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Abstract

Around the world the incidence of lower limb amputation is on the

rise. These rising numbers puts a huge constraint on the healthcare

resources, thereby making the rehabilitative process challenging for

both the healthcare services as well as the amputee. People with a

lower limb amputation need regular rehabilitative care as their resid-

ual limb skin is prone to infections, volume fluctuations, skin break-

down etc. e-Health wearable communication systems show promise

in delivering improvements in patient care while at the same time

reducing both the demand for resources and the financial burden on

healthcare systems. These systems have the capability of monitoring,

logging and transmitting patient data to a central health authority.

This thesis investigates the design of a wearable sensor communication

platform which is capable of harvesting the data from multiple sensors

for in-situ monitoring of residual limb health in amputees. The mon-

itoring of residual limb temperature and gait is done in a contactless

way by utilising mathematical algorithms. The platform works with

an Android mobile device, in order to allow for the capture of data

from a wireless sensor unit, and to give the clinician access to results

from the sensors. The results from the analysis, carried out within the

secure server, are demonstrated to be of use for remote monitoring.

This knowledge will be useful in establishing biomarkers related to a

possible deterioration in a patient’s health or for assessing the impact

of clinical interventions.
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Chapter 1

Introduction

1.1 e-Health

Recent advances in internet and mobile communications along with a public de-

mand for health monitoring gadgets, have rendered the development of wearable

user self-monitoring devices for measuring and logging a wide range of parame-

ters such as the calories burnt, the steps taken, the body mass index, SpO2 and

heart rate extremely popular. Additionally, the popularity of smartphone apps

for health monitoring purposes is now commonplace. “In fact, it is estimated

that at least 70% of Americans monitor at least one health indicator with 60%

tracking weight, exercise and diet; while 33% track quantities such as Blood Pres-

sure (BP), glucose and sleep patterns” [1]. Although these devices and apps are

designed for the consumer market, this technology has opened up the possibility

of the application of e-Health for the purpose of routine remote patient moni-

toring by the health authorities [2]. As developing technology allows e-Health

devices to become increasingly smaller, lighter and smarter, the latter become

more attractive for use in the permanent and continuous monitoring of patients.

Such systems, if implemented for lower limb prosthetic users, will enable the re-
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mote monitoring of the amputee’s residual limb tissue health by measuring the

temperature and gait patterns. This would be useful in studying and perhaps pre-

dicting the volume fluctuation, pistioning, skin health and poor gait of the user

in advance. The architecture of such medical monitoring systems may consist

of on-body (non-invasive) or in-body sensors along with a Micro-Controller Unit

(MCU) for control and pre-processing. The communication module may consist

of a smartphone for the user interface and a transmitter in order to facilitate the

data transfer via the internet to a central server.

The data collected can be used in order to provide an early warning of serious

health threats along with the geographical location and movement patterns. If

there is a deviation in the normal behavioural pattern, it might be an indica-

tor that medical intervention is required which might then be used to trigger an

emergency response. This early warning can have multiple benefits such as the

reduction in hospital admission in already overstretched health authorities as well

as potentially saving lives. Furthermore, the need for scheduled appointments at

the outpatient clinics and doctors surgeries can also be reduced. Moreover, this

continuous monitoring can be useful in providing a more accurate evidence of the

patient health status that would otherwise remain unrecorded [3].

In the case of lower limb prosthetic users that need to be monitored continuously

for longer periods of time, it is imperative that contactless sensing techniques are

employed. Placing the sensors in direct contact with the skin would provide the

most accurate reading, but this would lead to practicality issues in the prosthesis,

such as, protruding wiring and consistent positioning of the sensors. Furthermore,

it could induce possible skin irritation and discomfort. On the other hand, embed-

ding sensors and wires into the hard-prosthetic socket during the manufacturing

process for prosthetic sockets would eliminate any of the issues described earlier.

In addition, the longevity of the device would not be impaired by the donning
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and doffing of the prosthesis.

Figure 1.1: The placement of temperature sensors directly on the residual limb even
for a short period of time leads to imprints on the skin surface which could lead to skin
irritation and chaffing.

Figure 1.1 illustrates the undesirable impact of the temperature sensors when

placed directly on the residual limb for a short period of time. This confirms that

for the long term monitoring of the in-socket temperature, a contactless approach

should be adopted in order to eliminate any increased skin irritation.

1.2 Aims of this Thesis

Lower-limb prosthetic users, particularly those suffering from diabetes, are at

an increased risk of losing the remaining ‘good’ leg because of the compromised

blood flow to the limbs and the predisposition to skin breakdown. This coupled

with the volume fluctuation of the limb within the socket can result in pistioning,

skin breakdown as well as a poor gait. A reliable continuous monitoring and

early warning system that can alert both the user and health authority would

have many benefits. Additionally, the information provided by a monitoring sys-
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tem with reference to the areas that are at risk i.e. bony prominences, could

contribute toward improving the prosthesis design. While such technologies and

principles may already exist, to date, no such early warning system has been im-

plemented, and thus a continuous monitoring system to provide an early warning

of tissue damage presents a novel approach to injury prevention. While designing

such a system, a major criteria would be reducing the financial costs associated

with it, as approximately 75% of those affected by diabetes live in middle or low

income countries [4].

Many healthcare technologies and products presume that internet access and re-

liable electricity supplies are given, which in turn renders them unsuitable for the

developing world. Hence, it is imperative to design a wearable system which is

reliable, low-priced, does not rely on a mains power supply and can operate in

the absence of internet connectivity for a considerable period of time. Further-

more, if the sensors are placed in direct contact with the skin, then a continuous

monitoring could lead to issues such as skin irritation and chaffing. Therefore,

the aim of this research is designing a wearable sensor platform for the developing

world which is capable of monitoring, logging and transmitting the patient data

to a central health authority. This research aims to incorporate the techniques for

contactless sensing that may be suitable for use within the prosthetic socket envi-

ronment in order to predict the residual limb skin temperature and gait pattern.

In order to process the recorded data sets such as to extract clinically relevant

information, machine learning algorithms are used at the server interface. This

approach can be particularly useful for rural and impoverished countries, in which

doctors work with limited resources and under challenging conditions and may

often not be available at short notice. The continuous monitoring of the residual

limb tissue health of prosthetic users would not only be useful as part of the di-

agnostic procedure, routine maintenance or during the supervised recovery from

a surgical procedure, but would also make it possible to reduce the burden on
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the overworked doctors.

Figure 1.2: Block diagram showing the interconnections between the components of
the thesis.

The structure of the thesis is shown in the block diagram of Figure 1.2. The

dependence of the residual limb temperature and of the gait pattern on the am-

bient temperature and the activity level on amputee subjects is investigated in

Chapter 3. The gait pattern at different ambient temperatures is analysed using

the complementary filter, the design of which is also discussed. The analysis of

the walking pattern of the amputee subject conducted by determining the joint

angles (in our case, the shank angle) of the residual limb will be useful in differ-

entiating between the normal and abnormal gait profile of an individual, thereby

helping to predict the occurrence of pressure ulcers.

In Chapter 4, the prosthetic materials are characterised thermally. This is espe-

cially important to investigate as the prosthesis layout also affects the in-socket

temperature to a great extent. In order to do so, the thermal time constant of

the prosthetic materials (when used individually or in combination) is calculated.

The investigation of the residual limb temperature at different ambient temper-
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atures along with the gained knowledge of the thermal behaviour of the socket-

liner materials is utilised to formulate a supervised learning algorithm, namely

the Gaussian Processes for Machine Learning (GPML), to predict the residual

limb temperature from the liner - socket interface temperature. Chapter 5 dis-

cusses the design and the results obtained from this mathematical algorithm. By

utilising this technique, the residual limb skin temperature can be monitored in

a contactless way.

Another mathematical algorithm referred to as Adaptive Neuro Fuzzy Inference

System (ANFIS) for the non - invasive temperature measurement of the residual

limb is developed. The predictive residual skin temperature results are compared

with the Gaussian Process model in Chapter 6.

In Chapter 7, the design and implementation of the wearable sensor platform is

discussed. Temperature and gait data is reliably collected, transmitted and stored

in a secure local server for post processing (utilising the mathematical modelling

and the complementary filter), which subsequently allows medical authorities to

access and review the user data in order to identify any possible deterioration

in the tissue health. Additional features for the wearable platform like battery

monitoring and introduction of estimation techniques are also discussed. The

capability of the wearable sensor platform is successfully tested on a volunteer

and the results are also summarised.

Chapter 8 contains the conclusion and the scope for future work.

1.3 Contributions to Knowledge

This research represents a seminal contribution to the prediction of the residual

limb skin temperature via a contactless approach - by utilising mathematical al-

gorithms such as GPML and ANFIS for this purpose. The comparison metrics
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were studied for both algorithms and it was determined that although any one of

them can be used for predicting the residual limb skin temperature by monitoring

the temperature between the socket and the liner, the predictions by the GPML

model are more accurate and consistent.

The results show that the hyperparameters in the GPML model are optimised

more efficiently by including the thermal time constant of the prosthetic materials

used in the prosthesis of the amputee subject. Since there was limited literature

available for the thermal behaviour of the various combinations of prosthetic ma-

terials, the thermal time constant of various socket-liner layer combinations were

experimentally evaluated.

The encouraging results of the contactless residual limb temperature monitoring,

subsequently led to the design and development of a low-power, low-cost wearable

sensor platform. This wearable sensor platform is particularly designed for lower

limb amputees, based on standard consumer-purchasable components, which are

suitable for a self-contained use when there is no reliable electricity supply or

internet connectivity available. The platform can monitor both residual limb

temperature and gait of the amputee. The platform’s design and capability has

been tested on an amputee volunteer and is verified by analysing its power con-

sumption, communication methodology and its remote accessibility of medical

data feature.

1.4 Publications arising from this Thesis

Journals

[1] N. Mathur, I. Glesk, and A. Buis, “Skin Temperature Prediction in Lower

Limb Prosthesis,” IEEE Journal of Biomedical and Health Informatics, vol-

ume 20, issue 1, year 2016, pp. 158 - 165.
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[2] N. Mathur, I. Glesk, and A. Buis, “Thermal Time Constant: Optimizing

the Skin Temperature Predictive Modelling in Lower Limb Prostheses Using

Gaussian Processes, IET Healthcare Technology Letters, volume 3, issue 2,

year 2016, pp. 98 - 104.

[3] N. Mathur, I. Glesk, and A. Buis, “Comparison of Adaptive Neuro -Fuzzy
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(GPML) Algorithms for the Prediction of Skin Temperature in Lower Limb
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Chapter 2

Overview of e-Health

2.1 Introduction

The growing use of wearable technologies has increasingly facilitated the contin-

uous remote monitoring of the patient’s physiological data. The roll-out of such

schemes shows promise in delivering improvements in patient care while at the

same time reducing both the demand for resources and the financial burden on

the healthcare systems. These wearable monitoring systems are used in order to

monitor, log and transmit patient data to a central health authority. Depending

on the patient, it is often critical that the monitoring system reliability is high

enough in order to deliver appropriate patient care and ensure patient safety. This

would be beneficial in changing the healthcare delivery models and the interac-

tion between the patient and the healthcare providers [5]. This chapter provides

an overview of the concept of e-Health and the application thereof in the field of

wearable technologies. The concept is then discussed in the context of monitoring

the residual limb health of the amputees. Additionally, the challenges associated

with the development and integration of such a solution in the healthcare services

provided to amputees are also discussed.
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2.2 The e-Health Concept

According to the World Health Organization (WHO), e-Health is an all encom-

passing term for the use of Information and Communications Technology (ICT)

in the field of healthcare. The area of e-Health is very broad and includes ap-

plications such as telemedicine, electronic records, recruitment, going paperless,

procurement, healthcare score cards, audits, information systems etc [6]. Rel-

evant examples include using this technology for treating patients, conducting

research, educating the healthcare workforce, tracking diseases and monitoring

public health across both local sites and wide geographic locations [7]. The e-

Health ecosystem is complex and includes medical devices/sensors in order to

provide the data output, a communications network for data transfer, platforms

that can process, collate and interpret the data to provide the diagnosis, and

finally the medical personnel being able to perform relevant actions such as med-

ical interventions or an emergency response as appropriate. In this context, the

successful delivery of the e-Health service is reliant on the interoperability of the

following stakeholders, also represented in Figure 2.1:

1. Communication Service Providers (fixed, mobile, satellite)

2. Patient and Family

3. Clinicians

4. Healthcare Providers

5. Health Insurance Companies

6. Diagnostic Centre

11



2. Overview of e-Health

Figure 2.1: e-Health stakeholder ecosystem.

Each of the stakeholders plays an important role in achieving end to end con-

nectivity in e-Health. An example might be that the patient is connected to a

medical module or sensor (at home or in a clinical environment) and is monitored

at a pre-defined time interval. The data is transferred via a wired or wireless com-

munication application to a central database. In the diagnostic centre, the data

is analysed, monitored and managed by the clinicians. The data can be presented

to the doctors and patients in a user specific dashboard. This monitoring is use-

ful for patients, healthcare providers and insurance companies alike. For patients

this would provide information about their own health as well as an opportu-

nity to change their relationship with the healthcare providers and the insurance

companies. The improved communication would not only facilitate remote pa-

tient/doctor consultation in the case of patients undergoing rehabilitation and for

whom interventions need to be assessed in the home and outdoor environment.

It would also enable them to support the early detection of abnormal conditions

and the prevention of serious consequences. From the point of view of healthcare

providers, this would help in the reduction of unnecessary hospital admissions,
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which are both disruptive for the patients and costly for the health authorities.

Thus, a reliable continuous monitoring and early warning system that can alert

both the user and the health authority would not only be beneficial to the patients

but its impact is also directly experienced by the health insurance companies, as

it reduces their business operation costs.

These system have the capability to improve the access to all levels of healthcare

(primary, secondary and tertiary) for a range of conditions including chronic,

psychiatric and rehabilitative care. This has led to an increase in the application

of tele-homecare by remote monitoring of the clinical parameters in a home based

environment. Such systems will, facilitate the remote monitoring of physiologi-

cal data and patient vital signs. These medical monitoring systems may utilise

on-body (non-invasive) or in-body sensors and will generally incorporate the ba-

sic components of a MCU for control and pre-processing; and a transmitter and

smartphone for data processing and data transfer via the internet to an e-Health

server and database.

2.3 Wearable Technologies

Advances in sensor technologies have led to the latter constituting an integral

part of modern medicine. Medical sensors combined with transducers are used

for detecting electrical, thermal, optical, chemical, genetic, and other signals us-

ing signal processing algorithms in order to estimate the features indicative of a

person’s health status [8]. These sensors, when interfaced with embedded com-

puting platforms make it possible to design a platform which can be wearable

by individuals for the purpose of health monitoring in daily use. By monitoring

different types of data (via different sensors) under different parameters and ac-

tivities and by subsequently correlating them, additional information about the

clinical, behavioural and mental health of a patient can be inferred.
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1. Clinical data: This can be obtained from a number of readily available mon-

itors that can measure the temperature, photoplethysmogram, heart rate,

BP, oxygenation (SpO2), respiration and glucose levels. The primary target

for this is the older population wherein the monitored data are focused on

the parameters related to the patient’s clinical condition (diabetes, cogni-

tive heart failure, pulmonary disease etc.). This type of data is integrated

in the clinical workflow of the clinicians [9]. If an abnormal condition is

developed, an alert is generated at the healthcare provider as well as the

patient’s level. Furthermore, the monitored data can be utilised for the pur-

pose of risk assessment, such that prospective abnormal conditions may be

predicted and prevented [10]. However, there are some off-the-shelf wear-

ables that are not connected with the healthcare providers and are purely

commercial in nature. The data monitored by the latter is not treated as

clinical data by the physicians. Thus, this type of data is not used for anal-

ysis purposes by the healthcare system and is effectively ‘lost’. It is hence a

challenge for the healthcare systems to securely validate and integrate this

data from patients using their own devices.

2. Behavioural data: This data collected from the wearable devices includes

information about the activity, the type of activity (running, walking, climb-

ing stairs) and daily activity patterns. This can be utilised for the purpose

of early detection as well as to gain a better understanding of patient con-

ditions such as motor conditions associated with the Parkinson’s disease,

along with posture and gait issues using related indicators [5,11,12]. Apart

from focusing on the elderly population for determining the risk of falls and

daily living assessment, the behavioural data can be used to monitor the de-

gree of wellness in healthy people. Many commercially available wearables

as well as the sensors embedded in the smartphones, when linked to the

Global Positioning System (GPS) and self-help tools on the smartphone,
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can help in the early detection of some risks. However, this data is solely

provided to the user and it is not shared with the healthcare providers.

For the elderly population, such wearable devices are equipped with an

emergency button for fall detection and location identification in the case

of dementia. These services are linked to emergency centres and are not

available to the health carers. If this information is shared with the care

providers, the actual condition of the patient can be accessed by the physi-

cian.

3. Mental health data: The assessment of the mental health and cognitive

conditions can be conducted by using wearable technology [9, 13, 14]. For

instance if a patient tends to fall, then the monitored data can be used to

analyse whether there is a cognitive decline or what stage of dementia the

person is at. Studies have shown that 39% of patients of all ages suffer

from depression and/or anxiety [15]. Physiological stress and disturbed

sleeping patterns, if monitored can serve as indicators for the mental health

problems. At present, monitoring health data is in the pilot phase and it is

not yet implemented in the healthcare programme. By implementing them

in the care process, the quality of care can be improved and the cost of

treatment can be reduced.

Wearable technologies have the ability to open up new avenues for patients,

healthcare providers and insurance companies by providing new information and

knowledge. The use of this knowledge can help develop new analytical tools for

the early detection and treatment of chronic pathologies. The implementation

of wearables in healthcare is still in its infancy and will develop in the coming

years. However, for its successful implementation, certain challenges which are

subsequently discussed in the next section need to be addressed.
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2.4 Challenges for Wearable Technologies

In order to become ubiquitous, such a monitoring system must be portable, wear-

able, comfortable, secure, robust and, most critically reliable in terms of the

measurement, logging and communication of data. Lost patient data due to un-

reliable mobile communications could compromise patient safety, whereas false

alarms could become costly and potentially deplete the limited healthcare re-

sources. While it is clear that false alarms should be avoided as much as possible,

this must not be done at the cost of the patient’s safety. Many of the patients

who would most benefit from such a monitoring system will be the elderly, the

disabled and the infirm, it is desirable that the monitoring system should not

only require a minimum amount of user intervention, but should in turn also be

well tolerated by the patient. In particular, it is important to make the system

as small and light as possible. For example, the incorporation of devices into a

ring or a watch has been suggested [16].

However, some of the issues of concern pertaining to the realisation of the afore-

mentioned requirements are the power consumption of the device and the longevity

of the battery between charges. Ideally, the device battery should be able to sup-

ply enough charge to power the device for extended periods of time. However,

the current battery technology is not delivering the improvements in capacity

currently demanded by the development of smaller, more resource-hungry de-

vices. Reducing the battery size results in poor battery life between charges and

the current technology has therefore proved to be detrimental to prospective de-

vice miniaturisation. In fact, the annual improvement thereof is relatively slow

compared to the increase in the power demand, with the battery capacity being

estimated to improve by only 8% per year [17]. The ubiquitous lithium bat-

tery, widely adopted due to its relatively high safety/capacity characteristics, is

reaching its peak. New battery technologies are under investigation in order to
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improve energy density, however most of these contain toxic or highly flammable

materials - for example hydrogen fuel cells - and are therefore not suitable for

human monitoring applications. In short, while devices are decreasing in size,

the battery size cannot be reduced without incurring a severe penalty in relation

to the level of charge it can hold. In fact, many wrist-worn smart devices must

be charged on a daily basis, with the most efficient thereof having to be charged

at least once every 2 days.

In the absence of adequate battery technologies, it is clearly necessary to min-

imise the device power consumption and to consider possible solutions, such as

incorporating alternative power sources (kinetic, heat or solar), in order to supple-

ment the battery charge. Moreover, the design of the devices operating using the

CMOS technology in the sub-threshold region may provide an answer for some

applications by extending the battery life up to 10 fold [18]. However problems

exist with the process, voltage and temperature range limitations which could

adversely affect the key device requirement in terms of reliability. It is however

crucial for the monitoring devices that are placed in direct human contact, to be

able to operate under varying environmental conditions.

The monitored data can be transmitted to a central health database using three

different modes of communication, namely Bluetooth, Wi-Fi and cellular technol-

ogy. In many e-Health sensing applications, Bluetooth is used for transmitting the

data collected from the sensor(s) to the smartphone [19]. Bluetooth is a suitable

wireless technology for remote health monitoring due to its inherent simplicity,

adaptability and security. Additionally, its incorporation is ubiquitous in modern

mobile phones and PCs. Bluetooth technology is designed to have very low power

consumption and, as such, uses less than 3% of the power required by a Wi-Fi

connection for the same tasks. For example, sending data at the rate of 75 bytes

per second over Wi-Fi requires approximately 80 milliwatts of electrical power.
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Sending data at the same rate over Bluetooth consumes only 2 milliwatts [20].

Another challenge for healthcare providers is represented by the amount of data.

Wearable monitoring systems generate a significant amount of data. Healthcare

providers be responsible for treating the data despite the existing constraints in

terms of privacy and security.

The standardisation of data in the healthcare domain is not well defined and

as such one of the barriers to the adoption thereof is the implementation of the

e-Health development standards. There has been a global incentive encourag-

ing projects to develop and define the data flow standards for the purpose of

monitoring and integration within the e-Health domain.

2.5 State of the Art

Lower limb amputees are subjected to functional limitations and continued health

problems including gait asymmetries [21–23], skin breakdown [24–26], reduced ac-

tivity level [27,28] and decreased walking speed [21,29]. These issues collectively

contribute to a decline in the quality of life of the amputees. From healthcare per-

spective, this rehabilitation process is both time consuming and expensive [30].

Therefore, in order to address the health of the residual limb in amputees, remote

monitoring strategies and/or tools are needed.

Periodic clinical check ups are the standard procedure for the rehabilitation pro-

cess of amputees. Although, continuous assessment in other environments (home

or community) provides a variety of benefits (such as a reduced number of hospi-

tal visits, reduced medical costs and improved quality of life), the implementation

of remote monitoring for the same purpose is largely unseen.

For lower limb amputees the prosthesis provides an ideal housing vehicle for

wearable sensors. By attaching the sensors or by integrating them within the
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prosthesis it would be possible to alleviate the risk of discontinuous data. Further-

more, the addition of the modest weight of the wearable device on the prosthesis,

would not appear to affect movement or the metabolic energy expenditure while

walking [31–33]. In order to obtain the residual limb health parameters, several

monitoring devices have been mentioned in the literature. But in order to obtain

information about the prosthetic patient’s activity and the impact thereof on the

residual limb the following sensors are widely used - accelerometers, strain gauge

based devices (in order to measure pressure), temperature sensors and humidity

sensors in the sockets.

