbated by the 

documentation from different companies. Despite these variations, the reports generally follow 

a standard structure that includes crucial sections and details necessary for accurate 

classification. 

• Header Information: The header typically contains metadata about the maintenance 

intervention, such as the date, time, wind turbine identifier, and the technicians’ 

names. This section provides contextual information but is often not directly used 

for text classification. 

• Summary of Maintenance Activity: This section briefly overviews the maintenance 

activity performed. It may include a high-level description of the issue addressed 

and the actions taken. For example, a summary might state, “Replaced faulty pitch 

motor in turbine T123.” 

• Detailed Description: The detailed description is the core of the maintenance 

report. It includes a step-by-step account of the maintenance process, components, 

tools and materials, and any observations or measurements taken. This section can 
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vary in length from a few sentences to several paragraphs, depending on the 

complexity of the task and the organisation. Detailed descriptions are crucial for 

text classifiers as they contain the technical terms and context needed for accurate 

categorisation. 

• Parts and Materials Used: This section lists all the parts and materials used during 

maintenance. It typically includes part numbers, quantities, and sometimes supplier 

information. This structured data can be cross-referenced with the textual 

descriptions to enhance classification accuracy. 

• Recommendations and Next Steps: Maintenance reports often conclude with 

recommendations for future actions or follow-up maintenance tasks. This section 

may also note any potential issues that need monitoring. Although this information 

is valuable for ongoing maintenance planning, it is secondary for the initial 

classification of the report. 

• Signatures and Approvals: The report may include signatures from the technician 

and supervisory personnel, indicating that the maintenance activity has been 

reviewed and approved. This section is typically irrelevant for text classification 

but ensures the report’s validity and compliance. 

For every maintenance activity, the relevant components are categorised manually using the 

reference designation system RDS-PP for wind turbines [40]. For this, mainly the summary of 

maintenance activity and detailed description was utilised as other information categories were 

not available within all maintenance reports. This labelled dataset forms the foundation for 

training and testing text classifiers. 

 

6.3.2 Methodology 

6.3.2.1 Text classification and corresponding metrics 

The chosen classification method is support vector machines (SVM). More specifically, a 

linear support vector classification [135] is used and a probabilistic output is achieved with 

Platt scaling [136]. Text data is transformed with TF-IDF vectorisation method as outlined in 

[137], [138], and [135]). This straightforward approach is inspired by [139] who contrasted the 

language model BERT [98] and linear SVM [140] for text classification tasks, emphasising the 

trade-off between enhanced performance and computational expense.  

For this study, various text classifiers were implemented to classify maintenance measure 

descriptors into RDS-PP categories. In this realm of machine learning, such label categorisation 

is termed as “predictions”. These text classifiers do not differ in their classification method but 

in their training dataset and the detail of the RDS-PP predictions. A comprehensive overview 

of all scenarios, including training and test set specifications, is provided in Table 9.  

The scenario description is defined as follows: First, the dataset the classifier is trained on is 

identified, whether it covers turbines of different original equipment manufacturers (OEMs) or 

solely from one OEM. Second, the type of predictions made by the classifier is specified. 

Scenarios 1 to 22 pertain to the varied hierarchy levels within RDS-PP, addressing all 

subsystems and component categories defined by RDS-PP. Higher levels offer more intricate 

component description. Scenarios 23 to 26 only focus on a subset of the principle subsystems 

that fail most frequently, with all other subsystems consolidated into an “other” category. 

Third, the proportion of training data used (expressed as a percentage) is specified in the 

scenario description whenever scenarios are differentiated by the amount of training data.  
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All scenarios utilise single-label classifiers, excluding maintenance reports that have multi 

label cases. This exclusion ensures a clear assignment of component categories during classifier 

training. Hence, the filtered dataset contained only reports documenting a single component 

category. In each scenario, the first step is the selection of the respective subset from the whole 

dataset, e.g., in scenario 1 the relevant subset is the maintenance reports from operator 1. For 

the experiments, four-fold cross-validation was used resulting in splits of 75% training data 

and 25% test data. To provide a consistent comparison of different classifiers, the training and 

test set sizes remain constant across respective scenarios, ensuring only one variable is 

evaluated simultaneously. In scenarios 7-10, which investigate the effect of training size, the 

data is sampled from the training data according to the indicated fraction. Scenarios 1 to 10 and 

23 to 26 can be directly compared, while scenarios 11 to 16 and 17 to 22 should be examined 

independently. These scenarios aid in contrasting the efficacy of multiple classifiers and 

assessing the influence of the training set size and homogeneity. 

Table 9. Overview of all presented classifier test scenarios. Scenario description includes: (1) training 

dataset composition (single vs. multiple OEMs), (2) prediction type (RDS-PP hierarchy levels or 

focus on key subsystems), and (3) proportion of training data used. 

Scenario Scenario description Training set Test set 

1 Operator1_up_to_level2_100% 
1787 maintenance reports of 

operator 1 

595 maintenance reports of  

operator 1 

2 Operator1_up_to_level3_100% 
1787 maintenance reports of 

operator 1 

595 maintenance reports of  

operator 1 

3 Operator1_up_to_level4_100% 
1787 maintenance reports of 

operator 1 

595 maintenance reports of  

operator 1 

4 Operator2_up_to_level2_100% 
1787 maintenance reports of 

operator 2 

595 maintenance reports of  

operator 1 

5 Operator2_up_to_level3_100% 
1787 maintenance reports of 

operator 2 

595 maintenance reports of  

operator 1 

6 Operator2_up_to_level4_100% 
1787 maintenance reports of 

operator 2 

595 maintenance reports of  

operator 1 

7 Operator1_up_to_level2_10% 
179 maintenance reports of 

operator 1 

595 maintenance reports of  

operator 1 

8 Operator1_up_to_level2_25% 
447 maintenance reports of 

operator 1 

595 maintenance reports of  

operator 1 

9 Operator1_up_to_level2_50% 
894 maintenance reports of 

operator 1 

595 maintenance reports of  

operator 1 

10 Operator1_up_to_level2_75% 
1340 maintenance reports of 

operator 1 

595 maintenance reports of  

operator 1 

11 OEM1_up_to_level2 

1148 maintenance reports of 

operator 1 only including OEM1 

reports 

383 maintenance reports of  

operator 1 only including OEM1 

reports 
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12 OEM1_up_to_level3 

1148 maintenance reports of 

operator 1 only including OEM1 

reports 

383 maintenance reports of  

operator 1 only including OEM1 

reports 

13 OEM1_up_to_level4 

1148 maintenance reports of 

operator 1 only including OEM1 

reports 

383 maintenance reports of  

operator 1 only including OEM1 

reports 

14 Operator1_up_to_level2 
1148 maintenance reports of 

operator 1 

383 maintenance reports of  

operator 1 only including OEM1 

reports 

15 Operator1_up_to_level3 
1148 maintenance reports of 

operator 1 

383 maintenance reports of  

operator 1 only including OEM1 

reports 

16 Operator1_up_to_level4 
1148 maintenance reports of 

operator 1 

383 maintenance reports of  

operator 1 only including OEM1 

reports 

17 OEM2_up_to_level2 

638 maintenance reports of  

operator 1 only including OEM2 

reports 

213 maintenance reports of  

operator 1 only including OEM2 

reports 

18 OEM2_up_to_level3 

638 maintenance reports of  

operator 1 only including OEM2 

reports 

213 maintenance reports of  

operator 1 only including OEM2 

reports 

19 OEM2_up_to_level4 

638 maintenance reports of  

operator 1 only including OEM2 

reports 

213 maintenance reports of  

operator 1 only including OEM2 

reports 

20 Operator1_up_to_level2 
638 maintenance reports of  

operator 1 

213 maintenance reports of  

operator 1 only including OEM2 

reports 

21 Operator1_up_to_level3 
638 maintenance reports of  

operator 1 

213 maintenance reports of  

operator 1 only including OEM2 

reports 

22 Operator1_up_to_level4 
638 maintenance reports of  

operator 1 

213 maintenance reports of  

operator 1 only including OEM2 

reports 

23 Operator1_7categories_100% 
1787 maintenance reports of 

operator 1 

595 maintenance reports of  

operator 1 

24 Operator1_5categories_100% 
1787 maintenance reports of 

operator 1 

595 maintenance reports of  

operator 1 

25 Operator1_4categories_100% 
1787 maintenance reports of 

operator 1 

595 maintenance reports of  

operator 1 

26 Operator1_3categories_100% 
1787 maintenance reports of 

operator 1 

595 maintenance reports of  

operator 1 

 

To evaluate the performance of the text classifiers, F1 scores are utilised. These scores are 

derived from precision and recall [135]:  

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (6.1) 

 

The F1 score can range between 0 and 1. An F1 score of 1 indicates perfect precision and recall. 

Distinctions have been made between micro and macro F1 scores. Micro F1 scores account for 
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label imbalance, while macro F1 scores are determined using unweighted means for each label 

[135]. For multi-class classification, where each sample has only one valid classification result, 

micro F1 scores are equivalent to accuracy measures. In order to conduct a statical analysis, a 

five-times four-fold cross-validation is employed, repeating the classifier evaluation 20 times 

with text classifiers trained on randomly sorted training and test datasets. Subsequently, mean 

values for macro and micro F1 scores are computed and compared for different test scenarios. 

Boxplot analysis was conducted to measure the variance of the computed metrics due to the 

dataset size and imbalance. The manually labelled maintenance reports serve as ground truth.  

 

While F1 score, which harmonises precision and recall, is widely used, additional metrics like 

precision-recall (PR) curves and area under the receiver operating characteristic curve (AUC-

ROC) offer nuanced insights. 

• Precision-Recall Curves: PR curves are particularly valuable for imbalanced 

datasets, highlighting the trade-off between precision and recall across different 

thresholds. They provide a clearer picture of classifier performance when positive 

classes are rare [141]. 

• AUC-ROC: AUC-ROC evaluates the overall ability of the model to discriminate 

between classes, plotting true positive rate against false positive rate. It is robust to 

class imbalance and offers a single scalar value summarising performance across 

all thresholds [142]. 

• Recent Advances: Recent studies advocate combining these metrics for a more 

holistic evaluation. For instance, [143] emphasize the importance of using multiple 

metrics to avoid misleading conclusions in model performance evaluation. 

 

The classification into component labels is based on the hierarchical structure of RDS-PP; 

meaning it organises information at multiple levels, with each subsequent level providing more 

detailed specifications. The codes represent broad categories of components or systems at the 

highest levels, while the lower levels refer to specific parts and their functionalities. This 

hierarchical structure allows for detailed, systematic categorisation that facilitates better 

management and analysis of maintenance data. 

RDS-PP codes are alphanumeric combinations where each code segment conveys specific 

information about the component’s function, type and location within the overall system. For 

instance, a code like “MSE10 KF001” is a precise identifier: “MSE” denotes the converter 

system, “10” specifies an overall subsystem within the converter, and “KF001” indicates a 

particular control system component within that subsystem. This structured naming approach 

ensures that every part of a wind turbine is uniquely and consistently identified. Each RDS-PP 

code segment builds upon the previous one, offering increasing detail.  

Evaluations are split between “fully correct” labels, where the text classifier’s prediction 

matches the manually preprocessed label, and “soft correct” labels. The latter occurs when a 

text classifier predicts a label higher up in the RDS-PP hierarchy compared to the manual label, 

therefore, not being wrong but more generic than possible. Table 10 offers three illustrative 

examples: “MSE10 KF001” represents “Control System Converter System Overall”, whereas 

“MSE10” is a broader descriptor of the “Converter System Overall”. A false prediction is 

exemplified where “MDA11” signifies “Rotor Blade System 1”. Given this dual evaluation 

approach, each F1 score (macro and micro) is calculated for both “fully correct” and “soft 

correct” evaluation, respectively. 



 

51 

 

 

 

Table 10. Example evaluation of text classifiers' prediction into RDS-PP labels 

Maintenance description Model prediction True label Evaluation 

Converter control board exchanged MSE10 KF001 MSE10 KF001 fully correct 

Converter control board exchanged MSE10 MSE10 KF001 soft correct 

Converter control board exchanged MDA11 MSE10 KF001 false 

 

6.3.2.2 Failure rate calculation 

In the subsequent phase of this study, average failure rates per wind turbine per year are 

calculated using differently preprocessed datasets, aiming to quantify their impact on reliability 

KPIs. The average failure rate 𝑓 of a specific subsystem is expressed as the ratio of the sum of 

all failures 𝑁 of that subsystem over a given time frame to the total number of operational wind 

turbine years observed within this period 𝑇: 

𝑓 =
∑ 𝑁𝑖

𝐼
𝑖=1

∑ 𝑋𝑖𝑇𝑖
𝐼
𝑖=1

=
𝑁

𝑇
 (6.2) 

Herein, 𝑁𝑖 denotes the number of failures of the analysed subsystem in the time interval i, 𝑋𝑖 

represents the count of wind turbines examined during this interval and 𝑇𝑖 is the span of the 

time interval. 

Contrasting with the initial segment of uncertainty analysis, wherein random maintenance 

reports were selected to establish the training and test datasets, this phase uses continuous 

maintenance reports series in chronological order as test sets to ensure the derived KPIs are 

meaningful.  

6.4 Results and discussion 

6.4.1 Performance comparison of text classifiers based on different models 
At first, preliminary experiments with a SVM, a CNN [118] with pre-trained word embeddings 

and a fine-tuned Transformer variant XLM-RoBERTa [144] were performed. A requirement 

for the experiments was to have access to the model which excluded proprietary models such 

as ChatGPT. In addition, the utility of open-source models for classification tasks when dealing 

with technical language is so far lacking [145]. The experiments were performed with an 80-

20 train-test split and labels on the most precise level. Table 11 reports the performance of each 

model and shows that the linear SVM outperformed the other models. Moreover, traditional 

methods like TF-IDF and SVM are less computationally intensive and can be more cost-

effective for specific datasets and tasks. For instance, in our scenarios where the volume of text 

data is manageable and the complexity of the language is not exceedingly high, these methods 

can provide competitive performance with significantly lower computational overhead. 

Therefore, all further experiments were conducted following the SVM approach. 
 

Table 11. Comparison of three model architectures, SVM, CNN and XLM-RoBERTa 

 Linear SVM CNN XLM-RoBERTa 

Macro F1 0.41 0.34 0.34 

Accuracy 0.71 0.67 0.68 
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6.4.2 Performance comparison of text classifiers trained on different 

datasets 

6.4.2.1 How well does a classifier perform for different levels of detail? 

Figure 18 presents the F1 scores for test scenarios 1, 2 and 3, comparing text classifiers. 

Although all are trained and tested on datasets of the same size, they predict components with 

varying degrees of detail. An up-to-level-4 classifier can precisely predict a label when the 

maintenance description provides ample information. However, if the maintenance report is 

not detailed, it might opt for more generalised labels from RDS-PP hierarchy levels two and 

three. In comparison, an up-to-level-2 classifier always predicts the broader subsystem, 

corresponding to RDS-PP hierarchy level 2, even when the maintenance reports are more 

informative. 

The findings indicate that as the granularity of the target label increases, classifier performance 

decreases. This outcome is intuitive, as the more nuanced predictions classifiers can make, they 

are faced with a greater variety of potential classification categories, intensifying the challenge. 

A subsequent boxplot analysis revealed a minor fluctuation in in micro F1 scores. In contrast, 

macro F1 scores experienced more significant variability. This disparity might be attributed to 

classifications of component categories that are infrequent in a dataset. Dependent on the train-

test division, these rare categories might be predicted less accurately, which is more reflected 

in the macro F1 scores than in the micro F1 scores. 

 
Figure 18. Comparison of F1 scores for test scenarios 1 to 3  

6.4.2.2 How many data points are required for training to see sufficient classification 

results? 

Manual labelling of service reports is a meticulous and time-intensive task. Given this, the 

study assessed the efficacy of classifiers trained on smaller datasets. Figure 19 delineates results 

for test scenarios 7 to 10. These scenarios involve classifiers trained on 75%, 50%, 25% and 

10% of the original training dataset size of test scenario 1, respectively.  

A general trend is apparent: as the size of the training dataset reduces, the attainable F1 scores 

deteriorate. Nevertheless, a comparative assessment between scenario 1 (using the original 

training dataset size) with scenario 10 (utilising 75% of original training dataset size) reveals 

only marginal performance declines. Remarkably, even with a substantially truncated training 
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dataset, as in scenario 7 (10% of original training dataset size), micro F1 scores are still quite 

competitive. In contrast, macro F1 scores decrease substantially when decreasing the training 

dataset size. Depending on the focus of analysis, the laborious manual effort expended on 

labelling to devise a training dataset could be considerably reduced if the post-labelling analysis 

is principally concerned with frequently occurring components or subsystems. 

 
Figure 19. Comparison of F1 scores for test scenarios 7 to 10 

From a machine-learning standpoint, these findings are somewhat unexpected. Conventionally, 

one would anticipate significantly enhanced classifier performance with more extensive 

training datasets. One plausible explanation for the reduced impact of training dataset size on 

results might be inconsistencies inherent within the training dataset. Such inconsistencies can 

diminish the advantages offered by larger datasets. 

Examining the manual labelling process that employs RDS-PP for component categorisation 

supports this hypothesis. Classifying based on RDS-PP is not always straightforward for 

specific wind turbine components. Challenges arise due to ambiguities in distinguishing 

between different technical setups within RDS-PP. Moreover, RDS-PP guidelines might lack 

explicit definitions for certain component categories. This ambiguity leaves it to experts to 

decide the most fitting category, potentially leading to inconsistencies in the labelling process. 

6.4.2.3 Does the classification result improve when the training set is more specific? 

The results of previously presented test scenarios suggest that larger training datasets do not 

offer significant advantages in terms of text classifier performance. Consequently, scenarios 

11 to 22 were established to assess whether the classification results enhance when the training 

datasets are more tailored. From an engineering standpoint, the available service reports were 

scrutinised for pronounced differences. A significant observation was the variance in 

component naming conventions across different OEMs. As such, test scenarios 11 to 13 and 

17 to 19 trained specific text classifiers based on data of two distinct OEMs. To draw a 

comparison with the comprehensive operator classifiers without confounding various factors, 

scenarios 14 to 16 and 20 to 22 used classifiers trained on randomly selected data points from 

operator 1, comprising OEM1 and OEM2 data. However, the training dataset size was 

consistent with the OEM-specific scenarios. The performance evaluation of these classifiers 

was executed on OEM-centric data.  
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The outcomes of some of these test scenarios are illustrated in Figure 20. When comparing F1 

scores for up-to-level-2 (scenario 11) and up-to-level-3 (scenario 12) predictions for OEM1 

with predictions from classifiers trained on the more generic operator 1 data (scenarios 14 and 

15, respectively), the classifiers using the more tailored data exhibit marginally better results 

across all F1 metrics, albeit the differences are not significant. Similar patterns emerged for up-

to-level-4 classifiers (scenarios 13 and 16) and classifiers tested on OEM2 data (scenarios 17 

to 22). It is noteworthy, known from manual labelling, that variations in terminology exist for 

identical component categories, contingent on the OEM. These discrepancies can be attributed 

to factors such as distinct component suppliers, wind turbine manuals and O&M procedure 

description semantics. Service technicians, influenced by these factors, employ varied 

terminology in describing and documenting their tasks. As a result, it might be advantageous 

to utilise smaller, yet more specific datasets for training text classifiers, especially when the 

goal is categorising components of a specific technology group, like a particular OEM.  

 
Figure 20. Comparison of F1 scores for test scenarios 11, 12, 14 and 15 

6.4.2.4 How much does the classification result improve when less label categories need 

to be predicted? 

Depending on the information that needs to be extracted from the labelled maintenance reports 

and the focal points of the data analysis, varying levels of detail in the labelling process become 

necessary. For analyses targeting the subsystem level, the RDS-PP level 2 would be sufficient. 

Often, operators are mainly concerned with the most critical subsystems, which typically 

correspond to the most frequently failing ones. In such instances, classifiers were trained to 

distinguish only among these predominant subsystems, grouping all other subsystems in the 

“other” category. This approach was pursued to investigate the potential enhancement in 

classification outcomes when fewer label categories are required for predictions.  

An overview of the most frequently failing subsystems is provided in Table 12 together with 

the RDS-PP codes. If we were to consider the subsystems based on their frequency of mention 

in the maintenance reports, the drive train system swaps places with the control system.  
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Table 12. Most frequently failing subsystems within the analysed dataset 

 Subsystem 
Corresponding 
RDS-PP code 

1 Rotor system (incl. pitch system) MDA 

2 Converter system MSE 

3 Control system MDY 

4 Drive train system (incl. main bearing and gearbox) MDK 

5 Power generation system (incl. generator) MKA 

6 Yaw system MDL 

 

Based on these findings, the text classifier in test scenario 23 is configured to predict the six 

subsystems highlighted in Table 12, reverting to the label “other” for instances where none of 

the specific categories are applicable. This configuration yields a total of seven distinct 

categories. In contrast, text classifiers from test scenarios 24 to 26 increasingly relegate more 

subsystems under the “other” category. For example, in test scenario 26, the classifier discerns 

among the three different categories: MDA, MSE or “other”. 

The corresponding F1 scores of these classifiers are shown in Figure 21. As these test scenarios 

employ predefined categories rather than a hierarchical system, distinctions between “soft 

correct” and “fully correct” evaluations become redundant. In these cases, predictions are either 

entirely accurate or mistaken, which means only two F1 scores per classifier are depicted in 

Figure 21. The results indicate that narrowing the focus to frequent labels, while reducing the 

overall number of labels, enhances classification performance. In comparison to the results of 

the up-to-level-2 classifier of test scenario 1, which registered a micro F1 score of 0.89 and 

macro F1 score of 0.63, scenarios 23 to 26 exhibit superior evaluation metrics. This 

convergence becomes more pronounced as the number of prediction categories diminishes, 

mitigating label imbalance and diminishing the effects of weighting.  

 
Figure 21. Comparison of F1 scores for test scenarios 23 to 26 

6.4.2.5 How well do the classifiers perform for different wind farms? 

Until now, all discussed results were derived from classifiers trained and tested on data from 

the same wind farm or collective group of wind farms. Given the encouraging outcomes for 
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practical application, the study sought to understand how these classifiers perform if applied 

on datasets from different wind farms.  

In scenarios 4, 5 and 6 classifiers were trained with the same level of detail as in scenario 1, 2 

and 3. However, training was undertaken using data from a distinct operator. These scenarios 

provided a preliminary insight into the adaptability if pre-trained classifiers are transferred to 

alternative datasets. F1 scores from these scenarios were only about half or two-thirds of those 

achieved in scenarios 1 to 3, as depicted in Figure 18. A plausible explanation for this could be 

variations in terminology and report structures across different organisations. These outcomes 

suggest that tailoring a classifier to each operator seems necessary, albeit being more labour-

intensive due to the need for manual data labelling. 

Subsequently, classifiers from test scenarios 1, 2 and 23 were assessed on a comprehensive 

dataset from wind farms not used during classifier training. These wind farms, however, were 

still under the portfolio of the original operator. Figure 22 presents the results, which clearly 

indicate a suboptimal performance relative to prior scenarios. Specifically, the up-to-level-2 

and up-to-level-3 classifiers correctly predict only around half of the labels. Even though the 

up-to-level-2 classifier’s performance mirrored that in test scenario 4, the up-to-level-3 

classifier showed improved accuracy than in test scenario 5. This suggests possible similarities 

in terminology at the subsystem level, whereas greater disparities exist at the component level. 

When comparing these outcomes with results from test scenarios 1 and 2, it is evident that there 

is a significant decline in performance when classifiers are extended to different wind farms – 

even if they belong to the same operator. Such inconsistencies might arise from divergent 

documentation standards across service entities operating in varied regions. Notably, the 7-

categories classifier managed to correctly predict 74% of the maintenance activities, 

outperforming the other two classifiers. However, in comparison with test scenario 23 in which 

92% of labels were predicted correctly, it is clear that there is room for improvement. 

Therefore, it has to be noted that when an existing trained classifier is to be applied to other 

wind farms the semantic needs to be analysed carefully. If significant differences emerge, 

investing in retraining the classifier can be beneficial—even if it necessitates additional manual 

efforts for curating a training dataset. 

 
Figure 22. Classifier performance for different wind farms belonging to the portfolio of the same 

operator 
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6.4.3 Industry perspective on productive use of classifiers 
To understand industry needs and pinpoint the most valuable classifiers, six structured face-to-

face interviews were conducted with senior staff from different operators and service providers 

being active in asset management. These discussions were twofold: Firstly, to determine the 

requisite level of detail when labelling maintenance reports based on internal processes and 

secondly, to gauge preferences for the level of detail of classifiers considering the F1 scores 

achieved in the above test scenarios. The approach involved presenting interviewees with a 

series of either-or questions to discern their priorities. A visualisation of evaluated answers can 

be found in Figure 23.  

From the data in this figure, it is evident that there are no clear tendencies among interviewees. 

Responses varied significantly across interviewees and organisations. Some showed a leaning 

towards a more generic classifier (up to level 2) with a higher performance, while others 

exhibited a bias for a more specific classifier (up to level 4) even if it came with slightly lower 

performance scores. Both these preferences were equally popular. 

Another aspect explored, was whether the interviewees would opt for (a) a high-performing 

classifier, trained on a comprehensive dataset, even if it necessitates more labour-intensive and 

costly data preparation, or (b) a classifier with optimised performance only for regularly 

mentioned components within the maintenance reports as it is trained on a smaller dataset. 

Here, there was a discernible tilt towards the former – a preference for larger datasets, even if 

they required increased effort.  

Lastly, interviewees were asked about their interest in the classifiers from test scenarios 1, 23, 

24, 25, and 26. These represented classifiers with approximately 25, seven, five, four and three 

distinct component categories, respectively. Half of the respondents favoured the up-to-level-

2 classifier. The other half expressed a preference for the classifier, which labels the six most 

frequently failing subsystems, relegating all other activities under the “other” category. 

Notably, none of the interviewees expressed an interest in the classifiers of test scenarios 24 to 

26, which labelled fewer than six subsystems.  

 

 
Figure 23. Summary of interviewees' preferences for classifier configurations using either-or 

questions 

Contrary to the authors’ expectations of receiving a consistent set of responses, the interviews 

revealed a variety of preferences for classifier configurations. This diversity is largely 

attributed to the distinct requirements and motivations inherent to each interviewed company. 

Hence, the idea of a “one fits all” solution is not deemed viable.  
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6.4.4 Failure rate comparison of differently preprocessed datasets 
To gauge the uncertainty tied in various preprocessed datasets, failure rates of wind turbines’ 

subsystems and components were selected as KPIs, aside from machine learning metrics like 

F1 scores and accuracy. Industry often relies on failure rates to understand the frequency at 

which components and subsystems fail. They serve as important KPIs for both benchmarking 

operational wind farms and planning for future wind farm projects. Consequently, the authors 

aimed to discern the potential variation in these KPIs based on different preprocessing 

approaches applied to maintenance reports. Therefore, two distinct analyses were carried out: 

Firstly, maintenance reports were labelled using selected classifiers. Without having access to 

these results, the same reports underwent manual labelling. Secondly, maintenance reports 

were manually classified by two different organisations both using RDS-PP as labelling 

guidelines. Following these processes, the failure rates derived from each differently 

preprocessed dataset were computed and set for comparison. The results of these investigations 

are detailed in the subsequent sections. 

6.4.4.1 Manual labelling vs. text classifier 

The dataset and text classifiers used in this study where the same as the ones employed in the 

analysis presented in Subsection 3.1.5, with the results visualised in Figure 22. For the 13 

subsystems that fail most frequently, normalised failure rates were deduced from the different 

preprocessed datasets and are illustrated in Figure 24. 

