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Abstract

In the present work, thermovibrationally-driven flows and ensuing particle accumula-

tion phenomena are studied in the context of a microgravity environment. The problem

is addressed numerically through solution of the governing equations for fluid flow and

particle transport (Eulerian-Lagrangian one-way coupled approach). This work follows

a logical approach with cases of increasing complexity being analysed as the discussion

progresses, in particular, first the properties of this type of fluid flow are investigated

in the single-phase (pure fluid) situation considering both two-dimensional (2D) and

three-dimensional (3D) geometries. Then the multiphase problem, resulting from the

addition of solid particles, is examined. The role played by the direction of the vibrations

with respect to the temperature gradient is also investigated. Starting from the situa-

tion with concurrent vibrations and temperature difference (parallel case), it is shown

that complexity of this situation essentially stems from the properties that are inherited

from the corresponding case with steady gravity, i.e., the standard Rayleigh–Bénard

convection. The need to overcome a threshold to induce convection from an initial qui-

escent state, together with the opposite tendency of acceleration to damp fluid motion

when its sign is reversed, causes a variety of possible solutions that can display syn-

chronous, non-synchronous, time-periodic, and multi-frequency responses. Moreover,

as the constraint of two-dimensionality is removed, the intrinsically three-dimensional

nature of the problem and its sensitivity to the thermal boundary conditions can have a

remarkable influence on the multiplicity of emerging solutions and the system temporal

response even if a geometry as simple as a cubic enclosure is considered. If solid particles

are added to the fluid, the hallmark of the phenomena occurring in this case is an endless

squeezing and expansion of particle formations along the direction of the temperature

gradient. A kaleidoscope of previously unknown solutions is also reported for the situ-

ation with vibrations perpendicular to the temperature gradient (perpendicular case)

giving emphasis to some still poorly known aspects such as the complex nature of the

textural transitions undergone by the time-averaged flow as the Gershuni number is in-

creased. Chaotic states are enabled when larger frequencies of vibration are considered.
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When particles are added in these cases, while clusters with a perfect (very regular and

stationary) morphology emerge in laminar flow, when thermovibrational flow is chaotic

the topology of the structures is relatively irregular and time-dependent. Nevertheless,

precise trends and relationships can be established if specific problem ‘statistics’ are

connected to the behaviour of the temporally evolving structures. Finally, cases are

considered where the imposed temperature gradient is not unidirectional, i.e. the direc-

tion of such a gradient is allowed to change inside the fluid. The relationship between

the multiplicity (N) of the loci of particle attraction and the inhomogeneities in the

temperature field is studied. It is shown that N can exceed the limit N = 2 found in

earlier studies and that a zoo of new particle accumulation structures show up, whose

ranges of existence depend on the amplitude and frequency of vibrational acceleration,

the particle Stokes number, the orientation of vibrations, and the number of inversions

in the direction of the temperature gradient. Some experimental activities conducted

to support the so-called PARTICLE VIBRATION microgravity experiment are also

presented.
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Chapter 1

Introduction

1.1 Problem statement, purpose statement and research

questions

Problem statement

Today, thermal convection in fluids is at the base of almost all engineering and in-

dustrial processes here on earth. As the concepts of long-duration space flight, deep

space exploration and the colonisation of other planets become ever more tangible, the

problem arises that many fluid dynamic processes humans depend on here on earth,

cannot occur in space due to the lack of gravity. Indeed, when multiphase fluid sys-

tems are considered, the sedimentation, solidification and other processes that occur on

earth due to material density differences, cannot be achieved. This poses an immense

challenge to the field of material processing in low gravity environments. Developing

better control of fluids and materials in microgravity will be of crucial importance for

the future exploration of space. In this regard, of special interest is the elaboration of

new contactless strategies for the manipulation of fluid phases, solid phases and related

combinations and mixtures.

Purpose statement

The purpose of this research is to explore a specific fluid dynamic mechanism known as

thermovibrational convection: a type of thermal convection that occurs in microgravity
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when vibrations are applied to a differentially heated body of fluid. In recent years,

research in the field of thermovibrational convection has produced promising results in

developing the understanding of the behaviour and control of fluids in microgravity.

The goal of this research is to fill the gap associated with the lack of knowledge

surrounding the field of thermovibrational convection. More specifically, this work will

on the one hand explore new fluid states that can arise when novel combinations of

parameters associated with thermovibrational convection are considered and, on the

other hand, will explore the effects of this extended range of parameters on particle

accumulation phenomena in thermovibrationally driven fluids.

Research questions

The following questions can therefore be posed:

What thermovibrational effects can be achieved in a fluid, when:

• the direction of vibration is changed?

• turbulent thermovibrational convection is considered?

• various sets of thermal boundary conditions are applied to the system?

and,

• How do theses thermovibrational effects modify the behaviour of particle accu-

mulation structures in multiphase systems?

This thesis will build on the current knowledge surrounding multiphase thermovi-

brational systems, indeed, at the time of writing, an experiment known as PARTICLE

VIBRATION has recently been launched into space, to the International Space Sta-

tion. This experiment sits at the root of the current work and is described in the next

section.
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1.2 The PARTICLE VIBRATION project

The T-PAOLA Project (Thermovibrationally-driven Particle self-Assembly and Order-

ing mechanisms in Low grAvity), also know as the PARTICLE VIBRATION project,

is a fluid dynamic experiment that was launched to the International Space Station

on the 22nd November 2022. The project is a collaboration between the University of

Strathclyde, the UK Space Agency, and the European Space Agency and headed by

Principal Investigator Dr. Marcello Lappa. The underlying scientific principal of the

experiment can be described as follows:

Fluid and solid particles are enclosed in a cavity (i.e. a box) which is vibrated

in microgravity conditions (on the International Space Station). When this fluid is

subjected to vibrations and is heated from the side or from the bottom, a phenomenon

known as thermovibrational convection manifests itself. When small particles (akin to

the likes of dust or sand) are added to the fluid, the behaviour of the flow can lead

to the accumulation of the particles in specific regions of the container and form well

defined structures.

The experiment sent to the ISS is based on numerical studies conducted largely by

Dr. Marcello Lappa [1] and the theory on which the experiment is based was already

largely in place prior to the beginning of this thesis. This work however aims to in-

vestigate (numerically) new flow types (with and without the addition of particles) in

order to identify possible mechanism of flow control and, in turn, the control of particle

accumulation in fluids in an attempt to answer the aforementioned research questions.

1.3 Thesis scope and structure

This thesis is organised in three parts:

Part.I of this thesis presents firstly in Chapter 2, a review of the existing literature

and a discerning of the current level of knowledge in the field. Chapter 3, presents the

mathematical models and numerical framework employed for the numerical simulations.
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Part.II presents the authors results and findings and is structured as follows: the

first three Chapters (Chapters 4, 5 and 6) explore pure thermovibrational flow, without

the addition of particles. These three chapters aim to answer the first three research

questions:

What thermovibrational effects can be achieved in a fluid, when:

• the direction of the vibration is changed?

• turbulent thermovibrational convection is considered?

• various sets of thermal boundary conditions are applied to the system?

The last three chapters (Chapters 7, 8 and 9), attempt to answer the last research

question:

• how do various thermovibrational effects modify the behaviour of particle accu-

mulation structures in multiphase systems?

Finally, Part.III (Chapter 10), provides the reader with the general conclusions of

the research carried out in the thesis, and a concise answer the the research questions.
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Chapter 2

Literature review

2.1 An introduction to orbiting platforms

The International Space Station (ISS), launched in 1998 is the most recognised platform

for microgravity experimentation due to its exhibition of remarkable engineering and

international collaboration. However, before diving into an in-depth appraisal of the

ISS, it must be noted that many other altered gravity or reduced gravity platforms are

available to researchers for scientific experimentation. These platforms vary in g-level,

duration, and accessibility and have been continuously evolving since Boeing’s KC-135

aircraft was used for microgravity research in the 1960’s. The ensuing microgravity

platforms include, to name a few; the Apollo module (1964), Skylab (1973), SpaceLab

(1974), MIR Space Station (1986) EURECA retractable space module (1992), multiple

iterations of drop tower/shafts, sounding rockets and of course, parabolic flights. The

most commonly used microgravity platforms in Europe today (excluding the use of the

ISS) include, the ZARM drop tower, European Space Agency (ESA) sounding rockets

including TEXUS, MASER and MAXUS, and the NoveSpace A310 Zero-G parabolic

flight aircraft. Similar platforms have been developed by non-European bodies, however

these three types of platforms are sufficient to inform the reader on the scope of modern

microgravity research in the context of this literature review.

The advantage of these platforms is that they are extremely accessible due to their

relatively low cost. Not only do they host academic research experiments but they are

also accessible to students via programs such as the ESA Academy campaigns. The
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drawback of these more accessible options is that the microgravity periods available

range from 9 seconds (drop tower) to 13 minutes (MAXUS sounding rocket). When

designing an experiment for microgravity there is an inevitable trade-off between the

quality of the microgravity and the time period offered by the platform. For example,

the ZARM drop tower located at the University of Bremen in Germany, offers up to 9

seconds of almost pure zero gravity with the residual gravity sitting at one millionth

of earth’s 9.81m/s2 (10−6g), whereas the sounding rocket MAXUS, launched from the

Esrange launch site in northern Sweden, offers 13 minutes of 10−4g . Other constraints

such as payload size and free floating options are also to be taken into account depending

of the nature of the proposed experiment.

Now that a few examples of microgravity platforms have been discussed, the fo-

cus may be shifted onto the host of the T-PAOLA project, the ISS. With the longest

available microgravity duration periods, a near zero-g environment and a myriad of

experimental facilities, the ISS is the preferred platform for most microgravity exper-

iments. It hosts a multitude of interdisciplinary experiments, these include not only

fluid experiments such as flow and heat transfer, solidification and multi-phase flow

experiments, but also life science experiments including, biological, chemical, physio-

logical, physical and also experiments external to the station exposed to the radiation

of space. Although it is of popular belief that the microgravity environment of the ISS

is the same as that of the vacuum of space, this is not entirely true. Only the station’s

centre of mass is truly in a zero-gravity state, (this centre of mass not being a physical

part of the structure). The rest of the station is subject to crew activities, mechanical

disturbances due to systems operation and equipment, and external factors such as

atmospheric drag, rotational forces and more. These activities and disturbances create

vibrations on the ISS known to range from less than 10−6g for low-end frequencies and

over 10−2g for high-end frequencies.

The motivation behind providing such an introduction to microgravity platforms is

due to the fact that this thesis will concentrate on the effect of microgravity and its re-

lated disturbances (vibrations) on fluid dynamic experiments and buoyancy convection

problems in a microgravity environment.
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As stated in the introduction (Chap.1), a specific type of buoyancy convection,

known as thermovibrational convection, acts as the focal point of this thesis. Before

attempting to understand the underlying principals behind thermovibrational flow how-

ever, one must be comfortable with the concept of standard buoyancy convection. The

next part of this literature review aims to provide the reader with such an understand-

ing.

2.2 An introduction to buoyancy convection

The field of buoyancy convection is a widespread and fruitful field with a high level

of applicability across many different industrial and natural processes [2]. From every-

day objects and processes such as boiling water in a pan, to highly complex industrial

applications and materials processing techniques such as crystal growth [3–6], the un-

derstanding of buoyancy convection is at the root of many technological advancements

achieved in modern times. In this section, two fundamental types of buoyancy con-

vection are introduced: Hadley flow and Rayleigh-Bénard convection. Although they

result in different flow characteristics (due to differences in configuration that will be

discussed later on), these two types of convection rely on the same driving force: grav-

ity (the buoyancy force). On earth, when a fluid is heated, the density of the hot fluid

will decrease causing it to rise. Similarly, as it cools, the fluid migrates from the top

back to the bottom of the pan as a result of the increased density of the colder fluid.

Assuming the pan is continuously heated from below, convection currents will arise.

Although the reader may easily visualise and relate to this concept, one key component

for the advent of buoyancy convection is often taken for granted: the gravity vector. If

the gravity vector is removed, and no other forces are applied to the pan (e.g., surface

tension forces are ignored), the hot fluid would simply remain at the bottom of the pan.

From this, the salient characteristics for the onset of buoyancy convection can be iden-

tified: a temperature difference across the fluid and a gravity vector, hence equipping

the reader with some key concepts in preparation for the review of both the Hadley

Flow and Rayleigh-Bénard convection.
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The direction of the temperature gradient with respect to the gravity vector is

known to be an essential factor in determining the properties of the flow. This concept

applies to both the stability scenario (i.e., the hierarchy of bifurcations undergone by

the considered system when the applied temperature difference is increased) and the

related patterning behaviour inside the fluid (i.e., flow topology, patters and regimes).

The fundamental difference between the two types of convection comes down to the

direction of the temperature gradient with respect to the gravity vector. In the case of

the Hadley flow, the body force is set perpendicular to the temperature gradient, and in

the case of Rayleigh-Bénard convection the body force is set parallel to the temperature

gradient. This rigid classification of the direction of the temperature gradient can also

be found in companion problems where gravity is replaced by surface-tension effects

(that is the scenario where fluid systems posses a free surface, e.g., an interface where

a liquid is in contact with an immiscible fluid). In this case, the fluid flow behaves

differently according to the angle θ1 formed by the temperature gradient and the free

interface. In particular, θ1 = 0◦ and 90◦ correspond to the so-called thermocapillary and

Marangoni–Bénard convection types, respectively. Although investigation into these

types of convection is outside the scope of this thesis, it is useful to introduce such

concepts in order to highlight the complex yet subtle system configurations than can

lead to the onset of thermal convection.

In this work the terms, thermo-gravitational convection and natural convection are

synonymous where both terms are used to describe buoyancy convection induced by

steady gravity in terrestrial conditions.

Now that the general concept of thermal convection has been introduced, the rel-

evant literature for both the problem of Hadley flow and Rayleigh-Bénard convection

can be explored.

2.3 Hadley flow

The first observations of natural convection where made by Hadley in 1735 [7], where

he put forward the first theory explaining the behaviour of convection currents on

earth known as trade winds. The theory suggests that, as the local temperature at the
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equator is higher, the air located at that point will heat up and rise due to a decrease

in air density. The air will then cool and proceed to circulate towards the (colder)

north and south poles, giving rise to atmospheric circulation. Although other factors

contribute to this atmospheric circulation such as the moisture content of the air and

its compressible nature [8], scientists and engineers (not exclusively pertaining to the

field of atmospheric sciences) where quick to adopt a simplified model of the Hadley

flow as shown in Fig.2.1 (also known as the differentially heated cavity).

Figure 2.1: Hadley flow configuration

When defining the mathematical model ascribed to the Hadley flow, the main char-

acteristic of said model is that the temperature gradient must be perpendicular to the

gravity vector.

This configuration has, over the years, become a benchmark for numerical simula-

tions, due to its simplicity and the high number of intrinsic symmetries (reflectional

symmetries with respect to the vertical, horizontal and diagonal directions) that can

be obtained and subsequently disrupted. Indeed when this configuration is considered

and the flow is unbound by vertical side walls, three distinct types of instabilities can

occur within the fluid. These include:

• Two-dimensional transverse rolls
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• Stationary longitudinal rolls

• Oscillating longitudinal rolls

Figure.2.2 illustrates the two base types of instabilities that can occur when Hadley

flow is considered: transverse rolls and longitudinal rolls. The oscillating longitudinal

rolls occur when a standing or travelling wave appears in the flow whose presence leads

to the flow becoming time-dependent. In the presence of a standing wave, the direction

of rotation of the rolls is prone to change in time, whereas the existence of a travelling

wave leads to a time-dependent migration of the axis of the longitudinal rolls in the z

direction.

Figure 2.2: Common instability modes; transverse rolls (top) and longitudinal rolls
(bottom) that appear when the Hadley type flow is considered

These instability modes were studied in depth by Roux et al. [9] and Kuo and

Korpela [10], who found that the manifestation of these instabilities depends on the

Prandlt number of the fluid, where the Prandtl number is a dimensionless number

defined as the ratio of momentum diffusivity, also known as kinematic viscosity (ν

in m2/s) and thermal diffusivity (α in m2/s) giving: (Pr = ν/α), and the Grashof

and wave number of the system, the Grashof number being a non-dimensional number

approximating the ratio of buoyancy to viscous force acting on a fluid, defined as:

Gr =
βT∆TL

3g

ν2
(2.1)
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where βT is the coefficient of thermal expansion (K−1) ∆T is the temperature difference

across the system (in K), L is the characteristic length of the cavity (in m) and g is

the steady gravity vector (in m/s2). Finally, the wave number being a scalar quantity

representing the spatial frequency of the flow. This introduction of possible instability

modes serves the simple purpose of informing the reader of the existence of such modes

and their dependence on system parameters.

The question of “boundness” (i.e. a digression from the infinite layer shown in

Fig.2.2 to the case where vertical side walls are imposed on the cavity, as shown in 2.1)

was largely unknown prior to the works of de Vahl Davis [11] and De Vahl Davis and

Jones [12]. These works provided a (2D) solution for the problem of the differentially

heated cavity at low Prandtl numbers (Pr = 0.71), and a moderated range of Rayleigh

numbers (103 < Ra < 106), where the Rayleigh number dictates the “strength” of the

convection and is defined as:

Ra =
βT∆TL

3g

να
(2.2)

The reader will notice here that the Rayleigh number is simply the product of the

Prandtl and the Grashof number.

De Vahl Davis [11] and De Vahl Davis and Jones [12] found that, for the case of

a square cavity (i.e., aspect ratio A = 1) upon increasing the Rayleigh number (from

Ra = 103 to Ra = 106), the patterning behaviour of the flow evolved from a singular

roll to a state where multiple, symmetrical rolls arise in the cavity space, providing

confirmation of the dependence of the stability of the Hadley flow on the Rayleigh

number. It can be noted here that, in the case of Hadley flow, convection (i.e. fluid

movement) will occur for all non-zero values of ∆T , i.e., when Ra > 0.

In the present work, only square cavities are considered, where side walls are im-

posed on the system, resulting in simple two-dimensional boxes and three-dimensional

cubes. Further insight into more specific instability mechanisms will be elaborated upon

in Sect.2.8. This section has attempted to provide a brief summary of the literature re-

lating to the Hadley flow. What follows is an introduction to it’s sister type of buoyancy

convection: Rayleigh Bénard convection.

13



Chapter 2. Literature review

2.4 Rayleigh-Bérnard convection

Rayleigh-Bénard (RB) convection has enjoyed higher levels of attention when compared

to the Hadley flow. In this case the temperature gradient is parallel to the gravity vector.

The superposition of a vertical temperature gradient onto an (also vertical) gravity force

is a common phenomena in many natural and industrial applications. RB convection

is also commonly refereed to as a fluid system “heated from below”, and is illustrated

in Fig.2.3.

Figure 2.3: Rayleigh-Bénard flow configuration

Unlike the Hadley flow, thermal convection begins in RB problems when a critical

value of the Rayleigh number is exceeded (Rac). This is due to a competition between

the buoyancy forces and viscous forces acting simultaneously on the fluid. The viscosity

of the fluid has a stabilising effect and therefore for small temperature gradients (∆T ),

the fluid remains at rest. The critical Rayleigh number for the onset of convection for an

infinite horizontal layer was found to beRac = 1708 by Chandrasekhar in 1961 [13]. This

cirtical Rayleigh number is known to depend however on the boundary conditions of the

system [14]. If stress-free isothermal horizontal boundaries case considered, Rac = 657,

if no-slip isothermal horizontal boundaries are considered, Rac = 1707 and finally, if
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a stress-free thermally insulated upper and a no-slip isothermal lower boundary are

considered, Rac = 669.

At the onset of convection (Ra = Rac), when an infinite (non-bounded) fluid layer

is considered, straight parallel rolls will arise in the fluid similar to the transverse roll

instability discussed in Sect.2.3, as shown in Fig.2.4.

Figure 2.4: Basic rolls appearing for Rayleigh-Bénard convection in a fluid layer heated
from below

Upon increasing Ra, the flow is prone to develop many type of instabilities (many

more than in the case of Hadley flow) including: the Eckhaus instability, the oscilla-

tory skewed varicose instability, the cross-roll instability, the oscillatory instability with

travelling waves, the zig-zag instability, the knot instability and the oscillatory blob in-

stability. These instabilities where coined in works carried out by Busse [15, 16] and

constitute in their own right an exciting field of study. Therefore, this short descrip-

tion serves simply to inform the reader, again, on their existence and with the notion

that, when RB convection is considered, a multitude of instabilities is possible. These

instabilities are again dependent on the Prandtl number, wave number and Rayleigh

number of the system.

The analytical solutions found by Busse [15, 16] were also complemented by the

work of Davis [17], where the infinite layer problem is replaced with the problem where

solid vertical boundaries are imposed on the system. The salient findings of this work

are the dependence of the number of rolls on the aspect ratio of the cavity and that,

with an increase in the horizontal length of the cavity, comes a decrease in Rac.

Numerical simulations of the two-dimensional (2D) bounded RB problem, were

carried out chiefly by Goldhirsch [18], who for the first time, observed a multitude of

textural transitions in both laminar and turbulent conditions. These textural transitions
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where later classified in a clearer way by Mizushima and Mizushima and Adachi [19,

20] and defined as:

• (ss): The symmetric–symmetric mode. This mode is characterized by an even

number of rolls along the two coordinate axes. It reduces to a configuration with

the central symmetry if the same number (m) of rolls affects both the x and y

directions, i.e., mx = my.

• (sa): The symmetric–antisymmetric mode. This mode displays symmetry only

with respect to the y-axis; accordingly, the flow typically features an odd number

of rolls along y and an even number of rolls along the other axis.

• (as): The antisymmetric–symmetric mode. This mode displays symmetry only

with respect to the x-axis; accordingly, the flow typically features an odd number

of rolls along x and an even number of rolls along the other axis.

• (aa): The antisymmetric–antisymmetric mode. No symmetry is retained in this

case, as the number of rolls is odd along both axes (a single column being obtained

for my > mx = 1)

This classification is summarised in Fig.2.5.

Figure 2.5: Classification of possible symmetries resulting from buoyancy convection in
2D cavities

In this section, the salient characteristics of RB convection have been identified. In

the next section, the effects of transition from a 2D to a 3D system in RB convection

is discussed.
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2.5 Effects of three dimensionality on RB flow

When it comes to carrying out numerical simulations of buoyancy convection driven

flows, many authors have limited themselves to considering two-dimensional problems

because these provide good insight into the physical response of a system without being

overly demanding from a computational point of view. However, when the 3rd dimension

is considered, a new degree of freedom is introduced into the system, allowing for more

evolved fluid states. Here are reported some key developments in the field of standard

buoyancy convection when three dimensionality is employed.

In the case of RB convection, the (2D) works of Mizushima [19, 20] describing

the different symmetries and relating transition behaviours in a square cavity heated

from below (discussed in Sect.2.4) have been instrumental in providing valuable base

information for many studies relating to thermal convection and patterning behaviours.

Mizushima later produced a 3D study treating RB convection [21], this time in a

parallelepiped cavity, demonstrating that the addition of a third-dimension results in

two- and three-dimensional fluid symmetries including planar and toroidal flow fields,

shown in Fig.2.6. In addition to Mizushimas works, the case of the cubic cavity subject

to steady gravity heated from below has also been treated by Pallarès et al. both

numerically [22] and experimentally [23]. In their studies seven flow structures were

identified, including single roll, two roll and toroidal-type rolls.

Puigjaner et al. [24, 25] conducted a stability analysis of this problem and also

found that by increasing the strength of convection (i.e. the Rayleigh number), a se-

ries of possible steady, stable and unstable patterns emerge resulting in a complex

bifurcation diagram. The findings of Puigjaner et al. [24, 25] however, are in some cases

inconsistent with those of Pallarès et al. Some solutions identified by Pallarès et al. were

not found by Puigjaner et al., in addition, the stability ranges of certain solutions are

found to be different when comparing both authors results. Despite these differences,

these studies indicate that the study of thermal convection in a 3D square cavity offers

a rich playground for researchers due to the extent of possible parametric variations.

Other variations such as different heating conditions and driving forces have been ad-
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Figure 2.6: Example of a planar extension of a 2D flow pattern (left) and example of a
3D toroidal flow pattern (right)

ditionally investigated by Lappa [26], where RB convection, lateral heating, Marangoni

flow (i.e. surface tension driven flow) and mixed driving force configurations have been

considered. In this work it is argued that the discrepancies found between Pallarès et

al. and Puigjaner et al. [22–25] can be justified when considering that the transition

from one solution to another, upon an increase in Ra, is dependent of the presence of

thermal and/or momentum boundary layers, which in turn, depends on the value of

Pr, therefore making the comparison of transitional and bifurcation behaviour between

cases with different values of Pr ambiguous. This is also acknowledged by Puigjaner et

al. [25], where it is reported that for the same value of Ra, the Nusselt number (i.e. the

ratio of convective to conductive heat transfer at a boundary in a fluid system) varies

considerably in the range 0.71 < Pr < 10 and then tends to an asymptotic value for

Pr > 10.

In addition to the works discussed above, the work of Gelfgat [27], investigated

in more detail the effect of varying the aspect ratio of the cavity and it’s effect on

Rac, when 3D flows are considered. Gelfgat [27] reports on the numerous patterns that

occur when the aspect ratio is varied. The similarities between 2D and 3D models are

assessed and the conclusion is made that there are several modes of the most dangerous
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perturbation which replace each other when A is varied, however, the spectrum of

possible perturbations is more complicated in the three-dimensional case.

From this section, it can be seen that the possible solutions associated with RB

convection when considering a three dimensional problem become more challenging to

predict and interpret than when the (simple) 2D case is considered. None the less, these

studies provide a valuable database of knowledge from which can be retrieved general

analysis tools when moving to the problem of three dimensional standard buoyancy

and thermovibrational convection.

2.6 Influence of thermal boundary conditions on flow be-

haviour in RB convection

The focus can now be turned to other factors that have shown to contribute to the

alteration of flow behaviour in RB convection. One system property that has shown to

have significant effects of the onset of convection and system stability is the thermal

boundary conditions applied to the non-isothermal walls of the cavity. These are tradi-

tionally set either as perfectly conducting (where a linear temperature profile is applied

along the side walls, where T = y) or as adiabatic (where no heat transfer into or out

of the system occurs along the side walls, where Q̇ = 0 for 0 < 1 < y ) .

Gershuni and Zhukhovitskii [28] report in early studies, that the thermal conditions

applied to the side walls influence the onset of 3D RB convection. For the case of

perfectly conducting side walls, the critical Rayleigh number for the onset of convection

is found to be higher than for the perfectly insulating case (Rac = 8334 vs Rac = 2432

respectively), which shows that systems possessing perfectly conducting side walls are

more stable than their sister cases possessing adiabatic side walls. Indeed, imposing

a linear temperature profile along the side walls sets an additional obstacle for the

buoyancy force to overcome in order to generate convection.

Moreover, Mizushima [19] revealed that the boundary conditions at the wall can

stabilise or destabilise the neutral mode curves (i.e., the curves that represent the

passage from one mode to another at Rac). Indeed, looking at Fig.2.7, it can be seen that
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a slight oscillation is visible in the neutral mode curves (Rac vs A) for the case where

fully adiabatic walls are considered. This indicates that the inclusion of conducting side

walls leads to a smoother transition in system responses when a given parameters is

varied (for a given aspect ratio A).

Figure 2.7: Rac vs A in standard RB convection the case where the side walls are
perfectly conducting (left) and adiabatic (right). The solid and dashed lines show the
first mode and the second mode of convections respectively. Figure adapted from [19].

Another study by Mizushima [21] examined the onset of 3D RB convection, and

found that the preferred mode at the onset is not always two-dimensional finite rolls

with axes parallel to the shorter side which differs from the conclusion derived for the

case of perfectly conducting sidewalls by Davis [17] (as aforementioned in Sect.2.4, and

illustrated in Fig.2.6). This was found to be due to the different boundary conditions

applied to the side walls. In the case of Davis [17], perfectly conducting side walls are

considered where as Mizushima [21] considers adiabatic side walls. This comparison,

reinforces the idea that the conducting nature of the side walls exhibits a stabilising

effect on the flow as less modes are observed in when conducting walls are considered.

The effect of wall conditions on flow structures has also been investigated exper-

imentally by Pallarès et al. [23] for high Prandtl numbers (Pr=130) over a range of

moderate Rayleigh numbers (Ra ≤ 8× 104). Both wall conditions yield similar results
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in terms of flow patterns and transitions up to Ra < 5 × 103. After that, the flow

structures formed differ for both conditions and occur at different values of Ra.

The findings summarised here, lead to the conclusion that the behaviour of a system

can vary depending on the choice of thermal boundary conditions at the side walls. This

is an important notion when attempting to determine the factors that affect both the

onset of convection and the resultant modes and patterning behaviours that occur upon

an increase in Ra.

After having taken a look at the spatial instabilities that occur in both Hadley flow

and RB convection, the concept of textural transitions can be briefly introduced here.

This term is used throughout this work to describe the changes in patterns and flow

morphologies when considering both the velocity and temperature field of the fluid.

Having provided the reader with some fundamental knowledge regarding standard

buoyancy convection, the chief idea on which this thesis takes root is now introduced:

thermovibrational convection.

2.7 Thermovibrational convection

2.7.1 Seminal works

The field of thermovibrational convection has been underway since the 1960’s and was

pioneered by a number of salient authors whose works and contributions to the field

are synthesized below.

The problem of thermovibrational convection introduces an additional degree on

freedom (i.e. vibrations) to the classical problem of buoyancy convection, therefore two

main types of studies can be carried out from here. Firstly, the problem of terrestrial

thermovibrational convection, where vibrations are simply added to the system, and

secondly, the case of pure thermovibrational convection where microgravity conditions

are assumed (i.e where the vibrations are the only driving force). Figure 2.8 illus-

trates the different configurations possible when considering thermovibrational flow in

a square cavity.
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Figure 2.8: Archetype configurations for thermovibrational convection

In addition to these binary problems (where the vibrations, the temperature gradi-

ent and the gravity vector are either perpendicular or parallel to one another), other

scenarios exist where the angle of vibration (ϕ) is parametrically varied from 0 to 90◦

with respect to the axis of the thermal gradient.

This section is limited to the consideration of pure thermovibrational convection, as

all studies carried out in the scope of this thesis are carried out under the assumption

of a microgravity environment. The interested reader is urged to consult the seminal

works on thermovibrational flow in terrestrial conditions carried out by Zenkovskaya

and Simonenko [29], Geshuni et al. [30], Gresho and Sani [31], Biringen and Peltier

[32] and Biringen and Danabasoglu [33]. These studies have founded a knowledge base

surrounding thermovibrational convection and identified some of the key parameters

responsible for the onset of convection, the stability limits and the possible flow patterns

adopted by the flow. These key parameters include:

• the direction of the vibrations with respect to the temperature gradient

• the frequency of the vibrations

• the magnitude of the temperature difference

• the shape of the cavity

• the inclusion or exclusion of side boundaries perpendicular to the heated and

cooled walls
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A key finding that can be reported here before moving to the case where only vibra-

tions are considered is that the works cited above identified an important stabilisation

mechanisms in RB type thermovibrational convection: RB convection is mitigated by

high frequency vibrations only if they are parallel to gravity.

The concept of thermovibrational flow however was introduced by Gershuni and

Zhukhovitskii in 1979 [34] and elaborated upon in further works in 1982 [35]. In these

works the static gravity vector is removed and the vibrations become the sole driving

force acting on the system. It can be noted here that when thermovibrational convection

is considered, the the standard Rayleigh number Ra is replaced by the vibrational

Rayleigh number (Raω):

Raω =
bω2βT∆TL

3

να
(2.3)

where b is the displacement of the cavity (in m) and ω is the angular frequency (in

rad/s).

The notion of instantaneous and time averaged (mean) effects should also be in-

troduced at this stage. The instantaneous effects of thermovibrational flow, are those

that can be seen by an observer in real time. Time-averaged effects occur due to the

non-linear characteristics of the fluid flow. These two effects are characterised by the

aforementioned vibrational Rayleigh number (Raω) and the Gershuni number (Gs)

respectively. The Gershuni number is defined as:
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As the frequency of the vibrations is decreased, the fluctuating flow component

tends to become dominant whereas the time-averaged part becomes negligible [36].

In this case Raω is used to characterise the stability boundaries of the flow. While

the time-averaged flow scales with Gs, the instantaneous (fluctuating) flow scales with

Raω.
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One poignant finding in this collection of works , is that by imposing only vibrations

onto the system (in the limit of heigh frequency, low amplitude vibrations, also known as

Gershuni’s model), Gershuni and colleagues where able to evaluate the effect of varying

the angle of vibration on the flow, without the interference of gravity. The mathematical

model used notably in Ref.[35] is shown in Figure 2.9, where the fixed isothermal walls

are set at x=0 and x=1, and the angle of vibrations with respect to the temperature

gradient (ϕ) is varied (from 0 to 90◦) parametrically. The stability boundary ( i.e. the

value of Gs for which the flow becomes unstable) is reported as a function of (ϕ). In

this case, Gershuni and colleagues consider the onset and stability of the time-averaged

flow in the framework of a simplified model (potential flow formulation) that assumes

infinite frequency and negligible amplitude. In the framework of this approximation,

the time-averaged flow is dominant, the fluctuating flow component (difference between

effective and time averaged velocity) is negligible.

It is shown that for ϕ=0 (RB type convection) the system is stable for all values

of Gs and that the stability limit decreases quasi-proportionally with an increase in

ϕ, with the final case of ϕ=90° having a relatively low critical Gershuni number of

Gs = 2129 [37].

Figure 2.9: Variation of ϕ

Gershuni’s work [37] also identifies the patterning behaviour of the flow, where, in

the case of ϕ = 90, two types of flow configurations corresponding to two levels of

instability are identified, the first, at the aforementioned critical value of Gs = 2129
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and the second at Gs = 2950. In the first case the fluid is known to develop convective

cells where the vertical extension of the individual cells (perpendicular to the x axis in

Fig.2.9) is approx. equal to the characteristic length of the cavity. The second instability

is described as a two-level cell configuration. This parametric variation of ϕ provides

a first interpretation of both the stability limits of Rayleigh-Bénard and Hadley flow

type pure thermovibrational convection.

The effect of imposing solid boundaries (i.e a cavity of finite length) is investigated

by Gershuni et al. [37]. When the vibrations are perpendicular to the temperature

gradient (i.e. the Hadley-type flow, as illustrated in Fig.2.10), for the case of the square

cavity, mechanical equilibrium is found to be impossible, and convection takes places for

all non-zero values of ∆T . This is in keeping with the literature surrounding standard

Hadley flow type convection reviewed in Sect.2.3.

Figure 2.10: Case where vibrations are parallel to the isothermal side walls

The first state, characterized as the ground state by Gershuni [37] is the case where

four vortices appear (also known as the quaduropolar field). This state occurs for rela-

tively low values of Gs (Gs < 1.5×104). When Gs is increased beyond this value, a new,

three-roll configuration appears (the inversional symmetry pattern), characterised by a

central diagonal roll and two corner rolls. These two base states are shown in Fig.2.11.

When L is increased (i.e. the aspect ratio of the cavity is increased) the ground

state is still visible for low values of Ra, where the four rolls reside in proximity to

the top and bottom solid boundaries and the temperature filed is undisturbed and can
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Figure 2.11: The classical transition from the so-called quadrupolar flow field to the
inversional symmetry pattern can be seen, as the Gershuni number is increased (from
[38])

be assimilated to a linear distribution between the vertical cold and hot plate. It can

be noted here that the value of Gs at which the roll-configuration changes to the next

metastable state is lower when L is increased. In the case of the infinite layer instability

occurs at Gs = 2129, resulting in a repetitive cellular pattern across the length of

the layer and a significant deviation for the purely diffusive temperature field. This

indicates that the metastable ground states identified in this work exist only in a small

region of aspect ratios and Gershuni numbers.