Accelerometer based devices are used to measure the motion of the amputee

along the reference axes. Resultantly, they can be utilised in order to monitor

the intensity and frequency of human movements which can be subsequently in-

terpreted so as to classify the body postures (orientations). They require low

power for operation purposes and are very sensitive. Because of their sensitiv-

ity, they need to be properly oriented to the patient in order to obtain accurate

data [34]. The capability of the accelerometer based wearable devices for pos-

ture and movement classification has been studied extensively. Various statistical

schemes which are based on a supervised learning approach have been utilised for

the same purpose. For example, the k -nearest neighbour classification [35, 36],

support vector machines [37,38],the Gaussian mixture model [39] and the hidden

Markov model [40, 41] are used in order to describe the probability of activities

and transition between possible activities. Accelerometers can also estimate the

energy expenditure due to motion by measuring the physical activities [42, 43].

However, the accelerometer based devices are probably best known for the anal-

ysis of the gait pattern. Studies on young, elderly and disabled people have been

conducted in order to analyse their gait symmetry w.r.t velocity, step length and

walking surfaces [44–46].
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Mapping the pressure in the prosthesis would provide valuable information about

the health of the tissue in the residual lower limb as well as facilitate the de-

tection of the formation of the skin surface and pressure ulcers. Studies on the

measurement of the socket pressure have been documented since 1954 [47] and

are still being continued to this day [48, 49]. For monitoring the interface pres-

sure, strain-gauge (resistive sensors) are typically used. These sensors are small,

light weight and have small power requirements. However, a drawback of these

sensors is that they have a tendency to drift over a period of time, thus rendering

the data unreliable. With the recent advances in technology, the principles of

piezoelectricity are being widely applied as the basis for pressure and force mea-

surement transducers [50]. Piezoelectric materials represent a class of dielectrics

that have asymmetric crystalline structures and that can be polarised by means

of an electric external electric field or upon the application of a mechanical pres-

sure. Thus, the charge produced is proportional to the pressure applied. In some

materials such as Polyvinylidene fluoride (PVDF) and Poly(vinylidene fluoride

trifluoroethylene) (P(VDF-TrFE)), the piezoelectric effect can be enhanced in

the material by poling. Both PVDF and P(VDF-TrFE), have been successfully

used as pressure sensors for several years [51], and more recently for the purpose

of energy harnessing [52]. Piezoelectric devices require no power supply, since a

charge is developed across the piezoelectric material proportional to the applied

force, thus producing an output voltage which may be measured directly. How-

ever, a drawback in their application for use within prosthetic sockets is that the

sensors used in the measurement of such useful quantities such as pressure are

generally fabricated on rigid substrates. These rigid substrates cannot be allowed

to have prolonged contact with the skin as it may cause the skin to break when

stressed. It is therefore desirable to have a flexible and wearable system in order to

overcome these difficulties. Thin film polymer pressure sensors show potential in

the production of cheap and very flexible sensor arrays which are bio-compatible
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i.e. flexible, non-chemically reactive and resistant to corrosion [53]. The sensors,

if placed strategically in the array, can help in extracting a maximum amount of

information [54].

Studies on the temperature within the prosthetic sockets of transtibial prosthetic

users have been described by Peery et al. [55,56]. They investigated the in-socket

temperature of five transtibial amputees at 14 different locations on the resid-

ual limb and at four different stages, i.e., donning, steady-state resting, initial

walking, and steady state walking. Their results indicated that the thermal dis-

sipation characteristics of the socket and liner restrict heat loss from the residual

limb and that the temperature increase is larger in areas where there is more

muscle bulk. It was also observed that different socket and liner materials affect

the temperature increase in the residual limb in a different manner. Additionally,

these temperature rises were different between patients. The impact of the envi-

ronmental factors has also been investigated by Klute et al. [57,58] by observing

the in-socket residual limb temperature at four locations throughout a whole day.

Simultaneously, they recorded environmental temperature, humidity, and also the

activity of the patient. It was found that the in-socket residual limb temperature

increased gradually throughout the day, and that an increase in activity caused

a further increase in temperature. Moreover, the environmental humidity and

temperature influence the perception of the whole body and the residual limb

thermal comfort [59]. The limitations to this study were the small sample size

and the variation of the prosthetic liners and socket materials between patients.

The population on which these studies were conducted was small. Hence, a gen-

eralised statement about the temperature of the residual limb skin cannot be

made.

However, most of these studies have been based in clinical environments and there

is a need to develop them for the home monitoring systems. Additionally, for the
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development of a wearable sensor platform, all these sensors should be included

such that the limb parameters can be known. This would be an important step

in understanding the overall health status of the residual limb of an amputee.

2.6 Need for Non-Invasive Measurement in Pros-

thesis

Driven by the changing demographics of the UK population and the increasing

global burden of disability, the key objective of many government agencies, in-

cluding health departments, is to extend the independent living and well-being of

ageing and disabled populations. In Scotland, one of the key areas of the national

programme for health is to focus on the development of innovative, scalable tech-

nological solutions compatible with the e-Health concept which will be capable

to support the changing health and social care landscape in Scotland.

Worldwide, one individual loses a limb every 30 seconds as a consequence of the

complications of diabetes alone. The social and economic consequences of such

traumatic amputations are devastating, and even with determined focus on the

prevention of amputation, millions of individuals will need and expect prosthetic

care for generations to come. Research and development within this field is still

in its infancy, and much work is required in order to improve prosthetic designs

that deliver optimum patient comfort and functionality. One of the greatest chal-

lenges is the interaction between the prosthetic socket and the limb which must

support the human weight. When this interface is unsuitable or compromised, it

can entail severe consequences for the individual and high costs in order to cor-

rect the problem which could have been largely prevented by means of adequate

monitoring.

For monitoring the residual limb health in prosthesis, the most obvious way is
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to place sensors at the skin level in order to measure the relevant parameters of

the limb soft tissue including blood flow, oxygenation, pressure, temperature etc.

However placing sensors and wires directly against the skin could cause irritation

and chaffing over a short period of time. Another option is to embed wires and

sensors in an elastomer for the purpose of monitoring. But this is not practical as

it eventually results in elastomer failures because of the high strain induced when

donning a liner (amputees roll the liners onto their limbs). This can be overcome

by placing the relevant sensors at the liner-socket interface and utilising math-

ematical algorithms in order to predict the relevant limb tissue parameter from

the monitored sensor data. The idea underlying is the development of a battery

powered wearable sensor platform for lower limb amputees which would facilitate

the in-situ monitoring of the residual limb within a below the knee type of pros-

thesis in a non-invasive manner. The obtained data is transferred to a central

health database where it is processed and if the threshold is achieved a warning

signal will be sent wirelessly. A copy of the data can also be saved locally on the

platform. In Figure 2.2 the idea of the wearable platform with reference to the

placement and schematic thereof is depicted.

Figure 2.2: Wearable sensor platform for non-invasive monitoring in prosthesis.
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2.7 Summary

e-Health has opened up many opportunities for healthcare providers in terms

of improving the quality of life of the growing disabled population through re-

mote monitoring. All of the stakeholders in the e-Health ecosystem can benefit

from the new information and knowledge generated by the use of the wearable

technologies. With the advancement of technology, many wearables are available

commercially and can be customised for specific pathologies of the user. However,

integrating the monitored data in the healthcare providers’ record is a challenge

considering that the aspects pertaining to security, privacy and standardisation

of the same are still in their nascent stage. The focus of this thesis is the de-

velopment and implementation of an integrated wearable sensor platform that

can encompass temperature and gait sensors for remote monitoring of the resid-

ual limb parameters by utilising the principles of e-Health. This knowledge will

be useful in establishing the biomarkers related to a possible deterioration in a

patient’s residual limb health or for assessing the impact of clinical interventions.
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Chapter 3

Towards Monitoring the Residual

Limb Skin Health

3.1 Introduction

The use of a well-fitting prosthesis by a health impaired or even an otherwise

healthy person with a lower limb amputation can cause the development of serious

tissue injuries such as pressure ulcers (decubitus ulcers, also called pressure sores)

if not regularly monitored by the amputee and relevant health authority. Injuries

can start deep inside the residual limb near the bone (deep tissue injury) and/or at

the surface of the skin and can affect all types of tissue including the bone [60]. Of

particular concern is Deep Tissue Injury (DTI) where the ulcer becomes apparent

only when it reaches the surface of the skin and severe injury has therefore already

occurred. DTI is caused when the volume of tissue in the residual limb reduces

resulting in downward bone movement i.e. pistoning. The downward movement

of the residual limb bone may lead to boundary shear at the bone/tissue interface

which may result DTI and the formation of ulcers that progress from the bone to

the skin. Specifically, this type of injury may be caused by restricted perfusion
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(pressure induced ischaemia) and physical trauma caused by mechanical overload

of the deep tissues [61]. In addition, shear and normal forces on the skin can

result in surface pressure ulcers caused by constriction of blood flow resulting

in reduced perfusion and ultimately tissue necrosis. Pressure ulcers at the skin

surface can progress from the skin surface down to the bone and are apparent by

the breakdown of the skin. This is further exacerbated by elevated temperatures

and humid micro environment within the prosthesis which encourages the growth

of bacteria and skin breakdown. Thus, monitoring of residual limb temperature,

interface pressure and gait can be a useful indicator of tissue viability to predict

the occurrence of pressure ulcers. Analysing the gait and interface pressure can

be useful for determining the fit of the prosthetic socket as well as the strategies

prescribed to accommodate these changes can be commented on. Monitoring

the gait of a prosthetic limb can thus be useful for the rehabilitation progress of

patients over time.

This chapter investigates how differing activity levels and ambient temperatures

influence the in-socket temperature and the gait of the amputee subject. This

would hence be useful in establishing mathematical models and techniques for

addressing the challenge of non-invasively monitoring the residual limb skin health

for a wider amputee population.

3.2 Experimental Design and Process

To investigate the gait and the residual limb temperature, two transtibial trau-

matic amputees with the details listed in Table 3.1 were recruited to perform in

a 35 minute laboratory protocol. The investigation was implemented following

ethical approval granted by the University of Strathclyde Ethics Committee (Ref

UEC13/04).
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Table 3.1: Details of the amputee subjects

Amputee
Age

(years)
Weight

(kg)
Details of the prosthesis

Subject 1 68 70
OttoBock Technogel (polyurethane
liner - 6 mm) with thermosetting
lay-up (socket material - 4 mm)

Subject 2 63 69.8
Pelite (closed cell foam - 5 mm) with

thermoplastic (socket material - 4.7 mm)

For the experiment, the subjects were dressed in shorts and t-shirt. Hence, it

should be noted that there was no extra clothing layer on the prosthesis. To

monitor and record the skin and in-socket temperatures, four K-type thermo-

couples via a data logger (type HH1384; Omega Engineering) were used. Two

thermocouples were taped onto the residual limb in lateral and medial position.

The other two thermocouples were put on the corresponding positions on the

liner (in-socket). This is indicated in Figure 3.1. Data from the four channels

were simultaneously collected at 0.5 Hz at a predetermined ambient temperature.

To monitor the gait, an inertial sensor is placed on the shank of the subject with

the data being recorded at 25 Hz.
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Figure 3.1: The anterior view indicating the placement of the thermocouples on the
lateral and medial side of the residual limb skin and its corresponding positions on the
liner of the amputee subject. (a) Schematic of the placement of the thermocouples in
the prosthesis (b) Actual placement of the thermocouples for the experimental trials.

After the thermocouple heads were secured with tape, the prosthesis was donned

with the thermocouple wires exiting the proximal edge of the socket. The subjects

were asked to complete the following protocol: resting (sitting) for 10 minutes,

walk at self-selected pace of 0.62 m/s on a treadmill for 10 minutes, and finally

rest for 15 minutes. The residual limb skin and the socket temperatures were

sampled at 0.5 Hz for the entire 35 minute protocol. For analysis purposes, three

steady-state periods were defined as the last minute of each period: initial rest,

walking, and final rest. The temperature profile of the residual limb skin and

the liner was analysed at different ambient temperatures to see how closely they

are correlated.Additionally the gait profile was also analysed for different ambi-

ent temperatures. This study was conducted in Scotland for the Spring/Summer

profile where the ambient temperature ranges from approximately 10◦C to 25◦C.

Hence, the temperatures from this range were picked. The experiment was con-

ducted at 10◦C and then repeated for 15◦C, 20 ◦C, and 25◦C (Dataset A). The

experiments were conducted again after a time span of two months to confirm the

influence of ambient temperature on the residual limb skin temperature and the
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gait profile (Dataset B). This enabled in confirming the normal gait and resid-

ual limb temperature response of the subject at different ambient temperatures.

All experiments were conducted in a climate-controlled chamber with zero wind

velocity and 40% humidity level.

3.3 Gait Measurement

“The word gait describes ‘the manner or style of walking’, rather than the walking

process itself” [62]. Thus, gait analysis is a the study of human locomotion. This

involves measurement, quantification (introduction and analysis of the parameters

of gait) and conclusions from the gait pattern. By gait analysis, the gait phases

along with the kinematics associated can be identified. As a result, this is greatly

being used in sports, rehabilitation and health diagnostics [63]. In lower limb

prosthetics, analysing the gait pattern can be a useful indicator of residual limb

health. Any discomfort within the prosthesis either due to volume fluctuation of

the limb, inadequate prosthetic alignment or skin breakdown etc. can contribute

to an abnormal gait in an amputee [64].

3.3.1 Human Gait Phases

The gait cycle is defined as the time interval between the exact same repetitive

events of walking. Although the gait cycle can start at any event in walking, it is

generally the instant when one foot contacts the ground (‘initial contact’). If the

cycle starts with right foot on the ground, then the cycle ends when the right foot

makes contact again. The left foot follows the same cycle of events as the right

foot, but is displaced in time by half a cycle [62]. There are two phases of the

gait cycle - stance phase and swing phase. The stance phase comprises 60% of
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the gait cycle whereas the swing phase comprises 40% of it. The human walking

pattern can be analysed by phases more accurately as it signifies the functional

effect of different motions on joints and segments. A normal walking gait cycle

can be divided into eight different gait phases including initial contact, loading

response, mid stance, terminal stance, pre-swing, initial swing, mid swing and

terminal swing [65] as seen in Figure 3.2. Detailed description of the gait phases

are described as follows [63,66] .

Figure 3.2: Gait phases in a normal gait cycle adapted from [66].

1. Initial Contact: This is the instant when the foot contacts the ground. This

is important to observe as it affects the next phases.

2. Loading Response (0-10% of gait cycle): This is the initial double stance

period. This begins with the initial contact and continues until the other

foot is lifted up for swing.

3. Mid Stance (10-30% of gait cycle): This begins at the end of loading re-

sponse, while the other foot is lifted from the ground and continues until

the body weight is aligned over the forefoot.

4. Terminal Stance (30-50% of gait cycle): This period completes the period
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of single support. It starts with heel rise and continues till the other foot

strikes the ground.

5. Pre-swing (50-60% of gait cycle): This is the final phase of stance in the

gait cycle. It begins with the initial contact of the opposite limb and ends

with the ipsilateral toe-off. The objective of this phase is for positioning

the limb for swing.

6. Initial swing (60-73% of gait cycle): This phase begins with lifting the foot

from the floor and ending when the swinging foot is opposite the stance

foot.

7. Mid swing (73-87% of gait cycle): This phase begins when the swinging

foot is opposite the stance foot and ends when the swinging limb is forward

and the tibia is vertical (i.e., hip and knee flexion postures are equal).

8. Terminal swing (87-100% of gait cycle): This final phase of swing begins

with a vertical tibia and ends when the foot strikes the floor. During this

phase, the limb advancement is completed (deceleration of the swing limb)

and there is preparation for stance.

Each gait phase has a functional objective and the sequential motion of these

phases enables the limb to attain the tasks of weight acceptance, limb support

and limb advancement. Based on the analysis of gait phases, the movement of

the limb based on the orientation of the leg segments can be deduced.

3.3.2 Techniques for Gait Analysis

In order to analyse human motion, the standard technique is by utilising high-

speed cameras to capture the human motion. Studies have been done by inte-

grating the three-dimensional motion using multi or single camera systems and
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reaction force measurement to track the movement of human body parts in a

complex [67–70]. However, this technique of optical motion analysis requires

complex signal conditioning and is time consuming in nature. It also needs to be

pre-calibrated, thereby making it expensive and limited to laboratory research.

For the application in daily life with different environments, it is imperative for

the gait monitoring system to be flexible, low-cost and wearable in nature. To

implement this philosophy of home-based rehabilitation and tele-rehabilitation,

many kinds of wearable (body-fixed) sensor system based on single or multiple

accelerometer and gyroscope combinations can be utilised [71–74]. This would

especially be useful for monitoring and detecting the early signs of tissue damage

for lower limb amputees’ activities outside of a laboratory [75–78].

Wearable sensor systems for biomedical applications in gait monitoring can be

used in two different ways: one is about walking feature assessment for daily

physical activities [79–86], wherein the data obtained from inertial sensors - ac-

celerometer or gyroscope, are directly used as inputs of some inference techniques;

and another direction is for determining the joint angle, body position and orien-

tation accurately by fusing the data of different inertial sensors so as to decrease

the errors of the quantitative human motion analysis [87]. In this research, the

data from accelerometer and gyroscope is combined to estimate the shank angle

of the amputee’s residual limb, so our approach focuses on the second option for

quantitative human motion analysis [87].

3.3.3 Accelerometer and Gyroscope Sensor Development

Inertial Measurement Unit (IMU)or inertial sensors, measure acceleration, angu-

lar rate and sometimes the magnetic field vector of a body in their own three-

dimensional local coordinate system [65]. An IMU detects the current change
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in position by using the accelerometer and detects changes in rotation like yaw,

pitch, and roll by using the gyroscope. In this capacity, the IMU can be utilised in

a number of applications like the inertial guidance systems, manned or unmanned

landers on air and spacecraft and also serve as orientation sensors in the human

field of motion. In this research, the InvenSense MPU-6050 sensor, as seen in

Figure 3.3, was used to monitor the angular movement of the residual limb. This

sensor contains a Microelectromechanical Systems (MEMS) accelerometer and a

MEMS gyro in a single chip with 6 Degree of Freedom (DOF) with a footprint

of 4 mm x 4 mm x 0.9 mm. This implies that there are 3 accelerometers, and 3

gyrosocopes inside the unit which are capable of measurement in the x, y and z

direction. For precision tracking of both fast and slow motions, the parts feature a

user-programmable gyro full-scale range of ±250, ±500, ±1000, and ±2000◦/sec

(dps), and a user-programmable accelerometer full-scale range of ±2g, ±4g, ±8g,

and ±16g. Additional features include an embedded temperature sensor and an

on-chip oscillator with ±1% variation over the operating temperature range [88].

Figure 3.3: Schematic of the MPU-6050 sensor adapted from [89,90].

Because the accelerometer measures all the forces working on the system, it is

quite prone to noise. The data from the accelerometer is reliable in long term

and so a low pass filter can be used. The gyroscope on the other hand, has a

tendency to drift significantly over a period of time. Since the gyroscope data is

reliable only on short term, a high pass filter can be utilised. Many algorithms for
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determining the sensor orientation estimation have been proposed [91]; however

in this work, in order to estimate the absolute angle is derived by combining the

accelerometer and gyroscope data using a complementary filter. The integration

of the output of a gyroscope θgyro feeds into a high pass filter and the output of

an accelerometer θaccel feeds into a low pass filter as seen in Figure 3.4.

Figure 3.4: Schematic of the Complementary filter

The basic concept of this filter is to enhance advantages of each sensor. For

example, the angular estimation using a gyroscope has a good accuracy in the

sense of angular direction at high frequencies and the angular estimation using

an accelerometer has a good accuracy at low frequencies. Hence for the comple-

mentary filter, if G(s) is the low pass filter for the accelerometer then the high

pass filter for the gyroscope is 1-G(s). These can be written as in Equations 3.1

and 3.2 where τ is the time constant and determines the filter cut-off frequencies.

G(s) =
1

1 + τs
(3.1)

1−G(s) =
τs

1 + τs
(3.2)

The transfer function of the angle θ of the complementary filter can be written

as
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θ =
1

1 + τs
θaccel +

τs

s(1 + τs)
θ̇gyro =

θaccel + τ θ̇gyro
1 + τs

(3.3)

Digitizing this and using backward difference yields Equation 3.4 as

1 + τs = (1 +
τ

∆t
)− τ

∆t
z−1 (3.4)

Substituting this in Equation 3.3 and rearranging leads to

θk = α(θk−1 + θ̇(gyro)k∆t) + (1− α)θ(accel)k (3.5)

where α = τ/τ + ∆T . For this design, the optimum filter coefficient is 0.98 which is

computed by running the filter at different time constants with a fixed sampling

rate of 25 Hz. It should be noted that the lower the time constant, the more

horizontal acceleration noise will be allowed to pass through.

3.3.4 Results and Analysis

For the gait analysis study, amputee subject 1 pulled out due to medical condi-

tions. Hence, the gait cycle is studied for amputee subject 2 only. The determi-

nants of gait are generally taken as either the hip angle, knee angle or the ankle

angle. The placement of an IMU for an amputee on the hip, knee or ankle would

be needed to be supported by a brace and would be thus obtrusive for their nor-

mal gait pattern. Therefore, in order to monitor the gait of the amputee subject,

the IMU sensor was positioned on the shank of the prosthetic limb. The accel-

eration and the angular velocity in the x, y and z direction are recorded from

35



3. Towards Monitoring the Residual Limb Skin Health

the IMU sensor at a frequency of 25 Hz when the amputee subject 2 followed

the experimental protocol as described in section 3.2 at ambient temperatures of

10◦C, 15◦C, 20◦C, and 25◦C. Following this protocol where the residual limb skin

temperature and the elevation angle at the shank were measured simultaneously

will help in determining the gait pattern at varying activity and ambient temper-

ature levels. Figure 3.5 shows the mounting of the IMU on the residual limb. The

sensor’s local coordinate axis were visually oriented to align with the anatomical

axes. In this research because of the positioning of the IMU, the elevation angle

of the shank was of interest for analysing the gait pattern. Shank angle θshank

was defined as the angle between the shank segment and the vertical direction.

Figure 3.5: Shank angle definition for the lower limb kinematic model for an amputee
subject.

Figure 3.6 indicates the acceleration, angular velocity and the computed shank
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angle in the y direction of the amputee subject at an ambient temperature of

10◦C during the 35 minute experimental protocol for Dataset B. The region of

interest in the clinical trial is when the amputee subject 2 is walking on the tread-

mill for 10 minutes. Analysing this would give insight into the movement of the

residual limb with the corresponding shank angle during the gait cycle. As seen

in Figure 3.7, an off-line analysis was made to study the leg motion during the

walking period for an 8 seconds timeframe at an ambient temperature of 10◦C.

In order to do so a complementary filter was designed (as described earlier) to

estimate orientation of the shank. A MATLAB script was written to process the

experimental data (detailed in Appendix A). Similarly, the orientation angle of

the shank is computed for ambient temperatures of 15◦C, 20◦C, and 25◦C as seen

in Figures 3.8-3.10. The orientation of the shank angle during walking phase is

always contained within ±10◦ which is what is expected from a amputee sub-

ject [92].

