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Abstract

This thesis describes the development and use of a neutral atom quantum
computing system, in particular detailing the methods to create a useful
quantum computing platform that can efficiently scale to larger system sizes.
The Scalable Qubit Arrays (SQuAre) platform can trap and deterministically
arrange over 100 caesium atoms into arbitrary array geometries. These atom
arrays can then be used for performing either digital or analogue quantum
computation, or for quantum simulation.
Blue-detuned optical dipole traps are demonstrated, using novel holographic
techniques to generate arrays of optical potentials capable of coherently trap-
ping arrays of Rydberg atoms. Simulations presented in this thesis are used
to confirm the viability of this scheme and find optimal trapping parameters.
Experimental results then show blue-detuned optical dipole potentials can be
used to trap atoms excited in the Rydberg state for long periods otherwise
prohibited by experiments relying on applying gate operations in free-fall.
Graph optimisation problems naturally map onto Rydberg atom quantum
computing systems by mapping onto a unit disk graph. A new approach
to implement programmable local-light shifts is presented, enabling the first
demonstration of Maximum Weighted Independent Set (MWIS) problems
on a neutral atom array using annealing. These results provide a route to
solving wider classes of classical optimisation problems on arbitrary graphs
by encoding onto MWIS, opening the possiblity for near-term application of
neutral atom quantum computing to real-world problems.
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Chapter 1

Introduction

If quantum physics and information technology each independently revo-

lutionised the 20th Century, quantum information technology promises to

revolutionise the 21st. While the cost of classical computation is lower than

ever, at rates faster than ever, exponential improvements in performance are

finally beginning to slow down [1]. The challenges of fabricating ever smaller

classical electronics are beginning to reach fundamental limits. At the same

time, the demand for large-scale computing continues to grow in order to

tackle problems ranging from material simulations to quantum chemistry.

Quantum computation and simulation provide an alternative to classical

methods. Classical simulation of quantum systems scale poorly with system

size, where the number of classical bits required for the model increases ex-

ponentially with the number of quantum particles. Calculations on this level

rapidly become hard to simulate using classical methods, even for modest

system sizes. By transitioning from classical to quantum hardware, we can

more efficiently and effectively solve a quantum problem. Quantum chem-

istry expects incredible benefits from the direct simulation of atomic and

molecular structure [2], with further applications in materials science [3] and

simulating biological processes [4]. Shor’s algorithm proved that even some

classically hard problems, such as integer factorisation [5] or searches of an

1



Chapter 1. Introduction 2

unstructured database [6], can expect a quantum speedup.

This thesis focusses on the design and construction of a new platform for

computing based on arrays of trapped neutral atoms. Below, an overview of

the foundational concepts of quantum computing are introduced alongside

the unique advantages of neutral atom quantum computing. Finally, the

Scalable Qubit Array (SQuAre) platform is introduced, which is developed

over the course of this research.

1.1 Quantum Information

The nature of classical computing is bound by classical physics. One classical

bit of data must be either ‘0’ or ‘1’, containing one bit of entropy1, while N

bits contain N bits of entropy, following classical thermodynamic principles

[7].

An analogue two level quantum system forms a quantum bit. Quantum bits,

or qubits, do not follow these laws. The ‘0’ or ‘1’ states are not exclusive,

as the quantum bit can exist in a superposition of both. The state of the

qubit is encoded in a wavefunction which can be described by its amplitude

and phase. For an N -qubit system, entanglement between qubits leads to

further non-classical behaviour, such as negative partial information [8]. By

these quantum processes, fewer than one hundred quantum bits can repre-

sent states that would require trillions of classical bits to encode. Quantum

systems therefore offer efficient storage and manipulation of information, al-

though only a single state can be measured at a time.

To make a perfect simulation of any finite quantum process, the universal

computer proposed by Church and Turing must necessarily be itself quan-

tum in nature [9]. As introduced above, this theoretically perfect quantum

computer would be able to simulate quantum problems that are classically
1in base-2
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intractable for any realisable classical computer, while also providing new

paths to efficiently solve otherwise hard classical problems.

Making such a quantum computer is not a simple task however. The re-

quirements to simulate a quantum system summarised by the DiVincenzo

criterea each introduce problems that must be overcome [10]. Firstly, a scal-

able number of well-characterised qubits is required, which can be initialised

to a simple, well-described state. These qubits must be coherent over long

times and implement a universal set of gates, and be accurately and individ-

ually measured. Further criterea are required for the networking of quantum

systems using flying qubits.

The current state of the art is referred to as the ‘Noisy Intermediate Scale

Quantum’ (NISQ) era of quantum computing [11]. Qubits have been gen-

erated, entangled, manipulated and measured at greater scales than ever

before, but quantum computers must grow far beyond their current scale to

outperform classical methods. Noise in state preparation, gates and readout

has so far limited systems to 100s of qubits, orders of magnitude below what

is required for large-scale computation which provides a conclusive advantage

over classical systems. Quantum error correction is necessary for scaling to

even larger system sizes, which itself introduces additional overhead and com-

plexity. Plenty of work remains in order to scale quantum computers to this

scale, much like the generational efforts to scale classical computing to where

it is today.

1.2 Quantum Computation and Simulation

It is important to specify what is meant by a quantum computer and a quan-

tum simulator. An analogue quantum simulator replicates the Hamil-

tonian, or a model of the Hamiltonian, that is to be investigated. These

can reproduce dynamics that classical simulators would otherwise struggle
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with [12]. Just within the field of atomic optics, this has been implemented

in Bose-Einstein condensates [13–15], optical lattices [16–19] and ultra-cold

Fermi gasses [20, 21], to name a few. Analogue quantum computing

takes a set of continuous input variables, and uses the evolution of a quan-

tum system to produce a measurable output, the output of a defined input.

Analogue quantum computers can be used to implement analogue quantum

simulations [22, 23]. Programmable analogue quantum computing is shown

in [24] and in Chapter 7 of this work. Digital quantum computing uses

discrete inputs, where qubits are typically manipulated by discrete quantum

gates. Digital quantum algorithms have been shown to scale better than

the best known classical algorithms in some cases [5], and can also tackle

quantum many-body problems through direct simulation [25]. The ‘quan-

tum advantage’ over classical digital computing has already been claimed for

specific calculations [26–28].

Digital quantum computing has been shown to be equivalent to the analogue

method of adiabatic quantum computing [29]. Here, the ground state of

simple Hamiltonian is prepared. The Hamiltonian is adjusted adiabatically

to a final Hamiltonian, such that the ground state of the final Hamiltonian

is then prepared. The solution to the problem of interest is encoded in

this ground state, and it is using this method that Chapter 7 demonstrates

analogue quantum computing.

Without a clear and obvious winner in the field of quantum computation

and simulation (yet), many branches of research are tackling the problem

of constructing this quantum technology infrastructure concurrently. Super-

conducting systems have already demonstrated their potential for quantum

advantage [26, 28], due to suitable combination of fast operation and the util-

ity of leveraging current nanofabrication techniques used in solid-state engi-

neering. Transmon qubits have demonstrated coherence times > 0.5 µs [30],

while readout times of < 100 ns have been achieved with fidelity F > 0.99
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[31, 32]. Single qubit gates have measured errors ϵ < 10−4, and two-qubit

gates have measured errors ϵ < 10−2 [33, 34]. Commercial systems from D-

Wave use thousands of interconnected superconducting qubits for quantum

annealing, while IBM’s roadmap expects commercial chips with hundreds of

superconducting logical qubits within the next decade, among a number of

commercial competitors [35–37]. These do require cryogenic environments,

while the fabrication of each superconducting circuit that makes up each

qubit is susceptible to errors and inhomogeneities.

Trapped ions have recorded the best coherence times yet, exceeding one hour

for a single qubit[38]. Single qubit and two qubit gate errors have reached

< 10−5, < 10−3 respectively [39–42], better than any other architecture, but

scaling to larger system sizes remains a concern [43]. Ionic interactions de-

pend on 1/r2 Coulomb interactions, which remain strong even over long

distances. Chains of ions cannot simply get longer to scale to greater qubit

numbers and so this fidelity reduces with system size [44]. Photonic sys-

tems have also claimed quantum advantage [27] and have applications as

quantum simulators [45] and scalable fault-tolerant universal computers [46].

Other architectures such as nitrogen vacancy centres [47, 48], alkali molecules

[49, 50] and quantum dots [51] have all been proposed and are under active

development for use as quantum computers and/or simulators.

1.3 Neutral Atom Quantum Computation and

Simulation

Not yet introduced is the use of neutral atoms as qubits. This work will

focus on neutral atom quantum computing, and specifically present results

regarding techniques for use in analogue quantum computing on neutral atom

arrays.

Neutral atoms provide a excellent framework for quantum information sci-
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ence [52, 53]. Each atom of a given isotope is identical, while atomic inter-

actions with light can be manipulated with exceptional precision. Neutral

atoms experience only weak interactions while in the ground state, leading to

long ground-state coherence times. Non-destructive readout fidelity has been

demonstrated at record levels F > 0.999 [54], and large scale experiments

have been demonstrated with coherence times > 12 s on arrays of > 6100

atoms at once [55]. This property led to atomic clocks and the redefinition of

the second that still holds today, and is a key part of a neutral atom quantum

computing system.

Neutral atom quantum computing structures typically involve the construc-

tion of an array of tweezer traps, each containing a single atom. This was

first shown in a single trap in 2001 [56], in a 1D chain in 2016 [57], in 2D ar-

rays the same year [58] and in 2018 for arbitrary three-dimensional structures

[59]. Interactions between neutral atoms are mediated through excitation to

Rydberg states [52]. The atoms used for these exploit the hydrogenic prop-

erties of alkali metals, although promising developments have been made in

the use of alkali-earth elements [60–62]. These Rydberg atoms have exagger-

ated properties, with strong electric dipole moments and strong sensitivity to

these same moments. Excitation to the Rydberg state can therefore be used

to switch on and off an atoms sensitivity to its neighbours. The finite lifetime

of the Rydberg state remains the limit for the scheme, as accessible Rydberg

states have lifetimes on the scale < 1 ms even in cryogenic environments [63].

Current experimental systems are rapidly developing. Global single qubit

gates have been experimentally demonstrated with errors ϵ < 10−4 [64] on

arrays of neutral atoms, with two qubit gate errors ϵ < 10−2 [65] on up to

60 atoms at once. As gate errors reduce to the level ϵ < 10−3 as required for

efficient fault tolerant gate schemes [66], neutral atom quantum computing is

a promising and rapidly developing avenue of research. Experimental results

have shown the dynamically reconfigured rearrangement of qubits without
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loss of coherence [67], with logical topological qubits for fault-tolerant en-

coding [68]. Small-scale algorithms for effective computation on relatively

small system sizes have been measured [69], while mid-circuit measurements

expand the class of algorithms available [70]. Reservoirs of 108 atoms have

been used as a quantum co-processor for enhanced machine-learning [71] and

qubits have been rearranged in over 2000 sites [72].

Neutral atoms are capable of more than digital quantum computing opera-

tions. Rydberg interactions naturally model many-body physics and can be

exploited for quantum simulation in many varieties, as shown in [73]. Ising

or Ising-like Hamiltonians map well to Rydberg systems [74, 75] while re-

cent results have used Rydberg atom arrays as simulators of dipolar 2D XY

[76, 77] and XXZ [78] Hamiltonians, dipolar Heisenberg models [79]. Topo-

logical phase transitions in Rydberg atom arrays has been shown in [80, 81],

and topological spin liquids in [82]. Work on topological order is mentioned

above in its use to encode topologically protected qubits.

These analogue methods can also be used to solve classical problems. Adia-

batic quantum computing has been used to solve integer factorisation prob-

lems utilising a mapping to graph problems [83]. Graph optimisation prob-

lems, such as finding the maximum independent state (MIS), naturally map

onto neutral atom systems, as first shown in large graphs in [84]. Mapping

to weighted graphs was first theorised in [85], allowing to solve for the maxi-

mum weighted independent set (MWIS). This has since been experimentally

demonstrated, as shown in [86] and in this thesis.

The Scalable Qubit Arrays (SQuAre) experiment described in [87] and this

thesis is a neutral atom quantum computation and simulation experiment.

As shown in [64, 87], this platform is capable of trapping > 100 atoms and

implementing high-fidelity global gate operations. This thesis intends to

demonstrate scalable techniques implemented on analogue quantum compu-

tation, with further uses in quantum simulation and digital computation.
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1.4 Publications Arising From This Work

de Oliveira, A. G., et al. "Demonstration of weighted graph optimization on a

Rydberg atom array using local light-shifts." arXiv preprint arXiv:2404.02658

(2024).

Nikolov, B., et al. "Randomized benchmarking using nondestructive readout

in a two-dimensional atom array." Physical Review Letters, 131(3), p.030602.

(2023).

1.5 Contributions Of Others

The design and plan of much of the experimental hardware was carried out

by Prof. J. D. Pritchard, the principal investigator of this experiment, with

further contributions from N. Spong (April 2020 - June 2022). Hardware

and software implementation of the Artiq system was carried out by both

these researchers as well as the infrastructure for experimental logging and

analysis.

Initial experimental construction was carried out by these researchers, along-

side B. Nikolov (July 2020 - November 2023) and the author. B. Nikolov

contributed substantially to the assembly of the MOT lasers and optical sys-

tems, as well as characterisation of the laser cooling and vacuum systems.

Special care is given in chapter 3 to note the breadth and depth of his work

and discussion of experimental hardware and his thesis [87] should be con-

sidered a necessary companion to this work. Finally, measurements shown

in Sec. 5.3 are covered in both theses.

J. Bass (January 2021 - December 2023) constructed much of the initial

Rydberg laser system, including the ultra-low expansion (ULE) cavity locking

system for frequency stabilisation. Much of the experimental data taken in

Sec. 6.4 and Sec. 6.5.2 represents dedicated work by J. Bass. Writing on this
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experiment is currently in preparation for publication.

A. G. de Oliveira (September 2022 - ) developed experimental controls for

the arbitrary wave generator (AWG) hardware, alongside leading the exper-

imental team in data collection for results seen in Chapter. 7.

D. M. Walker developed the Sidewinder algorithm for atom sortin and its

implementation to experimental software.

All the above researchers contributed to the installation and maintenance of

various parts of the experimental system. Much of the research presented in

this work is a result of collaborative work from the entire experimental team,

including PhD student M. Wells-Pestell (October 2023 -).

G. Pelegrí collaborated in the theoretical basis of work seen in Chapter 7,

alongside writing and providing code for simulating these systems.



Chapter 2

Cooling, Trapping and Coherent

Control of Atoms

Encoding and storing binary information is simple enough to be possible

with punch cards, while any classical logic can be performed through digital

electronics [88]. Control of quantum information, however, requires quan-

tum systems. Quantum information must necessarily be stored on quantum

objects, in our case quantum bits.

As introduced earlier, there are a wide range of quantum systems which

can act as our quantum bits. Encoding this process on a wavefunction as

required for a quantum device is here done on the hyperfine structure of

an atom, effectively using utilising the quantised angular momentum of the

Caesium-133 (Cs) ground state wavefunction to encode our off-on state. This

wavefunction, as described in Sec. 2.1.1, introduces our choice of quantum

bit.

Control of the atomic wavefunction requires precise coupling to the system,

where the rate and duration of the interaction is crucial, as well as the in-

teractions with the complex phase of the wavefunction. Lasers can gener-

ate precise, coherent oscillating electric fields that can address the atomic

10
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wavefunctions. Furthermore, the amplitude and phase of the fields can be

switched over the nanosecond scale. Microwaves can directly drive the transi-

tions between the hyperfine states, and have long since been used as a stable

frequency reference [89]. Addressing these transitions optically requires con-

trol of a frequency difference, but are substantially faster and can be focussed

to a single atom. Sections 2.1, 2.2 and 2.3 introduce how these oscillating

fields interact with the atoms, and how these atoms interact with each other.

As shown through the rest of this chapter, the light used in this experiment

can be used to cool atoms to microkelvin temperatures (Sec. 2.4) and trap

them individually (Sec. 2.5). The end result is an array of cold atoms, forming

the basis preparation of the experiments detailed in later chapters.

2.1 Two-Level Atomic Physics

2.1.1 Hyperfine Cs Structure

The hyperfine states of Cs are used as the quantum information basis. In this

basis, an atomic state is given by the quantum numbers |n, L, J, F ⟩, referring

to the principal orbital, orbital angular momentum, spin-orbit and hyperfine

quantum numbers respectively. All these quantum states are energetically

distinct, thereby lifting the degeneracy of the system. Furthermore, in a

small magnetic field Bz the degeneracy of the measured angular momentum

projection is also lifted along the direction of the magnetic field, introducing

an energy shift

∆E|F,mF ⟩ = µBgFmFBz (2.1)

where µB is the Bohr magneton and gF is the Landé hyperfine g-factor [90].

This is the anomalous Zeeman effect, which lifts degeneracy of the mF states

in a weak magnetic field.

The key details required for the atomic structure of Caesium-133 (hence-
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Figure 2.1: Diagram of the 6S1/2 hyperfine structure of Cs-133. The ground
state is split into two states, F = 3 and F = 4. This energy splitting is exact,
due it its use in the definition of the second [91]. This is further split in the
presence of a magnetic field into separate mF levels.

forth referred to simply as Cs) are that it has ground-state atomic quantum

number n = 6, and nuclear spin I = 7/2. The |n, L, J⟩ state is referred to

as the n2S+1(M)J , where M is the magnetic quantum number notation for

the L state, and S is the electron spin quantum number (1/2). Thus, the

|n = 6, L = 0, J = 1/2⟩ state that is the Cs ground state is written 62S1/2.

This state has two hyperfine levels, F = I±S = 3, 4. The transition between

|F = 3⟩ and |F = 4⟩ states can be achieved globally using microwave pulses

in a single photon transition.

The degeneracy of these levels can be lifted with a weak magnetic field. The

|F = 3,mF = 0⟩ and |F = 4,mF = 0⟩ states are insensitive to small fluctua-

tions in magnetic field1, and are thus used as the computational basis states.

Note that these states are often referred to as the ‘clock states’, due to their

usage in atomic clocks2.

For this work, the |F = 3,mF = 0⟩ and |F = 4,mF = 0⟩ will be referred to

as the |0⟩ and |1⟩ states respectively. These are the basis eigenstates of each

qubit.
1Second order effects are present, but in this case are negligible [92].
2The transition frequency between these two states of 9.192631770 GHz is exact, due

to its use as the SI definition of the second.
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Figure 2.2: A diagram of the Bloch sphere, with blue circles indicating the
x(|±⟩), y(|i±⟩) and z(|0⟩ , |1⟩) axes (states). The black vector refers to the
state |ψ⟩ = cos (π/8) |0⟩+ i sin (π/8) |1⟩, and is marked on the surface of the
sphere with a red square.

2.1.2 Bloch Spheres

Given a system in some quantum state |ψ⟩ = c0 |0⟩ + c1 |1⟩, a useful repre-

sentation of this system is through the so-called ‘Bloch sphere’. Analogous

to the Poincaré Sphere [93, Chapter 4], this is a representation of all possible

superpositions of a two-level system with complex amplitudes.

As seen in Fig. 2.2, a state vector in the plane given has length 1 when

normalised. Along the z -axis, the state vector is in the |0⟩ state for positive z,

and |1⟩ for negative. Along the x -axis, the state is in an equal superposition

of the two, |ψ⟩ = |0⟩±|1⟩√
2

≡ |±⟩. The y-axis introduces the relative phase

between the two basis states, such that along the y axis |ψ⟩ = |0⟩±i|1⟩√
2

≡ |i±⟩.

Note that a series of pulses and techniques will often refer to the Bloch

sphere picture. For example, a π/2-pulse refers to a rotation of angle π/2

about the y-axis. The axes are indeed chosen to match Pauli matrices, such
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that a Pauli-X gate matches a rotation of π about the x -axis, and so on.

For a single two-level system, all possible states and operations are may be

visualised on the Bloch sphere, and it retains its usefulness into more complex

systems. This can be understood as a projection of the Hilbert space onto

spherical coordinates. For some wavefunction |ψ⟩, the coordinates are given

by

|ψ⟩ = r

(
cos

(
θ

2

)
|0⟩+ exp (iϕ) sin

(
θ

2

)
|0⟩
)

(2.2)

The normalised wavefunction has a magnitude of the sphere’s radius, such

that r = 1. The altitude θ is proportional to the relative magnitude of each

eigenstate, and the azimuth ϕ proportional to the relative phase.

2.1.3 Rabi Oscillations

Our first goal is to demonstrate how light interacts with a two-level atomic

system. This will serve as the basis for much of the physics for atom-light

interactions. A generic two-level quantum system can be described by the

wavefunction

|ψ⟩ = c0 |0⟩+ c1 |1⟩ , (2.3)

where ci is a complex amplitude and |i⟩ is an electron orbital eigenstate of

the atomic Hamiltonian

H0 = ℏ (ω0 |0⟩ ⟨0|+ ω1 |1⟩ ⟨1|) . (2.4)

In the density matrix formalism, this is given by

ρ = |ψ⟩⟨ψ| =

|c0|2 c0c
∗
1

c1c
∗
0 |c1|2

 ≡

ρ0,0 ρ0,1

ρ1,0 ρ1,1

 . (2.5)

The energy difference between the two states ω1−ω0 = ω0,1 is the character-

istic transition frequency. We can rescale the Hamiltonian such that the |0⟩
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eigenstate is considered zero energy, such that

H0 = ℏω0,1 |1⟩ ⟨1| . (2.6)

Next, we must consider how this system interacts with an oscillating electric

field of frequency ω. The electric field E is described by

E = E0 cos(ωt+ ϕ)ϵ̂i, (2.7)

where E0 is the electric field amplitude, t is time, ϕ is some arbitrary phase

and ϵ̂i is the unit vector determining the polarisation of the incident light.

Interactions of light with the atom are dominated by interactions with the

atomic dipole moment [94, 95]. This field interacts with the atomic dipole

moment d to form the atom-light interaction Hamiltonian

HAL = d̂ · E (2.8)

= E0 cos(ωt+ ϕ)
∑
i,j

⟨i| er · ϵ̂i |j⟩ |i⟩⟨j| (2.9)

= E0 cos(ωt+ ϕ)
∑
i,j

Xi,j |i⟩⟨j| , (2.10)

where e is the electron charge and d̂ is the dipole moment operator. Here,

Xi,j is the transition dipole moment along the axis of polarisation, where

Xi,j = X∗
j,i. This vanishes when i = j.

As also shown in [94, Chapter 2], d̂ is non-zero only on the off-diagonal

components of the two-atom Hamiltonian. We can thus condense the total

Hamiltonian H to

H = H0 +HAL (2.11)

= ℏω0,1 |1⟩⟨1|+ E0 cos (ωt+ ϕ)
(
X0,1 |0⟩⟨1|+X∗

0,1 |1⟩⟨0|
)

(2.12)

= ℏ (ω0,1 |1⟩⟨1|+ cos (ωt+ ϕ) (Ω0→1 |0⟩⟨1|+ Ω1→0 |1⟩⟨0|)) , (2.13)
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where

Ωi→j ≡
E0

ℏ
Xi,j. (2.14)

Ωi→j is the Rabi frequency of the transition, and depends on the transition

dipole moment and electric field amplitude. Furthermore, Ωi→j = Ω∗
j→i

It should be noted that the transition dipole moment is related to the natural

linewidth Γi,j of the transition by

Γi,j =
ω3
i,j|Xi,j|2
3πϵ0ℏc3

, (2.15)

where ϵ0 is the permittivity of free space and c is the speed of light [94,

Chapter 2].

To find how a wavefunction evolves over time under this Hamiltonian, the

time-dependent Schrödinger equation is used. For some wavefunction |Ψ(t)⟩
under some Hamiltonian H, the wavefunction evolves as [90, Chapter 2],

iℏ
∂

∂t
|Ψ(t)⟩ = H |Ψ(t)⟩ . (2.16)

In the density matrix formalism, we use the equivalent Liouville equation,

ρ̇ =
i

ℏ
[ρH] , (2.17)

where the square brackets indicate the commutator operation.

These evolution dynamics still apply under unitary transformations of the

Hamiltonian, HT = UHU † + iU̇U †, where HT is the transformed Hamilto-

nian.

We thus apply the transformation

U = |0⟩⟨0|+ exp (iω0,1t) |1⟩⟨1| , (2.18)

to HAL with an arbitrary shift of the zero energy point to find the transformed
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Hamiltonian

HT = ℏω0,1 |1⟩⟨1| (2.19)

+
ℏΩ0→1

2

(
ei((ω−ω0,1)t+ϕ) + e−i((ω+ω0,1)t+ϕ)

)
|0⟩⟨1|

+
ℏΩ1→0

2

(
e−i((ω−ω0,1)t+ϕ) + ei((ω+ω0,1)t+ϕ)

)
|1⟩⟨0| .

When ω, ω0,1 are of the same scale, such that |ω + ω0,1| ≫ |ω − ω0,1|, we can

make the approximation that terms of exp (i (ω + ω0,1) t) rapidly average to

zero. As such, we eliminate these terms from our Hamiltonian. This is the

rotating wave approximation, and in the transformed frame is thus

HRWA
T =

ℏΩ0→1

2

(
ei(∆t+ϕ)

)
|0⟩⟨1|

+
ℏΩ1→0

2

(
e−i(∆t+ϕ)

)
|1⟩⟨0| ,

where ∆ ≡ ω − ω0,1 is the detuning from the resonant frequency relative to

the bare atomic resonance.

Applying the Liouville equation to this Hamiltonian shows

ρ̇0,0 =
iρ0,1Ω1→0

2
e−i(∆t+ϕ) − iρ1,0Ω0→1

2
ei(∆t+ϕ) (2.20)

ρ̇1,1 =
iρ1,0Ω0→1

2
ei(∆t+ϕ) − iρ0,1Ω1→0

2
e−i(∆t+ϕ).

We can see here that ρ̇0,0 = −ρ̇1,1, which is self-consistent. The total probabil-

ity has remained constant at unity, as we have assumed no loss. Furthermore,

if we define the changing coherence in the rotating frame

ρ̃0,1 ≡ e−i(∆t+ϕ)ρ0,1, (2.21)

such that

˙̃ρ0,1 = e−i(∆t+ϕ) (ρ̇0,1 − i∆ρ̃0,1) , (2.22)
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Figure 2.3: Simulated dynamics of the Rabi oscillation Hamiltonian. Plotted
is the magnitude of the projection of the wavefunction to the |0⟩ state for
both the exact Hamiltonian defined in Eq. 2.11 (in solid black), and the
same for the approximate Hamiltonian in Eq. 2.25 (in dashed red). (b) is
the residuals, that is, the difference between the two values plotted in (a).
This simulation uses ΩR = 0.05iω0,1, ∆ = +0.1|ΩR|, where |ψ(t)⟩ = |0⟩.
Simulations are made using the QuTiP master equation solver [96].

then we can reduce Eq. 2.20 to

ρ̇0,0 =
i

2

(
Ω0,1ρ̃0,1 − Ω∗

0,1ρ̃
∗
0,1

)
= − sin (arg (Ω0,1ρ̃0,1)) (2.23)

ρ̇1,1 = −ρ̇0,0

Furthermore,

˙̃ρ0,1 =
iΩ0,1

2
(ρ0,0 − ρ1,1)− i∆ρ̃0,1. (2.24)

Here, we have used ρ̃0,1 = ρ̃∗1,0, and Ω0,1 = Ω∗
1,0.

This evolution is well described by the effective Hamiltonian [94]

HRWA
T,Eff =

ℏ
2

∆ Ω′

Ω′ −∆

 , (2.25)
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Figure 2.4: Bloch sphere representation of Rabi oscillations. Figure (a) uses
the same parameters as Fig. 2.3. Each point (in red circles) plots the state of
the wavefunction as it evolves. Figure (b) is, in black squares, the evolution of
the state where ∆ = ΩR. This transition is off resonance, such that |c1| ≤ |c0|
at all times.

where

Ω′ =
√
∆2 + |Ω0→1|2. (2.26)

The dynamics of this Hamiltonian are simulated compared to the bare Hamil-

tonian in Fig. 2.3, to show how the approximation describes well the system

for some small detuning by removing the fast-varying terms.

When ∆ = 0 such that the incident driving field is equal in frequency to the

transition, and ϕ = 0, the wavefunction is a transfer of population between

the |0⟩ and |1⟩ states at rate Ω. The axis of this evolution on the Bloch

sphere is determined by the input phase of light, such that c0, c1 gain a

complex phase. Finally, as |∆| increases above zero, the amplitude of these

Rabi oscillations reduces, while the effective Rabi oscillation Ω′ increases.

If ∆ ≥
√

Γ2 + |Ω0→1|2, the transition will be substantially off-resonance,

and the amplitude of the Rabi oscillations will be suppressed. This is shown

diagramatically on the Bloch sphere in Fig. 2.4. The increased Rabi frequency

is shown by simulating the exact Hamiltonian at varying deutnings in Fig. 2.5.
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Figure 2.5: Simulated dynamics of the Rabi oscillation Hamiltonian for dif-
ferent detuning values. Plotted is the magnitude of the projection of the
wavefunction to the |0⟩ state for the exact Hamiltonian defined in Eq. 2.11,
for detunings from ∆ = 0 to ∆ = 2ΩR. Note that as ∆ increases, the
frequency of oscillations increases, while the amplitude of the oscillations de-
creases.

2.1.4 AC Stark Shifts

As the Hamiltonian is no longer the bare Hamiltonian H0, we must char-

acterise the effect of the change in eigenenergies. If we consider Eq. 2.25

to be a perturbation to H0, we can calculate the eigenenergies of the new

Hamiltonian. The eigenenergies of Eq. 2.25 are

E± = ±ℏ∆
2

√
1 +

Ω′2

∆2
. (2.27)

In the limit where ∆ ≫ Ω′, this is approximated by

E± ≈ ±
(
ℏ∆
2

+
Ω′2

4∆

)
. (2.28)

Notably, as I → 0 and thus Ω′ → 0, a perturbation of ±ℏ∆
2

remains. This

is due to the treatment of light in the ‘dressed’ picture, where atoms in the

ground state |0⟩ and excited state |1⟩ ‘see’ an energy difference of ℏ∆. This

is the increased energy from the excitation, minus the energy of the now

absorbed photon [97]. An applied field of Rabi frequency Ω′ and detuning ∆
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thus creates an energy shift ℏ∆AC of magnitude

|∆AC | ≡
1

ℏ

(
E± ∓ ℏ∆

2

)
=

Ω′2

4∆
. (2.29)

Here, ∆AC is the AC Stark shift, and is the effective shift of the resonance

frequency of a transition as light is incident upon it. This AC Stark shift is

to be avoided or exploited as appropriate. If ∆ is very large, Ω can be large

enough to generate a measurable Stark shift while remaining off resonance,

and thus not transfer population.

2.2 Rydberg Physics

2.2.1 Rydberg Principles

For experiments utilising individual atoms, each atom must be distinguish-

able from the others. The interactions between atoms typically occur on the

scale of electron orbitals, that is, of order < 1 nm, such as in molecules or

in crystal lattices. Atoms this close are too close to resolve optically and

the interactions too strong to reliably control on a single-atom level. We

thereby must work with atoms where we can tune the interactions reliably

and precisely, that act over distances of microns rather than nanometers.

As introduced in Sec. 1.3, these necessary atom-atom interactions are medi-

ated through Rydberg atom interactions. As shown by Johannes Rydberg

experimentally in 1890 [98], the binding energy of an electron W in hydrogen

is given by

W = −Ry

n2
, (2.30)

where Ry is the Rydberg constant and n is a non-zero integer. Bohr would

later go on to calculate this constant exactly for the Hydrogen atom [99],
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given by

Ry =
α2mec

4πℏ
, (2.31)

where α is the fine structure constant, me is electron mass, c the speed of

light and ℏ the reduced Planck constant. Rydberg further demonstrated that

such relations exist for other species, most notably alkali metals, such that

W = − Ry

(n− δnlj)
2 , (2.32)

where Ry depends on the species and δnlj is a ‘quantum defect’ that depends

on the n, l, j quantum numbers. With the knowledge of modern quantum

mechanics, we know this n value to be the principal quantum number, re-

lating to a quantised radial wavefunction with expected distance from the

atom at the centre of ⟨r⟩ ∝ a0n
2, where a0 is the Bohr radius. Differences

between alikali atoms and the hydrogen model at low l states are due to the

low angular momentum states having large ellipticity, penetrating and thus

interacting with the highly charged core [100]. Low-l states thus interact as

if the effective radius, and thus n, are smaller than for large n, creating our

quantum defect for l ≤ 3.

Rydberg states have other notable characteristics to be either exploited or

managed within Rydberg experiments. Considering only the low-l states, the

spacing between atomic levels and the natural linewidths of such levels scales

as n−3, The 80S1/2 state, for example, has natural linewidth τ = 567.5 µs

[63].

A major property of Rydberg atoms is the substantially increased sensitivity

to electric fields in comparison to ground state atoms. For a small, DC

electric field, the second order perturbation creates an effective energy level

shift ∆E, such that

∆E = −α0E2

2
, (2.33)

where E is the electric field strength and α0 is the scalar DC polarisabilty,
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Figure 2.6: Plots of physical properties of Rydberg orbitals. Figure (a)
shows the distribution of the radial wavefunction over the distance r from
the nucleus. For n = 80 states, the most probable radius is 0.589 µm, or
11130a0, where a0 is the Bohr radius. Figure (b) is the binding energy of
the Rydberg electron for the Cs

∣∣nS1/2

〉
energy levels, as discussed in Eq.

