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Abstract

With the recent collapses of many major fish stocks and North Sea cod

seeming to be the next on a long list, it has become apparent that our actions

have a great effect on fish populations. This thesis looks at how fishing can not

only have an immediate effect such as causing declines, but can also affect the

evolution of a stock.

A population model is built which is first examined for stability properties.

A comparison is also made of the model under fishing and when fishing is absent.

A measure of population fitness in terms of ability to invade other populations

is then established. This measure is used to examine the sensitivity of the model

to parameter values. This is also done for models which use different functions

to model life history in order to determine the importance of model choice.

Components of fishing mortality are considered with respect to their impact on

the stock, for both the main model and the alternate models. Finally, spatial

and seasonal considerations are added in a simple way to check if a single region

model can be trusted to model the whole of the North Sea.

It is found that although the model is sensitive to the choice of growth

function, generally growth has the most effect on population fitness. It is also

shown that the level of fishing has more impact on the fitness and yield of the

stock than the initial capture length. Thus, it is more important to reduce fishing

effort, than change aspects of the fishery such as mesh size in nets. Furthermore

the spatial model shows that the establishment of reservoirs, or no-fishing zones,

should be done carefully in order not to favour a decrease in growth rate of the

stock.
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Chapter 1

The Life History of Cod in the

North Sea

1.1 Cod and its Place in the World

Cod (Latin name Gadus morhua ) is one of the most important fish species in the

world both historically and economically. The family of fish to which it belongs,

the Gadiformes or codfishes, is one of the three most utilized families in marine

fishing (Lindberg 1974). Other members of this family caught by world fisheries

are the haddock, pollock (also known as saithe), whiting, hake and Pacific cod.

In total 6 million tons of gadiform fish are caught each year and more than half

of this is Atlantic cod (Kurlansky 1997).

The cod is so popular due to its abundance and use as a food source. It

is the whitest of the white flesh fish, has virtually no fat (.3%) and very high

protein levels (18%), even in comparison to other fish (Kurlansky 1997). Almost

every body part is used or eaten, including the throat, cheeks, airbladder (also

used to make a clarifying agent and in some glues), roe, stomach, tripe, milt (or

sperm which is eaten in Iceland and Japan), bones which are softened and eaten

in Iceland, and the skin which is eaten in some places and also used to make

leather (Kurlansky 1997).

The cod fishery has a long history and has influenced many of the countries

bordering the North Atlantic. Perhaps best known for its dependence on cod

2



is Newfoundland, an island province of Canada, which had battles waged for

its cod and was settled by fishermen needing land to dry their catch. At one

time the richest fishing grounds lay off its shores on the Grand Banks, and fish

were so plentiful that the Duke of Milan was told ‘the sea there is swarming

with fish, which can be taken not only with the net, but in baskets let down

with a stone’ (Harris 1998). The fish has had such an impact on the culture and

economic survival of the occupants, that the word ‘fish’ is synonymous with cod.

In the 1960’s onward, ships from around the world could be seen in harbours

and offshore, with countries such as Spain, Portugal and Russia playing major

roles in the development of the fishery.

However, tragically, in the 1980’s overfishing was to devastate the stocks sur-

rounding Newfoundland. A moratorium on fishing was finally declared in 1992,

which has still not been lifted in the northern waters, apart from the occasional

‘food fishery’ intended for individuals to fish only enough to provide cod for

their own tables. This collapse can be blamed almost completely on overfishing

(Myers, Barrowman, Hoenig, and Qu 1996), although at first other hypotheses

were made, such as seal predation or climate change. Hyperstability had a role

to play in the decline, with cod densities in certain locations increasing while

numbers decreased on the stock basis, resulting in misleading assessments of the

stocks (Rose and Kulka 1999). The stocks have reached such dire levels that it

has been recommended by Dr. K. Bell (a Memorial University of Newfoundland

fisheries ecologist) that cod should be added to Canada’s endangered species

list (Harris 1998), although they currently have only been listed as vulnerable.

There are also serious questions on whether the northern stocks will ever return,

as originally their return was forecast in 5 years, and 10 years later there still

seems no evidence that the stocks will ever reach their previous levels. This

return to former glory has been slower than predicted partly due to the low

fertility of the stock (Oosthuizen and Daan 1974).

The problem with drastic declines in numbers is unfortunately not restricted

to Newfoundland; in the late 80’s the Barents Sea stock also suffered a serious

decline. However, prompt action on the part of Norway and the high fertility of
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the stock (Oosthuizen and Daan 1974) has seen this stock rebound to levels not

seen in 25 years (Harris 1998), and it is still, along with the Icelandic fishery,

one of the two most important fisheries of cod (http://www.fishbase.com). The

North Sea has also undergone declines, for instance in 1902 the British found

that its cod stocks had been depleted (Kurlansky 1997). In 2001, it was decided

that a decline in stocks was such that it required a moratorium from February

to April (for certain areas) while drastic quota cuts have been implemented in

recent years.

The economic power of cod is clearly demonstrated by the fact it is one of

the few species that wars have been fought over. To some extent, as previously

mentioned, the desire for cod has led to battles over Newfoundland waters. A

more recent example, which is certainly remembered in Britain, is the Icelandic

cod wars. In the late 1950’s till early 70’s, Iceland expanded its fishing limits

on other countries to 12, then 50 and finally 200 miles offshore (Kurlansky

1997). These increases in limits prompted what have become known as the ‘cod

wars’. Although no lives were lost, Icelandic boats did cut the trawls of vessels

inside the limits with 84 trawlers losing their nets in a year of conflict in 1971

(Kurlansky 1997). Shots were fired during the wars, and on May 26th, 1973 a

hole was blown in the hull of a British trawler (Kurlansky 1997).

In the rest of this chapter, we will first examine the area of interest to this

thesis, the North Sea, and then look at the life cycle of a cod in this body of

water. We will then continue by examining the current state of the North Sea

cod stock and the problems the area is experiencing.

1.2 The North Sea

The North Sea is a body of water surrounded by Europe: on the west side

the United Kingdom, to the north east Norway, with Denmark, Germany, the

Netherlands and Belgium all having coast along its edge. It is a fairly shallow

basin, varying in depth from 30 to 200 meters (Brander 1994). Its surface area

is 575 300 square kilometers and it is influenced by the Atlantic, mainly by flow

4



Figure 1.1: The North Sea : The black lines show the limits of what is considered

as the North Sea. Speckled areas are spawning grounds used by cod. The map

was drawn with the help of http://odin.dep.no/md/html/conf/map and the Atlas

of the seas around the British Isles(1981)

through the northern North Sea (Brander 1994).

Different ages of cod are found in different places in the North Sea. Age 1

cod are most common along the coast of the Netherlands and northeast England

as well as in the German Bight, as are age 2 cod, although they also are found

in the Northern North Sea. Age 3 cod are mainly in the northern North Sea,

while age 4 cod and older are scarce throughout (Brander 1994). Spawning areas

are scattered across the North Sea as shown in figure 1.1, where they are the

speckled regions.

The North Sea can be divided into six distinct regions using hydrography

and biology (more will be mentioned about this in chapter 8). Genetic studies
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have, however, found no clear sub-stocks which are identifiable within these

regions (Brander 1994). Hence, in terms of fisheries assessment, the North Sea

is normally considered as a single region, sometimes also including the areas

between Sweden and Denmark, known as the Skaggerak and Kattegat.

1.3 The Life of a Cod

The life cycle of cod has several different stages (figure 1.2). Cod start as eggs,

progress through a juvenile stage which switches level in the ocean, and finally

reach maturity. The timing of this life-cycle differs according to region, and

the first age at maturity in a stock can range from 2 years to 7 years depending

on which region the stock inhabits(http://www.fishbase.org). As such, although

the general life history is the same from stock to stock, the differences in duration

of life stages means that the reaction of the stocks to fishing pressure can be

quite different.

The eggs are extremely small (approximately 1.4 mm (R. Myers, Stock

and Recruitment data base, http://www.fish.dal.ca/ myers/welcome.html)), and

float on the surface drifting with the current. Cod eggs are spawned between

January and April, with latitude affecting the peak time of spawning: for in-

stance, the Southern Bight peaks in February while the northern North Sea peak

in spawning is in March (Brander 1994; Daan 1978). There is limited spawning

in the autumn, but the main spawning season is during the spring (Brander

1994; Anonymous 1981). Spawning takes place in many different areas of the

North Sea and figure 1.1 shows where these areas are found. It should be men-

tioned that due to the similarity between haddock and cod eggs, it is not known

exactly where the cod spawn as both spawn at similar times (Daan 1978; Fox,

O’Brien, Dickey-Collas, and Nash 2000).

In order to develop normally the sea temperature to which the eggs are

exposed should be between 1.5 and 12 degrees Celsius (Thompson and Riley

1981), so years with exceptional sea temperatures can have an effect on the

population. Egg mortality is particularly high, with as few as 3 to 4 % of eggs

6



Figure 1.2: The Life Cycle of Cod. This includes 5 life stages with

all cod becoming adults by the age of 6 years (Background image from

http://www.fishbase.com)

7



hatching (Heesen and Rijnsdorp 1989). Mortality is assumed to be caused mainly

by predation, as eggs supply such an easily obtainable food source, and several

species eat cod eggs. Herring have been cited as one of the main predators, and

the ‘gadoid outburst’ has been suggested to have been caused by a decline in

the herring stocks. However, Daan found herring eat only between 0.04% and

0.19% of eggs in the North Sea (Daan, Rijnsdorp, and Overbeeke 1985).

Once cod hatch they become larvae, although according to Brander (1994)

very little is known about this stage. This is due to two main reasons. During

the early stages of life, the rates of production and mortality of eggs and larvae

change rapidly making accurate modelling of this age range very difficult. Sec-

ondly there is no assessment of the catching efficiency of gear for fish of this age,

preventing good estimates from being made of the percentage caught (Sundby,

Bjorke, Soldad, and Olsen 1989). The combination of these two properties makes

drawing any conclusions from data on this age risky.

The egg sac does not disappear immediately upon hatching. Larvae live off

the egg sac for about 6 days, by which point it has been completely resorbed

(Brander 1994), although some larvae do begin to feed at sizes as small as 3.1

mm (Last 1978). After this stage larvae fend for themselves, and many will

perish by drifting into areas where food of a suitable size is scarce (Northern

Cod Science Project). They feed on phytoplankton and zooplankton, principally

eating nauplii and copepodites of calanoid copepods, with prey being determined

by the mouth size of the larvae (Last 1978; Thompson and Riley 1981). At this

stage mortality is still very high, and as many as 99.9% of fish die in the first 4

months of life(Northern Cod Science Project).

The next stage of life, that of juveniles, can be divided into two parts. A

pelagic life stage where fish live towards the top of the water column, and a

demersal life stage where fish settle towards the bottom. The pelagic stage

differs in duration between areas, being very short or perhaps nonexistent for

fish in the southern North Sea (Brander 1994). In other areas, particularly

off the coast of Jutland and in the central North Sea, this stage may last as

long as 6 months (Anonymous 1981; Daan 1978). However very few pelagic
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juveniles are found in shallow areas of the North Sea (Daan 1978). Robb and

Hislop concluded that competition for food is not great among these juveniles

(Robb and Hislop 1981). Cod this age eat mainly copepods until they are 3

centimeters in length, after which their diet is dominated by fish, the largest

component being Norway Pout, another gadoid fish (Robb and Hislop 1981).

By 6 months the juveniles have settled to the bottom layer of the ocean,

where rocks and weeds give cover to avoid predation, a major consideration for

the smallest fish. They are eaten by several other gadoid fish, including cod,

whiting, and saithe. At this stage they consume mainly crustaceans although

as their size increases fish become a more important component in their diet

(Daan 1973). It has been found that juvenile cod (mainly under 15 cm) make a

significant contribution to the diet of other cod, being 10% of the diet by weight

in the northern North Sea, while only 1% to 2% in the southern North Sea

(Daan 1973). My model will start with this life stage, avoiding the difficulty of

modelling the extremely high mortality experienced in the previous 3 life stages.

The final stage of a cod’s life is adulthood, although very few of the eggs

spawned will actually produce adults. Some cod become mature as young as

age two, but some cod in the North Sea do not mature until they are six years old.

(Oosthuizen and Daan 1974). Males mature earlier than females (Oosthuizen

and Daan 1974), although in my model this is not considered as there are not

separate models for the two sexes. As adults, the key role of the fish is to

reproduce, with older female fish spawning more eggs over a longer time period

than their younger counterparts (Harris 1998). The current levels of fishing,

however, prevent there being many of these older female fish, and most fish will

die before maturation. When stocks are being rebuilt, it is the re-establishment

of a healthy population of these older female fish, which will vastly increase the

rate of recovery. Fish migrate to spawn, with spawning grounds generally to the

south of feeding areas (Brander 1994), although these migrations are relatively

short. Adult cod mainly eat fish, including many species used by commercial

fisheries including young cod. Mature cod are relatively large fish, and as such

do not suffer the same levels of mortality experienced in earlier life stages.
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1.4 The Recent Past

Historically, the North Sea has not been the most abundant producer of cod;

in the 16th through 19th centuries Dutch fishermen sailed to Iceland for cod

rather than staying on the North Sea (Brander 1994). There was, however, a

large increase in numbers of cod in the 1960’s, a phenomenon seen in many

gadoid populations, and given the name the ‘gadoid outburst’ (Holden 1981).

This rise in numbers is thought to possibly be linked with the decrease, due to

overfishing, of the herring population (Daan, Rijnsdorp, and Overbeeke 1985).

For a while afterward, spawning stock biomass (or adult biomass) fluctuated,

but from 1981 there has been a steady decrease in the population, and biomass

is now at the same levels as before the 1960’s (Brander 1994). In fact, levels are

so low that the spawning stock biomass is now considered to be well below the

safe biological limit of 150 000 tonnes for the stock (Brander 1994). This level

(known as MBAL or Bpa) is believed to be the spawning biomass below which the

probability of low levels of recruitment increases. Another reference point used

in fisheries management is Blim, the lowest value of spawning biomass observed

for the population. This value has been set at 70000 tonnes for the North Sea

cod stock (ICES 2002). There is great concern for the stock as spawning biomass

has hovered around this value for all of the 1990’s.

The current situation in the North Sea is definitely worrying. In 2001 forty

thousand square miles of ocean were closed to fishing from February to April

in order to protect the spawning stock, and the European Union council of

ministers has agreed to the lowest total allowable catch (TAC) ever. This quota

cut is necessary as there is a lack of large spawning fish due to the long term

rise in fishing effort and a decrease in recruiting young cod (Christensen 2001).

A fisheries collapse in the North Sea has been predicted for many years, and

during the last ten years fishermen have barely managed to catch their quotas,

with ever smaller fish being caught (Christensen 2001). Hopefully, the actions

of the European Union in closing the grounds and cutting catches will have the

desired effect, preventing a disaster such as that which befell the herring stocks
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Figure 1.3: The Decline of Adult Biomass in the North Sea (Data from ICES

(2002)):Plots of both adult biomass and recruitment are given. They clearly show

that the population levels have dropped in the 1990’s
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in the North Sea and the cod stocks off Newfoundland. There is some argument,

however, over the level to which it can be hoped the stock will return. It may be

unrealistic to expect a return to the levels of the 1960’s and 1970’s which were

exceptional.
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Chapter 2

A Modelling Background for

Fish Stocks

This chapter will examine modelling as a tool for learning about fish populations.

It will start by discussing how models can be used to solve problems raised about

populations, and then mention the main models used for fisheries assessment in

the North Sea. Although these models are not used in this thesis, they are

crucial to virtually any work done for populations, as parameters are frequently

set using information which has come from such stock assessments.

An important aspect of fisheries assessment is data collection. The different

methods are discussed, in order to give a sense of the complexities involved in

making an assessment. Upon consideration of the difficulties involved with as-

sessing ocean stocks, much respect is gained for the difficulties faced by both

fisheries scientists and managers in trying to assess stocks and set sensible guide-

lines for fishing.

2.1 Modelling Populations

The first question is why should populations be modelled? The simple answer

is that models are a tool to help us understand the complexities of the world

around us. A good model should be simple to use and understand, give results

which are calculable in a short period of time, and increase our knowledge of
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the field of interest. Models, by necessity, are a simplification of the world. It is

impossible to quantify the effect of every part of the environment. Such a model

would take so long to create and use that it would not be practical to build.

The model would also produce unreliable results as it is not clear how to model

many environmental factors and the interactions between factors which affect a

population. Hence, models tend to choose a few key factors which are felt to be

essential to finding the answer that is sought. These factors will often include

ranges of environmental factors grouped into one parameter and thought of as a

noise or an environmental effect. Some of the defining characteristics of models

and how they will be treated in this thesis will now be discussed.

One key aspect of modelling is to decide which questions the model will

be answering. For example, is the interest in modelling an entire ecosystem,

a sub-community of the ecosystem, a particular species, or how an individual

copes with living in its environment. In each case the model produced will

be substantially different. This thesis will focus on cod at the species level.

Therefore, although we recognize that the population consists of a number of

individuals whose weight and maturation are modelled, a general maturation

and growth scheme for the population as a whole shall be used. An alterna-

tive approach would be to assume that individuals follow a general growth and

maturation scheme, but that for each individual this scheme differs slightly. By

tracking individuals the picture of the general population can be constructed.

This method, often referred to as individual based modelling, has the advantage

that it is a more accurate depiction of the population, as not all individuals will

grow identically. It was felt, however, that as we are interested in examining the

impact of fishing on the population as a whole, this was a complication to the

model which was unnecessary. Furthermore, the entire ecosystem will not be

modelled. It will be assumed that food is distributed so that all cod have equal

supplies, mortality affects the population as a whole and does not have a spatial

term (although in chapter 8 this assumption will be changed), and that human

fishing is not affecting food supply for the cod at the same time as it affects

mortality. These are large assumptions, however they simplify the model, while
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still allowing us to examine the impact of fishing on the population.

The next key point is how time should be modelled. Fishery models fre-

quently make use of discrete time models, where time is considered as moving

forward in chunks, often using a spacing of a year. Simulations of the popula-

tion are then easy and data collected for the growth, maturity and mortality

of the stock can be used without having to make assumptions of the functions

underlying the life history. In this thesis, however, a continuous time model will

be used, as growth and fertility are modelled as gradually occurring processes

for the population, as opposed to processes which occur in sudden leaps and

bounds. Although this is more realistic, the impact the function chosen for a

certain aspect of life history will have on any results must be considered. Using

a continuous time model implies that when simulations are run, a different dis-

crete time step model shall be used, however, by using small time steps for the

simulations, differences in results can be minimized.

It is also important to recognize that random events have an impact on

the behaviour of populations. There are two ways to approach this random

behaviour when modelling. The first, deterministic modelling, ignores the ran-

dom behaviour and instead is aimed at finding the main trend. It necessarily

assumes that the random behaviour is insignificant in comparison to the un-

derlying trend. When the results of such a model are compared to what is

seen in the environment, it is expected that model results will not be an exact

replica of the real world. Instead it is hoped that, on average, a deterministic

model is accurate. This requires that environmental fluctuations will not take

a regular pattern with respect to the deterministic solution, and secondly, that

these fluctuations will not be so large that they hide the deterministic effects.

