
DESIGN AND DEVELOPMENT OF

AUTONOMOUS ROBOTIC MACHINE FOR

KNEE ARTHROPLASTY

OMAR SHALASH

Department of Biomedical Engineering

University of Strathclyde

This thesis is submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy in Biomedical Engineering

September 2018

Copyright Statement

‘This thesis is the result of the author’s original research. It has been composed

by the author and has not been previously submitted for examination which has

led to the award of a degree.’

‘The copyright of this thesis belongs to the author under the terms of the

United Kingdom Copyright Acts as qualified by University of Strathclyde Regu-

lation 3.50. Due acknowledgement must always be made of the use of any material

contained in, or derived from, this thesis.’

Signed:

Date:

i

Acknowledgement

I would like to express my sincere gratitude to my advisor Prof. Philip Rowe, you

have been a tremendous mentor for me. I would like to thank you for encouraging

my research and for allowing me to grow as a research scientist. Your advice on

both research as well as on my career have been priceless.

I also like to express gratitude to my wife and my backbone Esraa who spent

sleepless nights with me and was always my support in the moments when there

was no one to answer my queries.

My sincere thanks also goes to Shailesh and Mathew who provided me with

skills and information which made significant contributions to my research.

Special thanks to Prof. Mohamed El-Habrouk for the help and support in my

research.

I would like to thank my family for supporting me spiritually throughout

writing this thesis and my life in general.

last, I would like to extend thanks to the many people, in many countries,

who so generously contributed to the work presented in this thesis.

ii

Abstract

Robotic aided surgery has become mainstream in many fields of medical science.

Two systems have been developed to assist unicompartmental knee arthroplasty.

One of these systems is the Blue Belt system which is a hand-held robotic tool

designed to remove the damaged surfaces of the patient’s knee to aid the surgeon

during knee replacement surgery. Another more expensive system is the Mako

Rio robot, it provides better accuracy and precision and is haptic.

However, both the Blue Belt and the Mako Rio robot are expensive which is

an obstacle for widespread adoption in the field. These systems are also manually

driven by an operating surgeon for historic medico-legal reasons.

In this research, a Novel system was developed to provide the required accu-

racy and precision but in a more affordable automatic system. It was guided by

an OptiTrack motion capture navigation system. A CNC machine was built to

drive the cutting burr across the knee joint. Multiple software applications were

developed to enable the operation of the system such as communication with

the navigation system, cluster marker identification and tracking, path planning,

wireless communication, and CNC control. The system can perform the cutting

phase in the surgery autonomously.

The system has been tested on two sets of tibia and femur artificial bones and

then the cut shape was analysed. The mean error of the cutting process was 1.9

mm with standard deviation of 0.55 mm for the tibial bones. The femural bones

also showed improved surface finish.

iii

Contents

1 Introduction 1

2 Literature 4

2.1 Robotic Arthroplasty . 4

2.1.1 Oxford UKA . 8

2.1.2 Mako Rio . 11

2.1.3 NAVIO Blue Belt . 16

2.2 Navigation System . 17

2.2.1 Introduction and History 17

2.2.2 Motion Capture Methodology 18

2.2.3 Optical Motion Capture 20

2.2.4 Measuring Performance . 24

2.2.5 Applications-Uses . 25

2.2.6 Summary . 26

2.3 CNC . 26

2.3.1 Types of CNC Machines 27

2.3.2 Cutting Burrs . 28

2.3.3 Alternatives to Burrs . 29

2.4 Three-Dimensional Scanning . 30

2.4.1 Examples of 3D scanners 32

2.4.2 Summary . 33

3 Aims and Objectives 34

iv

CONTENTS

4 Methods: Validation of The Navigation System 36

4.1 Introduction . 36

4.2 Aims and Objectives . 37

4.3 Methods . 38

4.3.1 Introduction . 38

4.3.2 Motive Software and OptiTrack Calibration 39

4.3.3 Network Settings . 44

4.3.4 Experimental Methods . 45

4.4 Results . 52

4.5 Discussion . 68

4.6 Conclusion . 68

5 Methods: Overview of Design of CNC Machine 69

5.1 Introduction . 69

5.2 Aims and Objectives . 70

5.3 Methods . 71

5.3.1 Designing The CNC Machine 72

5.3.2 Hard-wired Circuit . 75

5.3.3 Joysticks and LCD Display 77

5.4 Experimental Validation of response 80

5.5 Discussion . 80

5.6 Conclusion . 81

6 Methods: D-Flow Applications 82

6.1 Introduction . 82

6.2 Aims and Objectives . 83

6.3 Methods . 84

6.3.1 Main Application . 84

6.3.2 Developing a Three Dimensional Pointer Scanner Using in

Theatre Motion Capture System 121

6.4 Results of the 3D Scanning Application 126

6.5 Conclusion . 130

v

CONTENTS

7 Methods: Overview of Communication 132

7.1 Introduction . 132

7.2 Aims and Objectives . 132

7.3 Methods . 133

7.3.1 The Java Application . 133

7.3.2 The Arduino Application 140

7.4 Discussion . 159

7.5 Conclusion . 160

8 Results of Saw Bone Automated Cutting 161

8.1 Introduction . 161

8.2 Tibia Surface cut Analysis . 165

8.2.1 Developed System Tibia Cuts Analysis 165

8.3 Tibia Surface Roughness . 173

8.3.1 Developed System Tibia Cuts Fitting Analysis 173

8.3.2 Mako Tibia Cuts Analysis 183

8.3.3 Blue Belt Tibia Cuts Analysis 185

8.3.4 Summery . 186

8.4 Femur Surface cut Analysis . 188

8.4.1 System Femur Cuts . 188

8.4.2 Mako System Femur Cut 198

8.4.3 Blue Belt System Femur Cut 199

8.5 Conclusion . 200

9 Discussion 201

9.1 General Discussion . 201

9.2 Discussion of Cutting Results . 204

9.3 Cost . 208

9.4 Mobility . 209

9.5 Summary . 210

9.6 Limitations . 211

9.7 Future Work . 212

vi

CONTENTS

10 Conclusion 215

References . 218

A Codes 229

A.1 Getting Cluster Definition Data Application 229

A.2 Translating Script from the Scanner Application 235

B Clusters Identification Data 245

B.1 Tibia Cluster . 245

B.2 Blunt Probe . 245

B.3 Sharp Probe . 245

B.4 Femur Cluster . 246

B.5 Testing Accuracy of the System Application 246

C Arduino Application 250

D Mako an Blue Belt Tibia cut results 267

D.1 Mako . 267

D.2 Blue Belt . 276

vii

List of Figures

2.1 TKA vs UKA (Reproduced with permission from OrthoInfo. (c)

American Academy of Orthopaedic Surgeons.) http://orthoinfo.aaos.org

(Foran, 2016) . 5

2.2 Oxford knee phase three III. (ZimmerBiomet, 2018) 9

2.3 Mako Rio System . 11

2.4 Percentage of knees with components positioned within 2° of the

target position. FS= Femoral Sagittal, FC= Femoral Coronal,

FA= Femoral Axial, TS= Tibial Sagittal, TC*= Tibial Coronal,

TA= Tibial Axial, *= Non-significant parameter (Stryker.com,

2018) . 15

2.5 NAVIO Blue Belt System . 16

2.6 Polaris Camera System. (NorthernDigital, 2018) 23

2.7 Vicon Vantage and Vero cameras 24

4.1 OptiTrack Flex V100:R2 camera 38

4.2 Twelve Camera System Mounted 38

4.3 Camera Settings . 40

4.4 Calibration Settings . 42

4.5 Wanding Input Screen . 43

4.6 Data Streaming Setting . 44

4.7 Blunt Probe . 46

4.8 Testing Field of Camera View in Theatre 47

4.9 Testing Range by Graph Paper 48

4.10 Testing Application in D-Flow Editor 49

viii

LIST OF FIGURES

4.11 Testing Application in D-Flow Editor 50

4.12 Femur Cluster Static . 55

4.13 Femur Cluster Moving . 55

4.14 Blunt Probe Static . 57

4.15 Blunt Probe Moving . 58

4.16 Tibia Cluster Static While Femur Cluster in Field of View 60

4.17 Tibia Cluster Moving While Femur Cluster in Field of View . . . 60

4.18 Blunt Probe Static While Femur and Tibia Clusters in the Field

of View . 62

4.19 Blunt Probe Moving While Femur and Tibia Clusters in the Field

of View . 62

4.20 Blunt Probe Static while all Mako Clusters in the Field of View . 64

4.21 Blunt Probe Moving while all Mako Clusters in the Field of View 64

4.22 Tibia and Femur Clusters Static 65

4.23 Tibia and Femur Clusters Moving 66

5.1 CNC Parts Through Assembly . 71

5.2 CNC Prototype . 72

5.3 CNC Final Design . 73

5.4 CNC Controller Schematic . 74

5.5 Cutting Burr Fixed inside flexible tube and on also carriage . . . 75

5.6 Circuit Schematic Diagram . 76

5.7 Circuit Implemented on Veroboard 77

5.8 Joysticks and LCD Display . 78

5.9 CNC Final Design and Controller 79

6.1 Application Diagram . 84

6.2 D-Flow Data Flow Editor View 85

6.3 Configuration Window . 86

6.4 MoCap Module - Display Tab . 88

6.5 MoCap Module - Markers Tab . 89

6.6 MoCap Module - File Tab . 90

ix

LIST OF FIGURES

6.7 MoCap Module - Out Tab . 91

6.8 Parameter Module . 93

6.9 Phidgets module . 95

6.10 Mako’s Tibia Cluster and Blunt pointer 96

6.11 Cluster Detection Algorithm Flow Chart 97

6.12 Motive Marker Position Tracking 102

6.13 Cluster Detection Algorithm 2.0 Flow Chart 103

6.14 Blunt Probe Local Axis . 114

6.15 Cutting Algorithm Flowchart . 116

6.16 Femur Implant . 118

6.17 Femur Implant Full Resolution . 118

6.18 Femur Implant Reduced Resolution 119

6.19 Femur Implant Path Planning Algorithm 120

6.20 The Blunt Probe During Scanning the Femur 122

6.21 Scanning Application D-Flow Editor View 123

6.22 Scanning Application Flowchart 124

6.23 Scanned Femur Knee Joint Representation as XYZ Points Frontal

and Side View . 126

6.24 Femur Knee Joint Scan by Matter and Form Laser Scanner 127

6.25 The Scanned XYZ Points of the Lateral and Medical condyle Wrapped

as a Body by Geomagic . 128

6.26 Comparison Result . 129

7.1 Java Application Login Window 133

7.2 Java Application Selection Window 133

7.3 Java Application Manual Control Window 134

7.4 Arduino Board Wiring with the LCD 141

7.5 LCD Cells location Noted . 144

7.6 LCD Position Between Joysticks 145

7.7 Network Protocols . 150

8.1 Sawbone fixed and Ready for Registration 162

x

LIST OF FIGURES

8.2 Tibia Reference Sawbone . 163

8.3 Tibia Reference Bone . 165

8.4 Implant . 166

8.5 Cutting Path Represented as Points 167

8.6 Tibia 1 . 167

8.7 Tibia 1 Cut Bone View by Camera 168

8.8 Tibia 2 . 169

8.9 Tibia 3 . 170

8.10 Tibia 4 . 170

8.11 Tibia 5 . 171

8.12 Tibia 6 . 171

8.13 Tibia 7 . 172

8.14 Tibia 8 . 172

8.15 Tibia 9 . 173

8.16 Tibia 1 . 174

8.17 Tibia Bone 1 - Cut with Inserted Plane View 174

8.18 Tibia Bone 1 - 3D Comparison View 175

8.19 Tibia 2 . 175

8.20 Tibia Bone 2 - 3D Comparison View 176

8.21 Tibia 3 . 176

8.22 Tibia Bone 3 - 3D Comparison View 177

8.23 Tibia 4 . 177

8.24 Tibia Bone 4 - 3D Comparison View 178

8.25 Tibia 5 . 178

8.26 Tibia Bone 5 - 3D Comparison View 179

8.27 Tibia 6 . 179

8.28 Tibia Bone 6 - 3D Comparison View 180

8.29 Tibia 7 . 180

8.30 Tibia Bone 7 - 3D Comparison View 181

8.31 Tibia 8 . 181

8.32 Tibia Bone 8 - 3D Comparison View 182

xi

LIST OF FIGURES

8.33 Tibia 9 . 182

8.34 Tibia Bone 9 - 3D Comparison View 183

8.35 Mako Tibia Bone 1 - Cut Only View 184

8.36 Mako Tibia Bone 1 - 3D Comparison View 184

8.37 Blue Belt Tibia Bone 1 - Cut Only View 185

8.38 Blue Belt Tibia Bone 1 - 3D Comparison View 185

8.39 Femur Uncut Sawbone . 189

8.40 Femur Implant . 189

8.41 System Femur Cut Photo A . 190

8.42 System Femur Cut Photo B . 191

8.43 System Femur Cut Photo C . 192

8.44 System Femur Cut Bone 1 . 193

8.45 System Femur Cut Bone 2 . 194

8.46 System Femur Cut Bone 3 . 194

8.47 System Femur Cut Bone 4 . 195

8.48 System Femur Cut Bone 5 . 195

8.49 System Femur Cut Bone 6 . 196

8.50 System Femur Cut Bone 7 . 196

8.51 System Femur Cut Bone 8 . 197

8.52 System Femur Cut Bone 9 . 197

8.53 System Femur Cut Bone 10 . 198

8.54 Mako Femur Cut Bone . 199

8.55 Blue Belt Femur Cut Bone . 199

9.1 Proposed Tool for registration process 206

D.1 Mako Tibia Bone 2 - Cut Only View 267

D.2 Mako Tibia Bone 2 - 3D Comparison View 268

D.3 Mako Tibia Bone 3 - Cut Only View 268

D.4 Mako Tibia Bone 3 - 3D Comparison View 269

D.5 Mako Tibia Bone 4 - Cut Only View 269

D.6 Mako Tibia Bone 4 - 3D Comparison View 270

xii

LIST OF FIGURES

D.7 Mako Tibia Bone 5 - Cut Only View 270

D.8 Mako Tibia Bone 5 - 3D Comparison View 271

D.9 Mako Tibia Bone 6 - Cut Only View 271

D.10 Mako Tibia Bone 6 - 3D Comparison View 272

D.11 Mako Tibia Bone 7 - Cut Only View 272

D.12 Mako Tibia Bone 7 - 3D Comparison View 273

D.13 Mako Tibia Bone 8 - Cut Only View 273

D.14 Mako Tibia Bone 8 - 3D Comparison View 274

D.15 Mako Tibia Bone 9 - Cut Only View 274

D.16 Mako Tibia Bone 9 - 3D Comparison View 275

D.17 Blue Belt Tibia Bone 2 - Cut Only View 276

D.18 Blue Belt Tibia Bone 2 - 3D Comparison View 276

D.19 Blue Belt Tibia Bone 3 - Cut Only View 277

D.20 Blue Belt Tibia Bone 3 - 3D Comparison View 277

D.21 Blue Belt Tibia Bone 4 - Cut Only View 278

D.22 Blue Belt Tibia Bone 4 - 3D Comparison View 278

D.23 Blue Belt Tibia Bone 5 - Cut Only View 279

D.24 Blue Belt Tibia Bone 5 - 3D Comparison View 279

D.25 Blue Belt Tibia Bone 6 - Cut Only View 280

D.26 Blue Belt Tibia Bone 6 - 3D Comparison View 280

D.27 Blue Belt Tibia Bone 7 - Cut Only View 281

D.28 Blue Belt Tibia Bone 7 - 3D Comparison View 281

D.29 Blue Belt Tibia Bone 8 - Cut Only View 282

D.30 Blue Belt Tibia Bone 8 - 3D Comparison View 282

D.31 Blue Belt Tibia Bone 9 - Cut Only View 283

D.32 Blue Belt Tibia Bone 9 - 3D Comparison View 283

xiii

List of Tables

2.1 Manufacturers technical data of the tested scanners 31

4.1 OptiTrack vs Vicon . 52

4.2 Segment 1 Scanned Points in mm 52

4.3 Level 1 Average Absolute Error in mm 53

4.4 Level 2 Average Absolute Error in mm 54

4.5 Femur Cluster in Motion Data . 56

4.6 Femur Cluster in Motion Extra Data 56

4.7 Tibia Cluster in Motion Data . 56

4.8 Tibia Cluster in Motion Extra Data 57

4.9 Blunt Probe in Motion Data . 58

4.10 Blunt Probe in Motion Extra Data 58

4.11 Sharp Probe in Motion Data . 59

4.12 Sharp Probe in Motion Extra Data 59

4.13 Tibia Cluster in Motion Data with Other Cluster in the Field of

View . 61

4.14 Tibia Cluster in Motion Extra Data While Other Cluster in the

Field of View . 61

4.15 Blunt Probe Blunt Probe in Motion Data with Other Clusters in

the Field of View . 63

4.16 Blunt Probe Blunt Probe in Motion Extra Data While Other Clus-

ters in the Field of View . 63

4.17 Blunt Probe Blunt Probe in Motion Data with all Mako Clusters

in the Field of View . 65

xiv

List of Abbreviations

4.18 Blunt Probe Blunt Probe in Motion Extra Data While all Mako

Clusters in the Field of View . 65

4.19 Tibia Cluster Moving in Field of View Data With Femur Cluster

Moving Around . 66

4.20 Tibia Cluster Moving in Field of View Extra Data While Femur

Cluster Moving Around . 67

4.21 Femur Clusters Moving in Field of View Data With Tibia Cluster

Moving Around . 67

4.22 Femur Clusters Moving in Field of View Extra Data While Tibia

Cluster Moving Around . 67

6.1 Example of Data Inside the Array 107

8.1 Tibia Cut By our designed model Error range 186

8.2 Tibia Cut By Mako Error range 187

8.3 Tibia Cut By Blue Belt Error range 187

xv

Chapter 1

Introduction

Osteoarthritis, also known as degenerative wear-and-tear arthritis, is the most

common type of arthritis, especially among the elderly. It is thought to occur

when the cartilage in the knee joint is disrupted which increases the friction and

contact between knee bones causing pain and discomfort (Hill et al., 2015).

When osteoarthritis is not cured by non-surgical treatments –such as: lifestyle

modifications, physical therapy, or medications– doctors recommend undergoing

knee arthroplasty surgery. In the Total Knee Arthroplasty (TKA) or Unicompart-

mental Knee Arthroplasty (UKA), the disrupted cartilage is removed, the affected

bones are resurfaced, with new metal on plastic bearing surfaces (Harwin, 2003)

or ceramic implants (Koshino et al., 1997).

UKA is less invasive surgery –compared to TKA– as the surgeon only replaces

the deteriorated portion of the knee through a relatively small incision. It has

advantages over TKA including improved function results, faster recovery, and

less blood loss (Bell et al., 2016).

Knee arthroplasty can be either performed solely by the surgeon or with the

assistance of a robotic system, such as: Mako Rio and Blue Belt Navio. Robot-

assisted surgery reduces the chance of human error. A limited number of studies

have shown that robotic-assisted surgeries give better implant alignment, en-

hanced knee motion, and faster recovery with less post-operative complications

and discomfort compared to patients who received a conventional UKA knee

surgery (Motesharei, 2014), (Pearle et al., 2010),(Dunbar et al., 2012),(Bell et

1

CHAPTER 1. INTRODUCTION

al., 2016),(Smith et al., 2014). In this thesis we seek to build on these studies

by prototyping a system which was designed to be more affordable than the ex-

isting ones, while retaining the necessary accuracy and precision required for the

bone cutting. While the proof of concept has been established by this expensive

machines, they are beyond the scoop of all but first world countries. The system

consists of a navigation system, a set of developed applications runs on a separate

computer and a CNC (computer numerical control) robotic cutting machine.

The system was navigated by OptiTrackTM motion capture system. The Op-

tiTrack system is a much cheaper than other motion capture camera systems and

has the potential to be as accurate as conventional camera navigation systems.

The Mako robot uses a by Polaris camera system for navigation. The Polaris sys-

tem was two cameras, a Spectra and a Vicra. The Spectra camera costs $23,000,

while Vicra camera costs $12,000 (Dockter, 2013). The OptiTrack with twelve

camera costs $11, 346 (Build Your Own Motion Capture System, 2018) as opposed

to the $35,000 needed for the Polaris two camera system.

A series of applications were developed to navigate and control the robotic

CNC machine. The main application in D-Flow tracked motion capture clusters

and planned the cutting path for the burr based on the knee registration process

and CNC machine location. The cutting path was stored in a file.

Another application was written to send the cutting file through a wireless

network by a transmission control protocol. In the created communication pro-

tocol this application represents the client side, with the server side being an

Arduino micro-controller which controlled the CNC machine.

The server side Arduino application manages the data transfer from the com-

puter which runs the previously mentioned applications to the Arduino controller

through its Wi-Fi shield module. The Arduino controller also control the CNC

robotic machine. Once the machine starts receiving data of the cutting path, the

burr starts drilling the shape of the knee joint implant on the bone surface.

The thesis explains the design, development, accuracy and precision of the

prototype device when cutting sawbones. The thesis sets out the developments

undertaken the outcome and possible future development required for the pro-

2

CHAPTER 1. INTRODUCTION

duction of a full working prototype.

The system was tested on two sets of tibia and femur bones. the tibial cut

sawbones were then 3D scanned and compared to same type uncut bones. The

cut sawbones were then compared to another bones that have been cut using a

different robotic assisted surgical system. The mean error of the cutting process

was 1.9 mm with standard deviation of 0.55 mm while the Mako set had 2.87

mm with standard deviation of 0.84 mm and the Blue Belt system cut set had

mean of 3.07 mm with standard deviation of 0.94 mm. The femural cut sawbones

also showed smoother surface finish when compared to the other two commercial

systems cuts.

3

Chapter 2

Literature

2.1 Robotic Arthroplasty

Knee replacement surgery, either Total Knee Arthroplasty (TKA) or Unicom-

partmental Knee Arthroplasty (UKA), is recommended for many patients who

suffer from osteoarthritis and joint problems. In knee osteoarthritis, the cartilage

guarding the bones slowly wears away, this can occur in one or more knee com-

partments (van der Esch et al., 2013), (Felson, 2006). Surgery is performed in

order to reduce pain and restore joint function.

Although the number of re-constructive knee surgeries has grown rapidly, bet-

ter patient satisfaction still needs to be reached, satisfaction ranges from 82% to

89% after TKA, and 80% to 83% in UKA (Sharkey et al., 2002),(Manaster, 1995).

Sharkey et. Al performed a study to determine the main causes of failure of TKAs.

It was found that the main failures were: loosening (95%), infection (27.4%), in-

stability(7.5%), periprosthetic fracture(4.7%) and arthrofibrosis (4.5%)(Sharkey

et al., 2014),(Parvizi et al., 2011). The efficiency of these surgeries depend on two

main factors: the implant design and the surgery technique itself. Many changes

have been made to the implant design such as the 3D anatomical design and the

materials used. However, these changes have not improved patients satisfaction

(Bourne et al., 2010). Thus, recent enhancements in knee replacement surgery

have focused on improving the surgical technique itself, including, but not limited

to, access to the joint, implant sizing, alignment and fixation, and wound closure.

4

CHAPTER 2. LITERATURE

Figure 2.1: TKA vs UKA (Reproduced with permission from OrthoInfo. (c)

American Academy of Orthopaedic Surgeons.) http://orthoinfo.aaos.org (Foran,

2016)

Knee replacement surgery -also known as “knee resurfacing”- was first per-

formed in 1968 (Lonner & Kerr, 2012). UKA is a less invasive operation com-

pared to the TKA, which makes it preferred if the patient’s history is favourable

(Harwin, 2003). During Partial knee resurfacing or UKA, only the damaged com-

partment is replaced with a partial knee implant while preserving the undamaged

bones and tissues (Harwin, 2003). Figure 2.1 shows the difference between UKA

and TKA. Each compartment of the knee could be solely damaged by osteoarthri-

tis, so there is an implant designated for each. If a second compartment becomes

damaged, it can also be resurfaced and the appropriate uni-condylar implant fit-

ted. In this manner, a total knee replacement can be achieved while preserving

the healthy undamaged tissues and bones. Also, UKA needs a smaller incision

compared to TKA, it ranges from 3 to 4 inches, therefore patients spend less

time in hospital for recovery compared to TKA. Moreover, patients claim that

a uni-compartmental knee resurfacing feels more natural with better bending of

the knee (Repicci, 2003). Moreover, UKA has resulted in 60% lower postopera-

tive complications, though it increases the risk of revision surgeries(Piva & Klatt,

2017; Purcell et al., 2018; Maxwell et al., 2017).

5

CHAPTER 2. LITERATURE

Knee arthroplasty can be performed using the following techniques: conven-

tionally by the surgeon who orients or places the knee implant manually, or by a

robotic system controlled or supervised by the surgeon. In case the surgery is per-

formed manually by the surgeon, the alignment and positioning of the implant are

determined visually by the surgeon who inspects/analyse X-ray and sometimes

CT scans of the affected joint and adjusts cutting guides accordingly to make the

cuts. On the other hand, performing knee arthroplasty using a robotic system

makes use of Computed Tomography (CT) scans instead of X-rays. CT scans

are preferred in this case as they enable the surgeon to construct a 3D image of

the knee joint. These constructed 3D images are uploaded onto the software of

the robotic system in order to guide the surgeon who controls the robotic arm

during the surgery. This gives more precise results and also less invasive to the

knee joint during the surgery (Magee, 2018).

Robot-assisted surgery reduces the chance of human error during the oper-

ation, this reduces instances of implant malalignment (Motesharei, 2014). In

a paper by Moon et al. (Moon et al., 2012), a comparison was made between

robot-assisted arthroplasty versus conventional surgery. Moon et al. used multi-

parameter quantitative three-dimensional CT assessment of the implant align-

ment. Results of the comparison proved that robot-assisted TKA yields higher

precision and accuracy levels in the sagittal and coronal planes of the 3D CT

scan, and also in relation to the femoral rotational alignment.

Another Study by Motesharei and coworkers (Motesharei, 2014) compared

between robotic-assisted UKA using the Mako system (illustrated in section 2.1.2

) versus conventional Oxford UKA (illustrated in section 2.1.1). This paper shows

that robotic-assisted UKA gives better implant alignment, enhanced knee motion

and faster recovery. Motion analysis was conducted one year after the surgery

for both the robotic-assisted UKA and conventional UKA patients. Those who

received a robotic-assisted UKA operation achieved a high range of movements

values during the highest flexion portion of the weight bearing stage of the gait

cycle. These values were comparable with normal healthy knees. On the other

hand, patients who received a conventional UKA, has lower knee excursion angles

6

CHAPTER 2. LITERATURE

less than the normal range. Robot-assisted arthroplasty has proven to show

benefits over conventional techniques

Many computer-assisted surgical systems have been developed over the years.

These systems are either active, semi-active, or passive, depending on how in-

dependently they perform the surgery (Picard et al., 2004). Active robots can

perform some surgical tasks without the direct intervention of the surgeon, these

tasks can be drilling or milling, etc., while in passive systems no part of the

surgery is overtaken by the machine and the surgeon is in full control at all time

of the surgery. Finally in semi-active systems, the control of the surgery is divided

between the surgeon and the robotic tool, the robotic tool is not autonomous but

enhances the surgeon control.

One of the drawbacks to robotic-assisted systems is their relatively high cost.

However, the overall cost effectiveness of the robotic-assisted surgery is more

important than the purchase price itself. Using a Markov decision analytic model

a study was made to assessed how lifetime costs and quality-adjusted life years

(QALYs) vary as a function of age at the time of initial treatment (ATIT) of

patients with end-stage unicompartmental knee osteoarthritis undergoing TKA,

UKA, and nonsurgical treatment (NST). Separate models were estimated for

ATITs at 5-year intervals from 40 through 90 years. Direct and Indirect costs were

calculated. Cost-effectiveness and incremental cost-effectiveness ratios (ICERs)

were calculated for each treatment at each ATIT. Societal savings were estimated.

The study showed in order to maximize cost-effectiveness, NST should be used

sparingly in patients below the age of 70 years and UKA should be chosen over

TKA (Kazarian et al., 2018).

Another constraint to a wider use of robotic-assisted systems is the surgeons

themselves. Many surgeons would prefer to rely on their manual surgical skills.

Only a small number of surgeons have used these new robotic techniques in

surgery. So far only a few sites have adopted the robotic surgery approach

despite better surgical alignment achieved when using robotic-assisted systems

(Motesharei, 2014).

The main aim of developing computer-based surgery systems is to enhance

7

CHAPTER 2. LITERATURE

the end results of knee-arthroplasty and improve the surgical precision of the op-

eration. However, robots do not replace the role of the surgeon; they assist them

by relocating and repositioning the surgical tools during the operation (Specht &

Koval, 2001). Robotic arthroplasty assists in taking control of the bone cutting

which is a key factor that may affect the final result of knee arthroplasty. It gives

the surgeon the ability to perform better implant positioning and fixation(Van der

List et al., 2016). However much of the surgery remains in the hands of the sur-

geon particularly the soft tissue balancing around the knee which is probably

the key to successful post operative function. Moreover, as surgical robotic plat-

forms advance in terms of accuracy, precision and accessibility, it is likely that

both UKA and TKA knee arthroplasty will benefit and that once they become

mainstream they will help decrease healthcare costs.

In the following subsections, examples of surgical UKA systems are demon-

strated.

2.1.1 Oxford UKA

The Oxford Partial Knee is an evolution of the original arthroplasty concept,

first used in 1976 in Oxford (Goodfellow & O’Connor, 1978). The Oxford UKA

was designed by John Goodfellow and John O’Connor in 1982 (Goodfellow et al.,

1988). Its design gives a minimal polyethylene wear by offering the advantage

of a large area of contact throughout the entire range of movement (Argenson &

O’Connor, 1992), (Psychoyios et al., 1998). The current Oxford implant is based

on its clinically successful predecessors (Phase I and Phase II) which achieved

survival rates of 98% in 10 years (Murray et al., 1998), (Price et al., 1999),

with an average wear rate of 0.03mm per year (Argenson & O’Connor, 1992),

(Psychoyios et al., 1998).

Early Oxford UKA implants had problems with high failure rates, as discussed

by Kort et al (Nanne Kort, 2018). Many factors lead to these failures such as the

polyethylene wear at the bearing surface and the implants geometry. Therefore,

over the years many enhancements have been made to the prosthesis itself which

improved the outcomes of the operation.

8

CHAPTER 2. LITERATURE

Figure 2.2: Oxford knee phase three III. (ZimmerBiomet, 2018)

The implant design comprises a femoral component, a tibial component, and

a polyethylene bearing in between (Figure 2.2). The femoral component is a

unique, spherically designed cast cobalt chromium molybdenum alloy which gives

it strength, higher wear resistance and biocompatibility. The design is available

in five sizes which are parametric and have corresponding radii of curvature. A

suitable size of the femoral component is chosen according to the patient’s size

which is determined through pre-operative templating of lateral radiographs and

intra-operative measurement confirmed with sizing spoons (Goodfellow et al.,

1987)

The tibial component is also made of cast cobalt chromium molybdenum alloy.

The design is available in seven sizes, both right and left. These provide optimal

bone coverage, while avoiding component overhang anteromedially.

The bearing between the femoral and tibial components is manufactured from

ArCom Direct Compression Molded Polyethylene for better wear resistance. The

design has five sizes in order to match the radii of the five femoral component

sizes. For each size, there is a range of seven thicknesses ranging from 3mm to

9mm.

A medium sized femoral component is suitable for most patients. This size

was the only size used in Phase I and II components. However, patients who

are less than 5 ft and 5 inches require a small sized component, patients who are

more than 5 ft and 7 inches require a large sized component. The extra small and

9

CHAPTER 2. LITERATURE

extra-large components are rarely used only in very small women and extra-large

men respectively.

Surgery Technique

The main steps of the surgery are listed below (Goodfellow et al., 2011):

� Positioning the limb.

� Skin incision.

� Osteophyte Excision

� Tibial plateau resection

� The femoral drill holes and alignment.

� Femoral saw cut

� First milling of the condyle

� Equalizing the flexion and extension gaps

� Confirming equality of the flexion and extension gaps

� preventing impingement

� Final preparation of the tibial plateau.

� Final trial reduction

� Cementing the components

10

CHAPTER 2. LITERATURE

2.1.2 Mako Rio

Figure 2.3: Mako Rio System

The Stryker/Mako haptic Robotic Interactive Orthopaedic Arm (RIO) was intro-

duced in 2005, see Figure 2.3. Since then, it was used in more than 50,000 UKA

operations (Van der List et al., 2016). In the United States, 20% of the UKA

operations have been performed using the Mako surgical system (Chawla et al.,

2016). The only major drawback for using the Mako system is its cost, it costs

nearly 1 million US dollars (Motesharei, 2014). In 2016 Zimmer Orthopaedics

purchased the Biomet robotics company and launched the ROSATM robot for

spinal surgery and it is likely this will also be used for knee arthroplasty in the

future. In June 2017 Smith and Nephew acquired Blue Belt technologies the

makers of the Navio hand-held robotics assisted platform which was given FDA

clearance in 2002 for partial knee replacement. Most recently of all, Johnson and

Johnson acquired the robotic assisted surgery company called Orthotaxy in 2017

whose system is in early stage development for total and partial knee replace-

ments. Hence as robotic systems in orthopaedic increase in popularity, there will

11

CHAPTER 2. LITERATURE

be more competition which is likely to reduce the cost.

The partial knee arthroscopy system developed by Mako Surgical Inc. (Fort

Lauderdale, Florida, USA) consists of a robotic arm which interacts with the

surgeon in order to guide him through preparing the patient’s knee for the im-

plantation. The system has 3 main components: a robotic arm, optical camera,

and controlling computer. It uses CT scans taken for the patient’s knee prior to

the operation. These CT scans are used to form 3D image of the knee joint which

allows the surgeon to accurately plan the navigation throughout the surgery and

then implement the bone cutting using the robotic platform (Lonner & Kerr,

2012). During the operation, the robotic system provides a stereotactic interface

which constraints the cutting tool during the femoral and tibial cutting stage.

In contrast to the Oxford UKA system which makes use of manual instruments

such as: pinned cutting blocks, saw, jigs, etc. The Rio system controlled the sur-

geon and so does not hypothetically require the same surgical skill as the manual

technique requires.

One of the significant advantages to the Makoplasty system is that the bone

cutting or Osteoplasty is planned before the beginning of the operation. CT scans

are imported into the Mako software, which then forms a 3D model specific for

the current patient. This is achieved by using the CT scans to form slices at knee

joint, and through the hip and ankle. These slices are defined and combined to

generate the 3D model while the hip and ankle data give the mechanical alignment

of the knee. Using these 3D models, the implants are superimposed on the knee

joint to visualize their position and alignment. In this way the system can be

used to provide better accuracy for the bone resection (Lonner & Kerr, 2012).

Before the surgery, the motion capture system and the robotic arm are cal-

ibrated. When the patient enters the theatre, an incision is made in order to

reveal the knee joint. Then the surgeon confirms that the knee joint is ready to

undergo the surgery. Multiple markers and pointers are used to pinpoint anatom-

ical landmarks on the patient’s knee which are then correlated with others on the

knee joint model generated by the CT scans. This is done in order to match the

knee model with the patient’s knee in theatre. Probes (or pointers) are used in

12

CHAPTER 2. LITERATURE

order to locate the landmarks on the bony surface. Moreover, in order to achieve

a constant point of reference, pins are drilled into the proximal tibia and distal

femur to become fiducial for registration and matching processes. Tracking arrays

are attached to bone pins in the tibia and femur which act as references for the

system to locate and position the tibia and femur.

After the registration and matching has been finalised, a soft tissue balanc-

ing algorithm is launched. This is achieved by applying a varus/valgus stress

assessment and range of movement assessment in order to capture patients kine-

matic nearly every 10° and then capturing gapping of the knee at different points

throughout a passive range of motion. This shows how tight the components will

be in different amounts of flexion-extension, when the initial implant position is

as planned. The implant position can be adjusted in silicon until a good balance

is achieved (Lonner & Kerr, 2012).

After adjusting the final planned implant position, bone cutting is performed

with the constraint applied by the robotic arm. The burr is moved into a haptic

zone where the system applies boundaries. Only within these boundaries is the

arm is allowed to move. Any attempt to move the arm outside the boundaries is

met with a force confining the burr to the targeted area of the bone. As a result,

only those parts of the bone are cut that are required to allow the implant to be

fitted. After the cutting procedure, trial implants and bearings are provisionally

implanted. The ones that achieve the best feel, range of motion and stability are

chosen. The trial implant is then removed and the area is cleaned and the real

implants are cemented into their position in the bone and the bearing inserted.

Finally, the incision is stitched up and the surgery is complete.

The University of Strathclyde in association with Glasgow Royal Infirmary

has undertaken the first independent randomised controlled trial of the Mako

system against the Oxford UKA (Motesharei, 2014).

Below are examples of various studies made in order to assess the efficiency

of the Mako RIO system:

� The mechanical alignment of the Mako system was observed in 10 patients

who had a medial UKA robotic-assisted surgery, it was reported that the

13

CHAPTER 2. LITERATURE

intra-operative registration step took 7.5 minutes and the burring itself

took 34.8 minutes (Pearle et al., 2010). Pearle et al. compared between the

planned lower leg alignment and the actual post-operative leg alignment

6 weeks post operation. It was found that all measurements were within

1.6°of the planned alignment.