2.32. This is further split in the presence of a magnetic field into separate
mF levels. Properties are calculated using the Atomic Rydberg Calculator
library for Python [101].

where α0 ∝ n7 [102]. Thus, Rydberg atoms are highly susceptible to stray

electric fields. Static electric field gradients must therefore be minimised

across an experimental region. This process is demonstrated experimentally

in Sec. 5.1.

Rydberg atoms are also sensitive to electric dipoles. The large orbital radius

leads to both the generation of large dipole moments and the increased sen-

sitivity to these dipole moments. For two dipoles, separated by the vector

R, the potential energy V (R) of dipole-dipole interactions is given by [102]

V (R) =
µa · µb

|R|3 +
3 (µa ·R) (µb ·R)

|R|5 , (2.34)
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where µa and µb are the dipole moments of the ground to Rydberg transition

and where |µi| ∝ n4
i .

If we consider only interactions where dipole moment and separation vectors

µi and R are orthogonal, we can reduce the equation to purely scalar terms,

such that

V (R) = e2
⟨ra, rb|xaxb + yayb − 2zazb |ga, gb⟩

|R|3 (2.35)

where |ga, gb⟩ , |ra, rb⟩ refers to ground and Rydberg states in the transition.

As shown in [90, Chapter 5], the energy shift on the pair state by the dipole-

dipole interaction Vdd can, at long range, be calculated using second-order

perturbation theory, such that

Vdd =
e4

|R|6
∑
j ̸=i

|
〈
j(0)
∣∣xaxb + yayb − 2zazb

∣∣i(0)〉 |2
E

(0)
i − E

(0)
k

, (2.36)

where Vdd is the energy shift applied to the pair state |i⟩, and |j⟩ is all

other neighbouring Rydberg pair states. The unperturbed energy difference

between the neighbouring |ra,Nrb,M⟩ and |ra,N±1rb,M∓1⟩ states is the denom-

inator of this equation. This is the energy defect, and is proportional to

n−3.

This is simplified to an effective van der Waals interaction of

Vdd = − C6

|R|6 (2.37)

where C6 ∝ n11. The C6 van der Waals interaction results in substantial

energy shifts to the |ra, rb⟩ state as Rydberg atoms are close, resulting in

the phenomenon of Rydberg blockade.

It should be mentioned that this is true only for when the energy defect

|E(0)
i − E

(0)
k | ≫ Vdd, that is when the two atoms are sufficiently separated.

At short range, the second-order perturbation in Eq. 2.36 is no longer valid,
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and in that case

Vdd = ± C3

|R|3 . (2.38)

2.2.2 Rydberg Blockade

The most critical property of Rydberg atoms for use in quantum information

technologies is the phenomenon of Rydberg blockade. To summarise, two

atoms within close proximity cannot both be excited to the Rydberg state

simultaneously using on-resonant interactions. This interaction results in

quantum entanglement between the two atoms.

This is due to the energy shift caused by the dipole-dipole interaction (as

described in Eq. 2.37) changing the resonant frequency for the interaction.

Light that is resonant to the single atom Rydberg transition cannot couple

to the state |r, r⟩, as it experiences an effective detuning from that state due

to the dipole-dipole interaction. If the linewidth of the transition (typically

the Rabi frequency) is less than the induced shift, the probability of both

atoms being excited to the Rydberg state is substantially reduced, despite

each atom being resonant to the field if they were not in close proximity.

To demonstrate this, one must first consider the Hamiltonian for a single

atom excited by a resonant field within a Hilbert space consisting of the

ground and Rydberg states, or |g⟩ and |r⟩ respectively. Such a Hamiltonian

is given by Eq. 2.25. Consider further the two-atom system described by the

independent states |g, g⟩, |g, r⟩, |r, g⟩ and |r, r⟩. Assuming both atoms are

exposed to the same field with equal Rabi frequency, and are otherwise iden-

tical aside from position, they experience the same dynamics with individual

detuning ∆ = 0. However, each atom experiences a dipole-dipole interaction,

as detailed in Sec. 2.2.1. This interaction creates an effective detuning for

the |r, r⟩ state only, of strength −C6

R6 . Thus, if C6 is substantially large (by
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Figure 2.7: Diagram of the Rydberg blockade mechanism. Figure (a) shows
the calculated values of the dipole-dipole interaction for various nS1/2 states.
The magnitude of the shift varies by Vdd ∝ n11 and Vdd ∝ R−6. Proper-
ties are calculated using the Atomic Rydberg Calculator library for Python
[101]. Figure (b) is a schematic of the dipole-dipole interactions between two
Rydberg atoms, separated by a distance R. When R < Rb, the |r, r⟩ state
is shifted off resonance, and coupling to the 1√

2
(|r, g⟩+ |g, r⟩) pair state

occurs at the enhanced Rabi frequency
√
2Ω. The 1√

2
(|r, g⟩ − |g, r⟩) pair

state is not coupled.

increasing n) or R is substantially small (by decreasing interatomic spacing),

the |r, r⟩ state is forbidden. This is what is referred to as the Rydberg

blockade. Furthermore, the Rydberg blockade radius Rb is defined such that

|C6|/R6
b = ΩR, such that the |r, r⟩ state is off-resonant.

A further useful result is found when considering the evolution of states un-

der this Hamiltonian. This Hamiltonian has eigenstates 1√
2
(|r, g⟩ ± |g, r⟩),

where the rate of evolution of each state is given by

⟨gg|H|±⟩ = Ω

2
√
2
(⟨g, g|g, g⟩ ± ⟨g, g|g, g⟩) . (2.39)

Thus, the 1√
2
(|r, g⟩+ |g, r⟩) eigenstate is excited at rate

√
2Ω, while the
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1√
2
(|r, g⟩ − |g, r⟩) cannot be coupled. The resultant state is equivalent to

the Ψ+ Bell state, and is thus maximally entangled. This increased Rabi fre-

quency is referred to as the enhanced Rabi frequency. This behaviour is seen

in a greater number of atoms as Rydberg atoms are all brought within the

collective blockade radius, such that for N atoms within collective blockade,

ΩN =
√
NΩ, (2.40)

where ΩN is the enhanced Rabi frequency [103, 104]. Furthermore, the state

generated is the |WN⟩ state, as defined in [105], which is known to be maxi-

mally entangled up to N = 3 [106, 107].

2.3 Three-Level Atomic Physics

Restricting ourselves to just two-level systems is not always practical for

experimental physics. Exciting Cs to a Rydberg state with a single photon

requires UV lasers [108], which come with experimental difficulties, while

transferring between hyperfine states requires MW transitions, which are

slow relative to Rydberg lifetimes and cannot be focussed to address a single

atom. This section will introduce the theory of addressing three-level systems

to address both large and small energy differences.

Here, we will be primarily concerned with two states of note, which we shall

call |0, 1⟩, and an intermediary excited state |e⟩. The goal of the intended

three-level system interactions are to transfer populations between the |0, 1⟩
states, while minimising the population in the intermediate |e⟩ state. If this

is done, the problem is reduced to a much simpler two-level system.

Note that while these approximations are both useful and effective at de-

scribing the dynamics of the system, the results are only approximate. The

exact Hamiltonian can be simulated using numerical methods to compare to
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Figure 2.8: Level diagrams demonstrating Λ and ladder systems. These
are two example three-level systems, where the population in the excited
state is to be minimised. Figure (a) demonstrates a Λ system with average
detuning ∆ and two-photon detuning δ. As δ is non-zero, this transition
is off-resonant. By reducing δ to zero, coherent population transfer occurs
between the |0⟩ and |1⟩ states, via the off-resonant coupling to the |e⟩ states.
Figure (b) is the same for a ladder system. Here, transfer occurs through a
two-photon absorption process, rather than the absorption and emission of
virtual photons.

the approximations used, although these simulations can be computationally

demanding even for small systems.

2.3.1 Adiabatic Elimination

A typical issue with driving an oscillation between two target states in a three

level-system is population remaining in the excited state. Example three-level

systems are shown in Fig. 2.8. For example, Rydberg state lifetimes are long,

measured in the hundreds of µs scale for n > 40 [63, 109], while the natural

lifetime of the 7P1/2 state is τ1/2 = 165.2 ns [110]. This means that any

process moving from the 6S1/2 ground state to the nS1/2 Rydberg state via

the 7P1/2 state will spontaneously emit photons and scatter far faster from

this intermediate state than the Rydberg state. This is the ‘ladder’-type

energy level, shown in Fig. 2.8(b). By reducing the population within this

intermediate state, we can eliminate this scattering. The process of removing

the population of the intermediate state is known as "adiabatic elimination".

Conveniently, this will reduce a three-level system to a two-level system as

described above.
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Using the previously defined initial states |0⟩ , |1⟩, these two states are cou-

pled to the excited state by fields of frequency ω0,e, ω1,e, defined by Rabi

frequency Ω0,Ω1 and detuning ∆0,∆1. If we define an average detuning

∆ = (∆0 +∆1) /2 and a two-photon detuning δ = (∆0 −∆1), we can extend

the rotating wave approximation as seen in Eq. 2.25 to a three-level system.

H = ℏ


−δ/2 0

Ω∗
0

2

0 δ/2
Ω∗

1

2

Ω0

2
Ω1

2
−∆

 . (2.41)

Note that here we have assumed no coupling between the |0⟩ and |1⟩ states,

such that Ω0→1 = Ω1→0 = 0.

To adiabatically eliminate population in the excited state, we must first as-

sume the initial population in the excited state is zero. Furthermore, we

must assume that the average detuning ∆ is large in comparison to the Rabi

frequencies Ω0,Ω1, and excited state linewidths Γe→0,Γe→1, such that with

only one field there is minimal coupling between the two states. We can then

make the assumption that the system reaches a steady-state population, such

that ċe = 0. As shown in [111], solving the time-dependent solution results

in an effective Hamiltonian

HRWA = −ℏ

δ/2 + ∆0
AC

Ω∗
R

2

ΩR

2
−δ/2 + ∆1

AC

 . (2.42)

Here, ΩR =
Ω0Ω∗

1

2∆
, which has a complex phase equal to the phase difference

between the two fields. The problem is thus reduced to a two-level system,

with the effective detuning shifted by the two-photon detuning, and contri-

butions from the differential AC Stark shift from each beam.

This approximation is not entirely rigorous and for a full solution the reader

should see [111]. For substantially large ∆ however this approximation can

be used effectively to understand the evolution of the system. Fig. 2.9 shows
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Figure 2.9: Simulated dynamics of the adiabatic elimination Hamiltonian.
In (a), plotted is the magnitude of the projection of the wavefunction to
the |0⟩ state for both the exact time dependent Hamiltonian (in solid black)
compared to the approximate Hamiltonian in Eq. 2.42 (in dashed red). (b)
is the residuals, that is, the difference between the two values plotted in (a).
This simulation uses Ω0→e, Ω1→e = 0.05ω0,e, 0.05ω1,e, ∆0, ∆1 = 5ω0,e, 5ω1,e

and δ = 0, where |ψ(t)⟩ = |0⟩. Simulations are made using the QuTiP master
equation solver [96].

a comparison between the approximation the exact Hamiltonian in simula-

tion, where the difference in population is taken as a residual, showing only

small deviations. We can thus take it as two fields acting as a single in-

teraction strength term ΩR, although each field produces an AC Stark shift

independently of the others. Also note that this approximation is agnostic

as to if the excited state is above, below or between the two initial states.

Even though we assume the population in this intermediate state is very

small, we must consider the probability of scattering from this state. Given

the well known scattering rate equation [95, 112], we can assume the fac-

tors from the large detuning ∆ dominate. As such we can approximate the

contributions from Ω0 to be

Rscatt,0 =
Γ

2

Ω2
0/2

∆2 + Ω2
0/2 + Γ2/4

≈ Γ
Ω2

0

4∆2
. (2.43)
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The same contribution applies for contributions from Ω1. Furthermore, we

can estimate the timescale of any transition to be on the order of t ≈ 2π
ΩR

.

Thus, the approximate total number of scattered photons from the |e⟩ state

is given by

Rscatt,0t ≈
Γ

2

Ω2
0

∆2

2π

ΩR

=
Γ

2∆

Ω0

Ω1

. (2.44)

Following from this, Rscatt,1 ≈ Γ
2∆

Ω1

Ω0
. Thus, if Ω0 and Ω1 are comparable in

size and ∆ ≫ Γ, the number of photons scattering from the excited state is

≪ 1.

2.3.2 Lambda and Ladder Systems

Adiabatic elimination processes can occur through any two-photon process.

As previously established, a two-photon processes can be used to address

otherwise unfeasible transitions. In a Λ-system, where the |0⟩, |1⟩ states are

close in energy relative to the excited state |e⟩, the dynamics are the same as

a two-photon absorption or emission process. A ladder system is one where

the excited state is between the |0⟩ , |1⟩ states in energy. Both are described

in Fig. 2.8.

We can first look at the scenario where our initial levels are close in frequency,

and we wish to drive a transition between the two via an excited state at a

much higher frequency. This has the appearance of the stimulated absorption

of one virtual photon, and the stimulated emission of another virtual photon.

Alternatively, one can consider it as the two fields interfering to create a beat

frequency that itself addresses the transition. In either respect, this type of

transition is often called a ‘Raman transition’3.

In this experiment, Raman transitions are used for rapid high-fidelity transfer

between hyperfine states. Phase-locked lasers are be capable of state transfer

at far greater rates than MW addressing. Such beams can be focussed to high
3Not to be confused with Raman scattering
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intensity while retaining control within experimental timescales of ≈ 1 MHz.

These beams can also be focussed to a single atom, thus creating single atom

state control, unavailable in a MW source. The phase of these beams must be

kept constant, as must the relative frequency difference, as it is this effective

detuning δ that determines the resonance condition.

One notable factor of this Raman transition is the impulse on the atoms

from this transition. If the two beams have momenta ka,b, the momentum

imparted onto the atom is thus k = ka − kb. This momentum transfer

can be used for Raman sideband cooling. This technique involves coupling

the atomic transition to the motional states of the atom within a trap (see

chapter 2.5.1), such that the impulse of the Raman transition reduces the

total energy of the atom. This has been demonstrated to cool neutral atoms

[113, 114] and molecules [115, 116] to the motional ground state of dipole

traps.

Although care must be taken with the sign of the detuning values, two-

photon excitation schemes in Ladder systems use much of the same physics

as Raman transitions. For this work, one further consideration must be made

regarding the excitation pathway; a transition may couple from the initial to

the final state via multiple different intermediate states |ei⟩, with proportional

rates determined by relative dipole matrix elements. The detuning value is

itself weighted by these factors as well. In general, these multiple-pathway

considerations must be taken into account for Raman transitions as well,

but is only relevant for the paths taken for two-photon excitations in this

experiment.

In summary, the Ladder system is used for excitation to Rydberg states

while the Lambda system is used for Raman transitions between hyperfine

levels. These can be approximated to the same form of Hamiltonian, although

Raman systems can also be used for Raman sideband cooling.
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2.4 Laser Cooling

The first stage of many atomic experiments is typically cooling. A room tem-

perature Cs atom may move at rates exceeding 200 m/s, leading to an exten-

sive Doppler shift while increasing the difficulty of interacting with the same

atom for more than a short period. An atomic beam may have been suit-

able for the first groundbreaking experiments in atomic spectroscopy [117],

but for more precise quantum technologies, the same atom must be addressed

over the period of milliseconds or even seconds. Variations in atomic velocity

must also be eliminated, to avoid the effects of Doppler shifts.

Cooling an atom from room temperature to the microkelvin scale takes mul-

tiple stages, which are each briefly discussed below.

2.4.1 Doppler Cooling and Magneto-Optical Traps

The magneto-optical trap (MOT) has become a staple of many atomic

physics experiments since its introduction. First demonstrated in 1987 at

Bell Labs [118], this technique uses radiation pressure to cool and trap neu-

tral atoms into a cloud of < 1K. Radiation pressure here refers to how atoms,

when absorbing a photon, increase their momentum by the momentum of the

photon absorbed. When this photon is spontaneously emitted, it is scattered

in a random direction. Thus the absorption process leads to a mean change

in momentum over time (and thus force) while the scattering does not.

Firstly, two beams red-detuned from resonance are incident on an atom. An

atom at rest is equally off-resonant from either beam. If the atom’s velocity

is counter to the direction of the light, the Doppler effect also moves the atom

into resonance, while it moves further off-resonance for the beam along its

velocity. This results in a net counter-force proportional to its velocity, This

effect is known as ‘Doppler cooling’, and is a frequently used laser cooling

technique.
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Figure 2.10: Energy level diagram of a MOT along a single axis. As the atom
moves away from the zero position, the Zeeman shifts of the atomic levels
bring energy levels into and out of resonance. Beams in resonance propagate
in the direction opposite to that of the atom, acting as a restoring force.

While Doppler cooling slows atoms, the addition of a magnetic field gradi-

ent can create trapping. The operating principle of the MOT requires two

counter-propagating beams of orthogonally polarised light, red detuned from

resonance by a few linewidths, creating a Doppler cooling effect. A magnetic

field gradient is also applied across this axis, with zero field at the centre. As

an atom moves in the positive direction, the magnetic field becomes stronger

and the Zeeman shift brings it into resonance with the beam opposing its

motion. A restoring force is thus applied to accelerate it towards the ori-

gin. In the other direction, as the magnetic field becomes weaker, the second

beam is in resonance, and so the force restores the atom again. A magnetic

field gradient and counter-propagating beams can thus cool and trap atoms

in each axis. The result is the containment of a cloud of atoms, capable of

trapping > 108 atoms [119–121]. As atoms are always in receipt of a force

counter to their displacement and velocity, this traps the atoms in the centre

with a much reduced mean velocity compared to room temperature. The

effect of this is a dense, cold cloud of atoms.

This technique has limits, however. Even when off resonance, the atoms still

absorb photons at a rate determined by the scattering equation, Eq. 2.43.

Thus, an atom at zero velocity in zero field will still absorb photons, and

stochastically emit them. This forms a random walk process, such that at a
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Figure 2.11: Diagram of the PGC process. Red and black lines are the energy
levels for for alternating F levels while the dashed line is the excited state.
On the top row, "P" refers to the polarisation of incident light. As atoms
move in x, they reach the top of an energy potential, where they are excited
and spontaneously decay, losing energy in the process.

steady-state the atoms will reach a limit of cooling. As proven in [112], this

limit TD is known as the Doppler-cooling limit.

kBTD = ℏΓ/2. (2.45)

For Cs cooled along the D2 transition (as done in this experiment), this limit

is reached at 125 µK, or a velocity of 0.15 m/s. To cool atoms below this

limit, a further cooling stage is required.

2.4.2 Polarisation Gradient Cooling

Cooling atoms below the Doppler-cooling limit was first achieved before it

was known to be possible [122]. A standing wave pattern formed by the MOT

beams forms a spatial variation of the field polarisation. This forms the basis

for the highly effective polarisation gradient cooling (PGC) technique, also

known as Sisyphus cooling.

Firstly, when counterpropagating beams of wavelength λ and orthogonally

but linearly polarised light interfere along an axis, the resultant standing

wave has spatially varying polarisation. It will smoothly vary from linear,
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to circular, to orthongonally linear, to orthogonally circular, and back to

linear again. This effect repeats in a standing wave pattern over spatial

period λ/2, as shown in Fig. 2.11. As an atom moves from linear to circular

polarisation, it begins to encounter a negative AC Stark shift at the |F,mF ⟩
energy level, with the largest shift when mF = ±F . As such, atoms that are

highly shifted no longer see optical pumping effects. An atom moving out of

this shifted region reduces its potential energy, but is also subject to further

optical pumping. Said atoms undergo a repump stage and are most likely to

eventually end in a position of again being under AC shift (as atoms in the

unshifted state simply repeat the process). What the atom ‘sees’ in this case

is starting in a region of low potential energy but high velocity. As it moves

into a region of high potential energy and low velocity, this potential energy

is removed by the optical pump. The atom continues moving to a region of

low potential energy, and is repumped back to the target state.

As was first shown in [123], this cooling effect only occurs in limited circum-

stances. The optical pumping effect must be slow, such that an atom has

time to ‘climb’ to the top of a potential hill and reduce its velocity before

being optically pumped. Also shown is how the effect on the velocity is only

strongly seen when atoms are already slow, such that it acts best as a second

stage of cooling after a MOT.

2.5 Single Atom Traps

The first step, trapping atoms in a MOT, produces a cloud of cold

atoms. However, our experiment requires isolated, individually distinguish-

able atoms. Knowing that our Rydberg interaction is strongly dependent on

separation, we require fine control of the atomic positions. Given that we

want readout from a single atom at a time, they must also be distinguishable

and identifiable. In Sec. 2.5.1 I will discuss the theory of using optical dipole
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traps (also called atomic tweezers) to hold atoms in place, while Sec. 2.5.2

will discuss using a light-assisted collisions stage to reduce occupancy of these

traps to a single atom.

2.5.1 Optical Dipole Traps

Aside from the force of absorbing and emitting photons, light can interact

with atoms through a dipole force. In brief, the force applied to a dipole in

an oscillating field is known to be [95]

Fdipoleϵ̂i =
−ℏ∆
2

Ω

∆2 + Ω2/2 + Γ2/4

∂Ω

∂xi
ϵ̂i, (2.46)

where ϵ̂i is the unit vector along the xi axis. As before with two-photon

transitions (see Sec. 2.1), the probability of interaction with a given transition

is given by its relative dipole moment, and so the actual force is a weighted

average over all possible transitions.

On resonance, this interaction power is zero. If we take the same assumptions

for AC Stark shift calculations in Sec. 2.1.4, ∆ ≫ Γ, ω we can reduce this to

Fdipoleϵ̂i =
∂

∂xi

−ℏΩ2

4∆
ϵ̂i =

∂

∂xi
(−ℏ∆AC) ϵ̂i (2.47)

In brief, the dipole force is applied to the atom across the gradient of the AC

Stark shift. To extend this to three dimensions,

Fdipole = −ℏ∇∆AC(r) = −∇Udipole(r). (2.48)

Here we have reduced the dipole force to the gradient of a scalar potential

energy field. For a far-off resonance transition, it can be useful to understand
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this in terms of the electric field intensity I [95, 124].

Udipole(r) =
3πc2Γ

2ω3
a,e∆

I(r) = U0I(r), (2.49)

where ωg,e is the resonant frequency of the interacting transition between the

ground and excited states. For sufficiently detuned beams, this beam will

couple to multiple transitions simultaneously. By generating an energy well,

atoms can be trapped using this dipole force. This is an optical dipole trap

(ODT).

Using this formalism, and conversion of energy to temperature through U =

kBT where kB is Boltzmann’s constant, dipole traps are typically described

in terms of temperature. A theoretical atom with no energy at the bottom

of a potential well requires additional energy equal to the ‘trap depth’ to

escape. A trap of depth UTD sets the upper limit of the system temperature.

One property of Eq. 2.49 is its dependence on the sign of the detuning. If the

incident light is of a longer wavelength / lower frequency than the resonance

frequency, ∆ < 0, or ‘red’ detuned. The opposite is considered ‘blue’ detuned.

Red-Detuned ODTs

In the red detuned case, the potential is minimised where I(R) is maximised,

such that atoms are trapped in regions of high intensity. This somewhat

counterintuitive result means that a highly focussed spot of light acts to trap

atoms.

A typical ODT is generated by focussing a Gaussian beam to a small point

of 1/e2 waist w0. Along the radius at the focus,

I(r) = I0 exp

(−2r2

w2
0

)
(2.50)
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which, for r ≪ w0,

I(r) ≈ I0

(
1− 2

w2
0

r2
)
, (2.51)

and so, using Eq. 2.49,

U(r) ≈ U0I0 +
kr2

2
, (2.52)

where

k = −U0I0
4

w2
0

. (2.53)

As long as U0 < 0, this has the form of a harmonic oscillator potential, where

U(r) =
1

2
kr2 + C, (2.54)

where C is a constant energy offset and k is the spring constant. This corre-

sponds to a characteristic radial trap frequency

ωradial =

√
4U0I0
mw2

0

. (2.55)

Following the same steps along the axis orthogonal to the trap radius, we

can see that the atoms are trapped axially as well, such that

ωaxial =

√
2U0I0
mz2R

, (2.56)

where zR ≡ πw2
0

λ
is the Rayleigh range.

Atoms that are much colder than the depth of the trap closely match the

conditions for this potential. We can therefore assume, for cold atoms,

that a red-detuned optical dipole trap acts as a quantum harmonic oscil-

lator. The distribution of occupied modes for a thermal atom matches a

thermal Maxwell-Boltzmann distribution (conveniently providing a method

of describing temperature for a single atom), although this can be further

modified. Raman transitions can couple to these harmonic modes, leading

to Raman thermometry for directly measuring atom temperature. Raman
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sideband cooling (RSBC) can then cool atoms by reducing occupation of

harmonic modes to the ground state of the trap, as discussed in Sec. 2.3.2.

The focussed Gaussian beam configuration also traps along the axis of propa-

gation of the beam, although with substantially weaker forces. Crossed-beam

trap configurations can therefore improve trapping uniformity and confine-

ment along this final axis.

Blue-Detuned ODTs

The alternative to red-detuned ODTs is the blue-detuned ODT. Here, we

can consider the bottom of the trap to be the zero of potential energy, and is

surrounded by potential walls. Atoms are trapped in regions of low intensity,

surrounded by high intensity.

Such fields can be generated through a variety of methods, although all re-

quire a degree of optical ingenuity beyond simply focussing a single Gaussian

beam. They are typically used in situations where strong electric fields would

be destructive to the trapped object. Most relevant to us, this includes Ry-

dberg atoms.

A wide variety of optical designs have been historically used to trap atoms

in blue-detuned light, for example ‘light sheets’ [125] or using higher order

Gaussian modes [126, 127]. We will give special attention to the method

of generating ‘bottle beams’ [128], trap schemes where a Gaussian beam is

‘hollowed out’, as it is described in [124]. One such method of generating such

beams involves using two Gaussian beams of the same wavelength, different

waists and in antiphase, such that at the focus there is a region of destructive

interference in the centre [128, 129]. This can be reduced to a single beam

interfering with itself, as first shown in [130] and expanded to diffractive

optical elements in [131]. In [132], this method uses a spatial light modulator

(SLM) to generate a blue-detuned ODT to trap Rydberg atoms. This thesis

will demonstrate the same method to generate arrays of red-detuned and
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blue-detuned ODTs to trap ground state and Rydberg arrays in Sec. 3.3.3

and Chapter 6 respectively.

2.5.2 Light Assisted Collisions

As we can now trap a large number of atoms in a MOT, then small numbers

in a dense ODT array, we only need one final step to reduce trap occupancy

to a single atom. Light assisted collisions are the mechanism for which this

is achieved. Using the same beams used for PGC (see Sec. 2.4) but closer

to resonance, dense collections of atoms will be attracted and collide [133].

Atoms undergoing collisions will exchange spin and each increase kinetic

energy. This ejects atoms from the trap in a pair-wise fashion. Traps that

initially loaded with an odd number of atoms will thus be left with a single

atom that, absent further collisions with background atoms, will remain.

This is a stochastic process and so a trap can be expected be filled by a single

atom with a probability of ≈ 50%. For further discussion on this process,

see Sec. 4.1.3.
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Figure 2.12: Comparison between simulated red and blue detuned ODTs.
Figure (a) is a color plot of a typical red detuned ODT, generated by a
focussed beam of 1/e2 waist 1 µm. The figure is a cross-section of the beam
profile, as it is rotationally symmetric about the axis of propagation (z).
Figure (b) is a color plot of a bluebottle blue-detuned ODT, generated by
a focussed beam of 1/e2 waist 1 µm, destructively interfering with a beam
of waist 2.5 µm. Both intensity profiles are normalised to their respective
maximum intensity. Figures (c) and (d) demonstrate energy profiles along
the radial and axial directions, normalised to the same degree as above. Red
solid lines are for the red-detuned ODT as shown in (a), while blue dashed
lines are for the blue-detuned ODT as in (b).



Chapter 3

Experimental Setup

This Chapter details the realisation of the SQuAre atom array experimental

system. Included here is the vacuum chamber containing the atoms, the

optics to address and control the atoms, and the various hardware systems

required to control the experiment as a whole.

This Chapter will be a brief overview of the system to discuss its capabilities

such that they can be assessed, its limitations understood, and the potential

for expansion highlighted. Here, special consideration must go to the thesis

of B. Nikolov [87], who also provided substantial contributions to the con-

struction of the experimental system and has described its workings in detail.

3.1 Vacuum Chamber System

The core of the experiment is the vacuum chamber. This consists of a glass

cell to contain a 2D magneto-optical trap (MOT, see Sec. 2.4), which feeds

into a main chamber through a differential pumping tube. This main chamber

is an octagonal vacuum system, with windows on the cartesian axes for input

light. Further smaller windows at a ±25◦ offset give access for the 2D MOT

43
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Figure 3.1: Annotated diagram of the experiment vacuum system, with lab-
oratory coordinate reference frame. Reproduced from [87] with permission.

connection. As mentioned in Sec. 2.3.2, a second offset axis for Raman beams

gives access for future Raman sideband cooling.

3.1.1 2D MOT Cell

The source of atoms for the experiment is an ampoule of metallic Cs, such

that it is fed Cs at vapour pressure. This is at a pressure PV ≈ 7×10−7 Torr

at the system temperature of 20◦ C [91]. This is the highest pressure of the

system. The 2D MOT cell is connected to the ampoule through a valve. It is

opened for 30 minutes, once a week, such that atom numbers in the 2D MOT

cell remain low but roughly constant. The 2D MOT cell is also connected

to a 5 l/s ion pump to maintain low pressure. By measuring the ion pump

current, we can infer an initial pressure of P ≈ 8 × 10−9 Torr after baking.

This ion pump was on during the initial vacuum preparation process, but is

not in regular use. This is due to accumulation of Cs in the pump leading to

inaccurate readout.
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3.1.2 Main Experiment Chamber

The main experiment chamber is held at a lower pressure than the 2D MOT

cell. The main chamber is connected to the 2D MOT cell through a dif-

ferential pumping tube, which limits the movement of atoms from the high

pressure 2D MOT cell to the main chamber. Use of a titanium sublimation

pump at initialisation reduces the chamber pressure. A further 75l/s ion

pump is kept in continuous operation, connected to the main chamber. As

such, the pressure is maintained at P ≈ 1 × 10−11 Torr. This is measured

by the pump rate of the ion pump, which reached a minimum measurable

pressure of 1.0 · 10−11 Torr. For details on measuring vacuum performance,

see [87]. This pressure slowly increases over time, due to outgassing of the

materials and slow leaks. The pressure increase rate is estimated to be at a

rate of 2 · 10−11 Torr per year, and has been reduced down to the minimum

measurable pressure once through further activation of the titanium subli-

mation pump. This UHV pressure results in trap lifetimes of 17(1) s, as will

be demonstrated in Sec. 3.3.3.

3.1.3 Chamber Optics Assembly

The primary chamber imaging optics are based on work in [134–136]. Here,

the lens used is a single high-NA lens fixed in-vacuum with a short working

distance on each side of the chamber centre. Only a single optical element

with high efficiency of light collection is used, compared to compound micro-

scope objectives. Two identical lenses are used on either side of the atoms,

such that the primary optics are equal on each side. This experiment uses

Geltech 355561 lenses (as used in [135]). These lenses have focal length

f = 10 mm, numerical aperture NA = 0.45 at the imaging wavelength of

852 nm, and are placed at a working distance of 7 mm. Given the close dis-

tances of the lenses to the atoms, the insulating properties of glass could lead

to charge build up and thus residual electric fields. These lenses were thus



Chapter 3. Experimental Setup 46

Figure 3.2: Annotated exploded-view diagram of the in vacuo optics system,
with laboratory coordinate reference frame. Included in this system are the
MOT gradient coils to define the experiment quantisation axis, field compen-
sation electrodes to null electric fields, and the in vacuo lenses. Reproduced
from [87] with permission.

coated in a 200 nm layer of indium tin oxide (ITO), a transparent conductor.

This layer reduces transmission to approximately ≈ 90% across the range of

wavelengths used, with sheet resistance 250 Ω/2.

Other parts of the lens assembly include the electric and magnetic field com-

ponents. To compensate for residual electric fields, a series of eight electrodes

are fixed in place around the atoms. By controlling the potential on each pin,

the field can be corrected. Also included are the in vacuo MOT gradient coil.

This coil is made of 1.8 mm diameter Kapton coated wire, for low outgassing

in the chamber, and provides the largest magnetic field in the experiment,

acting as the field quantisation axis. The in vacuo MOT coil operates with

a current of 7 A during the MOT loading sequences, generating a magnetic

field gradient of 10 G/cm.



Chapter 3. Experimental Setup 47

Figure 3.3: Cs Hyperfine structure for the D2 transition. Annotated in
red are the transitions used for cooling, imaging, D2 optical pumping and
repump. Data from [91].