Another approach to treating random effects, is stochastic modelling. Instead

of the model giving, for instance, the decrease in population over a time period,

the stochastic model gives a probability of a certain decrease in population over

the time period. As such stochastic modelling can sometimes be thought of like

an experiment, where several realizations can be averaged to give an idea of the

general behaviour. A good stochastic model will give an idea of how the real
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world situation can change, and if enough realisations are run there should be

some which resemble what has happened in the environment. The main trend

found by a stochastic model may be the same as the trend found by a determin-

istic model, but there exist situations where there is little resemblance between

the two. I have chosen to use a deterministic model, as it was felt to be the

simpler of the two methods and would let me solve problems numerically as well

as through simulation.

A final consideration is the inclusion of spatial dynamics into a model. I shall

begin by not including spatial considerations, assuming instead that the North

Sea is uniform in its distribution of food, mortality, and numbers and weight of

fish. However in chapter 8 a glimpse of what can happen when the North Sea

is divided into different spatial regions shall be given. Only two regions shall be

used, but even with such a small change, the complexity of the model increases

as now immigration and migration have a role to play.

These are some of the main considerations when building a model. It must

then be determined which individual aspects should be included, for example,

numbers, weight, length, maturity, condition, toxicity levels, or a combination

of factors in the model. These same basic tools can build models to answer

a variety of questions about a population, such as the effect of temperature,

sunlight, pollution, food levels or fishing.

2.2 Stock Assessment Models

One of the initial questions frequently asked in fisheries is ‘how many fish are

there and how many can we safely catch?’. Since it has been realized that

the oceans have their limits, and are not an inexhaustible source of fish, several

different models for stocks have been used. In this section several of these models

shall be introduced.

There is no standard model which is used for all fisheries assessment. For

instance a survey done by the National Marine Fisheries Service in the United

States found for 212 of the US stocks, that 39.2 % were assessed with age-

16



structured models, 28.3% with abundance models, 8.0% with production models,

6.1 % with stock reduction models and further stocks were either not assessed,

or assessed using professional judgement or other means (Committee on Fish

Stock Assessment Methods et al. 1998). In section 2.2.2 I shall discuss in detail

the age-structured models which are generally used for North Sea cod (such as

extended survivor analysis), however I note that there are many other models

which are found to be appropriate for other regions and species.

We start with a rather obvious question, but one that must be answered,

‘Why should fish stocks be assessed?’. The clear answer is that whatever the

state of a fishery, there are always inherent problems or dilemmas which must

be solved. For developed fisheries these are quite obvious questions, such as

‘how many fish can be caught next year safely?’ or ‘is the fishery reducing the

population to unfishable levels?’. For underdeveloped fisheries, questions such

as ‘How much can this stock yield?’ and ‘How can we best plan to exploit the

fishery?’ are important (Gulland 1983).

The second question is how accurately can populations be assessed. Accu-

racy of fish assessments is indeed a serious problem. In the collapses of both

North Sea herring and Newfoundland cod stocks, assessments did not show that

the populations were crashing until stock levels had already decreased consider-

ably (Hilborn and Walters 1992). This was compounded in both cases by the

management of the stock. In the case of North Sea herring quota cuts were

recommended in 1970, yet in 1974 managers of the fishery agreed to a TAC

which was larger than the total population (Hilborn and Walters 1992). There

are many worries about the catch data which is frequently used in analysis, as

many scientists are skeptical of the ability to detect stock trends using such data

(Hilborn and Walters 1992). It is also known that such data can have serious

biases. Some stocks can become easier to catch at low numbers due to increased

shoaling. If old values are used to estimate the ability to catch a stock this can

have profound consequences. Catch records may also ignore discards and in the

worst case scenario have been falsified. There are further worries as most stock

assessment is done with single population models, ignoring the interactions with
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other populations. The North Sea is one area in which multi-species analysis

is used periodically, however, Daan (quoted in Hilborn and Walters 1992) has

pointed out that such models are very data intensive and that the tools for doing

multi-species models properly don’t exist as of yet. A final difficulty with assess-

ing fish populations is that population numbers are difficult to assess, in that

although some acoustic and sonar methods are used, fish cannot be counted or

observed as easily as animals living on the surface. Instead they must generally

be caught in order for assessments to be made, adding the extra difficulty of

assessing how well equipment catches the population and if it catches a repre-

sentative sample.

A quick run down of different data collection methods will now be given,

followed by a brief summary of different assessment models.

2.2.1 Data Collection Methods

There are four main ways to collect data, by using commercial fishery data,

research vessel surveys, tagging data and lab experiments. Each of these different

methods has different relative costs, advantages, and uses for fishery scientists.

Upon examining the different methods of data collection it becomes apparent

that this is a major area of consideration in fisheries assessment. Without good

data on which to base models, there is little hope that accurate assessments of

populations can be achieved or that any model of population behaviour can be

accurate.

Commercial Fishery Data

Commercial fishery data has the advantage that it examines exactly how fisher-

men are interacting with stocks, and if unbiased and truthfully reported will give

an accurate picture of the mortality inflicted on a stock. In terms of ecosystem

management, commercial data is grossly biased. Fishermen will only target fish

which are financially rewarding, and hence not give an accurate idea of stock

levels for all species in the oceans (Gulland 1988). The most important data

which can be obtained this way is the magnitude of the total catch, observa-
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tions on the amount of fishing and corresponding catch, and the size and ages

included in the catch (Gulland 1988).

Catch and effort data is best collected by on-board observers. These ob-

servers can give accurate accounts of when and how the fishery is conducted,

as well as giving information on bycatch, discarding and violations of conserva-

tion measures (Hilborn and Walters 1992; Committee on Fish Stock Assessment

Methods et al. 1998). All of this information is very difficult to obtain without

having an impartial observer on board boats. These observers can also take

information on the specifics of the catch, such as species, age and sex distribu-

tion caught. However, the problem with obtaining data in this manner is that

observers are expensive, in that they must be well trained before being used

and sometimes constitute (in terms of the economics of a fishing boat) a useless

member of the crew. Careful assumptions must be made when extrapolating

observer data to the full fishing fleet as it can be expected that observers will

affect fishing practices in many cases, rules are more likely to be strictly followed

and gear maintained properly.

Another method for using commercial data is on shore observations of catch.

During the sale of fish catches, records are kept on size and weight as a matter of

course, and these records can be used by scientists to assess the catch. Further-

more there are programs which sample catches as they come in for age and sex

distribution (Committee on Fish Stock Assessment Methods et al. 1998). Of

course such methods are not capable of assessing discards of undesirable species

or fish too young to be caught in legal mesh sizes, and hence lose some of the

data an observer can provide. This collection method is, however, much cheaper.

A third method used in commercial fisheries is examination of logbooks of

fishermen. For instance, in Australian trawl fisheries, notes on the start and end

locations and the size of the catch are made in the logbook, allowing spatial maps

of the population to be created (Hilborn and Walters 1992). Unfortunately, this

method rarely gives information on age and species caught, and depends on the

fishermen giving an accurate report of what has happened at sea. Once again

this is an inexpensive method of gaining data, however, an onboard observer
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tends to produce the most accurate data.

Research Survey Data

The second method of data collection is by using research surveys. These surveys

are very expensive as a boat must either be owned or hired to do the survey,

and is unable to catch fish in a competitive commercial manner. The main

advantage of such surveys is that they can use good sampling designs and study

the ability of different gear to catch fish. Furthermore, as they are used for

research purposes, not commercial purposes, an accurate picture can be built

of the proportions of different species in the oceans. Three different ways of

obtaining data from research surveys shall now be discussed.

For some populations visual observation can be adequate, if the species sur-

faces frequently. Assumptions must then of course be made about frequency of

surfacing and also observer reliability (Hilborn and Walters 1992) in order to

estimate numbers. This method of observation will only provide data on num-

bers and is unlikely to allow observers to collect any data on sex or age of the

population. As such it is rarely used.

Electronic and hydro-acoustic surveys can also be performed. The advantage

being that this method does not harm the fish. In order to collect good data,

however, certain problems do need to be solved. For instance, the strength of the

signal received from targets must be calibrated with the number of individuals,

and there is also the problem of species identification (Hilborn and Walters

1992). Many aspects of the population will not be measured in such a survey,

including individual size, sex and age of the species monitored. Such methods

have been used for tracking migrations of populations, and discovering where

in the water column populations live at particular times of the day, year or

migratory route.

The most frequent use of research vessel surveys is using commercial fishing

gear in imitation of the commercial fishery. Whatever is caught can be fully

documented, for all important characteristics such as weight, length, age, sex

and species. Sampling can be planned so as to cover the entire region of inter-
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est, rather than targeting only areas where fish are known to congregate as in

commercial fisheries. The exact configuration of the gear will also be known,

allowing for an accurate assessment of its performance. The only assumption

which needs to be made is the proportion of fish captured by the gear and its

selectivity (Hilborn and Walters 1992). This can be assessed by using a combi-

nation of gears (for instance with different mesh sizes) to evaluate the ability of

the larger mesh size to catch fish.

Tagging Data

The third method of data collection which is in standard use is tagging. This

is done by putting a tag on the fish through a fin or embedded in flesh. This

method allows for the survival, movement, mortality and abundance of fish to be

estimated by using the recovered tags to estimate how the population lives. Some

tags send radio or acoustic signals, so that the fish can be tracked continuously

by boats on the surface. This is generally used to examine daily migrations,

changes in depth, or eating patterns. Other types of tags must be recaptured in

order to allow assessments of migration or movement, and likely abundances and

mortalities to be estimated. Recovery of tags can be difficult sometimes, as many

will not be returned when the fish is caught. Thus estimates need to be made

for tags not recovered as to how many are due to tag loss, natural mortality, and

lack of reporting. Further assumptions must then be made on whether the tags

have any effect on the fish carrying them. As such it is often difficult to obtain

accurate results through tagging, or even sometimes to estimate how accurate

results are (Gulland 1988).

Laboratory Experiments

A final method of data collection which can be useful to the fisheries scientist

is laboratory experimentation. It has both the weakness and strength that

conditions can be strictly controlled. This is an advantage in that life-history

parameters such as growth can be measured accurately knowing the true age

of the fish, temperature and environment in which they have lived. However,
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laboratory results can not be expected to translate fully to life in the wild where

conditions alter from hour to hour and region to region. Furthermore, there are

size limits on how large and deep a laboratory tank can be, making it difficult

to truly replicate a wild environment. The difficulty of observation in the ocean,

makes this a very attractive method for gaining data on virtually every aspect

of life-history and behaviour.

2.2.2 Assessment Models

The models for assessment, which depend on these data, will now be introduced.

Assessment models are frequently based mainly on commercial data, however

other types of data, such as tagging data are essential for their information

on natural mortality. Tests are also being made of models using only research

survey data to see if there is any advantage in excluding fisheries data and if

these models could act as a check on the normal assessments (Cook 1995).

There are several different assessment models used for commercial fisheries.

The type of fish being examined and the method of fishing affect which model

will be used. I will examine in detail only two models, as these are the models

which are used most often for North Sea cod.

Many other simple assessment models do exist. Stock-recruitment models

are perhaps the most simple as they are generally used for stocks where age

effects are not important (Hilborn and Walters 1992). Thus the spawning stock

is thought of as a single group which reproduces in the same manner for all

ages. Hence this model is frequently used for species which spawn only once in

their lifetime. Tretyak (1999) has expanded this model to use age-classes for

North-Eastern Arctic cod.

Production models are another type of model which do not require that the

population is broken into age-classes. Under this model the manager sets a

level of biomass which should be maintained and which, by setting the catch

to be less than the growth and new recruits contribution to the population

biomass, should either remain constant or increase. This is frequently used by

tuna agencies and for finfish stocks. Sometimes this method can provide better
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estimates of management parameters than age structured models, as shown

by Ludwig and Walters(cited in Hilborn and Walters (1992)). Furthermore for

populations which are difficult to age, such as many tropical stocks (Jones 1984),

these methods are the best available.

However, when fish reproduce over a long lifetime and change how well they

spawn with age, a model which breaks the population into age-classes can often

provide better advice. In the North Sea two such models, XSA and MSVPA are

used.

Age-Structure Models

The first age-structure model we shall discuss assesses a single species, and is

often known by the name virtual population analysis (VPA), although there are

many more models, similar in approach, such as ADAPT, CAGEAN and Stock

Synthesis (Committee on Fish Stock Assessment Methods et al. 1998). The

extended survival analysis model (XSA) is the version which is currently used

in the North Sea. Each cohort or year class of fish, is treated separately under

these models. The basic premise used is that

Nt,a = Nt+1,a+1e
M + Ct,ae

M
2 (2.1)

where Nt,a is the number of fish of age a in year t, M is natural mortality and

Ct,a is the catch of age a fish in the year t (Hilborn and Walters 1992; Myers,

Hutchings, and Barrowman 1997). Generally this method is used to estimate

backwards in time, and thus, only estimates numbers for cohorts which are no

longer in the population. Also, fish are only considered once they reach the

age of entry into the fishery, avoiding tracking the population for ages where

natural mortality is high. In order to estimate forwards, natural mortality rates

are assumed to be constant and assumptions are made about the fishing mor-

tality on the oldest age class (Hilborn and Walters 1992; Myers, Hutchings, and

Barrowman 1997). One way to do this is to assume

F = Eq
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where F is fishing mortality, E is effort and q is catchability. Parameter estimates

are made for q from previous cohorts and then adjusted using data on cohorts

which have not completed their life cycle. For the North Sea an XSA iteration

begins with an initial guess at how many fish will survive past the oldest age

group for which records are kept. A standard VPA is then used and catchability

and an exponent linking numbers to the CPUE index of abundance estimated. A

series of iterations is then repeated until convergence is obtained for the estimates

of sizes of cohorts (for more information see Lassen and Medley (2001)).

Although VPA has many advantages, in that it can use full age data, it is

not a perfect assessment model. For instance, collecting the age data required

can be very expensive (Committee on Fish Stock Assessment Methods et al.

1998). The heavy dependence of this assessment method on catch data can

cause problems when catchability of a stock or age class changes with declining

stock numbers. This is a particular danger for clupeoid stocks, which have a

tendency to increase their catchability when stock numbers are low (Hilborn and

Walters 1992). Further difficulties become apparent if there is immigration into

a population or two stocks are assessed as one. The VPA model could show a

decrease in fishing mortality while one of the substocks was completely fished

out (Daan 1991). Similarly misreported landings can have a serious effect on

this method (as well as the methods previously mentioned) as this can lead to

numbers or fishing mortality be estimated incorrectly (Patterson 1996). As a

final note, it is important that aging is done accurately. If a certain percentage of

fish are thought to be mis-aged every year, then if a weak cohort is preceded by

a strong cohort, it is possible that numbers in the weak cohort are overestimated

(Hilborn and Walters 1992).

A further extension to the VPA modelling idea has been implemented in the

North Sea, that of Multi-Species Virtual Population Analysis (or MSVPA). Un-

der this method, stock assessments for more than one population are made by

separating mortality into three components: fishing mortality, mortality inflicted

by other cohorts included in the analysis, and natural mortality not otherwise

included. Although this method does give the possibility of looking at the inter-
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actions between stocks, for instance giving a possible answer to the question of

whether one stock will increase if another is fished down, the quantity of data

required for an assessment is overwhelming. For each age class of each species

considered, stomach data must be found in order to estimate predation rates on

the species and age classes in the model. Only the computer advances of the

last few years have meant that such a model can be used. Daan’s message that

we ‘don’t really have the tools for multi-species analysis though single species

analysis is inadequate’ perhaps best summarizes the current situation (Hilborn

and Walters 1992).
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Chapter 3

Thesis Plan

The main aim of this thesis is to examine the impact fishing has on a population.

As cod is fished heavily in the North Sea, fishing is one of the most important

factors in the natural selection of cod. If it is possible to ensure that the yield

obtained from the fishery is sustainable in the short term (or on the ecological

time scale), it would be even more valuable to show that it is sustainable on the

evolutionary time scale. Thus we wish to discover if the results of the high level

of fishing now, will be a population in a hundred or two hundred years which is

unfishable, due to the decreased size or fertility of the population, or if there will

be relatively little effect. Although of interest from a modelling point of view, if

the impact of fishing is not felt within at most 500 years, it may not be worth

changing fishing practices, as environmental changes may swamp such an effect.

Knowing what pressures fishing can have on a population, can also help us

to understand what may happen in such environmental changes. For example,

if water temperature was to change such that fish grew more slowly and fishing

favored fish which grew quickly, this would be an indication that the environ-

mental change would have a serious effect on the fishery. If this was the case,

it would be worth lowering the level of fishing in order to give the population

some resiliency to environmental change.

If it is found through modelling that we can expect fishing to have a large

impact on the population it should then be considered when fisheries assessments

are performed and managing guidelines created. Rochet (1998) suggests that the
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maturity schedule incorporated into fisheries assessments should be updated on

a regular basis, as fishing is likely to decrease size and age at maturity. Blythe

and Stokes (1991) find that there has indeed been a pressure on North Sea cod

to decrease size at maturity, further supporting Dr. Rochet’s calls for diligence

in assuring maturity ogives used are accurate. Their work demonstrates clearly

that we cannot expect fish stocks to remain stationary, they will react to the

pressures that we exert, and in assessing stock levels we should always remember

this.

The model in this thesis is strongly based on the model of Blythe and Stokes

(1991) and works to expand the complexity of their model. They assume that

all fish become adults at the same time, age τ , where as the model in this thesis

assumes a gradual change in proportion mature over a span of six years. It shall

be shown that a model allowing a gradual increase in proportion mature will also

favor changes in the life history parameters which decrease the age at maturity.

Another difference between the two models is that I have only modelled from age

six months upwards as I wished to avoid trying to model the life stages where

natural mortality is extremely high and changeable. The results found are quite

similar to the result found in Stokes and Blythe (1991) where they discovered

that harvest levels are now high enough to cause pressure for the weight at first

maturity to decrease.

The impact of finding that fishing is having a serious effect on growth and

maturity of cod could be important. If such effects are likely to become apparent

in the short term, it is certainly of consideration whether fishing practices should

be changed in order to lessen these effects. Assessing the importance of different

elements of fishing mortality is crucial, we shall try to do this by looking at three

different aspects of the fishing curve namely: the initial age of fishing, the peak

age for fishing mortality, and the overall level of mortality. If it is possible to

assess which of these factors is most important, it is possible to advise fishery

managers on how pressure on the stocks should best be reduced.

Cod is currently caught in a mixed fishery with a species which is much

smaller, Whiting (Merluccius capensis L.). Whiting are mature by age one and
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are about 23 centimeters at maturity, about a third of the size of a cod at their

average age at maturity of four years (Alverson, Freeborg, Murawski, and Pope

1994). However the current mesh size catches fish at about size 30 centimeters,

with the legal limit for cod being 35 centimeters, obviously these sizes being far

too small as most cod are not yet mature at this age. Ideally cod would not be

caught until an age where a significant percentage of the population had been

given the opportunity to spawn at least once (Alverson et al. 1994), in order to

ensure that there was a resistance to extinction built into the population. It has

been shown that if a fished population has a sufficiently high maximum annual

reproductive rate and a policy of fishing was followed such that all fish were

allowed to spawn at least once, then fishing mortality could be increased to any

level without causing the population to become extinct (Myers and Mertz 1998).

If the initial size of capture is the most important determinant of the pressure

on the stock, then obviously the mesh size with which fisheries are practiced

should be increased so that only older cod are caught. This is a controversial

issue however, with Norway already advocating such an increase, while countries

such as Britain which catch large numbers of whiting resisting such an increase

due to the decrease the whiting catch would experience (Oliver 2001).