 

 
Figure 24. Comparison of normalised failure rates of differently preprocessed datasets (for translation 

of RDS-PP codes see Table 25 in Appendix C) 

To normalise the data, the failure rate of the most frequently failing subsystem, i.e., the rotor 

system (MDA) as per the manually labelled dataset, was utilised. Although the F1 scores 

already conveyed that the classifiers’ performance for varying wind farms (even from the same 

operator) might not be fit for productive use (cf. Figure 22), the normalised failure rates provide 

deeper insights into how these classifiers’ function and perform. 

Generally, the results reveal that the five most frequently failing subsystems are consistent with 

the ones of the dataset initially used for both training and testing the classifiers (cf. Table 12). 

Only the order switched between the converter system (MSE) and control system (MDY). For 

many of the top failing subsystems, the failure rates calculated from classifier-processed data 
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somewhat align with the manually labelled data. In contrast, categories like the environmental 

measuring system (CKJ) or ancillary systems (XMM, XSD) barely make a mark in the statistics 

when processed by the classifier. Interestingly, there are two major subsystems, namely the 

control system (MDY) and the power generation system (MKA), which showcase substantially 

reduced failure rates when deduced from classifier-labelled data. Therefore, this suggests that 

these component categories are difficult to predict for the classifiers, despite their relatively 

frequent occurrences in the training dataset, in comparison to the ones of e.g., ancillary systems. 

Due to the classifiers’ inherent struggle to predict labels with a limited representation in the 

training dataset, the failure rate of the category “G”, which stands for the “overall system 

energy conversion” and is the fallback label for all text descriptions, which were not possible 

to be sorted into one of the more specific categories, is seven to nine times higher when derived 

from classifier-processed data, in contrast to the manually labelled data.  

As concluded in Subsection 6.4.2.5, applying a pre-trained classifier to data from different 

wind farms, even if they are from the same operator, can lead to unsatisfactory categorisation 

results. However, the failure rate comparison demonstrates that the prediction for some 

subsystem categories is still reasonably accurate, e.g., when utilising the classifier predicting 

labels up to RDS-PP level 2, even though it had only half of its predictions correct for the entire 

dataset. Hence, failure rate deviations will be notably smaller for datasets labelled by a 

classifier specifically trained for them. Another approach would be to artificially enhance the 

training dataset with text examples from subsystem or component categories that are 

underrepresented. This could help achieve comparable performance for typically less frequent 

labels to those that appear regularly. Moreover, given the common assignment to the 

overarching category “G”, it might be advisable to first use a trained classifier for labelling the 

dataset. Subsequently, entries labelled as category “G” can be manually relabelled. This 

approach would considerably reduce the manual work while maintaining the reliability of the 

result.  

6.4.4.2 Uncertainty related to manually labelling maintenance reports 

In the previous section, we analysed the differences in failure rates that arose from differently 

labelled datasets, benchmarking the classifiers against the expertise of wind energy 

professionals. However, during the data preparation phase for training the classifiers, it became 

evident that even expertly labelled data can vary. To gauge the significance of this variation, 

failure rates from the same dataset of operator 2, categorised by two distinct organisations, 

were calculated. The subsequent step involved determining the difference in failure rates as 

multiples from organisation 1. Results at the level of wind turbine subsystems are showcased 

in Figure 25. Variances span from 0.71 for category MSC (Generator Switching System) to a 

3.5-fold higher failure rate for category XGM (Fire Extinguishing System). Substantial 

discrepancies in KPIs are also evident in subsystems like the drive train system (MDK) and 

lifting gears (XMM), which exhibit 1.79- and 1.77-times higher failure rates, respectively.  

This can be explained by several aspects:  

1) Interpretation of RDS-PP Guidelines: The guidelines of RDS-PP are crafted to 

categorise any wind turbine technology. As a result, component categories are not too 

specific. Some components could arguably fit into multiple RDS-PP categories, leaving 

room for interpretation. Even though both organisations engaged in regular discussions 

about such categorisation ambiguities, it remains challenging to unanimously decide 
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which components “clearly” fall into a particular RDS-PP category. Ultimately, the 

decision is up to the individual. 

2) Uncertainties in ZEUS labelling: The State-Event-Cause-Code “ZEUS” [41] served as 

a guide to standardise the labelling of a component’s state or the corresponding 

maintenance actions on the wind turbine. Within this study, a failure is defined as a 

fault necessitating technician intervention and spare parts usage to restore the function 

of the wind turbine. Therefore, only corrective maintenance measures involving 

component replacement is deemed a failure event. The ambiguity arises when 

maintenance reports lack detail, leading experts to potential judge certain replacements 

as corrective or planned differently. This can subsequently result in variant KPIs.  

3) Human factors in manual labelling: Manually labelling maintenance reports is 

exhaustive and time-consuming. Factors like an individual’s expertise, their mental 

state during labelling or their specialisation in either electrical or mechanical 

components can influence labelling decisions. 

  

 
Figure 25. Multiples of failure rate for each wind turbine subsystem shown by RDS-PP categories 

comparing results based on preprocessed datasets by organisation 1 and organisation 2 (for translation 

of RDS-PP codes see Table 25 in Appendix C)  

To illustrate the last point, a comparison is presented in Figure 26, showcasing failure rates at 

the component level. As an example, the subsystem frequency converter (MSE) is chosen.  

 

Figure 26. Multiples of failure rate exemplarily for components of the converter system shown by 

RDS-PP categories comparing results based on preprocessed datasets by organisation 1 and 

organisation 2 (for translation of RDS-PP codes see Appendix C) 



 

61 

 

Within the subsystem, differentiation is made among three component categories (MSE10 

KF001, MSE10, and MSE40), as well as the general category MSE. This general category 

accumulates all failures that were not described with enough precision in the maintenance 

reports to label a specific affected component. 

In this example, the failure rates for specific component categories from organisation 2 are at 

least 1.6 times higher than the ones of organisation 1. Meanwhile, the failure rate for the general 

category is 0.65 times lower in comparison. This discrepancy could indicate the presence of 

experts in the field of power electronics in organisation 2 who might be more confident in 

labelling specific component categories over a broader category, given the more detailed 

information available in the maintenance reports. However, this information might not be as 

comprehensible to individuals from different engineering backgrounds. Since RDS-PP adopts 

a hierarchical structure, choosing a more general category for labelling is not incorrect, though 

the aim should always be to label as specifically as possible. Yet, this approach can also result 

in variances in failure rates, particularly at the component level. This observation emphasises 

the challenges inherent to comparing failure rates across different publications, even when they 

employ the same taxonomies or failure definitions.  

This critical finding underlines the necessity of further efforts in standardising the labelling 

process of maintenance reports also across organisations. While standards and guidelines as 

RDS-PP and ZEUS give recommendations how to proceed, the forementioned analyses have 

shown that instructions seem to fail achieving consistency. Therefore, specific examples of 

maintenance descriptions and how to apply these standards would be beneficial. Most helpful 

would be a parts list of each turbine type provided by the OEMs with respective RDS-PP 

translations attached. Making such information publicly available would greatly contribute to 

consistent data preprocessing allowing for better interpretation and comparability of KPI 

calculations. 

 

6.4.4.3 Barriers to the adoption of text classifiers and potential applications in the wind 

energy sector 

One of the primary technological barriers is the variability and inconsistency in maintenance 

report formats. Different operators use diverse terminologies and reporting standards, 

complicating the training of robust classifiers. The implementation of industry-wide standards, 

such as RDS-PP, can mitigate this issue by providing a uniform framework for categorising 

maintenance activities. Furthermore, while text classifiers can achieve high accuracy, their 

performance can vary significantly based on the quality and representativeness of the training 

data. Ensuring that classifiers are trained on comprehensive and diverse datasets is crucial to 

maintain reliability across different wind farms and operators. Additionally, integrating NLP 

models with existing maintenance management systems (MMS) and enterprise resource 

planning (ERP) systems poses a challenge. Seamless integration requires APIs and middleware 

that can handle the specific data structures and workflows of these systems. 

 

Adoption of new technologies necessitates significant change management. Maintenance staff 

and engineers need to be trained to trust and effectively use these automated systems. There 

might be resistance due to perceived threats to job security or scepticism about the reliability 

of automated systems. Moreover, introducing text classifiers into established workflows can 
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initially disrupt operations. Careful planning and phased implementation, starting with pilot 

projects, can help mitigate disruption and demonstrate the benefits gradually. 

 

Developing, training, and integrating text classifiers involves upfront costs, including 

technology investments, data labelling efforts, and training programs for staff. For smaller 

operators, these costs might be prohibitive without clear demonstrations of return on 

investment (ROI). Furthermore, text classifiers require ongoing maintenance and updates to 

handle new terminologies, equipment, and failure modes. This ongoing cost needs to be 

factored into the economic feasibility of adopting such technology. 

The integration of text classifiers can be envisioned through several steps. First, an initial data 

assessment is essential to evaluate the quality and standardisation of existing maintenance logs. 

Following this, a pilot project can be implemented in a controlled environment, such as a single 

wind farm or a specific subset of maintenance reports. This pilot phase allows for testing and 

adjustments before broader deployment. Training and onboarding sessions for maintenance 

staff and engineers are crucial to familiarise them with the new system and its benefits. 

Eventually, a full-scale implementation can be pursued, gradually expanding the use of text 

classifiers across all operations, ensuring continuous monitoring and feedback. 

 

Incorporating text classifiers into current MMS and ERP systems can significantly enhance 

their functionality. Systems like SAP PM (Plant Maintenance) or IBM Maximo, which manage 

extensive maintenance records and data from diverse sources, including sensor readings, 

operational logs, and manual reports, can benefit significantly. These systems can automate the 

categorisation and standardisation of maintenance records by embedding text classifiers. This 

automation facilitates easier tracking and analysis of component failures and maintenance 

activities, thus improving data accuracy and efficiency. Additionally, platforms such as 

Microsoft Azure and AWS provide NLP services that can be tailored for specific industry 

needs, offering scalable and secure deployment options. Demonstrating real-world 

applicability involves showcasing the efficiency gains and accuracy improvements in 

maintenance data processing. By leveraging cloud-based solutions, real-time data analytics, 

and user-friendly interfaces, the adoption of text classifiers can be streamlined, providing 

tangible benefits in terms of reduced downtime and optimised maintenance schedules. 

 

Furthermore, text classifiers can be seamlessly integrated with predictive maintenance tools 

that utilise data and machine learning algorithms to foresee equipment failures before they 

happen. Accurate and standardised maintenance records provided by text classifiers improve 

the precision of predictive models. This enhancement leads to more effective maintenance 

strategies, further preventing unexpected breakdowns and extending the life of turbine 

components (cf. Figure 27). 
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Figure 27. Barriers to the Adoption of Text Classifiers 

 

6.5 Conclusions and outlook 

This study assessed the viability of text classifiers for preprocessing wind turbine maintenance 

reports, highlighting their potential to reduce manual data processing efforts significantly. Main 

conclusions can be summarised as follows: 

• Text classifiers achieved high micro F1 scores when trained on specific datasets, 

demonstrating their effectiveness. However, their performance decreased when 

applied to different wind farms, indicating the necessity for context-specific 

training.  

• The research also underscored the importance of cost and resource efficiency, 

showing that smaller, well-curated training datasets can still produce competitive 

results. This finding emphasises the need to balance manual labelling efforts with 

classifier performance for practical application.  

• Industry feedback revealed diverse classifier configuration preferences, suggesting 

that custom solutions are essential to meet varied stakeholder needs.  

• While text classifiers tended to over-generalise, leading to skewed KPI 

calculations, they remain valuable when combined with manual verification for 

critical categories, enhancing overall reliability.  

• A significant insight from the study is the need for standardisation in maintenance 

reporting. Both automated and manual methods face uncertainties due to 

inconsistent documentation. Standardised designation systems like RDS-PP can 

improve data accuracy and reliability, resulting in more meaningful KPIs. 

 

Looking ahead, large language models (LLMs) such as GPT-3 and GPT-4 offer the 

potential to overcome current limitations. Fine-tuning these models with domain-specific 

datasets may enhance their applicability in the wind energy sector, improving classification 

performance. Successful applications of encoder models in other fields, like healthcare 

(BioBERT) and finance (FinBERT), provide blueprints ([146], [147]). Additionally, 

developing comprehensive datasets that capture the technical jargon and variations in 

maintenance reports, along with better guidelines for applying standards like RDS-PP, will be 

crucial. Integrating text classifiers into maintenance management and ERP systems can 
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enhance operational efficiency and decision-making. By focusing on these future directions, 

this study aims to contribute to the improvement of maintenance data processing in the wind 

energy industry, ensuring more accurate and reliable analysis and reporting.  
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7 Reliability and O&M key performance indicators of 

onshore and offshore wind turbines based on field-data 

analysis 
 

Based on maintenance data from over 1000 onshore and offshore wind turbines covering more 

than 4200 operating years, this study presents an analysis of failure rates, repair times, and 

maintenance resource requirements, focusing on subsystem-level reliability. Failure rates per 

turbine and megawatt are compared and failure behaviour over time is examined. Next to 

failure events, further corrective and preventive maintenance interventions are analysed. To 

provide more detailed insights for operations and maintenance simulations, a distinction is 

made between total major component replacements and those specifically requiring a jack-up 

vessel. Results show that onshore wind turbines have higher failure rates per megawatt than 

offshore wind turbines. Key subsystems including the pitch system, the control system, and 

power converter system are identified as critical to overall wind turbine reliability for both 

onshore and offshore wind turbines. For the overall wind turbine system, a failure behaviour 

over time following a bathtub curve is identified, with distinct trends for individual subsystems. 

The material of this chapter is currently under peer review for publication in 4. 

 

7.1 Introduction 

The global shift towards renewable energy has driven significant investments in wind energy, 

positioning it as a cornerstone of sustainable power generation. With the growing reliance on 

wind energy, especially in offshore environments, the reliability and performance of wind 

turbines have become critical factors that directly influence energy yield, operational costs, and 

overall asset integrity [19]. The effective management of these assets is particularly crucial as 

the industry aims to optimise operational efficiency and minimise downtime. However, 

achieving this requires a profound understanding of failure mechanisms and maintenance 

needs, underpinned by reliable data ([148], [149], [150]). 

While there has been considerable progress in the development of wind turbine (WT) 

technology, the reliability assessment and optimisation of operations and maintenance (O&M) 

of these systems has often been hampered by a lack of comprehensive, high-quality field data. 

Existing studies on wind turbine reliability mostly rely on limited datasets or combine data 

from diverse turbine types and operating conditions without sufficient granularity ([12], [151]). 

Such approaches can obscure the differences in reliability performance across turbine types, 

manufacturers, and environmental contexts. Consequently, there is a critical need for detailed 

analyses based on comprehensive field data that can provide more accurate and actionable 

insights into failure rates and maintenance strategies [32]. 

This study represents a significant advancement in the field by presenting an extensive analysis 

of wind turbine reliability based on a large, representative sample of field data. Drawing on 

 
4 Julia Walgern, Nils Stratmann, Martin Horn, Nathalene Then Wei Ying, Moritz Menzel, Fraser Anderson, 

Athanasios Kolios, Katharina Fischer, 2025. “Reliability and O&M key performance indicators of onshore and 

offshore wind turbines based on field-data analysis”. Submitted to Wind Energy for publication [199] 
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maintenance reports spanning more than 4,200 operational years from both onshore and 

offshore wind turbines, this research provides one of the most comprehensive evaluations of 

failure rates and further O&M-related key performance indicators (KPIs) to date. The analysis 

includes data from nine different onshore and four offshore wind turbine original equipment 

manufacturers (OEMs), covering a range of turbine capacities and operational contexts. This 

breadth and depth of data allow for a more comprehensive understanding of reliability 

performance across various wind turbine systems, informing both design optimisation and 

O&M strategies for future wind farms. 

Furthermore, the study introduces a detailed categorisation of wind turbine failures using the 

reference designation system RDS-PP, which is applied systematically for standardised 

component classification across all different turbine types and designs. By focusing on system 

and subsystem level and calculating average failure rates along with corresponding confidence 

intervals, this work studies the reliability behaviour of wind turbines with a rare and 

considerable level of detail, providing unnormalised KPIs and uncertainty quantifications. The 

findings reveal detailed insights into the different failure rates of onshore versus offshore 

turbines, the impact of turbine rated power on reliability, and the temporal patterns that 

characterise wind turbine failures. 

This level of granularity in data analysis not only enhances the reliability modelling of current 

wind turbine fleets but also serves as a valuable resource for OEMs, operators, and 

policymakers looking to improve the design and operation of future wind farms. The analysis 

conducted in this study highlights specific reliability challenges as well as opportunities for 

technological improvements and maintenance optimisation, making it an essential input for 

risk management and decision-making in the wind energy sector [152]. 

Recognising the sensitivity of the data involved, we have systematically evaluated and 

implemented measures to ensure the confidentiality and security of the datasets used in this 

research. These measures were crucial for protecting proprietary information and maintaining 

the trust of data providers while enabling the comprehensive analysis presented herein. 

In the sections that follow, we provide a thorough review of the current state of the art in wind 

turbine reliability research and outline the methodologies and datasets used in this study. This 

is followed by an in-depth presentation of the results, discussing their implications for both the 

operational management of wind farms and future research directions. 

7.2 State of the art literature on wind turbine reliability 

7.2.1 Overview of wind turbine reliability research 
Understanding wind turbine reliability is crucial for optimising their performance and 

minimising operational costs, especially for offshore installations. Early studies primarily 

focused on analysing key reliability metrics such as average failure rates, mean time to repair, 

and availability, which are essential for developing maintenance strategies [153]. Over the 

years, efforts have been made to standardise the collection and analysis of reliability, 

availability, and maintainability (RAM) data across diverse turbine types and environments 

[32]. Prominent initiatives like the WInD-Pool common knowledge base in Germany and the 

SPARTA program in the United Kingdom have been instrumental in adopting structured 

methodologies to gather operational data from wind farms ([101], [154]). 
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Due to the strict confidentiality of maintenance data, only a limited number of reliability studies 

have been published. European initiatives such as WMEP [155], as well as WSD, WSDK, and 

LWK (e.g. [25], [9]) were among the first to analyse WT maintenance data, covering periods 

from the 1990s until 2004. More recent studies include those from the ReliaWind project [10], 

the University of Strathclyde [12], the AWESOME project [28], and the SPARTA initiative 

[29]. Additionally, detailed reviews of published failure rate statistics have been conducted by 

[31], [32], [33], and [156]. However, as most of these studies rely on datasets recorded before 

2015, with SPARTA being the only initiative providing more recent reliability and 

performance KPIs from 2020/21 [13], there remains a need for comprehensive and high-quality 

field data, particularly for modern, larger turbines.  

7.2.2 Key performance indicators for reliability assessment 
KPIs are critical for evaluating wind turbine reliability and optimising O&M. Among the most 

widely used KPIs in reliability studies are failure rates, mean time to failure (MTTF), mean 

time to repair (MTTR), and time-based or energy-based availability [31]. An overview of 

commonly used KPIs is presented in Table 13. The failure rate, typically measured as the 

number of failures per turbine per year, is a fundamental metric that provides important insights 

into turbine reliability and is typically utilised as input for O&M modelling [157].  

Comparative studies reveal significant differences not only in the aforementioned failure rates 

but also in further O&M-related KPIs between onshore and offshore wind turbines and 

associate these with varying environmental conditions, maintenance access, and design 

complexities [11]. Subsystems such as the pitch system, hydraulic systems, rotor, power 

converter system, generator, and gearbox are often identified as having the highest failure rates 

(cf. [12], [29]), especially in offshore installations where repairs are more challenging. [158] 

highlighted that corrective maintenance for these critical components often results in 

substantial downtime, underscoring the need for robust designs and advanced monitoring 

systems. 

Identifying general trends in reliability and maintainability helps operators to pinpoint where 

reliability improvements could lower the levelized cost of energy (LCOE). However, 

challenges such as inconsistent data collection practices complicate the comparison of 

reliability metrics across different studies. Efforts like those by the International Energy 

Agency (IEA) Wind Task 33 aim to address these challenges by providing standardised 

frameworks for data collection and analysis [20].  

The variability in methodologies and reliability indicators points to the need for more 

standardised approaches to provide actionable insights. Enhancing RAM databases with 

detailed failure and operational data is crucial for advancing wind turbine design and 

maintenance strategies [159]. 
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Table 13. Summary table of key performance indicators (KPIs) for wind turbine reliability 

 

KPI Definition Importance 
Common Calculation 

Methods 

Failure Rate 

Average number of failures per 

unit (e.g., per turbine) per year 

for a specific component or 

subsystem 

Indicates the reliability of wind 

turbine components and 

subsystems; high failure rates can 

lead to increased maintenance costs 

and downtime. 

Empirical analysis using 

maintenance data 

Corrective 

Maintenance Rate 

Frequency of corrective 

maintenance interventions  

Indicates the reliability of wind 

turbine components and subsystems 

Empirical analysis of 

maintenance records 

Unscheduled 

Maintenance Rate 

Frequency of maintenance 

activities related to unexpected 

failures  

High rates suggest frequent 

unexpected failures and may affect 

downtime and operational planning. 

Empirical data analysis 

from maintenance reports 

Preventive 

Maintenance Rate 

Frequency of preventive 

maintenance interventions 

Helps in understanding the 

maintenance strategy. High rates 

suggest that preventive maintenance 

interventions and associated costs 

are accepted to prevent failures 

Empirical data analysis 

from maintenance reports 

Mean Time to 

Failure (MTTF) 

Average time between failures 

for a non-repairable specific 

component or subsystem 

Helps in understanding the expected 

lifetime of components; a higher 

MTTF indicates better reliability. 

Statistical modelling; 

Survival analysis; Weibull 

distribution 

Mean Time to 

Repair (MTTR) 

Average time required to repair 

a failed component or 

subsystem and restore it to 

operational condition 

Critical for planning maintenance 

resources and minimising 

downtime; a lower MTTR indicates 

more efficient maintenance 

processes. 

Empirical analysis based 

on maintenance records 

Mean Time 

Between Failures 

(MTBF) 

Average time between 

successive failures of a 

repairable system or 

component 

Indicates the reliability of wind 

turbine components and 

subsystems; a higher MTBF 

indicates better reliability. 

Calculated as the inverse 

of the failure rate 

Availability (time-

based) 

The proportion of time a wind 

turbine is operational and 

capable of generating power 

Reflects overall performance and 

reliability of wind turbines; high 

availability is key to maximising 

energy production and minimising 

losses. 

Time-based calculations 

using operational and 

downtime data, i.e. 

typically SCADA data; 

Markov models 

Downtime 

Total time during which a 

wind turbine is not operational 

due to failures or maintenance 

Directly impacts energy yield and 

economic returns; high downtime 

leads to significant losses in 

revenue. 

Derivation from SCADA 

data 

 

7.2.3 Common causes of failures and reliability challenges 
Understanding the prevailing causes of failures in wind turbines is crucial for enhancing their 

reliability and maintenance strategies. In the literature, the following failure modes and causes 

are reported: The gearbox frequently fails due to bearing and gear fatigue, misalignment, and 

lubrication issues, leading to significant downtime ([12], [28]). Additionally, tribological 



 

69 

 

failures such as pitting and scuffing affect gearboxes due to inadequate lubrication. The 

generator faces electrical and mechanical failures such as stator faults and insulation 

degradation due to electrical surges and thermal stresses [160]. Power converter failures are 

dominated by failures of the power semiconductor modules, their driver boards, the converter 

control system as well as the cooling system ([36], [104]). The pitch system is vulnerable to 

mechanical wear from continuous blade angle adjustments in varying wind conditions [161]. 

Meanwhile, blades are prone to erosion, fatigue, and lightning strikes, affecting turbine 

performance [162]. 

Common failure mechanisms include fatigue, particularly in moving parts like blades and gear 

teeth due to cyclic loading. For many years, fatigue due to power and thermal cycling was 

postulated to be the main failure mechanism also in power converters, until comprehensive 

field-data and damage analyses revealed that climatic influences, which drive corrosion and 

affect insulation integrity in the converter, play a more important role in the wind-power 

application ([163], [36]). Corrosion is a relevant failure mechanism also for support structures, 

especially in offshore environments where saltwater accelerates degradation ([164], [165]).  

It is important to keep in mind that the detailed identification of failure root causes and the 

underlying mechanisms can be a complex and laborious task, often requiring comprehensive 

data evaluation and analyses of damaged components. As the above example of power 

converters shows, there is a certain risk that hypotheses or postulates about prevailing failure 

mechanisms propagate through the literature and divert attention from the reality observed in 

the field. 

7.2.4 Impact of turbine design, manufacturer, and age on reliability 
The reliability of wind turbines is significantly influenced by their design and the manufacturer. 

Studies have shown that design choices, such as drivetrain configurations (e.g., geared vs. 

direct drive) and control systems, affect failure rates and maintenance needs ([166], [167]). For 

instance, direct-drive turbines eliminate the gearbox, reducing failures associated with gears 

and bearings, but they may have higher rates of electrical component failures due to the larger 

size and complexity of the generator and converter systems. Additionally, differences in 

manufacturing quality and component selection between manufacturers can lead to variability 

in reliability performance [168]. Standardisation, stringent quality control during the design 

and manufacturing phases as well as test-based reliability validation are essential to reduce 

such variability, ensuring consistent reliability across different turbine models and brands. 

The operating age of wind turbines also significantly impacts their reliability. As turbines age, 

wear and tear from continuous operation, exposure to harsh environmental conditions, and 

fatigue loading can lead to increased failure rates [153]. Studies indicate that older turbines 

often experience failures in components such as blades, gearboxes, and electrical systems, 

which degrade due to prolonged exposure to mechanical stresses and environmental factors 

like temperature and humidity variations [169]. Other subsystems, such as the power converter, 

exhibit pronounced early failures [47]. In general, failure patterns of technical systems typically 

follow a "bathtub curve”, where failure rates are decreasing during the early-failure phase, 

remain relatively constant during a "useful life" phase, and increase again as components 

degrade in the deterioration phase [170]. Understanding these patterns is crucial for optimising 

maintenance strategies and extending the operational life of wind turbines. 
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7.2.5 Data-driven approaches and advanced analytical methods 
The use of big data and machine learning (ML) has transformed the field of wind turbine 

reliability analysis, enabling more accurate early fault detection and enhanced maintenance 

strategies. Recent advancements leverage data-driven approaches using large datasets from 

SCADA (supervisory control and data acquisition) systems, which provide high-frequency 

data on turbine operations and performance ([171], [172]). Machine learning techniques such 

as neural networks, random forests, and support vector machines have been employed to detect 

patterns in operational data, predict failures, and optimise maintenance schedules, thereby 

reducing downtime and maintenance costs ([173], [174], [175]). AI-based predictive 

maintenance approaches also incorporate data fusion techniques that combine SCADA data 

with environmental and maintenance records, offering a more comprehensive view of turbine 

health and enabling proactive interventions [176]. 

Recent meta-analyses and systematic reviews have consolidated findings across multiple 

studies to provide higher-level insights into wind turbine reliability management. For example, 

a meta-analysis by [177] aggregated reliability data from diverse sources, revealing trends in 

failure rates and highlighting critical components that require attention. These reviews often 

use statistical methods to compare data from different regions, turbine types, and operating 

conditions, offering a benchmark for reliability performance. By synthesising data from various 

studies, systematic reviews inform best practices for condition monitoring, component design, 

and maintenance planning, addressing gaps in existing literature and guiding future research. 