3.2 Magneto-Optical Traps

3.2.1 Optical Design

For cooling, trapping and state preparation, three Toptica DL Pro diode

lasers are used, each controlled by a Toptica DLC Pro. These are kept

at a stable frequency through the use of saturation-absorption sub-Doppler

spectroscopy. Two diode lasers are used for cooling and trapping atoms in

the MOT along the D2 line at 852 nm. One laser is locked to the frequency

used for the |F = 4⟩ → |F ′⟩ transition, and is amplified from 18 mW to

1.5 W through the use of a tapered amplifier. This laser is used for the

optical pump, MOT and readout (see Sec. 3.4) beams. The other addresses

the |F = 3⟩ → |F ′⟩ repump transition. The energy levels of these two beams

are shown in Fig. 3.3. The third laser is resonant with the D1 line at 895 nm,

and is discussed further in Sec. 3.5.3.

Fine frequency control is managed through the use of acousto-optic modula-

tors (AOMs). With the use of a series of AOMs, each laser can be split into

a series of paths, where each path can be controlled in both frequency and

intensity by the ARTIQ control system [137]. Voltage-controlled amplifiers
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Figure 3.4: Diagram of the 2D and 3D MOT. Figure (a) shows the 3D MOT
at a steady state after 5 seconds of loading, with 2 ms of exposure through
the primary imaging system. Labelled are directions of the MOT beams as
shown in (b). The vertical MOT beams (in yellow) are angled 25◦ into and
out of the image plane. Figure (b) is a schematic of the beam paths. The
vacuum assembly is omitted from this diagram for clarity.

are used to dynamically adjust beam intensity and transistor-transistor logic

(TTL) signals are used to switch the amplifier on or off, with a rise time of

< 20 ns. See Sec. 3.7.3 for further details on TTL hardware.

All of these lasers make use of physical shutters for the total elimination of

any leakage light through any axis during the experiment. The shutter design

used is based on those in [138], with characterisation in [87].

Atom cooling starts in the 2D MOT in a dedicated cell, as discussed in

sec. 3.1.3. A near-resonant, linearly polarised push beam applies an impulse

to atoms within the 2D MOT to send low temperature atoms through to

the 3D MOT in the main experiment chamber. This is orthogonally to the

2D MOT trapping beams and through the differential pumping tube. A flux

of low temperature atoms allows for rapid loading of the 3D MOT for fast

experimental rates. See Fig. 3.1 for the spatial arrangement of the vacuum

system.
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The 2D MOT is operated with a 1/e2 beam waist of 10 mm, at a power

of 200 mW and detuning ∆ = −3Γ, where Γ/2π = 5.22 MHz, the natural

linewidth of the transition [91]. A resonant repump intensity of 7 mW is

incident along the same path. Permanent bar magnets are used to provide

a 16(1) G/cm magnetic field gradient within the cell. Trapping only occurs

along the transverse plane, such that a large number of atoms can be con-

tinuously cooled, with forces orthogonal to the impulse applied by the push

beam.

In the 3D MOT, the horizontal MOT beams typically operate with 7 mW

of power. These are collimated to a 1/e2 waist of w0 = 5 mm, but are

clipped to a diameter of 8 mm at the fibre optic outputs by a metal ring

to minimise scatter within the chamber by stray light. The two vertical

retroreflected MOT beams operate at 5 mW at a 1/e2 waist of w0 = 2.5 mm

and are clipped to a beam diameter of 4 mm. All paths operate at a detuning

of ∆ = −4Γ, where Γ/2π = 5.22 MHz, the natural linewidth of the D2

transition [91]. Repump light is incident through the vertical paths at a

total power of 0.6 mW and through the horizontal σ+ path at a power of

0.35 mW. The magnetic field gradient is produced through the in-vacuum

MOT coils at strength 12 G/cm.

Fine tuning of magnetic field gradients is managed through the use of external

shim coils. These coils provide a bias to the zero-field position of the MOT,

such that the atom cloud is aligned with the focus of the high-NA imaging

lenses. Two coil pairs are active around the 2D MOT, and three pairs for the

3D MOT, for auxiliary field control along each axis.
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3.2.2 MOT Performance

MOT loading performance follows an exponential saturation, such that the

atom number as a function of time N(t) is given by [139, 140]

N(t) = Nmax (1− exp(−t/τ)) , (3.1)

where Nmax is the steady-state atom number and τ is a loading timescale.

Imaging the 3D MOT over a period of time demonstrates a maximum atom

number of Nmax ≈ 105 atoms, and is loaded over a timescale τ = 1.9(1) s

[87].

Atoms within the MOT cloud are at a temperature of 250(10) µK, measured

through time-of-flight measurements [122]. Two PGC stages are then applied.

The first stage operates at ∆ = −5.8Γ for 3 ms, with horizontal MOT beams

at a power of 0.8 mW. The vertical MOT beams are reduced in power by

the same fraction to 0.5 mW. The second PGC stage operates at ∆ = −8.0Γ

for 2 ms and at half the beam intensity of the first stage. This reduces

the atom temperature to 37(4) µK, also measured through time-of-flight

measurements. This is substantially colder than the Cs Doppler temperature

of TD = 125 µK. For experimental details on these measurements, see [87].

This sequence is capable of loading a 225 atom ODT array after a 0.25 s

MOT loading period (see Sec. 3.3.3), and is thus is sufficient for further

experiments on single atoms within the traps.

3.3 Optical Dipole Traps

The generation of the ODTs used in this experiment is achieved through

light fields shaped by holographic techniques. Lasers and optical design is

discussed below, but it is first necessary to introduce the spatial light mod-

ulator (SLM), a tool for the generation of arbitrary holograms.
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Figure 3.5: Data demonstrating shaping of light potentials using an SLM. In-
cident light of known intensity and phase (here a collimated Gaussian beam)
is incident on an SLM. This modulates the phase, but not the intensity. A
lens acts as a Fourier transform between focal planes for the intensity and
image fields [141]. Also shown is the process of the Gerchberg-Saxton algo-
rithm for phase retrieval, which modifies the SLM phase ϕ(x, y) to match a
target intensity IT (x′, y′).

3.3.1 Spatial Light Modulators

The principle of the spatial light modulator (SLM) is the same that of a

typical display screen. An SLM instead adjusts the phase of light for each

pixel deterministically, much like how a display screen adjusts light intensity,

using liquid-crystal on silicon (LCOS) cells. This principle extends beyond

analogy for the LCOS-SLM that is used in this experiment. Liquid crystal

cells on a silicon control panel can be individually controlled as per-pixel

retarders. This is effectively a liquid crystal display screen, operating in

reflection mode and without polarisation filtering to adjust intensity. The

first-order diffraction pattern created by the holographic pattern is used,

while the zeroth-order reflection is blocked.

With careful phase control, an input light field can be reshaped into a re-

quired output field [142]. A lens acts as a Fourier transformer for this

process[141]. This is the fundamental principle of holography [143], although
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instead of the retrieval of phase information from an image, we are interested

in the generation of an image by controlling said phase. Established phase

retrieval algorithms, such as the Gerchberg-Saxton algorithm [142], calculate

the phase required for an arbitrary intensity. The Gerchberg-Saxton algo-

rithm uses a fast Fourier transform (FFT) to compare a measured amplitude

Ãn (x
′, y′) and phase ϕ̃n (x

′, y′) with a target intensity IT (x′, y′). The mea-

sured amplitude is replaced with the target intensity, and an inverse FFT

(IFFT) is applied. The transformed intensity is again replaced with the

known intensity, and the new phase is used to update the SLM. See Fig. 3.5

for a diagram of this process.

This experiment makes use of the adaptive Weighted Gerchberg-Saxton

(aWGS) algorithm [144], a modification of this scheme for faster conver-

gence. Thus, we can calculate and generate a hologram, display this onto

our SLM, illuminate it with our laser, and thus generate an arbitrary inten-

sity distribution. For hologram generation, the phase profile is initialised as

a random phase distribution. Repeated FFT and IFFT processes carry out

the phase retrieval process without requiring experimental feedback. This

generates the intended pattern, with some small error. These errors in the

process can be corrected by using the measured intensity on a camera rather

than theoretical intensity, thus corrected for systematic differences between

the optics and the calculation.

This process has some limitations. Each pixel also has a degree of cross

talk, although this can be measured and corrected for [145]. The Gerchberg-

Saxton algorithm and its derivatives do not specify phase in the Fourier plane,

which can lead to unexpected interference in the final image plane. Real-

time feedback can also correct these issues to some extent [144]. Finally, it is

limited by the size and number of the SLM pixels. To maximise the control

over the field, the largest number of SLM pixels available should be used.

For the experiments described here, two SLMs were used, one for each wave-
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Figure 3.6: Layout of optics in creating red and blue detuned ODTs. The
two paths combine on dichroic filters, which are shared with the imaging
path. The optical dipole traps overlap inside the chamber. Each path uses
an AOM for control of power and fast switching. Measurements refer to the
focal length of the lens. The schematic shown is not to scale, and omits
mirrors used for beam pathing. Angle of incidence on each SLM is 10◦ in the
experiment to match the manufacturer’s specification.

length used in generating ODTs. Each SLM is a Hamamatsu X13138-02WR

SLM. Each SLM was used to generate an array of ODTs that overlap in the

vacuum chamber. For the red-detuned ODT arrays at 1064 nm, this is an

established technique that splits a single high power trapping beam into an

arbitrary array of traps, first demonstrated in [146].

In Chapter 6 we will discuss novel techniques that for the first time generate

stable arrays of blue detuned optical dipole traps containing Rydberg atoms.
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3.3.2 Optical Design

Two lasers are used for the generation of two different types of optical dipole

trap.

The first laser, at a wavelength of 1064 nm, is used for the generation of red-

detuned ODTs. This laser is a custom M Squared Equinox system modified

to provide high power, single mode and narrow linewidth light at 1064 nm.

A second laser, at a wavelength of 800 nm, is used for the generation of blue-

detuned ODTs. This laser is an M Squared Equinox diode laser used to pump

an M Squared SolsTiS Ti:Sapph laser. The Ti:Sapph laser system allows for a

wide range of narrow linewidth output frequencies, but has limited efficiency.

As such, with a maximum pump power of 19.5 W, the 800 nm system is

capable of outputting 5.1 W. For the 800 nm beam, the shorter wavelength

means that the effective numerical aperture is 0.44. For further details on

the 800 nm ODT performance, see chapter 6.

Each laser, after beam shaping, passes through a single AOM. This AOM

is used for fast switching and intensity control. These beams are expanded

through telescope systems and are incident on their respective SLM. The

telescopes used for beam expansion are designed such that the maximum

area of the SLM is exposed to the incident beam without clipping, in this

case a 1/e2 beam radius of 6.7 mm is used. This gives the best control over

the resultant field, i.e. the greatest number of SLM pixels are used in beam

shaping.

Each beam combines on a dichroic along the main imaging path. For the

1064 nm beam, this creates a diffraction limited spot size of 1.04 µm. The

calculated spot size, measured by profiling the beam outside the chamber and

simulating the optics, creates a focus with 1/e2 radius of 1.1 µm, matching

this limit.

When further near-resonant light is on the atoms, the resultant AC Stark shift
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can reduce the effectiveness of the trap, or even cause the atom to be ejected.

As such, a ‘chopping’ sequence is used. Here, the ODT light is switched on

and off rapidly, with a period substantially less than the fundamental trap

frequency [147]. Incident light is also chopped like this but out of phase,

such that it is incident only when the ODT is off. As such, interactions

that would otherwise be destructive can be extended into the millisecond

scale while atoms remain trapped. This includes cooling, imaging, optical

pumping and repumping, all of which excite Cs into anti-trapped states.

To generate our chopping signal, we use an FPGA1 to generate a 50 % duty

cycle 1 MHz square wave. This square wave acts as a transistor-transistor

logic (TTL) signal to the RF amplifiers that drive the switch AOMs2 for each

path. Other channels from the FPGA can be adjusted in phase, such that

the incident beams are in phase or π out of phase as required.

3.3.3 Loading Atoms In Red Detuned ODTs

A typical experimental sequence initialises loading at a trap depth of 3 mK.

Light-assisted collisions (LAC) reduce trap occupancy to a single atom per

trap, at a rate of 57% (see section 2.5.2). Once loaded, a further PGC stage

cools atoms within the traps.

Atoms remain trapped and are reimaged after time t with probability P (t),

given by

P (t) = e−t/τ , (3.2)

where τ is the trap lifetime. At a background pressure of ≈ 1.0×10−11 Torr,

we measured τ = 17(1) s, as seen in Fig. 3.7(a).

If an atom is slow and near the centre of a red detuned ODT, the potential

acts like a harmonic oscillator (see section 2.5.1). Thermal atoms occupy the
1Altera Cyclone II EP2C5T144 FPGA
2Gooch & Housego 3080-122 at 80 MHz for the 800 nm path, and 3110-197 at 110 MHz

for the 1064 nm path.
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Figure 3.7: Data demonstrating red detuned ODT performance. Figure (a)
shows the probability of an atom remaining in a trap over time, with a
decay constant of τ = 17(1) s. The red line is a fit to the data of Eq. 3.2.
Figure (b) uses the release and recapture method to find the temperature of
atoms within the red detuned traps. The red line is a fit of the recapture
probability calculated using the Monte-Carlo method discussed in [148]. This
gives a fitted temperature of 1.5(1) µK for a trap depth of 30 µK.

quantised motional states |n⟩ of the harmonic oscillator. The wavefunction

|ψ⟩ is, at thermal equilibrium, given by the distribution

|ψ(T, k)⟩ =
∑
N=0

cN(T, k) |n⟩ (3.3)

where k is the spring constant of the quantum harmonic oscillator, and

cn(T, k) follows a Boltzmann distribution of loading temperature T of states

where H |n⟩ = ℏ
√
k/m (n+ 1/2) |n⟩ and where m is the atomic mass [148].

Thus, the temperature of a single atom is defined by its expected velocity

within the trap. This temperature can be measured using a release and re-

capture technique [148]. Turning off the trap potential allows atoms to travel

in free-space. After a period of time, the trap power is ramped back up and

the atoms are recaptured. Colder atoms will be recaptured more often given

their lower average velocities when dropped from the traps.
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As the trapping light is slowly reduced in power3, the wavefunction evolves

adiabatically. In this case, k reduces, but the probability amplitude of states

cN remains constant. Adiabatic ramps of the ODT power thus acts as a

further cooling stage for the atoms, although at the cost of delocalisation of

the atoms within the traps.

For experiments, the traps are ramped down to a minimum power of 0.5% of

the maximum intensity, with 400 µW per trap, or a trap depth 30 µK. Atom

temperatures at this stage are measured to be 1.5(1) µK using the release

and recapture method, as shown in Fig. 3.7(b). This uses a Monte-Carlo

simulation of recapture probability, assuming a thermal distribution of atom

velocities within the traps.

This adiabatic ramping sequence is also used during imaging when traps are

ramped up to a trap depth of 1.2 mK. This is such that atoms remain trapped

during the large number of scattering recoils that occur during imaging.

3.4 Imaging Single Atoms

Atom readout is accomplished through imaging atomic fluorescence. A single

atom in an optical dipole trap can scatter sufficient light to be imaged by

a camera without ejecting the atom from the trap. We can thus image

individual trapping sites to determine if an atom is trapped in that site.

Atoms are trapped in the focal plane of the high-NA in vacuo lenses. These

lenses both focus the input trapping light and act as the front lens for imag-

ing. This provides diffraction limited imaging performance4 up to an object

offset of 40 µm, such that a field of view of 80 µm is achieved.

Light is scattered from atoms through a fluorescence process. Cooling and

repump beams are again applied to the atoms to excite atoms across the
3The rate of change of the oscillation frequency is less than the square of the same

frequency, as shown also in [148].
4Defined as Strehl ratio > 0.8 [149].
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Figure 3.8: Diagram of the optics used for imaging, not to scale. Light at
wavelengths of 800 nm and 1039, 1064 nm is combined with the imaging path
using dichroic filters. Stray light is blocked from entering the camera through
the use of an enclosed path, with a narrow aperture. Optical bandpass filters
centered at λ = 850 nm are used to suppress noise on image acquisition.

D2 transition, with greater detuning and greater power so as to minimise

the force on the atoms. This is applied over 40 ms. By adjusting power,

detuning and duration of the applied light during the imaging stage, the

maximum flourescence signal can be measured without heating the atoms to

the degree of removing them from the traps. As this process is across the D2

transition, the atoms emit light at a wavelength of 852 nm.

Light emitted from the flourescence process is isotropically and stochastically

scattered. Given a numerical aperture of 0.45, this limits the collection effi-

ciency of the system to 5.4 % of light incident on the first lens. This light

is transmitted, magnified and measured across an imaging system seen in

Fig. 3.8. Further loss occurs here, due to limited transmission through op-

tics. A further two filters5 are used to avoid the collection of light outside the

range around 850 nm. This suppresses stray light and improves the signal-

to-noise for imaging, but further reduces transmission of imaging light. As

such, the total transmission of light through the imaging optics is estimated

to be 70 % in the best case.

Images are captured with a Teledyne Photometrics Prime BSI sCMOS cam-

era. This camera is capable of rapid imaging and data transfer, with quantum

efficiency of 47 % at D2 wavelengths. The camera itself is attached to a trans-
5Thorlabs FESH0950 shortpass filter and Semrock FF01-850/10-25 bandpass filter.
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lation stage, such that it can be precisely positioned for optimal focussing.

Considering all factors, the total photon collection efficiency is estimated to

be 1.8 %. The camera collects light for 50 ms, longer than the imaging light

is applied for, such that the rolling shutter can initialise all pixel rows as

required.

For fast calculations and minimising the data storage overhead, experimental

images are processed during the experimental sequence. For a given array

of traps, calibration images are taken. These calibration images consist of

400 stochastic loads of the trap array, with trap occupied by a single atom.

The 10 brightest pixels for each atom across this sample are counted and

summed, with the statistical distribution analysed to mark a cutoff count.

This cutoff is defined as the minimal infidelity 1 − F for this atom, where

F is the probability that a present atom produces the counted number of

photons or more, as defined by Poissonian statistics. If this sum is above

this threshold value, we can assume an atom is present with certainty given

by F .. As such, only the pixel counts within a region of interest (ROI)

are considered during analysis, where they are compared to these threshold

values, rather than the full experimental image. This calibration is measured

and stored as preparation for experiments using a given array, and does not

occur at the beginning of each experiment.

Atoms are loaded into traps with sub-Poissonian probability p0, p1, where

pi is the probability of loading i atoms into the trap [56, 136]. The count

distributions are fitted to the distribution [136]

P (c) = p0G(c0, µ0, σ0) + p1G(c1, µ1, σ1), (3.4)

where

G(ci, µi, σi) =
1√
2πσ2

i

exp
(
− (ci − µi)

2 /
(
2σ2

i

))
. (3.5)

This is a fit to two separate normalised Gaussian curves, one correspond-
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Figure 3.9: Experimental data showing imaging of single atoms within an
array. (a) is the average of 400 experimental images of a 15 × 15 atom
array, separated by 8 µm. (b) is the histogram of pixel counts across the 10
brightest pixels around the central trap. The red dashed line indicates a fit
of two separate Gaussian profiles, with a minimum between the two peaks at
the discriminator value (dotted blue line). A summed pixel count above the
discriminator value is considered as a present atom. The measured infidelity
is here 1− F < 10−4

ing to background counts only and other including atom fluorescence. The

minimum of this curve between the two Gaussian peaks marks the point of

maximum imaging fidelity, and so is used as the discriminator point. An ex-

ample fit of an array is shown in Fig. 3.9, including the discriminator point

at the curve minimum. This method has a predicted fidelity F > 0.999 for

each atom. Actual imaging fidelity is reduced due to imaging loss, where

present atoms are lost during the imaging process. There is a balance to

maintaining maximal measurable fidelity while reducing atoms lost during

imaging. Imaging loss is measured by the rate of loss of atoms between two

subsequent images. Extrapolation of trap lifetime measurements over time t

can be extrapolated to t = 0 to find this baseline level of loss. This imaging

loss is typically of order 1%. Further image processing techniques, such as

weighting pixels during counting, can improve measured fidelities, as shown

in recent results [55]. Such methods could then reduce the time and intensity

of imaging to reduce loss while maintaining acceptable imaging fidelity.
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Figure 3.10: Level diagram of optical pumping schema. Figure (a) is
clock state preparation, preparing atoms in the

∣∣6S1/2, F = 4,mF = 0
〉

state using D1 resonant light. π polarised light couples atoms to
the

∣∣6P1/2, F = 4,mF ̸= 0
〉

states. Light spontaneously decays from the∣∣6P1/2, F = 4,mF

〉
states, shown in red wavy arrows. The σ+ repump

light is along the D2 line, as shown in (b). Atoms accumulate in the∣∣6S1/2, F = 4,mF = 0
〉

state. Figure (b) is stretch state preparation, prepar-
ing atoms in the

∣∣6S1/2, F = 4,mF = 4
〉

state using D2 resonant. π polarised
light couples atoms to the

∣∣6P3/2, F = 4,mF ̸= −4
〉

states. The σ+ repump
light is also present to prevent atoms being trapped in the F = 3 states.
Atoms accumulate in the

∣∣6S1/2, F = 4,mF = 4
〉

state.

3.5 State Preparation And Detection

The execution of many quantum algorithms relies on the deterministic prepa-

ration of a target initial quantum state. The light scattering process from the

MOT, PGC and LAC stages initialises atoms stochaistically in some state

within the hyperfine manifold. We can use two different optical pumping

schemes to deterministically prepare all atoms in a single state. To measure

state preparation fidelities, microwave pulses are used to coherently couple

to hyperfine transitions, and is described in detail in [87].
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3.5.1 Clock State Preparation

The |F = 3, 4,mF = 0⟩ states are referred to as the ‘clock’ states6, Given

that states with mF = 0 have zero magnetic moment projected along the

magnetic field axis, it has a vanishing first-order Zeeman shift applied to it,

and is as such least exposed to errors arising from stray magnetic fields7.

Atomic transition selection rules prohibit the transition ∆F = 0,∆mF = 0,

when mF = 0 [95]. As such, all |F = 4,mF = i⟩ transitions couple to the

|F ′ = 4,mF = i⟩ state, where i ̸= 0. Once in the |F ′,m′
F ⟩ state, atoms

spontaneously decay to either the |F = 4,m′′
F ⟩ or |F = 3,m′′

F ⟩ states. The

m′′
F quantum number is, due to selection rules, restricted to the set {i−1, i, i+

1, }, such that total angular momentum can only vary a maximum of ℏ per

absorbed photon. The same repump laser is used as before to prevent atoms

accumulating in the F = 3 state, as shown in Fig. 3.10. Atoms continuously

scatter through the hyperfine manifold and accumulate in the clock state. For

state preparation, a bias field of 5.7 G applies this shift to lift degeneracy

between states. If the atom is scattered to the |F = 3⟩ state, it is no longer

affected by the optical pumping light.

This optical pumping process is achieved with a single beam, with a second

repump beam. The optical pumping beam used for this purpose is aligned or-

thogonal to the magnetic bias field axis, and is linearly-polarised such that it

drives π-transitions in the atom. A Glan-Taylor polariser is used to maximise

polarisation purity. These π-transitions are used to maximise scattering fi-

delity; the D1 OP transition is separated from its nearest states by 1.167 GHz

and as such, off-resonant scattering from F ′ = 3 is suppressed. The equiv-

alent transition in a D2 scheme has a detuning of 250 MHz, and so would

have worsened optical pumping fidelity. The increased detuning necessitates

a third laser as mentioned in sec.3.2.2.
6Due to its use in atomic clock experiments.
7Second-order Zeeman effects do cause small but non-zero energy shifts [92]. For small

fields, this is 429 Hz/G2 by the Breit-Rabi formula [150]
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The observed fidelity for clock state preparation reaches a maximum of F =

0.974(3), as seen by the contrast in microwave spectroscopy [87]. This is

believed to be due to polarisation impurities from the D1 light when projected

onto the bias field axis. Most likely, this is due to slight misalignments

and maladjustments to the magnetic field coil positions, such that the input

beam is off-axis to the atomic quantisation axis. This beam has 1/e2 waist

w0 = 800 µm, with a typical power of 30 µW, and operates on an optical

pumping timescale of τOP = 79(1) µs [87].

For optimal starting fidelity, a Raman-enhanced optical pumping scheme

can be implemented, as first described in [67, 151] and improved in [65].

These schemes utilise stretch state preparation, and then apply composite

Raman pulses to transfer to the clock state. Given the large size of the

Cs hyperfine manifold, this may prove experimentally challenging for high

fidelity operations.

3.5.2 Stretched State Preparation

The |F = 4,mF = 4⟩ state is known as the ‘stretched’ state, due to how it

receives the largest Zeeman shift of the hyperfine manifold. The same 5.7 G

bias field is applied to lift degeneracy.

The |F = 4,mF = 4⟩ stretched state is generated by optically pumping on

the F = 4 → F ′ = 4 D2 transition using σ+ polarised light. This beam is

aligned along the magnetic bias field axis. As shown in Fig. 3.10, this beam

is resonant along the
∣∣6S1/2, F = 4,mF = i

〉
→
∣∣6P3/2, F

′ = 4,m′
F = i+ 1

〉
transition. As such, atoms are continuously increasing the mF number to

a maximum of mF = 4. Atoms in this state, once excited into the |F ′⟩
state, can only decay back to the stretch state, as scattering into the F = 3

manifold is forbidden. Once in the stretched state, it is no longer coupled to

the σ+ light.
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As with the MOT beams, this beam is clipped by a 4 mm radius aperture,

as it shared a fibre with the σ+ MOT beam. This was measured to prepare

atoms into the targeted |F = 4,mF = 4⟩ state with fidelity F = 0.993(7).

The beam used for this is along the same path as the primary MOT σ+

beam. This beam has 1/e2 waist w0 = 5 mm, with a typical power of 95 µW,

operating on an optical pumping timescale of τOP = 9.5(6) µs [87].

3.5.3 State-Selective Readout

The simplest and most effective method of state detection for alkali atoms

is a destructive, ‘blow-away’ method. A beam near-resonant to the∣∣6S1/2, F = 4
〉
→
∣∣6P3/2, F

′ = 5
〉

is applied along the MOT- axis. This is

applied at high power for long periods (on the atomic timescale) with no

repump, such that atoms in the |F = 4⟩ state are rapidly heated out of the

trap. When imaging is then applied, the only atoms observed are those in

the |F = 3⟩ state. In order to remain trapped, the ODT and blow away light

are both chopped out of phase with a 50 % duty cycle.

Beyond imaging fidelity, we must quantify the effectiveness of the state selec-

tive imaging. This is the difference between correctly identifying if an atom

is present, and ensuring an atom is present when it is in the |F = 3⟩ state

or is not present when in the |F = 4⟩ state. This is measured by initially

optically pumping in the D1 state, with a further 100 µs repump stage to

prevent any remaining population in the |F = 3⟩ state.

A 0.5(2) % false-positive rate is measured, along with a 1.0(1) % false negative

rate. The false-positive rate is the probability for an atom to survive the

sequence of heating, and is likely due to leakage into the |F = 3⟩ state during

blow away. Blow-away occurs through repeated excitation from the F = 4 →
F ′ = 4 state, and so has a non-zero probability to couple to the F = 3 state

after repeated excitations. The false-negative rate is due to off-resonant

scattering events and loss during imaging. This was measured by, after the
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blow away sequence, applying the depump light for 20 ms, and measuring

the change in survival.

Rydberg atoms are simpler to detect. Given that the extreme electric suscep-

tibility of Rydberg atoms repels them from red detuned ODTs (see section

2.5.1), Rydberg detection is achieved simply by turning on the ODT array

used for ground state trapping. Rydberg atoms are thus expelled from the

trap and can be distinguished from ground state atoms with some finite

infidelity [152].

Non-destructive readout was also implemented, and is described in great

detail in [87, Chapter 5]. It is otherwise not utilised in any experiments or

procedures described in this work.

3.6 Atomic State Control

Once our atoms are prepared in the desired initial states, we can then ma-

nipulate the states that they are in. For atom-atom interactions, we require

the use of Rydberg atoms in order to extend the interaction range. For hy-

perfine control, we can utilise either microwave or Raman transitions. This

section will discuss the optics used for generating the Rydberg, Raman and

microwave fields.

3.6.1 Rydberg Lasers

As discussed in detail in section 2.2.1, we can use Rydberg states to enable

atom-atom interactions. To excite atoms to the Rydberg states, we use

two separate lasers to drive a two-photon transition (see section 2.3). This

couples the
∣∣6S1/2F = 4,mF = 0

〉
state to the

∣∣nS1/2

〉
state, and so requires

optical pumping to the clock state. This transition acts via the 7P1/2 state,

and is detuned by frequency ∆ from the intermediate state centre-of-mass
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Figure 3.11: Figure (a) is the energy level diagram to the Rydberg transition.
There are two optical paths to available, via the F ′ = 3 and F ′ = 4 sublevels.
(b) shows the transmission through the ULE cavity using a PDH-offset lock
peak. The carrier peaks are when input light is resonant with a cavity mode.
This input light is mixed with an offset frequency through an EOM, creating
offset peaks with associated sidebands. These offset peaks are separated
from the carrier by the offset frequency and are used for locking to arbitrary
frequencies.

frequency.

For experiments detailing the effectiveness of the Rydberg system for Ryd-

berg excitations, see Chapter 5.

459 nm Beam

The first beam in this transition, coupling the
∣∣6S1/2

〉
→
∣∣7P1/2

〉
states, is at

a wavelength of 459 nm, and is σ− polarised. Note that this coupling is used,

and not the
∣∣7P3/2

〉
state, due to the narrower linewidth of the transition.

This increases the required power to address this transition, but reduces

scattering from the intermediate state by the same fraction. The laser used

for this transition is an M Squared SolsTiS Ti:Sapph diode laser, pumped

by an M Squared Equinox diode laser at 532 nm. This outputs a beam at a

wavelength of 918 nm. Part of this beam is split to couple to the ULE cavity

(see below) for locking. The rest is converted to 459 nm using an M Squared
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ECD-X second harmonic frequency generation external cavity. At an input

pump power of 14.5 W, the ECD-X can output > 1 W of power, although

this level of power was not typically available or used.

The 459 nm beam is then split into two paths, ‘global’ and ‘local’. ‘Local’

is yet to be used in an experimental capacity, but remains as a region for

development. ‘Global’ utilises a separate double-pass AOM connected to an

AWG (see 3.7.3). After fibre coupling, the beam is incident on the atoms in

a Gaussian beam with 1/e2 waist of w459 = 90 µm. This beam is typically

incident on the atoms with a total power 45 mW.

1039 nm Beam

This beam couples the
∣∣7P1/2

〉
→
∣∣nS1/2

〉
transition. It is at a wavelength of

λ ≈ 1039 nm, and is σ+ polarised. Note that the wavelength here depends

on the state n that it is coupled to; larger n requires a greater energy, with

the highest used in this experiment at n = 80. The 1039 nm frequency is

adjusted to address the required Rydberg transiton. The laser used for this

transition is also an M Squared SolsTiS Ti:Sapph diode laser, pumped by

an M Squared Equinox diode laser. At a maximum input pump power of

18.5 W, the SolTiS can output up to 2.1 W of power.

The 1039 nm beam is also split into ‘global’ and ‘local’ paths, however the

local 1039 nm is also used for atom array rearrangement. For details on

this, see Chapter 4. The global path is, after coupling to a fibre optic cable,

reshaped before being incident onto the atoms. In this case, cylindrical optics

are used to create a beam of waist wx,y = 58.9(1), 21.0(1) µm. This reshaping

is done to maximise intensity on the 2D plane of the atoms while minimising

variation across the array. The Rabi frequency across the array is not entirely

homogenous, however. The waist can also be found by measuring the Rabi

frequency across the array and fitting to a Gaussian profile. This matches

measurements found outside the chamber.
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During the course of this thesis, a further fibre amplifier was installed8. This

amplifier can amplify 50 mW of light to 20 W, greatly increasing the ac-

cessible power. Only a fraction of this power is currently used due to the

power limits of the optics used. Experiments can currently use up to 1 W

of power at the atoms without adjusting optics. Future experiment improve-

ments will adjust to higher power optics such that 16 W will be available

before beam shaping optics, which will be replaced with an SLM for greater

beam homogeneity using a tophat beam [153].

This beam is colinear and counter-propagating to the 459 nm, to provide a

degree of Doppler-dephasing cancellation.

ULE Cavity Lock

The fidelity of Rydberg based quantum gates is highly dependent on fre-

quency and phase noise [152, 155], and as such these must be minimised. For

this purpose, both lasers are stabilised to an Ultra-Low Expansion (ULE)

cavity for narrow-linewidth locking, provided by M Squared Lasers. This

cavity was measured to have a finesse of F = 40.9(6)× 103 at 918 nm using

a ringdown measurement [156] and a finesse of F = 24.0(1)×103 at 1039 nm

from the full-width half-maximum transmission signal. These measurements

can be seen in Fig. 3.13. Ringdown measurements could not be taken at

1039 nm due to afterpulsing effects causing expectedly large decay times in

the photodiodes used [157]. The free spectral range (FSR) for the cavity was

measured to be 2.995(1) GHz.