If it is found that the peak age of capture should be changed, i.e. the shape

of the fishing curve, then different measures are called for. This could be done

by examining selectivity of gear and trying to change the amount of each type

of gear used in the fishery, or by changing such things as mesh size in nets.

Lowering the overall level of fishing would perhaps be the easiest change to

make, as this could be changed by reducing quotas and effort in the North Sea,

or using less efficient methods for catching fish.

As a result, I will look at not only which life history parameters are likely

to change under current levels of fishing, but also which fishing parameters are

most likely to relieve such pressure if altered. I shall start by creating a model for

a single population and examining its stability properties, establishing whether

the population is viable in the long-term, and the type of behavior exhibited.

This model will then be expanded into a two population model in order to
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examine competition. A measure of fitness will then be found, enabling the two

populations to be compared in their ability to cope with the environment. In

chapter 7 I will look at a sensitivity analysis of the model which will help answer

the two main questions posed in this thesis. Finally I shall examine the effect

of two more additions to the model. First reproduction will be changed to a

seasonable variable, to see if this will have a noticeable effect on the population.

Secondly a very simple spatial model will be introduced to check if changes in

results are likely to be obtained.
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Part II

Single Population Models
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Chapter 4

Construction of a Model

4.1 Creating a Single Population Model

4.1.1 Age Structured Model

In this chapter I shall build the model which will be the basis for all work in

this thesis. The thesis characterizes a deterministic model for North sea cod and

hence the lack of goodness of fit tests in this chapter does not detract from the

usefulness of the model. Fertility and mortality have been modelled as depending

on age (and for later chapters size), rather than using blanket values across the

whole population. Growth and maturation are modelled as continuous processes

rather than as step functions as in many fisheries models.

After some consideration a standard model was adopted, the McKendrick-

von Foerster equation as described in Ecological Dynamics (Gurney and Nisbet

1998). The notation of Gurney and Nisbet will be used in the following discus-

sion.

This model is built by assuming that f(a, t) is a continuous age distribution

of the number of age a fish at time t of the population, having the property

that f(a, t)da is the number of individuals at time t that are in the age range

a to a + da. Notice that under conditions where there is no immigration or

emigration the change in f(a, t) with respect to time, in other words ∂f(a, t)/∂t,
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is given by
∂f(a, t)

∂t
= −∂f(a, t)

∂a
− δ(a, t)f(a, t) (4.1)

where ∂f(a, t)/∂a is the change in f(a, t) with respect to age and δ(a, t)f(a, t)

gives the mortality rate at time t. This model assumes that all cod which

join the population at the same time grow in exactly the same manner. An

unrealistic simplification, but one that was felt necessary to avoid complications

which would make analytic work with the model impossible.

Clearly there must also be a mechanism for adding fish to the population and

as the model is of a closed population, this mechanism is the birth rate. Fish will

only be modelled from age six months, thus there is a six month delay term in

reproduction. Fish younger than this live in a different ocean layer (Anonymous

1981), and thus experience a different environment making it sensible to separate

out this group. Furthermore, mortality rates for very young fish and eggs are

extremely high and changeable due to natural causes making them difficult to

model as mentioned in chapter 1. As the production of fish obviously depends

on the population numbers and fertility of the population this leads to

f(0.5, t) = R(t) =
∫ ∞

0.5
B(a, t− 0.5)f(a, t− 0.5)da (4.2)

where B(a, t− 0.5) is the production of half year old fish.

A changing environment is not used for the first part of this thesis, thus

mortality can be assumed to be independent of time. Hence the probability

that a fish will survive to age a (S(a)) is simply

S(a) = exp
[∫ a

0.5
−δ(x)dx

]
(4.3)

and f(a, t) can be calculated for any age using R(t) and S(a) as

f(a, t) = S(a)R(t− a).

Notice that this now means using equation 4.2, the Lotka renewal equation

(Gurney and Nisbet 1998)

f(0.5, t) = R(t) =
∫ ∞

0.5
B(a, t− 0.5)S(a)R(t− a− 0.5)da, (4.4)
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holds true.

Now that the model form has been established, the two key components,

mortality and fertility, will be examined. The functions for both will be fitted in

sections 4.2 and 4.3. The mortality function is divided into two parts, natural

mortality and fishing mortality. Fishing mortality is defined as the mortality

imposed by human fishing, while natural mortality includes all other mortality

such as predation by birds, mammals and other fish, cannibalism, and death

due to human causes other than fishing. All fish are assumed to die by age 50

in the case of a population with no fishing and age 25 in a fished population as

survival rates are essentially zero for these ages (as will be seen in section 4.2).

The fertility function at age a and time t is

B(a, t) = βc(t)w(a)p(a) (4.5)

where β is the production parameter, c(t) is the competition function, w(a) is

the weight at age, and p(a) is the proportion mature. Notice that by using

the proportion mature in the fertility function, the average fertility at age is

used as mature and non mature fish are not separated into different groups.

The competition function c(t) gives a limit on how successful breeding is, and

has the form c(t) = exp(−A/K) where A is the adult biomass and K is a

limiting factor. The form of the competition function ensures that at very high

population levels fertility is low, possibly as there is higher mortality of very

young fish due to crowding and increased predation. This competition function

does not lower fertility at low population levels. Weight is included in the

fertility function as the number of eggs produced by fish is a linear function of

body weight (Oosthuizen and Daan 1974), hence fertility can be expected to rise

with body weight.

4.1.2 Finding Equilibrium States

The equilibrium values of a population provide important information. For any

real population there is always an equilibrium value of zero, such that if this

equilibrium is obtained the population is then extinct. This equilibrium is often
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labelled the trivial equilibrium of the population, as it is obvious that if there are

no fish in the population there can obviously be no fish in the future, unless they

migrate into the area from another region. Furthermore, if the only nontrivial

equilibrium values are negative, it is a clear indication that the population is not

viable, and will in a matter of time become extinct. Hence, the next step is to

find the general form of the equilibrium for the population, under the assumption

that mortality and fertility are time independent.

If the population is assumed to be at equilibrium then

R? =
∫ ∞

0.5
B?(a)S?(a)R?da (4.6)

and canceling R? gives the renewal condition

1 =
∫ ∞

0.5
B?(a)S?(a)da. (4.7)

The fertility B from equation 4.5 is now substituted into equation 4.7 to give

1 =
∫ ∞

0.5
βp(a)w(a)c?S?(a)da (4.8)

hence
1

c?
=
∫ ∞

0.5
βp(a)w(a)S?(a)da. (4.9)

Using the form of the competition function,

e(A?/K) =
∫ ∞

0.5
βp(a)w(a)S?(a)da (4.10)

then

A? = K ln
(∫ ∞

0.5
βp(a)w(a)S?(a)da

)
(4.11)

giving an easy way to calculate the equilibrium adult biomass. Using equation

4.6 it is seen that

R? = βc?
∫ ∞

0.5
p(a)w(a)S?(a)R?da. (4.12)

But as adult biomass is simply

A? =
∫ ∞

0.5
p(a)w(a)S?(a)R?da (4.13)

this gives

R? = βe−A?/KA?. (4.14)
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4.2 Fitting Mortality Parameters

As mentioned in section 4.1 mortality has been divided into two different compo-

nents. This is a natural thing to do in fisheries, mainly as one type of mortality

is uncontrollable (natural mortality) while the second (fishing mortality) de-

pends purely on the actions of fishermen, and is governed by the regulations

and quotas set by fisheries scientists and governments. Discard mortality, which

includes mortality caused by unwanted fish (due to age, size, species etc) being

caught during the fishery and thrown back, has not been specifically included.

Such mortality is difficult to estimate (Alverson, Freeborg, Murawski, and Pope

1994) and it is certainly possible that mortality rates are underestimated, espe-

cially for young fish.

4.2.1 Natural Mortality

The data for natural mortality comes from Cook (1998) and was given at age

as in the following table 4.1. These are standard natural mortality estimates for

the North Sea which can be found in many other papers.

Table 4.1: Natural Mortality at Age

Age 0.5-2 2-3 3-4 4+

Mortality 0.8 0.35 0.25 0.2

The corresponding survival curve, when considering natural mortality alone

(figure 4.1), shows that by age 20 very few fish will still be alive. This is what we

would expect the survival curve for the North Sea to look like if the population

were not fished.

The form of natural mortality has been changed in part 3 of the thesis when

more than one population is under consideration. For a single population having

natural mortality depend on age as opposed to size causes no problems as weight

is a function of age. However, as soon as a second population is introduced there

is a strong argument that natural mortality should no longer depend on age as
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Figure 4.1: Natural Mortality Survival Curve: Ages plotted from age 6 months.

This shows that when a stock suffers from only natural mortality, there will be

many fish of age 6 and over, which are mature and capable of producing vast

numbers of eggs.
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it is unlikely that time alive is the main determination of mortality. Instead

natural mortality will then depend on weight, as the size of a fish determines

whether it is an attractive food source for another creature and if it is catchable

by another species. The function will be transferred from a function of age to

a function of weight at age using the weight function in the next section. This

is done as in part 3 of this thesis, the population parameters established in this

chapter will be those of the resident population in the North Sea. Hence, as a

next step, the function for weight at age will be examined.

4.2.2 Weight

The data used to fit weight at age was taken from the paper by Cook (1998)

previously mentioned, where weight was given as the average over ten years
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from 1986 to 1995. An additional forced data point of ten grams is used as the

weight at age half a year to ensure a sensible starting weight. The fitting of

the data was done using a Pascal program using the down-hill simplex method,

more details on this method can be found in Appendix A. After some explo-

ration of the fitting it was decided that the data should be divided in two, as a

better fit was acquired by fitting with separate growth curves for young and old

fish. There are two disadvantages to this decision. First, that it complicates the

model by requiring two growth curves, which although continuous are not con-

tinuously differentiable. This gives an intersection point which must always be

considered. This being admitted, there is some justification for having different

growth curves for young fish (where the population is dominated by immature

fish) and older fish where most fish are mature. This is due to different growth

Figure 4.2: Weight at Age: Young cod are modelled with linear growth while

older cod are modelled using von Bertalanffy weight growth
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priorities in the two groups: for older fish the key aim is to reproduce while

for younger fish it is to grow enough to survive to the age to reproduce. In

an individual based model it would be sensible to have separate growth curves

before and after maturation. This model, however, is population based and does
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not keep mature and immature fish separate, hence the border between the two

types of growth is due to fitting, rather than biology.

For young growth three types of growth were considered: linear, power, and

exponential growth. The last two were suggested as growth curves in Peters

(1983), however the latter provided a very bad fit and was not used. Although

linear growth is less realistic than power growth, it shall be used in the main

model as it is the simpler of the two and allows more model manipulations.

The power growth curve will be used as a test of model assumptions and will

be mentioned again shortly. For older growth three different types of growth

from Peters (1983) were considered: von Bertalanffy, Gompertz and Logistic.

All three gave similarly good fits as expected (Ricklefs 1967), however the von

Bertalanffy fit had the smallest sum of squares. The other two shall once again

be used as tests of robustness of the assumptions.

A Pascal program was then written which fitted intersecting linear and von

Bertalanffy growth curves. The linear growth curve w(a) = g1 ∗ (a− 0.5) + 0.01

had best fit g1 = 0.7326, while the von Bertalanffy curve w(a) = w∞(1−be−g2a)3,

had best fit w∞ = 17.7252, g2 = 0.2603, and b = 1.1034. The intersection point

of the two curves is at age 2.66 years. Figure 4.2 shows the fits for old and young

fish on the same graph. Note that in this model the maximum weight for a cod

will be 17.7 kg, g2 is the exponential rate of growth for old fish, while a function

of b gives the minimum age the growth curve could be applied to (Peters 1983).

The power growth curve, used to test the importance of assuming linear

growth, was fitted using the von Bertalanffy curve which had already been fitted

for older growth. Hence, as it is used for only three date points, the first of

which is forced, and has only two parameters, it is a simple matter of solving

a system of two equations for two unknowns. Thus the power curve is w(a) =

g1p ∗ (a − 0.5)g1p2 + 0.01 with g1p = 0.8565565323 and g1p2 = 0.3892578309. A

comparison of the linear and power fit is given in figure 4.3.

The two alternate growth curves for older fish have been fitted using the

same linear fit for the young fish as given above. The Gompertz function is

w(a) = w0G
exp(G(1−e−gGa)) with best fit (using the Downhill simplex method)
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to 3 digits of w0G
= 0.0927, G = 5.14 and gG = 0.407 and intersection point

1.82. Here once again gG is the exponential rate of constant growth, while w0

is the minimum size the curve could be applied to and w0G
exp G = 15.8 is the

maximum size in kilograms(Peters 1983), and is somewhat less than in the von

Bertalanffy fit.

The Logistic fit has the form w(a) = w∞L
w0L

egLa/(w∞L
−w0L

+w0L
egLa) with

best fit w∞L
= 14.5, w0L

= 0.311 and gL = 0.667 and intersection point 2.12.

Once again g is the exponential rate of constant of growth and w0L
and W∞L

are respectively the minimum and maximum sizes for the cod (Peters 1983),

notice that the maximum size is once again smaller than in the von Bertalanffy

fit. In figure 4.4 the three functions for older fish are plotted together to show

the differences in weight at age. This graph shows that the von Bertalanffy fit

and Gompertz fit are very similar, and one would expect that results using these

growth models would also be similar. The Logistic fit on the other hand, gives

a higher weight between ages six and nine and a lower weight outside of this

region.

Now that the weight at age of the population has been established, the

natural mortality is transformed to depending on weight rather than age. In

figure 4.5 the graph of natural mortality at weight is given.
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Figure 4.3: Comparison of Linear and Power Growth for Young Cod: The power

fit (green) is a perfect fit. Fish of age less than two have a much higher weight

under the power growth curve, and a much smaller weight for fish aged more

than two.
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Figure 4.4: Weight at Age under Different Models: Three different weight models

are shown for older cod. The green logistic growth curve is noticeably different

from the Gompertz and von Bertalanffy growth curves.
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Figure 4.5: Natural Mortality at Weight: Natural mortality is measured as a

step function with fish over the weight of 4 kilograms being large enough that

they suffer little natural mortality, mainly due to their lack of predators.
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4.2.3 Fishing Mortality

Fishing mortality will also depend on weight, but this data has been extracted

through length, as this is a standard way in which fishing mortality is presented.

Rather than fitting length as a separate aspect of growth, a weight-length trans-

formation has been used which was found on Fishbase (http://www.fishbase.org)

from Dorel (1985) and Daan (1974) which gives w = laL
3 where la = 0.0104 and

L is length. As the model uses the von Bertalanffy growth curve the cubed re-

lationship is already implicitly assumed, due to the derivation of the von Berta-

lanffy weight curve. Using this and the weight functions, the equations for length

at age are l = 119.6625(1 − 1.1034e−0.2603a) and l ≈ (70442a − 34259)1/3. This

gives the maximum length of a fish to be just less than 120 cm.
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Figure 4.6: Length at Age: The length is plotted using the weight length con-

version w = 0.0104L3. The anomalous cusp is due to the change in weight

growth.

The graph of length at age is shown in figure 4.6 giving an initial length of 9.87

cm. It should be mentioned that the weight conversion is given in Daan (1974) as

being valid for fish of length 22 cm and larger. It is however only of concern when

fishing mortality is in effect. As fishing mortality will be modelled as starting at

42



20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

Length(cm)

To
ta

l F
is

hi
ng

 M
or

ta
lit

y

Figure 4.7: Fishing Mortality at Length: The points on the graph and rough

curve shape are taken from Cook and Reeves (1996).

Table 4.2: Defining Points for Fishing Mortality

Length 0 25 32 40 47 98

Total Fishing Mortality 0 0 0.45 1.03 1.05 0.75

25 cm, I will not worry about finding an alternate length transformation for the

younger fish. It should be mentioned that it is likely that I am underestimating

length at a young age given the estimates in (Daan 1974) for fish from length

5cm to 22cm. The anomalous cusp in figure 4.6 is an artifact from having two

growth curves for young and old fish. This cusp however is not close to a point

where the mortality changes and there is no obvious carry over effect.

The curve used for fishing mortality in this thesis is a very rough curve taken

from Cook and Reeves (1996). It is based on data for fishing mortality for all

gears and cod mean lengths from 21.5 cm to 113.6 cm for the years 1990-1992 for

the Scottish Demersal trawl fishery. The graph from Cook and Reeves (1996) is

reproduced in figure 4.7, with the curve being the fishing mortality used in this

43



thesis, rather than the curve given in their paper (which is very similar).

The fishing mortality at length is estimated as straight lines joining the points

given in Table 4.2 where the points were roughly estimated from the graph in the

report. The fishing mortality is converted to fishing mortality at weight using

the weight conversion given above, with the results being presented in table 4.3.

Table 4.3: Fishing Mortality at Weight

Lower Limit (Kg) Upper Limit (Kg) Fishing Mortality

0 0.1625 0

0.1625 0.3407872 0.0642857(( 1000w
0.0104

)1/3 − 25)

0.3407872 0.6656 0.0725(( 1000w
0.0104

)1/3 − 32) + 0.45

0.6656 1.453522 2
700

(( 1000w
0.0104

)1/3 − 40) + 1.03

1.453522 9.7883968 − 3
510

(( 1000w
0.0104

)1/3 − 47) + 1.05

9.7883968 - 0.75

Now that fishing mortality has been set for the population, a survival curve

for the fished population can be found (figure 4.8). Notice that in comparison to

the non-fished population (figure 4.1), fish die much earlier and most are dead

by age 6. Thus in a fished population many fish die before they have the chance

to reproduce, creating a strong natural selection force on the population.

4.3 Fitting Parameters for Fertility

As stated in subsection 4.1 fertility is modelled using equation 4.5

B(a, t) = βc(t)w(a)p(a).

The weight function has been fit in the previous section and I will now set func-

tions for proportion mature, the production parameter β, and K the competition

parameter.
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Figure 4.8: Survival Under Natural and Fishing Mortality: We see that fishing

mortality causes a much shorter expected life span than Natural mortality alone

(see figure 4.1).

4.3.1 Proportion Mature

The proportion mature was also fitted using data from Cook (1998) using the

downhill simplex method (Appendix A). The cumulative Weibull distribution

p(a) = 1 − exp(−pxa
py) gave a good fit with the parameters px = 0.003581546

and py = 3.98385. The fit is shown in figure 4.9. Increasing the px or py

parameter will decrease the length of time till all fish are mature, although for

fish under age 1 decreasing py will increase the proportion mature at age.

In order to consider the effect of choosing the Weibull distribution to model

proportion mature, four other functions were fitted, each having their own

strengths and weaknesses. A graph of these functions can be seen in figure

4.10. Originally these functions were used to help predict behaviour in the

main model which was difficult to analyse, and hence were chosen to be simple

functions which allowed numerical analysis to be performed easily.

The first of these alternate functions assumes all fish mature at the same

age. The age was chosen to be px1 = 3.75 as this is the age where 50 percent of
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fish are mature under the Weibull distribution. Hence for this model

p(a) = 0, a ≤ px1 (4.15)

= 1, a ≥ px1 (4.16)

This model has the advantage of simplicity, allowing for more manipulations to

be carried out analytically. As this assumption is one used frequently by fishery

scientists, it also permits us to examine the effect of a common assumption.