� Another study was made to assess the accuracy of the implant positioning

of the Mako system in 20 patients (Dunbar et al., 2012), in this study they

compared 3D CT scans of the knee joint before and after the operation. It

was found that the femoral components were within 0.8mm and 0.9° in all

directions and that the tibial components were within 0.9mm and 1.7° in

all directions.

� A study by Plate (Plate et al., 2013) assessed the accuracy of soft tissue

balancing in Mako system in 52 patients, they found that at all flexion angles

the ligament balancing was within 0.53mm of the original plan. Moreover,

it was found that in 83% of the patients accuracy was within 1mm at all

flexion angles.

� In a study by Bell (Bell et al., 2016) a comparison was made between one

hundred and twenty patients who were randomly treated using either the

Mako RIO system or the conventional surgery using the Oxford Phase-3

UKA. Three months after the operation, patients’ tomographic scans were

used to examine the accuracy of the axial, coronal, and sagittal implant

positioning. Results showed that the percentage of patients whose im-

plants were within 2° of the target position was significantly higher (Figure

2.4)among those who were treated using the Mako RIO system.

In conclusion, Makoplasty achieves enhanced surgical results. It increases the

accuracy of the surgery and reduces post-operative complications and discomfort

compared to the conventional UKA with Oxford implants (Blyth et al., 2013).

14

CHAPTER 2. LITERATURE

Figure 2.4: Percentage of knees with components positioned within 2° of the

target position. FS= Femoral Sagittal, FC= Femoral Coronal, FA= Femoral

Axial, TS= Tibial Sagittal, TC*= Tibial Coronal, TA= Tibial Axial, *= Non-

significant parameter (Stryker.com, 2018)

15

CHAPTER 2. LITERATURE

2.1.3 NAVIO Blue Belt

Figure 2.5: NAVIO Blue Belt System

Blue Belt Technologies developed the NAVIO PFS surgical system, see Figure 2.5

above. This is a hand-controlled cutting tool which is controlled via an optical

tracking system and the rotating burr retracts when the constraint boundary is

approached in order to allow depth control of the cutting tool (Payne, 2015).

Therefore, unlike the Mako system, it is not a haptic system. It is more general

in application when compared to the Mako system as it enables the surgeon to use

any implant. Moreover, it costs less than the Mako system at $300,000. Further

clinical trials and investments need to be undertaken by the Blue Belt company

if the system is to become widespread. (Motesharei, 2014).

This system is an image-free semi-active robotic system and has the same

characteristics as the Mako system (Lonner, 2016).

A study was made to assess the accuracy of implant positioning in 20 synthetic

16

CHAPTER 2. LITERATURE

femurs and tibia. It was found that the maximum rotational error was 3.2°, the

angular error was 1.46° in all orientations, and the maximum translational error

was 1.18 mm for both the tibial and femur components. Another study tested

the accuracy of implant positioning in 25 cadavers. The results were similar to

these found in the study of Smith et al (Smith et al., 2014) and similar to the

results of other robotic-assisted systems.

Smith and colleagues assessed the accuracy of component positioning using

20 synthetic femurs and tibia (Smith et al., 2014). They reported a maximum

rotational error of 3.2°, an angular error of 1.46° in all orientations and a max-

imum translational error of 1.18 mm for both the tibial and femoral implants.

Lonner and colleagues (Lonner et al., 2015) assessed the accuracy of component

positioning in 25 cadaveric specimens. They found similar results as were found

in the study of Smith and colleagues and concluded that these results were simi-

lar to other semi-active robotic systems designed for UKA (Dunbar et al., 2012;

Cobb et al., 2006).

In summary then the Mako Rio gives the most accurate cuts, closely followed

by the Blue Belt system and both are significantly more accurate than manual

cutting of bones.

2.2 Navigation System

2.2.1 Introduction and History

Motion Capture (MoCap) is the process of sampling and recording motion of sub-

jects as 3D data. It is also defined as “The creation of a 3D representation of a live

performance” by Alberto Menache (Menache, 2000). It has been used since 1872

when Edward Muybridge used it to perform an experiment on a horse to confirm

that a horse raises all its four feet off the ground while trotting (Sharma et al.,

2013). He placed cameras in a row with hip wires to capture multiple pictures

of the horse’s movements and proved his statement. Afterwards, Etienne-Jules

Marey analysed human and animal motion with cine film (Braun, 1994). Since

then, motion capture systems have been widely used in many fields such as enter-

17

CHAPTER 2. LITERATURE

tainment, sports, and medicine. Since the 1950’s MoCap has played an important

part in Biomechanical research and clinical practice. (Gage, 1993),(Lofterød et

al., 2007).

More recently MoCap technology was spread and improved due to its use by

the animation industry. Game development is now the largest market for motion

capture technology. Many games are based on capturing real world movements

of subjects and translating them into data to be inserted in a 3D model of the

world in a virtual environment (Sharma et al., 2013).

2.2.2 Motion Capture Methodology

MoCap technology is implemented using as two main methods:

2.2.2.1 Marker-less Motion Capture

Due to the increasing use of computer vision applications, marker-less motion

capture systems have been developed. These systems do not need any type of

markers or special suits to track the subject’s movements. Another advantage

of marker-less motion capture systems is that the subject is not hindered by

any wiring constraints, therefore it becomes easier to be captured and tracked

with less time and cost (Nogueira, 2011). In this method video cameras capture

multiple video stream of the subject’s movements which are then analysed by

computer vision algorithms to turn the captured data into a 3D character. Thus,

the motion capturing process is performed via software without the need for any

physical limitations. However, the data requires extensive post capture comput-

ing resources and could not be real time unless major simplification actions are

undertaken.

One of the most famous example of a simple marker-less motion capture sys-

tems that is able to process in real-time is the Microsoft KINECT. It makes use

of 3D depth cameras, colour cameras and a four-microphone array to enable users

to interact with the software with their body movements in a natural way and

also provide voice recognition capabilities (Zhang, 2012). KINECT usage has ex-

tended beyond the gaming industry to include robotics, electronic and computer

18

CHAPTER 2. LITERATURE

engineering.

However, while it is real-time and fits a human skeleton to the data, the

process is less than perfect. The KINECT is unable to detect long bone rotations

(rotations around the long axis of a bone) and hence the KINECT data lacks

biomechanical validity.

2.2.2.2 Marker-Based Motion Capture

Marker-based motion capture systems are the mainstay of biomechanical research

and applications. In marker-based motion capture systems, multiple markers and

placed on the subject and then their movements are tracked. There are many

types of marker-based systems according to the type of markers used:

� Acoustical systems: They make use of sound transmitters and receptors.

A set of sound transmitters are fitted on the subject’s main articulations

while sound receptors are placed in the capturing area. In order to deter-

mine the 3D position of each transmitter, they are sequentially activated

and produce a characteristic frequency that the receptors will pick up. The

position of each transmitter is calculated by using the time taken for the

sound waves to navigate from the transmitter to the receptor (Nogueira,

2011). One of the disadvantages of this type of system is the restrictions on

the movement of subjects because of the cables of the sound transmitters.

� Mechanical systems: They make use of potentiometers and sliders and

are often referred to as an exoskeleton. The subjects puts on a set of metal

strips and on each joint there is a sensor giving its position. Mechanical

MoCap system can include a basic skeleton, gloves, arms, or articulated

models, etc. This method of direct measurement has many advantages as

it is not effected by light or magnetic fields, it is inexpensive and does

not need a long recalibration process (Menache, 2000). It has been used

in robotic suits designed for heavy lifting. However, it does not preserve

normal human movements.

19

CHAPTER 2. LITERATURE

� Magnetic systems: These make use of magnetic transmitters and re-

ceivers. A set of magnetic receivers are placed on the subject’s main body

segments so that the transmitters would trace and calculate the subject’s

movements. This method is widely used in simple movement capture as

it is not very expensive compared to other motion capture systems. Its

limitation is the huge number of cables which hinders the movement of the

subject and would not be suitable for a surgical area, specially orthopaedic

tables are full of metals (Guerra-Filho, 2005a), (Yabukami et al., 2000).

� Optical Systems: They make use of reflectors and high-resolution cam-

eras in order to triangulate the 3D position of the subject. In animation

applications the actor wears an especially designed suit with reflectors fitted

on the main body segments. Cameras are placed in a certain manner in

order to track the reflectors during the subject’s movements. Each camera

determines the 2D coordinates of each reflector, then a proprietary software

is used to calculate the 3D coordinates of each reflector in order to generate

a digital model for the subject. Due to this system’s high sampling rate,

it is recommended while capturing fast movements. Moreover, this system

does not require cables, therefore the subject is not constrained. Occasion-

ally, markers cannot be tracked if an obstacle gets in the way between the

subject and the sensor, and this kind of system is prone to light interference.

These problems are overcome using multi camera systems, careful marker

placement, and blackout curtains.

2.2.3 Optical Motion Capture

Optical motion capture is one of the most important fields of computer vision

and is responsible for many advances in a variety of research areas (Guerra-Filho,

2005a). Optical motion capture depends on using multiple cameras placed at

different angles from the scene. Using two or more cameras to capture the same

object enables us of reconstruction of the subject in 3D.

Optical motion capture can be performed in one of two ways: Reflective

20

CHAPTER 2. LITERATURE

(Passive) and Pulsed-LED (Active). Passive markers are coated with a retro-

reflective material that reflects light emitted by Infra-red (IR) Light Emitting

Diodes (LEDs) mounted around the camera lens. Light is then received back by

the cameras. The Cameras are first calibrated so that only the passive mark-

ers are tracked. In order to calibrate the cameras, some markers with known

positions are used; usually a wand having a group of reflectors is waved across

each cameras’ field of view. Active markers emit their own IR light instead of

reflecting light emitted by the diodes around the cameras.

In order to build an optical motion capture operating theatre, four resources

are required: A capture volume, markers, multiple cameras, and an image acqui-

sition system (Guerra-Filho, 2005a).

� The capture volume should be large enough to allow the capturing of mul-

tiple viewpoints. IR Lighting must be uniform in order to minimize the

presence of shadows and unwanted reflections in the capturing scene. This

is achieved by using fixed light sources, non-reflective surfaces and black-

outs.

� Markers are needed to track the moving subject, they can be fitted on

a dedicated suit in case of tracking people or animals movements or in

surgery attached to bone pins and surgical tools. As mentioned before,

markers could be passive or active. Also, markers are distinguished using

their position, colour, and shape.

� Progressive scan cameras are used in order to eliminate the saw pattern in

captured videos. Cameras are synchronized with each other to correctly

capture multiple viewpoints of the markers at the same time. Synchroniza-

tion is achieved using an external trigger pulse from the computer received

by each camera. Moreover, tracking accuracy is directly related to image

resolution. Many factors need to be adjusted in order to minimize the blur-

ring in the video, such as exposure and focus of the cameras. The cameras

communicate with the video acquisition system using a USB cable or a

FireWire.

21

CHAPTER 2. LITERATURE

� Video acquisition system which is responsible for receiving real-time syn-

chronous video data, provide bandwidth for recording and storage of mul-

tiple video streams. A video grabber system moves the captured images to

memory and then writes them onto disk. The acquisition system process

the data to provide Cartesian coordinates in 3D for each marker.

2.2.3.1 Triangulation theory

Each camera detects the 2D position of each marker. For a specific marker, there

are multiple sets of 2D coordinates; one set for each camera. When these sets

are matched together, triangulation is performed to construct 3D coordinates

(Faugeras & Robert, 1996).

Triangulation can be defined as the process of determining the 3D location of

a point by forming multiple triangles to it from known points. The 3D location

of a certain point can be computed by triangulation using the projections of this

point onto the centres of two or more non-parallel image planes (Rahimian &

Kearney, 2017).

2.2.3.2 Optical Motion Capture Products

The key hardware items in any optical motion capture system are the cameras.

They must work at a suitable frequency and resolution for the target application.

Moreover, they must provide high infra-red sensitivity Below are examples of

some optical motion capture and tracking products:

� OptiTrack Slim 13E: It has multiple lens and filter options, 1.3 MP (mega

pixel) resolution, 240 FPS (Frame per second) frame rate and GigE I/O

to provide high-speed and high precision computer vision. Its price starts

from $1499 (NaturalPoint, 2018d).

� OptiTrack Flex 3: It has a 0.3MP resolution (640 × 480), 100 FPS frame

rate, it has a relatively high time latency of 10ms. It is supplemented with

26 LEDs. Its price starts from $599 (NaturalPoint, 2018a).

22

CHAPTER 2. LITERATURE

� OptiTrack Prime 13W: It has a 1.3MP resolution (1280 × 1024), 240 FPS

frame rate, and a latency of 4.2ms. It is supplemented with 10 Ultra High

Power (UHP) LEDs . Its price starts from $2,499 (NaturalPoint, 2018c).

� OptiTrack Prime 17W: It has a 1.7MP resolution (1664 × 1088), 360FPS

frame rate, and 2.8ms latency. It is supplemented with 20 UHP LEDs.Its

price starts from $3,499 (NaturalPoint, 2018b) .

� Polaris: The system consists of different hardware components that can be

configured for different medical simulators. The system components are:

Polaris Spectra, Polaris Vicra, System Control Unit and a host USB con-

verter (NorthernDigital, 2018) . Polaris Spectra is used for simulation envi-

ronments that require large measurement volume and costs around $23,000,

while Polaris Vicra is used for simulation environments that require a small,

targeted measurements volume, it costs around $12,000 (Dockter, 2013).

Figure 2.6: Polaris Camera System. (NorthernDigital, 2018)

� Vicon : For thirty years Vicon stayed the leading developer of motion cap-

ture systems. (Vicon, 2016). The Vicon Vantage camera series can allow

the connection of up to 244 cameras to a single computer, Figure 2.7a. They

have a 2000 Hz maximum frame rate, and resolution 5MP, 8MP, and 16MP

for the V5, V8, and V16 cameras respectively. While the Vicon Vero family

has a maximum frame rate of 250Hz in the v1.3 and v1.3x, and 330 Hz in

the v2.2, Figure 2.7b. The resolution is 2.2MP for the v2.2 and 1.3MP

for the v1.3, v1.3x, and vertex cameras. Another edition the Vicon Bonita,

Figure 2.7c. The Bonita system costed £40, 000, Bonita B3 240 Hz and

B10 camera captures at 250 fps with 1MP of resolution.

23

CHAPTER 2. LITERATURE

(a) Vantage camera (b) Vero camera

(c) Bonita camera

Figure 2.7: Vicon Vantage and Vero cameras

2.2.4 Measuring Performance

Optical motion capture systems are widely used in high-quality applications such

as clinical Biomechanics. These types of applications require very high levels of

accuracy and precision (Mündermann et al., 2006), (Harris-Love et al., 2004),

(Hodt-Billington et al., 2008). Many factors influence the efficiency of the cap-

turing process (Unal et al., 2007), such as: quality of the camera equipment,

temporal-spatial resolution, illumination conditions, accuracy of the calibration

process (Leardini et al., 2005), and marker specifications including shape, size,

and inter-marker distances (Diaz Novo et al., 2014).

� Diaz et al. performed an evaluation of three different motion capture sys-

tems: two different Vicon motion capture systems and a low cost customized

motion capture system installed in the Santiago de Cuba Hospital (SCH)

using common video cameras. The standard deviation in measurement was

much higher in the case of the SCH system than the two Vicon systems

(Diaz Novo et al., 2014).

� Windolf et al. developed a method in order to assess accuracy and precision

of motion capture systems regarding different system parameters, such as:

24

CHAPTER 2. LITERATURE

camera arrangement, calibration area, marker diameters, and using lens

filters. The developed method was tested on a Vicon-460 system using four

cameras. The calibration area was 180 × 180 × 150mm3. With the most

favourable parameters the overall accuracy was 63± 5 µm, and the overall

precision was 15 µm (Windolf et al., 2008).

� Another study was performed to compare the linear accuracy from an Op-

tiTrack system (low cost) and a Vicon system (high cost). The Vicon sys-

tem had 12 Vicon MX cameras. The OptiTrack system had twelve Op-

tiTrack Flex:V100R2 cameras. The capturing volume was approximately

2.5m×1.5m×1.5m, Both systems sampled their data at 100Hz. The linear

accuracy was tested using a reference frame which was measured using a

Faro scanning arm. The OptiTrack system produced slightly higher error

levels than the Vicon system, the maximum absolute percentage error of

the OptiTrack system was 0.84%. moreover, for both systems no percentage

absolute error was more than 1% (Thewlis et al., 2011).

2.2.5 Applications-Uses

Motion Capture systems started as a tool that analyses subject’s movements

in the biomechanical field. Afterwards, it became a very important tool in the

animation industry. Below are some examples of the most wide-spread motion

capture applications.

� Video games: In order to animate in-game characters. Sega Model 2 arcade

game Virtua Fighter 2 was the first video game to use motion capture

systems (Wawro, 2016).

� Movies CG effects: Replaces traditional animation by generating creatures

and movie characters. One of the most famous examples is Avatar.

� Gait Analysis: Used in conjunction with an analytical software by physio-

therapists, orthopedists, and neurologists in order to evaluate patients’ sta-

tus and rehabilitation by measuring several human biometric factors (Pfister

25

CHAPTER 2. LITERATURE

et al., 2014; Rojas-Lertxundi et al., 2017; McPherson et al., 2017).

� Sports: Studying all the actions of players. It improves players techniques

for better results in different sports activities.

2.2.6 Summary

Optical motion capture is the most appropriate method for surgical navigation.

Current systems use two cameras and have limited coverage. Vicon is the leading

biomechanical optical system but is costly. OptiTrack may provide a cheap but

accurate alternative. A current optical tracking camera system such as the Polaris

costs $35000. For one third of this price a 12 camera OptiTrack system can be

purchased and would provide much greater coverage of the surgical field without

markers being obscured or the need to reorder the theatre when changing from

left to right legs. The cameras could be housed in a cleanable fixation device and

attached to the inside of the laminar flow hood. Such a system would be cheaper

but have more utility than the current two camera stands and would leave the

operating theatre less cluttered with wires and stands.

2.3 CNC

CNC stands for Computer Numerical Control. CNC machines typically form

an object by carving it out from a solid block of material; such as wood and

aluminium (Hood-Daniel & Kelly, 2009). As the name implies, CNC uses a com-

puter as a means to control the machine itself throughout the carving process.

Using computers allows for designing the target product before the carving pro-

cess itself, and it also allows for specifying the way by which the machine would

do the cutting.

First, in order to design the product, a Computer Aided Design (CAD) is

produced. Then, the user specifies how the machine should do the cutting (the

cutting path) by generating a Computer-Aided Manufacturing (CAM) file. At

this step, the computer’s role is to interpret this CAM file into signals sent to the

26

CHAPTER 2. LITERATURE

CNC machine to follow.

2.3.1 Types of CNC Machines

CNC machines can be classified into the following categories:

� Routers: They are the most widely used CNC machines, they cut through

relatively soft materials such as: plastic, wood, and aluminium. Routers

have a spindle that moves in an XYZ configuration. They operate at high

speeds, around 18,000RPMs (Heisel & Krondorfer, 1997).

� Milling Machines: Their operation is similar to CNC routers. However,

their purpose is to cut through harder materials such as metals, also they are

much slower than CNC routers, at around 1,000RPMs. Another difference

is that milling machines make use of a cutting table that generally moves

in an XY configuration while the machine’s spindle moves on a linear axis

(Z) above the piece (Altintas, 2012).

� Lathes: In contrast to routers and milling machines, in Lathes the work

piece is rotated, while the cutting tool only controls the depth of cut. There-

fore, Lathes are mostly used to form cylindrical or spherical surfaces and

creating symmetrical pieces (Altintas, 2012).

� Plasma cutters: They use hot plasma to cut through electrically conductive

materials. They work by sending an ionized, high powered stream of gas

through a nozzle creating an electric arc which heats the gas and converts it

into plasma. This plasma melts the metal and clears away the metal debris

(Keraita & Kim, 2007), (Iosub et al., 2008), (Kolarevic, 2001).

� Laser cutters: They project a laser beam on the work piece which burns

through the material. They can cut through a wide range of materials such

as wood and plastic. Compared to plasma cutters, they consume less energy

and result in better precision (Kolarevic, 2001).

� Waterjet cutters: A jet of highly pressurized water mixed with solid abrasive

particles is streamed through a tiny nozzle eroding the material creating

27

CHAPTER 2. LITERATURE

very accurate cuts. They can cut up to 15-inch-thick titanium (Kolarevic,

2001)

� Spark machining: Cutting is performed using a series of electrical sparks

generated across two electrodes with dielectric fluid in between them and

an electric voltage applied across them. Spark machining is generally tar-

geted to cut through hard metals, therefore it is widely used in aerospace,

automobile, and electronics industries (Jain et al., 1999).

Most CNC machines have a local controller or some kind of a micro-controller

which communicates with a central computer. As long as the right code is written

to program the CNC machine, any complicated cuts can be achieved.

2.3.2 Cutting Burrs

Burrs are rotary cutting tools that can be used with hand-held tools or CNC

machines. They consist of two parts: stationary elongated outer tube and rotating

elongated inner tube. These tubes are made of stainless steel.

Many factors are considered when planning a bone drilling or milling operation

(Dillon et al., 2016), including:

� Cartesian path: A 3D cutting path covering the targeted area is generated

avoiding any un-targeted areas.

� Cutting angle: Cutting efficiency increases when surgeons use the side of

the burr whenever it is possible instead of its distal tip, this is due to its

spherical shape. Cutting with the distal tip generate greater force spikes

(Dillon et al., 2013).

� Cutting force: When cutting near vital anatomical structures, such as

nerves, it is recommended to reduce the cutting force to prevent any pos-

sibility for the burr to deviate from its planned path and also lowering

the force reduces the amount of heat generated hence protecting the vital

structures from any heat damage.

28

CHAPTER 2. LITERATURE

� Cutting velocity: The velocity by which the burr cuts depends on two main

factors: the density and volume of the bone area being cut, and orientation

of the shaft. Lower velocity level is recommended when cutting through

bones of higher density and volume. Also, lower velocity is recommended

when the burr is not well-oriented for efficient and accurate cutting.

2.3.2.1 Burr Categories

Surgical burrs are available in a variety of different shapes, sizes, and material.

Many companies provide various types of burrs such as Delta (Delta Surgical,

2018), Brasselers (Brasseler USA - Medical , 2018), and MERICAN (Surgical

Burs and Drill System, 2016).

The head of the burr can be in many shapes, such as: spherical, cylindrical,

tapered with flute in cutting edges, flutes (Chen et al., 2017). Below is a list of

burr categories according to their material:

� Stainless steel burrs

� Diamond burrs

� Carbide burrs

� Coarse diamond burrs

� Conical carbide burrs

� Diamond burr for Osseostap

2.3.3 Alternatives to Burrs

One of the drawbacks of the burr is that it can take sometime to remove the

bone. This is particularly problematic in TKR when a large volume of bone must

be removed. Stryker when they acquired Mako introduced a stiff thick blade

to remove the bone rapidly in their TKA application. This blade could also

be used in the future for UKA although currently it is not implemented in the

UKA application and would have the draw back of not been able to cut a curved

29

CHAPTER 2. LITERATURE

surface which is one of the advantages of the current Restoris implant in that it is

maximumly bone conserving and this will not be the case should a saw be used.

2.4 Three-Dimensional Scanning

3D surface scanning is the process of obtaining digital 3D surface data of objects.

It can be used in many fields such as medical implants and devices, aerospace, in-

dustrial, and automotive applications. Healthcare services have greatly benefited

from the advancements in 3D surface scanning as 3D scanners have been able to

create 3D internal images of patients body (Weyrich et al., 2004),(Treleaven &

Wells, 2007).

3D scanning can be categorized according to the technique by which it cap-

tures data. They can be categorized into four main categories (Allard & Lavoie,

2014):

� Measuring arms, portable Coordinate Measuring Machines (CMM) and

measuring arms are equipped with a probe wither fixed or touch-triggered.

Measurements are taken when the machine senses the contact of the probe

tip with a surface. Their advantage is that different tools can be mounted

on the arm. However, the limitations are that they need to be fixed on a

surface, and also not all objects shapes can be scanned.

� Optically Tracked 3D scanners: This type of scanner utilizes an external

optical tracking system to establish positioning. They provide very accurate

and precise measurements. Their portability makes them favourable for

many applications. On the other hand, a clear and direct line of sight is

needed during the whole scanning process.

� Structured-light 3D scanners: These scanners project a pattern of light onto

the measured object and then processes how the projected light pattern is

distorted. their advantage is the very high-quality scanned data which pro-

vides scanning of the smallest details on the measured object. However, in

30

CHAPTER 2. LITERATURE

order to achieve this high resolution, a single scan acquires large quantities

of data slowing down the processing step.

� Portable 3D scanners are now the most available 3D scanners on the market,

either projecting laser or white light. Portability makes them easier to use

compared to other types. They can scan more than half a million points

per second. However, self-positioning errors can stack up as the scanning

volume increases

3D scanning systems can work either by using white light or by using struc-

tured light. Also, they can be classified according to their portability (Allard &

Lavoie, 2014).

The scanned data are represented as a point cloud, afterwards they are brought

into a common reference system in order to be merged into a complete model.

Different computer software programs (such as: Geomagic (3D Systems, 2018))

can be used to process the scanned data, for example by filling in the missing

points, and correcting scanning errors.

In (Eder et al., 2013), six scanners (Minolta Vivid 910, Polhemus FastSCAN,

GFM PRIMOS, GFM TopoCAM, Steinbichler Comet Vario Zoom 250, 3dMD

DSP 400) based on different scanning principles were used to measure five different

sized sheep skulls. Figure 2.1 shows the results of scanning using the six different

3D scanners. It can be seen that sub-millimetric accuracy can be achieved using

these scanners.

Table 2.1: Manufacturers technical data of the tested scanners

3D scanner Accuracy (mm) Scanning interval (second)

Minolta Vivid 910 0.068 2.5-0.3

Polhemus FastSCAN ±1 30

GFM PRIMROS body ≥0.03 1.5

GFM TopoCAM 0.025 ≥20

Steinbichler Comet Vario Zoom 250 ±0.04 Not specified

3dMD DSP 400 <0.5 0.0008

31

CHAPTER 2. LITERATURE

2.4.1 Examples of 3D scanners

2.4.1.1 FARO

The company FARO has designed and developed the most trusted portable 3D

measuring arms for more than 35 years. They have become the global standard for

arm technology that meets the diverse consumers requirements. The most recent

product line is FARO Quantum which is the first arm on the marker that can

be verified against the international certification standard (FARO Technologies,

2018a).

The system can be integrated with FAROBlu laser line probe to scan 5 times

faster and provide non-contact scanning capabilities. At full field of view, accu-

racy of the FARO laser line probe is ±25 µm, with a scan rate of 300 frames/sec-

ond, 2,000 points/line, and therefore 600,000 points/second (FARO Technologies,

2018b)

2.4.1.2 SMARTTECH

SMARTTECH is a well-known company expert in 3D measurement products. It

has two product lines. SMARTTECH 3D portable combines the best features

of both portable and stationary 3D scanners as it is an accurate ultra-fast 3D

scanner that can also perform colour measurements. The duration of a single

measurement does not exceed 0.2 seconds (SMARTTECH, 2016b).

Scan3Dmed uses white LED structured light, so it needs no laser or physical

contact during the scanning. The point cloud scanned using this device has an

accuracy up to 0.01 mm (SMARTTECH Co.Ltd., 2018). One of its main advan-

tages is that very quick as it is able to scan over a million points representing the

scanned surface within 0.7 seconds, also because of the SMARTTECH software,

the scanned data can be calculated and analysed without extra delay. More-

over, the scanning head can be integrated with up to 5 other 3D scanning units

enabling scanning from different angles. (SMARTTECH, 2016a).

32

CHAPTER 2. LITERATURE

2.4.2 Summary

Due to the complexity of the human body, getting a virtual image of any anatom-

ical structure is a hard task. Whatever the medical application is, when a mea-

surement of a patient’s anatomical structure is needed, a safe and contactless

3D scanner is needed to produce an accurate image of the target anatomical

structures. 3D scanners are used to either generate anatomical 3D models of the

human body or create implants to simulate surgical operations. There are differ-

ent categories of 3D scanner, the best category is chosen according to the scanning

environment requirements such as portability, scanning speed, and accuracy.

33

Chapter 3

Aims and Objectives

The aims of this project were to develop a prototype remote controlled surgical

robotic system with sufficient accuracy (be able to cut shape as close as possible

to the original shape of the implant) and to perform unicompartmental knee

arthroplasty and more affordable than other existing robotic systems.

In order to achieve this aim an inexpensive motion capture camera system will

be used to create a multi-camera in-theatre navigation system, once established

this system will be tested for the required accuracy (Chapter 4). The next step

will be designing an accurate robotic CNC machine which will be responsible for

the cutting phase in the surgical process (Chapter 5). Then a series of applications

will be written to perform the navigation and control of the CNC robotic machine

using the selected motion action system, the machine will also be controlled

remotely in the theatre (Chapters 6 and 7).

The system should perform the bone cutting phase in the surgery. As the

surgeon plans the position and orientation of the implant on both femoral and

tibial condyle. The operator/surgeon then starts the procedure by registering the

knee (to inform the system where should it cut the implant shape). The system

acquires some data input from working cluster by the motion capture system,

then the system will orientate the implant shape, then plan a path for the CNC

machine to burr the bones. After the system completes the process, the burr

will be retrieved, the surgeon can then start the implant cementing and fixation

phase.

34

CHAPTER 3. AIMS AND OBJECTIVES

After the building stage, the system will be tested on a set of artificial bones,

so that the result can be compared to those produced by other robotic systems

(Chapters 8 and 9).

35

Chapter 4

Methods: Validation of The

Navigation System

4.1 Introduction

Motion capture systems track real-time movements of key points on a target

object and then translate that data into sequences of Cartesian coordinates in

three-dimensional space. Motion capture systems were initially developed to

measure human movement but their progression has been greatly enhanced by

the involvement of the animation industry (What is motion capture, 2017).

Nowadays motion capture serves a wide range of purposes such as computer

games, animations films, validation of computer vision, robotics, and evaluating

the functional performance of athletes, pilots, drivers, injured people, etc.

As detailed in Section 2.2, motion capture systems can be classified into two

types: Marker-based and marker-less motion capture systems (Perrott et al.,

2017). Marker based motion capture systems are sub classified into four types:

acoustic, mechanical, electro-magnetic, and optical systems. Each of these types

has an optimal deployment. However, in the proposed application of surgical

navigation, optical systems are the preferred technique due to their high sampling

rates and ability to give immediate feedback. Moreover, theoretically an unlimited

number of reflectors can be used (Shiratori et al., 2011). Optical motion capture

systems yield highly accurate tracking when compared to the alternatives.

36

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

The method depends on finding spatial correspondence for a detected marker

in more than one image captured from different viewpoints simultaneously, such

that each image must correspond to the projections of the same key point from

each camera perspective. Thus, Triangulation of the various camera views is

applied to recover the 3D positions of the markers, markers are tracked from one

frame to another and these 3D marker positions are used to fit a model to the

marked movement (Guerra-Filho, 2005b).

4.2 Aims and Objectives

The main objective of this section of the thesis was to determine if the OptiTrack

(optical motion capture system) was a reliable navigation system and could be

used to capture accurate locations of objects when they are stationary or moving

as they would be during surgery. The proposed motion capture system (Op-

tiTrack) offers a cheaper alternative to existing systems such as Vicon and a

multi-camera option with better field of view when compared to existing surgical

tracking systems like Polaris.

An accurate motion capture system was needed to provide tracking of the

surgical tools and the thigh and shank segments involved in the surgical operation.

Various modes of use of the motion capture system were required depending on

the proposed task of the navigation system. An example was developing a three

dimensional scanner. This application will be covered in Section 6.3.2. The

experiments in this chapter tested the ability of the OptiTrack system to deliver

the motion capture data with sufficient quality to achieve these tasks.

37

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

4.3 Methods

4.3.1 Introduction

Figure 4.1: OptiTrack Flex V100:R2 camera

Figure 4.2: Twelve Camera System Mounted

The motion capture system used consisted of twelve OptiTrack Flex V100:R2

cameras as shown in Figure 4.1. The cameras were linked together via OptiTrack’s

38

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

software platform Motive (Motive:Tracker - Motion capture and 6 DOF object

tracking , 2018a). Motive software sent the relative positions of each marker to the

created tracking application in 3D. In the developed system twelve cameras were

used. In typical surgical applications fewer cameras are used, usually 2 or 3. In

these 2 or 3 camera systems, the view of the cameras can be blocked by objects in

the field of view and the software will then lose track of the markers. The twelve

OptiTrack camera system hardware costed $11, 346 (Build Your Own Motion

Capture System, 2018). So, the OptiTrack system is cheaper, gives much greater

coverage, with less obscuring of markers and can be wall mounted leaving the

operating theatre uncluttered. The cameras were placed on the walls surrounding

the operating table and configured in a “u” shape around the operating table

head end, (Figure 4.2). In this way it is hoped that normal obstacles found in the

operating theatre such as the operating table, anaesthetic stack and any other

tools while blocking one or two cameras would not limit the available field of view

of the system as a whole. Also, the “u” shaped arrangement provided a bigger

capture volume with better avoidance of marker occlusion when the surgeon or

the surgical assistant where in the field of view. While the setup in theatres varies

all orthopaedic theatres will have a laminar flow hood on which the cameras can

be mounted.

4.3.2 Motive Software and OptiTrack Calibration

Motive is a software which can reconstruct three-dimensional objects by process-

ing multiple two dimensional images(Motive Documentation, 2016).First, Motive

software had to be initialized in order to be able to perform the camera calibra-

tion, then network streaming settings had to be defined. The version of Motive

used was V1.5.0 64-bit.

39

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

Figure 4.3: Camera Settings

Initially the cameras’ settings were set to accommodate to the environment

of the theatre. The cameras’ settings would be different from theatre to theatre

depending on variables such as: the light intensity and the objects in the theatre.

Figure 4.3 shows the cameras’ settings for the work and experiments conducted

in our operating theatre room.

The exposure setting is responsible for the amount of time the camera will

acquire light per frame, this feature controls how bright the object (marker) would

be. However, raising the camera’s exposure to a high level makes the system pick

up shiny objects as false markers. In the developed system, the exposure was set

to 21 out of 480.

The threshold setting is the level of brightness below which the camera would

discard any pixels. It is a very important feature, it could be levelled down

to pick up missing markers that don’t reflect the required amount of light due

to different markers size or different light conditions in same theatre. However,

too much levelling down of the threshold may cause the cameras to pick up

shiny unwanted objects (like metal hand watches or reflective metal surfaces from

working environment). In the developed system, the threshold was set at 200 out

of 255.

40

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

The LED Illumination setting is responsible for adjusting the IR LED’s; turn-

ing up the amount of IR illumination from the camera in the room may help in

marker detection especially if the markers were far away from the cameras, but

this may also cause the cameras to pick up shiny objects. In the developed

systems, this feature was set to 15 out of 15 in which the camera only picked

working clusters. The Frame Rate per Second was set to the maximum 100 to

negate the motion blur effect and also enabled the running of the application in

real-time (NaturalPoint, 2016). Potentially a fast capture rate could overload the

visualisation software but this didn’t occur at 100 frames per second.

41

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

(a) Wand Setting (b) Ground Plane Settings

(c) Wand 500mm (d) 55mm Ground Plane

Figure 4.4: Calibration Settings

The camera calibration process was simple and fast. It took a maximum of

15 minutes to complete the calibration process of the cameras in the developed

system, this step can be performed by the system operator. Providing the cameras

are not knocked or moved, then calibration is only required to be checked daily

and this can be done in a matter of seconds, if the calibration check fails then

the system can be recalibrated in 15 minutes maximum. It would be perfectly

feasible to mount the cameras on the hood in such a way that they would not be

42

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

knocked or interfered with and hence wouldn’t require recalibration frequently.

To start the calibration process a new project was created in Motive software,

then the Camera Calibration button was pressed. A calibration window opened

on the right side of Motive. As shown in Figure 4.4a, at the OptiWand option,

“large 500mm” was selected because for the experiment we used a large 500mm

calibrated wand (see Figure 4.4c), the 500mm wand is a standard size, as there

is three markers on top of the wand T-shape with known distinct distances in

between, so that when the wand is in the wanding process (moving the wand

to make oval shapes front of the cameras), the oval shapes are compared in

perspective to each camera. The “Block Visible” option was used to block out

all shiny objects that existed in the theatre prior to the calibration process.

Next, the wanding process was initiated by pressing the “Start Wanding”

button, and then the wand was introduced to the field of view of the cameras

and moved in a u-shape in the theatre using circular wand-like moves around the

capture volume.

Figure 4.5: Wanding Input Screen

In order to achieve the best results, the wanding process was continued until

all cameras had at least 2000 sample, if not the operator should focus the wand-

ing process to face cameras with lower samples count. Then“Calculate” button

was pressed, As is shown in Figure 4.5, the calculations values were displayed on

43

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

the right side of the Motive screen. In this example, cameras four to twelve have

excellent quality, as the calculations continues the overall quality will changes, as

the calculations was finished the overall quality was excellent and ready to apply

the result message was shown on the screen. Then “Apply Result” button was

pressed to finish. The motion capture system was now calibrated. A second pro-

cess was to assign the system an origin (0,0,0 coordinates) for which the Ground

Plane was used, (Figure 4.4d), the system recognized these two axes also because

of the distinct distance between the three markers. The origin of the system was

set to the intersection of the two arms of the ground plane with the short thick

side (vertical in the picture) as the x-axis and the longer thin side. (horizontal

in the picture) being the z-axis, with the y-axis vertical and orthogonal.