Locking was achieved using a Pound-Drever-Hall offset locking technique

[158], using Moglabs Fast Servo Controller systems. While a typical cavity

lock would be capable of locking to just the carrier signal of the cavity, an

offset lock technique provides the capability of mixing in an arbitrary signal

to the cavity mode to modulate the transmission signal, as shown in [159].
8Azurlight Systems ALS-IR-976/1040 nm High Power Fiber Laser
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Figure 3.12: Diagram of the Rydberg optical paths. ‘AWG’ refers to the
arbitrary wave generator used to modulate the 459 nm light. This path
contains a double-pass AOM arrangement, utilising a cat’s-eye retroreflector
arrangement [154]. The ‘QWP’ refers to quarter wave plates. The ultra-
low expansion (ULE) cavity is used for PDH locking, with feedback to the
Ti:Sapph lasers for each path. ‘EOM’ refers to the electro-optic modulators
used for the PDH locking. These are connected to microwave synthesizers,
controlled by the Artiq system, to provide the PDH locking sideband fre-
quencies. A fibre amplifier is used to amplify the 1039 nm light. fx,y labelled
lenses refer to cylindrical lenses, which focus only on one Cartesian axis.
These are used to reshape the 1039 nm beam for a narrow focus within the
plane of the trapped atoms, with uniform intensity along its width.

With such a method, one can lock to an arbitrary frequency, within range of

a cavity mode. See fig.3.11 for an example transmission spectrum.

3.6.2 Microwave Control

Microwaves are used for global state control of qubits within the experiment.

By applying a strong oscillating microwave field, the hyperfine transitions of

Cs can be directly addressed in single-photon magnetic dipole transitions.
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Figure 3.13: Cavity characterisation measurements. Figure (a) is a trans-
mission peak at 1039 nm through the cavity. The red line fits this to a
Lorentzian profile with FWHM of 120(1) kHz, indicating a cavity finesse of
F = 24.0(1)× 103. Fibre (b) is a ringdown measurement at 918 nm, measur-
ing transmission signal as the input light is stopped at t = 0. This has an ex-
ponential decay of 2.17(3) µs, indicating a cavity finesse of F = 40.9(6)×103.

This can be used for high-fidelity single-qubit gates. These microwave tran-

sitions are slow relative to the Rydberg lifetime due to the weak magnetic

dipole moment, even for powerful applied MW sources, and so is only suitable

for slow but highly coherent global pulses.

To maximise gate fidelity, the phase noise of the MW source must be min-

imised. For this purpose a Phase Locked Dielectric Resonator Oscillator9 is

used, with the phase noise of −100 dBc/Hz at 1 kHz. This outputs at a

frequency of 8.95 GHz, which also acts as the experiment master clock. This

is mixed with an input signal from a 14-bit DDS to match the Cs 9.192 GHz

transition frequency. As discussed in section 2.1.3, the phase of the qubit in

the lab frame oscillates rapidly. As such, it is convenient to use a co-rotating

frame with each qubit. Phase offsets in this co-rotating angular velocity cor-

respond to phase delays on the qubits. As such, a phase shift of the MW
9Polaris Wave Single Loop PLDRO SPLDRO-RE10-8950-P13-2P
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Figure 3.14: Diagram of the Raman optical paths. The two lasers (primary
and secondary) are combined on non-polarising beam splitters (NPBS) twice.
The first is to generate a beatnote signal to lock the secondary laser to the
primary. The second is to combine the beams before coupling into the fibre
before the chamber. fx,y labelled lenses refer to cylindrical lenses, which focus
only on one Cartesian axis. These are used to reshape the Raman beam for a
narrow focus within the plane of the trapped atoms, with uniform intensity
along its width. This path is combined with the 1039 nm beam using a
dichroic filter.

input acts as a rotation about the y-axis of the Bloch sphere.

Once mixed with the input signal from the DDS, the MW signal passes

through a 9.2 GHz bandpass filter to minimise unwanted frequencies, such as

the initial 8.95 GHz signal before the mixer. A further three amplifier stages

apply low noise amplification to the signal before the microwave horn. The

resultant 10 W signal is produced ≈ 15 cm from the atoms. As shown in

[64, 87], this system is capable of high-fidelity single qubit gates with errors

7(2)× 10−5 as measured using randomised benchmarking.

3.6.3 Raman Lasers

Hyperfine transitions of atoms can also be addressed through Raman tran-

sitions. As introduced in Sec. 2.3.2, two lasers with a relative frequency dif-
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ference δ can address the same hyperfine transition as microwaves through

a two-photon process. This requires two separate lasers with stable relative

frequency difference.

These lasers are detailed in Fig. 3.14. Each laser is again an M Squared

SolsTiS Ti:Sapph diode laser, pumped by an M Squared Equinox diode

laser. One laser, the ‘primary’, addresses the
∣∣6S1/2, F = 4,mF

〉
→
∣∣6P1/2

〉
transition, detuned from this resonance by ∆Primary. This laser is kept

at a constant frequency by a slow PID feedback signal from a HighFi-

nesse WS7-60 wavemeter. The second laser, the ‘secondary’, addresses the∣∣6S1/2, F = 3,mF

〉
→
∣∣6P1/2

〉
transition, detuned from this resonance by

∆Secondary. The average detuning is defined by ∆ ≡ (∆Primary +∆Secondary)/2

and two photon detuning δ ≡ (∆Primary − ∆Secondary) A small proportion of

light is taken from the beams, which is combined light and sent to a fast

photodiode to be used as the input for a phase lock. The frequency of the

secondary is locked to the primary through this phase-lock system10. The

8.95 GHz signal from the MW source is used as the frequency reference to

match. These beams are then combined on a non-polarising beam splitter

(NPBS) and fibre coupled to the chamber.

This results in a Raman source of average detuning ∆ = 1.5 THz and two-

photon detuning δ = 0. The average detuning can be adjusted as required

to increase the Rabi frequency, at the expense of an increased probability of

scattering from the intermediate state.

Each Raman beam is incident on the atoms globally with σ+ polarisation, up

to 400 mW on each beam. Like the 1039 nm Rydberg beam, cylindrical lenses

are used to reshape this beam, with a 1/e2 waist of wx,y = 30(1), 101(2), µm.

As such, the intensity of this beam is spatially inhomogenous over the array

due to the Gaussian profile of the beam. As shown in 3.15, the Rabi frequency

of atoms on each row changes as the intensity profile of the beam. Given
10A bespoke system provided by M Squared Lasers
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Figure 3.15: Experimental data of Rabi oscillations. Figure (a) shows the
Rabi oscillations across the central rows of a 13× 13 array at 7 µm spacing.
Atoms are prepared in the |F = 4,mF = 0⟩ state. The Raman light causes
a Raman transition to |F = 3,mF = 0⟩ state with ΩR/2π = 0.523(7) MHz.
Error bars are on scale of point size. These oscillations are fitted to the
data in red. Limited contrast of the oscillations is due to imperfect D1 state
preparation and off-resonant driving. Figure (b) plots the Rabi frequency of
each individual row of the atom array. The red line plots the fit of a Gaussian
profile to this data, to show the 101(2) µm 1/e2 waist of the input beam in
the row axis of the array. One row of atom data is excluded due to poor
loading statistics.

that the Rabi frequency Ω ∝
√
I, and I ∝ exp{−2r2/w0}, the Rabi frequency

across the array has a 1/e2 waist that matches that of the input beam. For

atoms at the centre of the beam compared to z µm away, a π pulse on the

centre transferrs > 99 % up to z = 25. As such, the number of atoms that can

be addressed for high-fidelity qubits is limited by the spatial configuration of

the array, and the maximum permitted infidelity with Raman interactions.

3.7 Experimental Sequence Design

The SQuAre experiment uses a large degree of automation to control and

execute the experiment. This section will introduce systems that are required

for experimental control.
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3.7.1 ARTIQ

The SQuAre experimental platform has been designed from the ground up to

make use of the ‘Advanced Real-Time Infrastructure for Quantum physics’

(ARTIQ) control system from M-Labs[137]. ARTIQ is a semi-open source

hardware and software control system, specifically designed but not exclu-

sively applicable to, atomic optics experiments. ARTIQ is controlled by a

software library, in this experiment the ‘Artiq6’ package for Python-311. Ex-

periment files to interface with software can thus be written in Python, to

be compiled for the experiment hardware.

ARTIQ hardware consists of a collection of interfacing components. The

Kasli module acts as a master controller synchronising attached modules

with nanosecond resolution. This is based on Artix-7 FPGA components

running software precompiled software and so can access fast and precisely

timed operations. Such modules from Sinara12 include transister-transistor

logic (TTL) inputs and outputs13, direct-digital synthesiser (DDS) outputs

and microwave synthesisers for signal outputs 14, and digital-to-analogue con-

verters (DAC)15 for analogue output signals.

3.7.2 Arbitrary Wave Generator

For precise modulation of input frequencies, an arbitrary waveform generator

(AWG) is used16. This is a high-speed 16-bit digital output device that can

generate arbitrary waveforms, with dual-channel output at 1.2 GS/s, with a

bandwidth of up to 600 MHz. By connecting the output of the AWG to an
11Since the installation of the ARTIQ software and hardware into the experiment, Artiq7

is available, and Artiq6 is no longer supported.
12https://sinara-hw.github.io/
13Sinara DIO BNC and Sinara DIO SMA digital input-output controller
14Sinara AD9910 Urukul cards at 1 GS/s, ARTIQ Mirny cards between 50 MHz and

4 GHz
15Sinara Zotino 16-bit resolution DAC
16Spectrum Instrumentation M4i.6631-x8 Arbitrary Waveform Generator
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AOM (after amplification), the input light can be arbitrarily modulated in

both amplitude and frequency.

Modulated light can be spatially separated from the carrier signal by mod-

ulating a further diffraction order. The first diffracted order of the AOM is

what is modulated in these experiments, such that the unmodulated light is

blocked.

This AWG is synchronised to the experiment by use of an ARTIQ DDS

output acting as a clock signal. Waveform outputs are triggered through

ARTIQ TTL connections.

3.7.3 Timeline

A typical experiment takes place over the course of less than one second. See

Fig. 3.16 for a schematic demonstrating a typical experimental sequence.

The largest part of an experiment duration involves the loading of the 3D

MOT over 250 ms. This is then cooled using PGC stages, trapped in ODTs

and reduced to single occupancy in LAC. A MOT fall-away period of 100 ms

allows atoms remaining in the MOT cloud to disperse for clear imaging. An

imaging stage over 50 ms takes the first image. If required, a sorting stage

rearranges atoms. This duration is dependent on the size of the array, but

is typically on the order of ≈ 100 ms. The approximate sorting duration is

calculated in Sec. 4.6. If sorting has occured, a second image will be taken

to measure the initial state before the experiment occurs. This sorting stage

can repeat. Optical pumping prepares atoms in the required quantum state

over 10 ms. The traps are then ramped adiabatically to a minimum trap

depth at experimental power. After the experimental stage concludes, they

are ramped adiabatically back up to imaging power and the atoms are imaged

for a final time.
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Figure 3.16: Example timeline for experimental sequence. Bar height refers
to beam intensity at that time, and is not to scale. Timings are variable,
depending on the experimental sequence required. Here, tsort and texpt refer
to the time taken for sorting and physics experiment sequences. ‘OP’ refers
to either D1 or D2 optical pumping. ‘BA’ refers to state-selective blow away.
LAC refers to light-assisted collions, and occurs before the third stage of
PGC. The final PGC stage repeats PGC3 parameters, after sorting but before
the second imaging stage. Ui refers to the trap depth of the trap in that
stage, controlled by adjusting the relative power of the ODT array. Uexpt is
the minimum trap depth reached, typically at 30 µK, or 1% of maximum
power during the atomic experiment phase, where trap lifetime and atomic
coherence must be maximised. The vertical lines on some sections refers to
periods where the beam is chopped. This is a 1 MHz square wave intensity,
with the ODT π out of phase with other chopped beams.

3.8 Summary

Throughout this chapter, the structure of a typical experiment is detailed. Cs

atoms in room temperature vapour are trapped and cooled in a 2D MOT cell

before being injected into the main experiment chamber. Further trapping

and cooling in three dimensions prepares atoms for trapping in optical dipole

traps, where polarisation gradient cooling further reduces atom temperature.

Said traps are reduced to single occupancy by light-assisted collisions, such

that each trap contains either one or no atoms. This can be seen through

sub-Poissonian statistics of photon counts in fluoresence imaging of each
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trap. Removal of atoms through state-selective blowaway can determine the

hyperfine state of these atoms.

Atomic physics experiments from this point involve the preparation and ma-

nipulation of the atomic states. Atoms are prepared in the |F = 4,mF = 0⟩
clock state through D1 optical pumping or the |F = 4,mF = 4⟩ stretched

state through D2 optical pumping. Hyperfine state manipulation is achieved

through Raman transitions coupling to the atoms’ electric dipole moment,

or through microwave light coupling to the atoms’ magnetic dipole moment.

Atoms interact with each other in Rydberg states, which can be accessed

through two-photon transitions. The two lasers used for these transitions

are frequency-stabilised by locking to an ultra-low expansion reference cav-

ity. The ARTIQ experimental system is used for synchronisation and control

of the sequence.

Later chapters will use these processes as a baseline for experimental proce-

dure.



Chapter 4

Atom Array Assembly

4.1 Introduction

This chapter will discuss the procedure for the deterministic preparation of

arrays atoms in arbitrary geometries. The transport and arrangement of

neutral atoms within an array is a recent but established technique. Any

neutral atom system that requires the level of discrete and deterministic

control of a quantum computer or quantum simulator necessarily requires use

of these techniques. This chapter will introduce, describe and characterise

the systems used for this process in the SQuAre experiment, and is the first

comprehensive look at atomic transport of Cs atoms at scale.

Experimental preparation of any neutral atom array system requires array

assembly. As established in Sec. 3.3.3, holographic tweezer traps can be

made to trap hundreds of atoms in our system. Each trap site contains

identical qubits, distinguishable by position. Qubit position is then used for

programming. Atom-atom interactions (primarily the Rydberg dipole-dipole

interaction) are dependent on the relative positions of other atoms. Further-

more, the atom-light interactions can change depending on the position of

the atoms, e.g. a Gaussian beam being less intense on the edges of a beam

78
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as shown in Fig. 3.15. For deterministic and repeatable experiments, arrays

must be initialised in the same configuration each time, or post selected such

that only the correct configuration is selected for.

This particular property of atomic arrays raises a problem in that single

atom loading into traps is stochastic [56]. As detailed in section 2.5.2, the

initial loading of atoms within an ODT is random, while LAC removes atoms

by pairs; if an odd number of atoms is initially loaded, then the trap will be

loaded with a single atom. A loading rate of approximately 50% for each trap

can then be expected, where each trap’s loading probability is statistically

independent of any other trap. For an experiment requiring an array of N

atoms, the ODT array must have ≥ 2N traps. After LAC has reduced each

site to single occupancy, these atoms must be moved to the traps required

to match the target array.

The probability of a successful sort depends on the success rate of each ar-

rangement step, or ‘move’. For m moves to target N sites, the probability of

a defect free array PDF is given by

PDF = (PMove)
m · (1− PLoss(t))

N , (4.1)

where a ‘defect’ refers to a target ODT that is not loaded. Only defect free

arrays can be post-selected as a valid preparation of the experiment. The first

term is best understood as the per-move statistics. PMove is the probability

that the atom is transferred into the mobile tweezer as the power is ramped

up at the start point, transferred to a different site, and then recaptured as

the power is ramped down at the destination, all without loss. PLoss is the

probability that any atom in any site is lost through the process. This loss

is independent of any other atoms and is caused by vacuum limited lifetime

and imaging loss, and as such is approximated by

PLoss ≈ 1− exp

(−tsort
τ

)
+ PIL, (4.2)
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where τ is the trap lifetime and PIL is the probability of imaging loss. Each

imaging step requires each atom to scatter many photons (see Sec. 3.4). This

process can eject atoms from traps, and so for each image there is a non-zero

probability that atoms otherwise present are lost.

Here we can begin to see the dominant effects. Even if 1− PMove or PLoss is

small, large m or N can result in low experimental yield. A trap site that is

not loaded can be considered a ‘defect’, such that an array that is fully loaded

without errors is ‘defect-free’. If just 1% of atoms in a 1000 atom array are

expected to be lost, PDF = 4 × 10−5, an unacceptably low yield. Therefore,

future neutral atom system must minimise probabilities of loss and maximise

any sorting efficiencies in order to remain scalable. Furthermore, since the

probability of lifetime limited loss or errors in sorting will never be reduced

to zero due to finite sorting times, scaling to multiple sorting rounds will be

necessary to correct for loss to correct for errors.

The SQuAre experiment is capable of trapping 289 atoms in a 17× 17 grid,

limited by available trapping laser power and field-of-view of the imaging lens.

This Chapter will detail the process of using a single movable tweezer to sort

these atoms into a 100 atom 10× 10 grid with an experimental yield of 8%,

as well as the deterministic arrangement of atoms into arbitrary geometries.

Also detailed is the requirements to maximise efficiency and establish effective

scaling, as required for a neutral atom quantum computer.

4.1.1 Sorting Benchmarks

The most often found method of generating neutral atom arrays is through

the combination of a static array of red detuned ODTs and one or more

moving arrays for atom rearrangement, as shown in Fig. 4.1. Static arrays

that then undergo rearrangement can be generated by acousto-optic deflec-

tors (AODs) [160–162], spatial light modulators [163, 164], optical lattices

[69, 165] or by microlens arrays [166, 167]. While these experiments differ in
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Figure 4.1: Diagram of the trap scheme with static and mobile tweezers. A
series of relatively shallow static traps (in red dashed lines) hold atoms (black
circles) in place. A deep mobile potential picks up atoms and moves them to
other static potentials.

how generate a static array of ODTs, all use one or more secondary beams

that can address individual sites. These beams are controlled using a 2D

acousto-optic deflector (AOD) to adjust beam angle, and thus position of

the trap in the focal plane.

Figures of merit for each experiment depend on a number of factors. Firstly,

the target size N must be considered, where N is the total number of traps

that must be filled deterministically. Secondly, the average fill fraction F

must also be considered. This is the expected fraction of the N target sites

that are filled with each experiment. Thirdly, the defect free probability PDF

is also a critical measurement.

Table 4.1 is a non-exhaustive overview of sorting results in the literature.

Given that each experiment is unique and has separate design goals, it should

be taken as a rough overview of what is capable with atomic rearrangement

techniques.
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Publication Species F N PDF (%)
This work Cs-133 0.959(1) 100 6

Paris Saclay, 2016 [58] Rb-87 >0.96** 25 40
Paris Saclay, 2022 [164] Rb-87 0.972(4)* 196 2.5

Harvard, 2021, [163] Rb-87 "∼0.985" 256 Unstated
Singapore, 2023, [161] Rb-87 0.97766(4)* 225 1.5(3)
Wuhan, 2021, [168] Rb-87 0.945(7) 30 Unstated

Darmstadt, 2019 [166] Rb-85 0.88(7) 100 3
Darmstadt, 2024 [167] Rb-85 0.97(1) 256 14

MPQ Garching, 2024 [169] Sr-88 >0.98 >1247 0
Atom Computing, Inc., 2024 [170] Yb-171 >0.99 1225 0

Table 4.1: Comparison of sorting performance in static arrays. Data refers to
filling a target of N atoms with fill fraction F , filling perfectly at a rate PDF .
"*" indicates data quoted after correcting for loss, such as the vacuum limited
lifetime. "**" indicates measurements taken after a single rearrangement
stages. Otherwise, the data indicates multiple rounds of sorting. Note that
the final two experiments both intend as large an atom number as possible
on a large array over dozens of cycles, and do not claim to ever generate a
defect free array.

4.1.2 Acousto-Optic Deflector Arrays

In some neutral atom array experiments, the light used for the ODT array

is not necessarily static. An ODT array can be generated by using acousto-

optic deflectors with a mix of RF input signals. As the deflection angle (and

thus trap position) is dependent on the input frequency, the array traps can

be moved in situ by changing the input frequency spectrum, rather than

using a separate sorting beam.

This experimental design has some benefits over the static/moving experi-

ment paradigm in regard to atomic rearrangement. As atoms do not need

to be transferred between tweezers, this eliminates the time required for in-

creasing and decreasing the power of sorting tweezers, and potential loss in

doing so. Furthermore, it reduces laser power requirement, as an auxilliary

beam is not used for sorting. This is demonstrated in [57, 162] along a 1D

chain of atoms, but may be limited in its use to such cases (see [162, Chap-

ter 9] for the use of a static SLM generated array in order to make a 2D
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array). This limitation to a single dimension is due to the arrangement of

the optical elements. A single beam is incident onto the first deflector, and

each frequency component νxi of the input beam corresponds to a position

in the deflector’s axis of deflection, focussing to position set {xi}. A second

deflector with frequency components νyj , for deflected positions {yj}, cannot

address a single deflected input beam in this case. The rearrangement of

one row will thus cause the rearrangement of all other rows, which require

different rearrangments.

This technique is not available to trap generation through SLMs with any

efficiency. Moving the traps generated by an SLM requires a different holo-

gram for each movement stage. The refresh rate of an SLM (typically 60 Hz)

is too slow for efficient rearrangement, and would require substantial com-

puting resources to precalculate the required holograms before playback for

large N. As such, using the SLM for generating mobile traps is not feasible

for large arrays. Nevertheless, this has been demonstrated for up to 9 atoms

at once [171].

A technique using static tweezers combined with mobile AOD arrays for

‘qubit shuttling’ has also been demonstrated [67]. Using this technique, many

qubits can be rearranged with high efficiency and speed, while maintaining

coherence through transport, and forms a promising method of controlling

qubit interactions.

4.1.3 Enhanced Loading

As established in chapter 2.5.2, the atom arrays are initially loaded with

a single atom through a light-assisted collisions process. While this would

appear to initially create an occupancy of ≈ 50%, the energy released by

the collisions can be low enough such that only one atom is ejected. The

remaining atom is trapped, undergoes no further collisions and is subject to

the same cooling as other atoms in the system. For this reason, the SQuAre
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experiment regularly demonstrated a maximal loading rate of ≈ 57%.

This same effect can be exploited to further improve load rates in neutral

atom array experiments. As demonstrated in a number of Rubidium exper-

iments [160, 172–174], careful preparation of the frequency and duration of

the incident light during the light assisted collisions stage can increase the

single-atom load rate to a yield of > 80%. This process is referred to as

‘enhanced loading’.

This increased yield can be useful in improving the yield of experiments and

efficiency of sorting systems. It cannot by itself create defect free arrays

with any acceptable yield and scalability, however. Even if the probability

of a single atom-load in a trap Pload could be made substantially higher, the

probability of a defect free array (PDFA) is given by

PDFA = PN
load, (4.3)

where N is the number of atoms. As N becomes large, even an exceptionally

high load rate would quickly vanish. Thus, while enhanced loading is a useful

tool in scaling atom array preparation, an experiment at scale will necessarily

require rearrangement of atoms.

4.2 Sorting Algorithms

Given an initial random distribution of atoms in an array of trap sites, the

first task in the experiment is to plan the arrangement of moves. As discussed

in section 4.1, any rearrangement must be done with a minimal number of

moves, in a minimal time, with maximal success per move. In particular,

Eq. 4.1 shows how the number of moves m must contend with the sort du-

ration tsort.

In an ideal case for N targets, of which ≈ N/2 are initially empty, then
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Figure 4.2: Example sorting process for sorting a 4 × 4 target (in red cir-
cles) within an 8 × 8 grid (in black). Filled circles represent atom positons,
randomly loaded. Figure (a) shows labelling of sites by depth relative to the
minimum spanning tree of cluster sites. Unlabelled atoms within the target
do not require sorting. Figure (b) shows the first moves performed, where
atoms within the graph are moved to the deepest points to remove collisions,
from depth 5 to depth 6 and then from depth 2 to depth 5. Finally, figure
(c) shows atoms from outside the target moved into target positions along
unobstructed paths.

⟨m⟩ = N/2, where ⟨m⟩ is the average number of moves. This is a trivial

lower bound, but is very difficult to optimise for. Firstly, if two atoms collide

in transit (i.e. if an occupied mobile tweezer moves over a filled site) then this

collision will cause both atoms to be lost. Secondly, exceptionally long moves

may take a longer time with a lower success rate than a number of shorter

moves. Finally, calculations for these moves must be done rapidly. As shown

in Eq. 4.2, any improvements in efficiency must be balanced with a possible

increase in calculation duration. As such, optimisation for calculation time

and experiment time generate non-linear scaling relations of order O (Nα)

[161, 175] in calculation time and ⟨m⟩ > 0.5N .

4.2.1 Sidewinder Algorithm

The algorithm used, named ‘Sidewinder’, was developed for the SQuAre ex-

periment by D. Walker. This is developed from two established algorithms.

The first is the Heuristic Cluster Algorithm (HCA) [168], developed specif-

ically for atom array sorting with minimal moves. This algorithm connects
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clusters of unfilled target sites with the shortest path, such that efficient

pathfinding can then take place. This algorithm is adapted using the A*

pathfinding algorithm [176], where atoms from filled target sites are moved

into empty target sites through the shortest path, in order to connect clusters

with paths of no obstructions. Once the empty target sites are connected into

a single cluster, pathfinding can take place to move atoms from the reser-

voir (that is, non-target sites that are loaded) to the target sites without

collisions.

To efficiently carry out this process, the Sidewinder algorithm uses a k-d

tree method across the entire graph structure. Clusters of empty target sites

can be connected such that a path from the atom reservoir can be made to

any target without collisions by finding the minimum spanning tree of the

graph of average coordinates of the clusters. Sorting is then prioritised for

filling the deepest target sites on a spanning tree, where the depth heuristic

is the distance from the target site to an available reservoir atom. 1 A

demonstration sorting process can be seen in Fig. 4.2, using a modified version

of the algorithm where only a single entry point to the target tree is used to

calculate depth. This modification is used for clarity; allowing for multiple

entry points both improves efficiency and permits the sorting of targets which

have disconnected regions.

For performance improvements, this algorithm was written and compiled in

the Rust programming language [177], rather than the Python3 software that

other experimental software was written in. The Python3 control software

instead executes the compiled Rust algorithm. The algorithm is given the

positions of all sites in the array, and which sites are to be filled or removed.

Upon receiving a list of trap sites that are initially filled, it returns a list of

moves to follow. This move list is sent to the microcontroller to execute the

rearrangement process (see Sec. 4.3).
1This depth heuristic requires positional data of each atomic site, and thus is not

included in the k-d tree.
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Figure 4.3: Benchmarking results from the Sidewinder algorithm, scaling
with number of targets N . Red crosses indicate average simulated perfor-
mance, while grey dashed lines indicate extremal performance. (a) shows
calulcation time scaling, (b) shows the number of moves per N (move frac-
tion) required, while (c) shows how long the average move must be, in steps
along the array sites.

4.2.2 Algorithm Performance

Benchmarking was carried out by simulating move lists for a rectangular

target of size N , inside a square array of > 2N traps, randomly loaded

with F = 0.57 to match experiment conditions. As shown in Fig. 4.3, the

algorithm is benchmarked on hardware to demonstrate an asymptotic time

complexity O (N2), with a mean number of moves O (0.6N). The average

length of each move is of order O (log (N)), although extremal performance

may be substantially greater. Each measurement point is repeated over a

random sample of 1000 trials, where red crosses are the measured data points,

grey dashed lines are extremal performance, and solid black lines are fits to
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the data.

4.2.3 Alternative Algorithms

As discussed in [175], the best choice of algorithm depends on the graph that

is to be sorted. The SQuAre experiment makes use of a single tweezer, typi-

cally across an ordered array, such as a Bravais lattice. Moving to non-grid

structures or using multiple tweezers in parallel will necessitate alternative

algorithms, such as the Linear Sum Assignment Problem (LSAP) solver al-

gorithm as described in [175] above.

Examples of parallel sorting with multiple tweezers are discussed in [161, 177].

This parallel behaviour is limited to only one row or column at a time, but can

still lead to substantial improvements in the total time required. Extensions

would require upgrades to the RF chain used such that the AOD can be driven

with multiple input tones at once, but the optics would be retained. The

process of both installing these upgrades on the experiment and developing

a new sorting algorithm to use them is in progress as of writing.

4.3 Experimental Hardware

4.3.1 Optical Components

The optical system used for atom sorting is shown in Fig. 4.4. The static

beam is generated using light from an M Squared SolsTiS Ti:Sapph laser,

itself pumped by an M Squared Equinox diode laser. This beam is used as

one light source for Rydberg interactions, and thus is at wavelength between

1039 − 1043 nm, depending on the Rydberg state it is coupled to. Some of

this power is split into a path dedicated for local Rydberg operations, and

so includes an AOM for switching and frequency control.
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Figure 4.4: Schematic of the optical components used for steering the mobile
tweezer (at a wavelength of 1039 nm, in orange), and combining this beam
with the red detuned ODT array (at a wavelength of 1064 nm, in red).
The high-NA lenses fixed in-vacuum are Geltec 355561 lenses, at a working
distance of 7 mm. This diagram is not to scale.

The beam’s position in the chamber is controlled through a pair of AODs2.

These each deflect at central frequency of 77.5 MHz and are controlled

through an independent signal. The beam of order +1,+1 is aligned to

maximise power homogeneity across the array, at an average efficiency of

≈ 85% (see Fig. 4.5).

After collimation is fixed through a relay telescope, the beam is combined

with the 1064 nm static array on a non polarising beam splitter (NPBS).

The beam is reimaged at a waist size of 1.55(1) µm at the focal plane of

the atoms. Despite the use of achromatic lenses and close wavelengths, the

final lens used in the optical path is an aspherical lens, and is thus is not

chromatically compensated. The two beam wavelengths that would otherwise

be identically collimated along this path do not neccessarily focus to the same

point. Thus, a reference camera outside the chamber cannot capture both

beams in the focal plane. The relay telescope can be adjusted to change the

collimation of the 1039 beam, such that the focus plane matches the 1064
2AA Optoelectronic DTSXY-400-1040.1064 AOD
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Figure 4.5: Efficiency of the 2D AOD over the range of output frequen-
cies. The dashed red line marks the span of frequencies that address a
112 µm × 112 µm square, which is the footprint of a 15× 15 atom array at
8 µm spacing. In this region, the average power is 85.4%, with a minimum
efficiency of 79.0% and a maximum of 89.4%. The axes refer to the input
signal frequency, relative to the central drive frequency νc = 77.5 MHz.

nm array inside the chamber.

The resulting ODT has a measured lifetime of τODT = 1.6(3) s, with a transfer

efficiency of 98(1)%, measured by extrapolating lifetime to t = 0.

4.3.2 Radio-Frequency Components

Each of the two AODs used for controlling the trap position requires an in-

dependent frequency source. Channel control is managed through a PJRC

Teensy 4.1 microcontroller, which outputs Serial Peripheral Interface (SPI)

commands to an AD5686 Eval DAC board, which outputs a DC voltage.

Three outputs are used, two for frequency control and one for amplitude

control. Only one amplitude source is required, as attenuating a single chan-
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Figure 4.6: Schematic of the RF chain required for the sorting experimental
loop. PC refers to the computer where the Sidewinder algorithm instructions
are generated. Instructions are executed by the Teensy microcontroller, via
the AD5686 Digital Analogue Converter (DAC). ‘VCO’ and ‘VVA’ refer to
Voltage Controlled Oscillator and Voltage Variable Attenuator respectively.
RF Switches can be activated through external TTLs to switch to an auxiliary
RF source.

nel input can still control the full dynamic range of output intensities.

Microwave generation is given by a voltage controlled oscillator3 (VCO) for

each channel. This signal is then attenuated by a voltage variable attenuator4

(VVA) to control beam amplitude. A TTL controlled MW switch5 allows for

fast switching to an auxiliary MW source for higher precision in potential

Rydberg control experiments. Finally, this MW signal is amplified using a

Moglabs AADPCB linear amplifier6 and inserted into each AOM. See Fig.

4.6 for a flowchart of the equipment used in this chain.

Given that the DAC has an input resolution of 216 bits, this gives fine control

over the potential sent to the MW components. A difference of 283 bits in

the DAC input command corresponds to a difference of 139.5(1) kHz in

modulation frequency, and ≈ 1.00 µm at the atoms7.
3Minicircuits ZX95-100+ VCO
4Minicircuits ZX73-2500-S+
5Minicircuits ZYSW-2-50DR+
6Moglabs AADPCB linear amplifier
7The diffraction angle, and thus the position at the atoms, depends on the frequency

of the light.
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Figure 4.7: Plan of atom placement for arrays. Here, each black point indi-
cates the placement of an optical dipole trap, and thus an atom. Figure (a)
is an 11× 11 array at 8 µm spacing, which forms the initial reservoir. Figure
(b) is two component subarrays, each a 3× 3 array at 8 µm spacing, rotated
45◦ to the initial array. Figure (c) is these arrays added to the underlying
array, with atoms closer than 6 µm to the component subarrays removed.

4.4 Array Generation

4.4.1 Arbitrary Arrays

To generate the focussed beams used for atom trapping, an SLM is used, as

described in 4.3. This SLM can generate an arbitrary pattern of red detuned

ODTs, within the field of view of the high-NA lens. For a typical experiment

a regular array is both convenient and practical, such that the conditions for

each atom are identical and can be labelled predictably. The experiment is

proven to produce high-fidelity single gates on arrays of size 15 × 15 at a

spacing of 8 µm [64].