The second function is the cumulative of the exponential distribution where

p(a) = 1− e−px2a. This function does not fit the data particularly well, but was

used as it is a fairly simple model. It is also related to the Weibull distribution in

that it is the same distribution only with the parameter py set to be 1. The best

fit value for px was found to be 0.252926. From figure 4.10 it is noticeable that

many more young fish are mature than under the Weibull distribution, hence

we expect results under the two models to differ substantially.

The third and fourth functions used are both cumulative distributions of the

gamma distribution
1

Γ(α)pα
x3

yα−1e−y/px3

with α = 3 and y = a+ px3 and in the second case α = 4. When the cumulative

distribution is written for α = 3 we have

1

2p3
x3

(−px3e
−a−py3

px3 (a− py3)
2 − 2p2

x3
e
−a−py3

px3 (a− py3)− 2p3
x3

e
−a−py3

px3 + 2p3
x3

).

with best fit px3 = 0.6070 and py3 = 2.017 to four significant figures. Hence under

this maturation scheme no fish matures prior to age 2.017 and thus the function

underestimates the proportion mature for young fish. When the cumulative

distribution is written for α = 4 we have

−1/6
a3e

− a
px4 + 3a2px4e

− a
px4 + 6ap2

x4
e
− a

px4 + 6p3
x4

e
− a

px4 − 6p3
x4

p3
x4

where the best fit was found to be px4 = 0.9497. Under this model the proportion

mature at young age are slightly overestimated.
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4.3.2 β

The β parameter is a production parameter which is the number of offspring

produced per kg of body weight under ideal conditions. An estimate is made

using data from Myers, Bridson, and Barrowman (1995), using the survival curve

for a fished population from the section 4.2.3.

Dr. R. Myers’ data base stores data on number of recruits per kilogram of

spawner for many world stocks, including North Sea Cod. For the North Sea

stock it uses an age of recruitment of 1 year and gives the corresponding number

of recruits to be 9.82 per kilogram of spawner. Calculating backwards using the

survival function in the previous section 4.2.3, a value for β of 15.9 was obtained.

This has been used as a baseline value throughout the thesis.

4.3.3 K

The competition function c(t) is e−A/K where A is the adult biomass. The value

for K is somewhat arbitrary, and will determine the level of the population.

When stability is looked at in the next chapter it will be seen that this parameter

has no effect on whether the equilibrium for the population is stable or not.

However in order to generate a reasonably realistic population level, having

adult biomass from 80 to 300 thousand tonnes (Serchuk, Kirkegaard, and Daan

1996), I used a value of K = 109 which in the fished model gives an equilibrium

adult biomass of approximately 155 thousand tonnes. This value is slightly

above the reference point Bpa =150 thousand tonnes mentioned in section 1.4,

and puts the population in a region where it would be much healthier than the

current stock.

Next a short word on the assumptions made about competition. It is sensible

to assume that competition should increase as population increases, i.e. that

for large populations it is difficult to reproduce numerously. Large numbers of

fish can cause food shortages and attract predators. Although there is not an

increase in competition for small population size there is the argument that for

very low numbers finding mates may be a problem and hence reproduction will
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not be as successful as for larger groups. To have competition depend on adult

biomass is also fairly sensible, although it may well depend on a history of adult

biomass rather than just a single value. I use biomass rather than just numbers,

as larger fish use more resources and are capable of eating more small fish.

4.4 Models

Having introduced how different components of life history will be modelled,

the models used through the thesis can now be introduced. The main model

includes fishing and will be known as the fished model. The growth of older fish

takes the von Bertalanffy form while young fish grow linearly and fish mature

following the Weibull distribution.

As a comparison we shall also look at a model which is identical to that

above, only fishing has not been included as a source of mortality. Thus fish

only die due to natural mortality. This model shall be referred to as the unfished

model.

There are also two sets of alternate models. The first set change how the

proportion mature is measured, but keep fishing mortality and growth the same

as in the fished model. These alternate models use respectively concurrent mat-

uration, an exponential distribution, a gamma(3) distribution, and a gamma(4)

distribution to model proportion mature.

The final set of models is the group which models growth in alternate ways.

The first of these, the power model, uses a power growth curve for young fish

and a von Bertalanffy curve for older fish. The the Gompertz model has linear

growth for young fish and a Gompertz growth curve for older fish. Finally

Logistic model has linear growth for young fish with a logistic growth curve for

the older fish.
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Chapter 5

Behaviour of the Population

In the previous chapter I established the models which shall be used throughout

this thesis. The next step is to look at their behaviour. A method for finding

the equilibrium of a population under any set of parameters has been found, the

next question to ask is, how does the model behave under different parameter

values. By examining the type of equilibrium found for a particular parameter

set, the type of behaviour expected can be determined. For example, a negative

result for equilibrium adult biomass must correspond to ultimate extinction. If

the equilibrium is found to be an attractor (i.e. if the population is close to the

equilibrium it tends to get closer) then we will find that either the population

settles to the equilibrium value in a steady manner, or else that it will oscillate

around the equilibrium value, with smaller and smaller oscillations until it settles

to the equilibrium. If the equilibrium value is unstable, the population will not

settle to equilibrium and will follow one of two patterns. Either the population

gradually decreases until it becomes extinct or oscillates continually around the

equilibrium possibly taking on a chaotic behaviour. All these types of behaviour

can have an impact on how the population reacts to patterns of fishing. Thus this

chapter will concentrate on observing how the population behaves for different

parameter values, particularly the fertility parameter (β).
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5.1 Stability of the Model

5.1.1 Finding Stability Equations

The stability of the model can be found by linearizing around the equilibrium.

This will allow us to examine what happens if the population deviates from the

equilibrium by a small amount. As we are looking at small quantities, the linear

approximation of the model will give a true picture of the dynamic behaviour.

Thus the simpler linear equations for the population, will allow us to determine

broad patterns of behaviour, and indicate if we should expect quick returns to

equilibrium, oscillations, or limit cycles where the population cycles in a set

way permanently. Simulations will then show us the exact behaviour (i.e. limit

cycles, chaos etc) as perturbations of the equilibrium are allowed to become

large.

The stability question is examined from the perspective of number of 6 month

fish entering the population. Let

R(t) = R? + r(t)

where R? is the equilibrium level of fish at age 6 months and r(t) is assumed to

be small with respect to R?. I then let u(a) = p(a)w(a)S(a) to simplify notation.

From equation 4.14 we obtain

R(t) = βe−A/KA = βe

(
− 1

K

∫ 50

0.5
u(a)R(t−a)da

) ∫ 50

0.5
u(a)R(t− a)da

thus

R? + r(t) = βe

(
− 1

K

∫ 50

0.5
u(a)[R?+r(t−a)]da

) ∫ 50

0.5
u(a) [R? + r(t− a)] da

= βe

(
−R?

K

∫ 50

0.5
u(a)da

)
e

(
− 1

K

∫ 50

0.5
u(a)r(t−a)da

)
×[

R?
∫ 50

0.5
u(a)da +

∫ 50

0.5
u(a)r(t− a)da

]

As r(t − a) is very small the exponential expression can be replaced with the

first two terms of the Taylor approximation, namely

1− 1

K

∫ 50

0.5
u(a)r(t− a).
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Thus,

R? + r(t) = βe

(
−R?

∫ 50

0.5
u(a)da

K

) [
1− 1

K

∫ 50

0.5
u(a)r(t− a)

]
×
[
R?
∫ 50

0
u(a)da +

∫ 50

0.5
u(a)r(t− a)da

]

= R? − β

K
e

(
−R?

K

∫ 50

0.5
u(a)da

)
R?
∫ 50

0.5
u(a)da

∫ 50

0.5
u(a)r(t− a)da

+βe

(
−R?

K

∫ 50

0.5
u(a)da

) ∫ 50

0.5
u(a)r(t− a)da

getting rid of second order r(t − a) terms. Cancelling R? from both sides we

obtain

r(t) = βe

(
−R?

K

∫ 50

0.5
u(a)da

) [
−R?

K

∫ 50

0.5
u(a)da + 1

] ∫ 50

0.5
u(a)r(t− a)da (5.1)

which is linear in r(t). We define

Z = βe−
R?

K

∫ 50

0.5
u(a)da

[
−R?

K

∫ 50

0.5
u(a)da + 1

]
. (5.2)

Using the definition of the competition function and equation 4.13

Z = βc?
[
1− A?

K

]
. (5.3)

When the competition and adult biomass are then substituted using equations

4.9 and 4.11

Z =
1∫ 50

0.5 u(a)da

(
1− log

(
β
∫ 50

0.5
u(a)da

))
. (5.4)

Setting r(t) = r0e
λt, we obtain from equation 5.1

r0e
λt = Z

∫ 50

0.5
u(a)r0e

λt−λada (5.5)

1 = Z
∫ 50

0.5
u(a)e−λada. (5.6)

Solving this equation will determine the stability of the system. If λ is positive

and real then the equilibrium diverges exponentially. If λ is negative and real

then the equilibrium converges exponentially. If the root is complex, then the

sign of the real part will signal if we have divergence or convergence, and in

the case of convergence the population will oscillate towards the equilibrium

(Gurney and Nisbet 1998).
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5.1.2 The Boundaries of Stability Behaviour

Note that for both models,
∫ 50
0.5 u(a) and Z can be calculated given a value for

β, the fertility parameter. Hence we can ascertain which type of behaviour will

arise as β varies.

We begin by examining the region where λ in equation 5.6 is real. Note

that if λ is real then
∫ 50
0.5 u(a)e−λada will be non-negative as u(a) is non-negative.

Hence if

Z >
1∫ 50

0.5 u(a)da
(5.7)

then λ > 0 otherwise

1 < Z
∫ 50

0.5
u(a)e−λada.

But this in turn allows us to find the region with respect to β as from equations

5.4 and 5.7

β =
1

exp(Z
∫

u(a)da− 1)
∫

u(a)da
. (5.8)

Thus from 5.7

β <
1∫ 50

0.5 u(a)da
. (5.9)

However using the equation for equilibrium adult biomass

A∗ = K
(
ln
(
β
∫ 50

0.5
u(a)

))
(5.10)

then upon substitution of 5.9

A < 0

as the logarithm in 5.10 is less than 1. But if adult biomass has an equilibrium

value which is negative and hence impossible in the real world, then the only

option is that the population will tend to the trivial equilibrium, the zero state.

Hence in the region where

β <
1∫ 50

0.5 u(a)da
(5.11)

the population is not viable.

Now note that if

0 < Z <
1∫ 50

0.5 u(a)da
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λ is still a real root, however, it must now be negative in order for

1 = Z
∫ 50

0.5
u(a)e−λada.

The point where Z is zero corresponds to

0 =
1∫ 50

0.5 u(a)da

(
1− log

(
β
∫ 50

0.5
u(a)da

))
(5.12)

1 = log
(
β
∫ 50

0.5
u(a)da

)
(5.13)

β =
e∫ 50

0.5 u(a)da
. (5.14)

Thus for
1∫ 50

0.5 u(a)da
< β <

e∫ 50
0 u(a)da

(5.15)

there is a negative real root.

The region where

β >
e∫ 50

0 u(a)da

is a region where stability is governed by a complex root and simulations have

shown oscillatory behaviour in this region. For values of β just above this bound-

ary value there is a negative complex root as populations settle to an equilibrium

value. However, solving for the boundary between a negative complex and pos-

itive complex root unfortunately is not quite as easy. An attempt was made

in Maple (Waterloo Maple Inc ) to solve the problem numerically, however the

form of the function for proportion mature makes this too difficult to solve.

Even when simpler proportion mature models (such as the concurrent matura-

tion model) were used there were difficulties in solving this problem. Often the

solutions found were due to numerical error and missed the true solution. Hence

a new method of solving this problem had to be found and this is shown in the

next section.
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5.2 Finding Stability in Complicated Models

5.2.1 Fourier Transforms

A new method was used to solve

1 = Z
∫ 50

0
u(a)e−λada (5.16)

for the boundary between oscillatory convergence and divergence. I begin by

letting u(a) = 0 when a < 0, as fish cannot have negative age. When a > 50

(or 25 in the fished model) all fish are assumed to be dead (i.e. S(a)=0), as the

survival curves indicate it is unlikely that any fish are alive past this age(figures

4.1 and 4.8). The limits of integration can then be changed so that

1 = Z
∫ ∞

−∞
u(a)e−λada. (5.17)

Furthermore, the boundary between a complex root with negative real part and

a complex root with positive real part, will be the first complex root which is

entirely imaginary. Hence we are solving the equation where λ is replaced with

Iω where ω is real:

1

Z
=

∫ ∞

−∞
u(a)e−Iωada. (5.18)

The right hand side is now the Fourier transform of u(a) so the problem can be

rewritten as

1

Z
= = <(U(w)) (5.19)

0 = =(U(w)) (5.20)

where U(ω) is the Fourier transform of u(a). This set of equations can be solved

first by finding the smallest positive value of ω which satisfies the imaginary

equation 5.20. By substituting this into the real equation 5.19 the value of Z

can be found. To find the corresponding value of β the value of Z can be simply

transformed as earlier using equation 5.4.

This method, however, will only work if an analytically tractable transform

exists. Maple was unable to calculate such a transform for any of the mod-

els, thus an alternate method was chosen. I now show how to deal with this
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problem through Discrete Fourier transforms implemented through Fast Fourier

Transforms (FFT’s).

5.2.2 Fast Fourier Transforms

In order to examine the relationship between the FFT and Fourier transform we

will follow the explanation in James (1995). We begin with the discrete Fourier

transform pair of the sets of numbers [xn] and [Xm] each with N elements,

X(m) =
N−1∑

0

x(n)e−2πinm/N (5.21)

x(n) =
1

N

N−1∑
0

X(m)e2πinm/N . (5.22)

Note that the exponent term has changed from the Fourier transform given

earlier in equation 5.18. The 2π term is included for the discrete transform and

not the continuous form in order to match the form for the two transforms in

Maple (Waterloo Maple Inc ).

I will now show the link between the continuous and discrete transforms.The

Dirac function, δ(x − a), is 0 unless x = a. The Dirac Comb III a(x) is defined

as an infinite set of equally spaced (with spacing of a) Dirac functions such that

III a(x) =
∞∑

n=−∞
δ(x− na).

The Fourier transform of this function is another Dirac comb namely III 1
a
(ω)/a1.

The Fourier transform of f(t)III a(t) is∫ ∞

−∞
f(t)III a(t)e

−itωdt =
1

a
F (ω) ∗ III 1/a(ω) (5.23)

where ∗ is the convolution of the two functions.

It is now assumed that f(t) is 0 outside the limits (0, N), that there are N

teeth in the Dirac Comb and that f(t) extends over a range ≤ Na. The notation

is then changed so that the form of the exponential term in the integral is correct:∫ ∞

−∞
f(t)III a(t)e

−itωdt =
∫ ∞

−∞
f(t)III a(t)e

−2πitω1dt (5.24)

1For more information on Fourier transforms see James (1995), Bracewell (1978), and

Appendix F in Nisbet and Gurney (1982).
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where

ω1 =
ω

2π
.

Then using the properties of the Dirac function∫ ∞

−∞
f(t)III a(t)e

−2πitω1dt =
∫ ∞

−∞

∞∑
n=−∞

f(t)e−2πitω1δ(t− na)dx (5.25)

=
∞∑

n=−∞

∫ ∞

−∞
f(t)e−2πitω1δ(t− na)dx. (5.26)

Due to the assumption that there are only N teeth in the comb we can write∫ ∞

−∞
f(t)III a(t)e

−2πitω1dt =
N−1∑
n=0

f(na)e−2πiω1na, (5.27)

thus from 5.23

N−1∑
n=0

f(na)e−2πiω1na =
1

a

(
F (ω) ∗ III 1

a
(ω)

)
. (5.28)

Hence given the discrete Fourier transform of a function which suits the necessary

requirements, the Fourier transform can be estimated for a point ω = 2nπ/(Na)

by multiplying the value for the nth point by a.

An FFT is a very efficient way of estimating a discrete Fourier transform

using a number of points equal to a power of two. An explanation of how the

Fast Fourier transform works is given in James (1995). Its key advantage is that

it reduces the number of multiplications needed for a transform of length N from

N2 to 2N log2(N), a significant saving of time even for very fast computers. A

good estimate of the Fourier transform can be made using the FFT under certain

conditions. A range of points must be chosen such that the function extends over

a range less than the range chosen on which to perform the FFT. Within the

range chosen, points are selected at even intervals and the value of the function

evaluated at these points is used to calculate the Fast Fourier transform.

To show that the FFT finds the correct results we examine a simple expo-

nential function namely f(t) = exp(−π ∗ (t− 2)2) which has Fourier transform

F (w) = e−2iω−4πe
1
4

16π2−ω2

π .

In figure 5.1, the plot of the function is seen as well as a plot of the real (red)

and imaginary (green) parts of the Fourier transform of the function.
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Figure 5.1: A Simple Exponential Function and its Fourier Transform: A simple

exponential function f(t) = exp(−π∗(t−2)2) is plotted with its Fourier transform

divided into real (red) and imaginary(green) parts. The value of the real part of

the Fourier transform when the imaginary part is zero for the first time, gives

the value of Z for which the stability changes to non-converging oscillations.
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A fast Fourier transform was then calculated using 214 points with an interval

of 1/4 and starting at time 0. Figure 5.2 gives the plot of the real and imaginary

parts of the FFT as well as the error of the scaled FFT with respect to the

Fourier Transform. Ideally the value of w where the imaginary part of the Fourier

transform is zero would be estimated by finding the nth point for the FFT where

the imaginary part is zero, and multiplying by 8π/214. However, the FFT does

not include the first point where the imaginary part becomes zero. Hence I

estimate the true zero point by fitting a line between the smallest negative and

positive values of the imaginary part of the FFT where the imaginary part first

changes sign. Then by fitting a line between the corresponding values of the

real part this zero can be used to estimate the true value of the real part of the

Fourier Transform. We then observe that for the Fourier transform the first zero

of the imaginary part occurs at 1.57 and the real part has value −0.8217. For

the FFT the corresponding real value is −3.2867 which when multiplied by 0.25

gives four decimal point accuracy. From figure 5.2, the error in estimating the

Fourier transform is always quite small, if rather systematic. In the case of my

model, the value of −0.82 would be the estimate of the value of Z and then the

corresponding value of β could easily be found. This method will be used to

find the boundary value of β which divides converging and diverging oscillatory

behavior in the results section of this chapter.

5.2.3 Simulation Method

To run a simulation of a population governed by the equations in section 4.1

the package Solver(Gurney et al. 1998a) is used, with a program implementing

the Escalator Boxtrain method. This method is detailed in Gurney and Nisbet

(1998) and an accompanying program titled EBT1 has been modified for my

model (see Appendix B).

To give a brief description, the key idea is to divide the population into

several cohorts of equal time interval ∆a. Having done this, cohorts can now be

numbered such that cohort i contains all fish which were born between time i∆a

and (i+1)∆a. As cohorts will become empty as fish age, it is sensible to have a
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Figure 5.2: FFT of an Exponential Function: The FFT of f(t) = exp(−π ∗

(t − 2)2) is plotted below, the red line being the real part and green line the

imaginary part. The second graph gives an estimate of the error between the

Fourier transform and the scaled FFT, with the red line showing the error for

the real part, and green line for the imaginary part.
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cut off age, aD, such that when the fish reach age they are no longer included in

calculations. Of course this age must be chosen so that the number of fish above

this age is insignificant in terms of the general population, hence in my model

aD = 50 for unfished populations and aD = 25 for fished populations. Thus only

cohorts containing some fish of age less than equal to D∆a (where D = aD/∆a)

will be included in the model, thus letting us keep only D + 1 cohorts in the

model at any time. The model at time t will therefore have cohorts M(t)−D to

M(t) where M(t) ≡ trunc(t/∆a). The computer program is then written so that

only the active cohorts are kept by recycling cohorts as they reach the maximum

age.