From Figures 3.7-3.10 it can be observed that, the shank angle profile of the

amputee subject have been consistent in all ambient temperatures. Also the

computed shank angle for all the ambient temperatures of Dataset A were very

similar to those seen for Dataset B. This is important as it highlights that the

performance of the IMU sensor with the complementary filter produces repeat-

able results for shank angle. The main advantage of this approach is its ability

to provide 3D evaluation of the shank orientation. This can also be extended by

attaching IMUs to the foot and the thigh of the amputee subject for an overall

evaluation of knee kinematics which is seen in [76].
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(a)

(b)

(c)
Figure 3.6: (a) Measured acceleration (b) Angular velocity (c) Shank angle obtained
by the implementation of complementary filter at an ambient temperature of 10◦C.
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Figure 3.7: Estimation result of the rotational angle at the shank at an ambient tem-
perature of 10◦C.

Figure 3.8: Estimation result of the rotational angle at the shank at an ambient tem-
perature of 15◦C.
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Figure 3.9: Estimation result of the rotational angle at the shank at an ambient tem-
perature of 20◦C.

Figure 3.10: Estimation result of the rotational angle at the shank at an ambient
temperature of 25◦C.

The phases of the gait pattern on the IMU sensor were calibrated with mea-
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surements of a commercial high-speed cameras. In order to determine the gait

phase from the IMU sensor, the movement of the amputee’s residual limb is

captured using a 4K video capture using a high-speed camera. The camera is

capable of shooting video at 120 frames per second in HD 720p. The climate-

controlled chamber where the measurements were done was a medium lighted

room to minimise noise due to high sun activity. The camera and the wearable

system were synced in time, such that both the IMU data and the video from the

camera could be correlated by their timestamps. The amputee subject with the

positioned wearable platform while walking on the treadmill for 10 minutes was

video recorded. For each measurement, a single video file was created using the

camera software. Using video editing tools, videos were edited such that only one

full gait cycle was left from the original file video. The shank angle so deduced

by fusing the accelerometer and gyroscope data is then linked with the gait cycle

video to correctly analyse and identify the gait phase. From Figure 3.11 it can

been seen that using this technique, the Initial Contact (Toe Off) and Heel Strike

can be identified.

Figure 3.11: Gait cycle illustrating Toe Off and Heel Strike portions.
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Further from Figure 3.12, various phases of the gait during one gait cycle can be

correlated with the angular velocity obtained from the gyroscope and the shank

angle computed by fusing the inertial sensor data.

Figure 3.12: Identification of gait events for one gait cycle.
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The usage of the IMU sensor along with the complementary filter, has helped

in analysing and deducing the phases of the gait of amputee subject 2. The

normal gait pattern was consistent for all ambient temperatures. This technique

is capable to determine the abnormal gait pattern of the subject as the sensor

has been calibrated for the same.

3.4 Residual Limb Skin Temperature

Measurement

Monitoring and predicting the residual limb skin health in lower limb amputees is

of principal importance as the socket of the prosthesis creates a warm and humid

microenvironment that encourages growth of bacteria and skin breakdown [93,94].

Elevated residual limb skin temperature is considered one of the major factors

that could affect the health of soft tissues in that region [95–99]. The results pre-

sented in [100] suggested that some prosthetic components can act as a barrier

to conductive heat transfer due to low thermal conductivity. This implies that

different liner and socket materials produce a different thermal environment and,

hence, can lead to different residual limb skin temperatures [101,102]. This leads

to a hypothesis that if the thermal properties of the socket and liner materials

are known, then the in-situ skin temperature could be predicted by monitoring

between socket and liner. The purpose of this is to assess whether or not a

temperature measurement device can accurately measure the temperature of the

residual limb when it is placed either on the inner or outer surface of a pros-

thetic socket. If that is achievable, then the monitoring of the residual limb skin

temperature can be done without undesirable contact of any temperature sen-

sor with the skin thus avoiding any increased skin irritation. The next sections

43



3. Towards Monitoring the Residual Limb Skin Health

investigate how differing activity levels and ambient temperatures influence the

in-socket temperature.

3.4.1 Data Analysis

The temperature profiles of the liner and residual limb skin at ambient tempera-

tures of 10◦C, 15◦C, 20◦C, and 25◦C from set B for Subject 1 and Subject 2 are

discussed in the following subsections respectively. From the studies on the am-

putee subjects, it is seen that donning causes a moderate temperature increase as

also reported in [103], walking causes a significant increase, and the rest periods

following activities must be substantially long to return the limb to temperatures

before donning the prosthesis.

3.4.1.1 Results: Subject 1

Figures 3.13 and 3.14 indicate that the residual limb temperature profile for

ambient temperatures of 10◦C and 15◦C has a similar pattern of being steady

throughout the experiment. However, this temperature profile of the residual

limb is significantly different from that at ambient temperatures of 20◦C and

25◦C as illustrated in Figures 3.15 and 3.16.
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(a) (b)
Figure 3.13: Profiles of residual limb skin and liner temperature of Subject 1 at ambient
temperature of 10◦C at (a) lateral side (b) medial side.

(a) (b)
Figure 3.14: Profiles of residual limb skin and liner temperature of Subject 1 at ambient
temperature of 15◦C at (a) lateral side (b) medial side.
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(a) (b)
Figure 3.15: Profiles of residual limb skin and liner temperature of Subject 1 at ambient
temperature of 20◦C at (a) lateral side (b) medial side.

(a) (b)
Figure 3.16: Profiles of residual limb skin and liner temperature of Subject 1 at ambient
temperature of 25◦C at (a) lateral side (b) medial side.

Both the lateral and medial residual limb skin temperatures showed a steady

increase in the temperature throughout the experiment. After the end of the

experiment, the temperatures in both lateral and medial side were 2.1◦C higher

than the starting.
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3.4.1.2 Results: Subject 2

Figures 3.17 and 3.18 indicate that the residual limb temperature profile for

ambient temperatures of 10◦C and 15◦C have a similar pattern of being steady

throughout the experiment. However, this temperature profile of the residual

limb is significantly different from that at ambient temperatures of 20◦C and

25◦C as indicated in Figures 3.19 and 3.20.

(a) (b)
Figure 3.17: Profiles of residual limb skin and liner temperature of Subject 2 at ambient
temperature of 10◦C at (a) lateral side (b) medial side.
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(a) (b)
Figure 3.18: Profiles of residual limb skin and liner temperature of Subject 2 at ambient
temperature of 15◦C at (a) lateral side (b) medial side.

(a) (b)
Figure 3.19: Profiles of residual limb skin and liner temperature of Subject 2 at ambient
temperature of 20◦C at (a) lateral side (b) medial side.
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(a) (b)
Figure 3.20: Profiles of residual limb skin and liner temperature of Subject 2 at ambient
temperature of 25◦C at (a) lateral side (b) medial side.

3.4.2 Discussion

The above results are indicative of the fact that the residual limb skin tempera-

ture behaviour is a function of ambient temperature. However, as expected the

residual limb temperature for both the amputees is different from each other.

This is because every individual’s physiological response to the ambient tempera-

ture change is different. This reflects that though the human body self regulates

to maintain a stable internal environment despite changes in the external envi-

ronment, in case of prosthetic users there are layers of liner and socket materials

which inhibit the body’s ability to thermoregulate effectively.
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3.5 Summary

By monitoring the residual limb skin temperatures (for amputee subjects 1 and

2) and the gait pattern (for amputee subject 2), the state of residual limb health

can be addressed. By performing the clinical trials in the environmental chamber

at different ambient temperatures, it was established the residual limb skin tem-

perature is a function of ambient temperature. However, the normal gait pattern

remains unaffected by the same. This behaviour of the residual limb temperature

can be exploited to design mathematical models like GPML and ANFIS which

are detailed in the later chapters. Also, the gait pattern is calibrated for different

phases and can be used to contrast between the normal and abnormal gait of

amputee subject 2.
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Chapter 4

Thermal Characterisation of

Materials Used in Lower Limb

Prosthetics

4.1 Introduction

The core temperature of the human body remains constant throughout the day

by a process known as thermoregulation, despite internal heat production and

variation of environmental temperature [104]. It comprises of a series skin, brain

and visceral thermoreceptors, a control mechanism in the central nervous system

and a series of different effectors [105]. This system works on negative feedback

control, that is, the thermoreceptors sense an increase in temperature that is

analysed by the control mechanism hypothalamus), which in turn causes a re-

sponse from the effectors to lose more heat e.g. by vasodilation of blood vessels

or by increasing the perspiration rate. The opposite happens if the thermore-

ceptors sense a decrease in skin temperature. The range of normal human body

temperature is small and it varies between individuals [105]. Heat is generated
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in the body through chemical (metabolism) and physical (shivering) processes.

During Adenosine Triphosphate (ATP) production, around 75% of the energy is

converted to heat [105]. Of the remaining 25%, the majority is also converted to

heat except that which is used for voluntary muscle control [101]. This constant

generation of heat within the body must be controlled correctly. If the heat loss

does not occur at the same rate of heat production, then an increase in the core

body temperature would occur. Conversely, if the heat loss occurs more rapidly

than the heat production, then the core body temperature would decrease.

Heat generated within the core body must be transferred to the skin in order to

be released to the environment. This is essential for maintaining a steady ther-

moregulatory state. In the human body this transfer occurs by blood convection

and by tissue conduction [102] . This is the first stage in thermoregulation; the

next step involves the transfer of this heat from the skin periphery to the envi-

ronment. Heat is transferred from the body to the environment by conduction,

convection, radiation and evaporation from the skin.

The mechanism that provides the main source of heat loss in the human body

is evaporation. The previous three mechanisms lose heat by surrendering it to

the environment, thus, effectively diminishing the temperature gradient that ex-

ists. Evaporation, however, can occur without a temperature gradient, so long

as moisture is present on the skin. This prevents overheating in situations such

as when the skin temperature and ambient temperature are equal [104]. Heat

is lost from the skin as a result of moisture evaporating from the skin to the

surrounding environment.

In lower limb prosthetic users, the skin plays a major role in thermoregulation

of the body via radiation of heat. The prosthesis creates an environment where

this heat transfer is influenced by the insulating properties of commonly used

socket materials and liners. These materials inhibit the body’s ability to radi-
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ate heat effectively [100] and may be a cause of the reported thermal discomfort

mentioned earlier. Although the mechanical properties of these materials have

been well documented [106–108] less is known about how these materials transfer

heat [55, 56, 100]. Before the issue of thermal discomfort can be studied, further

investigation of the thermal properties of prosthetic materials is required. This

would be useful in enabling the clinicians to identify which materials are the least

effective at transferring the heat radiating from the human body to the outside

environment.

The residual limb skin temperature and its corresponding liner temperature greatly

depend upon the thermal properties of the prosthetic materials in use. The ther-

mal conductivities of the different liner and socket materials have been investi-

gated by Klute et al [100]. They assessed single layers of the prosthetic socket

material and found that both thermoplastic and carbon fibre socket materials

had very similar thermal conductivities. The above study investigated only indi-

vidual layers of the socket and liner materials. However, prosthetic sockets are

composed of two, sometimes three layers of differing materials and there is a need

to define the effect of the thermal properties of these layers in combination. In

this study, experiments were conducted to determine the thermal time constant

of single layer of materials, and then those materials were combined in various

combinations to give a more realistic representation of a prosthetic socket.

The advantage of evaluating the thermal time constant of the prosthetic materials

over any other thermal properties like thermal conductivity, specific heat or heat

transfer coefficient is the simplicity in its measurement and calculation and also

implementation in the mathematical algorithms.
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4.2 Thermal Time Constant Measurement

According to the law of thermodynamics, heat transfer F, from the heat source to

the test material at a given time is proportional to the difference in temperature

between the heat source and test material

− F = hAs(T (t)− Th) (4.1)

where h is heat transfer coefficient,As is the surface area, T(t) is temperature of

the test material at time t, and Th is the constant temperature of the heat source.

The addition of heat leads to the rise in temperature of test material which is

given by

ρcpV (
dT

dt
) = F (4.2)

where ρ is the density, cp is the specific heat and V is the volume of the test

material. Equating these two equations for heat transfer,

ρcpV (
dT

dt
) = −hAs(T (t)− Th) (4.3)

This can be further rewritten as

dT

dt
=

1

τ
(T (h)− T ) (4.4)

Here the time constant τ can be defined as

τ =
ρcpV

hAs
(4.5)

This implies that the time constant is indicative of temperature response of the

material. When the temperature of the heat source is constant, the rate of change
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of the test material temperature is given by

d∆T

dt
= −1

τ
∆T (4.6)

where ∆T = T − Th. Solving this equation gives the difference between the

temperature of the test material and the heat source ∆T as a function of time t

∆T (t) = ∆T0e
−t/τ (4.7)

where ∆T0 is the initial temperature difference between the test material and the

heat source, at time t = 0. This indicates that the rate at which the temperature

of the test material approaches the heat source temperature slows exponentially.

Thus, the time constant that is derived from the principles of heat transfer pro-

vides a much simpler method to envision the thermal behaviour of a material. In

order to measure the degree of thermal responsiveness of the prosthetic material,

the thermal time constant τ is evaluated which is defined as the time required

for the material at a certain temperature to reach 63.2% of the specified final

temperature.

To explore the thermal properties of these materials when used individually and

in combination, a number of liner and socket materials of dimension 100 mm x

100 mm were selected to provide a range representing those commonly used by

lower limb amputees. Table 4.1 lists the socket and liner specimens along with

their thickness used in the study. The experimental setup included a heat source

(heating tape Omega Engineering: 13 mm x 1.22 m, 312 W, 240 V) whose tem-

perature could be controlled through a Proportional-Integral-Derivative (PID)

controller. The other equipments used were Solid State Relay (SSR) to provide

safety to the circuit; 10-pin terminal block to allow connection of all devices; K-

type thermocouples and a 4-channel thermocouple thermometer. The idea is to
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duplicate the cross section of the prosthesis by arranging the heating tape (which

would be maintained at a steady temperature by the PID controller and would be

emulating a section of residual limb of the amputee), liner and socket materials

on top of each other.

Table 4.1: Socket and Liner materials used for the study

Name Material
Thickness

(mm)

Alpha Locking (Liner) Co-polymer 6

Iceross Comfort (Liner) Silicone 6

Iceross Original (Liner) Silicone 3

OttoBock Technogel (Liner) Polyurethane 6

Pe-lite (Liner) Closed cell foam 5

Stump sock Terry 0.7

Thermoplastic (Socket material) Co-polymer polypropylene 4.7

Thermosetting lay-up (Socket material) Compound of materials 4

Carbon fibre lay-up (Socket material) Compound of materials 4.8

The heat source was the heating tape which lay flat on a 15 cm x 15 cm sheet

of aluminium with an identical sized sheet of aluminium then placed on top of

the heating tape forming a sandwich. The two sheets of aluminium were secured

to each other by string from the heating tape. This circuit also incorporated

a SSR and a terminal block. The SSR was used as a switch in the circuit re-

ceiving a small input voltage from the PID controller and controlling a larger

output voltage of the heating source. The terminal block was required to make

all the connections possible. The temperature of the heating tape was measured

using a type K thermocouple that was also connected to the PID controller. This

thermocouple provided feedback to the PID controller of the temperature on its

surface, and the controller could make the necessary adjustments to the system

to get the desired heating tape temperature. Figure 4.1 indicates the schematic
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of the experimental setup described above.

In order to determine the reliability of the experimental setup, the system was

switched on and a set point of 29◦C was selected. It was noted that the exper-

imental setup reached this temperature steadily and held it there successfully.

Additionally, when the temperature was increased by 1◦C to 30◦C, the circuit

increased the temperature and also held it at the new set point of 30◦C. This

process was repeated, increasing by 1◦C until 40◦C was reached. From this pro-

cess it was decided that the heating tape and PID controller provide sufficient

control of the temperature for the experiment to proceed.

Figure 4.1: Schematic of the experimental setup utilised for measuring the thermal
time constant of prosthetic materials.
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4.3 Experimental Process

The heating tape was to be heated to 30◦C and the circuit given sufficient time to

come to rest. The temperature of the heating tape T1 was measured using one of

the type K thermocouples. Full contact of the thermocouple was ensured by using

using polyimide adhesive tape labels (rated to 100◦C). All data was collected

on a computer connected to the thermocouple data logger and analysed using

software provided with it. The prosthetic materials (liner and socket) were first

tested individually to study their thermal behaviour in terms of the time constant.

Along with the thermocouple on the heating tape, a second thermocouple was

placed on the outer surface of the test material to measure the temperature at this

point T0. Figure 4.2 is a diagrammatic representation of this set up. Recording

began at 30◦C and only stopped when T1 = T0, or T0 had come to a steady

temperature. The material was removed from the heating tape and allowed to

cool to the room temperature. Simultaneously the temperature of the heating

tape was increased by 2◦C and allowed to reach a steady temperature. The

material was then placed back on the heating source and the data was recorded

again. This process was repeated for increasing values of T1 by 2◦C until 40◦C

was reached. Data collected by the thermocouple data logger and software was

the temperature of the heating tape T1, the temperature of the outer surface of

the prosthetic material under test T0 and the length of experiment (time). This

routine was repeated until all the materials (as in Table 4.1) had been tested

individually. Once all the materials had been individually tested, the next stage

involved measuring the temperature profile of the liner and socket material when

used together. This was done by placing the socket material on top of the liner

material and then putting this stack of materials on the heating tape.

Similar to the testing individual materials, thermocouples were placed on the

outer surface of the each of materials liner and socket. Figure 4.3 shows a
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Figure 4.2: Schematic of the experimental setup utilised for measuring the thermal time
constant of prosthetic materials.Schematic illustrating the placement of the prosthetic
material (either liner or socket) on the heating tape. Interface temperatures T1 and T0

are measured by thermocouples.

diagrammatic representation for testing of these two stacked materials. Data

collection was only stopped this time when T1 = T3, or T3 ceased to increase in

temperature. Data collected was temperature of the heating tape T1, temperature

of the outer surface of the liner material T2, temperature of the outer surface of the

socket material T3 and duration of experiment. A number of two-layer prosthetic

material combinations were tested. Measurement followed the same procedure as

described above i.e. beginning at 30◦C and rising by 2◦C until 40◦C, then the

materials were changed and measurement was repeated again for combinations

listed in Table 4.3. All the experimentation was done in an ambient temperature

of 22◦C.

Figure 4.3: Schematic illustrating the placement of the liner and socket material on the
heating tape. Interface temperatures T1, T2 and T3 are measured by thermocouples.

When the prosthetic materials were tested individually, it was noted that as the

set point temperature of the heating tape T1 was increased, the maximum tem-
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perature reached by the material T0 increased and so did the difference between

the set point temperature and material temperature T1−T0. This is indicative of

the fact that with increasing temperature T1, more heat is transferred through the

material, but the amount of heat lost in the process is also increased. Similarly,

it was observed that when liner-socket materials are tested together, then with

the increase in the set point temperature of the heating tape T1, the maximum

temperature reached by the liner material T2 and socket material T3 increased.

Moreover, the difference between the set point temperature and material tem-

peratures namely T1 − T2 and T1 − T3 recorded a rise as well. It also took them

longer to reach a steady temperature than when they were tested individually.

This indicates that the rate of heat transfer decreases when prosthetic materials

are used in combinations.

4.4 Determination of Thermal Time Constant

The thermal profile of the prosthetic materials when tested individually or in com-

bination with another material was obtained from the thermocouple data logger.

The results indicated that the heat transfers through the prosthetic materials in

a logarithmic fashion. There is an initial increase in the rate of heat transfer

which decreases as time increases - and reaches a steady state at a temperature

lower than that of the heating tape temperature.

Of all the two layer combinations that were tested, the combinations that were

of most interest were the 6 mm thick polyurethane liner along with 4 mm thick

thermosetting lay-up socket material and the 5 mm pelite liner with thermoplas-

tic socket material as these are the most widely used liner-socket pair in practice.

From Table 3.1 it can be noted that these combination of materials were used in

the prosthesis set up of the two amputee subjects recruited for this study. The
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thermal graphs recorded for the above mentioned materials when used individ-

ually and in combination are indicated in Figures 4.4 - 4.7. Figures 4.4 and 4.6

indicates the temperature profile of the respective liner and socket material when

tested individually using the layup shown in Figure 4.2. It is observed that the

interface temperatures T0 when plotted against time follow a logarithmic profile

and reaching steady state in the end.

The thermal response T2 and T3 of the above mentioned liner-socket combination

when tested together using layup as shown in Figure 4.3, are indicated in Figures

4.5((a) and (b)) respectively. From the graphs it is evident that the thermal

response of the materials is slower when they are used in combination than when

they are used individually. These graphs were then used to calculate the thermal

time constant of the prosthetic materials which would indicate the how quickly

the heat flows from the source to the opposite end of the material.

(a) (b)
Figure 4.4: Temperature profile of (a) Polyurethane Liner (b) Thermosetting Socket
material at different heat source temperatures when tested individually using the ex-
perimental setup.
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(a) (b)
Figure 4.5: Temperature profile of (a) Polyurethane Liner (b) Thermosetting Socket
material at different heat source temperatures when tested in combination (by being
placed on top of the other) using the experimental setup.

(a) (b)
Figure 4.6: Temperature profile of (a) Pelite Liner (b) Thermoplastic Socket material
at different heat source temperatures when tested individually using the experimental
setup.
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(a) (b)
Figure 4.7: Temperature profile of (a) Pelite Liner (b) Thermoplastic Socket material
at different heat source temperatures when tested in combination (by being placed on
top of the other) using the experimental setup.

Utilising this behaviour of the prosthetic materials, the thermal time constant

τ is computed using the logarithmic method. Time constants are parameters

of systems that obey first order, linear differential equations. Consider that the

equation for the thermal response curve of the prosthetic test material is

x(t) = x(0)e−
t/τ (4.8)

where x(t) is the temperature of the test material at ambient time t, x(0) being

the initial temperature response and τ being the thermal time constant indicating

how quick is the system response. Taking the natural log of the response curve

given by Equation 4.8,

ln[x(t)] = ln[x(0)]− t

τ
(4.9)

Equation 4.9 can be thought of as a straight line with the thermal response plotted

against time. This implies that if the temperature of the test material is plotted

w.r.t time, then the slope of the line is the time constant and the intercept is

the natural log of initial value. Using this concept, the temperature profile of

the material when tested individually or in combination with another material as

recorded by the data logger, can be utilised to compute the thermal time constant.
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The steps below detail the logarithmic method technique used to determine the

thermal time constant when a prosthetic material is tested individually.

1. The steady state temperature of the material T0ss is determined.

2. The temperature at ambient time T0 is subtracted from the steady state

value so that an exponentially decaying dataset is created.

3. The natural log of the exponentially decaying data as computed in step 2

ln[x(T0ss)− x(T0)] is taken and plotted w.r.t time. Using regression, a line

of best fit is generated and the slope is computed. The slope is a measure

of the thermal time constant.