Such efforts help standardise reliability metrics and improve the robustness of reliability 

models, ensuring more effective asset management strategies for both onshore and offshore 

wind farms. 

7.2.6 Knowledge gaps and future research directions 
Despite significant advancements in wind turbine reliability research, several gaps remain. A 

summary of those is shown in Table 14. Many studies rely on limited sample sizes and data 

from specific regions, which may not accurately represent broader operational contexts [101]. 

There is also a lack of comprehensive field data that captures the full spectrum of failure modes 

and environmental influences, especially for offshore turbines [32]. This is often related to 

strict data confidentiality. Additionally, existing research often focuses only on a few 

subsystems (e.g. [29]), leading to gaps in reliability modelling. For example, [178] highlight 

that main bearings are frequently overlooked in reliability analyses. In reliability analyses, 

ensuring the recentness of data and coverage of modern WT technology remains a key 

challenge. As a result, many studies frequently reference literature based on older datasets that 

primarily reflect outdated turbine technology. 

 

 

 

 

 

 



 

71 

 

Table 14. Summary table of research gaps 

Research Gap Description 

Limited sample sizes Many studies use data from small, specific samples, 

limiting the generalisability of the findings. 

Lack of diversity in field 

data 

Inadequate data coverage on different environments 

and conditions, especially for offshore sites 

Insufficient coverage of 

certain subsystems 

Underrepresentation of specific subsystem failure 

types or insufficient reliability data for certain 

subsystems 

Lack of recent field data Most studies are based on old datasets, not covering 

modern WT technology. 

Need for standardisation 

and harmonisation 

Lack of standard methodologies and definitions 

across studies complicates comparative analysis. 

 

This study aims to address these gaps by using a more representative sample size and 

conducting a comprehensive analysis of both onshore and offshore wind turbine maintenance 

data. By integrating diverse datasets including modern turbine technology and systematically 

evaluating failure modes across various subsystems, this research offers a more holistic view 

of turbine reliability which is applicable for future wind farm design and operation. 

7.3 Methodology and datasets 

7.3.1 Methodology 

7.3.1.1 Field-data collection and preprocessing 

Maintenance reports, which are available for each visit of a wind turbine, of more than 1000 

wind turbines were collected making an effort to include a variety of turbine types of both 

onshore and offshore turbines. Attention was paid to incorporate recently commissioned 

turbines as well as having datasets of turbines which have a certain track record already. This 

leads to a unique field-data collection with respect to its size, diversity and recentness.  

Maintenance records include information about what maintenance intervention was carried out 

on which turbine on which date. Those reports can have different lengths and levels of detail. 

Typically, at least spare parts and / or work descriptions are recorded, which allow one to 

understand what kind of work technicians have performed on the turbines. In order to conduct 

different reliability analyses, the data needs to be machine-readable and comparable even 

though the reports stem from different organisations and sites. Within this study standards and 

guidelines like the reference designation system RDS-PP for wind turbines [40] and the State-

Event-Cause-Code “ZEUS” [41] are utilised to support the preprocessing. RDS-PP is used to 

classify maintenance interventions according to the components and subsystems that were 

maintained. Using ZEUS, activities performed by technicians are labelled as corrective and 

preventive and further differentiated according to the specific maintenance action undertaken. 

The preprocessing results in a comprehensive field-data base covering: 
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• Wind turbine ID and respective wind farm 

• Wind turbine manufacturer and type 

• Commissioning date of the turbine 

• Rated power of the turbine 

• Technical information about the different subsystems 

• Coordinates of the turbine  

• Data provider 

• Time stamps of start and end date of each maintenance activity 

• Number of technicians involved 

• Components and subsystems affected (standardised codes of RDS-PP) 

• Type of maintenance activity (standardised codes of ZEUS) 

7.3.1.2 Reliability analyses 

In order to assess O&M activities and WT reliability performance, different reliability analyses 

are performed and KPIs computed. Respective KPIs can be utilised for benchmarking of 

different assets, understanding failure patterns as a basis for developing countermeasures, or as 

input for development and O&M simulation of future wind farms.  

KPIs are assessed for corrective and preventive maintenance interventions. Particular attention 

is paid to failures of components and subsystems as those are afflicted with costly downtimes 

requiring maintenance and the use of spare parts. Within this study, a failure is defined as an 

event necessitating corrective maintenance (ZEUS code “02-08-01”) and which is not 

resettable but requires a component to be replaced (ZEUS code “02-09-09-01”). In order to 

compare reliability KPIs of different components, subsystems and overall turbines, the 

following average rates are calculated: 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 𝑐 =
∑ 𝐶𝑖

𝐼
𝑖=1

∑ 𝑋𝑖𝑇𝑖
𝐼
𝑖=1

=
𝐶

𝑇
 (7.1) 

𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 𝑝 =
∑ 𝑃𝑖

𝐼
𝑖=1

∑ 𝑋𝑖𝑇𝑖
𝐼
𝑖=1

=
𝑃

𝑇
 (7.2) 

𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 𝑓 =
∑ 𝑁𝑖

𝐼
𝑖=1

∑ 𝑋𝑖𝑇𝑖
𝐼
𝑖=1

=
𝑁

𝑇
 (7.3) 

Herein, 𝐶𝑖 is the number of corrective maintenance visits, 𝑃𝑖 is the number of preventive 

maintenance visits, and 𝑁𝑖 is the number of failures of the analysed component or subsystem 

in the time interval 𝑖. 𝑋𝑖 is the number of WTs analysed within this time interval of duration 

𝑇𝑖. Consequently, the average rates are equal to the quotient of the sum of all corrective, 

preventive or failure events, 𝐶, 𝑃 and 𝑁, respectively, and the total amount of considered WT 

operational years 𝑇.  

As WTs of different power classes are included in the analyses, next to average rates per WT 

and year, average rates per rated capacity in MW and year are also calculated.  

Moreover, confidence intervals for the failure rates are computed to quantify the uncertainty 

stemming from the size of the datasets. According to [179], the confidence intervals for failure 

rates based on time-censored data are estimated using: 
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[
𝜒2(

𝛼
2

, 2𝑁)

2𝑇
,
𝜒2(1 −

𝛼
2

, 2𝑁 + 2)

2𝑇
] (7.4) 

Herein, 𝜒2(𝛼/2,2𝑁) is the (𝛼/2)-quantile of the 𝜒2 distribution with 2𝑁 degrees of freedom. 

In this study, 𝛼 = 0.1 is utilised to provide confidence intervals with a confidence level of 

90%. As explained in more detail in [36], these confidence intervals based on sample data are 

to be interpreted in terms of frequency: if a large number of samples (in this case failure or 

maintenance datasets covering a part of a WT population) was evaluated, the confidence 

intervals determined according to Equation (7.4) would cover the true value of the failure rate 

in 90% of the cases.  

7.3.2 Datasets 
The datasets underlying this analysis are based on maintenance reports of onshore and offshore 

wind turbines. In total, more than 4200 operational years are covered. A detailed overview of 

the datasets is provided in Table 15. While the offshore data stem from turbines of four different 

OEMs with turbine capacities ranging up to 9 MW, the onshore data comprise turbines of nine 

different manufacturers. In total, 1089 WTs located in seven different European countries are 

considered in the present study. 

Table 15. Information about the datasets which have been considered in the analysis 

 Offshore Onshore 

WT operational years considered 1755 2489 

Number of WT OEMs covered 4 9 

Rated capacity considered Up to 9 MW 

Available data period 2006-2024 

 

The dataset analysed in this study encompasses the following technical concepts: 

• Pitch system: hydraulic, electrical 

• Drive train concepts: geared, direct drive, hybrid drive 

• Generator types: doubly-fed induction generator (DFIG), electrically excited 

synchronous generator (EESG), permanent magnet synchronous generator (PMSG), 

squirrel-cage induction generator (SCIG); including low voltage (LV) and medium 

voltage (MV) generators 

• Converter technology: air-cooled, liquid-cooled; including LV and MV converters 

While it is important to include data of both, WTs, which have been operated already for some 

time to analyse failure behaviour over time, and WTs, which have just recently been 

commissioned to incorporate newest technologies, this leads to a diverse dataset of different 

turbine generations. The data period analysed in this study is nearly identical for both onshore 

and offshore WTs resulting in comparable age distributions across the two categories. Note 

that 12.5% of the WTs have a capacity smaller than 2 MW. Most WTs covered within this 

study can be considered as recent turbine technology. 



 

74 

 

7.4 Results and discussion 

7.4.1 Comparison of failure rates for onshore and offshore wind turbines 
Figure 28 and Figure 29 illustrate a comparative analysis of failure rates for onshore and 

offshore WTs, calculated per WT and year, as well as per MW of turbine capacity and year, 

respectively. In addition to presenting the average failure rate of the entire WT, Table 17 

provides the average failure rates for all 29 subsystems defined by RDS-PP, along with a 

corresponding translation of RDS-PP codes. For better clarity in the presentation of results, the 

analysis in this section is limited to the eleven most critical subsystems, selected based on 

failure frequency. Components that could not be unequivocally assigned to a specific 

subsystem are categorised under “G”, representing “other components”. It is important to note 

that the sum of all subsystem failure rates exceeds the overall WT failure rate, as certain failure 

events involve the replacement of components across multiple subsystems.  

 

Figure 28. Failure-rate comparison per WT and year of onshore and offshore WTs including the 

eleven most critical subsystems 
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Figure 29. Failure-rate comparison per MW of turbine capacity and year for onshore and offshore 

WTs including the eleven most critical subsystems 

The comparison of average failure rates per WT and year indicates a higher reliability of 

onshore WTs (3.3 vs. 4.3 failures per offshore WT and year), consistent with findings 

frequently reported in the literature [32]. However, when normalised per MW and year, the 

data reveal that onshore WTs exhibit a higher failure frequency per WT capacity, with an 

average failure rate of 1.729 failures per MW per year, compared to 1.088 failures per MW per 

year for offshore WTs. Given the strong dependence of average failure rates on WT size – 

shown e.g. in [9], [180], [105], [47], and also found in our analyses – further analysis and 

interpretation are based exclusively on failure rates normalised per MW and year. While for 

onshore WTs the subsystems rotor system (MDA) including the pitch system, the control 

system (MDY), the drive train system (MDK), and the converter system (MSE) are identified 

as most critical, for offshore WTs the highest failure rates are recognised for the subsystems 

rotor system, control system, lifting gears (XMM), and converter system.  

In previous publications by Fraunhofer IWES, which focused exclusively on the power 

converter, the converter subsystem also encompassed failures related to main circuit breakers 

and contactors (cf. [36], [163], [104], [47]). In contrast, this study categorises these failures 

separately within the “Generator Switching System” (MSC) subsystem in order to follow the 

RDS-PP classification. Additionally, while some of our earlier studies normalised failure rates 

based on the rated power of the converter, it is important to note that in the present analysis all 

failure rates, including that of the converter system, are normalised by the rated power of the 

turbine.  

Note that the drive train system covers the subassemblies rotor bearing, speed conversion, drive 

train brake, high speed shaft, drive train auxiliary systems, main and offline gear oil systems, 

oil lubrication system, rotor lock, rotor slewing unit, and drive train cooling system. Therefore, 

the subsystem is evaluated across both WTs with and without gearboxes. A more detailed 

examination of the MDA system category reveals that for onshore WTs the pitch system 

accounts for approximately 80.8% of MDA system failures, whereas for offshore WTs it 
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constitutes nearly 82.5% of failures within this category (cf. Table 17). Provided KPIs in Table 

17 can be utilised for estimating failures and maintenance interventions. However, it is 

important to note that the failure behaviour is not solely characterised by turbine size making 

more sophisticated reliability models necessary to support such analysis.  

7.4.2 Failure-rate comparison across WT OEMs 
Although it is common practice to report average failure rates derived from mixed fleets 

comprising different WT types, as presented in Section 4.1, this approach carries inherent risks. 

Reporting only a group-averaged failure rate without further differentiation might obscure 

major reliability differences, which can serve as key indicators for root-cause analysis and 

design optimisation. To address these limitations, an OEM-specific analysis is performed. 

Figure 30 and Figure 31 present the average failure rates of offshore WTs from four different 

OEMs and onshore WTs from six different OEMs. Where a manufacturer is included in both 

Figure 30 and Figure 31, they do not share the same label for confidentiality reasons. This 

means that OEM1 in Figure 30 is not the same manufacturer as OEM1 in Figure 31. 

 

Figure 30. Failure-rate comparison per MW and year across WT OEMs of offshore assets 

 

 

Figure 31. Failure-rate comparison per MW and year across WT OEMs of onshore assets 

To ensure that the comparison reflects only technological differences, failure rates are again 

normalised per MW and year. Analysis results reveal significant disparities in failure rates 

between WTs from different manufacturers. For offshore WTs, the average failure rate for 

OEM1 is 1.6 to 2.4 times higher than that of the other three OEMs, with a distinct failure rate 

of 1.7 failures per MW per year. In the case of onshore WTs, failure rates range between 1.5 

and 2.5 failures per MW per year. The variability in confidence intervals reflects the 

uncertainty associated with the sizes of the underlying data subsets. While datasets for all 
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offshore OEMs and onshore OEMs 2 and 4 include at least 1100 MW-years, analysis for 

onshore OEMs 1, 3, 5, and 6 are based on smaller datasets ranging from 200 to 330 MW-years. 

Onshore OEMs 7, 8, and 9 are excluded from this analysis due to insufficient sample sizes. 

Overall, onshore OEM failure rates generally exceed those of offshore OEMs, with the 

exception of offshore OEM1, which exhibits a failure rate comparable to the three best-

performing onshore OEMs. 

7.4.3 Failure-rate behaviour through time 
An essential aspect of reliability analysis is the evolution of failure behaviour over time. This 

is assessed by calculating failure rates across different operating years. To isolate the effect of 

WT aging, the analysis is conducted for specific WT types, avoiding the confounding influence 

of mixed turbine designs. As an example, Figure 32 presents a comparison of normalised failure 

rates across different operating years, grouped into five periods of WT operating age, for a 

single WT type including eight representative subsystems.  

 

Figure 32. Comparison of normalised failure rates across different operating years for a specific WT 

type including eight exemplary subsystems 

The failure rate trajectory for the entire WT system follows the characteristic shape of a bathtub 

curve [37]: During the initial years of operation, elevated failure rates are observed, 

corresponding to early failures. Over time, failure rates decline, reaching a lower and more 

stable level through operating years 5 to 8. From year 9 onward, failure rates increase again, 

indicative of degradation-related failures. Although confidence intervals show a slight overlap 

between some groups, the overall trend is clearly visible and observable across different WT 

types, both onshore and offshore.  

The failure behaviour of individual subsystems varies significantly depending on the specific 

subsystem under analysis. While certain subsystems, such as the drive train system (MDK), 

yaw system (MDL), and converter system (MSE), exhibit a failure trend similar to that of the 
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overall WT system, others, such as the central hydraulic system (MDX) and the power 

generation system (MKA), show a steadily increasing trend suggesting that these are primarily 

suffering from degradation-related failures. Additionally, some subsystems do not display a 

distinct trend due to overlapping confidence intervals, either because no distinct trend exists, 

or the dataset is too limited to detect one. These findings emphasise that the well-established 

bathtub curve in reliability modelling results from the superposition of different failure 

mechanisms and trends.  

7.4.4 Other O&M relevant KPIs 
When utilising reliability data for O&M simulations or OPEX calculations, additional O&M 

KPIs beyond failure rates are required as input. To address this, further analyses based on the 

offshore data subset are presented in the following. These include a comparison of corrective 

and preventive maintenance interventions, an analysis of major component replacements 

(MCR), and an evaluation of average repair times and the average number of maintenance 

technicians required per failure event and subsystem. Due to limited access to cost data and the 

impact of inflation, cost figures for spare parts are not provided, as comparisons across different 

datasets and years would be challenging. Reference values can be found in [12], [50], and [5].  

7.4.4.1 Comparison of corrective and preventive maintenance interventions 

Within this study the failure definition is based on the consumption of spare parts, while other 

corrective maintenance activities not requiring spare parts are classified under the category 

“Corrective Maintenance other”. In addition to addressing failure events and conducting 

troubleshooting and repairs – both classified as corrective maintenance interventions – 

technicians are also responsible for preventive maintenance interventions, such as scheduled 

maintenance. Furthermore, statutory inspections, functional tests, condition monitoring related 

activities – such as oil sampling – and routine tasks like topping up coolants or lubricants are 

categorised as preventive maintenance interventions. Figure 33 displays the corresponding 

maintenance rates per MW and year.  

 

Figure 33. Comparison of corrective and preventive maintenance interventions for offshore wind 

assets differentiating corrective interventions into failures and other corrective maintenance 

As detailed in Section 5.3, offshore WTs experience an average of 1.088 failures per MW per 

year. For example, this is equivalent to 5.4 failures per year for a 5 MW turbine and 10.9 

failures per year for a 10 MW turbine. Additionally, the category “Corrective Maintenance 

other” accounts for 1.651 interventions per MW and year, while preventive maintenance 

actions total 2.664 interventions per MW and year. In total, this results in 5.403 maintenance 

interventions per MW per year. This translates to approximately 27 maintenance interventions 

annually for a 5 MW WT and to around 54 maintenance interventions for 10 MW WT. Similar 



 

79 

 

intervention frequencies are observed across offshore wind farms with different WT power 

classes included in the datasets used for this analysis.  

7.4.4.2 Major component replacements 

The average failure rates per subsystem presented above are based on all corrective 

maintenance interventions involving the use of spare parts, regardless of the size or cost of the 

replaced component. To provide further details relevant for O&M simulations, a distinction is 

made between total major component replacements (MCR) and those that specifically require 

a jack-up vessel (JUV), as outlined in [181]. MCR encompasses replacements across six 

subsystems: the rotor system (MDA), the drive train system (MDK), the power generation 

system (MKA), the generator transformer system (MST), the nacelle (MUD), and the tower 

system (UMD). The components considered for each subsystem are listed in Table 16. Average 

offshore MCR rates as well as rates of interventions requiring a JUV are presented in Table 17.  

 

Table 16. Considered components for major component replacements (MCR) and MCR requiring a 

jack-up vessel (JUV) 

Subsystem MCR requiring no JUV MCR requiring a JUV 

Rotor system (MDA) - blade, hub, blade bearing 

Drive train system (MDK) 
damaged high and low 

speed shaft 

main bearing, gearbox, 

rotor shaft assembly 

Power generation system (MKA) generator bearings generator 

Generator transformer system (MST) - transformer 

Nacelle (MUD) - nacelle 

Tower system (UMD) - 
tower, transition piece, 

foundation 

 

With an average of 0.0209 MCR per MW and year, the power generation system MKA 

accounts for the highest MCR rate, followed by the drive train system MDK at 0.0149 MCR 

per MW and year. Of these, 0.0097 MCR per MW and year require a JUV, making the drive 

train system the primary contributor to MCR events necessitating a JUV. For the rotor system 

MDA only blade and blade bearing replacements were observed, while no MCR events were 

recorded for the nacelle, tower, transition piece, or foundation. Across the entire WT, the total 

MCR rate is 0.0366 per MW and year, with 0.0117 MCR per MW per year requiring a JUV. 

For a wind farm comprising 50 WTs, each with a rated capacity of 10 MW, this corresponds 

to approximately 37% of WTs undergoing a MCR annually, with 12% requiring a JUV – 

equivalent to roughly six WTs. 

7.4.4.3 Average repair time 

The average repair time per subsystem is displayed in Table 17. It represents the total duration 

from the technicians’ arrival to their departure from the turbine, regardless of the number of 

personnel involved in the maintenance intervention. Unlike downtime or time to repair, it does 

not account for travel time, lead time of spare parts, delays due to inaccessibility, or other 

external factors [12]. It is important to note that the average repair time is calculated across all 

failure events without distinguishing between failure severity. On average, component 

replacements for the overall WT system require 2.7 hours. Other corrective maintenance 

activities take approximately 1.5 hours, while preventive maintenance tasks involve an average 

technician presence of 3.8 hours.  
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 The longest repair times are observed for the drive train system, rotor system, generator 

transformer system, and converter system. While extended repair durations are expected for 

subsystems containing major components, their overall impact on turbine availability remains 

limited due to relatively low failure rates in most cases. In contrast, the power converter system 

has a substantial effect on availability, as it exhibits both a high failure rate and prolonged 

average repair time.  

7.4.4.4 Average number of technicians required 

Similarly to the average repair time, the average number of technicians required per 

maintenance intervention for each subsystem is shown in Table 17. This value represents the 

mean number of technicians who recorded working hours on the WT or were listed in 

maintenance records. However, this information was available for only half of the WTs in the 

offshore dataset, resulting in a reduced sample size for analysis. Consequently, the dataset is 

insufficient to provide specific figures for MCR beyond the overall averages for all failure 

events. As a result, the variation in technician requirements across subsystems is relatively 

small, ranging from 1.9 technicians for the common cooling system to 3.5 technicians for the 

generator transformer system and generator switching system. On average, 2.5 technicians are 

required for both other corrective maintenance activities and preventive maintenance 

interventions.  

7.4.5 Comparison with results from literature 
Although a direct comparison with existing literature is not feasible due to variations in turbine 

sizes, technologies, and generations considered in different studies, this section aims to 

contextualise the findings of this paper within the existing body of reliability and O&M 

research. For offshore WTs, studies by the University of Strathclyde [12] and SPARTA ([29], 

[13]) are referenced, while for onshore turbines, comparisons are drawn with findings from 

WMEP [11], ReliaWind [10] and AWESOME [28]. However, direct comparisons remain 

challenging due to differences in categorisation systems and variations in KPI definitions. For 

example, Carroll et al. report annual failure rates, whereas SPARTA provides monthly repair 

rates. This shows that the definition of failure itself varies across studies. [30] emphasise that 

such differences in failure definitions in field-data-based studies significantly impact the 

reported KPI values. Despite these challenges, a general comparison remains valuable to place 

our results in the context of other research work.  

For onshore WTs, an overall average failure rate of 1.729 failures per MW and year has been 

determined in the present study, with the pitch system, control system, drive train system, and 

converter system identified as the most critical subsystems. Similar findings were reported by 

[11], who calculated an annual failure rate of 2.4 failures per WT – consistent with the smaller 

rated capacities of the turbines in their study – while also highlighting the electrical and control 

systems as particularly critical. Although [10] reported only normalised failure rates, their 

findings similarly identified the power module (including power converter, generator, 

transformer and switchgears), rotor module (including pitch system, blades and hub), control 

system, and drive train system among the five most frequently failing subsystems. In contrast, 

[28] highlight the gearbox, the blades, the blade brake, generator, and controller as most 

critical, while reporting lower normalised failure rates for the pitch system and the frequency 

converter.  
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For offshore WTs, an annual average failure rate of 1.088 per MW have been determined in 

this study. [12] reported approximately 8.3 failures per turbine per year, including major 

component replacements, as well as major and minor repairs, for turbines with rated capacities 

between 2 and 4 MW. Transforming the findings of our study to a 3 MW turbine results in an 

estimated 3.3 failures per turbine and year, which appears significantly lower. However, 

considering discrepancies in failure definitions and incorporating the additional 1.651 

interventions per MW per year associated with corrective maintenance interventions beyond 

component failures, the estimated corrective maintenance rate reaches approximately 8.2 for a 

3 MW turbine – closely aligning with the figures reported by [12]. This highlights the 

substantial impact that failure definitions and the inclusion criteria for corrective maintenance 

activities have on reported failure rates. 

Regarding the most failure-prone subsystems of offshore WTs, the pitch system, control 

system, and converter system have emerged as critical in our study, consistent with the top four 

failing subsystems identified in the [29] report. Similarly, [12] highlighted the pitch system as 

a major contributor to failure events. Furthermore, significant differences in annual failure rates 

were observed across different OEMs, a finding also noted by [13] when comparing forced 

outages per turbine between two OEMs for selected subsystems.  

The analysis has also revealed variations in failure behaviour over time, with the overall WT 

system following the characteristic bathtub curve. At the same time, different subsystems 

exhibit different failure trends. [11] reported a similar trend for overall onshore WTs. [13] 

assessed temporal patterns for repairs for specific components and subsystems not directly 

comparable with failure events and their trends evaluated within this study. The increasing 

repair rate observed for the generator in the SPARTA evaluation aligns with the trends found 

for the power generation system (MKA) in the present study, whereas other subsystems are not 

directly comparable due to differences in component classification. 

Regarding major component replacements, both this study and [12] identified the power 

generation system and drive train system as the primary contributors to JUV interventions. 

Finally, reported average repair times and the number of technicians required for replacements 

were compared with findings from [12]. Repair times in this study were generally lower than 

those reported by Carroll et al., even when compared with Carroll’s “minor repairs” category, 

which primarily includes small spare parts driving overall failure rates. On average, 2.8 

technicians were required per replacement according to our results, which is in the same range 

as the figures reported in [12].  
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Table 17. Input parameters for O&M simulation, including average failure rates for onshore and offshore wind turbines with 90% confidence interval bounds, 

average offshore major component replacement (MCR) rates, rates of MCR requiring a jack-up vessel (JUV), average number of technicians required, 

average repair times, corrective maintenance rate (excluding failures) and preventive maintenance rate for the overall wind turbine 

Subsystem 

RDS-

PP 

Code 

Average 

Failure 

Rate  

Onshore 

Lower 

bound of 

90%  

confidence 

interval 

Upper 

bound of 

90%  

confidence 

interval 

Average 

Failure 

Rate  

Offshore 

Lower 

bound of 

90%  

confidence 

interval 

Upper 

bound of 

90%  

confidence 

interval 

Average 

Rate MCR 

Offshore 

Average 

Rate MCR 

JUV  

required 

Average 

technicians 

required 

Average  

repair  

time 

Corrective 

Maintenance 

Rate (excl. 

Failures) 

Preventive 

Maintenance 

Rate 

Unit 1/ (MW*a) 1/ (MW*a) 1/ (MW*a) 1/ (MW*a) 1/ (MW*a) 1/ (MW*a) 1/ (MW*a) 1/ (MW*a) 1/ WT visit h/ WT visit 1/ (MW*a) 1/ (MW*a) 

Onshore / offshore onshore onshore onshore offshore offshore offshore offshore offshore offshore offshore offshore offshore 

Environmental 

Measuring System 
CKJ 0.0590 0.0534 0.0652 0.0272 0.0240 0.0307   2.8 2.6 

  

Rotor 

System 

incl. 

Pitch 

System 

Rotor 

System 

MDA 

0.0773 0.0708 0.0843 0.0379 0.0341 0.0420 0.0006 0.0006 3.2 4.8 

Pitch 

System 
0.3138 0.3006 0.3275 0.1638 0.1559 0.1721   3.2 3.3 

Drive Train 

System 
MDK 0.2281 0.2168 0.2398 0.0921 0.0861 0.0983 0.0149 0.0097 2.9 7.6 

Yaw System MDL 0.0846 0.0778 0.0919 0.0784 0.0730 0.0842   3.0 2.9 

Central Hydraulic 

System 
MDX 0.0599 0.0542 0.0660 0.0806 0.0751 0.0865   3.1 2.7 

Control System MDY 0.2548 0.2429 0.2671 0.1268 0.1198 0.1341   3.2 2.7 

Power Generation 

System 
MKA 0.1206 0.1124 0.1292 0.0835 0.0779 0.0895 0.0209 0.0012 2.5 2.9 

Generator  

Switching System 
MSC 0.0670 0.0610 0.0735 0.0250 0.0219 0.0283   3.5 2.1 
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Subsystem 

RDS-

PP 

Code 

Average 

Failure 

Rate  

Onshore 

Lower 

bound of 

90%  

confidence 

interval 

Upper 

bound of 

90%  

confidence 

interval 

Average 

Failure 

Rate  

Offshore 

Lower 

bound of 

90%  

confidence 

interval 

Upper 

bound of 

90%  

confidence 

interval 

Average 

Rate MCR 

Offshore 

Average 

Rate MCR 

JUV  

required 

Average 

technicians 

required 

Average  

repair time 

Corrective 

Maintenance 

Rate (excl. 