While the Sidewinder algorithm is capable of sorting an arbitrary array to

arbitrary targets, sorting performance is imporved by the use of regular ar-

rays. The k-d tree built for the array (see Sec. 4.2) requires information

about which atoms are connected, e.g. atoms are connected to their nearest

neighbours only. As such, a typical array requiring sorting that is not on

a Bravais lattice is usually overlaid on such a lattice. Traps that then are

too close to resolve are removed from the theoretical graph and the array is
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generated. The original Bravais lattice acts as a reservoir of atoms for sorting

into the added components. An example array is shown in Fig. 4.7, where

rotated squares of atoms are inserted into a regular grid. This experimental

procedure has shown to be effective at the deterministic preparation of atoms

in arbitrary geometries.

4.5 Parameter Optimisation

The parameters required for an ideal rearrangement procedure have so far

been found empirically, and at that primarily for Rubidium experiments. The

experimental results found in Table 4.1 are for species other than Cs-133, and

so are not necessarily ideal for a Cs experiment. The following parameters

are known to affect the rearrangement efficiency.

Optimisation must be done on multiple parameters which are discussed here.

Firstly, the precision and focus of the mobile tweezer requires calibration,

such that the tweezer starts and ends at the right place. Next, the power of

this mobile tweezer must be carefully controlled. A shallow tweezer will fail

to pick up atoms out of the static tweezers, but if too deep then will heat

atoms on ramping up the input power or in movement. This ramp rate thus

depends on the input power also. Movement of the atoms requires further

care. Longer moves with non-ideal movement will induce further parametric

heating of atoms. Collisions between atoms during movement will result in

atoms being lost as well, and so must be avoided.

Of these parameters, only some can be removed as a concern. By pathing the

mobile tweezer such that it only moves through empty sites, collisions can

be eliminated. Trap lifetime is limited by vacuum pressure, so improvements

must be made in total sorting time (see Chapter 4.2). Furthermore, while

these parameters may be optimised for a small subsection of traps, extending

this performance to a substantially larger array can result in a reduction in
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Figure 4.8: Images used for tweezer positional calibration. Figure (a) is an
average of 10 images of the mobile tweezer within the MOT. The tweezer
light is chopped, much like the ODT light (see section 3.3.3). Figure (b) is
the average of images of the MOT, each taken immediately after each of the
images used in (a). Figure (c) is the difference between the two, showing
a clear image of atom fluorescence within the beam. This background sub-
tracted image is used for calibration of the mobile tweezer position.

efficiency. As such, care must be taken to clarify which results represent ideal

behaviour for a limited system, and which results represent the capabilities

of a larger system as required for considerations of scalability.

4.5.1 Calibration

Positional Calibration

Calibration is required to match the position of the mobile tweezer to the

position of the static array. Given that the light used for each beam is of a

different wavelength (see Fig. 4.4), the two beams will not necessarily focus

on the same plane, and may be offset. Furthermore, the mobile tweezer’s

wavelength is variable, and so corrections for this effect are also variable. As

such, reimaging both the array and the mobile tweezer onto a single camera

or CCD (as seen in [164]) for calibration is not viable.

An alternative calibration scheme was developed by imaging the fluorescence

of atoms trapped in the mobile tweezer using the experiment camera. This is

compared to images of atoms within the optical dipole trap array. Given that

both the mobile tweezer and the static array ideally trap atoms in the same
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plane, and that both atoms fluoresce at the same wavelength of 852 nm, this

comparison can thus be used for in-situ calibration. Example images used

for this are seen in Fig. 4.8.

Power Calibration

Further calibration is required to control the power of the mobile tweezer.

The proportional power of the mobile tweezer relative to the control signal

is trivial to measure and interpolate, as it forms a monotonically increasing

function. Keeping this power even over the range of motion of the tweezer is a

greater concern. Maximising diffraction efficiency at the central frequency of

the two AOMs was found to create high efficiency in the centre of the input

range, but poor efficiency at the edges. Instead, the input control signal

was randomised in both axes around the full range, and then aligned to

maximise the time averaged power. This was found to consistently produce

a mean diffraction efficiency of > 85% over the range covered by the field of

view of the system (see Fig. 4.5).

Mapping the 216 bits of DAC output to the measured efficiency of the AOM

can thus be used to calibrate the power of the tweezer. Smooth ramps of

output power are limited by the cycle rate of the microcontroller, which

updates every 5 µs.

4.5.2 Maximising Transport Efficiency

Transport of an atom from one site to the next depends on a number of

coupled parameters. The two most crucial are the transfer between mobile

and static tweezers, and the movement of the mobile tweezer from the static

reservoir tweezer to the static target tweezer. As these parameters are linked,

it is required to first discuss movement parameters.

These parameters were maximised on a simple square lattice of fixed spacing,
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Figure 4.9: This shows a comparative efficiency of a tweezer in a single
move over 8 µm. Move success rate is also corrected for background and
imaging loss, with the same tsort used for all scans. Figure (a) demonstrates
the robustness of the quintic (minimum jerk) movement profile to changes
in power. Here, the mobile tweezer power is kept constant at a depth of
9.1 mK and movement success rate is measured as the static trap power is
varied during the sorting stage. Figure (b) demonstrates how, at optimal
parameters, the quintic profile moves atoms at a greater success rate for the
same movement duration.

and moving each atom across by a single site. This eliminates experimental

uncertainty regarding pathfinding or movement length.

Movement Profiles

The naïve method to move atoms is a simple constant velocity movement

profile. A velocity of 50 nm/µs was found to be the maximum possible

velocity without loss. This velocity is comparable to the 100 nm/µs found

in rubidium experiments [58, 175].

Constant velocity profiles are potentially limited in scope, however, as this

movement profile is known to excite atoms to higher motional states in transit

[178]. The rate of change of acceleration, or jerk, is what causes motional

heating of the atom. First described in [179], a quintic movement profile

can be defined that trajectory minimises the total jerk of the atom, thereby
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Figure 4.10: Scan demonstrating imporvement in graph sorting with a move-
ment offset. This is an initial move in both x and y axes before further sorting
moves to prevent collisions and perturbative potentials.

minimising the heating of an atom within the trap. This movement profile

is defined by

x(t) = x(0) + (x(T )− x(0))

(
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)4
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)5
)
. (4.4)

where x is the position of the mobile tweezer and T is the total duration of

movement. This can be compared to a linear profile of the same duration in

Fig. 4.11.

The quintic trajectory is utilised in the bottom-up formation of molecules

[180, 181] where minimal heating is a necessity. The quintic profile main-

tains a consistently higher movement performance than linear moves. Fur-

thermore, this profile maintains an optimal efficiency over a larger range of

trap powers. This is due to the low acceleration not heating the atom during

movement into or out of the static traps.

Movement Offset

Moving the mobile tweezer over static tweezer sites can cause loss even when

the static tweezer sites are not occupied by atoms. This is due to sudden
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Figure 4.11: Power and position of the mobile tweezer during a single 8 µm
move. (a) is the trap depth for mobile tweezer trap depth over time, mea-
sured on a Picoscope 4444 oscilloscope. The dashed lines indicate where the
tweezer is at constant power through the movement stage of the rearrange-
ment process. (b) is the position of the atom in the mobile tweezer during
this movement stage. Both linear (dotted black line) and quintic (dashed red
line) profiles are plotted for comparison.

changes in trap depth from the static traps disturbing the atoms from smooth

transport, causing heating. To avoid this, and any potential collisions, move-

ments started by offsetting the atoms from the initial point by a small fixed

value. This offset is undone at the end of the move to place atoms back in

the array.

Optimal transport efficiency was found for an offset of 0.4 times the trap

spacing, as seen in Fig. 4.10, although this is relatively insensitive and can

change depending on array geometry.

Trap Powers

As discussed above, the relative power of the mobile trap compared to the

static trap can substantially change transport efficiency. Furthermore, the

total time taken to ramp tweezer power up and down is often substantially

longer than the duration of transit. The deeper a mobile tweezer is, the

less likely it is to lose an atom in transit, but will take longer to ramp to

maximum power.
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The highest efficiency seen was at a static trap depth of 1.5 mK8, with the

mobile tweezer at trap depth of 9.1 mK9. This requires the static tweezers

to be deeper than at the imaging stage, at a trap depth of 1.2 mK.

As seen in Fig. 4.11, the power ramps account for the substantial majority of

time spent in each sorting move. Efficient power ramps over 60 µs have been

seen in Rb-85 experiments [161], indicating that faster ramps are possible

with hardware upgrades.

For linear ramps in power, the mobile tweezer ramps from minimum to maxi-

mum output at a constant rate. Optimal performance was found using small

increases in power for each update cycle of the microcontroller, such that

it is the smoothest possible ramp. This corresponds to a 1.07 ms ramp, or

≈ 0.093%/µs.

Experiments testing this is seen in 4.12, where step sizes are adjusted with

known delay between each step. While success rate and ramp speed are not

directly correlated, small (and thus smooth) increases in power are shown

to be more effective at transfer. The legend shows the delay between each

step, with step sizes chosen to correspond to the same time range, and thus

average ramp speed.

Ideal Performance

For a single move over 8 µm, along one Cartesian axis, the highest success rate

for movements observed was 98.3(5)%, as seen in 4.12. This is lower than the

99.3% movement success rate quoted in [58], which had lifetime losses as the

greatest cause of loss. For an initial fill fraction F = 0.57 after initial loading,

this comes to an expected upper limit of F ≤ 0.990(3) just considering losses

from moves. Between images without sorting stages, atoms were found to

remain in the traps at a rate 99.03(4)%, indicating loss due to imaging of
8Averaged over all traps in the array
9Calculated from average AOD efficiency over the array
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Figure 4.12: Graph of movement success rate as power ramp profiles are
changed. Each colour refers to a different delay after each step in increasing
the output power. The microcontroller has a measured cycle period of 5.2 µs,
and thus is the minimum time in each movement step.

0.97(4)%. Atom loss scales with tsort, which itself is dependent on algorithm

calculation time and the number of moves required, which scales linearly

with N , such that tsort ≈ (2.0 ·N) ms. Atom losses over this timescale

were found to be consistent with a trap lifetime of τ = 12(1) s matching

the vacuum-limited lifetime of the experiment during these measurements

[87]. Since these measurements, trap lifetime has been improved to 17(1) s

by activation of the titanium sublimation pump. This corresponds to an

optimal fill fraction of

Fideal ≈ 0.981(5) · exp
(−2N

τ

)
. (4.5)

This is competetive with other experiments seen in Table 4.1, although exper-

imental improvements can be made in reducing loss in imaging and hardware

upgrades for faster and smoother power ramps.
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Figure 4.13: Images of sorted arrays. Figures (a) shows an experimental
image of a 10 × 10 atom square sorted without defects, within a 15 × 15
trap array spaced by 8 mum. Figure (b) shows the array configurations for
figure (a), where red circles are targets, empty black circles are atoms to be
removed and filled black circles are the reservoir to be used as appropriate.

4.6 Graph Performance

With power, transit and algorithmic performance characterised, we can dis-

cuss the performance of the rearrangement sequence in experimental arrays

of different geometries.

4.6.1 Square Targets

To demonstrate the performance of the system in optimal conditions, initial

characterisation was made on a smaller square targets inside a much larger

array. This is chosen such that there are only predicatable moves with an

abundance of reservoir atoms, where 3N ≥ T , where T is the total number

of traps. Exemplar data is then taken to fill a target of a 10 × 10 atom

square inside a 15 × 15 atom square array, the design specification for this

experiment. Fig. 4.13(a) shows a 10× 10 array filled without defects.

As shown in Fig. 4.14, the fill fraction for small (N ≤ 9) targets is
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Figure 4.14: Plot of the fill fraction of target size N, as N increases. Mea-
surements are taken from exemplar data, that is with minimum sorting time
for each graph. (a) shows how fill fraction reduces for target size, due to the
longer durations required for sorting and the increased complexity of moves
when filling deeper arrays. (b) is the same data, corrected for imaging loss
and background loss over tsort. (c) shows how the probability of making a
defect-free array after a single sort drops with N. This is using the same
experimental data as in (a). At N = 100, a defect free array was prepared
once over 300 experimental iterations.

F = 96.8(2)%, or a corrected rate of FCorrected = 98.7(3)% when correcting

for loss, and is at the optimal limit determined by loss in transit. This drops

to F = 0.940(2), FCorrected = 96.8(2)% for the largest target, N = 100. This

is indicative of how with larger targets, sorting efficiency reduces further. As

shown in section 4.5, mobile tweezer power changes over the array. With-

out feed-forward corrections, this results in unoptimal power as the tweezer

moves over the array. Using quintic movement profiles reduces sensitivity to

power changes when moving into and out of traps, but rapid changes in power

during a movement can rapidly heat atoms out of the trap. Other poten-

tial loss mechanisms include electrical noise during the tweezer ramp stages.
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Figure 4.15: Plot of the fill fraction of the same graph as the number of
sorting rounds increases. Measurements are taken from exemplar data, that
is with minimum sorting time for each graph. (a) shows how fill fraction
reduces for target size, due to the longer durations required for sorting and
the increased complexity of moves when filling deeper arrays. (b) shows how
the probability of making a defect-free array after a single sort drops with
N. This is using the same experimental data as in (a).

The probability of longer than average sorting sequences also increases as

some loading configurations may require substantially more moves than av-

erage. Off-axis performance at the edge of arrays may also be affected, as N

increases.

As N is increased, the probability of creating a defect free array drops ex-

ponentially. By increasing the number of sorting rounds, this defect free

rate can be increased. For N = 100, this saturates at a fill fraction of 96%,

indicating the rate of loss at each image is at equilibrium with the rate of

accurately correcting for this loss. Further experimental upgrades will be

able to correctly identify when an array is correctly filled, and stop sorting

from this point.
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Figure 4.16: Images of sorted arrays. Figures (a) shows an experimental
image of a non-standard array, within an 11×11 trap array spaced by 8 mum.
Figure (b) shows the array configurations for figure (a), where red circles are
targets, empty black circles are atoms to be removed and filled black circles
are the reservoir to be used as appropriate.

Off-Grid Targets

Graphs where points do not lay on a regular grid prove harder to fill. Gadgets

(discussed further in Sec. 7.4) are subgraphs with standard arrangement that

do not confirm to a unit grid. These gadgets have limited paths to fill the

target atoms, with and must make diagonal moves off the axis of the Bravais

lattice. However, due to the small numbers of targets relative to the large

square arrays for experiments so far performed, the probability of a random

atom loss is lower, as is the time required for the sorting procedure. An

example gadget can be prepared with an average fill fraction of 0.91(1) after

a single sorting round, where Fig. 4.16 shows this gadget array filled without

defects. After three sorting stages, this grows to a fill fraction of 0.992(3),

for a defect free rate of 87(1)%. This demonstrates reliable preparation of

atoms in configurations other than square lattices.
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4.7 Summary

4.7.1 Atomic Rearrangemnet Limitations and Outlook

As shown above, the experiment can deterministically prepare an arbitrary

arrangement of atoms, including up to 100-atom arrays or unconventional

off-grid patterns. This forms the initial stage of preparing a neutral atom

quantum computer or quantum simulator. Atom sorting rates within this

experiment can still be improved for incremental gains in sorting efficiency.

Each potential improvement is detailed below, with outlook for the SQuAre

experiment included.

Reducing Imaging Loss

Fixed per-image losses can be reduced by optimisation of the imaging se-

quence to prevent atoms from being lost. Imaging losses have been reduced

to < 10−3 while retaining imaging fidelity > 0.9999 as seen in other Cs exper-

iments [55, 182]. This would drastically reduce the largest source of sorting

losses, that is loss during imaging. Further experiments to reduce sorting

infidelity must therefore be considered if larger arrays are required at high

yield.

Optimising Sorting Sequence Software

Per-sort loses can be reduced by reducing the duration of sorting and so

reducing tsort. Faster, smoother power ramps will do both in this respect,

but require upgrades to the experimental hardware. Further software up-

grades, such as ending the sorting sequence at the point of finishing the sort

instruction and not requesting further sorting stages if the target is defect

free after imaging will prevent long sorting sequences from being cut off early

and reduce tsort, while also increasing the defect free rate.
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Given that fill fraction saturates with the number of sorting rounds, the

probability of a successful rearrangement is equal to the probability of no

atoms lost in the sequence. With sufficient experiment time and a large

enough reservoir, large targets can be filled even with low sorting success

rates. For example, in [167], a substantial reservoir of atoms is generated

such that targets of 441 atoms can be filled, and a square target of 225

is filled completely with a cumulative probability of ≈ 35% after 50 such

rounds of rearrangement. This 225 atom target uses a large number of small

squares, such that long, circuitous moves into the centre of the array are not

required, cutting down on the sorting time required and power differences as

the mobile tweezer moves across the array.

Array Feedback And Mobile Tweezer Feedforward

As shown in [164, Chapter 6], the static ODT array can be optimised using

an iterative feedback process, such that the trap depth of all static traps

is even. This is demonstrated in the aformentioned thesis to improve the

movement success rate. Such a technique is available for this experiment; see

[87] for the calibration of ODT power by measuring the AC Stark shift of

the D1 transition on individual atoms within the array. The performance of

the mobile tweezer may also be improved by utilising a feed-forward process.

Given that the diffraction efficiency of the AOM is known across the range

used, the RF power sent to the AOM can be adjusted to keep the diffracted

power even as it moves across the array. This would require substantial

precalculation of the MW signal used to drive the AOM, and would limit the

AOM efficiency to the lowest efficiency of its target region, but may improve

maximal atomic transport efficiency.
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Vacuum Lifetime Improvements

Trap lifetime has been shown to be improved by at least two orders of mag-

nitude using periodic grey-molasses cooling [55], or utilising a cryogenic sys-

tem [183], although the latter requires an entirely new vacuum system to

be constructed. Reducing the total experimental time requires additional

experimental hardware, which is being implemented (see below).

Parallel Sorting

A reduction in rearrangement times can also be achieved by sorting atoms

in parallel. This requires substantially more laser power dedicated to atom

rearrangement, as well as more sophisticated microwave control hardware.

Hardware and software for parallel sorting is in the process of implementation

on this system. As the majority of the sorting time is spent in ramping

power, this must also be optimised. Implementation of the faster, smooth

cubic ramps as used in the static ODTs in this experiment requires a different

control hardware, due to hardware speed limits in the microcontroller in use

here.

In this respect, an arbitrary wave generator (AWG) would be ideal for both

power and speed concerns. With total control of the MW signal in both

frequency and intensity, multiple mobile tweezers can engage in parallel re-

arrangement with even power across the entire array. These can be ramped

up or down in power smoothly, over much faster timescales. Feedforward

procedures can be implemented in this process as well.

4.7.2 Conclusion

In summary, the SQuAre experiment has met its design goals in sorting atoms

into 100 atom targets, or into arbitrary arrays. These results are competetive

with other experiments in the field of arrays of single species atoms. Exper-
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iments requiring larger target arrays or higher yield will require additional

hardware and experimental improvements to the imaging sequence, which is

to be implemented in the future. With iterative improvements to each part of

the sorting process and with additional experimental hardware, even higher

yields are possible.



Chapter 5

Global Rydberg Excitation

Interaction between atoms within an experimental array are engineered using

the long-range interactions of highly-excited Rydberg atoms.

This Chapter details the methods and results of global excitation of Rydberg

atoms. Also discussed are the improvements required for a more precise and

effective global excitation. Secs. 2.2.1, 2.2 introduce the theory of Rydberg

atoms, while Sec. 3.6.3 introduces the experimental hardware used.

5.1 Coherent Excitation of Rydberg Atoms

The Rydberg atoms used in this experiment are those in the
∣∣nS1/2

〉
state of

Cs. As mentioned in Sec. 2.2.1, the linewidth of the Rydberg states scales as

n−3, while as shown in Eq. 2.1.3, this further reduces the Rabi frequency of

transitions.

As introduced in Sec. 3.6.3, Rydberg atoms are excited from the
∣∣6S1/2, F = 4

〉
ground state to the

∣∣nS1/2,mj = +1/2
〉

state using a two photon transition,

via the
∣∣7P1/2

〉
intermediate excited state. The transition used here is de-

tailed in Fig. 3.11. This operates at 459 nm, generated from frequency dou-

bling a 918 nm Ti:Sapph laser, and a second Ti:Sapph laser operating at

109
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1039 nm. Both 918 nm and 1039 nm lasers are are stabilised against a high-

finesse ultra-low expansion (ULE) cavity to enable narrowing of the linewidth

to a few kHz. This also enables locking of the lasers to frequencies far de-

tuned from the intermediate state to suppress scattering. This intermediate

state detuning frequency ∆ is typically at 500 MHz. In this section, the ini-

tial measurements to document the performance of the system for Rydberg

excitation for single Cs atoms are recorded.

5.1.1 Initial Spectroscopy

The first measuremenet required is acccurate determination of the frequency

offset of the ULE cavity mode with respect to the
∣∣7P1/2

〉
intermediate state

to enable precise definition of the intermediate state detuning ∆1. While

the WS7 wavemeter used provides relative precision of 10 MHz for input

light, the absolute accuracy of measurement is 200 MHz at 918 nm. After

frequency-doubling, this absolute accuracy worsens to 400 MHz.

For this measurement, atoms prepared in the
∣∣6S1/2, F = 4,mF = 0

〉
state

through D1 optical pumping. Atomic resonances to the
∣∣7P1/2, F

′ = 3
〉

and∣∣7P1/2, F
′ = 4

〉
states are indentified by the frequency at which a short pulse

of 459 nm light optically pumps atoms into the
∣∣6S1/2, F = 3

〉
state. We can

perform spectroscopy to find the exact frequency of the 459 nm beam, and

thus the intermediate state detuning. As shown in Fig. 3.11, this intermediate

state detuning is the frequency difference of the light relative to the centre of

mass of the 7P1/2 state. The transition targetted for this was the |F = 4⟩ →
|F ′ = 3, 4⟩ transitions.

Spectroscopy is performed by scanning the offset frequency of the 918 nm

seed light relative to the ULE cavity mode. As the laser is then frequency

doubled, the frequency shift at the atoms is twice that of the offset frequenecy.

Initially, the closest carrier mode to the relevent transitions is found, as
1See Fig. 3.11 for a diagram of offset-locking.
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measured using the WS7. Optical pumping into the |F = 3⟩ state is measured

by state-selective blowaway of atoms in the |F = 4⟩ state, as introduced in

Sec. 3.4.

The |F = 4⟩ → |F ′ = 3⟩ transition was found at an offset frequency of

1400.00(2) MHz, while the |F = 4⟩ → |F ′ = 4⟩ transition was found at an

offset frequency of −1405(1) MHz, offset to the negative frequency of the

carrier of the next highest cavity mode. Given a measured free-spectral

range (FSR) of 2.995(1) GHz, the maximum offset frequency possible is

ν = FSR/2 = 1498 MHz. The presence of a very weak degree of unmodu-

lated light from the AOM when measuring the |F = 4⟩ → |F ′ = 4⟩ transition

contributed to uncertainty in mesurement.

Combining these measurements of with measurement of the cavity FSR, we

estimate a hyperfine splitting of the 7P1/2 state of 380(3) MHz, in excellent

agreement with recent precision measurements of this feature at 377.4 MHz

[184].

Following measurement of the two resonant transitions, we proceed to lock

at the cavity offset frequency of 1237 MHz, which corresponds to an inter-

mediate state detuning of ∆/2π = 502(2) MHz relative to the centre of mass

energy for the 7P1/2 state. The errors here correspond to measurement error

of the absolute frequency and not frequency instability.

5.1.2 Rydberg Spectroscopy

The choice of Rydberg state determines the experimental parameters within

the experiment. Higher n increases the blockade radius and state lifetime,

but also sensitivity to stray fields. In addition, the dipole matrix element

from the intermediate excitate state to the Rydberg state scales as n−3/2,

resulting in a reduction in Rabi frequency for higher states, as shown in

eq. 2.1.3. This Rabi frequency can be increased with the same power by



Chapter 5. Global Rydberg Excitation 112

1390 1400 1410

Offset Frequency (MHz)

0.0

0.1

0.2

0.3

0.4

0.5
P

(|F
=

3
〉)

(a) F = 4→ F ′ = 3

−1420 −1400 −1380

Offset Frequency (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

P
(|F

=
3
〉)

(b) F = 4→ F ′ = 4

Figure 5.1: Spectroscopy of the F = 4 → F ′ transition. Atoms in the |F = 4⟩
state are removed from trapped by state-selective blowaway, such that the
probability of populations in |F = 3⟩ are measured. (a) shows the F ′ = 3
transition, while (b) is the F ′ = 4 transition. One data point in (b) was
excluded due to interactions with the 0th order mode of the 459 nm Rydberg
AOM. Data points show atomic survival after a blow-away measurement,
indicating atoms in the F = 3 state. Red dotted lines are fits to a Gaussian
profile.

reducing the intermediate state detuning, at the cost of increased AC Stark

shifts and intermediate state scattering. This is described through Sec. 2.3.

Polarisation is fixed to σ+ for 1039 nm light and σ− for 459 nm light. This

enforces selection to only the
∣∣nS1/2,mj = +1/2

〉
states.

In the experiments below, we perform experiments with two Rydberg states,∣∣50S1/2

〉
and

∣∣80S1/2

〉
. For n = 50, the typical Rabi frequency is around

Ω/2π = 5.5 MHz with C6 = −11 GHz(µm)6, meaning Rb ≈ 3.6 µm. As such,

for spacings with r > 6 µm, we can neglect dipole-dipole interactions. This

an ideal state for electric field spectroscopy and alignment of the Rydberg

beams onto the array, as a larger number of closely-spaced atoms can be used

through an experiment. Reduced sensitivity to electric fields also allows for

greater precision in measurement of the effects of electric field gradients.

For experiments involving Rydberg blockade effects, we use n = 80, where

Ω/2π ≈ 2.5 MHz and C6 = −3599 GHz(µm)6.
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Figure 5.2: Rydberg Excitation Timeline. Bar heights correspond to inten-
sity and are not to scale. Included for red-detuned ODT beams are calculated
trap depths U0 at the given intensity.

5.1.3 Rydberg Excitation Sequence

As Rydberg atoms cannot be trapped by the red detuned ODTs used in this

experiment, the experimental sequence must adjust for this. This sequence is

shown diagramatically in Fig. 5.2. During the Rydberg excitation procedure,

the ODTs are turned off such that the Cs atoms are in free-fall. At the

same time, the 1039 nm light is turned on. As this light couples to the∣∣7P1/2

〉
→
∣∣nS1/2

〉
transition, and no atoms are in either of these states

during the state preparation, this does not affect atomic populations until the

459 nm light is turned on. This duration of switching off of the 1064 nm light

and constant intensity of 1039 nm light remains fixed through the experiment,

at a release time of 8 µs. This is the maximum time that atoms can be

released from the ODTs and be recaptured without measurable loss (see

fig. 3.7 for release-recapture measurements).

The Rydberg transition only occurs when the 459 nm light is incident on the

atoms. This turns on for a variable duration. The ODTs are then turned

on at a trap depth of 1 mK, the trap depth used in imaging, to eject any

Rydberg atoms, as discussed in sec. 3.4.

5.1.4 n=50

Spectroscopy exciting to the 50S1/2 state can be seen in Fig. 5.3. Here, the

second beam is used, at a wavelength of 1042.8469(1) nm and is locked to
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Figure 5.3: Spectroscopy and Rabi oscillations of the n = 50 Rydberg tran-
sition. Figure (a) shows the linewidth of the transition, relative to the offset
frequency of the 1039 nm lock. The red dashed line is a fit of the data
to a Lorentzian profile. Figure (b) shows an averaged Rabi oscillation of
the central row of the array, with each atom separated by 8µm. The red
dashed line is a fit of the data to predicted Rabi oscillations, with frequency
Ω = 5.42(1) MHz and damping time τ = 1.7(1) µs. Damping is partially
due to inhomogeneity; each atom has a different Rabi frequency, and so that
averaged oscillations have lower amplitudes at later times.

the ULE cavity using the same offset locking technique as the 459 nm beam.

This is incident on an 11 × 11 array at 8 µm spacing, although only the

central row is used for spectroscopy data.

This spectroscopy was at typical operating powers2 of 47.8(1) mW of light

at 459 nm and 792(1) mW at 1043 nm. At the central focus of the 1043 nm

light, the Rabi frequency was measured as Ω/2π = 5.42(1) MHz, with a 1/e

damping time of τ = 1.7(1) µs. Decay is caused by a combination of noise,

off-resonant driving, scattering from the intermediate state and spontaneous

decay. This decay is suppressed at higher n due to the longer lifetime.
2This is power at the atoms, including measured loss through dichroics and other optics.
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Figure 5.4: Colour plot of Rabi oscillations across the atomic array. The
reduced intensity at the edge of the array reduces the frequency of the ob-
served Rabi oscillations. This reduced intensity also provides less AC Stark
shift, meaning these atoms have a different resonant driving frequency, and
so experience off-resonant driving.

The amplitude of the n = 50 oscillations is lower than initially expected. This

is due to the detection method, where Rydberg atoms are expelled from the

ODTs. At n = 50, not all Rydberg atoms are ejected from the deeper traps,

and instead decay to trapped states. Imaging from these trapped ground

states thus gives a false positive reading of the atoms. For a full analysis of

the imperfections of measuring Rydberg state population, see [152].

One further part to note of this data is the effects of the finite beam waists

used. As seen in Fig. 5.4, the Rabi frequency is not constant across the array.

Furthermore, the AC Stark Shift created by the 1043 nm beam also causes

off-resonant driving on the outer rows of the array. This data can be used to

estimate the waist of the elliptical 1043 nm beam of 60(1) µm,

The same measurements were used for the Raman beam in Sec. 3.6.3, al-

though the Raman beam is substantially further off-resonance and generates

only a negligible AC Stark shift.
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Figure 5.5: Observed electric field shifts on Rydberg transitions. The effect
of the shift on the y-axis is less severe. This is due to the alignment of the
electrodes along the axis of the ITO-coated lenses, where the electrodes have
a greater spacing than along the x and z axes.

5.1.5 Electric Field Nulling

Given the sensitivity of Rydberg atoms to external electric fields, the absolute

electric field and electric field gradient must be minimised across the array

before working at higher n. As shown in Eq. 2.2.1, electric fields create

an energy shift proportional to the square of the electric field strength. This

corresponds to a shift in the resonant frequency, where the minimum observed

shift corresponds to the minimum electric field strength. The data shown in

the section above are demonstrations of the system after this electric field

nulling has taken place.

The electric field is controlled through a series of electrodes within the cham-

ber, each of which is connected to a high-voltage supply. This is controlled by

an external control voltage connected to a high-voltage supply system. With

eight individual electrodes, the electric field at the atoms can be adjusted

in each of the three orthogonal axes. This requires a series of spectroscopy

measurements at varying control voltages, to find the point of minimum shift.

Data from these experiments are demonstrated in fig. 5.5.
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Figure 5.6: Spectroscopy and Rabi oscillations of the n = 80 Rydberg tran-
sition. Figure (a) shows the linewidth of the transition, relative to the offset
frequency of the 1039 nm lock. The red dashed line is a fit of the data to a
sinc profile. The linewidth of this transition is narrower than compared to
n = 50 due to the reduced natural linewidth and reduced Rabi frequency.
This is measured at tΩR = π. Figure (b) shows an averaged Rabi oscillation
of the central row of the array, with each atom separated by 20 µm, driven
at the resonant frequency measured at tΩR = 3π. The red dashed line is a fit
of the data to predicted Rabi oscillations, including loss due to spontaneous
emission. This has measured Rabi frequency of ΩR/2π = 2.477(8) MHz and
1/e damping time 3.0(2) µs. Decay effects also occur due to off-resonant
driving as the power of the Rydberg beam changes with time.

The sensitivity of the atoms to electric fields was less than predicted along

the y-axis, which is along the axis of the ODTs and high-NA aspheric lenses,

which are coated in indium-tin oxide (ITO). As seen in Fig. 3.2, this is the

axis also along the plastic lens spacers. This may cause a reduction in the

actual electric field gradient caused by the electrodes. This same effect was

seen in [185, Chapter 3], which used the same lens/electrode configuration.
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5.1.6 n=80

The n = 80 transition requires an adjustment to the 1039 nm beam, to a

wavelength of 1039.2759(1) nm. Given the increased blockade radius, the

prepared array was of size 5× 5 at 20 µm spacing. The transition was found

with a Rabi frequency of ΩR/2π = 2.477(8) MHz, as shown in fig. 5.6. The

1/e damping time was measured to be 3.0(2) µs. Optimal contrast was much

improved compared to n = 50, reaching a maximum Rydberg population

of |
〈
80S1/2

∣∣ψ〉 |2 = 0.943(5) after ΩRt = π (or a ‘π-pulse’), as shown in

fig. 5.6. Microwave spectroscopy shows D1 optical pumping is limited to a

fidelity of 95.7(9)% [87], which is thus the primary limit of Rydberg oscillation

amplitude.

5.2 Few-Atom Rydberg Blockade

As introduced in sec. 2.2.1, the dipole-dipole interaction between Rydberg

atoms blocks the excitation of more than a single atom to the Rydberg state.

Instead, the |WN⟩ state is prepared, at the enhanced Rabi frequency. This

section will show observations of the Rydberg blockade interaction and mea-

surements of the collectively enhanced Rabi frequency.