Similar procedure is adopted when a prosthetic material is used in combination

with another material i.e. when a liner and socket material are used together.

However, it should be noted that for the same, the steady state temperature at

the liner interface of the combination T2ss is used and not T3ss. This is because

the mathematical model that is used for non-invasive measurement, predicts the

residual limb temperature by measuring the liner temperature and hence, the

thermal time constant at the liner interface of the combination is of interest.

Hence, the generation of an exponentially decaying data is done by subtracting

the liner temperature at ambient time T2 from T2ss.

As in step 3, ln[x(T2ss) − x(T2)] is plotted w.r.t. time and the slope of line is

indicative of the thermal time constant of the liner-socket material combination

measured at the liner interface. Figures 4.4(a) and 4.5(a) illustrate the tempera-

ture profile of the polyurethane liner when used individually and in combination

(with thermosetting socket material) respectively which is then utilised to com-

pute the thermal time constant by the method described above.
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4.5 Results

Thermal time constant is essentially the same for all starting temperatures. The

process to determine the thermal time constant as described above, is repeated for

different heat source temperatures (from 30◦C - 40◦C, with increasing intervals

of 2◦C). This is done in order to confirm the accuracy of time constant value

of the liner when used individually or in combination of a socket material and

rule out any experimental errors. Hence Tables 4.2 and 4.3 indicate the value of

τ for polyurethane liner when used individually as well as when it is tested in

combination with a thermosetting socket material respectively at different heat

source temperatures. Similarly, Tables 4.4 and 4.5 indicate the value of τ for pelite

liner when used individually as well as when it is tested in combination with a

thermoplastic socket material respectively at different heat source temperatures.

The thermal time constant for 6 mm polyurethane liner when used in combination

with thermosetting lay-up socket material is approximately 5.4 minutes whereas

when it is tested individually the average value of is 2.8 minutes. Additionally,

the thermal time constant for 5 mm pelite liner when used in combination of

thermoplastic socket material is approximately 6.7 minutes whereas when it is

tested individually the average value of is 1.6 minutes.
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Table 4.2: Time Constant of Polyurethane Liner when used individually at dif-
ferent test temperatures

Source Temperature
(◦C)

Steady State Temperature
(◦C)

Time Constant
(minute)

30 27.5 2.9

32 29.3 2.9

34 29.7 2.7

36 30.0 2.9

38 32.4 2.7

40 32.6 2.8

Table 4.3: Time Constant of Polyurethane Liner when tested in combination with
Thermosetting Socket material at different test temperatures

Source Temperature
(◦C)

Steady State Temperature
(◦C)

Time Constant
(minute)

30 27.9 5.3

32 28.6 5.4

34 30.5 5.4

36 32.5 5.2

38 32.2 5.4

40 34.1 5.7
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Table 4.4: Time Constant of Pe-lite Liner when used individually at different test
temperatures

Source Temperature
(◦C)

Steady State Temperature
(◦C)

Time Constant
(minute)

30 25.8 1.7

32 26.9 1.6

34 28.0 1.5

36 28.6 1.6

38 29.4 1.6

40 30.5 1.7

Table 4.5: Time Constant of Pelite Liner when tested in combination with Ther-
moplastic Socket material at different test temperatures

Source Temperature
(◦C)

Steady State Temperature
(◦C)

Time Constant
(minute)

30 25.7 6.7

32 26.1 6.6

34 26.7 6.6

36 27.7 6.7

38 28.3 6.7

40 29.4 6.7

The thermal time constants for the prosthetic materials (when used individually),

as listed in Table 4.1, were also determined using the procedure described. The

results of the same as in Table 4.6 do confirm to [100] and suggest that the

prosthetic materials can act as a barrier to conductive heat transfer due to their

low thermal conductivity or high thermal time constants. From the results it

can be observed that there is substantial variation in the time constants of liner

materials, whereas the prosthetic socket materials have similar time constants.
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Thus, it can be concluded that the selection/combination of prosthetic materials

have a considerable impact on the residual limb skin temperature as they can

produce different thermal environments. This can be further seen in Table 4.7

where the time constants of some of the widely used liner socket combinations

are detailed.

The results indicated that as the temperature of the heat source was increased,

the rate of heat transfer and the maximum value of heat transfer also increased.

Along with this, the amount of heat loss increased as the temperature of the heat

source increased. It was also found that different prosthetic materials transfer

heat at different rates and that they also transfer different amounts of heat.

Further to this, when these materials are placed in combinations, the rate of

heat transfer is slower and the maximum amount of heat transferring through

the materials is also decreased.

Table 4.6: Time Constants for Liner and Socket materials when evaluated indi-
vidually

Material
Thermal Time Constant τ

(minute)

Alpha Locking (Liner) 3.6

Iceross Comfort (Liner) 3.1

Iceross Original (Liner) 2.6

Ottobaock Technogel (Liner) 2.8

Pe-lite(Liner) 1.6

Stump sock 0.6

Thermoplastic (Socket material) 4.0

Thermosetting lay-up (Socket material) 4.1

Carbon fibre lay-up (Socket material) 4.5
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Table 4.7: Time Constants of the Liner and Socket materials when evaluated in
a combination

Combination of Prosthetic Materials
Thermal Time Constant τ

(minute)

OttoBock Technogel (Polyurethane liner 6mm)
with

Thermosetting lay-up (socket material 4mm)
5.4

Iceross Comfort (Silicone liner 6mm)
with

Carbon fibre lay-up (socket material 4.8mm)
5.5

Iceross Original (Silicone liner 3mm)
with

Carbon fibre lay-up (socket material 4.8mm)
4.1

Iceross Comfort (Silicone liner 6mm)
with

Thermosetting lay-up (socket material 4mm)
5.8

Alpha Locking (Co-polymer liner 6mm)
with

Carbon fibre lay-up (socket material 4.8mm)
6.2

Pe-lite (Closed cell foam liner 5mm)
with

Thermoplastic (socket material 4.7mm)
6.7

4.6 Summary

The residual limb skin temperature depends on the ambient temperature and the

activity level of the subject. Moreover, a major factor is the thermal time constant

of the materials used in the prosthesis. Owing to the low thermal conductivity

of the prosthetic materials, it can restrict the heat transfer from the residual
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limb and create a warm microenvironment within the prosthesis [109]. Hence,

it becomes all the more imperative to build in the existing mathematical model

the thermal time constant so obtained from the thermal studies. Therefore, if

the thermal properties of the socket and liner materials are known, then the

in-socket residual limb temperature can be accurately predicted. This can be

achieved by monitoring the temperature between the socket and liner (rather

than skin and liner) and thereof using mathematical algorithms like Gaussian

Processes technique and Artificial neuro fuzzy inference system.
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Chapter 5

Residual Limb Skin Temperature

Prediction using Gaussian

Processes for Machine Learning

5.1 Introduction

This chapter describes the development of a supervised mathematical algorithm

- Gaussian Processes for Machine Learning (GPML) to predict the residual limb

temperature of the amputee. Predicting the in-socket residual limb temperature

by monitoring the temperature between socket and liner rather than skin and liner

could be an important step in alleviating complaints on increased temperature

and perspiration in prosthetic sockets. Additionally, this technique of contactless

monitoring of the residual limb skin temperature would be without any prac-

ticality issues with prosthetic use in a domestic situation such as, protruding

lead wiring, consistent positioning of sensors and possible skin irritation and dis-

comfort. The aim of this chapter is to verify the hypothesis that if the thermal

properties of the socket and liner materials are known, then the in-situ skin tem-
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perature could be predicted by monitoring between the socket and the liner. The

purpose of this is to assess whether or not a temperature measurement device can

accurately measure the temperature of the residual limb when it is placed either

on the inner or outer surface of a prosthetic socket. If that is achievable, then the

monitoring of the residual limb skin temperature can be done without undesir-

able contact of any temperature sensor with the skin thus avoiding any increased

skin irritation. The accuracy of the predictive GPML model was compared to

the actual residual limb skin temperature which by virtue of its operating princi-

ple offers greater accuracy and precision. An overview of the Gaussian processes

model is firstly presented followed by a description of its predictive capability and

the results of data analysis.

5.2 Gaussian Processes for Machine Learning

Gaussian Process (GP) models are extensively used to perform Bayesian nonlinear

regression and classification - tasks that are central to many machine learning

problems. In the regression task, the goal of the Gaussian Process technique

is to infer a continuous function f(x) from a training set of input-output pairs

in supervised learning context. A Gaussian Process is a collection of random

variables, any finite number of which have joint Gaussian distributions [110]. The

key assumption in Gaussian Process modelling is that the data can be represented

as a sample from a multivariate Gaussian distribution. Therefore, it could be

totally specified by the mean and covariance function as seen in Equation 5.1.

p(f |X) = χ(µ,C) (5.1)
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Here p(f |X) is the conditional probability of the inferring function f if the cor-

responding input is X. χ(µ,C) denotes a Gaussian distribution with mean µ and

covariance C. A Gaussian Process model can be thought of as a prior proba-

bility distribution over functions in Bayesian inference. This enables deducing

the hyperparameters for the model which are an indication of the precision and

relevance of the input parameters for predicting the output. Thus, a Gaussian

process regression model is a fully probabilistic Bayesian model by nature un-

like most other regression techniques, which only provide a best estimate of f(x).

This is a high level overview of GP, which uses probabilistic predictions of possible

interpolating functions f to solve the regression problem [111].

5.2.1 Gaussian Process Definition

A Gaussian process model infers a joint probability distribution over all possi-

ble outputs for all inputs. This form enables the implementation of Bayesian

framework in a simple way [110, 111]. Bayes’ theorem states that the posterior

probability of a condition is given by the product of the prior probability and the

likelihood in the light of the evidence. This can be written as

posterior

P (B|A,H) =

likelihood

P (A|B,H)
prior

P (B|H)
evidence

P (A|H)

(5.2)

P (B|A,H) is the posterior probability that statement B is true, given that condi-

tion A is observed and that hypothesis H is correct. P (A|B,H) is the probability

of observing A if B is true and H is correct, which is called the likelihood. P (B|H)

is the prior probability of B being true, without having made any observations.

P (A|H) is the evidence: the probability of observing A if hypothesis H is cor-

rect [111].
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The inference of a joint probability distribution function involves deducing a

number of quantities called the hyperparameters Θ. These hyperparameters are

an indication of the precision and relevance of the input parameters for predict-

ing the output. Thus, the aim in a Gaussian process model is to choose model

parameters for which the probability of the training data is maximised [110].

5.2.2 Covariances

To specify a particular GP prior, we need to define the mean µ and covariance C

of Equation 5.1. The GP model used in this study assumes that the priors in use

have a zero mean. If the training data contains N points comprising of outputs

yN with its corresponding inputs xN , then the Gaussian model is defined by N

dimensional covariance matrix CN . The covariance matrix is basically indicative

of the closeness to each other outputs for different inputs, taking into account

the model parameters. This allows predictions of outputs y∗ to be made, based

on the difference between the new inputs x∗ and those seen in the training data.

Each element of CN is defined by covariance function Cf , which is a function of

inputs and hyperparameters [110–112]. For the element ij in covariance matrix

Cij = Cf (xi, xj,Θ). The covariance function can be user defined. The particu-

lar choice of covariance function determines the properties of sample functions

drawn from the GP prior (e.g. smoothness, length scales, amplitude etc.). There-

fore, it is an important part of GP modelling to select an appropriate covariance

function for a particular problem. In this study, the Squared Exponential (SE)

covariance function was used. The SE covariance function is the most widely used

in machine learning. It provides very smooth sample functions that are infinitely

differentiable:

Cf (xi, xj,Θ) = θ1e
−

(xi−xj)
2

2l2 + σ2
nδij (5.3)
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where the set of hyperparameters Θ = {θ1, l, σn} and δij is the kronecker delta

function. The value of δij = 1 if i = j and is zero for all i 6= j. The first term

in the above equation allows the closeness of two outputs to be related to the

closeness of the inputs. The length scale l for an input parameter indicates how

much the output will vary relative to changes in an input.

5.2.3 Gaussian Process Regression

To prepare for Gaussian process regression, the covariance function as seen from

Equation 5.3 is calculated for all possible combinations of inputs. This is sum-

marised as matrices in the following equations:

CN =


Cf (x1, x1) Cf (x1, x2) · · · Cf (x1, xN)

Cf (x2, x1) Cf (x2, x2) · · · Cf (x2, xN)
...

...
. . .

...

Cf (xN , x1) Cf (xN , x2) · · · Cf (xN , xN)

 (5.4)

CN∗ =
[
Cf (x∗, x1) Cf (x∗, x2) · · · Cf (x∗, xN)

]
(5.5)

CN∗∗ = Cf (x∗, x∗) (5.6)

Since the key assumption in Gaussian process modeling is that the data can be

represented as a sample from a multivariate Gaussian distribution, we have
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 y
y∗

 ∼ χ

0,

CN CT
N∗

CN∗ CN∗∗

 (5.7)

where T indicates the matrix transposition. The conditional probability p(y∗|y):

“given the data, how likely is certain prediction for y∗”, follows a Gaussian dis-

tribution as in Equation 5.8.

y∗|y ∼ χ(CN∗C
−1
N y, CN∗∗ − CN∗C

−1
N CT

N∗) (5.8)

The reliability of the regression depends upon on the covariance function and in

turn the hyperparameters. Typically, the values of the hyperparameters would

not be known a priori. To get the optimal hyperparameters, Equation 5.2 can be

written as

P (Θ|yN , xN , Cf ) =
P (yNxN , Cf ,Θ)P (Θ)

P (yN |xN , Cf )
(5.9)

Referring to Equation 5.9, it is apparent that the evidence is independent of

hyperparameters and is constant for a given dataset. To find the optimal hy-

perparameters, the posterior probability is maximised as the prior maybe non-

informative. This corresponds to minimizing the Negative Log Marginal Like-

lihood (NLML) as in Equation 5.10. Hence, for a particular training set and

covariance function, the Gaussian process would select the best hyperparameters

that give the best predictions for training data [111,112].

logp(y|x,Θ) = −1

2
yTC−1

N y − 1

2
log|CN | −

N

2
log2π (5.10)
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Several multivariate optimisation algorithms can be utilised to calculate the hy-

perparameters, such as Laplace’s approximation, Markov Chain Monte Carlo

sampling, KullbackLeibler optimal approximation, or the Variational Bayes’ ap-

proximation. In the present study, kernel hyperparameters were optimised by

the exact inference technique. For real-valued outputs, it combines the Gaussian

process prior with a Gaussian likelihood and perform an exact posterior inference

in closed form.

5.3 Gaussian Process Model Generation and

Prediction

The data from the data logger indicated that at any given ambient temperature,

the trace of the liner temperature follows that of the residual limb skin as ob-

served in Chapter 3. This suggested a possibility to model the liner temperature

as a function of the skin temperature and create a mathematical model of the

same. The Matlab Gaussian Process Regression and Classification Toolbox [113]

was used to write a script for processing (detailed in Appendix B). The model

designed takes the liner temperature as the input x and the predicted output

is the residual limb skin temperature y. To test the predictive capability of a

model, it is trained on one set of data and tested on previously unseen data. It is

seen from Chapter 3 that the skin temperature is dependent on ambient temper-

ature. Hence, individual Gaussian process models for the lateral and medial side

of the residual limb were designed, using the principle as described in the pre-

vious section for ambient temperatures of 10◦C, 15◦C, 20◦C and 25◦C. Consider

the ambient temperature 10◦C, first the lateral side model was trained on differ-

ent scenarios to investigate the optimal training required. Table 5.1 presents the
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different testing and training cases presented to the model for Subject 1. Initially

the model was trained by 250 data points from set A. The training points are

inclusive of the three stages of protocol (initial rest, walking, and final rest) and

are picked in the ratio of time intervals used for the respective protocol periods.

Hence, the first 70 points from initial rest, first 70 points from walking, and first

110 points from the final rest were taken for training. The predictive capability of

the model is gauged by computing the training error, test error, and the normal-

ized log likelihood by testing with 100 data points (not seen by the model during

training) from set A which are again drawn in the ratio of time intervals used for

the respective protocol periods. This process is continued by increasing the num-

ber of training data points from set A. The normalized log likelihood for each set

of test data is also given, calculated by dividing the value of marginal likelihood

by the number of points in the test set. It can be seen that as the number of

training points increases, the error value decreases and the likelihood of the data

increases. This implies that with greater training points, the new model either

predicts data closely or has higher confidence due to a higher density of training

points.

When the model is trained on all the values of set A and tested with 100 points

(randomly picked from set A), the training error does decrease while the like-

lihood also decreases slightly. This might be an indication that too much of

training to the model might lead to over fitting the data. Next the model trained

on the entire set A was tested on 100 points in set B which were unseen by the

model. The results indicated that the test error has a substantial increase, but

the likelihood function is still consistent with the uncertainty predictions of the

Gaussian model. This may be because the Dataset B is similar to Dataset A,

leading to points closer to the smooth relationship predicted by the Gaussian

process. A similar testing and training approach as described above is employed

for deducing the optimum model for Subject 2. The summary of it can be seen
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in Table 5.2.

Table 5.1: Summary of GPML for various testing and training scenarios for
Subject 1

Training
Set

Test
Set

Training
error

(RMSE)

Test
error
(RMSE)

Number of
training
points

Number of
test

points

Normalized
log

likelihood

A A 0.142 0.142 250 100 0.786

A A 0.0924 0.0924 500 100 0.893

A A 0.0913 0.0913 750 100 0.897

A A 0.0910 0.0910 1050 100 0.895

A B 0.0910 0.102 1050 100 0.896

Table 5.2: Summary of GPML for various testing and training scenarios for
Subject 2

Training
Set

Test
Set

Training
error

(RMSE)

Test
error
(RMSE)

Number of
training
points

Number of
test

points

Normalized
log

likelihood

A A 0.156 0.156 250 100 0.708

A A 0.0987 0.0987 500 100 0.881

A A 0.0927 0.0927 750 100 0.889

A A 0.0912 0.0912 1050 100 0.886

A B 0.0911 0.110 1050 100 0.888
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In order to deduce the optimum hyperparameters, their initial values were selected

as [0, 0, 0.1]. For the predictions to be in 95% confidence interval, the number

of iterations that the model made is 435. However, if the length scale l for

an input parameter is correlated to the heat transfer in prosthetic material by

means of the thermal time constant, the GPML model converges at 100 iterations

to generate the optimum hyperparameters. Hence, if the length scale in the

covariance function is set to the thermal time constant of the materials used in

the prosthetic limb, it would optimise the Gaussian process model and generalise

it for amputee subjects with similar prosthesis setup. For Subject 1, the value of

length scale is specified as 5.4, which is equal to the time constant of the materials

used in his prosthesis setup. Similarly, for Subject 2, the length scale is defined

to be 6.7. When l is specified, less number of iterations are required for the

computation of other hyperparameters. This in turn minimises the log marginal

likelihood function to give the best predictions. The results from this model

(with the length scale equal to the thermal time constant) lie in 95% confidence

interval which translates to an accuracy of ±0.5◦C. With the introduction of the

thermal time constant as the length scale in the covariance function, the physical

properties of the prosthetic material are accounted for in the model as being a

purely empirical model. The flowchart depicting the process of GPML is seen in

Figure 5.1.
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Figure 5.1: Process of the GPML for predicting the residual limb temperature from
the liner-socket interface temperature.

5.3.1 Predictive Ability of the Model - Subject 1

From the scenarios described in Table 5.1, it was deduced that when the model

is trained on whole Dataset A and the initial hyperparameters selected as [0, 5.4,

0.1] which are optimised using Equation 5.10, then its predictions for Dataset B

lie in the 95% confidence interval (± 2 standard deviations). This is indicated in

Figures 5.2-5.5 for the ambient temperatures of 10◦C, 15◦C, 20◦C, and 25◦C for

Subject 1. After hyperparameter optimisation, the covariance hyperparameters

for the lateral side at 10◦C were [−1.27, 2.92,−1.41] and the likelihood hyper-
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parameter was −1.79. The final negative log marginal likelihood (optimised)

was 285.84. Table 5.3 presents the hyperparameters for the predictive model at

different ambient temperatures for Subject 1 [114].

Table 5.3: Summary of hyperparameters for predictive Gaussian model for Sub-
ject 1

Scenario
Optimised

hyperparameters
Initial
NLML

Final
NLML

Initial
likelihood

Final
likelihood

Lateral
side at
10◦C

[-1.27, 2.92, -1.41] 786.11 285.84 -1.78 -1.79

Medial
side at
10◦C

[-1.20, -0.86, 1.29] 747.63 352.61 -2.17 -2.21

Lateral
side at
15◦C

[-1.43, 1.88, -1.62] 657.23 211.89 -1.85 -1.89

Medial
side at
15◦C

[-1.38, 1.76, 1.66] 643.73 310.54 -1.63 -1.70

Lateral
side at
20◦C

[-1.49, 1.52, -1.31] 662.47 274.09 -1.89 -1.92

Medial
side at
20◦C

[-1.37, 1.22, 1.45] 629.81 152.61 -1.99 -2.24

Lateral
side at
25◦C

[-1.86, -1.37, -1.04] 538.43 323.78 -1.78 -1.80

Medial
side at
25◦C

[-1.35, -1.57, 1.06] 520.86 109.68 -1.96 -1.99
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(a) (b)
Figure 5.2: Illustration of prediction with Gaussian Process regression for ambient
temperature of 10◦C at (a) lateral side (b) medial side of Subject 1. The test data
points are given by crosses. The shaded area represents the point wise 95% confidence
region of the predictive distribution.

(a) (b)
Figure 5.3: Illustration of prediction with Gaussian Process regression for ambient
temperature of 15◦C at (a) lateral side (b) medial side of Subject 1. The test data
points are given by crosses. The shaded area represents the point wise 95% confidence
region of the predictive distribution.
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(a) (b)
Figure 5.4: Illustration of prediction with Gaussian Process regression for ambient
temperature of 20◦C at (a) lateral side (b) medial side of Subject 1. The test data
points are given by crosses. The shaded area represents the point wise 95% confidence
region of the predictive distribution.

(a) (b)
Figure 5.5: Illustration of prediction with Gaussian Process regression for ambient
temperature of 25◦C at (a) lateral side (b) medial side of Subject 1. The test data
points are given by crosses. The shaded area represents the point wise 95% confidence
region of the predictive distribution.
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5.3.2 Predictive Ability of the Model - Subject 2

The initial hyperparameters are selected as [0, 6.7, 0.1] and optimised by training

the model on the entire Dataset A. The predictions for Dataset B are indicated

in Figures 5.6-5.9 for Subject 2. The optimised hyperparameters for different

scenarios are detailed in Table 5.4.