It is necessary to keep track of age, size and numbers in each cohort. We

first notice that the number of fish of age 6 months at time t can be written as

R(t) =
M(t−0.5)∑

i=M(t−0.5−aD)

B(w̄i, āi, t)Ni

where w̄i and āi are the average weight and age in the cohort, while Ni gives the

number of fish in each cohort.

Now consider the number of fish in each cohort, Ni. The change in numbers

over time is affected by the mortality rate, δ(w̄i, t). Hence

dNi

dt
= R(t)− δ(w̄i, t)Ni (5.29)

where R(t) = 0 unless i is the new cohort, i.e. i∆a < t ≤ (i + 1)∆a.

Next looking at total age of a cohort, Ai, notice that this quantity increases

through the aging process but is decreased as fish die. Also as the model begins

with fish of age 6 months there is a term depending on the initial addition of

fish to the population. Hence

dAi

dt
= 0.5R(t) + Ni − δ(w̄i, t)Ai (5.30)

where we have as above R(t) = 0 unless i∆a < t ≤ (i + 1)∆a.

Finally the weight of the population must be considered. This again is kept

as the total weight for the cohort Wi, with the average weight being

w̄i =
Wi

Ni

.
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The total weight of the cohort increases as new fish are born into the cohort and

with the aging process, but decreases as fish die. Let gw(w̄i, āi, t) be the growth

rate of an individual and wr the weight at age 0.5. Then

dWi

dt
= R(t)wr + gw(w̄i, āi, t)Ni − δ(w̄i, t)Wi. (5.31)

Again R(t) = 0 unless i∆a < t ≤ (i + 1)∆a.

This method is implemented using a Solver program with the functions de-

fined in chapter 4. A key step in running these programs is that the output

interval and time step must always be integer sub-multiples of the cohort width

(Gurney et al. 1998b). As such, the programs were run with a fixed time step

and the output interval was chosen to be the cohort width. When cohort width

and time step are decreased the accuracy of the simulation is increased. The

basic program used for all models is included in Appendix B.

5.3 Results and Robustness

5.3.1 Results

Having now established methods for finding equilibrium values, determining

stability, and running simulations of the populations, the results for the model

can be examined. As a first step the equilibrium values for the fished and

unfished models are given in table 5.1 using the parameters set in chapter 4.

Table 5.1: Equilibrium Values: Equilibrium values are given for when the fertility

parameter is 15.9. Notice that fishing mortality has a significant effect on the

equilibrium values found. In the unfished model, the number of half year fish is

much smaller, while the adult biomass is much larger.

Population characteristic Unfished model Fished model

Adult Biomass(thousand tonnes) 4959 155.0

Half year old fish (millions) 553.4 2111
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Table 5.2: Stability Boundaries with Respect to Fertility (β)

Stability Boundary Unfished Model Fished Model

Point of Viability 0.1116 13.62

First Oscillatory Behaviour 0.3033 37.01

Non Convergence 7.359 260.2

Notice that, as expected, the adult biomass is much higher for the unfished

model as this population suffers much less mortality. The equilibrium level for

6 month old fish is, however, smaller. This is because in the unfished model

reproduction is limited due to high levels of competition and thus not as many

new fish are produced as in the fished model where crowding is not a factor.

Although less fish are produced in an unfished population, due to the increased

expected life span, more will survive to become part of the adult biomass.

We next examine the stability in the fished and unfished models for different

levels of fertility. From equations 5.11 and 5.15 it is possible to establish the

two boundaries between non-viability, exponential convergence, and oscillatory

convergence. Using the FFT method the third boundary, between oscillatory

convergence and limit cycles can be found.

In figure 5.3 the plots of u(a) = p(a)w(a)S(a) are presented for the unfished

and fished models. The graph for the unfished model is skewed, and shows that

u(a) is noticeably different from 0 for ages less than 35. For the fished model

the graph is more symmetrical, and u(a) is virtually zero for all ages above

15. Hence, it is expected that there should be different results for the stability

boundaries for the two models as they are found using functions of u(a). The

FFT’s for these models were calculated using 214 points and an interval between

points of 1/8. For the unfished model the imaginary part of the FFT is first

zero at ω ≈ 0.4 where the real part is approximately −22.5, producing a value of

β ≈ 7.36. For the fished model this occurs when ω ≈ 0.76 with the corresponding

real value of −0.55 giving a value of β ≈ 260.

Notice, from table 5.2, that fishing has a profound effect on stability, as the
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production parameter β must be much higher for a fished population to survive.

Similarly higher values of the β parameter are needed before limit cycles, or

oscillations of any type can be expected to occur. The actual behaviour under

these two models, within different stability boundaries, is shown in figures 5.4

and 5.5 produced using solver simulations. These graphs highlight that the same

basic behaviours occur in both situations, only for different parameter values.

For the unfished model (figure 5.4) the population is viable for very low values

of β. As the fertility term includes mortality before 6 months, as new fish only

enter the population at this age, the population is quite resilient with respect to

increased mortality for this very young stage. As such several years of conditions

which promote high juvenile mortality are unlikely to cause extinction. There

is a narrow parameter region in which an exponential approach to equilibrium

is found, but in such a region this equilibrium can be obtained quite quickly in

less than 100 years (see figure 5.4). For higher values of β there is an oscillatory

decay to equilibrium, with large oscillations being possible. Finally note that

the value of 15.9, used for the fertility parameter, lies in the region where limit

cycles appear. As a result the population will not achieve the equilibrium adult

biomass, instead it will oscillate around this value continuously.

For the fished model, there is a different situation. The value of β which

gives limit cycles in figure 5.4 for the unfished model would not even lead to a

viable population in the fished model (see figure 5.5). With β = 12 the fished

population becomes extinct. The region in which the population converges ex-

ponentially to equilibrium is large, with the graph for β = 15.9 being shown

in figure 5.5. Within two hundred years the population manages to settle. It

is unlikely that the fertility level could be high enough for the population to

undergo limit cycles or even oscillatory behavior, considering that this would

require that the fertility level was more than doubled. Additionally the fished

model will not have the same resilience to mortality on larvae and pelagic juve-

niles that the unfished model has. This is because the current fertility level is

only just higher than the minimum value for a viable population. Hence several

years of high juvenile mortality which lowered the production of 6 month fish,
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could have a very serious effect on the population. Certainly there would be a

more dramatic effect than if fertility were lowered for an unfished population.

On comparison of the results for the fished and unfished model, it is not sur-

prising that stocks which have a low fertility rate can become extinct extremely

quickly, even under low levels of fishing pressure. Such an effect is seen in many

deep sea species as well as larger fish with few offspring, such as sharks. Ideally,

before such species were fished, an analysis of the stability of the population

should be performed in order to assure that the addition of extra mortality

would not cause the population to go from a stable situation to one where the

population declines to extinction.

Note, that stability boundaries have only been found with respect to the

fertility parameter. The reason for this is that the fertility parameter β is likely

to be one of the parameters which is most changeable. This is due to its depen-

dence not only on the egg producing ability of fish, but on the mortality rates

during the first six months of life. All other parameters which have an effect on

stability are included in the function u(a). In the equations which are solved

for the third stability boundary (see 5.19 and 5.20), this function is involved in

both sides of the equation. Thus as we must use FFT’s to estimate the value of

the Fourier transform, the set of equations is no longer easily solved. Instead a

point by point examination is necessary in order to find this stability boundary

for any parameter other than the fertility parameter.

An estimate of where these boundaries lie can, however, be made by exam-

ining individual values for parameters and finding the stability limits for these

points. By plotting these values against β, the stability boundaries with respect

to the parameter of interest can be estimated taking β = 15.9. This has been

done for two parameters, one maturation parameter, py, and one weight parame-

ter, w∞. In figure 5.6, the proportion mature parameter py has been considered,

with β plotted on a log scale on the y axis. The dotted line gives the value of β

used in the model. We observe that the population will be extinct if py is less

than approximately 3.7. However the population will not take on an oscillatory

behaviour until py is much larger than any value included in the graph, which
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would be unrealistic. It is also clear that increasing py, and thus the proportion

mature, lowers the level of β needed for the different types of behaviour. Thus,

as expected, a population which matures early (i.e. py = 4.4) does not need to

be as fertile as a population where maturation occurs more slowly (py = 3.6) in

order to be viable.

In the second figure (figure 5.7), the maximum weight parameter (w∞) has

been used instead. A very similar situation arises. The dotted line again gives

the set value of β of 15.9, giving that the population will become extinct if w∞

is less than approximately 15.4. Again, w∞ must be much larger before it is

possible for the population to show oscillatory behaviour if β is kept at the set

value. Increasing the value of w∞ will lower the stability boundaries with respect

to β.

5.3.2 Robustness

An important question is how dependent the results above are on the particular

model chosen. It would be hoped that the system is fairly resilient to changes

in the model. Thus if data is modelled incorrectly wrong conclusions about the

model would not be made.

We will start by observing the difference that changing the function for pro-

portion mature has on the equilibrium adult biomass values in both the fished

and unfished model, and the values of β which determine the behaviour of the

model around the equilibrium. In table 5.3, β = 15.9 when equilibrium adult

biomasses are calculated.

In the unfished case the equilibrium biomass levels given, with one excep-

tion, are in a parameter region where the population experiences limit cycles.

These values were found to be very similar in all cases, and with environmental

noise would be indistinguishable. This was also discovered to be true for values

of β which give a stable equilibrium as well, and as such it would be difficult

to determine which function was governing proportion mature purely from the

equilibrium adult biomass found in the population. With the exception of the

distribution for exponential maturation, stability boundaries are also fairly sim-
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Main Model 1 2 3 4

Without Fishing

Adult Biomass 4959 4969 4902 4952 4938

Point of Viability 0.1116 0.1105 0.1182 0.1123 0.1139

First Oscillatory Behaviour 0.3033 0.3004 0.3213 0.3054 0.3097

Limit Cycles 7.359 6.980 21.35 7.228 9.064

With Fishing

Adult Biomass 155 0 1010 30.0 429.7

Point of Viability 13.62 17.4 5.788 15.43 10.35

First Oscillatory Behaviour 37.01 47.31 15.73 41.94 28.12

Limit Cycles 260.2 166.6 2083 198.3 753.0

Table 5.3: Equilibrium Adult Biomass under Different Maturation Schemes: The

columns correspond to the proportion mature being modelled with the Weibull

distribution, concurrent maturation, a cumulative exponential distribution, a

cumulative Gamma (α = 3) distribution and a cumulative Gamma (α = 4)

respectively.

ilar with tiny regions where different types of behaviour depending on the model

chosen. The exponential model is quite different, with a much higher fertility

level needed in order for limit cycles to appear in the population. This model

has a much longer period during which fish mature (see figure 4.10) and hence

will not experience the same increase in competition when fertility increases as

the other models.

However, with the heavy fishing mortality that is included in the fished model

it becomes easier to distinguish between the different functions. The equilibrium

adult biomasses are quite different, with the model where all fish mature at the

same time actually being extinct when β = 15.9. The exponential model has

more than twice the biomass of any other model, while the third model has a

fifth of the biomass of the Weibull distribution model which has a third that

of the other gamma distribution model. Differences can also be seen in the
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stability boundaries, particularly for the exponential model which has wildly

different values from the other four. These differences are explained by the high

level of mortality, under such mortality the ability to reproduce at a very young

age becomes very important. Thus the exponential distribution, which allows

many fish to mature at very young ages (see figure 4.10), is more resilient to

the level of mortality. Hence it has a higher equilibrium adult biomass, and a

lower minimum fertility level than the other models. This provides a startling

example of why accurate data is needed for fisheries stocks. If we cannot be

certain of the exact progression of maturation, this can have a significant effect

on the biomass predicted to be in the oceans as well as the expected behaviour

of the stocks. It should be noted that for the Weibull and Gamma distributions,

the same type of behavior occurs in the region where we expect β to lie.

Table 5.4: Stability Boundaries for the Models under Different Growth Schemes

Main Model Power Gompertz Logistic

Without Fishing

Adult Biomass 4959 4959 4934 4903

Point of Viability 0.1116 0.1116 0.1144 0.1179

First Oscillatory Behaviour 0.3033 0.3034 0.3109 0.3206

Limit Cycles 7.359 7.340 6.328 5.314

With Fishing

Adult Biomass 155 0 145 63.52

Point of Viability 13.62 19.80 13.75 14.90

First Oscillatory Behaviour 37.01 53.82 37.38 40.56

Limit Cycles 260.2 388.7 277.6 328.3

We now look at what would happen if growth were modelled using one of

the alternate functions from chapter 4. It should be noted that for the alternate

growth models we have set the boundaries for different types of mortality using

the weight function in question in the method of the previous chapter. This is in

order to compare the differences between choice of model rather than difference
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in value for weight at a particular age. For the calculation of adult biomass

β = 15.9 even though the calculation used in chapter 4 would set β = 20.9 for

the power model.

The first thing we notice is that for the unfished model results are very similar

for equilibrium adult biomass, with just over a 1 % difference between all models.

Stability boundaries are also quite similar, especially between the linear and

power growth models which are virtually indistinguishable. The Logistic model

begins limit cycles at a smaller value of β than the other three models in this

case. However for all four models the value of β used to calculate adult biomass

is well within the region of limit cycles

For the fished model values of adult biomass are quite different with the β

value being too low to have a viable population when young growth is modelled

with the power model (using β = 20.9 gives a value of 54 thousand tonnes).

Examining the linear and power growth functions, we notice that fish which grow

according to the latter scheme put on weight much more quickly and therefore

suffer fishing mortality from a much earlier age. Hence, with the increased

mortality the population experiences and no increase in the proportion mature

at such a young age, the fertility parameter β needs to be larger in order to

ensure a viable population. The Gompertz rate of growth for older fish gives

very similar results to the von Bertalanffy, with slightly higher values of β for the

boundaries between behaviour regions. The equilibrium adult biomass is also

quite similar. It is suspected that with the addition of environmental noise, it

would be very difficult to distinguish which of the two models was in effect. The

Logistic growth for older fish differs more substantially from the von Bertalanffy

growth curve (see figure 4.4), although stability regions are fairly similar. The

equilibrium adult biomass, however, is half that of the main model.

5.4 Summary

In this and the previous chapter we have examined a single population model for

cod in the North Sea. We have looked at how equilibrium values can be found
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as well as the stability of these equilibriums, and have considered seven possible

changes to functions in the model as well as a fished and unfished model.

5.4.1 An Unfished Population

For an unfished population, the results were fairly robust. Model changes had

a fairly small effect on the population, with the exception of switching to expo-

nential maturation. Due to the low mortality in the model, fish have long life

expectancy. Thus small differences between populations for young ages will not

be noticeable due to the overwhelming influence of older fish. In an unfished

population most of the reproduction of the stock is due to fish aged 4 to 15,

with younger fishing being a small percentage of the adult biomass and hence

having little effect on reproduction. Therefore any changes to the model which

affect mainly fish under age 4, will have few effects on the population. Hence

the power model, which changes life history only below the age of two and a

half, has virtually no effect on stability and equilibrium values.

This conclusion is further supported by the effect of changing the model for

proportion mature. The function which requires higher values of fertility in order

to be viable and before limit cycles begin, is the exponential function. When

referring back to figure 4.9, we see that with this model 100% maturity is still

not achieved by age ten even though the proportion mature is higher for young

ages. This means that the adult biomass is dominated by comparatively young

fish, which weigh less, and therefore are less able to reproduce than a similar

number of older fish.

The changes to the older growth curve affected stability more than the change

of the young growth curve. Both functions reduce the maximum weight achiev-

able by a fish. Hence reproductive ability of an individual fish has been compar-

atively lowered. This difference is most apparent in the level of β at which limit

cycles begin to appear, while the equilibrium values found for adult biomass are

very similar in all three cases.
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5.4.2 The Addition of Fishing

Once fishing is added to the model the situation changes considerably. Fishing

provides a major source of mortality, and significantly decreases the life span

of the fish. Thus young fish contribute more to the population while older fish

become rare, diminishing the importance of how fish grow and mature at an

older age.

This pattern is clearly observed in the table for changes in functions of growth

(table 5.4). For the unfished model, changing the linear growth of young fish

to power growth had virtually no effect, whereas for a fished population it has

a significant effect. The population with power growth has a higher minimum

value of β in order for it to be viable. This is directly attributable to the fact

that under such growth young fish gain weight much more quickly (see figure

4.3), and therefore become susceptible to fishing mortality at an earlier stage in

life. The model with Gompertz growth for older fish, which is more similar to

the von Bertalanffy curve at a young age than an old age, has proportionally

closer values for stability boundaries in a fished population than in an unfished

population. The Logistic model has a similar discrepancy in both fished and

unfished populations as it differs more noticeably than the Gompertz model for

ages three through six (see figure 4.4).

A similar effect is observed in the table for proportion mature. When all

fish mature at the same age (3.75), there is an increase in minimum value of the

fertility parameter. This is not surprising as this model is alone in preventing

reproduction till such an old age. Conversely, for the exponential model a much

lower minimum value is found, as under this model the proportion mature at

young ages is relatively high.

5.4.3 Discussion

The fished model used in this thesis gives an equilibrium adult biomass of ap-

proximately 155 thousand tonnes. This value is realistic when considering the

population between 1965 and 1985 (see figure 1.3). For the last fifteen years,
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however, when biomass has declined to less than 100 thousand tonnes it seems,

at best, optimistic. Thus, if the value of β were estimated using only recent

data it would be lower. This is worrying as the minimum value of β needed for

a viable population is not much lower than the value used in the model.

For the fishery it is important to establish which type of stability is being

shown in the population. As cycles can have long periods, it is crucial to realise

when the fishery is involved in a periodic oscillation, or whether there is a decline

towards a lower equilibrium biomass or perhaps even extinction. The correct

course of action will differ depending on the situation, and following the wrong

course of action may have disastrous consequences. For instance, management

plans for pacific salmon have used fishing to increase cyclic behaviour as these

populations undergo steady oscillations, although it has been suggested that this

is not a wise course of action (Welch and Noakes 1990). The same fishing plan

for a population which was declining towards a lower biomass, could cause it to

become extinct. Furthermore, in the case of a population which was exhibiting

limit cycles, timing of fishing could either increase the range of cycles, perhaps

making the population unfishable at times, or could remove the cycles from the

population, perhaps lowering overall yield. Hence, the stability of the population

can indeed affect how the fishery should be managed. The current trend in the

North Sea seems to be a decline in biomass, possibly towards extinction. It is

thought that the biomass levels of the sixties and seventies were an aberration

(Holden 1991), in which case this may be a decline towards a lower biomass

level. Either way, it is generally felt (see chapter 1) that a decrease in fishing

mortality would help the population, allowing it either to stabilize or perhaps

increase its biomass level.

This model’s parameters are in a region where there is an exponential ap-

proach to equilibrium with no oscillatory behaviour. However, if the fishery were

to stop, the unfished model suggests that the population would undergo limit

cycles. One would expect that, as long as biomass has not been decreased low

enough for stochastic effects to play an important role, the population would

rebound quickly. This would be a drastic action for the E.U. to take however,
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as it would require shutting not only the cod, but also closing the joint whiting

and haddock fisheries and would cause many job losses.