Firstly, the red-detuned ODT array is prepared such that N atoms are all

within blockade radius of each other, but each atom group is separated from

any other atoms by a distance much greater than the blockade radius. This

configuration is seen in Fig. 5.7. The sorting procedure discussed in Chapter 4

is used to increase experimental yield, with the targets specified such that

atoms outside the blockade radius are used as a reservoir, while atoms within

are removed unless to be measuremd in the experiment. Experimental data

are taken from images post-selected where the sorting conditions are met,

such that all atoms are sorted into the target sites for the given N-atom

group. Atoms are loaded, sorted and prepared in the |F = 4,mF = 0⟩ clock
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Figure 5.7: Diagram of atom arrays used in measurements of small blockades.
Figure (a) is the maximum of pixel counts taken from 400 images of the array
used for calibrating array positions. Figure (b) is the requested atom array.
Red hollow circles are targets, black hollow circles are atoms to be removed,
and black filled circles represent the reservoir.

state using D1 optical pumping. The groups of atoms are prepared in a

region of uniform intensity of 1039 nm light, such that the Rabi frequency is

equal for all atoms.

Atoms are prepared alone as a control measurement, in pairs separated by

7 µm, in an equilateral triangle of sides 7 µm, and in a square of side 7 µm.

For atoms in the square pattern, nearest-neighbour distance is 7 µm, while

next-nearest-neighbour is 9.9 µm. This is within the blockade radius, but

will affect a reduced shift in comparison to nearest-neighbours.

A lost atom is expected to be a Rydberg atom, while a retained atom is

expected to be a ground state atom. Rydberg blockade effects are thus seen

as only a single atom lost, where the probability of losing a single atom

follows a Rabi oscillation at rate ΩN =
√
NΩ, for N atoms within blockade.

To show that a single Rydberg atom is prepared at the collectively enhanced

Rabi frequency, the probability of k excitations P (k) is measured for each of

the N atom configurations. As shown in Fig. 5.8, the probability of a single

excitation P (1) was seen at greater rates than single excitations. Single atom
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Figure 5.8: Measurements from blockaded Rydberg excitations. This shows
the probability of observing k excitations P (k), where k = 0 is in black,
k = 1 in red, k = 2 in green, k = 3 in blue and k = 4 in yellow. Data points
with error bars are measured data points, while lines are fits to the single
excitation Rabi frequency. Excitations of more than one atom at once is
greatly suppressed in all plots, but not entirely eliminated. N = 4 plots show
a much increased probability of multiple atoms being excitated, indicating
reduced blockade effects.

Rydberg excitations followed a Rabi frequency at rate
√
NΩR, with the trend

shown in Fig. 5.9, with the exception of the N = 4 square patterns, where

the measured Rabi frequency is reduced. Measured Rabi frequencies are

tabulated in Table 5.1. In strongly blockaded patterns (N = 2, N = 3),
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Figure 5.9: Figure (b) shows the measured collective Rabi frequency ΩN for
each configuration, with a ΩN = Ω

√
N fit used, where Ω is the only free

parameter, and ignoring N = 4.

N Ω′/2π (MHz) 1√
N
Ω′/2π(MHz)

1 2.03(2) 2.03(2)
2 2.72(2) 1.92(2)
3 3.25(4) 1.88(3)
4 3.1(1) 1.54(6)

Table 5.1: Table comparing oscillation frequencies within N -atom Rydberg
blockade.

loss of more than one atom was still seen. This is due to a combination

of atom loss in recapture, atom loss in imaging such that not all atoms

are present despite post-selection, and incomplete state preparation in the

|F = 4,mF = 0⟩ clock state.

The square pattern is less strongly blockaded. The ratio of the resonance

shift along the diagonals of the square compared to the edges is given by(√
2
)−6

= 1/8. Calculations using the PairInteraction software expect a

shift of 24.6 MHz at 7 µm, and 3.1 MHz across the diagonals. This weakly

blockaded effect is seen in the N = 4 data, where the probability of losing 2

atoms is far less suppressed than other patterns. The diagonals of the squares

are not blockaded without using smaller spacing. For a summary of results,

see Table. 5.1.

The measured oscillation frequencies for a single atom are close to the pre-

dicted
√
N scaling, but are slightly lower than expected. This is expected to

be due to unaccounted for decoherence effects, imperfect state preparation
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Figure 5.10: Simulation of the system described above. Initial parameters fit
to single atom Rabi oscillations as measured in the experiment. The same
parameters are then used to plot other parameters.

and atoms lost imaging. Ground state atoms were measured to be lost (as a

false postive) at rate 0.9892(5). Given an imperfect D1 state preparation rate

of 0.019, the contrast of the Rydberg oscillations implies Rydberg atoms were

not ejected at rate 0.063(5). As such, there are experiments where an atom

is lost or improperly prepared and does not contribute to the blockade effect,

which may correspond to the discrepency in the
√
N scaling. The single

atom Rabi frequency is lower than expected, while dephasing is more rapid

than expected. Fits to predicted Rabi frequency where detuning is a free

parameter indicates a degree of off-resonant driving and lower-than-expected

Rabi frequency. This can be attributed to a reduction in laser power during

experiment preparation. This both reduces the Rabi frequency and the AC
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Figure 5.11: Timeline of the Vdd measurement.

Stark shift, thus causing the previously resonant offset frequency to be inac-

curate. A degree of loss not due to Rydberg excitation is also misattributed

to Rydberg excitation.

This system can be modelled mathematically. Using the QuTiP package [96],

the N-atom results were fitted to a model of the N -atom Hamiltonian. This

model accounts for imperfect D1 state preparation, and that all atoms not in

the Rydberg state are detected without loss. As seen in Fig. 5.10, the model

matches the Rabi oscillations measured, although as there are no additional

loss factors, a degree of decoherence is not accounted for. Nevertheless, the

weakly-blockaded behaviour is shown to be responsible for the absence of the
√
N speedup expected in the square arrangement.

5.3 Dipole-dipole Interaction Measurements

A useful measurement for later work (see Sec. 7.3) is the direct measurement

of the Rydberg dipole-dipole interaction. This energy, Vdd, is dependent on

the Rydberg state and separation between atoms, as detailed in Eq. 2.37.

This uses the method demonstrated in [162], where atoms are prepared in

red-detuned ODTs in the |F = 4,mF = 0⟩ clock state. A π/
√
2 pulse3 at the∣∣80S1/2

〉
transition resonant frequency prepares atoms within blockade in

the |W ⟩ state. A second π/
√
2 pulse detuned by some amount δ then excites

to the |r, r⟩ state. A delay period tdelay between the two Rydberg pulses
3Equivalent to a π pulse at the blockade-enhanced Rabi frequency
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Figure 5.12: Spectroscopy of the Rydberg dipole-dipole interaction. In (a),
δ is measured relative to the resonance frequency for a single atom without
blockade effects. Each colour refers to a different atomic separation R. The
scaling of the centre of these peaks is measured in (b), and the full-with
half-maximum (FWHM) in (c). Both are fitted with (A/R−6) curves (black
dotted line), where in (b), A = C6 and is thus fixed. In (b), a simulated
curve is also used.

increases contrast. Recapture in deep traps ejects these Rydberg atoms, and

so is seen as two-atom loss. A timeline for this experiment is seen in Fig. 5.11.

The hologram used for the ODT array uses pairs of atoms at a variety of

separations, from R = 8.5 µm to 7 µm. Atoms are sorted into pairs, and

other atoms within blockade radius are removed. The rate of 2-atom loss

is then measured as the input frequency is scanned over a range of values.

Contrast was maximised at a delay period of tdelay = 0.2 µs. Measurements

of the probability of measuring two-atom loss can be seen in Fig. 5.12(a).

The frequency shift measured does demonstrate the R−6 value measured, as
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seen in Fig. 5.12(b). This is compared to simulations using the PairInterac-

tion software package [186]. Fits to the function

Vdd =
−C6

(sR)6
(5.1)

where s is an arbitrary scaling factor and the only free parameter are also

shown. This finds s = 1.006(7). As such, any mismatch between the trap

spacing requested by the SLM and the actual atomic spacing is within mea-

surable error.

The maximal probability of two-atom loss reduces as R decreases, while the

spectroscopic feature is broadened. Due to the R−6 scaling of Vdd, the effect

of Vdd grows rapidly over a small range of measurements. Furthermore, since

the atoms are not static within the traps due to the harmonic nature, the

separation is only well-defined as to the mean position of the traps. For small

perturbations dR, the broadening effect is proportional to the perturbations

in energy dVdd, such that

dVdd =
6C6

R7
dR. (5.2)

The mean distribution of atoms within the traps is constant and dependent on

trap frequency and atom temperature, forming a constant Maxwell-Boltzman

distribution of relative spacing in R, that is δR is independent of R. The

wavefunction of a Cs atom in the ground state of a 2π · 8kHz trap has spa-

tial distribution 68.9 nm. These are the parameters for the radial trapping

potential of atoms in the trapping array, although in the experiment the

atoms can be expected to be above the ground state. For two atoms, the

standard deviation in separation dR would then be 97.5 nm. At 6.8 µm,

dVdd = 2π · 2.55 MHz > Ω, and thus variations in potential are greater

than the linewidth of the transition and are entirely off-resonance. As such,

transitions are suppressed using this experimental method.

Fits of the full-width half-maximum (FWHM) to relative to R show an ap-
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proximate 1/R7 dependence, as in Fig. 5.12(c), where a 1/R7 curve is given

as a guide to the eye. Calculating d (ln(FWHM)) /d (ln(R)) with a linear fit

shows a gradient of −6.4(5). Deviations from the expected value of 7 as per

Eq. 5.2, where FWHM ∝ dVdd, are due to the large shifts in Vdd, such that

the assumptions of small dR are no longer valid.

5.4 Entangled State Preparation

The Rydberg blockade effect entangles particles, as required for a quantum

computing system. It does not, however, entangle particles in the hyperfine

basis. The qubit states |0⟩ , |1⟩ the SQuAre experiment intends to use for

digital quantum gate operations are the Cs clock states |F = 3,mF = 0⟩ and

|F = 4,mF = 0⟩. The state generated by a π pulse at the enhanced Rabi

frequency is, for two particles, 1√
2
(|1, r⟩+ |r, 1⟩). To generate an entangled

state in the hyperfine basis, we must also implement a rotation about the

Bloch sphere to the |1⟩ state. The Raman system is used in this case.

This section details the methods used to generate the |Ψ+⟩ maximally en-

tangled state within the hyperfine basis, with calculations of the fidelity of

the state generated.

5.4.1 State Preparation

A pulse of resonant Raman light at tRaman acts as a RX(θ) gate in the hy-

perfine basis, where

RX(θ) |0⟩ = cos(θ/2) |0⟩ − i sin(θ/2) |1⟩ (5.3)

RX(θ) |1⟩ = cos(θ/2) |1⟩ − i sin(θ/2) |0⟩ .
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Figure 5.13: Timeline of entangled state fidelity measurement experiment.
Two Rydberg pulses are applied with area ΩRydbergt = π/

√
2 and π. Two

Raman pulses are also applied with area ΩRamant = π and θ, where θ acts
as the independent variable of the experiment. ‘BA’ refers to state-selective
blow-away, to remove atoms in the |0⟩ state.

Here, θ = ΩRamantRaman. By applying the pulse with θ = π, the Raman light

can act as an X gate, where

X |0⟩ = |1⟩ (5.4)

X |1⟩ = |0⟩ ,

where arbitrary global phase terms have been ignored. Once atoms are in

the 1√
2
(|1, r⟩+ |r, 1⟩) state, this X gate is applied globally to prepare the

1√
2
(|0, r⟩+ |r, 0⟩) state.

Atoms within the |0⟩ state are off-resonant to the Rydberg light and so are

not coupled. As such, another Rydberg π-pulse transfers population from

the Rydberg state to the |1⟩ state only. This prepares the state

|ψ⟩ = 1√
2
(|1, 0⟩+ |0, 1⟩) ≡

∣∣Ψ+
〉
, (5.5)

with some arbitrary global phase. |Ψ+⟩ is the one of the four Bell states,

which are four orthogonal and maximally entangled two-qubit states [187].

Proof that the state generated is the Bell state requires further experimen-

tation. Following the method laid out in [188], we can apply the Raman
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light for a further period of time tRaman, using this as an analysis pulse to

extract information about the prepared state. Atoms in the |1⟩ state are

removed with state-selective blowaway. A timeline of this experiment is seen

in Fig. 5.13. The fidelity of the prepared state F is given by

F =
〈
Ψ+
∣∣ ρ ∣∣Ψ+

〉
= (P1,0 + P0,1) + Re (ρ1,0ρ0,1) . (5.6)

The Re (ρ1,0) term is the real part of the off-diagonal coherences. This is

referred to as the coherence term. As the experiment only measures the

probability after projection of the wavefunction onto either the |0⟩ or |1⟩
states, measurement of the initial probabilities is not enough to measure the

coherence term. This is achieved by comparing measured probabilities as

tRaman is changed.

State fidelity can be measured through observation of parity oscillations,

which give information on coherences. The parity Π is defined by

Π ≡ (P1,1 + P0,0)− (P0,1 + P1,0) (5.7)

which oscillates with angular frequency 2ΩRaman under the Raman analysis

pulse if perfectly prepared in the |Ψ+⟩ state [188]. Evidence of imperfect

state preparation occurs as a further oscillation of angular frequency ΩRaman.

As such, the fitted function is

Π(θ) = Π0 + A cos(θ) +B cos(2θ) (5.8)

where θ = ΩRamantRaman.

As the measurement taken is only the probability that an atom is observed or

not, this limits the direct measurements that can be taken. Given that each

atom has an independent probability of being lost before measurement, loss

during recapture of atoms, state-selective blow-away or during imaging can
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result in a false-positive reading of the Rydberg state. Imperfect preparation

of atoms in the |1⟩ state will also result in detection of atoms in the |0⟩
state, as a false negative. These losses must be considered for calculating the

prepared state fidelity. Furthermore, it can be that atoms fail to be prepared

in the Rydberg state due to imperfect optical pumping or variations in optical

power. There is a distinction between two atoms being present but not in

the |Ψ+⟩ state and only one atom being loaded, but having the appearance

of not being in the |Ψ+⟩ state. Loss corrections must correct for only the

second source of error here, and not the first, when determining F .

5.4.2 Experimental Results

This was measured over 16 pairs of atoms, where atoms are separated by

8 µm within the pair and 16 µm between pairs. Exemplar measurements of

the experimental probabilities can be seen in Fig. 5.14. The Rydberg Rabi

frequency was measured as ΩRydberg/2π = 1.01(2) MHz, and the Raman Rabi

frequency as ΩRaman/2π = 0.940(4) MHz. This experiment was performed

before the addition of cylindrical optics to reduce field inhomogeneity and in-

crease field strength, leading to reduced Rabi frequencies compared to earlier

in this work.

Using the same methods as in [188], the coherence term can be extracted

from the data from parity oscillations, such that

Π(π/2) = 2Re (ρ1,0ρ0,1) + LaLb, (5.9)

where Li is the probability of failing to prepare atoms in the Rydberg state.

Measurements of the Rydberg Rabi oscillations for individual atoms are used

to determine Li, where the contrast of the Rabi oscillations is determined by

failure to prepare atoms in the Rydberg state. This is measured to be La =

0.055(1), Lb = 0.063(1). Microwave spectroscopy can be used to determine
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Figure 5.14: Examplar coherence measurements of the |Ψ+⟩ entangled state.
Figure (a) shows the probability of measuring either the |1, 0⟩ or |0, 1⟩ odd-
parity state, with large oscillations over a period θ/2 and small oscillations
over period θ. Figure (b) shows the difference in probability of measuring the
|1, 1⟩ and |0, 0⟩ states. This evolves over period θ, and would have amplitude
0 if the |Psi+⟩ is perfectly prepared. Figure (c) is the oscillation in parity Π,
as defined in Eq. 5.4.1. (a) and (c) use a fit to Eq. 5.4.1 with a red dashed
line, while (b) fits to the same with a phase shift of π/2.

the proportion of atoms that are not prepared in the |F = 4,mF = 0⟩ state.

The probability of failing to prepare atoms in the intended ground state is

measured to be 4.3(9)% as mentioned in Sec. 5.1, and as such the remaining

factors for La and Lb are due to power instability and beam inhomogeneity

across the array.

For the best prepared pair, fits to Eq. 5.4.1 find A = −0.13(4),B = −0.62(4),

such that the measured fidelity is F = 0.73(6) [188]. When corrected for

the probability of neither atom being lost during the experiment Precap =

0.95(1)2, this increases to the corrected fidelity FC = 0.81(6). For the eight

pairs on resonance with both the Rydberg and Raman beams, the average
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fidelity measured was F = 0.69(3), FC = 0.77(5).

These experiments were performed early in the experiment cycle when the

first evidence of Rydberg excitation was obtained. Since then, further im-

provements have since been made to the experiment including cylindrical

optics for improved Rabi frequencies and homogeneity. Also introduced are

noise-eating circuits to reduce per-shot noise from > 2% to < 0.5% for the

Rydberg lasers, and increased power available for the 1039 nm beam.

5.5 Summary

The Rydberg excitation lasers used in the SQuAre project have been demon-

strated to implement global excitation of atoms to Rydberg states. This has

been demonstrated with both single atom spectroscopy and the measure-

ment of atom-atom interactions, such that the atomic arrays form a basis for

further quantum computing experiments. Lower-n Rydberg states (such as

n = 50) can be used to inform the response of atoms to Rydberg light within

an array that at higher-n states is affected by Rydberg blockade effects. The

entanglement of these atoms is measured and the fidelity of this coherence is

reported, acting as a 2-qubit quantum gate.

Rydberg excitation fidelity is the greatest limiting factor for Rydberg gates.

Improving this fidelity would require greater optical pumping fidelity, which

would require Raman-assisted state preparation as introduced in Sec. 3.5.1.

Greater homogeneity of the Rydberg intensity across the array is also a con-

cern for global gates over large numbers of atoms. For this purpose, an SLM

system is planned for introduction on the 1039 nm beam path.

Currently, only 1 W of power is coupled to the chamber due to the power

limits of the fibre optic cables used. The replacement of these fibres will

thus allow for an order of magnitude more power from the Azurlight fibre

amplifier, which can output up to 20 W power. At these higher powers,



Chapter 5. Global Rydberg Excitation 132

greater intermediate state detuning ∆ becomes more viable. As the Rabi

frequency scales with ∆−1 but the scattering rate scales as ∆−2, a greater

power means the same Rabi frequency can be used with a reduced scattering

rate, thus improving Rydberg excitation fidelity.

Rydberg blockade effects will also be exploited in Chapter 7 for uses in ana-

logue quantum computing, in particular to provide conditions for weighted

graph problems. These effects also provide a route to further experiments

with quantum simulation in Rydberg arrays. Such work has already been

demonstrated in investigating quantum quench dynamics [189, 190] or quan-

tum many-body scars [67, 75, 191].



Chapter 6

Blue Detuned ODTs

6.1 Introduction

6.1.1 Motivation

The experiments involving neutral atom trapping so far presented in this

work all share the use of red-detuned optical dipole traps (ODTs). Whether

at 1064 nm for the static ODT array or at 1039 nm for the sorting ODT,

these traps have negative detuning relative to the D1 and D2 resonances

that they couple to at 895, 852 nm respectively. As shown in Sec. 3.3.3, these

red-detuned traps are used to trap atoms in regions of high intensity.

Complications occur with trapping Rydberg atoms. Rydberg atoms have

the polarisability of a free electron, which are repelled from regions of high

intensity, and can be used for detection of Rydberg states, as introduced in

Sec. 3.5.3. This does, however, require the red-detuned ODTs to be turned

off periods of excitation to the Rydberg states. This limits interactions with

Rydberg atoms to a period where atoms can be released from the traps

and recaptured without minimal loss. In Sec. 5.1, this procedure was used,

limiting interactions with Rydberg atoms to 8 µs at most.

133
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Experiments performed in free-fall prohibit long-term interactions with Ryd-

berg atoms. For a quantum computing experiment, a confined Rydberg atom

that can be contained for long periods is ideal. This increases the duration

of gate sequences that can be applied, while increasing fidelity as atoms are

static through the operation. Furthermore, trapping ground-state atoms in

blue-detuned ODTs minimises the AC Stark shift applied to the atoms while

they are trapped. Random movements within the trap cause decoherence

in qubits that is irreversible through spin-echo techniques. As such, the use

of blue-detuned ODTs for the trapping of Rydberg atoms is an attractive

prospect.

Experiments involving arrays of blue-detuned ODTs have involved overlap-

ping Gaussian beams to create an array of high fidelity qubits [192–194], or

a ‘grid of blue detuned lines’ generated by diffractive optical elements [195].

This chapter will focus on the use of holographic techniques to create arrays

of blue-detuned ODTs, with the intention of finding scalable methods for the

coherent trapping of both ground state and Rydberg state atoms in arbitrary

geometries. This is a development of work shown in [132], using a phase mask

on an SLM to generate a single blue detuned ODT.

6.1.2 Optical Interactions

The optical system used for these blue-detuned ODTs is detailed in Sec. 3.3.3,

where a 800 nm Ti:Sapph laser is used as a coherent light source. This beam

is incident on a Spatial Light Modulator (SLM) to generate the holographic

trapping potential. The wavelength used has a negative scalar polarisability

for both the
∣∣6S1/2

〉
ground state and the 80S1/2 Rydberg state. As such, it

is a suitable wavelength for trapping.

To determine dipole potential of a neutral atom in the 800 nm light requires a

different approach for ground and Rydberg state atoms. The dipole potential
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Figure 6.1: Plot of the scalar polarisability for ground and Rydberg states.
Ground state polarisability is plotted in black solid lines, while red dashed
lines are for the

∣∣80S1/2

〉
state, assuming a constant intensity over the in-

tegrated region. Aside from at atomic transitions, the Rydberg state has
negative scalar polarisability, unlike the ground state. Data are calculated
using ARC[101].

at the ground state is given by Eq. 2.49, where

U0 = −3πc2

2

(
1

3

ΓD1

ω3
D1∆D1

+
2

3

ΓD2

ω3
D2∆D2

)
. (6.1)

The relative factors of 1
3
, 2

3
are due to the relative branching ratios of the D1

and D2 paths respectively.

As the electron is sufficiently delocalised from the nucleus, it can no longer

be assumed that the electron is in the presence of a homogenous oscillating

field. Instead, the Born-Oppenheimer approximation is applied, where the

nucleus is taken as a static point in the field and the potential of the electron

in the field must be integrated over the spatial variation of the wavefunction

[196]. As such, the potential of an atom at point R is given by [132]

Un,l,j,mj
(R) =

e2

2meϵ0cω2

∫
d3rI(r+R)|ψn,l,j,mj

(r)|2 (6.2)

where me is the mass of an electron and ψn,l,j,mj
(r) is the spatial wavefunc-
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tion of the Rydberg electron. This wavefunction for n = 80 requires the

integration over a sphere of diameter > 1 µm.

6.1.3 Generation of Bottle-Beam Arrays

As introduced above and in [132], the generation of a single blue-detuned

ODT can be achieved with a single hologram. The first step of generating a

blue-detuned ODT is the same as generating a red-detuned ODT. The target

intensity used for the adaptive weighted Gerchberg-Saxton (awGS) algorithm

[144] is a Dirac δ-function. Since the incident beam is a collimated Gaussian

beam, and with no hologram the Fourier transform of this beam is simply

a tight Gaussian beam, the hologram pattern serves to simply adjust the

position of the tightly focussed Gaussian beam.

Blue detuned ODTs can be generated by modifying this phase profile. The

phase at the centre of the input beam is modulated by π, over a radius rπ.

This adjusts the generated field such that at the focus of the Fourier plane,

there is now destructive interference. As the phase modulation does not

adjust the total power of the beam, this lost power instead forms a peak

intensity around the focal point as a sort of bubble of intensity. With well-

chosen rπ, this destructive interference is total, such that at the focus, there

is instead zero field. For an input electric field E(r), this is given by the

condition ∫ rπ

0

rE(r)dr =

∫ ∞

rπ

rE(r)dr. (6.3)

When E(r) = exp (−r2/w2
0), the electric field strength of a Gaussian beam

with 1/e2 waist w0, this is met by the condition

rπ = w0

√
ln(2). (6.4)

Fig. 6.2 shows simulations of how the addition of a phase mask can generate

the desired profile in two dimensions.
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Figure 6.2: Simulations of a single optical dipole trap, with and without the
phase mask applied, using an input beam of 1/e2 waist 3 mm. Figure (a)
shows the hologram generated by the awGS algorithm for creating a focussed
spot at the origin of the image plane, where ϕ is the complex phase applied
by the SLM to the input beam. Dimensions and resolution matches the SLM
used in the experiment. Figure (b) shows the simulated intensity generated
by this phase profile. Figure (c) shows the same hologram as in (a), with
the π-phase mask applied. Figure (d) is the simulated intensity, with zero
intensity in the centre of the trap, and a ring of trapping light around it.

This principle scales up to any input array. A δ-function point in the focal

plane is dependent on all spatial parts of the input field. As such, the π-phase

mask required is the same for any spot generated. Generating an array of

focussed points and then adding the π-phase mask would thus apply the same

effect to all points simultaneously.

6.2 Fourier Optics

To assess the requirements and limitations of an optical system, a model of

the system was developed. This section will introduce the techniques used
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to calculate the trapping fields generated by the holographic techniques.

6.2.1 Introduction to Fourier Optics

The principle of holography relies on how a lens acts as a Fourier transformer

for an input field [141]. The Fourier transform acts as a transform between

position x, y and a set of input k vectors kx, ky, such that the input light

to be transformed can be decomposed into a set of plane waves, each with

vector k = kxx̂ + kyŷ. For a monochromatic input field, |k| = ω/c. The

transform is thus defined as

Ẽ(kx, ky) =
1

2π

∫ ∞

∞

∫ ∞

∞
dxdyE(x, y) exp (i (kxx+ kyy)) ,

= Fx,y [E(x, y)]

(6.5)

This model assumes the paraxial approximation, and that the lens is infinitely

large. A further assumption is that the beam is linearly polarised and no

ellipticitly is applied by any phase mask.

The computation input here uses the fast Fourier transform (FFT) algorithm

to calculate the electric field at the output focal plane, given that the field

at the input plane is known. The input field is modelled as a grid of Nx ×
Ny pixels, each with width δx, δy. After the Fourier transform, the size of

these pixels is given by δ̃x = λf
Nxδx

, which defines the resolution for this

model1. For the model to match actual physics, the input field must contain

effectively all the total field of the beam, such that edge effects are not

included. Furthermore, effects on the scale below this resolution are not

considered.
1While the amplitude in the Fourier plane represents the relative amplitude of corre-

sponding plane wave in the input beam, when considering Fourier optics, these pixels map
to a real image with size δ̃x.
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6.2.2 Angular Spectrum Analysis

The Fourier transform technique only provides information for the field at

the focal planes of the Fourier lens, so far labelled x, y. Propagation along

the z axis is therefore required to find the full intensity profile, to assess if

the field generated can trap atoms.

As shown in [197], the spatial variation of the electric field is given by the

Helmholtz equation, (
∇2 + k2

)
E(x, y, z) = 0. (6.6)

Given that

k2 = k2x + k2y + k2z , (6.7)

a further transform operation can be applied to find how a given field evolves

into the z plane. This propagator is the Helmholtz propagator, defined by

Ĥ(kx, ky, z) ≡ exp (izα) , (6.8)

where

α = +
√
k2 − k2x − k2y, k

2 > k2x + k2y,

= i
√
k2x + k2y − k2, k2 < k2x + k2y.

(6.9)

This follows the definition used in [197], where the sign of the square root is

chosen to remove evanescent effects. Within the Fourier plane, this acts as a

further Fourier transform operation, such that

E(x, y, z) = F−1
z

[
Ĥ(kx, ky, z)Fx,y [E(x, y, 0)]

]
,

E(kx, ky, kz) = Ĥ(kx, ky, z)Ẽ(kx, ky, 0).
(6.10)

Choice of z is arbitrary, but as z grows, errors arising from the approxima-

tions used become more pronounced. The computational domain of z is not
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necessarily restricted to the same computational domain in x, y, but in the

Fourier plane, δ̃z is limited to the same range and resolution as δ̃x.

6.3 Blue-Detuned ODT Simulations

The optics used in the modelled system use f = 12.5 mm, λ = 800 nm,

Crucially, δx, δy is limited by the pixel size of the SLM, as this is the spa-

tial resolution of the experiment. The Hamamatsu X13138-02WR SLM uses

square pixels of size 12.5 µm, on a 1272× 1024 pixel grid. To simulate reso-

lutions below this pixel limit, the field must be supersampled, such that the

phase across a region of pixels is considered to be constant, although con-

trol at this subsampled resolution is not possible [145]. The total simulated

power used was 5 mW per trap site in the trapping plane; this assumes ideal

efficiency along all paths, and so will require a scaling factor between input

power and trap power.

Initial hologram generation uses the adaptive weighted Gerchbeg-Saxton

(awGS) algorithm, as defined in [144]. For fast computation, a GPU2 is

used for awGS calculations using the CUDA package [198]. The maximu-

mum resolutions Nx, Ny here is up to 212, such that the memory required for

calculation was < 5 GB, the dedicated memory of the GPU. For the highest

possible resolution as presented in this chapter, Nx, Ny = 213. These simula-

tions took place on CPU using 20 GB of internal memory, trading speed for

precision. The simulated field covers the entire SLM screen without loss and

the simulated spatial resolution at the trapping plane is δi = 97 nm.

6.3.1 Single Traps

To first reproduce the results of [132] and demonstrate that the trapping

scheme can theoretically trap both ground state and Rydberg atoms, the
2NVIDIA Quadro P2000
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Figure 6.3: Energy profiles of the dipole potential of a ground state atom in
a blue-detuned ODT. Total power is 5 mW in the trapping plane. Figure (a)
shows a colour plot of the trap in two dimensions, with the trap minimum
and saddle points marked by a blue + and red crosses respectively. Figures
(b) and (c) show the energy spectrum across the radial and axial planes, with
the trap minimum in that axis marked by a blue dashed line, and saddle point
energy by a red dotted line.

generation of a single trap is simulated. The results of the angular spectrum

method on an input beam of 1/e2 waist size 3 mm are shown in Fig. 6.3.

The trap depth of the blue-detuned ODT is determined by the minimum

energy required to escape the trap. This is determined by the saddle-points

of the trap in three dimensions. This forms a locus of points in a circle

around the trap. By taking a cut in the x − z or y − z planes, a sample of

these points can be measured to find the trap depth. Simulations here were

calculated using 5 mW total power in the trapping plane. This shows a trap

depth of 131.7 µK, or 26.34 µK/mW. Trap frequencies can also be measured,

by taking the second derivative of the trap potential at the bottom of the
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Figure 6.4: Calculated Rydberg potential energy within a blue-detuned ODT.
Potential is measured for a range of n values at the trap minimum and saddle
points, to find the effective trap depth. Calculated using a total trap power
of 5 mW in the trapping plane.

trap. Fits to the energy profiles are used to find ωr/2π = 23.7 kHz, ωz/2π =

10.7 kHz in the radial and axial directions respectively.

Analysis of the pondermotive Rydberg potential at the trap minima and sad-

dle points demonstrates trap effectiveness in trapping Rydberg states. This

is shown in Fig. 6.4. Cubic splines are used to interpolate simulated poten-

tials, which are assumed to be smooth. Numerical integration is calculated

using RK4 methods [199]. As n grows, the trap minimum becomes much

greater than zero as the wavefunction intersects with a region of non-zero

intensity. Both the trap depth is reduced and the force of the field on the

Rydberg atom is increased, such that Rydberg atoms will be both heated

and less effectively trapped. At n = 80 and 5 mW in the trapping plane, the

traps simulated above have a minimum potential of 3.2 µK and trap depth

of 16.2 µK. For atoms cooled to 1.5 µK, as shown in Sec. 3.3.3, the energy

added as the blue detuned ODT is turned on is not enough to eject the atom

from the trap. As such, the blue detuned ODTs can be expected to trap

Rydberg atoms at n = 80, if there is no heating as atoms are loaded into the

traps. This is not true for n = 100 atoms, where the calculated potential at
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Figure 6.5: Plots showing how trap characteristics change with input waist.
Figures (a) and (b) show trap energies at ground state dipole potential and
Rydberg ponderomotive potential respectively. Figure (c) plots trap frequen-
cies, calculated from fitting a quadratic function to the bottom of the trap.
Figure (d) plots the distance from the trap minimum to the saddle points R
as a function of input waist. A R = 1/w2 line is included as a guide for the
eye. A total power of 5 mW in the trapping plane is used for all calculations.

the minimum is close to the trap depth, while at n = 120, the trap depth

approaches zero.

The measured potential, and thus the trap minimum and depth, scales lin-

early with intensity, and thus input power. Trap frequency is based on the

second derivative of power at the minimum and so scales with the square of

input power. As such, these values, calculated at 5 mW of input power, can

be scaled appropriately.
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Scaling With Input Waist

Keeping all other parameters identical, the traps can be scaled by adjusting

the input waist w. A smaller input waist scales to a larger trap in the Fourier

plane. These larger traps have lower peak intensity and looser trapping,

leading to a reduced trap depth and frequency, in exchange for trapping

higher-n Rydberg atoms. This is seen in 6.5(a) and (b). The trap minimum

at the ground state rises above 1 µK for w = 3.6 mm. Given that the SLM

is 12.8 mm wide on its longest axis, the distance from the centre of the

beam is within two beam waists of the edge. As such, a small but signficant

proportion of the input field is not diffracted from the hologram and the

destructive interference condition is no longer met, and so the intensity at

the centre of the trap increases. This can be corrected for by scaling rπ.