Whilst reviewing the literature surrounding pure thermovibrational convection, it

was found that only one study exists treating solely the problem of pure thermovibra-

tional convection for the case where vibrations are parallel to the temperature gradient,

in a square cavity. Hirata et al. [36], investigated the effect of increasing Raω and Ω

simultaneously, where Ω is the non dimensional frequency of the vibrations defined as:

Ω =
ωL2

α
(2.5)

Where ω is the dimensional angular frequency of the vibrations defined as: ω = 2πf

(in rad/s), and f is the frequency (in Hz).

This parametric investigation identified four principal flow regimes. There are split

into four possible categories, namely, Synchronous (SY), Subharmonic (SU), Non-

periodic (NP), and Stable (ST) solutions. Unfortunately, these authors limited them-
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selves to considering values of the vibrational Rayleigh number in the range (104 ≤

Raω ≤ 105, the constraint on the upper value being essentially an outcome of the lim-

ited computational resources available at that time). The study reports the well-known

stabilization of thermovibrational flow when the frequency of vibrations is increased

(Simonenko and Zen’kovskaja [29]; Simonenko [39]; Gershuni and Zhukhovitskii [34];

Gershuni et al. [35]; Gershuni and Zhukhovitskii [40]). A more in-depth account of the

flow characteristics pertaining to these four regimes is given in Chap.4, where the work

of Hirata et al. [36] is extended to higher values of Raω.

Now that the base concepts of thermovibrational flow have been introduced, the

next section explores the relationship between fluid dynamic experiments and the dis-

turbances that occur when considering microgravity platforms.

2.7.2 Applicability to space experiments and orbiting platforms

Whilst the works discussed in Section 2.7.1 originally stemmed from pure scientific

curiosity, from the 1970’s, the advent of orbiting platforms gave researchers a con-

crete purpose to continue the investigation into pure thermovibrational flow. The first

crewed orbiting platform, Salyut 1, was launched by Russia in 1971, followed by a series

of launches under the Salyut project ending with Salyut 7 in 1991. The launches of Sky-

lab (by the Americans) in 1973, Mir (by the Russians) in 1986 and the International

Space Station (ISS) in 1998 (an international collaboration including USA, Europe,

Japan, Russia, and Canada) solidified the continuous presence of humans in space and

subsequently the possibility for microgravity experiments. Researchers however quickly

found out that the microgravity environment offered by the platforms was plagued with

small vibrations known as g-jitters. This becomes problematic when considering that

fluid dynamic processes are can be drastically influenced by (even small) perturbations.

Indeed, as early as 1975, Spradley [41] et al. confirms analytically, that for a closed

differentially heated cavity (Hadley flow type thermovibrational convection), g-jitter

type vibrations can cause important changes in the flow structure and the temperature

distribution of the fluid, conjecturing that the most vulnerable processes to g-jitter

disturbances would include crystal growth and separation procedures. They also found
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that g-jitter type vibrations can be decomposed into an oscillatory part and a mean

part and can lead to two types of flow: an instantaneous flow and a mean flow where

the mean flow is more deterministic of the fluid response both in terms of heat transfer

and in terms of flow field.

The oscillatory velocity and temperature fields with zero time-averaged values gen-

erated by g-jitters, are investigated by Kamotani et al. [42] (1981), who considered

vibrations of similar characteristics to those produced by g-jitters to assess the effect

of the ‘real’ orbiting platform environment on a buoyancy convection experiment and

material processing (for the Hadley type configuration). At this point in time, it is well

established that the most disruptive case, in terms of convection, is the cases where

vibrations are perpendicular to the flow (as has been discussed in the previous section).

In 1994 Nelson [43] published an extensive review on the state of knowledge (at the

time) of g-jitters where she presents an extraordinarily detailed characterisation of the

different types and sources of g-jitters and the implication of these on buoyancy con-

vection experiments and materials processing. She identifies three predominant types

of disturbances: quasisteady, oscillatory and transient disturbances. Quasisteady dis-

turbances, occur due to external forces on the spacecraft, for example aerodynamic

drag, Coriolis accelerations and solar radiation pressure. Oscillatory disturbances oc-

cur mostly due to crew activities and operation of machinery. Lastly, transient distur-

bances, occur due to space vehicle manoeuvres and crew motions. An example of this

type of disturbance can be seen in Fig.2.12.

The signal captured by Dunbar et al. [44] (shown in Fig.2.12) on the orbiting plat-

form Space Shuttle Columbia is just one example of the oscillatory disturbances caused

by crew activities. These oscillatory disturbances are the most dangerous when consid-

ering fluid dynamic experiments as these sinusoidal or quasi-sinusoidal forces induce

thermovibrational flow in fluid experiments designed to sit in an undisturbed micro-

gravity environment.

Although the signal used as an example in Fig.2.12 shows a relatively low frequency,

most oscillatory frequencies are high frequency ones as reported by Nelson [43]. Monti

and Savino [45, 46], tackled this problem where they evaluated the tolerability limits for
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Figure 2.12: Oscillatory disturbance on the microgravity environment of the Space
Shuttle Columbia due to a crew member walking on the treadmill, adapted from [44]

fluid dynamic and material science experiments experiments when high frequency, low

amplitude vibrations are imposed onto a differentially heated cavity. They found that

convective flow patters appear in the streamlines of the flow, where the quadrupolar

field and the inversional symmetry patterns observed by Gershuni and colleagues [34,

35] are obtained. Shortly after this, Monti et al. [47] confirm that thermovibrational

effects induced by high frequency oscillatory disturbances imposed perpendicular to the

temperature gradient are the most disruptive, producing the maximum disturbances

of the temperature fields. These works take into account the g-jitter scenarios on the

International Space Station as this is the current platform used for long duration mi-

crogravity experiments. In these works, the presence of g-jitters is seen as detrimental

and efforts are made to evaluate when the ARIS (Active Rack Isolation System) is

needed when considering a fluid dynamic or materials processing experiment, which

allows researchers to attenuate the effect of g-jitters.

At this point the reader may be wondering why the T-PAOLA experiment, does

not simply take advantage of the already existing g-jitter present on the ISS in order

to induce thermovibrational flow. Why is the science team imposing a set range of

frequencies and amplitudes onto the fluid cells? The answer is that the high frequency,
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low amplitude vibrational regimes that occur on the ISS encapsulate only a very narrow

range of the map of non-dimensional parameters associated with thermovibrational

convection. The aim of the project is to push the boundaries of current knowledge and

explore a more comprehensive region of the map of these parameters.

From Sect.2.2 to 2.7, buoyancy convection, including the classic Hadley flow and

RB type convection has been introduced. The concept that varying the parameters

of a system (2D vs 3D, choice of thermal boundary conditions, etc.) can influence

the response of said system has also been introduced, as has the fundamental concept

of thermovibrational flow an its applicability to space-based fluid dynamic research.

In the previous sections, much of the referenced literature deals with the case where

convection occurs, however, the regime of the flow is classified as laminar. In the scope

of this thesis, one aim is to explore scenarios where thermovibrational flow becomes

chaotic. Therefore, the next section provides the reader with the relevant concepts

surrounding the transition to chaos in buoyancy convection problems.

2.8 An insight into chaos in fluids and related transition

mechanisms

2.8.1 Turbulence and chaos

Despite their technical connotations, both the words Turbulence and Chaos have found

there way into our everyday lives and are used to describe many common scenarios. At

first glance, the words may seem like synonyms, however the following differentiation

can be made: it is true that all turbulent flows are chaotic, however, not all chaotic flows

are turbulent. Turbulence is onset by specific, organised parameters in a fluid system

and is identifiable namely by a lack of periodicity. For Newtonian fluids, turbulence is

observed most commonly in open systems such as water through a pipe or air over a

tennis ball, and is instrumental in many industrial applications reliant on mixing flows

where the onset of turbulence depends primarily on the Reynolds number of the flow.

Turbulence also occurs in closed systems (i.e no inlet or outlet), where the primary

driving force is the buoyancy force due the temperature gradient coupled with the
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gravity force (or vibrations in the case of thermovibrationally driven flow, as described

in Sects.2.2 to 2.7). For example, in terrestrial conditions, turbulent flow both in the

case of Hadley flow and Rayleigh-Bénard convection is achieved only when a given

temperature difference is exceeded or when the Rayleigh number reaches a critical

value. In this work, the terms turbulence and chaos are therefore used interchangeably

as the only type of chaos considered here is turbulence. The definition of chaos and the

specific mechanisms that fluid dynamic systems undergo before becoming chaotic are

discussed in the following sections, attention is paid to introduce salient works dealing

with chaos in thermal flows.

2.8.2 Transitions to chaos in buoyancy convection

Edward Lorenz, sensitivity to initial conditions and strange attractors

One of the first characterisation of chaos in a dynamical systems was carried out by

Edward Lorenz in 1963 [48]. In this work the hydrodynamics of weather patterns are

considered. Lorenz expressed a closed hydrodynamical system of finite collection of

molecules, where the governing laws can be expressed finite set of ordinary differential

equations, finally developing a simplified mathematical model for atmospheric convec-

tion as follows:

dx

dt
= σ(y − x) (2.6)

dy

dt
= x(ρ− z)− y (2.7)

dz

dt
= xy − βz (2.8)

This simplification is made possible by considering a two dimensional uniformly

heated fluid layer from below where the rate of change of three quantities with respect

to time are evaluated whereby, x is proportional to the rate of convection, y to the

horizontal temperature variation, and z to the vertical temperature variation. The

constants σ, ρ , and β are system parameters proportional to the Prandtl number, the

Rayleigh number, and the physical dimensions of the layer itself and are real positive
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integers. In Lorenz’s work the values of σ, ρ, and β are taken as: σ=10, ρ=28 and

β=8/3. By setting these initial conditions, so called attractors emerge.

Figure 2.13: Lorenz attractor for σ=10, ρ=28 and β=8/3 on the interval [0, 100]

Looking at the attractor shown in Fig.2.13, each point of the attractor represents

a possible solution to the set of Eqs.2.6-2.8. The attractor shows that these equations

are therefore deterministic, implying that although many solutions exist, no solutions

outside the attractor are possible for a given set of initial conditions. This introduces

well the concept of sensitivity to initial conditions (SIC). If the values of σ, ρ and β

are changed a new attractor will emerge. Indeed this SIC was solidified when Lorenz

was working on a similar problem involving 12 variables related to the characteristic of

a flow. When continuing his numerical work, one variable was rounded-off of at three

decimal places when the original value boasted a precision off six decimal places. The

difference in results compared to the original behaviour of the system due to this round-
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off error was catalyst to Lorenz’s understanding of the effect of initial conditions. This

concept is popularly known as the butterfly effect, where if a butterfly bats its wings

in one location, a tornado could emerge as a result in a different location due to the

propagation of small changes.

Having introduced the concept of an ’attractor’ here, it is necessary to devote a

few lines to it’s definition. An attractor exists in the phase space of a system. Where

the phase space is the space of variables that specify the state of the system. In a

review, Grebogi et al. [49] provide a straightforward example of the attractor of a

damped pendulum. Considering the 2D phase-space, where the distance travelled by

the pendulum in represented by the x axis and the y axis represents the pendulum

velocity dx
dt , the final solution to the system will be at the origin of the phase space

(0,0) as no external forces are applied to the pendulum, therefore it will end-up at rest.

This means that the resulting set is of dimension zero as only one solution exists as

t → ∞, if the pendulum was periodical driven, the final set would be of dimension

1, characterised by the systems limit cycle. When considering non-linear dynamical

systems however, fractal sets of solutions emerge, leading to complex attractors such as

the aforementioned Lorenz attractor. In this case it is referred to as a strange attractor.

From this section, a few important concepts have been introduced. Firstly, the

concept that chaos in fluid system is characterised by non-periodicity and therefore

is very difficult to predict, however these systems are deterministic and therefore not

random. Secondly, it has been shown that that the behaviour of the system depend

largely on the specific initial conditions. Finally it has been shown that chaotic systems

can be represented by a strange attractor in the phase space diagram. Now that these

fundamental concepts have been introduced the mechanisms by which a system becomes

chaotic are presented below.

2.8.3 Routes to chaos in closed systems

The classical mechanism to chaos in flows follows the intuitive path of: steady → peri-

odic → quasi-periodic → turbulent, as demonstrated by Paolucci and Chenworth [50],

Goldhirsh [18] and Villermeaux [51]. Indeed upon an increase in control parameter
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(typically the Rayleigh number), the flow becomes time dependent and a self-sustained

periodic behaviour occurs, this periodic behaviour becomes quasi-periodic as more en-

ergy is imparted into the system, ultimately resulting in a chaotic flow. This periodicity

is evaluated by sampling a characteristic variable of the flow such as a temperature or

velocity probe and monitoring its evolution over time. This temporal signal can then

be convected into a frequency spectrum using a Fast Fourier Transform (FFT). From

here the frequency spectrum (Discrete Fourier Transform (DFT) or the power density

spectrum (PDS)) can be obtained and used to evaluate the regime of the flow, where

the DFT shows the amplitude and phase of each harmonic component of the signal and

the PSD shows the power distribution over the different signal frequencies.

In the quest for a global understanding for stability limits and flow characterisation

in fluid systems, and more specifically in buoyancy convection, authors have dedicated

their time to investigate particular mechanisms that lead to chaotic behaviours.

A collection of studies undertaken by Ruelle, Takens and Newhouse [52–54] exam-

ined the evolution of a fluid flow when the control parameters (i.e the Rayleigh number)

is increased in thermally driven flows. Indeed, it is known that as a fluid is thermally

excited, the flow can become time-dependent i.e. the flow assumes a periodic behaviour,

even in the absence of forced vibrations. The Ruelle-Takens-Newhouse scenario dictates

that when three unrelated frequencies appear in the frequency spectrum of the flow, it

is deemed chaotic. Another route to chaos is the Feigenbaum scenario. This scenario

occurs when an infinite number of period-doubling bifurcations occur in the frequency

spectrum. The last transitional mechanism to be brought to the readers attention is

the Manneville-Pomeau scenario, which dictates that a flow can enter an intermittency

regime, when the flow can be stable for a period of time and spontaneously enter a

unstable chaotic regime, and then revert back to a stable oscillatory regime [55].

These tools are essential in characterising transition mechanisms and are not mu-

tually exclusive, meaning that systems can undergo any number of transitional mech-

anisms resulting in chaos. For example, the works of Guzman and Amon [56] and

Blondeaux and Vittori [57] provide excellent examples of possible transition to chaos.

They found that upon an increase in control parameter the flow undergoes a Feigen-
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baum scenario resulting in a series of period locking phenomena, in turn resulting in a

Ruelle-Takens-Newhouse scenario.

In the frame work of thermovibrational flow, the works of Lizée and Alexander [58]

where the first to examine transition to chaos in thermovibrational flow. They found

that, chaos occurs (for relatively low values of Raω) through a sequence of bifurcations

characteristic of the Feigenbaum scenario. Where, upon an increase in Raω the first

additional frequency to appear is Ω/2 where Ω is the forcing frequency. The authors

also found a Pomeau-Manneville intermittency near the limits of of the unstable region,

hence demonstrating that the transition mechanisms identified in standard buoyancy

convection also take place in thermovibrational flow.

In this section, fundamental concepts surrounding chaotic flows and transition mech-

anisms in buoyancy and thermovibrational convection have been introduced. These con-

cepts will be instrumental in characterising flow regimes and responses in the results

section of this thesis (Part.II).

The next section is dedicated to the introduction of the different phase types con-

sidered in this work. Indeed, although thermovibrational flow is fascinating in it’s own

right, the T-PAOLA project is based on the concept of “multiphase” thermovibrational

convection. In order to tackle this problem, some concepts underpinning multiphase

flows must first be introduced.

2.9 An introduction to multiphase flows and particle dy-

namics

The field of multiphase flows is one that spans many disciplines, and a review of the

origins of, and advances in multiphase studies would be unrealistic in the framework

of this thesis. In order to keep this section concise and to the point, the salient topics

touched upon in this thesis are elaborated upon appropriately. This includes some

general descriptions of fluid systems and flow types, important characteristic parameters

of the dilute phase (i.e. the particles) and recent advances in particle accumulation in

thermal flows, and more specificity in the context of thermovibrational flow.
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2.9.1 Flow types and dilute vs dense flows

Before entering into a discussion about the specific classification of flow types, it is

worth introducing the terminology used to describe multiphase flows.

• Multiphase refers to the presence of two or more phases in a system. This can take

the form of many configurations, the most common being: liquid-solid, liquid-gas,

liquid-liquid and flows including all three phases liquid-solid-gas flows.

• A continuous phase is the phase that is represented as a continuum, whereby mass

can pass from one point to another whilst staying in the medium. For example,

a cavity filled with liquid and gas, both phases considered are continuous.

• A dispersed phase represents the phase that is separated by the continuous phase.

For example particles of sand or gas bubbles in liquid are considered to be the

dispersed phase and are surrounded at all times by the continuous phase.

Now that this vocabulary has been introduced, a description of dilute versus dense

flows can be provided. A dilute system is one where the fluid influences entirely the

motion of the particles and the particles have little to no effect on the fluid. This is due

to the fact that a small quantity of particles is present in the system. This also means

that particles are far enough away from each other to neglect any effects of particle

collisions. Quantitatively, a flow is classified as dilute if αd < 0.001, where αd is the

volume faction of the dispensed phase defined as [59]:

αd =
VpNp

Vf
(2.9)

where Vp is the volume of one particle, Vf is the volume of fluid and Np is the num-

ber of particles in the system. Following the definition of dilute flows, for dense flows

0.001 < αd. Dense flow can also be separated into two sub-categories including collision-

dominated and contact-dominated (summarised in Table 2.1). In the case of collision

dominated flow 0.001 < αd < 0.1 and for contact dominated flows αd < 0.1.

In this thesis, when multiphase thermovibrational flow is considered, studies will

be conducted only on dilute systems. This is due to the fact that a dilute system is
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Table 2.1: Characterisation of dilute and dense flow in terms of volume fraction (αd)

Dilute flow Dense flow
Collision-dominated Contact-dominated

αd < 0.001 0.001 < αd < 0.1 αd > 0.1

considered for the experiment to be conducted under the T-PAOLA framework and also

because the modelling of the flow becomes inherently more complicated when particle

collisions and back (coupled) influences are considered.

2.9.2 Particle accumulation in fluids

One of the deterministic factors in the behaviour of multiphase flow is not only the

type of flow considered (i.e., dense or dilute), but also the properties of the particles

themselves. These properties include the particle Stokes number (St), defined as:

St =
2

9

R2
p

L2
(2.10)

where Rp is the radius of the particle and L is the characteristic length of the cavity

[59].

Another deterministic factor of the response of the multiphase system is the density

of the particle with respect to the fluid, denoted by ξ and defined as:

ξ = ρp/ρf (2.11)

This density ratio is an important factor as, in the presence of gravity, the particles

will rise or fall in the fluid depending on the value of ξ. If ξ > 1, the particles will tend

to fall to the bottom and when ξ < 1 the particles will tend to rise to the top of the

fluid.

Haller and Sapsis [60] and Sapsis and Haller [61, 62] found that owing to the finite

size (St) and mass (ξ) of particles, which drives a mismatch between their velocity and

that of the carrier flow, the mathematical (and physical) properties of these two kine-

matic vector fields are essentially different. While the fluid velocity obeys a divergence-
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free condition (which implies the fluid volume is conserved), the total volume of particles

is not bound to this mathematical restriction. As a result, no requirement for the vol-

ume occupied by a certain number of particles to be conserved exists and, accordingly,

the spacing among them can vary in time while they are transported inside the fluid. It

is by virtue of this simple principle or concept that ‘sinks’ for particles can exist in the

physical space, i.e. specific loci where particles can cluster (also known as “attractors”,

as previously described in Sect.2.8).

In the context of thermal flows, Yarin et al. [63], first investigated the distribution

of particles suspended in convective flows in differentially heated cavities, where small

density differences are investigated. They found that when the fluid pattern takes on a

uni-cellular roll (as described in Sect.2.3), or upon an increase in Ra a parallel set of

cellular rolls, when a single particle in inserted into the fluid, it will follow a circular

trajectory normal to the circulation plane. Secondly, they found that when the density

of the particles ξ is varied below and above ξ = 1, the particles accumulate more

towards the cold or hot side of the cavity respectfully. This was later also confirmed

for moderate values of Ra by Gereltbyamba and Lee [64] and higher values of Ra by

Puragliesi et al. [65] and Patocka [66].

As the value of Ra is increased and turbulent convection is achieved, inertial par-

ticles accumulate in the inner or outer regions of the eddies produced in the flow,

depending on the value of ξ. This phenomena is known as preferential concentration.

Maxey et al. [67] demonstrated that the effect of inertia causes light particles to accu-

mulate in areas of strong vorticity and heavy particles to accumulate in areas of high

strain-rate (i.e. the centre and the outer region of the eddies respectively). This was

also confirmed by Squires and Eaton [68].

Works treating the accumulation of particles in turbulent flow, was extended by

Fallon and Rogers [69] to include the microgravity scenario. When analysing the be-

haviour of solid particles in air (where the onset of turbulence is induced by forced

convection, i.e. fans). They observed experimentally that for ξ > 1 strings of particles

collect in the high strain rate regions, in agreement with Maxey et al. [67] and Squires

and Eaton [68].
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This subsection has introduced some key concepts relating to particle accumulation

in fluids, however, the principal on which the T-PAOLA experiment bases itself on

is particle accumulation in thermovibrational convection. It will come to no surprise

to the reader that the complex dynamics of thermovibrational convection detailed in

Sect.2.7, leads to more involved particle accumulation phenomena, to which the next

section is dedicated.

2.9.3 Particle accumulation in thermovibrational convection

The first seminal work on particle accumulation in thermovibrational convection was

undertaken by Lappa [1], where particles are dispersed in a differentially heated square

cavity and subject to vibrations, all in microgravity conditions. The main findings of

this work is that both the properties of the thermovibrational system (Raω, Ω, ϕ and

γ), and the properties of the particles (St and ξ) contribute to the formation and

destruction of particle accumulation structures (PAS) in the fluid. The configuration

considered by Lappa [1] is shown in 2.14.

Figure 2.14: Illustration of the variation of ϕ from ϕ = 0 when the vibrations are aligned
with the x axis and ϕ = π/2 when aligned with the z axis

A new non-dimensional parameter γ is introduced, where γ is the non-dimensional

amplitude of the acceleration from the vibrations defined as:
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γ =
ωL2

α
(2.12)

Starting from the case where the particles are uniformly distributed in the cavity,

the structures form gradually over time due to the combined effects of the convective

motion of the fluid induced by thermovibrational effects, the particle properties and

the effect of the fixed walls perpendicular to the vibrations. Fig.2.15 shows the most

celebrated and recognised PAS in the field of thermovibrational convection.

Figure 2.15: Tree like PAS obtainable when multiphase thermovibrational flow is con-
sidered

Looking fist at the morphology of structures that form, Lappa [1] reports tubular

structures when the vibrations are aligned with the x axis (ϕ = 0) and compact structure

when (ϕ = π/2 and π/4). The tubular structures take on a tree like form as shown in

Fig.2.15. As can be seen, a reflectional behaviour is visible about the y axis at x=0.5.

The compact structures posses reflectional symmetries and are ubiquitous pattern

types observed in thermovibrational problems considered by Lappa [70]. These are

classified in Fig.2.16.

Now moving to the specific effects that each parameter has on the formation time

of the PAS, Lappa [1] showed that an increase in Ω leads to a decrease in the forma-

tion time meaning that for higher vibrational frequencies the structures take less time
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Figure 2.16: Reflection symmetries obtained in the square cavity when multiphase ther-
movibrational convection is considered

to form. This formation time can also be decreased when the Stokes number (St) is

increased (i.e., the size of the particles in increased). The particle/fluid density ratio

(ξ) is also a contributing factor where the formation time decreased when the value of

ξ departs from ξ = 1 [71].

When looking at the morphology and more specifically, the size of the PAS, it

has been shown that upon an increase in (St), the particle structures become more

compact, for example, the vertical and horizontal extension of the lobes of the tree

shown in Fig.2.15 decrease. Indeed, the size of the closed-circuit structures is the most

manipulable characteristic when it comes to controlling the PAS. In addition to St

influencing the size of the structures, the value of γ is also instrumental in determining

the final extension of the closed loops. This was shown by Lappa and Burel [71], where

an increase in γ leads to a decrease in the vertical and horizontal extensions of the

PAS. This characteristic was also shown to depend on ξ where the extension of the

PAS along the x, y and z axes, decreased when the value of ξ departed from ξ = 1.

The PAS formed in thermovibrational flow have also been found to also break the

symmetry patterns shown in Fig.2.16 as was found by Lappa and Burel [71]. Indeed,

when the effects of the time-averaged flow are more important than those of the in-

stantaneous flow, as described in Sect.2.7.1, the PAS can display inherent asymmetry.

This asymmetry occurs even if the streamlines of the mean flow are symmetrical, and
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take on, for example the quadrupolar field or the inversional symmetry pattern shown

in Fig.2.11.

This subsection can be summarised by stating that many factors influence the for-

mation time, morphology and symmetry of the PAS. The physical laws discerning the

formation of PAS are notoriously difficult to determine, however, increased investigation

onto the filed of multiphase thermovibrational flow and further exploration of the map

of non-dimensional parameters will contribute to the unavailing of this extraordinary

phenomenon.

2.10 Chapter summary and ensuing research questions

This literature review has provided a comprehensive review of many fascinating topics

and focuses mainly on introducing necessary prerequisite information and tools in order

to prepare both the author and the reader to tackle novel problems concerning both

single phase and multi-phase thermovibrational flow.

Indeed it has been identified that the behaviour of a thermovibrational system

depends greatly on the direction of the temperature gradient in relation to that of the

vibrations and that the case of RB type flows remains relatively unexplored therefore,

the following question can be posed:

What thermovibrational effects can be achieved in a fluid when the di-

rection of the vibrations is changed (from Hadley type flow to RB type

flow)?

From this review it has been identified that a gap exists, whereby researchers have

not yet considered the case where the strength on the convection is increased to the

point where a turbulent flow is achieved, leading to the question:

What thermovibrational effects can be achieved in a fluid when turbulent

thermovibrational convection is considered?

It has also been shown that the thermal boundary conditions can influence the

response of a fluid system when natural convection is considered. However, the effects

of varying the thermal boundary conditions at the side walls of a pure thermovibrational

system are largely unknown, giving rise to the following question:
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What thermovibrational effects can be achieved in a fluid when various

sets of thermal boundary conditions are applied to the system?

Finally, it has been shown that when multiphase thermovibrational flow is consid-

ered, the numerous degrees of freedom associated with the system parameters makes it

challenging to evaluate the individual effects of each parameter. Therefore in this work,

an effort is made to answer the following question:

How do thermovibrational effects modify the behaviour of particle accu-

mulation structures in multiphase systems?

Now that the gaps in knowledge and associated research questions have been iden-

tified, the next section is dedicated to the mathematical framework employed in this

thesis.
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Mathematical framework

From Chap.2, the foundations of the problem have been laid down from a physical

point of view and the gap in knowledge has been identified.

Before solving these problems numerically, one must first introduce the required

mathematical framework. This chapter will therefore firstly introduce some commonly

used non-dimensional numbers in the context of numerical simulation of thermovibra-

tional convection. Secondly, governing equations and the related solution methods used

in this work both for single phase and multiphase flows are presented.

3.1 Non-dimensional numbers

Although most non-dimensional numbers have already been introduced as this stage,

in this section, a small recapitulation of these is provided.

The body force responsible for fluid flow in thermovibrational convection is pro-

duced by a sinusoidal displacement of the cavity with respect to time in addition to

a temperature difference imposed either along or parallel to, the direction of shaking.

The time periodic displacement (i.e., the vibrations) can be modelled mathematically

as:

s (t) = −bsin (ωt) n̂ (3.1)

where b is the amplitude of the displacement (in m), ω = 2πf is the angular fre-

quency of the displacement (in rad/s), and n is the unit vector along the direction of
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vibrations. The ensuing time-varying acceleration can formally be obtained by taking

the second derivative of Eq.3.1, which reads:

s (t)′ = −bωcos (ωt) n̂ (3.2)

g (t) = bω2sin(ωt)n̂ (3.3)

and satisfies the condition:

ω

2π

∫ 2π/ω

0
g(t)dt =

ω

2π
g
ω
n̂

∫ 2π/ω

0
sin(ωt)dt = − 1

2π
g
ω
n̂[cos(ωt)]2πω0 = 0 (3.4)

which shows that its time-averaged value over one period of oscillation 2π/ω is zero.

Follows the well-known Prandtl number:

Pr =
ν

α
(3.5)

where ν is the fluid kinematic viscosity and α is the fluid thermal diffusivity. The

vibrational Rayleigh number (Raω), analogue to the classical Rayleigh number used in

standard gravitational convection problems (Ra), can be introduced by simply replacing

the steady gravity vector with g = bω2.

Raω =
bω2βT∆T

∗L3

να
(3.6)

where βT is the coefficient of thermal expansion ∆T ∗ is the temperature difference

across the system and L is the characteristic length of the cavity. Lastly, the non-

dimensional angular frequency Ω of the vibrations can be expressed as:

Ω =
ωL2

α
(3.7)

These non-dimensional numbers are employed when non-dimensionalising the gov-

erning equations, presented in the next section.
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3.2 Governing equations

The balance equations for an incompressible flow, for mass, momentum and energy are

given in their dimensional form as:

∇ · V ∗ = 0 (3.8)

ρ
∂V ∗

∂t
+ ρ∇ · [V ∗V ∗] = −∇p∗ + µ∇2V ∗ + ρg (3.9)

∂T ∗

∂t
+∇ · [V ∗T ∗] = α∇2T ∗ (3.10)

The non-dimensional form of the governing equations can be obtained by scaling

the length by the referenced distance (L), the velocity by (α/L) the time by (L2/α)

and the pressure by (ρ0α
2/L2). By doing so the continuity equation becomes:

∇ · V = 0 (3.11)

Where V is the non-dimensional velocity. For the momentum equation, the Boussi-

nesq approximation can be applied. As the flow under consideration is buoyancy driven,

the Boussinesq approximation can be used in order to take into account variations in

density only in the terms multiplied by the buoyancy term whereby:

ρ = ρ0 − ρ0βT (T
∗ − T0) (3.12)

By applying the Boussinesq approximation and assuming that the individual term ρ0

is absorbed into the modified pressure term p∗ = ρ0gh, where ρ0gh ≈ 0, the momentum

equation becomes:

∂V ∗

∂t∗
= −∇ · [V ∗V ∗] +

1

ρ0
∇p∗ − µ∇2V ∗ − g [βT (T ∗ − T0)] (3.13)

Replacing the buoyancy term by the time varying acceleration presented in Eq.3.3,

the momentum equation becomes:

46



Chapter 3. Mathematical framework

∂V ∗

∂t∗
+∇ · [V ∗V ∗] +

1

ρ0
∇p∗ = µ∇2V ∗ − bω2sin(ωt) [βT (T ∗ − T0)] n̂ (3.14)

The non-dimensional temperature is defined as T = (T ∗ − T0)/∆T giving T∆T =

(T ∗−T0). By applying this non-dimensionalisation, as well as the aforementioned scaling

factors for distance, velocity, time and pressure the momentum equation becomes:

∂V ∗

∂t∗

(
α2

L3

)
= − 1

ρ0
∇p∗

(ρ0α
L3

)
−∇ · (V ∗V ∗)

(
α2

L3

)
+µ∇2V ∗

( α

L3

)
− bω2sin

(
ωL2

α

)
(βTT∆T )n̂

(3.15)

which, when simplified becomes:

∂V

∂t
= −∇p−∇ · (V V ) + Pr∇2V − PrRaωTsin (Ωt) n̂ (3.16)

Finally, the same approach is applied to the energy equation giving:

∂T ∗

∂t∗

( α

L2

)
+ V ∗ · ∇T ∗

( α

L2

)
= α∇2T ∗

(
1

L2

)
(3.17)

giving:

∂T

∂t
+ V · ∇T = ∇2T (3.18)

For simplicity, and unless stated otherwise, the temperature gradient is set on the

y axis and the vibrations are imposed either on the x or y axis depending on the

desired configuration (this differs however in Chap.5). The projection of the momentum

equation on the coordinate axes is defined according to this configuration.

Both configurations for the simple 2D cases are represented in Fig.3.1. For the RB

case, the projection of the momentum equation on the coordinate axes becomes:

∂u

dt
=
∂p

dx
− (V · ∇V )u + Pr(∆V )u (3.19)
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Figure 3.1: Direction of vibrations for Rayleigh-Benard type thermovibrational convec-
tion (left) and Hadley flow type (right)

∂v

dt
=
∂p

dy
− (V · ∇V )v + Pr(∆V )v + PrRaωTsin(Ωt) (3.20)

For the Hadley flow case, this projection becomes:

∂u

dt
=
∂p

dx
− (V · ∇V )u + Pr(∆V )u + PrRaωTsin(Ωt) (3.21)

∂v

dt
=
∂p

dy
− (V · ∇V )v + Pr(∆V )v (3.22)

Where for both cases:

(V · ∇V )u =

(
u
∂u

∂x
+ v

∂u

∂y

)
, (∇V )u =

(
∂2u

∂x2
+
∂2u

∂y2

)
(3.23)

(V · ∇V )v =

(
u
∂v

∂x
+ v

∂v

∂y

)
, (∇V )v =

(
∂2v

∂x2
+
∂2v

∂y2

)
(3.24)

When considering a 3D square cavity (shown in Fig.3.2 , a 3rd dimension must be

considered, and an additional z component is modelled where the projection of the
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Figure 3.2: Three-dimensional model of Rayleigh-Benard type thermovibrational con-
vection

momentum equation on the z axis reads:

∂w

dt
=
∂p

dz
− (V · ∇V )w + Pr(∆V )w (3.25)

Given this additional dimension Eq.3.23 and Eq.3.24 become:

(V · ∇V )u =

(
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
, (∇V )u =

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
(3.26)

(V · ∇V )v =

(
v
∂v

∂x
+ u

∂v

∂y
+ w

∂v

∂z

)
, (∇V )v =

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
(3.27)

and gives rise to:

(V · ∇V )w =

(
u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
, (∇V )w =

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
(3.28)

49



Chapter 3. Mathematical framework

Now that the governing equations have been presented and the general mathemati-

cal formulation of the thermovibrational problem has been introduced, the next section

will treat the related numerical solution methods.

3.3 PISO algorithm

The integration of Eqs. 3.11, 3.16 and 3.18 in addition to the initial and boundary

conditions allows for the unknown pressure (p), velocity (V ), and temperature (T )

fields to be found. The related procedure (time-marching algorithm) is described in the

present section.