We have shown in this chapter that model choice does affect what is seen,

particularly when a fished model is considered. Frequently the type of behaviour

expected will be the same for all models for reasonable parameter values, how-

ever the equilibrium adult biomass varied substantially between models. Some of

these differences will become far less apparent once environmental noise is consid-

ered (for example El Nino effects, temperature and climate changes). However,

there is a clear suggestion that in order to have an accurate picture of what

is taking place in the North Sea the growth and maturation of cod should be

modelled accurately.

The work in the two previous chapters has highlighted that the rate of growth

and speed of maturation can have a large effect on the population. In the

following chapters we shall investigate which aspects of these rates are most

crucial in determining a populations ability to survive.
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Figure 5.3: The Proportion of Biomass which is Alive and Mature at age a for

the Unfished and Fished Models: Notice that the scales are different on the two

graphs, and u(a) obtains higher values for the unfished model.
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Figure 5.4: Behaviour for Different Fertility Parameter Values in an Unfished

Population: Note the first graph where the population becomes extinct is plotted

on a different scale from the other three. Quite small values of β are sufficient

to have a population with limit cycles and the population is viable even under

very low fertility levels.
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Figure 5.5: Behaviour for Different Fertility Parameter Values in a Fished Pop-

ulation: Note that the graphs are plotted on different scales. Fertility must be

extremely high before limit cycles appear in the population. The value of 15.9,

used as the basic value for β, is only just large enough to provide a viable popu-

lation, as when β is 12 the population becomes extinct.

0 100 200 300 400 500

Year

0

5e+10

1e+11

A
du

lt 
B

io
m

as
s

0 100 200 300 400 500
0

5e+07

1e+08

A
du

lt 
B

io
m

as
s

0 100 200 300 400 500

Year

0

5e+10

1e+11

0 100 200 300 400 500
0

5e+09

1e+10

β=12 β=15.9

β=150 β=280

77



Figure 5.6: Stability Behavior for py : The dotted line gives the set value of β,

which is plotted on a log scale. We see that a population with the parameter

values of chapter 4, requires that py > 3.75 in order to be viable. There is a

steady decrease in the value of β required for a viable population as py increases.
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Figure 5.7: Stability Behavior for w∞ : The dotted line gives the set value of β.

We see that a population with the parameter values of chapter 4, requires that

w∞ > 15.4 in order to be viable. There is a steady decrease in the value of β

required for a viable population as w∞ increases.
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Part III

Competing sub populations
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Chapter 6

Evolution through competing

phenotypes

The previous chapter examined the case of a single population, with set param-

eters for growth, fertility and mortality. This part of the thesis will study the

interactions of a two population model, each population having different param-

eters controlling its life history. The main question is whether human fishing

of cod stocks is capable of exerting a significant influence on the population.

This could be by either changing which mutations are favoured or how quickly

a mutation is able to increase its numbers.

In this chapter a measure will be found to ascertain the fitness of the popu-

lation. Once this is established populations can be compared, and it is possible

to determine which evolutionary paths are likely to occur. In chapter 7 a sensi-

tivity analysis will be performed in order to assess which parameters affect the

fitness of the population the most, and hence which aspects of life history are

likely to change. Different aspects of fishing mortality will also be assessed, in

order to determine the most effective way of reducing fishing pressure on the

population. Finally in chapter 8 seasonal and spatial behaviour will be included

in the model. This enables us to examine if a non spatial model can fully cap-

ture the complexity of the North Sea, or if future work should concentrate on

creating a fully spatial model.

81



6.1 Introduction

In recent decades the question of how populations will evolve has been raised

for many different populations, not only cod. Several people have examined

methods for judging how evolution will take place for a given model, for example

Law and Grey (1989), Nisbet, Gurney, and Metz (1989), Blythe and Stokes

(1990), Brown and Parman (1991), and Thompson and Stokes (1996) which will

be examined in the following section. Others research has looked at stocks for

evidence of change in life history parameters (de Veen (1976), Beacham (1983),

Jorgensen (1990), Reznick, Bryga, and Endler (1990), and Rijnsdorp and van

Leeuwen (1996)).

The level of mortality imposed by fishing in many of the world’s fisheries is

extremely high and is often quite selective, imposing a major force of selection

on populations. Even without strong age or size selectivity the high mortality

inflicted on a population can have a significant effect. Borisov (1979), for exam-

ple, investigated Arctic-Norwegian cod and discovered that high levels of fishing

mortality will select for younger maturing fish (fish in this population mature

from age 6 to 15). However, under low mortality levels the reproductive contri-

butions of early, middle, and late maturing fish in the population are balanced.

In the case of high levels of fishing mortality it is found that half of all eggs

laid during the life of a year-class come from early maturing fish, and the other

half virtually all from middle maturing group, with the late maturing group

producing almost no eggs. Obviously in a situation of high fishing pressure,

late maturing fish will not be able to pass on their genes. In a situation of low

fishing pressure, the early maturers are responsible for approximately 16% of

eggs, middle maturers 64% and late maturers approximately 21%. Additionally,

the population has seen an increase in growth rate and a reduction in average

life span.

Dr. Rochet examines the effect of fishing in a more general way. She considers

77 stocks, most of which are commercially used, and finds that populations

compensate for fishing by increasing size and decreasing age at maturity (Rochet
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1998). Her work concentrates on female traits examining the time to 5% survival,

length at 5% survival, age and length at sexual maturity and a measure of

fecundity. She suggests that her findings should be considered by managers

when assessing stocks and that data on the proportion mature at age should be

frequently updated.

Dr. Rowell finds evidence that for cod in the North Sea there has been a

trend towards a smaller minimum size at maturation and an increase in range of

sizes at which maturation occurs when data from 1893, 1923 and recent years are

compared (Rowell (1991), see also Oosthuizen and Daan (1974)). These effects

seem most likely to be explained by evolutionary responses, although this could

not be determined conclusively. Similarly, the Scotian shelf cod population in

the Northwest Atlantic has exhibited signs of significant changes in the last half

century. There has been a 50% drop in median length and age at sexual maturity

between 1959 and 1979 (Beacham 1983). For instance, by 1978 females in NAFO

area 4VN matured at a median length and age of 32cm at 2.6 years, as opposed

to 65cm at 6.7 years in 1959. The changes in the population are notable for

having occurred in a time period when exploitation has increased dramatically

(Beacham 1983).

Finally the growth of Sole (Solea solea) in the North Sea has increased since

the 1950’s in a way which is not correlated to temperature or increased nutrients

from river discharge (although it is possible that density dependence effects of

stock abundance have played a role (Millner and Whitny 1996)). Evidence has

also been given by de Veen (1976) that length at age has increased from the mid

60’s, with the main change in length increment being for the 2 and 3 year old

year classes.

Evolution may not be the only cause of such changes in population parame-

ters. Fish populations have an ability to change their phenotype (or expression

of their genes in an environment) as their environment changes. The extent of

the ability of a fish to change its phenotype is also referred to as its reaction

norm. So a question which must also be answered is whether changes in the

reaction norm and changes in genotype of a population can be distinguished.
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This is important as a change of phenotype can be reversed quickly by changing

the environment, whereas a reverse in genotype may take longer or never occur

if the necessary genes have disappeared from the population and do not mutate

again.

Reznick has managed to look at both phenotypic and genotypic change

within an experiment. He experimented with guppies (Poecilia reticulata L.)

in an eleven year study involving thirty to sixty generations. Evolution of the

genotype occurred when guppies were placed in an environment where adults

were no longer under heavy predation (Reznick, Bryga, and Endler 1990; Reznick

1991). This resulted in a 10 to 20% change in the age and size at maturity and

a 25% decrease in the number of young in the first litter. These fish could be

distinguished from the original genotype in a common environment. Hence, at

least some of the life history differences in the population which had not suf-

ferred adult predation were genetic rather than phenotypic (Reznick et al. 1990).

Reznick did find however, that phenotypic effects can be much larger (as much

as four to ten times larger) than evolved responses, and hence genetic effects

may often be unnoticeable in comparison (Reznick 1991).

An example where phenotypic responses may be large enough to either hide

or preclude evolutionary responses is Plaice (Pleuronectes platessa L.) in the

North Sea. It is believed that many of the changes seen for Plaice are linked

to density dependence or other phenotypic effects, although 24% of phenotypic

variablility of traits is associated with genotypic variability (Rijnsdorp 1991;

Rijnsdorp 1993). There has been a decrease in age and length at maturity since

1990 and a growth increase for size classes larger than 35 centimetres since the

70’s (Rijnsdorp 1993; Rijnsdorp and van Leeuwen 1996).

Dr. J. Hutchings also examines both phenotypic and genotypic effects in his

paper on brook trout (Salvelinus fontialis) in two Newfoundland coves (Hutch-

ings 1991). He summarizes that the ability to react phenotypically to the envi-

ronment can be expected to evolve when the spatial distribution of individuals

across habitat is random with respect to genotype and when the habitat sig-

nificantly influences fitness. His work finds that size-selective fishing mortality
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has the greatest effect on the reproductive effort of fish. Although the same

results are found whether or not the ability of populations to phenotypically

adapt is included in the model, this ability can affect the rate of such changes.

For instance, one of the effects found for size-selective harvesting is that there

is a reduction in juvenile density due to the sparsity of spawning adults (Myers,

Hutchings, and Gibson 1986), upon which increased juvenile growth appears

due to density effects. This can result in an immediate change to earlier age and

increased effort at first reproduction if phenotypic responses are considered, as

the ability to change age at reproduction may be already in existence (Hutchings

1991). However, if no reaction norm response is included any change would take

a longer period of time due to the wait for genetic evolution.

So what is required for evolution to take place? Firstly, there must be pheno-

typic variations based on a heritable genetic variation, i.e. a parameter of interest

must be heritable and not solely based on environmental reactions. Secondly,

mortality (or other factors inhibiting reproduction) of the population must result

in different genotypes reproducing different amounts (Policansky 1991). Hence

in order for evolution to occur, the population must undergo enough pressure

that not all genotypes in the population can react sufficiently by altering their

phenotypic response to the environment. If this is the case then some genotypes

may increase their occurrence in their population while others remain constant

or decrease. It should be noted at this stage that an unsuitability to the envi-

ronment does not require that a gene will disappear from the population. An

illustration of this is sickle-cell anaemia in humans, where one of the homozy-

gous genotypes results in sickle-cell anaemia while the heterozygous genotype

provides increased resistance to malaria (Hammerstein 1996). This increased

fitness of the heterzygote prevents sickle-cell anaemia disappearing from the

population.

6.1.1 Clonal versus Genetic Models

Ideally when examining the evolution of a stock one would include a model of

the species’ genes, studying what happens as spawning or mutation occurs, and
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looking at several different traits in terms of many different genes. However, in

practice this is very difficult to do. In many cases it is not yet known which

genes are responsible for certain aspects of traits and secondly the genetical

component of selection is also generally unknown (Weissing 1996). Furthermore,

such models, even if the necessary background data was known would present

many problems for a mathematical solution, or even computer simulation due

to their complexity. Hence a simpler, and less realistic situation is generally

modeled.

The two standard approaches are to use a simplified genetic model or to use

a clonal model. The first is to use a simplified genetic framework. One example

includes Mendelian genetics with a two-allele single-locus genetic model. In this

type of model the two alleles can be represented by A and a, and the result is

three different genotypes which arise, namely AA, Aa, and aa. If the different

genotypes have frequencies P , Q, and R then the frequencies of the alleles are

p = P + Q/2 and q = 1− p

respectively (Nisbet et al. 1989). Frequently it will be assumed that there is ran-

dom mating and non overlapping generations, with survival prior to reproduction

being the only selective force. This allows the Hardy-Weinberg equilibrium to

be used to give the frequencies of the genotypes as

P = p2, Q = 2pq, and R = q2.

Simple tracking of genotypes is now possible as knowledge is only required on

either p or q (Nisbet et al. 1989). More complicated models can easily be

formulated by altering assumptions slightly, for instance having non random

mating, or overlapping generations. This implies, however, that the Hardy-

Weinberg equilibrium can no longer be used (Nisbet et al. 1989). A model can

also use multiple loci, or have more than two alleles per locus, each expansion

leading to extra complexity of the model, but also adding realism. One paper

which uses a genetic approach to examine North Sea cod is by Thompson and

Stokes (1996). They use the one-locus and two allele model, assuming that the

86



allele A codes for fast growth while A′ codes for slow growth. The heterozygote

(AA′) gives a growth rate midway between that of the two homozygotes, as

neither allele is assumed to be dominant. They then keep track of the proportion

of each gene (A or A′) to see which is favored in the population. Their paper

finds the fast growing gene increases in frequency over a 50 year simulation.

Another standard approach, which shall be applied in this thesis, is to use

a clonal model. This assumes that offspring are exact replicas of their parents,

and that different populations do not interbreed. Although this is obviously

unrealistic, it allows other aspects of the model to be more complicated and

can suggest what may happen under a genetic model. Several authors have

used clonal models including Blythe and Stokes (1991), whose model served as

a base for the model in this thesis. Under such models, if new populations

with different phenotypes are added to the model the most common result is

that there is mutual exclusion with one population becoming extinct. There are

cases where two populations can coexist but this is a rare situation as there is

no interbreeding.

Studies have been carried out on the results found by the two modeling

approaches. Nisbet et al. (1989) examined a model for Nicholson’s blowflies

under both such strategies and found the results to be the same although initial

invasion is faster in the clonal case. Similarly Getz and Kaitala (1991) and

Geritz et al. (1998) have discovered that generally ecologically stable strategies

(or populations such that small groups of mutants using other strategies cannot

invade) can be found using a model without explicit genetic structure. It is

hoped that adding genetic structure to the model I use will similarly not affect

the general conclusion, although it is an avenue for further research.

6.1.2 Different Methods of Examining at Evolution

A key question now is how fish are likely to evolve under the model? By simula-

tion it is possible to observe what will happen to mutant populations as they are

added to the system. However, examining the model purely through simulations

is unsatisfying, a more general answer is desired to avoid case by case testing
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of each situation. The question of how to look at evolution under a model has

been treated by several authors. Two methods have been used by people doing

similar work, one using the resident population and the other using the invading

population. The latter method, as introduced by Blythe and Stokes (1990), will

be used in this thesis

The ‘streetcar theory’ of evolution provides basic concepts which are useful

to ponder. A streetcar has many temporary stops before it reaches a final

destination at which it will stop for a long time. The same idea can be used

to think about evolution. Stages where certain genetic mutations take over

can be thought of as the temporary stops (as the streetcar waits for the next

advantageous mutation before moving), whereas the final destination is when

the population has a uninvadable genotype (Hammerstein 1996). Hammerstein

argues that the temporary stops on the evolutionary streetcar depend strongly

on the genetic details of the population while the final destination is determined

mainly by forces on the phenotypic level. It is possible that this final destination

may never be reached. There may be no genotype which is resistant to invasion

by all others, or the time needed to evolve to such a genotype may be so long

that the environment has time to change such that the fictional ‘streetcar’ must

change route.

There are two different ways to think about evolution. In order for a new

genotype to take over a population it must increase in numbers when at small

population size and secondly, once established it must resist invasion from less fit

genotypes. These ideas generate different approaches to modeling evolutionary

changes in fish stocks. Two papers on the effect of size and age specific harvesting

exemplify this difference and shall now be discussed.

Law and Grey use the idea of an ESS (an evolutionary stable strategy defined

by Smith and Price (1973)). An ESS is a strategy which, given a particular

environment, will not permit invasion by any evolutionarily feasible strategy

(Brown and Parman 1991). This idea is further expanded by finding the ESS

which will give the maximum total yield after evolution, or finding the ESOHS,

the evolutionarily stable optimal harvesting strategy (Law and Grey 1989). They
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use a female’s expected lifetime production of female offspring as a measure of

fitness for the Arctic-Norwegian cod population. Their model finds, on the

assumption that population dynamics are well behaved, that in the presence of

fishing mortality earlier maturation is favored. They suggest that high fishing

rates should be restricted to the spawner fishery and pressure decreased on the

feeding grounds, as this will cause late-maturing life histories to be selected,

giving increased yields (Law and Grey 1989).

I shall, however, follow the method of Blythe and Stokes (1990). They ap-

proach the problem by searching for a strategy which when rare will be able to

invade any other evolutionarily feasible strategy. Hence, it is essential to find

which life history strategies allow a population to increase at small numbers

whatever the strategy of the resident population. This will be done by finding

a measure of fitness which can be calculated for a population without consider-

ation of any competing population. Then, in any situation, a population with

a higher level of fitness will successfully invade another population with a lower

fitness level. Blythe and Stokes (1990) find that equilibrium adult biomass is one

of the population characteristics which acts as such a measure. They originally

concluded that fitness increases with increased size at maturity when harvesting

efficiency is low, and that high harvesting efficiency will eventually result in ex-

tinction (Blythe and Stokes 1990). Their follow up papers, which added natural

mortality and an initial neonate size to the model, find that currently there is

pressure for a reduced size at maturity, and that reducing the harvesting rate

would increase yield (Blythe and Stokes 1991; Stokes and Blythe 1991).

The ESS approach has been used on Blythe and Stokes’ model by Brown and

Parman (1991). Their results differed from the original results in Blythe and

Stokes (1990) but agreed with the results of the later papers. This demonstrates

that the additions to the Blythe and Stokes model, mentioned in the previous

paragraph, were essential. An advantage of the invasion approach is that the

invasibility criteria can be extended to cases where the resident population is not

at equilibrium when the invading population arrives (Blythe and Stokes 1991).

I follow the invasibility strategy of Blythe and Stokes, finding a measure of
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fitness which after a simple calculation determines which of two populations is

capable of invading the other. A population which is capable of invading another

will not always succeed, however, in the real world. Stochasticity at low numbers

may prevent the invasion, and as genetic mutation is random the genes required

to produce a population with certain characteristics may not arise.

6.2 Competing Populations

The model used for competing populations is essentially the same as the model

for a single population. The main differences are that natural and fishing mor-

tality are now weight dependent so that sensible comparisons between the pop-

ulations can be made. Both types of mortality are size dependent as natural

mortality tends to affect small fish to a greater extent, due to predation, while

human fishing preferentially catches larger fish. The competition function now

depends on the total adult biomass of the population as it is assumed that,

although populations do not interbreed, they use the same resources and inter-

mingle. Hence for the resident population

fr(0.5, t) = R(t) =
∫ ∞

0.5
βpr(a)wr(a)e−(Ar+Ai)/KrSr(a)Rr(t− a)da (6.1)

and

fr(a, t) = Sr(a)Rr(t− a)

and similarly for the invading population.

Next consider the possible equilibria of the system. There are three trivial

equilibrium points. Both populations may become extinct, or either the residents

or invaders may die out, leaving a single population which behaves as it would

under the single population model. The only other possibility is a coexistence

equilibrium. If such an equilibrium exists

R?
r =

∫
βrwr(a)pr(a)e−(Ar+Ai)/KrSr(a)R?

rda (6.2)

R?
i =

∫
βiwi(a)pi(a)e−(Ar+Ai)/KiSi(a)R?

i da (6.3)
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requiring the system of renewal equations

1 =
∫

βrwr(a)pr(a)e−(Ar+Ai)/KrSr(a)da (6.4)

1 =
∫

βiwi(a)pi(a)e−(Ar+Ai)/KiSi(a)da (6.5)

to be solved. Thus

Ai + Ar = Kr

∫
βrwr(a)pr(a)Sr(a) =

KrβrA
?
r

R?
r

(6.6)

Ai + Ar = Ki

∫
βiwi(a)pi(a)Si(a) =

KiβiA
?
i

R?
i

. (6.7)

Hence, two populations may coexist under the very specific circumstance

that
KrβrA

?
r

R?
r

=
KiβiA

?
i

R?
i

. (6.8)

We shall show in the next section that if the competition coefficient K is the same

in both populations, then this is equivalent to the equilibrium adult biomasses

being the same.