Failures) 

Preventive 

Maintenance 

Rate 

Converter System MSE 0.2226 0.2115 0.2342 0.1243 0.1174 0.1315   3.4 4.2 

  

Generator 

Transformer 

System 

MST 0.0252 0.0215 0.0293 0.0083 0.0066 0.0103 0.0003 0.0003 3.5 4.3 

Nacelle MUD 0.0267 0.0229 0.0309 0.0202 0.0175 0.0232 0.0000 0.0000 3.3 1.9 

Remote 

Monitoring System 
MYA 0.0071 0.0053 0.0095 0.0004 0.0001 0.0011   2.0 2.2 

Tower System UMD 0.0204 0.0171 0.0241 0.0151 0.0128 0.0178 0.0000 0.0000 2.7 2.5 

Personnel Rescue 

Systems 
WBA 0.0059 0.0042 0.0081 0.0019 0.0011 0.0030   2.2 1.4 

Fire Extinguishing 

System 
XGM 0.0078 0.0058 0.0102 0.0041 0.0029 0.0056   2.9 2.3 

Lifting Gears XMM 0.0246 0.0210 0.0287 0.1255 0.1185 0.1327   2.5 2.8 

Obstacle Warning 

System 
XSD 0.0328 0.0286 0.0374 0.0222 0.0194 0.0254   2.6 1.9 

Low Voltage  

Electrical Main  

Supply System 

BFA 0.0006 0.0002 0.0016 0.0243 0.0213 0.0276   2.6 1.2 

Fire Alarm System CKA 0.0044 0.0030 0.0064 0.0155 0.0132 0.0183   3.4 3.0 



 

84 

 

Subsystem 

RDS-

PP 

Code 

Average 

Failure 

Rate  

Onshore 

Lower 

bound of 

90%  

confidence 

interval 

Upper 

bound of 

90%  

confidence 

interval 

Average 

Failure 

Rate  

Offshore 

Lower 

bound of 

90%  

confidence 

interval 

Upper 

bound of 

90%  

confidence 

interval 

Average 

Rate MCR 

Offshore 

Average 

Rate MCR 

JUV  

required 

Average 

technicians 

required 

Average  

repair time 

Corrective 

Maintenance 

Rate (excl. 

Failures) 

Preventive 

Maintenance 

Rate 

Transformer  

Station 
UAB 0.0025 0.0015 0.0041  

  

Equipotential 

Bonding / 

Earthing System 

XFB 0.0029 0.0018 0.0046 0.0049 0.0036 0.0066   2.2 2.6 

Lightning  

Protection System 
XFC 0.0025 0.0015 0.0041 0.0096 0.0077 0.0118   2.4 1.3 

Ventilation  

Systems 
XAM   0.0029 0.0019 0.0042   2.2 1.8 

Central 

Lubrication 

System 

MDV 0.0218 0.0184 0.0257 0.0015 0.0008 0.0025   2.5 1.9 

Compensation  

System 
MSS 0.0084 0.0063 0.0109 0.0004 0.0001 0.0011   

Common Cooling 

System 
MUR 0.0078 0.0058 0.0102 0.0026 0.0017 0.0039   1.9 2.2 

Telephone System Y 0.0204 0.0171 0.0241 0.0064 0.0049 0.0082   2.0 0.9 

General / Other G 0.1210 0.1128 0.1296 0.0579 0.0533 0.0629   3.2 2.6 

Wind Turbine 

(WT) overall 
WT 1.7286 1.6973 1.7602 1.0875 1.0669 1.1084 0.0366 0.0117 2.8 2.7 1.6508 2.6637 
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7.5 Conclusions and outlook 

This study provides a comprehensive analysis of failure rates for offshore and onshore wind 

turbines (WTs), as well as repair times and maintenance resource requirements for offshore 

assets, with a particular focus on subsystem-level reliability. Based on real-world maintenance 

data from over 1000 onshore and offshore WTs covering more than 4200 operational years, 

this dataset offers unique diversity, size and recentness when compared to those used in 

previous reliability studies. The results highlight that while onshore WTs exhibit lower failure 

rates per turbine and year, their failure rates per megawatt and year are higher compared to 

offshore WTs. Given the strong dependence of failure rates on the turbines’ rated power, 

further analyses have been conducted based on failure rates per MW and year to ensure 

comparability. Onshore WTs exhibit an average failure rate of 1.729 failures per MW per year, 

whereas offshore WTs demonstrate a lower annual average failure rate of 1.088 failures per 

MW. 

The analysis of subsystem-level failure rates has revealed that certain components, such as the 

pitch system (0.314 vs. 0.164 failures per MW and year), the control system (0.255 vs. 0.127 

failures per MW and year), and the converter system (0.223 vs. 0.124 failures per MW and 

year), contribute disproportionately to overall WT unreliability for both onshore and offshore 

turbines. While the drive train system exhibited notably high failure rates for onshore WTs, 

offshore WTs experienced elevated failure rates in the lifting gear system. Particularly the 

power converter system has been identified as a critical subsystem due to its combination of a 

high average failure rate and extended repair duration, making it a major factor affecting overall 

WT availability next to long-lasting replacement campaigns of major components. 

Additionally, major component replacements (MCR) have been analysed, distinguishing 

between those requiring a jack-up vessel (JUV) and those that do not. The power generation 

system and drive train system accounted for the majority of MCRs, with the latter also being 

responsible for the highest share of JUV-requiring replacements.   

The study has also examined failure behaviour through time, demonstrating that the overall 

WT failure pattern follows the well-established bathtub curve, with high early failure rates, a 

period of stability, and increasing failure rates due to degradation in later years of turbine 

operation. However, subsystem-specific trends vary, with some following the same pattern as 

the overall WT and others dominated by degradation failures or displaying no clear trend.   

In addition to failure rates, i.e. the frequency of corrective measures including spare-part 

consumption, corrective maintenance interventions without spare-part use and preventive 

maintenance tasks have also been analysed. On average, 2.7 hours are required for component 

replacements, while other corrective maintenance and preventive maintenance activities take 

1.5 hours and 3.8 hours, respectively. The number of technicians required per maintenance 

intervention varies by subsystem, ranging from 1.8 to 3.5 technicians, with an overall average 

of 2.5 technicians per other corrective and preventive maintenance task. While major 

component failures have significant repair times, their relatively low failure rates limit their 

impact on availability. In contrast, frequently failing subsystems such as the power converter 

system have a substantial influence on turbine performance and should be prioritised in 

reliability-driven design improvements.   

Our findings emphasise the importance of detailed, subsystem-level reliability analyses to 

enhance the accuracy of O&M simulations and operational expenditure (OPEX) calculations. 
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Aggregated failure rates derived from mixed turbine fleets may obscure critical differences in 

reliability between turbine types, underscoring the necessity of subgroup-specific analyses. At 

the same time, the coverage of a variety of WT types and manufacturers is an important 

prerequisite for providing representative results.  

Ultimately, this study underscores the complexity of WT reliability and maintenance planning, 

highlighting the need for continued field-data based analysis to optimise O&M strategies and 

improve the long-term sustainability of wind energy operations. Future research will extend 

beyond basic failure rate calculations to develop advanced reliability models that capture 

temporal trends in failure behaviour and quantify the effect of various factors on reliability, 

including design aspects and operating conditions.  
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8 Reliability of electrical and hydraulic pitch systems in 

wind turbines based on field-data analysis 
 

The pitch system is notably one of the critical subsystems of a wind turbine, supporting its 

effective control towards maximising wind capture and at the same time protecting its integrity 

in cases of excessive loads. A pitching mechanism is also responsible for operational 

downtime, hence its reliability performance needs to be carefully evaluated so as to ensure 

operational availability. This chapter aims to derive failure rates of two configurations of pitch 

systems, namely the electrical and hydraulic, based on statistical analysis of a large population 

of onshore assets, followed by a classification of findings by turbine rating, effect of 

seasonality, and reliability performance of different manufacturers. The datasets underlying the 

present analysis are based on maintenance reports and comprise 1847 operational years of wind 

turbines with electrical and 848 operational years of turbines with hydraulic pitch system. 

Results of this study show high failure rates in pitch systems of both types, with hydraulic 

systems performing slightly lower than electrical (0.54 than 0.56 failures per turbine per year), 

a significant variation between turbines of different manufacturers, and a tendency for higher 

failure rates for larger turbines. The material of this chapter has been peer reviewed and 

published in 5. 

 

8.1 Introduction 

With increasing deployment of wind energy and especially with the rapid development of 

offshore wind farms, it is crucial to reduce operations and maintenance (O&M) costs of wind 

turbines. Since O&M costs sum up to 25% to 40% of levelized cost of energy (LCoE), 

reliability is one of the main levers for further LCoE reduction [18] [19].  

Several reliability studies have been conducted in the past. A comprehensive overview of 

available reliability data is given in [32] and [31]. The pitch system has been identified as one 

of the most critical sub-systems of a wind turbine (WT) in regards to failure rate and downtime, 

see e.g. [10], [12] and [29]. The RELIAWIND project analysed a dataset covering 373 WTs 

with 1115 operational years and found the pitch system to be the main contributor to the overall 

failure rate of the WTs with 22% [10]. In addition, within the project a failure modes effects 

and criticality analysis (FMECA) was performed in order to determine the most important 

failure modes of the critical sub-systems. Carroll et al. published a reliability study analysing 

around 350 offshore WTs with over 1768 WT years of operation and found the sub-system 

“pitch / hydraulics” to stand out with most failures per WT per year [12]. The System 

Performance, Availability and Reliability Trend Analysis (SPARTA) initiative identified the 

blade adjustment system with the second highest monthly repair rate analysing 1045 offshore 

WTs located in UK waters [29]. In comparison, a study from Moog and DNV GL conducted a 

specific pitch system failure analysis including electrical and hydraulic pitch systems and 

 
5 Julia Walgern, Katharina Fischer, Paul Hentschel, Athanasios Kolios, 2023. „Reliability of electrical and 

hydraulic pitch systems in wind turbines based on field-data analysis”. Energy Reports, 9, 3273-3281, doi: 

10.1016/j.egyr.2023.02.007 [105] 
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failure rates for different subsets of data were determined based on a data base of 1330 WTs 

from North America, Europe and China [35]. However, most of those studies used data which 

had been recorded before 2010. Moreover, neither these system-level studies nor the pitch-

system specific study presented by [35] differentiate between hydraulic and electrical pitch 

systems or analyse underlying failure patterns and related failure rates of the pitch systems’ 

components. At the same time, understanding which failure modes drive the failure rate is key 

to develop countermeasures. Therefore, this work presents a deepened reliability analysis of 

both electrical and hydraulic pitch systems including failure rates of the respective components. 

Additionally, temporal patterns are investigated to gain further insights into the failure 

behaviour. Outcomes of this work will be of value to further researchers and practitioners who 

aim to evaluate and optimise design and operational management of wind turbines, as well as 

for supporting further technological improvements of next generation pitch systems. Obtained 

failure rates can be utilised for O&M simulation tools such as the Operation and Maintenance 

Cost Estimator (OMCE) of the Energy Research Center of the Netherlands (ECN) [14], the 

Norwegian Offshore Wind cost and benefit (NOWIcob) tool presented by [15], the openO&M 

tool [182], or OffshoreTimes, a simulation tool developed by the Fraunhofer Institute for Wind 

Energy Systems IWES [17].  

Modern WTs use pitch regulation to control operations. Pitch systems allow changing the blade 

pitch angle dependent on incoming wind speed. From cut-in wind speed to rated wind speed, 

the pitch angle is adjusted actively so that optimal power output is achieved. From rated wind 

speed onwards, power production is limited by rotating the rotor blades out of the wind. 

Therefore, the pitch system is not only responsible for maximising power output but also 

functions as an aerodynamic break. Due to safety requirements, there is a pitch system for each 

blade axis and the systems are entirely independent. There are electrical and hydraulic pitch 

systems: Electrical pitch systems can be divided into AC or DC systems which drive the pitch 

motor. In case of interruption of voltage supply, batteries feed the system to guarantee that the 

WT can be stopped by pitching the blades out of the wind. In comparison, hydraulic pitch 

systems are driven by hydraulic cylinders. Additional components ensuring its operation are 

hydraulic valves, accumulator units and oil tanks. A further description of both systems can be 

found in [183]. 

The chapter is outlined as follows: First, an introduction of the used methods is given and the 

analysed dataset is described (Section 8.2). Afterwards, the paper presents findings of a 

deepened statistical analysis for WTs with electrical and hydraulic pitch systems and compares 

those with previously published results of field-data analysis summarised above. Next to failure 

rates of the pitch systems’ components for different subsets, seasonal patterns are evaluated 

(Section 8.3). Last, a summary of main conclusions as well as an outlook to future work are 

given (Section 8.4). 

8.2 Methodology and datasets 

8.2.1 Methodology 
Within this study, a failure is defined as a fault that leads to downtime of the wind turbine and 

is not resettable remotely but requires maintenance and the use of spare parts. In case repeated 

maintenance activities are needed to resolve the same technical problem, the activities are 

assigned to one failure event. The failed components are classified using the reference 

designation system RDS-PP for wind turbines [40]. From all maintenance measures recorded 
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for a wind turbine, only maintenance interventions which are related to the pitch system are 

analysed in this study.  

In order to compare the reliability of different components, their average failure rates are 

calculated as follows: 

𝑓 =
∑ 𝑁𝑖

𝐼
𝑖=1

∑ 𝑋𝑖𝑇𝑖
𝐼
𝑖=1

=
𝑁

𝑇
 (8.1) 

Herein, 𝑁𝑖 is the number of failures of the analysed component in the time interval i, 𝑋𝑖 is the 

number of WTs considered in this time interval and 𝑇𝑖 is the duration of the time interval. 

Therefore, the average failure rate is equal to the quotient of the sum of all failures 𝑁 and the 

total amount of analysed WT operational years 𝑇. 

Additionally, the corresponding confidence intervals are determined to quantify the uncertainty 

of the calculated failure rates resulting from the size of the datasets [179] [36]: 

[
𝜒2(

𝛼
2

, 2𝑁)

2𝑇
,
𝜒2(1 −

𝛼
2

, 2𝑁 + 2)

2𝑇
] (8.2) 

Herein, 𝜒2(𝛼/2,2𝑁) is the (𝛼/2)-quantile of the 𝜒2 distribution with 2𝑁 degrees of freedom. 

In this chapter 𝛼 = 0.1 is used so that the 90% confidence intervals are provided. These can be 

interpreted as follows: If a large number of samples (in this case failure datasets of WTs) would 

be analysed, in 90% of the cases the given confidence intervals would cover the real value of 

the failure rate.  

8.2.2 Datasets 
The datasets underlying the present analysis are based on maintenance reports and comprise 

1847 operational years of WTs with electrical and 848 operational years of WTs with hydraulic 

pitch system. All WTs are located onshore. Detailed information about the datasets is presented 

in Table 18. While for the electrical pitch system data from turbines of six different original 

equipment manufacturers (OEMs) with turbine capacities ranging from 500 to 6000 kW are 

considered, for the hydraulic pitch system data from turbines of three different manufacturers 

with capacities from 600 to 3000 kW are evaluated. A total number of 2695 WT operational 

years stemming from 1022 WTs is underlying the present study. 

Table 18. Information about the datasets which have been considered in the analysis 

 Electrical pitch system Hydraulic pitch system 

WT operational years considered 1847 848 

Number of WT OEMs covered 6 3 

Rated capacity considered 500-6000 kW 600-3000 kW 

Available failure data period 2006-2015 2013-2017 
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8.3 Results and discussion 

8.3.1 Comparison of failure rates for hydraulic and electrical pitch systems 

8.3.1.1 Electrical and hydraulic pitch system comparison 

Figure 34 and Figure 35 present the resulting component failure rates along with the overall 

pitch-system failure rates for the electrical and the hydraulic pitch systems, respectively. For 

the presentation of results, component categories are chosen based on frequency of failure and 

level of detail of the available maintenance reports. All pitch-system components that do not 

fail often and are of no specific interest for the analysis are summarised in “Other 

Components”. Note that the sum of the component failure rates is higher than the overall failure 

rate of the system, as there are failure events involving the exchange of components from 

several categories. 

 

Figure 34. Average failure rates of the electrical pitch system 

          

Figure 35. Average failure rates of the hydraulic pitch system 

The results confirm the occurrence of high failure rates in pitch systems of both types. With 

0.54 failures per WT and year, the overall failure rate of the hydraulic pitch system is slightly 

lower than that of the electrical pitch system with 0.56 failures per WT per year. However, due 

to overlapping confidence intervals, there is not sufficient evidence to conclude that hydraulic 
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pitch systems are more reliable than electrical pitch systems. While for the electrical pitch 

system the component categories “Battery Pack”, “Control / Rectifier / Inverter / Thyristor” 

and “Motor Protection Relay / Multifunction Relay” are identified as most critical, the 

hydraulic pitch system shows the highest failure rates in the component categories “Hydraulic 

Accumulator Unit / Oil Tank”, “Pitch Cylinder” and “Hydraulic Valve”. This highlights that 

main concerns of the hydraulic pitch system are related to the hydraulic system itself. An 

interesting finding in the context of electrical pitch systems is that, in contrast to the main 

power converters of WTs where power electronics are subject to frequent failure (cf. [184], 

[36]), they are only a minor contributor to failure of pitch systems. A possible explanation for 

that could be the significantly lower rated power of the pitch drives. A more sophisticated 

design better withstanding the harsh environmental conditions could be another reason. 

8.3.1.2 Comparison with literature 

When comparing those results with the reliability studies mentioned in the introduction, 

similarities can be identified. While the RELIAWIND project provides only normalized failure 

rates, the study by [35] found an average failure rate of 0.7 per WT per year for a combined 

dataset of 545 WTs with electrical and 785 WTs with hydraulic pitch system all being installed 

onshore. This number is slightly higher in comparison to the average failure rates presented 

above even when considering the confidence intervals. Also [12] have identified a higher 

failure rate of 1.076 failures per WT per year. However, the comparison can only be made with 

caution since Carroll et al. used a sub-system category which combines the pitch system with 

all other hydraulic components within a turbine since only hydraulic pitch systems were 

analysed. In the RELIAWIND project, a FMECA was conducted identifying the top five failure 

modes of the critical sub-systems of which the pitch system has been one. For the electrical 

pitch system, “battery failure”, “pitch motor failure” and “pitch motor converter failure” were 

mentioned as most important failure modes, whereas for the hydraulic pitch system different 

kinds of leakages were described as top three failure modes [10]. [12] described oil issues, 

valve issues and accumulator problems as the most common failure modes in the component 

category “pitch / hydraulic”. Furthermore, based on the quantitative study of [12], [185] 

performed a case study for fluid power pitch systems in which a fault tree analysis (FTA) and 

FMECA revealed valves and accumulators as most critical components. Those findings are in 

line with the components’ average failure rates shown in Figure 34 and Figure 35. Even though 

criticality of the faults cannot be derived directly from the presented results, all component 

failures need to be considered as critical since the pitch system is part of the emergency shut 

down system of turbines. Additionally, instead of giving just a ranking for top failure modes, 

in this study the determined average failure rates of the components can be used to quantify to 

which extent a certain component drives the overall failure rate of the pitch system analysed.  

8.3.2 Failure-rate comparison across WT OEMs 
While it is common practice to provide average failure rates calculated from mixed fleets 

containing different types of turbines as in Section 3.1, this practice is afflicted with risks: One 

is that certain WT types with a particularly low or high reliability level might bias the result. 

Another one is that providing only a group-averaged failure rate without further elaboration 

masks such reliability differences that are important indicators to trigger root-cause analysis 

and design improvements. Therefore, more detailed analyses based on subgroups of turbines 

are presented in the following. 
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8.3.2.1 Electrical pitch systems 

Further analyses have shown that there are significant differences in pitch system failure rates 

when comparing failure rates across different WT manufacturers or when clustering WTs 

according to their rated power. Figure 36 shows the results for average failure rates for the 

electrical pitch system and its components for three different OEM categories. The dataset of 

the category OEM1 is characterised by an average rated power of 1511 kW and 1011 

operational years analysed in which 850 failure events have been recorded, thus having an 

average failure rate of 0.84 per WT per year. The analysis for OEM2 is based on 700 

operational years with an average rated capacity of 1686 kW and results with 149 logged 

failures in a lower failure rate of only 0.21 per WT per year for the overall pitch system. The 

last analysis combines the failure events of four different OEMs as the datasets available for 

each OEM separately would have been too small for sufficient interpretation of the results. 

Therefore, the last category OEM3-6 includes 137 operational years of WTs from four different 

OEMs with 29 failures recorded. The WTs within this dataset have an average rated capacity 

of 1996 kW. Even though the confidence interval is slightly larger due to the smaller dataset 

evaluated, also for this category there is an average failure rate of 0.21 per WT per year. 

Moreover, it can be noted that the distribution of most contributing components varies slightly 

dependent on the OEM. While for OEM1 the component category “Motor Protection Relays / 

Multifunction Relays” plays a significant role, this is not the case for OEM2 and OEM3-6.  

 

Figure 36. Failure-rate comparison across WT OEMs for electrical pitch systems 

8.3.2.2 Hydraulic pitch systems 

The same evaluation has been conducted for the hydraulic pitch system. In this case three 

OEMs are compared. Results are presented in Figure 37. The data-subset of OEM1 comprises 

118 operational years. With 87 failures counted, an average failure rate of 0.74 per WT per 

year for the overall pitch system is calculated. The WTs within this subset can be characterised 

by an average rated capacity of 1420 kW. The category OEM2 contains 552 operational years 

and WTs within this subset have an average rated capacity of 2004 kW. With 312 failures noted 

in this period, a lower average failure rate than for OEM1 of 0.57 per WT per year is 

determined. The analysis for OEM3 is based on 178 operational years and the subset has an 

average rated capacity of 1226 kW. For this subset 55 failure events have been recorded 

resulting in an average failure rate of 0.31 per WT per year. Comparing the failure rates of the 

components it can be noted that the component categories “Hydraulic Valve” and “Pitch 

Cylinder” have higher failure rates for WTs of OEM2 whereas the overall pitch system failure 

rate of OEM1 is driven by the component category “Instrumentation”. In comparison to OEM1 
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and OEM2, the component category “Hydraulic Valve” is the only component category that 

plays a significant role for OEM3. 

 

Figure 37. Failure-rate comparison across WT OEMs for hydraulic pitch systems 

8.3.3 Failure-rate comparison: Role of WT rated power 

8.3.3.1 Electrical and hydraulic pitch system 

In a next step, the pitch-system failure rates of WTs with different ranges of rated capacity are 

compared. In order to ensure comparability, a data-subset is chosen in which only one OEM is 

considered, and which allows for splitting the available failure data in different capacity 

classes.  

For the electrical pitch system this is only the case for OEM2. Figure 38 shows the failure-rate 

comparison for this case. Because of using a subset for this evaluation, the number of 

operational years considered is reduced to 164 which leads to larger confidence intervals.  

 

Figure 38. Failure-rate comparison for WTs with different categories of rated power for electric pitch 

systems 

The category “low WT rated capacity” comprises WTs with rated capacities below 1500 kW, 

whereas the category “medium to high WT rated capacity” contains WTs ranging from 1500 

kW to 6000 kW.  

A similar analysis is performed for two subsets with WTs with a hydraulic pitch system. 

Results can be seen in Figure 39 and Figure 40. For the first case the comparison is made for a 
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data-subset comprising 112 operational years since only failure events of OEM1 are considered 

for comparability reasons. While the category “low WT rated capacity” contains WTs with 

rated capacity below 1500 kW as for the electrical pitch system, the category “medium WT 

rated capacity” consists of WTs ranging from 1500 kW to 2500 kW. The second case analyses 

a data-subset containing WTs of OEM3 which considers 178 operational years. The category 

“low WT rated capacity” describes WTs with rated capacity below 1500 kW, whereas the 

category “medium WT rated capacity” comprises WTs with rated capacity ranging from 1500 

kW to 2500 kW as for OEM1.  

 

Figure 39. Failure-rate comparison for WTs of OEM1 with different categories of rated power for 

hydraulic pitch systems 

 

Figure 40. Failure-rate comparison for WTs of OEM3 with different categories of rated power for 

hydraulic pitch systems 

While there is not in all cases clear evidence due to the overlapping confidence intervals, a 

trend of failure rates increasing with the WT rated power can be observed both for the hydraulic 

and the electrical pitch systems. Besides the component category “Position, Angle and Speed 

measurement”, there is a trend for all other components of the electrical pitch system failing 

more often in larger turbines as well. For the components of the hydraulic pitch system of 

OEM1 no clear trend can be observed. Comparing the two categories of OEM3 for the 

hydraulic pitch system, a distinct tendency of higher failure rates for WTs with higher rated 
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power can be seen. However, it has to be noted that only three failure events for the category 

with low WT rated capacity have been recorded within 125 operational years resulting in the 

low average failure rate. Considering this, it becomes clear that the lower average failure rate 

of OEM3 in comparison to OEM1 and OEM2 in Figure 37 is mainly driven by the majority of 

small WTs being represented in the data-subset of OEM3.   

8.3.3.2 Comparison with literature 

The findings above can be compared with the study of [35] which also differentiated into two 

categories of turbine sizes. One turbine class was defined with rated power ranging from 1.5 

MW to 2.5 MW, and the other turbine class included WTs with a rated capacity between 2.5 

MW and 3 MW. The same trend was identified: The larger the turbine, the greater the failure 

rate of the pitch system. However, the failure rate of 1.6 failures per WT per year obtained for 

the larger turbine class differs from the ones in this study. While for the electrical pitch system 

significantly lower failure rates are found (compare Figure 38), the upper boundary of the 

confidence interval of the hydraulic pitch system for medium WT rated capacity differs only 

slightly (compare Figure 39). Since no confidence intervals are presented in the study of [35], 

it is difficult to judge how the smaller dataset affects the calculated failure rate.  

8.3.4 Seasonal patterns in the failure behaviour 
Next to comparing failure rates under consideration of design factors (OEM, size of turbine, 

type of pitch system), it is evaluated if any seasonal patterns can be identified in the failure 

behaviour. For this purpose, component failure rates are calculated for each month. In order to 

allow a comparison of the failure behaviour with the environmental conditions the WTs have 

been exposed to, monthly averaged wind, temperature and humidity conditions derived from 

ERA5 reanalysis data are included for each evaluated wind farm. (ERA5 provides hourly 

estimates of a variety of atmospheric and oceanographic variables based on global modal data. 

The dataset covers the earth on a grid of approximately 30 km x 30 km. For detailed 

information on the ERA5 reanalysis data, please refer to [59] [186], for information on how 

this data is processed to [187]). 

 

Figure 41 shows the component failure rates through the year and respective ERA5 data from 

the same wind farms and time periods failure data has been available for. Each line indicates 

the environmental conditions at one analysed wind farm location. Results for the electrical 

pitch system are shown on the left and for the hydraulic pitch on the right side, respectively. It 

can be observed that the WTs operate within similar climatic conditions whereas the wind 

characteristics for each site can differ significantly. Looking at the overall pitch-system failure 

rates, no pronounced seasonal patterns can be identified.  