This remaining intensity at the minimum is not the primary cause of an

increase of the minimum Rydberg potential. For an n = 80 Rydberg atom,

a 5 µm input waist leads to a trap minimum comparable to the trap depth,

indicating that a Rydberg atom not at the centre of the trap would experience

strong heating relative to free-fall and fail to be trapped. An increase in the

trap minimum occurs both due to incomplete destructive interference in the

centre of the trap and the trap being small enough that the Rydberg atom

begins to be affected strongly by the sides of the potential.

Trap frequencies for ground state atoms are used as a measure of the tightness

of the trap, which scale roughly linearly with input waist in both radial and

axial directions, as shown in 6.5(c). The size of the trap can be measured

as the distance from the trap minimum to the saddle points, Rsaddle. This

scales as 1/w2, as shown in 6.5(d).
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Figure 6.6: Plots showing how the trap dipole potential changes using an
apertured waist, compared to an equivalent input beam waist. Figures (a)
and (b) show trap potential in the x − y and x − z planes respectively, for
an unapertured beam with input waist w0 = 2.013 mm. Figures (c) and
(d) show the same, for an apertured beam with input waist w0 = 3 mm,
weff = 2.013 mm.

Scaling With Input Beam Aperture

Changing w exactly is not always possible in an experimental configuration.

As the initial conditions require a collimated beam incident on the SLM, a

collimated beam can be reshaped using a combiantion of lenses in a beam

scaling telescope. The beam incident on the SLM is thus limited by the

combination of lenses available and the input beam waist.

To effectively reduce the input beam waist without requiring any further

optics, an aperture mask is used on the SLM. By setting the phase of the

SLM to zero in a radius around the input waist and scaling the π phase mask

appropriately, the effective waist of the beam is smaller. The light reflecting

off the zero-phase section is reflected without contibuting to the trap, thus

increasing trap size at the cost of efficiency. In the experiment, the trap



Chapter 6. Blue Detuned ODTs 146

1.5 2.0 2.5 3.0

weff (mm)

0

50

100

150

200
|6
S

1
/
2
〉(
µ

K
)

T
ra

p
D

ep
th

(a)

No Aperture

Aperture

1.5 2.0 2.5 3.0

weff (mm)

0

5

10

15

20

|8
0
S

1
/
2
〉(
µ

K
)

T
ra

p
D

ep
th

(b)

No Aperture

Aperture

1.5 2.0 2.5 3.0

weff (mm)

0

10

20

R
ad

ia
l

T
ra

p
F

re
q
u

en
cy

(k
H

z) (c)

No Aperture

Aperture

1.5 2.0 2.5 3.0

weff (mm)

0

5

10

15

R
sa

d
d
le

(µ
m

)

(d)

No Aperture

Aperture

Figure 6.7: Plots showing how trap characteristics change with clipped
waists. Figures (a) and (b) show trap depth at ground state dipole po-
tential and Rydberg ponderomotive potential respectively, for apertured and
non-apertured beams. Figure (c) plots radial trap frequency, while (d) plots
Rsaddle. Trap size is close for both plots, but trap depths and frequencies
are lower, indicating looser potential gradients and reduced extrema. All
simulations use a total power of 5 mW in the trapping plane, although mask
apertures would be less efficient in utilising input light.

light uses a diffraction grating pattern to shift the light in the imaging plane

away from the origin, while in simulation this light can be removed directly

by setting amplitude to zero. The mask aperture adds further diffraction

effects, as shown in Fig. 6.6.

For an aperture of radius ra, the required π-phase radius rπ for maximal
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destructive intereference scales as

rπ = w0

√√√√√ln

 2

1 + exp
(
− r2a

w2

)


= weff

√
ln 2,

(6.11)

where

weff = w0

√√√√
1−

ln
(
1 + exp

(
−
(
ra
w

)2))
ln (2)

, (6.12)

in comparison to Eq. 6.4.

Comparitive plots for apertured and unapertured waists are seen in Fig. 6.7.

These plot trap parmeters using an input waist w0 = 3 mm with an aperture

to provide weff , compared to simply using weff = w0 with no aperture. Power

is rescaled such that the power at the atoms is both 5 mW, although the

aperture technique does reduce the total efficiency of the system. This shows

that trap depths are consistently lower for apertured beams, despite the size

of the traps being consistent. Radial trap frequencies are also greatly reduced,

indicating a looser trap potential. As such, adding an aperture induces a loss

in efficiency twice, both by reducing trap depth and reducing the power at

the atoms relative to input power.

6.3.2 Blue Detuned ODT Arrays

The dynamics of a single trap differ from those generated in an array. As the

awGS algorithm targets only the intensity in the Fourier plane, the focussed

Gaussian spots in the target plane will be of different phases. When these

spots are expanded into the traps, the traps can interfere inhomogenously.

As such, the traps become asymmetric, as seen in Fig. 6.8.

Figure 6.9 is the intensity profile traps in a 5×5 array of blue detuned ODTs,

spaced by 8 µm, with 1/e2 input waist of 3 mm. In this case, trap depths
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Figure 6.8: Plots showing the energy potential of an array of blue-detuned
ODTs. Figure (a) is in the x− y plane and (b) in the x− z plane, taking a
cut through the central column of traps.

average to (129.6 ± 24.7) µK across all traps for ground state atoms, and

(13.8 ± 2.1) µK for Rydberg atoms. The minimum potential for Rydberg

atoms varies from a minimum of 1.9 µK to a maximum of 4.8 µK. The trap

size parameter Rsaddle averages to (3.13 ± 0.23) µm. Quoted errors here are

the standard deviation in values over 25 traps. The intensity profile shown

in 6.9 shows how along z axis there exists interference effects, causing rapid

oscillation in trap potential of period λ/2. As such, the traps less resemble

a harmonic potential.

6.4 Ground State Trapping Experiments

This section will detail the experiments performed to realise the trapping of

an array of atoms into blue detuned ODTs at the ground state. As the total

power of the 800 nm laser is less than that of the 1064 nm laser, and the

lower trap depths generated by blue-detuned ODTs relative to red-detuned

ODTs, initial loading is performed in the red-detuned ODTs and atoms are

transferred to the blue-detuned ODTs.
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Figure 6.9: Plots showing ground state dipole potential in an array of traps.
Figure (a) plots the axial profile, with figure (b) along the x-axis. In this
case, multiple traps can be seen.

For these experiments, a 7×7 array of red-detuned ODTs was used at 20 µm

spacing, such that Rydberg experiments at n = 80 will have no atoms within

the blockade radius, as seen in Fig. 6.10(a). Traps are indexed from 0 to 48

based on their position in the red-detuned ODT array. The spacing of the

blue-detuned ODTs can be seen in the first imaging plane, before magnifica-

tion, in Fig. 6.10(b). These traps are substantially far apart, such that the

traps do not interfere, as well as avoiding Rydberg blockade effects. Transfer

between traps occurs over a period ttransfer, typically 50 µs. The full experi-

ment timeline is seen in Fig. 6.10(c).

6.4.1 SLM Alignment Methods

The first stage of experimentation for generating effective traps is to have the

generated light fields be at the atoms. Given the scale of magnification in this

experiment and the small scale of the structured light, initial alignment with

mirrors into the chamber can only give limited results. For fine alignment,

more reliable and measurable small adjustments are needed. Also required

is information regarding the centre of the input beam and the size and shape
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Figure 6.10: Arrangement of ODTs used in this section. Red detuned arrays
form a 7 × 7 grid, with a 5 × 5 grid of blue-detuned traps overlaid. Fig
(a) is the expected trap positions with indices, while (b) is an image of the
blue-detuned ODTs in the first imaging plane, before 19.5× demagnification
into the chamber. The large bright spot is the zeroth order of the hologram.
Fig. (c) is the experimental timeline.

of such. This subsection will detail how to use the SLM itself to correct for

beam alignment.

Zernike Polynomial Corrections

For the purpose, phase modifications based on Zernike polynomials were

used to modify the input hologram. The Zernike polynomials are a set of

continuous and orthogonal polynomials over a unit circle that well describe

aberrations [200]. The use of these polynomials in correcting for beam aber-

rations is a demonstrated technique in holography[201–203], although in this

case it is to correct for alignment without information about the aberrations.

Zernike polynomials are defined by Zm
n (r, θ) over the unit circle 0 ≤ r ≤ 1.
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Figure 6.11: Input beam profile using the SLM as an analysis tool. Figure
(a) plots the relative proportion of diffracted light from the SLM, where
each region plotted in the colour plot is the size of the generated diffraction
grating. Figure (b) plots the sum of these intensities across an axis, with fits
to a Gaussian waist included, where wx = 3.18(6) mm, wy = 2.81(4) mm

This unit circle is recentered and rescaled over the input beam. Of the

polynomials, the Z0
0 order polynomial applies only a global phase shift to the

beam, and so is discarded. The two first order polynomials Z±1
1 apply a shift

along an orthogonal Cartesian axis in the focal plane, while the Z0
2 polynomial

acts as a shift in the depth of the focal plane. These are the most critical

polynomials for initial alignment, as they correct for small misalignments

through mirrors or lens position. The remaining polynomials correspond to

a set of aberrations to be applied or corrected for, in order to maximise

trap effectiveness. The experimental was capable of alignment up to the full

range of order n = 4 polynomials. Polynomials only up to the n = 3,m

order are used however, due to insenstivity to higher orders. The form of the

polynomials and alignment data can be seen in Chapter A.

SLM Beam Profiling

The Zernike polynomials must be applied to the SLM centered on the input

beam. This also applies to the π phase mask and the aperature radius used.

For this purpose, an SLM beam profiling process was used.
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Figure 6.12: Initial Zernike polynomial alignment process, where trapped
atoms are blown away by applied 800 nm light. Each data set corresponds
to the Zernike polynomial coefficient.

Using the method first described in [204], the SLM is set to a constant phase

across the screen, except for small regions that display a diffraction-grating

style pattern. When the resulting field after the lens is reimaged, the power

diffracted from grating region is proportional to the power incident on that re-

gion of the SLM. Undiffracted light is blocked, and the power of the diffracted

regions is measured by imaging on a camera3.

As shown in Fig. 6.11, this was used to measure an input beam of 1/e2

waist wx = 3.18(6) mm, wy = 2.81(4) mm, with a beam centre at x =

−0.39(2) mm, y = −0.44(2) mm relative to the centre of the SLM. The

input beam waist is therefore not symmetric as is ideal, but as √
wxwy =

2.99(3) mm, this closely approximates the previously introduced simulations.

This adjusted centre is used for the Zernike corrections, the π-phase mask

and the pseudo-aperture.
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6.4.2 Blow-Away Alignment

Initial alignment is performed through using the SLM to remove atoms from

the traps with minimum power. By not applying a π phase mask and thus

generating tightly focussed Gaussian beams, the 800 nm light potential re-

moves atoms from the 1064 nm red-detuned ODTs. Maximising the destruc-

tive potential at minimum power is achieved with optimal alignment, when

the focal plane of the 800 nm light matches that of the red-detuned ODTs

across the entire array, and each point on the 800 nm array generated matches

a corresponding trap.

As the most critical to initial alignment, only the n = 1 and n = 2,m = 0

Zernike polynomials are used for this initial alignment. Results are seen in

Fig. 6.12, for a single round of optimisation.

6.4.3 Trapping In Blue-Detuned ODTs

Once initial alignment is completed, the π-phase mask is applied. The

experimental sequence used must maximise transfer from the red-detuned

ODTs to the blue-detuned ODTs and hold them. This hold period should

be long enough that any atoms remaining must have been trapped in the

blue-detuned ODTs. The atoms must then be transferred back to the red-

detuned ODTs for imaging. A period of tRelease = 100 ms is used for this (see

Fig. 6.10 for experiment timeline).

As shown in Fig. 6.13, initial trapping populations of 55(23)% was seen,

which improved to 89(6)% after optimisation with Zernike polynomials up

to and including n = 3. The range of iterative scan data is shown in A.

Measurements of trapping rate do not correct for loss in imaging or through

limited trap lifetime, and does not discriminate between loss transferring into

the blue trap and loss transferring out of the blue trap.
3Thorlabs Zelux CS165MU1
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Figure 6.13: Demonstration of optimising blue trapping performance with
Zernike polynomial scans. Fig. (a) shows results of scanning selected Zernike
polynomials of n = 1 and n = 2 to find maximal trapping probability. Fur-
ther scans were performed up to n = 3, but are not shown for clarity. These
can be seen explicitly in the Appendix. Fig. (b) is trap performance after
maximising trap destruction but before Zernike polynomial scans, and (c) is
after 7 rounds of optimisation, averaging 89(6)% survival. The trap index
refers to labelling of traps based on the underlying array (see Fig. 6.10).

Trapping performance was maximised at a pseudo-aperture radius of 2.0 mm,

for an effective waist of weff = 1.60(2) mm. With this radius in place, the

maximum power used was 9.7 mW per trap, although trapping performance

was maintained at reduced powers down to 6.0 mW, as shown in Fig. 6.14.

For this maximum power, the minimum trap potential is expected to be

0.004, 0.047 µK for ground state and n = 80 Rydberg atoms respectively.

The trap depths for the same are predicted to be 47.2, 6.77 µK, while ground

state trap frequencies are ωr/2π = 4.33 kHz, ωz/2π = 1.00 kHz.

Also shown is trapping performance as rπ varies, which is maximised at the
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Figure 6.14: Trapping performance as power per trap, rπ and trelease are
adjusted, in (a), (b) and (c) respectively. The red dotted line in (b) is the
predicted ideal value for rπ for w0 = 3.0 mm, ra = 2.0 mm. The line in (c)
is a fit to an exponential decay, demonstrating a lifetime of 6.5(4) s. The
y-axis is set to a log scale.

theoretical optimum for the input waist and aperture radius used.

Atoms held in the trap are subject to the same losses due to collisions with

background atoms and trap heating. Data shown in Fig. 6.14(c) shows an

average lifetime of τ800 = 6.2(4) s across the array. From this, the lifetime

at zero hold time can be taken as the total transfer efficiency, plus losses in

imaging, for a transfer efficiency of 96.8(5)%.

This measured lifetime is lower than the τ1064 = 12(1) s lifetime of the red-

detuned ODTs during this experiment, but as the atoms spend substantially

less time in the blue-detuned ODTs, this has a reduced impact to experimen-

tal efficiency.
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Figure 6.15: Timeline for Rydberg excitation in blue-detuned ODT experi-
ments. Timeline is not to scale. . The 1039 nm light is on for 8 µs consistently
to reduce warm-up effects and to maintain parity with experiments in free-
fall (see Chapter 5).

6.5 Trapping Rydberg Arrays

With arrays of atoms now trapped in blue-detuned ODTs, experimentation

can take place to trap Rydberg atoms. The experiment timeline is similar

to that used for typical Rydberg experiments seen in Chapter 5, although

with the addition of the 800 nm light to trap atoms. To smoothly transfer

from blue- to red-detuned ODTs, a reduced recapture power for red-detuned

traps is used. This reduced power is less effective at ejecting Rybderg atoms,

and so contrast is reduced. The timeline for these experiments is seen in

Fig. 6.15.

6.5.1 Rydberg Excitation In Blue Traps

Experiments involving the Rydberg sequence were performed in identical

conditions, where atoms were trapped in blue traps for 300 µs. For a control

experiment, the blue-detuned ODTs were released as the atoms undergo Ry-

dberg excitation in free fall. This free-fall period is for 8 µs (as used through

Chapter 5), and are recaptured in red-detuned ODTs afterwards, and held

for the remaining period to match the blue-detuned trap experiment dura-

tion. This is compared to the same traps being held in blue-detuned ODTs
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Figure 6.16: Rydberg excitation in blue-detuned ODTs. Fig. (a) is the data
for spectroscopy exciting to the

∣∣80S1/2

〉
state, including fits to a Gaussian

profile. The x−axis refers to the offset of the 1039 nm frequency from the
ULE cavity carrier. Trapped atoms experience a resonance frequency shift
of 0.45(7) MHz. Fig. (b) is a Rabi oscillation at the same offset frequency,
including fits to a predicted Rabi oscillation. Fits to trapped atoms show
a Rabi frequency of ΩR/2π = 3.09(8) MHz, and 2.7(2) MHz for atoms in
free-fall, where both oscillations are at the resonance frequency for atoms in
free-fall.

and recaptured in red-detuned ODTs at the end of the sequence. As such,

any difference in atom survival is due to the presence of the blue traps during

Rydberg excitation.

The data can be compared in Fig 6.16, which shows the effects of Rabi

oscillations in Rydberg light on atoms in the ground state in both blue-

detuned ODTs and in free-fall. Atoms within blue-detuned traps have a

resonance frequency shift of 0.45(7) MHz, caused by the differential AC Stark

shift on the Rydberg transition by the blue-detuned ODTs.

Rabi oscillations at the free-fall resonant frequency demonstrate a Rabi fre-

quency of 2.7(2) MHz in free-fall and 3.09(8) MHz in blue-traps. The faster

driving is caused by off-resonant driving, further confirming the presence of

an AC shift caused by the blue-detuned ODTs.



Chapter 6. Blue Detuned ODTs 158

6.5.2 Rydberg Decay In Blue Traps

To determine if the blue traps could trap Rydberg atoms beyond a few periods

of Rabi oscillations, the decay rate of the Rydberg state was measured. For

this experiment, atoms are excited to the
∣∣75S1/2

〉
state with Rabi frequency

Ω/2π = 2.69(1) MHz. The decay period for this oscillation was measured at

τ = 2.5(4) µs. After a π pulse, atoms are held in blue traps for thold, and

recaptured in red-detuned ODTs. Remaining Rydberg atoms are ejected,

while atoms that have decayed to the
∣∣6S1/2

〉
ground state are recaptured.

Results for this experiment are seen in Fig. 6.17. The minimum hold time

used was 10 µs, which is two orders of magnitude greater than the π time, but

the recapture population remains the same, within error. Recapture proba-

bility shows the expected 1/e decay curve, with decay period τ = 0.33(3)ms.

Recapture probability is limited to a maximum of 0.46, as a proportion of

atoms decay to anti-trapped states in blue traps.

This decay period is double the expected 0.164 ms lifetime for n = 75 at

room temperature, using data from [63]. This is believed to be due to how

the Rydberg state decays; some decay paths are into other long-lived Rydberg

states or states that are ejected from the 1064 nm states. As such, recapture

probability does not necessarily map directly to population in the prepared

Rydberg state. This data does indeed show that Rydberg atoms can be held

in blue-detuned ODTs for long periods of time, comparable to the Rydberg

state lifetime.

6.6 Summary

Through this chapter, the process to generate arrays of blue-detuned ODTs

using an SLM has been shown. At the atoms, 9.4 mW of light is used per

trap, and can hold atoms with average lifetime τ800 = 6.2(4) s. Optimisation

of atomic lifetime was achieved by implementation of Zernike polynomial
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Figure 6.17: Rydberg decay experiments in blue-detuned ODTs. Figure
(a) shows coherent Rabi oscillations in blue-detuned ODTs, with minimum
recapture probability at maximum population in the Rydberg state. The red-
dashed line is a fit to the expected Rabi oscillation, with Ω/2π = 2.69(1) MHz
and decay period τ = 2.5(4) µs. Figure (b) is an experiment where atoms are
prepared in this maximum population and held in the blue-detuned ODTs
for a period thold. Fits are a 1 − exp(t/τ) curve, constrained to match the
initial minimum probability after a π pulse. This decay period is measured
to be τ = 0.33(3)ms.

phase shifts on the hologram for small adjustments, which would otherwise

be unfeasible for manual alignment. These same traps are also capable of

trapping Rydberg atoms, including for coherent Rabi oscillations and holding

in place for long lifetimes. Some 800 nm intensity remains on the atoms,

and produces an AC Stark shift on the Rydberg transition. The small AC

Stark shift seen on the Rydberg transition is used in Chapter 7 to implement

analogue Rydberg quantum computing.

To enlarge the traps to better suit trapping of Rybderg atoms and increase

survival, a zero-phase pseudo-aperture was used. This is a phase pattern on

the SLM that was simulated to increase the size of the features in the Fourier
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plane, at the expense of efficiency. Simulations also show that diffraction ef-

fects from limited beam aperture also occur. Another cause of inhomogeneity

is interference between traps, which causes asymmetry between and within

individual traps.

Further experimental upgrades are planned to adjust the relay telescope for

greater magnification into the chamber. The current system produces traps

too small for effective trapping without reducing the input waist (and thus

reducing the SLM effectiveness) and also adding the pseudo-aperture. Ad-

justing the relay telescope would allow for larger traps with improved effi-

ciency and reduced diffractive effects. These diffractive effects reduced trap

efficiency substantially when within the blockade radius of 10.5 µm. With

these improvements, dipole-dipole interactions between Rydberg atoms while

remaining trapped can be shown.

These experiments led to a greater understanding of both the experimental

procedure required for alignment of the blue traps, and the iterative processes

needed for beam shaping based on feedback from interactions with the atoms.



Chapter 7

Local Rydberg Control For Graph

Optimisation

7.1 Introduction

The SQuAre experiment is designed as a scalable quantum computing plat-

form. The previous chapters have detailed the construction of various ele-

ments used for such a platform, but have not yet shown quantum computa-

tion, rather elements to be used in quantum computation.

This chapter will show how the elements introduced in previous chapters can

be used or modified to be used in solving graph optimisation problems. The

particular problems solved here are first discussed in Sec. 1.3, which are the

Maximum Independent Set (MIS) and Maximum Weighted Independent Set

(MWIS) problems. Experimental details of solving both the MIS and MWIS

problems on the SQuAre platform are shown in Sec. 7.2 and Sec. 7.3. This

can potentially scale to larger graphs, as shown in Sec. 7.4.

161
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Figure 7.1: Illustration of some basic graphs. Figures (a) and (b) both
contain four vertices, with different connecting edges. (b) is the maximally
connected four-atom graph. (c) is an example unit disc graph. Vertices
separated by ≤ r are connected by an edge, as shown in a red dashed circle
around one vertex.

7.1.1 Defining Graphs

Graphs are defined by a set of vertices and a set of edges. Each edge starts at

a vertex and ends at a vertex, defining a subset of the vertex set. Vertices are

connected if an edge set exists that contains both. Following the definition

laid out in [205], this thesis is only concerned with graphs where edges are

undirected, duplicate edges are ignored, and an edge cannot contain the same

vertex twice. An edge defines the connection between two vertices.

In the abstract sense, vertices and edges are simply defined by two sets

containing elements, but each element of the set can contain properties as

well. By granting each vertex or edge a weight, subsets that would otherwise

look identical can change. Vertices can also be defined by position.

Of particular use in this chapter will be the unit-disk graph (UDG). This

is the graph defined by the set of vertices where all vertices within a unit

distance of each other are connected by an edge. Vertices outside this unit

distance do not have a connection. Graphs of this class are useful for use

due to the simple mapping to Rydberg atom systems; atoms are the vertices,

while the unit distance is the Rydberg blockade radius. Example graphs are

shown in Fig. 7.1.
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7.1.2 Graph Problems

Graph problems typically take the form of finding a subset of edges or vertices

that meet a set of conditions. An entire field of mathematics is based on the

study of these graph problems and so this chapter will not go into detail on

the specifics of the field. Of more immediate interest is methods of computing

solutions to given problems.

For example, a well-known and well-studied graph problem is the Travelling

Salesman problem. Given a set of towns, where each town is connected by a

known distance, in which order should one visit each town such that the total

distance is minimised, ending at the starting point? Reducing the statement

to a graph problem, towns are vertices, and distances are weighted edges.

Which selection of edges connects every vertex while minimising the total

weight? This problem is well-studied in part because, firstly, it maps closely

to many decision problems common today, from stock-picking in warehouses

to organising bus routes, and secondly, finding exact solutions is known to

be NP-complete [206].

Since the development of Shor’s algorithm in 1994, some problems have been

shown to be scale better in quantum systems in comparison to the best

known classical algorithms. Shor’s algorithm provides a quantum speedup

in integer factorisation that could dramatically change modern cryptography

and cryptanalysis [207], while Grover’s quantum search algorithm is known to

be optimal [208]. Solving difficult graph problems is an attractive proposal

for quantum computers, given that they are known to be classically hard

while also directly impactful in applications outside the laboratory.

7.1.3 Independent Sets

Of immediate interest to classical quantum computing and this thesis are

problems involving finding independent sets. These are the subsets of the
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Figure 7.2: Examples of maximal independent sets for the same graph. In
red are selected vertices that make up a maximal independent set. Figure
(a) is maximal, but not the maximum. Figure (b) is the MIS for this graph.
For each vertex in (c), a weight is specified. The selected vertices constitute
the MWIS.

vertices of a graph where no selected vertices are connected [209]. These

graphs are defined as maximal independent sets when no further vertices

can be added to the subset without violating the adjacency condition. For

example maximal independent sets, see Fig. 7.2.

The largest possible maximal set for a given graph is the maximum inde-

pendent set (MIS)1. Finding the maximum independent set of a graph is

known to be an NP-hard optimisation problem [209], although approximate

solutions on UDGs can be found in polynomial time [210]. Experimental

data of Rydberg atom optimisation on a king’s graph of up to 289 atoms

has been investigated, with some speedup for the hardest graphs compared

to the experimentors’ tensor network code [84]. However, these graphs have

been shown to be soluble for other classical annealing algorithms [211].

Should each vertex be given a weight, maximal independent sets can be

scored on the sum of the weights of the constituent vertices. The maximal

weighted independent set (MWIS) is the maximal independent set with this

highest score for a given graph and weighting. This problem is NP-hard not

just for finding exact solutions but also for finding approximate solutions for

some classes of graphs [212, 213]. For UDGs, this approximation is harder
1The MIS is not necessarily unique for a graph; degeneracy introduces further com-

plexity to the problem.
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than for the MIS case, but remains polynomial [214].

Solving for the MIS or MWIS of arbitrary graphs is a useful problem that

is difficult to solve classically for exact solutions. Neutral atom quantum

computing is naturally suited to these problems, and are a promising avenue

for demonstration of a real-world quantum speedup. Sections 7.2 and 7.3

will show how the SQuAre platform can be used to solve both.

7.2 Finding The Maximum Independent Set

7.2.1 Quantum Annealing

Cost Functions

For some UDG with a set of vertices V containing points {ri} on a graph

with edges E defined by {ri, rj} ∀ |ri − rj| < rd, where rd is the unit-disc

radius, a selection of vertices can be made. For each point ri on the graph,

ni = 1 if selected, and ni = 0 if not, making a set N ≡ {ni}. There exists

also some adjacency matrix Ai,j such that Ai,j = 1 if {ri, rj} ∈ E, Ai,j = 0 if

{ri, rj} /∈ E.

This selection can be scored as HMIS, which is defined by

HMIS = −
∑
i

ni +
∑
i,j,i<j

UAi,jninj. (7.1)

This is the maximum independent set cost function, where U is an arbitrarily

large cost penalty for selecting adjacent vertices. If U ≫ 1, this score is

minimised for the selection N that defines the maximum independent set

(MIS).

For a quantum computing experiment, we must find a Hamiltonian that maps

well onto this cost function. If this mapping holds, the ground state of the

Hamiltonian is also the minimum cost for the cost function. Finding the MIS
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is then a process of preparing this ground state.

Rydberg Hamiltonian

Compare now the Rydberg Hamiltonian HRyd. Atoms are prepared in an

array, defined by positions {ri}, where the unit radius is defined by the

Rydberg dipole-dipole potential Vdd, matching the UDG defined above. The

Hamiltonian is given by [75]

HRyd/ℏ = −
∑
i

(
Ωg,r

2
σx
i − δin̂i

)
+
∑
i,j,i<j

Vdd (|ri − rj|) n̂in̂j (7.2)

where Ωg,r is the Rabi frequency addressing the Rydberg transition∣∣6S1/2, F = 4,mF = 0
〉
→
∣∣80S1/2

〉
, σx

i is the Pauli x-operator, n̂i = |ri⟩ ⟨ri|,
δi is the local detuning on the ith atom, and Vdd(R) is given by Eq. 2.37. This

is the generic Rydberg Hamiltonian, which we can map onto the classical cost

function. In this case, the detuning term δin̂i in Eq. 7.2 maps to the selection

term ni in Eq. 7.1, while Vdd maps to the adjacency energy penalty U . For

this mapping to hold, Vdd ≫ δi∀i, in the same way U ≫ 1. For experiments

in finding the MIS, we measure n̂i by finding the probability of occupying

the ground state. As this experiment takes place in free-fall, the red-detuned

ODTs are used to eject Rydberg atoms at the end of the process. Missing

atoms are thus considered to be Rydberg atoms, and remaining atoms are

considered to be ground state atoms. As such, n̂i |g⟩ = 0, n̂i |r⟩ = |r⟩.

If atoms are prepared in the |g⟩ state, when δi ≪ 0, oscillations are far off

resonance and the system is in or near to the minimum energy eigenstate

of HRyd. If Vdd > δi > 0, such that δi is again off-resonance, the minimum

energy eigenstate of HRyd is the selection of atoms that represent the MIS.
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Figure 7.3: Example energy level diagram for a quantum annealing process.
H(t) is the energy of some eigenstate (shown in black lines) over time. This
can be the classical cost function as the input state is varied, or the eigenener-
gies of a varying Hamiltonian. By slowly varying H(t), a system prepared in
the ground state remains in the ground state, where its probability of moving
to the next excited state depends on the energy gap and rate of variation.

Quantum Annealing

By slowly varying the detuning value δi from negative to positive values

over time, the state can be annealed into the MIS state. A diagram of this

process is shown in Fig. 7.3, where the Hamiltonian is expressed as a function

of time. This can be compared to the classical cost function picture. For the

MIS case, the cost starts at 0, and is slowly reduced to the minimum possible

for that graph. The computation process then becomes a recurring iterative

procedure.

This holds true for slow variations of any Hamiltonian by the adiabatic the-

orem, and has been long considered as a quantum computing method with

potential to solve classically NP-hard problems with a quantum speedup

[215, 216]. This is known as a quantum annealing algorithm (QAA). In gen-

eral, after state preparation, the Rydberg Hamiltonian is applied, where the

detuning is varied from far-negative to far-positive detuned. This variation

is defined by some parameter set. For each parameter set, the classical cost

function is measured, and the parameter set varied. A closed-loop optimi-
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sation process can measure how the cost function varies with the parameter

set to find the optimal parameter set. The parameter set that produces the

lowest classical cost is then used to determine the lowest cost result. This

is the ground state of the Rydberg Hamiltonian and the lowest cost state

measured, and as such the solution to our input problem.

7.2.2 Optimising The Annealing Profile

Quantum annealing is limited by the timescale of the system. If δ̇i is too

large, the state is excited beyond the ground state and the MIS state is not

prepared. If the total time is too large, then ramp times exceed the coherence

time of the excitation. As such, δ(t) is crucial to define for this experiment.

To define the detuning ramps, an AWG is used to modulate the 459 nm

global beam. For operation on resonance, this is connected to an AOM in

a double-pass configuration at central frequency 200 MHz. Detuning at the

atoms is thus defined by a frequency chirp about this central frequency, such

that the AOM is driven at a frequency (200+ δ(t)/2) MHz. When δ = 0, the

beam is on resonance.

The definitions of the detuning ramps δ(t) are should be smooth, monotoni-

cally increasing and well defined for all t. The detuning ramps follow a cubic

profile of the form

δ(t) = at3 + bt+ c. (7.3)

The parameters a, b, c are defined by

a = 8sc/τ 3, (7.4)

b = 2c/τ − aτ 2/4,

c = δmax − δmin,

where s is a shape parameter, 0 ≤ s ≤ 1, and τ is the total ramp duration.
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Figure 7.4: Diagram of a generic cubic detuning ramp, where |δmax| > |δmin|.
Three values of s are plotted between 0 and 1. A value of 0 is a linear profile
(dδ/dt = const.), while a value of 1 is a strictly monotonic cubic profile where
dδ/dt = 0 at some point.

This defines a cubic ramp starting at δmin and ending at δmax. A diagram of

this ramp is seen in Fig. 7.4, with varying shape parameter. When s = 0,

the rate of change of detuning dδ/dt remains constant, while when s = 1,

dδ/dt = 0 at the midpoint of the ramp. This defines the bounds of the

detuning function such that the detuning profile is always monotonic, where

dδ/dt is at a minimum in the centre of the ramp.

Optimising δ(t) is achieved through a hybrid quantum-classical approach.

The final state is evaluated through finding the average cost ⟨HMIS⟩, as de-

fined in 7.1. A classical optimisation algorithm is then used to vary the

parameters used to define δ(t), in order to find the minimum cost.

This approach belongs to a class of adiabatic quantum optimisation algo-

rithms. Other similar experiments using a cubic detuning ramp have demon-

strated success in generating many-body ground states in other neutral atom

systems [82, 84, 163, 217].
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Figure 7.5: Array arrangement for 1D chain MIS state preparation. (a) is
the per-pixel maximum of 400 experimental images used for calibration to
show the initial trap arrangement, while (b) shows the targets to be filled.
Red empty circles define the arrays where atoms to be moved to in sorting,
while white circles are where atoms are to be removed. Filled black circles
are the reservoir. (c) shows the initialisation of an array of ground state
atoms, prepared in the MIS state.