6.3 Invasion of the Population

Next we wish to establish a measure of fitness which will determine when a pop-

ulation is capable of successfully invading another population. This is achieved

by assuming that the resident population is in equilibrium and then observing

what happens for a very small population of invaders. As β is infeasibly large

when limit cycles appear, this is the only interesting case to be examined. Let

the invading populations life history parameters have subscripts ‘i’ and assume

that the competition functions for each population are the same (although the

competition coefficient K may be different)1. Then

fi(0, t) =
∫ 50

0.5
βiwi(a)pi(a)ci(t)Si(a)fi(0.5, t− a)da. (6.9)

If the invading population is very small in comparison to the resident popu-

lation, then two assumptions can be made. First, that the competition function

1If the competition functions are different but both depend on the Adult biomass variable

and are monotonically a very similar result is obtained.
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depends only on the resident population as Ai is very small. Secondly that the

linear approximation

fi(a, t) ≈ eλt (6.10)

can be made. Hence,

eλt =
∫ 50

0.5
βipi(a)wi(a)ci(A

?
r)Si(a)eλ(t−a)da (6.11)

thus,

1 =
∫ 50

0.5
βipi(a)wi(a)ci(A

?
r)Si(a)e−λada. (6.12)

This equation can now be solved for λ. If λ is positive then the invading popu-

lation will increase, otherwise it will decrease to extinction.

The solution of 6.12 is made easier by noting that all functions involved in

the integral are non-negative. Hence, from the second mean-value theorem for

integrals,

1 = e−λh
∫ 50

0.5
βipi(a)wi(a)ci(A

?
r)Si(a)da (6.13)

where h is some value between 0.5 and 50. Thus if

1 >
∫ 50

0.5
βipi(a)wi(a)ci(A

?
r)Si(a)da (6.14)

λ is negative and hence the invading population dies out, and vice versa.

This inequality can be rewritten so that if

ci(A
?
r) <

1∫ 50
0.5 βipi(a)wi(a)Si(a)da

(6.15)

then

A?
r > c−1

i

(
1∫ 50

0.5 βipi(a)wi(a)Si(a)da

)
(6.16)

as the competition function ci is a decreasing function. Thus the invading pop-

ulation dies out. But, from equation 4.11

A?
i = c−1

i

(
1∫ 50

0.5 βipi(a)wi(a)Si(a)da

)
(6.17)

thus

A?
r > A?

i (6.18)
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when the invading population is unsuccessful. Similarly if

A?
r < A?

i (6.19)

then the invading population will take over. Therefore the equilibrium adult

biomass is a fitness function for the model. Any population which maximises

equilibrium adult biomass will be uninvadable by other populations.

Note that if two populations have the same competition coefficient and equi-

librium adult biomass then a coexistence equilibrium exists as

βrA
?
r

R?
r

=
βrA

?
r

βrc?(A?
r)A

?
r

=
1

c?(A?
r)

=
1

c?(A?
i )

=
βrA

?
i

βic?(A?
i )A

?
i

=
BiA

?
i

R?
i

.

Furthermore, if the competition constants are equal for both populations, then

if two populations have a coexistence state, such that

BrA
?
r

R?
r

=
BiA

?
i

R?
i

(6.20)

then as above
BrA

?
r

R?
r

=
1

c?(A?
r)

=
1

eAr/K
. (6.21)

Thus
1

eAr/K
=

1

eAi/K
(6.22)

implying the equilibrium adult biomasses are the same. Hence, the populations

are equally fit.

Notice that the previous section showed it is possible for a double popu-

lation equilibrium to exist without the equilibrium adult biomasses being the

same, however this requires the competition coefficients to be different. In order

for such an equilibrium to be achieved both populations would need to be estab-

lished at large numbers or the population with larger equilibrium adult biomass

would have to be the invading population.

A final consideration is that random noise, or stochasticity, has not been

included in the model. Stochasticity has a large effect for small populations,

and in the real world, a mutant will often not be able to invade as its population

becomes extinct due to stochastic variations. Thus my results will represent best
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case scenarios for the invading fish, and the phenotype of the population can be

expected to change more frequently than if stochastic effects were included.

The next chapter shall use this measure of fitness to analyse which life-history

parameters have the most effect on the population. After such an analysis it is

possible to predict which evolutionary paths are most likely to be followed, and

to gain an appreciation of the impact humans have on the population.
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Chapter 7

Finding the Best Fishing Policy

7.1 Introduction

When examining any model, a natural question to ask is how the parameters

affect the outcome of the model. The study of the change in model outcome (or

yield) versus the change in parameter is known as sensitivity analysis. There are

a variety of methods available to examine the sensitivity of models. The best

method may often differ between types of models and the situation in which the

model is studied. The rewards of performing a sensitivity analysis are clear. An

understanding of the importance of parameters in terms of the yield of the model

gives information on which parameters need to be most accurately determined

in order to model the real world accurately. Such an understanding also lets

us determine which parameters can be changed to improve yield, output or

population levels for the situation we are modelling

It is this use of sensitivity analysis which shall be examined in this chapter.

If we can discover which elements of the model give the best yield in terms of

fitness, we can establish which life history elements most effect the population.

In turn this shows which evolutionary paths will be most favourable to the

population.

To do this seven of the life history parameters are examined to see which

has the biggest impact on the population. The parameters used are the four

weight parameters (b, g2, w∞, g1), two proportion mature parameters (px, py),
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and fertility parameter (β). Following this, the fishing mortality to which the

population is subjected is considered, and the aspect of mortality which impacts

the population the most is determined. This shall be done by looking at three

elements controlling mortality, namely the initial length at entry to the fishery

(controlled mainly by mesh size), the overall fishing mortality level (controlled

mainly by effort), and finally the length at peak mortality (controlled by the

type and mix of gear used for fishing). The results will let us see how fishing

pressure can be reduced most effectively, in terms of both increasing fitness and

yield of the population.

7.1.1 Methods of Sensitivity Analysis

There are many different methods for looking at the sensitivity of models. One

general approach is to look at local sensitivities, thus examining narrow bands

of values around the given parameter value. This measures the effect of small

parameter changes. Classical sensitivity analysis uses δyi/δkj as a measure of

sensitivity of the variable or model output yi to the parameter kj (Swartzman

and Kaluzny 1987). One standard measure used this way, is the normalised local

sensitivity matrix which has entries

Si,j =
kj

yi

δyi

δkj

where the coefficients are the linear estimate of the percentage change in the

variable yi caused by a one percent change in the parameter kj (Turányi and

Rabitz 2000). I, however, am interested in looking at sensitivity to a wide

range of values. Thus it is not practical to use such methods, as the number

of calculations to cover the full range for each parameter of interest would be

excessive. In general, using such a method for sensitivity analysis in an ecological

model is untenable (Swartzman and Kaluzny 1987) as many such models have

discontinuities in their functions. The models in this thesis are no different, in

that the growth rates of the functions used both in the main model and in the

alternate models have discontinuities. Thus the standard approach to sensitivity

analysis is not useful in our situation.
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Global sensitivity analysis, on the other hand, examines the reaction of the

model to large changes in parameter values. A standard idea used in global

sensitivity analysis is to use OAT (one at a time) designs. In such a design

only one variable is changed at a time. These methods are frequently used in

screening to establish which parameters should be included or excluded in a

model. Generally in such designs a standard value for each parameter is taken

(such as the value given in the literature) and two extreme values are chosen.

The differences in outputs between the standard and two extreme values are

used to discover which parameters have the most importance (Campolongo,

Kleijnen, and Andres 2000). One such type of design is the Morris OAT design,

labelled a global sensitivity experiment in Campolongo et al. (2000) as they

cover the entire space over which factors may vary. To summarize the ideas

used in this method, if there are k factors, and if Λ is a predetermined value,

then the elementary sensitivity of the i’th factor is

di(x) =
[y(x1, ..xi−1, xi + Λ, xi+1, ...xk)− y(x)]

Λ

where x is the vector of parameter values at their normal values, and y(x) is

the output of the model. For each factor a range of elementary factors may be

computed where Λ takes on values 1
p−1

, 1
p−2

, ..., 1 or a scaled version of this.

It should be noted that for a model with many parameters, such as a weather

or global warming model, screening methods should be used before any sensi-

tivity analysis is performed, as there can be hundreds of parameters. By using

OAT designs, or other methods such as sequential bifurcation (Bettonvil and

Kleijnen 1996) a small group of factors can be found which have the most effect

on the outcome of the model. Hence, a relatively small group of factors can be

examined fully, without fear that an important factor has not been considered.

The models of this thesis have a relatively small number of parameters hence

prescreening is unnecessary. However, the method with which sensitivity is

examined could cope with large numbers of parameters, if a small fractional

design were used.
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7.1.2 Introduction to Factorial Design

Factorial design can be thought of as an extension of simple one at a time pa-

rameter designs. Instead of testing for the effect of one parameter at a time,

several different parameters are considered concurrently. The result is a sig-

nificant saving in experimental time and potentially cost, especially if error in

experiments must be taken into consideration. This method also has the ad-

vantage that if any interactions between parameters are important, these effects

can be estimated. For OAT designs this is impossible as only one parameter is

ever changed at a time.

In order to create a factorial design several questions must be answered. For

instance one must know how many parameters (or factors as they will be called

in the design) are of interest, and how many different levels of each factor are of

concern. In other words, are the effects of just high and low values of a factor

important or is it necessary to examine the effect of a range of values? The

answers to these questions depend on the model in which the parameters are

used and whether a parameter’s effect is linear or more complicated. Once these

questions have been answered a design can be created which has experimental

runs for each possible combination of factor levels.

The most commonly used factorial designs have factors with either two or

three levels. This is due to problems with the size of a design. For instance,

to have 6 different parameters at 2 levels each, a full design will have 26 = 64

different factor level combinations for which experiments must be run. If each

factor were to have 4 levels, this would be 4096 runs, requiring substantially more

time and money to complete the experiment. In table 7.1 a design is shown for

one of the most simple cases, a design where there are three factors, each tested

at two levels. The full design matrix for this experiment has 23 combinations of

the factors A, B, and C. We will label high values of a parameter with + and low

values with −. For each parameter combination a run or multiple runs, when

there is a source of error in the results, are performed. The advantage of a full

design is that all parameter interactions can be estimated from the results.

The main effect for A is estimated from the table using the average of results
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Table 7.1: A Simple 3 factor 2 Level Design: This design has three factors; A,

B, and C. These are each tested at two levels, - and +, giving a total of 8 runs

in the design

Run 1 2 3 4 5 6 7 8

A - + - + - + - +

B - - + + - - + +

C - - - - + + + +

Yield 728.45 675.75 771.85 705.5 714.5 642.05 766.75 677.25

when A is high minus the average of results when A is low (Swartzman and

Kaluzny 1987). If the yield is represented by Y and A− and A+ used to show

the level of A this can be written as

ȲA = ȲA+ − ȲA− = 675.1375− 745.3875 = −70.25.

For the interaction AB, the effect is calculated using the effect of A when B is

high minus the effect of A when B is low. This gives the following table of effects

(table 7.2). Thus factors A and C have negative effects on yield, while BC is the

only interaction effect which is positive. Notice also that the main effects are

much larger than the two way interaction effects which are in turn larger than

the three way effect.

The calculation of effects can also be done by noticing that for the factors,

(A, B, C) that the effect is found by multiplying the results row by the row of

the factor of interest, summing, and then dividing by the number of plus signs.

Similarly the effects of interactions can be found by multiplying the rows of the

factors involved times the result row. Thus for interaction AB the row for A is

Table 7.2: Effects of a 2 Level, 3 Factor Design

A B C AB AC BC ABC

Effect -70.3 40.1 -20.2 -7.6 -10.8 3.5 -0.8
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Table 7.3: A Simple 2 Level, 3 Factor Fractional Design: This design is created

by using only runs where the level for the interaction ABC is +

A B C AB AC BC ABC Result

2 + - - - - + + 675.75

3 - + - - + - + 771.85

5 - - + + - - + 714.5

8 + + + + + + + 677.25

multiplied by that for B and then by the results row. The sum is then taken and

divided by four to give the interaction effect (Campolongo and Saltelli 2000)

In some cases when the number of factors in a design is large the full design

is too big to be used. For example, the resulting experiments may be too costly

or the resultant number of data collected might be too great for a computer

to handle. In this case fractional factorial designs may be used. These designs

assume that all interactions of a certain size have negligible effects. For instance,

a half or 23−1 design can be created for the design introduced in table 7.1 by

confounding interactions with main effects. This is done by dividing the table in

two by whether A× B × C is positive or negative, essentially confounding this

interaction with the overall mean. This gives a new design as shown in table 7.3

If the same logic is followed as above then the effect of A is now found to

be -66.675, which is also the effect found for the interaction B × C. In fact, if

multiplication under mod 2 is considered such that A2 = 1 then we can calculate

which effects are aliased by multiplying by ABC, such that A is aliased with BC

and (B,AC) and (C,AB) are also aliased pairs. We also note that these pairs

have the same order of signs in table 7.3. Hence the parameters have been aliased

with two way interactions which are assumed to be negligible in comparison to

the effect of the parameter itself. If the other half of the table had been used

for the fractional design, estimates of the effects would be different. The same

aliases would be used, only the sign of the effects of the single parameter and

its aliased interaction would be different.
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The estimates of effects for the fractional design are given in table 7.4. We

notice that the signs of effects have remained the same, as has the order of

importance. The effect of B is, however, noticeably lower, as the confounding

with AC has had a substantial effect.

Table 7.4: Fractional Design Effects

A B C

Effect -66.675 29.425 -27.925

Some authors have advocated using ANOVA (analysis of variance) meth-

ods to assess sensitivity when using fractional design methods (Swartzman and

Kaluzny 1987). However, as in the case of deterministic simulation (such as

in our model) there is no random component, it makes no sense to perform

statistical tests. Furthermore the values computed in an ANOVA table are all

monotone functions of the effects calculated earlier (Swartzman and Kaluzny

1987). Thus only the effects shall be considered in this thesis.

3 Level Factorial Designs

When designs are expanded to having three levels for each parameter instead

of two, a slightly more complicated situation unfolds. Designs become bigger

much more quickly as even with only three factors, twenty-seven experiments are

required to do a full three level design. If each experimental run or simulation

is costly, it is obvious why a design with only eight runs might be preferred.

Although designs for two factor levels are well documented, it is more difficult

to find designs listed for three level designs. Some authors such as Connor and

Zelen (1959), Grove and Davis (1992), Gardiner and Gettinby (1998), and Hicks

(1993) do, however, list three level designs.

Fractional designs are also more complicated in their alias structure, as now

each interaction consists of multiple parts. For example, for two factors A and

B, we can list two AB interactions, AB and AB2, following the practice of

including only interactions where the exponent of the first term is one. The
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interactions which generate the design shall be called generators as in Connor

and Zelen (1959) (thus in the earlier case where we looked at a two level design,

the generator of the fractional design was ABC). Following the explanation of

Connor and Zelen (1959), we denote the generators as (G1, G2, . . . , Gp) and let

(λ1, λ2, . . . , λp) be a vector of elements which take on the values 0,1, and 2. We

call two such vectors (λ1, λ2, . . . , λp) and (λ′1, λ
′
2, . . . , λ

′
p) equivalent if they have

the property that (λ1, λ2, . . . , λp) = (2λ′1, 2λ
′
2, . . . , 2λ

′
p) modulo three. Then all

expressions needed to form the alias system are obtained from Gλ1
1 , Gλ2

2 , . . . , Gλp
p

using all the nonequivalent vectors (λ1, λ2, . . . , λp). As a final step the exponents

associated with the generators are reduced modulo 3 such that the first generator

has exponent 1 (Connor and Zelen 1959). Hence with p generators, we have

(3p − 1)/2 non-equivalent expressions which form the alias structure when 3

factor levels are used. To find the quantities aliased with a particular effect, say

A, we multiply each of these expressions and its square by A and reduce modulo

three such that the leading letter of every expression has exponent 1 (Connor

and Zelen 1959).

For instance, if a design is generated by the expressions ABCD and BC2DEF 2

then the fundamental identity required to create the aliases is

I = ABCD = BC2DEF 2 = AB2D2EF 2 = AC2E2F.

Then the factor A would be aliased with all interactions in table 7.5. In this

table we see that A is only aliased with three (or more) way interactions, which

normally would mean that the estimates for the effect of A would be reliable

Table 7.5: Alias Creation for Factor A

Identity ABCD BC2DEF 2 AB2D2EF 2 AC2E2F

Alias AB2C2D2 ABC2DEF 2 ABDE2F ACEF 2

Identity Squared A2B2C2D2 B2CD2E2F A2BDE2F A2CEF 2

Alias BCD AB2CD2E2F BDE2F CEF 2

even though they are confounded with other interaction effects.
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The next difficulty is in talking about the effect of a parameter, how should

an effect be defined? Effects shall be considered in more than one way. The

simplest way is analogous to the situation where there are two levels, the effect

of changing from one level to another. Hence three sets of effects can be found

for each parameter; the effect of changing from low to medium level, medium

to high level and from low to high level. In the case of the third comparison

this is assuming that there is a linear growth from low to high level (Grove and

Davis 1992). We shall also consider the grand average effect as in Hoggett-Jones

(2001) which is an average of the effects between different levels.

Using this method we will examine the life history parameters to see which

parameters have the most effect on the fitness, and hence equilibrium adult

biomass of the population.

7.1.3 Taguchi’s Design Method

The next issue will be to observe which elements of the fishing mortality curve

have the most influence on the population. Three aspects were examined, the age

at which fish are first caught, the length at which the peak in fishing mortality

occurs and finally the level of mortality for all lengths which are caught. As

mentioned in the introduction, these three aspects of the population can be

controlled by changing the mix of gear used in the fishery, setting mesh sizes,

and setting quotas or restricting areas from fishing.

This problem is examined by realizing that model parameters divide into two

distinct groups. The life history parameters over which we have no control and

the fishing parameters which can, at least theoretically, be completely controlled.

This suggests that a Taguchi design can be used, as in Gardiner and Gettinby

(1998), to examine the importance of fishing parameters.

Genichi Taguchi was a Japanese engineer who was interested in quality con-

trol in manufacturing. His use of experimental design and analysis revolution-

ized Japanese industry and has played a large part in its continued success. His

methods are beginning to become commonplace with Western industry as well,

and have become well known in the industrial world (Gardiner and Gettinby
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1998). The benefits of running small designs, in terms of the savings in defec-

tive production and avoidance of costly experimentation are enormous. Taguchi

methods have, however, been criticized for ignoring interaction effects as many

designs advocated by Taguchi confound main effects with two way interactions.

Taguchi suggested that performance variation in industry came from two key

sources, design parameter variables and noise variables. This first group contains

all parameters which are controlled by the operator of the system, for instance

in manufacturing such things as temperature or length of a process. The second

group contains all parameters which are beyond the control of the operator.

This idea can be used to build an experimental design using a control matrix

for the design parameters and a noise matrix for the uncontrollable parameters.