Along these lines, it is worth starting from the simple observation that, as implicitly

made evident by the aforementioned set of equations, these three fundamental physical

quantities (“primitive variables”) display a varying degree of interrelation, depending

on the specific couple considered. As an example, while V and p are intimately linked

through the momentum equation, the temperature field (T ) can be determined once

the velocity field is known through the energy equation (Eq.3.18). In particular, the

link between the first two unknowns is at the root of the so-called class of projection

or fractional methods (Harlow and Welch [72]; Chorin [73]; Temam [74]; [75], Gresho

[76]; Guermond and Quartapelle [77]; Guermond et al. [78]). These techniques rely on

the so-called Hodge decomposition theorem, which states that any vector field can be

decomposed into a divergence-free contribution and the gradient of a scalar potential

(a curl-free part). Stripped to its essentials, the related computational scheme can

synthetically be described as follows. Initially, the pressure is artificially neglected in

the balance of momentum in order to obtain an equation (Eq.3.29) where only the

velocity field requires solving for:

In this way, even though the pressure is initially unknown, a time-marching pro-

cedure can be started. However, the field V ∗∗ obtained through integration of this

equation is called ‘provisional’ because, it does not account for the impact of pressure

on fluid flow; moreover, it does not satisfy the incompressibility constraint (represented

by the separate equation for the balance of mass). Nevertheless, using the aforemen-
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tioned Hodge decomposition theorem, V ∗∗ can formally be split into two contributions

as follows:

V ∗∗ = V + C∇p (3.29)

where V and ∇p play the role of divergence-free vector and the gradient of a scalar

potential, respectively. This step is purely formal, as p is one of the unknowns. The

next conceptual ingredient needed to obtain a complete time-marching procedure that

consists of forcing V = V ∗∗ − C∇p into Eq.3.11. In this way, a ‘working’ equation for

the effective determination of the pressure is obtained:

∇2p =
1

∆t
· V ∗∗ (3.30)

This equation represents the ‘core’ of all variants pertaining to the aforementioned

class of projection (or fractional) methods. After Eq.?? has been integrated, the pres-

sure can be determined solving Eq.3.30; finally, the sought divergence-free velocity field

can be computed from Eq.3.29 as V = V ∗∗ − C∇p (assuming C = δt where δt is the

time integration step). The well-posedness of this approach is guaranteed by another

important fundamental theorem—that is, the so-called theorem of the inverse calcu-

lus (see, e.g., Ladyzhenskaya [79]; it states that a vector field is uniquely determined

when its divergence and curl are assigned; in the present case, these are ∇ · V = 0 and

∇∧ V = ∇∧ V ∗∗, where the latter equality follows from the well-known mathematical

property of the curl operator to annihilate the gradient of a scalar function, i.e., ∇∧∇p

([76]; Lappa [80]; Lappa and Boaro [81]). In the present work, unless stated otherwise,

the specific variant of this class of methods available in the OpenFOAM computational

platform has been used. This includes the use of the so called PISO (Pressure Implicit

Split Operator) approach (originally elaborated by Issa [82]). The OpenFOAM imple-

mentation of this method relies on a collocated grid approach, which means that the

unknowns are defined in the centre of the computational cells. Moreover, in order to

improve the coupling of velocity and pressure, a special interpolation of the velocity is

applied on the cell faces (Rhie and Chow [83]), while the third unknown T is determined
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in a segregated manner after the computation of V and p. As for what concerns the

numerical schemes employed, the upwind and central differencing schemes in space for

the convective and diffusion terms, have been employed respectively.

3.4 Particle modelling

3.4.1 Eulerian and Lagrangian tracking of the dispersed phase

As this work deals with multiphase flow, it is important to introduce the methods for

computing and solving particle trajectories.

Two main categories of dispersed phase modelling are available: Eulerian formu-

lation and Lagrangian particle tracking. In the case of the Eulerian formulation, the

dispersed phase (similarly to the fluid) is assumed to be continuous. When the Eule-

rian formulation is used, the dispersed phase is treated as a modified scalar species and

follows the following transport equation:

∂ρfC

∂t
+

∂

∂xi

(
ρfuiC − Γ

∂C

∂xi

)
= Sc (3.31)

Where C is the particle concentration, i = (x, y, z), ui is the average fluid velocity,

Γ is the effective particle diffusivity and Sc is the particle source term, after Zhang [84].

In the Lagrangian tracking method, particles or parcels of particles, are tracked

though the field and the local properties of the cloud are determined by the properties

of the particle or parcel as they pass the point in the field [59]. As the continuous

phase is always modelled using the Eulerian approach, the two methods outlined above

can also be referred to as the Eulerian-Eulerian or the Eulerian-Lagrangian approach

respectively. The type of particle tracking to be used depends predominantly on the

type of multiphase flow under investigation. When solving for dilute systems, the cloud

of particles cannot be treated as a continuous fluid due to the low volume fraction and

therefore the low concentrations of particles in the fluid (although in some instances,

Eulerian methods may account for the interparticle effects as these can be taken into

account from a statistical stand point by assuming a certain viscosity of the particle
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phase [85]). Therefore the optimum option in this case is to use the Lagrangian tracking

method.

As for the particle wall interaction, the most common modelling approaches include:

• Rebound - where the elasticity (e) and restitution coefficients (µ) are specified.

• Stick - where particles are assigned zero velocity.

• Escape - where particles are removed from the domain.

In this work the particle-wall interaction is set as rebound. The elasticity is set

to e = 1 and the restitution coefficient is set to µ = 0. This modelling approach

leads to a perfectly elastic collision between the walls and the particles, where the

total kinetic energy of the system is conserved (i.e., no energy is imparted on to

the wall from the particles).

3.4.2 Equations for solving particle trajectories

The governing equation for the motion of spherical particles, bubbles or droplets in an

incompressible fluid has enjoyed wide spread attention due the complexity of modelling

such an intricate physical phenomenon. Today the most widely used form of this equa-

tion is the Maxey-Riley equation [86], due to its applicability to non-uniform, unsteady

flows. The equation as presented by Babiano et al. [87] is written as:

ρp
dv*

dt∗
= ρf

Du*

Dt∗
+ (ρp − ρf )g

−
9νρf
2R2

p

(v*− u*−
R2

p

6
∇2u*)

−
ρf
2

(dv*
dt∗

− D

Dt∗

[
u*+

R2
p

10
∇2u*

])
−
9ρf
2a

√
ν

π

∫ t∗

0

1√
t∗ − ζ

d

dζ

(
v*− u*−

R2
p

6
∇2u*

)
dζ (3.32)

where u* represents the dimensional fluid velocity and v*, the dimensional velocity

of the particle.
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The terms on the right hand side of Eq.3.32 represent the force exerted on the

particle by the undisturbed flow, the buoyancy force, the Stokes drag, the added (or

virtual) mass and the Basset-Boussinesq force respectively. Assuming that the forces

associated with the drag force and the virtual mass are much larger than the Basset-

Boussinesq force the equation can be simplified as follows:

ρp
dv*

dt
= ρf

Du*

Dt
+ (ρp − ρf )g

−
9νρf
2R2

p

(v*− u−
R2

p

6
∇2u*)

−
ρf
2

(dv*
dt∗

− D

Dt∗

[
u*+

R2
p

10
∇2u*

])
(3.33)

The terms associated with R2
p∇2u* are known as the Faxen corrections [88]. These

correction can also be neglected if the particles are much smaller that the characteristic

length of the flow (St≪ 1). In this case the equation simplifies to:

ρp
dv*

dt∗
= ρf

Du*

Dt∗
+ (ρp − ρf )g−

9νρf
2R2

p

(v*− u*)−
ρf
2

(dv*
dt∗

− Du*

Dt∗

)
(3.34)

In the framework of this thesis, the gravity force is replaced by g = bω2sin(ωt), as

vibrations are used in place of standard gravity. Eq.3.34 can also be divided through

by the fluid density (ρp) resulting in:

ξ
dv*

dt∗
=
Du*

Dt∗
+ (ξ − 1)g− 9ν

2R2
p

(v− u)− 1

2

(dv*
dt∗

− Du*

Dt∗

)
(3.35)

The derivative Du*
Dt is along the path of a fluid element and therefore can be written

as:

Du*

Dt∗
=
du*

dt∗
+ (u* · ∇)u* (3.36)
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Introducing the above substitution and nondimensionalising the length by the ref-

erenced distance (L), the velocity by (α/L) and the time by (L2/α), Eq.3.35 becomes:

dv

dt
=

1

ξ + 1/2

[
− Pr

St
(v− u) +

3

2

du

dt
+

3

2
(u · ∇u)

]
+

ξ − 1

ξ + 1/2
γsin(ωt) (3.37)

3.4.3 Choice of coupling particle coupling methods

As outlined in Chap.2, in this work, when particles are considered, a one way coupling

approach is taken. In order to track the systems’ evolution, a high number of particles

are seeded in the cavity, that appears to violate the assumption of a dilute systems

and the initial use of a one-way coupling approach. However, this number of particles

is used for visualisation purposes only. Indeed, it must be stressed that the particle

accumulation phenomena observed in this work does not depend on the number of

particles introduced in the system as the particle structures are an intrinsic property of

the flow. Practically, this means that the structures achieved in this work are a much

denser that the real life structures that can be achieved in dilute fluid systems. This

approach has been broadly accepted in the field of numerical modelling of multiphase

thermal flows [1, 64, 127].

In this chapter the mathematical models, related governing equations and solution

methods have been described. The next section aims so summarise the work presented

in Part I.

3.5 Conclusions and transition to Part II

In Part I, the topics governing this thesis have been presented. From the concepts

underpinning instabilities that occur in non-isothermal fluids to the equations governing

the trajectories of spherical particles.

Part II will now present the findings of this thesis and provides answers to the

research questions posed in Chap.1.
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Results
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Chapter 4

Rayleigh-Bénard type

thermovibrational convection for

moderate to high values of Raω

This chapter is based on the following peer-reviewed publication:

Crewdson, G. and Lappa, M., 2021,“The zoo of modes of convection in

liquids vibrated along the direction of the temperature gradient”, Fluids,

6(1), p.30, https://doi.org/10.3390/fluids6010030.

The text in this chapter has been modified only when necessary in order to preserve

the continuity and flow of this thesis.

4.1 Introduction

This chapter focuses on the problem of Rayleigh-Bénard type thermovibrational con-

vection for moderate to high values of Raω.

Indeed from the literature review it has been shown that, a number of authors have

considered the case where vibrations are applied perpendicularly to the temperature

gradient (Monti et al. [47, 89]; Alexander [90]; Alexander et al. [4]; Mialdun et al. [91,
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92]; Melnikov et al. [93]; Lyubimova et al. [94]; Bouarab et al. [95]; Shevtsova et al. [96,

97]; Vorobev and Lyubimova [98]; Lappa [1, 99–102]; Lappa and Burel [71]).

Still, only Hirata et al. [36] considered the pure thermovibrational flow in a square

cavity assuming zero gravity and no inclination between vibrations and the temperature

gradient. In the present study, an attempt is made to extend that earlier investigation

to larger values of the Rayleigh number in a attempt to elaborate a unified picture of

the related hierarchy of instabilities and patterning behaviours.

4.2 Mathematical model and boundary conditions

In keeping with a large portion of the work outlined in the introduction for standard

RB convection, a simple 2D square cavity is considered. Microgravity conditions are

assumed (no steady gravity). The direction of the temperature gradient and vibrations

as well as the wall boundary conditions can be seen in Fig.4.1

Figure 4.1: Square cavity with characteristic size L, delimited by solid walls (one at y=
0 cooled, the other at y = 1 heated, perfectly conducting conditions on the remaining
sidewalls: T = y for x = 0 and x = 1.
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4.3 Validation

Before numerical results can be interpreted, it is imperative that the related strat-

egy for the solution of the governing equations is validated against available relevant

benchmarks. Given our specific target, the earlier study by Hirata et al. [36] is specif-

ically considered for such a purpose. The following case is considered Ω = 500, Raω =

1.00 × 105(the corresponding case is readily available to the reader in the original

study, making the comparison with the current results straightforward). As the reader

will realize by inspecting Fig.4.2, the present results are in excellent agreement with

the original signals reported by Hirata et al. [36].

Figure 4.2: Time evolution of the streamfunction (Ψ), for the case Ω = 500, Raω =
1.00 × 105, probed at (0.25,0.25), where the orange line corresponds to the results
obtained by Hirata et al.[36] and the black line corresponds to the results obtained in
OpenFOAM.

4.4 Grid refinement

Due to the potential complexity of the flow considered in this study, close attention

must also be given to the mesh adopted for the numerical simulations. Although mesh

refinement criteria for thermovibrational flow are not available, meaningful indications

in this regard can be obtained through ‘analogies’ with parent forms of convection.

As an example, relevant similarities with standard gravitational convection in high-Pr

fluids include the development of thermal boundary layers for relatively high values of
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the Rayleigh number. For the case of standard buoyancy flow, as an example, Russo

and Napolitano [103] showed that a working correlation for the thickness of the thermal

boundary layer can be introduced as follows:

δth ∼= Ra−1/4 (4.1)

The presence of such boundary layers cannot be ignored when designing an adequate

mesh and can be translated into precise numerical requirements. As an example, rel-

evant information along these lines can be found in the study on RB convection by

Shishkina et al. [104] where the number of cells required in the thermal boundary layer

(NBL) has been specified directly as a function of Ra, i.e.

NBL
∼= Ra0.15 (4.2)

Another important influential factor to be taken into account (especially when one

targets high-Ra regimes) in the preliminary definition of a computational grid is the

so-called Kolmogorov length scale, i.e. the need to keep the size of the computational

cell sufficiently small to capture the ‘eddies’ that are produced when the flow assumes

a turbulent behavior. It is known that for standard RB convection (De et al.) [105] this

characteristic (non-dimensional) length scales as:

ζRa = 1.336(Ra)−0.32 (4.3)

All these criteria should be regarded as a set of multiple requirements finally leading

to a relevant mesh. Assuming the worst conditions considered in the present work, i.e.

the highest possible value of (for Raω = 106, Pr=7 and Ω = 100) all these constraints

taken together would return a uniform mesh 102 × 102. To verify the consistency of

this way of thinking with the standard approach generally used to define a suitable

mesh (i.e. a ‘classical grid refinement study’), the number of computational nodes have

been increased progressively until convergence has been obtained. The outcomes of
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Figure 4.3: Convergence of the thermofluid-dynamic disturbances as a result of grid
refinement for the case Pr = 7, Raω = 106,Ω = 100.

such a study are presented in Fig.4.3, where the maximum of the difference between

the instantaneous temperature and the corresponding time-averaged (over the period

of vibrations) value (the so-called thermofluid-dynamic distortion) has been plotted.

It can be seen that the results for a grid of size 82 × 82 are extremely close to that

of the grid size 102 × 102, which implicitly indicates that (towards the end to save

computational time) one may limit to considering the former coarser mesh. In order to

meet all the possible criteria described before, however, the 102× 102 mesh is selected

for all the cases considered in the present work.

4.5 Simulation results

With the numerical approach robustly tested by (1) verifying its ability to capture

available results in the literature and (2) checking its convergence under mesh refine-

ment (forcing the used grids to also satisfy existing practical and theoretical criteria

about mesh design), a vast range of cases have then been simulated by varying para-

metrically the vibrational Rayleigh number and the frequency of vibrations over three

orders of magnitude. In particular, the same value of the Prandtl number originally

considered by Lappa [106] has been examined (Pr = 15) with the two-fold purpose
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of (1) extending that earlier study conducted for classical RB convection in a square

cavity to the case of thermovibrational flow and (2) expanding the space of parameters

originally examined by Hirata et al. [36]. In order to consider conditions for which the

flow can still be considered laminar or weakly chaotic (the investigation of the fully

turbulent regime being beyond the scope of the present work), the maximum value of

the Rayleigh number has been limited to 106.

The work/study progresses with the aid and support of both global parameters and

detailed velocity fields for a better representation of the emerging dynamics. While a

coarse-grained macroscopic perspective is used at the beginning by providing results

in terms of maps (Sect.4.5.1) and general trends in terms of ‘distortions’ and Nusselt

number (Sect. 4.5.2), the problem is considered from a fine-grained micromechanical

level (Sect. 4.5.3) (in terms of flow temporal behaviour and related symmetries). Finally

in Sect.4.6 the resulting statistics are linked to the evolution of global parameters to

provide useful information about the underlying cause-and-effect relationships.

4.5.1 Characterisation of thermovibrational fluid regimes at high Rayleigh

numbers

As the present study has been expressly conceived as an extension of the numerical

investigation originally conducted by Hirata et al. [36], the simplest way to place the

present results in an adequate context is to start from an overview of that work. The

diversity of flow regimes that exist for pure thermovibrational convection in a square

cavity when the temperature gradient is imposed parallel to the vibration can be clearly

seen in Fig.7 of Hirata et al. [36], where these regimes are split into four possible cate-

gories, namely, Synchronous (SY), Subharmonic (SU), Non-periodic (NP), and Stable

(ST) solutions. Unfortunately, these authors limited themselves to considering values

of the vibrational Rayleigh number in the range (104 ≤ Raω ≤ 105, the constraint on

the upper value being essentially an outcome of the limited computational resources

available at that time). This figure is instructive also for another reason. It shows the

well-known stabilization of thermovibrational flow when the frequency of vibrations is

increased (Zen’kovskaja and Simonenko [29]; Simonenko [39]; Gershuni and Zhukhovit-
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skii [34, 35] Gershuni and Zhukhovitskii [30]); this fundamental concept is revisited at a

later stage. A total of 66 new simulations have been conducted in the present work. In

line with Hirata et al. [36], Ω has been varied from Ω = 1 to Ω = 103, with the addition

of a very high value of Ω = 104. As explained before, a fluid with Pr = 15 has been

considered in place of Pr = 7. Another distinguishing mark of the present analysis is

the extension to Raω = 106. Before starting to deal with the detailed discussion of these

results, although the regimes (SY, SU, NP, and ST) were sufficient to compartmentalize

the flow in the range of parameters considered by Hirata et al. [36], additional classes of

flow have been identified for the cases simulated here in the interval (105 < Raω < 106).

These new findings have implicitly led to the need to introduce a distinction within the

synchronous regime whereby a flow may be synchronous and periodic or synchronous

and non-periodic (SY-P or SY-NP). Relevant examples of such new solutions are shown

in Figure 4.4 (a) and (b) respectively. In particular, Fig.4.4(a) relates to the circum-

stances where the velocity signal is identical over each period for all periods (therefore,

the signal can be considered synchronous and periodic). By contrast, although the sig-

nal shown in Fig.4.4 (b) is still synchronous in time with the applied forcing (i.e., the

vibrations), it also exhibits turbulent bursts every period (where the term turbulent

burst is used to illustrate a short interval of time where the fluid response cannot be

predicted based on the historical behaviour of the flow and where the amplitude of the

flow varies substantially); moreover, the signal is not periodic, as the bursts display a

more or less erratic evolution in time.

The main outcome of the present parametric investigation, i.e., the extended map,

is presented in Fig.4.5. It is divided into regions where clusters of convective modes

can be observed. Although stabilization is achieved at extremely high frequencies (Ω =

104, where u(x, y, z) = 0), the predominant flow regime apparent for high vibrational

Rayleigh numbers ( Raω > 5×105) is the aforementioned SY-NP case denoted by: (▲).

The red sinusoidal signal included in the insets represents the forcing applied to the

system; it is instrumental in making evident that the turbulent bursts for the SY-NP

mode occur synchronously with the forcing but do not display the same behaviour for

each period. These solutions are less ordered than those found for the lower vibrational
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Figure 4.4: Cases Raω = 2 × 105, Ω = 50 and Raω = 7 × 105,Ω = 100 respectively
(a) shows the case synchronous and periodic (SY-P) and (b) the case synchronous and
non-periodic (SY-NP).

Rayleigh numbers whereby they appear in less organized clusters. The appearance

of the SY-P regime is more sporadic. However, this mode of convection also exists

at extremely high Rayleigh numbers (Raω = 106), which indicates that an increase

in Raω does not systematically lead to a more chaotic system (in some regions of

parameters (Ω = 103), the flow reverts from an NS-NP back to an SY-P state). In

agreement with Hirata et al. [36], in the range of low frequencies Ω < 200, the fluid

displays a stationary behaviour over a certain sub-interval of the period P (P = 2π/Ω)

of the applied vibrations. In addition to enlightening the reader on the complexity and

unpredictability of the flow regime (with the exception of extremely high values of

Ω for which the dynamics reduce to the emergence of a quiescent thermally diffusive

state), this map provides a picturesque description of the velocity signals and the fluid

behaviour. The thermal response of the system is described in the next section where

some dedicated (‘ad hoc’) definitions and concepts are introduced.

4.5.2 Characterisation of the thermal response of the system

A further understanding of the observed dynamics can be gained through the so-called

thermofluid-dynamic (TFD) distortions. These characteristic quantities have enjoyed a

widespread use in past studies concerned with the effect of vibrations on non-isothermal

fluid systems (see, e.g., Monti et al. [47]). They can be used to characterize in a syn-
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Figure 4.5: Response of the velocity field to the imposed periodic acceleration (Pr
= 15): • Synchronous and periodic case (SY- P) ; ◦ 1/2 Subharmonic case (SU); ▲
Synchronous and non-periodic case (SY-NP) ; □ Non-periodic and non-synchronous
case (NP-NS); × Stable case (ST).

thetic way the thermal response of the fluid to the application of a time-varying ac-

celeration. However, a proper introduction of these characteristic quantities requires

a short excursus on the peculiar properties of thermovibrational flows. In particular,

it is worth recalling that a non-isothermal fluid subjected to vibrations can develop a

stationary response in addition to the oscillatory velocity field directly induced by the

time-periodic acceleration. The latter can easily be explained assuming a straightfor-

ward cause-and- effect relationship between the time-varying buoyancy force and the

induced fluid motion. The former requires a more involved interpretation. This station-

ary response (detectable through analysis of the time-averaged flow field) is an outcome

of the non-linear nature of the balance equations (Savino and Lappa [107]). It becomes

significant when the frequency of vibrations is sufficiently high and their amplitude is

relatively small, i.e., in the so-called Gershuni regime. Indeed, for the opposite circum-

stances for which the frequency is small and the amplitude large, the linear response
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(direct proportionality between the oscillatory flow and the time-dependent accelera-

tion) is dominant [107]. The time- averaged and fluctuating components of the velocity

and temperature fields can formally be defined as:

V̄ =
Ω

2π

∫ 2π/Ω

0
= V dt and T̄ =

Ω

2π

∫ 2π/Ω

0
= Tdt, (4.4)

and

V ′ = V − V̄ and T ′ = T − T̄ (4.5)

In the present work, these quantities have been determined “a posteriori” after evaluat-

ing V and T via direct numerical solution of the governing equations in their complete

time-dependent and non-linear form, as illustrated in Sect 4.2. The above-mentioned

distortions can be defined accordingly as follows:

δT (x, y, z) = T (x, y, z)− Tdiff (x, y, z) (4.6)

where Tdiff represents the temperature field that would be established in the ab-

sence of convection (in other words, a purely diffusive temperature profile, which using

the reference system indicated in Fig.4.1 would simply read Tdiff = y ). Taking into ac-

count that (as illustrated above) the local temperature can be split into a time-averaged

steady component plus a fluctuating part , Eq.4.6 can be further expanded to:

δT = T ′(x, y, z) + T̄ (x, y, z)− Tdiff (x, y, z) = δ̄T + δT ′(x, y, z) (4.7)

where δT represents the companion averaged distortion, i.e.:

δT = T̄ (x, y, z)− Tdiff (x, y, z) (4.8)

Global measures can be defined accordingly as:

TFD = max(δT ) for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, t0 ≤ t ≤ t0 + P where P = 2π/Ω (4.9)

TFDaveraged = max(δ̄T ) for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (4.10)
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Figure 4.6: Influence of Ω on the global thermofluid-dynamic (TFD) disturbances (the
dashed and solid lines indicating instantaneous and time-averaged variants, respec-
tively).

As quantitatively substantiated by 4.6, the oscillatory thermofluid dynamic distur-

bance (TFD) is generally higher that the time-averaged one over the considered range of

frequencies. In particular, the time-averaged disturbances are approximately constant if

their dependence on either Raω or Ω is considered until the critical value of Ω = 500 is

attained, where these disturbances are seen to increase (with the exception of the case

Raω = 2×105 for which the TFDaveraged tends to 0). For what concerns the oscillatory

disturbances, an increase in TFD occurs until the critical value of Ω = 100, while for

Ω > 100, the opposite trend can be seen. Remarkably, all the TFD distortions tend to

zero as the frequency grows. A simple way to think about this scenario is to consider

that it reflects the existence of the almost quiescent states already reported in Fig.4.5.

However, from a physical point of view, this trend can be interpreted directly, taking

into account a well-known property of thermovibrational flow for high frequencies (for

Ω ≥ 104, i.e., when the Gershuni regime is approached (Savino and Lappa [107]). As

originally argued by Birikh at al. [108], indeed, in the limit as the frequency tends to

infinity, if temperature distortions with respect to the purely diffusive case are present,

the major role of the mean vibration force is that of forcing isotherms to turn and

become perpendicular to the vibration direction. To elucidate further the significance
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Figure 4.7: Influence of Raω on the global thermofluid-dynamic (TFD) disturbances
(the dashed and solid lines indicating instantaneous and time-averaged variants, re-
spectively).

of this observation, one should keep in mind that in other words, this simply means

that an intrinsic property of thermovibrational convection induced by vibrations paral-

lel to the imposed temperature difference is to tend naturally to a quiescent thermally

diffusive state as Ω is increased (which provides the sought physical justification for

the ST states reported in the existence map). Apart from showing that the oscillatory

disturbances prevail over the time averaged ones, Fig.4.6 and Fig.4.7 are also instru-

mental in revealing that the increase of the vibrational amplitude (Raω) affects the

two types of distortions differently: as already explained to a certain extent before, the

time-averaged disturbances seem quasi-independent of the increase in Raω (or value of

Ω in fact), whereas the instantaneous (complete) TFD are appreciably affected by both

Raω and Ω.

In keeping with the previous section, further analysis of the thermal behaviour of the

system may be carried out by looking at another global parameter, i.e., the classical

Nusselt number, namely the ratio of heat transfer due to convection over the heat

transfer due to conduction along a given boundary. In our case, this non-dimensional

number can be defined as:
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Nu =

∫ 1

0

∂T

∂y
dx (4.11)

and we introduce accordingly:

Numax = max(Nu) for t0 < t < t0+P (4.12)

In the case of high frequencies, it has been shown in the previous section that when

parallel to the temperature gradient, the vibrations have a stabilizing effect on the

flow. This trend can still be appreciated when cases with Raω > 105and the SY-NP

and NS-NP regimes are considered. As witnessed by Fig. 4.8 a remarkable decrease

in Numax occurs for Ω = 1000 (Numax ideally tending to 1 in the limit as Ω → ∞).

However, as still evident in this figure, a peak is located Ω = 100. For all values ofRaω

at low frequencies (Ω < 20), Numax remains constant; then, it grows for intermediate

frequencies (50 < Ω < 100) and finally decreases for high values of Ω (Ω > 1000).

Figure 4.8: Influence of Ω on the maximum Nusselt number (Numax) across the heated
wall of the cavity.

Notably, the peak located at Ω = 100 is consistent with the maximum taken by

the TFD (see again Fig.4.6 and 4.7), and the key to understanding this finding lies

in considering that, given the dominance of instantaneous effects on time-averaged
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Figure 4.9: Influence of Raω on the maximum Nusselt number (Numax) across the
heated wall of the cavity.

ones, the effective configuration of the temperature field (in terms of topology of the

isotherms and ensuing heat exchange at the boundaries) must essentially be ascribed

to the fluctuating components of velocity and temperature. As already outlined above,

the tendency of the Nusselt number toward the unit value as Ω is increased, is indirect

evidence of the fact that fluid motion tends to be suppressed in those conditions.

4.5.3 Streamlines and patterning behaviours

In this section, focus in turned to the effective patterning behaviour of the flow for the

different regimes reported in Fig.4.5. Emphasis is put on the interval 105 < Raω ≤ 106,

as these circumstances were not covered in the earlier study by Hirata et al. [36]. Along

these lines, the caseRaω = 106, Ω = 104, is considered i.e., a condition for which the flow

is almost negligible (“stable state”). As shown by Fig.4.10, it manifests itself as an (ss)

convective mode characterized by two rolls along each coordinate axis. This extremely

weak flow starts as a four-roll configuration. From there, small rolls nucleate at the

corners of the cavity and, as time passes, they tend to merge with their respective

neighbours until the original quadrupolar arrangement is recovered. This nucleation

occurs twice in the space of a period rapidly regaining the four-roll configuration. The
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periodicity of this evolutionary scenario is consistent with the velocity signal (which is

sinusoidal and synchronous with the forcing period).

Figure 4.10: Instantaneous patterning behaviour for the case ST, where it is shown that
the nucleation of the external rolls occurs at approximately 0.3P and 0.8P and that the
four-roll configuration is re-established fully when the acceleration tends to zero.

Another characteristic type of solution present in the map (Fig.4.5) is the syn-

chronous and periodic state (SY-P). This mode of convection can be found mainly at

the centre and at the left side of the map for Raω < 5×105. As illustrated in Fig.4.11 ,

this regime presents periodically identical instantaneous velocity fields and streamlines.

In this case, the quadrupolar (four-roll) configuration is interrupted at each period by

the genesis of two small rolls in the centre of the lower part of the cavity, which are

eventually flattened, hence allowing the flow to return to the original pattern.

The next figure of the sequence (Fig.4.12) illustrates a Subharmonic case (SU). In

this figure, the typical behaviour of a subharmonic mode of convection can be recognized

in both the velocity field and streamlines snapshots. The period of the flow is double

with respect to that of the forcing. However, the signature of the forcing period (P)

can still be recognized if one considers the two spikes (one large and one small) visible

in the signal (then, these spikes are repeated with a slightly lower amplitude in the

second forcing period). This is also quantitatively substantiated by the panels (a) and

(b), where the magnitude of the first velocity field is (slightly) higher than that of the

second.

In terms of spatial symmetry, the (aa) type is dominant (one single roll). However,

during one period of flow oscillation, modes with the (ss) symmetry are excited, which
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Figure 4.11: Instantaneous streamlines and velocity magnitude over two periods for the
case Raω = 3.5 × 105, Ω = 200 (SY-P) accompanied by the velocity signal. The 12
red dots represent the time at which the snapshots are taken (six snapshots for each
period)

combined with the main roll give rise to one diagonal clockwise-oriented vortex with two

small counter-rotating eddies located in opposite corners of the cavity or a columnar

arrangement of three superposed rolls slightly inclined to the left.

The next case serves to reveal the intrinsic features of the synchronous and non-

periodic regime (SY-NP) found at higher vibrational Rayleigh numbers and at low and

intermediate frequencies. As explained in Sect.4.5.1, a distinguishing mark of this type

of solutions is the existence of bursts in the velocity signal, which display a more or

less random nature. In particular, here, the case of Raω = 8.5× 105, Ω = 100 is taken

as a representative example (Fig.4.13). As a fleeting glimpse into this figure would
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Figure 4.12: Instantaneous streamlines and velocity magnitude over two periods of
forcing (panel (a): first period, panel (b): second period) for the case Raω = 3.5× 105,
Ω = 500 (SU), accompanied by the velocity signal. The 24 red dots represent the time
at which the snapshots are taken (six snapshots for each period.)

immediately confirm, the fluid becomes almost quiescent over a fixed sub-interval of

each period.

Although the velocity profile shows a large difference in behaviour over time, the

instantaneous velocity field and streamlines witness that the actual pattern is different

at each turbulent burst. This is evident in the third, fourth, and fifth snapshots of the

sequence for each period. Although the burst occurs at the same point in time, the

flow structure changes considerably. When the velocity magnitude is close to zero, the

streamlines present again the four-roll configuration; when a burst occurs, as shown

in snapshot 3, existing vortices merge, and new rolls appear randomly. In terms of

spatial symmetry, although in certain sub-intervals of the period solutions with the (sa)

symmetry also appear (two vertically extended rolls in a side-by-side configuration),

the (ss) mode with four rolls is generally dominant. Fig.4.14 can be finally used to

get insights into the non-synchronous and non-periodic regime (NS-NP) apparent in
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Figure 4.13: Instantaneous streamlines and velocity magnitude over two periods for the
case Raω = 8.5 × 105, Ω = 100, accompanied by the velocity signal. The 12 red dots
represent the time at which the snapshots are taken (six snapshots for each period.)

the region of high vibrational frequencies. Easily identifiable, these solutions exhibit no

adherence to the imposed vibrational forcing.

As the reader will easily realize by inspecting Fig.4.14, the behaviour of the flow

changes randomly and presents a number of interesting and unpredictable topological

(in terms of streamlines) features, which essentially result from the excitation and

superposition of convective modes with different symmetries.
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Figure 4.14: Instantaneous streamlines and velocity magnitude over two periods for the
case Raω = 106, Ω = 500 (NS-NP), which are accompanied by the velocity signal. The
12 red dots represent the time at which the snapshots are taken (six snapshots for each
period)

4.6 Discussion

Originally conceived as an extension of other works in the literature, the present study

has confirmed that a kaleidoscope of solutions can be obtained in an apparently in-

nocuous configuration such as a square cavity subjected to vibrations parallel to the

applied temperature difference. Considering relatively high values (heretofore unex-

plored) of the vibrational Rayleigh number and non-dimensional angular frequency,

two new states have been identified in the space of parameters, namely, periodic and

non-periodic synchronous modes of convection. The peculiarity of the latter resides in
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its ability to produce turbulent bursts, which occur synchronously with the forcing but

do not display the same behaviour in each period of oscillation. Although the appear-

ance of the synchronous periodic solution is more sporadic, this mode of convection can

manifest itself also for high Rayleigh numbers, which indicates that an increase in Raω

does not systematically lead to more chaotic phenomena. Comparison with equivalent

studies conducted for the same value of the Prandtl number, same geometry, and same

range of values of the Rayleigh number for classical Rayleigh–Bénard convection indi-

cates that the set of potentially excitable modes with different symmetries is greatly

expanded when the steady gravity is replaced by a time- periodic acceleration. From the

limited series of snapshots included in the present work, the predominantly occurring

symmetries are represented by the symmetric–symmetric mode (ss) (generally appear-

ing as a quadrupolar pattern) and the diagonal mode characterized by a predominant

central vortex ornated with two smaller outer corner rolls. However, occasional mani-

festations of other patterns are also possible, including (but not limited to) the vertical

two-roll configuration (sa), the columnar arrangement of three horizontally stretched

rolls, as well as other three-roll configurations. In line with earlier studies on the com-

panion problem of standard RB convection, it can be argued that an explanation for

this variety of multicellular states is rooted in the existence of multiple solutions, i.e.,

different possible modes of convection that coexist in the space of parameters and can

be excited for comparable values of the driving force (Mizushima [19]; Hof et al. [109];

Leong [110]; Lappa [111]). These modes can be excited at different times or at the same

time, resulting in new patterns due to their non-linear combination. A comparison of in-

stantaneous and time-averaged effects also leads to meaningful conclusions. The former

is generally dominant over the entire range of values of and Ω considered. The depen-

dence on the problem parameters also displays notable differences. While time-averaged

quantities are almost independent from the vibrational Rayleigh number, instantaneous

ones grow (as expected) with this parameter. However, as the angular frequency of the

imposed vibrations is increased, both fluctuating and time- averaged (stationary) effects

(as properly quantified through the so-called TFD distortions) tend to be damped until

a completely motionless state is attained (for a cut-off value of the frequency that grows
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with the considered value of Raω). This scenario is consistent with that revealed by the

Nusselt number (which tends to 1 as this cut-off value is exceeded, thereby indicating

that purely thermally diffusive conditions are established). It is also congruent with the

so-called Birikh’s law, i.e., the expected tendency of the time-averaged vibration force

to create isotherms perpendicular to the direction of vibrations when the frequency

becomes relatively high (thereby causing a strong increase in the value of the Rayleigh

number needed to produce convection, which ideally tends to infinity in the limit as

Ω → ∞, [35]). The peak visible in both the instantaneous TFD and Nu plot at Ω = 100

for relatively high values of the vibrational Rayleigh number calls for a complementary

explanation. This can be further elaborated in its simplest form on the basis of the

argument that the fluctuating components of velocity and temperature are dominant

and therefore play a crucial role in determining the intensity of the heat exchange at

the solid boundaries. Moreover an explanation for the non-monotone behaviour must

be sought in the spatial symmetries of the dominant flow. Indeed, the specific value

of the angular frequency for which the maximum is attained (Ω ∼= 100) in the range

of high values of the vibrational Rayleigh number corresponds to conditions where the

(ss) symmetry (multicellular state) is dominant.