 

 

 

 



 

96 

 

 

 

 

  

  

  

 
 

 

(a) (b) 

 

Figure 41. Average failure rates through the year and respective ERA5 data from the same wind 

farms and time periods. (a) Electrical pitch system. (b) Hydraulic pitch system. 

When the same analysis is repeated for specific components of the electrical pitch system, the 

situation looks different. Figure 42 presents component failure rates through the year for 

selected components for which seasonal patterns can be identified:  

The battery packs have higher failure rates from September to January in comparison to the 

summer months. This could partially be related to low ambient temperatures (compare Figure 

41). The colder it is, the lower is the battery voltage and the higher the probability that required 

minimum voltage values are not met anymore. Consequently, the battery pack needs to be 

replaced. 

Motor protection relays and multifunction relays show two different trends. On the one hand, 

failure rates are higher from July to October, which could be explained with a correlation with 

higher temperature and absolute humidity. On the other hand, there are peaks in the winter 

months of December and January, which likely have a different cause.  

Slip ring units are found to have the highest failure rates in December and January. Those are 

the months with highest average wind speed but also low temperatures (compare Figure 41). A 

correlation with high wind speeds could be explained with more pitch activity and possibly 
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increased friction related to the higher main-shaft speed during operation at or close to rated 

power. Consequently, the slip ring unit faces increased wear and needs to be replaced more 

often. 

In comparison to the three components mentioned above, electronic and power-electronic 

components of the electrical pitch system, namely control, rectifier, inverter and thyristor, do 

not exhibit any seasonal clusters. This is an interesting finding since for power electronics in 

main power converters of WTs pronounced seasonal patterns have been reported in [163], 

which could be related to their climatic operating conditions in [187]. 
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Figure 42. Component failure rates through the year for different components of the electrical pitch 

system 

The same evaluation is conducted for the hydraulic pitch system and its components. Figure 43 

shows component failure rates through the year for selected components. No pronounced 

seasonal patterns are found for components of the hydraulic pitch system. This can partially be 

related to the fact that the number of operational years covered by this data-subset is smaller in 

comparison to the one of the electrical pitch system. Especially for components with small 

average failure rates (compare Figure 35) only a few failure events have been recorded. 

Therefore, patterns are more difficult to identify. On the contrary, also components with higher 

average failure rates (see Figure 43) do not show seasonal clusters. Solely a peak in September 
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can be observed for the component categories “Hydraulic Valve” and “Pitch Cylinder”. 

However, there is no evident reason found.  
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Figure 43. Component failure rates through the year for different components of the hydraulic pitch 

system 

8.4 Conclusions and outlook 

This chapter has investigated the reliability performance of electrical and hydraulic pitch 

systems based on a large population of wind turbines with the objective to derive representative 

failure rates for the overall populations and evaluate the impact of certain parameters to the 

failure rate values. This can be utilised for more representative availability assessments, 

optimisation of operational strategies or prioritisation of design improvements. As the study 

has been performed on a larger dataset than any previous study, its results can be considered 

more representative. Findings of the study can be summarised as follows: 

• Failure rates are high in pitch systems of both types, with hydraulic systems 

performing slightly lower than electrical (0.54 than 0.56 failures per WT per year). 

However, due to overlapping confidence intervals, there is no sufficient evidence to 

conclude that hydraulic pitch systems are more reliable than electrical ones. 

• Among the different OEMs comprised by the dataset, the failure rates have been 

found to differ significantly depending on OEM, and hence technology. 

• The classification of rating to low and medium-high capacity has indicated that the 

failure rates of the overall pitch system tend to increase with the WT rated power. 
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• While for the electrical pitch system the component categories “Battery Pack”, 

“Control / Rectifier / Inverter / Thyristor” and “Motor Protection Relay / 

Multifunction Relay” have been identified as most critical, the hydraulic pitch 

system has shown the highest failure rates in the component categories related to the 

hydraulic system itself, namely “Hydraulic Accumulator Unit / Oil Tank”, “Pitch 

Cylinder” and “Hydraulic Valve”. 

• Seasonal patterns in the failure behaviour have been found for components of the 

electrical pitch system but could not be identified for hydraulic pitch system’s 

components based on the evaluated dataset. As temporal failure patterns typically 

become more evident with higher numbers of evaluated failures, further 

investigations with an extended data base are recommendable especially for 

components with low average failure rates in the future to reveal potential further 

conclusive correlations with environmental conditions. 
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9 Medium-voltage versus low-voltage converter reliability 

in wind turbines: a field-data based study 
 

High failure rates of typical IGBT-based low-voltage converters remain a challenge for wind-

turbine reliability. A field-data based reliability study for IGCT-based medium-voltage 

converters in offshore wind turbines is presented within this chapter. Compared with low-

voltage converters, these are found to exhibit lower failure rates per MW of converter capacity 

and fewer components with susceptibility to climatic influences. The failure behaviour through 

time of both the medium- and low-voltage converters is mostly characterised by early-failure 

behaviour in the first years of turbine operation and subsequent reliability deterioration. In case 

of the medium-voltage converters, these trends are less pronounced so that the reliability 

behaviour is more stable. Overall, the findings support the potential for wider adoption of 

medium-voltage converter technology in wind turbines. The material of this chapter is currently 

under peer review for publication in 6. 

9.1 Introduction 

Medium-voltage (MV) power converters have been judged an attractive option for application 

in multi-MW wind turbines (WTs) in the literature for more than a decade (see e.g. [188], 

[189], [190]). However, the long-awaited large-scale turnover to MV converter technology is 

still not visible in the field, despite its advantages of reduced current levels and lower number 

of components. Although MV converters for the wind application and turbine models with MV 

converters have been available on the market for many years, the vast majority of WTs in 

operation are equipped with insulated-gate bipolar transistor (IGBT)-based low-voltage (LV) 

converters. In addition, LV converter technology is still applied in the latest turbine generations 

of most major manufacturers. With regard to possible causes, a known obstacle of switching 

to MV converters is the associated need for specially trained personnel. Besides this, the limited 

track record of MV converter application in WTs might have presented another obstacle. With 

the further increase of WT rated capacity into the double-digit MW range, the arguments in 

favour of MV converter technology become more and more important. Since recently, new 

wind farms using MV converters are being installed and commissioned in both European and 

US waters.    

Using a field-data based approach, comprehensive research at Fraunhofer IWES has been 

dedicated to analysing the reliability and failure causes of power converters in the wind 

application in recent years. So far, the research was focused on LV IGBT-based voltage source 

converters as the prevailing technology applied in WTs (see e.g. [191], [163], [46], [104], [47]). 

In this contribution, a field-data based reliability study of MV converters in WTs is presented, 

which we expect to become increasingly applied in future wind farms, and a comparison with 

LV converters is drawn. 

 

 
6 Katharina Fischer, Fraser Anderson, Julia Walgern, 2025. “Medium-Voltage versus Low-Voltage Converter 

Reliability in Wind Turbines: A Field-Data Based Study”. Submitted to PCIM Europe 2025 for publication [213] 
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9.2 Evaluated datasets and wind turbine fleets 

9.2.1 Medium-voltage converter data 
In case of the MV converters, the study is based on converter failure data from offshore wind 

farms in European waters. The dataset is derived from maintenance records, ranges from 2015 

to 2023 and covers in total 1249 WT operating years. All WTs are from the same manufacturer, 

use a MV-PMSG (permanent-magnet synchronous generator) and have a rated power of 5 MW. 

Their commissioning dates range from 2015 to 2017. The MV converters are liquid-cooled 3-

level (3L) voltage source converters of neutral point clamped (NPC) topology with press-pack 

integrated gate-commutated thyristors (IGCTs) as power switches, suitable for AC voltage 

levels up to 4.3 kV, see Figure 44. 

 

Figure 44. Scheme of the investigated wind turbines with medium-voltage permanent-magnet 

synchronous generator (MV-PMSG) and fully rated medium-voltage converter 

9.2.2 Low-voltage converter data 
For better comparability, the results for LV converters presented in this study are also based 

solely on liquid-cooled LV converters of offshore wind turbines in European waters. The 

analysis uses data from years 2007-2024 covering in total 1904 years of turbine operation. The 

evaluated WT fleet consists of turbines of different manufacturers and generator converter 

concepts, namely doubly fed induction generators (DFIG) with partially rated LV converters, 

squirrel-cage induction generators (SCIG) with fully rated LV converters, or permanent-

magnet synchronous generators (PMSG) with fully rated LV converters (see e.g. [163] for 

further information about these concepts). The rated power of the evaluated WTs falls into the 

range from 2 to 9 MW. The WTs have been commissioned from 2007 to 2020. All evaluated 

LV converters are two-level (2L) IGBT-based voltage source converters, with AC voltage 

levels below 1000 V (mostly 690 V) and DC-link voltages up to 1250 V. 

9.2.3 Site-specific environmental data 
In addition to the failure data of MV and LV converters described above, we use site-specific 

environmental data from all evaluated wind farms, obtained from the publicly available ERA5 

reanalysis data ([59], [192]). Of the various meteorological quantities provided on an approx. 

30 km x 30 km grid in this dataset, we use the wind speed, ambient temperature and ambient 

humidity. 

9.2.4 Data preparation and processing 
To facilitate a script-based analysis, all failure data are preprocessed into a uniform format, 

using the reference designation system RDS-PP [40] for component classification. Only faults 

requiring onsite repair and the use of spare parts are counted as failures. Routine maintenance 

such as refilling of coolant or the exchange of deionisation cartridges in the cooling system are 

not considered, neither are repairs by means of sealing, retightening, reconnecting or resetting 

components.  
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Note that our analysis is based on failure events; i.e., an incident requiring the replacement of 

e.g. IGCTs (which, in the MV converters investigated here, always involves also the 

replacement of the corresponding driver boards) is counted as one failure event, regardless of 

how many IGCTs had to be exchanged and if the issue was remedied during a single 

maintenance intervention or if several turbine visits were necessary to achieve this. The dates 

of the failure or the maintenance intervention are used as timestamp of the failure events where 

this information is available, the booking date of the corresponding maintenance report 

otherwise. 

The failed converter components are grouped into the same categories previously used for 

analysis of LV converters: ‘Phase module’ (including IGBT modules and their driver boards 

in LV converters; IGCTs, their driver boards, and diodes in MV converters; DC-link capacitors 

and busbars), ‘Converter control system’, ‘Heating & cooling system’, ‘Main circuit breakers 

& contactors’, and ‘Other converter components’. Both datasets underlying the present work 

include left- and right-censored data. 

9.3 Analysis methods and results 

Based on the data preprocessed in this way, we derive and present average failure rates for the 

different component categories of the converter systems, investigate seasonal failure patterns 

and compare these with the monthly averaged wind speed and environmental conditions at the 

wind farms. In addition, we analyse the converter failure behaviour through time. 

9.3.1 Average failure rates of MV and LV converters 
Average failure rates are the most straightforward measure to describe the reliability of a 

system or component. The most frequently presented type of failure rates indicates the average 

number of failure events per WT and year. As previous investigations (e.g. [47], [166], [193]) 

have shown that the frequency of failures typically scales with the size of the converters, it 

makes sense to calculate average failure rates per MW of rated converter capacity and year 

whenever reliability comparisons between converter systems of different power classes are 

intended. Failure rates per WT and year and their corresponding confidence intervals are 

calculated as described in [191]. They can be transformed to failure rates per rated converter 

capacity by means of multiplication with a weighted mean of the converter capacity 

𝑃𝑟𝑎𝑡𝑒𝑑,𝑤𝑚𝑒𝑎𝑛 =  
∑ 𝑇𝑗 ∙ 𝑃𝑟𝑎𝑡𝑒𝑑,𝑗

𝐽
𝑗

∑ 𝑇𝑗
𝐽
𝑗

 (9.1) 

with Tj denoting the evaluation period and Prated,j the rated converter capacity of wind turbine 

j. The equation for direct calculation of average failure rates per converter capacity is: 

𝑓𝑀𝑊 =  
∑ 𝑁𝑗

𝐽
𝑗

∑ 𝑇𝑗 ∙ 𝑃𝑟𝑎𝑡𝑒𝑑,𝑗
𝐽
𝑗

 (9.2) 

Herein, Nj denotes the number of failure events on turbine j during its evaluation period. Note 

that the rated capacity of the converters is assumed to be equal to the WT rated power in case 

of PMSG and SCIG turbines with fully rated converters. In case of WTs with DFIG, the rated 

capacity of the partially rated converter is approximated with 1/3 of the WT rated power. 
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Figure 45 (a) presents the average failure rates per MW of converter capacity and year for the 

different component categories of the MV converters. The light bars represent the component 

failure rates whereas the dark bar indicates the failure rate of the overall converter system. Note 

that the component failure rates typically sum up to a value larger than the converter-system 

failure rate since there are failure events affecting components of more than one category.  

The overall MV converter system failure rate of 0.075 /MW/year corresponds to 0.375 failures 

per 5 MW WT and year, i.e. on average one converter failure per year on 37.5% of the WTs. 

Within the MV converter system, the category ‘phase module’ stands out with the highest 

average failure rate of 0.029 /MW/year. Replacements of diodes and IGCTs with their 

corresponding driver boards account for almost all failure events in this category, whereas DC-

link capacitors and busbars play a negligible role. Besides the ‘phase module’ category, also 

‘Converter control’, ‘Heating & cooling system’ and the category ‘Other converter 

components’ contribute with relevant portions to the converter-system failure rate. Within the 

heating & cooling system, pressure and temperature sensors, expansion vessels, connectors and 

pipes / hoses and coolant pumps contribute most to the failures. In the category ‘Other converter 

components’, power supply units, DC-link charging units and AC filter components stand out. 

Figure 45 (b) shows the corresponding average failure rates in the evaluated WT fleet with LV 

converters. Differences from previously published average converter failure rates of LV 

converters as e.g. in [47] can be attributed to the limitation of the present analysis to offshore 

WTs commissioned from year 2007 onwards. Note that slightly different amounts of field data 

are underlying the phase-module failure rate and those of the other component categories, as 

part of the datasets covers only phase-module failures. In summary, the phase-module analysis 

is based on 1904 WT operating years whereas the failure rates of all other component categories 

as well as of the overall converter system are derived from a total of 1527 WT operating years. 

The average rated converter capacity is in the range of 2.5 MW for the evaluated fleet with LV 

converters. 
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(a)

 

(b)

 
 

Figure 45. Average failure rates per converter capacity of the overall converter system (dark green) 

and its components (light green) for medium-voltage converters (a) and for the evaluated low-voltage 

converters (b) 

The comparison between the average failure rates of the investigated MV and LV converters 

in Figure 45 reveals a considerable difference in reliability: The failure rates per MW of 

converter capacity are in all component categories much higher for the LV than for the MV 

converters. In case of the particularly costly phase-module failures, the failure rates differ by a 

factor of approx. 1.6. With on average 0.21 /MW/year, the overall converter-system failure rate 

of LV converters is found to be almost three times higher than that of the MV converters. 

It is interesting to note the even lower reliability level of LV converters reported in a previous 

study of the authors, which was based on a much larger WT fleet also including onshore 

turbines and turbines commissioned before 2007: With an average of 0.48 failures per MW 

converter capacity and year published in [104] and [47] for liquid-cooled LV converters, the 

difference to the MV converters systems comes even close to a factor of 6.5. 

9.3.2 Distribution of power hardware failures over the generator-side and 

grid-side converter 
In case of power hardware failures (i.e. IGCTs & driver boards, diodes; category ‘phase 

module’), an interesting question is if the damage is predominantly located in either the 

machine-side (MSC) or the line-side converter (LSC). In the datasets underlying the present 
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MV converter analysis, this information was available for approximately half of the phase-

module failure events. Figure 46 shows how these cases distribute over MSC and LSC. It makes 

clear that the machine-side and the line-side part of the MV converters are rather equally 

frequently affected by failures. In only 2% of the failure events, semiconductors in both MSC 

and LSC had to be replaced.  

A corresponding analysis for LV converters in turbines with DFIG was presented in [36]. It 

revealed different results for WTs of different OEMs, ranging from prevalence of MSC failures 

in case of one OEM over equal shares of MSC and LSC failures in a second case to a dominance 

of LSC failures in a third one. 

 

Figure 46. Distribution of power hardware failures over machine side (MSC) and line side (LSC) of 

the medium-voltage converter system 

9.3.3 Seasonal patterns in the failure behaviour 
Seasonal patterns in the failure behaviour can provide indications about load or environmental 

conditions promoting the emergence of failures. In order to identify such patterns, Figure 47 

(a) and (b) present the variation of failure rates (in this case per WT and year) through the 

course of the year, along with the averaged wind speed and ambient climatic conditions of the 

evaluated wind farms with MV converters and LV converters, respectively.  

Figure 47 (a) shows that the highest phase-module failure rates in the MV converters occurred 

in the months with the highest average wind speeds. The low failure rates observed during the 

warm and humid summer months indicate that – in contrast to the phase-module components 

of LV converters in previous analyses (cf. [36], [163]) and also to the LV converters in the 

present study – the power hardware of MV converters is much less susceptible to climatic 

influences. The MV converter control system shows the opposite pattern, with particularly few 

failures in the strong-wind season and more failures during spring and summer, suggesting 

climatic influences have a relevant effect on this category. While no obvious seasonal pattern 

is observed in Figure 47 (b) for the control system hardware of LV converters, previous 

analyses of the authors based on a larger LV fleet have revealed a significant effect of mean 

ambient absolute humidity on converter control system reliability [47]. 
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(a) (b) 

 
 

Figure 47. Seasonal variation of failure rates in (a) MV converters and (b) LV converters with 

corresponding monthly average values of wind speed, ambient temperature and ambient absolute 

humidity derived from ERA5 data 

Patterns in the other converter component categories, of which only the heating & cooling 

system is included in Figure 47 (a) and (b), are less clear. For a better judgement of these results, 

it is important to note that two adverse effects add uncertainty to the failure-rate plots in this 

section. The first is the limited size of the underlying dataset, leading to an enhanced scatter in 

the monthly failure rates, which makes a visual identification of seasonal patterns more 

difficult. The second lies in the nature of the timestamps in the evaluated datasets: For a major 

part of these, the exact timestamps of the failure incidents were not available. Instead, the 

datasets provide the timestamps of the resulting maintenance intervention or the corresponding 

dates on which these were included in the maintenance reports. Where an analysis of the 

temporal deviation between the former and the latter timestamps was possible, it remained 

below 12 days in the majority of cases, whereas large deviations of more than a month were 
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encountered in single cases. This introduces a certain but limited uncertainty to the present and 

the subsequent analysis that are both based on the timestamps of failure events. 

9.3.4 Failure behaviour through time 
Nelson Aalen plots can reveal valuable information about a system’s failure behaviour through 

time. Each cross-shaped marker in these plots represents a failure event of the respective 

component category. The slope δ of the resulting graphs indicates if the failure behaviour is 

dominated by:  

• early failures or reliability improvement (with decreasing failure intensity: δ < 1),  

• intrinsic failures (constant intensity, δ ≈ 1) or  

• deteriorating reliability (with increasing failure intensity through time, δ > 1),  

i.e. which part of the ‘bathtub curve’ shown in Figure 48 characterises the failure behaviour. 

This is relevant for reliability modelling, but also for the clarification of failure causes. 

 

 

Figure 48. ‘Bathtub curve’ of repairable technical systems with shape parameter δ as an indicator of 

early failures, intrinsic failures and deterioration 

When analysing Nelson Aalen plots as presented in Figure 49 (a) for MV and in Figure 49 (b) 

for LV converters, it is important to be aware of the logarithmic scale of the axes. On the 

horizontal axis representing the natural logarithm of the system age (here: operating age of the 

WT), this leads to a visual stretching of early operating years and a strong compression of later 

operating years. To further illustrate this effect, the first five operating years take up large parts 

of the plot, ending at a value of ln(5) ≈ 1.6 on the horizontal axis. In contrast to that, the 

operating years 11 to 15 are represented by the visually much shorter section from ln(10) ≈ 2.3 

to ln(15) ≈ 2.7. 

Due to this stretching effect in the left half of the plot and the squeezing effect towards its right 

side, the assessment of slopes will mainly focus on the right half of the plots, which represents 

the WT operating age from approx. 4 months to around 15 years. 

Comparing the Nelson Aalen plots for the phase-module components of MV and LV converters 

reveals interesting similarities. Up to an operating age of approx. 3 years, the graphs indicate 

early-failure behaviour. With a slope of δ ≈ 0.8 and the corresponding confidence interval 

including the 1, this is less pronounced in case of the MV converters than for the LV converters 

with a slope of only δ ≈ 0.5. Another similarity is that the right-most part of the graph indicates 
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deterioration behaviour, with δ ≈ 1.2 (from an age of approx. 6 years onwards) for the MV and 

δ ≈ 1.6 (from an age of approx. 10 years onwards) for the LV phase modules.  

(a) (b) 

 
 

Figure 49. Nelson Aalen plots of (a) medium-voltage converter and (b) low-voltage converter 

component failures characterising their failure behaviour through time 

Again, in this case, the MV phase-module failure behaviour is closer to the desirable behaviour 

of intrinsic failures characterised by constant failure intensity with δ ≈ 1. On the other hand, 
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the onset of deteriorating reliability of the MV phase modules is observed already at a lower 

WT operating age. In between these two clearly distinguishable phases, there is in both MV 

and LV phase modules a period with mixed behaviour, in which a time with increasing failure 

rates around a WT age of 3 to 5 years is followed by another period with early-failure 

characteristics. 

The converter control systems of both MV and LV converters exhibit a transition from early 

failures directly to deteriorating failure behaviour, without any notable period of constant 

failure intensity in between. In case of the MV converters, this is indicated by a change in slope 

from δ ≈ 0.7 to δ ≈ 1.2 (with the corresponding confidence intervals touching or even slightly 

crossing the value of 1). In case of the LV converters, the slope changes from δ ≈ 0.7 to δ ≈ 1.7 

(with confidence intervals not including 1 in this case). A major difference between the control 

system failure behaviour of MV and LV converters is the turning point in which the transition 

is observed, which is already around the operating age of 3 years for the MV and as late as 

around 12 years for the LV converters. 

The heating & cooling systems of the MV and the LV converters show considerably different 

failure behaviour through time: While both are close to failure behaviour with constant 

intensity in the earlier years of operation (with δ ≈ 1.1 and confidence intervals crossing 1 in 

both cases), an interesting flattening out with improving reliability (δ ≈ 0.4) can be observed 

for the MV converters, starting already during the third year of operation. This is most likely 

attributable to a learning curve, related to increasing spare-part reliability, improving 

maintenance practices or a combination of both. In contrast to this, the heating & cooling 

systems of the evaluated fleet with LV converters shows a relatively stable failure behaviour 

until an age of approx. 12 years and clear signs of deterioration afterwards (δ ≈ 2.3). 

In case of the component category “Main circuit breakers & contactors”, we refrain from 

evaluating the failure behaviour for the MV converters, due to the low number of failure events. 

In case of the LV converters, this component category shows a very unusual failure pattern, 

with almost no failures in the first 2.5 years, followed by a phase with strongly increasing 

failure rates (δ ≈ 3.4), most likely related to component degradation. Subsequently, a flattening 

towards failure behaviour with constant intensity is observed, also in this case possibly related 

to improved components and / or maintenance practices. 

The category “Other (and unknown) converter components” covers a wide variety of mostly 

smaller components. The corresponding Nelson Aalen plot is therefore a blend of different 

failure behaviours of a broad range of components. An interesting pattern that the graphs of the 

corresponding plots for MV and LV converters have in common is the occurrence of a 

relatively short intermediate phase with a steep increase in failure intensity after approx. 3 and 

5 years, respectively, with a sudden transition to subsequent early-failure behaviour. In case of 

the MV converters, a likely explanation is that among the components grouped in this category, 

there is at least one suffering from strong aging, so that the resulting failures dominate the 

pattern until many of these degraded components have been replaced with new ones. In the LV 

case, however, a deeper investigation has made clear that the short steep section is related to a 

single event in one of the wind farms and should therefore not be regarded as typical behaviour.  

Finally, decreasing failure intensity is observed from year 4 and 6 onwards for the category 

“Other (and unknown) converter components” of MV and LV converters, respectively. Also 



 

110 

 

in this case, a learning curve with respect to spare-part quality, retrofits or maintenance 

practices might have contributed to the reliability improvement. 

Comparing the levels of cumulative failure intensity between MV and LV converters in Figure 

49 (a) and (b) might leave the impression that there is a reliability advantage of the former only 

in the categories “Main circuit breakers & contactors” and “Other converter components” 

whereas levels appear similar for the other three categories. However, it is important to note 

that such a comparison neglects the different converter capacities in the MV and LV fleet. 

Taking into consideration that the MV converters have approx. twice the rated capacity of the 

LV converters evaluated in this study, it becomes clear that also the Nelson Aalen plots confirm 

the superior reliability of the MV converters. 

9.4 Conclusions 

This chapter presented a field-data based reliability study for IGCT-based medium-voltage 

(MV) converters in offshore wind turbines. It is based on failure data from European offshore 

wind farms covering in total 1249 operating years. For comparison with IGBT-based low-

voltage (LV) converters as the by far prevailing technology applied in wind turbines, failure 

data from European offshore sites from in total 1904 turbine operating years have been 

additionally evaluated. Besides the converter failure data, site-specific environmental data from 

the ERA5 reanalysis have been used for all evaluated wind farms in this study. 

The analysis of failure rates indicates that the investigated MV converters have considerably 

lower failure rates per megawatt of converter capacity and year compared to the LV converters: 

The frequency of phase-module failures, which are usually afflicted with particularly high 

repair costs, differs by a factor of approximately 1.6, with MV converters showing a failure 

rate of 0.029 /MW/year compared to 0.048 /MW/year for LV converters. With 0.075 /MW/year 

for the MV systems and 0.210 /MW/year in the LV case, the overall converter-system failure 

rate is almost three times higher for the evaluated LV converters than for the MV converters. 

The difference is even larger when also LV converters in onshore WTs and in wind turbines 

commissioned before 2007 are included in the failure rate analysis as in [47]. 

Seasonal patterns in failure behaviour reveal that the highest phase-module failure rates of MV 

converters occurred during months with the highest average wind speeds. This indicates that, 

in contrast to LV converters, the power hardware of MV converters is not or much less 

susceptible to climatic influences, whereas the results suggest a climatic impact on control 

system failure of the MV converters to be likely, as it is known to be the case also for LV 

converters (cf. [47]).  