4.3.3 Network Settings

Figure 4.6: Data Streaming Setting

44

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

Once the initialization procedures had finished, Motive was ready to stream the

markers coordinates to D-Flow, D-Flow is a software that provides great support

for motion capture system as it provides visualisation to tracked markers and can

pass their locations to programmable script modules. In Motive, the “Streaming

Pane” button was pressed and the Data Streaming panel opened. The settings

were set as the D-Flow application required (see Figure 4.6). First of all, the

“Broadcast Frame Data” check box was checked, this tells the software to stream

out its data. Then in the network options, the command port was set to 1510

and the data port to 1001. In the network interface selection, the local interface

was set to “local loopback” and multicast interface was set to “224.0.0.1”, this

tells the Motive software where to stream the data so that other software can find

it, which in this case this IP points to same computer.

4.3.4 Experimental Methods

Three experiments were undertaken to validate the OptiTrack navigation system.

The first experiment was to capture a cluster of markers and compare the recorded

data to the dimensions of the cluster, this experiment was to test the system

accuracy.

The second experiment was designed to validate the accuracy of the system

across the field of view of the OptiTrack in theatre. This was accomplished

by recording the cluster dimensions in multiple positions around the theatre of

operation.

Finally, The third experiment was to test the system’s precision of capturing

moving markers. This was the system’s real-time performance and was tested by

capturing multiple clusters moving simultaneously in eight separate scenarios.

45

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

4.3.4.1 Experiment 1: Testing Accuracy using the Known Shape of

the cluster of markers

Figure 4.7: Blunt Probe

In the first experiment, data were recorded using the installed OptiTrack multi-

camera system and Motive software and a Blunt Probe (see Figure 4.7 above)

with a cluster of 3 markers on it. These data were then compared to the known

dimensions of the probe. The marker XYZ positions were calculated by Motive

software and then sent via the network streaming interface to D-Flow. A D-Flow

LUA script module (LUA is a multi-paradigm dynamic language, where LUA

means moon in Portuguese) was written to capture the incoming data and use it

to calculate the Euclidean distances between the cluster’s markers in real time,

see Appendix A.1 for more details about the code. These calculated distances

were then compared to another set of distances in which the marker positions

had been carefully recorded by a Vicon Bonita 8 camera motion capture system.

The result of the comparison can be viewed in Table 4.1, So accurate to within

0.3mm. This data showed concurrent validity with Vicon when the pointer is

static and in middle of capture volume.

46

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

4.3.4.2 Experiment 2: Testing Range by Marked Distances in Theatre

Figure 4.8: Testing Field of Camera View in Theatre

47

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

Figure 4.9: Testing Range by Graph Paper

The motion capture system accuracy may be dependent on the position within

the field of view of the system, thus when the markers reach the borders of

the OptiTrack system, they may become less accurate. Experiment two was

performed to insure sufficient accuracy of the navigation system across the field

48

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

of view (active range) in the theatre of operation. This experiment was performed

in two steps.

The first step was to frame the space at which markers needed to be observed.

This was achieved by building a rectangular frame of suitable dimensions, see

Figure 4.8. The space inside the frame represented the required area for the

clusters to function; whether stationary or moving. The dimensions of the cuboid

was 1.5m x 1m x 0.6m.

The second step was to test the system’s accuracy in the space inside the

frame. This was accomplished by placing the blunt probe in known positions

within the field of view of the system. Graph paper was marked by an array of

nine points in three columns and three rows, each had a 40mm separating space

(Figure 4.9). The graph paper was then mounted on a flat wooden surface, this

surface was placed on the base/ground side of the cuboid. The Blunt Probe was

then used to locate each point in the points array in a specific order, the probe

ws pointed in each location by hand.

Figure 4.10: Testing Application in D-Flow Editor

A special application was written in D-Flow using a LUA script to map the

points from the graph and store them in order in a file, see Figure 4.10 for the flow

editor view in D-Flow studio. Two scripts were used to perform these tasks, the

49

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

first script was the Green Probe script which retrieves the pointer’s tip location

this was linked to the second script (Saving) which was used to store each pointer

markers and calculate the location in order when the foot switch (phidget) was

pressed. A voice assisting feature was built in to the code to assist the recording

operation. The first script (Green Probe) will be discussed in details in Section

6.3.1. For the other script (Saving) see Appendix B.5 for more details.

The location of the tip of the probe relative to the three fixed markers was

recorded prior to operation. This data was then used to reconstruct the location

of the probe tip from the locations of the three markers during operation. This

is known as a virtual marker.

Figure 4.11: Testing Application in D-Flow Editor

(Figure 4.11) nine arrays of nine points were attached using tape to a wooden

board. The nine points were numbered in order and each set of points on each

paper was named a segment, so the figure shows one used segment. The data

retrieved from measuring the nine segments on the cuboid floor is shown in Table

4.2. The Data for the whole level 1 (at Minimum height/ground level) is shown

in Table 4.3 and level 2 (at maximum height/the wooden surface was placed at

the top side(roof) of the cuboid) is shown in Table 4.4.

50

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

4.3.4.3 Experiment 3: Testing Precision and Real-Time Performance

by Identifying Multiple Moving Clusters in eight different sce-

narios

In the next experiment six of Mako’s clusters were used, four of them were moved

in field of view (the Femur, the Tibia, the Blunt probe and the Sharp probe

clusters), all these four clusters were required for the surgical procedure. The

remaining two remained stationary all the time (Base cluster and the Endeffector

cluster), all these clusters were first fixed on a table then picked up and moved

within the camera system field of view. The Tibia and Femur clusters have four

markers on them so that there is some redundancy for a missing marker and the

Blunt and Sharpe probes have only the minimum required to track an object in

3D space of three non collinear markers. As Mako made the markers positions

with unique distances between each other’s, the tracking process was based on

finding these Euclidean distance between the markers. The clusters with four

markers have six distances between them and the clusters with three markers

have only three distances between the markers. To test the tracking ability of

the navigation system with moving clusters, the Euclidean distances between

markers for each cluster were saved from a static recording and then again while

the cluster was moving and then the two sets of data were compared. For example

in Figure 4.12 below the cluster’s markers locations was saved while the cluster

was static. The cluster was then moved and its motion and markers coordinates

were recorded by the Motive software while it was moved. The captured data

was played-back and paused to capture marker coordinates at various locations

for the cluster’s four markers, see Figure 4.13. The Euclidean distance was then

calculated and compared, (Table 4.5 and Table 4.6). Finally a single cluster’s

motion was tested inside the cameras field of view experiment scenarios(1 - 4) .

Next, one cluster’s motion was tested while there was another cluster/s in the

cameras field of view scenarios(5 - 7), in scenario 7 all Mako’s clusters were used

in field of view, five were stationary. In scenario 8, two clusters motions were

tested at the same time.

51

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

4.4 Results

4.4.0.1 Testing Accuracy using the Known Shape of the cluster of

markers Results

Table 4.1: OptiTrack vs Vicon

Side OptiTrack Vicon Unit

LR 58.3 58.0 mm

RF 96.7 97.0 mm

LF 105.7 106.0 mm

The naming of the sides was according to the markers naming abbreviation ac-

cording to where they were placed relative to their base, so R is the right marker,

L is left and F was the far from base marker.

4.4.0.2 Testing Range by Marked Distances in Theatre Results

Table 4.2: Segment 1 Scanned Points in mm

Point X Y Z Euclidean Expected Error

Point 1 357.3 21.8 102.4 57.4 56.5 0.9

Point 2 353.9 21.9 62.6 40.9 40.0 0.9

Point 3 351.5 21.6 22.9 57.5 56.5 0.9

Point 4 316.4 22.1 106.1 40.5 40.0 0.5

Point 6 311.3 21.8 25.7 40.0 40.0 0.0

Point 7 277.6 23 108.4 55.4 56.5 1.0

Point 8 274.3 22.4 67.8 38.8 40.0 1.1

Point 9 271.6 21.8 27.7 56.2 56.5 0.2

Average 0.7

The data in Table 4.2 above shows the data from segment 1 scan in the first

level of the scanning process. The first column is the points order. The second,

third and fourth column represents the XYZ coordinate value of each point. The

52

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

fifth column is the Euclidean distance between each point and point number 5

which is the centre point of each segment. The sixth column is the correct value

of the Euclidean distance between each point and point number 5 based on the

graph paper distance, for example point 1 has the distance of 56.5mm to point 5

which is the base of a two equal sided triangle of 40mm, also points as 2, 4, 6, 8

have a direct distance of 40mm. The seventh and last column was the absolute

error column which is the absolute difference between the calculated Euclidean

distance (fifth column) and the expected distance (sixth column) values. Average

absolute error in the segment above is 0.6mm. it should be noted that the points

on the graph paper were hand drawn. 4.3 shows the average absolute error for

all nine segments in a level for all nine points with the overall average absolute

error in the bottom right hand corner.

Table 4.3: Level 1 Average Absolute Error in mm

Segment P1 P2 P3 P4 P6 P7 P8 P9 Average

Segment 1 0.9 0.9 0.9 0.5 0.0 1.0 1.1 0.2 0.7

Segment 2 0.6 0.5 1.1 0.4 0.0 0.0 0.1 0.3 0.4

Segment 3 1.3 0.2 0.6 1.4 0.2 0.0 0.2 0.3 0.5

Segment 4 0.1 0.0 0.4 1.8 0.1 1.1 1.5 0.4 0.7

Segment 5 0.5 0.5 0.0 0.5 0.7 0.2 0.1 0.5 0.4

Segment 6 1.0 3.5 0.5 0.2 0.3 1.0 2.8 2.3 1.3

Segment 7 1.9 1.4 1.5 0.1 1.0 0.8 1.5 1.5 1.1

Segment 8 1.4 0.7 1.5 0.0 0.5 0.0 0.2 0.5 0.6

Segment 9 1.1 0.1 1.8 0.1 1.4 0.5 0.4 2.6 0.9

Error Range 3.5-0.0

Overall Average Absolute Error 0.6(0.3)

The Average error for the whole level was 0.6mm and the Standard Deviation

was 0.3mm. The wooden board was then moved the maximum height inside the

cuboid frame and the same process repeated. Table 4.4 presents the data in the

second level scan:

53

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

Table 4.4: Level 2 Average Absolute Error in mm

Segment P1 P2 P3 P4 P6 P7 P8 P9 Average

Segment 1 0.4 2.9 3.1 0.8 0.1 2.7 3.8 2.7 1.9

Segment 2 0.3 1.0 2.3 1.3 0.4 1.4 2.0 1.3 1.2

Segment 3 0.3 1.8 2.6 0.3 3.3 3.5 5.4 4.2 2.5

Segment 4 0.2 0.8 2.1 0.2 0.8 1.5 0.9 0.3 0.9

Segment 5 0.2 0.0 0.4 0.0 0.7 0.4 0.7 0.8 0.5

Segment 6 1.9 7.5 7.7 0.9 1.0 3.5 9.0 7.3 4.4

Segment 7 0.2 1.9 0.8 0.6 0.1 0.9 0.4 0.0 0.7

Segment 8 0.2 0.0 0.2 0.8 0.3 0.1 0.3 1.1 0.4

Segment 9 1.9 1.2 0.8 0.6 0.1 1.8 2.2 1.3 1.2

Error Range 9.0-0.0

Overall Average Absolute Error 1.5(1.2)

Average absolute error for the whole level was 1.4mm and the Standard Devi-

ation was 1.2mm. Data from intermediate levels shows intermediate sizes of over-

all average absolute error ranging from 0.6 - 1.4mm (SD ranging from 0.3− 1.2).

Hence at the level of the surgery the level of the origin the system was accurate

to ±1.2mm and at extreme of the field of view ±2.8mm.

4.4.0.3 Testing Precision and Real-Time Performance by Identifying

Multiple Moving Clusters Results

Scenario1: Femur Cluster

54

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

Figure 4.12: Femur Cluster Static

Figure 4.13: Femur Cluster Moving

55

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

Table 4.5: Femur Cluster in Motion Data

1 Static(mm) Moving(mm) Difference(mm)

1 55.1 55.2 0.1

2 65.1 65.3 0.2

3 75.5 74.9 0.6

4 86.5 85.4 1.1

5 95.1 94.5 0.6

6 106.0 105.3 0.7

Table 4.6: Femur Cluster in Motion Extra Data

Measured Value Unit

Distance 0.511 m

Time 0.91 s

Velocity 0.562 ms−1

The average absolute error in this experiment was 0.55 mm.

Scenario2: Tibia Cluster

Table 4.7: Tibia Cluster in Motion Data

1 Static(mm) Moving(mm) Difference(mm)

1 53.8 52.7 1.1

2 60.7 60.8 0.1

3 69.0 68.3 0.7

4 74.2 73.2 1.0

5 96.1 95.9 0.2

6 126.7 125.7 1.0

56

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

Table 4.8: Tibia Cluster in Motion Extra Data

Measured Value Unit

Distance 1.226 m

Time 3.0 s

Average Velocity 0.408 ms−1

The average absolute error in this experiment was 0.68 mm.

Scenario3: Blunt Probe

Figure 4.14: Blunt Probe Static

57

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

Figure 4.15: Blunt Probe Moving

Table 4.9: Blunt Probe in Motion Data

1 Static(mm) Moving(mm) Difference(mm)

1 58.4 58.7 0.3

2 96.7 96.6 0.1

3 105.8 105.7 0.1

Table 4.10: Blunt Probe in Motion Extra Data

Measured Value Unit

Distance 0.475 m

Time 1.0 s

Average Velocity 0.475 ms−1

The average absolute error in this experiment was 0.16 mm.

Scenario4: Sharp Probe Cluster

58

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

Table 4.11: Sharp Probe in Motion Data

1 Static(mm) Moving(mm) Difference(mm)

1 61.5 61.8 0.3

2 107.4 18.6 1.2

3 126.6 127.7 1.1

Table 4.12: Sharp Probe in Motion Extra Data

Measured Value Unit

Distance 1.330 m

Time 3.2 s

Average Velocity 0.415 ms−1

The average absolute error in this experiment was 0.86 mm.

Now the next four experiments include tracking of a cluster or more with

another cluster/s in the cameras field of view.

Scenario5: Tibia Cluster with Femur Cluster in Field of View

59

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

Figure 4.16: Tibia Cluster Static While Femur Cluster in Field of View

Figure 4.17: Tibia Cluster Moving While Femur Cluster in Field of View

60

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

Table 4.13: Tibia Cluster in Motion Data with Other Cluster in the Field of View

1 Static(mm) Moving(mm) Difference(mm)

1 53.1 52.1 1.0

2 61.1 60.4 0.7

3 68.2 67.8 0.4

4 73.1 73.3 0.2

5 95.8 95.4 0.4

6 125.9 125.4 0.5

Table 4.14: Tibia Cluster in Motion Extra Data While Other Cluster in the Field

of View

Measured Value Unit

Distance 0.223 m

Time 1.1 s

Average Velocity 0.202 ms−1

The average absolute error in this experiment was 0.53 mm.

Scenario6: Blunt Probe with Femur and Tibia Clusters in Field of

View

61

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

Figure 4.18: Blunt Probe Static While Femur and Tibia Clusters in the Field of

View

Figure 4.19: Blunt Probe Moving While Femur and Tibia Clusters in the Field

of View

62

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

Table 4.15: Blunt Probe Blunt Probe in Motion Data with Other Clusters in the

Field of View

1 Static(mm) Moving(mm) Difference(mm)

1 58.5 58.9 0.4

2 96.0 96.0 0

3 105.3 105.2 0.1

Table 4.16: Blunt Probe Blunt Probe in Motion Extra Data While Other Clusters

in the Field of View

Measured Value Unit

Distance 0.261 m

Time 0.6 s

Average Velocity 0.435 ms−1

The average absolute error in this experiment was 0.16 mm.

Scenario7: Blunt Probe with all Mako Clusters in Field of View

63

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

Figure 4.20: Blunt Probe Static while all Mako Clusters in the Field of View

Figure 4.21: Blunt Probe Moving while all Mako Clusters in the Field of View

64

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

Table 4.17: Blunt Probe Blunt Probe in Motion Data with all Mako Clusters in

the Field of View

1 Static(mm) Moving(mm) Difference(mm)

1 73.1 73.9 0.8

2 120.1 120.8 0.7

3 131.3 130.6 0.7

Table 4.18: Blunt Probe Blunt Probe in Motion Extra Data While all Mako

Clusters in the Field of View

Measured Value Unit

Distance 0.534 m

Time 0.85 s

Average Velocity 0.629 ms−1

The average absolute error in this experiment was 0.73 mm.

Scenario8: Tibia and Femur Clusters Moving in Field of View

Figure 4.22: Tibia and Femur Clusters Static

65

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

Figure 4.23: Tibia and Femur Clusters Moving

Table 4.19: Tibia Cluster Moving in Field of View Data With Femur Cluster

Moving Around

1 Static(mm) Moving(mm) Difference(mm)

1 53.1 52.4 0.7

2 61.5 59.7 1.8

3 70.2 67.1 3.1

4 73.7 73.6 0.1

5 96.5 96.0 0.5

6 126.0 126.1 0.1

66

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

Table 4.20: Tibia Cluster Moving in Field of View Extra Data While Femur

Cluster Moving Around

Measured Value Unit

Distance 1.484 m

Time 0.93 s

Average Velocity 1.596 ms−1

Table 4.21: Femur Clusters Moving in Field of View Data With Tibia Cluster

Moving Around

8B Before After Difference

1 54.7 54.5 0.2

2 65.4 65.2 0.2

3 76.0 75.2 0.8

4 85.4 86.2 0.8

5 95.6 94.8 0.8

6 105.1 105.4 0.3

Table 4.22: Femur Clusters Moving in Field of View Extra Data While Tibia

Cluster Moving Around

Measured Value Unit

Distance 1.429 m

Time 0.95 s

Average Velocity 1.505 ms−1

The average absolute error in this experiment was 1.05 mm for the first cluster

and 0.51 mm for the second.

67

CHAPTER 4. METHODS: VALIDATION OF THE NAVIGATION SYSTEM

4.5 Discussion

The Navigation system was a substantial element in this project hence testing

the navigation system limitations. The three experiments that were performed

finalized the testing phase. The first experiment showed that the navigation

system accuracy was 0.3 mm different than the Vicon system, which is acceptable

within the functionality of the full system as the cutting process was set to perform

a 1 mm cut. The second experiment’s accuracy at the origin of the system was

±1 mm , while at the extreme ends of the field of view ±2.5 mm. The third

experiment showed the robustness of tracking the objects while moving in field of

the cameras view. These data have made the OptiTrack valid as a cheap camera

system that can perform as the system navigator.

4.6 Conclusion

Navigation systems are widely used in many applications. Motion capture sys-

tems are becoming essential in working with many robotic and biomedical prac-

tises. The accuracy provided by motion capture systems can prefect surgical

operations. Choosing a cheap motion camera system and validating the system

was a necessary step for this project. After testing, OptiTrack camera system

was proven to be best fit for this project. The OptiTrack system when setup in

a U-shape in the laboratory as if it was mounted on a laminar flow hood pro-

duce an accuracy of less than 1mm in the centre of the field of view and 2.5mm

at the extremes which were nearly a meter from the centre of the field of view.

We can conclude that for knee arthroplasty which will require a field of view of

approximately 0.3m cubed and would generate an accuracy of ±1mm and there-

fore the OptiTrack in this configuration would be suitable for knee arthroplasty

operations.

68

Chapter 5

Methods: Overview of Design of

CNC Machine

5.1 Introduction

The process of CNC machining makes use of computers to control cutting ma-

chinery and is widely used in the manufacturing sector in machine in machines

such as mills, machining centres, lathes, turning centres, drilling machines, etc. In

other words, CNC machining involves having machine tools that function through

numerical control in which a computer program is written specifically to produce

a certain object and in order to control the motion of the CNC machine while

producing that object (About CNC Machining , 2017). CNC machines have rev-

olutionized manufacturing turning products from handmade, individual one of

pieces, to mass produced, identical, high tolerance components.

Modern CNC systems are highly automated in terms of their mechanical de-

sign and their software programming. Developing the mechanical design of CNC

machines is usually undertaken using Computer Aided Design (CAD) software,

followed by Computer Aided Manufacturing (CAM) software. The movements

of the resulting CNC machine are then reconstructed into commands that are

needed by the machine to produce the target output object. In traditional CNC

manufacture the work piece is fixed and immovable.

In this project, the CNC machine also had to interface with the navigation

69

CHAPTER 5. METHODS: OVERVIEW OF DESIGN OF CNC MACHINE

system as the object being cut could move and this movement was recorded using

the navigation system. This highly complex CNC machine was built and then

automated using special customized software programs and some of these pro-

grams could communicate with the navigation system and other programs could

communicate with the CNC machine over a network. Some of these programs

were implemented on the controlling computer and some on a micro-controller

in the CNC machine itself. CNC machine movements needed to be controlled to

move along at least two axes, supplemented by a tool spindle giving the depth

of the movement. Very accurate sub-millimetric movements of the machine were

needed, so, a direct-drive stepper motors (servo motors) were needed.

Nowadays, CNC is preferred over manual machining due to various important

advantages. First, its operation is highly precise and repeatable which enables it

to produce complex shapes that would be impossible to produce using manual

machining. Second, CNC machines are fully automated therefore they can work

without human interference during their entire machining cycle, eliminating the

mistakes that could be caused by human error, so producing a consistent and

predictable output object. Third, attempting to produce a different output object

,for example removing the bone for a different sized implant, only requires loading

a different software program which makes using CNC machines highly flexible

with easy set-up and running steps (Lynch, 2017).

5.2 Aims and Objectives

The objective of this section of the thesis was to build a fully functioning CNC

machine with three degrees of freedom. The machine was designed to perform a

knee joint burring procedure while also driving by the navigation system. The

accuracy of the machine had to be very high to make best use of the working

navigation system that was discussed in Chapter 4. Another Objective was to

create a driver to control the machine remotely which supports autonomous con-

trol for the cutting phase. The development of a mobile and “reactive” CNC

machine capable of burring bone during a knee Arthroplasty on a potentially

70

CHAPTER 5. METHODS: OVERVIEW OF DESIGN OF CNC MACHINE

moving leg was recognized as ambitious but also as providing a step change in

orthopaedic-robotics if it could be achieved.

5.3 Methods

The main target was to design a very accurate machine.

Figure 5.1: CNC Parts Through Assembly

As shown in the previous chapter, the OptiTrack System accuracy was 0.3mm.

This value was set to be the machine’s required accuracy. In order to reach such

accuracy in a CNC machine, the first thing needing was to install highly-accurate

motors with highly stable linear motion carriages which held and moved the cut-

ting burr or other machine tools with this accuracy.

71

CHAPTER 5. METHODS: OVERVIEW OF DESIGN OF CNC MACHINE

5.3.1 Designing The CNC Machine

In the simulated prototype, a rail system was used to carry the carriage which

provided a high accurate and stable linear motion. The design was made in

Solidworks 2015 software, it was also made from scratch by creating the pivots,

washers, rods and carriage as shown in Figure 5.1. By assembling the parts

together a full rail carriage system was created and by combining five of them, a

fully functioning CNC machine prototype was achieved. Two motors controlled

forward backward motion together. A further two motors controlled up and down

and then one motor controlled left and right. See Figure 5.2 below.

Figure 5.2: CNC Prototype

72

CHAPTER 5. METHODS: OVERVIEW OF DESIGN OF CNC MACHINE

Figure 5.3: CNC Final Design

As a working stepper motor, Nema 23 motors (USA, 2017) were the best fit

as they provided 200 steps/revolution and a 64 N.cm holding torque. As for

the production process, some of the parts needed to be made and others were

purchased. Five rails for linear motion with five Nema motors were purchased

and when assembled together they formed the final CNC machine working de-

sign shown in Figure 5.3 above. Each carriage had a 100mm length of movable

distance.

73

CHAPTER 5. METHODS: OVERVIEW OF DESIGN OF CNC MACHINE

Figure 5.4: CNC Controller Schematic

A micro-step driver TB6600 was used to separate the motor from the controller

circuit as each motor took a 3A input current (USA, 2017). Each Driver had

four inputs (VCC, Ground, pulse and direction) which it received from a central

Controller and output four phases (A+, A-, B+, B-) directly to the motors, see

Figure 5.4 above for more details.

The middle carriage - which moved horizontally - was defined as the machine’s

local Z-axis. This carriage held the cutting burr, see Figure 5.5. The burr was

fixed inside a flexible tube which was connected to a Maplin mini grinder 170W

variable speed rotary tool. The Z-axis rail was fixed at both ends to another

pair of carriages. These two carriages moved vertically in order to act as the

machine’s local Y-axis. Each of the Y-axis rails was fixed from the bottom to

another carriage. These two carriages moved on rails in a horizontal direction

(fore and aft) to form the machine’s local X-axis, this x-axis was parallel to the

cutting burr.

74

CHAPTER 5. METHODS: OVERVIEW OF DESIGN OF CNC MACHINE

Figure 5.5: Cutting Burr Fixed inside flexible tube and on also carriage

At this point the mechanical design was complete and attention switched to

the Controller. Arduino Duo provided all the required local control for the CNC

machine and an Arduino Wi-Fi Shield was also used to allow wireless commu-

nication from the computer to the Arduino Duo. The Arduino controlled the

machine movements through the motor drivers as discussed previously. The use

of the Wi-Fi connection eliminated control wires from the surgical computer to

the CNC machine.

5.3.2 Hard-wired Circuit

A small basic Control circuit was used to regulate voltage and ampage for the

Arduino board,along with two joystick switches, an LCD display and the motor

drivers, see Figure 5.6. The joysticks allowed local manual control of the CNC

machine prior to implementing of the automatic cutting path and the LED dis-

75

CHAPTER 5. METHODS: OVERVIEW OF DESIGN OF CNC MACHINE

play allowed process monitoring. The circuit schematic shows the implemented

supply circuit for the Arduino board, LCD display, the two Joysticks and all five

motor drivers. The circuit was responsible for down regulating the voltage as the

power supply output used for the motors was 13.8 VDC, but the Arduino board

and all other parts wired in this circuit took 5V as an input, so the circuit took

the 13.8V and delivered a 5V output.

The regulator circuit also reduced the noise in the supply to the controller

board and other components as the 13.8V supply was noisy due to the working

motors, and drivers. The regulator used was the LM7805. Two capacitors were

used to reduce the noise on the input voltage. A 10 µF capacitor was connected

between the input and the ground, another 1 µF was connected from the regulator

output to the ground. Both capacitors negative side was on the ground, see

Figure 5.6. The circuit was first created and tested on a bread board and then

implemented on a Veroboard, see Figure 5.7.

Figure 5.6: Circuit Schematic Diagram

76

CHAPTER 5. METHODS: OVERVIEW OF DESIGN OF CNC MACHINE

Figure 5.7: Circuit Implemented on Veroboard

5.3.3 Joysticks and LCD Display

The joystick module provided two axes manual control of the CNC machine.

When the stick was pressed it also worked as a push button giving two switch

controls, see Figure 5.8. The joysticks were used to manually control the CNC

machine. As each joystick could control two set axis, one was used to control the

machine local X and Y axes, and the other was used to control the machine local

Z axis.

The joysticks switches provided selection of the Arduino control modes 1)

manual 2) network control. This was achieved by pressing the corresponding

switch. The joysticks were placed and fixed to the left and right of the LCD

display see Figure 5.8. The joysticks outputs went straight to the Arduino board

for location control or selection and then the Arduino board output the location

update or selection result on the LCD display for observation.

77

CHAPTER 5. METHODS: OVERVIEW OF DESIGN OF CNC MACHINE

Figure 5.8: Joysticks and LCD Display

Each joystick module board had five pins: the VCC and Ground pins were

wired to the Veroboard for power and the other three pins were for the com-

munication between the module and the Arduino board. These three pins were

labelled on the module as VRx, VRy and SW. The VRx pin out gave an analog

value to the Arduino board, this value was 755 if the stick was in neutral, if the

stick was moved towards the positive direction of the X-axis this value increased,

and if moved towards the other direction this value decreased. the same concept

applies for the VRy pin. The SW pin output was zero when the stick was un-

pressed but when the stick was pressed the output value switched to 1. To view

the control code for the Arduino please refer to Section 7.3.2

The LCD display was a 16x2 display, see Figure 5.8. Some wiring and com-

ponents were applied on the Veroboard to make the correct setting for the LCD

display. LCD pin(0) was wired to ground, pin(1) to VCC(regulator output),

pin(3) was wired to a 330Ω resistance then to Ground, pin(5) was wired to the

Ground, pin(15) was wired to 330Ω resistance then to VCC to enable the +LED,

pin(16) was wired to 330Ω resistance then to the Ground to enable the -LED and

pins(4,6,11,12,13,14) were wired to the Arduino board for receiving the output.

78

CHAPTER 5. METHODS: OVERVIEW OF DESIGN OF CNC MACHINE

Figure 5.9: CNC Final Design and Controller

A 15A power supply unit was used to supply all of the operated hardware.

(Figure 5.9). A safety kill switch was wired on the power supply cord. In case

of emergencies the kill switch was pressed and it shut off the power supply and

therefore all hardware including the machine movements and the Maplin Rotary

Tool would be disabled. There was also a reset press button to reset the machine

carriage position to the local origin (0,0,0).

The five motor drivers, Arduino control board, Wi-Fi Shield, and the regula-

tion circuit were all fixed inside an electric box to isolate the parts and provide

portability. The joysticks, LCD display and reset button were fixed on the out-

side of the box to provide access.(Figure 5.9) .

The cost of the CNC unit and the controller box main components as (five

motors, five motor drivers, five rails, Arduino and Arduino Wi-Fi shield, small

control board, 15A power supply) were: The cost of one rail (one motor and one

motor driver) costed $135.5 multiply it by five hence the CNC costed $677.5, the

Arduino Duo costed $35.5, the Wi-Fi shield costed $81 and the mercury power

79

CHAPTER 5. METHODS: OVERVIEW OF DESIGN OF CNC MACHINE

supply costed $48, most of these components were bought from Amazon and RS

online store.

5.4 Experimental Validation of response

Two experiments were conducted to measure the machine accuracy. The first

experiment was performed to calibrate the system using the navigation system.

A marker was fixed on the moving carriage at the tip of the burr and the loca-

tion was acquired by the navigation system. The Arduino was programmed to

move 15000 steps. After the program execution the location of the marker was

acquired again. The Euclidean distance between the two locations was calculated

and the distance was 75mm. So if the motors took 15000 steps to move 75mm

then 15000÷75 = 200, as the motors move 200 step/revolution then each carriage

moves 200 step/mm or 5 µm/step. This was as expected.

The second experiment was made to verify the previous result by reversing the

process. Each carriage had a 100mm length to move on its rail. The Arduino was

programmed to move 20000 steps and the carriage was set on the rail starting

edge. After the execution, the carriage reached the end of the rail by moving

exactly the 100mm.

5.5 Discussion

A precise and accurate CNC machine was needed for this project. The machine

was built with three degrees of freedom in order to be able to perform knee joint

surface burring. Highly accurate motors were used to move with at least the same

accuracy as the navigation system.

The Machine’s accuracy after testing was 200 steps/mm for each axis which

means that each carriage can move 0.005mm/step or 5 µm/step. A surgery with

that accuracy should have good bone cutting results. However, it remains to be

80

CHAPTER 5. METHODS: OVERVIEW OF DESIGN OF CNC MACHINE

seen if this potential accuracy can be replicated in practice. Considerable further

work will be required before such technology could be shown to be ergonomically

suitable for the operating theatre.

5.6 Conclusion

CNC machines have become widely used in the world of robotics. This type of

machine has provided unique accuracy in many procedures and industries. The

pilot CNC machine developed in this project provided accurate burring suitable

for the partial knee resurfacing operation.

81

Chapter 6

Methods: D-Flow Applications

6.1 Introduction

The following chapter presents, a visual programming tool needed to provide

operator control of the cutting process and to link the navigation and CNC sys-

tems. D-flow software by Motek Medical was used to allow the definition of the

operation using visual programming. D-flow was developed as a programming

tool which considers the subject as an intrinsic part of the real-time feedback

loop and in which the behaviour of the subject is measured using multi-sensory

input devices, then motor-sensory, visual, and auditory feedback is returned to

the system via output devices. For example, input devices can be motion capture

systems and force plates, output devices can be motion platforms, treadmills,

audio devices and displays. The feedback strategies are flexible and can be de-

fined by the operator. D-flow has some particular characteristics, it consists of

a top layer responsible for the communication between hardware components, a

multi-display rendering system, and a modular application development frame-

work based on visual programming. D-Flow combines these components into one

system that focuses on rehabilitation techniques.

Although developed for visual feedback of motion capture data during rehabil-

itation, D-flow has all the elements necessary to control the CNC cutting system

while monitoring the position of the limb using the navigation system.

D-flow depends on the creation of modules, each module has a specific func-

82

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

tionality. Modules can be incorporated together in order to create complex appli-

cations with interactive virtual reality. D-flow offers different types of modules.

For example, some modules are responsible for directly controlling hardware de-

vices, other modules are responsible for reading real-time data streams through

input devices while other modules manipulate virtual objects to enable the inter-

action between the subject and the virtual environment by controlling the play-

back in the virtual environment or disclose collisions between objects. Lastly,

low-level modules are necessary to act as the building blocks for high-level func-

tion. Moreover, D-flow offers a general-purpose scripting LUA module and an

expression scripting module.

In order to provide communication between modules, each module contains

a set of input and output channels. Output channels from one module can be

connected to input channels from other modules, enabling data to navigate from

one module to another one(Geijtenbeek et al., 2011)(D-Flow - Motekforce Link ,

2018).

6.2 Aims and Objectives

This chapter covers the D-Flow main application for creating the cutting pro-

cedure transition file. The methods section includes the application flow, the

created algorithms and mathematical formulas for the main application.

The objective was to cover all the used D-Flow modules, provide a detailed

illustration of the clusters tracking technique along with flow charts and code

portions of the used algorithm, and also present a complete guide for the cre-

ation of the registration process using pointer probes with the required codes and

mathematical representation.

This section also demonstrates the details regarding implants shape acquisi-

tion and path planning for the machine that enables it to move and perform the

cutting.

83

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

6.3 Methods

With the hardware developed, an overall control program was needed. This

chapter is in two parts: detailed illustration of the main application followed by

the process of creating a three-dimensional scanner application in D-Flow needed

to capture the bone surface shape.

6.3.1 Main Application

For this application, a full task by task flow had to be provided for the surgery.

Figure 6.1 below shows the flow of the written programs to perform the surgery.

In order to accomplish the whole chart, three programming languages were used:

LUA, Java and C/C++(Arduino code). First, Motive software was used to trans-

fer the markers’ positions to the D-Flow main application. Second, the markers’

positions were received by the D-Flow main application and used to generate the

cutting file; which is the focus of this chapter. Thirdly, the cutting file was sent

over the network by the Java application (sekseka), which will be discussed in the

next chapter. Finally the cutting file was received at the CNC machine and the

burr perform the surgery, also detailed in the next chapter.

Figure 6.1: Application Diagram

The main application task was to take markers input from all used clusters for

84

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

tracking objects in the surgery, the application also uses some of these clusters

for the registration process which was mandatory for the surgery. The last task

was to create the cutting path for the burr based on the acquired data and store

the result in a file (the cutting file).

Figure 6.2: D-Flow Data Flow Editor View

D-Flow software has many modules, some of these are task specific modules

like the MoCap and Phidgets modules, others are general purpose modules like the

Script module which allows the developer to write scripts in LUA programming

language, see Figure 6.2 for the previous modules icons. The MoCap module’s

function was to manage communication between various motion capture software

programs and D-Flow software programs. For this application, the MoCap mod-

85

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

ule’s task was to take markers’ positions from the Motive software and pass it

forward to other D-Flow modules. Further modules and details will be discussed

through this application.

Figure 6.3: Configuration Window

The function of the main application could be divided into a flow of procedures

as shown in the application diagram in Figure 6.1. In the beginning, the marker

positions were received by D-Flow using the MoCap module. In order to be able

to receive the markers from Motive over the network of the computer some D-flow

settings needed to be adjusted. As shown in Figure 6.3, at the Peripherals tab

in the D-Flow Configuration window, the OptiTrack Motion Capture check box

was checked to enable the communication. Since Motive software and D-Flow

software were on the same computer, the IP addresses of OptiTrack server and

86

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

client were set to ”127.0.0.1”, but if Motive had been on a different computer

then the server IP would’ve changed. Also, the scaling factor was set to one; if

the value changed, it would change the distance between the received markers.

At the bottom of the window the phidgets check box was also checked to enable

communication with Phidgets hardware which will be discussed later.

87

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

Figure 6.4: MoCap Module - Display Tab

88

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

Figure 6.5: MoCap Module - Markers Tab

89

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

Figure 6.6: MoCap Module - File Tab

90

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

Figure 6.7: MoCap Module - Out Tab

91

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

After setting the D-Flow configuration, the MoCap module was configured.

Figures 6.4, 6.5, 6.6, 6.7 shows the settings of the MoCap module. Each picture

shows a different tab settings that was needed. The first thing that was set

was the source menu button, the default option for the source is “simulation”,

which generated random floating data for the simulated markers in the DRS

visualization window in D-Flow. But, in order to get the working markers from

Motive, the source had to be changed to “live”. If Motive is disconnected, then D-

Flow automatically switches the source back to “simulation”, in this circumstance

the MoCap module would need to be put back to live once Motive was started.