Table 5.4: Summary of hyperparameters for predictive Gaussian model for Sub-
ject 2

Scenario
Optimised

hyperparameters
Initial
NLML

Final
NLML

Initial
likelihood

Final
likelihood

Lateral
side at
10◦C

[-1.31, 2.11, -1.59] 708.19 221.04 -1.66 -1.72

Medial
side at
10◦C

[-1.46, 2.34, 1.66] 754.16 352.19 -1.75 -1.81

Lateral
side at
15◦C

[-1.33, 2.62, -1.70] 735.88 282.90 -1.62 -1.73

Medial
side at
15◦C

[-1.41, 2.55, 1.58] 623.58 340.24 -1.71 -1.89

Lateral
side at
20◦C

[-1.38, 2.29, -1.43] 737.41 229.83 -1.69 -1.77

Medial
side at
20◦C

[-1.24, 2.61, 1.81] 686.13 379.43 -1.84 -1.89

Lateral
side at
25◦C

[-1.49, 2.78, -1.52] 729.54 297.87 -1.97 -2.12

Medial
side at
25◦C

[-1.28, 2.59, 1.79] 645.82 366.67 -1.86 -1.95
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(b)
Figure 5.6: Illustration of prediction with Gaussian Process regression for ambient
temperature of 10◦C at (a) lateral side (b) medial side of Subject 2. The test data
points are given by crosses. The shaded area represents the point wise 95% confidence
region of the predictive distribution.
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(b)
Figure 5.7: Illustration of prediction with Gaussian Process regression for ambient
temperature of 15◦C at (a) lateral side (b) medial side of Subject 2. The test data
points are given by crosses. The shaded area represents the point wise 95% confidence
region of the predictive distribution.
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(b)
Figure 5.8: Illustration of prediction with Gaussian Process regression for ambient
temperature of 20◦C at (a) lateral side (b) medial side of Subject 2. The test data
points are given by crosses. The shaded area represents the point wise 95% confidence
region of the predictive distribution.
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(b)
Figure 5.9: Illustration of prediction with Gaussian Process regression for ambient
temperature of 25◦C at (a) lateral side (b) medial side of Subject 2. The test data
points are given by crosses. The shaded area represents the point wise 95% confidence
region of the predictive distribution.
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5.4 Result Analysis of the Gaussian Model

From the Figures 3.13-3.20 in Chapter 3, it can be seen that since the volume

of the datasets are big, the overall trend of the temperature profile is difficult

to gauge. In order to reduce the random noise while retaining a sharp step

response, a moving average filter is designed. This is basically a simple low pass

Finite Impulse Response (FIR) filter used for smoothing out a sampled array

of data. As the name implies, the moving average filter works by averaging a

number of specified points from the input signal to produce each point in the

output signal [115]. In the mathematical form, this can be written as

y[i] =
1

M

M−1∑
j=0

x[i+ j] (5.11)

where x is the input signal, y is the output signal, and M is the number of points

in the average. This equation uses points only on one side of the output data

sample being calculated. The moving average filter performs a convolution of the

input data x [i ] with a rectangular pulse of length M and height 1/M (to make

the area of the pulse, and hence, the gain of the filter, one). As the filter length

increases (value of M ) the smoothness of the output increases, with the sharp

transitions in the dataset made increasingly blunt. Therefore, after the predictive

algorithm was formulated, the actual and predicted data is averaged after every

5 samples to create a single mean, and done till the end of all data points. This

helps in filtering out short-term fluctuations and highlighting the longer-term

trends. It also improves the joint probability function resulting in an enhanced

fit of the Gaussian to the data; so that more points are more accurately predicted.

The actual skin temperature obtained by the Gaussian predictive model for both

the amputee subjects are shown in the subsequent subsections the test ambient

temperatures of 10◦C, 15◦C, 20◦C, and 25◦C.
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5.4.1 Subject 1

(a)

(b)
Figure 5.10: The predicted residual limb skin temperature from the time averaged
Gaussian Process Model is shown along with the actual skin temperature at lateral
and medial sides in (a) and (b) respectively at ambient temperature of 10◦C.
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(a)

(b)
Figure 5.11: The predicted residual limb skin temperature from the time averaged
Gaussian Process Model is shown along with the actual skin temperature at lateral
and medial sides in (a) and (b) respectively at ambient temperature of 15◦C.
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(a)

(b)
Figure 5.12: The predicted residual limb skin temperature from the time averaged
Gaussian Process Model is shown along with the actual skin temperature at lateral
and medial sides in (a) and (b) respectively at ambient temperature of 20◦C.
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(a)

(b)
Figure 5.13: The predicted residual limb skin temperature from the time averaged
Gaussian Process Model is shown along with the actual skin temperature at lateral
and medial sides in (a) and (b) respectively at ambient temperature of 25◦C.
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5.4.2 Subject 2

(a)

(b)
Figure 5.14: The predicted residual limb skin temperature from the time averaged
Gaussian Process Model is shown along with the actual skin temperature at lateral
and medial sides in (a) and (b) respectively at ambient temperature of 10◦C.
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(a)

(b)
Figure 5.15: The predicted residual limb skin temperature from the time averaged
Gaussian Process Model is shown along with the actual skin temperature at lateral
and medial sides in (a) and (b) respectively at ambient temperature of 15◦C.
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(a)

(b)
Figure 5.16: The predicted residual limb skin temperature from the time averaged
Gaussian Process Model is shown along with the actual skin temperature at lateral
and medial sides in (a) and (b) respectively at ambient temperature of 20◦C.
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(a)

(b)
Figure 5.17: The predicted residual limb skin temperature from the time averaged
Gaussian Process Model is shown along with the actual skin temperature at lateral
and medial sides in (a) and (b) respectively at ambient temperature of 25◦C.
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5.5 Discussion

The challenge of monitoring the residual limb skin temperature of lower limb am-

putees contactlessly can be addressed by using the Gaussian Processes approach.

It was observed that residual limb skin temperature and the liner temperature

are majorly affected by both the ambient temperature and the activity level of

the subject. Hence, the Gaussian models were individually trained for each of

the ambient temperatures on which the tests were done. Also, it was noted (from

Chapter 3) that the residual limb skin temperature and the liner temperature

profile of the two amputee subjects are significantly different from each other for

the same ambient test temperatures. This could be attributed to the difference

in the physiological response of every individual and therefore, separate GPML

models were developed for each subject using their respective datasets for train-

ing and testing. In order to filter out the random fluctuations, time averaging

of 5 seconds is done using an FIR filter. This along with the introduction of

thermal time constant in the hyperparameters of the Gaussian model for both

the subjects leads to results which are in 95% confidence interval.

5.6 Summary

The accuracy of the model developed to non-invasively monitor the residual limb

temperature of an amputee is ±0.5◦C. It is observed from the study that the

residual limb temperature depends on the ambient temperature and the activity

level of the subject. Moreover, a major factor is the thermal time constant of

the prosthetic materials used. Because of the low thermal conductivity of the

prosthetic materials, it can restrict the heat transfer from the residual limb and

create a warm micro-environment within the prosthesis. Hence, it becomes all the

more imperative to build in the existing GPML model the thermal time constant
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so obtained from the thermal studies.

Thus, this highlights the relevance of thermal time constant of prosthetic ma-

terials in Gaussian Processes technique. With the introduction of thermal time

constant in the model, the accuracy increases, thereby making predictions more

reliable [116]. Also, this approach is quite useful in extending the model to a

wider amputee population to define a generic behaviour. Future scope of the work

includes studying the interplay between temperatures and sweating response in

prosthesis of amputees with different pathologies.
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Chapter 6

Residual Limb Skin Temperature

Prediction using Adaptive Neuro

Fuzzy Inference System (ANFIS)

6.1 Introduction

This chapter describes the development of a supervised mathematical algorithm

ANFIS to predict the residual limb temperature of the amputee by monitoring

the temperature between socket and liner. Similar to Chapter 5, the aim is to

demonstrate the implementation of ANFIS for contactless monitoring of resid-

ual limb temperature. This technique utilises backpropagation learning method,

wherein the fuzzy inference system is implemented in a framework of neural net-

works which are adaptive by nature. The architecture and the underlying learning

procedure of ANFIS is presented, which is then followed by a description of its

predictive capability and the results of the data analysis. The motivation for

development of this model was to analyse and compare the machine learning al-

gorithms - GPML and ANFIS, the principles of which are quite different from
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each other. Gaussian process models which are non-parametric in nature can

be optimised exactly, given the values of the hyperparameters. ANFIS, on the

other hand is mostly parametric as it uses neural networks properties. Therefore,

for convergence the model relies hugely on the training parameter and the input

function. The comparisons on the predictive ability of ANFIS and GPML are

also listed and discussed [117].

6.2 Adaptive Neuro Fuzzy Inference System

ANFIS are a class of adaptive networks that incorporate both neural networks

and fuzzy logic principles. Neural networks are supervised learning algorithms

which utilise a historical dataset for the prediction of future values. In fuzzy logic,

the control signal is generated from firing the rule base. This rule base is drawn

on historical data and is random in nature. This implies that the controller’s

output is also random which may prevent then optimal results. The use of ANFIS

can make the selection of the rule base more adaptive to the situation. In this

technique, the rule base is selected utilising the neural network techniques via

the back propagation algorithm. To enhance its applicability and performance,

the properties of fuzzy logic, i.e. approximating a non-linear system by setting

IF-THEN rules is inherited in this modeling technique. This integrated approach,

makes ANFIS to be a universal estimator [118].

6.2.1 ANFIS Strategy

ANFIS belongs to a family of hybrid system, called as the term ‘neuro fuzzy

networks’ [119] inheriting the properties of both neural networks and fuzzy logic.

Neural networks can easily learn from the data. However, it is difficult to inter-

pret the knowledge acquired by it, as the meaning associated with each neuron
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and each weight is quite complex to comprehend. In contrast, fuzzy logic itself

cannot learn from the data. But fuzzy-based models are easily understood as they

utilise linguistic terms rather than numeric and the structure of IF-THEN rules.

Linguistic variables are defined as variables whose values are words or sentences

in a natural language with associated degrees of membership. The fuzzy set in

which linguistic variables belongs is an extension of a ‘crisp’ set where an element

could have full or no membership. However, fuzzy sets allow partial membership

as well, which implies that an element may partially belong to more than one

set [120]. In other words, for a crisp set, the membership level of an element x in

set A can be expressed by a characteristic function µA(x), such that if

µA(x) =

1 ifx ∈ A implying full membership

0 ifx /∈ A implying non-membership

(6.1)

But for a fuzzy set A the membership function µA(x) can take values in the

interval [0,1]. The basic structure of the developed ANFIS controller for the

prediction of residual limb skin temperature consists of four parts, which are,

fuzzification, rule base, inference engine and the de-fuzzification blocks as seen in

Figure 6.1.

Figure 6.1: Block diagram of a Neuro- Fuzzy (ANFIS) controller

101



6. Residual Limb Skin Temperature Prediction using Adaptive Neuro Fuzzy
Inference System (ANFIS)

In the ANFIS controller, the crisp input signal (liner temperature in our case) is

converted to fuzzy inputs by the Membership Function (MF). The membership

function pattern of the ANFIS model used in study is defined to be Gaussian.

The fuzzy inputs along with the Gaussian membership function are then fed

into the neural network block. The neural network block consists of a rule base

which is connected to the inference engine. Back propagation algorithm is used

to train the inference engine for the proper selection of rule base. Once trained,

proper rules can be generated and fired from the neural network block to yield

optimal output. The linguistic output from the neural network block is then

converted into crisp output (residual limb skin temperature) by the defuzzifier

unit [121]. The structure of the neuro-fuzzy model consists of different adaptive

layers. Each of these layers has nodes with an associated network of transfer

functions, through which the fuzzy inputs are processed. The output from these

nodes are then combined to yield a single crisp output as the configuration of the

ANFIS permits only one output of the model. This crisp output is fedback as

input to the model and compared with the set value. If there is any deviation,

the error signal so generated becomes the input to the ANFIS controller, thereby

maintaining stability in the system [122].

6.2.2 ANFIS Structure

ANFIS supports the Takagi-Sugeno based systems [123]. The rule base for it can

be expressed as follows:

If x is A then y is B

where the linguistic variables A and B defined by the fuzzy sets on the ranges

X and Y, respectively. The if-part of the rule “x is A” is called the antecedent

or premise, while the then-part of the rule “y is B” is called the consequent or

102



6. Residual Limb Skin Temperature Prediction using Adaptive Neuro Fuzzy
Inference System (ANFIS)

conclusion. The structure of the adaptive network is composed of five network

layers i.e. layer 1 to layer 5 (with nodes and connections) as shown in Figure 6.2.

Figure 6.2: Architecture of a first order two rule Takagi-Sugeno type ANFIS.

Assuming that the system is defined to have two inputs x1 and x2, one output z

and fuzzy set A1, A2, B1, B2; then for a first order Takagi-Sugeno fuzzy model,

having two IF-THEN rules in the common rule set, the system can be defined
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using Equations 6.2 and 6.3 [124].

If x1 is A1 and x2 is B1 then f1 = p1x1 + q1x2 + r1 (6.2)

If x1 is A2 and x2 is B2 then f2 = p2x1 + q2x2 + r2 (6.3)

Layer 1: This layer is called as the fuzzification layer. Here the crisp input signal

is fed to the node i which is associated with a linguistic label Ai or Bi−2. Thus,

the node function O1,i(X) determines the membership level (full, none or partial)

of the given input. The output of each node is calculated using Equations 6.4

and 6.5 where x is the input to node i, Ai is the linguistic variable associated

with this node function and µAi is the membership function (MF) of Ai.

O1,i = µAi(x1) for i = 1,2 (6.4)

O1,i = µBi−2(x2) for i = 3,4 (6.5)

µAi is chosen as the generalised Gaussian shaped membership function in this

model development as seen in Equation 6.6.

µAi(x) = exp
{
− 1

2

(x− ci
ai

)2}
(6.6)

where x is the input and {ai, ci} is the premise parameter set. c determines the

centre of the corresponding membership function whereas a determines the width.

These parameters can be specified and adjusted by the learning algorithm in the

training process. The Gaussian membership function achieves smoothness as well

as possess the useful property of invariance under multiplication (i.e. the product

of two Gaussians is a Gaussian with a scaling factor) and Fourier transform (i.e.

the Fourier transform of a Gaussian is also a Gaussian).

Layer 2: The nodes in this layer are fixed and labeled as O(2,i). The output of
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each node is the product of all the incoming signals as in the Equation 6.7.

O(2,i) = wi = µAi(x1)µBi(x2) for i = 1,2 (6.7)

The output of each node represents the firing strength wi of a rule. Also, known

as the membership layer, it acts on the input variables from layer 1 as membership

functions to represent them in their fuzzy sets.

Layer 3: Each node in this layer calculates the ratio of the individual rule’s

firing strength to the sum of all rules firing strengths as in the Equation 6.8. wi

represents the normalized firing strength. Hence, this layer is also known as the

rule layer.

O(3,i) = wi =
wi

w1 + w2

for i = 1,2 (6.8)

Since, each node in this layer calculates the normalized weights, the output signal

can be thought of as the normalized firing strength of a given rule.

Layer 4: This layer known as the defuzzification layer. It calculates the individ-

ual output values y by inferring the rules from the rule base. Individual nodes of

this layer are connected to the respective normalization node in layer 3 and also

receive the input signal. Each node of this layer is adaptive in nature with the

node function given by the Equation 6.9 where {pi, qi, ri} is a set of consequent

parameters of rule i.

O(4,i) = wifi = wi(pix1 + qix2 + ri) (6.9)

Layer 5: This layer is known as the output layer. It has only one node and it

calculates the sum of all the outputs coming from the nodes of the defuzzification
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layer to produce the overall ANFIS output as in Equation 6.10.

overall output = O(5,i) =
∑
i

wifi =

∑
i

wifi∑
i

wi
(6.10)

This architecture of the adaptive network is used to develop the ANFIS model for

the prediction of in-socket residual limb temperature and the learning algorithm

is described in the next section.

6.2.3 Training the ANFIS Model

From the ANFIS structure, it can be noted that the final output can be expressed

as linear combination of the consequent parameters if the premise parameters are

known as seen in Equation 6.11. The output F of the model as seen in Figure

6.2 can be written as

F =
w1

w1 + w2

f1 +
w2

w1 + w2

f2

= w1f1 + w2f2

= (w1x)p1 + (w1x)q1 + (w1x)r1 + (w2x)p2 + (w2x)q2 + (w2x)r1 (6.11)

where F is seen to be linear in the consequent parameters {p1, q1, r1, p2, q2, r2}.

In order to learn from the training dataset the ANFIS model can either use the

hybrid or the back propagation algorithm. In this study for model development,

the back propagation algorithm is utilised as it is one of the simplest methods

for supervised learning of neural networks. The algorithm is provided with the

training dataset where the relation between the input-output pair is known. The

actual output from the network is compared to the expected output and an error
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signal is computed for each of the output nodes. Since all the nodes to some

extent have contributed to the errors in the output layer, the output error signals

are transmitted backwards from the output layer to each node in the hidden

layer. This is repeated for every layer, until each node has received an error

signal equal to its relative contribution in the overall error. These error signals

are then used by the individual nodes to update their connection weights until

the error function of the network becomes minimum. The method used in the

back propagation algorithm is gradient descent. The aim is thus to reduce the

error until the neural network learns the training data.

6.3 Model Generation and Prediction

The basic idea behind this neuro-adaptive technique is to provide a method for the

Fuzzy Inference System (FIS) to learn from the dataset. This enables to compute

the membership function parameters that can best allow the FIS to infer the

relation between the input-output pairs. These parameters can be adjusted in

the learning process as described in the previous section.

6.3.1 ANFIS as an Estimator

The design of ANFIS as an estimator is twofold - constructing and training. In

order to start the modeling process, an initial fuzzy model needs to be constructed.

For deducing the final fuzzy model, certain parameters such as the number of

inputs, the number of linguistic variables, the type of membership function and

the number of rules are applied to the initial fuzzy model. The initial fuzzy model

can be drawn by either grid partitioning method or the subtractive clustering

technique. Effective portioning of the input space is vital as it can decrease the
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rule number and thus improve the rate of learning and application phase. As

mentioned in the previous section, the Input MF is chosen to be of Gaussian

form. The Output MFs can be either a constant or a linear form. The Constant

form is chosen to be the output MF in this study. After specifying the number

and type of input MFs, the estimator rule base is constituted. The automatic

rule generation (grid partition) method is preferred [125]. The grid partition

form takes all possible combinations of membership functions of all inputs. For

example, an ANFIS model with two inputs and three MFs on each input would

result in 32 = 9 Takagi-Sugeno fuzzy if-then rules automatically. A drawback of

this method is that it requires much computational knowledge in systems that

are defined by many inputs; however, it is used in this study due to advantage of

processing in MATLAB. Once the initial ANFIS structure is constructed, learning

algorithm and training parameters are chosen. ANFIS model can be generated

either from the command line, or through the ANFIS editor GUI. In this study,

ANFIS Editor GUI is used to generate the ANFIS models with the chosen design

parameters in construction phase. A MATLAB script is written to train the

ANFIS structure in the training step as seen in Appendix C. The steps involved

in the ANFIS estimator design by utilising the Matlab Fuzzy Logic Toolbox [126]

are as follows:

1. The training data is loaded to the Editor Graphical User Interface (GUI).

2. Design parameters, number of input MF, type of input and output MF, are

chosen. Thus, the initial ANFIS structure is formed.

3. The code for the training is run with initial structure.

4. ANFIS structure is constituted after the training is saved to be used as an

estimator.
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6.3.2 Predictive Ability of ANFIS

The architecture of the realised ANFIS model had the following specifications;

number of nodes: 84, number of training data pairs: 210, number of test data

pairs: 100 and number of membership functions: 3. The adaptive network utilises

the back propagation method to optimise the membership functions and the

parameters so that the prediction error is minimised. Dataset A is used to train

the model and the predictive ability of ANFIS is tested on Dataset B. During the

training process of the model, the input data is mapped a number of times to

minimise the prediction error. The number of iterations required for mapping is

known as epochs. It is observed that in all the scenarios of testing, 50 iterations

(epochs) are required to train the model on Dataset A with a minimal error.

The trained model is then tested on 100 data points from Dataset B to validate

it. The following subsections demonstrate the predictive ability of ANFIS for

ambient temperature of 10◦C, 15◦C, 20◦C and 25◦C at lateral and medial side of

residual limb for both the amputee subjects.

6.3.2.1 Predictive Ability of ANFIS - Subject 1

Table 6.1 summarises the predictive ability of the model tested for various ambient

temperatures at the lateral and medial side of residual limb for Subject 1. It is

seen that in all the scenarios, the results from the ANFIS model were encouraging

with the test errors being significantly lower than the training errors. This is an

exception in the scenario for lateral side testing at 15◦C where the test error is

more than the training error and its impact can be seen in the Figure 6.4(a).
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Table 6.1: Summary of ANFIS for various testing and training scenarios for
Subject 1

Scenario Training error (RMSE) Test error (RMSE)

Lateral side at 10◦C 0.1543 0.07814

Medial side at 10◦C 0.09894 0.07378

Lateral side at 15◦C 0.3098 0.6985

Medial side at 15◦C 0.0750 0.0742

Lateral side at 20◦C 0.2236 0.1265

Medial side at 20◦C 0.0873 0.0443

Lateral side at 25◦C 0.0145 0.0696

Medial side at 25◦C 0.1234 0.1519

6.3.2.2 Predictive Ability of ANFIS - Subject 2

Table 6.2 summarizes the predictive ability of the model tested for various ambi-

ent temperatures at the lateral and medial side of residual limb for Subject 2. It

is seen that with the design settings of the ANFIS as described in section 6.3.2,

the results from the model were not very consistent; with the test errors being

significantly lower and sometimes higher than the training errors. It can be seen

from Figures 6.7-6.10 that the predicted output does try to follow the actual skin

temperature but it offsets and has fluctuations which does not fit the model to
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the data accurately.