An analysis of the converter failure behaviour through time by means of Nelson-Aalen plots 

has revealed that not only LV, but also most MV converter components show early-failure 

behaviour with decreasing failure rates in the first years of wind-turbine operation, followed 

by a transition to deteriorating reliability, which is typically related to component aging or 

degradation, respectively. Comparing the failure behaviour of the evaluated MV and LV 

converters in offshore wind turbines, the MV system exhibit a more stable overall failure 

behaviour with early-failure and deterioration phases being less pronounced, thus coming 

closer to the desirable pattern of constant failure intensity through time. 
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In summary, the investigated MV converters show a certain reliability advantage over LV 

converters in wind turbines, with lower failure rates per converter capacity, reduced 

susceptibility to climatic influences, and a slightly more mature failure behaviour. As a result, 

these findings indicate that MV converters are an attractive option for multi-MW wind turbines 

not only under technical aspects but also from a reliability perspective. 
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10 Field-data based wind turbine reliability modelling: 

quantifying effects of operating age, design and 

technological development 
 

Based on maintenance data from over 1,000 onshore and offshore wind turbines covering more 

than 4,200 operating years, this study presents an analysis of wind turbine failure behaviour 

over time and identifies key factors influencing reliability. Failure trends are assessed using 

Nelson-Aalen plots while non-homogenous Poisson process regression models are developed 

to quantify the effect of design and technological development, incorporating a range of 

covariates. Results reveal that while some subsystems exhibit failure intensities following a 

classical bathtub curve, others transition directly from early failures to deterioration or are 

monotonically increasing throughout time. The regression modelling results indicate that 

reliability improves with later commissioning years, highlighting the effectiveness of 

technological advancements. Rated power negatively affects reliability, with larger turbines 

experiencing higher failure intensities. Additionally, offshore turbines are generally found to 

be more reliable than onshore ones, except for the yaw subsystem, which exhibited higher 

failure rates in offshore environments. Subsystem-specific findings further underscore the 

influence of design choices: hydraulic pitch systems outperform electrical ones in reliability, 

and direct-drive turbines demonstrate lower failure intensities in both the drive train and power 

generation subsystems compared to geared alternatives. The material of this chapter is currently 

under peer review for publication in 7 

10.1 Introduction 

In 2023, global wind energy capacity surpassed 1000 GW due to new onshore and offshore 

installations. While onshore wind accounts for 92.6% of the total installed capacity, offshore 

wind is gaining increasing significance [1]. Notably, for offshore wind assets, operations and 

maintenance (O&M) expenses contribute up to one-third of the Levelized Cost of Energy [50]. 

Leveraging operational insights to enhance reliability and optimise O&M strategies is therefore 

essential for cost and risk reduction. However, significant uncertainties remain in the O&M 

phase due to the limited availability of reliability data for wind turbines and their components. 

Existing research on wind turbine reliability predominantly relies on outdated and limited 

datasets, often focusing on annual average failure rates (e.g., [155], [25], [9], [10], [12], [28], 

[29]).  

This lack of field-based, technology-specific input, particularly for newer turbine generations, 

directly impacts the accuracy of O&M process modelling. Consequently, detailed analyses 

based on comprehensive field data have significant potential to improve understanding of 

failure behaviour and maintenance strategies, ultimately supporting more effective decision-

making in the wind energy sector [32]. 

[194] and [13] addressed this gap by presenting failure rates as a function of operating age and 

analysing the proportion of major repairs relative to asset age. Other studies have examined 

 
7 Julia Walgern, Fraser Anderson, Athanasios Kolios, Katharina Fischer, 2025. “Field-data based wind turbine 

reliability modelling: Quantifying effects of operating age, design and technological development”. Submitted to 

Wind Energy for publication [207] 
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various factors influencing reliability, including the works of [166], [38], [39], [195], [196], 

[197], and [105], which explore different methodological approaches and environmental or 

design influences on wind turbine failure patterns. 

This study advances the field of wind turbine reliability by providing a comprehensive analysis 

based on a large and representative set of field data. Utilising maintenance reports covering 

over 4,200 operational years from both onshore and offshore wind turbines, the research 

presents deep insights into the reliability of modern turbine technologies. A regression-based 

reliability modelling approach similar to that developed by Fraunhofer IWES for the power 

converter subsystem (e.g., [46], [47]) is employed in this study. This research extends beyond 

previous work to the application of reliability models to critical subsystems other than the 

converter subsystem. For the analysed subsystems, this allows us to examine differences in 

failure behaviour between onshore and offshore wind turbines, assess the impact of turbine 

rated capacity on reliability, and analyse how failure intensity evolves over time. These 

findings support design optimisation and improving O&M strategies for future wind energy 

projects. 

The following sections detail the methodologies and dataset utilised in this study, followed by 

a presentation of the results. The findings are analysed in the context of their implications for 

wind farm operational management and future research directions are evaluated. 

10.2 Methodology and evaluated datasets 

10.2.1 Methodology 

10.2.1.1 Field-data collection and preprocessing 

Maintenance reports documenting each turbine visit for over 1,000 wind turbines were 

collected, ensuring a diverse representation of turbine types across both onshore and offshore 

installations. The dataset was curated to include both recently commissioned turbines and those 

with an established operational history, resulting in a comprehensive field-data collection 

distinguished by its scale, diversity, and recency. To systematically categorise components 

across different turbine technologies and standardise recorded maintenance interventions, the 

Reference Designation System for Power Plants (RDS-PP) [40] and the State-Event-Cause-

Code "ZEUS" [41] were employed for data preprocessing and classification. Detailed 

information about the preprocessing approach is provided in [198] and [199]. In this study, a 

failure is defined as an event requiring corrective maintenance that cannot be resolved through 

a simple reset and necessitates component replacement. 

10.2.1.2 Reliability modelling 

The most common method for modelling wind turbine reliability involves calculating the 

failure rates of components, subsystems, and the overall turbine. To date, studies have primarily 

reported average failure rates per year and per wind turbine (e.g. [10], [12], [28], [30]). Studies 

such as [9], [180], [105], and [47] have demonstrated a strong dependence of average failure 

rates on WT size. Therefore, we proposed in [199] that failure rates should always be expressed 

per rated capacity in MW and per year, as presented in [13] and [104]. It is important to 

highlight, however, that failure behaviour is typically not constant through time and that it is 

not exclusively determined by turbine size, underscoring the need for more advanced reliability 

models. 

This study presents such a detailed reliability analysis that explores 
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• temporal trends in the failure behaviour of critical subsystems and 

• the effect of influential factors, referred to as "covariates", on reliability of critical 

subsystems.  

To address both aspects, we use a methodology based on the well-established reliability theory 

of repairable systems. Specifically, we apply the Nelson-Aalen estimator to identify trends in 

failure behaviour over time, and the non-homogeneous Poisson process (NHPP) to quantify 

the effects of relevant covariates. 

The Nelson-Aalen estimator is employed to calculate the non-parametric cumulative intensity 

for a given component or subsystem, based on the corresponding field data. When plotted on 

a double-logarithmic scale, these intensity plots can reveal different phases of failure behaviour 

over a turbine’s operating age, which appear as contiguous straight lines with varying gradients 

(cf. Figure 50). The gradient of a straight line in such a double-logarithmic Nelson-Aalen plot 

corresponds to the shape parameter δ of a power-law process, which we use for modelling the 

baseline failure intensity 𝜆0 [42]: 

𝜆0(t) = (
𝛿

𝜐
) (

𝑡

𝜐
)

𝛿−1

 (10.1) 

Besides the shape parameter δ>0, the equation contains 𝜐>0 representing the scale parameter 

of the power-law process. 

Consequently, the double-logarithmic Nelson-Aalen plots can thus be used to identify the 

distinct phases of reliability trends, which form the characteristic shape of the bathtub curve 

[37], [170]:  

• Early failures, which are characterised by a decreasing failure rate (δ<1) 

• Constant failures, which are described by a constant failure rate (δ=1) 

• Deterioration failures, which are defined by an increasing failure rate (δ>1) 

 

Figure 50. Derivation of the shape parameter δ using Nelson-Aalen plots [44] 

We present Nelson-Aalen plots together with the estimated values of δ and the corresponding 

confidence intervals. To address uncertainty in classifying line segments into early, intrinsic, 

or deterioration stages based on their gradient, we utilise a bootstrap method. For each 

bootstrap sample, we conduct a linear regression to create a distribution of possible gradients 

for each line segment. This distribution is then used to calculate 95% confidence intervals for 

δ. If a line segment's confidence interval includes δ=1, we cannot confidently assign it to either 

the early or deterioration failure stage. In such cases, it is categorised as an intrinsic failure 

stage. 
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The NHPP is a type of counting process used to model the failure intensity of a repairable 

system over time. In this analysis, it is formulated such that a set of covariates 𝑥𝑛 

multiplicatively alters a baseline intensity function 𝜆0(𝑡), resulting in an observed intensity 

function: 

𝜆(𝑡) = 𝑧 𝜆0(𝑡)exp (𝛽1𝑥1 + ⋯ +  𝛽𝑛𝑥𝑛) (10.2) 

Next to the baseline failure intensity 𝜆0(𝑡), the covariates 𝑥𝑖 and their corresponding 

coefficients 𝛽𝑖, 𝑧 accounts for heterogeneity that cannot be explained by the set of observable 

covariates. 

By fitting an NHPP to the dataset of a given subsystem using maximum likelihood estimation 

(MLE), we can estimate the magnitude and direction of the effects of these covariates through 

their 𝛽 coefficients. To enhance the analysis, we integrate an MLE-fitted NHPP with  

• principal component analysis, that allows for the simultaneous inclusion of even highly 

correlated numerical covariates 

• a covariate selection procedure based on [200], which enables the identification of 

covariates that have a significant effect on reliability, and 

• a subsampling routine, that addresses uncertainty in the covariate selection procedure 

by relying on 100 subsamples of the dataset. Each subsample consists of 90% of the 

original turbine fleet. This approach produces “inclusion rate” plots, which indicate 

how likely a given covariate is to have a significant effect on the reliability of a 

particular subsystem.  

A detailed presentation of the methodology, using the power converter subsystem as an 

example, can be found in [47]. Results were obtained using Matlab version R2023b and R 

version 4.3.2. The R package frailtypack [201] was used to fit the NHPP regression models. 

10.2.2 Evaluated datasets 
The dataset used in this analysis is derived from maintenance reports of both onshore and 

offshore wind turbines, encompassing 1089 WTs with a total of over 4,200 operational years. 

It includes WTs with rated capacities of up to 9 MW and covers data from 2006 to 2024. The 

analysis period is similar for both onshore and offshore turbines. The dataset encompasses 

operational data from turbine commissioning up to a maximum operating age of approximately 

18 years. It includes both left- and right-censored data.  

The dataset contains detailed information about maintenance of different components, 

classified into the following subsystems according to [40]: environmental measuring system 

(CKJ), rotor system (MDA_rotor), pitch system (MDA_pitch), drive train system (MDK), yaw 

system (MDL), central hydraulic system (MDX), control system (MDY), power generation 

system (MKA), generator switching system (MSC), converter system (MSE), generator 

transformer system (MST), nacelle (MUD), remote monitoring system (MYA), tower system 

(UMD), personnel rescue systems (WBA), fire extinguishing system (XGM), fire alarm system 

(CKA), lifting gears (XMM), obstacle warning system (XSD), low voltage electrical main 

supply system (BFA), transformer station (UAB, in case of onshore turbines), equipotential 

bonding / earthing system (XFB), lightning protection system (XFC), ventilations systems 

(XAM), central lubrication system (MDV), compensation system (MSS), common cooling 

system (MUR), telephone system (Y), and other (G).  
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The dataset analysed in this study includes various technical concepts, covering hydraulic and 

electrical pitch systems, as well as geared, direct-drive, and hybrid drive trains. It further 

encompasses different generator types (DFIG, EESG, PMSG, SCIG) across low and medium 

voltage levels, along with air- and liquid-cooled converter technologies. A comprehensive 

description of the dataset can be found in [199]. 

10.3 Results and discussion 

In the reliability analysis presented in [199], which is based on the same dataset as this study, 

the pitch system, control system, converter system, and drive train system were identified as 

the most critical in terms of failure rates. In addition to these, we choose the rotor system, 

power generation system, and yaw system for deeper analysis in the present paper as these 

subsystems are key for the power conversion process.  

The objective of the following analysis is to characterise failure patterns over time by means 

of Nelson-Aalen plots (Section 3.1) and identify factors that significantly affect subsystem and 

overall WT reliability using NHPP regression models in combination with a covariate selection 

procedure (Section 3.2).  

10.3.1 Failure behaviour through time 
The failure behaviour of a technical system over time is commonly expected to follow a bathtub 

curve, comprising three distinct phases: early failures with decreasing failure intensity in the 

initial years of operation, a constant failure intensity related to intrinsic failures, and a final 

phase of increasing failure intensity due to deterioration. However, prior research on the power 

converter subsystem and its components has demonstrated that not all subsystems necessarily 

exhibit all three phases of the bathtub curve (cf. [47], [43]). As explained in [202], early failures 

are typically related to e.g. material or manufacturing defects, insufficient testing or inadequate 

mounting. Intrinsic failures are e.g. caused by human errors during maintenance or other 

external causes like lightning strikes or excessive voltage peaks in the power grid. In the 

deterioration phase, failures are dominated by aging or wear-out, i.e. by degradation 

accumulated and progressing as the system is used. A mature and desirable reliability 

behaviour would consist of a long phase with a low and constant failure intensity, followed by 

a late transition to deterioration as the system reaches the end of its intended service life. In the 

context of system- or subsystem-level analysis as in the present work, it is important to note 

that the mix of different components with their variety of failure modes and failure mechanisms 

can potentially bias the identified reliability trends towards intrinsic failure behaviour.      

Figure 51 presents the Nelson-Aalen plots derived from our dataset, illustrating cumulative 

failure intensities over time for (a) the entire WT system and (b)-(h) individual subsystems. As 

explained above, these plots use double-logarithmic scaling. For better readability, we provide 

two horizontal axes: the natural logarithm of the WT operating age is displayed on the upper 

horizontal axis and the actual operating age on the lower horizontal axis for reference. Among 

the analysed subsystems, only the converter and drive train subsystem exhibit the classical 

bathtub curve pattern. In contrast, the overall WT system and the control subsystem transition 

directly from early failures to deterioration failures, without a notable phase of constant failure 

intensity dominated by intrinsic failures. The yaw system displays a transition from a constant 

to an increasing failure intensity. The failure behaviour of the pitch and rotor subsystems is 

predominantly driven by deterioration. The trend of improving reliability observed in later 
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operation years for the rotor subsystem is likely related to a learning curve, possibly due to 

improved maintenance practices. Also, the power generation subsystem, which includes the 

generator, demonstrates an atypical pattern, transitioning from a constant failure intensity to 

deterioration and then reverting to a stable failure intensity. This could be associated with a 

learning curve as in case of the rotor subsystem. A potential alternative explanation is that 

during the phase of deterioration, a large number of components of that subsystem was replaced 

with new ones, biasing the reliability trend of the last phase towards that of the early years of 

operation.  

Comparisons with previous WT reliability studies that addressed trends in failure behaviour 

such as [194] and [13] remain challenging due to differences in component classification, 

failure definition or methodological approaches. Still some similarities can be observed. For 

instance, with increasing repair rates for blades, [13] reports a similar trend as we found for 

rotor subsystem failure intensity in this study. However, the comparability of gearbox and 

generator repairs with the present study is limited, as SPARTA focuses on individual major 

components rather than entire subsystems and considers repairs rather than failures according 

to our definition above. Additionally, SPARTA’s "electrical" category encompasses a broader 

range of components than the subsystems defined in this study. 

[194] analysed failure rates per turbine per year of operation for different subassemblies, 

facilitating better comparability with the subsystems defined in this study. However, their 

dataset covers only the first eight years of WT operation, allowing a comparison only with the 

first part of the long-term failure behaviour shown in Figure 51. Nonetheless, for the first years 

of operation, similar trends are observed for comparable subsystems, including the pitch, 

control, converter, yaw, and rotor subsystems. Notably, the rotor subsystem in this study aligns 

with Carroll’s "blades" and "hub" subassemblies. However, as with the SPARTA study, direct 

comparisons for the generator and gearbox subassemblies remain challenging due to different 

component classification. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
Figure 51. Cumulative failure intensity plots for the entire wind turbine system (a) and individual 

subsystems (b)-(h). Crosses represent observed failures from the field dataset, categorised as “early” 

(grey), “intrinsic” (green), and “deterioration” (orange). Red dashed lines indicate the best-fit models, 

with corresponding δ parameters displayed. Values in brackets represent 95% confidence intervals for 

the estimated δ parameters. 
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10.3.2 Factors influencing reliability 
In order to identify the factors that have a significant effect on subsystem and overall WT 

reliability, NHPP regression models are utilised. For most models three covariates are 

considered: two numerical covariates – WT rated capacity and WT commissioning year – and 

one categorical covariate, distinguishing between onshore and offshore locations. As an initial 

step, the correlation between these covariates is assessed. While highly correlated numerical 

covariates can be addressed through principal component analysis (PCA), categorical 

covariates, which are highly correlated with numerical ones, could cause instability in covariate 

estimates. As an initial guideline, we use the “rule of thumb” suggested by [203], that a pair of 

covariates should not be included in the same regression model if the magnitude of their 

pairwise correlation (|r|) exceeds ~0.7. 

The correlation results for the overall WT dataset, summarised in Table 19, indicate that the 

correlation coefficients of the categorical variable “onshore/offshore” remain below this 

threshold, allowing its inclusion in the model in the first instance. However, the influence of 

this correlation will be critically evaluated based on the stability of covariate estimates by 

means of confidence intervals and the inter-subsample variance of beta value estimates. The 

strong correlation between WT commissioning year and rated capacity will be managed using 

PCA, following the methodology described in [47]. 

Table 19. Linear correlation coefficients for the covariates considered in this study 

 Onshore/Offshore 
WT Commissioning 

Year 
WT Rated Capacity 

Onshore/Offshore 1 -0.495 -0.547 

WT Commissioning 

Year 
-0.495 1 0.788 

WT Rated Capacity -0.547 0.788 1 

 

Additionally, we compare the effects of incorporating rated power directly versus in a 

logarithmised form to determine, which approach yields a better model quality, indicated by a 

maximised log-likelihood. Note that a direct inclusion of rated power implies an exponential 

effect on failure intensity, whereas a logarithmised inclusion corresponds to a root-function 

(for 0<β<1), linear (for β=1) or a power-function effect (for β>1), as can be derived from 

Equation (10.2). 

For specific subsystems, additional categorical covariates related to their design characteristics 

are incorporated into the analysis:  

• For the pitch subsystem model, a covariate distinguishing between hydraulic and 

electrical pitch systems is included.  

• For the converter subsystem model, a covariate differentiating between fully rated and 

partially rated converters is evaluated, as the converters in turbines with doubly fed 

induction generator (DFIG) have a rated capacity of only approximately one third of 

the WT capacity and as, in contrast to former studies conducted by Fraunhofer IWES 

([104] and [47]), the rated capacity of the WT instead of the converter is utilised for the 

covariate “rated capacity” in the present work. 
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• For the drive train subsystem model, the impact of different drive train configurations 

is examined by differentiating between geared and direct drive turbines. Hybrid drive 

turbines are included in the “geared” category.  

• For the power generation subsystem model analyses, a covariate distinguishing 

between low-speed generators and a combined category of medium- and high-speed 

generators is included. Medium- and high-speed generators are grouped together due 

to their common application in hybrid drive and fully geared turbine configurations, 

whereas low-speed generators are used in direct drive turbines. Consequently, the 

covariate “drive train configuration” serves as a proxy for the underlying generator-

speed category.  

For each of these additional covariates, correlation coefficients were assessed to ensure 

compliance with the threshold established by [203], confirming their suitability for inclusion 

in the analysis. Note that this limit remains a rough guide. It is also necessary to evaluate the 

stability of the fitted models, which is facilitated in this analysis by the subsampling procedure 

and uncertainty quantification in the fitted models. 

Figure 52 presents inclusion rate plots illustrating the outcomes of the covariate selection 

procedure for both the overall wind turbine system (a) and the seven individual subsystem (b)-

(h) analysed in the preceding section. Note that the covariates “Onshore/Offshore”, 

“Commissioning Year”, and “Rated Power” were included in the selection process for all 

subsystems. The covariate “Electric/Hydraulic” was considered exclusively in the analysis of 

the pitch subsystem, while the covariate “Drive Train Concept” was assessed solely for the 

drive train and power generation subsystems. Similarly, the covariate “Fully/Partially Rated” 

was included only in the analysis of the converter subsystem. Consequently, only covariates 

that were part of the selection procedure are displayed on the x-axes of Figure 52.  

Covariates consistently eliminated during the selection process exhibit an inclusion rate of 0%. 

This applies to “Commissioning Year” for the pitch, control, and power generation subsystems, 

as well as “Rated Power” for the yaw subsystem. Additionally, for the control subsystem, 

“Rated Power” was identified as significant in only a small fraction of subsamples and was 

therefore excluded from the final reliability model. Similarly, the covariate 

“Onshore/Offshore” was deemed relevant in only approximately 20% of subsamples for the 

converter subsystem and was subsequently omitted from the final reliability model of that 

subsystem.  

All remaining covariates demonstrated a significant effect on reliability and were retained in 

the final NHPP regression models. In this study, which focuses on reliability modelling, 

covariates with inclusion rates exceeding 50% are considered to have a significant effect. In 

contrast, previous studies on the converter subsystem by Fraunhofer IWES applied an 80% 

threshold, as those investigations were centred on root-cause analysis (see e.g. [47]). Based on 

our experience, the exclusion of a covariate during the selection process can also be attributed 

to limitations in dataset size rather than an actual absence of effect. Therefore, exclusion does 

not necessarily imply a lack of influence. As a result, only covariates identified as having a 

significant effect should be interpreted. Table 20 summarises the results of the final reliability 

models, presenting the estimated β coefficients and their respective confidence intervals for 

each covariate across the overall wind turbine system and individual subsystems. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
Figure 52. Inclusion rate plots for the entire wind turbine system (a) and individual subsystems (b)-(h) 
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For the overall wind turbine system and most subsystems, a logarithmised inclusion of the 

covariate “Rated Power” was found to enhance the quality of the reliability model. However, 

for the drive train subsystem, a direct inclusion yielded a superior fit.  

Additionally, the estimated β coefficients associated with the selected covariates (see Figure 

52 and Table 20) provide insights into both the direction and magnitude of their effect on overall 

wind turbine and subsystem reliability, enabling a quantitative assessment of their influence.  

For both the overall wind turbine system and the subsystems where the covariate 

“Onshore/Offshore” was found to have a significant effect on reliability, offshore turbines 

exhibited higher reliability compared to their onshore counterparts. This finding aligns with 

the results of [199], who reported lower annual average failure rates for offshore turbines per 

MW of turbine capacity. However, an exception is observed for the yaw subsystem, where an 

opposite effect is indicated by the identified β coefficient. While [199] normalised failure rates 

by rated power assuming a general scaling effect, the present analysis provides deeper insights: 

for the yaw system, the results indicate that rated power does not significantly influence its 

reliability. Consequently, in the specific case of this subsystem, a comparison based on annual 

average failure rates per turbine is more appropriate, demonstrating that yaw subsystems in 

onshore turbines are more reliable than those in offshore applications. Although it is reasonable 

to assume that greater efforts are made to minimise failures in offshore WTs, there is no clear 

explanation for the inferior reliability of yaw subsystems in offshore environments.  

Analysing the influence of turbine commissioning year on reliability reveals a distinct trend 

across most subsystems. For the converter, drive train, and yaw subsystems, as well as for the 

overall wind turbine system, reliability has improved with later commissioning years. This 

finding highlights the effectiveness of technological advancements and reliability-improving 

measures implemented over time. However, an inverse trend is observed for the rotor 

subsystem, where reliability declines in more recent turbine generations. This may be attributed 

to the industry’s shift toward slimmer and more flexible blade designs, which are optimised for 

larger turbines but may introduce new reliability challenges affecting operational expenditure. 

While reliability improvements are observed for later commissioning years, the effect of rated 

power on reliability is negative: larger turbines exhibit lower reliability for the overall wind 

turbine system, as well as for the pitch, converter, drive train, power generation, and rotor 

subsystems. Although this may initially appear to contradict the positive trend associated with 

commissioning year, the NHPP methodology enables the quantification and distinction of these 

independent effects on reliability. The observed decrease in reliability with increasing rated 

power aligns with previous findings for the power converter (e.g. [47]), the pitch subsystem 

(cf. [35], [105]), the drive train subsystem [180], and the overall wind turbine system (e.g. [9], 

[13]).  

While [105] concluded, based on annual average failure rates per WT, that electrical and 

hydraulic pitch systems exhibit similar reliability, the present study – utilising a larger and 

more representative dataset along with a more advanced analysis methodology – demonstrates 

that turbines equipped with hydraulic pitch systems exhibit higher reliability than those with 

electrical pitch systems. 

For the drive train subsystem, the drive train concept has been identified as a significant factor 

influencing reliability. It is important to note that this subsystem encompasses multiple 
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subassemblies, including the rotor bearing, speed conversion, drive train brake, high-speed 

shaft, drive train auxiliary systems, main and offline gear oil systems, oil lubrication system, 

rotor lock, rotor slewing unit, and drive train cooling system. As a result, the analysis includes 

both wind turbines with and without gearboxes. Given that direct drive turbines inherently have 

fewer components within this subsystem category defined by RDS-PP [40], it is unsurprising 

that they exhibit lower failure intensity compared to geared turbines. Nevertheless, this finding 

aligns with [13], which reported that direct drive turbines experience fewer average monthly 

forced outages per MW and lower associated production losses.  

Table 20. Results of the final NHPP regression models showing the β coefficients and their respective 

confidence intervals for various covariates across the overall wind turbine system and individual 

subsystems 

 Reference Level Factor Level β exp(β) 95% Confidence Interval 

Wind Turbine Overall      

Onshore/Offshore Offshore  Onshore 0.153 1.166 (0.065, 0.242) 

Commissioning year - - -0.014 0.986 (-0.024, -0.005) 

ln(Rated power) - - 0.592 - (0.492, 0.692) 

Pitch System      

Onshore/ Offshore Offshore Onshore 0.444 1.559 (0.262, 0.626) 

ln(Rated power) - - 0.876 - (0.716, 1.037) 

Electric/Hydraulic Electric Hydraulic -0.437 0.646 (-0.573, -0.302) 

Control System      

Onshore/ Offshore Offshore Onshore 0.196 1.216 (0.184, 0.207) 

Converter System      

Commissioning year - - -0.046 0.955 (-0.069, -0.024) 

ln(Rated power) - - 0.426 - (0.224, 0.628) 

Drive Train System      

Onshore/ Offshore Offshore Onshore 0.934 2.546 (0.737, 1.132) 

Commissioning year - - -0.052 0.949 (-0.075, -0.029) 

Rated power - - 0.303 1.353 (0.240, 0.365) 

Drive train concept Geared Direct Drive -1.137 0.321 (-1.368, -0.906) 

Power Generation System      

Onshore/Offshore Offshore Onshore 0.651 1.917 (0.406, 0.896) 

ln(Rated power) - - 1.421 - (1.202, 1.642) 

Drive train concept Geared Direct Drive -0.473 0.623 (-0.723, -0.224) 

Yaw System       

Onshore/ Offshore Offshore Onshore -0.732 0.481 (-0.936, -0.528) 

Commissioning year - - -0.042 0.959 (-0.066, -0.018) 

Rotor System (excl. Pitch)      

Onshore/ Offshore Offshore Onshore 1.078 2.938 (0.769, 1.387) 

Commissioning year - - 0.092 1.097 (0.060, 0.125) 

ln(Rated power) - - 0.953 - (0.623, 0.283) 

 

For the power generation system, direct-drive turbines have been found to exhibit higher 

reliability. While this may initially seem counterintuitive given that direct-drive turbines 

require large low-speed generators, the finding is plausible as these turbines are typically 

equipped with permanent magnet synchronous generators (PMSG) or, onshore, with 

electrically excited synchronous generators (EESG). Compared to doubly-fed induction 

generator (DFIG) configurations, the synchronous generator systems have fewer potential 

failure modes, such as the absence of a slipring unit, which is subject to wear-out and as such 

a typical driver for maintenance interventions. Our result aligns with the findings of [166], who 

reported that PMSG-based systems, including their auxiliary components such as cooling and 
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lubrication systems, failed less frequently than DFIG-based configurations in turbines of 

identical capacity. 