The second step was to check the Show markers check box in the Display tab in

order to be able to display the motive markers on the DRS window. The show

markers label is a very good option for early tracing of the markers especially

if the developer is not yet familiar with the working cluster shapes. One last

configuration was made in the Display tab and that was the Markers Diameter,

the default value for this setting was 0.04 m, this value represents the diameter of

the drawn markers in the DRS window, in the presented testing through many D-

Flow applications this value was sometimes considered too big and sometimes too

small. Generally speaking, when the working cluster sets were far away from each

other it became impossible to zoom in the DRS window and see the tiny moving

markers. When visualisation was performed on a single cluster or adjacent cluster

sets, increasing the markers size too much caused marker overlap. See Figure 6.4

for the previous details on the Display tab.

Moving on to the Markers tab, see Figure 6.5, the number of markers was set

to 22 markers as this was the maximum number of markers that could be used

in this application (4 markers on the Endeffector cluster, 4 on the Base cluster, 4

on the Femoral cluster, 4 on the Tibial cluster, 3 on the Blunt Probe cluster and

3 on the Sharpe Probe cluster). When the number of markers set in D-Flow was

greater than the number of received markers from Motive, the extra markers were

placed at (0,0,0) as (X, Y, Z) (the origin) location in D-Flow. If the origin was

on the track of a moving cluster or close enough, these missing markers might

have caused that cluster to be unrecognised. Therefore, these missing markers

92

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

could confuse the algorithm. A marker detection algorithm which dealt with

this problem was required and will be discussed in detail in the cluster detection

module section.

The File tab was used to record marker data for a period of time, see Figure

6.6. This could be achieved by creating a file for saving the data using the

module. When then the red button at the bottom of the module was pressed

to start recording. Afterwards, when the required data had been recorded, the

stop button was pressed. The recorded data can be later used as the input for

the MoCap module instead of the live system by selecting the source to be a file

instead of live. Checking the “loop” check box causes repeating of the data if

required. This feature was very helpful while updating the code as data could be

played back rather than needing to be recaptured live.

The last tab to configure was the output tab, see Figure 6.7. This tab was

responsible for formatting and channelling the output from the MoCap module

to other modules.

(a) Setting Window (b) Runtime Window

Figure 6.8: Parameter Module

A single script named “constants” provided some common variables that were

required in all the developed scripts. The constants script provided data required

93

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

for various supporting operations to be discussed later. Another input module

was used: the parameter module. The parameter module provided great support

for the application to become more flexible, for example the number of used

markers was variable during the development phase and this allowed the number

of markers to be changed for example to 12 using a slider as shown in Figure 6.8b.

By using this method, the application’s load on the running computer was reduced

greatly. For example using the parameter module to set the number of markers

to the exact number prevented the software from processing missing markers.

Because there were eight different scripts in this application that depended on

these input markers, reducing the code from reading 22 markers -each have three

(x,y,z)- to reading 12 markers (4 on the Femoral cluster, 4 on the Tibial cluster

and 4 on Base cluster then replaced with a pointer which has 3 on top) reduced

the reading instructions from 22x3x8 = 528 to 12x3x8 = 288. The reading

instruction was the slowest instruction. Therefore, reducing it to almost half was a

great improvement in runtime efficiency. As the number of used markers changed

in most tests, the parameter module was used in all applications. In summary

the parameter module allowed the operator/developer to allow a variable to be

adjusted at the D-Flow runtime window during operation of the application, see

figure 6.8b. This control parameter can be created as a slider, list, checkbox,

button, separator, value display and GroupCheckbox. After selecting the input

type and range of values the tab name and colour was set as shown in Figure

6.8b.

94

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

Figure 6.9: Phidgets module

The next and last module before scripting was the Phidgets module. The

Phidgets module allowed the developer to use Phidgets hardware in order to

communicate with D-Flow. This can be set-up easily after adjusting the hardware

board and then connecting it to the operated computer via USB. The Phidget

module was loaded, the board type was selected and then the connect button

was pressed (Figure 6.9). After the connecting status turned green the module

output the data from the Phidget device in this case a on-off foot-switch.

The last input module was the constants module mentioned before. It was

a scripting module which was developed using the LUA programming language.

This module had a very unique and specific task which was initializing all other

scripts with the common variables values. For example all the used clusters

needed a set of data so that their shape could be defined in runtime. In the

constants module the shape dimension array was loaded from a file named after

the cluster and saved on the hard drive of the computer. Rather than repeating

this File load for each script, all data needed was loaded to a single script –the

Constants script– and then passed to all six clusters scripts.

Moving on to the Clustering scripts in the Markers group (see Figure 6.2).

The Clustering scripts were a series of scripts that were responsible for clusters

detection and tracking. There could be a number of clusters that were used in the

95

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

surgical procedure. These were for the Femur, Tibia, Blunt probe, sharp probe,

robot and burr tip. These clusters had one of two tasks. The first task was

acting as a locater for a body part or surgical tool. This could be accomplished

by placing the cluster on a visible surface of the part that needs to be tracked

by the motion capture system. The second task was acting as a pointer (or a

probe), the pointer was simply a smaller cluster on a tool with a pointy end that

registers location of the tip to identify individual points, (Figure 6.10) .

Figure 6.10: Mako’s Tibia Cluster and Blunt pointer

All the clusters used in this application were Mako clusters. Two of these

clusters, the Tibia cluster and the blunt probe are shown in figure 6.10. The

Tibia cluster was used to locate the Tibia location when either it was moving

or fixed. The blunt probe was used to register points on bone surfaces without

damaging the surface. If this probe is used to locate points on the patient’s knee

joint there will be an extra couple of millimetres for the cartilage layer. Therefore,

these is also Mako cluster set on another “sharp” pointer which can penetrate

the cartilage layer and get an accurate bone surface point location.

Clusters were created to be distinctive, for example in the tibial cluster shown

in Figure 6.10, the shape of the cluster is asymmetric with markers A,B,C and

D in specific locations on the cluster. In the Mako cluster sets, the markers’

96

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

relative positions to each other were unique. Therefore, in D-Flow each cluster

was recreated using the location and relative position of the markers, all six

cluster scripts ran the same algorithm but on different cluster six-dimensional

array datasets. Six ran in parallel to provide real-time detection of all clusters

within one frame at 100 Hz.

Figure 6.11: Cluster Detection Algorithm Flow Chart

The cluster identification process – in any of the clustering scripts – starts by

calculating the Euclidean distances between markers, knowing that:

Euclideandistances(Y,W) =
√

(Yx −Wx)2 + (Yy −Wy)2 + (Yz −Wz)2

where Y and W (from the equation above) are both three dimensional points.

This calculation was made for all pairs of markers sent by the Motive software,

(Figure 6.11). Once this the Euclidean distance array was calculated, the module

compared between this array and another array of the original cluster distances.

For example the Tibia cluster – on the left side of Figure 6.10 – has four markers

which meant that there were six different Euclidean distances between the mark-

ers. These distances were unique to each cluster for all Mako clusters in the set.

For the Tibia cluster, the distances were: 51.8, 60.5, 67.9, 74.7, 97.2 and 127.4

mm, the 97.7 mm and 127.4 mm. These distances were measured previously by

using the OptiTrack motion capture system and a special written D-Flow appli-

cation to create a specific file for each cluster. Each cluster module used that

cluster’s pre-recorded data file to compare with the online data. If the distances

97

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

could not be matched after the comparison operation had completed, then the

cluster had not been found. On the other hand, if all data items had a match

then the cluster and the markers on it had been identified.

A second check was made to verify that each distance belonged to the corre-

spondent cluster. This was necessary as sometimes, coincidently, two clusters may

be close enough to have one of the unique cluster distances between one marker

from a certain cluster and one from the other cluster so confusing the algorithm.

Further the operator was moving the pointer to register some points of the knee

joint, hence the pointer could also interfere in this way. This happened a couple

of times during the experimental phases but this error was completely avoided by

this checking procedure. To implement this process, a counter was made for each

marker as each Euclidean distance was defined by two markers, so for this exam-

ple each marker of the Tibia cluster will be shared by three Euclidean distances

on known length with the other three cluster markers, (Figure 6.10). For example

marker(A) will have Euclidean distances with marker(B), marker(C) and diago-

nally with marker(D) (this can be visualised from the figure as letters A,B,C and

D were placed on respective markers), so if the case mentioned before occurred

and one marker had equal Euclidean distance with a marker from another cluster,

this procedure output would have been five markers where a Euclidean distance

had been matched rather than four and two markers from these five will have

been confused however, one of them will only have one match in the compared

set while the other will have three markers (from the known Euclidean distances

of the cluster), the one with three matches (out of 4) is the correct one. For the

probes there were three markers and hence three Euclidean distances and if the

above error occurred, the correct marker for the probe would be the one with two

lengths count matched.

Here is the procedure implementation in LUA code for the green probe.

function countMarkers(foundMarkers, number)

found = false

for i = 1, #foundMarkers do

if foundMarkers[i]["Value"] == number then

98

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

foundMarkers[i]["Count"] = foundMarkers[i]["Count"] + 1

found = true

return foundMarkers

end

end

if found == false then

c = (#foundMarkers)+1

foundMarkers[c] = {}

foundMarkers[c]["Value"] = number

foundMarkers[c]["Count"] = 1

end

return foundMarkers

end

function doubleCheck()

foundMarkers = {}

foundMarkers[1] = {}

foundMarkers[2] = {}

foundMarkers[1]["Value"] = greenProbeArray[1][2]

foundMarkers[1]["Count"] = 1

foundMarkers[2]["Value"] = greenProbeArray[1][3]

foundMarkers[2]["Count"] = 1

for i = 2, #greenProbeArray do

foundMarkers = countMarkers(foundMarkers, greenProbeArray

↪→ [i][2])

foundMarkers = countMarkers(foundMarkers, greenProbeArray

↪→ [i][3])

end

counter = 1

temp = {}

for i = 1, #foundMarkers do

if foundMarkers[i]["Count"] > 1 then

99

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

temp[counter] = markers[foundMarkers[i]["Value"]]

counter = counter + 1

end

end

if #temp == 3 then

greenProbeArray = temp

return true

end

return false

end

function findGreenProbeArray(A, tF, itrationNumber)

counter = 1

for i = 1, expectedNoOfCombinations do

if A[i][1] >= GreenProbeArrayDims[1]-tF and A[i][1] <=

↪→ GreenProbeArrayDims[1]+tF then

greenProbeArray[counter] = A[i]

counter = counter + 1

elseif A[i][1] >= GreenProbeArrayDims[2]-tF and A[i][1]

↪→ <= GreenProbeArrayDims[2]+tF then

greenProbeArray[counter] = A[i]

counter = counter + 1

elseif A[i][1] >= GreenProbeArrayDims[3]-tF and A[i][1]

↪→ <= GreenProbeArrayDims[3]+tF then

greenProbeArray[counter] = A[i]

counter = counter + 1

end

end

if counter < 4 then

greenProbeArray = {}

elseif doubleCheck() then

return "found"

100

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

elseif itrationNumber < maxNoItrations then

return findGreenProbeArray(A, tF -0.0001, itrationNumber

↪→ + 1)

end

greenProbeArray = {}

return "not found"

end

The functions explained in the code above were responsible for the detection

process. The procedure starts by creating the “eculideanDistanceArray” which

was a two-dimensional array of Euclidean distances with each element holding

the distance between a pair of markers. After calculating all distances, the array

was sorted in an ascending order then the function “findGreenProbeArray(A, tF,

itrationNumber)” was called from the main loop. At the function call the “A”

variable was set as the “eculideanDistanceArray”, the “tF” was initialized as the

“toleranceFactor”, and the “itrationNumber” was set to 1. The function started

by setting the counter variable –a counter for the number of found markers– value

to 1, then the loop started with the goal of finding all input markers that belonged

to the working cluster.

In the loop a comparison was made between each of the Euclidean distance

values from the live data and all the previously recorded dimensions array that

identified that cluster. However, the comparison wasn’t perfect, because when

the markers’ positions were retrieved, the system noise found there was about

100 µm plus or minus error.

101

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

(a) (b)

Figure 6.12: Motive Marker Position Tracking

An experiment was conducted to test a cluster and calculate the difference in

marker positions overtime (Figure 6.12). The marker coordinates were captured

in Motive and after two seconds the coordinates were recaptured. The markers

belonged to the blunt probe set and the probe was stationary on the operation

table during the recording. The values of a typical pair of markers changed from

0.113192 to 0.113220 so that was a 28 µm difference. But for a different pair,

only a 6 µm difference occurred. This noise had the possibility to confuse the

above algorithm. If one of the distances in the sharp probe data (0.106377) were

reduced by the same amount it would be smaller than another value in the Femur

cluster data (0.106154), see Appendix B for all clusters data. Therefore, a further

system of checks was needed for the algorithm to be robust against this noise.

A tolerance was therefore introduced and Euclidean distances tested within a

range of values + or - this tolerance. Testing showed that setting the tolerance

factor too big caused more distances to be identified. However, setting the toler-

ance factor too low caused the compared value to be out of the comparison range

and hence not found.

102

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

Figure 6.13: Cluster Detection Algorithm 2.0 Flow Chart

As the tolerance value varied, the tolerance factor needed to be varied as

well. The detection algorithm started with a relatively large tolerance and if

the detection failed the function would reduce the tolerance factor value by a

small amount and recursively repeat the same process again until the cluster was

uniquely detected, Figure 6.13 shows the flow diagram for the new algorithm.

In the code, a series of conditions were made to organize the recursive call.

If the number of in-range markers –counter variable– was less than the number

of cluster markers –in this case three markers for the blunt probe– then the

function would finish, set the cluster marker’s array to empty then return “not

found” to the caller. If the counter was equal to or more than the number of

cluster markers then a double check would be done; either to make sure that the

selected markers were the right markers or to clear the extra ones. If the markers

passed the double check, then the function would return “found” to the caller. If

neither occurred, the function would repeat but this time with a smaller tolerance

factor (tF) value and also the iteration number will be incremented by one. This

procedure continued and the (tF) value was decremented for each iteration. If

the double check kept on failing, then after 20 iterations the function would stop

and return “not found”, this would be because of one or more markers from the

cluster wasn’t in the camera’s field of view or was behind an obstacle.

The doubleCheck() function works by checking each marker count, if there

were the correct number of markers with the correct number of Euclidean dis-

103

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

tances found then the function would return true else it returned false.

For example, in the previous example of the blunt probe, the correct number

of markers should be three, and each should have an Euclidean distance found

count of two.

If the cluster was found, the cluster’s markers location would be forwarded

to the next module and also an audio assist announcement would be made for

example “tibial cluster found”, if the cluster was a pointer type then further calcu-

lations would be performed to calculate the tip of the pointer for the registration

process. This is explained in the next section.

When each cluster was detected, the “Sounding” script module provided voice

assistance to the operator. This “Sounding” script was not mandatory for the

application but this feature has provided great help for the operator. Its necessary

for the operator to know that the cluster or pointer has been detected by the

system in order to insure a correct tracking or registering process. The voice

assisting feature negates the need for checking the screen continuously as it speaks

out loud when clusters are detected or invisible, as sometimes in the surgery

procedure or during using the pointer, the operator gets in the way of the cameras

for short periods of time and that could mess up the registration process or other

tracking functions. The fact that when a cluster was detected, a signal was sent to

this script to play a unique recorded audio message that announced its discovery,

and if the cluster went missing the script played another recorded message to

announce that the cluster had gone missing proved to be a great assistance to

the operator of the system during the cutting procedure.

Here is the script for the voice assistance.

--FUNCTIONS---

function checkNoSoundPlaying()

for i = 1, table.getn(sounds) do

if sound.isplaying(sounds[i]["F"]) or sound.isplaying(

↪→ sounds[i]["NF"])then

return false

end

104

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

end

return true

end

--init variables------------------------------------

init = init or 0

allinputs = allinputs or {}

soundOrder = soundOrder or {}

sounds = sounds or {}

previousSoundPlayed = previousSoundPlayed or {0, 0, 0, 0,

↪→ 0, 0}

--init the code------------------------------------

if init == 0 then

for i = 1, 6 do

allinputs[i] = "Channel "..i

sounds[i] = {}

end

sounds[1]["F"] = sound.create("C:/CAREN Resources/Sounds/

↪→ Tibial_Found.wav")

sounds[1]["NF"] = sound.create("C:/CAREN Resources/Sounds

↪→ /Tibial_Missing.wav")

sounds[2]["F"] = sound.create("C:/CAREN Resources/Sounds/

↪→ Femur_found.wav")

sounds[2]["NF"] = sound.create("C:/CAREN Resources/Sounds

↪→ /Femur_missing.wav")

sounds[3]["F"] = sound.create("C:/CAREN Resources/Sounds/

↪→ Endeffector_Found.wav")

sounds[3]["NF"] = sound.create("C:/CAREN Resources/Sounds

↪→ /Endeffector_Missing.wav")

sounds[4]["F"] = sound.create("C:/CAREN Resources/Sounds/

↪→ Base_Found.wav")

105

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

sounds[4]["NF"] = sound.create("C:/CAREN Resources/Sounds

↪→ /Base_Missing.wav")

sounds[5]["F"] = sound.create("C:/CAREN Resources/Sounds/

↪→ Blue_Probe_Found.wav")

sounds[5]["NF"] = sound.create("C:/CAREN Resources/Sounds

↪→ /Blue_Probe_Missing.wav")

sounds[6]["F"] = sound.create("C:/CAREN Resources/Sounds/

↪→ Green_Probe_Found.wav")

sounds[6]["NF"] = sound.create("C:/CAREN Resources/Sounds

↪→ /Green_Probe_Missing.wav")

sound.setvolume(sounds[1]["F"],100)

sound.setvolume(sounds[1]["NF"],100)

sound.setvolume(sounds[2]["F"],100)

sound.setvolume(sounds[2]["NF"],100)

sound.setvolume(sounds[3]["F"],100)

sound.setvolume(sounds[3]["NF"],100)

sound.setvolume(sounds[4]["F"],100)

sound.setvolume(sounds[4]["NF"],100)

sound.setvolume(sounds[5]["F"],100)

sound.setvolume(sounds[5]["NF"],100)

sound.setvolume(sounds[6]["F"],100)

sound.setvolume(sounds[6]["NF"],100)

inputs.setchannels(unpack(allinputs))

init = 1

end

for i = 1, 6 do

soundOrder[i] = inputs.get("Channel "..i)

--print(i, soundOrder[i], previousSoundPlayed[i],

↪→ checkNoSoundPlaying())

106

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

if checkNoSoundPlaying() and previousSoundPlayed[i] ˜= 1

↪→ and

soundOrder[i] == 1 then

sound.play(sounds[i]["F"])

previousSoundPlayed[i] = 1

elseif checkNoSoundPlaying() and previousSoundPlayed[i]

↪→ ˜= 2 and

soundOrder[i] == 2 then

sound.play(sounds[i]["NF"])

previousSoundPlayed[i] = 2

end

end

First the script initializes by creating sound objects for all recorded audio mes-

sages and setting its volume value to maximum. Second reading all incoming

inputs from the cluster scripts. Finally, the audio message will be played if it

hadn’t been played before and if there isn’t another audio message commenting

playing, else it will be placed in a queue for playing. This was required so that

the sounds do not overlap.

The Green probe module had two tasks, to locate each marker right position

on the cluster, then to locate the probe tip. In order to accomplish that, markers

needed to be established in a consistent order on the cluster. In order to be able to

do that, let’s take the Tibia cluster as an example, see Figure 6.10, the procedure

starts by calculating the Euclidean distance array just as in the previous script,

then figure out the markers order. What needs to be achieved is to ID each

marker in the software to its known position in the cluster. In the array below

four positions each occupied by any of the four markers (Marker A, B, C, D),

this positions were marked on the cluster in Figure 6.10, let’s assume that the

Euclidean distance array was as follows:

Table 6.1: Example of Data Inside the Array

107

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

Eq.Distance Marker1 Marker2

51.8 3 4 R1

60.5 2 1 R2

67.9 4 2 R3

74.7 1 3 R4

97.2 3 2 R5

127.4 1 4 R6

The first column in the array represents the Euclidean distances, the second and

third columns represent the two markers that have this distance between them.

Now, to assign the identified cluster markers (1, 2, 3, 4) from previous script (the

unordered markers) to match the marker in correct order/position (A, B, C, D)

on the cluster as drawn previously in Figure 6.10. Distance 127.4 mm was is the

length of the largest diagonal (Euclidean distance), therefore markers on second

and third column which in the last line in table above are markers (1, 4) can be

in C and B positions, again see Figure 6.10 for more visualization. Again, from

R6 it is clear that at position C from Figure 6.10 was either marker 1 or 4 from

the retrieved markers. From R3, the distance 67.9 mm was the Euclidean distance

between position C and D. So now it is clear that the common position from R3

and R6 was the position C which was equivalent to marker (4). Similarly from R3

the remaining position was D which is occupied by marker (2). By applying the

same logic on R6, it implies that position B was occupied by marker(1), which

leaves position (A) to be occupied by marker (3). By applying the same algorithm

to each cluster all markers will be matched to their own unique positions on their

own cluster, here is the code for this set markers function.

function setMarkers() --to number each marker in the

↪→ segment

for i = 1, noOfMarkers do

if (i == eculideanDistanceArray[3][2] or i ==

↪→ eculideanDistanceArray[3][3]) and (i ==

↪→ eculideanDistanceArray[2][3] or i ==

108

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

↪→ eculideanDistanceArray[2][2]) then

markers[i]["pos"] = "far"

far = markers[i]

elseif (i == eculideanDistanceArray[1][3] or i ==

↪→ eculideanDistanceArray[1][2]) and (i ==

↪→ eculideanDistanceArray[2][3] or i ==

↪→ eculideanDistanceArray[2][2]) then

markers[i]["pos"] = "left"

left = markers[i]

elseif (i == eculideanDistanceArray[3][3] or i ==

↪→ eculideanDistanceArray[3][2]) and (i ==

↪→ eculideanDistanceArray[1][3] or i ==

↪→ eculideanDistanceArray[1][2]) then

markers[i]["pos"] = "right"

right = markers[i]

end

end

end

This code also identified the marker locations on the blunt probe. As the blunt

probe had only three markers, the script operation was simpler than for the four

marker clusters as the noOfMarkers was three in this script. For each loop the

Euclidean distance array were sorted in ascending order. The last two distances

(the longest) always had one marker in common. Therefore, the first condition in

the loop was to compare and get the software-generated number of that marker,

that was done by comparing numbers from 1, 2 and 3 to these two distances and

find out the common number. It’s position was saved as “far”. The same logic

was applied to find the order of the other two markers, Therefore, the marker

marked as “left” was the common marker in the first two distances and the other

marker was the “right” marker. The position naming was set according to the

location of the markers on the cluster when facing up and having the base with

the two close markers on the operator side.

109

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

Now that each marker was in order, a global coordinate system could be made.

Each cluster had its own coordinate system (Local coordinate system) as each

shape was unique. In order to be able to register the tip of the probe in the global

coordinate system, a transformation needed to be done. The steps required to

accomplish the transformation are as follows:

1. Establishing probe (local) coordinate system.

2. Creating magnitudes of the local coordinate system.

3. Creating unit vectors of the local coordinate system.

4. Transforming local coordinate system to global coordinate system.

5. Adding the local tip location to the transformation.

The next part will show a portion of the code implementing previous steps and

will be followed by step by step illustration.

function getAVG(point1, point2)

a = {}

a["x"] = (point1["x"] + point2["x"]) / 2.0

a["y"] = (point1["y"] + point2["y"]) / 2.0

a["z"] = (point1["z"] + point2["z"]) / 2.0

return a

end

function getVector(point1, point2)

vector = {}

vector["x"] = point1["x"] - point2["x"]

vector["y"] = point1["y"] - point2["y"]

vector["z"] = point1["z"] - point2["z"]

return vector

end

function getUNIVector(vector, magV)

vector["x"] = vector["x"]/magV

110

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

vector["y"] = vector["y"]/magV

vector["z"] = vector["z"]/magV

return vector

end

function crossProduct(vector1, vector2)

--[[

Cx = aybz - azby

Cy = azbx - axbz

Cz = axby - aybx

--]]

vector = {}

vector["x"] = vector1["y"] * vector2["z"] -

↪→ vector1["z"] * vector2["y"]

vector["y"] = vector1["z"] * vector2["x"] -

↪→ vector1["x"] * vector2["z"]

vector["z"] = vector1["x"] * vector2["y"] -

↪→ vector1["y"] * vector2["x"]

return vector

end

function getMagnitude(point)

vector = (point["x"]ˆ2 + point["y"]ˆ2 + point["z"

↪→]ˆ2)ˆ0.5

return vector

end

function transform(aP, bP, cP, fourthMarker)

tfm = {}

tfm["x"] = aP["x"] * fourthMarker["x"] + aP["y"]

↪→ * fourthMarker["y"] + aP["z"] *

↪→ fourthMarker["z"]

tfm["y"] = bP["x"] * fourthMarker["x"] + bP["y"]

↪→ * fourthMarker["y"] + bP["z"] *

111

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

↪→ fourthMarker["z"]

tfm["z"] = cP["x"] * fourthMarker["x"] + cP["y"]

↪→ * fourthMarker["y"] + cP["z"] *

↪→ fourthMarker["z"]

tfm["obj"] = markers[4]["obj"]

tfm["pos"] = "fourth"

return tfm

end

function transformTranspose(aP, bP, cP,

↪→ fourthMarker)

tfm = {}

tfm["x"] = aP["x"] * fourthMarker["x"] + bP["x"]

↪→ * fourthMarker["y"] + cP["x"] *

↪→ fourthMarker["z"]

tfm["y"] = aP["y"] * fourthMarker["x"] + bP["y"]

↪→ * fourthMarker["y"] + cP["y"] *

↪→ fourthMarker["z"]

tfm["z"] = aP["z"] * fourthMarker["x"] + bP["z"]

↪→ * fourthMarker["y"] + cP["z"] *

↪→ fourthMarker["z"]

tfm["obj"] = markers[4]["obj"]

tfm["pos"] = "fourth"

return tfm

end

function getTipLocation()

localOrigin = getAVG(left, right)

a = getVector(far, localOrigin)

bt = getVector(left, localOrigin)

c = crossProduct(a, bt)

b = crossProduct(a, c)

112

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

magA = getMagnitude(a)

magB = getMagnitude(b)

magC = getMagnitude(c)

aUNI = getUNIVector(a, magA)

bUNI = getUNIVector(b, magB)

cUNI = getUNIVector(c, magC)

markers[4] = transformTranspose(aUNI, bUNI, cUNI,

↪→ fourthMarker)

--markers[4] = transform(aUNI, bUNI, cUNI,

↪→ fourthMarker)

markers[4]["x"] = markers[4]["x"] + localOrigin["

↪→ x"]

markers[4]["y"] = markers[4]["y"] + localOrigin["

↪→ y"]

markers[4]["z"] = markers[4]["z"] + localOrigin["

↪→ z"]

end

After the “getTipLocation()” function was called from the main loop, the tasks on

the list starts by setting-up the local coordinate system and this can be achieved

by creating three perpendicular axes.

113

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

Figure 6.14: Blunt Probe Local Axis

Figure 6.14 shows the local axis that was implemented in the code. The origin

was located at the middle point between marker(L) and marker(R), where (L)

refers to the left marker and (R) refers to the right marker. The origin was

calculated by calling the “getAVG(point1, point2)” function and sending the left

and right points which were simply two arrays each holding the XYZ coordinates,

the “getAVG(point1, point2)” function received the two points then created a

new array to store the new values as shown in the code. Finally, the result was

returned to the caller.

The first vector to be created was −→a which represented the local X axis. This

was achieved by calling the “getVector(point1, point2)” function, which simply

received the two points that form the vector and then it subtracted the first

argument from the second one, afterwards it returned the result array to the

caller. So −→a was created by the equation:

−→a = far − localorigin

far and localOrigion are arrays each holding XYZ coordinates. The same rules

114

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

were applied to get
−→
bt :

−→
bt = left− localorigin

The t in
−→
bt stands for temperately because the angle between the −→a and

−→
bt axes

was not 90 degrees. In order to produce a local right angle Cartesian axes set.

Vector −→c perpendicular to the plane of −→a and
−→
bt was created using the cross

product. This was calculated by:

−→c = −→a ×
−→
bt

Refer to Figure 6.14 for the axis direction. Creating the a true perpendicular
−→
b

was achieved bt the cross product of −→a and−→c :

−→
b = −→a ×−→c

These calculations were achieved by calling the “crossProduct(vector1, vector2)”

function which cross products vector1 by vector2, so if vector1 was v1 and vector2

was v2 and if the result was stored in c array, the following calculations are

performed:

cx = v1y ∗ v2z − v1z ∗ v2y

cy = v1z ∗ v2x − v1x ∗ v2z

cz = v1x ∗ v2y − v1y ∗ v2x

In order to produce unit vectors the cross product results need to be divided by

the magnitude of the vector. The magnitude of a vector is simply the square root

of the sum of all three coordinates squared, for example:

−→a =
√
a.x2 + a.y2 + a.z2

The formula was implemented in a function named “getMagnitude(point)” that

took the vector as an argument then return the magnitude to the caller. This

was how magA, magB and magC were calculated each to its respective vectors.

The Third step was to calculate the unit vector of the three vectors. The unit

vector calculation was calculated by dividing each XYZ coordinate by the vec-

tor magnitude. getUNIVector(vector, magV) function was created to provide

115

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

calculations as:

−−−→
a(unit)x =

−→a.x
a(magnitude)

these three unit vectors form the object rotation matrix.

The inverse rotation matrix for the object was calculated by taking the transform

of the rotation matrix. The “transformTranspose(aP, bP, cP, fourthMarker)”

function was created to calculate the transpose matrix where aP variable should

receive the −→a unit value, bP should get the
−→
b unit value and cP should receive

the −→c unit value. The fourthMarker was an array that held the tip location

locally relative to the origin. If the fourthMarker name was L, then the tfm (the

transpose function matrix) should be:

tfmx = aPx ∗ Lx + bPx ∗ Ly + cPx ∗ Lz

tfmy = aPy ∗ Lx + bPy ∗ Ly + cPy ∗ Lz

tfmz = aPz ∗ Lx + bPz ∗ Ly + cPz ∗ Lz

Now the final calculation to get the tip location was performed by adding the

location of the origin of the probe coordinates (the localOrigin variable) to the

transpose translation matrix. After the tip location was calculated, the coordi-

nates were forwarded to the next script.

Moving on to the last script, the “DoCuttingFile” script. This was the last script

that was responsible for creating the cutting file which will later be sent to the

Arduino machine over the network to do the cutting.

Figure 6.15: Cutting Algorithm Flowchart

During the development of the application there was a shape acquisition process,

in which the required implant shape was scanned using the MoCap system and

116

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

probe. Three key points on the implant were also captured with the shape file.

These three points were used to orientate the implant to the bone. During cutting

path alignment these three points were located and used to orientate and align on

the bone by the blunt probe the stored shape to the required (on-bone) location.

The cutting algorithm flowchart as shown in Figure 6.15. The process started by

reading the file in which the implant shape and its reference points were stored.

Then, a notification message was played from D-Flow to inform the operator to

start locating the three points, which is also known as the registration process

of the knee using pointer, in which the blunt probe tip location script was used

for this. When the D-Flow alert played, the blunt probe was placed at the first

location and the foot switch was pressed to store the tip location at the time, then

the same process was repeated for the other two points. The next step was to

compare the scanned points (registered points with the pointer) with the stored

points (the correlating points from the file) in order to align and orientate the

shape to be cut. Accordingly, transformations and rotations were made on the

shape file to set the location and orientation of the burr path to that required on

the bone.

In order to produce the shape files for the tibia and femur and turn them into

cutting file for the burr the following procedure was adopted.

117

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

(a) (b)

Figure 6.16: Femur Implant

Figure 6.17: Femur Implant Full Resolution

118

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

Figure 6.18: Femur Implant Reduced Resolution

In order to be able to make an XYZ file for the implant, a scan was made using

the sharp probe and a separate D-Flow application, see section 6.3.2 to follow.

The circumference of the implant was scanned, see Figure 6.17 for the femoral

implant scan as shown by Geomagic software. The shape consisted of 2781 XYZ

points. However, if the data file of the implant in Figure 6.17 was used to create

the cutting path, the machine would make 2780 moves excluding the required

moves to move in and out of the knee and would only cut round the implant

circumference. This number of points would excessively increase the cutting

time. The implant shape was therefore reprocessed to reduce the resolution to

1mm. As the burr spherical tip had a 5mm radius, a 1mm cutting step should

result in a very smooth cut. Geomagic studio was used to apply a 1mm uniform

distribution to the shape, the output shape is shown in Figure 6.18. The modified

shape had 135 points which lead to 134 cutting moves by the machine. Now that

the modified implant data file was ready, the path planning algorithm was applied.

119

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

Figure 6.19: Femur Implant Path Planning Algorithm

The path planning algorithm was simple, it picked out the top point according to

the global Y-axis, this point was marked as point 1 (Figure 6.19). The algorithm

started by calculating the shortest distance from point 1 to the next closest point

which was marked as point 2. This was repeated for the next nearest point which

was marked as point 3. As points 2 and 3 were the closest, and because the data

have been processed in a uniform distribution of 1mm between points, point 2

and point 3 had to be in different directions relative to point 1. So, the burr

would move into point 1 then towards point 2 then across the surface to point 3.

After picking point 2 and 3, the algorithm would again choose the closest point

to point 2 which was point 4 and then add it to the path. If then picked the

closest point in the other direction, which was the closest point to point 3 and

that would be point 5, see Figure 6.19. This cycle would go on until the chain of

points were completed and all the points in the implant data list were picked.

After the path file was written and saved, this part of the application was com-

pleted. The next step in the procedure was to load and send the file by the Java

written communication application over the wireless network to the Arduino to

120

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

control the CNC machine and undertake the cutting process, this will be covered

in the next chapter.

6.3.2 Developing a Three Dimensional Pointer Scanner

Using in Theatre Motion Capture System

Three-Dimensional (3D) surface scanning is the process of obtaining tri-

dimensional models of objects. It has been used in many applications includ-

ing medical and industrial ones. The method used to create a scanner in this

project was to use the existing in theatre OptiTrack navigation system to scan

and record surfaces in terms of series of points using the blunt probe. While the

Mako method captures one point at a time, in reality the navigation system is

operating at a 100HZ, it can therefore monitor the position at the tip of the probe

at real-time. This allows the probe to be moved across the surface of the bone

and for the shape of the bone to be given by the location of the tip of the probe,

provided the probe is kept in contact with the bone at all times. In this way

a three dimensional scan of the bone surface can be build by moving the probe

across the bone surface by continuously monitoring its location using the camera

system.

121

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

Figure 6.20: The Blunt Probe During Scanning the Femur

Our method used one of the Mako Rio pointers (The Blunt Probe) to undertake

this scanning process. As shown in Figure 6.20 above, the pointer had three

markers set in fixed locations relative to each other and to the probe.

122

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

Figure 6.21: Scanning Application D-Flow Editor View

The tracking application was created in LUA via D-Flow software (Figure 6.21).

As shown in the figure, all used modules are the same as the main application

except for the translating script in the record group (At the bottom right of the

figure), the code for the translating script can be found in the Appendix A.2 and

has been explained previously.

123

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

Figure 6.22: Scanning Application Flowchart

The flowchart shown in Figure 6.22 above illustrates how the application works.

First the markers location is acquired and exported from Motive to the LUA

module. The LUA module directly calculates the position of the pointer tip

location in global coordinates from the Green Probe script as discussed in the

previous Section 6.3.1. The application then reads the values of the foot switch

from its linked module and if its pressed then the pointer tip location is retrieved

and stored in a shape file. If the foot switch is not pressed then the user is probably

moving the pointer away from the surface usually to placed it in another desired

area to start scanning its surface and hence this data is not stored. The scan is

performed by pressing the foot switch while the moving the pointer tip on the

target object surface and as the pointer moves, the XYZ locations are stored line

by line in the file. The application is set to finish after all the surface has been

scanned and the output is a .XYZ point-cloud file which is a readable extension

to many 3D mesh software packages such as: Geomagic, Solidworks and Meshlab.

The used pointer belongs to the Rio robot but any pointer could be used instead

124

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

as long as it has a set of three track-able non-colinear, asymmetric fixed markers

giving unique distances between each other and to the pointed end. The distance

between each marker is unique, and in this way the application can map the

orientation of the pointer.

125

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

6.4 Results of the 3D Scanning Application

(a)

(b)

Figure 6.23: Scanned Femur Knee Joint Representation as XYZ Points Frontal

and Side View

An experiment was undertaken to test the three-dimensional scanner. The ex-

periment time was relative to the area of the scan. In Figure 6.23 above, 16507

points of the femur knee joint surface were scanned in approximately 9 minutes

126

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

which considered to be a long process to be used in theatre of operations. Fig-

ure 6.23 shows the point cloud displayed in Geomagic software in two different

orientations. The shown figure is the result of a scan of the grid marked area on

the bone joint as shown in Figure 6.20.

Figure 6.24: Femur Knee Joint Scan by Matter and Form Laser Scanner

To verify the acquired bone shape in Figure 6.23 above, another scan was made

of the same Femur bone and the same surface area was scanned using Matter

and Form Laser Scanner as shown in Figure 6.24 above. To compare the two 3D

shapes in Geomagic, the mocap scanned points had to be wrapped into a body

as shown in Figure 6.25.

127

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

Figure 6.25: The Scanned XYZ Points of the Lateral and Medical condyle

Wrapped as a Body by Geomagic

128

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

(a) Lateral Condyle

(b) Medial Condyle

Figure 6.26: Comparison Result

The result of the 3D comparison between the two bodies are shown in Figure 6.26.