4.7 Conclusion

Given the lack of studies specifically conceived to investigate the properties of pure

thermovibrational flow in conditions for which the temperature gradient is parallel to

the direction of shaking, this work has been conducted under the optimistic idea that it

may provide a common point of origin from which many studies in the community may

depart (including meaningful extensions to three-dimensional configurations). These

future works might be based on the same variegated approach proven instrumental in

unravelling processes that are interwoven or overshadowed and successful at illuminat-

ing the dynamical mechanisms at play on these systems.
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Chapter 5

Hadley flow type

thermovibrational convection and

turbulence for high values of Raω

This chapter is based on the following peer-reviewed publication:

Crewdson, G and Lappa, M., 2021, “Thermally-driven flows and turbulence

in vibrated liquids”, International Journal of Thermofluids, 11, 100102,

https://doi.org/10.1016/j.ijft.2021.100102.

The text in this chapter has been modified only when necessary in order to preserve

the continuity and flow of this thesis.

5.1 Introduction

In this chapter cases where the direction of vibrations is perpendicular to the im-

posed temperature gradient are considered. The study is designed as a set of separate

problems, where each problem aims to unravel the implications of the fundamental

properties of thermovibrational convection. These include the symmetry of the emerg-

ing pattern as perceived by a real observer and as seen in a “time-averaged space”, the

synchronous or non-synchronous response of the velocity field to the applied forcing,
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the magnitude of the so- called Thermofluid-dynamic (TFD) distortions and the pecu-

liar route of evolution towards chaos. A kaleidoscope of previously unknown solutions

is reported giving emphasis to some still poorly known aspects such as the complex

nature of the textural transitions that take place in the flow as the Gershuni number is

increased (from 3.30×102 to 5.00 ×107 for Pr = 15). It is shown that the low-frequency

regime is relatively stable over this range. In addition to the standard quadrupolar pat-

tern, in such a case, peculiar convective structures emerge where the time-averaged rolls

display a very regular columnar arrangement, which has been rarely observed in earlier

studies. Chaotic states are enabled when larger frequencies of vibration are considered.

While for intermediate frequencies concurrent aspects of the Feigenbaum and Man-

neville and Pomeau mechanisms can be recognized, the hallmark of the high frequency

regime is its adherence to the standard Ruelle-Takens scenario.

5.2 Mathematical model and validation

In this study, the vibrations are applied along the horizontal axis and the temperature

gradients sits along the vertical axis as shown in 5.1.

To demonstrate the reliability of the numerical method presented in the next sec-

tion (and the related implementation available in OpenFOAM), preliminary simulations

have been compared with well established benchmarks available in the literature. In

particular, the patterns reported by Lappa and Monti and Savino [14, 107] have been se-

lected given the similarity between their configuration and that examined in the present

work. Indeed, in these works, the steady gravity field was replaced by a time periodic

body force and set perpendicular to the temperature gradient. The outcomes of such

simulations are presented Fig.5.2 for Pr=15 and Gs = 3.30× 102 and 3.30× 104, where

the pattern of the time-averaged velocity field is shown. The classical transition from

the so-called quadrupolar flow field to the inversional symmetry pattern, as the Ger-

shuni number is increased, is observed here. For the sake of additional validation, and

given the scarcity of relevant results in the literature, the solution method has been ver-

ified further through ‘ad hoc’ comparisons between the results provided by OpenFOAM
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Figure 5.1: Square cavity with characteristic size L, delimited by solid walls (one at
y=0 cooled, the other at y=1 heated, adiabatic conditions on the remaining sidewalls).
The vibrations are directed along the y axis, i.e. they are perpendicular to the imposed
temperature difference.

Figure 5.2: Benchmark simulations corresponding to Pr=15: a) Gs = 3.30 × 102 and
b) 3.30 × 104 (the classical transition from the so-called quadrupolar flow field to the
inversional symmetry pattern can be seen, as the Gershuni number is increased).

and those yielded by an alternate computational platform (namely, the same software

implemented by Lappa [1] and Lappa and Burel [71], used also in the validation study

shown in Sect.4.3). Although, the same class of pressure-velocity methods discussed be-

fore is at the root of both implementations, they differ in regard to temporal schemes
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(which are implicit and explicit for OpenFOAM and Lappa’s algorithm, respectively).

Another distinguishing mark is represented by the level of coupling for velocity and

pressure (this being based on a staggered arrangement of primitive variables in the lat-

ter software). The outcomes of the focused comparisons conducted for a series of values

Figure 5.3: Detected frequencies for 4 cases (Pr=15 ,Ω = 9.382, Raω = 1.08 × 105,
Raω = 4.47×105, Raω = 8.56×105, and Raω = 1.08×106). In full colour are presented
the results from OpenFOAM and in semi-transparent are presented the results from
the in-house code.

of the vibrational Rayleigh number (namely, Raω = 1.08 × 105, Raω = 4.47 × 105,

Raω = 8.56× 105, and Raω = 1.08× 106, for Pr=15 and Ω = 9.38× 102) are quantita-

tively substantiated in Fig.5.3. The reported frequencies are provided by a Fast Fourier

Transform (the x, y and z axes representing the number of frequencies detected in the

spectrum, the frequency value and the corresponding vibrational Rayleigh number, re-

spectively). As evident in this figure, the two codes provide an almost perfect agreement

in terms of frequency spectrum (the only minor difference relates to the slightly higher

number of frequencies obtained with the in-house code in one of the cases, for which,

however, the related amplitude has been found to be almost negligible).
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5.3 Grid refinement

Given that the specific nature of the considered problem may potentially lead to the

development of instabilities and even transition to turbulence in some conditions, spe-

cial attention has been paid to build relevant grids, i.e. meshes able to capture properly

all the spatial scales involved in the emerging phenomena. In the absence of relevant

(observational) information to properly address this point (due to the limited number

of earlier investigations on the subject), this study is based on general criteria avail-

able in the literature for problems that share common aspects with the present one.

Simirlarly to Sect.4.3, as a first requirement to be met, the need to have a sufficient

resolution inside the thermal boundary layers is considered. Though a dichotomy is

often drawn between buoyancy convection induced by steady gravity or a time-periodic

acceleration, indeed, these phenomena display some affinities. For relatively high values

of the Prandtl number, both are prone to develop regions of limited thickness located

in proximity to the solid boundaries, where temperature displays strong gradients or

steep profiles. Russo and Napolitano’s The Order of Magnitude Analysis for the bound-

ary layer thickness [103] and Shishkina’s boundary layer resolution requirements [104]

touched upon in Sect.4.3, (Equations 4.4 and 4.4) are also evaluated here. Superim-

posed on these constraints is the need to capture the smallest flow feature eventually

present in the fluid flow when it enters the turbulent regime. For the case of perpendic-

ular vibrations, the flow problem can be considered as the vibrational analogue to the

classic Hadley flow estimated using the correlation originally elaborated by Paolucci

[112] and Farhangnia et al. [113].

ζRa⊥ = π

(
16Pr

Ra

)3/8

(5.1)

A summary of the theoretical grids defined using the above criteria under the as-

sumption of uniform mesh are presented in Table 5.1 together with the corresponding

thickness of the thermal boundary layers (as provided by effective numerical simula-

tions based on such grids). It can be noted that, in the frame of this initial assessment
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of the required spatial resolution, the number of cells required in the boundary layer

following Shishkina’s formulation (Eq.4.4) has been found to be the most restrictive

mesh-resolution controlling factor over the considered range of values of the vibrational

Rayleigh number. In order to circumvent difficulties deriving from the prohibitively ex-

Table 5.1: Theoretical and measured boundary layer properties

Raω Theoretical δth.BL Actual δth.BL Theoretical Nth.BL Actual Nth.BL Grid resolution

6.22× 104 < Raω < 1.08× 106 n/a n/a n/a n/a 80 by 80
2.42× 106 2.53× 10−2 2.49× 10−2 3.17 7 100 by 100
3.42× 106 2.32× 10−2 2.08× 10−2 3.34 6 100 by 100
7.66× 106 1.90× 10−2 1.90× 10−2 3.77 7 125 by 125
1.08× 107 1.74× 10−2 1.60× 10−2 3.97 6 125 by 125
2.42× 107 1.43× 10−2 1.03× 10−2 4.48 4 125 by 125

pensive computing cost resulting from the enhanced computational overhead required

by uniform grids satisfying all these requirements, a non-uniform distribution of com-

putational cells is used. Along these lines, Fig.5.4 illustrates the different mesh types

Figure 5.4: Different mesh sizes used depending on Raω

adopted for the ensuing additional mesh refinement study. It can be noted that a

bias is included towards the walls of the cavity. By doing so, the number of nodes in

the boundary layer is increased instead of increasing the number of nodes across the

whole domain, thereby reducing the required computational power. Though the above

discussion might be regarded as an exhaustive treatment of the problem in terms of

space resolution requirements, it does not consider another important restrictive con-

dition that plays a crucial role when flows induced by non-constant driving forces are

considered, i.e., the needed temporal resolution. This specific aspect requires the con-
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sideration of two additional concurrent factors. For thermovibrational flow, both the

instantaneous and time average velocities can be analysed by means of Fast Fourier

Transforms (FFT), whereby the velocities are presented as a function of frequency

rather than a function of time. The appropriate sampling rate must be chosen in order

to ensure all frequencies are taken into account. Traditionally, the minimum sampling

rate of a continuous signal must obey the Nyquist-Shannon Sampling Theorem. The

theorem states that the signal must be sampled at a frequency superior to twice the

frequency of the signal fs (the Nyquist Frequency), giving fs/2 < f . The time step of

the simulation is defined as: ∆t = 2π/ωNp, where, Np is the number of samples per

period and must satisfy the Nyquist Sampling Theorem whereby Np > 2f . The second

constraint to be aware of is the well-known effect of the Courant number (C), which

must be smaller than one to ensure numerical algorithm stability. For all the simula-

tions presented in this study, the time integration step (satisfying both abovementioned

requirements) has been selected in such a way to have a minimum of 400 steps for each

cycle of vibrational modulation. In order to confirm the viability of all these theoretical

requirements, an additional mesh refinement study has been carried out on two cases,

shown in Fig.5.5, where the frequency spectrum has been chosen as the comparative

output parameter. In case (a) (Ω = 9.38× 103, Raω = 1.08× 106, Gs = 1.00× 105), a

grid resolution of 80 by 80 cells satisfies the theoretical requirements. Accordingly, two

peripheral simulations have been carried out, one with a coarser grid (60 by 60 cells)

and one with a finer grid (100 by 100 cells). The results from the higher resolution grid

are quasi-identical to those obtained with the predicted 80 by 80 grid, therefore this

grid resolution has been used in the present study for all cases with Raω < 1.08× 106.

As for case (b) (Ω = 9.38×103, Raω = 7.66×106, Gs = 1.00×106), a grid resolution of

125 by 125 cells satisfies the theoretical requirements. For this case, the two additional

simulations have been carried out on a 100 by 100 cell grid for the coarser case, and a

140 by 140 cell grid for the finer case. It can be noted that for any mesh exceeding 100

by 100 cells a bias is applied at the walls as indicated in Fig.5.4. As this case is consid-

ered weakly turbulent (this is expanded on in following sections), the exact frequencies

and amplitudes can vary from simulation to simulation, however, it is evident here that
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the response of the system is very similar for all three grid resolutions. Therefore, a

grid size of 125 by 125 is acceptable in this case. These two representative cases have

shown that the theoretical requirements based on the complex set of criteria illustrated

before can be used as a relevant basis to determine ‘a priori’ the needed resolution.

Figure 5.5: Grid refinement study for the case Ω = 9.38 × 103 (a) Raω = 1.08 × 106,
(Gs = 1.00× 105), and (b) Raω7.66× 106, (Gs = 5.00× 106).

5.4 Simulation results

5.4.1 The high frequency case: The Ruelle-Takens scenario

In the present sub-section, the Gershuni number is varied parametrically from the first

reference case Gs = 3.30×102, (corresponding to Raω = 6.22×104) to Gs = 5.00×107,

(Raω = 2.42×107), thereby spanning 5 orders of magnitude. Although a total of 12 cases

are simulated for a given frequency Ω = 9.38×103, in the following, only 6 of these cases

are discussed to illustrate the different possible ‘solutions’ (the reader being referred

to Table 5.2 for a complete description of all simulations and the respective regimes).

For 3.30 × 102 < Gs < 5.00 × 103 (or 6.22 × 104 < Raω < 2.40 × 105) the streamlines

of the time-averaged velocity field show the quadrupolar flow field already discussed

in relation to the first validation case (the first fundamental mode displaying central

symmetry, see Fig.5.6, left panel). Starting from a single roll, the instantaneous flow field

(Fig.5.6, right panels) changes periodically in time, whereby four small rolls emerge at

the outer corners of the cavity and then disappear leaving behind them again one single

roll (this behaviour occurring twice per period). Following up on this point, it is worth

recalling that the single vortex pervasive throughout the entire square cavity, regularly
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Figure 5.6: Gs = 3.30×102, Raω = 6.22×104, Ω = 9.38×103: time-averaged flow (left)
and instantaneous flow (right), where the instantaneous snapshots are taken at t=0,
0.1P, 0.5P and 0.6P (where P = 2π/Ω). The arrow indicates the counter clockwise or
clockwise motion of the fluid.

changes its sense of circulation (from the counter clockwise to the clockwise orientation)

according to the sign of the acceleration. As the order of magnitude of the Gershuni

Figure 5.7: Gs = 1.00 × 104, Raω = 9.38 × 103: time-averaged flow (left) and instan-
taneous flow (right) where the instantaneous snapshots are taken at t=0, 0.1P, 0.2P,
0.4P, 0.6P, 0.8P, 0.9P and 1P.

number shifts from O(103) to O(104), the time-averaged flow field transitions from the

quadrupolar field to a diagonal state (the second fundamental mode, Fig.5.8, left panel),

in agreement with the validation case. The instantaneous flow field also undergoes

some modifications; indeed, it displays a more involved sequence of snapshots, where

occasional manifestations can be seen of a diagonal convective structure (t = t0+0.1P )

due to the superposition of (ss) and (aa) modes and a columnar arrangement of rolls

(my = 1,mx = 3) embedded in a larger scale circulation for t = t0+0.8P. On increasing

the Gershuni number to Gs = 105 (Raω = 1.08 × 106), substantial changes can be

spotted in both the time-averaged and instantaneous fields (Fig.5.8). In what concerns
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Figure 5.8: Gs = 105, Raω = 1.08 × 106, Ω = 9.38 × 103: time-averaged flow (left)
and instantaneous flow (right), where the instantaneous snapshots are taken at 0.1P
intervals from t=0 to t=P.

the time-averaged velocity, the dominant diagonal orientation of the main circulation

is conserved, however the two inner roll seems to be ‘squashed’ by the growing of two

smaller rolls in the outer corners of the cavity. As for the instantaneous field, a time

periodic scenario is still observed. However, an increase in complexity in the patterning

behavior of the fluid is evident. The single roll pervasive throughout the cavity ((aa)

mode withmy = mx = 1), seen for lower values of Raω and Gs, does no longer represent

the preferred transitional stage of evolution; it is replaced by transitional states with 2

dominant central rolls (essentially aligned along the direction of vibrations), ornated by

external eddies which nucleate along the side walls and/or the cavity corners. Moving

on to the case Gs = 106 (Raω = 3.42 × 106), although the topological configuration

of the time-averaged flow field remains unchanged, some morphological alterations can

be seen (Fig.5.9, left panel). The two inner rolls embedded into the main circulation,

which previously were perfectly aligned with the NW-SE diagonal direction, are now

displaced towards the lateral (external walls) and, at the same time, towards the cavity

midplane x=1/2 (thereby creating the illusion of an inclined Z-shaped vortex). This is

accompanied again by an increase in complexity in the instantaneous field. As in this

case the velocity signal is no longer strictly synchronous with the forcing frequency

(this will be expanded on in the next section), a selection of snapshots illustrating

the various possible multi-cellular states is presented in, Fig.5.9 right panel. The next

interesting transition occurs when Gs is increased to 5.00×106 (and Raω to 7.66×106).
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Figure 5.9: Gs = 1.00 × 106, Raω = 3.42 × 106, Ω = 9.38 × 103: time-averaged flow
(left) and instantaneous flow (right). As the synchronicity is broken, the instantaneous
snapshots are taken at arbitrary times in order to illustrate the myriad of possible 2,
4, 5 and 6-roll patterns.

In such conditions, notably, the time-averaged field presents a slight fluctuation in

time (it becomes time dependent, Fig.5.10 (a)). Surprisingly, the 4-roll configuration is

recovered. Qualitative comparison with Fig.5.6, however, reveals that the distribution

of streamlines is seemingly distorted. For what concerns the instantaneous field (as the

reader will easily realize by inspecting the related sequence of snapshots in Fig.5.10 (b)),

the temporal evolution of the flow can be seen as a continuous swap between a two-roll

diagonal mode (oriented along the NW-SE or the NE-SW directions depending on the

considered instant) and a zig-zag configuration of four rolls all embedded in a larger

circulation. The next figure of the sequence simply illustrates that as Gs is increased to

Gs = 5.00×107 (Raω = 2.42×107), both the time-averaged field and the instantaneous

field become relatively chaotic (Fig.5.11 (a) and (b), respectively). Symmetry along the

diagonal axis is (mostly) lost in both the instantaneous and time averaged field. This is

accompanied by an increase in the number of eddies that appear in the flow, emerging

from multiple locations in the cavity. In the following, the earlier arguments developed

for the topology of the streamlines of the time-averaged and instantaneous flow field

and the related temporal and morphological evolution are complemented by a frequency

spectrum analysis based on the velocity signal measured by a numerical probe located in

the geometrical centre of the cavity. To extract these frequency spectra from the velocity
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(a)

(b)

Figure 5.10: Gs = 5.00× 106, Raω = 7.66× 106, Ω = 9.38× 103: a) time-averaged flow;
b) instantaneous flow Time-averaged snapshots taken at non-dimensional time t=1.206,
1.219, 1.233 and 1.246, instantaneous snapshots taken at intervals of 0.1P starting at
t=1.219 and ending at t=1.219+P.

signal, for each simulation a Discrete Fourier Transform has been implemented using

a Fast Fourier Transform algorithm (FFT), whereby the time domain is transformed

to the frequency domain. In this regard, Fig.5.12 is instrumental in revealing that (as

expected) an increase in Gs for a fixed Ω(equivalent to an increase in Raω makes

the number of detected signal frequencies higher. In the following, for simplicity, the

following symbols are used to indicate integer multiples of the forcing frequency present

in the spectrum: Ω2 = 2Ω, andΩ3 = 3Ω. As the reader will realize through inspection

of Fig.5.12, over the extended range 3.30×102 < Gs < 5.00×105, (6.22×104 < Raω =

2.42× 106) the emerging flow can be considered synchronous with the imposed forcing

(as all detected frequencies are harmonics of the original non-dimensional frequency of

vibrations Ω). However, from Gs = 106, Raω = 3.42 × 106 and Gs = 5 × 106, Raω =

7.66×106 the FFTs show a wide range of frequencies. Additional frequencies are seen to
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(a)

(b)

Figure 5.11: Gs = 5.00× 107, Raω = 2.42× 107, Ω = 9.38× 103: a) time-averaged flow;
b) instantaneous flow The time averaged snapshots are taken at t=2.023, 2.030, 2.036,
2.043 the instantaneous snapshots are taken at 0.1P intervals starting at t=2.339 and
ending at t=2.339+P.

appear at the right and left-hand side of Ω and its harmonics (Fig.5.13). Although these

frequencies are non-synchronous with the main frequencies Ω, Ω2 and Ω3, they follow an

interesting pattern whereby: Ω2R = 2ΩR and similarly, 2ΩL = 2Ω1L, where ΩR and ΩL

represent incommensurate frequencies that appear to the right and left of Ω respectively.

As a final look at the lower panels in Fig.5.13 would indicate, when the Gershuni number

is increased beyond Gs = 5× 106 (and the Rayleigh number beyond Raω = 7.66× 106)

the behaviour becomes more turbulent (as witnessed by the continuous distribution of

frequencies in the spectrum, which quantitatively substantiate the complex patterning

behaviour reported in Fig.5.11). From the streamlines of the instantaneous and time-

averaged velocity fields, combined with the frequency spectrum analysis, the overall

behaviour of the considered system can therefore be categorised as illustrated in Table

5.2. As the appearance of turbulence (a continuous frequency spectrum is preceded by
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Figure 5.12: Harmonic frequencies detected at increasing values of Gs (Ω = 9.38× 103)

the existence of three incommensurate frequencies and related higher-order harmonics),

it can also be argued that in the range of high frequencies (Ω ≈ 104), the transition to

chaos essentially adheres to the Ruelle-Takens-Newhouse scenario [53].

Table 5.2: Summary of system responses for increasing values of Gs and Raω at Ω =
9.38× 103

Gs Raω Time-averaged velocity field pattern Regime

3.30× 102 6.22× 104 Quadrupolar Synchronous
5.00× 102 7.66× 104 Quadrupolar Synchronous
1.00× 103 1.08× 105 Quadrupolar Synchronous
5.00× 103 2.42× 105 Quadrupolar Synchronous
1.00× 104 3.42× 105 Predominant diagonal roll Synchronous
5.00× 104 7.66× 105 Predominant diagonal roll Synchronous
1.00× 105 1.08× 106 Predominant diagonal roll Synchronous
5.00× 105 2.42× 106 Z Shape containing two small inner rolls Synchronous
1.00× 106 3.42× 106 Z Shape containing two small inner rolls Weakly Turbulent
5.00× 106 7.66× 106 Oscillating quadrupolar Weakly Turbulent
1.00× 107 1.08× 107 Oscillating quadrupolar Turbulent
5.00× 107 2.42× 107 No distinct pattern Turbulent
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Figure 5.13: Fourier Transforms for the non-synchronous and turbulent cases 106 <
Gs < 5× 107and 3.42× 106 < Raω = 2.42× 107.

5.4.2 Intermediate frequencies and the Feigenbaum sequence

Having completed a sketch of the dynamics in the high-frequency regime, in the present

section the circumstances for which the frequency of the imposed vibrations is smaller

(decreased by one order of magnitude, i.e. Ω = 9.38× 102) is considered. Following the

same approach already undertaken for the higher frequency case, first, a description of

the velocity field in terms of its various manifestations as a function of Gs at fixed Ω is

provided. As evident in Fig.5.14, for Gs = 105, Raω1.08× 105, the time averaged field

is steady in time and takes the form of a large inner roll accompanied by two very small

rolls at two of the outer corners. The instantaneous field shows an evolving patterning

behaviour displaying various realizations and superposition of convective modes with

(aa) and (as) symmetry (columnar arrangements of two or three rolls embedded into

a larger scale circulation). On increasing the Gershuni number to Gs = 5.83 × 106

(Raω = 8.27×105), the dynamics become weakly chaotic as witnessed by the unsteady

time averaged flow undergoing random switches between distorted three-roll and four-

roll patterns. As shown in Fig.5.15, the increased complexity of the flow is also very
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Figure 5.14: Gs = 1.00 × 105, Raω = 1.08 × 105, Ω = 9.38 × 102: Time-averaged flow
(left), instantaneous flow (right) where the instantaneous snapshots are taken at 0.1P
intervals from t0 = 0P to t = t0+P.

evident in the instantaneous velocity field, where, though the dominance of columnar

modes can still be identified, a variety of textural transitions take place. An interesting

change occurs for 7.08 × 106 < Gs < 1.00 × 107, (9.12 × 105 < Raω < 1.08 × 106, see,

e.g., Fig.5.16), where, most surprisingly, a back transition to a steady state is observed

in terms of time-averaged field. Such a simplification can also be spotted in the instan-

taneous velocity, where only a limited number of textural transitions can be detected.

Setting Gs to 5.00×107, Raω = 2.42×106, however, makes the flow relatively turbulent

(see Fig.5.17). While the time-averaged field fluctuates between a three-roll structure

similar to that seen in previous cases and more complex three, four and five-roll pat-

terns in a seemingly random manner, the instantaneous velocity gives rise to a rich set

of patterns, which include many eddies as already seen previously for chaotic flow in the

high-frequency regime. Given the counter-intuitive evolution displayed by the system as

a function of the Gershuni number (or vibrational Rayleigh number), unlike Sect.5.4.1

(where the analysis was limited to determining the frequency spectrum and showing its

increasing complexity with Gs), here a more sophisticated strategy is employed. This

(multi-faceted) approach involves additional tools generally used for the assessment or

‘quantification’ of the level of chaos embedded in a non-linear system. To do so, inspi-

ration is taken from the work by Ueno et al. [114] . Although this referenced study was

focused on a different type of convection (Marangoni flow in liquid bridges), the authors

demonstrated that an alternate approach (with respect to standard two-dimensional
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(a)

(b)

Figure 5.15: Gs = 5.83 × 106, Raω = 8.27 × 105, Ω = 9.38 × 102: a) Time-averaged
flow, b) instantaneous flow. Time averaged flow snapshots are taken at t=7.904, 7.938,
7.971 and 8.005 and instantaneous snapshots are taken at 0.1P intervals from t= 8.146
to t=8.146+P.

Figure 5.16: Gs = 1.00 × 107,Raω = 1.08 × 106, Ω = 9.38 × 102: time-averaged flow
(left) and instantaneous flow (right), where the instantaneous snapshots are taken at
0.1P intervals from t0 = 0P to t = t0+P.

Poincarré maps) based on the reconstruction of the pseudo-phase space from the time

series of the surface temperature can be used to acquire useful insights into the chaotic
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(a)

(b)

Figure 5.17: Gs = 5.00×107, Raω = 2.42×106, Ω = 9.38×102: a) Time-averaged flow,
b) instantaneous flow. Instantaneous snapshots taken at 0.1P intervals starting t=7.343
and ending at t=7.343+P. Time averaged snapshots are taken at t=7.322, 7.329, 7.335
and 7.342,

behavior of a flow. Although in the present work, the velocity time series is used in

place of the surface temperature time series, the underlying principles are essentially

the same. The sequence of plots in Fig.5.18 represents the outcome of such an analysis.

This figure illustrates in an ordered fashion the instantaneous velocity field, the related

Fourier transform and finally the reconstructed phase space for increasing values of Gs

(Raω). It can be recalled that this fruitful three-fold representation method has also

been employed by other authors such as Paolucci and Chenworth [50] and Guzman and

Amon [56]. In the present study, the phase space reconstruction has been achieved by

using the time delay embedding procedure, stemming from the mathematical frame-

work proposed by Takens [53]. Where the observed time series (in terms of v, where

v is the velocity component along y) lies on an ‘unobservable’ attractor, the time se-

ries is used to reconstruct this attractor by plotting the lagged coordinated vectors:
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v(t), v(t + τ), v(t + 2τ)...v(t + (m − 1τ), where m is the embedding dimension and τ

is the time delay (or lag). This method is highly informative of the specific behaviour

of the dynamic system as an increase in complexity in the velocity signal leads to

an increase in complexity of both the frequency spectrum and the reconstructed phase

space. As a first example, looking at the panel Fig.5.18a, it can be seen that the velocity

signal is initially monochromatic and strictly synchronous with the forcing frequency;

the associated reconstructed phase space is composed of a single loop.
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(a) Gs = 105, Raω = 1.08× 105

(b) Gs = 1.70× 106, Raω = 4.47× 105

(c) Gs = 5.83× 106, Raω = 8.27× 105

(d) G = 6.25× 106, Raω = 8.56× 105

(e) Gs = 107, Raω = 1.08× 106

(f) Gs = 5× 107, Raω = 2.42× 106

Figure 5.18: Velocity signals, Fourier transforms and phase space reconstructions for
6 values of Gs and Raω(a-f), illustrating the transition to chaos followed by a back
transition to a synchronous, single frequency state and again, back to a turbulent state
(Ω = 9.38× 102).
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When looking at panel Fig.5.18b however, although the signal is still regular, the

presence of a second frequency equal to Ω/2 can be recognized; accordingly, a second

loop appears in the phase space. This in an indication that for Gs = 1.70× 106, Raω =

4.47× 105, a period- doubling bifurcation has taken place. Careful analysis of Fig.5.18

(the reader being also referred to the information summarized in Table 5.3) also re-

veals that while for Gs = 5.83 × 106, Raω = 8.27 × 105 (Fig.5.18, panel (c)) the flow

can be considered turbulent, for Gs = 6.25 × 106, Raω = 8.56 × 105 (Fig.5.18, panel

(d)), a two- frequency state (consisting of Ω,Ω/2 and related harmonics) is recov-

ered, which is in line with the counter-intuitive trend detected through analysis of

the patterning behaviour. Most surprisingly a further increase in the Gershuni num-

ber (Gs = 1.00 × 107, Raω = 1.08 × 106, Fig.5.18 panel (e)) causes a further sim-

plification in the spectrum, i.e. the flow returns a single frequency response. This

peculiar evolution might be seen as reminiscent of a mechanism of the Feigenbaum

type [115] occasionally mediated by intermittent events (these important concepts will

be revisited in the discussion). Nevertheless, period doubling bifurcation for the final

transition from the last harmonic state to the next turbulent case was not identified

(Fig.5.18 panel (f)); additional simulations at intermediate values of Gs and Raω e.g.,

Gs = 3.00 × 107, Raω = 1.88 × 106 have simply revealed a single-frequency state akin

to its predecessor for Gs = 107, Raω = 1.08× 106.

Table 5.3: Summary of system responses for increasing values of Gs and Raω at Ω =
9.38× 102

Gs Raω Flow Regime

1.00× 105 1.08× 105 Synchronous
1.70× 106 4.47× 105 Periodic doubling
5.83× 106 8.27× 105 Turbulent
6.25× 106 8.56× 105 Periodic doubling
1.00× 107 1.08× 106 Synchronous
5.00× 107 2.42× 106 Turbulent

5.4.3 Low frequencies

While a fairly comprehensive picture has been elaborated in the previous two sections

about a high frequency (Ω = O(104)) and an ‘intermediate’ frequency (Ω = O(103)), for

98



Chapter 5. Hadley flow type thermovibrational convection for high values of Raω

the sake of completeness, this section continues this investigation by probing the role of

a low frequency (Ω = 93.8). It can be anticipated that these cases will require a more

contained discussion given their relative simplicity with respect to the more complex

dynamics examined for larger values of Ω. In fact, for half of the cases simulated here

(yet for Gs up to 5.00× 107) the instantaneous field has been found to display a single

possible state (in the range 105 < Gs < 106). This class of solutions takes the form of the

(aa) mode with a single cell, undergoing a periodic swap in the sense of orientation (from

the clockwise orientation to the counterclockwise one, as illustrated in Fig.5.19). Only a

minor change in behavior can be seen in Fig.5.19, panel (c), where a slight lengthening

of the central roll in the vertical direction is observed in the 4th and 9th snapshot of

the sequence. Although for Ω = 93.8, two- and three-roll configurations are observed

at high values of Gs (5.00× 107) these textural transitions affecting the instantaneous

velocity field are relatively simple compared to the same values of Gs and Raω at

higher values of Ω. Nevertheless, for all cases simulated in this sub-section, four and

eight roll configurations have been found for what concerns the time-averaged field ((ss)

modes). These are illustrated in Figs.5.19 and 5.20 for Gs = 1.00×105, 5.00×105, 1.00×

106, 5.00 × 106, 1.00 × 107 and 5.00 × 107 (the corresponding Rayleigh numbers being

Raω = 1.08× 104, 2.42× 104, 3.42× 104, 7.66× 104, 1.08× 105, 2.42× 105, respectively).

As a concluding remark for this section, it can be highlighted that recently Boaro and

Lappa [116] have expanded this specific line of research (thermovibrational flow in the

low-frequency regime) by addressing the companion problem in which the fluid has a

viscoelastic behaviour. For Pr = 10,Ω = 100, comparable values of Gs, and limiting

conditions for which the elasticity of the fluid is negligible (Newtonian case), they have

found columnar modes of convection for Gs = 5.00 × 106, 1.00 × 107 and 5.00 × 107

somehow similar to those reported here, which indicated that these are the preferred

modes of convection in this range of frequencies and Pr = O(10) .
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(a)Gs = 105, Raω = 1.08× 104

(b)Gs = 5.00× 105, Raω = 2.24× 104

(c)Gs = 106, Raω = 3.42× 104

Figure 5.19: Time-averaged flow (left) and instantaneous flow (right), for Ω = 93.8 and
the three (lower) considered values of Gs and Raω. For (a) and (b) the instantaneous
snapshots are taken at 0.1P, 0.2P, 0.5P and 0.6P. For (c) they are taken at 0.1P intervals
from t0 = 0P to t = t0+P.. The arrow indicates the clockwise or counterclockwise
motion of the fluid that changes according to the sign of the acceleration.
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(a)Gs = 5.00× 106, Raω = 7.66× 104

(b)Gs = 107, Raω = 1.08× 105

(c)Gs = 5.00× 107, Raω = 2.42× 105

Figure 5.20: Time-averaged flow (left) and instantaneous flow (right), for Ω = 93.8 and
the three (higher) considered values of Gs and Raω. For all cases the instantaneous
snapshots are taken at 0.1P intervals from t0 = 0P to t = t0+P. The arrow indicates
the clockwise or counter-clockwise motion of the fluid that changes according to the
sign of the acceleration and as a result of complex textural transitions.

5.4.4 Thermal characterization: TFD distortions

After analysing thermovibrational convection from a fine-grained mechanical level (the

physicist’s point of view, leading to treat the problem on the same footing as a classical

study of instability or transition to chaos), this section is used to provide the reader
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with a more ‘engineering’ point of view, i.e. a coarse-grained macroscopic perspective

connected to the evaluation of factors by which the thermal behavior of the system

can be characterized ‘globally’. In particular, in line with the existing literature on this

specific form of convection, we use the so-called thermofluid-dynamic (TFD) distortions

(these are introduced previously in Chap.4). From the literature, it is known that for

thermovibrational systems, amplitudes of the fluctuating temperatures disturbances

tend to decrease with frequency, and the average quantities are less dependent on the

frequency so that the time-averaged distortions prevail over the fluctuating distortions

at high frequencies and the fluctuating distortions prevail over the time averaged ones

at low frequencies [46, 117]. With this information in hand, it is of interest not only to

explore the behavior of a fluid cell under vibrations, when the Gershuni and Rayleigh

numbers are increased, but it is also of interest to study the effect of a change in the

vibrational frequency. In Fig.5.21, the dashed data lines represent δT ′, and the solid

lines represent δT . It is clear here that as the forcing frequency grows, the more the

contributions of the time averaged part become predominant and vice versa, which is

in agreement with the literature cited above. Interestingly, while δT ′ has a maximum

for Ω = 102, δT ′ is characterized by the presence of some peaks for Ω = 103 (not

for all values of Gs). The non monotonic behaviour of the latter quantity in some

circumstances can be ascribed to the complex (intermittent) dynamics, which take

place for Ω = 103, as discussed in Sect.5.4.2. To compliment this quantitative analysis,

Fig.5.22 shows the time-averaged temperature fields for the three values of Ω considered

in the present work and a representative fixed value of the Gershuni number, Gs = 106.