10.3.3 Discussion and comparison of different reliability modelling 

approaches and their impact on O&M simulations 
Reliability modelling plays a fundamental role in optimising O&M strategies for WTs. While 

O&M simulations commonly rely on average failure rates per turbine (e.g. [204], [157], [205]), 

we suggest in [199] using failure rates per MW to account for the observed increase in average 

failure rates with higher WT rated capacities. 

This study advances reliability modelling by employing NHPP regression models, which 

provide a more refined assessment of failure behaviour. Two key aspects should be considered: 

First, the Nelson-Aalen plots in Figure 51 demonstrate that failure behaviour varies over time, 

making the assumption of constant annual failure rates an oversimplification that can lead to 

inaccuracies in maintenance planning. Second, Table 20 highlights the influence of multiple 

covariates on reliability, emphasising the importance of differentiating between turbine design 

concepts to enhance the accuracy of reliability assessment. One of the most severe implications 

for O&M simulations is the effect of turbine capacity. Published failure rates are often derived 

from datasets dominated by smaller turbines, while O&M simulations are typically conducted 

for currently installed or future wind farms with larger rated capacities of the WTs. This study 

shows that using average failure rates per turbine in such cases leads to an underestimation of 

maintenance requirements, as failure intensity generally scales with turbine size (cf. Table 20). 

Figure 53 illustrates the isolated effect of WT rated capacity on subsystem reliability for those 

subsystems where rated capacity has a significant effect. Failure intensity scales exponentially 

with WT rated capacity for the drive train subsystem. In contrast, the effect is best described 

by a root function in case of the pitch and the converter subsystem, is close to linear for the 

rotor subsystem, and is represented by a power function for the power generation subsystem. 

The black dashed line in Figure 53 represents the outcome of generic scaling per MW. Although 

previous results suggest that this approach is more accurate than assuming constant failure rates 

per turbine, the results of this study indicate that different subsystems require distinct scaling 

factors. For example, doubling the rated capacity increases the failure intensity of the overall 

wind turbine by a factor of 20.592≈1.51 (cf. β values in Table 20), with subsystem-specific 

variations: the failure intensity of the converter subsystem scales by a factor of 20.426≈1.34 

when the WT rated capacity doubles. That of the rotor subsystem is multiplied by 20.953≈1.94 

– closely aligning with the generic MW-based scaling – and that of the power generation 

subsystem by 21.421≈2.68, reflecting the highest sensitivity to rated capacity. These examples 

underline the substantial differences in reliability across turbine sizes.  

It is important to note that Figure 53 solely depicts the effect of rated capacity, while other 

factors, such as reliability improvements in later commissioning years (cf. Section 3.2), must 

also be considered. Therefore, incorporating advanced reliability models into O&M 

assessments is recommended over using simple average failure rates. However, if a more 

straightforward approach is required, scaling failure rates per MW remains preferrable to 

assuming constant failure rates across different turbine sizes, even though rated capacity does 

not significantly affect all subsystems. 
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Figure 53. Impact of rated capacity on wind turbine subsystem reliability 

The former examples highlight that the choice of reliability modelling methodology and depth 

significantly affects the accuracy of reliability assessments and, consequently, the value of 

O&M simulations and associated decision-making. Selecting an appropriate model is essential 

to capturing the complexity of WT failure behaviour and ensuring that O&M strategies are 

both cost-effective and operationally efficient.  

10.4 Conclusions and outlook 

This study has provided a comprehensive analysis of wind turbine (WT) reliability on 

subsystem level, based on failure data from over 1,000 WTs and more than 4,200 operational 

years. The dataset includes turbines with rated capacities of up to 9 MW and operating ages up 

to 18 years. Failure behaviour over time has been examined using Nelson-Aalen plots and the 

influence of covariates on reliability has been analysed through a non-homogeneous Poisson 

process (NHPP) in combination with a covariate selection procedure.  

The results highlight distinct reliability trends over WT operating age across different 

subsystems, demonstrating that while some subsystems exhibit a classical bathtub curve, others 

transition directly from early failures to deterioration. These findings emphasise the necessity 

for time-dependent subsystem-specific reliability modelling rather than assuming a uniform 

failure behaviour over time across all components.  

The results of NHPP regression and the related covariate selection procedure confirm that 

several covariates significantly influence WT and subsystem reliability. A later turbine 

commissioning year positively impacts reliability for most subsystems, indicating the 

effectiveness of technological advancements and design improvements over time. In contrast, 

a higher turbine rated power has a negative effect on reliability, confirming previous findings 

that larger turbines tend to experience higher failure intensities. These opposing trends 

underline the importance and advantages of NHPP modelling, which allows for the separation 

and quantification of individual covariate effects.  



 

126 

 

Reliability differences have been also observed between onshore and offshore turbines, with 

the subsystems of offshore turbines generally achieving higher reliability than their onshore 

counterparts, except for the yaw subsystem, where an opposite effect has been identified.  

Additionally, subsystem design choices were found to play a crucial role in reliability 

outcomes. Hydraulic pitch systems demonstrated higher reliability compared to electrical pitch 

systems. This result highlights the importance of multivariate analysis, as a previous study 

based solely on average failure rates per turbine and a smaller, less representative dataset had 

indicated similar levels of reliability of hydraulic and electrical pitch systems (cf. [105]). 

Another finding of the present study with respect to design choices is that direct-drive turbines 

exhibited superior reliability in both the drive train and power generation subsystem. This can 

be attributed to the reduced number of components and failure modes associated with direct-

drive configurations. 

Furthermore, this study examined and compared different reliability modelling approaches, 

emphasising their impact on O&M simulations. While traditional assessments based on 

average failure rates per turbine or per MW of WT capacity provide a simple means of 

describing reliability, they do not account for time-dependent failure behaviour or key 

influencing factors. In contrast, NHPP regression modelling offers a more advanced approach 

by incorporating age-dependent failure intensities as well as covariate effects, leading to a more 

comprehensive understanding and representation of WT reliability. The choice of reliability 

modelling methodology plays a critical role in O&M simulations, as relying on simplified 

average failure rates may result in inaccurate cost estimations and suboptimal O&M strategies. 

In contrast, NHPP-based models enhance predictive accuracy, supporting more effective O&M 

planning and financial decision-making.  

Overall, this study underscores the importance of continuously collecting and analysing large-

scale field data to enhance WT reliability. The results provide valuable insights for 

manufacturers, operators and maintenance planners, enabling data-driven decisions for design 

optimisation, O&M strategies, and lifetime extension efforts. 

In the present study, the described methodology has been applied with a limited set of 

covariates, focusing on the most critical subsystems. Further refinement of these subsystems, 

e.g. of the drive train system, into individual subassemblies or components enables more 

detailed reliability modelling and remains subject of ongoing work. Likewise, future regression 

models will incorporate additional covariates, particularly those related to operating conditions. 

Further methodological advancements have been explored in previous studies, including [206] 

and [43], both of which focus on the converter system. [206] improved upon the assumption of 

constant covariates by introducing time-dependent covariates, revealing a previously 

unobserved dependence on electrical utilisation. [43] introduced an approach for fitting 

separate NHPP models to distinct phases of the bathtub curve. This enhances accuracy by 

allowing covariate effects to be assessed separately at different stages of a turbine’s operational 

life, taking into account that different failure mechanisms with different drivers and promoting 

factors dominate in the phases distinguished by their reliability trends.  

Expanding this analysis with aforementioned methodologies holds further significant potential 

for optimising O&M strategies and improving root cause analysis, ultimately contributing to 

enhanced reliability and cost-effectiveness in wind energy operations. 
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11 Discussion: Impact of using different reliability models 

for O&M simulations 
 

Reliability modelling is a crucial aspect of optimising O&M strategies for wind turbines. 

Different approaches exist and were developed within this thesis for quantifying reliability, 

ranging from simple average failure rates per turbine or per MW to more advanced statistical 

methods such as non-homogeneous Poisson process (NHPP) regression modelling. The choice 

of methodology significantly influences the accuracy of reliability assessments and, 

consequently, the effectiveness of O&M simulations and related decision-making. 

11.1 Limitations of average failure rates 

Traditional reliability assessments often rely on average failure rates per WT, more recently 

also on average failure rates per MW of turbine capacity. While these metrics provide a 

straightforward overview of failure behaviour, they come with inherent limitations. First, they 

assume a constant failure rate over time, disregarding the dynamic nature of WT reliability, 

which is characterised by early failures, constant failures, and deterioration phases. Second, 

these averages fail to capture dependencies on factors such as design characteristics, 

environmental conditions, or operational strategies. Consequently, using average failure rates 

in O&M simulations can lead to oversimplifications, potentially underestimating or 

overestimating failure risks, and resulting e.g. in suboptimal maintenance scheduling and spare 

parts planning. 

11.2 Advantages of multivariate reliability modelling 

More sophisticated approaches, such as Nelson-Aalen estimator and NHPP regression models, 

offer a deeper understanding of failure behaviour. Nelson-Aalen plots have been used within 

this thesis for a visual assessment of cumulative failure intensities over time, revealing distinct 

failure patterns across different subsystems (cf. Figure 51). This helps to differentiate between 

components exhibiting the classical bathtub curve and those transitioning directly from early 

failures to deterioration or following other failure patterns. 

NHPP regression modelling further enhances reliability analysis by incorporating time-

dependent failure behaviour and offering the possibility to include the effect of covariates such 

as rated power, commissioning year, drivetrain configuration, and site conditions. The ability 

to separate and quantify the effects of these factors allows for a more precise estimation of 

failure risks under varying conditions. For instance, NHPP modelling has demonstrated that 

while technological improvements over time have enhanced reliability, larger turbines tend to 

experience higher failure intensities (cf. Section 10.3.2). Such insights cannot be captured 

through simple averaging methods. 

11.3 Impact on O&M simulations 

This thesis developed two distinct approaches for reliability modelling based on failure data 

from more than 1,000 wind turbines, covering more than 4,200 operating years, with rated 

capacities of up to 9 MW and operating ages of up to 18 years. The first approach estimates 

average failure rates per MW of rated capacity per year (cf. Chapter 7), while the second 

employs multivariate reliability modelling to isolate and quantify the effect of factors such as 
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design, technological advancements, rated capacity, and operating age (cf. Chapter 10). Both 

methodologies are compared to the reliability figures of Carroll et al. [12], which despite being 

based on 3 MW turbines and published already a decade ago, remain widely used for O&M 

simulations due to their comprehensive breakdown of subassembly-specific failure and repair 

rates, repair times, and spare part costs. The comparative analysis of the three reliability 

modelling approaches and their impact on O&M simulations is summarised in Table 21. 

When reliability figures serve as input parameters for O&M simulations, the choice of 

modelling approach directly impacts the simulation results and thus accuracy of maintenance 

planning, cost estimation, and energy availability predictions.  

The assessment of O&M simulation impacts in this chapter, along with the findings from 

Chapter 10, emphasise the importance of considering turbine size and time-dependent failure 

behaviour. Previous studies (e.g. [204], [157]) indicate that the reliability figures provided by 

Carroll et al. [12] are only applicable to smaller turbines (~3MW) and highlight the lack of 

field data of larger turbines. This thesis addressed this gap by developing reliability models 

based on field data of turbines up to 9 MW, currently being the largest turbines for which a 

certain operation history is available. Newer turbines with rated capacities of 11 MW as utilised 

e.g. for the Hollandse Kust wind farms or up to 14 MW as for Morray West have been 

operational since end of 2023 or will enter full operational phase in 2025, respectively. 

While the average failure rate per MW approach provides a useful baseline, multivariate 

reliability modelling serves as a complementary extension offering deeper insights into failure 

behaviour over time and the influence of different covariates. In particular, NHPP regression 

models reveal that failure rates of many subsystems do indeed scale with turbine size, but not 

in a strictly proportional manner as suggested by the per-MW approach. 

Therefore, using average failure rates for O&M simulations, particularly if not adjusted for 

time-dependent behaviour, turbine size or influencing factors, may lead to: 

• Overestimation or underestimation of failure events, resulting in inefficient O&M 

strategy development 

• Inaccurate spare parts management, potentially leading to costly downtimes if critical 

components are unavailable when needed 

• Suboptimal long-term financial planning, as O&M cost projections may not reflect 

actual failure trends and influencing factors 

In contrast, incorporating results from NHPP regression models allows O&M simulations to 

account for evolving failure risks over time, providing a more realistic representation of 

expected maintenance needs. The ability to integrate specific turbine characteristics and 

environmental conditions leads to improved field-data based maintenance strategies, reducing 

unexpected failures and optimising resource allocation. Overall, the transition from simple 

average failure rates to more sophisticated reliability models represents a crucial step toward 

improving the efficiency and cost-effectiveness of WT O&M strategies. However, if a more 

simplified approach is desired or necessary, scaling failure rates per MW is preferable to 

assuming constant failure rates across different turbine sizes, despite rated capacity not 

significantly affecting all subsystems. Furthermore, it is crucial to base O&M simulation inputs 

on datasets that include turbines of similar sizes to those being modelled, as extrapolating to 

substantially larger turbines introduces uncertainties and potential inaccuracies.  
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Table 21. Comparison of the two developed reliability modelling approaches ([199], [207]) with 

Carroll et al.’s method [12] and their impact on O&M simulations 

 Average failure rates per 

WT and year [12] 

Average failure rates per 

MW and year [199] 

Multivariate reliability 

modelling [207] 

Underlying dataset 

Number of WTs ~350 1089 

WT operational years 1768 4244 

Rated capacity (MW) 2-4 up to 9 MW 

Years of operation 0-8 0-18 

Available data period ~2004-2014 2006-2024 

Dataset diversity 

Onshore/ Offshore offshore onshore and offshore 

Number of OEMs 1 onshore: 9, offshore: 4 

Technical concepts 
Geared WT with induction 

machine; hydraulic pitch 

system; LV converter 

Drive train concepts: geared, direct drive, hybrid drive; 

Generator types: DFIG, EESG, PMSG, SCIG; electrical 

and hydraulic pitch systems; LV and MV converter 

technologies 

Aspects covered within reliability model 

Subsystems / Subassemblies 
19 subassemblies 

29 subsystems + 

 overall WT 
7 subsystems + overall WT 

Classification of maintenance 

interventions 

4 categories: Major 

Replacement, Major 

Repair, Minor Repair, No 

Cost Data 

4 categories: Failures 

(corrective replacements), 

Major Component 

Replacements, Corrective 

Maintenance Rate (excl. 

Failures), Preventive 

Maintenance Rate 

1 category: Failures 

(corrective replacements) 

Confidence intervals No Yes Yes 

Turbine size 
Fixed Variable 

Quantified with covariate 

coefficient 

Failure behaviour over time Provided exemplarily for 

overall WT and 2 

subassemblies 

Provided exemplarily for 

overall WT and 8 

subsystems 

Modelled as function 

Technical concepts 1 technical concept 

covered 

Average values of different 

technical concepts 

Quantified with different 

covariate coefficients 

Available O&M simulation input 

Corrective maintenance 

reliability figures 
Yes Yes Yes 

Preventive maintenance 

reliability figures 
No Yes No 

Repair times Yes Yes No 

Required technicians Yes Yes No 

Repair costs Yes No No 

Impact on O&M simulations 

Recommended application on 

turbine sizes of 
3 MW [204] 

Interpolation between  

1-9 MW possible 

Modelling between  

1-9 MW possible 

Corrective maintenance rate 

per year for a 3 MW turbine 
8.3 8.2 

Doubling the rated 

capacity increases the 

failure intensity of the 

overall WT by a factor of 

1.51 (neglecting impact of 

other covariates; large 

deviations depending on 

subsystem) 

Corrective maintenance rate 

per year for a 6 MW turbine 
Not applicable 16.4 

Corrective maintenance rate 

per year for a 9 MW turbine 
Not applicable 24.6 

Failure behaviour over time Not applicable for overall 

O&M simulation 

Not applicable for overall 

O&M simulation 
Modelled as function 

Technical concepts 
Only applicable for same 

technical concept 

Applicable for covered 

technical concepts 

Modelled as function 

including different 

covariates 
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12 Conclusions 
 

This chapter provides a summary of the preceding chapters, aligning with the thesis objectives, 

with a particular focus on those chapters based on published research papers (Section 12.1). 

Section 12.2 presents the thesis’ contribution to knowledge, research and industry. The chapter 

concludes with a discussion of future research directions, an outlook, and final remarks 

(Sections 12.3 and 12.4).  

12.1 Summary of the chapters 

12.1.1 Investigation and classification of existing reliability figures and 

reliability assessment methods 
Chapter 2 has examined O&M strategies, modelling approaches, and available input data for 

O&M simulations which had been published in the past. Based on this analysis, key research 

gaps have been identified. Despite the availability of numerous O&M simulation tools, both 

commercial and academic ones, continuous development is necessary to integrate emerging 

technologies, strategies, and research advancements. The output of these tools is highly 

dependent on the quality of input data, which remains a critical limitation. Reviews of past 

studies indicate that approximately 20 initiatives have published reliability statistics, yet many 

datasets are outdated or lack comprehensive coverage of modern turbine technologies. Existing 

reliability studies suffer from further shortcomings, including limited subsystem coverage, 

reliance on non-standardised failure rate definitions, and difficulties in extrapolating data to 

larger turbines due to failure rates being presented per turbine and year rather than per MW of 

rated turbine capacity. Simple average failure rates, though easy to interpret, fail to account for 

time-dependent reliability trends, design variations, and operational influences. 

Chapter 3 has described the field-data based approach followed within this thesis to address 

these gaps. Next to failure data analysis of different kinds, this includes standardised data 

preprocessing – ensuring consistency and applicability – and a digitalisation and classification 

workflow to accelerate the process from data collection to publication, overcoming delays 

associated with manual failure classification. Within the scope of the thesis, failure data from 

a diverse and modern WT fleet has been collected and evaluated. The underlying dataset covers 

a total of 1335 onshore and offshore wind turbines covering 5539 WT operational years with 

turbines sizes of up to 9 MW.  

12.1.2 Development of a framework for economic feasibility studies of 

offshore wind farms 
Chapter 4 has evaluated the economic viability of extending the operational service-life of 

offshore wind farms in German waters. To facilitate this analysis, a comprehensive Economic 

Life Cycle Simulation and Assessment (ELSA) framework has been developed, integrating 

capital and operational expenditures (CAPEX and OPEX), revenue models, and site-specific 

deployment factors. By categorising existing offshore wind farms based on size and key 

characteristics, the study has provided a structured assessment of extended operation 

feasibility.  

The results indicate that service-life extension is economically viable for most German offshore 

wind farms, emphasising the impact of wake effects on annual energy production, the 
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variability of O&M costs, and the significance of CAPEX and financial modelling. Several 

assumptions and limitations have been identified which must be addressed to enhance the 

robustness of the findings: 

• Suitability of input data: The analysis heavily depends on input data from literature and 

industry interviews. More direct input derived from operational wind farms, 

particularly O&M cost data and maintenance records, would improve the accuracy of 

the assessment. 

• Reliability modelling: The scarcity of publicly available reliability data poses a 

challenge, as failure rates vary depending on technology type, turbine maturity, and 

operational age. Enhanced reliability models based on real-world maintenance data of 

currently deployed turbines, incorporating component aging effects and further 

impacts, would reduce uncertainties in service-life extension projections.  

• Maintenance logistics: Deployment location and supply chain maturity significantly 

influence maintenance. Continuous updates to O&M simulation tools are necessary to 

reflect evolving logistical concepts. 

• Component lifetime considerations: The study assumes a fixed nominal service life for 

wind turbines without adjusting for the lifetime of major components (e.g., blades, 

gearbox, generator). This may lead to unrealistic cost estimations if critical failures 

occur near the end of service life. Higher-fidelity reliability models should be 

introduced to assess the economic implications of major component replacements in 

the context of extended operation.  

Overall, the study provides valuable insights into the economic potential of extending offshore 

wind farm service life, offering a foundation for future research and decision-making in 

offshore wind energy asset management. This thesis has specifically addressed the limitations 

related to data input quality to improve the accuracy of future O&M simulations. 

12.1.3 Assessment of challenges deriving reliability metrics and impact 

analysis of differently applied methods for preprocessing and 

digitalisation of maintenance reports 
Chapters 5 and 6 have addressed the challenges posed by heterogeneous and unstructured wind 

turbine maintenance reports, which vary in information content and depth. To enhance the 

accuracy of O&M simulations and OPEX modelling, a digitalisation workflow for maintenance 

information has been proposed, incorporating optical character recognition (OCR), information 

extraction, and classification. While OCR and information extraction have demonstrated high 

accuracy, the focus has been placed on classifying maintained components using the guideline 

of RDS-PP [40], employing a support vector machine (SVM) for text classification. Key 

findings include: 

• Text classifiers have achieved high micro F1 scores when trained on specific datasets 

but exhibited reduced performance across different wind farms, highlighting the need 

for context-specific training.  

• Smaller, well-curated training datasets have proved to be cost- and resource-efficient 

while achieving competitive classifier performance, emphasising the importance of 

balancing manual labelling efforts with model effectiveness.  
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• Industry feedback has indicated diverse preferences for classifier configurations, 

necessitating customisable solutions. 

• Although text classifiers have tended to overgeneralise, skewing KPI calculations, their 

integration has reduced efforts, with manual verification improving quality of results. 

• The studies underscore the need for standardised maintenance reporting, as both 

automated and manual methods suffer from inconsistencies. Implementing designation 

systems like RDS-PP can enhance data accuracy and KPI quality.  

By compiling comprehensive datasets that capture technical jargon as well as variations in 

maintenance reports and refining classification methodologies, this research has contributed to 

improving maintenance data processing in the wind energy sector. The proposed strategy for 

preprocessing maintenance records facilitates reliability modelling of currently operated 

turbines, while acknowledging the uncertainties introduced by data preprocessing practices and 

limiting those by careful implementation.  

12.1.4 Development of reliability models of wind turbine subsystems and 

chosen components based on real-world O&M data 
Chapter 7 has conducted a comprehensive reliability analysis of onshore and offshore wind 

turbines using an extensive dataset encompassing over 1,000 turbines. By leveraging real-

world maintenance records, the research has provided insights into average failure rates, 

maintenance interventions, and key performance indicators essential for optimising O&M 

strategies. The analysis has revealed notable differences in failure rates between onshore and 

offshore WTs, with onshore turbines exhibiting higher average failure rates when normalised 

per megawatt. Across both environments, the most failure-prone subsystems include the 

control system, pitch system, and converter system. Additionally, failures in the drive train are 

predominant in onshore WTs, while lifting gears represent an additional important failure 

source offshore. The study has further identified temporal failure trends exemplarily for a 

specific WT type that align with the typical bathtub curve for the overall WT system, with 

subsystem-specific variations. 

A key challenge in reliability studies is the comparability of failure data across different 

research efforts due to differences in turbine size, technology generations, and failure 

definitions. This study has contextualised its findings by comparing them with existing 

literature, illustrating how variation in failure definitions and KPI categorisations can influence 

reported failure rates. For example, discrepancies with [12] are reconciled by accounting for 

differences in the scope of corrective maintenance activities, while findings from SPARTA (cf. 

[29], [13]) have been found to align with this study in identifying critical subsystems and 

manufacturer-specific reliability variations.  

Beyond failure rates, Chapter 7 has provided a detailed assessment of maintenance 

interventions, differentiating between corrective maintenance interventions with and without 

spare part replacements and preventive maintenance interventions. The study has highlighted 

that the power generation system and drive train system are the main contributors for jack-up 

vessel interventions offshore and has also assessed average repair times and technicians 

required for maintenance interventions.  

This study has addressed an important gap in reliability research by incorporating data from 

modern WT technologies, whereas much of the existing literature relies on outdated datasets. 
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The findings contribute to a more accurate and up-to-date understanding of WT reliability, 

supporting advancements in O&M strategies and turbine design improvements.  

Since the pitch system and power converter system have been identified as critical subsystems 

in both onshore and offshore wind turbines, Chapters 8 and 9 have provided a comprehensive 

analysis of component failures and their respective failure behaviours.  

Chapter 8 has examined failure rates of two pitch system configurations – electrical and 

hydraulic – based on a large dataset of onshore assets. The analysis has considered turbine 

rating, seasonal effects, and manufacturer-specific reliability performance. For the electrical 

pitch system, the most failure-prone components include the battery pack, 

control/rectifier/inverter/thyristor, and motor protection relay/multifunction relay. In contrast, 

the hydraulic pitch system exhibits the highest failure rates in components directly related to 

the hydraulic mechanism, namely the hydraulic accumulator unit/oil tank, pitch cylinder, and 

hydraulic valve.  

Chapter 9 has investigated the reliability of medium-voltage (MV) and low-voltage (LV) power 

converters in offshore wind turbines by analysing failure rates, seasonal failure patterns, and 

temporal failure trends using Nelson-Aalen plots. The results indicate that MV converters 

demonstrate a reliability advantage over LV converters, exhibiting lower failure rates per 

converter capacity, reduced susceptibility to climatic influences, and a more stable failure 

behaviour over time. 

Chapter 10 has presented a comprehensive analysis of WT reliability at the subsystem level, 

leveraging failure data from over 1,000 WTs with more than 4,200 operating years. The dataset 

encompasses turbines with rated capacities of up to 9 MW, operating ages of up to 18 years 

and is identical to the one of Chapter 7. Failure behaviour over time has been assessed using 

Nelson-Aalen plots, while the influence of key covariates on reliability has been analysed 

through non-homogeneous Poisson process (NHPP) modelling combined with a covariate 

selection procedure. 

The findings have revealed distinct subsystem-specific reliability trends, with some exhibiting 

a classical bathtub curve while others transition directly from early failures to deterioration. 

NHPP regression results have confirmed the significant impact of multiple covariates on WT 

reliability, including improved reliability for later commissioning years due to technological 

advancements, but also increased failure intensity with higher rated power. Offshore turbines 

have been found to generally demonstrate higher reliability than onshore ones, except for the 

yaw subsystem. Additionally, subsystem design choices were found to be crucial, with 

hydraulic pitch systems outperforming electrical ones and direct-drive turbines exhibiting 

greater reliability than geared-drive turbines in both the drive train and power generation 

subsystem. 

These insights of Chapter 10 highlight the importance of advanced reliability modelling over 

simplistic failure rate assumptions and underscore the value of large-scale field-data collection. 

The results provide essential guidance for manufacturers, operators, and maintenance planners, 

supporting field-data-driven decisions for design optimisation and O&M strategies. 
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12.1.5 Discussion and evaluation of the impact using different reliability 

models for O&M simulations 
Chapter 11, along with Section 10.3.3, has assessed the impact of using different reliability 

modelling approaches for O&M simulations and subsequent decision making. The two 

reliability modelling concepts of the thesis have been compared: a simpler method using 

average failure rates per MW and year and a more advanced multivariate approach utilising 

NHPP regression modelling. While average failure rates offer a straightforward baseline, they 

fail to account for time-dependent failure behaviour and influencing factors such as turbine 

size, technological advancements, and operational conditions. 

The comparison highlights the limitations of traditional reliability assessments and 

demonstrates the advantages of NHPP regression models, which enable a more accurate 

representation of reliability. In particular, the results confirm that failure intensity increases 

with turbine size but not in a strictly proportional manner, as suggested by the per-MW 

approach.  