129

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

The first image 6.26a was the comparison result between both lateral condyle.

The images show a coloured representation of the Euclidean distance between

both objects as each point was compared with the nearest and the difference

in distance was represented by a colour. Each colour have a range which is

displayed on the scale shown on the left side of the image. The green colour

means that points where identical, then the scale shows two different colours,

yellow for tolerance of 0.57mm and light blue for tolerance of -0.57mm. The

second image 6.26b was the comparison between both medical condyle. The

image shows some green colour but mostly light blue but in this comparison the

light blue tolerance was -0.23mm, as each comparison have different scale. The

image also shows little parts of yellow which have tolerance of 0.23mm.

6.5 Conclusion

The D-Flow Software has proved to be ideal for supporting motion capture sys-

tems and provide sufficient support to develop the prototype. D-Flow software

was used to create the main application for the procedure. The MoCap mod-

ule was used to assist marker coordinates transfer from Motive software to the

scripting modules. D-Flow also provided other modules for communication. The

Phidgets module was used to take input from a Phidgets foot switch and other

modules were used to input application data at runtime.

D-Flow also allows scripting modules using LUA programming language. Various

scripts were written to implement the needed procedures and to complete the

creation of the cutting file which was responsible for controlling the machine.

After the cutting file was made, another application was created by Java, which

was responsible for sending the file to the machine over the wireless network. This

application will be discussed in the next chapter. However, D-Flow was used to

call and run java applications.

D-Flow allowed the development and synchronization of the applications to occur

with relative ease. This is a process often difficult in other software platforms

which were not designed for real-time visualization of motion capture data. The

130

CHAPTER 6. METHODS: D-FLOW APPLICATIONS

data produced and recorded by D-Flow was sufficiently consistent for the desired

application.

Creating a three-dimensional scanner with the OptiTrack motion capture system

and a tracked pointer was successful with a tolerance of a submillimeter.

131

Chapter 7

Methods: Overview of

Communication

7.1 Introduction

In the developed system, the surgery required an advanced communications tech-

nology in order to enable the surgeon to remotely control the CNC robotic ma-

chine described previously while in the operating theatre. The Java application

(explained in the Methods section of this chapter) communicated with the Ar-

duino board controlling the robot via an Arduino Wi-Fi shield. Network control

was required on two levels, either manual control or automatic control which

enables the operator to work remotely from the machine. Also, a control over-

ride was required and was implemented using hard wired joysticks on the CNC

machine to provide direct control.

7.2 Aims and Objectives

� Create Application to safely send the cutting file over the network (the Java

application/ client side).

� Create Application to safely receive the file and drive the motors precisely

(The Arduino application/ server side).

132

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

� Create robust network protocols to insure safety data transmission over the

network.

� Provide manual control feature to the operator.

7.3 Methods

The first part of the method outlines the Java application which acted as the

client side of the network communication and transmit the cutting file from the

computer to the Arduino micro-controller.

7.3.1 The Java Application

This application was implemented with a graphical user interface to assist the

selection and manual control operations and was resident on the PC.

Figure 7.1: Java Application Login Window

(a) (b)

Figure 7.2: Java Application Selection Window

133

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

(a) (b)

Figure 7.3: Java Application Manual Control Window

The application starts with the login window, Figure 7.1. The operator must

provide the user name and password to access the selection window shown in

Figure 7.2. The selection window provides a selection between “manual” or “au-

tomatic” control. If the “automatic” option is selected, the application initiates

communication with the server (The Arduino Application) and sends the word

“Automatic”. If the “Manual” option is selected, the application does the same

and starts communication with the Arduino application but with the word “Man-

ual” sent to the server. After communication is initialized, another window opens

to provide control for the operator, Figure 7.3. Here is the Controller class of the

Java code for the Application:

1 package sekseka;

2 import java.io.BufferedReader;

3 import java.io.FileReader;

4 import java.io.IOException;

5 import java.io.InputStreamReader;

6 import java.io.PrintWriter;

7 import java.net.Socket;

8 import java.util.logging.Level;

9 import java.util.logging.Logger;

10 import javafx.scene.control.Label;

11 import javafx.scene.paint.Color;

12 import javax.swing.JOptionPane;

13

134

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

14 /**

15 *

16 * @author Omar Shalash

17 */

18 public class Networking extends Thread

19 {

20 private String mode;

21 private PrintWriter out;

22 private BufferedReader in;

23 private BufferedReader implant;

24 private Label statusLabel;

25 private final int COMMON_DELAY = 20;

26 private int countLoops = 0;

27 Networking(Label statusLabel, String mode)

28 {

29 this.statusLabel = statusLabel;

30 this.mode = mode;

31 }

32 @Override

33 @SuppressWarnings("SleepWhileInLoop")

34 public void run()

35 {

36 if(mode.equals("Manual"))

37 {

38 try

39 {

40 String direction, previous = "notSetYet";

41 Socket client = new Socket("192.168.2.100", 80);

42 if(client.isConnected())

43 {

44 JOptionPane.showMessageDialog(null, "Connected to

↪→ Server...");

45 }

46 else

47 JOptionPane.showMessageDialog(null, "Connected NOT to

↪→ Server...");

48 out = new PrintWriter(client.getOutputStream(), true);

135

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

49 in = new BufferedReader(new

↪→ InputStreamReader(client.getInputStream()));

50 System.out.println("Sending!!");

51 out.println("Manual");

52 while(!in.ready())

53 Thread.sleep(1);

54 System.out.println("Reading!!");

55 while(!in.readLine().equals("Manual"))

56 {

57 out.println("Manual");

58 }

59 out.println("OK");

60 System.out.println("OK");

61 while(true)

62 {

63 System.out.println(++countLoops);

64 direction = FXMLDocumentController.getDirection();

65 System.out.println(direction);

66 out.println(direction);

67 previous = direction;

68 Thread.sleep(COMMON_DELAY);

69 }

70 }

71 catch (Exception ex)

72 {

73 System.out.println(ex.getMessage());

74 out.close();

75 }

76 }

77 else if(mode.equals("Automatic"))

78 {

79 try

80 {

81 Socket client = new Socket("192.168.2.100", 80);

82 if(client.isConnected())

83 {

84 JOptionPane.showMessageDialog(null, "Connected to

136

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

↪→ Server...");

85 }

86 else

87 JOptionPane.showMessageDialog(null, "Connected NOT to

↪→ Server...");

88 out = new PrintWriter(client.getOutputStream(), true);

89 in = new BufferedReader(new

↪→ InputStreamReader(client.getInputStream()));

90 out.println("Automatic");

91 while(!in.ready())

92 Thread.sleep(1);

93 while(!in.readLine().equals("Automatic"))

94 {

95 out.println("Automatic");

96 }

97 out.println("OK");

98 implant = new BufferedReader(new

↪→ FileReader("C:\\burring.txt"));

99 //implant = new BufferedReader(new

↪→ FileReader("C:\\MovementsPins.txt"));

100 //implant = new BufferedReader(new

↪→ FileReader("C:\\Movements LowerPin.txt"));

101 //implant = new BufferedReader(new

↪→ FileReader("C:\\Filling.txt"));

102 String line;

103 while(true)

104 {

105 System.out.println(++countLoops);

106 line = implant.readLine();

107 System.out.println(line);

108 out.println(line);

109 while(!in.readLine().equals(line))

110 {

111 out.println(line);

112 Thread.sleep(COMMON_DELAY);

113 }

114 out.println("OK");

137

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

115 System.out.println("OKed");

116 }

117 }

118 catch (Exception ex)

119 {

120 //statusLabel.setTextFill(Color.RED);

121 //statusLabel.setText("Not Connected");

122 System.out.println(ex.getMessage());

123 out.close();

124 }

125 }

126 }

127 }

The Networking class is initiated when either the “Manual” or “Automatic” but-

ton is clicked in the Java application window, see Figure 7.2. If the “Manual”

button is clicked then the Network class constructor is invoked with a status label

and “Manual” as String data type to initialize the mode variable. If the “Auto-

matic” button is clicked then the constructor is initialized with and “Automatic”

for the mode variable.

As the Networking class inherits the properties of the “Thread” class then the run

method will be invoked automatically when the start method is initiated from

the Network created object, the run method will then work in parallel with the

main code. Inside the run method a condition was set to distinguish between the

two modes: Manual and Automatic.

In the Manual mode the program establishes a connection with the server (the

Arduino application) based on a User Datagram Protocol (UDP). In the man-

ual condition a socket was created to the server stream with the server IP and

application access port number.

After the connection is initiated, a GUI message notifies the operator that con-

nection to the server has been achieved. The next step is creating input and

output streams using the established socket to enable sending and receiving of

text characters between the server and client. The client then sends “Manual” or

“Automatic” to the server so that the server can redirect the received text into the

138

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

correct part of the program. The server now returns the same word –“Manual” or

“Automatic”– as an acknowledgement of receiving the message. The client waits

until the server sends the text. If the received text wasn’t as expected, then the

client application will resend the word again to the server. This process will go

on until the server returns the expected word. After receiving the correct word,

the client application sends “OK” to the server and communication is live.

In the manual client application, the code now retrieves the direction indicated by

the control buttons on the CNC machine from the controller class and sends this

information to the server. Then it waits for 20ms and then sends the new retrieved

direction. This process goes on as long as the connection is maintained. If the

client or the server closes the connection, this loop breaks and the application will

jump to the catch block to handle the exception. At the catch block a message

will notify the operator that the connection has closed and will then close the

connection from the client side.

The 20ms delay –the COMMON DELAY constant– is very important to maintain

the synchronization between the client and server. If the delay time between

sending lines of text were shorter or longer it would create the producer consumer

problem, in which either the receiver(the server) would run out of buffer because

the sender(the Java application) maintained too fast a rate of sending data, or

the server would remain idle for too long and may time-out.

In the Automatic mode the client program on the PC implements a Transmission

Control Protocol(TCP) which insures that all transmitted data are received at

the receiver side (the server), which in this case was the path coordinates of the

cutting burr from the cutting file.

In the automatic mode the application starts in the same way as the manual

mode by establishing a connection with the server. Also, after creating input and

output streams, the application starts by sending the word “Automatic” to the

server and waits until the servers reply back with the same word –“Automatic”–

as an acknowledgement of receiving the selection key word and redirects the code

to receive movements coordinates instead of directions from the control buttons.

The application then sends “OK” to notify the server that the coordinates sending

139

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

process has initiated. The client application then sends the cutting file using a

buffer controlled by the BufferedReader class.

The sending file code starts by taking one line from the buffer then sends it to

the server which in return replies with the same line to acknowledge receiving

it. If the line received by the application is the same as the sent one, then the

application moves on and sends the next line. If the line is different, then the

server hasn’t received the line correctly and the application sends the same line

again. This process goes on until the buffer is empty.

As before, a time delay is needed after each line send operation to keep the

server and client in sync. In this operation the same constant of 20ms was used

(COMMON DELAY). If the connection times-out or closes then the code moves

to the catch block to handle the exception as before and will reconnect and resend

the whole file. Once the sending part is complete the program returns to the main

menu.

7.3.2 The Arduino Application

The Arduino application forms the server-side of the communication link. It

starts by initializing the libraries and calling the setup() function once in order

to initialize necessary variables and set-ups needed for the board utilities. In this

application four libraries were used, see Appendix C for the application code. The

first library included was “LiquidCrystal” which is responsible for supporting the

used LCD. In order to initialize this library the LCD pins were fixed into the code

using the following code line:

1 LiquidCrystal lcd(13, 12, 11, 10, 9, 8);

The pins number(4,6,11,12,13,14) from the LCD, as mentioned in 5.3.3, will be

wired to pins (13, 12, 11, 10, 9, 8) correspondingly on the Arduino board, see

Figure 7.4 below.

140

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

Figure 7.4: Arduino Board Wiring with the LCD

Now that the library is initialized, all library properties can be used using the

“lcd” object.

The second library that is included is the ”AccelStepper” library, it provides all

needed control for the CNC motors by controlling the speed and distance in terms

of motor turns. For example, if the motor needs to move 10 mm, the distance

function of the motor created object will take 2000 as its argument input which

also represents the number of turns needed for the motor to move it’s carriage 10

mm, refer to Chapter 5 for more data about the design.

The next line of code below was used to create motors objects from ”AccelStep-

per”:

1 AccelStepper stepperM(1,MOTOR_M_PULL, MOTOR_M_DIRECTION);

The first argument in the constructor was set to 1 to declare that a driver was

used to control the motor and only two wires were required to control the driver

from the Arduino board. The other two arguments were to assign the pull and

direction pins from the motor driver to the Arduino pins. ”MOTOR M PULL”

141

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

and ”MOTOR M DIRECTION” in the code were previously defined integer con-

stants. The same method was used to create and initiate the other motor drivers,

(Appendix C).

The Third library was the Serial Peripheral Interface library “SPI”, which pro-

vides serial communication between the Arduino board and the computer using

a USB cable. The main usage of the “SPI” library for this application was for

monitoring and tracing the code while running. The library functions were used

using the associated object “Serial”.

The fourth library included in the program is the ”WiFi” library. It provides

control over the used Arduino Wi-Fi shield module. The next lines of code were

required to set up the shield:

1 IPAddress ip(192,168,2,100);

2 WiFiServer server(80);

3 WiFiClient client;

The first line of the code above was used to set this specific IP address in the

“IPAddress” class. The second line assigns the port number. The third line

creates a client object, this object would include all client data such as the client

IP address and input and output stream. This object initiates with these data

when the server(this application) accepts the client(the computer running the

Java application) request.

Moving on to the setup() function, this function runs only once when the Ar-

duino board gets powered on, after it finishes the loop function takes over and

loops continuously. The first thing to be initialized is the serial communication,

the code line below was used to setup a 9600 bps transmitting speed for serial

communication:

1 Serial.begin(9600);

The next on the setup list is the lcd, the first line of code below specifies the lcd

size which is 16x2 (16 columns and two rows). The second line prints welcome

message on the LCD screen, see code below:

1 lcd.begin(16, 2);

142

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

2 lcd.print("Welcome...");

The print function will start printing the string from where the LCD cursor was

located. If the cursor wasn’t moved then the print command would start printing

at (0,0) location which represents the first cell in the LCD.

The next piece of code implements a check on the Wi-Fi shield board in case the

board was removed or damaged. The first line in the code below is a condition

in which status function is called, each return value of the function represents a

different condition; if the returned value is equal to 255 that would indicate that

there is no Wi-Fi shield connected, all status values are stored as constants inside

the library, for example the “WL NO SHIELD” has the value 255 stored in as a

constant.

1 if (WiFi.status() == WL_NO_SHIELD)

2 {

3 lcd.setCursor(0, 1);

4 lcd.print("Shield problem!");

5 Serial.println("Shield problem!");

6 // don’t continue:

7 while (true);

8 }

9 WiFi.config(ip);

If the shield status was “no shield found” then two alerts are produced to inform

the operator. The first alert prints “Shield problem!” on the LCD after moving

the cursor to first column and the second row (0,1), see Figure 7.5 below for

examples about cursor locations mapping.

143

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

Figure 7.5: LCD Cells location Noted

The second alert sends the same message over the serial communication. On the

seventh line of the code the program freezes on infinite loop. If the condition

was false, on line 9 of the code above, the config() function was called to set the

previously created IP to the shield. Now that the board has been set with a

specific IP address and port number it can act as a server and accept clients.

The rest of the setup() function initializes more variables, the code below is for

setting the speed, acceleration and maximum speed for one of the motors.

1 stepperM.setMaxSpeed(MAX_SPEED);

2 stepperM.setSpeed(MAX_SPEED);

3 stepperM.setAcceleration(MAX_ACCELERATION);

This code was repeated to set all five motors where “MAX SPEED” and “MAX -

ACCELERATION” were an already defined constants with the values 3000 and

2500 correspondingly. The speed and acceleration had to be the same values so

that the movement of the two motors on the same axis were synchronized.

The next function is the loop function. It starts with a condition of the mode.

The mode variable was initially set to zero. So, when the loop function starts

for the first time, the first mode condition would be successful as (mode == 0)

condition would be true. The code in this condition was for the operator to select

the control mechanism of the machine either manual control using the joysticks

144

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

or the network control. The first step to implement this task was to print the

selection message for the operator using the LCD library functions. The LCD

cursor was moved to the second row and then the message “Manual<.>Network”

was printed, as the LCD was positioned between the two joysticks, see Figure 7.6

below, then pressing the joystick on the left side of the image would select the

left side of the text, the “Manual” option and pressing the right joystick in the

image selects the “Network” option.

Figure 7.6: LCD Position Between Joysticks

After the LCD was set, the getReadings() function is called. This function was

created to take in joysticks analog input. The code below shows the getReadings()

function along with other functions which together form full management and

control of the inputs performed by the operator:

1 void getReadings()

2 {

3 if(checkReset())

4 return;

5 //Joystick 1 >>

6 if(analogRead(JOYSTICK1_VRX) > 790)

7 directions[0] = "DOWN";

8 else if(analogRead(JOYSTICK1_VRX) < 720)

145

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

9 directions[0] = "UP";

10 else

11 directions[0] = "NAH";

12 if(analogRead(JOYSTICK1_VRY) > 790)

13 directions[1] = "LEFT";

14 else if(analogRead(JOYSTICK1_VRY) < 720)

15 directions[1] = "RIGHT";

16 else

17 directions[1] = "NAH";

18 if(analogRead(JOYSTICK1_SW) == 0)

19 directions[2] = "PRESSED";

20 else

21 directions[2] = "NAH";

22 //Joystick 2 >>

23 if(analogRead(JOYSTICK2_VRX) > 790)

24 directions[3] = "DOWN";

25 else if(analogRead(JOYSTICK2_VRX) < 720)

26 directions[3] = "UP";

27 else

28 directions[3] = "NAH";

29 if(analogRead(JOYSTICK2_VRY) > 790)

30 directions[4] = "LEFT";

31 else if(analogRead(JOYSTICK2_VRY) < 720)

32 directions[4] = "RIGHT";

33 else

34 directions[4] = "NAH";

35

36 if(analogRead(JOYSTICK2_SW) == 0)

37 directions[5] = "PRESSED";

38 else

39 directions[5] = "NAH";

146

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

40 if(directions[2] == "PRESSED" && directions[5] == "

↪→ PRESSED")

41 {

42 mode = 0;

43 delay(300);

44 }

45 }

46

47 bool checkReset()

48 {

49 if(digitalRead(RESET)==HIGH)

50 {

51 reset();

52 return true;

53 }

54 return false;

55 }

The getReadings() function starts by checking if the operator has pressed the

reset button. This was coded inside another function called checkReset(), in the

code above. If the reset button is pressed then the checkReset() would return

true and a return statement would be activated to return from the getReadings()

function to the caller, but if the reset wasn’t pressed the code would continue.

The next part of the conditions would handle the input readings from joystick1

(the left one in Figure 7.6).

The joystick module is a simple two potentiometer circuits in which each axis

is controlled by a potentiometer rotation, and the rotation is produced by the

stick. Each potentiometer circuit sends an analog value to the Arduino board,

this value has a range of (0 to 1024) as a digital value after conversion from

analogue. The joystick’s resting position ((0,0) X,Y position was the same state

for both joysticks shown in Figure 7.6) delivers value of 755 for both axis. The Y

axis value would be delivered through a module pin named VY, the X-axis value

147

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

would be delivered from VX and if the stick was pressed it would trigger a logic

high input value from the SW pin from the module. The target was to decide

when the joystick was moving up, down, to the left, to the right and pressed; so if

the retrieved value from the VY pin was less than 755 then the stick was moved

upwards but if the stick was moved downwards then the value would be bigger

than 755, given that strategy the stick would deliver a very sensitive control to the

motors as slightest touch would change the potentiometer value and the motors

would start to move with only the slightest touch on the stick, so a gap was set

between either up and down to increase the required value from 755 to either

from zero to <720 (Up) or from maximum to >790 (Down).

An array was made to save all acquired input data in the getReadings() function,

the array was named directions. The VRX, VRY and SW pins from both joysticks

modules were wired into the Arduino pins and in the code the Arduino pins

numbers were defined as constants in the global scoop, each constant was named

by the corresponding joystick and pin name, for example JOYSTICK1 VRX, etc.

Back to the code, the first condition was made to check on the value delivered by

the VRX of joystick1, see line 6 of the code above for more details, if the retrieved

value was bigger than 790 then the stick was moved down and the “DOWN” string

would be saved in the direction array, see line 7 in the code above, if the value

wasn’t bigger, then another check was made to decide if the same value was less

than 720, if the check was true then that would indicate that the stick was moved

upwards then the value “UP” would be saved in the directions array, see code

lines 8, 9 in the code above. If the value of JOYSTICK1 VRX wasn’t bigger than

790 or less than 720, then the stick was in the normal state and didn’t move, in

that case the value “NAH” would be saved in the directions array to indicate that

there was no movement on joystick1, see code lines 10, 11 in the code above for

more details. Other conditions were made for joystick1 VRY which retrieves the

value for the Y-axis, applying same conditions as in the VRX case with “LEFT

or “RIGHT” or “NAH” string saved. This was saved in the next element in the

directions array(directions[1]), see code lines from 12 to 17 in the code above. The

value of VRX retrieved from the stick movement is the up and down direction

148

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

and the value of VRY retrieved from the stick movement is the left and right

direction. That was because both modules were fixed after 90 degrees rotation

on the wooden board. The last pin to control that was made for joystick1 was

the SW pin (the press button). Two more conditions were made for the SW pin.

When the stick was pressed the retrieved value was 0, so if the reading was zero

the string value “PRESSED” was saved in the next element in the directions

array (directions[2]), if the value wasn’t zero then “NAH” string value would be

saved, for more details see code lines from 18 to 21 for more details.

Code lines from 23 to 39 in the code above were created to implement control

for joystick2 with the same concept as the implementation in joystick1. The

last portion of code in the getReadings() function was made to reset the mode

selection only and not the whole application. In order to do this, a condition was

made to check if both joysticks were pressed then the mode was set again to 0,

see code lines from 40 to 44 for more details.

After the getReadings() function finishes, the code continues from where it was

called. Now back to the code in the loop function, from line 105 in the code in

Appendix C. Conditions were made to check on the selection to set the mode to

1 (“Network” selection) or 2 (“Manual” selection), the selected option would also

be printed on the LCD screen.

If the mode was set to 1, the code would enter another condition in which the

network connection would be initiated for one time only, see code from line 124

in Appendix C. First the getReadings() function will be called again to check if

the reset button was pressed then a condition would be applied to check if Wi-Fi

module have connected to the network, this condition would be true only in two

cases: either the first time for the program to run or the reset() function was

called which resets the mode back to 0 as one of its tasks and hence the network

gets disconnected.

The next step was to send network status over serial communication then print

status if the connection was successful on the LCD. The Server would be initiated

using the begin() function which made the server starts listening for clients, see

code line 157 to 166 in Appendix C. The next step was to initialize the client

149

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

object from WiFiClient class, the server.available() would return data about the

client if and only if there was a client connected, if not it would return false.

If the client was connected (the client is the Java application), then a message

would be printed on the LCD screen on the second row “Client connected”, the

boolean variable alreadyConnected would be set to true to prevent the code from

entering this if condition and restarting the server, also the networkMode string

variable would be set to “starting”.

Before discussing the client condition code, the nature of the network protocols

and some assisting function need explanation.

(a) Manual Network Protocol (b) Automatic Network Protocol

Figure 7.7: Network Protocols

Figure 7.7 above shows the used network protocols. Figure 7.7a shows the com-

munication protocol for manual control from the client side (Java application). In

this protocol the client would initiate the communication by sending “Manual” to

the server (The Arduino application). The server would confirm the message by

sending back the same massage “Manual” to the client. When the client receives

150

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

the message back the message was compared again with the last sent message, if

it was a match then it was confirmed that the message was received successfully.

If the received message wasn’t a match, then the client would send the same

message again and wait for the server to send a match, this process would repeat

until the received message at the client was a match. The client would then send

”OK” to inform the server of the successful communication and to prepare the

server to start receiving the manual directions right away. The client then sends

another message with the clicked direction from the Java application, see Figure

7.3 in the Java application section for more details. The client would then send

a new direction every 20 ms. In this phase the client application doesn’t require

the server to resend the message, if a message went missing from the client to

the server it’s not important because in 20 ms there would be an update to the

direction. This control would take over the Arduino until the client disconnects.

If disconnection occurs, the Arduino application would automatically reset and

would start again giving the operator the same choices as before (Manual or

Network).

The automatic protocol starts the same as the manual protocol but this time

the client would send ”Automatic” to the server, see Figure 7.7b for more details.

Again, the server would replay with the same message. the client would check the

message, if the received message matches the last sent one, then the client would

send ”OK”. The difference in this protocol was that all data in the cutting file is

needed, no single line could be missed, a single missing line would put the burr

in the wrong position. So, every single line would need reception confirmation

from the server. The client (Java application) would read the cutting file and

start sending line by line to the server, each line contains an update for the XYZ

position of the burr, for more details about the cutting file please refer to section

6.3.1. The client would send each line to the server and wait for the same line to

be received from the server, if not the line would be sent again until a match was

achieved. The client would send ”OK” after each correct match and then sends

the next line. This process would go on until the end of the cutting file. At the

end of the file the word ”Halt” was written by the D-Flow application. When the

151

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

”HALT” message was received at the server side, the Arduino application resets.

1 String getNetworkReading()

2 {

3 int counter = 0;

4 char temp[60];

5 String reading = "";

6 while(!client.available())

7 {

8 delay(5);

9 }

10 String networkMsg = client.readStringUntil(’\n’);

11 while(reading != "OK")

12 {

13 if(reading != "OK" && !reading.equals("\0") &&

↪→ reading != 0)

14 networkMsg = reading;

15 networkMsg.toCharArray(temp,60);

16 client.write(temp);

17 while(!client.available())

18 {

19 delay(5);

20 }

21 reading = client.readStringUntil(’\n’);

22 reading.trim();

23 }

24 return networkMsg;

25 }

The code above implements the getNetworkReadings() function which imple-

mented the message confirmation part in the network protocol. The function

starts by declaring some variables then waits for the client to send data to be

read by the server. In line 10, the next message sent by the client would be

152

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

stored in networkMsg String. The code would enter the while loop as the condi-

tion would be true for the first time at least, as the reading string was set to ””

(empty value). The if condition also would be false for the same reason. In line

15, the received string value in networkMsg would be converted into character

array and the result was stored in the temp variable. In line 16, the value stored

in temp variable would be sent back to the client. The next loop was to hold

the code until the message from the client was received either as ”OK” or the

correct message. In line 21, the message would be read and stored but this time

in reading variable. The first iteration of the while loop in line 11 is finished, now

back to the check. If the message received from the client was ”OK” then the

loop is finished and line 24 would return the first received message (the message

before the ”OK” at line 10) to the caller. If the value stored in the reading vari-

able wasn’t ”OK”, that means the first received message wasn’t correct or the

message was corrupted as it was sent back to the client and in both cases the

client would resend the correct message. In the case that the if condition in line

13 was true, the value in the reading variable would be stored in networkMsg.

The rest of the process would continue as before and the loop would repeat until

the ”OK” was received from the client, then in line 24, the correct message would

be returned to the caller.

1 if (client)

2 {

3 if(networkMode == "starting")

4 {

5 networkMode = getNetworkReading();

6 }

7 networkMode.trim();

8 if(networkMode.equals("Manual"))

9 {

10 String in = client.readString();

11 in.trim();

12 // echo the bytes back to the client:

153

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

13 if(in == "up")

14 {

15 directions[4] = "RIGHT";

16 }

17 else if(in == "down")

18 {

19 directions[4] = "LEFT";

20 }

21 else if(in == "left")

22 {

23 directions[1] = "LEFT";

24 }

25 else if(in == "right")

26 {

27 directions[1] = "RIGHT";

28 }

29 else if(in == "in")

30 {

31 directions[4] = "LEFT";

32 }

33 else if(in == "out")

34 {

35 directions[4] = "RIGHT";

36 }

37 else if(in == "idle")

38 {

39 directions[1] = "Nah";

40 directions[0] = "Nah";

41 directions[4] = "Nah";

42 }

43 runIt();

154

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

44 }

45 else if(networkMode == "Automatic")

46 {

47 char in[60];

48 String data = getNetworkReading();

49 data.toCharArray(in,60);

50 data.trim();

51 if(data == "HALT")

52 {

53 reset();

54 Serial.println("HALTTED!!!");

55 }

56 else

57 {

58 int i = 0;

59 for(i; i < data.length();i++)

60 {

61 if(data.substring(i,i+1) == ";")

62 {

63 x = data.substring(0,i).toFloat();

64 break;

65 }

66 }

67 i +=1;

68 int b = i;

69 for(i; i < data.length();i++)

70 {

71 if(data.substring(i,i+1) == ";")

72 {

73 y = data.substring(b,i).toFloat();

74 break;

155

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

75 }

76 }

77 i +=1;

78 z = data.substring(i,data.length()).toFloat();

79 stepperM.moveTo(cmToTurns(x*100));

80 stepperZ1.moveTo(cmToTurns(z*100));

81 stepperZ2.moveTo(cmToTurns(z*100));

82 stepperY1.moveTo(cmToTurns(y*-100));

83 stepperY2.moveTo(cmToTurns(y*-100));

84 while(stepperM.distanceToGo() != 0 || stepperZ1

↪→ .distanceToGo() != 0 || stepperY1.

↪→ distanceToGo() != 0)

85 {

86 delay(COMMON_DELAY);

87 stepperM.run();

88 stepperZ1.run();

89 stepperZ2.run();

90 stepperY1.run();

91 stepperY2.run();

92 }

93 delay(10);

94 }

95 }

96 }

97 else if(alreadyConnected)

98 {

99 lcd.setCursor(0, 1);

100 lcd.print("Client disConnected");

101 reset();

102 }

103 }

156

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

The portion of code above represents the client condition which includes the code

for network communication whether manual or automatic. The part of code

shown above are from code lines 167 to 269 from the application in the Appendix

C.

The client condition would be entered only if the client object returns true, that

would occur if the connection between the client and server was active. The

networkMode string variable was set to ”starting” as it wasn’t set yet to the

correct mode by the client, so the first condition was to set the variable and that

was done by the getNetworkReading(), see code line 5 in the code above. This

condition would run once before setting the network mode and after calling reset()

if happened. If the return value of getNetworkReading() function was ”Manual”,

then the code would continue in the next condition in line 10 in the code above.

If the ”Manual” condition was entered, see code line 5 in the code above, then

the first part of the manual protocol has already been achieved inside the get-

NetworkReading() function and the client has sent the ”OK”, see the manual

protocol in Figure 7.7a. The next step in implementing the protocol was to start

receiving the directions from the client. In line 10 in the code above, the received

direction from the client was stored in the variable ”in”. A series of conditions

have been applied to set the received movement in the right slot in the directions

array, see code lines from 13 to 42 in the code above for more details. In line 43,

the function runIt() was called, this function was responsible for running all the

motors using the stored directions in the directions array. The stored direction

would drive the motors until the clients update the array which means each run

takes 20ms. The runIt() function will be discussed in detail later in this section.

The previous paragraph was about the ”Manual” protocol, now if the received

mode at line 5 in the code above was ”Automatic” then the code would fail the

condition on line 8 and enter the condition on line 45 in the code above. The

mode starts by receiving next line from the client’s cutting file. If the received

message was ”HALT” the system would reset immediately by calling the reset()

function. If the message wasn’t ”HALT” then the string would be split into three

157

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

sub-strings using the ’;’ character as the end of number identifier, for example:

0.0076619630143402; 0.0037538121627129; 0.011794779546133

The String above represents a typical received message. The code lines from 58

to 66 would search for the first ’;’ digit number and extract a sub-string from 0

to the digit before that number, in the giving example the if condition in line 61

would be true when i = 18, then x = 0.0076619630143402 as a double value. The

same process would be repeated for the y and z values.

The XYZ value was now ready in terms of the distance to be moved by the

stepper motors but this needs to be converted to the number of turns. This was

accomplished by suing the simple function cmToTurns(float x), see the code lines

399 to 402 in Appendix C for more details.

The cmToTurns(float x) function takes the distance in cm as input then returns

the value multiplied by 2000, as discussed before each 1mm can be achieved by

200 turns so it takes 2000 for 1cm. The values were converted to cm as the

received values were in meters. The returned value was then sent to moveTo

function which was one of the ”AccelStepper.h” library functions that when the

run() function get called the motor would move only the number of turns sent

to the moveTo function. Same process was applied for the five motors, see code

lines above from 79 to 83. The while loop was made to make sure that the run()

function would continue to be called as long as there were still distances to run

in the three axis XYZ. As the loop function loops forever, this process would be

repeated and each time a new line would be received from the client and the burr

would move to the new position. This was repeated until the ”HALT” command

was received then the application would reset.

The reset() function simply resets all needed variables like the mode back to 0.

The function also disconnects from the Wi-Fi. The last task was to drive the

motors back to the local origin of the CNC, see code lines from 431 to 474 in

Appendix C.

1 else //Manual

2 {

158

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

3 getReadings();

4 runIt();

5 delay(COMMON_DELAY);

6 }

If the network option wasn’t selected in the first place by the operator then the

code would only enter the code inside the else scope above, see code lines from 270

to 276 in the application in Appendix C. When the operator selects the Manual

option as discussed before that means that the CNC would be driven from the

joysticks, so simply in line 3 in the code above the getReadings() function would

update the directions array from the joysticks then the method runIt() would be

called to drive the motors.

The runIt() function was used in both cases of control whether from the joysticks

or the network manual control. This function task went through the directions

array present at the time the function was called. This array was filled with

the required directions. The function would then configure the direction of the

motors and that was accomplished by setting the speed by negative value as the

“AccelStepper” library changes the motor direction with negative speed value, for

example if the speed was set to 3000 to drive the carriage forward then resetting

the speed to -3000 will drive the carriage backwards, see code line from 351 to

397 in Appendix C for more details.

7.4 Discussion

It was thought that building a surgical robot with wireless capability was a suit-

able add on to the full system which would reduce cable runs within the operating

theatre. In reality the wireless methods introduced a problem. If the cutting reso-

lution was increased, that would make cutting file much larger and would require

more time for the cutting file to be sent. For example, the working resolution used

was 1mm but if the resolution was increased to 0.05mm that would double the

file size as the burr would move double the movements. This in turn could make

a problem with working with Arduino Wi-Fi Shield. The Shield occasionally af-

159

CHAPTER 7. METHODS: OVERVIEW OF COMMUNICATION

ter running for a long time goes into a mode called silent mode which makes the

shield disabled which requires restarting of the operation. In testing this occurred

when the cutting file had more than 9000 lines. It was estimated that the cutting

files in 1 mm increments for a typical uni-arthroplasty cut worked out to contain

2500 lines maximum. So, for the current development project the Arduino Wi-Fi

shield was adequate. However, for more complex applications this limitation may

prove problematic and hence the Arduino Wi-Fi Shield is not recommended to

be part of any network implementation with data transfer protocols in future

studies.

7.5 Conclusion

� Building a wireless system function was successful which enabled remote

control of the device.

� Two network protocols was created to support different control mechanisms.

� Different control mechanisms were provided for the operator including man-

ual control (from the robot its self or from the Java application on the PC)

or Automatic control.

160

Chapter 8

Results of Saw Bone Automated

Cutting

8.1 Introduction

This chapter will present the results of the surgical process developed when it is

used to burr a set of tibia and femur artificial bones. The robotic system performs

the cutting phase of the surgery only. The surgeon plans the implant position and

orientation on the knee, then performs an incision. Then the surgeon/operator

starts the knee registration process (to inform the robotic system where should it

cut the implant shape). Then the robotic system performs the cutting procedure.

The last step would be the surgeon handling the fixation and cementing phase.

161

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.1: Sawbone fixed and Ready for Registration

The experiments in this chapter tests only the cutting capability of the system.

In this experiment the CNC machine will be used to cut nine tibial plateau’s

as flat surfaces followed by nine curved femoral surfaces. Their shapes will be

established using a 3D scanner. For the tibia their shapes were compared using

Geomagic software to the original sawbone shape, a flat surface and a set of

previously cut sawbones from both the Mako and Blue Belt robotic systems. For

the femur the shapes were compared by eye to the planned shape.

The cutting procedure starts by fixing the sawbone and the CNC machine in the

centre of the theatre, see Figure 8.1 above, then running the Motive software and

the D-Flow application. This step enables the tracking of the clusters. The next

step was the registration process for the bone using the Blunt and Sharp probes

and the foot switch. These were used to register three points on the surface of the

femur or tibia to be cut. These three points were used to create a local coordinate

frame in the bone surface relative to which the bone would be cut.

162

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.2: Tibia Reference Sawbone

The registration was achieved by registering the origin point first, which is rep-

resented by letter O in Figure 8.2 above, the photo is for the medial condyle of

a tibia sawbone. Then another point was registered along the −→a vector, then

another point along the −→bt vector. Then D-Flow application takes over and

calculates −→c vector then true −→b , for more information about the rotation and

translation process refer to Section 6.3.1. After that registration process finishes

163

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

by registering the burr tip location.

The D-Flow application saves the cutting file in the local coordinate system of

the bone after the last point has been registered. The CNC machine was in

ready mode and connected to the Wi-Fi, via the Java application running on the

same computer as the D-Flow software. The Java application controlled the CNC

machine and after the Automatic option was set, the application transferred the

required CNC movement coordinates to the CNC machine and the burring took

place. This procedure was repeated for every sawbone (Femur and Tibia).