Table 6.2: Summary of ANFIS for various testing and training scenarios for
Subject 2

Scenario Training error (RMSE) Test error (RMSE)

Lateral side at 10◦C 0.1629 0.0515

Medial side at 10◦C 0.3762 0.4333

Lateral side at 15◦C 0.2392 0.2634

Medial side at 15◦C 0.6911 0.8139

Lateral side at 20◦C 0.2101 0.2372

Medial side at 20◦C 0.2464 0.1499

Lateral side at 25◦C 0.0684 0.0801

Medial side at 25◦C 0.0910 0.1171

6.4 Result Analysis of the ANFIS Model

Similar to Section 5.4, a FIR filter was implemented to average the actual and

predicted data after every 5 samples for smoothing out the short term fluctua-

tions.
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6.4.1 Subject 1

(a)

(b)
Figure 6.3: The predicted residual limb skin temperature from the ANFIS Model is
shown along with the actual skin temperature at lateral and medial sides in (a) and
(b) respectively at ambient temperature of 10◦C.
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(a)

(b)
Figure 6.4: The predicted residual limb skin temperature from the ANFIS Model is
shown along with the actual skin temperature at lateral and medial sides in (a) and
(b) respectively at ambient temperature of 15◦C.
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(a)

(b)
Figure 6.5: The predicted residual limb skin temperature from the ANFIS Model is
shown along with the actual skin temperature at lateral and medial sides in (a) and
(b) respectively at ambient temperature of 20◦C.
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(a)

(b)
Figure 6.6: The predicted residual limb skin temperature from the ANFIS Model is
shown along with the actual skin temperature at lateral and medial sides in (a) and
(b) respectively at ambient temperature of 25◦C.
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6.4.2 Subject 2

(a)

(b)
Figure 6.7: The predicted residual limb skin temperature from the ANFIS Model is
shown along with the actual skin temperature at lateral and medial sides in (a) and
(b) respectively at ambient temperature of 10◦C.
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(a)

(b)
Figure 6.8: The predicted residual limb skin temperature from the ANFIS Model is
shown along with the actual skin temperature at lateral and medial sides in (a) and
(b) respectively at ambient temperature of 15◦C.
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(a)

(b)
Figure 6.9: The predicted residual limb skin temperature from the ANFIS Model is
shown along with the actual skin temperature at lateral and medial sides in (a) and
(b) respectively at ambient temperature of 20◦C.
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(a)

(b)
Figure 6.10: The predicted residual limb skin temperature from the ANFIS Model is
shown along with the actual skin temperature at lateral and medial sides in (a) and
(b) respectively at ambient temperature of 25◦C.
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6.5 Comparison Metrics of the ANFIS and GPML

Model

It is seen that the residual limb temperature can be accurately predicted (albeit

with fluctuations) by monitoring the temperature between the liner and the socket

using ANFIS. In order deduce whether ANFIS or GPML (previously described

in Chapter 5) have a better predictive ability they are compared by using some

statistical tools like Mean Absolute Error (MAE), Root Mean Squared Error

(RMSE), and R2 criteria.

6.5.1 Mean Absolute Error (MAE)

The Mean Absolute Error (MAE) indicates how close the predictions are to the

eventual outcomes which is given by

MAE =
1

n

n∑
i=1

|fi − yi| =
1

n

n∑
i=1

|ei| (6.12)

As seen in Equation 6.12, the mean absolute error can be defined as the average

of absolute errors; the absolute error given by |ei| = |fi− yi|, where fi is the pre-

diction and yi the true value. It should be noted that in MAE, all the individual

errors have equal weight in the average, making it a linear score.

6.5.2 Root Mean Squared Error (RMSE)

Calculation of Root Mean Squared Error (RMSE)involves squaring the difference

between the predicted and corresponding observed values, averaging it over the
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sample and then finally taking its square root. This can be written as

RMSE =

√√√√ 1

n

n∑
i=1

e2
i (6.13)

RMSE has a quadratic error rule, where the errors are squared before being av-

eraged. As a result, a relatively high weight is given to large errors [127]. This

could be useful when large errors are undesirable in a statistical model. From

Tables 6.3 and 6.4 (for subjects 1 and 2 respectively), it can be deduced that for

the Gaussian model the MAE and RMSE is slightly lower as compared to ANFIS.

The large MAE and RMSE in some scenarios of ANFIS can be attributed to the

number of epochs being 50 for each of the modelling scenarios which might not be

sufficient if the training data differs significantly from the testing data. To reduce

the errors, either the number of epochs can be increased or by introducing deep

learning. In order to discriminate between the models for their predictive perfor-

mance, the error metrics should be capable to differentiate amongst the model

results. In this context, the MAE might be affected by large average error values

by ignoring some large errors. The RMSE is generally better in reflecting the

model performance differences [128] as it gives higher weight to the unfavourable

conditions. The difference between the RMSE of the Gaussian model and ANFIS

is not immense and hence both the models have comparable performance metrics.

Therefore, in order to have a reliable statistical comparison between the mathe-

matical models, both the MAE and RMSE can be used together to ascertain the

variation in errors in a given set of predictions.
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6.5.3 R2 Criteria

Another measure of goodness-of-fit of the model is the R2 criteria. Higher val-

ues are indicative that the predictive model fits the data in a better way. By

definition, R2 is the proportional measure of variance of one variable predicted

from the other variable. Thus ideally the value of R2 to approach one is always

desirable. If a dataset has n values with yi being the true value and fi being the

predicted, then the mean of the observed data y is given by

y =
1

n

n∑
i=1

yi (6.14)

Then, in order to measure the variability of the dataset, the residual sum of

squares SSres and the total sum of squares SStot as seen from Equations 6.14 and

6.15 are computed.

SSres =
∑
i

(yi − fi)2 (6.15)

SStot =
∑
i

(yi − y)2 (6.16)

In order to determine the R2 criteria, SSres is normalized w.r.t SStot which is

given as

R2 = 1− SSres
SStot

(6.17)

However, a high R2 tells you that the curve came very close to the points but

in reality it does not always indicate the model quality [129]. From Table 6.5

it is seen that both Gaussian and ANFIS models have similar R2 values which

are indicators that in both the modeling techniques, the prediction capability

is similar. Using the R2 criteria in conjunction with the MAE and RMSE, it

can be fairly deduced that the Gaussian and ANFIS models can be used for the
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prediction of residual limb temperature but the predictive ability of GPML model

is better as it follows the trend and gives output without much fluctuations.

Table 6.3: Performance comparison of the ANFIS and GPML models for Subject
1

Scenario MAE RMSE
ANFIS GPML ANFIS GPML

Lateral side at 10◦C 0.1054 0.0865 0.0781 0.1020

Medial side at 10◦C 0.0676 0.0819 0.0738 0.1125

Lateral side at 15◦C 0.2172 0.0831 0.6985 0.0966

Medial side at 15◦C 0.0485 0.0529 0.0742 0.0835

Lateral side at 20◦C 0.1351 0.1484 0.1265 0.2967

Medial side at 20◦C 0.0558 0.0667 0.0443 0.0942

Lateral side at 25◦C 0.0899 0.1005 0.0696 0.1459

Medial side at 25◦C 0.0889 0.0828 0.1519 0.1090
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Table 6.4: Performance comparison of the ANFIS and GPML models for Subject
2

Scenario MAE RMSE
ANFIS GPML ANFIS GPML

Lateral side at 10◦C 0.1042 0.2128 0.0515 0.2183

Medial side at 10◦C 0.2146 0.1845 0.4333 0.2212

Lateral side at 15◦C 0.1561 0.1353 0.2634 0.1464

Medial side at 15◦C 0.5265 0.2436 0.8139 0.2647

Lateral side at 20◦C 0.1607 0.2098 0.2372 0.2170

Medial side at 20◦C 0.1687 0.1217 0.1499 0.1468

Lateral side at 25◦C 0.0463 0.0517 0.0801 0.0714

Medial side at 25◦C 0.0527 0.0577 0.1171 0.0916
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Table 6.5: R2 criteria comparison of the ANFIS and GPML models both amputee
subjects

Scenario Subject 1 Subject 2
ANFIS GPML ANFIS GPML

Lateral side at 10◦C 0.9802 0.97 0.982 0.985

Medial side at 10◦C 0.981 0.98 0.964 0.98

Lateral side at 15◦C 0.953 0.98 0.977 0.986

Medial side at 15◦C 0.988 0.989 0.945 0.979

Lateral side at 20◦C 0.964 0.966 0.978 0.982

Medial side at 20◦C 0.98 0.984 0.97 0.985

Lateral side at 25◦C 0.979 0.978 0.987 0.989

Medial side at 25◦C 0.98 0.9831 0.99 0.99

6.6 Summary

This chapter addresses the challenges of non-invasively measuring the in-socket

residual limb temperature by comparing two different modeling techniques, namely

ANFIS and Gaussian Processes. The temperature profile of the residual limb skin

is dependent on the ambient temperature and the activity level of the subject.

The performance metrics of both the models indicate that they are very similar in
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their predictive ability with an accuracy of ±0.5◦C. However, this approach has

certain limitations as well. The residual limb temperature profile will differ for

every amputee as there are variations in physiological responses (such as differ-

ences in capillary dilatation) and variations in properties of the skin parameters

(such as thickness/composition of the skin layers). Because of the varying resid-

ual limb temperature profile in individuals, these machine learning algorithms

have to be personalised by training them with individual datasets for each of the

amputee subjects. This study which was conducted on two amputee subjects a

number of times, verified the success of the proposed approach. Therefore, this

work could be used to figure out the envelope in estimating the statistical power

i.e. how many people are needed to make the model clinically significant and it

will be useful in extending it on a greater population in order to define a generic

behaviour. Since the temperature profile of the residual limb is dependent on

the ambient temperature, it puts a constraint on drawing up a generalised model

for all ambient temperatures. This could potentially be resolved by using inter-

polation techniques in the model at a given ambient temperature to predict the

residual limb temperature profile at another ambient temperature provided that

the activity state of the subject is known.
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Chapter 7

Towards Wearable Platform for

e-Health

7.1 Introduction

In many areas of the world accessing professional physicians ‘when needed/as

needed’ might not be always possible for a variety of reasons. Therefore, in such

cases a targeted e-Health solution to safeguard patient long-term health could

be a meaningful approach. Today’s modern healthcare technologies, often built

around electronic and computer-based equipment, require an access to a reliable

electricity supply. Many healthcare technologies and products also presume access

to the high speed internet is available, making them unsuitable for use in areas

where there is no fixed-line internet connectivity, access is slow, unreliable and

expensive, yet where the most benefit to patients may be gained.

In this chapter, the details of a mobile sensor platform is presented, based around

readily-purchased consumer components, to facilitate a low cost and efficient

means of monitoring the health of patients with prosthetic lower limbs. This

platform is designed such that it can also be operated in a standalone mode i.e. in
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the absence of internet connectivity, thereby making it suitable to the developing

world. The platform works with an Android mobile device, in order to allow for

the capture of data from a wireless sensor unit, and to give the clinician access to

the results from the sensors. The results from the analysis, are demonstrated to be

of use for remote monitoring. This is specifically targeted for monitoring the tissue

health of lower limb amputees. The monitoring of residual limb temperature and

gait can be a useful indicator of tissue viability in lower limb amputees particularly

for those suffering from diabetes. The route wherein contactless monitoring of

tissue health is achievable using the Gaussian process technique, ANFIS and

complementary filter which is described in previous chapters is implemented in

the platform. This knowledge will be useful in establishing biomarkers related

to a possible deterioration in a patient’s health or for assessing the impact of

clinical interventions. Thus, this chapter discusses the design and development of

a wearable sensor platform for lower limb amputees that is capable of gathering

data from the sensors (placed on the elastomer), and store and transmit to a

central health database, for the purpose of analysing it.

7.2 Wearable Mobile Sensor Module Design

7.2.1 System Overview

The design of the wearable sensor platform has to be such that it can unobtru-

sively gather data from a wearable sensor and transfer this information period-

ically to a database server, via a wireless transfer protocol. It would therefore

be beneficial for lower limb diabetics, to be able to detect either the early signs

of actual tissue injury before the development of serious complications; and/or

monitor the conditions at the prosthetic socket/residual limb interface to give

a warning of a significant increase in the risk of injury before it develops. If

platforms like this were to be deployed to communities for use on an ongoing
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basis, it can be useful in alerting a health professional of warning signs, improve

patient quality of life and perhaps allow a significant reduction in the frequency

of outpatient check-up appointments. In addition, the information gathered by a

monitoring system on areas prone to damage could contribute towards improving

prosthesis design. This design is architected in order to make as low-power a

solution as possible, using as much off-the-shelf equipment as practical, such that

kits maybe assembled out of commonly available items. Minimal equipment is

used, in order to reduce the complexity of the system, and to reduce the cost of

each unit as possible.

The building blocks of the wearable sensor platform system are the server and

the data logger. The server can be placed remotely and need not be in the close

proximity of the data logger. The server is Raspberry Pi Zero on which the data

processing and storage is done. It also acts as a Wi-Fi access point, through a

Universal Serial Bus (USB)-connected wireless adapter, eliminating the need for

a dedicated wireless access point. The Raspberry Pi Zero hosts an Hypertext

Transfer Protocol (HTTP)-based Application Programming Interface (API), and

acts as a Dynamic Host Configuration Protocol (DHCP) server on the Wi-Fi

network, allowing for the rest of the platform to be connected. The data log-

ger device comprises of two components the prosthesis-mounted platform with

sensors, and an Android smartphone. The wearable platform is mounted on the

shank of the prosthetic user and consists of an Arduino board interfaced with

thermistors (NTC type, 100k) and an IMU to monitor the liner-socket interface

temperature and the gait of the user. Bluetooth is used to transmit the data

from the Arduino to the smartphone. The Android smartphone acts as a gate-

way between the Arduino and the server by transmitting it to the server using

Wi-Fi. In the absence of Wi-Fi connection, the Android stores the data locally

in a database. The Android platform was selected on account of its widespread

penetration within emerging markets, and the relatively low cost of entry-level
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handsets, reducing the overall cost of the proposed solution. By connecting an

Android device to the Wi-Fi hotspot created by the Raspberry Pi Zero, the appli-

cation software may be downloaded directly from the Raspberry Pi Zero, where

no internet access is available.

At the server end the gait and liner-socket interface temperature data are fed into

MATLAB for processing, using the mathematical algorithms Complementary fil-

ter and GPML respectively (the techniques of which are discussed in Chapters 3

and 5). Hence, the residual limb skin temperature and the gait of an amputee

user can be monitored in a contactless way. The server can be accessed by au-

thorised medical personnel for access to the patient data. If a threshold level is

reached for residual limb skin temperature or abnormal gait pattern, the clini-

cian can trigger a warning signal from the server to the smartphone for alerting

the prosthetic user. Interpolation technique is also introduced at the server end

for the temperature data to reduce the need for calibrating the GPML model

for all the ambient temperatures. The architecture of the wearable platform is

illustrated in Figure 7.1.
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7.2.2 Hardware Overview

The sensing platform is composed of a number of discrete components. The

center of the platform is an Arduino (ATmega328 16 MHz) microcontroller. The

wearable platform can be interfaced with a number of sensors but in the design for

the prosthetic users, temperature and gait measurement sensors are introduced.

The temperature and gait of the residual limb of an amputee subject can be

monitored by a medical team at pre-defined sampling rate. The Arduino platform

is capable of communicating via Bluetooth, Wi-Fi or cellular networks.

The Bluetooth module HC-05 is an easy to use module, designed for transparent

wireless serial connection setup. It has the footprint as small as 12.7 mm x 27

mm. Its low power operation at 1.8 V makes it even more compatible for use in

this design.

The Wi-Fi shield for the Arduino connects to the internet wirelessly using the

802.11 wireless specifications. The Wi-Fi shield connects to an Arduino board

using long wire-wrap headers which extend through the shield [130]. The current

draw of the Arduino is roughly 25-50 mA whereas that of the Wi-Fi shield will

be 60-500 mA depending upon how much network traffic is sending/receiving.

Thus, the power consumption of this shield is huge and can drain out the battery

fairly quickly.

The Arduino GSM shield connects the Arduino to the internet using the GPRS

wireless network. The shield uses a radio modem M10 by Quectel. The M10 is a

Quad-band GSM/GPRS modem that works at frequencies GSM 850 MHz, GSM

900 MHz, DCS 1800 Hz and PCS 1900 MHz. It supports TCP/UDP and HTTP

protocols through a GPRS connection. GPRS data downlink and uplink transfer

speed maximum is 85.6 kbps [131]. However, the modem can pull up to 2 A of

current at peak usage, which can occur during data transmission and requires

700-1000 mA of current draw at other times [132]. This is of concern, as in the

132



7. Towards Wearable Platform for e-Health

realisation of the above requirements are the power consumption of the device

and the longevity of the battery between charges. The power consumption of

the Arduino when interfaced with the above mentioned communication modules

is compared in Figure 7.2. It can be seen that the power consumption of the

GSM shield is about 20 times more than the Bluetooth module. The Wi-Fi

shield’s power consumption is about 1763 mW as compared to 403.5 mW of

the Bluetooth module. Since the Bluetooth module is small in size, with low

power consumption due to reduced range and bandwidth, it was selected for data

communication between the sensor and mobile phone. Further studies on the

battery life w.r.t. the platform are discussed in Section 7.3 which also reiterates

that Bluetooth communication is most power effective of all in wearable sensor

design solution.

Figure 7.2: Comparison of wearable sensor platform power consumption with different
modes of data communication (Data transfer rate = 1200 bytes/second).

The prosthesis-mounted equipment requires an Arduino microcontroller, an HC-

05 serial Bluetooth module, two temperature sensors, and a MPU6050 6-axis
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accelerometer and gyroscope module. The temperature, accelerometer and gyro-

scope data is transmitted from the Arduino microcontroller, over the Bluetooth

link, to the Android smartphone running the data gathering software. The smart-

phone application maintains a local copy of the data on its Secure Digital (SD)

card as backup, and transmits batched data over Wi-Fi to the Raspberry Pi

Zero. The Android smartphone provides an interface to control the data logging,

adjusting parameters as required to ensure that the patient information is kept

separately, and ensuring that it is correctly associated with the patient the data

was gathered from [2]. The microcontroller was connected to an HC-05 Bluetooth

module, which communicated over Serial Port Profile (SPP). An Android smart-

phone was paired with this module and connected over Bluetooth such that the

data collected by the Arduino board is transferred onto the software (customised

mobile app) running on the smartphone. The data is simultaneously backed up

on the SD card in the wearable sensor platform and also on the smartphone [50].

The schematic of the wearable sensor platform along with the Arduino code is

provided in Appendix D.

After the data is received by the smartphone, it is then transmitted over Wi-Fi to

the Raspberry Pi Zero, acting as the data collection server, where it is stored in

a Postgres database after being received by the web API. This allows for the re-

trieval and processing of the sensor data using mathematical learning algorithms

like Gaussian Processes modelling technique on a data processing app. This clin-

ically relevant information can be then accessed by medical personnel, using the

secure Wi-Fi link from their own device, or from the smartphone used for data

collection. Where the system is deployed offline there may be scenarios where

there is only one mobile device available, both for data gathering and retrieval. In

order to facilitate this, the reporting interface is designed such that it be accessed

from both desktop and mobile browsers.
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The clinician has access to data for each of their patients from within their inter-

face. After selecting a patient identifier, all previous sessions recorded with the

monitoring platform are visible, and can be accessed. It is possible therefore to

compare the gait profile and predicted residual limb skin temperature between

patients, or to monitor deterioration or variations over time for one patient. The

clinician interface provides access to the patient information, allowing for feed-

back to be given to the patient in real-time (residual limb skin temperature and

the shank angle).

7.2.3 Software Overview

The comma-separated data from the sensors interfaced on the Arduino platform

are transmitted via the Bluetooth link between the HC-05 module and Android

smartphone. Each of these samples was transmitted over a single line of text

data. Within the mobile app in the Android smartphone, the incoming data over

Bluetooth is stored after each sample is tagged as a part of the ‘stream’. The

concept of streams is introduced in order to differentiate between samples of dif-

ferent scenarios, such that it can be analysed later. This allows for comparisons

to be carried out, either between patients or for one patient over time, making it

possible to compare previous experiments, identifying trends or deterioration.

The platform is equipped to handle connection failure scenarios like loss of Blue-

tooth link between HC-05 module and Android smartphone; and a lack of Wi-Fi

network for the Android smartphone to connect to the server. If the Bluetooth

connection is lost, then the HC-05 module buffers the unsent data (if sufficient

memory is available) and then tries to retransmit the unsent samples upon re-

establishing the connection. In the event of no Wi-Fi/cellular network being

available on the Android smartphone to connect to the server, Android appli-

cation creates a local database and stores all samples and timestamps. When
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connectivity is available it carries out a synchronisation routine with the server.

The synchronisation process involves identification of the last received sample

ID for a given stream and then recognising if any further samples with a larger

sample ID exist for that stream. It should be noted that for this synchronisation

logic to be work the sample ID should always monotonically increment over time,

as implemented in the application. Considering the need for the system to be

both usable when given to a patient for use away from the clinician, as well as

used with a clinician monitoring the readings being reported to the Raspberry

Pi Zero server for analysis, the application permits either use-case, transparently

and without configuration, by carrying out the synchronisation process whenever

connectivity to the server is possible [133].

Figure 7.3: Data flow in the wearable sensor platform.

The data retrieval interface was implemented as a Flask-based web application,

written in Python. A responsive Bootstrap interface was created, to allow the

same management and data retrieval interface to be used from both fixed and

mobile devices. The Flask application also presents an API for the synchroni-
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sation of data to the server from the mobile application. The underlying data

gathered from sensors is stored in a local Postgres database, held on the Rasp-

berry Pi Zero. Figure 7.3 illustrates the route of the data communication from

the sensors to the central database. The access to the health monitoring server

is password protected with each clinician having a unique identifier to login as

shown in Figure 7.4.

Figure 7.4: Login screen at the server interface.

In order to ensure that no personal or identifying information (even a patient

identifier) is held on the smartphone (which may be shared between users, or

also used by the clinician), a stream-based model for the upload of data is imple-

mented. Within the stream-based model, the Android application requires only

a single setting to be adjusted prior to issuing the device to a new patient for

use. This is designed to facilitate use of the one platform, where all equipment

must be self-contained and brought by the clinician, who may not be an expert
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in configuring the platform. Rather than configuring accounts within the appli-

cation, the clinician simply creates a new stream from the server configuration

interface as seen in Figure 7.5. This displays a numerical stream ID, which is en-

tered into the Android application. Having set the stream ID, the server is able

to map this stream to a patient, but no information pertaining to the patient

is exposed to the smartphone [50]. Once a successful connection is established

between the Android smartphone and server, the data is uploaded to the server

in the corresponding stream. This is illustrated in Figure 7.6.
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Figure 7.5: Creation of a new stream from the server configuration interface by the
clinician.
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Figure 7.6: The temperature and gait data uploaded in the server at the corresponding
stream.
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7.2.4 Battery Monitoring

The wearable platform is entirely dependent on battery power for the realisation

of monitoring the tissue viability in lower limb amputees. Continuous monitoring

along with transmission of sensor data will deplete the battery powering the

Arduino microcontroller over a period time, thereby leading to failures. In order

to alleviate this situation, a battery monitoring unit is included in the design of

the multi-sensor wearable platform. The design of the battery monitoring unit as

seen in Figure 7.7, simply consists of a two resistor voltage divider circuit which

converts the terminal voltage of the battery powering the board (typically 9-12

Volts) to a lower voltage in order to be read by the Arduino microcontroller.

Utilising Ohm’s law, the voltage drop Vout across resistor R2 as seen in Equation

7.1, is fed to the analog input pin Vin of the microcontroller.

Vout =
R2

R1 +R2

VBattery (7.1)

The reduced lower voltage seen by the microcontroller analog input pin is then

converted to the actual battery voltage VBattery by multiplying it with the voltage

conversion ratio. The system is designed such that when the battery monitoring

circuit detects that VBattery ≤ 5 V, which is the minimum for arduino board to

operate, a message saying ‘Battery Level Low’ is sent to the user’s smartphone.

This alerts the user with both a visual and audible indication, using the platform’s

notifications API. This enables the user to detect low battery levels of the platform

and charge it, in order to minimise the risk of failing to capture data due to power

failures [3, 132].
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Figure 7.7: Battery monitoring circuit of the wearable sensor platform.