Although the temperature field is relatively undisturbed for the lowest frequency, as

expected and in line with the trends reported in Fig.5.22 for cases (b) and (c), the

increase in Ω leads to an increased distortion.
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Figure 5.21: TFD Distortions as a function of the frequencies of the imposed vibrations
for different values of the Gershuni number.

Figure 5.22: Time averaged temperature field for the case Gs = 106, and frequencies
(a) Ω = 9.38× 10, (b) Ω = 9.38× 102 and (c) Ω = 9.38× 103.

5.5 Discussion and conclusion

The mechanisms through which a closed system undergoes transition to chaos can be

categorized into three main types. Firstly the Ruelle-Taken-Newhouse scenario [52, 54]
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where a flow can be assumed to be chaotic after three incommensurate frequencies have

been produced (the ensuing evolution of the system generally consisting of a corrugation

of the related T3 torus). The second known route to chaos is the so-called Feigenbaum

sequence [115] where, following an increase of the control parameter, a series of period

doubling bifurcations takes place. Finally, the Manneville and Pomeau [118] mechanism,

where intermittent bursts occur in the time series of characteristic quantities (temper-

ature or velocity); these bursts become more and more frequent with an increase in

control parameter, resulting ultimately in a signal composed of only turbulent bursts

(giving rise to a fully turbulent frequency spectrum). It is known that these possible

routes are not mutually exclusive, nor are they truly progressive, that is, they can mu-

tually ‘contaminate’ one another. In an attempt to fill a gap still affecting the existing

literature, in the present work, the focus was on the evolution of pure thermovibrational

flow. Given the known dependence of this form of thermal convection on the frequency

of the applied forcing (leading to partition the space of parameters into two main re-

gions, namely, the ranges of small and high frequencies), such frequencies are allowed to

span a relatively wide interval of orders of magnitude. Starting from the case for which

the frequency is high (a common point of origin from which many past studies have

departed owing to the inherent simplifications allowed in terms of governing equations)

[107], and assuming a fixed range of values of the Gershuni number (known to be the

main parameter controlling the evolution of the system in the time-averaged space),

the frequency has been gradually decreased with a three-fold purpose; firstly, to dis-

cern the influence of Ω on the magnitude and patterning behavior of the time-averaged

velocity (especially for high values of the Gershuni number for which no results exist

in the literature); secondly, to reveal the underlying textural transitions affecting the

instantaneous flow field, and thirdly, to decode the typical route of evolution towards

chaos. Remarkably, it has been found that the two aforementioned regimes (generally

distinguished according to the relative importance of time- averaged and fluctuating

effects) also differ in regard to the preferred sequence of events (the hierarchy of insta-

bilities), which take place as the control parameter is increased. For high frequencies

(Ω = 104), the present numerical results have shown that thermovibrational convection
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considered in the time- averaged space (i.e. in terms of V) is initially steady and it

becomes time-periodic if the Gershuni number is increased. In this case, the typical

mechanism of transition to chaos is represented by the classical Ruelle-Takens path of

evolution (requiring the presence of three independent frequencies in the instantaneous

velocity signal [52].) For intermediate frequencies (Ω = 103), however, the scenario is

more complex. The ranges of existence of the time-averaged modes of convection corre-

sponding to the quadrupolar field and the inversional symmetry pattern dramatically

change. A significant modification can also be spotted in the chain of transitions leading

to the development of chaos. While the hallmark of the high frequency regime is its

adherence to the standard Ruelle-Takens route (which has emerged as a leading can-

didate to interpret most of turbulent phenomena in nature), for Ω = 103, concurrent

aspects of the Feigenbaum and Manneville and Pomeau mechanisms can be recognized.

We wish to remark that, in order to eliminate the possibility that these results ensue

from numerical error or solver inaccuracy, these cases were also ran using the in-house

code developed by Lappa and Burel [71], and the exact same solutions obtained with

OpenFOAM were found. According to both computational platforms, the uprising to-

wards chaos as a result of the increase of the control parameter Gs (or Raω) is via

the Feigenbaum mechanism and the related period-doubling bifurcations; nevertheless,

occasional back transitions from a chaotic condition to a sub-harmonic state can also

be observed. As a concluding remark, we wish to highlight that similar behaviors have

been reported for a set of companion problems not necessarily involving the presence

of an external forcing. For instance, when simulating a converging diverging channel

flow, taking the Reynolds number as the control parameter, Guzman and Amon [56]

observed frequency-locked periodic solutions, where the periodic behavior of the flow

is restored for a particular intermediate value of Re. This was interpreted as the result

of a synchronization of two oscillators spontaneously produced by the system. Similar

events were also reported by Berge et al. [119]. Even more relevant examples can be

found in the literature about problems where a horizontal temperature gradient in-

teracts with a constant-gravity field modulated by small harmonic oscillations. As an

example, for the square cavity case, Farooq and Homsy [120, 121] demonstrated that,
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under certain parametric conditions of finite frequency, resonant states can be induced

by the interplay of convective motion of vibrational origin with the fundamental in-

stabilities of the base flow induced by the constant gravity (similar findings are also

due to Chen and Chen, and Kim et al.) [122–124]. In such a context, it is also worth cit-

ing Lizée and Alexander [58] who examined the case with gravity perpendicular to the

applied temperature gradient and vibrations in the horizontal direction and reported

on the existence of period-doubling transitions, periodic windows, strange attractors,

and intermittencies as a function of the classical gravitational Rayleigh number. Keep-

ing in mind also the arguments about the relevance of the concept of anti-resonance

elaborated by Boaro and Lappa [116] in regard to the stabilization of flows which admit

multiple oscillators there is no doubt that in addition to its relevance to space research

and microgravity science, there are other benefits tied to a better understanding of

these attractive ‘vibrational’ fluid systems. Looking forward, one may see turbulent

thermovibrational fluid motion as a tool for finding exotic states of convection that, for

now, have not been encapsulated yet in the major theories for transition to chaos.
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Chapter 6

Spatial and temporal evolution of

three-dimensional

Rayleigh-Bénard type

thermovibrational convection in a

cubic cavity with various thermal

boundary conditions

This chapter is based on the following peer-reviewed publication:

Crewdson, G. and Lappa, M., 2022 “Spatial and temporal evolution of

three-dimensional thermovibrational convection in a cubic cavity with vari-

ous thermal boundary conditions”, Physics of Fluids, 34, 014108. https://doi

.org/10.1063/5.0078270.

The text in this chapter has been modified only when necessary in order to preserve

the continuity and flow of this thesis.
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6.1 Introduction

As seen in Chap.4, attention has been paid to the study of thermovibrational flow,

where the vibrations are parallel to the temperature gradient. Unfortunately, however,

these studies have been limited to two-dimensional (2D) configurations, thereby filter-

ing out the inherent complexities typical of effective three-dimensional (3D) flows. In

order to fill this gap, in the present chapter, the set of predictive links between flow

properties and related influential factors is expanded through consideration of a real

(3D) cavity. Given the lack of equivalent results in the literature, in particular, a cubic

enclosure is considered. This specific choice is motivated by the availability of a sig-

nificant amount of existing data for the companion case of standard Rayleigh-Bénard

convection (i.e. cubic enclosures uniformly heated from below and cooled from above

with parallel steady gravity), which can be considered for comparison and/or as a guide

to interpret the still completely unknown behaviour of thermovibrational flow in similar

conditions. Along these lines, the earlier investigation by Pallarès et al. may be recalled,

who addressed the RB problem both numerically [22] and experimentally [23]. In their

studies, seven fundamental modes of convection were identified for fluid motion driven

by gravity in parallelepipedal cavities heated from below (these including single roll,

two roll and other toroidal roll-type states; we will provide a more detailed description

of these structures at a later stage in the chapter). The stability of these solutions was

found to be dependent on the Rayleigh number (Ra), Prandtl number (Pr) of the fluid

and the aspect ratio of the cavity. Puigjaner et al. [24, 25], conducted a stability anal-

ysis of this problem and found that by increasing the strength of convection (i.e. Ra),

a series of possible steady, stable and unstable patterns emerge resulting in a complex

bifurcation diagram. Despite some differences, the greatest merit of these valuable ef-

forts resides in the related evidence that the study of classical thermal convection in

a 3D cubic cavity can offer a rich playground for researchers due to the richness of

possible dynamics and the extent of related parametric variations. Lappa [26] argued

that the discrepancies affecting Pallarès et al.[23], and Puigjaner et al.[24], might be

justified when considering that the transition from one solution to another, upon an
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increase in the Rayleigh number, is dependent on the presence of thermal and/or mo-

mentum boundary layers, which in turn depend on the value of Pr, and the specific

thermal behaviour of the sidewalls. The effect of such conditions on flow structures

has been investigated experimentally by Pallarès et al.[23], for Pr=130 over a range

of moderate Rayleigh numbers (Ra < 8 × 104). Both adiabatic and conducting wall

conditions were found to yield similar results in terms of flow patterns and transitions

up to Ra ≈ 5×103. After that, the flow structures formed differ for both conditions and

occur at different values of the Rayleigh number. Motivated by this observational tide,

we therefore concentrate on the case of thermovibrational convection in a cubic cavity

driven by vibrations parallel to the imposed temperature gradient and assume different

types of thermal boundary conditions for the sidewalls. Specifically, in addition to the

canonical configurations where these are either completely adiabatic or conducting, a

hybrid situation is also investigated where, while two opposing walls are adiabatic, the

other couple maintains a linear temperature profile. The ensuing numerical results are

presented in terms of flow structures, patterning behaviour and the (often not obvious)

relationship that is established between the forcing (the vibrations) and the temporal

response of the flow.

6.2 Mathematical model and boundary conditions

A simple 3D cubic cavity is used in this study and microgravity conditions are consid-

ered. The bottom wall is cold and the top wall is hot. As anticipated in the introduction,

the vibrations are applied parallel to the temperature gradient and three thermal wall

conditions are investigated as shown in Fig.6.1.

At t=0 the velocity field across the cavity for all cases is 0 and a linear temperature

profile is assumed along y:

Ux = Uy = Uz = 0 and T = y for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 (6.1)

No-slip conditions are applied for all the solid walls everywhere for t > 0. The

balance equations have to be complemented with different thermal boundary conditions
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Figure 6.1: Sketch of the considered geometry and related thermal boundary conditions
(a) all lateral walls are perfectly adiabatic, (b) two lateral walls are perfectly conducting,
and the front and back walls are adiabatic, (c) all side walls are perfectly conducting.

depending on the chosen set-up (as shown in Fig.6.1). For the case illustrated in Fig.6.1

(a) the side walls are considered adiabatic.

δT

δx
= 0 for z = 0, z = 1, 0 ≤ y ≤ 1, and t > 0 (6.2)

δT

δz
= 0 for x = 0, x = 1, 0 ≤ y ≤ 1, and t > 0 (6.3)

For the case illustrated in Fig.6.1 (b) the side walls in the z-plane are considered

perfectly conducting and the walls in the x-plane are considered adiabatic following the

condition:

δT

δx
= 0 for z = 0, z = 1, 0 ≤ y ≤ 1, and t > 0 (6.4)

T = y for x = 0, x = 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, and t > 0 (6.5)

For the case illustrated in Fig.6.1 (c) all the side walls in are considered perfectly

conducting following the condition:

T = y for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and t > 0 (6.6)

Finally, different constant temperatures are set for all three cases for y=0 and y=1:

T = 0 for y = 0, 0 ≤ x ≤ 1, 0 ≤ z ≤ 1, and T = 1 for y = 1, 0 ≤ x ≤ 1, 0 ≤ z ≤ 1

(6.7)
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6.3 Validation and grid refinement

Similarly to the Chapters 4 and 5, a cross-validation approach has been adopted here as

limited to no literature or benchmark solutions exist for thermovibrational convection

(especially for the case where vibrations are parallel to the temperature gradient; an

exception being the study shown in Chapter 4, which however was validated for a

different value of Pr). For simplicity and to save computational time, this assessment has

been carried out for a 2D square cavity with adiabatic side walls. The average Nusselt

number across the hot wall and both the vertical and horizontal velocity components at

the centre of the cavity have been compared. As quantitatively substantiated by Table

Table 6.1: Comparison of current results with those obtained with the in-house code
for the fully conducting 2D case Raω = 4.00 × 104, Ω = 5, Pr = 7, grid side 100 by
100.

Solver Numax Numean

OpenFOAM 3.350 1.575
In-house code 3.310 1.650

Results difference in % 1.19 4.78

6.1 and the velocity signals reported in Fig.6.2 and Fig.6.3, a satisfactory agreement

has been found. Thereafter, a grid refinement study has been carried out on the 3D

cavity with adiabatic sidewalls for Raω = 8.34 × 105. In order to make the overall

process more efficient, some theoretical criteria have been applied in the attempt to

estimate ‘a priori’ the required number of grid points. Firstly, given the tendency of

thermal convection to display turbulent behaviour when the Rayleigh number attains

high values, the Kolmogorov length scale has been evaluated using Eq.4.4 introduced in

Chapter 4. This length scale provides a restrictive condition where the nondimensional

size of the mesh (∆xc) should satisfy the condition ∆xc < ζRa. This can in turn

be translated into the number of divisions required across the domain and defined as:

Ndiv1 = 1/ζRa. Assuming the worst condition, i.e. the maximum value of the vibrational

Rayleigh number being considered in the present work, Raω = 8.34× 105. From this, it

is deemed deemed it necessary to perform a mesh refinement study allowing the number

of divisions to range in a certain neighbourhood of this value.
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Figure 6.2: Vertical velocity signals (Uy) for the case Raω = 4× 104, Ω = 5 and Pr=7
for OpenFOAM and the in-house code. A grid size of 100 by 100 is used.

Figure 6.3: Horizontal velocity signals (Uy) for the case Raω = 4 × 104, Ω = 5 and
Pr=7 for OpenFOAM and the in-house code. A grid size of 100 by 100 is used.

Moreover, since it is known that for these high values of Ra and a relatively high

value of Pr, thermal boundary layers are prone to develop across the top and bottom

wall of the cavity, the number of cells required in this boundary layer has also been

taken into account following the criteria provided by Shishkina et al. [104], previously

used, and defined in Eq.4.4.

Russo and Napolitanos correlation is also used here (see Eq.4.4).From these two

requirements the following values have been obtained: NBL = 2.70 and δth.BL =

3.31× 10−2. Using these two values, for a uniform grid, the number of divisions can be

determined as:

Ndiv2 =
NBL

δth.BL
(6.8)

which gives Ndiv2 = 81.75.
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With these theoretical requirements in hand, a mesh refinement study has been

carried out. Including firstly a mesh containing 603 elements and followed by 803, 1003

and finally 1203. The ensuing results shown in Fig.6.4 are taken when the flow is the

most disturbed. It can be noted that the data for the 603 and 803 are similar, however

as the theoretical requirement outlined by Ndiv2 = 81.75 is only just satisfied a further

jump of 20 divisions has been considered. From 803 to 1003 a significant variation in

value is observed therefore a further jump to 1203 has been implemented. The result

obtained from the 1003 and 1203 meshes are indecipherable and therefore the 1003 mesh

has finally been chosen as the required mesh for Raω = 8.34× 105.

Figure 6.4: Mesh refinement study. Comparison of the nondimensional vertical velocity
and nondimensional temperature across a line starting at point (0,0.5,0.5) ending at
(1,0.5,0.5), for t=0.1P.

6.4 Simulation Results

In this section, results from six individual simulations are presented. These cases encom-

pass the three types of boundary conditions defined in Sect.6.2 for two different values

of Raω (Raω = 8.34×104 and Raω = 8.34×105). From Hirata et al. [36] and Crewdson

and Lappa [125], it is known that, even under the constraint of two-dimensionality,

a rich map of solutions is possible in systems where the vibrations are set parallel to
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the temperature gradient when both the vibrational Rayleigh number and frequency

of vibration are varied. By allowing these systems to develop in a realistic 3D space,

an even larger set of states must be expected. In turn, these can differ in regard to

the instantaneous spatial organization (the flow structure and associated symmetries)

and the related evolution in time (the system ‘temporal’ response). Given the inherent

complexity of the problem, in the following we implement a peculiar approach where an

attempt is made to treat these (spatial and temporal) aspects in a separated manner

(however, still creating the relevant links as necessary). Given the otherwise intractable

scale of the problem, without loss of generality, the angular frequency of the vibrations

is fixed to Ω = 50, a value for which (as illustrated in the next sub-section) the flow is

expected to develop a remarkable degree of unsteadiness.

6.4.1 Fluid response and velocity signals

Before entering into a discussion regarding the three-dimensional textural transitions

affecting the patterning behavior, the velocity signals obtained from probes (similar to

those exploited for the validation study) can be used to identify the regime embodied by

the flow. Along these lines, it is worth recalling that four possible solutions or regimes

have previously been recognized in the 2D study by Hirata et al. [36]: synchronous (SY),

subharmonic (SU), non-periodic (NP), and stable (ST). Two additional solutions were

identified in the later analysis by Crewdson and Lappa [125] as described in Chapter 4,

namely, the synchronous and periodic or synchronous and non-periodic (SY-P or SY-

NP) solutions. Two of these possible behaviours can yet be recognized in the results

obtained for the 3D configuration examined in the present work. These include the

SY-P and SU regimes. For the former (SY-P), the flow repeats itself periodically. For

the latter (the SU case), the frequency of repetition of the fluid behaviour is halved

with respect to the forcing frequency, resulting in a period twice as long as the forcing

period. In particular, Fig.6.5 shows the velocity signals for the lower value of Raω

considered here (Raω = 8.34× 104), where the SY-P regime is evident for all the three

variants of thermal boundary conditions defined in Sect.6.2. Additional insights can be

gathered from Fig.6.6, where, it can be seen that the signals appear to be of the type
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Figure 6.5: Vertical velocity components (Uy) recorded at the centre of the cavity
(0.005, 0.005, 0.005) for a) the fully adiabatic case, b) the case where the front and
back of the cavity are adiabatic and the two side walls are conducting and c) the case
where all side walls are conducting for Raω = 8.34× 104.

SY-NP (displaying turbulent bursts) as the Rayleigh number is increased by one order

of magnitude. A closer inspection of these signals, further reveals that a SU behaviour is

enabled for case (b) (indeed, the periodicity in shape of the signal is repeated every two

periods in this case). On the basis of this initial assessment (relying solely on arguments

Figure 6.6: Vertical velocity components recorded at the centre of the cavity (0.005,
0.005, 0.005) for a) the fully adiabatic case, b) the case where two side walls are adiabatic
and two are conducting and c) the case where all side walls are conducting and Raω =
8.34× 105.

based on the time response of the flow), it may therefore be concluded that when 3D

configurations are considered, even an apparently innocuous change in the thermal

boundary conditions can cause a remarkable variation in the temporal behaviour of

the flow. As illustrated in detail in the next two sections, such responses are intimately

coupled with a variety of textural transitions in the flow structure, which deserve their

own treatment.
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6.4.2 Flow structure characterization for small Rayleigh numbers

In order to support the reader’s understanding of such dynamics, (before diving into

a purely spatial characterization of them), it is worth recalling some key aspects of

thermal convection which will prove very useful later for their interpretation. In par-

ticular, it is instructive to recall that this kind of fluid motion is governed by the same

equations everywhere in space, yet it takes a form that has periodic spatial variations,

with ‘nodes’ (velocity or temperature extremes) positioned at given points. Physicists

say that it “spontaneously breaks space-translation symmetry”. As already explained

to a certain extent in the introduction, this useful concept can be used as a tool to

characterize or categorize the flows in certain universality classes, which transcend the

specific nature of the considered flow (be it driven by steady gravity or vibrations). The

present section is therefore dedicated to the provision of some necessary propaedeutical

arguments along these lines.

Textural transitions and patterning behaviours

Having completed a sketch of the observed temporal behaviours of the considered flow in

Sect.6.4.1, the focus is now shifted to the specific spatial behaviour of the fluid over one

vibrational period. Along these lines, starting with the case where Raω = 8.34 × 104

and Ω = 50, and all four side walls are set as adiabatic, Fig.6.7 shows the related

evolution of the fluid streamlines. Most conveniently, the sequence of snapshots of

the flow structure has been reported in conjunction with the signal already shown in

Fig.6.5. This is instrumental in showing that the degree of complexity displayed by the

flow strongly depends on the considered specific sub-region of the period. In particular,

a relatively wide sub-interval exists where convection can be considered relatively weak

(almost quiescent condition, hereafter referred to as ‘quasi-stationary state’), whereas

its amplitude greatly grows as conditions are examined that correspond (or are located

in proximity to) to the signal peak. Accordingly, we split the analysis into two parts, the

first part, being the time over which the fluid is quasi-stationary (where the flow adopts

a resting configuration and the velocity of the fluid is minimal) and secondly, the time
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Figure 6.7: Streamlines across one period of vibration for Raω = 8.34 × 104 and the
case where all side walls are adiabatic (the blue colour represents a lower velocity and
the red colour represents a higher velocity at a given point in time, colour bars are
omitted for brevity).

region where the aforementioned convective pulse occurs. Looking at Fig.6.7, the first

and last frames show that the resting configuration of the flow is essentially a singular

toroidal roll. During the convective phase, the toroidal roll symmetry is maintained;

however the roll becomes more compact at first and then undergoes a series of minor

textural transitions before regaining its resting configuration. In particular, a more

detailed view of the streamline behaviour at t=0.3P as well as the distribution of the

related velocity components Ux, Uz and Uy in the xz plane (at y=0.5) can be gathered

from Fig.6.8.

In order to identify universality classes in these behaviours, reference could be made

to meaningful classifications introduced in the past for classical RB convection. Relevant

examples of this modus operandi can be found, e.g., in the work by Mizushima [19] and

Mizushima and Adachi [20] for the case of 2D RB flow.

When moving to the 3D case (i.e., the cubic cavity shown in Fig.6.1), however,

the simple criteria for characterization of 2D flow illustrated above become rather in-

adequate (only partially able to account for certain properties of the flow). A more

exhaustive characterization approach may therefore be based on the (seven) funda-

mental modes that Pallarès et al. [22], originally identified for standard RB convection
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Figure 6.8: Snapshots of flow streamlines (top) and velocity components across the
mid-plane of the cavity (bottom) for the case where all sidewalls are adiabatic and
Raω = 8.34× 104 at t=0.3P

in a cubic enclosure, in the range 3.5 × 103 < Ra < 6 × 104 for Pr=0.71,10 and 130.

These solutions are denoted in the following with Sn with n= (1, 2..7), see Table 6.2

and Fig.6.9. Additional structures have been identified by Puigjaner et al.[24], however,

a description of their geometric qualities is not provided, these included S9, S11-S15.

Figure 6.9: Flow structure characteristics in the xz plane (i.e. a plane perpendicular to
gravity) for 3D RB convection, the dashed lines represent the roll axis and the solid
lines represent the axes of symmetry, the hatched area indicates the region of positive
vertical velocity and the blank area represent a negative vertical velocity.

As the reader will realize by inspecting Table 6.2 and Fig.6.9, these solutions essen-

tially reflect the symmetries of the group D4h = Z2 ×D4. The sub-group D4 includes

the symmetries of a regular polygon with 4 vertices. In turn, these consist of the mirror

reflections with respect to the middle (x=1/2 and z=1/2) and diagonal (x=z and z=1-
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Table 6.2: Description of flow structures identify by Pallarès et al. [22, 23] and Puigjaner
et al. [25]

Structure names Pallares et al. [22, 23] Puigianer et al.[25]

S1 Single roll

S2 Single roll oriented diagonally

S3
Single roll elongated towards two

opposite horizontal edges
Not identified

S4 Nearly toroidal roll

S5
Four roll structures, each one with its axis

perpendicular to one side wall

S6 Two parallel rolls

S7
Structure S3 with merged

ascending currents

S8 Not identified

two asymmetric counter-rotating
rolls aligned along

one of the x=z diagonals
(similar to S2)

S10 Not identified

two asymmetric counter-rotating
rolls aligned along

one of the x=z diagonals,
similar to S8 possessing no

symmetry element

x) vertical planes and related combinations. In the framework of this sub-group, the

solution corresponding to the toroidal roll (dominant in the quasi-stationary regime)

might be therefore considered as a fundamental mode S4 (Pallarès et al. [22], see Table

6.2). The symmetry with respect to the horizontal midplane (y=0.5), however, must

be also considered. Unlike the other symmetries pertaining to the above-mentioned di-

hedral sub-group 4h, which are also applicable to the temperature field, this symmetry

obviously applies only to the velocity field (it is equivalent to rotations of the velocity

field of an angle π around one of the x or z horizontal directions in the y=1/2 plane; the

reader may consider Puigjaner et al. [23] for an exhaustive mathematical description

of all these groups of symmetry, which is not reported here for the sake of brevity).

Looking forward to the next cases, we omit the representation of the velocity signal

as, from Fig.6.5 we know that the three cases display a high degree of similarity from

a temporal point of view. Fig.6.10 illustrates the corresponding evolution of convective

modes for the other two boundary condition configurations (still for Raω = 8.34×104).

In particular, in Fig.6.10 (a), a planar configuration along the z axis of four separate

rolls can be recognized. This quadrupolar roll configuration is a well-known solution
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in 2D thermovibrational studies, reported early on by Gershuni et al. [35]. A similar

steady state has been found by Pallarès et al. [22, 23] (S5), described as four roll

structure, where each roll axis is perpendicular to one sidewall. In the present case

however (Fig.6.10 (a)), the axes of rotation of the rolls are perpendicular only to the

two conducting side walls, thus resulting in a planar structure rather than the S5 mode

where symmetry was found about the diagonal x=z. A graphical representation of the

resting configuration shown in Fig.6.10 (a), akin to the classification style of Pallarès et

al. [22, 23] is provided in Fig.6.11. The symmetry with respect to the y=1/2 midplane

is embodied here where an even number of rolls is found along the x and y axis, with

no rolls found along the z axis due to the planar (almost 2D) nature of the flow.

The advent of the convective phase, for the case shown in Fig.6.10 (a), brings about

a transition from the four-roll to a two-roll planar structure followed by the planar

structure disappearing past t=0.3P. This next convective mode (shown in more detail

in Fig.6.12) is the result of the fluid motion attempting to overcome the constraining

boundary conditions and form a toroidal structure, similar to that seen for the fully

adiabatic situation (however, bound by the side walls a fully toroidal structure is not

achieved). Finally, the resting configuration is re-established. The next figure of the

sequence (Fig.6.13) refers to the case where all four side walls are conducting. It can be

seen that during the resting phase, the flow adopts a hybrid configuration of the fully

adiabatic case and the half adiabatic, half conducting case. The toroidal S4 structure

seen in Fig.6.9 is still visible, however, the cavity hosts two torii instead of one. In

this case, an (ss) mode can be therefore recognized if the flow is observed from the

front and side view of the cavity. For what concerns the transitional behaviour during

the convective phase, the stages of evolution are similar to those found for the fully

adiabatic case, however past t=0.3P, the dominant convective mode is compressed at

the lower half of the cavity preceding the advent of small rolls eventually responsible

for the two separate torii visible in the resting configuration. On the basis of this initial

set of results, the following conclusions can therefore be drawn. When comparing the

effects of the three types of boundary conditions on the flow, it becomes evident that

the fully adiabatic and fully conducting cases bare much similarity as symmetry about
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Figure 6.10: Velocity streamlines for Raω = 8.34 × 104 where (a) the front and back
walls of the cavity are set to adiabatic while the two sidewalls are set to be perfectly
conducting, and (b) all sidewalls are perfectly conducting, where the blue colour rep-
resents a lower velocity and the red colour represents a higher velocity at a given point
in time. The top part of the panels (a) and (b) correspond to the resting configuration
of the flow before and after the convective burst, where the velocity of the fluid is close
to zero (i.e. a quasi-stationary state is attained, as explained in the text).

the x and z axis at the zx mid-plane is maintained through both the resting and the

convective phases. However due to the different resting configurations, an additional

transitional structure is observed for the fully conducting side-wall case. By contrast,

the case with two adiabatic and two conducting side walls is different as the flow

structure is essentially planar in the quasi-stationary regime. Another striking analogy
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Figure 6.11: Graphical depiction of the convective state for the case where the two side
walls are conducting and the front and back wall are adiabatic, in keeping with the
description method of Pallarès et al. [22, 23]

Figure 6.12: Snapshots of flow streamlines (top) and velocity components across the
mid plane of the cavity (bottom) for the case where the side walls are conducting and
the front and back of the cavity are adiabatic for Raω = 8.34× 104 at t=0.3P.

applies to the configuration with the conducting walls. For both the hybrid case and the

fully conducting sidewall case, an antisymmetry emerges along the y axis. This leads

to the classic quadrupolar field in the case with hybrid thermal boundary conditions

(displaying a planar 4 roll structure) and produces a dual-toroidal structure in the fully

conducting situation. As the reader will easily realize by taking a closer look at Figs.

6.7, 6.10,6.12 and 6.13, due to the complexity of the structures observed during the

convective phase (when the fluid is not at rest), the application of earlier classifications

such as those developed by Pallarès et al. [22, 23] are not always possible.
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Figure 6.13: Snapshots of flow streamlines (top) and velocity components across the
mid plane of the cavity (bottom) for the case where all side walls are conducting for
Raω = 8.34× 104 at t=0.3P.

In the following sections, a further level of analysis is implemented through the

consideration of specific aspects emerging from observation of the profiles of the different

velocity components and/or the related distributions (maps) in certain planes as a

function of time. In particular, Fig.6.14 shows the lines over which the velocity profiles

are taken. The x, y and z velocities (Ux, Uy and Uz) are taken over both (dashed)

centrelines for all three cases.

Figure 6.14: Top view of the cavity showing the two centerlines of the zx plane (dashed)
over which the velocity profiles are taken.
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6.4.3 Velocity profiles and emerging symmetries

Starting with the fully adiabatic case, Fig.6.15, depicts the velocity profiles taken at

intervals of 0.1P over one vibrational period. The highest velocity magnitude occurs at

t=0.3P for both the vertical and horizontal components. Fig.6.15 (a) shows a positive

Ux over the first half of the x axis and a negative Ux of the second half of the x axis,

indicating that the centre of the cavity acts as an attractor for the duration of the entire

period. The profile displayed in Fig.6.15 (b) exhibits a positive vertical velocity Uy at

the centre of the cavity indicating an upward motion of the fluid. This is in agreement

with the arguments provided earlier about the flow observed to be circulating up and

outwards from the centre of the cavity. The Uz velocity profiles are not provided, and

neither is the Ux velocity along the z axis, owing to the fact the flow adopts the toroidal

structure, and therefore such information would be redundant (Ux along the x axis =

Uz along the z axis, and Ux=0 along the z axis = 0 and Uz along the x axis = 0 and

finally Uy along the x axis = Uy along the z axis; Fig.6.16 shows the velocity fields

confirming that these equalities hold for y=0.5). For the situation where two side

Figure 6.15: Velocity profiles of (a) Ux and (b) Uy along the x axis for Raω = 8.34×104

and the case where all side walls are adiabatic.

walls are conducting and the front and back walls are adiabatic, we look first at the

horizontal velocity components (Ux) and (Uz). Unlike the fully adiabatic case, this case
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Figure 6.16: Top view of (a) horizontal velocity component (Ux), (b) horizontal velocity
component (Uz) and (c) vertical velocity component (Uy) at y=0.5, for the case Raω =
8.34× 104 where all side walls are adiabatic at t=0.3P.

does not display perfect agreement between the Ux and Uz velocity profiles. This is seen

in Fig.6.17 and confirmed in Fig.6.19 (a) and (b). The vertical velocity profile, however,

can be seen to vary significantly depending on the sampling axis. Having found many

Figure 6.17: Velocity profiles of Ux along the x axis and (b) Uz along the z axis for
Raω = 8.34× 104 and the case where the side walls are conducting, and the front and
back walls are adiabatic.

similarities between the fully adiabatic and fully conducting case during the convective

pulse stage, related results are not described in this section for brevity.
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Figure 6.18: Velocity profiles of Uy along (a) the x axis and (b) the z axis for Raω =
8.34 × 104 and the case where the side walls are conducting, and the front and back
walls are adiabatic.

Figure 6.19: Top view of (a) horizontal velocity component (Ux), (b) horizontal velocity
component (Uz) and (c) vertical velocity component (Uy), for Raω = 8.34 × 104 and
the case where the side walls are conducting, and the front and back walls are adiabatic
at t=0.3P.

6.4.4 High Rayleigh numbers

Looking now at the second value of the vibrational Rayleigh number considered in the

present study (Raω = 8.34 × 105), it is worth starting from the simple remark that

similarly to the previous case, the flow embodies either a quasi-stationary state or a

convective burst (this being illustrated in Fig.6.20). The convective burst, however,

126



Chapter 6. RB type thermovibrational convection with various thermal boundaries

displays a much more complex behaviour as the fluid is more disturbed during this

part of the period in comparison to the equivalent behaviour seen for the lower value

of Raω. If the Rayleigh number is increased by one order of magnitude, a myriad of

solutions emerge and disappear. Here we look first at the resting configurations for all

three boundary conditions. In particular, as qualitatively substantiated by Fig.6.21, the

resting configurations for the case Raω = 8.34×105 are identical to the equivalent con-

figurations identified in Sect.6.4.2 for Raω = 8.34×104. Fig.6.22 complements Fig.6.20

Figure 6.20: Streamlines coloured by velocity magnitude, across one period of vibration
for Raω = 8.34× 105 and the case where all walls are adiabatic.

by revealing the evolution of the system over one vibrational period and the related

multiplicity of solutions excited during the convective stage (burst). Looking first at

the panel t=0, the toroidal structure is accompanied by a quasi-stationary fluid and a

linear temperature distribution along the y axis. As evident in the close-up in Fig.6.23,

although the fluid pattern displays symmetry about the x and z axis at the zx mid-

planes, at t=0.1P the convective burst is enabled and the application of the concepts

developed by Pallarès et al., [22, 23] becomes rather challenging. Moving through the

period, the symmetry of the system and the number of rolls and their orientation seem

to vary in a relatively random way. The behaviour of the flow is reported in Fig.6.24,

where the velocity profiles of all three cases are shown. The velocities are taken over a

line cutting through the centre of the cavity as per Fig.6.14.
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Figure 6.21: Streamlines coloured by velocity magnitude, taken during the sub-period
when the flow embodies a quasi-stationary state for Raω = 8.34 × 105, and a) the
case where all walls are adiabatic, b) the case where two side walls are conducting and
two are adiabatic and c) the case where all side walls are conducting (the blue colour
represents a lower velocity and the red colour represents a higher velocity).

Looking first at the vertical velocity component (Uy) taken parallel to the x axis,

symmetry is visible with respect to the centre of the cavity (x=0.5), where a peak

in velocity is seen for all three cases, excepting at t=0.3P for the fully adiabatic wall

case. This is also observed when looking at vertical velocity component taken parallel

to the z axis, reported in Fig.6.25 (a). With exception of this momentary break in

symmetry, the vertical velocity profiles are inherently symmetrical and remain so at

least until t=0.4P. After this point, the velocity of the fluid is low compared to the first

instances of the convective burst (t=0.P to 0.4P). Even though the velocity is low, many

textural transitions are observed (as evident in Fig.6.22 and 6.22) while the fluid settles

from the convective state to the quasi-stationary state. As for the horizontal velocity

components, the temporary asymmetry observed in the vertical velocity component in

the fully adiabatic case, is widespread through the whole period indicating that for the

case where all walls are adiabatic, the fluid is less stable that for the situation when

conducting sidewalls are considered. Indeed, looking at Fig.6.26 (b) and (c) and Fig.6.27

(b) and (c), symmetry is apparent about the centre of the sampling line. For the sake

of completeness, the spatio-temporal maps, providing a visualization of the symmetry

(or asymmetry) embodied by the flow over time are also provided (Figs.6.28-6.30).