The Working System specifications of the computer running all used software in

the procedure (Motive, D-Flow and the Java network application) were:

• Processor: Intel(R) Core(TM) i7-4510U CPU @ 2.00GHz.

• Graphics Card: NVIDIA GeForce GTX 850M.

• RAM: 16.0 GB DDR3.

• System: Windows 8.1 64-bit.

• D-Flow: 3.18.0.

After the procedures were performed the cut sawbones were scanned using a

“Matter and Form” laser scanner. The scanner software exported the scanned

data file as a “.obj” file. The exported file was imported into another software

package called “Geomagic”. Geomagic software had many important features

such as 3D comparison and object volume computing. First the 3D comparison

feature was used to compare between the cut sawbones and an uncut sawbone

(reference sawbone). The Surface cut in each sawbone was extracted. A 2D

plane was inserted into the cut surface of the sawbone and the two surfaces was

compared in order to determine the surface roughness.

164

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

8.2 Tibia Surface cut Analysis

8.2.1 Developed System Tibia Cuts Analysis

This section of the chapter will present an analysis of the bone removed by the

cutting process for each bone. The bone removed from the sawbone can be

determined by making a three-dimensional comparison between the cut sawbone

and an uncut sawbone. This was achieved first by comparing the cut sawbone

to another uncut sawbone, then another comparison was made by creating a

flat surface in Geomagic software and manually fit it on to the cut. The first

comparison should show how much cutting was performed on the bone surface

(interior and posterior), while the other comparison was made to show the flatness

of the cut on the bone surface.

Figure 8.3 below shows the scan of the uncut tibia(reference bone) for the 3D

comparison. The cut sawbones were compared to this reference tibia. For the

comparison each point in the reference bone digital object gets compared to a

point that occupy the same location in the test object which in this case was one

of the cut sawbones. If the point is found then it will be displayed as green in

the coloured graph, but if the point isn’t found then the nearest point will be

displayed with a colour that maps the Euclidean distance between both points.

Figure 8.3: Tibia Reference Bone

165

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.4 shows the tibia implant and Figure 8.5 shows the cutting path for the

burr.

Figure 8.4: Implant

166

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.5: Cutting Path Represented as Points

Figure 8.6a shows the first tibia sawbone in the set and Figure 8.6b shows the 3D

comparison coloured figure as a result of the comparison between the cut tibia

sawbone 1 in Figure 8.6a and the uncut reference tibia bone in Figure 8.3.

(a) Tibia Bone 1 - A Typical Tibial Bone

After the Surface Has Been Burred

(b) Tibia 1 - Comparison of The Cut Sur-

face of The Bone With a Reference Bone

Figure 8.6: Tibia 1

167

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.7: Tibia 1 Cut Bone View by Camera

Figure 8.6b shows green colour for the areas that are uncut, as the green colour

marks identical points on both surfaces. There is a blue area in the shape of an

upside down “L”. This is the cut area of the bone. The blue colour indicates a

shallow cut which is only present in the “L” shaped area of the tibial plateau.

There was clearly an orientation problem with the cut. The cutting plane of

the burr was tilted anteriorly and medially which caused the cut path to remove

material anteriorly and medially on the condyle but not posteriorly and laterally

on the condyle. The cut was also far too shallow.

168

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

(a) Tibia Bone 2 - Cut View (b) Tibia 2 3D Comparison

Figure 8.8: Tibia 2

A second tibia was cut. In this bone (tibia 2) the same orientation problem

occurred, as shown in Figure 8.8b almost same shape was curved as in tibia

1 but slightly shifted to the right. At this point it was recognized that the

registration process was inadequate, the registration process was performed using

the Blunt probe and its tip was hemispherical not pointed. Sometimes during the

registration process it was noticed that the side of the hemisphere rather than

the tip of the probe was in contact with the bone. The hemisphere diameter was

about 2 to 3 mm which was sufficient for the cutting plane to be shallow and

rotated as seen in the previous two bones. The Sharp probe was used to replace

the Blunt probe in the registration process for the rest of the tibia set. The sharp

probe had a specific and unambiguous tip.

169

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

(a) Tibia Bone 3 - Cut View (b) Tibia 3 3D Comparison

Figure 8.9: Tibia 3

Using the sharp probe, the results improved. Figure 8.9a shows the cut shape and

Figure 8.9b shows the cut comparison. The cut was a little bit shifted anteriorly

and medially but of a better depth.

(a) Tibia Bone 4 - Cut View (b) Tibia 4 3D Comparison

Figure 8.10: Tibia 4

For bone 4 (Figure 8.10). The cut was shifted medially but a full depth was

achieved.

170

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

(a) Tibia Bone 5 - Cut View (b) Tibia 5 3D Comparison

Figure 8.11: Tibia 5

Figure 8.11a shows the cut shape and Figure 8.11b shows the cut comparison. The

cut was also shifted medially. It was recognized that this matched the diameter

of the burr and so a lateral shift in the cutting path equivalent to the radius of

the burr was implemented.

(a) Tibia Bone 6 - Cut View (b) Tibia 6 3D Comparison

Figure 8.12: Tibia 6

Figure 8.12a shows the cut shape and Figure 8.12b shows the cut comparison.

The cut was shifted up.

171

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

(a) Tibia Bone 7 - Cut View (b) Tibia 7 3D Comparison

Figure 8.13: Tibia 7

Figure 8.13b for bone 7 shows a slight orientation problem, most of the cut was

performed perfectly but the posterior-lateral area wasn’t all cut. The cutting

pattern had also been modified to include the two peg holes for the implant

which can clearly be seen in Figure 8.13a.

(a) Tibia Bone 8 - Cut View (b) Tibia 8 3D Comparison

Figure 8.14: Tibia 8

Tibia 8 (Figure 8.14) is one of the best tibia cuts performed by the system. The

cut was shifted a little bit to the medial part but otherwise was correct.

172

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

(a) Tibia Bone 9 - Cut View (b) Tibia 9 3D Comparison

Figure 8.15: Tibia 9

This was repeated for tibia 9 (Figure 8.15) which was also one of the best cuts

in the tibia set. The cut is slightly tilted from the upper side to the anterior

side. Having adopted the sharp probe and accounted for the burr diameter if

proved possible to achieve the required cut in the tibial plateau using the three

point registration. Despite achieving a good outcome in tibial cuts 8 and 9, it

was recognized that the use of only three points to align and orientate the cut

and was very limited and might lead to implant misplacement and in the future

consideration should be given in using a greater number of these anchor points.

The inadequacy of this method can be seen more clearly in the femoral cuts later

in this chapter.

8.3 Tibia Surface Roughness

8.3.1 Developed System Tibia Cuts Fitting Analysis

The following images represent data for the nine tibial bones cut by the system.

For each bone the flat cut surface was extracted from the bone image. This cut

view was then compared to a flat plane and the result of the 3D comparison

between the cut and the inserted plane shows the roughness of the cut surface.

Each 3D comparison has a scale on the right side for the colour schema used.

173

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

This was automatically set by the Geomagic software and could not be specified

by the user (except the maximum and minimum boundaries) so colour schema

and the distances they reflect change from image to image. Figure 8.16a shows

the cut surface extracted from the image for tibia 1 (Figure 8.16b). Figure 8.17

shows the flat plane and Figure 8.18 shows the difference between the cut surface

and the plane.

(a) Tibia Bone 1 - Cut Only View (b) Tibia 1 3D Comparison

Figure 8.16: Tibia 1

Figure 8.17: Tibia Bone 1 - Cut with Inserted Plane View

174

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.18: Tibia Bone 1 - 3D Comparison View

In this cut as mentioned previously the orientation wasn’t accurate, so the burr

moved away from bone at places. These areas were left out of the comparison

and are coloured as Gray. Figure 8.18 shows green, yellow and light blue, each

colour represents an error range on the scale on the right side of the image. The

errors were in the range of less than -0.76 mm for light blue areas, range of ± 0.4

mm for green areas and range of less than 0.76 mm for yellow areas.

Figure 8.19 shows the area extracted for the cut surface for tibia 2.

(a) Tibia Bone 2 - Cut Only View (b) Tibia 2 3D Comparison

Figure 8.19: Tibia 2

175

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.20: Tibia Bone 2 - 3D Comparison View

The comparison for tibia 2 (Figure 8.20) shows green as the main colour which

on the scale is an error range of ± 0.4 mm. There is some light blue with error

range of less than -0.7 mm.

Figure 8.21 shows the extracted cut area for tibia 3. This bone was not tilted

and so the cut area extends across the whole lateral surface of the sawbone.

(a) Tibia Bone 3 - Cut Only View (b) Tibia 3 3D Comparison

Figure 8.21: Tibia 3

176

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.22: Tibia Bone 3 - 3D Comparison View

For the comparison (Figure 8.22) green is dominant with error range of ±0.4mm.

While some areas show light blue and canary colours with error range of less than

-0.7 mm and less than 1 mm.

Figure 8.23 shows the extracted area for tibia 4.

(a) Tibia Bone 4 - Cut Only View (b) Tibia 4 3D Comparison

Figure 8.23: Tibia 4

177

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.24: Tibia Bone 4 - 3D Comparison View

In the comparison (Figure 8.24) green is again dominant error of ±0.4mm, some

areas showed light blue with error less than -0.7 mm and small areas near the

edges were powder blue with error range of less than -1.3 mm. Other parts show

yellow colour with error of less than 0.7 mm on the scale.

Figure 8.25 shows the area extracted for tibia 5.

(a) Tibia Bone 5 - Cut Only View (b) Tibia 5 3D Comparison

Figure 8.25: Tibia 5

178

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.26: Tibia Bone 5 - 3D Comparison View

In the comparison (Figure 8.26) green is again dominant colour with error of

±0.4mm, some areas showed light blue with error less than -0.7 mm and small

areas with powder blue with error range of less than -1.3 mm. Other parts show

canary colour with error of less than 1 mm on the scale.

Figure 8.27 shows the extracted area for tibia 6.

(a) Tibia Bone 6 - Cut Only View (b) Tibia 6 3D Comparison

Figure 8.27: Tibia 6

179

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.28: Tibia Bone 6 - 3D Comparison View

The comparison (Figure 8.28) again shows most green with error of ±0.4mm.

Some parts show light blue and yellow with error less than -0.7 and less than 1.03

mm respectively.

Figure 8.29 shows the extracted flat surface for tibia 7.

(a) Tibia Bone 7 - Cut Only View (b) Tibia 7 3D Comparison

Figure 8.29: Tibia 7

180

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.30: Tibia Bone 7 - 3D Comparison View

The comparison (Figure 8.30) again shows green as dominant with error of

±0.4mm. Some areas were coloured with light blue and blue less than -0.7 mm,

less than -1.3 mm respectively and others was coloured with canary with error of

less than 1.3 mm.

Figure 8.31 shows the extracted area for tibia 8.

(a) Tibia Bone 8 - Cut Only View (b) Tibia 8 3D Comparison

Figure 8.31: Tibia 8

181

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.32: Tibia Bone 8 - 3D Comparison View

In the comparison (Figure 8.32) green is again dominant with error of ±0.4mm,

while other parts shows light blue and blue with error less than -0.7 mm and less

than -1.6 mm respectively while other parts shows canary with error less than

1.3 mm.

Finally Figure 8.33 shows the extracted area for tibia 9.

(a) Tibia Bone 9 - Cut Only View (b) Tibia 9 3D Comparison

Figure 8.33: Tibia 9

182

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.34: Tibia Bone 9 - 3D Comparison View

In the comparison (Figure 8.34) green is again dominant for most of the cut while

little parts shows light blue with error less than -0.7 and others a yellow with error

less than 0.7 mm.

8.3.2 Mako Tibia Cuts Analysis

This section will include analysis of nine tibia cuts using the Mako Rio system

as a comparison. Each bone will have two images for the cut bone, the first for

the extracted cut and the second was the 3D comparison by Geomagic. In the

Extracted cut images there will be holes for fixation. They were drilled for the

Mako implant fixation. These areas were left out of the comparison and as seen

as Gray circles.

183

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.35: Mako Tibia Bone 1 - Cut Only View

Figure 8.36: Mako Tibia Bone 1 - 3D Comparison View

Figure 8.36 shows some green but dominant colours was light, sky blue and blue

with errors of -1.04 mm, -3.4 mm and -4.99 mm. Some parts on the border

showed errors larger but these will be neglected as they represent the bone lip

remaining on edge. The Mako implant was an inlay.

The rest of the nine sawbone cuts are presented in Appendix D.1

184

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

8.3.3 Blue Belt Tibia Cuts Analysis

For further comparison tibial sawbones cut using the Blue Belt Navio system

were analysed. This section will present the Blue Belt system cut sawbones and

analysis. Again, each bone will have two images for the cut bone, the first for

the extracted cut and the second was the 3D comparison by Geomagic.

Figure 8.37: Blue Belt Tibia Bone 1 - Cut Only View

Figure 8.38: Blue Belt Tibia Bone 1 - 3D Comparison View

185

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.38 shows blue, powder blue, light blue, green, orange and red colours

with errors of -2.25 mm, -1.64 mm, -0.74 mm, 0 for green, 1.64 mm and 2.25

mm respectively. Further Gray areas are due to excess bone cutting which can

be visualised at the lateral part in Figure 8.37.

The rest of the Blue Belt sawbone cuts are presented in Appendix D.2

8.3.4 Summery

The results of the tibial plateau cuts are presented in summary form in Table

8.1 for the developed system, in Table 8.2 for the Mako system and in Table 8.3

for the Blue Belt system. Given that the fitting of the implantation would be

dependant on the maximum error across the cut surface, the range of errors is

reported.

Table 8.1: Tibia Cut By our designed model Error range

Bone Min. Error Max. Error Range Unit

Bone 1 -0.76 0.76 1.52 mm

Bone 2 -0.7 0.4 1.1 mm

Bone 3 -0.7 1 1.7 mm

Bone 4 -1.3 0.7 2 mm

Bone 5 -1.3 1 2.3 mm

Bone 6 -0.7 1 1.7 mm

Bone 7 -1.3 1.3 2.6 mm

Bone 8 -1.6 1.3 2.9 mm

Bone 9 -0.7 0.7 1.4 mm

Mean 1.9 mm

SD 0.55 mm

Range 2.9 mm

186

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Table 8.2: Tibia Cut By Mako Error range

Bone Min. Error Max. Error Range Unit

Bone 1 -4.99 0 4.99 mm

Bone 2 -0.82 1.18 2 mm

Bone 3 -1.89 1.18 3.07 mm

Bone 4 -1.3 1.6 2.9 mm

Bone 5 -1.53 1.53 3.06 mm

Bone 6 -2.24 0.46 2.7 mm

Bone 7 -1.89 0.46 2.35 mm

Bone 8 -1.2 1.61 2.81 mm

Bone 9 -1.18 0.82 2 mm

Mean 2.87 mm

SD 0.84 mm

Range 4.99 mm

Table 8.3: Tibia Cut By Blue Belt Error range

Bone Min. Error Max. Error Range Unit

Bone 1 -2.25 2.25 4.5 mm

Bone 2 -2.24 1.18 3.42 mm

Bone 3 -1.89 0.82 2.71 mm

Bone 4 -2.24 2.24 4.48 mm

Bone 5 -2.24 0.46 2.7 mm

Bone 6 -1.21 1.9 3.11 mm

Bone 7 -0.82 0.46 1.28 mm

Bone 8 -0.99 1.93 2.92 mm

Bone 9 -1.89 0.62 2.51 mm

Mean 3.07 mm

SD 0.94 mm

Range 4.5 mm

187

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

The mean error range of the cuts performed by the developed system was 1.9 mm

with standard deviation of 0.55 mm. The Mako set have a mean average of 2.87

mm with standard deviation of 0.84 mm and the Blue Belt set have 3.07 mm

with 0.94 mm standard deviation. The range in values in the developed system

was approximately half that from commercial systems. This system has proven

more capability in cutting and more stability in the repeatability of the cutting

comparing to the other systems. There are big differences in the surface finish

when comparing between the images of the cuts between the three systems, the

designed system provides the smoothest and less spiky surface.

8.4 Femur Surface cut Analysis

A similar cutting procedure was performed on ten femoral sawbones. In this

case the implant surface was not flat but a 3-dimensional shape. This made the

scanning of the cut volume difficult and as different sizes and implant designs are

used in the Mako and Blue Belt systems, direct comparison of cut shapes was not

possible. Hence the shape cut and the smoothness achieved by the system are

presented, as well as a sawbone cut by the Mako and another by the Blue Belt.

8.4.1 System Femur Cuts

The First photo is for a femur sawbone, followed by another photo of the femur

implant shape used by this system, its clear that the shape of this implant is

more complex than the tibia implant.

188

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.39: Femur Uncut Sawbone

Figure 8.40: Femur Implant

The following three Photos were captured also by camera. The first two photos

189

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

are for two sawbones as they were cut by the system, the third photo is another

cut sawbone but with the implant fixed in place.

Figure 8.41: System Femur Cut Photo A

190

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.42: System Femur Cut Photo B

191

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.43: System Femur Cut Photo C

In Photos 8.41 and 8.42 above, the surfaces again been cut very smooth. The

curved shape was almost perfect but the last part at the bottom (position) had

excess cutting. That was caused by the machine while trying to burr the lower,

deeper area (the lower part of the implant in Figure 8.40 above). The problem

here was that the CNC machine prototype only had three degrees of freedom and

the burr tip was spherical and so has volume. The cutting algorithm was made

to move the burr tip centre to the correct positions but as the machine had only

3 DOF as the burr followed the shape deeper into the sawbone, more bone was

cut than planned due to cutting by the back edge of the burr. This problem can

be more easily visualized from the photos below.

192

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

The images below are for a set of femur sawbones that were cut by the system

and scanned by Matter and form 3D scanner. As the photos have deep cuts,

some areas were unable to be scanned, this areas was represented as black by the

software.

Figure 8.44: System Femur Cut Bone 1

Figure 8.44 shows the implant shape was curved smoothly but with wrong orien-

tation.

193

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.45: System Femur Cut Bone 2

Figure 8.45 shows the implant shape was curved again very smoothly but again

with wrong orientation, the bottom part was too deep.

Figure 8.46: System Femur Cut Bone 3

Figure 8.46 shows the implant shape was curved smoothly and with correct ori-

entation.

194

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.47: System Femur Cut Bone 4

Figure 8.47 shows the implant shape was curved with smooth finish but the lower

part was deep because of orientation problem.

Figure 8.48: System Femur Cut Bone 5

195

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.48 shows the implant shape was curved with good finish and correct

orientation.

Figure 8.49: System Femur Cut Bone 6

Figure 8.49 shows the implant shape was curved smoothly.

Figure 8.50: System Femur Cut Bone 7

Figure 8.50 shows the implant shape was curved again smoothly.

196

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.51: System Femur Cut Bone 8

Figure 8.51 shows the implant shape was curved again smoothly.

Figure 8.52: System Femur Cut Bone 9

Figure 8.52 shows the implant shape was curved again smooth and fine.

197

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.53: System Femur Cut Bone 10

Figure 8.53 shows the implant shape was curved smoothly with good orientation.

Some images weren’t clear as the scanner failed to scan deep areas. The bones

were sawed from the cut centre in half to be able to scan missing areas but parts

of the bone were fragile that came off and the surface cut lost its shape.

8.4.2 Mako System Femur Cut

Figure 8.54 below shows a sawbone cut by the Mako system. The uneven surface

is very noticeable.

198

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

Figure 8.54: Mako Femur Cut Bone

8.4.3 Blue Belt System Femur Cut

Figure 8.55 below shows a sawbone cut by the Blue Belt system. The surface

also is very rough.

Figure 8.55: Blue Belt Femur Cut Bone

199

CHAPTER 8. RESULTS OF SAW BONE AUTOMATED CUTTING

8.5 Conclusion

The developed system has made significant improvement in cut finish when com-

pared to the other two world leading commercial systems. The tibia sawbones

cuts showed a mean error of 1.9 mm with standard deviation of 0.55 mm for the

cuts performed by this system, where the Mako set had 2.87 mm with standard

deviation of 0.84 mm and the Blue Belt set had 3.07 mm with 0.94 mm standard

deviation.

The Femur cuts were much more complex but as the Mako and the Blue Belt

systems used different implants 3D comparison wasn’t performed. Still the images

showed that the developed system can perform complex cut with improved surface

finish when compared to the other systems. If an extra degree of freedom is

included to allow the burr to approach the surface of the cut perpendicularly (or

near), so across the entire section of the bone.

The developed system showed improved and more consist surface finish comparing

to the other systems.

200

Chapter 9

Discussion

9.1 General Discussion

The OptiTrack system was one of the factors that made this system cheaper

when compared to the Vicon but was the accuracy of this system enough for the

procedure?

Three experiments were held to test the OptiTrack system accuracy and effi-

ciency. The first experiment was to measure a known cluster dimensions using

the OptiTrack system, the used cluster was the Blunt Probe from the Mako sys-

tem. The Mako company didn’t publish any information about the Blunt Probe

dimensions, so another motion capture system (Vicon Bonita) was used to mea-

sure the Blunt probe dimensions. There was a 0.3 mm difference between both

measures. The second experiment was made to test the accuracy of the system

field of view limits and possible errors. The experiment was achieved by scan-

ning known point arrays (segments) with known positions relative to each other,

multiple segments were scanned around the borders of the assumed working field

area (by setting up a cuboid frame with sides lengths to cover this volume) and

the error was (0.6 − 1.2)mm. The third experiment was performed to test the

motion capture system ability to track moving clusters. The lowest error was 0.16

mm and the highest was 1.05 mm. These results have shown that the OptiTrack

system was reliable and accurate enough to be used for navigation in the system.

Even particularly given that the clusters were used in static state throughout the

201

CHAPTER 9. DISCUSSION

procedures. The clusters could have moved and accuracy would have been re-

tained. Also, the clusters were mainly used around the centre of the field of view

to register the burr location and the register the bone surface where the cut will

take place, both burr and bone facing each other around the centre of the field

of view. In this zone the effective error was 0.3 mm from the first experiment (as

the working clusters will be in the centre of the field of view) and the designed

cutting resolution was 1mm, so this was acceptable, for more information about

the motion capture experiments refer to Chapter 4.

Later in the development phase, a real-time tracking application was implemented

inside the used D-Flow application using the OptiTrack System. D-Flow is a

valuable software that provides support for different motion capture systems.

A simple drag and drop MoCap module provided all the needed support for

development, such as full communication with the motion capture system, direct

output from the module to other scripts/modules with the markers coordinates.

The MoCap module was also useful in the testing and debugging phase as it has

a record feature which enables the developer to record a data file which saves

the time-line of moving markers. This is very helpful when there is a case that

require testing, for example if the application needed to test the ability to detect

moving clusters outside the centre of the cameras field of view, the developer can

simply press record then move the cluster where it was required, the recorded file

can now be loaded for playback and also looped, this feature saves a lot of time

in testing.

D-Flow also provides support for Phidgets hardware parts. The module provides

full communication for input and output from Phidgets parts via USB connection.

The module also supports analog communication. This module made some parts

more like plug and play for developers, such as the used foot switch.

D-Flow was also light on computer resources, when installed. It ran on a low

specification computer (only 4GB of RAM, core 2 DUO processor and windows 7).

The same computer had Motive software installed and running in the background

and yet the application ran smoothly and the clusters were detected in real-time.

The disadvantage of the D-Flow is that it doesn’t support networking. The

202

CHAPTER 9. DISCUSSION

first design for the created system was a real-time application (which can track

clusters and communicate with the CNC machine in real-time) but the lack of

wireless communication caused by D-Flow forced the creation of an intermediate

program (the Java application) that can read the cutting file that D-Flow writes

then send it over the network to the Arduino controller. To solve this problem the

patient’s knee had to be fixed so that the data of the cutting file (the burr path)

was implemented with no change. It is recognised that this was a considerable

drawback that previous robotic orthopaedic systems haven’t reached the market

when this was required due to its invasiveness and cumbersomeness, however

in our system a free knee would be possible in future prototypes provided the

movement was limited and didn’t exceed the movement capability of the CNC

machine. To enable real-time cutting of a free limb the Phidgets module could

be hard-wired to the micro-controller and used to send the movements of burr

relative to the limb. Allowing the burr position to adapt to movement of the

limb.

Enabling the real-time feature will not lead to a completely free bone, the patients

leg still require to be held in a leg holder. If the knee joint was set to have more

movement capabilities, then the CNC unit would have to be upgraded to have

an extra degree of freedom (pitch) –from the Pitch, Roll and Yaw – this could be

accomplished by many different approaches:

1. By mounting the CNC on a robotic arm, the arm has to be stiff and can

support the machine weight and keep steady from the forces facing the burr

while performing the procedure.

2. By fixing the CNC base on a steward platform.

3. By fixing the base on a spherical joint with control.

The network communication proved problematic this was caused by the Wi-Fi

shield silent mode as discussed in Chapter 7. The protocol was however successful

and gave the working resolution of the cut. All the bones cut by this system were

fully cut remotely using the remote control feature. The CNC machine was set

underway with no wired connection to the running computer. Path stability was

203

CHAPTER 9. DISCUSSION

achieved by the created handshake network transmission control protocol. This

protocol ensured safe transfer of the data from the file on the computer (produced

by the D-Flow application) to the CNC machine controller.

If further versions of D-Flow enabled a network module then the real-time feature

would be active alongside the remote control feature. If for some reason the

working procedure needed to be extended to perform different procedures or task

that would require the transferring of larger chunks of data, then the Arduino and

the Wi-Fi shield could be replaced by a more robust wireless network hardware

module such as the Raspberry Pi or the new Intel controllers and Wi-Fi modules.

These controllers have earned recently strong positive feedback in the field of

communication.

9.2 Discussion of Cutting Results

The developed system prototype had some problems with cut orientation. The

Mako system registration process is performed by registering 40 points, it takes

about 20 minutes to complete the process. The current system registration pro-

cess had only three points. At early development three points seemed to be

enough, theoretically three points are enough to work out the correct orienta-

tion but human error in locating the points and recording noise in storing these

points can lead to inaccuracy. If the orientation is incorrect then in some areas

more bone will be removed than planned while in others less or no bone will be

removed. In early trials (when the procedure was performed on tibia bone 1 and

tibia bone 2, refer back to Section 8.2.1 for more details) the Blunt probe was

used, this probe has a hemi sphere as a tip, see Figures 6.10, 6.14 for more details.

Some times during the registration process the probe gets tilted away from being

perpendicular to the bone surface causing the tip to be up to 1 mm away from

the marked point and touching the bone with the side of the probe tip. After the

first two bone cuts the Blunt probe was replace by the Sharp probe to be more

accurate as the tip is sharper like a needle. The factor of human location error

still exists. To eliminate this error the registration process should be completed

204

CHAPTER 9. DISCUSSION

by a tool rather than registering each point by probe based on human sight.

The Mako system cutting mechanism is based on an operator holding a robotic

arm, see the results chapter in Section 8.3.2 for the Mako results, while the Blue

Belt system cutting mechanism was based on an operator holding a robotic cut-

ting machine by his/her arm, see Section 8.3.3. Both systems failed to accomplish

a sufficiently smooth surface and it is believed that’s because of human error (The

Operator). Three approaches could be made to improve the registration process:

1. By using the existing Motion capture system along with the created 3D

scanner application. In this method the location of the tip of the sharp

probe would be continuously monitored while it traces the surface of the

bone to be cut, this method can improve the registration process from

orientating using three scanned points to hundreds of points. However, the

probe must stay in contact with the bone surface at all times.

2. Using laser scanner to scan thousands of points of the bone surface.

3. Using a special designed tool for registration, see Figure 9.1 below, along

with MYKNEE surgical tailored instruments.

205

CHAPTER 9. DISCUSSION

Figure 9.1: Proposed Tool for registration process

The third approach is to use the proposed tool along with the MYKNEE instru-

ment. Figure 9.1 shows the proposed tool which is a simple track-able cluster

with four needles sticking out with different lengths to fit the bone surface. The

MYKNEE tool is a personalized surgical instrument created from a plastic 3d

model of the patient’s knee using the image from the diagnostic scan. This

instrument can fit precisely on the knee allowing the operator to perform the

registration process more accurately. All alternatives should be tested and the

method with best orientation will be implemented.

In addition to orientation errors the cut quality is affected by the surface rough-

ness. Both extremely expensive systems (Mako + Blue Belt) showed surface

roughness cutting errors in the tibia cuts (See Section 8.3.4). The maximum

error range in the developed system tibia cuts was 2.9 mm, while the average

error was 1.9 mm and the standard deviation was 0.55 mm when performing the

procedure on 9 tibia’s. For the Mako system the maximum error was 4.99 mm

with 2.87 mm average error and 0.84 mm standard deviation, also on a 9 tibia’s

206

CHAPTER 9. DISCUSSION

set. The Blue Belt system had maximum error range of 4.5 mm while the average

error was 3.07 mm and standard deviation of 0.94 mm, the set was also 9 tibia’s.

Almost all The Mako and Blue Belt bones showed a spiked and non-smooth

surface. This is caused by the controlling mechanism both systems used for

cutting. The Blue Belt was a simple robotic hand-held tool with burr that is

retrieved once the its tip exits the marked cutting area. Blue Belt cuts (in bone

4 Figure D.22 and bone 7 Figure D.28 in the Appendix and bone 8 Figure 8.38 in

the results chapter) showed excessive cuts on the border of the tibial surface which

indicates that the burr retrieval safety mechanism isn’t optimal. the maximum

range between the tibial cuts performed by the Blue Belt system was 4.5mm. The

Mako systems shows better performance than the Blue Belt but all Mako bones

showed spiked surface, still the maximum error range in the tibial cuts performed

by the Mako system was 4.99mm which is more than the Blue Belt system. In

conclusion the developed system in this showed a much-improved surface finish.

The Femur cuts were more complex than the tibial as the femur implant re-

quired the machine to cut curves (three-dimensional shape). The results couldn’t

be compared with the Mako or Blue Belt cuts as both systems used different

implants, however the system cuts showed remarkable surface finish comparing

to the other systems which showed a bubbly uneven surface (see Figures 8.54

and 8.55). However, the femur cuts performed by the developed system showed

problem with the cut shape. The designed CNC machine had only 3 degrees of

freedom, with only 3 degrees of freedom the machine will have a constant attack

angle relative to the bone surface. Each femural condyle surface has about a 90-

degree curve from one end to the other (2 surfaces almost perpendicular on each

other). Figure 8.40 of the femur implant shows the shape implant correct curve

that needed to be cut. As proposed earlier adding one more degree of freedom

would solve the problem and enable the attack angle to change continuously so

that the burr tip remains perpendicular to the femur surface all the times. There

was also a problem for the femur cuts in the orientation. This problem is more

obvious in the femur as it has a more complex surface than the tibia.

The surface finish smoothness and less bubbly bone cut surface produced by

207

CHAPTER 9. DISCUSSION

our developed system has some very important benefits. First to close the gab

between the bone surface and the implant and hence reduce the healing time.

Second, it was reported that the cement mantle thickness in the cement TKA

prosthesis should be 1.4mm for the femur and 0.8mm for the tibia (Ko et al.,

2017). If the same thickness is used in UKA then it’s hard to imagine how this

thickness is maintained if the Mako and Blue Belt systems tibial cuts have uneven

surface with peaks of 4.99mm and 4.5mm respectively (see Section 8.3). Given

that these bone cuts were undertaken by senior robotically trained orthopaedic

consultants it is likely that these results represent the smallest maximal errors that

are to be expected from the Mako and blue belt systems. Third, having smoother

surface can help improve cement-less prosthesis as the ideal gap between the bone

and the implant in TKA was reported to be less than 1mm (Bonnin et al., 2013).

Again, if the same numbers are applied for the UKA, then the developed system

is the closest to achieving this surface finish. The developed system is promising

with the numbers and it is believed that after fixing the orientation problem the

cutting procedure will show improved cut and surface finish.

9.3 Cost

Robotic-assisted knee arthroplasty systems may increase the efficiency and ef-

fectiveness of the procedure. However, these systems are expensive, the Mako

system costs nearly $1, 000, 000 and the Blue Belt system costs nearly $300, 000,

see the literature chapter for more information.

In this section the cost for the developed system will be considered in relation

to the other available systems. The OptiTrack motion capture system was cho-

sen because its much cheaper comparing to other used systems. The Polaris

cameras used in the Mako system costs $35, 000 for (Spectra + Vicra) and the

Vicon Bonita system costs £40000 and they get mounted on a $15, 000 stand but

the OptiTrack Flex V100:R2 twelve camera system costs $11, 346, refer back to

Chapter 4 for more details.

The CNC unit and the controller box main components are five motors, five

208

CHAPTER 9. DISCUSSION

motor drivers, five rails, Arduino, Arduino Wi-Fi shield, small control board and

15A power supply. The cost of one rail, one motor and one motor driver costed

$135.5 multiply it by five hence the CNC costed $677.5, where the Arduino Duo

costed $35.5, the Wi-Fi shield costed $81 and the power supply costed $48. Add

a few more dollars for the power cords, box and non-costly components like the

regulator, resistances, vero board $5, etc., $10 will be added as the cost for these

components, that makes the hardware total cost around $852 plus the motion

capture system hardware the total will be $12, 198.

For the software cost, the Java and Arduino application are free to use but Motive

software tracker license costs $999 (Motive:Tracker - Motion capture and 6 DOF

object tracking , 2018b).

So, the capital cost of the system is $13, 197, equivalent of the cost Mako camera

stand only. The total cost will include both manufacturing and company costs, so

the estimated total cost for the system as a product would likely be $131, 970, 0.

So, the estimated price costs 12% of the Mako price and 40% of the Blue Belt

system. It is nearly impossible to afford systems like the Mako or the Blue belt in

third world countries. Hopefully this system will make the expected improvement

to bone burring in knee arthroplasty offered by robotics available in non-industrial

countries like my own.

9.4 Mobility

The Mako Rio system is a large robot that was designed and built with an arm

to perform the procedure, see Figure 2.3 in the Literature. This robot has a

computer and terminal inside and is extremely heavy, there isn’t any published

information about its size or weight from the manufacturer but it is estimated to

be least 200kg, it’s mobile but its mobility isn’t easy because of its size, weight

and bulky power cords. These factors are one of the reasons that makes the robot

highly expensive. The robot has four wheels two fixed and two rotational with a

base dimensions about 100 X 50 mm, that made the mobility of the system even

harder in narrow place or in a place with many objects like the surgery theatre.

209

CHAPTER 9. DISCUSSION

Moving the robot round in the theatre would give the operator a very hard time.

First you need to step on a pedal a few times to lift the robot up and make the

wheels functional, then the robot base has to be set moving – which isn’t easy

because of the weight– while changing the angle of the base at the same time and

avoiding cables or someone’s feet. The Mako system isn’t just the robot, there are

two other stands, the camera stand and the operator stand. The Camera stand

has a terminal, two mounted cameras on top and a bulky wire to the robot. The

Operator stand has a terminal, keyboard and mouse for the operator and it’s

also wired to the robot with a bulky wire. All three are in different locations

but connected with these wires. On the other hand, the system developed in this

project was wireless with a remotely controlled CNC machine. The CNC unit

and the controller box main components are five motors, five motor drivers, five

rails, Arduino and Arduino Wi-Fi shield, small control board, 15A power supply.

The controller box and the CNC are light, they can be carried easily by a single

person at the same time, the controller box can be mounted on a wall or placed

on a table, the unit and the box weights around 25kg. The main program can

be worked on a computer not only separate from the machine but it could be

in another room, or another country. The OptiTrack was mounted on the walls

but generally can be fixed anywhere, the cameras didn’t occupy any space in the

working theatre.

9.5 Summary

Robotic-assisted surgery is becoming more mainstream. The existing systems

(Mako and Blue Belt) are very expensive and to third world countries their exis-

tence might be fictional. They are manually functioned; hence human error factor

exists. On the cost comparison the developed system costed 0.01% of the Mako

Rio system and 0.04% of the Blue Belt system, the system cost was evaluated

based on the licenses and hardware cost and for the final version to become a

product manufacturing process took place then extra expenses might be added,

if the total cost was tripled then the ratio of the comparison will be 0.039% and

210

CHAPTER 9. DISCUSSION

0.13197%, the cost still didn’t reach a single Vicon camera used by the other

systems. One of the major approaches to cut down the cost was using cheaper

navigation system. OptiTrack motion capture system has proven to be fit to

replace the Vicon system in the designed procedure as several experiments were

performed to acquire this result.

The designed system is mobile and light. The CNC unit with the controller

box weight around 25kg. With the remote controlled feature it’s much easier to

install and move around in the theatre of operation with only ordinary power cord

coming out of the controller box. The whole system fitted in one large travelling

bag with a full OptiTrack system. On the other hand, the Mako system is at

least 200kg has three components and they are all wired together, it’s not easy

to move around.

The tibia cuts by the developed system had an average error of 1.9 mm and the

standard deviation of 0.55 mm, comparing with the Mako system which had 2.87

mm average error and 0.84 mm standard deviation, while the Blue Belt system

had an average error was 3.07 mm and standard deviation of 0.94 mm. The

developed system also showed better quality and smoothness of surface finish of

the tibia and femur cut bones when compared to the tibia’s cuts by the Mako

and Blue Belt systems.

9.6 Limitations

One of the limitations of this prototype was that the bone had to be fixed to be

cut. This was necessary because the cutting plan could not be updated in real-

time as the cut was occurring because of the limitations of the wireless network.