7.2.5 Overall Power Consumption

As discussed previously, the overall power consumption of the platform was de-

signed to be minimised, in order to facilitate use in areas without reliable grid-

based electricity. The monitoring platform’s power consumption can be split into

two main components the usage of the Raspberry Pi Zero-based server, and

the wireless sensor unit (including mobile phone, if necessary). Note that the

power consumption of the Android mobile phone is not considered within these

measurements, since different devices have significantly different power profiles,

and it is likely that an existing Android device would be used in order to reduce

the overall cost of this system. The peak current consumption of the Raspberry

Pi Zero (including all connected peripherals including Wi-Fi interface) was mea-

sured during initial power-up to be 357 mA. This settled in under a minute to a

steady-state idle consumption of 190 mA. During active data logging, the current

consumption rose to 218 mA. These current draws were measured at 5V DC,

using a PortaPow Premium USB power monitor, and are accurate to ±0.2%.

Therefore, with a 20 Ah 5 V USB power bank used as the power supply, a run-

time of in excess of 3 days for the Raspberry Pi Zero-based server is achievable
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from a full charge of the power bank. The wireless sensor unit draws 80.7 mA

during the data acquisition and transfer of the sensor data via Bluetooth to the

Android device [133]. In order to keep the mobile sensor unit light in weight

for mounting on the patient’s limb, it is connected with its own 9-12 V battery

supply.

Using a 20 W USB output solar charger, capable of supplying 2.4 A to a sin-

gle USB output, the 20 Ah power pack could be recharged in around 12 hours,

assuming sufficient sunlight was available for the solar panel to operate without

available light being a constraint.

7.3 Battery studies on the platform

As seen from the design of the wearable sensor platform in the previous section, it

basically consists of a MCU for control and pre-processing of the sensors data; and

a transmitter and a smartphone for data processing and data transfer via internet

to a server. But for continuous monitoring, which could provide a more realistic

view of the amputee’s lower limb status which would otherwise go unrecorded, a

reliable source of power i.e. the battery needs to be identified.

The mobile sensor platform was first interfaced with the Bluetooth module and

temperature and gait data was sent over to the server at a sampling rate of 1 Hz

constantly. The battery depletion rate was continuously monitored and logged

using a custom built interface in LabView as seen in Appendix E. This test was

run until the battery level was exhausted to the minimum threshold voltage of

5 V which is the minimum for the Arduino board to operate. The batteries

involved in this study were the NiMH rechargeable battery (9 V),Zinc Chloride

(9 V), Zinc Carbon (9 V), Alkaline (9 V), Li-ion rechargeable battery (3.7 V

1750 mAh each; used two in series) and LiPo rechargeable battery (7.4 V 3600
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mAh). A comparison of the size of the batteries is seen in Figure 7.8. The rate

of depletion was observed for all the batteries listed above. The above protocol

was repeated for the other communication methods namely via the Wi-Fi and

GSM shields. To study the effect of sampling rate on the battery life, the above

routine was repeated for sampling rates of 0.2 Hz and 25 Hz. The data flow was

similar to that described in Section 7.2.2. The results from all the cases were

then compared in Table 7.1 to infer the best possible battery technology which

could enable providing consistent data for a long period of time.

Figure 7.8: Various batteries used for the study.

It was observed that the NiMH battery is not able to support the high current

draw demanded by the sensor platform and it can operate for a maximum of three

hours when data is transmitted by Bluetooth at 0.2 Hz. Hence, it is not deemed

suitable for medical sensor platform applications as with high drain-rate usage

(1-4C), the change in shape in the voltage curve with the more rounded “knee”
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to the curve means that an arbitrary 0.9 V/battery cut-off may be premature,

leaving a significant fraction of the battery capacity untapped. The Li-ion on the

other hand is a high density energy battery with the discharge curve being almost

flat [17]. This simplifies the design of the application in which the battery is used

since the supply voltage stays reasonably constant throughout the discharge cycle.

When the sampling rate is decreased from 25 Hz to 0.2 Hz, the battery life is

significantly increased in each mode of communication. However, when the data

is transferred via Wi-Fi or GSM shield the battery life, none of the two batteries

could last for more than 6 hours, making it the system short lived. Reducing the

data sampling rate maybe a solution for reducing the battery consumption but

when used to monitor critical amputee data, this may prove to be a detriment in

identifying the biomarkers in tissue health.

Table 7.1: Battery life for various sampling rates and transmission scenarios

Battery
Capacity
(mAh)

Bluetooth Wi-Fi GSM

0.2 Hz 1 Hz 25 Hz 0.2 Hz 1 Hz 25 Hz 0.2 Hz 1 Hz 25 Hz

NiMH 170
3 hours

5 minutes
2 hours

40 minutes
31 minutes - - - - - -

Zinc Carbon 224
2 hours

15 minutes
1 hour

15 minutes
22 minutes - - - - - -

Zinc Chloride 400 3 hours
2 hours

15 minutes
56 minutes

1 hour
27 minutes

50 minutes 7 minutes - - -

Alkaline 550
8 hours

45 minutes
5 hours

45 minutes
3 hours

12 minutes
2 hours

15 minutes
1 hour

55 minutes
19 minutes - - -

Li-ion 1750 21 hours
19 hours

40 minutes
7 hours

10 minutes
6 hours

35 minutes
4 hours

20 minutes
1 hour

20 minutes
2 hours

10 minutes
1 hour <5 minutes

LiPo 3600
44 hours
4 minutes

40 hours
12 minutes

31 hours
36 minutes

20 hours
14 hours

14 minutes
11 hours

41 minutes
3 hours

42 minutes
2 hours 18 minutes

7.4 Challenges in the Wearable Platform Design

The design of the wearable sensor platform pose a number of challenges on design

including reduction in power consumption, connectivity performance and calibra-

tion of the mathematical models for generalisation. To address these challenges,
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each of them have been separately addressed in the following sections.

7.4.1 Power Consumption Reduction Strategies

Strategies for reducing power consumption take advantage of opportunities in

many areas of system design, for example at the CMOS transistor level or by

powering down the Arduino (putting in sleep mode) while idling, reducing the

data sampling rate, reducing the MCU processor clock speed; and reducing the

amount of data transmitted between MCU and smartphone and smartphone and

server.

The use of power cycling provides an opening for reducing average power con-

sumption in applications where energy use must be tightly managed. An impor-

tant energy management technique, power cycling is the process for the MCU

that allows it to use less power in exchange of disabling some of its functions.

The period when the data is not sampled and transmitted is the idling time for

the MCU. During this period the Arduino can be powered down and put in the

sleep mode by the system’s watchdog timer. The watchdog timer is a countdown

timer that is driven by its own oscillator on the microcontroller. It is designed

to run even when all the circuitry on the MCU is powered down, implying that

the microcontroller is drawing as little power as possible without actually be-

ing turned off completely. When the specified sleep timer ticks are counted, the

watchdog timer ‘bites’ and resumes the normal operation of the MCU. This en-

ables a reduction in average power consumption Pav, as quantified by Equation

7.2.

Pav = POn + POff (7.2)

POn is the system’s power consumption in its normal operating state and POff

is the system’s power consumption in its Off state. This technique was investi-

gated to compare the difference in power consumption when the sleep mode is
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implemented for every 0.04 seconds (the sampling frequency being 25 Hz). It is

seen from Figure 7.9 that there is a 26% reduction (for all the data transmission

scenarios) in power consumption when the sleep routine is implemented.

Figure 7.9: Comparison of wearable sensor platform power consumption with different
modes of data communication and sleep cycle enabled (Data transfer rate = 1200
bytes/second).

At the transistor level, the dynamic power consumption of a Complimentary

Metal-Oxide Semiconductor (CMOS) device is proportional to the clock frequency

and the square of the supply voltage. The well-known relationship: P = CV 2
ddf

illustrates this relationship where P is the transistor dynamic switching power

consumption; C is the CMOS switch lumped capacitance which is the sum of the

junction capacitances and gate capacitances; Vdd is the supply voltage; and f is

the clock frequency. Maintaining Vdd constant while halving the clock frequency

will reduce power consumption by half, however the total energy consumed will

be unaffected. This is because the energy consumed is the time integral of power

and therefore the energy consumed by an operation will not be reduced since the

same number of clock cycles is required to do the same work. However, reducing
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the clock frequency, f allows Vdd to be reduced leading to reduced power con-

sumption. The reduction in Vdd increases the CMOS delay. However, this is of no

consequence if the reduced clock speed is sufficient, that is where all operations

required are completed in sufficient time before the next sample. Thus, reduc-

ing power consumption and voltage can significantly reduce power and energy

consumption. Where this technique is used in conjunction with power cycling,

careful consideration must be taken of the likely increase in data- acquisition time

and start-up time which will have the consequence of reducing the POff time, off-

setting the power saving achieved by reducing f.

Power consumption is also dependent on the sampling rate. The fewer the sam-

ples, the shorter can be the duty cycle. In addition fewer samples mean a further

power saving through lower data transmission rates. However, when measuring

health data careful consideration must be made between the relative importance

of balancing the conflicting requirements of, on the one hand providing suffi-

cient battery power supply life; and on the other, providing a sufficient level of

information to ensure reliable diagnosis and decision making.

7.4.2 Calibration of the Mathematical Algorithm

It is seen in Chapter 3 that the residual limb temperature behaviour is a function

of ambient temperature). Since the temperature profile of the residual limb and

the ambient temperature are closely correlated, individual mathematical models

were defined using the obtained data from experimentation (as discussed in Chap-

ters 5 and 6) for temperatures of 10◦C, 15◦C, 20◦C and 25◦C. Both the GPML

and ANFIS models were individually trained for each of the ambient tempera-

tures on which the tests were done.

The predictive model developed led to results which are in 95% confidence interval

and translate to an accuracy of ±0.5◦C. However, with the residual limb tem-
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perature profile varying with changes in environmental temperatures, the models

have to be trained with individual datasets which correspond to changes in am-

bient temperature. The clinical trials required to calibrate the model are quite

intensive as well as expensive. Hence, the introduction of estimation techniques,

namely interpolation, can be utilised for prediction of residual limb temperature

(at a given environmental temperature) from the mathematical model calibrated

for a different ambient temperature. In the current design of the wearable sensor

platform, the interpolation technique is implemented at the server (Raspberry Pi

Zero) end. The liner-socket interface temperature data once received at the server

is used to predict the residual limb skin temperature using GPML or ANFIS by

using the interpolated model.

7.4.2.1 Introduction to Interpolation Techniques

Consider that there are a set of N data points x1, x2, . . . , xN with function value

f(x). The determination of f(x) for any arbitrary x in between the smallest and

largest xi’s is known as interpolation; if x lies outside the given range then it

is known as extrapolation. With interpolation there is a greater likelihood of

obtaining a valid estimate. When extrapolation is used, an assumption is made

that the observed trend would continue for all values of x outside the range that

was used to form the model. This might not be true and may lead to erroneous

results. Hence, for this study only interpolation is considered for calibration of

GPML and ANFIS model.

For the interpolation process, there are two-stages involved - fit an underlying

function for the given data points and then evaluate that function for the target

point x. However, this two stage method is computationally less efficient and more

prone to round off errors. Interpolation done locally using the nearest neighbour

approach is better than the previous but the interpolated values f(x) might not

have a continuous first order or higher derivative. This is because the interpo-
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lated function might become discontinuous because of the switching of the local

points [134]. In numerical analysis, there are many techniques for interpolation

like Linear, Lagrange’s polynomial, Newton’s form, Spline, and Cubic Splines etc.

Cubic Spline interpolation has advantage over the techniques in the calculation of

higher order derivatives. In Newton’s form, with the increase in node, the order

of the polynomial goes up. Similarly, with Lagrange’s polynomial, each time the

node changes, it needs to be recalculated. Therefore, in this thesis, the Cubic

Spline technique is used for interpolation.

7.4.2.2 Cubic Spline Technique

In the predictive modeling using GPML and ANFIS, continuity of the derivatives

is a concern and hence cubic spline interpolation technique is used. The basic

principle of cubic spline is that on each interval between the data points the

interpolation formula is represented by a cubic function. For N data points, the

spline function S(x) can be represented as

S(x) =


C1(x), x1 ≤ x ≤ x2

Ci(x), xi−1 ≤ x ≤ xi

CN(x), xN−1 ≤ x ≤ xN

(7.3)

where each Ci is a cubic function. A general cubic function has the form

Ci(x) = ai + bix+ cix
2 + dix

3 (7.4)

To define the spline function, the coefficients ai, bi, ci and di are to be determined

for each i by utilising the boundary conditions. Since there are 4N coefficients to

be determined by 4N conditions, the known values can be plugged into the 4N

conditions to solve the system of equations. First it is required that the spline

be exact at the data (for every data point) which can be given by the following
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equation

Ci(xi−1) = yi−1 and Ci(xi) = yi (7.5)

This can be written as

ai + bixi−1 + cix
2
i−1 + dix

3
i−1 = yi−1 and ai + bixi + cix

2
i + dix

3
i = yi (7.6)

Since we get two conditions for each interval via Equation 7.6, 2N of these

conditions are defined. Because the coefficients of the function are determined

non-locally, the cubic spline function needs to be continuous through the second

derivative. For all the points x1, x2, x3, . . . , xN−1 this can be interpreted mathe-

matically as

C
′

i(xi) = C
′

i+1(xi) and

C
′′

i (xi) = C
′′

i+1(xi) (7.7)

Further, this can be written as

bi + 2cixi + 3dix
2
i = bi+1 + 2ci+1xi + 3di+1x

2
i and

2ci + 6dixi = 2ci+1 + 6di+1xi (7.8)

Equation 7.8 gives 2(N -1) of these conditions. So far we have 4N -2 equations

and in order to completely determine all the coefficients, additional 2 equations

are required. Those 2 equations can determined by choosing either one of the

boundary conditions as seen in Equations 7.9 and 7.10.

Natural or Simple boundary conditions: C
′′

1 (x0) = C
′′

n(xn) = 0 (7.9)
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Clamped boundary conditions: C
′

1(x0) = C
′

n(xn) = 0 (7.10)

With the 4N coefficients and 4N linear conditions, the equations defining them

can be easily determined. Cubic splines tend to be more stable than polynomial

function by reducing wild oscillations between the data points [135].

7.4.2.3 Results

In order to calibrate the model, first the performance of the cubic spline technique

in interpolating the model needs to be investigated. The following scenarios were

used to generate the interpolated model (for residual limb skin temperature) at

a given ambient temperature and were compared for their accuracy with the

predicted model at the same ambient temperature. For example in scenario 1,

the data generated from the model at ambient temperatures of 10◦C, 20◦C and

25◦C was used to interpolate the skin temperature at 15◦C. This interpolated skin

temperature was then compared with the values predicted by the model at 15◦C.

The interpolation exercise was carried out for the GPML and ANFIS models for

both the amputee subjects.

1. Interpolated Skin Temperature at 15◦C from 10◦C, 20◦C, 25◦C

2. Interpolated Skin Temperature at 15◦C from 10◦C, 20◦C

3. Interpolated Skin Temperature at 15◦C from 10◦C, 25◦C

4. Interpolated Skin Temperature at 20◦C from 10◦C, 15◦C, 25◦C

5. Interpolated Skin Temperature at 20◦C from 10◦C, 25◦C

6. Interpolated Skin Temperature at 20◦C from 15◦C, 25◦C

Table 7.2 compares the interpolated model with the actual generated model

(GPML and ANFIS) for both the subjects at various scenarios. The RMSE
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is calculated which indicates the degree of closeness of interpolated values with

the actual predicted values. The results indicate that the RMSE is substantially

higher for the ANFIS model as compared to GPML. This can be easily explained

as the predictions from ANFIS model are more prone to fluctuations because of

the underlying fuzzy rules (as seen in Chapter 6). In the process of estimating a

variable from such a model where the prediction range is not smooth, interpola-

tion is subject to greater uncertainty. In spite of this, this estimation technique

is able to identify the trend of the predictive model to a great extent. It can be

easily further improved by reducing the 5◦C temperature interval for which the

interpolation is been done.
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Table 7.2: RMSE for different scenarios of interpolation

Scenario Subject 1 Subject 2
ANFIS GPML ANFIS GPML

Interpolated Lateral Skin Temperature
at 15◦C from 10◦C, 20◦C, 25◦C

1.1767 0.6659 1.1771 0.5445

Interpolated Medial Skin Temperature
at 15◦C from 10◦C, 20◦C, 25◦C

0.6159 0.3001 3.4286 0.8281

Interpolated Lateral Skin Temperature
at 15◦C from 10◦C, 20◦C

0.7731 0.9646 0.7829 0.4893

Interpolated Medial Skin Temperature
at 15◦C from 10◦C, 20◦C

0.4506 0.5028 2.0067 0.8818

Interpolated Lateral Skin Temperature
at 15◦C from 10◦C, 25◦C

0.5257 1.0027 0.7274 0.8093

Interpolated Medial Skin Temperature
at 15◦C from 10◦C, 25◦C

0.4073 0.7446 1.2667 0.9661

Interpolated Lateral Skin Temperature
at 20◦C from 10◦C, 15◦C, 25◦C

0.8554 1.0998 1.2561 0.7588

Interpolated Medial Skin Temperature
at 20◦C from 10◦C, 15◦C, 25◦C

1.1339 0.3121 1.0556 1.3922

Interpolated Lateral Skin Temperature
at 20◦C from 10◦C, 25◦C

0.6056 0.3272 0.3025 0.3515

Interpolated Medial Skin Temperature
at 20◦C from 10◦C, 25◦C

0.4593 0.7829 0.9528 0.5249

Interpolated Lateral Skin Temperature
at 20◦C from 15◦C, 25◦C

0.6552 0.6309 5.5303 0.4341

Interpolated Medial Skin Temperature
at 20◦C from 15◦C, 25◦C

0.6858 0.5497 1.2391 0.7375
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7.5 Overall Design Solution

The two design goals of the overall solution were to minimise the cost, while also

keeping power consumption low. By using readily available, off-the-shelf compo-

nents where possible, the cost of the solution was kept to a minimum, while also

facilitating the sourcing of replacement parts for field repairs. Where possible,

components are designed to be modular, using standard USB cables for intercon-

nection and power.

Minimisation of power consumption was also a consideration, in order to allow for

use of the system in areas with unreliable power supplies. In particular, the over-

all solution is designed to operate from a rechargeable USB power pack, therefore

permitting use at night. Combining this with a USB solar panel would allow the

power pack to be re-charged during daylight hours.

The main components used by the presented solution, along with their approx-

imate retail costs for individual quantities, are as follows. A Raspberry Pi Zero

(£4), micro SD card (£3) and USB Wi-Fi adapter (£6) are used as a server.

The wireless sensor unit utilises an Arduino Uno (£6), a HC-05 Bluetooth mod-

ule (£4), with a MPU-6050 movement sensor (£5), two thermistors (£1) and a

9 V 650 mAh rechargeable battery (£5). A 20,000 mAh power bank (£20) is

used as the power supply for use off-grid, along with a USB output solar panel

(£36). Finally, a LiPo charge controller (£1) is used to control the charging of

the Raspberry Pi Zero’s Lithium Polymer battery (£2), and various USB and

micro USB cables are used to supply power to the various components. The only

additional requirement is an Android smartphone, to be connected to the sensor

platform. The above described design of the wearable sensor platform is then

implemented. In Figure 7.10, an amputee subject is seen wearing the platform

on the prosthesis for clinical trials.
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Figure 7.10: The wearable sensor platform positioned on the prosthesis of the amputee
subject during various activity levels as (a) walking on treadmill at a self-selected speed
(b) sitting/resting.

7.6 Summary

The feasibility of a multi-sensor wearable platform has been demonstrated for

use in monitoring tissue viability in trans-tibial amputees. Both temperature

and gait sensors can be used to predict the health of the residual limb in lower

limb amputees. In particular, in order to bring about the benefits of being able

to use this technology in areas of the developing world where there is no reliable

network connectivity or electricity, the sensor platform has been designed to be

counter various challenges like low power and low cost [136]. Therefore, the prior-

ities of the design were to use readily available off-the-shelf hardware as possible,

to facilitate ease of construction and maintenance of the sensor platform, while
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also ensuring it had sufficiently low power consumption to make battery-operated

operation feasible, with solar energy used to recharge the battery pack. Since the

residual limb skin temperature is affected by the ambient temperature to a great

extent, the wearable platform will also be interfaced with a temperature sensor to

provide information about the ambient temperature in real-time in future. This

will enable the presence of the estimation techniques as described previously in

an accurate fashion for a non-clinical environment. With the inclusion of estima-

tion techniques in the mathematical algorithms - GPML and ANFIS it has been

possible to develop, demonstrate and validate a generalised model for contact-

less temperature prediction of the residual limb. This estimation technique is an

added feature for the wearable sensor platform and is essential in reducing the

cost of calibration for the model, thereby making it easier to roll out to a greater

amputee population. Cubic spline interpolation was introduced in the model at

a given ambient temperature to predict the residual limb temperature profile at

another ambient temperature. It is also shown that if the RMSE are subtracted

from the respective interpolated value then these estimates are as good as the

predicted values which are in the 95% confidence interval. Sensor data has been

reliably collected, transmitted and stored in a secure server application within a

Raspberry Pi Zero, allowing for post processing in an offline environment where

no internet connectivity is available. This permits a clinician to access and review

user data to identify any possible deterioration in health. However, depending

on the duration of the wearable platform usage, only a small time snippet of

movement and skin temperature is recorded and processed, and this may not be

necessarily representative. This remote monitoring platform would prove most

useful aid for doctors and clinicians in the developing world, taking into account

the unique challenges in such regions (lack of connectivity and reliable power sup-

plies). But it should be noted that it does not do away with the need of having

face to face appointments with them.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

With developing technology, e-Health devices have become increasingly smaller,

lighter and smarter, and hence more attractive for use in permanent and con-

tinuous monitoring of the patients. Of particular interest here is the use of the

appropriate technologies in the monitoring of people with compromised circula-

tion and/or who regularly wear prosthetic limbs. These people are particularly

prone to the development of pressure sores due to ill-fitting prostheses, resid-

ual limb volume changes or poor footwear design. Continuous monitoring of the

relevant metrics can provide a reliable indication of both skin and deep tissue

perfusion. Additionally, the knowledge of the magnitude and distribution of di-

rect and shear forces at the interface between the residual limb and the prosthetic

socket will be useful in providing a reliable early warning of tissue damage.

Despite the fact that e-Health has become an increasingly popular concept, its

application in the remote monitoring of the amputee’s residual limb health has

not been explored. This thesis focused upon the design of a wearable sensor

platform, capable of monitoring, logging and transmitting the amputee’s residual

158



8. Conclusions and Future Work

limb temperature and gait data to a central health authority. The sensor plat-

form was designed by identifying necessary constraints like low-cost, reliability,

ease of use, sensor system size/weight and sensor/skin contact considerations.

The central health database is designed such that it is password protected and

can be accessed by only authorised people. The data received here is processed

using machine learning algorithms to extract clinically relevant information. The

capability of the wearable sensor platform is tested both at the amputee subject

and at the clinician’s end.