The asymmetry embodied by the fully adiabatic case can be recognized in Fig.6.28 (a)
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Figure 6.22: Velocity magnitude, streamlines and temperature contours for Raω =
8.34× 105, all walls are adiabatic. From t=0 to t=0.4P

and (d), Fig.6.29 (a) and (d) and Fig.6.30 (d). However, a near symmetrical pattern is

maintained for the vertical velocity component along the x axis for the fully adiabatic

case (Fig.6.30 (a)). Moving on to the next two cases, the half conducting half adiabatic

and the fully conducting configuration, it is worth noting that both situations present

a high level of symmetry for the horizontal velocity components, especially at the point

where the fluid is most disturbed (as in the reader will realize by inspecting Figs.6.28

(b) and (c) and Figs.6.29 (e) and (f)). It is noticeable however, that the horizontal
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Figure 6.22: Velocity magnitude, streamlines and temperature contours for Raω =
8.34× 105, all walls are adiabatic. From t=0.5 to t=0.8P

Figure 6.23: Contour of velocity magnitude at (a) t=0.1P and (b) t=0.2P for Raω =
8.34× 105, where all walls are adiabatic.

velocity Ux sampled over the z axis (Figs.6.28 (e) and (f)) and the horizontal velocity

Uz sampled over the x axis (Figs.6.29 (b) and (c)), show a velocity which is close to 0,
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Figure 6.24: Non-dimensional vertical velocity (Uy) across the length of the cavity along
the centerline of the zx plane parallel to the x axis at y=0.5. For For Raω = 8.34×105,
where (a) the side walls are adiabatic (b) the front and back walls are adiabatic, and
the side walls are conducting and (c) all side walls are conducting.

Figure 6.25: Non-dimensional vertical velocity (Uy) across the length of the cavity along
the centerline of the zx plane parallel to the z axis at y=0.5. For Raω = 8.34 × 105

where (a) the side walls are adiabatic (b) the front and back walls are adiabatic, and
the side walls are conducting and (c) all side walls are conducting.

indicating a possible symmetry axis as show in Fig.6.16 (a) and (b) and Fig.6.19 (a)

and (b), maintained over the whole period. Finally, an additional relevant remark can

be made regarding the periodicity of the hybrid case. For all maps pertaining to this

case the period over which the fluid repeats itself is twice that of the forcing period.

This is in agreement with the velocity signals provided in Sect.6.4.1.

6.4.5 Thermal response

This section is finally devoted to an analysis of the thermal response of the system.

Along these lines, Fig.6.31 shows the ratio of heat transfer due to convection over that
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Figure 6.26: Non-dimensional horizontal velocity (Ux) across the length of the cavity
along the centerline of the zx plane at y=0.5. plane parallel to the x axis at y=0.5. For
Raω = 8.34 × 105, where (a) the side walls are adiabatic (b) the front and back walls
are adiabatic, and the side walls are conducting and (c) all side walls are conducting.

Figure 6.27: Non-dimensional horizontal velocity (Uz) across the length of the cavity
along the centerline of the zx plane at y=0.5. plane parallel to the z axis at y=0.5. For
For Raω = 8.34×105, where (a) the side walls are adiabatic (b) the front and back walls
are adiabatic, and the side walls are conducting and (c) all side walls are conducting.

Figure 6.28: Horizontal velocity component Ux along the x-axis (a-c) and the z-axis
(d-f) for all three boundary conditions and Raω = 8.34× 105.
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Figure 6.29: Horizontal velocity component Uz along the x-axis (a-c) and the z-axis
(d-f) for all three boundary conditions and Raω = 8.34× 105.

Figure 6.30: Vertical velocity component Uy along the x-axis (a-c) and the z-axis (d-f)
as per Fig.6.14., for all three boundary conditions and Raω = 8.34× 105.

of conduction along a given boundary, i.e. the Nusselt number (Nuoverall) across the

hot wall, where: Similarly to the velocity signals, the Nu signal associated with the

lower value of Raω is of the type SY-P, whereas the responses associated with the higher

value of Raω, although still technically classifiable as SY-P, border on the verge of the

SY-NP regime where a turbulent burst appears after the convective peak. It must be

noted that the behavior related to the heat transfer of the system is quasi-identical

when comparing the different sidewall conditions, especially when the value of Raω is

increased.

Temperature maps are also included here for all considered cases. Focusing first

on Fig.6.32 (Raω = 8.34 × 104), perfect agreement is observed between the thermal

behaviour of the flow along the x and z axis, for the situation where all four walls are
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Figure 6.31: Nusselt number across the hot wall for (a) Raω = 8.34 × 104 and (b)
Raω = 8.34× 105,

Figure 6.32: Nondimensional temperature (T) along the x-axis (a-c) and the z-axis (d-f)
for all three boundary conditions and Raω = 8.34× 104.

Figure 6.33: Nondimensional temperature (T) along the x-axis (a-c) and the z-axis (d-f)
for all three boundary conditions and Raω = 8.34× 105.
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either adiabatic or conducting, this is however not the case when a higher value of Raω

is examined (Fig.6.33).

Indeed, a slight deviance is observed in the temperature profile across the z axis in

this case, also detectable in the velocity maps provided in Figs.6.28,6.29 and 6.30.

6.5 Conclusion

Although numerous investigations have been carried out in the general area of thermal

convection, an insightful and complete understanding of the properties of the specific

variant driven by time-varying accelerations has hitherto been unclear. This study is a

contribution to improve the present unsatisfactory situation, especially for what con-

cerns the poorly considered situation in which vibrations are parallel to the imposed

temperature gradient. The strategy undertaken in earlier author’s work based on the

numerical solution of the two-dimensional Navier-Stokes and energy equations has been

further pursued by allowing the flow to develop in a realistic 3D physical domain for

which the problem of pattern selection has long been a theoretical puzzle even for the

canonical case of standard steady RB convection. The simulations have shown that

an increase in the (spatial) dimensionality of the problem has a dramatic influence

on the richness of the fundamental modes of convection that can be excited. These

can be partially grouped in different categories according to some possible classifica-

tions based on various symmetries which are broken or retained and the number of

convective structures present at the same time in the physical domain. Given the in-

trinsically time-varying nature of thermovibrational convection in systems where the

vibrations and the temperature gradient are concurrent, many of these fundamental

modes can be produced for a fixed value of the vibrational Rayleigh number and given

thermal boundary conditions. Although two well-defined convective stages can always

be identified in the period of vibrations (one corresponding to an almost quiescent

quasi-stationary state, and another where a convective pulse occurs), however, the en-

abled modes are not mutually exclusive, nor are they truly progressive. Moreover, their

multiplicity tends to be enhanced as the vibrational Rayleigh number is increased and

the convective pulse is turned into a turbulent burst. The numerical simulations have
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also revealed that, despite this multiplicity, some control on the morphology of the

emerging convective structures can be exerted by forcing the system to break or adhere

to some spatial symmetries ‘a priori’ by imposing non uniform thermal boundary con-

ditions along the sidewalls. An ordered combination of adiabatic and conducting walls

can indeed limit the ability of the flow to produce toroidal states in favour of more

two-dimensional solutions. The intentional use of hybrid thermal boundary conditions

can also be instrumental in inducing changes in the temporal response of these systems,

causing a shift from synchronous (flow oscillating at the same frequency of the forcing)

to sub-harmonic (period doubling bifurcation) behaviours or vice versa. Moreover, we

have shown that cases containing a pair or two pairs of conducting side walls are more

stable than the configuration with adiabatic sidewalls.

An exciting prospect for the future (as explored in the following chapter) is to en-

rich this problem with the addition of solid particles, thereby, giving rise to a new line

of inquiry running in parallel with that where the interplay of thermovibrational ef-

fects and particle inertial effects in cubic cavities with vibrations perpendicular to the

temperature gradient has been found to support fascinating particle self-organization

phenomena (formation of highly ordered, high resolution structures with the morphol-

ogy of quadric surfaces).

136



Chapter 7

Particle Accumulation Under

Parallel Vibrations

This chapter is based on the following article currently under review for Physics of

Fluids:

Crewdson, G. and Lappa, M., “3D Solid Particle Self-assembly in Ther-

movibrational Flow: The case with Unidirectional Temperature gradient

and Concurrent Vibrations”.

The text in this chapter has been modified only when necessary in order to preserve

the continuity and flow of this thesis.

7.1 Introduction

Following the work carried out in Chap.6, where the main focus was on the modes of

convection emerging in a three-dimensional cubic enclosure undergoing vibrations in a

direction ‘parallel’ to the imposed temperature gradient, the present study considers

the phenomena of particle accumulation, which occur when solid mass is added to the

fluid in the form of small rigid spheres. The main objective is an understanding of the

relationship between ‘particle attractee’ in the physical space and the conditions in

the space of parameters for which they are enabled. The governing equations for the

fluid and solid phases are numerically solved in their complete, time-dependent and
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non-linear form and it is shown that the hallmark of the phenomena occurring in this

case is an endless squeezing and expansion of particle formations along the direction of

the temperature gradient. The related explosion of textural transitions is discussed in

detail together with a critical analysis of the mechanisms that drive their remarkable

diversity with respect to the stationary morphologies typical of the companion case

with ‘perpendicular’ vibrations.

7.2 Numerical model and boundary conditions

The mathematical model used in this chapter is identical to that used in Chap.6. The

software OpenFOAM has been employed to solve the numerical simulations in Chap.6,

provide a detailed explanation of the specific schemes used in the treatments of the

fluid part.

In this case however, an additional solid phase is introduced, taking the form of

small, finite and spherical particles. The equations for solving particle trajectories have

been outlined and expanded upon in Chap.3, Sect.2.9, the governing equation used to

compute particle trajectories is know as the Maxey-Riley equation defined in Eq.3.37.

Here, the particles are tracked using a Lagrangian framework, where a one-way coupling

approach is used. The system is considered dilute, where the volume fraction of the

dispersed phase remains below the threshold where one-way coupling is allowed. (i.e.,

αp ≤ 10−6, where αp = Vp/V ).

The same system originally considered in Chap.6 is shown in Fig.7.1. The bottom

wall of the three-dimensional (3D) cubic cavity is set to T = Tcold wall and the top

wall to T = Thot. The sides of the cavity are all adiabatic, all conducting, or a hybrid

configuration is assumed, and the vibrations are applied parallel to the temperature

gradient (along the y axis).

7.3 Validation

The fluid-dynamic kernel of OpenFOAM used to solve the thermovibrational flow was

already validated by Crewdson and Lappa [126] (Chap.6). A verification of the particle-
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Figure 7.1: Considered fluid domain and related thermal boundary conditions

tracking kernel can be found in Capobianchi and Lappa [127], where its ability to predict

correctly particle dynamics and related accumulation effects was tested against another

category of phenomena, that is, the occurrence of particle accumulation structures (par-

ticles distribution) in time-dependent thermocapillary flows (see, e.g., Melnikov and

Shevtsova [128]; Gotoda et al. [129]; Sakata et al. [130]). As a third-level stage in such

a validation hierarchy, in the present study, a direct comparison is implemented be-

tween the results provided by OpenFOAM for the specific problem under investigation

and those obtained using an in-house code (the same used to produce the results pub-

lished in Lappas works [100, 101, 131–133]. In particular, such a comparison is made

firstly between the vertical velocity signals at the centre of the cavity and the Nusselt

number across the hot wall of the cavity. The non-dimensional values associated with

the validation case are Raω = 4× 104, Ω = 50,γ = 1.25× 107, ξ = 1.85 and St = 10−5.

Figure 7.2, clearly confirms that, in using two different computational platforms,

perfect agreement in the fluid behaviour is obtained. The validation has then been

extended to the dispersed phase. Along these lines, the evolution of the following non-

dimensional quantities has been considered:

Q− =

∑
upart<0

mpartupart

Mtot
(7.1)

and
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Figure 7.2: Validation of OpenFOAM against in-house code for the 2D case Raω =
4 × 104, Ω = 50,γ = 1.25 × 107, ξ = 1.85 and St = 10−5 for a) the non-dimensional
vertical velocity of the fluid (Uy) at the centre of the cavity and b) the Nusselt number
across the hot wall (Nuhot).

Q+ =

∑
upart>0

mpartupart

Mtot
(7.2)

where mpart is the mass of the generic particle and the Mtot accounts for the mass

of all particles dispersed in the fluid (according to this definition Q may be regarded

as the mass averaged velocity possessed by all particles moving in the same direction

[134]).

Figure 7.3: Evolution Q− over time for the case Raω = 4× 104, Ω = 50,γ = 1.25× 107,
ξ = 1.85 and St = 10−5for OpenFOAM and the in-house code.
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OpenFOAM In-house code % difference

Q−
mean 5.31 6.00 10.50%
Q−

max 15.07 15.39 2.08

Table 7.1: Differences in results when Q−
mean is concidered when OpenFOAM and an

In-house code is used.

Also in this case good agreement is found between the two platforms. Indeed, the

evolution in time of the global quantity Q− is essentially the same both in terms of

amplitude and frequency spectrum content. In particular, two temporal characteristics

stand out from Fig.7.3: a small peak is visible before the convective burst, followed by

a higher peak in Q−during the convective burst. Table 7.1 indicates that the maximum

discrepancy between the two signals occurs for the value of Q− max where a difference

of approx. 10 % can be noticed in some cases, to which can be ascribed the slightly

different interpolation schemes used by the two considered solvers. OpenFOAM makes

use of a linear weighted interpolation based on cell values while the in house code

relies on simple linear interpolations starting from velocity component values located

on the boundary of each computational cell. Figure 7.4, finally shows a snapshot of the

particle behaviour obtained using both codes at the same point in (non-dimensional)

time (t=1.88). In both cases particles form a symmetrical pattern along the y axis

at x=0.5. All these observations lead to the conclusion that OpenFOAM and the in-

house code provide essentially the same results both in terms of fluid flow and particle

behaviour, as qualitatively and quantitatively substantiated by these figures.

7.4 Grid refinement

The range of non-dimensional parameters explored in this study has its origin in the

previous numerical investigation by Crewdson and Lappa [126] (Chap,6). It was shown

there that for a vibrational Rayleigh number spanning the range 8.34×104 to 8.345 and

a fixed angular frequency of the vibrations (Ω=50), a mesh size of 1003 elements could

produce grid independent results in all cases. As this work is limited to considering the

lower end of this interval, i.e. Raω = 8.34 × 104, one may expect the requirement in

terms of needed grid points to be smaller. Indeed, as the reader will realize by inspecting
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Figure 7.4: Snapshots of the particle behaviour for the 2D case Raω = 4× 104, Ω = 50,
γ = 1.25 × 107, ξ = 1.85 and St = 10−5 for a) OpenFOAM and b) in-house code at
t=1.88 (nondimensional time).

Fig.7.5, grid independence is achieved for both the Nusselt number across the hot wall

and the nondimensional vertical velocity over time if a 803 mesh is used.

Figure 7.5: Evolution of a) the Nusselt number across the hot wall and b) the nondi-
mensional vertical velocity (Uy) over time for the case Raω = 8.34 × 104, Ω = 50,
γ = 1.68× 107, ξ = 1.85 and St = 1.25−5 for meshes comprised of 803, 1003 and 1103

elements.

The next step of this process obviously consists of assessing whether such a nu-

merical resolution is sufficient to obtain grid-independence in the computation of the

dispersed solid phase, or not. In this regard, reference can be made once again to the
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global parameter defined before, i.e., the mass-averaged velocity of particles along the

positive or negative sense of the y axis, and the outcomes of such an assessment are

reported in Fig.7.6. It can be seen there that although a 803 resolution is sufficient to

guarantee mesh independence of purely fluid-dynamic quantities, the density of grid

points must be increased to 1003 in order to extend this property to the transported

solid phase (when looking at the signal produced for both Q− and Q+ for the 1003 and

the 1103 grid, almost perfect agreement is achieved). From this it can be concluded

that, although the Rayleigh number is set to a relatively small value, a grid size of

1003 (1 million) elements is required to effectively capture at the same time the fluid

dynamic and the particle dynamics aspects of the problem.

Figure 7.6: Evolution of Q+ and Q− for the case Raω = 8.34 × 104, Ω = 50, γ =
1.68 × 107, ξ = 1.85 and St = 1.25−5 for meshes comprised of 803, 1003 and 1103

elements.

7.5 Results

Results about the particle dynamic evolution are provided in this section for all the

thermal configurations shown in Fig.7.1, namely the cases where all the sidewalls are

adiabatic, conducting, or a hybrid configuration is considered with two adiabatic and

two conducting walls. Moreover, both cases with particles denser (ξ = 1.85) and less

dense that the carrier liquid (ξ = 0.3) are examined (hereafter simply referred to a

‘heavy’ and ‘light’ particles, respectively). The vibrational Rayleigh number and the

related non-dimensional angular frequency are fixed to Raω = 8.34× 104 and Ω = 50,
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Figure 7.7: Map of emerging states in the (γ, St) space of parameters.

respectively as in the earlier (propaedeutical) study by Crewdson and Lappa [126]

(Chap.6). Similarly, the Prandtl number is fixed to Pr=7. The typical outcomes of

the simulations for the vibration acceleration and particle Stokes number spanning

relatively wide intervals are synthetically reported in Fig.7.7.

The significance of this figure resides in its ability to make evident that while trivial

behaviors occur over large intervals of γ and St (states where particles simply accu-

mulate all in a single planar surface or they remain more or less uniformly distributed

in the physical domain), interesting phenomena are localized in a certain sub-region.

This explains why in the following we concentrate on two typical values of the vibration

acceleration and particle Stokes number, namely, γ = 1.68× 107 and St = 1.25× 10−5,

whereas the dynamics obtained in the other cases are no longer discussed.

7.5.1 Evolution of Q− and Q+

Before starting to deal with the particle patterning behaviour, in order to get a clear

idea of the system dynamics from a global (ensemble) point of view, it is convenient to
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initially assess the response of the system using the global quantities already defined in

the previous section. Along these lines, Figs.7.8 to 7.11, show the temporal evolution of

Q+ and Q− for both the light and heavy particles, for all the three variants of thermal

boundary conditions assumed in this study.

Figure 7.8: Evolution of Q− over time for the case Pr=7, Raω = 8.34 × 104, Ω = 50,
γ = 1.68× 107, St = 1.25× 10−5 for all three boundary conditions for the case ξ = 0.3.
The yellow dashed line represents the acceleration applied to the cavity for the given
non-dimensional frequency Ω = 50.

Figure 7.9: Evolution of Q+ over time for the case Pr=7, Raω = 8.34 × 104, Ω = 50,
γ = 1.68× 107, St = 1.25× 10−5 for all three boundary conditions for the case ξ = 0.3.
The yellow dashed line represents the acceleration applied to the cavity for the given
non-dimensional frequency Ω = 50.
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Figure 7.10: Evolution of Q− over time for the case Pr=7, Raω = 8.34 × 104, Ω = 50,
γ = 1.68×107, St = 1.25×10−5 for all three boundary conditions for the case ξ = 1.85.
The yellow dashed line represents the acceleration applied to the cavity for the given
non-dimensional frequency Ω = 50.

Figure 7.11: Evolution of Q+ over time for the case Pr=7, Raω = 8.34 × 104, Ω = 50,
γ = 1.68×107, St = 1.25×10−5 for all three boundary conditions for the case ξ = 1.85.
The yellow dashed line represents the acceleration applied to the cavity for the given
non-dimensional frequency Ω = 50.

At first glance, the behaviour of Q (both Q− and Q+) is periodic for all four scenar-

ios. Indeed, apparently the particles closely follow the convective burst that occurs for

this specific type of thermovibrational convection within the range of considered pa-

rameters. Purely fluid-dynamic aspects and related patterning behaviours have already
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been described by Crewdson and Lappa [126] and such a treatment is not duplicated

here for the sake of brevity. In order to interpret properly the corresponding dynamics

in terms of solid mass displacement it can be recalled that the fluid response is of type

SY-P [36, 125], i.e., the fluid flow is both synchronous and periodic with respect to the

external forcing (the vibrations). More specifically, the fluid remains in almost quies-

cent conditions over a certain portion of the vibration period (the so-called “resting” or

“frozen” state) and it is then disturbed by a convective burst, characterized by a ‘peak’

in terms of vertical (along y) fluid velocity. An example of these events is presented in

Fig.7.12 where the yellow dashed line represents the acceleration applied to the cavity.

Figure 7.12: Non dimensional vertical velocity (Uy) for the case where all side walls are
adiabatic for the case Pr=7, Raω = 8.34×104, Ω = 50, γ = 1.68×107, St = 1.25×10−5

for all three boundary conditions for the case ξ = 1.85. The yellow dashed line represents
the acceleration applied to the cavity for the given non-dimensional frequency Ω = 50.

A first glimpse into the ensemble particle dynamics can be obtained by comparing

the behavior of the light particles in Fig.7.8 and 7.9. It can be seen that negative and

positive peaks occur for both Q− and Q+, respectively at approximately the same time

in the period for all three boundary conditions. At first, this may seem counter-intuitive

as the particles should either rise or fall depending on the direction of the vibration (i.e.

if Q+ = 0 then Q− < 0 and if Q+ > 0 then Q− = 0). However, this observation should

be taken as a cue to recall an important concept, namely, that given the presence of

convection, particles do not simply travel in a rectilinear fashion as they would do in

a quiescent fluid under the effect of vibrations. Rather, they interact with the carrier

flow [1, 71]. In these studies, it has been shown that these connective bursts often lead

to the formation of single or multiple competing rolls in the fluid, with parcels of fluid
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Figure 7.13: Evolution of Q− and Q+ over time for the case Pr=7, Raω = 8.34× 104,
Ω = 50, γ = 1.68×107, St = 1.25×10−5 for the case where all side walls are adiabatic.
The yellow dashed line represents the acceleration applied to the cavity for the given
non-dimensional frequency Ω = 50.

travelling in certain directions depending on their location in the cavity. When particles

are added to these fluid systems, they are transported either up or down, depending

on their location in the cavity, which explains why Q− and Q+ experience concurrent

signal peaks (see Fig.7.13).

At this stage, the comparison of Figure Fig.7.8 and Fig.7.9,and the peaks expe-

rienced by Q+ and Q− can be made, leads to the straightforward identification of a

set of general rules or predictive links by which the outcomes in terms of Q behaviour

can be connected to the slope (ψ) of the acceleration g(t) applied to the cavity for

each particle density. These laws, summarized below, hold true for all three thermal

boundary conditions.

For light particles (ξ = 0.3):

For ψ > 0 and g(t) < 0, Q− = 0 and Q+ > 0

For ψ > 0 and g(t) > 0, Q− < 0 and Q+ = 0

For ψ < 0 and g(t) > 0, Q− < 0 and Q+ > 0

For ψ < 0 and g(t) < 0, Q− = 0 and Q+ > 0

(7.3)
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Figure 7.14: Evolution of Q+ and Q− for ξ = 1.85 (black) ξ = 0.3 (magenta) over
time for the case Pr=7, Raω = 8.34 × 104, Ω = 50, γ = 1.68 × 107, St = 1.25 × 10−5

for the case where all side walls are adiabatic. The yellow dashed line represents the
acceleration applied to the cavity for the given non-dimensional frequency Ω = 50.

For heavy particles (ξ = 1.85):

For ψ > 0 and g(t) < 0, Q− > 0 and Q+ = 0

For ψ > 0 and g(t) > 0, Q− = 0 and Q+ > 0

For ψ < 0 and g(t) > 0, Q− < 0 and Q+ > 0

For ψ < 0 and g(t) < 0, Q− < 0 and Q+ > 0

(7.4)

Another key observation concerns the similarities appearing between the responses

of Q+ for ξ = 0.3 and Q− for ξ = 1.85 (Fig.7.9 and Fig.7.10 respectively), and between

Q− for ξ = 0.3 and Q+ for ξ = 1.85 (Fig.7.8 and Fig.7.11). An explanation/justification

for this trend can be elaborated in its simplest form on the basis of the argument that

the light and heavy particles are expected to behave in a quasi-polar opposite manner.

This affinity is captured in Fig.7.14, where Q+ for ξ = 0.3 and Q− for ξ = 1.85 are

superimposed for the case where all side walls are adiabatic. A similar agreement is

found for the signals of Q− for ξ = 0.3 and Q+ for ξ = 1.85 (not shown).

On a separate note, it is also worth highlighting that although the trends for the

different boundary conditions are relatively similar, some interesting differences can be

spotted. Further inspection of Figs.7.8 to 7.11 is useful in this regard (in pink: fully
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adiabatic side walls, in green: both side walls are perfectly conducting and the from

and back walls are adiabatic and, in blue all side walls perfectly conducting). The first

discrepancy concerns the case where the two side walls are conducting and the front

and back are adiabatic. In such a case, there is little to no negative particle momentum

(Q−) when the heavy particles are considered for ψ < 0 and g(t) > 0. When recalling

the similarities between Q− for ξ = 1.85 and Q+ for ξ = 0.3, the positive momentum

for the case Q+ for ξ = 0.3 for ψ < 0 and g(t) > 0, is also much lower than for the other

two cases of differing thermal boundary conditions. The reason for such a behaviour

resides in the fact that, as shown by previous work, Crewdson & Lappa [126], for this

range of parameters and thermal boundary conditions, the flow is more stable than for

the case where all walls are set to either adiabatic or conducting. Although the flow still

undergoes a convective burst at a given point in the period, the patterning behaviour

of the fluid during the resting configuration (i.e., when the fluid is quasi-stationary and

the fluid velocity is close to zero), does not contain as many rolls as in the other cases.

During this resting configuration, no toroidal rolls are visible as the structure simply

reduces to a planar extension of the so-called 2D quadrupolar field.

A comparison is now made between the maximum absolute values of Q− and Q+

for each case. Starting with the negative particle momentum (Q-) (see Fig,7.15), for the

case where light particles are considered (ξ = 0.3), it can be seen that all three boundary

conditions return a similar maximum value of |Q−|, whereas, for the heavy particles,

the value of |Q−|, is much higher for the case where all side walls are conducting.

Looking, at the positive particle momentum (Q+, see Fig.7.16), the difference in

maximum values of |Q+|, are more pronounced, both when the particle density and the

boundary conditions are changed. Particularly, the maximum negative momentum of

the light particles is much lower than for the heavy particles for the cases where the

side walls are conducting, and the front and back walls of the cavity are adiabatic and

for the case where all side walls are conducting.

From this in-depth, quantitative analysis of the general behaviour of the particles

dispersed in each of the three systems, some general conclusions can be drawn. Firstly,

the particles structures are disturbed periodically and synchronously with respect to
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Figure 7.15: Maximum absolute values of Q− for the case Pr=7, Raω = 8.34 × 104,
Ω = 50, γ = 1.68× 107, St = 1.25× 10−5 for all three boundary conditions.

Figure 7.16: Maximum absolute values of Q+ for the case Pr=7, Raω = 8.34 × 104,
Ω = 50, γ = 1.68× 107, St = 1.25× 10−5 for all three boundary conditions.

the forcing frequency applied to the system. The only exception is the hybrid (‘half

and half)’ case, owing to the inherent stability of the fluid flow. Secondly, the overall

momentum of the light particles and the heavy particles behaves similarly when the

negative momentum of one is compared to the positive momentum of the other. This

however does not translate to a similarity in maximum momentum amplitude. An

interpretation of this specific aspect is not as straightforward as one would assume and
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requires a detailed analysis of the particle spatio-temporal evolution and patterning

behaviour, which is elaborated in the next section.

7.5.2 Temporal evolution of particle structures

Given the similarities in the system evolution (when different thermal boundary con-

ditions are considered) described in the earlier section, without loss of generality here

the treatment is limited for brevity to the case with conducting sidewalls. The first

figure of the sequence (Fig.7.17) is instructive as it shows that in the time interval

from t = 0.640 to t = 0.690, the particles distribution evolves from a scenario where

it fully occupies the entire cavity space to one where the structure is compressed in

the negative y direction, until a stage is attained where all particles lie on the bottom

of the cavity. This compression occurs when the acceleration g(t) is positive (ψ < 0).

In this time frame, the velocity of the fluid is relatively small in the entire cavity (the

aforementioned ‘resting phase’ of period). In the next 5 instances, from t=0.703 to

t=0.754, the fluid transitions from an upwards motion (ψ > 0) to a downwards one

where the slope of g(t) becomes negative (ψ < 0). This change in the acceleration di-

rection results in the particles detaching from the bottom wall and traveling upwards.

In the snapshots pertaining to t=0.703 and t=0.716, the layer of particles travels up

following this detachment, until the time t=0.728, where the layer is disrupted by the

convective burst of the carrier fluid. During this convective burst, as demonstrated in

the authors previous research [126], the fluid undergoes a series of complex textural

transitions leading to a corresponding change in the particles distribution structure.

Finally, at t =0.754 the fluid returns to its resting configuration and the same concept

applies to the particles distribution.

Figure 7.17 is naturally complemented by Fig.7.18, where the fluid and system prop-

erties remain the same and the light particles are considered. In these circumstances,

as expected, the particles behave in the opposite way with respect to the heavy case.

The structure is compressed in the positive y direction when the slope of the acceler-

ation g(t) is positive (ψ < 0) and migrate in the negative y direction when the slope

becomes negative. As an appreciable distinguishing mark, however, the distribution of
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solid matter is not compressed along the wall as much as their heavy counterparts. This

confirms that the particle density does play a role in the compressibility of the particle

velocity field (at this stage it should also be recalled that the carrier flow underpinning

the particle dynamics shown in Figs.7.17 and 7.18 is exactly the same and it is not

affected by dispersed solid mass in the frame of a one-way coupling approach, which

supports the straightforward conclusion that the visible differences relate only to the

properties of the particles and their transport mechanisms).

To consolidate the idea that the convective burst and its related textural transitions

ultimately dictate the resting configuration of the particles distribution, the next figure

of the sequence (Fig.7.19) shows the change in the particle distribution and the related

flow states associated with the convective burst.

Having completed a description of the particle patterning behaviour for a represen-

tative case, the next section is finally devoted to an assessment of the differences in

structure morphologies obtained when the thermal boundary conditions are varied.

7.5.3 Morphological dependence of the PAS on imposed thermal bound-

ary conditions

Selected examples of the 3D dynamics obtained with different thermal boundary con-

ditions are collected in Figs. 7.20-7.28. In particular, one snapshot is reported for each

case at the time after the convective burst occurs, i.e., when the ‘frozen’ configuration is

entered. Starting with the thermal configuration where all the side walls are adiabatic,

Fig.7.20 refers to the light particles case (ξ = 0.3).

By providing a good impression of the overall three-dimensional distribution of

dispersed solid mass, this figure is instrumental in showing that the related morphology

takes on a mushroom-like configuration, where two bulk structures are visible. The two

lobes are almost perfectly symmetrical about the mid-plane of the x and the z axis and

are separated by a region of clear (particle-free) fluid located at the mid plane of the x

axis.

Additional insights follow naturally from a comparison of Fig.7.20 for ξ = 0.3 and

Fig.7.21 for ξ = 1.85. The space configuration of the particle structures is similar.
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Figure 7.17: Temporal evolution of the particle accumulation structure (PAS) over one
vibrational period for the case Pr = 7, Raω = 8.34 × 104, Ω = 50, γ = 1.68 × 107,
St = 1.25× 10−5 where all walls are fully conducting and ξ = 1.85, where t is the non-
dimensional time and the vibrational period is divided into 10 equally spaced snapshots.
The blue colour indicates a low vertical velocity and the red colour a high vertical
velocity.

However, in the latter case, the area occupied by the particles within the cavity is

much larger and its shape is more defined or recognizable. For the convenience of the

reader, a direct superposition of these particle formations is presented in Fig.7.22.
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Figure 7.18: Temporal evolution of the particle accumulation structure (PAS) over one
vibrational period for the case Pr = 7, Raω = 8.34 × 104, Ω = 50, γ = 1.68 × 107,
St = 1.25× 10−5 where all walls are fully conducting and ξ = 0.3, where t is the non-
dimensional time and the vibrational period is divided into 10 equally spaced snapshots.
The blue colour indicates a low vertical velocity and the red colour a high vertical
velocity (continued from Fig.7.17).

The next set of figures of the sequence illustrate the situation where two opposing

side walls of the cavity are perfectly conducting, while the other two walls are adiabatic.
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Figure 7.19: Temporal evolution of the particle accumulation structure (PAS) for both
heavy (ξ = 1.85, top) and the light (ξ = 0.3, bottom) particles and the fluid structure
(streamlines) during the convective burst for the case Pr = 7, Raω = 8.34 × 104,
Ω = 50, γ = 1.68× 107, St = 1.25× 10−5 where all walls are fully conducting, where t
is the non-dimensional time. The blue colour indicates a low vertical velocity and the
red colour a high vertical velocity.

In particular, Figs.7.23 and Fig.7.24 deal with the density ratios ξ = 0.3 and ξ =

1.85, respectively. Taken together (the reader being also referred to the direct cross-

comparison implemented in Fig.7.25), these snapshots indicate that the formation in

the heavy particle case is much more compact than the other. Both are much more

symmetrical than those seen in the adiabatic wall case.

As a concluding step of such a logical sequence, a description of the corresponding

dynamics for the configuration where all side walls are conducting is needed. Along

these lines, Fig.7.26, shows the pattern for the light particles. Two lobes, symmetrical

about the mid planes of the x and z axis, are visible and occupy the top section of

the cavity where a concave morphology is observed on their undersides. Similarly to

the case where all side walls are adiabatic, a slight asymmetry is visible about both

mid planes of the x and z axis. This becomes evident when looking at the top view in

Fig.7.26.
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Figure 7.20: Particle morphology for the case of fully adiabatic side walls and Pr = 7,
Raω = 8.34× 104, Ω = 50, γ = 1.68× 107, St = 1.25× 10−5 and ξ = 0.3 t=2.364.

To complement this scenario with additional relevant data, assessment of the forma-

tions visible in Fig. 7.22 against those revealed by Fig. 7.28 (dealing with the situations

where walls are fully adiabatic and fully conductive respectively) leads to another key

realization, namely, it provides evidence for the more symmetric nature of the particles

distribution shown in red in Fig.7.28 (side view). When the light particles are consid-

ered (green symbols), the main dissimilarity concerns the extension of the formations

in the -y direction. Indeed, for the case with the adiabatic walls, the aforementioned

mushroom structure is visible, whereas for the companion situation where all walls

are conducting, the fingerprint of the particle structure is its compact nature and the

tendency of all particles to reside in the top half on the cavity.

A further understanding or meaningful classification of all these modes of particle

clustering can be gained by distilling out their main features through a focused anal-

ysis of the 3D surfaces where the highest concentration of particles is attained (or, in
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Figure 7.21: Particle morphology for the case of fully adiabatic side walls and Pr = 7,
Raω = 8.34× 104, Ω = 50, γ = 1.68× 107, St = 1.25× 10−5 and ξ = 1.85 t=2.364.

an equivalent way, by considering the topology of the lines obtained by cutting such

surfaces with specific planes). Such an attempt is implemented in Fig.7.29, where the

topology of these lines is reported in the xy plane . Interestingly, for the heavy particles

(left panel), a good degree of symmetry can be seen for all three variants of thermal

boundary conditions, with the differences between the cases of the fully conducting and

fully adiabatic walls being minimal (the distribution for the fully conducting case, how-

ever, being more compressed in the top section of the cavity). For the light particles,

some breakdown in the symmetry become appreciable for the fully adiabatic and fully

conducting walls. Regardless of the particle density, highly ordered symmetrical parti-

cles distributions emerge for the hybrid boundary thermal conditions (as also witnessed

by Fig.7.23 to 7.25).