Fixing the bone rigidly was tried in early robotic systems such as Robodoc but

proved problematic. Therefore it would be hard to replicate in real practice. It

was originally intended that the bone would be constrained by a leg holder but

the bone would be able to move under the limits of the soft tissue. The software

was designed to allow this, but this facility could not be used due to the WiFi

problems. In the future the CNC cutting machine will be directly wired to the

211

CHAPTER 9. DISCUSSION

computer, allowing the cutting plan to be updated based on the motion capture

data for the tibial and femoral bones and hence a semi constrained leg would be

allowable.

The designed CNC device is an active robotic machine, however all it does is

cut the bone to the design of the surgeon. A surgeon is still needed to plan the

surgery, modify the soft tissue and fix the implants. it is difficult to see how

these aspects of the surgery could be automated. One area were the current

system could play a role would be automatically suggesting the position and

orientation of the implants and therefore the bone cuts. However even in this

limited application the suggested implant positions would need to be checked

and modified if necessary by the surgeon. It is likely therefore that the use of

robotics in arthroplasty surgery will remain limited to burring of the bone.

The CNC machine showed limitation when cutting the curved shape of the

femoral implant because the machine only had three degrees of freedom. This

meant that the angle of attack of the burr could not be perpendicular to the bone

surface when the burr cut a curve. This was particularity so when the curvature

of the implant approached or exceeded 90 degrees. If this happened the shallow

angle of attack of the burr meant the top surface of the burr cut the desired shape

but the back surface of the burr undercut the bone and hence removed bone that

should have been preserved. It was intended that the CNC machine would be

mounted on positioning arm which would allow the burr to be positioned at dif-

ferent points relative to the joint and hence avoid this problem. This didn’t prove

possible within the project timescales.

9.7 Future Work

The CNC unit should be upgraded to have an extra degree of freedom (pitch)

–from the Pitch, Roll and Yaw– to enable cutting a free limb. This can be

accomplished by different approaches:

1. By mounting the CNC on a robotic arm, the arm has to be stiff and can

support the machine weight and keep steady from the forces facing the burr

212

CHAPTER 9. DISCUSSION

while performing the procedure.

2. By fixing the CNC base on a steward platform.

3. By fixing the base on a spherical joint with control.

The burr length is 50mm, this caused the burr to bend due to cutting forces after

around 14 cutting trials. A support system will be designed and attached to the

burr so that it can rotate without any resistance from the support.

The three-point registration process showed orientation problems. Three ap-

proaches could be made to improve the registration process:

1. By using the existing Motion capture system along with the created 3D

scanner application. In this method the location of the tip of the sharp

probe would be continuously monitored while it traces the surface of the

bone to be cut, this method can improve the registration process from

orientating using three scanned points to hundreds of points. However, the

probe must stay in contact with the bone surface at all times.

2. Using laser scanner to scan thousands of points of the bone surface.

3. Using a special designed tool for registration, see Figure 9.1 below, along

with patient specific surgical instruments.

The network communication proved problematic this was caused by the Wi-Fi

shield silent mode as discussed in Chapter 7. The protocol was however successful

and gave the working resolution of the cut. To solve the wireless communication

problem with the Arduino Wi-Fi shield module if larger files needed to be used,

then it is recommended to either use wired communication or the usage of more

stable Wi-Fi modules.

After testing and implementing all proposed methods, the new prototype should

be retested, then the best solution will be applied. First the upgraded system

should be tested on a sawbones. Second the system should be tested on animal

bones. Third the system should be tested on human cadavers. Applications could

then be made for first in man human trials. provided these stages are successful,

213

CHAPTER 9. DISCUSSION

the system would then begin the long and costly journey to becoming a licensed

medical product. In this thesis we have taken the first steps on this journey to a

semi-automatic robotic orthopaedic surgical system.

214

Chapter 10

Conclusion

Robotic assisted surgery is becoming mainstream. These systems bring better

accuracy and efficiency for the medical world. With all the positive features that

have been achieved by the robotic assisted systems, comes higher cost for the

patients and the healthcare provider.

The main component of the robotic system was the navigation system (Motion

Capture System). The OptiTrack motion capture system was tested and selected

to be more affordable choice when compared to the Vicon and Polaris motion

capture systems. The OptiTrack experimental testing are as below:

1. The first experiment showed that the navigation system accuracy was

0.3mm different than the Vicon system, which is acceptable within the

functionality of the full system as the cutting process was set to perform a

1mm cut.

2. The second experiment showed accuracy at the origin of the system was ±1

mm, while at the extreme ends of the field of view ±2.5 mm.

3. The third experiment showed the robustness of tracking the objects while

moving in field of the cameras view.

These experiments have proven the OptiTrack system to be valid as a more

affordable motion capture system that can perform as the system navigator.

In addition, a Wireless CNC unit with three degrees of freedom was designed and

built to perform the cutting procedure. The machine features were:

215

CHAPTER 10. CONCLUSION

1. The machine is guided by the navigation through an application that sends

the machine movements coordinates over wireless network to enable remote

control feature, as the running computer and the CNC machine have no

wired connection.

2. The machine hardware components costed around $852.

3. The CNC machine has a resolution of 200 step/mm, which means that the

burr can be driven by 1/200mm accuracy.

4. The machine was lighter, around 25kg with only the power cord coming out

which makes it easy to be portable when mounted on a trolley.

After experimenting on sawbones, it was clear that the machine needs one more

degree of freedom to fully perform the required cut.

Moreover, the system’s main application responsible for creating the control

movements of the burr mounted on the CNC machine was created by D-Flow

software. The application tasks are:

1. The main application was successfully able to detect moving clusters in

real-time.

2. The main application was able to register the machine and knee-joint loca-

tion.

3. The main application uses the registered locations then creates the burr

path cutting (movements file) successfully.

Also, a separate D-Flow application was created to scan three-dimensional sur-

faces. This application was used to scan the implants shape and insert them into

the main application to assist planning the path route for the burr.

Furthermore, in order to safely transfer the data from the running PC to the

CNC machine a series of operations was established:

1. A Java-written application was created to act as a server side in order to

transfer the burr path coordinates.

216

CHAPTER 10. CONCLUSION

2. Another application was created on the CNC machine micro-controller to

act as the client side.

3. The communication between both applications was wireless. A transfer

network protocol was created in insure lossless transfer of data between

server and client.

The micro-controller application sends required control to the CNC motors drivers

according to the received coordinates.

In conclusion, the autonomous developed system has an estimated product cost

12% of the Mako price and 40% of the Blue Belt system price. The system

also showed better cutting accuracy. The tibia cuts performed by the developed

system had an average error of 1.9 mm and the standard deviation of 0.55 mm,

compared to the Mako system which had 2.87 mm average error and 0.84 mm

standard deviation, while the Blue Belt system had an average error was 3.07 mm

and standard deviation of 0.94 mm. The developed system also showed better

quality and smoothness of surface finish of the tibia and femur cut bones when

compared to the tibia’s cuts by the Mako and Blue Belt systems. With much

more affordable system and better cutting quality this system should provide the

needed improvement to the knee arthroplasty all around the world.

217

CHAPTER 10. CONCLUSION

References

3D Systems. (2018). Software — 3d systems. Retrieved 2018-04-26, from

https://www.3dsystems.com/software

About cnc machining. (2017). Retrieved 2017-10-31, from https://www

.thomasnet.com/about/cnc-machining-45330503.html

Allard, P.-H., & Lavoie, J.-A. (2014). Differentiation of 3d scanners and their

positioning method when applied to pipeline integrity. In 9th pipeline tech-

nology conference 2014.

Altintas, Y. (2012). Manufacturing automation: metal cutting mechanics, ma-

chine tool vibrations, and cnc design. Cambridge university press.

Argenson, J., & O’Connor, J. J. (1992). Polyethylene wear in meniscal knee

replacement. a one to nine-year retrieval analysis of the oxford knee. Bone

& Joint Journal , 74 (2), 228–232.

Bell, S. W., Anthony, I., Jones, B., MacLean, A., Rowe, P., & Blyth, M. (2016).

Improved accuracy of component positioning with robotic-assisted unicom-

partmental knee arthroplasty: data from a prospective, randomized con-

trolled study. JBJS , 98 (8), 627–635.

Blyth, M., Smith, J., Jones, B., MacLean III, A., Anthony, I., & Rowe, P. (2013).

Does robotic surgical assistance improve the accuracy of implant place-

ment in unicompartmental knee arthroplasty. In Aaos 2013 annual meeting,

chicago, il.

Bonnin, M., Amendola, N. A., Bellemans, J., MacDonald, S. J., & Menetrey, J.

(2013). The knee joint: surgical techniques and strategies. Springer Science

& Business Media.

Bourne, R. B., Chesworth, B. M., Davis, A. M., Mahomed, N. N., & Charron,

K. D. (2010). Patient satisfaction after total knee arthroplasty: who is

satisfied and who is not? Clinical Orthopaedics and Related Research®,

468 (1), 57–63.

Brasseler usa - medical. (2018). Retrieved 2018-02-18, from https://

brasselerusamedical.com/products/burs/

218

CHAPTER 10. CONCLUSION

Braun, M. (1994). Picturing time: the work of etienne-jules marey (1830-1904).

University of Chicago Press.

Build your own motion capture system. (2018). Retrieved 2018-03-23, from

http://optitrack.com/systems/\#movement/flex-3/12

Chawla, H., Pearle, A., et al. (2016). Robotic-assisted knee arthroplasty: An

overview. American journal of orthopedics (Belle Mead, NJ), 45 (4), 202–

211.

Chen, Z., Wang, C., Jiang, W., Tang, N., & Chen, B. (2017). A review on surgical

instruments of knee arthroscopic debridement and total hip arthroplasty.

Procedia CIRP , 65 , 291–298.

Cobb, J., Henckel, J., Gomes, P., Harris, S., Jakopec, M., Rodriguez, F., . . .

Davies, B. (2006). Hands-on robotic unicompartmental knee replacement:

a prospective, randomised controlled study of the acrobot system. The

Journal of bone and joint surgery. British volume, 88 (2), 188–197.

Delta Surgical. (2018). Burrs - delta surgical. Retrieved 2018-02-18, from

http://www.deltasurgical.co.uk/drill-systems/burrs

D-flow - motekforce link. (2018). Retrieved 2018-01-27, from https://www

.motekforcelink.com/product/d-flow/

Diaz Novo, C., Alharbi, S., Fox, M., Ouellette, E., Biden, E., Tingley, M., &

Chester, V. (2014). The impact of technical parameters such as video sensor

technology, system configuration, marker size and speed on the accuracy of

motion analysis systems. Ingenieŕıa mecánica, tecnoloǵıa y desarrollo, 5 (1),

265–271.

Dillon, N. P., Fichera, L., Wellborn, P. S., Labadie, R. F., & Webster, R. J. (2016).

Making robots mill bone more like human surgeons: Using bone density and

anatomic information to mill safely and efficiently. In Intelligent robots and

systems (iros), 2016 ieee/rsj international conference on (pp. 1837–1843).

Dillon, N. P., Kratchman, L. B., Dietrich, M. S., Labadie, R. F., Webster III,

R. J., & Withrow, T. J. (2013). An experimental evaluation of the force

requirements for robotic mastoidectomy. Otology & neurotology: official

publication of the American Otological Society, American Neurotology So-

219

CHAPTER 10. CONCLUSION

ciety [and] European Academy of Otology and Neurotology , 34 (7), e93.

Dockter, R. L. I. (2013). A fast, low-cost, computer vision-based approach for

tracking surgical tools. University of Minnesota.

Dunbar, N. J., Roche, M. W., Park, B. H., Branch, S. H., Conditt, M. A., &

Banks, S. A. (2012). Accuracy of dynamic tactile-guided unicompartmental

knee arthroplasty. The Journal of arthroplasty , 27 (5), 803–808.

Eder, M., Brockmann, G., Zimmermann, A., Papadopoulos, M. A., Schwenzer-

Zimmerer, K., Zeilhofer, H. F., . . . Kovacs, L. (2013). Evaluation of pre-

cision and accuracy assessment of different 3-d surface imaging systems for

biomedical purposes. Journal of digital imaging , 26 (2), 163–172.

FARO Technologies. (2018a). Faroarm: The global standard for arm technol-

ogy. Retrieved 2018-04-24, from https://www.faro.com/products/

factory-metrology/faroarm/

FARO Technologies. (2018b). Faro quantumm arm & faro quantumm scanarm

hd tech sheet. Retrieved 2018-04-24, from https://www.faro.com/

resource/faro-quantum-m-arm-faro-quantum-m-scanarm-hd

-tech-sheet/

Faugeras, O., & Robert, L. (1996). What can two images tell us about a third

one? International Journal of Computer Vision, 18 (1), 5–19.

Felson, D. T. (2006). Osteoarthritis of the knee. New England Journal of

Medicine, 354 (8), 841–848.

Foran, J. (2016). Unicompartmental knee replacement - orthoinfo -

aaos. Retrieved 2018-04-18, from https://orthoinfo.aaos.org/

en/treatment/unicompartmental-knee-replacement/

Gage, J. R. (1993). Gait analysis. an essential tool in the treatment of cerebral

palsy. Clinical orthopaedics and related research(288), 126–134.

Geijtenbeek, T., Steenbrink, F., Otten, B., & Even-Zohar, O. (2011). D-flow:

immersive virtual reality and real-time feedback for rehabilitation. In Pro-

ceedings of the 10th international conference on virtual reality continuum

and its applications in industry (pp. 201–208).

Goodfellow, J., Kershaw, C., Benson, M., & O’Connor, J. (1988). The oxford

220

CHAPTER 10. CONCLUSION

knee for unicompartmental osteoarthritis. the first 103 cases. Bone & Joint

Journal , 70 (5), 692–701.

Goodfellow, J., & O’Connor, J. (1978). The mechanics of the knee and prosthesis

design. Bone & Joint Journal , 60 (3), 358–369.

Goodfellow, J., O’Connor, J., Dodd, C., & Murray, D. (2011). Unicompartmental

arthroplasty with the oxford knee. Goodfellow Publishers Limited.

Goodfellow, J., Tibrewal, S., Sherman, K., & O’Connor, J. (1987). Unicom-

partmental oxford meniscal knee arthroplasty. The Journal of arthroplasty ,

2 (1), 1–9.

Guerra-Filho, G. (2005a). Optical motion capture: Theory and implementation.

RITA, 12 (2), 61–90.

Guerra-Filho, G. (2005b). Optical motion capture: Theory and implementation.

RITA, 12 (2), 61–90.

Harris-Love, M. O., Siegel, K. L., Paul, S. M., & Benson, K. (2004). Reha-

bilitation mnagement of friedreich ataxia: Lower extremity force-control

variability and gait performance. Neurorehabilitation and neural repair ,

18 (2), 117–124.

Harwin, S. F. (2003). Complications of unicompartmental knee arthroplasty. In

Seminars in arthroplasty (Vol. 14, pp. 232–244).

Heisel, U., & Krondorfer, H. (1997). Application of the surface method for

vibration analysis to cnc-routers. In Proc. of the 13th int. wood machining

seminar (pp. 253–264).

Hill, C., El-Bash, R., Johnson, L., & Coustasse, A. (2015). Robotic joint re-

placement surgery: does technology improve outcomes? The health care

manager , 34 (2), 128–136.

Hodt-Billington, C., Helbostad, J. L., & Moe-Nilssen, R. (2008). Should trunk

movement or footfall parameters quantify gait asymmetry in chronic stroke

patients? Gait & posture, 27 (4), 552–558.

Hood-Daniel, P., & Kelly, J. F. (2009). Build your own cnc machine. Springer.

Iosub, A., Nagit, G., & Negoescu, F. (2008). Plasma cutting of composite mate-

rials. International Journal of Material Forming , 1 (1), 1347–1350.

221

CHAPTER 10. CONCLUSION

Jain, V., Dixit, P., & Pandey, P. (1999). On the analysis of the electrochemi-

cal spark machining process. International Journal of Machine Tools and

Manufacture, 39 (1), 165–186.

Kazarian, G. S., Lonner, J. H., Maltenfort, M. G., Ghomrawi, H. M., & Chen,

A. F. (2018). Cost-effectiveness of surgical and nonsurgical treatments

for unicompartmental knee arthritis: A markov model. JBJS , 100 (19),

1653–1660.

Keraita, J. N., & Kim, K.-H. (2007). Pc-based low-cost cnc automation of

plasma profile cutting of pipes. ARPN Journal of Engineering and Applied

Sciences , 2 (5), 1–7.

Ko, D. O., Lee, S., Kim, K. T., Lee, J. I., Kim, J. W., & Yi, S. M. (2017). Cement

mantle thickness at the bone cement interface in total knee arthroplasty:

Comparison of ps150 rp and lps-flex knee implants. Knee surgery & related

research, 29 (2), 115.

Kolarevic, B. (2001). Digital fabrication: manufacturing architecture in the

information age. ACADIA.

Koshino, T., Saito, T., Wada, J., & Akamatsu, Y. (1997). Unicompartmental

arthroplasty for osteoarthritis of the knee using the ceramic ymck model.

In Reconstruction of the knee joint (pp. 200–206). Springer.

Leardini, A., Chiari, L., Della Croce, U., & Cappozzo, A. (2005). Human move-

ment analysis using stereophotogrammetry: Part 3. soft tissue artifact as-

sessment and compensation. Gait & posture, 21 (2), 212–225.

Lofterød, B., Terjesen, T., Skaaret, I., Huse, A.-B., & Jahnsen, R. (2007). Preop-

erative gait analysis has a substantial effect on orthopedic decision making

in children with cerebral palsy: comparison between clinical evaluation and

gait analysis in 60 patients. Acta orthopaedica, 78 (1), 74–80.

Lonner, J. H. (2016). Robotically assisted unicompartmental knee arthroplasty

with a handheld image-free sculpting tool. Orthopedic Clinics , 47 (1), 29–

40.

Lonner, J. H., & Kerr, G. J. (2012). Robotically assisted unicompartmental knee

arthroplasty. Operative Techniques in Orthopaedics , 22 (4), 182–188.

222

CHAPTER 10. CONCLUSION

Lonner, J. H., Smith, J. R., Picard, F., Hamlin, B., Rowe, P. J., & Riches, P. E.

(2015). High degree of accuracy of a novel image-free handheld robot for

unicondylar knee arthroplasty in a cadaveric study. Clinical Orthopaedics

and Related Research®, 473 (1), 206–212.

Lynch, M. (2017). The fundamentals of cnc. Retrieved 2017-

10-31, from https://www.mmsonline.com/articles/key-cnc

-concept-1the-fundamentals-of-cnc

Magee, T. (2018). Conventional vs. robot-assisted knee replace-

ment — iasis. Retrieved 2018-02-18, from http://www

.utahorthopediccenters.com/conventional-vs-robot

-assisted-knee-replacement/

Manaster, B. (1995). Total knee arthroplasty: postoperative radiologic findings.

AJR. American journal of roentgenology , 165 (4), 899–904.

Maxwell, R., Johnston, A., Lees, D., & Walker, C. (2017). Knee outcome study: A

comparison of the patient perceived outcome between high tibial osteotomy,

unicompartmental and total knee arthroplasty for medial compartment os-

teoarthitis in men under age 55. Orthopaedic journal of sports medicine,

5 (5 suppl5), 2325967117S00165.

McPherson, A. L., Berry, J. D., Bates, N. A., & Hewett, T. E. (2017). Validity of

athletic task performance measures collected with a single-camera motion

analysis system as compared to standard clinical measurements. Interna-

tional journal of sports physical therapy , 12 (4), 527.

Menache, A. (2000). Understanding motion capture for computer animation and

video games. Morgan kaufmann.

Moon, Y.-W., Ha, C.-W., Do, K.-H., Kim, C.-Y., Han, J.-H., Na, S.-E., . . . PArk,

Y.-S. (2012). Comparison of robot-assisted and conventional total knee

arthroplasty: A controlled cadaver study using multiparameter quantitative

three-dimensional ct assessment of alignment. Computer Aided Surgery .

Motesharei, A. (2014). Investigating the biomechanical outcomes of a robotic-

assisted versus conventional unicompartmental knee arthroplasty (Unpub-

lished doctoral dissertation). University of Strathclyde.

223

CHAPTER 10. CONCLUSION

Motive documentation. (2016). Retrieved 2017-10-15, from http://v110.wiki

.optitrack.com/index.php?title=Motive Documentation

Motive:tracker - motion capture and 6 dof object tracking. (2018a). Retrieved

from http://optitrack.com/products/motive/tracker

Motive:tracker - motion capture and 6 dof object tracking. (2018b). Re-

trieved 3-7-2018, from http://optitrack.com/products/motive/

tracker/

Mündermann, L., Corazza, S., & Andriacchi, T. P. (2006). The evolution of

methods for the capture of human movement leading to markerless motion

capture for biomechanical applications. Journal of NeuroEngineering and

Rehabilitation, 3 (1), 6.

Murray, D., Goodfellow, J., & Oconnor, J. (1998). The oxford mediasl unicom-

partmental arthroplasty: a ten-year survival study. J Bone Joint Surg Br ,

80 (6), 983–989.

Nanne Kort, J. V. R., Marcus Romanowski. (2018). Unicompartmental knee

arthroplasty: Overview, periprocedural care, technique. Retrieved 2018-02-

18, from http://emedicine.medscape.com/article/1252912

-overview

NaturalPoint. (2016). Devices pane. Retrieved 2018-04-01, from

http://wiki.optitrack.com/index.php?title=Devices

pane\&redirect=no\#Exposure .28EXP.29

NaturalPoint. (2018a). Flex 3 an affordable motion capture camera. Retrieved

2018-03-24, from http://optitrack.com/products/flex-3/

NaturalPoint. (2018b). Optitrack prime 17w motion capture camera - tracklab.

Retrieved 2018-03-24, from http://tracklab.com.au/products/

hardware/optitrack-prime-17w/

NaturalPoint. (2018c). Prime 13w. Retrieved 2018-03-24, from http://

optitrack.com/products/prime-13w/

NaturalPoint. (2018d). Slim 13e - a board level camera for computer vision, multi-

touch, and more. Retrieved 2018-03-24, from http://optitrack.com/

products/slim-13e/

224

CHAPTER 10. CONCLUSION

Nogueira, P. (2011). Motion capture fundamentals: A critical and compara-

tive analysis on real-world applications. In v zborniku: 4th international

conference on information society and technology (pp. 1–12).

NorthernDigital. (2018). Polaris series - measurement sciencester vision, multi-

touch, and more. Retrieved 2018-04-9, from https://www.ndigital

.com/msci/products/polaris-series/

Parvizi, J., Zmistowski, B., Berbari, E. F., Bauer, T. W., Springer, B. D.,

Della Valle, C. J., . . . Zalavras, C. G. (2011). New definition for peripros-

thetic joint infection: from the workgroup of the musculoskeletal infection

society. Clinical Orthopaedics and Related Research®, 469 (11), 2992.

Payne, C. (2015). Ungrounded haptic-feedback for hand-held surgical robots (Doc-

toral dissertation, Imperial College London). Retrieved from http://

hdl.handle.net/10044/1/26587

Pearle, A. D., O’Loughlin, P. F., & Kendoff, D. O. (2010). Robot-assisted

unicompartmental knee arthroplasty. The Journal of arthroplasty , 25 (2),

230–237.

Perrott, M. A., Pizzari, T., Cook, J., & McClelland, J. A. (2017, feb). Comparison

of lower limb and trunk kinematics between markerless and marker-based

motion capture systems. Gait & Posture, 52 , 57–61. doi: 10.1016/j.gaitpost

.2016.10.020

Pfister, A., West, A. M., Bronner, S., & Noah, J. A. (2014). Comparative abilities

of microsoft kinect and vicon 3d motion capture for gait analysis. Journal

of medical engineering & technology , 38 (5), 274–280.

Picard, F., Moody, J., DiGioia III, A. M., & Jaramaz, B. (2004). Clinical

classifications of CAOS systems. Computer and Robotic Assisted Hip and

Knee Surgery , 43–48.

Piva, S. R., & Klatt, B. A. (2017). An editorial on outcome of unicondylar

knee arthroplasty vs total knee arthroplasty for early medial compartment

arthritis: a randomized study. Annals of Joint , 2 (7).

Plate, J. F., Mofidi, A., Mannava, S., Smith, B. P., Lang, J. E., Poehling, G. G.,

. . . Jinnah, R. H. (2013). Achieving accurate ligament balancing using

225

CHAPTER 10. CONCLUSION

robotic-assisted unicompartmental knee arthroplasty. Advances in orthope-

dics , 2013 .

Price, A., Svard, U., Murray, D., & Goodfellow, J. (1999). Ten year survival

results of oxford mobile bearing unicompartmental knee arthroplasty in

young patients. ISTA Chicago.

Psychoyios, V., Crawford, R., Murray, D., & OConnor, J. (1998). Wear of congru-

ent meniscal bearings in unicompartmental knee arthroplasty: a retrieval

study of 16 specimens. J Bone Joint Surg Br , 80 (6), 976–982.

Purcell, R. L., Cody, J. P., Ammeen, D. J., Goyal, N., & Engh, G. A. (2018). Elim-

ination of preoperative flexion contracture as a contraindication for unicom-

partmental knee arthroplasty. JAAOS-Journal of the American Academy

of Orthopaedic Surgeons , 26 (7), e158–e163.

Rahimian, P., & Kearney, J. K. (2017). Optimal camera placement for motion

capture systems. IEEE transactions on visualization and computer graphics ,

23 (3), 1209–1221.

Repicci, J. (2003). Mini-invasive knee unicompartmental arthroplasty: bone-

sparing technique. Surgical technology international , 11 , 282–286.

Rojas-Lertxundi, S., Fernández-López, J. R., Huerta, S., & Garćıa Bringas, P.

(2017). Motion capture systems for jump analysis. Logic Journal of the

IGPL, 25 (6), 890–901.

Sharkey, P. F., Hozack, W. J., Rothman, R. H., Shastri, S., & Jacoby, S. M.

(2002). Why are total knee arthroplasties failing today? Clinical Or-

thopaedics and Related Research®, 404 , 7–13.

Sharkey, P. F., Lichstein, P. M., Shen, C., Tokarski, A. T., & Parvizi, J. (2014).

Why are total knee arthroplasties failing todayhas anything changed after

10 years? The Journal of arthroplasty , 29 (9), 1774–1778.

Sharma, A., Agarwal, M., Sharma, A., & Dhuria, P. (2013). Motion capture

process, techniques and applications. Int. J. Recent Innov. Trends Comput.

Commun, 1 , 251–257.

Shiratori, T., Park, H. S., Sigal, L., Sheikh, Y., & Hodgins, J. K. (2011, jul). Mo-

tion capture from body-mounted cameras. ACM Transactions on Graphics ,

226

CHAPTER 10. CONCLUSION

30 (4), 1. doi: 10.1145/2010324.1964926

SMARTTECH. (2016a). scan3dmed - smarttech 3d scanner. Retrieved 2018-03-

24, from http://smarttech3dscanner.com/3d-scanners/for

-medicine/scan3dmed/

SMARTTECH. (2016b). Smarttech 3d — optical measurement

systems — portable 3d scanner. Retrieved 2018-03-24, from

http://smarttech3dscanner.com/3d-scanners/smarttech

-3d-portable-3d-scanner/

SMARTTECH Co.Ltd. (2018). Scan3d med - 3d scanners for med-

ical application and much more. Retrieved 2018-12-02, from

http://smarttech3dscanner.com/wp-content/uploads/

2016/06/SMARTTECH scan3Dmed web.pdf

Smith, J. R., Riches, P. E., & Rowe, P. J. (2014). Accuracy of a freehand sculpting

tool for unicondylar knee replacement. The International Journal of Medical

Robotics and Computer Assisted Surgery , 10 (2), 162–169. Retrieved from

http://dx.doi.org/10.1002/rcs.1522 doi: 10.1002/rcs.1522

Specht, L. M., & Koval, K. J. (2001). Robotics and computer-assisted orthopaedic

surgery. Bulletin of the Hospital for Joint Diseases Orthopaedic Institute,

60 (3-4), 168-172.

Stryker.com. (2018). Mako partial knee. Retrieved 2018-02-18, from

https://www.stryker.com/us/en/joint-replacement/

systems/mako-partial-knee.html

Surgical burs and drill system. (2016). Retrieved 2018-02-18, from

https://www.merciansurgical.com/products/surgical

-burs-and-drill-system/

Thewlis, D., Bishop, C., Daniell, N., & Paul, G. (2011). A comparison of two

commercially available motion capture systems for gait analysis: High end

vs low-cost.

Treleaven, P., & Wells, J. (2007). 3d body scanning and healthcare applications.

Computer , 40 (7).

Unal, G., Yezzi, A., Soatto, S., & Slabaugh, G. (2007). A variational approach to

227

CHAPTER 10. CONCLUSION

problems in calibration of multiple cameras. IEEE transactions on pattern

analysis and machine intelligence, 29 (8), 1322–1338.

USA, S. E. M. (2017). Nema size 23 1.8 2-phase stepper motor [Com-

puter software manual]. Retrieved 28-08-2017, from https://

motion.schneider-electric.com/hybrid-stepper-motor/

m-23-nema-23-3-0-1-8-stepper-motor/

van der Esch, M., Knol, D. L., Schaffers, I. C., Reiding, D. J., van Schaardenburg,

D., Knoop, J., . . . Dekker, J. (2013). Osteoarthritis of the knee: multicom-

partmental or compartmental disease? Rheumatology , 53 (3), 540–546.

Van der List, J. P., Chawla, H., & Pearle, A. D. (2016). Robotic-assisted knee

arthroplasty: an overview. Am J Orthop, 45 (4), 202.

Vicon. (2016). About vicon motion systems. Retrieved 2018-03-24, from

https://www.vicon.com/vicon/about

Wawro, A. (2016). Yu suzuki recalls using military tech to make virtua fighter 2.

Gamasutra.

Weyrich, T., Pauly, M., Keiser, R., Heinzle, S., Scandella, S., & Gross, M. H.

(2004). Post-processing of scanned 3d surface data. SPBG , 4 , 85–94.

What is motion capture. (2017). VICON. Retrieved 2017-09-13, from https://

www.vicon.com/what-is-motion-capture

Windolf, M., Götzen, N., & Morlock, M. (2008). Systematic accuracy and preci-

sion analysis of video motion capturing systemsexemplified on the vicon-460

system. Journal of biomechanics , 41 (12), 2776–2780.

Yabukami, S., Kikuchi, H., Yamaguchi, M., Arai, K., Takahashi, K., Itagaki, A.,

& Wako, N. (2000). Motion capture system of magnetic markers using

three-axial magnetic field sensor. IEEE transactions on magnetics , 36 (5),

3646–3648.

Zhang, Z. (2012). Microsoft kinect sensor and its effect. IEEE multimedia, 19 (2),

4–10.

ZimmerBiomet. (2018). Oxford partial knee. Retrieved 2018-02-18, from

http://www.oxfordpartialknee.net/emea

228

Appendix A

Codes

A.1 Getting Cluster Definition Data Applica-

tion

--Functions

--Euclidean Distance

function getEuclideanDistance(p1, p2)

return math.sqrt((p1["x"]-p2["x"])ˆ2 + (p1["y"]-p2["y"])

↪→ ˆ2 +

(p1["z"]-p2["z"])ˆ2)

end

--Sorting

function sortArrayAssending(A)

for i = 1, expectedNoOfCombinations do

for j = i+1, expectedNoOfCombinations do

if A[i][1] > A[j][1] then

temp = A[j]

A[j] = A[i]

A[i] = temp

end

end

229

APPENDIX A. CODES

end

return A

end

--Printing:

function printArray(A)

--print(table.getn(A))

x = 30

if table.getn(A) < x then

x = table.getn(A)

end

for i = 1, x do--table.getn(A) do

print(A[i][1], A[i][2], A[i][3])

end

end

function printMarkersArray(A)

--print(table.getn(A))

for i = 1, table.getn(A) do

print(A[i]["x"], A[i]["y"], A[i]["z"])

end

end

function printSimpleArray(A)

--print(table.getn(A))

for i = 1, table.getn(A) do

print(A[i])

end

end

--ScalingFactor variable controls all the inputs scaling

230

APPENDIX A. CODES

↪→ factor

toleranceFactor = toleranceFactor or 0

--init variables

--Set this variable with the total number of markers in

↪→ all segments

noOfMarkers = noOfMarkers or 3

init = init or 0

allinputs = allinputs or {}

allOuts = allOuts or {}

--Scalling Factor for the distance unit control

--The forbidden number is the number that indicats nil

↪→ value in a channel

theForbiddenNumber = theForbiddenNumber or 0

expectedNoOfCombinations = expectedNoOfCombinations or

noOfMarkers * (noOfMarkers - 1) / 2 --fact(noOfMarkers)/(

↪→ fact(noOfMarkers-2) * 2) --Combinational Logic

eculideanDistanceArray = eculideanDistanceArray or {}

input = input or {}

markers = markers or {}

--DIM’s in CM

TibialArrayDims = TibialArrayDims or {}

FemoralArrayDims = FemoralArrayDims or {}

EndEffectorArrayDims = EndEffectorArrayDims or {}

BaseArrayDims = BaseArrayDims or {}

BlueProbeDims = BlueProbeDims or {}

GreenProbeDims = GreenProbeDims or {}

tibialArray = tibialArray or {}

femoralArray = femoralArray or {}

endEffectorArray = endEffectorArray or {}

baseArray = baseArray or {}

blueProbe = blueProbe or {}

231

APPENDIX A. CODES

greenProbe = greenProbe or {}

--Separating segments from each other by steps, each is

↪→ the expected dims

tibial = table.getn(TibialArrayDims)

femoral = tibial + table.getn(FemoralArrayDims)

endEffector = femoral + table.getn(EndEffectorArrayDims)

base = endEffector + table.getn(BaseArrayDims)

blue = base + table.getn(BlueProbeDims)

green = blue + table.getn(GreenProbeDims)

--init the code

if init == 0 then

for i = 1, (noOfMarkers * 3) do

allinputs[i] = "Channel"..i

end

counter = 1

i = 1

while i < (tibial * 3) + 1 do

allOuts[i] = "Tibial Array "..counter.." X"

allOuts[i+1] = "Tibial Array "..counter.." Y"

allOuts[i+2] = "Tibial Array "..counter.." Z"

i = i+3

counter = counter + 1

end

counter = 1

i = (tibial * 3) + 1

while i < (femoral * 3) + 1 do

allOuts[i] = "Femoral Array "..counter.." X"

allOuts[i+1] = "Femoral Array "..counter.." Y"

allOuts[i+2] = "Femoral Array "..counter.." Z"

i = i+3

232

APPENDIX A. CODES

counter = counter + 1

end

counter = 1

i = (femoral * 3) + 1

while i < (endEffector * 3) + 1 do

allOuts[i] = "EndEffector Array "..counter.." X"

allOuts[i+1] = "EndEffector Array "..counter.." Y"

allOuts[i+2] = "EndEffector Array "..counter.." Z"

i = i+3

counter = counter + 1

end

counter = 1

i = (endEffector * 3) + 1

while i < (base * 3) + 1 do

allOuts[i] = "Base Array "..counter.." X"

allOuts[i+1] = "Base Array "..counter.." Y"

allOuts[i+2] = "Base Array "..counter.." Z"

i = i+3

counter = counter + 1

end

counter = 1

i = (base * 3) + 1

while i < (blue * 3) + 1 do

allOuts[i] = "Blue Probe "..counter.." X"

allOuts[i+1] = "Blue Probe "..counter.." Y"

allOuts[i+2] = "Blue Probe "..counter.." Z"

i = i+3

counter = counter + 1

end

counter = 1

i = (blue * 3) + 1

233

APPENDIX A. CODES

while i < (green * 3) + 1 do

allOuts[i] = "Green Probe "..counter.." X"

allOuts[i+1] = "Green Probe "..counter.." Y"

allOuts[i+2] = "Green Probe "..counter.." Z"

i = i+3

counter = counter + 1

end

inputs.setchannels(unpack(allinputs))

outputs.setchannels(unpack(allOuts))

init = 1

end

i = 1

j = 1

while i < (noOfMarkers * 3) + 1 do

markers[j] = {}

markers[j]["x"] = inputs.get("Channel"..i)

markers[j]["y"] = inputs.get("Channel"..i+1)

markers[j]["z"] = inputs.get("Channel"..i+2)

i = i + 3

j = j + 1

end

--processing

x = 1

y = 2

for i = 1, expectedNoOfCombinations do

--print(i, x, y)

eculideanDistanceArray[i] = {getEuclideanDistance(markers

↪→ [x], markers[y]), x , y}

234

APPENDIX A. CODES

if y == noOfMarkers then

x = x+1

y = x+1

else

y = y+1

end

end

eculideanDistanceArray =

sortArrayAssending(eculideanDistanceArray)

---[[

print("Start")

print(expectedNoOfCombinations)

printArray(eculideanDistanceArray)

print("Finish.....")