7.2.3 Graph Construction And Labelling

To demonstrate MIS state preparation, a line of atoms is prepared. Lines are

defined along the axis of constant Rabi frequency such that Ωi is identical

for all atoms. Each atom is separated by 7 µm. Atom sorting prepares

each row, and data is post-selected for correct initial array preparation. The

measured Rabi frequency is Ω/2π = 2.70(2) MHz, such that the blockade

radius rB = 10.4 µm. MIS preparation is thus indicated by excitations of

every other atom, forming a Z2 ordered phase. This replicates the results

seen in [75], where states up to Z4 order were observed in 1D chains.

The array used for this experiment is shown in Fig. 7.5. Rydberg detection

is determined as before in previous chapters by destructive ejection from red-

detuned ODTs. Following the definitions used in Eq. 7.2, a missing atom is
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considered to be in the Rydberg state and thus labelled ‘1’, while a present

atom is labelled ‘0’. As each atom’s position is distinguishable, each atomic

position can be assigned to a position in a bit string.

7.2.4 Experimental Results

The MLOOP closed-loop optimisation package [218] was used to optimise

δ(t) to maximise the probability of generating the Z2 state. Parameters

to optimise are δmin, δmax, τ and s. Each parameter set is evaluated by

applying the ramp over 200 experimental runs and optimised to minimise

⟨HMIS⟩, where U = +1. The Rabi frequency was measured to be Ω/2π =

2.75(2) MHz.

The lowest scoring parameter sets over a series of experiments are then veri-

fied with 1000 experimental runs. Results are seen in Fig. 7.6 for the lowest

scoring run, where ⟨HMIS⟩ = −3.96(3), where errors are statistical. This pre-

pared the Z2 state with probability 0.32(2) for the top row and 0.24(2) for the

bottom row. This was at values δmin = −7.6213 MHz, δmax = +1.00 MHz,

τ = 2.415 µs and s = 0.0689, which is shown diagramatically in Fig. 7.6(c).

These results show that the MIS state can be robustly prepared using the

experimental system.

7.3 Finding The Maximum Weighted Indepen-

dent Set

7.3.1 Experimental Scheme

The optimisation function of the MWIS is given by

HMWIS = −
∑
i

wini +
∑
i,j,i<j

Ui,jAi,jninj, (7.5)
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(a) Top Graph
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(b) Bottom Graph
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Figure 7.6: Figs (a) and (b) show the measured probabilities after MIS ex-
periment optimisation for the top and bottom rows respectively. Only the
10 most probable strings are plotted for clarity. Highlighted with red bars
is the Z2 phase. (c) shows a diagram of the optimal ramp found for the 1
dimensional Rydberg chain state preparation

where Ui,j ≥ wiwj, wi ≥ 1 ∀ i.

Extending the scheme scene in Sec. 7.2 to solve MWIS problems requires fur-

ther development of the experimental scheme. The detuning applied in this

previous section δ(t) is a global detuning, controlled by applying a detuning

to the global 459 nm Rydberg beam. As per Eq. 7.2, δi is equal for all atoms

i in a global scheme. Weightings must be site-specific and therefore cannot

be applied by global beams alone.

As seen in Sec. 6.5.2, a differential AC Stark shift can be applied to the

Rydberg transition without applying such force to the Rydberg atoms that

they are removed from the experiment outright. In this case, the AC Stark
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Figure 7.7: Schematics for representing the graph weighting process. Figure
(a) shows the overlap of 1064 nm and 800 nm light onto atoms within the
chamber. Figure (b) shows a 3D render of atoms in a square lattice. 800 nm
light is applied to atoms within a square array, with intensity (shown by dif-
ferent colours) varying depending on weight. Atoms excited to the Rydberg
state are shown in red, with the Rydberg blockade radius shown as a red
circle around the central atom..

shift is applied by blue-detuned ODTs and so the AC shift is smaller than

the linewidth of the transition. This subsection will detail how these blue-

detuned holographic light potentials can be used to apply a differential AC

Stark shift to the Rydberg transition. Furthermore, this shift can be adjusted

to apply site-specific light shifts, leading to local Rydberg control. This is

shown in Fig. 7.7.

One caveat of this scheme is that the differential AC Stark shift is only

capable of positive shifts. To corectly anneal into the quantum ground state

from a negative to positive detuning, detuning ramps using only the AC

shift would thus cause sites with heavier weights to pass through resonance

first. This would blockade other less weighted sites and prevent maximal

entanglement. This property, of creating a highly entropic or ‘magic’ state,

as defined in [219, 220], is necessary for a quantum speedup effect [221, 222].

In this case, the global detuning scheme is retained for negative detunings,

where input frequency is chirped from δ = δmin to δ = 0. At resonance,

the global detuning is held constant and only then is the local light shift

applied by the holographic light potential applied. This scales linearly with
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Figure 7.8: Experimental timeline for the MWIS experiment. Figure (a) is
a schematic of the powers of the various input beams over the experiment
period, and is not to scale. Figure (b) is the detuning of the atoms relative
to resonance over the Rydberg interaction period. The detuning caused by
459 nm light through the frequency chirp, δ459, is shown in solid blue. The
detuning caused by 800 nm light through holographic dipole potentials, δAC ,
is shown dashed and dotted blue lines for weight 1 and weight 2 light respec-
tively.. Each of the two lines represents a different weighting, where δmax is
the shift on atoms with weight w = 1.

the input power of the light potential, from δ = 0 to δi = δi,max. At the end

of this ramp the input Rydberg interaction and the holographic light shift

is switched off, the atoms recaptured in red-detuned ODTs and the survival

measured. The timeline for this experiment is shown in Fig. 7.8.

The power of the 800 nm light, and thus the δAC applied to the atoms, is

controlled also by the AWG. A second channel is used, where the power of

the output RF waveform is calibrated to the diffraction power of the AOM.

Frequency is kept constant in this ramp. Through this method, δAC is kept

synchronised with δ459, and is at the intended power.

This alignment is, at first, to the pattern seen in Fig. 7.9. Subfigs. (a) and
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Figure 7.9: Arrangement of atoms in a weighted 1D line. The weighting is
given by the number within each atom, represented by a filled circle. Figure
(a) shows a pattern of equal weights, such that the MWIS matches that of
the MIS. Figure (b) shows an alternating pattern of weights 1 and 2, such
that the MWIS has opposite parity in each readout bit relative to the MIS.

(b) correspond to the top and bottom rows respectively. Here, two rows

are weighted using the holographic potentials, with the same array geometry

used in Fig. 7.5. In this case, the top row is weighted all at w = 1, while

the bottom row alternates between w = 1 and w = 2. Highlighted in red are

the MWIS solutions for each row. These MWIS solutions are the states that

minimise the cost for the classical cost function as defined in Eq. 7.5 and are

the ground states of the Hamiltonian defined in Eq. 7.5.

7.3.2 Calibration Of Site Specific Weightings

Initial alignment of the holographic light potential follows the method of

Sec. 6.4, where focussed spots of 800 nm light generated through SLM poten-

tials eject atoms from red-detuned ODTs. As the dipole potential of a ground-

state atom U ∝ I(r) as per Eq. 2.49, the force on the atom F ∝ −∇I(r) can

be minimised by reducing spatial intensity gradient at the atoms.

Once aligned, the SLM potential that generates the focussed spots is modified

with a pseduo-aperture, as introduced in Sec. 6.3. This acts as a spatial

broadening of the intensity, such that ∇I(r) is reduced at constant central

intensity. This pseduo-aperture reduces efficiency of the SLM system.

The AC Shift seen on each site is, at first, different for each atom, and not in

proportion to the required weights for this atom, as seen in Fig. 7.10. Direct
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Figure 7.10: Spectroscopy for the top and bottom rows of the array, on the
left and right columns of the plot respectively. Each colour refers to a single
atom. Data in black or blue corresponds to w = 1, while red and yellow
corresponds to w = 2. Figure (a) shows the two rows without weightings
applied, where all spectroscopic features are centered at the same point. The
x-axis is rescaled to the detuning from the resonance frequency, as found in
(a). Figure (b) is the same transition with the initial holographic potential.
Figure (c) is after multiple rounds of hologram iteration, such that the shift
converges to the required weights.

Rydberg spectroscopy measurements as the AC shift is applied through the

sequence measures this shift applied. This uses the process shown in Sec. 5.1,

addressing the 6S1/2 → 50S1/2 transition. This can be used for feedback to

further update the hologram used for the 800 nm SLM through the awGS

algorithm.

Direct measurement of this spectroscopy is seen in Fig. 7.10. The initial

hologram used does not correspond well to the required weights, and it is only
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Figure 7.11: Convergence process of the holographic potential for weighting
on 1D chains. Figure (a) is the RMS error for each iteration. Iteration 0
is measured before any feedback is applied, and corresponds to data seen
in 7.10(b). Figures (b) and (c) are the measured maximum shifts applied
by the holographic potential after 8 iterations of feedback, for the top and
bottom rows respectively. The dotted lines correspond to the detuning that
is rescaled to w = 1 in blue and w = 2 in red respectively.

after a procedure of iteration that δAC converges. In this iteration procedure,

the average shift is calculated relative to each atom’s intended weight to find

the average weighted shift. Where the atoms are shifted below the average

require an increase in power, and the hologram is adjusted accordingly. The

opposite applies for where atoms are above the average shift, where power is

reduced.

This is the same procedure as reweighting the AC Stark shifts seen in [87],

where the cause of the shift was the red-detuned ODTs, with the AC Stark

shift measured in a MW Ramsey sequence. Weighting can be controlled

by adjusting the relative weights δi. By rescaling the intended power, the

site-specific detuning can be rescaled relative to each beam. With multiple

iterations, this converges to a site-specific shift in the intended ratios. This

light is applied with minimal loss to the atoms when off-resonance. The iter-
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Figure 7.12: Results for both top and bottom graphs after closed loop opti-
misation, based on weights as shown in Fig. 7.9, and also shown in inset with
the MWIS highlighted. Figure (a) shows the results for all weights being
equal on the top row, while (b) shows the results for alternating weights, on
the bottom row. The MWIS solutions for equal and alternating weights are
highlighted in red and blue respectively. Only the 10 most common strings
are plotted for clarity.

ative feedback process is shown in Fig. 7.11, where the figure of merit used is

the RMS error from the average weight. The top row at w = 1 converges for

δmax/2π = 9.4(6) MHz. The bottom row has two weights, converging where

for w = 1, δmax/2π = 9.4(3) MHz, and for w = 2, δmax/2π = 18.9(6) MHz.

The Rabi frequency was at the same as for the unweighted case, where

Ω/2π = 2.75(2) MHz.

Direct comparison of the AC Stark shift at n = 50 and n = 80 shows a small

increase in magnitude, such that δn=80
AC = 1.10(3)δn=50

AC .

7.3.3 MWIS in 1D Chains

The closed-loop optimisation for this process used the bottom row for feed-

back, using Eq. 7.5 with Ui,j = wiwj. This experiment is set up such that

the ramp is applied to both rows of atoms simultaneously, allowing for direct
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comparison between the two weighting schemes.

The best result was then repeated with 1000 experiments to verify the results,

which is shown in Fig. 7.12. This prepared the target state with 26(2)%

probability for the top row and 19(2)% for the bottom row. As the same ramp

produced the MWIS solution simultaneously, a single ramp scheme produces

an approximately adiabatic Hamiltonian for a range of weights. This was

found with parameters δmin/2π = −7.74 MHz, δmax/2π = +7.65 MHz, τ =

2.97 µs and s = 1.00.

With this ramp prepared, this experimental sequence is stopped at points

along the ramp and the experimental state is read. This shows how the

initial state is annealed into a highly entangled state, before the desired

MIS/MWIS2 state is generated. Evolution of this state is seen in Fig. 7.13.

7.3.4 MWIS in 2D

MWIS Preparation

The theoretical construction of arbitrary graphs for quantum optimisation

in [85] introduces a 5-vertex weighted graph, which cannot be constructed

as a UDG. It can, however, be mapped to a larger 9-vertex weighted UDG.

With careful choice of weights for the 4 ancilla vertices, the ground state of

the 9-atom UDG maps to the 5-vertex graph.

Three weighting schemes are demonstrated, labelled graphs A, B and C,

which are shown in Fig. 7.14. For this graph, atoms are considered connected

if within 8 µm, an increase from the 7 µm shown in Sec. 7.3.3. This is due

to the restriction that distance between next-nearest neigbours (or diagonals

on the square grid) at this lower spacing is ≈ 9.90 µm, and as such is still

within the blockade radius of the interaction. This wider spacing restricts the

dipole-dipole interaction energy Vdd to 11.2(2) MHz, as measured in Sec. 5.3.
2In this case of the top row, the MIS and MWIS solutions are identical.
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Figure 7.13: Plots show the evolution of the measured state in the two graphs.
Each plot includes inset of graph with weights, with the MWIS highlighted.
Figure (a) is the top row, with the initially prepared state probability in
black and the MWIS solution probability in red. Figure (b) is the bottom
row, with the solution here in blue. Figure (c) is the evolution of the cost
function HMWIS, evaluated using data from the bottom row.

The ancilla weights wα and wβ are given by

wα = (w1 + w3)/2, (7.6)

wβ = (w2 + w4 + w5)/2.

These ancilla weights are not unique, but will define the required mapping

to find the MWIS ground state as long as wi ≥ 1. These graphs have weights

that correspond to different MWIS solutions, where for each graph the closed-
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Figure 7.14: Graphs used for 2D MWIS experiments. Figure (a) is the
mapping from a 5-vertex graph to a 9-atom UDG. Figure (b) shows the
three weightings tested, labelled A, B and C. Figure (c) is the per-pixel
maximum of 400 experimental images used for calibration showing the trap
site arrangement, and (d) is the array configuration, where hollow red circles
are target circle, black hollow circles are to be removed and filled black circles
act as a reservoir.

loop optimisation procedure is carried out. Measurements to calibrate for the

three graphs are shown in Fig. 7.15. The Rabi frequency was measured for

each graph as required for reweighting, such that Ω/2π = 2.75(6) MHz for

graph A, 2.83(3) MHz for graph B and 2.84(6) MHz for graph C.

The cost function used for this experiment is the cost HMWIS of the 9-vertex

graph. The detuning ramp δ(t) was optimised for minimising the cost of

graph A, and the same ramp used without adjustment on each of the two
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Figure 7.15: Measured weightings for graphs A, B and C. The left of each
graph shows the shift in MHz, while the right is the relative weighting this
corresponds to, rescaled to the minimum weight as w = 1.

other graphs B and C. This was found to be with parameters δmin/2π =

−3.416 MHz, δmax/2π = +4.326 MHz, τ = 1.673 µs and s = 0.686. Given

that the data shown in Fig. 7.15 is the maximum potential power from the

holographic potential, and that in all cases wiwj < Ui,jAi,j for the algorithm

to be valid, δmax was limited to a value such that this condition was not

broken. For the highest weight seen (w = 3), this corresponds to 3 · δmax =

13.58 < Vdd/2π, at the limits of the acceptable range.

The probability distribution for each graph is shown in Fig. 7.16, with mea-

sured data shown in Table. 7.1. For each case, the most-probable state

Graph Min(HMWIS) ⟨HMWIS⟩ P(MWIS, 9-Vertex) P(MWIS, 5-Vertex)
A -8 -3.6(1) 0.11(1) 0.22(2)
B -12 -6.9(2) 0.17(+0.03, -0.02) 0.31(3)
C -8 -3.5(1) 0.10(+0.02, -0.01) 0.22(2)

Table 7.1: Table comparing measured probabilities for 2D MWIS experiment.
Min(HMWIS) is the value of HMWIS in the ground state, and its minimum
value. ⟨HMWIS⟩ is the average value measured. P(MWIS, 9-Vertex) and
P(MWIS, 5-Vertex) are the probabilities found of measuring the ground state
for the 9-vertex graph and the 5-vertex subgraph respectively.
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Figure 7.16: Measured probabilities for graphs A, B and C, showing only
the 6 most common strings for clarity. Highlighted in red is the MWIS
solution for graphs A and C, while B is highlighted in blue. Ramp used
for this experiment is optimised for A and repeated for B and C. Figure
(a) is results for the 9 vertex graph, with the correct MWIS solution for that
graph highlighted in red. Figure (b) is results for the 5 vertex graph found by
disregarding the ancilla qubits, with the same highlighting. For all graphs,
the MWIS solution is generated with statistical signficance.

generated in the experiment was the expected ground state of the 9-vertex

graph. This ground state is the solution for the 9-vertex UDG and the initial

5-vertex graph. The probabilities measured just by reading the data qubits

and ignoring the readout qubits also showed a preference for the 5-vertex

MWIS solution.
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Figure 7.17: Measured MWIS probability over time for graphs A, B, and
C, shown in figures (a), (b) and (c) respectively. These are compared with
simulations using the ideal detunings (red, dashed line) and with measured
detunings (blue, dotted line). Figure (d) shows the detuning profile for this
ramp for comparison. This is the detuning for w = 1.

State Preparation Dynamics

Using simulation code by G. Pelegri, the dynamics for the 9-vertex graphs

were simulted directly, with parameters matching those used in the experi-

ment. This includes long-range dipole-dipole interactions beyond the block-

ade radius, spontaneous decay from the Rydberg state and scattering from

the intermediate state.
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Figure 7.18: Simulated optimisation results for Graph A. Experiment pa-
rameters are kept identical, with adjusted simulated power to maintain Rabi
frequency while adjusting intermediate state detuning ∆. Maximum proba-
bility of preparing the MWIS solution state increases with ∆.

As shown in Fig. 7.17, these simulations show comparable final state popu-

lations and dynamics, although it should be considered that the simulation

does not consider imperfect state preparation or imaging loss. For these sim-

ulations, χ2
ν = 0.59 for Graph A, χ2

ν = 1.10 for Graph B, and χ2
ν = 0.40 for

Graph C with no free parameters. This indicates a good simulation of the

experimental system.

Using these simulations, the maximum MWIS state probability that can

be generated is shown to be dependent on the intermediate state detuning.

Using a Nelder-Mead optimisation algorithm, the cubic ramp parameters

were optimised for the simulated MWIS state probability, as seen in Fig. 7.18.

This optimisation process uses the same experimental parameters, changing

only intermediate state detuning ∆ and changing the simulated power of

the 1039 nm beam to match the previous Rabi frequency. The optimisation

parameters used for the cubic ramps are the same as used in the closed-loop

experimental feedback experiment. This shows higher probabilities of MWIS

state preparation can be achieved, and thus indicates that one limiting factor

in this experimental scheme is scattering from the intermediate state.

Given that this annealing process follows the Kibble-Zureck mechanism [223,
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Figure 7.19: Plan of atom placement for gadgets. Here, each red point
indicates the placement of an optical dipole trap, and thus an atom. Black
lines are guides for the eye to indicate atoms within a Rydberg blockade of
10 µm. For further details on the weightings for each subgraph, see [85].

224], a reduced Rabi frequency and greater detuning ramp parameter range

is predicted to further improve annealing performance. This must, however,

be fast relative to the lifetime of the Rydberg state, the coherence time of

the Rydbeg driving system and within the limits posed by experiments in

free-fall.

7.4 Gadgets For Graph Problems

7.4.1 Gadgets For UDG Mapping

In order for a Rydberg simulator to find solutions to an arbitrary weighted

graph, this weighted graph must be encoded in a unit-disk graph. This map-

ping process is shown in Sec. 7.3, but a process for efficient mapping of a

generic weighted graph to a weighted UDG is required that can be imple-

mented on neutral atom systems. Solutions creating specific connectivity

between nodes can be managed by using anisotropic Rydberg states [225]

or by utilising ‘quantum wires’ [226], further strings of atoms to connect

otherwise distant nodes.

Special consideration is required for a selection of the sub-graphs used, named
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‘gadgets’, as shown in Fig. 7.19. First described in [85], this set of subgraphs

can be utilised to encode any weighted graph problem in a neutral atom

framework, with at worst an O(N2) overhead in trap sites, where N is the

number of traps used. This corresponds to a copy gadget, similar in process

to the aformentioned quantum wires, a crossing gadget and crossing-with-

edge gadget.

For each gadget, there are conditions that must be met to be a valid encoding.

Firstly, each graph is not necessarily on a Bravais lattice; any gadget encoded

within a greater graph will likely include atoms offset from said graph. Sec-

ondly, all gadgets require weightings to remove degeneracy, such that the

ground state of each gadget produces the ground state of the encoded graph

problem, even if the graph that is to be encoded has equal weightings on all

nodes. Finally, the spacing of each gadget is not uniquely defined; connec-

tivity of the graph is the crucial factor, and this connectivity is defined by

strong dipole-dipole interactions between atoms. This adds complexity to the

problem, given that Vdd ∝ |ri − rj|6 and so does not have a hard edge. The

so-called ‘tails’ of this interaction can lead to a small but not insignificant

energy penalty when not intended, where Rydberg transition is not block-

aded but still to a degree suppressed. These gadgets have use beyond MWIS

optimisation, as shown in [227] for a theoretical use in modelling quantum

dimers.

7.4.2 Crossing Gadget Configuration

The copy gadget and crossing-with-gadgets are comparable in geometry and

weighting to the 1D and 2D geometries shown in Sec. 7.3 respectively. The

‘crossing’ gadget requires a heavily weighted and dense central square, for a

high degree of connectivity. The array geometry used for the experiment is

shown in Fig. 7.20, where the central square is spaced by 6 µm on each edge.

Simulations be G. Pelegri optimised the weighting scheme and geometry of
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Figure 7.20: Trap array geometry for a crossing gadget experiment. Figure
(a) shows the standard deviation of experimental images of the array. Figure
(b) shows the array sites to be targetted. Red empty circles define the arrays
where atoms to be moved to in sorting, while white circles are where atoms
are to be removed. Filled black circles are the reservoir.

this scheme to optimise performance on the SQuAre platform. This is mea-

sured by maximising fidelity of the ground state of the crossing gadget with

the MWIS solution after a simulated adiabatic ramp. This was found to

use the minimum spacing of 6 µm for the internal square of atoms, with

weight 2.86, while the outer atoms are spaced 7.50 µm from their near-

est neighbours. Given the weak blockade regime in the central set, where

Vdd/2π = 7.8(2) MHz along the diagonals, this corresponds to a relatively

small maximum shift on atoms with w = 1 relative to the Rydberg transition

linewidth, which is dominated by the Rabi frequency.

Input 1039 nm frequency was adjusted, such that the intermediate state de-

tuning is instead ∆/2π = 1000(2) MHz. Rabi frequency was measured to be

Ω/2π = 1.24(6) MHz at this detuning, using the same input powers as before.

The weighting scheme, with experimental results, is seen in Fig. 7.21(a) and

(b).

The crossing gadget has four unique MWIS solutions, corresponding to the
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Figure 7.21: Crossing gadget experimental results. Figure (a) shows the ar-
rangement and indexing of atoms within the crossing gadget, where inner
red/yellow points indicate higher weightings compared to the outer, blue
atoms. Figure (b) shows measurements of the maximum applied AC Stark
shift, used for calibrating relative weightings. Figure (c) shows resultant
probabilities for these graphs, with MWIS solutions highlighted in red. Cor-
responding states are shown pictorally.

four-fold rotational symmetry of the graph arrangement. The total probabil-

ity of finding any of the four MWIS solutions was found to be 22(1)%, after

closed-loop optimisation. Each of the four solutions had measured probabil-

ities of 5.6(6), 5.6(6), 5.5(6), 5.4(6)%, as shown in Fig. 7.21(c).

This was found with parameters δmin/2π = −2.00 MHz, δmax/2π =

+2.00 MHz, τ = 3.00 µs and s = 1.00, at the limits of the parameter range

set. Even with these limitations, these experiments show promise for the use

of gadgets as a scalable method of analogue quantum computing in neutral

atom systems.
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7.5 Summary

The results shown in this chapter demonstrate analogue quantum computing

on a neutral atom system, which can be reconfigured to arbitrary graphs.

These results are also shown in [86]. While the largest graph demonstrated

in this work is 9 atoms, distributed in a 2D plane, the SQuAre platform

has been shown to be capable of arranging up to 100 atoms (see Chapter

4). Graph optimisation problems themselves are not limited to MIS/MWIS

problems. Related problems including minimum (connected) dominating sets

and minimum vertex cover are also proposed problems for a neutral atom

quantum computer to tackle [228].

Limitations on intermediate state detuning and Rydberg excitation power

are due to be addressed with the introduction of high power optics, while

field homogeneity is due to be addressed with the use of a further SLM for

beam shaping on the 1039 nm optical path. Reconfiguration of the 800 nm

holographic potential optics are also underway, as discussed in Sec. 6.6. In

summary, the SQuAre platform is capable of further investigation into the

optimisation of graph problems as an analogue quantum computer.

Recent work from [229] has used a similar process, where an SLM is used

for a bichromatic detuning ramp on a Rydberg system. This is a promising

development in using this scheme beyond graph optimisation, demonstrating

use as a quantum simulator in studying thermalisation dynamics of highly

entangled systems. These techniques and methods may prove of further use

in analogue quantum computation and simulation with neutral atom arrays.



Chapter 8

Conclusion and Outlook

8.1 Summary of Results

This thesis presents the research towards building a scalable neutral atom

quantum computing platform. Through this work, the experimental design

for constructing the system were introduced, with complementing details on

chamber construction, non-destructive readout and randomised gate bench-

marking shown in [87].

Firstly, the experiment is initialised by starting from an ultra-high environ-

ment with a Cs vapour cell and resulting in an array of atoms, each solely

occupying an optical dipole trap in an arbitrary and reconfigurable array.

These atoms can then be addressed through Rydberg, Raman or microwave

interactions. This hardware and the experimental processes are described

through Chapter 3.

Site occupancy in these arrays is stochastic, and so a sorting process is re-

quired for the construction of arbitrary arrays without defects. This is shown

through Chapter 4. Defect free array construction has been shown to be pos-

sible up to 100 atoms in this experiment, with experimental improvements

underway to improve experimental yield, such that this technique can scale

191
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to larger systems. As such, a 100 qubit array is possible within this system.

The dipole-dipole interaction between Rydberg atoms is used to mediate

qubit interactions within this experiment. Spectroscopic measurements to

the n = 50 and n = 80 Rydberg states are shown in Chapter 5, along-

side evidence of Rydberg blockade and direct measurements of the Rydberg

dipole-dipole van der Waals differential shift. Finally, the |Ψ+⟩ is prepared

and its fidelity measured, forming the initial basis of a digital quantum com-

puting scheme.

Chapters 6 and 7 each introduce novel techniques for using holographic

light potentials in neutral atom quantum computing experiments. The first

demonstrates using these holographic potentials to trap arrays of Rydberg

atoms in blue-detuned optical dipole traps. These traps can hold Rydberg

atoms in place, rather than experiments occurring in free-fall, and as such

may be of use in high-fidelity quantum gates or in increasing Rydberg inter-

action periods.

The second of these two chapters uses this holographic light shift to instead

demonstrate the platform’s capability of solving graph optimisation prob-

lems. The unweighted graph optimisation problem case is first demonstrated,

followed by weighted graph optimisation problems, specifically solving for the

maximum weighted independent set. Work on gadget graph structures ex-

tends this scheme to arbitrary graphs, with at-worst O(N2) overhead in the

numbe of traps required, where N is the number of graph vertices.

8.2 Outlook

8.2.1 Outlook For The SQuAre Experiment

The SQuAre experiment is capable of further optimisation and further ex-

perimental schemes. This includes further experiments on weighted graph



Chapter 8. Conclusion and Outlook 193

optimisation as it scales to larger graph sizes. Also possible is the exploration

of other quantum analogue computing and simulation experiments, such as

developing on previous work involving probing non-equilibrium many-body

dynamics using quantum adiabatic algorithms [75, 229], processes that seek

shortcuts to adiabaticity [190, 230, 231] or other quantum phenomena such

as quantum many-body scars [232, 233].

The same platform is also capable of digital quantum computing. Single qubit

fidelities on the SQuAre platform have already shown state-of-the-art single-

qubit gate fidelities [64]. Implementation of Rydberg gates through adiabatic

rapid passage [234] or other schemes [65, 151] can help pave the way towards

large and error-tolerant neutral atom digital quantum computing.

Assisting in these experiments is a range of hardware upgrades that are

planned or in current implementation. Mentioned before in this thesis is the

increase in accessible power of the Rydberg system, allowing for greater tran-

sition rates to the Rydberg state, or greater intermediate state detunings at

the same transition rate. The greater power is produced by a fibre amplifier,

with the limits of power currently set by the optical fibre used. Also due to

be implemented is an SLM for beam shaping to improve Rydberg interaction

homogeneity across the array.

Further upgrades in implementation are local addressing for both 459 nm and

Raman light. This uses the same hardware as the 1039 nm local addressing

beam (also used for array sorting), but would allow for site specific Rydberg

or Raman addressing. Hardware improvements to the sorting system promise

parallel sorting for substantial gains in sorting performance. Replacement of

the Teensy microcontroller with an arbitrary wave generator (AWG) would

allow for more precise and rapid control of the sorting tweezer, along with

parallel sorting operations. Calculation times for parallel sorting waveforms

can be calculated rapidly using hardware acceleration from a GPU [235].

This same hardware may be implemented into the local addressing systems
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for parallel single-qubit interactions with Rydberg or Raman beams.

Reconfiguration and optics adjustments are also underway to improve the

efficiency of the 800 nm hologram system, such that more atoms can be

addressed at once. Also possible is the introduction of further amplification

of the 1064 nm beam, such that an even greater number of atoms can be

trapped in an array at once.

8.2.2 Outlook For Neutral Atom Quantum Computing

Since the start of construction of the SQuAre experiment, neutral atom quan-

tum computing systems have spread rapidly. Recent results have demon-

strated 48 logical qubits in a reconfigurable array with two- and three-qubit

gates [68]. Private ventures such as Pasqal, QuEra and Atom Computing all

have or expect to have >1000 qubit systems [236], with goals of >100 logical

qubits encoded in these systems. Former limits on array sizes of > 1000

atoms at once have been met using using cryogenic systems for trap lifetimes

of > 6000 s [183]. The largest atomic array experiment has demonstrated

the trapping of > 6100 atoms concurrently with lifetimes > 1000 s, with long

lifetimes at room temperature through developments in titanium sublimation

pumps and repeated PGC stages [55].

Further developments in neutral atom system design is also progressing. Lo-

cal addressing at high speeds is undergoing development to address up to 104

atoms at once with uniform frequency and intensity, using combinations of

acousto-optic deflectors, spatial light modulators and digital micromirror de-

vices [237, 238]. Recent proposals using quantum Low Density Parity Check

(qLDPC) codes show dense data encoding using large arrays of identical

atoms, while retaining error-correcting capability [66, 239, 240].

The architecture of these quantum computing platforms is not static. A dual-

species approach promises improved multi-qubit gate fidelities and capabil-
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ities in error correction [241, 242], while alkaline-earth species experiments

promise erasure conversion, correcting errors and providing exceptional 2-

qubit gate fidelities [60]. These are expected to be new tool in a variety of

research fields as these quantum information technologies mature. Already,

a quantum speed-up is predicted for generative machine learning tasks on

neutral atom systems [71], while quantum simulators have shown dynamics

of interest to materials science that cannot be simulated classically [243, 244].

As the field of neutral atom quantum computing continues to develop, the

SQuAre platform can be expected to be part of that development.
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Appendix A

Zernike Polynomial Alignment

The Zernike polynomials are defined over a radius 0 ≤ r ≤ 1 and angle

0 ≤ θ ≤ 2π for some integers n and m, where n ≥ 0 and m is in the range

−n,−n + 2, ..., n − 2, n. The full definition of the Zernike polynomials is

given in [200]. For the polynomials used here, the unnormalised form of the

polynomials are shown in Table A.1.

This appendix includes the full range of calibration data for optimising blue-

detuned optical dipole traps as partially shown in Fig. 6.13. This covers the

range of Zernike polynomial prefactors up to Z±3
3 , where the scan is adjusting

the scaling prefactor for each polynomial. The magnitude of this polynomial

n m Zn
m(r, θ)

0 0 1
1 -1 sin (θ)
1 1 cos (θ)
2 -2 r2 sin (2θ)
2 0 2r2 − 1
2 2 r2 cos (2θ)
3 -3 r3 sin (3θ)
3 -1 (3r3 − 2r) sin (θ)
3 1 (3r3 − 2r) cos (θ)
3 3 r3 sin (3θ)

Table A.1: Table of unnormalised Zernike polynomials up to n = 3.
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at some coordinate refers to the degree of retardance applied by the SLM at

that coordinate. Should the prefactor be zero, this is equivalent to a constant

phase adjustment across the unit disc, and so no beam adjustment is applied.

The scans of the range of prefactors is shown in Fig. A.1.
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Figure A.1: Combined scans for Zernike polynomial alignment. Figures (a),
(b) and (c) show scans for Zm

1 , Zm
2 and Zm

3 respectively. Figure (c) shows
that by these higher orders, alignment is either insensitive over a wide range
or must remain at zero. Higher order Zernike polynomials are thus neglected.
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