[htb!]
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Figure 7.22: Superposition of the PAS for cases ξ = 0.3 (in blue) and ξ = 1.85 (in
red) for the case of fully adiabatic side walls and Pr = 7, Raω = 8.34 × 104, Ω = 50,
γ = 1.68× 107, St = 1.25× 10−5 and ξ = 1.85 t=2.364.

Figure 7.23: Particle morphology for the case of conducting side walls and adiabatic
front and back walls and Pr = 7, Raω = 8.34 × 104, Ω = 50, γ = 1.68 × 107, St =
1.25× 10−5 and ξ = 0.3 at t=2.364.

159



Chapter 7. Particle Accumulation Under Parallel Vibrations

Figure 7.24: Particle morphology for the case of conducting side walls and adiabatic
front and back walls and Pr=7 Pr = 7,, Raω = 8.34 × 104, Ω = 50, γ = 1.68 × 107,
St = 1.25× 10−5 and ξ = 1.85 at t=2.364.

Figure 7.25: Superposition of the PAS for cases ξ = 0.3 (in blue) and ξ = 1.85 (in red)
for the case of conducting side walls and adiabatic front and back walls and Pr = 7,
Raω = 8.34× 104, Ω = 50, γ = 1.68× 107, St = 1.25× 10−5 at t=2.364.
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Figure 7.26: Particle morphology for the case of fully conducting side walls and Pr = 7,
Raω = 8.34× 104, Ω = 50, γ = 1.68× 107, St = 1.25× 10−5 and ξ = 0.3 at t=2.364

Following up on the previous point, it is worth highlighting that, for the heavy

particles, the ability of the distribution to protrude into the upper part of the cavity

in the adiabatic wall case is due to a bulge in the structure (Fig.7.30, left panel). This

patch is located near the top and in proximity to the back wall (z=0) of the cavity.

For the fully conducting walls case, again the side view (Fig.7.30) reveals that the

structure is slightly deformed at the rear section of the cavity, whereas for the hybrid

case, symmetry is conserved within the particles distribution. Figures 7.29 and 7.30 are

naturally complemented by Fig. 7.31, where the top views of the particles distribution

are provided. Looking first at the pattern forξ = 1.85, symmetry about the z axis at the

mid x plane is achieved for all three boundary conditions. For ξ = 0.3, slight deviations

from perfect symmetry can be noticed (except for the hybrid configuration, as already

pointed out before).
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Figure 7.27: Particle morphology for the case of fully conducting side walls and Pr = 7,
Raω = 8.34× 104, Ω = 50, γ = 1.68× 107, St = 1.25× 10−5 and ξ = 1.85 t=2.364

Figure 7.28: Superposition of the PAS for cases ξ = 0.3 (in blue) and ξ = 1.85 (in
red) for the case of fully conducting walls and Pr = 7,, Raω = 8.34 × 104, Ω = 50,
γ = 1.68× 107, St = 1.25× 10−5 at t=2.364.

162



Chapter 7. Particle Accumulation Under Parallel Vibrations

Figure 7.29: Superposition of the outline of the front view of the PAS for cases ξ = 1.85
(left) and ξ = 0.3 (right) for all three boundary conditions for the case Pr = 7,
Raω = 8.34× 104, Ω = 50, γ = 1.68× 107, St = 1.25× 10−5 at t=2.364.

Figure 7.30: Superposition of the outline of the side view of the PAS for cases ξ = 1.85
(left) and ξ = 0.3 (right) for all three boundary conditions for the case Pr = 7,
Raω = 8.34× 104, Ω = 50, γ = 1.68× 107, St = 1.25× 10−5 at t=2.364.

7.6 Conclusion

Through consideration of a situation as conceptually simple as that of a dilute distri-

bution of solid finite-size (spherical) particles undergoing thermovibrational effects in

a differentially heated cubic (three-dimensional) container, it has been shown that the
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Figure 7.31: Superposition of the outline of the top view of the PAS for cases ξ = 1.85
(left) and ξ = 0.3 (right) for all three boundary conditions for the case Pr = 7,
Raω = 8.34× 104, Ω = 50, γ = 1.68× 107, St = 1.25× 10−5 at t=2.364.

ability of this type of flow to support particle clustering phenomena is not an exclusive

prerogative of systems where vibrations have a component acting in a direction per-

pendicular to the imposed (unidirectional) temperature gradient. Although the most

common outcome of the configuration with vibrations perfectly parallel to the temper-

ature gradient for relatively high values of the non-dimensional acceleration amplitude

is a degenerate state in which all the dispersed solid mass accumulates in a perfectly

planar surface that moves back and forth between the hot and cold sides of the cavity,

specific conditions can be identified for which particles can be forced to demix from the

liquid and give rise to structures with well-defined (non-trivial) morphological proper-

ties. These range from mushroom-like 3D surfaces to much more compact realizations

depending on the particle-to-fluid density ratio and on the specific thermal boundary

conditions implemented for the sidewalls of the enclosure. Such formations show up or

exist as relatively stable entities during limited sub-intervals of the vibration period.

First, the particles distribution is frozen in the cavity, then it is compressed to the bot-

tom or top wall and then detaches when the cavity changes direction. As a convective

burst occurs the ‘flat’ particles distribution is disrupted by the increase in the strength

of the flow and then it regains its original ‘frozen’ configuration, thereby giving rise to

an endless series of cycles where well-defined structures are continuously created and
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destroyed. This confirms that the behavior of the particles distribution is synchronous

and periodic (SY-P) in accordance with the regime associated with the carrier fluid.

This transition of states is ubiquitous for all cases, irrespective of the thermal boundary

conditions. Comparison with the companion category of particle attractors investigated

by Lappa [1, 101, 132, 133], Lappa and Burel [71], Crewdson and Lappa [135] indicates

that although these phenomena display some affinities in terms of driving forces or

effects, notable dissimilarities exist. Both are driven by the joint action of thermovibra-

tional convection and particle inertial effects. What sets the case with parallel vibrations

apart from that with perpendicular ones resides essentially in the spatio-temporal na-

ture of the phenomena and the specific relationships that is established between fluid

motion and particle density-related effects. In the perpendicular case, particles cluster-

ing is a continuous process by which particles continuously demix from the fluid and

accumulate along well-defined structures, which grow in time until an asymptotic state

is attained in terms of shape and size. The related morphology depends essentially on

the direction of vibrations with respect to the walls of the cubic cavity, possible shapes

being paraboloids, conical surfaces, ellipsoids, cylinders, spheres etc. The related mor-

phology can be considered ‘stationary’ in the sense that the final formations move back

and forth along the direction of vibrations giving an external observer the illusion of a

solid body being shaken inside the liquid. In the present case (parallel vibrations), no

asymptotic state exists as the phenomena are intrinsically cyclic and the morphology

of the emerging structures is dictated essentially by the thermal boundary conditions

implemented along the sidewalls of the cavity. In place of the ‘quadrics’ structures typ-

ical of the perpendicular case, mushroom-like formations or more involved realizations

are obtained. In both cases, particle accumulation is enabled by virtue of the compress-

ible nature of the particle velocity field, however, while in the perpendicular case the

accumulation of such compressibility effects results in the aforementioned stationary

morphologies, in the parallel one it drives the emergence of asymmetries, which grow

with time. In particular, the structures achieved when applying either fully adiabatic

or fully conducting walls bare much resemblance to one another, this being especially

true when the heavy particles are considered. In these cases, as a result of the above-
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mentioned ongoing symmetry breaking process, a disruptive region can be identified at

the top rear of the cavity. However, this process is greatly mitigated in the situation

with the hybrid thermal boundary conditions. This boundary condition also allows for

an appreciably different particle patterning behaviour, by which heavy particles tend

to form compact structures at the centre of the cavity, whereas light particles display

a more dispersed arrangement.

Possible practical uses aside, the present endeavour should be seen as another at-

tempt to explore the physics of multi-phase (fluid-particle) systems evolving far from

conditions corresponding to simple steady flow, other relevant examples of this line

of inquiry for other types of thermal convection being the works by Yarin et al. [63],

Solomon and Gollub [136], Park et al. [137], Jiang et al.[138] Xu et al. [139], Melnikov

and Shevtsova [128], Gotoda et al. [129], Sakata et al. [130].

An exciting prospect for the future is the extension of the present analysis (the

parallel vibrational case) to conditions for which the underlying fluid flow becomes

turbulent, thereby bridging the gap with another important theme running in the liter-

ature, namely, that related to the dynamics of solid inertial particles in turbulent flow

(Elghobashi and Truesdell, [140]; Maxey and Wang [141]; Fallon and Rogers [69]).
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Chapter 8

Particle accumulation in

non-uniformly heated cavities in

vibrated liquids

This chapter is based on the following peer-reviewed publication:

Crewdson, G., Evans, M. and Lappa, M.,2022, “Two-dimensional solid par-

ticle attractors in non-uniformly heated vibrated fluid containers”, Chaos

32, 103119, https://doi.org/10.1063/5.0104680..

The text in this chapter has been modified only when necessary in order to preserve

the continuity and flow of this thesis.

8.1 Introduction

In the present work, this specific problem of multiphase thermovibrational convection

is further explored by replacing the simple thermal boundary conditions considered in

earlier studies with more complex ones. The main objective is a more in-depth analysis

of the multiplicity problem when the aforementioned main simplifications at the basis

of earlier studies, i.e., the unidirectional nature of the imposed thermal gradient, is

removed. By doing so, a more complete characterization of this recently discovered class
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of phenomena and of the related ‘hidden mathematical order’ is sought. Leaving aside

for a while the purely theoretical implications that attach to such a purpose, the present

work also aims to discern additional useful details, which in the future may lead to the

definition of new vibration-based ‘control’ techniques for the contactless manipulation of

particles dispersed in a fluid. The related technological implications would be of great

value. Suffice it to say, that the properties of many composite/multiphase materials

depend on the effective distribution of the related minority phase into a hosting matrix

(the majority phase). Having the ability to control these would lead to significant

improvements in many fields.

8.2 Mathematical model and boundary conditions

The problem is tackled under the constraint of two-dimensional (2D) flow. Such approx-

imation is obviously chosen primarily for numerical convenience. It can be noted that

in earlier works on this specific subject (Lappa 2014 [1]) where three-dimensional (3D)

simulations were carried out for cubic cavities with thermal boundary conditions being

kept ‘unchanged’ along the spanwise direction, the emerging particle structures were

found to be the ‘projection’ in 3D of those found in 2D (i.e. cylindrical surfaces with axes

parallel to the spanwise direction and cross-sectional shape identical to that obtained

in the framework of 2D studies). As three-dimensional effects have been reported to be

mild in those cases (a departure from the morphology found in 2D becoming evident

only in proximity to the walls delimiting the container in a direction perpendicular to

the spanwise direction), here 2D computations are intentionally used as a workhorse to

investigate whether the multiplicity of particle attractee revealed by earlier studies can

be somehow altered when the constraint of unidirectional temperature gradient through

the fluid is removed (which makes the two-dimensional approximation acceptable in the

context of the present investigation).
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8.2.1 Archetypal configurations

Here, two new cases are considered, namely, (1) the situation where vibrations are per-

pendicular to the adiabatic walls of the square container and the temperature gradient

effective through the fluid can change its sense through the cavity due to a non-uniform

temperature distribution along the walls parallel to vibrations, case (1), and (2) a con-

figuration where vibrations have an oblique direction and the corners of the cavity are

thermally controlled in such a way that they have different temperatures if pertaining

to the same wall, opposed corners having the same temperature, case (2). As evident

in Fig.8.1, by assuming a reference system with origin in the left bottom corner of

the cavity, the vibrations are set along the x axis in case (1) and along the direction

x = 1− y in case (2).

Figure 8.1: Sketch models of the two configurations considered in the present study, (a)
case 1 and (b) case 2

8.2.2 Boundary conditions for the fluid phase

Initial conditions for the fluid can be represented for each cavity as follows:

Fig.8.1(a):

T = 1− y and u = v = 0 for 0 ≤ x ≤ 1/3, 2/3 ≤ x ≤ 1, 0 ≤ y ≤ 1 for t = 0 (8.1)
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T = 1− y and u = v = 0 for 1/3 ≤ x ≤ 2/3, 0 ≤ y ≤ 1, for t = 0 (8.2)

Fig.8.1(b):

T = 1− y and u = v = 0 for 0 ≤ x ≤ 1/4 0 ≤ y ≤ 1 for t = 0 (8.3)

T = y and u = v = 0 for 3/4 ≤ x ≤ 1 0 ≤ y ≤ 1 for t = 0 (8.4)

T = 1− x and u = v = 0 for 0 ≤ x ≤ 1 0 ≤ y ≤ 1/4 for t = 0 (8.5)

T = x and u = v = 0 for 0 ≤ x ≤ 1 3/4 ≤ y ≤ 1 for t = 0 (8.6)

which describe a linear temperature profile running along the respective axis taking

into consideration the direction in which the gradients are cast along with the condition

that fluid is initially at rest (i.e., quiescent conditions). The boundary conditions for

the solid walls read:

Fig.8.1(a):

∂T

∂x
= 0 and u = v = 0 for x = 0, x = 1, 0 ≤ y ≤ 1 and t ≥ 0 (8.7)

T = 0 and u = v = 0 for 1/3 ≤ x ≤ 2/3 and y = 0,

0 ≤ x ≤ 1/3, 2/3 ≤ x ≤ 1, y = 1 and t ≥ 0
(8.8)

T = 1 and u = v = 0 for 0 ≤ x ≤ 1/3, 2/3 ≤ x ≤ 1,

y = 0, 1/3 ≤ x ≤ 2/3, y = 1 and t ≥ 0
(8.9)

Fig.8.1(b):

∂T

∂x
= 0 and u = v = 0 for x = 0, x = 1, 1/4 ≤ y ≤ 3/4

and 1/4 ≤ x ≤ 3/4, y = 0y = 1 and t ≥ 0

(8.10)

T = 0 and u = v = 0 for 0 ≤ x ≤ 1/4, 3/4 ≤ y ≤ 1

and 3/4 ≤ x ≤ 1, 0 ≤ y ≤ 1/4 and t ≥ 0
(8.11)
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T = 1 and u = v = 0 for 0 ≤ x ≤ 1/4, 0 ≤ y ≤ 1/4

and 3/4 ≤ x ≤ 1, 3/4 ≤ y ≤ 1 and t ≥ 0
(8.12)

8.2.3 Numerical solver

The numerical simulations included in this chapter have been produced by solving the

balance equations presented in Chap. 3 in the framework of a finite volume method for

incompressible flow. In particular, the computational platform ANSYS Fluent has been

used. This computational platform relies on the well-known PISO algorithm (Pressure

Implicit Split Operator) to ensure adequate pressure-velocity coupling. The details of

this time marching procedure, where also expanded upon in Chap.3. The second order

and the second order upwind spatial discretisation schemes are adopted to solve the

pressure term and convective terms respectively, whilst the gradient is solved is using

the Least Squares Call Based method. The second order implicit method is selected for

the transient formulation.

8.3 Validation

Given the lack of results about thermovibrationally-driven particle-fluid mixtures in the

literature, here the accuracy of the numerical solver has been assessed through consid-

eration of a benchmark problem about particle self-organization in thermovibrational

convection. In this two-dimensional benchmark solution, vibrations are set perpendic-

ular to the direction of the temperature gradient (Hadley-flow-like configuration) and

adiabatic conditions are considered at the side walls. The related non-dimensional pa-

rameters are summarized in Table 8.1. A mesh size of 90 × 90 has been used in this

case.

The agreement found between the solver originally developed by Lappa (2014) [1]

and the present one (ANSYS Fluent version 2020R2) has been verified by looking at

both the x and y velocity components, signals being taken at three locations in the

cavity P1, P2 and P3 where: P1 [0.25, 0.75], P2 [0.25, 0.5] and P3 [0.25, 0.25]. As

quantitatively substantiated by Fig.8.2, almost no distinction can be made between the
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Fluid Parameters

Raω 1.56× 104

Ω 103

γ 1.50× 106

Pr 8

Particle Parameters

ξ 1.85
St 9.46× 10−4

Table 8.1: Fluid and particle parameters

results produced with ANSYS Fluent compared to those produced when employing the

explicit in-house code by Lappa (2014) [1]. An additional level of validation obviously

stems from comparison of the emerging particle structures in terms of patterning be-

haviour and size (Fig. 8.2). The minor differences in terms of lobe size visible in Fig.

8.3 can be ascribed to the different interpolation schemes used by Lappa (2014) [1] and

ANSYS Fluent , while the “physics” underlying the considered phenomena is captured

with a similar level of fidelity by both codes.

8.4 Grid refinement

The validation study presented in the previous section is here naturally complemented

by a mesh refinement assessment conducted to verify that in addition to the “physics”,

also numerical aspect have been finely tuned. As described in previous chapters, the

parameter known to influence the ‘strength’ of the convection is the Rayleigh number,

in thermovibrational problems this role is played by the vibrational Rayleigh number.

The higher the Rayleigh number, the more complex the flow response and therefore

the more grid points are required to accurately capture the physics of the flow. As in

this study the vibrational Rayleigh number is fixed to Raω = 1.56 × 104, accordingly,

the mesh refinement study is carried out assuming this specific value:

The outcomes of the grid refinement analysis are shown in Table 8.4. The x and y

components of the velocity refer to a location P where the velocity magnitude of the

flow is the highest (P [0.035, 0.08])
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Figure 8.2: Horizontal (blue) and vertical (red) velocity components of the flow taken
three locations in the cavity. The dotted lines represent the results obtained from AN-
SYS Fluent and dashed lines represented the results obtained from the in-house explicit
code.

Fluid Parameters

Raω 1.56× 104

Ω 103

γ 1.50× 106

Pr 8

Table 8.2: Nondimensional Parameters set for mesh refinement study

8.5 Results

Variation of the temperature on the top and bottom walls

Following the approach, where the simplicity of the thermal boundary conditions con-

sidered in earlier studies is gradually taken over by more involved thermal configu-

rations, first case (1) is examined (Fig.8.1 (a)), i.e. the vibrations are imposed along
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Figure 8.3: Snapshot of the tree-like patterning behaviour of the benchmark solution
reported in Ref [1]. The results obtained by the in-house code (a) and ANSYS fluent
(b) are shown on the left and right, respectively

System Properties

Fluid (NaNO3) Density, ρ (kg/m3) 1904
Thermal Expansion Coefficient, β (1/K) 1.25× 10−3

Kinematic Viscosity, ν (m2/s) 1.27× 10−6

Specific Heat Capacity, Cp (J/kgK) 2892
Thermal Conductivity, k (w/mK) 0.87
Thermal Diffusivity, α (m2/s) 1.58× 10−7

Length of cavity, L (m) 0.01
δT (K) 0.01

Table 8.3: Dimensional Parameters set for mech refinement study

the x-direction and three alternating temperature gradients are set in the y-direction.

The non-dimensional parameters (γ) and (St) are varied parametrically over a range of

γ = 1.5×106 to 6.5×107 and St = 1.39×10−5 to 8×10−4 respectively. The particle-to-

fluid density ratio is fixed to ξ = 1.85. Under these vibrational and heating conditions,

many structure types are observed, and the following nomenclature is coined here to

adequately characterize them: the ‘four loop’ type, the ‘central pillar accumulation’,

the ‘2 central structures’ and the ‘two side extensions’.
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Ux max Ux min Uy max Uy min Ux mean Uy mean

45 divisions 1.326 -1.331 4.209 -4.207 -0.008 0.021
60 divisions 1.423 -1.427 4.081 -4.082 -0.008 0.019
% difference 7.35% 7.24% 3.02% 2.98% 1.57% 7.70%

75 divisions 1.504 -1.510 4.048 -4.047 -0.009 0.020
% difference 5.67% 5.77% 0.82% 0.86% 15.92% 4.58%

90 divisions 1.377 -1.382 4.125 -4.124 -0.008 0.020
% difference 8.43% 8.45% 1.89% 1.92% 12.59% 0.59%

105 divisions 1.377 -1.382 4.125 -4.124 -0.008 0.020
% difference 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 8.4: Grid refinement study (based on case 1)

8.5.1 Pattern formation types (for case 1)

In this paragraph, a brief description of each structure is elaborated starting from the

‘four-loop’ type structure, depicted by the circle symbol (•) in Fig.8.4. This structure

type has been found at three locations in the map,: at medium to high values of both

(γ) and (St). Moreover, as a distinguishing mark with respect to other structures,

symmetry has been found about the x-axis for y=0.5 and about the y-axis for a time

dependent value xt, where xt is the point along the x-axis representing the location of

the vertical centrelinecenterline of the structure. Four ‘loops’ can clearly be recognized,

each tending towards a Cartesian oval (egg shape). From a practical (interpretative)

standpoint, these ovals may be regarded as ‘attractors’ to which all particle trajectories

tend, when a statistically relevant number of them are considered (further discussion

of the concept of ‘attractors’ will be provided in the next section). The next struc-

ture attention is turned to is the ‘central pillar accumulation’, found at six instances,

represented by the square symbol (■) in Fig.8.4. As qualitatively made evident by

the insets in this figure, only one bulk structure emerges in this case, in contrast to

the other three types where distinct accumulation loci are separated by the continu-

ous phase (the clear fluid). The central pillar is formed primarily due to wall effects,

by which the displacement of the cavity along the x-axis (i.e., the vibrations) causes

the particles to accumulate along the vertical side wall and detach when the cavity

is displaced in the opposite direction. These wall effects have been found to be a key
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factor in influencing particle accumulation in thermovibrational problems when consid-

ering differentially heated cavities (Hadley flow type configuration) in both laminar [1]

and turbulent conditions [135]. These wall effects however are not the only influential

factor. Convection still plays a role as witnessed by the tendency of the structure to

contract in an hourglass shape as time passes (where the smallest extension along x

is visible at y=0.5). The next case of the sequence, i.e. the accumulation represented

by the diamond symbol (♦) in Fig.8.4, is the rarest of all structures. Indeed, only 2

instances have been detected (for the range of parameters considered here), denoted

as ‘2 central structures’. This type exists in the region of medium values of γ and

high values of St. This case bares much similarity to the (■) morphology; indeed, an

even more pronounced constriction is visible at y=0.5. The particularity in this case

is that the central column splits into two centralised structures, where a finite layer

of clear fluid emerges through the centre of the overall aggregate. The perimeter of

the structure is also more defined when compared to the central channel accumulation

(■), where the structure is ‘closed’ near the top and bottom walls. Finally, the ‘two

side extensions’ variant is considered, represented by a triangle symbol (▲) in Fig.8.4.

The central structure visible here is very similar to the aforementioned central pillar

represented by the square symbol (■). In this case, however, the pillar is adorned by

two elongated ovals at the left and right sides. Having completed a description of the

patterning behaviour, some general conclusions can be distilled out of this initial set

of observations. Two global symmetrical trends emerge. Indeed, symmetry is observed

about the x and y axis mid-planes in all cases (symmetry M1 and M3 according to

Lappa [1]).

8.5.2 Trend analysis

This subsection is devoted to a quantitative assessment of the sensitivity of these struc-

tures to the problem parameters in their respective ranges of existence. In this regard,

we start from the remark that while a decrease in the particle size (i.e., a decrease in

St) is expected to lead to less compact structures, a higher vibrational amplitude γ

should have the opposite effect [133]. It has also been demonstrated that under certain
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Figure 8.4: Map of structures for varying valued of (γ) and (St) for the case Raω =
1.56× 104, Ω = 23, Pr=8, ξ=1.85.

conditions, the tendency toward more cohesive formations due to an increase in the

value of γ may be offset by a decrease in St and vice versa. Notably, a similar scenario

can be discerned in Fig.8.4, where diagonal trends in aggregate types are evident from

the N-W to S-E regions of the map when γ decreases and St becomes larger. These

observations are naturally complemented by the findings collected in Fig.8.5, where the

“characteristic length” of the structure has been reported as a function of time for each

particle accumulation type. Given the different morphologies and the intrinsic multi-

plicity of the different formation types, the characteristic length is defined as follows:

“four-loop” type (Fig.8.5(a)), the maximum size of a sin- gle loop along the y direction;

“two central structures” (Fig.8.5(b)), the maximum size of one of the two pillars along

the x direction; “central pillar accumulation” (Fig.8.5(c)), the horizontal width of the

“necked” region at half height of the cavity; and “two side extensions” (Fig.8.5(d)),

the maximum size of the side loop along the y direction. In particular, in each panel of

Fig.8.5, the evolution of two cases, differing in terms of γ and St, has been reported.

The most interesting outcome of this figure resides in its ability to show that, in general,

by compensating a decrease in St with an increase in γ, the final size of the structures

(and the related formation time) can be kept unchanged. By contrast, as qualitatively
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and quantitatively substantiated in Fig.8.4, significant changes (simultaneous increase

or decrease) in both St and γ can cause the transition from one structure type to

another.

Figure 8.5: Non-dimensional structure length as a function of time : a),b),c) and d)
correspond to types (•), (♦) (■) and (▲) respectively.

8.5.3 Varying the vibrational frequency (Ω)

This subsection is devoted to the analysis of another influential parameter already

identified in the frame of earlier studies where simpler more simple thermal boundary

conditions where considered, i.e. the frequency of vibrations (Ω). This parameter was

previously fixed to Ω = 2 × 103. In this section, three more (lower) values of Ω are

considered for the two of the structure types: ‘two side extensions’ (▲, γ = 1.5 × 107
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and St = 8.01 × 10−5) and the ‘four-loop’ type structure (•, γ = 4 × 107 and St =

1.39× 10−4). The corresponding modifications in the two side extensions’ variant (for

Ω = 1.2×103, Ω = 1.3×103 and Ω = 1.5×103) are summarized in Fig.8.6. Interestingly,

with an increase in the frequency of vibrations, the side ovals become more extended

along the y-axis. The central pillar, however, remains undisturbed up until a value

of Ω = 2 × 103, where two main lobes emerge resembling those pertaining to the

‘two central structures’ case. This reinforces the idea of a seamless transition between

structure types.

Figure 8.6: Particle structures for Raω = 1.56 × 104 Pr = 8, γ = 1.5 × 107, St =
8.01 × 10−5 and ξ=1.85, for varying values of angular vibration frequency Ω for (a)
Ω = 1.2×103, (b) Ω = 1.3×103,(c) Ω = 1.5×103 , and (d) Ω = 2×103 at nondimensional
time t=3.2.

Figure 8.7: Structure extension length along x (a) and y (b) axes and formation time
(c) for varying values of angular vibration frequency (Ω) for Raω = 1.56× 104, Pr=8,
γ = 1.5× 107, St = 8× 10−5 and ξ=1.85.

The quantitative increase in extension along the y-axis is reported in Fig.8.7 (a)

and (b). The structure formation time is also included in Fig.8.7 (c) for the sake of

completeness. A rise of the formation time is observed when Ω is increased and these

findings align with those by Lappa & Burel [71]. The analogous results for the ‘four-
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loop’ type structure are depicted in Figs.8.8 and 8.9 (the range of values investigated

here includes three additional values of Ω: Ω = 1.6×103, Ω = 1.7×103,Ω = 1.85×103).

Figure 8.8: Particle structures for Raω = 1.56×104 Pr=8, γ = 4×107, St = 1.39×10−4

and ξ = 1.85, for varying values of angular vibration frequency Ω for (a) Ω = 1.6×103,
(b) Ω = 1.7 × 103, (c) Ω = 1.85 × 103 and (d) Ω = 2 × 103). at nondimensional time
t=3.2.

Figure 8.9: Structure extension length along x (a) and y (b) axes and formation time
(c) for varying values of angular vibration frequency (Ω) for Raω = 1.56 × 104 Pr=8,
γ = 4× 107, St = 1.39× 10−4 and ξ = 1.85.

A similar trend can be recognized in this case with a global increase in both the

length of the x and y extensions of the rolls, together with a growth of the formational

time when Ω becomes higher. All these results can be naturally combined with those

pertaining to the 2D map shown in Fig.8.4. The outcomes of this exercise, by which the

original 2D map is expanded through consideration of an additional degree of freedom

(i.e. the vibrations angular frequency), are shown in Fig.8.10. The most important

outcome of this 3D matrix of cases resides in its ability to provide a quick glimpse into

the limitations of the range of parameters leading to particle accumulation.
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Figure 8.10: 3D Map of structures for varying values of γ, St and Ω for the case
Raω = 1.56× 104, Pr=8.

8.5.4 Corner heated cavity (case 2)

In this section, the second archetypal configuration depicted in Fig.8.1 (b) is considered.

In this case the N-O and S-E corners of the cavity are set to Tcold and the N-E and

S-O corners to Thot, leading to a symmetry about the x=y line, corresponding to the

M2 and M3 symmetry groups [1]. As already described to a certain extent in the

introduction, the direction of vibration is known to be an important influential factor

in the behavior of thermovibrational systems [101]. Here, in particular, for consistency

with the results presented for the companion case with non-inclined vibrations, the

following case is assumed as a ‘basic’ configuration (to assess the changes induced

by a variation in the vibration direction): Raω = 1.56 × 104, Pr = 8, Ω = 2 × 103,

γ = 6.5×106, St = 3.04×10−4, ξ = 1.85 and ϕ = 0. As shown in Fig.8.11, the emerging

structure bares much resemblance to the ‘two side extensions’ variant, represented by

the triangle symbol (▲) in Fig.8.4. However, some minor differences can be spotted.

Firstly, the central pillar does not dispose of a contracted mid-section and appears to

be of consistent width from 0 < y < 1. Secondly, if one looks at the location from which

the side loops originate, while for the case presented previously, the rolls originate from

181



Chapter 8. Particle accumulation in non-uniformly heated cavities in vibrated liquids

Figure 8.11: Final pattern formation for the case Raω = 1.56×104, Pr = 8, Ω = 2×103,
γ = 6.5× 106, St = 3.04× 10−4, ξ = 1.85 and ϕ = 0.

a stream of particles attached to the bottom wall (y=0, where the wall segments were

set to Thot), for the corner heated cavity, the side rolls originate from the heated wall

sections, when these sections are located at opposite ends of the cavity.

The zoo of solutions produced when the inclination angle is varied is finally sum-

marized in Fig.??(over the range 0 ≤ ϕ ≤ 3π/4). An obvious outcome is that when ϕ

is changed from 0 to π/2, the entire pattern simply undergoes a complete 90 degrees

rotation. For a relatively small departure from these limiting conditions (e.g. ϕ = π/12

or π/6 and 5π/12 or π/3, respectively), the central column begins to warp in the direc-

tion of the hot corners. Finally, a range of values of ϕ exists (2π/9 ≤ ϕ ≤ 3π/10) where

four distinct loops are formed. Owing to the symmetries embedded in the problem, the

scenario for ϕ spanning other sub-ranges of the 0 ≤ ϕ ≤ 2π interval can be inferred on

the basis of similar arguments (see, e.g. the inset for ϕ = 3π/4).

With these results in hand, a comparison can be made with the literature sur-

rounding inclined vibrations in thermovibrational convection. To proceed in this way,

reference can be made to previous work carried out by Lappa [101], where the classic

case of a square cavity is considered and only one temperature gradient exists along the

y axis, or M = 1 (M representing the number of inversions along the x axis). In this

case, when π=0, the tree like structures emerges (see also the validation case shown in

Fig.8.3). Upon varying the angle of vibration in a similar way to current method (as
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Figure 8.12: Variation of vibration angle (aligned with x-axis over 0 ≤ ϕ ≤ 3π/4)
(nondimensional time t =3.2)
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seen in Fig.8.12) a familiar behaviour is observed: the two rolls of the tree rotate syn-

chronously with the angle of vibration and maintain symmetry about the axis parallel

to this angle of vibration. In the case of Lappa however, the term ‘symmetry’ can be use

lightly as the size of the two rolls become unequal. This is because the system is tran-

sitioning from a Hadley type configuration, where the onset of convection is achievable

at low Rayleigh numbers, to the Rayleigh-Bénard type convection where the onset of

convection occurs only when a critical value of the Rayleigh number is exceeded. Indeed

for ϕ = π/2 no convection occurs and therefore the particles are subject only to the

‘wall effects’ discussed previously. In the current simulations, no such transition from

the Hadley flow to the Rayleigh-Bénard type flow is possible as the thermal boundary

conditions and subsequent temperature field is symmetrical along the x=1-y axis.

8.6 Discussion

Placing the present results in a proper theoretical context requires a short excursus on

the peculiar properties of this class of particle attractors and what has been understood

until now in terms of underlying cause-and-effect relationships. In this regard, as already

discussed to a certain extent in the introduction, it is worth recalling that the present

work adds another piece to the puzzle related to the existence of particle attractors

in vibrationally driven flow, which do not depend on particle interactions (whose first

piece was placed by Lappa [1] with the discovery of a new class of self-induced particle

aggregates in vibrated non-isothermal fluid-particle mixtures in the framework of a

one-way coupling approach). By looking back at these previous works, some useful

arguments can be drawn, which can help to interpret the present one and elaborate a

more general ‘view’ of these phenomena and useful generalizations.

Compelling evidence has been provided (see, e.g. Lappa [1, 100]) that particle at-

tractors are made possible by the interplay of inertial and thermovibrational effects as

indirectly proven by the suppression of particle structures in the limit as the density of

the particles becomes equal to that of the surrounding liquid or the thermovibrational

effect is disabled (while still allowing non-iso dense particles to feel the acceleration pro-
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duced by vibrations). Convincing arguments have also been elaborated about the direct

relationship between the effective spatial shape of the ‘attractors’ (directly connected

to the morphology of the particle structures emerging in the framework of one-way

coupled numerical studies) and the relative direction of vibrations with respect to the

boundary of the systems Lappa [1]. Indeed, It has been shown that, if the angle between

vibrations and the walls of the system is changed while vibrations remain perpendicular

to the imposed temperature gradient, a zoo of structures can be obtained. Subsequent

studies such as that by Lappa [101] have shown that further changes in the morphol-

ogy can be obtained by allowing vibrations to change their inclination with respect

to the prevailing temperature gradient, which has led to the main conclusion that the

effective physical realization in space of particle structures is dictated by the three-fold

relationship between the direction of vibrations, that of the imposed (unidirectional)

temperature gradient and the effective shape of the container physically hosting the

fluid-particle mixture. While other works of relevance to this subject have shown that

additional levels of complexity can be brought in by symmetry breaking effects emerg-

ing in the carrier flow itself in a ‘spontaneous’ way (i.e. due to a intrinsic bifurcation

of this flow which would occur even in the absence of particles, Lappa and Burel [142]

or produced as a result of the back influence of dispersed solid matter on such a flow,

the major contribution of the present study can be found in its ability to show that

the multiplicity of the attractors, i.e. the number of attracting loci coexisting in the

physical space at the same time, can be somehow controlled by acting on the degree of

thermal inhomogeneity of the fluid.

Through a generalization of a large number of results, it was previously concluded

that this multiplicity N could not exceed a value N = 2 as the particle structures

were always manifesting in couples or as a single large cohesive unit produced by the

coalescence of two initially distinct aggregates.