A.2 Translating Script from the Scanner Appli-

cation

--Euclidean Distance

function getEuclideanDistance(p1, p2)

return math.sqrt((p1["x"]-p2["x"])ˆ2 + (p1["y"]-p2["y"])

↪→ ˆ2 + (p1["z"]-p2["z"])ˆ2)

end

--Sorting

function sortArrayAssending(A)

for i = 1, expectedNoOfCombinations do

for j = i+1, expectedNoOfCombinations do

if A[i][1] > A[j][1] then

temp = A[j]

235

APPENDIX A. CODES

A[j] = A[i]

A[i] = temp

end

end

end

return A

end

--Printing:

function printArray(A)

--print(table.getn(A))

x = 30

if table.getn(A) < x then

x = table.getn(A)

end

for i = 1, x do

print(i,A[i][1], A[i][2], A[i][3])

end

print("-------------------------------------")

end

function getAVG(point1, point2)

a = {}

a["x"] = (point1["x"] + point2["x"]) / 2.0

a["y"] = (point1["y"] + point2["y"]) / 2.0

a["z"] = (point1["z"] + point2["z"]) / 2.0

return a

end

function getVector(point1, point2)

vector = {}

vector["x"] = point1["x"] - point2["x"]

vector["y"] = point1["y"] - point2["y"]

vector["z"] = point1["z"] - point2["z"]

236

APPENDIX A. CODES

return vector

end

function getUNIVector(vector, magV)

vector["x"] = vector["x"]/magV

vector["y"] = vector["y"]/magV

vector["z"] = vector["z"]/magV

return vector

end

function crossProduct(vector1, vector2)

--[[

cx = aybz - azby

cy = azbx - axbz

cz = axby - aybx

--]]

vector = {}

vector["x"] = vector1["y"] * vector2["z"] - vector1["z"]

↪→ * vector2["y"]

vector["y"] = vector1["z"] * vector2["x"] - vector1["x"]

↪→ * vector2["z"]

vector["z"] = vector1["x"] * vector2["y"] - vector1["y"]

↪→ * vector2["x"]

return vector

end

function getMagnitude(point)

vector = (point["x"]ˆ2 + point["y"]ˆ2 + point["z"]ˆ2)ˆ0.5

return vector

end

function transform(aP, bP, cP, fourthMarker)

tfm = {}

tfm["x"] = aP["x"] * fourthMarker["x"] + aP["y"] *

↪→ fourthMarker["y"] + aP["z"] * fourthMarker["z"]

237

APPENDIX A. CODES

tfm["y"] = bP["x"] * fourthMarker["x"] + bP["y"] *

↪→ fourthMarker["y"] + bP["z"] * fourthMarker["z"]

tfm["z"] = cP["x"] * fourthMarker["x"] + cP["y"] *

↪→ fourthMarker["y"] + cP["z"] * fourthMarker["z"]

return tfm

end

function transformTranspose(aP, bP, cP, fourthMarker)

tfm = {}

tfm["x"] = aP["x"] * fourthMarker["x"] + bP["x"] *

↪→ fourthMarker["y"] + cP["x"] * fourthMarker["z"]

tfm["y"] = aP["y"] * fourthMarker["x"] + bP["y"] *

↪→ fourthMarker["y"] + cP["y"] * fourthMarker["z"]

tfm["z"] = aP["z"] * fourthMarker["x"] + bP["z"] *

↪→ fourthMarker["y"] + cP["z"] * fourthMarker["z"]

return tfm

end

function setMarkers() --to number each marker in the

↪→ segment

--printArray(eculideanDistanceArray)

if (eculideanDistanceArray[1][1] + toleranceFactor >=

↪→ FemoralArrayDims[1] and (eculideanDistanceArray

↪→ [1][1] - toleranceFactor <= FemoralArrayDims[1]))

↪→ and

(eculideanDistanceArray[3][1] + toleranceFactor >=

↪→ FemoralArrayDims[3] and (eculideanDistanceArray

↪→ [3][1] - toleranceFactor <= FemoralArrayDims[3]))

↪→ and

(eculideanDistanceArray[5][1] + toleranceFactor >=

↪→ FemoralArrayDims[5] and (eculideanDistanceArray

↪→ [5][1] - toleranceFactor <= FemoralArrayDims[5]))

↪→ then

238

APPENDIX A. CODES

if femoralArray[eculideanDistanceArray[1][2]] ==

↪→ femoralArray[eculideanDistanceArray[3][2]] then

noTwo = femoralArray[eculideanDistanceArray[1][2]]

noOne = femoralArray[eculideanDistanceArray[1][3]]

noThree = femoralArray[eculideanDistanceArray[3][3]]

elseif femoralArray[eculideanDistanceArray[1][2]] ==

↪→ femoralArray[eculideanDistanceArray[3][3]] then

noTwo = femoralArray[eculideanDistanceArray[1][2]]

noOne = femoralArray[eculideanDistanceArray[1][3]]

noThree = femoralArray[eculideanDistanceArray[3][2]]

elseif femoralArray[eculideanDistanceArray[1][3]] ==

↪→ femoralArray[eculideanDistanceArray[3][2]] then

noTwo = femoralArray[eculideanDistanceArray[1][3]]

noOne = femoralArray[eculideanDistanceArray[1][2]]

noThree = femoralArray[eculideanDistanceArray[3][3]]

elseif femoralArray[eculideanDistanceArray[1][2]] ==

↪→ femoralArray[eculideanDistanceArray[3][2]] then

noTwo = femoralArray[eculideanDistanceArray[1][2]]

noOne = femoralArray[eculideanDistanceArray[1][3]]

noThree = femoralArray[eculideanDistanceArray[3][3]]

end

else

print("SETTING MARKERS NOT VALID!!!")

return

end

print("Markers Set...")

end

function transformTipLocation()

setMarkers()

localOrigin = getAVG(noOne, noTwo)

a = getVector(noThree, localOrigin)

239

APPENDIX A. CODES

bt = getVector(noOne, localOrigin)

c = crossProduct(a, bt)

b = crossProduct(a, c)

magA = getMagnitude(a)

magB = getMagnitude(b)

magC = getMagnitude(c)

--printVector(localOrigin)

--[[

printVector(a)

printVector(b)

printVector(c)

print(magA)

print(magC)

print(magB)

--]]

aUNI = getUNIVector(a, magA)

bUNI = getUNIVector(b, magB)

cUNI = getUNIVector(c, magC)

--tipLocation = transformTranspose(aUNI, bUNI, cUNI,

↪→ tipLocation)

tipLocation = transform(aUNI, bUNI, cUNI, tipLocation)

tipLocation["x"] = tipLocation["x"] + localOrigin["x"]

tipLocation["y"] = tipLocation["y"] + localOrigin["y"]

tipLocation["z"] = tipLocation["z"] + localOrigin["z"]

return tipLocation

end

--Variables------------------------------

noOfMarkers = noOfMarkers or 0

expectedNoOfCombinations = expectedNoOfCombinations or 0

240

APPENDIX A. CODES

eculideanDistanceArray = eculideanDistanceArray or {}

toleranceFactor = toleranceFactor or 0

theAvoidNumber = theAvoidNumber or 0

femoralArray = femoralArray or {}

FemoralArrayDims = FemoralArrayDims or {}

expectedNoOfCombinations = expectedNoOfCombinations or 0

eculideanDistanceArray = eculideanDistanceArray or {}

drawMarkers = drawMarkers or {}

markerSize = markerSize or 0.05

allIns = allIns or {}

allOuts = allOuts or {}

fileCount = fileCount or 1

noOne = noOne or 0

noTwo = noTwo or 0

noThree = noThree or 0

previousFootSwitchState = previousFootSwitchState or 0.5

init = init or 0

--Initialization-------------------------

if init == 0 then

expectedNoOfCombinations = 4 * (4 - 1) / 2

allIns[1] = "Number of Markers"

allIns[2] = "Tolerance Factor"

allIns[3] = "The Avoid Number"

for i = 4, 9 do

allIns[i] = "FemoralArrayDims "..i-3

end

inputs.setchannels(unpack(allIns))

noOfMarkers = inputs.get("Number of Markers")

toleranceFactor = inputs.get("Tolerance Factor")

theAvoidNumber = inputs.get("The Avoid Number")

for i = 1, 6 do

241

APPENDIX A. CODES

FemoralArrayDims[i] = inputs.get("FemoralArrayDims "..i)

end

i = 10

counter = 1

while i < (4 * 3) + 10 do

allIns[i] = "Femoral Marker "..counter.." X"

allIns[i+1] = "Femoral Marker "..counter.." Y"

allIns[i+2] = "Femoral Marker "..counter.." Z"

i = i+3

counter = counter + 1

end

allIns[i] = "GreenProbe Tip X"

allIns[i+1] = "GreenProbe Tip Y"

allIns[i+2] = "GreenProbe Tip Z"

i = i+3

allIns[i] = "Foot Switch"

allIns[i+1] = "Femur Sitiuation"

allIns[i+2] = "Green Sitiuation"

i = i+2

inputs.setchannels(unpack(allIns))

outputs.setchannels(unpack(allOuts))

outFileName=’C:\\CAREN Resources\\data\\Pointer\\Pointer’

↪→ ..fileCount..’.txt’

f1 = io.output(outFileName)

outFileName=’C:\\CAREN Resources\\data\\Pointer\\Pointer

↪→ Global’..fileCount..’.txt’

f3 = io.output(outFileName)

init = 1

end

print(inputs.get("Foot Switch"))

if inputs.get("Foot Switch") < 0.5 and inputs.get("Femur

242

APPENDIX A. CODES

↪→ Sitiuation") == 1 and inputs.get("Green Sitiuation"

↪→) == 1 then

for i = 1, 4 do

femoralArray[i] = {}

femoralArray[i]["x"] = inputs.get("Femoral Marker "..i.."

↪→ X")

femoralArray[i]["y"] = inputs.get("Femoral Marker "..i.."

↪→ Y")

femoralArray[i]["z"] = inputs.get("Femoral Marker "..i.."

↪→ Z")

end

x = 1

y = 2

--print(table.getn(femoralArray))

for i = 1, expectedNoOfCombinations do

--print(i, x, y)

eculideanDistanceArray[i] = {getEuclideanDistance(

↪→ femoralArray[x], femoralArray[y]), x , y}

if y == 4 then

x = x+1

y = x+1

else

y = y+1

end

end

eculideanDistanceArray = sortArrayAssending(

↪→ eculideanDistanceArray)

tipLocation = {}

tipLocation["x"] = inputs.get("GreenProbe Tip X")

tipLocation["y"] = inputs.get("GreenProbe Tip Y")

tipLocation["z"] = inputs.get("GreenProbe Tip Z")

243

APPENDIX A. CODES

f3:write(tipLocation["x"],";",tipLocation["y"],";",

↪→ tipLocation["z"],"\n")

print(inputs.get("GreenProbe Tip X"),"\t",tipLocation["y"

↪→],"\t",tipLocation["z"],"\n")

tipLocation = transformTipLocation(tipLocation)

f1:write(tipLocation["x"],";",tipLocation["y"],";",

↪→ tipLocation["z"],"\n")

print(tipLocation["x"],"\t",tipLocation["y"],"\t",

↪→ tipLocation["z"],"\n")

elseif inputs.get("Femur Sitiuation") == 2 then

print("Femur Not Found!")

elseif inputs.get("Green Sitiuation") == 2 then

print("Green Probe Not Found!")

end

if previousFootSwitchState < 0.5 and inputs.get("Foot

↪→ Switch") > 0.5 then

fileCount = fileCount+1

f1:close()

f3:close()

outFileName=’C:\\CAREN Resources\\data\\Pointer\\Pointer’

↪→ ..fileCount..’.txt’

f1 = io.output(outFileName)

outFileName=’C:\\CAREN Resources\\data\\Pointer\\Pointer

↪→ Global’..fileCount..’.txt’

f3 = io.output(outFileName)

end

previousFootSwitchState = inputs.get("Foot Switch")

244

Appendix B

Clusters Identification Data

B.1 Tibia Cluster

0.051857

0.060581

0.067941

0.074713

0.097268

0.127427

B.2 Blunt Probe

0.058216

0.096548

0.10534

B.3 Sharp Probe

0.052109

0.106377

0.125720

245

APPENDIX B. CLUSTERS IDENTIFICATION DATA

B.4 Femur Cluster

0.05609

0.065675

0.076599

0.084969

0.095304

0.106154

B.5 Testing Accuracy of the System Applica-

tion

--Function--

function setFile(segmentNumber, layer)

outfname="C:\textbackslash\{\}\textbackslash\{\}CAREN

↪→ Resources\textbackslash\{\}\textbackslash\{\}Data\

↪→ textbackslash\{\}\textbackslash\{\}My Saved Data\

↪→ textbackslash\{\}\textbackslash\{\}Segment "

↪→ ..segmentNumber.." - Layer "..layer..".txt"

io.output(outfname)

io.write("\#\textbackslash\{\}tX\textbackslash\{\}tY\

↪→ textbackslash\{\}tZ\textbackslash\{\}n")

end

--init variables------------------------------------

init = init or 0

allinputs = allinputs or \{\}

theForbiddenNumber = 99999.44444

counter = counter or 0

maxCounts = 9

segmentNumber = segmentNumber or 1

246

APPENDIX B. CLUSTERS IDENTIFICATION DATA

layer = layer or 1

maxLayers = 3

loops = loops or 1

--init the code

if init == 0 then

setFile(segmentNumber, layer)

notification = sound.create("C:/CAREN Resources/Sounds/

↪→ beep-06.wav")

sound.setvolume(notification,100)

segComp = sound.create("C:/CAREN Resources/Sounds/Segment

↪→ _Complete.wav")

sound.setvolume(segComp,100)

switchprevious=inputs.get("Channel 4")

switchready=1

for i = 1, 4 do

allinputs[i] = "Channel "..i

end

inputs.setchannels(unpack(allinputs))

init = 1

end

--[[

theTip["x"] = inputs.get("Channel 1")

theTip["y"] = inputs.get("Channel 2")

247

APPENDIX B. CLUSTERS IDENTIFICATION DATA

theTip["z"] = inputs.get("Channel 3")

--]]

if(inputs.get("Channel 4") == 1 and counter < maxCounts

↪→ and switchready==1) then

counter = counter + 1

io.write(counter.."\textbackslash\{\}t"..inputs.get("

↪→ Channel 1").."\textbackslash\{\}t"..inputs.get("

↪→ Channel 2").."\textbackslash\{\}t"..inputs.get("

↪→ Channel 3").."\textbackslash\{\}n")

sound.play(notification)

switchready=0

end

switchnow=inputs.get("Channel 4")

if switchprevious==1 and switchnow==0 then

switchready=1

end

switchprevious=switchnow

if counter == maxCounts then

io.flush()

counter = 0

segmentNumber = segmentNumber + 1

sound.play(segComp)

setFile(segmentNumber, layer)

if segmentNumber == 10 then

segmentNumber = 1

layer = layer + 1

248

APPENDIX B. CLUSTERS IDENTIFICATION DATA

end

end

249

Appendix C

Arduino Application

1 #include <LiquidCrystal.h>

2 #include <AccelStepper.h>

3 #include <SPI.h>

4 #include <WiFi.h>

5

6 IPAddress ip(192,168,2,100);

7 //----IPAddress ip(192,168,0,100);

8 //char ssid[] = "VM567432-2G"; // your network SSID (

↪→ name)

9 //char pass[] = "brjwegfu"; // your network password (

↪→ use for WPA, or use as key for WEP)

10 char ssid[] = "CROSS"; // your network SSID (name)

11 char pass[] = "11111111";//"********@strath.ac.uk"; //

↪→ your network password (use for WPA, or use as key

↪→ for WEP)

12

13

14 int keyIndex = 0; // your network key Index

↪→ number (needed only for WEP)

15

16 int status = WL_IDLE_STATUS;

250

APPENDIX C. ARDUINO APPLICATION

17 WiFiServer server(80);

18 boolean alreadyConnected = false; // whether or not the

↪→ client was connected previously

19

20 // initialize the library with the numbers of the

↪→ interface pins

21 LiquidCrystal lcd(13, 12, 11, 10, 9, 8);

22 const int RESET = 50;

23 const int JOYSTICK1_VRX = A0;

24 const int JOYSTICK1_VRY = A1;

25 const int JOYSTICK1_SW = A2;

26 const int JOYSTICK2_VRX = A3;

27 const int JOYSTICK2_VRY = A4;

28 const int JOYSTICK2_SW = A5;

29 const int MOTOR_M_DIRECTION = 30;

30 const int MOTOR_M_PULL = 31;

31 const int MOTOR_Y1_DIRECTION = 32;

32 const int MOTOR_Y1_PULL = 33;

33 const int MOTOR_Y2_DIRECTION = 34;

34 const int MOTOR_Y2_PULL = 35;

35 const int MOTOR_X1_DIRECTION = 36;

36 const int MOTOR_X1_PULL = 37;

37 const int MOTOR_X2_DIRECTION = 38;

38 const int MOTOR_X2_PULL = 39;

39 const int MAX_SPEED = 3000;

40 const int MAX_ACCELERATION = 2500;

41 const int COMMON_DELAY = 1;

42 String directions[6];

43 AccelStepper stepperM(1, MOTOR_M_PULL, MOTOR_M_DIRECTION)

↪→ ;

44 AccelStepper stepperY1(1, MOTOR_Y1_PULL,

251

APPENDIX C. ARDUINO APPLICATION

↪→ MOTOR_Y1_DIRECTION);

45 AccelStepper stepperY2(1, MOTOR_Y2_PULL,

↪→ MOTOR_Y2_DIRECTION);

46 AccelStepper stepperZ1(1, MOTOR_X1_PULL,

↪→ MOTOR_X1_DIRECTION);

47 AccelStepper stepperZ2(1, MOTOR_X2_PULL,

↪→ MOTOR_X2_DIRECTION);

48 int mode; // 0 = welcome - 1 = Network - 2 = Manual

49 float x,y,z;

50 WiFiClient client;

51 String networkMode;

52 bool printNetworkStatus;

53 void setup()

54 {

55 // initialize serial communications at 9600 bps:

56 Serial.begin(9600);

57 lcd.begin(16, 2);

58 lcd.print("Welcome...");

59 // check for the presence of the shield:

60 if (WiFi.status() == WL_NO_SHIELD)

61 {

62 lcd.setCursor(0, 1);

63 lcd.print("Shield problem!");

64 Serial.println("Shield problem!");

65 // don’t continue:

66 while (true);

67 }

68 WiFi.config(ip);

69 stepperM.setMaxSpeed(MAX_SPEED);

70 stepperM.setSpeed(MAX_SPEED);

71 stepperM.setAcceleration(MAX_ACCELERATION);

252

APPENDIX C. ARDUINO APPLICATION

72 stepperY1.setMaxSpeed(MAX_SPEED);

73 stepperY1.setSpeed(MAX_SPEED);

74 stepperY1.setAcceleration(MAX_ACCELERATION);

75 stepperY2.setMaxSpeed(MAX_SPEED);

76 stepperY2.setSpeed(MAX_SPEED);

77 stepperY2.setAcceleration(MAX_ACCELERATION);

78 stepperZ1.setMaxSpeed(MAX_SPEED);

79 stepperZ1.setSpeed(MAX_SPEED);

80 stepperZ1.setAcceleration(MAX_ACCELERATION);

81 stepperZ2.setMaxSpeed(MAX_SPEED);

82 stepperZ2.setSpeed(MAX_SPEED);

83 stepperZ2.setAcceleration(MAX_ACCELERATION);

84 mode = 0;

85 printNetworkStatus = false;

86 x = 0;

87 y = 0;

88 z = 0;

89 pinMode(RESET, INPUT_PULLUP);

90 }

91 //The Joysticks: VRX (UP = Max, Down = 0) VRY (RIGHT =

↪→ Max, LEFT = 0) SW (PRESS = 0, ELSE !0)

92

93

94

95 void loop()

96 {

97 if(mode == 0)

98 {

99

100 // set the cursor to column 0, line 1

101 // (note: line 1 is the second row, since counting begins

253

APPENDIX C. ARDUINO APPLICATION

↪→ with 0):

102 lcd.setCursor(0, 1);

103 lcd.print("Manual<.>Network");

104 getReadings();

105 if(directions[2] == "PRESSED")

106 {

107 mode = 2;

108 lcd.clear();

109 lcd.setCursor(0, 0);

110 lcd.print("MANUAL...");

111 Serial.println("MANUAL...");

112 delay(200);

113 }

114 else if(directions[5] == "PRESSED")

115 {

116 mode = 1;

117 lcd.clear();

118 lcd.setCursor(0, 0);

119 lcd.print("Network...");

120 Serial.println("Network...");

121 }

122 delay(50);

123 }

124 else if(mode == 1) //Network

125 {

126 getReadings();

127 if(!alreadyConnected)

128 {

129 //Networking Again:

130 while (status != WL_CONNECTED)

131 {

254

APPENDIX C. ARDUINO APPLICATION

132 lcd.setCursor(0, 1);

133 lcd.print("Connecting:");

134 lcd.print(ssid);

135 Serial.print("Connecting: ");

136 Serial.println(ssid);

137 // Connect to WPA/WPA2 network. Change this line if using

↪→ open or WEP network:

138 status = WiFi.begin(ssid, pass);

139 // wait 10 seconds for connection:

140 delay(3000);

141

142

143 // you’re connected now, so print out the status:

144 printWifiStatus();

145 }

146 if(status == WL_CONNECTED && !printNetworkStatus)

147 {

148 lcd.clear();

149 lcd.setCursor(0, 0);

150 lcd.print("Network...");

151 lcd.setCursor(0, 1);

152 lcd.print("Connected");

153 printNetworkStatus = true;

154 }

155

156 // start the server:

157 server.begin();

158 client = server.available();

159 if(client.connected())

160 {

161 lcd.setCursor(0, 1);

255

APPENDIX C. ARDUINO APPLICATION

162 lcd.print("Client Connected");

163 alreadyConnected = true;

164 networkMode = "starting";

165 }

166 }

167 if (client)

168 {

169 if(networkMode == "starting")

170 {

171 networkMode = getNetworkReading();

172 }

173 networkMode.trim();

174 if(networkMode.equals("Manual"))

175 {

176 String in = client.readString();

177 in.trim();

178 // echo the bytes back to the client:

179 if(in == "up")

180 {

181 directions[4] = "RIGHT";

182 }

183 else if(in == "down")

184 {

185 directions[4] = "LEFT";

186 }

187 else if(in == "left")

188 {

189 directions[1] = "LEFT";

190 }

191 else if(in == "right")

192 {

256

APPENDIX C. ARDUINO APPLICATION

193 directions[1] = "RIGHT";

194 }

195 else if(in == "in")

196 {

197 directions[4] = "LEFT";

198 }

199 else if(in == "out")

200 {

201 directions[4] = "RIGHT";

202 }

203 else if(in == "idle")

204 {

205 directions[1] = "Nah";

206 directions[0] = "Nah";

207 directions[4] = "Nah";

208 }

209 runIt();

210 }

211 else if(networkMode == "Automatic")

212 {

213 char in[60];

214 String data = getNetworkReading();

215 data.toCharArray(in,60);

216 data.trim();

217 if(data == "HALT")

218 {

219 reset();

220 Serial.println("HALTTED!!!");

221 }

222 else

223 {

257

APPENDIX C. ARDUINO APPLICATION

224 int i = 0;

225 for(i; i < data.length();i++)

226 {

227 if(data.substring(i,i+1) == ";")

228 {

229 x = data.substring(0,i).toFloat();

230 break;

231 }

232 }

233 i +=1;

234 int b = i;

235 for(i; i < data.length();i++)

236 {

237 if(data.substring(i,i+1) == ";")

238 {

239 y = data.substring(b,i).toFloat();

240 break;

241 }

242 }

243 i +=1;

244 z = data.substring(i,data.length()).toFloat();

245 stepperM.moveTo(cmToTurns(x*100));

246 stepperZ1.moveTo(cmToTurns(z*100));

247 stepperZ2.moveTo(cmToTurns(z*100));

248 stepperY1.moveTo(cmToTurns(y*-100));

249 stepperY2.moveTo(cmToTurns(y*-100));

250 while(stepperM.distanceToGo() != 0 || stepperZ1.

↪→ distanceToGo() != 0 || stepperY1.distanceToGo() !=

↪→ 0)

251 {

252 delay(COMMON_DELAY);

258

APPENDIX C. ARDUINO APPLICATION

253 stepperM.run();

254 stepperZ1.run();

255 stepperZ2.run();

256 stepperY1.run();

257 stepperY2.run();

258 }

259 delay(10);

260 }

261 }

262 }

263 else if(alreadyConnected)

264 {

265 lcd.setCursor(0, 1);

266 lcd.print("Client disConnected");

267 reset();

268 }

269 }

270 else //Manual

271 {

272 getReadings();

273 runIt();

274 delay(COMMON_DELAY);

275 }

276 }

277 String getNetworkReading()

278 {

279 int counter = 0;

280 char temp[60];

281 String reading = "";

282 while(!client.available())

283 {

259

APPENDIX C. ARDUINO APPLICATION

284 delay(5);

285 }

286 String networkMsg = client.readStringUntil(’\n’);

287 while(reading != "OK")

288 {

289 if(reading != "OK" && !reading.equals("\0") && reading !=

↪→ 0)

290 networkMsg = reading;

291 networkMsg.toCharArray(temp,60);

292 client.write(temp);

293 while(!client.available())

294 {

295 delay(5);

296 }

297 reading = client.readStringUntil(’\n’);

298 reading.trim();

299 }

300 return networkMsg;

301 }

302 void getReadings()

303 {

304 if(checkReset())

305 return;

306 //Joystick 1 >>

307 if(analogRead(JOYSTICK1_VRX) > 790)

308 directions[0] = "DOWN";

309 else if(analogRead(JOYSTICK1_VRX) < 720)

310 directions[0] = "UP";

311 else

312 directions[0] = "NAH";

313

260

APPENDIX C. ARDUINO APPLICATION

314 if(analogRead(JOYSTICK1_VRY) > 790)

315 directions[1] = "LEFT";

316 else if(analogRead(JOYSTICK1_VRY) < 720)

317 directions[1] = "RIGHT";

318 else

319 directions[1] = "NAH";

320

321 if(analogRead(JOYSTICK1_SW) == 0)

322 directions[2] = "PRESSED";

323 else

324 directions[2] = "NAH";

325 //Joystick 2 >>

326 if(analogRead(JOYSTICK2_VRX) > 790)

327 directions[3] = "DOWN";

328 else if(analogRead(JOYSTICK2_VRX) < 720)

329 directions[3] = "UP";

330 else

331 directions[3] = "NAH";

332

333 if(analogRead(JOYSTICK2_VRY) > 790)

334 directions[4] = "LEFT";

335 else if(analogRead(JOYSTICK2_VRY) < 720)

336 directions[4] = "RIGHT";

337 else

338 directions[4] = "NAH";

339

340 if(analogRead(JOYSTICK2_SW) == 0)

341 directions[5] = "PRESSED";

342 else

343 directions[5] = "NAH";

344 if(directions[2] == "PRESSED" && directions[5] == "

261

APPENDIX C. ARDUINO APPLICATION

↪→ PRESSED")

345 {

346 mode = 0;

347 delay(300);

348 }

349 }

350

351 void runIt()

352 {

353 if(directions[0] == "UP")

354 {

355 y-=1;

356 stepperY1.setSpeed(-MAX_SPEED);

357 stepperY2.setSpeed(-MAX_SPEED);

358 stepperY1.runSpeed();

359 stepperY2.runSpeed();

360 }

361 else if(directions[0] == "DOWN")

362 {

363 y+=1;

364 stepperY1.setSpeed(MAX_SPEED);

365 stepperY2.setSpeed(MAX_SPEED);

366 stepperY1.runSpeed();

367 stepperY2.runSpeed();

368 }

369 if(directions[1] == "LEFT")

370 {

371 z-=1;

372 stepperZ1.setSpeed(-MAX_SPEED);

373 stepperZ2.setSpeed(-MAX_SPEED);

374 stepperZ1.runSpeed();

262

APPENDIX C. ARDUINO APPLICATION

375 stepperZ2.runSpeed();

376 }

377 else if(directions[1] == "RIGHT")

378 {

379 z+=1;

380 stepperZ1.setSpeed(MAX_SPEED);

381 stepperZ2.setSpeed(MAX_SPEED);

382 stepperZ1.runSpeed();

383 stepperZ2.runSpeed();

384 }

385 if(directions[4] == "LEFT")

386 {

387 x+=1;

388 stepperM.setSpeed(MAX_SPEED);

389 stepperM.runSpeed();

390 }

391 else if(directions[4] == "RIGHT")

392 {

393 x-=1;

394 stepperM.setSpeed(-MAX_SPEED);

395 stepperM.runSpeed();

396 }

397 }

398

399 int cmToTurns(float x)

400 {

401 return x*2000;

402 }

403

404 void printWifiStatus()

405 {

263

APPENDIX C. ARDUINO APPLICATION

406 // print the SSID of the network you’re attached to:

407 Serial.print("SSID: ");

408 Serial.println(WiFi.SSID());

409

410 // print your WiFi shield’s IP address:

411 IPAddress ip = WiFi.localIP();

412 Serial.print("IP Address: ");

413 Serial.println(ip);

414

415 // print the received signal strength:

416 long rssi = WiFi.RSSI();

417 Serial.print("signal strength (RSSI):");

418 Serial.print(rssi);

419 Serial.println(" dBm");

420 }

421 bool checkReset()

422 {

423 if(digitalRead(RESET)==HIGH)

424 {

425 reset();

426 return true;

427 }

428 return false;

429 }

430

431 void reset()

432 {

433 lcd.clear();

434 if(client.connected())

435 {

436 WiFi.disconnect();

264

APPENDIX C. ARDUINO APPLICATION

437 alreadyConnected = false;

438 lcd.setCursor(0, 1);

439 lcd.print("Net. disConnected");

440 printNetworkStatus = false;

441 }

442 mode = 0;

443

444 lcd.setCursor(0, 0);

445 lcd.print("RESETTING...");

446 Serial.println("Resetting...");

447

448 stepperM.stop();

449 stepperZ1.stop();

450 stepperZ2.stop();

451 stepperY1.stop();

452 stepperY2.stop();

453 stepperM.moveTo(0);

454 stepperZ1.moveTo(0);

455 stepperZ2.moveTo(0);

456 stepperY1.moveTo(0);

457 stepperY2.moveTo(0);

458 delay(300);

459 while(stepperM.distanceToGo() != 0 || stepperZ1.

↪→ distanceToGo() != 0 || stepperY1.distanceToGo() !=

↪→ 0)

460 {

461 delay(COMMON_DELAY);

462 stepperM.run();

463 stepperZ1.run();

464 stepperZ2.run();

465 stepperY1.run();

265

APPENDIX C. ARDUINO APPLICATION

466 stepperY2.run();

467 }

468 x = 0;

469 y = 0;

470 z = 0;

471 lcd.clear();

472 lcd.setCursor(0, 0);

473 lcd.print("Welcome...");

474 }

266

Appendix D

Mako an Blue Belt Tibia cut

results

D.1 Mako

Figure D.1: Mako Tibia Bone 2 - Cut Only View

267

APPENDIX D. MAKO AN BLUE BELT TIBIA CUT RESULTS

Figure D.2: Mako Tibia Bone 2 - 3D Comparison View

Figure D.2 shows powder blue, light blue, green, yellow and some orange areas

with the errors of -0.82 mm, -0.46 mm, 0 for green, 0.46 mm and 1.18 mm

respectively.

Figure D.3: Mako Tibia Bone 3 - Cut Only View

268

APPENDIX D. MAKO AN BLUE BELT TIBIA CUT RESULTS

Figure D.4: Mako Tibia Bone 3 - 3D Comparison View

Figure D.4 shows blue, powder blue, light blue, green, yellow and orange colours

with errors -1.89 mm, -0.82 mm, -0.46 mm, 0 for green, 0.46 mm and 1.18 mm

respectively.

Figure D.5: Mako Tibia Bone 4 - Cut Only View

269

APPENDIX D. MAKO AN BLUE BELT TIBIA CUT RESULTS

Figure D.6: Mako Tibia Bone 4 - 3D Comparison View

Figure D.6 shows powder blue, light blue, green, yellow and orange colours with

errors -1.3 mm, -0.67 mm, 0 for green, 0.67 mm and 1.6 mm and respectively.

Figure D.7: Mako Tibia Bone 5 - Cut Only View

270

APPENDIX D. MAKO AN BLUE BELT TIBIA CUT RESULTS

Figure D.8: Mako Tibia Bone 5 - 3D Comparison View

Figure D.8 shows powder Blue, light blue, green and very little spikes with yellow

with errors of -1.53 mm, -0.46 mm, 0 for green and 0.46 mm respectively.

Figure D.9: Mako Tibia Bone 6 - Cut Only View

271

APPENDIX D. MAKO AN BLUE BELT TIBIA CUT RESULTS

Figure D.10: Mako Tibia Bone 6 - 3D Comparison View

Figure D.10 shows blue, powder blue, light blue, green, yellow and and some

orange coloured parts but it belongs to the edge of the unprocessed part and will

be neglected. The error ranges will be -2.2 mm, -1.53 mm, -0.46 mm, 0 for green

and 0.46 mm respectively.

Figure D.11: Mako Tibia Bone 7 - Cut Only View

272

APPENDIX D. MAKO AN BLUE BELT TIBIA CUT RESULTS

Figure D.12: Mako Tibia Bone 7 - 3D Comparison View

Figure D.12 shows blue, powder blue, light blue, green and yellow colours with

errors of -1.89 mm, -1.18 mm, -0.46 mm, 0 for green and 0.46 mm respectively.

Figure D.13: Mako Tibia Bone 8 - Cut Only View

273

APPENDIX D. MAKO AN BLUE BELT TIBIA CUT RESULTS

Figure D.14: Mako Tibia Bone 8 - 3D Comparison View

Figure D.14 shows powder blue, light blue, green, yellow and orange colours with

errors of -1.2 mm, -0.65 mm, 0 for green, 0.65 mm and 1.61 mm respectively.

Figure D.15: Mako Tibia Bone 9 - Cut Only View

274

APPENDIX D. MAKO AN BLUE BELT TIBIA CUT RESULTS

Figure D.16: Mako Tibia Bone 9 - 3D Comparison View

Figure D.16 shows powder blue, light blue, green, yellow and orange colours with

errors of -1.18 mm, -0.46 mm, 0 for green, 0.46 mm and 0.82 mm respectively.

The Gray areas were made due to poor cutting quality as shown in Figure D.15

which results to difference in comparison out of the scale range (2.25 mm to -2.25

mm).

275

APPENDIX D. MAKO AN BLUE BELT TIBIA CUT RESULTS

D.2 Blue Belt

Figure D.17: Blue Belt Tibia Bone 2 - Cut Only View

Figure D.18: Blue Belt Tibia Bone 2 - 3D Comparison View

Figure D.18 shows blue, powder blue, light blue, green and two scales of orange

colours with errors of -2.24 mm, -0.82 mm, -0.46 mm, 0 for green, 0.82 mm and

1.18 mm respectively.

276

APPENDIX D. MAKO AN BLUE BELT TIBIA CUT RESULTS

Figure D.19: Blue Belt Tibia Bone 3 - Cut Only View

Figure D.20: Blue Belt Tibia Bone 3 - 3D Comparison View

Figure D.20 shows blue, powder blue, light blue, green, yellow and orange colours

with errors of -1.89 mm, -1.18 mm, -0.46 mm, 0 for green, 0.46 mm and 0.82

mm respectively.

277

APPENDIX D. MAKO AN BLUE BELT TIBIA CUT RESULTS

Figure D.21: Blue Belt Tibia Bone 4 - Cut Only View

Figure D.22: Blue Belt Tibia Bone 4 - 3D Comparison View

Figure D.22 shows blue, powder blue, light blue, green, yellow and red colours

with errors of -2.24 mm, -0.82 mm, -0.46 mm, 0 for green, 0.46 mm and 2.24

mm respectively. The missing part of the bone on the left was due to excessive

burr and cutting.

278

APPENDIX D. MAKO AN BLUE BELT TIBIA CUT RESULTS

Figure D.23: Blue Belt Tibia Bone 5 - Cut Only View

Figure D.24: Blue Belt Tibia Bone 5 - 3D Comparison View

Figure D.24 shows blue, powder blue, light blue, green, yellow and orange colours

with errors of -2.24 mm, -1.53 mm, -0.46 mm, 0 for green and 0.46 mm respec-

tively.

279

APPENDIX D. MAKO AN BLUE BELT TIBIA CUT RESULTS

Figure D.25: Blue Belt Tibia Bone 6 - Cut Only View

Figure D.26: Blue Belt Tibia Bone 6 - 3D Comparison View

Figure D.26 shows powder blue, light blue, green, orange and flame colours with

errors of -1.21 mm, -0.51 mm, 0 for green, 0.86 mm and 1.9 mm respectively.

280

APPENDIX D. MAKO AN BLUE BELT TIBIA CUT RESULTS

Figure D.27: Blue Belt Tibia Bone 7 - Cut Only View

Figure D.28: Blue Belt Tibia Bone 7 - 3D Comparison View

Figure D.28 shows blue, light blue, green, yellow and orange colours with errors

of -1.89 mm, -0.46 mm, 0 for green, 0.46 mm and 0.82 mm respectively.

281

APPENDIX D. MAKO AN BLUE BELT TIBIA CUT RESULTS

Figure D.29: Blue Belt Tibia Bone 8 - Cut Only View

Figure D.30: Blue Belt Tibia Bone 8 - 3D Comparison View

Figure D.30 shows powder blue, light blue, green, yellow and orange colours with

errors of -0.99 mm, -0.67 mm, 0 for green, 0.67 mm and 1.93 mm respectively.

The red areas on the right side because of the bone lib and will be neglected.

282

APPENDIX D. MAKO AN BLUE BELT TIBIA CUT RESULTS

Figure D.31: Blue Belt Tibia Bone 9 - Cut Only View

Figure D.32: Blue Belt Tibia Bone 9 - 3D Comparison View

Figure D.32 shows blue, powder blue, light blue, green, yellow and orange colours

with errors of -1.89 mm, -0.46 mm, 0 for green, 0.46 mm and 0.62 mm respec-

tively.

283