When used as input for O&M simulations, the choice of reliability modelling methodology 

significantly impacts maintenance planning, spare parts logistics, and cost estimations. Relying 

on average failure rates for O&M simulations, without accounting for time-dependent 

behaviour, turbine size, or other influencing factors, can result in: 

• Misestimation of maintenance interventions, leading to inefficient O&M strategy 

development 

• Inaccurate spare parts planning, increasing the risk of costly downtimes due to 

component unavailability 

• Suboptimal long-term financial planning, as O&M cost projections may not accurately 

capture actual failure trends and influencing factors 

Compared to the widely used reliability figures of Carroll et al. [12], which were derived from 

smaller turbines (~3 MW), the models developed in this thesis provide updated failure rates for 

larger turbines of up to 9 MW, addressing a critical data gap. The research underscores the 

importance of integrating time-dependent and covariate-based failure modelling into O&M 

simulations to improve cost-effectiveness and operational efficiency. However, if a simplified 

approach is required, scaling failure rates per MW remains preferable to assuming constant 

failure rates across different turbine sizes. Finally, ensuring that O&M simulation inputs are 

based on datasets reflecting turbines of similar rated power is essential to maintaining accuracy 

and avoiding the risks associated with extrapolation to significantly larger turbines.  

12.2 Thesis contributions to knowledge, research, and industry 

The contributions of this thesis to both academic knowledge and industrial applications are 

outlined in the following section. Each of the defined objectives (Section 1.3), which have been 

successfully achieved, is evaluated in terms of its novelty, scientific soundness, and practical 

relevance, as summarised in Table 22. The findings, methodologies developed, and insights 

gained throughout this research have been disseminated through multiple publications in peer-

reviewed scientific journals, as well as oral presentations at scientific conferences, as detailed 

in Section 1.4 and Appendix A.  
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Table 22. Contribution to knowledge, research and industry of this thesis’ research 

Objective Novelty Scientific soundness Value / Stakeholders 

Investigate and 

classify existing 

reliability figures for 

onshore and offshore 

wind turbines and 

derive suitable 

reliability assessment 

methods and metrics 

- A comprehensive review of existing reliability data has 

been conducted, highlighting the shortcomings and 

limitations of previously published studies. 

- Advantages and disadvantages of different reliability 

assessment methods and metrics have been thoroughly 

investigated. 

- A systematic literature review is 

conducted through a comprehensive 

analysis of existing studies and 

comparative assessment with similar 

review studies. 

- A transparent overview of prior work in 

the field of reliability modelling is 

given, presented both as an overarching 

review at the beginning of the thesis and 

as topic-specific evaluations within 

individual chapters. 

- The review is not only relevant for 

researchers and academics but also 

provides valuable insights for wind farm 

developers and operators by highlighting 

the limitations of existing reliability 

studies and the necessity for further 

research. 

Develop a framework 

for economic 

feasibility studies of 

offshore wind farms 

considering relevant 

input parameters to 

quantify their impact 

on output 

- A comprehensive Economic Life Cycle Simulation and 

Assessment (ELSA) framework has been developed, 

integrating a cost-revenue model that accounts for both 

CAPEX and OPEX components, as well as revenue 

factors. 

- The framework incorporates wake and blockage effects 

and is used to evaluate all offshore wind farms in the 

German North and Baltic Seas. 

- A comprehensive economic life cycle 

simulations and assessment framework 

has been developed to evaluate the 

economic feasibility of wind farm 

operation. 

- To assess the potential for extended 

operation of all German offshore wind 

farms, a classification of existing wind 

farms in German waters has been 

conducted based on their size and key 

characteristics. Model inputs have been 

sourced from literature and refined 

through stakeholder interviews. 

- The limitations of both the model and 

input data have been examined, with 

their impact on the results quantified. 

- Beyond benefiting researchers, 

academics, and wind farm developers as 

well as operators, this study has 

provided relevant insights for the 

German Federal Maritime and 

Hydrographic Agency (BSH) in the 

context of the “Further Development of 

the Framework Conditions for the 

Planning of Offshore Turbines and Grid 

Connection Systems”. The research has 

been conducted as part of an advisory 

project supporting the development of 

the Site Development Plan and was 

subsequently published as an annex to 

the plan8, serving as a foundation for the 

decisions made within its framework. 

 
8 BSH - Flächenentwicklungsplan - Endbericht - Weiterentwicklung der Rahmenbedingungen zur Planung von Windenergieanlagen auf See und Netzanbindungssystemen 

https://www.bsh.de/DE/THEMEN/Offshore/Meeresfachplanung/Flaechenentwicklungsplan/_Anlagen/Downloads/FEP_2023_1/Endbericht_FEP_2023_Beratung.html?nn=280068
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Objective Novelty Scientific soundness Value / Stakeholders 

Assess the challenges 

of deriving reliability 

metrics and evaluate 

the impact of 

differently applied 

methods for 

preprocessing and 

digitalisation of 

maintenance reports 

- A digitalisation workflow has been developed to 

convert heterogeneous, unstructured, and non-

standardised maintenance reports into a machine-

readable data framework. This framework includes 

classified components maintained during turbine visits 

and standardised maintenance activities.  

- The feasibility of using text classifiers for 

preprocessing wind turbine maintenance reports has 

been evaluated, demonstrating their potential to 

significantly reduce manual data preprocessing efforts. 

- The influence of different classification methods on 

reliability key performance indicators has been 

analysed. 

- Preliminary tests have been conducted 

using three different model architectures 

– support vector machine (SVM), 

convolutional neural network (CNN), 

and a fine-tuned transformer variant 

(XLM-RoBERTa). Following 

evaluation, the SVM approach has been 

selected for implementation due to its 

superior performance in this context and 

lower computational demands. 

- Classification models have been trained 

on 26 different test scenarios with 

varying training datasets to assess 

performance, including the applicability 

of derived text classifiers to new 

datasets from other wind farms.  

- Manually labelling has been compared 

to automated text classification, 

analysing the impact of different 

preprocessing approaches on failure rate 

calculations to better understand their 

advantages and limitations. 

- This study has generated important 

insights for machine learning and text 

classification researchers by applying 

existing model architectures to the 

specific context of wind turbine 

maintenance records. The findings 

challenge common assumptions in 

machine learning for this application, 

contributing to the further refinement of 

text classification models. Additionally, 

the research offers practical value for 

wind farm operators by assessing the 

suitability of text classifiers, quantifying 

associated risks, and providing 

recommendations for the digitalisation 

of maintenance reports, thereby 

reducing manual processing efforts. 

Furthermore, the evaluation of industry 

interviews on the practical use of 

classifiers has uncovered an unexpected 

diversity in preferences for classifier 

configurations. These findings are 

particularly relevant for product 

developers aiming to commercialise text 

classification services. 
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Objective Novelty Scientific soundness Value / Stakeholders 

Develop reliability 

models of wind 

turbine subsystems 

and chosen 

components based on 

real-world O&M data 

- A unique dataset has been compiled and utilised in this 

thesis, encompassing a total of 1335 onshore and 

offshore wind turbines with 5539 years of operation. 

The dataset spans from 2006 to 2024 and includes 

turbines with rated capacities of up to 9 MW, covering 

various turbine designs and manufacturers. Compared 

to datasets used in previous reliability studies, this 

dataset offers an unparalleled level of diversity, scale, 

and recency. 

- Leveraging real-world data from onshore and offshore 

wind turbines, this thesis has provided a comprehensive 

analysis of failure rates, repair times, and maintenance 

resource requirements. O&M simulation input has been 

developed for 29 different subsystems, covering major 

component replacements, as well as corrective and 

preventive maintenance interventions.  

-  The failure behaviour of the entire wind turbine system 

and the seven most important subsystems has been 

analysed over time using Nelson-Aalen plots. The 

impact of various covariates on reliability has been 

assessed through a non-homogeneous Poisson process 

model, incorporating a systematic covariate selection 

procedure to identify factors with a significant effect. 

- Two in-depth reliability analyses have been conducted 

for the pitch and converter subsystems, identifying the 

most frequently failing components. A comparative 

assessment of electrical and hydraulic pitch systems has 

been performed, along with an evaluation of the 

influence of OEMs, wind turbine rated capacity, and 

seasonal patterns. Additionally, for the first time, the 

reliability of medium-voltage and low-voltage power 

converters has been systematically compared, providing 

detailed insights into the distribution of failures, 

seasonal trends, and failure behaviour over time. 

- Datasets have been systematically 

curated following established standards 

and guidelines, including the Reference 

Designation System for Power Plants 

(RDS-PP) and the ZEUS state-event 

cause code, ensuring comparability and 

clarity of the results. 

- Different influences on failure rates 

have been systematically analysed. 

Given the strong correlation between 

failure rates and turbine rated capacity, 

failure rates have been presented per 

MW and year to enhance comparability 

and applicability of results.  

- Aggregated failure rates have been 

derived from a diverse fleet of turbines, 

encompassing multiple turbine types and 

manufacturers, ensuring the 

representativeness and robustness of the 

findings.  

- Confidence intervals for the failure rates 

have been computed to quantify the 

uncertainty stemming from the size of 

the datasets. 

- For the development of multivariate 

reliability models, a subsampling routine 

has been implemented to account for 

uncertainties in the covariate selection 

procedure. This approach generates 

inclusion rate plots, which quantify the 

likelihood of a given covariate 

significantly influencing the reliability 

of a specific subsystem. 

- This thesis highlights the critical need 

for the continuous collection and 

analysis of large-scale field data to 

improve wind turbine reliability.  

- The findings offer essential insights for 

manufacturers, operators and 

maintenance planners, facilitating field-

data based decisions for design 

optimisation, O&M strategies, and 

lifetime extension initiatives. 

Furthermore, the findings are of 

significant value to wind farm 

developers who need to make 

assumptions about reliability for OPEX 

modelling and business case 

evaluations, particularly for new market 

entrants with limited operational 

experience. 

- This study supports researchers, 

academics, and industry professionals, 

by providing updated reliability figures 

and O&M simulation inputs. It offers a 

viable alternative to the widely used but 

from today’s perspective outdated study 

of Carroll et al. published in 2015, 

addressing the lack of more recent data 

sources. 



 

139 

 

Objective Novelty Scientific soundness Value / Stakeholders 

Evaluate the impact of 

using different 

reliability inputs for 

O&M simulations by 

comparing the 

developed reliability 

models with previous 

published ones 

- A comparative analysis of three distinct reliability 

modelling approaches has been conducted: the two 

methods developed in this thesis – average failure rates 

per MW of rated turbine capacity per year, and 

multivariate reliability modelling to separate and 

quantify the effects of factors such as design, 

technological advancements, rated capacity, and 

operating age – alongside the widely used study by 

Carroll et al.  

- The impact of applying these different models in O&M 

simulations has been assessed. The limitations of 

average failure rates and the advantages of NHPP 

regression modelling have been discussed. Based on 

these findings, key factors that must be considered in 

O&M simulations have been identified, along with the 

potential consequences of neglecting these 

considerations. Additionally, recommendations are 

provided on deciding to use failure rates per WT or per 

MW when a simplified approach is desired.  

- A thorough comparison of three distinct 

reliability modelling approaches has 

been conducted by systematically 

evaluating the models across five key 

subject areas, encompassing a total of 25 

subcategories.  

- The recommendations provided are 

grounded in the results of the field-data 

based analyses derived from a large and 

representative dataset, ensuring a solid 

foundation for the conclusions drawn.  

- A decision framework for selecting 

appropriate reliability models as input 

for O&M simulations has been 

presented, offering valuable guidance to 

academics, researchers, and industry 

practitioners.  

- The consequences of using average 

failure rates for O&M simulations, 

especially when not adjusted for time-

dependent behaviour, turbine size, or 

other influencing factors, have been 

outlined. This supports stakeholders 

across the value chain in understanding 

the associated risks and limitations and 

helps wind farm developers and 

operators grasp the impact on O&M 

strategy development and long-term 

financial planning. 
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12.3 Future work and outlook 

Building upon the findings of this thesis, several key areas for future research have been 

identified to enhance the applicability and accuracy of wind turbine reliability modelling. 

A primary focus will be on continuously updating the dataset to ensure the relevance of the 

derived reliability figures and models also in the future. Given the rapid technological 

advancements in wind energy, maintaining a dataset that reflects the latest turbine generations 

is crucial for supporting effective O&M strategies of recent and future wind farms. 

Further efforts will be directed toward a more detailed assessment of specific subsystems, 

following the approach already applied to the pitch and power converter systems. This will 

involve breaking down failures to the component level, enabling a more granular understanding 

of failure modes, failure mechanisms and their contributing factors. Additionally, while the 

current NHPP regression models have been applied with a limited set of covariates focused on 

critical subsystems, future work will extend this methodology to additional subsystems as well 

as components and integrate new covariates, particularly those related to operating conditions. 

This approach will go beyond time- and design-based failure modelling by incorporating 

environmental and load-dependent influences. 

Further advancing reliability modelling methodologies is another key area of future research. 

Studies such as [206] and [43] have demonstrated the potential benefits of incorporating time-

dependent covariates in NHPP regression models and modelling distinct failure behaviour of 

different phases of the bathtub curve. These approaches have provided new insights in power 

converter reliability, such as the influence of electrical utilisation on converter reliability 

primarily during the deterioration phase whereas environmental factors predominately 

influence early failures. Building on these findings, further methodological improvements will 

be explored, including refined strategies for integrating reliability models into O&M 

simulations. 

Beyond methodological advancements, the research outcomes have practical implications for 

various applications, including wind-turbine design, wind farm development, lifetime 

extension strategies, and reliability control. A particularly promising avenue is the development 

of site-specific reliability models. The RUN25+9 project aims to implement a novel two-stage 

Bayesian approach, combining prior knowledge from a large turbine fleet (A-priori reliability 

model) with wind-farm-specific operational and failure data (A-posteriori reliability model). 

This will allow for the generation of wind farm-specific reliability models that account for key 

trends in failure behaviour and relevant covariate effects while overcoming the limitations of 

small-scale datasets. 

Overall, these future developments will further refine wind turbine reliability analysis and 

support the continued cost reduction and operational optimisation of wind energy systems. 

12.4 Concluding remarks 

The findings of this thesis highlight the critical importance of continuously collecting and 

analysing field data to improve wind turbine reliability modelling and operational decision-

making. Ensuring that data is systematically gathered in a machine-readable and standardised 

 
9 RUN25+ 

https://www.iwes.fraunhofer.de/en/research-projects/current-projects/run25-.html
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format from the beginning of wind farm operation enhances efficiency and facilitates more 

valuable analyses. 

To maximise the value of reliability assessments, wind farm developers and operators should 

prioritise data availability and clarify data ownership between operator and OEM early in the 

project development phase. Establishing clear protocols for data access and management will 

enable more comprehensive long-term analyses, ultimately supporting better-informed O&M 

strategies. 

Furthermore, the choice of input parameters for O&M simulations and OPEX modelling has a 

significant influence on the overall business case of wind energy projects. Accurate and field-

data based reliability figures are essential for optimising O&M strategies, reducing downtime, 

and improving cost efficiency. By leveraging high-quality, representative datasets, 

stakeholders can ensure that their reliability models reflect real-world conditions, leading to 

more effective decision-making and improved operational performance. 
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Appendix A – Additional dissemination activities 
 

Additionally to the paper publications in conference proceedings and scientific journals listed 

in Section 1.4, parts of the research work were presented at the following conferences:  

• Wind Energy Science Conference WESC 2021, Hannover: Julia Walgern, Paul 

Hentschel, Katharina Fischer “Reliability of electrical and hydraulic pitch systems 

in wind turbines” 

• Ocean Energy and Maritime Transport Research Conference OEMT 2022, Glasgow: 

Julia Walgern “Analysis of Uncertainty and Impact on Reliability KPI Calculation 

using Text Classifiers for Standardising Maintenance Information of Wind 

Turbines” 

• EERA DeepWind Conference 2023, Trondheim: Julia Walgern, David 

Baumgärtner, Johannes Fricke, Niklas Requate, Martin Dörenkämper, Tobias 

Meyer, Lukas Vollmer “Economic feasibility study for continued operation of 

German offshore wind farms” 

• Wind Energy Science Conference WESC 2023, Glasgow: Julia Walgern, Karoline 

Pelka, Volker Berkhout, Linda Rülicke, Joshua Gelhaar, Timo Lichtenstein 

“Findable, Accessible, Interpretable, and Reusable Wind Energy Data Utilising a 

Data Trust Model Based on International Data Spaces Infrastructure” 

• Forschungsverbund Erneuerbare Energien (FVEE)-Jahrestagung 2024 (Renewable 

Energy Research Association Conference 2024), Berlin: Julia Walgern “Offshore-

Windenergie - Technologien für Gigawatt-Windparks“ 

• Wind Energy Science Conference WESC 2025, Nantes: Julia Walgern, Fraser 

Anderson, Katharina Fischer “Field-data based wind turbine reliability modelling: 

Quantifying effects of design, technological development, operating age and 

environmental and load conditions” 

Further involvement in publications during the EngD but which were not directly used for this 

thesis is listed below: 

• M. A. Lutz, K. Beckh, J. Kindermann, J. Schneider, J. Walgern, S. Pfaffel, S. Faulstich 

and A. Staak, 2021. “Digitalisierungsworkflow zur Strukturierung und 

Standardisierung von Instandhaltungsinformationen von Windenergieanlagen”. 

Gesellschaft für Informatik, Lecture Note Informatics, pp. 229-249, 2021. 

• Katharina Fischer, Karoline Pelka, Julia Walgern, 2023. “Trends and Influencing 

Factors in Power-Converter Reliability of Wind Turbines”. PCIM Europe 2023, doi: 

10.30420/566091068. 

• Julia Walgern, 2025. “Offshore-Windenergie - Technologien für Gigawatt-Windparks“ 

Forschungsverbund Erneuerbare Energien (FVEE)-Jahrestagung 2024 (Renewable 

Energy Research Association Conference 2024), Tagungsband-Beitrag, doi: 

10.5442/t2024. 

• Fraser Anderson, Karoline Pelka, Julia Walgern, Timo Lichtenstein, Katharina Fischer, 

2024. “Trends and Influencing Factors in Power-Converter Reliability of Wind 

Turbines: A Deepened Analysis” IEEE Transactions on Power Electronics, doi: 

10.1109/TPEL.2025.3530163. 
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• Fraser Anderson, Julia Walgern, Katharina Fischer, 2025. “Early, Intrinsic and 

Deterioration Stage Wind Turbine Reliability Models: A Case Study for the Converter 

System”, Submitted to Journal of Physics (DeepWind 2025) for publication. 

Furthermore, collaborative research and industry projects were conducted during the course of 

the EngD, though they were not directly incorporated into this thesis. The published final 

project reports are listed below:  

• Christian Broer, Kirsten Dehning, Katharina Fischer, Sören Fröhling, Nando Kaminski, 

Benedikt Kostka, Sebastian Kremp, Timo Lichtenstein, Axel Mertens, Karoline Pelka, 

Jan-Hendrik Peters, Oliver Schilling, Bernd Tegtmeier, Jörg Thiele, Julia Walgern, 

Johannes Wenzel, Stefan Zimmermann, Christian Zorn, 2023. “ReCoWind – 

Zuverlässige Frequenzumrichter für Windenergieanlagen”, Final project report, doi: 

10.24406/publica-1961. 

• Marc-Alexander Lutz, Daniel Zahn, Katharina Beckh, Jörg Kindermann, Juliane 

Schneider, Julia Walgern, Andreas Kluge, Falko Feßer, Holger Thiemann, 2023. 

“DigMa – Digitalisierung von Instandhaltungsinformationen”, Final project report. 

• Martin Dörenkämper, Tobias Meyer, David Baumgärtner, Johanna Borowski, Christian 

Deters, Enno Dietrich, Johannes Fricke, Florian Hans, Torben Jersch, Mareike 

Leimeister, Mohsen Neshati, Georg Pangalos, Tulio Quiroz, Gesa Quisdorf, Niklas 

Requate, Jonas Schmidt, Marco Schnackenberg, Sandra Schwegmann, Severin Spill, 

Philipp Thomas, Lukas Vollmer, Julia Walgern, Viktor Widerspan, 2022. 

“Weiterentwicklung der Rahmenbedingungen zur Planung von Windenergieanlagen 

auf See und Netzanbindungssystemen”, 2023. Final project report, doi: 

10.24406/publica-2202.  

• Alexander Arzt, Volker Berkhout, Joshua Gelhaar, Angelina Göbel-Knapp, Sebastian 

Haugk, Abderrahmane Khiat, Timo Lichtenstein, Tasneem Tazeen Rashid, Linda 

Rülicke, Waleed Shabbir, Julia Walgern, 2024. “FAIRWinDS – Findable, Accessible, 

Interpretable and Reusable Wind Energy Data in Data Spaces”, Final project report. 

• Jannik Barthel, Katharina Fischer, Sören Fröhling, Karoline Pelka, Juliane Schneider, 

Bernd Tegtmeier, Jannes Vervoort, Julia Walgern, Christian Zorn, Victoria 

Zimmermann, Tamara Reck, Michael Jank, Bianca Böttge, Sandy Klengel, Elisabeth 

Giebel, Falk Naumann, Felix Kulenkampff, Sebastian Franz, Stefan Wagner, Frederic 

Sehr, Amrita Bohn, 2024. “Zuverlässige Umrichter für die regenerative 

Energieversorgung (power4re)”, Final project report.  
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Appendix B – Wind turbine clustering into representative 

generic WT models 
The following aspects are taken into account in the procedure for grouping the turbines into 

three WT size classes: First, the entire power class spectrum of the existing WTs should be 

covered. Second, since the overall lifetime extension evaluation concerns the service life and 

thus the fatigue loads of the WTs, the focus of the classification is on mapping comparable 

loads. Therefore, comparable rotor diameters and hub heights are particularly relevant. 

Furthermore, technologies (direct vs. geared drive) should preferably match within one generic 

turbine type. Last, the representation of the different WT types by only three generic WTs 

necessarily involves deductions in the accuracy of the results per WF, since the generic WTs 

are only representative of, but not equal to, the real WTs and, moreover, are intended to 

represent several different WTs in each case. In order to reduce additional uncertainties 

inherent in the generic models, existing generic reference WT models that have already been 

used for many years should preferably be used as generic WTs, provided that they can represent 

the existing WTs, i.e., the above two aspects regarding grouping can be fulfilled. 

Based on the requirements and aspects listed, the existing WTs are grouped into three size 

classes as colour-coded in Table 23. The weighted mean of rated power, rotor diameter and hub 

height is computed by using the number of turbines as weighting factor and is compared with 

the properties of the generic wind turbines. The smallest class thus comprises the SWT 2.3-93 

and the 3.6 MW WTs. While the rotor diameter is comparable, the hub height and the power 

of the SWT 2.3 is significantly lower than the other turbines in the same class. Due to the low 

number of turbines, no additional generic model is created for this turbine. The second class 

includes all WTs with nominal outputs between 4.0 MW and 5.23 MW, plus WTs with 6.15 

MW rated capacity. The intermediate WTs with 6.0 MW output are grouped in the highest 

class due to their significantly larger rotor diameters and higher hub heights. The third class 

thus includes, in addition to WTs with 6.0 MW output, all WTs with rated capacity from 6.3 

MW up to 9.0 MW.  

Table 23 also lists the power classes, rotor diameters and hub heights of the generic wind 

turbines belonging to the three classes. The following turbines are therefore used as generic 

wind turbine models: 

• Lowest power class: 3.6 MW capacity, 120 m rotor diameter, 90.0 m hub height 

• Since none of the existing generic reference wind turbines representatively depicts the 

characteristics of the lowest power class, a new generic wind turbine model is derived 

and created for this class from the existing reference wind turbines. The generation of 

this new generic wind turbine model is mainly done by applying scaling factors. To 

check the plausibility of the dynamic behaviour of the generic wind turbine model, 

selected load cases have been calculated based on the verification process developed 

and applied at Fraunhofer IWES [208]. In particular, this includes simulations with 

deterministic, stepwise increasing wind speeds as well as with turbulent wind fields. 

• Medium power class: 5.0 MW capacity, 126 m rotor diameter, 90.0 m hub height 

• The medium power class is represented by the NREL 5 MW reference wind turbine 

[209]. A generic wind turbine model exists for this reference wind turbine. 

• Highest power class: 7.5 MW capacity, 164 m rotor diameter, 102.5 m hub height 
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• The highest power class is represented by the IWT-7.5-164 reference wind turbine 

[210]. The reference wind turbine was developed at Fraunhofer IWES and has already 

been used in various research projects. For the specified hub height, the monopile 

foundation structure from the SeaLOWT joint project [211] is used. 

 

Table 23. Grouping of turbines in the existing German wind farms in three turbine size classes 

Rated power 

(kW) 
No. 

Rotor diameter (m) Hub height (m)  

Min Max Mean Min Max Mean 

2300 21 93.0 93.0 93.0 67.0 67.0 67.0 

3600 430 120.0 120.0 111.6 78.3 91.0 81.0 

4000 150 120.0 130.0 124.8 89.0 95.0 91.9 

5000 212 116.0 126.0 118.5 90.0 92.0 91.2 

5230 70 135.0 135.0 135.0 97.5 97.5 97.5 

6000 230 151.0 154.0 153.1 102.0 112.0 106.5 

6150 120 126.0 126.0 107.1 89.0 96.2 78.5 

6300 60 154.0 154.0 151.4 102.0 102.0 100.3 

6330 32 152.0 152.0 152.0 104.5 104.5 104.5 

7000 87 154.0 154.0 154.0 105.0 105.0 105.0 

8000 56 164.0 164.0 164.0 117.0 117.0 117.0 

8400 31 164.0 164.0 164.0 108.0 108.0 108.0 

9000 38 167.0 167.0 167.0 107.5 107.5 107.5 

 

3539.5    84.2   111.6 Weighted 

Mean 

3600.0    90.0   120.0 Generic model 

5007.4    89.4   119.8 Weighted 

Mean 

5000.0    90.0   126.0 Generic model 

6779.0    106.7   155.8 Weighted 

Mean 

7500.0    102.5   164.0 Generic model 
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The power curves of the reference wind turbines NREL 5 MW and IWT-7.5-164 used for the 

medium and highest power classes as well as the power curve of the scaled 3.6 MW reference 

turbine are shown in Figure 54. 

 
Figure 54. Power curves of the reference wind turbines 

Appendix C – Structure of RDS-PP, exemplary 

classification and codes 

C.1 Structure of RDS-PP 

 

Figure 55. Overview of the hierarchical structure of RDS-PP ([40], [71]) 
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C.2 Exemplary classification 
An example for a possible classification of the TDoMM in WT service reports to RDS-PP® is 

given in Table 24. 

Table 24. Example for the classification of the TDoMM according to RDS-PP 

 

C.3 Reference designation system RDS-PP 
For each maintenance measure, the concerned components are classified using the reference 

designation system RDS-PP for wind turbines [40]. In Table 25 all mentioned RDS-PP codes 

mentioned within Chapter 6 are summarised and translated. 

Table 25. Summary and translation of all mentioned RDS-PP codes within Chapter 6 

RDS-PP code Translation 

CKJ Environmental measuring system 

MDA Rotor system (incl. pitch system) 

MDA11 Rotor blade system 1 

MDK Drive train system (incl. main bearing and gearbox) 

MDL Yaw system 

MDV Central lubrication system 

MDX Central hydraulic system 

MDY Control system 

MKA Power generation system (incl. generator) 

MSC Generator switching system 

MSE Converter system 

MSE10 
Converter system overall, also denoted as “phase module” components 

including core power electronics (see [104]) 

MSE10 KF001 Control system converter system overall 

MSE40 Heating/cooling converter systems 

MSS Compensation system 

MST Generator transformer system 

MUD Nacelle 

UMD Tower system 

WBA Personnel rescue systems 

XGM Fire extinguishing system 

XMM Lifting gears 

XSD Obstacle warning system 

G Overall system energy conversion 
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