A review of the fundamental sensing techniques and state of the art in the field of

e-Health that may be applied to develop and design the wearable sensor platform

for lower limb amputees was presented in Chapter 2.

In Chapter 3 the effect of varying activity levels and ambient temperatures on

the residual limb temperature and the gait profile has been investigated. This is

particularly important as the gait profile can be calibrated and the various phases

of gait pattern can be identified. This is done by placing the IMU on the shank

of the amputee. The shank angle is derived by combining the accelerometer and

gyroscope data using a complementary filter (refer to Appendix A for details).

The results indicated that the normal gait pattern remains unaffected by the

different ambient temperatures. On the other hand, the in-socket temperature

results indicate that the residual limb temperature is a function of the activity

level and the ambient temperature. Moreover, it is seen that the trace of the

liner temperature follows that of the residual skin temperature, which is useful in

developing the mathematical models for non-invasive measurement. The knowl-

edge of the gait and the in-socket temperature would be important in identifying

the health of the residual limb.

The contribution in Chapter 4 is the thermal characterisation of the prosthetic

materials which is indicative of its temperature response. The thermal time con-
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stant of the different prosthetic liner and socket materials (when used individually

or in combination) was experimentally evaluated. It was deduced that when these

materials are placed in combinations, the rate of heat transfer is slower suggesting

that they can have a considerable impact on the residual limb skin temperature.

This thermal study on prosthetic materials is utilised when designing the GPML

model.

In Chapter 5 the development of a supervised mathematical algorithm GPML to

predict the residual limb temperature of amputee is discussed. The motivation

for this work arose from the fact that continuous monitoring at the skin level of

amputees could induce possible discomfort and irritation, making the skin sus-

ceptible for breakdown. By implementing the Bayesian framework in this model

along with the thermal time constant evaluated in Chapter 4, the accuracy of

predicting the residual skin temperature from liner-socket interface temperature

is found to be ±0.5◦C.

In Chapter 6, the development of another supervised learning algorithm ANFIS

is discussed. This technique inherits both neural networks and fuzzy logic princi-

ples. The performance of the GPML and the ANFIS model is compared by using

statistical tools like MAE, RMSE and R2 criteria. Both the models have very

similar performance metrics but the predictions by the GPML model are more

smooth and devoid of random fluctuations as seen in the ANFIS model. This

could be due to the fact that in ANFIS, the underlying fuzzy rule base has to be

specifically defined for models at different ambient temperatures.

In Chapter 7, a wearable mobile sensor platform for remote monitoring of the

residual limb health of the amputee is developed and validated. This wearable

platform is designed such that the temperature and orientation of the residual

limb of an amputee subject can be monitored by a medical team at a defined

sampling rate. Therefore, by utilising the techniques - GPML, ANFIS and com-
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plementary filtering, the data can be processed and transmitted to a smartphone

(via Bluetooth) and from the smartphone to the server (via Wi-Fi). The chal-

lenges in the development of a low power, low cost platform such as reduction

in power consumption, connectivity performance and interpolation technique for

drawing a generalised model have been also addressed. The wearable platform

has been tested on amputee subject and the results can be viewed by a clinician

from a central database which is username and password protected.

8.2 Suggestions for Further Work

The developed wearable sensor platform measures the residual limb temperature

and gait in a contactless way. Its ability to monitor, record and transmit the

temperature and gait has been successfully verified on an amputee subject. The

performance of the platform needs to studied for a greater amputee population

for longer durations of time. This would enable in establishing the necessary

biomarkers for practical use.

The sensor data is transmitted onto a server where it can be remotely monitored

by a clinician for analysing the residual limb health. MATLAB environment is

used to process the data after it has been received in the health server. Future

work would be considering methods for integrating the MATLAB environment

with the clinician GUI such the data is processed automatically as soon as it is

received in the central health database.

For improving the results from the ANFIS modelling, the number of epochs used

for training in the back propagation algorithm can be increased. This would be

useful in reducing the training error. Other techniques for improving the learning

ability of ANFIS could be - using the hybrid learning algorithm instead of back

propagation and introducing deep learning in the model.
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Additionally, interfacing more sensors in the wearable platform for monitoring

the pressure and the moisture within the prosthetic socket could be considered.

This would add another dimension in the analysis of the residual limb health.

162



Bibliography

[1] online, http://www.pewinternet.org/fact-sheets/health-fact-sheet/,

November 2014.

[2] V. Chan, P. Ray, and N. Parameswaran, “Mobile e-health monitoring: an

agent-based approach,” IET communications, vol. 2, no. 2, pp. 223–230,

2008.

[3] A. Davidson, N. Mathur, I. Glesk, and A. Buis, “Power supply issues in

e-health monitoring applications,” in Proc. ICREPQ 2015, 2015, pp. 733–

737.

[4] I. D. Federation, “International diabetes federation. idf diabetes, 7 ed. brus-

sels, belgium:,” online, http://www.diabetesatlas.org, 2015.

[5] H. Lewy, “Wearable technologies–future challenges for implementation in

healthcare services,” Healthcare Technology Letters, vol. 2, no. 1, pp. 2–5,

2015.

[6] P.-G. Svensson, “ehealth applications in health care management,” Ehealth

international, vol. 1, no. 1, p. 5, 2002.

[7] online, http://www.who.int/topics/ehealth/en/, October 2016.

163



Bibliography

[8] J. Ko, C. Lu, M. B. Srivastava, J. A. Stankovic, A. Terzis, and M. Welsh,

“Wireless sensor networks for healthcare,” Proceedings of the IEEE, vol. 98,

no. 11, pp. 1947–1960, 2010.
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Appendix A

Complementary Filter Code

This code was developed on MATLAB 8.4 (Release name: R2014b).

% l o a d i n g the raw acce l e rometer and gyroscope v a l u e s

load ( ‘ g a i t d a t a . mat ’ ) ;

% Sampling s t e p s i z e

dt = 0 . 0 4 ;

t = 1 : dt : 2 1 0 0 ;

% F i l t e r c o e f f i c i e n t

alpha = 0 . 9 8 ;

% S c a l i n g f a c t o r s f o r a c c e l e r a t i o n and angu lar v e l o c i t y

a c c s e n s i t i v i t y = 1/16384;

g y r o s e n s i t i v i t y = 1/131 ;

% Convert ing the raw data i n t o a c c e l e r a t i o n or angu lar

v e l o c i t y v a l u e s by s c a l i n g

ax = g a i t d a t a ( : , 1 ) .∗ a c c s e n s i t i v i t y ;

ay = g a i t d a t a ( : , 2 ) .∗ a c c s e n s i t i v i t y ;

az = g a i t d a t a ( : , 3 ) .∗ a c c s e n s i t i v i t y ;

gx = g a i t d a t a ( : , 4 ) .∗ g y r o s e n s i t i v i t y ;

gy = g a i t d a t a ( : , 5 ) .∗ g y r o s e n s i t i v i t y ;
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A. Complementary Filter Code

gz = g a i t d a t a ( : , 6 ) .∗ g y r o s e n s i t i v i t y ;

% Est imat ing the shank ang l e us ing the complimentary

f i l t e r

m = s ize ( gy )

shank ang y (1 ) = gy (1 , 1 ) ;

f o r i =2:m( : , 1 )

shank ang y ( i ) = alpha . ∗ ( shank ang y ( i −1) + gy ( i ) .∗ dt )+

(1−alpha ) .∗ ay ( i ) ;

end

% P l o t t i n g the shank ang l e in the y d i r e c t i o n

p lo t ( t , shank ang y )

x l a b e l ( ‘ Time( seconds ) ’ ) ;

y l a b e l ( ‘ Shank Angle ( ˆ\ c i r c ) ’ ) ;
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GPML Code

This code was developed on MATLAB 8.4 (Release name: R2014b) using the

GPML toolbox.
Copyright for GPML toolbox

GAUSSIAN PROCESS REGRESSION AND CLASSIFICATION Toolbox version 4.0

for GNU Octave 3.2.x and Matlab 7.x

The code is released under the FreeBSD License.

Copyright (c) 2005-2016 Carl Edward Rasmussen & Hannes Nickisch.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided

with the distribution.

THIS SOFTWARE IS PROVIDED BY CARL EDWARD RASMUSSEN & HANNES NICKISCH

‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

183



B. GPML Code

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CARL

EDWARD RASMUSSEN & HANNES NICKISCH OR CONTRIBUTORS BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The code and associated documentation is available from

http://gaussianprocess.org/gpml/code.

% l o a d i n g the t r a i n i n g and t e s t i n g data

load ( ‘ Training Data . mat ’ ) ;

load ( ‘ Test ing Data . mat ’ ) ;

% d e f i n e the number o f data p o i n t s

n = 1050 ;

% d e f i n i n g the t r a i n i n g input−output data p a i r s

x1 = Training Data ( : , 1 ) ;

y1 = Training Data ( : , 2 ) ;

% d e f i n i n g the t e s t i n g input−output data p a i r s

x2 = Test ing Data ( : , 1 ) ;

y2 = Test ing Data ( : , 2 ) ;

% d e f i n i n g the mean f u n c t i o n

meanfunc = {@meanSum, {@meanLinear , @meanConst }} ; hyp . mean

= [ 0 . 5 ; 1 ] ;

% d e f i n i n g the squared e x p o n e n t i a l covar iance f u n c t i o n
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covfunc = @covSEiso ; hyp2 . cov = [ 0 ; 0 ] ; hyp2 . l i k = log

( 0 . 1 ) ;

% d e f i n i n g the l i k e l i h o o d f u n c t i o n as Gaussian

l i k f u n c = @likGauss ; sn = 0 . 1 ; hyp . l i k = log ( sn ) ;

% s p e c i f y i n g the corresponding hyperparameters

K = f e v a l ( covfunc { :} , hyp2 . cov , x1 ) ;

mu = f e v a l ( meanfunc { :} , hyp . mean , x1 ) ;

% p l o t t i n g the t r a i n i n g data

f i g u r e (1 )

p l o t ( x1 , y1 , ‘+ ’ )

g r i d on

x l a b e l ( ‘ L iner Temperature ’ )

y l a b e l ( ‘ Skin Temperature ’ )

% o p t i m i s i n g the hyperparameters by minimising the

n e g a t i v e l o g marginal l i k e l i h o o d w. r . t . the

hyperparameters .

hyp2 = minimize ( hyp2 , @gp , −100, @infExact , [ ] , covfunc ,

l i k f u n c , x1 , y1 ) ;

exp ( hyp2 . l i k )

% c a l c u l a t e the n e g a t i v e l o g marginal l i k e l i h o o d

nlml2 = gp ( hyp2 , @infExact , [ ] , covfunc , l i k f u nc , x1 , y1 )

[m s2 ] = gp ( hyp2 , @infExact , [ ] , covfunc , l i k f u n c , x1 , y1 ,

x1 ’ ) ;

% t e s t the p r e d i c t i v e a b i l i t y o f the model on the t r a i n i n g

data p o i n t s

f i g u r e (2 )

f = [m+2∗ s q r t ( s2 ) ; f l i pd im (m−2∗ s q r t ( s2 ) ,1 ) ] ;

x = [ 1 : l ength (m) ] ;
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f i l l ( [ x ; f l i p d im (x , 1 ) ] , f , [ 7 7 7 ] /8 )

hold on ; p l o t (m, ‘ LineWidth ’ , 2) ; p l o t ( x1 , y1 , ‘+ ’ )

g r i d on

% computing the t r a i n i n g root mean squred e r r o r

rmse t ra in = s q r t (mse ( y1 ’ − m) ) ;

% Test ing s c e n a r i o

% p l o t t i n g the t e s t i n g data

f i g u r e (3 )

p l o t ( x2 , y2 , ‘+ ’ )

g r i d on

x l a b e l ( ‘ L iner Temperature ’ )

y l a b e l ( ‘ Skin Temperature ’ )

% c a l c u l a t e the n e g a t i v e l o g marginal l i k e l i h o o d

[m s2 ] = gp (hyp , @infExact , [ ] , covfunc , l i k f un c , x1 , y1 ,

x2 ’ ) ;

% t e s t the p r e d i c t i v e a b i l i t y o f the genera ted model on

the t e s t i n g data p o i n t s

f i g u r e (4 )

f = [m+2∗ s q r t ( s2 ) ; f l i pd im (m−2∗ s q r t ( s2 ) ,1 ) ] ;

x = [ 1 : l ength (m) ] ;

f i l l ( [ x ; f l i p d im (x , 1 ) ] , f , [ 7 7 7 ] /8 ) ;

hold on ; p l o t (m, ‘ LineWidth ’ , 2) ; p l o t ( x2 , y2 , ‘+ ’ )

x l a b e l ( ‘ L iner Temperature ’ )

y l a b e l ( ‘ Skin Temperature ’ )

l egend ( ‘95% conf idence i n t e r v a l ’ , ‘ Pred ic t ion ’ , ‘

Observat ions ’ )

% move l egend to upper l e f t
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legend ( ‘ Location ’ , ‘ NorthWest ’ )

% p l o t t i n g the a c t u a l output and p r e d i c t e d output

f i g u r e (5 )

y2r ( : , n ) = m;

p lo t (n , y2 , n , y2r )

x l a b e l ( ‘ Time ( seconds ) ’ )

y l a b e l ( ‘ Temperature (ˆ\ c i rcC ) ’ )

l egend ( ‘ Actual Skin Temperature ’ , ‘ Pred ic ted Skin

Temperature ’ )

% computing the t e s t i n g roo t mean squred error

rmse t e s t = s q r t (mse ( y2 ’ − m) ) ;

end
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ANFIS Code

This code was developed on MATLAB 8.4 (Release name: R2014b).

% l o a d i n g the t r a i n i n g and the check ing data

load ( ‘ TrainingData . mat ’ ) ;

t rndata = TrainingData ;

load ( ‘ CheckingData . mat ’ ) ;

chkdata = CheckingData ;

% number o f i t e r a t i o n s r e q u i r e d to t r a i n the model

numepochs = 50 ;

x = 1 : 1 0 : 2 1 0 0 ;

% number o f input membership f u n c t i o n s

nummfs = 3 ;

% gauss ian input membership f u n c t i o n

mftype = ‘ gaussmf ’ ;

% Generates an i n i t i a l Sugeno−type FIS f o r ANFIS t r a i n i n g

us ing a g r i d p a r t i t i o n

f i smat = g e n f i s 1 ( trndata , nummfs , mftype ) ;

% tunes the FIS parameters us ing the input / output t r a i n i n g

data s t o r e d in t rnda ta .
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[ f i smat1 , t rne r r , ss , f i smat2 , chkerr ] = a n f i s ( trndata , f i smat ,

numepochs ,NaN, chkdata ) ;

% p l o t t i n g a l l o f the membership f u n c t i o n s in the FIS

a s s o c i a t e d wi th a g iven v a r i a b l e

f i g u r e (1 )

plotmf ( f i smat1 , ‘ input ’ , 1 )

% s i m u l a t e s the Fuzzy I n f e r e n c e System FIS f o r the input

data and r e t u r n s the output data

out = e v a l f i s ( chkdata ( : , 1 ) , f i smat1 ) ;

% p l o t t i n g the output genera ted from the FIS f o r check ing

data

f i g u r e (2 )

p l o t ( chkdata ( : , 1 ) , out , ‘∗ ’ ) ;

% p l o t t i n g the ac tua l output and the pr ed i c t ed output

f i g u r e (3 )

p l o t (x , chkdata ( : , 2 ) , ‘ r ∗ ’ , x , out , ‘−∗ ’ )

x l a b e l ( ‘ Time( seconds ) ’ )

y l a b e l ( ‘ Temperature ( ˆ\ c i rcC ) ’ )

l egend ( ‘ Actual Skin ’ , ‘ Pred ic ted Skin ’ )

% move l egend to upper l e f t

l egend ( ‘ Location ’ , ‘ NorthWest ’ )
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Arduino Schematic and Code

This code was developed on Arduino 1.8.0 environment.

#inc lude<Wire . h>

#inc lude <SD. h>

#inc lude <SPI . h>

#inc lude <math . h>

i n t CS pin = 10 ;

// analog pin 0 f o r t h e r m i s t o r 1

i n t thermis torPin = A0 ;

// analog pin 1 f o r t h e r m i s t o r 2

i n t thermistorPin1 = A1 ;

// I2C address o f the MPU−6050

const i n t MPU=0x68 ;

i n t 1 6 t AcX,AcY, AcZ ,Tmp,GyX,GyY,GyZ;
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// input pin f o r the v o l t a g e d i v i d e r c i r c u i t

i n t batMonPin = 2 ;

// v a r i a b l e f o r the A/D v a l u e

i n t va l2 = 0 ;

// v a r i a b l e to ho ld the c a l c u l a t e d v o l t a g e

f l o a t pinVoltage = 0 ;

f l o a t batte ryVol tage = 0 ;

// r a t i o o f v o l t a g e s measured from the c i r c u i t

f l o a t r a t i o = 2 . 0 0 ;

const i n t th r e sho ld = 5 ;

// For s t o r i n g the id # of the read ing

long id = 1 ;

void setup ( ) {

Wire . begin ( ) ;

Wire . beg inTransmiss ion (MPU) ;

// PWR MGMT 1 r e g i s t e r

Wire . wr i t e (0x6B) ;

// s e t to zero ( wakes up the MPU−6050)

Wire . wr i t e (0 ) ;

Wire . endTransmission ( t rue ) ;

S e r i a l . begin (9600) ;
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S e r i a l . p r i n t l n ( “ I n i t i a l i z i n g Card ”) ;

// I n i t i a l i z e Card

i f ( ! SD. begin ( CS pin ) )

{

S e r i a l . p r i n t l n ( “ Card Fa i l u r e ”) ;

r e turn ;

}

S e r i a l . p r i n t l n ( “ Card Ready ”) ;

// Write Log F i l e Header

F i l e l o g F i l e = SD. open ( “ LOG. csv ” , FILE WRITE) ;

i f ( l o g F i l e )

{

// Just a l e a d i n g b lank l i n e , incase t h e r e was p r e v i o u s

data

l o g F i l e . p r i n t l n ( “ , , , , , , , , , ” ) ;

S t r ing header = “ ID , AcX, AcY, AcZ , GyX, GyY, GyZ,

temp , temp1 , batteryVol tage ” ;

l o g F i l e . p r i n t l n ( header ) ;

l o g F i l e . c l o s e ( ) ;

S e r i a l . p r i n t l n ( header ) ;

}

e l s e

{

S e r i a l . p r i n t l n ( “ Could not open log f i l e ”) ;

}

}
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// Function to perform the maths o f S te inhar t−Hart

equat ion

double Thermister ( i n t RawADC) {

double Temp;

Temp = log (((10240000/RawADC) − 10000) ) ;

Temp = 1 / (0 .001129148 + (0.000234125 +

(0.0000000876741 ∗ Temp ∗ Temp ) ) ∗ Temp ) ;

// Convert Kelv in to C e l s i u s

Temp = Temp − 2 7 3 . 1 5 ;

r e turn Temp;

}

void loop ( ) {

Wire . beg inTransmiss ion (MPU) ;

// s t a r t i n g wi th r e g i s t e r 0x3B (ACCEL XOUT H)

Wire . wr i t e (0x3B) ;

Wire . endTransmission ( f a l s e ) ;

// r e q u e s t a t o t a l o f 14 r e g i s t e r s

Wire . requestFrom (MPU, 1 4 , t rue ) ;

// 0x3B (ACCEL XOUT H) and 0x3C (ACCEL XOUT L)

AcX=Wire . read ( )<<8|Wire . read ( ) ;

// 0x3D (ACCEL YOUT H) and 0x3E (ACCEL YOUT L)

AcY=Wire . read ( )<<8|Wire . read ( ) ;
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// 0x3F (ACCEL ZOUT H) and 0x40 (ACCEL ZOUT L)

AcZ=Wire . read ( )<<8|Wire . read ( ) ;

// 0x41 (TEMP OUT H) and 0x42 (TEMP OUT L)

Tmp=Wire . read ( )<<8|Wire . read ( ) ;

// 0x43 (GYRO XOUT H) and 0x44 (GYRO XOUT L)

GyX=Wire . read ( )<<8|Wire . read ( ) ;

// 0x45 (GYRO YOUT H) and 0x46 (GYRO YOUT L)

GyY=Wire . read ( )<<8|Wire . read ( ) ;

// 0x47 (GYRO ZOUT H) and 0x48 (GYRO ZOUT L)

GyZ=Wire . read ( )<<8|Wire . read ( ) ;

// Create an i n t e g e r v a r i a b l e

i n t va l ;

// Var iab l e to ho ld a temperature v a l u e

double temp ;

// Read the analog por t 0 and s t o r e the v a l u e

va l=analogRead ( thermis torPin ) ;

// Runs the math on the raw analog v a l u e

temp=Thermister ( va l ) ;

// Create an i n t e g e r v a r i a b l e
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i n t va l1 ;

// Var iab l e to ho ld a temperature v a l u e

double temp1 ;

// Read the analog por t 1 and s t o r e the v a l u e

va l1=analogRead ( thermistorPin1 ) ;

// Runs the math on the raw analog v a l u e

temp1=Thermister ( va l1 ) ;

// Read the v o l t a g e on the d i v i d e r

va l2 = analogRead ( batMonPin ) ;

// C a l c u l a t e the v o l t a g e on the A/D pin . A read ing o f 1

f o r the A/D = 0.0048mV.

// I f the A/D reading i s m u l t i p l i e d by 0.00488 then the

v o l t a g e on the pin can be ob ta ined

pinVoltage = va l ∗ 0 . 00488 ;

// Use the r a t i o to c a l c u l a t e the b a t t e r y v o l t a g e

batteryVol tage = pinVoltage ∗ r a t i o ;

// Create Data s t r i n g f o r s t o r i n g to SD card us ing the CSV

Format

St r ing dataSt r ing = St r ing ( id ) + “

, ” + St r ing (AcX) + “ , ” + St r ing (AcY) + “

, ” + St r ing (AcZ) + “ , ” + St r ing (GyX) + “
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, ” + St r ing (GyY) + “ , ” + St r ing (GyZ) + “

, ” + St r ing ( temp ) + “ , ” + St r ing ( temp1 ) + “

, ” + St r ing ( batteryVol tage )+ “ , ” ;

// Open a f i l e to w r i t e to . Only one f i l e can be open at a

time

F i l e l o g F i l e = SD. open ( “ LOG. csv ” , FILE WRITE) ;

i f ( l o g F i l e )

{

l o g F i l e . p r i n t l n ( dataSt r ing ) ;

l o g F i l e . c l o s e ( ) ;

S e r i a l . p r i n t l n ( dataStr ing ) ;

}

e l s e

{

S e r i a l . p r i n t l n ( “ Could not open log f i l e ”) ;

}

// Increment ID number

id++;

de lay (40) ;

}
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LabView Schematic

This interface is developed in LabView. The block diagram and the front panel

window are shown in the following figures.

Figure E.1: Block diagram for monitoring the battery depletion rate.
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Figure E.2: Front panel for monitoring the battery depletion rate.
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