Although conducted under the constraint of 2D flow, the present study has shown

that even if the analysis is still limited to a case as simple as a square cavity, conditions

can be identified for which several distinct formations (with N > 2) can co-exist within

a single fluid domain (with intermediate regions of particle-free fluid clearly separating
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them). In particular, by indicating withM the number of inversions in the temperature

gradient effective through the fluid, the multiplicity for the first archetypal setting

considered in the present work can be expressed as follows:

N ≤ 2 +M (8.13)

The significance of this inequality, which holds for a fixed value of ξ, Raω, and Ω

(ξ=1.85, Raω = 1.56 × 104, and ξ = 2 × 103, respectively, in the present work), can

be further explained or elucidated as follows: by changing the amplitude of vibrations

(γ) for a fixed size of particles (St) or, vice versa, changing the Stokes number for a

fixed γ, topological changes can be induced in the emerging particle pattern, with the

number of possible realization constrained to be less than or equal to 4.

For the second paradigm considered, i.e. the cavity shown in Fig.8.1 (case 2) (where

M=2), and the vibrations can form an angle ϕ with the x axis), this relationship still

holds provided a corrective factor is introduced to account for the inclination of the

shaking direction, i.e:

N ∼= 3 + ∥sin(2π)∥ (8.14)

which indicates that the relative direction of vibrations can also affect the multi-

plicity parameter.

8.7 Conclusion

The problem related to the formation of particle accumulation structures in thermovi-

brationally driven systems still carries a number of interesting questions, some of a

general nature, other more system specific. In the present work, a first attempt has

been made to understand if and how behaviors and mechanisms known to be effective

under unidirectional temperature gradients can be mapped into systems with non-

uniformly heated boundaries. Emerging structures have been categorized into specific

classes depending on their appearance in the physical space. After running a statisti-

cally representative number of numerical simulations, it has been demonstrated that a

colorful spectrum of variants is possible, which differ in terms of topology, morphology
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and number of attracting loci. For a fixed couple (ξ, Raω), these accumulations exist

through a multi-dimensional space of parameters (particle size (St), amplitude (γ),

frequency (Ω) and angle (θ) of vibrations) as a result of the reverberation of physical

processes driven by thermovibrational (convective) and inertial (particle-related) effects

into a confined space. The major outcome of the present study is that such phenom-

ena can also be “tuned” or “controlled’ to a certain extent by acting on the degree of

thermal inhomogeneity of the system. On increasing the number of inversions of the

temperature gradient inside the fluid, the multiplicity of the emerging structures grows

accordingly and transition among different realizations can be obtained on varying γ

and/or St. Some correlations or relationships have been introduced in the attempt to

model these behaviours. Although, these may be regarded as still incomplete realiza-

tions of a more complete theory that shall be formulated to predict the properties of

particle formations in all situations and as a function of all the influential parameters,

the present work should be considered as further step towards the complete character-

ization of the related dynamics. An interesting prospect for the future is the extension

of this line of inquiry to the more general three-dimensional case for which the multi-

plicity of structures and the related response to changes in the system parameters and

boundary conditions is expected to become even more intricate.
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Chapter 9

Preliminary investigation into

the accumulation of non-isodense

particles in chaotic

thermovibrational flow

This chapter is based on the following peer-reviewed publication:

Crewdson, G. and Lappa, M., 2022, “An Investigation into the Behavior of

Non-Isodense Particles in Chaotic Thermovibrational Flow”, Fluid Dynam-

ics & Materials Processing, 18(3), 497-510, https://doi.org/10.32604/fdmp.

2022.020248.

The text in this chapter has been modified only when necessary in order to preserve

the continuity and flow of this thesis.

9.1 Introduction

From the literature review and Chap.7 and 8 it has been shown that many natural

and industrial processes are known to depend on the delicate interplay of two or more

phases. The mixing (or segregation) of the involved phases can depend on the type of
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fluid motion associated with the considered problem. As many natural and industrial

processes are intrinsically turbulent, a vast literature exists where such phenomena

have been investigated in these circumstances. In particular, most existing studies have

focused on the preferential clustering of either isodense or non-neutrally buoyant solid

particles in the case of isotropic turbulence [68, 143] with the two-fold objective of

describing the effect of turbulence on the dynamics of the discrete phase (including its

sedimentation process) and elaborating strategies to modulate/attenuate turbulence

[144–147]. In such analyses, particles have generally been observed to cluster and form

irregular aggregates displaying fractal morphology.

More recently, other studies have been conducted considering turbulent natural

(buoyancy) convection, which can no longer be considered isotropic. As an example

of recent investigations for non-neutrally buoyant particles interacting with turbulence

brought on by natural convection, it is worth citing Xu et al. [139], where the tempera-

ture gradient was set parallel to the gravity vector. In this work, (heavy) particles were

observed to undergo accumulation into bands, with the strength of the bands depend-

ing on the inertial properties of the considered particles. For the companion problem

represented by the Hadley flow, other authors, such as Gereltbyamba et al. [64], have

found that the particle diameter can play a significant role in the resultant particle tra-

jectories and their concentrations when relatively high value of the Rayleigh number

are considered.

Despite these efforts and a few other relevant investigations [69, 140, 148], however,

the problem related to particle behaviour in microgravity conditions has received less

attention than the corresponding case dealing with particles in terrestrial flows. For

these reasons, in the present chapter we concentrate on the preferential clustering of

non-isodense finite-mass finite-size particles induced in microgravity conditions by tur-

bulent thermovibrational flow. This may be regarded as a new line of inquiry standing

at the intersection of the previously segregated fields about the (terrestrial) dynamics

of inertial particles in isotropic turbulence and the behavior of such particles in laminar

thermovibrational flows.

189



Chapter 9. Accumulation of non-isodense particles in chaotic thermovibrational flow

As seen in Chap.5 turbulent thermovibrational flow can be achieved when the am-

plitude of vibrations (or the related vibrational Rayleigh number) exceeds a given value

and the fluid ‘response’ (in terms of induced velocity) becomes non-synchronous with

the forcing of the system [38, 125].

9.2 Mesh refinement and numerical method

Similarly to the vast majority of the work presented in this thesis the simulations are

carried out on OpenFOAM. It is worth recalling from Chap.5 that, for this type of

grids and turbulent flows, requirements based on arguments related to the Kolmogorov

length scale Eq.5.3.

Here, a maximum value of Raω = 109 is considered (along with Pr = 15), which

according to this criterion would return a value of Ndiv = 96. As this, however, should

be regarded only as a theoretical guideline, it has been deemed necessary to conduct

a grid refinement study to verify the relevance of such a requirement. Fig.9.1 shows

the power density spectrum (PDS) obtained when considering the velocity in the x-

direction at the centre of the cavity. It can be seen that the slope of the spectrum in

the low frequency range obeys the Kolmogrov law (-5/3) and is independent from the

mesh size in terms of velocity amplitude and frequency distribution.

9.3 Results

The results presented in this section can be used to identify the salient factors contribut-

ing to the behavior of particles under the effect of vibrations and related turbulent fluid

flow. They have been obtained by changing the influential parameters in a segregated

manner in order to reveal the influence of each of them (namely, St and ξ accounting for

the inertial effects, and γ and Raω, accounting for the strength of vibrations and fluid

motion induced accordingly). To reduce the (otherwise intractable) scale of the problem

resulting from the consideration of so many parameters, without loss of generality, the

vibrational frequency Ω has been fixed to Ω = 104.

190



Chapter 9. Accumulation of non-isodense particles in chaotic thermovibrational flow

Figure 9.1: Power spectral density for grid sizes where blue represents a grid resolution
of 60 by 60, green a resolution of 80 by 80 and finally red, a resolution of 96 by 96. The
pink line shows the slope obeying the Kolmogrov law of -5/3

,

9.3.1 Formation mechanism

The accumulation of particles in turbulent flows comes primarily as a result of the

inertial nature of the particles coupled with presence of eddies in the fluid. The in-

vestigation of Maxey et al. [143] into dispersed turbulent multiphase flow in the case

of homogeneous, isotropic turbulence (for gas-particle and bubble-liquid mixtures), in-

deed, could show that the preferential concentration of bubbles/particles depends on

the inertial properties of the dispersed phase and centrifugal effects. Preferential accu-

mulation is typically observed in regions of strong vorticity for bubbles and regions of

strong strain-rate for particles, meaning that for cases where the dispersed phase is less

dense than the continuous phase (ξ <1) the particles will cluster in the centre of the
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eddies/vortices and vice versa for the cases where the dispersed phase is denser than

the continuous phase (ξ > 1).

The present results, however, reveal that, when subjected to vibrations, the dis-

placement of the cavity gives rise to an external (‘additional’ with respect to the effects

discussed before) force that influences the trajectory of the particles, whereby they are

continuously pushed from one side of the cavity to another.

Notably, this causes the dispersed phase to accumulate periodically along the walls

parallel to the y-axis (as the vibrations are imposed along the x-axis) and upon de-

tachment from the wall, form filament type structures. As these filaments migrate

periodically from wall to wall, they curve and bend around the eddies present in cavity

(due to the chaotic nature of the flow). This delicate formation mechanism is illustrated

in Fig.9.2 where two filaments can be seen appearing and disappearing in the space of

one vibrational period.

9.3.2 Influence of vibrational amplitude on filament survival

The formation and survival of the small structures described in the previous section

(simply referred to as ‘filaments’), occurs approximately twice per period depending

on the amplitude of the vibrations. Indeed, as b (the dimensional displacement of the

cavity) is increased, the faster the particles accumulate on the opposite wall, hence

reducing the filament survival time. This phenomenon is illustrated in Fig.9.3, where

the dashed lines delimit one vibrational period. In particular, these results represent

three archetypal cases where an increase in b results in a simultaneous increase in Raω

and γ. As qualitatively and quantitatively substantiated by this figure, for very high

values of Raω and γ, the filaments survive approximately a quarter of the total period

duration, due to the fact they are quickly absorbed by the opposing wall.

This is also evident in Fig.9.4. When comparing columns 1 and 2 of this figure, the

particles are pushed further way from the formation wall (indicated by the red arrow),

following an increase in γ. However, for the same value of γ, and an increase in Raω,

the filaments become less defined and appear more dispersed in the cavity.
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Figure 9.2: Sixteen equally spaced snapshots over one vibrational period P where
P=2π/ω, illustrating the formation mechanism on the filaments for Raω = 1.00× 108,
γ = 1.79× 108, ξ = 0.3 and St = 9.39× 10−4 (Ω = 104)

9.3.3 Influence of the particle properties: ξ and St

The inertial properties of the particles can also influence greatly the formation (if

any) of the structures. This is illustrated in Fig.9.5, where the particle accumulations

resulting from two different densities are superimposed over each-other at the same
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Figure 9.3: Filament length and survival time depending on Raω and γ,for ξ = 0.3 and
St = 9.39× 10−4 (Ω = 104)

instantaneous points in time. In particular, the light particles (ξ = 0.3) are represented

in purple and the heavy particles (ξ = 2), in orange. Remarkably, it can be seen that

the spaces occupied by the clouds formed for ξ = 0.3 and ξ =2, are for the most part

complimentary to each other; moreover, the light particles are prone to form stronger

filaments than the heavy particles.

Another important influential factor, already identified in the earlier study by Lappa

[1] (where only laminar conditions were considered) is represented by the size of the

particles, (the particle Stokes number St, from a non-dimensional standpoint). Along

these lines, Figs.9.6 shows that a decrease in St, i.e., a decrease in particle size, can

result in the inability of the dispersed phase to form any recognizable structure (under

the specific considered operating conditions: Raω and γ ).

9.4 Conclusion

Towards the end of unifying the previously segregated fields represented by the study

of particle behaviour in terrestrial turbulent flows and that concerned with the high-
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Figure 9.4: Isolated effects of Raω and γ on filament behaviour for ξ = 0.3, St =
9.39× 10−4 and Ω = 104
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Figure 9.5: Eight snapshots equally spaced over two periods (2P) from left to right, top
to bottom, where Raω = 1.00 × 108, γ = 1.79 × 108 and St = 9.39 × 10−4 (Ω = 104).
The light particles ξ = 0.3 are represented in purple and the heavy particles (ξ = 2),
in orange

regular aggregates formed by particles interacting with laminar vibrational flow in

microgravity conditions, particle dynamics have been investigated in conjunction with

chaotic (turbulent) thermovibrational flow. It has been shown that circumstances still

exist for which particles (initially uniformly distributed in the entire physical domain)

de-mix from the fluid and form recognizable (well defined) structures. As opposed

to the perfect morphology of clusters emerging in laminar flow, however, when ther-

movibrational flow is chaotic the topology of the structures is relatively irregular and

time-dependent.

Nevertheless, precise trends and relationships can be established if specific problem

‘statistics’ are connected to the behaviour of the temporally evolving structures. As an

example, a lack of filament formation due to a decrease in St can be offset by an increase

in the amplitude of vibration acceleration γ; in turn, however, this may decrease the

filament survival time due to a faster absorption rate of the filaments by the opposing

wall. An exciting prospect for the future is to conduct an extensive analysis of these

interdependences using the present relevant mathematical and numerical framework.
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Figure 9.6: Snapshots of particle behaviour over one period (from left to right) for
St = 9.41 × 10−4 (black), St = 2.35 × 10−4 (green), St = 3.79 × 10−5 (blue) and
St = 9.93 × 10−5 (red) for the case, Raω = 1.00 × 108, γ = 1.79 × 108 and ξ = 0.3 at
time t = 6.28×10−3, 6.41×10−3, 6.53×10−3, 6.65×10−3 and 6.78×10−3 for (Ω = 104)

.
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Chapter 10

Conclusions

Throughout this body of work, many notions surrounding and expanding upon ther-

movibrationally driven flows and particle accumulation in microgravity have been dis-

cussed. In this section, the research outcomes of the thesis are addressed. This is done

by stating how each chapter has contributed towards answering the research questions

posed in the introduction and how this work has made a novel and exciting contribution

to knowledge.

10.1 Single phase thermovibrational flow (fluid only)

10.1.1 What thermovibrational effects can be achieved in a fluid,

when the direction of the vibrations is changed (from Hadley

type flow to RB type flow)?

It has been identified in the literature review that the behaviour of a thermovibrational

system depends greatly on the direction of the temperature gradient in relation to that

of the vibrations and that an extended range of parameters remains unexplored. Specif-

ically, Chap.4, has provided answers to the following question: What thermovibrational

effects can be achieved in a fluid when the direction of the temperature gradient is

changed from Hadley type flow to RB type flow?

Indeed, only Hirata et al. [36] considered the pure thermovibrational flow in a

square cavity assuming zero gravity and no inclination between vibrations and the

temperature gradient. Chapter 4 has provided the scientific community with an RB
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type thermovibrational study where parameters comparable to those employed for it’s

Hadley flow type (sister problem) are considered.

By increasing the strength of convection (Raω) beyond the range considered by

Hirata et al.[36] and exploring higher values of vibrational frequency (Ω), the first

important contribution of this chapter is the identification of two new fluid states,

namely: synchronous-periodic and synchronous non-periodic modes of convection, SY-

P and SY-NP. The identification if these new modes leads also to new combinations of

spatio-temporal patterning behaviours. In addition, contributions have been made by

increasing the knowledge surrounding the related thermo-fluid dynamic disturbances

(TFDs) and stabilisation phenomena of high Raω RB type thermovibrational flows,

using methods including the evaluation of heat transfer mechanisms (Nu) and exam-

ining the contributions of time averaged vs oscillatory flow components. From this, it

has been found that the stabilisation of high frequency flows, identified by previous

authors (Zenkovskaya and Simonenko [29], Geshuni et al. [30], Gresho and Sani [31],

Biringen and Peltier [32] and Biringen and Danabasoglu [33]), also holds true for high

values of Raω. This is complimented by the confirmation that oscillatory disturbances

prevail over time averaged ones, in agreement with the literature [46, 107]. Finally,

this chapter has lead to the discovery of an optimum value of vibrational frequency

(Ω=100), for which the TFD distortions are strongest for highly convective RB type

thermovibrationally driven flows.

10.1.2 What thermovibrational effects can be achieved in a fluid, tur-

bulent thermovibrational convection is considered?

Attention is turned now to the second research question identified following the review

of the literature: What thermovibrational effects can be achieved in a fluid, turbulent

convection is considered?

This question has be tackled in Chap.5, and treats specifically the case where Hadley

type thermovibrational convection and high values of Gs and Raω are considered. The

aim of the study is to discern the influence of the vibrational frequency (Ω) on the

magnitude and patterning behaviour of the time-averaged and instantaneous velocities,
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to reveal the underlying textural transitions affecting the instantaneous flow field, and

to decode the typical route of evolution towards chaos.

In this chapter, three transition mechanisms to chaos (upon an increase in Gs

and Raω) have been identified, including the Ruelle-Taken-Newhouse scenario [52], the

Feigenbaum sequence [115] and finally the Manneville and Pomeau mechanism [55]. The

occurrence of this transition mechanism has been shown to depend on the considered

vibrational frequency (Ω). Indeed, it has been found that for high values of Ω, an

increase in Gs and Raω leads to the Ruelle-Takens scenario. This mechanism is the

most commonly observed mechanism and has been identified in the many thermo-fluid

related studies (the most poignant being the work of Lizée and Alexander [58]).

For intermediate frequencies however, a set of novel results has disrupted the notion

that fluid systems obey the classical mechanism to chaos following the intuitive path

of: steady → periodic → quasi-periodic → turbulent, as demonstrated by Paolucci

and Chenworth [50], Goldhirsh [18] and Villermeaux [51]. Indeed for Ω = 103, a back

transition from chaos to laminar flow has been found. In addition, concurrent aspects

of the Feigenbaum and Manneville and Pomeau mechanisms can be recognised, during

the back transition and re-transition to chaos.

Although some fluid related studies have highlighted period-locking and resonance

phenomena which results in a transition from chaotic to time-periodic states [56, 120–

122], this behaviour has never before been achieved in the case of pure thermovibrational

flow.

In addition to this novel contribution, the pattering behaviours and textural tran-

sitions observed in this study are of interest as the spatial arrangement (columnar

structures) of fluid rolls (especially considering low values of Ω) of the time averaged

flow has also not been reported before.

Finally, to conclude the research outcomes of this section, the remark can be made

that TFD disturbances have been seen to obey the following law: when low frequencies

are considered, the oscillatory disturbances prevail, whilst, when high frequencies are

considered, time-averaged disturbances prevail. This is in agreement with the literature

[46, 107], as was found in the previous section.
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10.1.3 What thermovibrational effects can be achieved in a fluid var-

ious sets of thermal boundary conditions are applied to the

system?

In Chap.6, a three-dimensional RB type thermovibrational system in considered. From

the literature review and the additional information supplied in the chapter introduc-

tion, it is known that the thermal boundary conditions applied to a systems’ solid

boundaries can influence the response of a convective flow. This has been shown to

apply to standard buoyancy (RB) convection as investigated by Pallarès [22, 23], Puig-

janer [24, 25, 149] and Mizushima [19, 20]. However, a gap in knowledge exists when

considering the effect of thermal boundary conditions on thermovibrational convec-

tion. The choice of adopting a 3D domain here is to enable a fair comparison to the

spatio-temporal behaviours of systems studied in the existing literature and capture as

realistic a situation possible.

The results of this chapter have bridged the gap in knowledge by providing evidence

that thermal boundary conditions do in fact influence the response of the flow. Mainly,

it has been found that the inclusion of perfectly conducting side walls (either or 2 or

4 walls) contributes to the stabilisation of the system. This is in agreement with the

findings of the works cited above, in particular that of Mizushima [19] when considering

standard RB convection.

For all cases, given the systems parameters considered in this study, the instanta-

neous response of the flow (i.e. the velocity at the centre of the cavity) is composed

of a quasi-steady period and a convective burst. It has been shown here that differ-

ent thermal boundary conditions yield similar velocity signals (i.e., the aforementioned

temporal pattern is conserved), however, the specific patterning behaviours associate

to each state depend heavily on the imposed conditions.

To this end, this chapter has identified new fundamental unique modes, as well as

new combinations of modes complimenting those identified for standard RB convection

([22–25, 149]), notably the new mode S5a.
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In addition the above mentioned findings, a complete description of the spatio-

temporal behaviour if each case is provided as well as comprehensive maps illustrating

the thermal response of the flow.

This chapter, therefore, provides a complete answer to the above question for the

case of RB type thermovibrational convection.

10.2 Multiphase thermovibrational flow (with particles)

Having, in the previous section, laid out the contributions to knowledge made sur-

rounding (single-phase) thermovibrational flow, the current section will concentrate on

the research output concerning multiphase thermovibrational flow (with the addition

of particles).

Chapters 7, 8 and 9 provide a set of answers to the following question:

• How do various thermovibrational effects modify the behaviour of particle accu-

mulation structures in multiphase systems?

More specifically, each chapter answers a more detailed question, each relating to a

different problem or system parameter.

10.2.1 What particles structures are enabled when 3D RB type con-

vection is considered?

As previously explained, only the works of Lappa [101, 131, 132, 150] and Lappa &

Burel [142] have considered the problem of multiphase thermovibrational flow. The

adopted system configuration in these studies is the Hadley flow type configuration. The

most natural next step in this case is to expand the knowledge surrounding multiphase

thermovibrational flow to the case of RB type thermovibrational convection.

Equipped with a concrete understanding of single phase RB type thermovibrational

convection, both from reviewing the literature and from the novel concepts ensuing from

Chap.4 and Chap.6, an attempt is made in Chap. 7 to explore the possible particle

structures enabled when an additional solid phase is added to the system.
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Following this addition, particle structures emerge, however, the spatio-temporal

characteristics observed differ greatly from those previously encountered by [1] and

Lappa & Burel [142]. In the case of RB type thermovibrational convection (for the given

set of established parameters), the particle structures are time dependent, in fact, they

are periodic and synchronous (i.e., of regime type SY-P [125]) with the forcing frequency

(Ω) of the system. This behaviour has, up until now, not yet been observed in the field

of multiphase thermovibrational flow. These time-dependent particle structures, have

found to be dependent on the system parameters including the strength of convection

(Raω), the vibrational frequency (Ω) and the fluid/ particle density ratio (ξ). Although

additional degrees of freedom exist including the Prandtl number of the fluid (Pr), the

vibrational amplitude (γ) and the Stokes number of the particles (St), investigating

these effect would result in a significant amount of additional degrees of freedom and

therefore their effects have not been considered here (although dedicated attention is

paid to these in Chap.8 and Chap.9). Another notable distinction from the structures

obtained when considering the Hadley type flow, is the morphology of these structures.

In the classic case of the Hadley flow type (configuration investigated by Lappa [1]),

the particle structures take the form of quadrics, where as, in the current configuration

the structures form mushroom like structures, which display high level of symmetry

about the centre line of the cavity (y axis).

In keeping with the theories put forward by Lappa (see above citations), it is clear

that, despite the differences obtained both in temporal and morphological results for

both the Hadley and RB type flows, that the particle structures are driven by the joint

action of thermovibrational convection and the inertial properties of the particles.

10.2.2 What particles structures are enabled when 2D thermovibra-

tional convection with non-uniformly heated cavities is consid-

ered?

Now that insights have been provided surrounding particle accumulation in RB type

flows under various thermal boundary conditions, another possible line of enquiry may

be pursued, this time returning to the case where the Hadley type configuration is con-
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sidered. Chapter 8 investigates the effects of imposing non-uniform heating conditions

on a 2D square cavity seeded with particles.

The novelty of this chapter lies in the identification of four types of particle struc-

tures when alternating vertical temperature gradient are applied: the 2-side extensions,

the central channel accumulation, the two central structures and the 4-roll configura-

tion. These appear depending on the specific combination of Ω, St, and ξ. An additional

structure family is also enabled when, the corner heated case is considered and the angle

of the vibrations is varied.

Another contribution to knowledge offered by this chapter is that the results of

varying the inertial properties are not limited to the compacting effects of increasing

the value of γ and the be offset of this effect produced by a decrease in St and vice

versa [1, 134], and that indeed, entire new structure morphologies are possible when

these parameters are varied, either independently or simultaneously.

Finally, a mathematical law is provided, linking the number of temperature inver-

sions M and the multiplicity of the structures N .

This once again, as highlighted in the previous section, proves that the occurrence

of particle accumulation phenomena depends on a delicate interplay of system (ther-

movibrational) parameters and inertial properties on the particles.

10.2.3 What particles structures are enabled when turbulent Hadley

flow type 2D thermovibrational convection is considered?

The last chapter of this thesis investigates the complex problem of turbulent, multi-

phase thermovibrational flow. Thus far, through the existing literature and the work

undertaken in this thesis, it has been shown that a large quantity of parameters govern

the response of a fluid-only thermovibrational system and that an ever larger number

of parameters need to be considered when investigating multiphase thermovibrational

flow. Consolation is sought however, in the principal that, when laminar conditions are

considered, general laws associated with the variation of specific parameters can be

employed to predict the general behaviour of the particle structures.
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In Chap.9, these general laws are largely (but as is demonstrated, not completely)

inapplicable.

The chapter considered the Hadley type flow where Raω is varied from 5 × 107 <

Raω < 5×109 and the vibrational amplitude is varied from 8.96×107 < γ < 1.79×109.

It is shown that, contrary to the laminar case, no well defined structures are enabled,

rather, filament type structures emerge. This is due to the collecting of the particles

along the left and right side walls (perpendicular to the direction of vibration). Sec-

ondly, the genesis of these filaments has been shown to be periodic with the vibrational

frequency (Ω). The survival time of the filament is evaluated (i.e., the time, after de-

tachment from the wall, before the filament is broken up by turbulent fluid effects). The

survival time has been found to depend on Raω and the vibrational amplitude γ. An in-

crease in Raω resulted in a more turbulent flow as demonstrated in Chap.5, causing the

vortices and eddies to pull the particle filaments apart, resulting in a reduced survival

time. An increase in γ, appeared to have little effect on the structural integrity of the

filaments, however it is shown that they detach from the cavity side wall much faster

upon this increase in vibrational amplitude. Finally, a short investigation is carried out

to inspect the behaviours of light particles vs dense particles (ξ) and small vs large

particles (St). It can be seen that the spaces occupied by the particle clouds formed for

ξ = 0.3 and ξ =2, are for the most part complimentary to each other; moreover, the

light particles are prone to form stronger filaments than the heavy particles. As for the

influence of St a decrease in particle size, can result in the inability of the dispersed

phase to form any recognizable structure, in line with the notions originally put forward

by Lappa [1].

10.3 Further work

From this work it has been shown that endless possibilities and opportunities exist to

control and manipulate small, solid, spherical particles in thermovibrational systems,

when a dilute phase is considered. The mixing and de-mixing phenomena of the phases

in the complex fluid uncovered in this work provide humans with an opportunity to
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become less dependent on gravity to control the separation of phases and the develop-

ment of new material processing techniques. Indeed, as we look to the (not so far away)

future, space exploration missions such as Artemis (long duration crewed expedition to

the moon and a future gateway to Mars), require cutting edge processes which will en-

able us to thrive and innovate in low gravity environments. More specifically, now that

the underlying physics of multiphase thermovibrational flow are understood better than

ever before for the case where dilute systems are considered, extensive work is required

to understand how these systems behave when dense systems are considered. Indeed,

many material processing techniques, separation and solidification processes that give

rise to new material alloys, crystalline and metallurgic structures only occur when dense

phases/slurries are considered. This is because the solid phase and its spatial arrange-

ment in the fluid can improve the structural and conductive properties of the final

product. An interesting line of enquiry would therefore be to evaluate both numerically

and experimentally the characteristics and physical properties of dense thermovibra-

tional systems in a range of reduced gravity environments. From a practical perspective

and taking a second to acknowledge that this thesis is a result of peripheral work sur-

rounding the T-PAOLA (PARTICLE VIBRATION) project, this work has provided the

research community with a platform from which to base new space experiments akin

to that of T-PAOLA in the field of both singlephase and multiphase thermovibrational

flow.

207



Chapter 10. Conclusions

208



Appendices

209



Appendix A

T-PAOLA experiment and

related experimental activities

A.1 Experimental set-up and contribution to the experi-

ment

The PARTICLE VIBRATION experiment relies on the utilization of ISS experimental

hardware known as the Selectable Optical Diagnostics Instrument (SODI), originally

designed to carry out physics experiments in the field of soft matter and fluids for a

variety of conditions [151–158]. SODI was developed by an industrial consortium in the

frame of a dedicated contract with the European Space Agency, and launched to the

ISS in 2010.

Within SODI, the experimental setup for the PARTICLE VIBRATION project

consists of four small cubic cells, each filled with a different fluid–solid particle mixture.

Each cell is equipped with Peltier elements in order to establish a set temperature

difference across the fluid (needed to generate thermovibrational convection in the

presence of vibrations). The temperature gradient is set perpendicular to the shaking

direction of vibration, where a Hadley type thermovibrational flow will emerge.

For the experiment to be successful, many aspects must be addressed such as the

preparation of the experimental protocol and the related scripts to be sent to the SODI

hardware in order to control the sequence of required temperature gradients, ampli-

tudes and frequencies of the vibrations, preparation of the post-processing procedures,
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calibration of the optical systems etc.. Two crucial aspects of the experiment to be

prepared on ground however, are the fluid and the particles themselves. This section

will provide an overview of the preparation of these two elements, critical to the success

of the experiment.

A.2 Particle preparation

A total of four cells will be used in the experiment containing the following particle-

fluid mixtures (see Table A.1). Only the size and density of the particles change while

the carrier fluid is set to ethanol in all four cells. These cells are hosted in two arrays.

Table A.1: Particle characteristics for the PARTICLE VIBRATION project

Array no. Name Diameter (µm) Density ratio (ξ) Material

1 Light 75-90 0.18 Silver coated hollow glass
1 Extra heavy 75-90 3.50 Silver coated solid glass with 4% silver
2 Small heavy 53-63 2.84 Silver coated borosilicate solid glass
2 Heavy 75-90 1.65 Silver coated hollow glass

Fig.A.1 shows a microscopic view of the particles (in this case the light silver coated

type). As can be seen the particles are perfectly spherical and uniform in size.

Much inspection work was carried out prior to the filling of the cells. This in-

cluded, verifying that the particles were uniform in shape and size consistent with the

characteristics of the particles simulated numerically. It was also important to inspect

the particle samples for debris as any inconsistencies in the dispersed phase would be

detrimental to the formation of the particle structures.

The number of particles to be inserted into the cells is critical. If the solid phase

surpasses a volume fraction of αd <0.001 the assumption of a dilute system will no

longer be valid. Filling the cells with the appropriate number of particles therefore

becomes an important task. A dummy cell was manufactured by QinetiQ (an industrial

partner of the T-PAOLA project, responsible for the cell hardware), as to allow the

science team to perform mock filling tests, here at the University of Strathclyde. The

body of the dummy cell can be seen in Fig.A.2.

The light particles were particularly difficult to work with as they are made of very

thin shells of hollow glass, making them susceptible to breakage. Due to their light
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Figure A.1: Example of particle sample
under microscope (d=85µm)

Figure A.2: Dummy filling cell

Figure A.3: Particles sitting at the entrance of the dummy filling cell

weight, they stuck to the walls at the entrance of the cell. This can be seen by taking a

close look at Fig.A.3. The white specs show the individual particles seeded around the

entrance of the cavity. In response to this problem, many iterations of filling methods
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were tested. Perhaps the most obvious method would be to transport the particles

through the opening with a carrier fluid. This however was not practical, as the surface

tension effects prevented the drop of fluid from penetrating the small 1mm opening.

Eventually, the science team identified that a smooth aluminium boat and funnel should

be used to direct the particles to the small 1mm opening (see Fig.A.4). The smoothness

of the aluminium facilitated the particles to easily detach from the boat and the funnel.

The stubborn particles could be displaced from the aluminium tools by using a micro

tip syringe which has the capability of generating a small air flow. This method resulted

in a large percentage of the particles falling straight into the bottom of the cell and

those that did not make it into the cell, accumulated locally close to the 1mm opening.

The micro tip was again used to displace the final few particles into the cell itself.

Fig.A.5 show the flight cell filled with light particles.

Figure A.4: Boat and funnel tools used
during the flight cell filling

Figure A.5: Flight cell filled with the light
particles

Using this technique the particles where filled at QinetiQ UK on the 7th − 10th of

June 2022, in preparation for the experiment.

To adhere to the system requirement that the volume fraction (αd) must be less

than 0.001 to be considered a dilute phase, the number of particles was determined
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via manual counting prior to the particles being inserted into the cells. The following

(final) values of αd where achieved:

Table A.2: Final number of particles and resultant particle volume fraction

Array no. Name Number of particles Volume fraction (αd)

1 Light 7,291 0.0021
1 Extra Heavy 2,679 0.0008
2 Small Heavy 5,260 0.0005
2 Heavy 3,690 0.0011

The reader may notice that the final volume fraction achieved for the light particles

is over the prescribed limit of 0.001. The insertion of twice the amount of particles

required is due to the fact that, during ground tests, when the light particles where

inserted into the test cells (i.e. replicas of the flight cells) the light particles would

become trapped in grooves present in the cell, grooves that are a bi-product of the

manufacturing process employed to build the cells. This had not been an issue for

past experiments carried out on SODI as these where ”fluid only” experiments (or

experiments where particles where only used for tracer purposes i.e., where the number

of particles was not closely monitored). It was therefore anticipated that during the

experiments, a large proportion of the particles would get stuck in these grooves. The

team therefore prescribed a larger quantity of particles for the case of the light particles

to compensate for this phenomenon.

A.3 Fluid preparation

The next important aspect in the preparation of the experiment, is the carrier fluid

itself. The fluid considered here is pure ethanol (C2H5OH). During the experiment the

fluid/particle mix will be placed under vacuum to ensure no air pockets are present in

the cells. Under atmospheric conditions, all liquids (open to the air) contain so-called

dissolved gases and include predominantly oxygen (O2), nitrogen (N2), and carbon

dioxide (CO2). These gasses are invisible to the naked eye, however, when the liquid is

placed under vacuum, following Henry’s law (which states that the quantity of dissolved

gas in a liquid is proportional to its partial pressure above the liquid) [159], the gases
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become less soluble resulting in bubbles of gas appearing in the cavity. To prevent

this from happening during the experiment, a procedure known as freeze-pump-thaw

was applied to the ethanol prior to the cell filling, in order to remove as much of the

dissolved gases as possible.

The freeze pump thaw method was carried out using the following steps (the set up

can be seen in Fig.A.6):

Figure A.6: Degassing set-up

• The ethanol is placed in a Schlenk flask (filled up to 50% of the volume of the

flask).

• Nitrogen gas is bubbled through the ethanol to displace as much oxygen as pos-

sible from the liquid as to avoid the condensation of liquid oxygen during the

freezing process (see Fig.A.7).

• The Schlenk flask is then frozen by lowering into a pool of liquid nitrogen.
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Figure A.7: Nitrogen gas being bubbled
through the liquid ethanol

Figure A.8: Ethanol straight after
the freezing cycle

Figure A.9: Liquid nitrogen being poured into dewar for the freezing process

• When the ethanol is completely frozen, the Schlenk flask is removed form the

liquid nitrogen and allowed to thaw whilst the head space of the flask is vacuumed

(see Fig.A.8 for a snapshot of the frozen ethanol in the frozen Schlenk flask and

Fig.A.9 for the filling/refilling of the pool of liquid nitrogen).
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The above steps where carried out three times to remove as much of the dissolved

gasses as possible. The ethanol was then placed into gas tight syringes. This procedure

was carried out on the 6th June 2022 and shipped to QinteiQ in time for the filling of

the cells on the 8th-10th June 2022.

This section has described the experimental activities undertaken by the author in

the T-PAOLA framework. These where instrumental in highlighting the sensitivity of

the real fluid-particle systems being considered for the experiment and also aided in

consolidating the theoretical knowledge acquired in the literature review surrounding

particle/fluid properties.
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