In the full design each set of values in the control matrix is tested at all levels

of the noise matrix.

Thus, in our model as fishing mortality is set by humans, these parameters

shall form the control matrix, while the life history parameters shall be used

for the noise matrix, as these are uncontrollable. We shall compare effects of

the different levels of the fishing parameters using the same methods as used

for the life history parameters. However as well as observing the effect chang-

ing parameters has on equilibrium adult biomass, the effect on yield will be

considered.

7.1.4 Examination of Sensitivity Method

The idea of using this form of sensitivity analysis is due in a large part to

the thesis of my colleague Dr. Hoggett-Jones (2001). In his thesis he examines

reprocessing techniques for nuclear fuel. He examines the impact of different

elements of his model on different recycling options using the same methods as

I have used to examine the impact of life history parameters.

It has been difficult to find papers which use the same type of sensitivity

analysis in the biological arena. Two fisheries papers use a somewhat similar

method, Finn, Idoine, and Gislason (1991) and Sampson and Yin (1998) al-

though neither matches exactly the method implemented in this thesis. For
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both, factorial design plays a large part in the sensitivity analysis, although dif-

ferent methods have been used to create the designs, and sensitivities have been

measured differently.

Finn et al. (1991) look at multispecies assessment and examine its sensitiv-

ities for 33 parameters in the MSVPA model (see chapter 2) and 29 parameters

in the MSFOR1 model. They use a 2 factor factorial design, 262−55 determined

by the fold-over method of Box and Draper (1987), as well as a central run with

all parameters set to their average values. Axial or star2 points are also added

in order to look at two-way interactions. Sensitivities were calculated as the

percentage change in the response variable cause by a 10% change in the pa-

rameter. Their results found that there was not great sensitivity of the MSVPA

model to any of the MSVPA parameters used, while the predictive model could

be very sensitive to fishing mortality rates, recruitment levels and fleet effort.

In all they conclude that the MSVPA model is very robust.

Tsou and Collie (2001) use the same type of sensitivity analysis to test the

MSVPA model they use to estimate predation mortality on the Georges Bank.

They find that although the MSVPA outputs varied with small perturbations

in input parameters, the variation was within 10% of the base run values.

Finally Swartzman and Kaluzny (1987) include an example of this method

of sensitivity analysis in their book. They apply it to a phytoplankton model,

using a half fraction of a two level design. Thus they run only sixteen runs of the

full design’s thirty-two. They use several different outcomes of the model to look

at sensitivity, and find that the zooplankton grazing rate, prey half saturation,

and their interaction are the most sensitive parameters.

1MSFOR being the predictive counterpart of MSVPA
2Star runs have each parameter of ±α = 1280.25 while every other parameter is set to the

nominal value
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7.2 How Do Life History Parameters Affect Pop-

ulation Fitness?

The work in this section is performed for seven different life history parameters

as established in chapter 4. These are the weight growth parameters, b, g2, w∞,

and g1, proportion mature parameters, px and py, and the fertility parameter β.

For each design the fitness, or equilibrium adult biomass, is calculated for

every included set of parameters levels. The results are then combined as in

section 7.1.2 to find the effects. These effects are then shown in a graph which

shows the difference in level between high and low levels, high and medium levels

and medium and low levels. The grand average effects for each parameter are

also examined.

The parameter levels used for the sensitivity analysis were felt to be sensible

end points for possible parameter values and are given in table 7.6. The medium

Table 7.6: Chosen Parameter Values for Sensitivity Analysis

Parameter Low Medium High

b 1 1.1 1.17

g2 0.24 0.26 0.28

w∞ 15.5 18 20

g1 0.6 0.73 0.85

β 14.5 15.9 17.5

px 0.0028 0.0036 0.005

py 3.8 4 4.2

level values are rounded versions of the parameters fit in chapter 4. The extreme

values were chosen using an ‘ad hoc’ method. Parameter values were checked to

ensure they gave a positive equilibrium adult biomass when all other parameters

were at their nominal values. The graphs of the life history functions were also

checked to ensure that changes in the growth curves were not too extreme. Once

the values had been chosen, tests were run to make sure that all models still
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included two growth curves, and that these curves intersected.

Table 7.7: Grand Average Effects: This table presents the average biomass (thou-

sand tonnes) at the high, medium, and low levels. It also presents the effect of

changing between levels, and the average over the three effects.

b g2 w∞ β py px g1

Average (-1) level 494 141 152 218 201 184 291

Average (0) level 236 276 293 285 287 273 273

Average (+1) level 136 449 421 363 378 410 303

Effect (-1) to (0) -258 135 14 67 87 89 -18

Effect (0) to (+) -100 172 128 78 91 137 30

Effect (-1) to (+) -358 307 268 145 179 226 12

Grand Average Effect -239 205 179 97 119 151 8

We will first look at the full design, which with seven parameters at three

factor levels has 2187 runs. The equilibrium adult biomass was calculated for

each run with the package Maple (Waterloo Maple Inc ), and when negative val-

ues were found these were set to zero in order to be realistic (as real populations

cannot have negative numbers of fish).

We begin by looking at the grand average effect in table 7.7. Only the b

parameter has a constant negative effect (i.e. fitness increases with a decrease of

the value of b), although the g1 parameter does have a negative effect for the low

to medium level. This can also be seen from Figure 7.1 which plots the mean

adult biomass at the different levels for the different parameters. It is clear that

the weight growth parameters for the older fish have the most impact on the

fitness of the stock, with the population being fittest for minimal values of b, a

fast rate of growth g2 and a large maximum size.

In figure 7.2 the effects between levels are plotted. Notice that the order of

parameters is the same as for the grand average effects. Once again it is clear

that the parameter g1 has a non monotonic effect on fitness, as the sign of the

effect changes for the medium to low effect and high to medium effect. This

107



1

1

1
1.0 1.5 2.0 2.5 3.0

15
0

25
0

35
0

45
0

Level

A
ve

ra
ge

 A
du

lt 
B

io
m

as
s 

(m
ill

io
n 

kg
s)

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7
7

7

Figure 7.1: Average Responses at Parameter Levels. Parameters are 1-b (older

weight parameter) 2-g2 (older weight growth rate) 3-w∞ (maximum weight) 4-β
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Figure 7.2: Effect plot: Parameters are listed in the order of the size of the effect

from High to Low level. We see that the three parameters for the growth of older

fish are the most important.

g 1
β

p y
p x

w
∞

g 2
b

−400 −200 0 200
Effect Size (thousand tonnes)

P
ar

am
et

er

High−Low
High−Med
Med−Low

108



means that any change of sufficient size in the value of the linear growth rate

for young fish will improve the fitness of the stock.

Examining the table and figure we note that the population increases its

equilibrium adult biomass if its growth rate as an adult increases, it matures

more quickly or if its juvenile growth rate either decreases or increases. The

population also increases its fitness when fertility is increased.

These figures and tables suggest strongly that the weight parameters for

older growth are most influential in the determination of fitness of the popula-

tion. Therefore one would expect that an evolutionary path leading to increased

growth rate would be beneficial for the population. However Oosthuizen and

Daan (1974) suggest that North Sea cod may have already reached a maximal

growth rate as they are the fastest growing cod in the Atlantic. Daan (1978)

and Hempel (1978) agree with this view stating that there has been no signif-

icant change in growth rate of cod in the last 80 years though Thompson and

Stokes (1996) states that there has been an increase in growth rate. There is also

some evidence that populations are reducing their age at maturity (Jennings,

Greenstreet, and Reynolds 1999).

7.2.1 Comparison of Full and Fractional Designs

We shall now compare two fractional designs with the full design of the previous

section. The first of these is a 27th design, and thus has only 81 runs, as opposed

to the 2187 of the previous design. The second is known as the L27(3
13) Taguchi

design and has only 27 runs.

The first design is taken from Connor and Zelen (1959). We assign letters to

factors as follows; A is b, B is g2, C is w∞, D is β, E is py, F is px and G is g1.

The design is built using the interactions

I = ABCDEF 2G = BC2EF 2G = ABCEG2

and aliases can be found by multiplying factors or effects by these three inter-

actions and their multiples. This design has the advantage that all individual

parameters are measurable (i.e. not aliased with a two way interaction) as are
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Table 7.8: L27(3
13) Aliases with Two Way Interactions: The labels used in the

design for parameters are given in brackets. We see that the three older weight

growth parameters are aliased with 2 two-way interactions, while the other four

parameters have 3 two-way interaction aliases

Effect Alias Alias Alias

b(A) pxg
2
1(FG2) βpy(DE)

g2(B) βp2
x(DF 2) pyg

2
1(EG2)

w∞(C) pypx(EF ) βg1(DG)

g1(G) bpx(AF ) g2py(BE) w∞β(CD)

β(D) bpy(AE) g2px(BF 2) w∞g1(CG)

px(F) g2β(BD) w∞py(CE) bp2
x(AG2)

py(E) bβ(AD) w∞px(CF ) g2g1(BG2)

the following list of two way interactions AB, AC, AE, AG2, BC2, BD, BE2,

BF 2, BG2, CD, CE,CF, CG, DE2, DG,EF 2, EG, and FG2.

The second design is taken from Gardiner and Gettinby (1998) and is essen-

tially a 81st fractional design. It can be generated with the identity

I = BCDE = CD2E2F 2G2 = ACD2E2G = ABCE2F 2G.

Of course, with increased fractionization of design, more interactions must be

aliased and in this design some two way interactions are aliased with one way

interactions. In table 7.8 all two way interactions which are aliased with main

effects are listed. As mentioned before, this is a failing of Taguchi design as if

interactions are important, confounding them with main effects will change the

results.

Before running this design we look at the interaction effects from the full

design. In figures C.1 and C.2 in Appendix C we see interaction plots for all 7

parameters. In figure 7.3 we reproduce the graphs which include the parameter

g1. This is the only parameter which shows evidence of notable two way inter-

actions. When the two-way interaction effects for g1 were found all were small
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Figure 7.3: Interaction Plots. The black line is the low level, red the medium

level and green the high level of the parameter g1. Adult Biomass is given in

thousands of tonnes.

with comparison to the effects found for other main effects, although all were

close in value to the g1 effect. However none of these effects is aliased with the

g1 effect in the L27(3
13) design, and it would be expected that they would have

little impact on the effect sizes found with this design.

We now examine the grand average effects found in the fractional designs

in table 7.9. The three most important parameters have all stayed in the same

Table 7.9: Grand Average Effects for Fractional Designs

b g2 w∞ β py px g1

Full Design -239 220.6 205 97 119 151 8

1
27

design -249 213 177 101 121 146.0 9

L27(3
13) -260 205 180 97 141 96 4.5

order of importance, while the young growth parameter has remained the least

important in all cases. The relative order of the fertility and proportion mature

parameters has changed for the smallest design.
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Looking at the plots of effects between levels (figure 7.4 ), we observe that the

order of high to medium effect and grand average effects remains the same for

each separate design, thus the results of the grand average effects are replicated.

The first fractional design represents a great saving in time and effort to

achieve virtually the same estimates of effect size and relative importance of

factors. If the aim of the analysis is to find the most important factor (or

factors) the smaller design ( 1
27

) could be useful as it provides even larger savings

in time (and possibly cost) and is fairly accurate for the larger effects. The

L27(3
13) design should, however, be used with care. As shown earlier, this

design confounds two-way interactions with main effects, and thus there is great

potential for misleading results if sufficient care is not taken in the assignment of

factors in the design. Therefore, using this design, unless there is already some

knowledge of what the importance of two-way interactions is, can be deceptive.

The one remaining question is what the sensitivity means in terms of the

population. Simulations were run to give an approximate idea of the importance

of parameters in terms of how long it takes a fitter population to dominate

the community. For example, when the b parameter is changed from 1.1034

to 1, a change of approximately 9.3%, an invading population starting from a

5 year introduction of age 6 month fish at a constant rate, causes the resident

population to become extinct in just 360 years. Whereas when the w∞ parameter

is changed by almost 13% it takes 400 years for the invading population to

overtake the resident population in adult biomass. Hence, the larger the effect

on fitness, the quicker a population with such a parameter change will dominate

the community.

7.2.2 Implications for the North Sea Cod

This section has shown that the population is not at a maximal fitness level,

in that relatively small changes in several life history parameters could have a

beneficial effect on the population. If a mutant were to evolve with favorable

parameters, this population could completely dominate the population within a

relatively short period of time. For instance a population where all parameters
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Figure 7.4: Equilibrium plots: The top graph shows the effects for the full design,

the middle graph is the 1
27

th
design, while the third graph shows the effects for

the L27(3
13) graph.
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had improved slightly managed to completely extinguish the resident population

in 415 years, and be the dominant population in just 260 years. Other mutants,

with less favorable parameter changes, invading the region could lead to long

periods of polymorphism due to the slow rate of increase of the mutant pop-

ulation. This means it is possible to have situations where many populations

with different characteristics can coexist for long periods of time, even for thou-

sands of years. Although, as seen with the first example where b changed, life

history parameters may change enough that the possibility of parameter change

should be considered in management decisions, and that data on growth and

maturation should be regularly updated.

I have shown that the adult growth parameters have the most effect on adult

biomass, and hence the fitness of the population. As such we would expect that

the most favourable evolutionary path for the population to follow would be for

the population to increase its growth rate for adults. The b parameter seems

to be the most beneficial of these three parameters as it has a comparatively

larger effect on the youngest adult fish than the other weight parameters. It

is these younger mature fish which are most important to the population when

there are high levels of mortality, such as those inflicted by the North Sea fishery

(O’Brien, Fox, Planque, and Casey 2000). The young growth parameter has a

non monotonic effect, suggesting that growing either more slowly or more quickly

at this stage of life is beneficial, in one case delaying the onset of high fishing

mortality until some fish have matured, and in the other helping to minimize

the time spent enduring the highest fishing mortality.

The two proportion mature parameters follow the older growth parameters

in importance. The exponential term (py) is found to be the less important of

the two, perhaps because it has a mixed effect. It lowers the percentage mature

below the age of one, while increasing the percentage mature above this age,

while the multiplicative parameter (px) increases maturity over all ages.
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Figure 7.5: Effect Plot for Model with No Fishing: The four growth parameters

are now the most important factors. Notice that the young growth parameter g1

now has a positive effect for the medium-low effect
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An Unfished Population

As a comparison, the sensitivity of the model without fishing is studied, to

illustrate the impact of fishing on the model.

The four weight parameters are the most important factors, with the older

growth parameters being more important than the young growth. The order

of importance of the older growth parameters has changed with the maximum

weight being the most important factor in a fish’s life. As fish now are able to

live much longer lives this is to be expected, as heavier fish produce far more

eggs, and the longer life span allows fish to achieve these heavier weights. The

young growth parameter has increased in importance and now has only a positive

effect. This is as there is no longer an advantage to growing slowly as a juvenile

because natural mortality rates decrease with size.

The fertility function is almost as important as the young growth parameter
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and has a larger effect on the population than under the fishing model. The

proportion mature parameters are now the least important, having very little

effect. As the lifespan of the fish under the unfished model is much longer, under

all values of these parameters a sizeable number of fish will reach maturity, hence

removing the impact of changing the rate of maturation.

This shows that although the fishery does have an effect on the order of

importance of parameters, there is only one case in which there is a change in

how a parameter will benefit a population, namely the g1 parameter. Fishing

also produces more pressure on the population. An unfished population with all

parameters set at slightly more advantageous levels takes roughly 1000 years to

have a larger population than the resident population and approximately 2000

to completely dominate, around five times longer than in the model where the

population is fished. Thus we should not be complacent in our examination of

the impact of world fisheries, as our actions do have a great impact even if the

results are not immediately evident.

7.3 Robustness of Sensitivity Results

I proceed to observe what happens if the alternate models for growth and matu-

rity mentioned in chapter 4 are used. By examining the results for these models

it is possible to judge if the sensitivity of parameters is dependent on the model

choices made. Thus to see whether the different aspects of life history have the

same importance no matter how individual life history functions are modelled.

7.3.1 Alternate Functions for Proportion Mature

I begin with the four alternate functions for proportion mature. Only one of

them, the first cumulative gamma distribution, involved two parameters for its

function for proportion mature. The parameter values used for the analysis are

the same as for the main model, except for those given in table 7.10. For values

in this table, the medium values are again rounded values of the parameters fit

in chapter 4 with extreme values being chosen on an ‘ad hoc’ basis. The only
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Table 7.10: Parameter values for Alternate Proportion Mature Models: For each

model the parameters for proportion mature needed to be changed. Also in one

case the fertility parameter β had to be changed in order to examine a parameter

region where the population was viable

Parameter Low Medium High

Concurrent Maturation

px1 3.5 3.75 4

β 18 19.5 21

Exponential maturation

px2 0.22 0.25 0.28

Gamma(3) maturation

px3 0.55 0.61 0.67

py3 1.7 2 2.3

Gamma(4) maturation

px4 0.9 0.95 1

exception being the β parameter for the concurrent maturation model where

values were chosen to have the same range as for the other models, only at

high enough values to ensure that a sufficiently high number of parameter level

combinations gave a viable population.

For this function the effects are plotted in figure 7.6 and very similar results

are obtained as in figure 7.2. The parameters are not in the same order, the

maximum weight parameter is now the fourth most important parameter, how-

ever the initial growth parameter is still the least important of the parameters.

Note that the proportion mature parameter py3 and the two growth parameters

g2 and w∞ are almost equally important. The probable reason for the increase

in importance of the proportion mature parameters is that unlike the Weibull

distribution, this distribution has no fish maturing before the age of py3 . This

shows that, as before, a population is favored if it begins to mature at an earlier

age, as then fish have more chances to reproduce.
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Figure 7.6: Effect Plot for Gamma(3) Maturation
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In Appendix C the fractional design plots for this model (figure C.3) are

included. There is a change in order in that for both fractional graphs the

maximum size parameter is once again the third most important. However this

is not a significant change as the effect sizes for w∞ and py3 are very similar.

The fertility parameter and the other proportion mature parameter also change

order. More seriously the g1 parameter has changed the sign of its effects for

the L27(3
13) graph, suggesting that the two way interactions aliased with g1 are

non-negligible. It should be noted that for this model, g1,px3 , and py3 are the

E,F,G factors respectively when interactions are considered.

The other three models for proportion mature have one less parameter, thus

the full design has only 729 runs and different fractional designs are used. In

table 7.10 we give the values used for any parameters which are different from

the main model.

For the first function for proportion mature (figure 7.7), where all fish mature

at the same age, the parameter effects are much the same as for the main model,

with once again the parameter for proportion mature being almost as important
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Figure 7.7: Effect Plot for when all fish mature concurrently: The results are

very similar to those found for the main model
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as the growth parameters w∞ and g2. It should be noted that the values of β

used for this model were higher, as the minimum value of the fertility parameter

needed for a viable population has increased. For the exponential function and

the cumulative gamma(4) distribution models (figures 7.8 and 7.9) results are

similar to that of the main model only the fertility parameter is relatively more

important. For the exponential function fertility is the third most important

parameter, although it must be noted that β, w∞, and px2 give almost the same

effect size. Notice that for this maturation function, fish begin to mature ear-

lier, explaining the increased importance of this parameter. For the cumulative

gamma(4) distribution the change is less dramatic, as the three older growth

parameters are still clearly the most important, while β is found to be slightly

more important than px4 . It should also be noticed that for these two models,

although young growth is still the least important parameter, it always has a

positive as opposed to a negative effect. Thus there is no longer any advantage

to growing slowly as a juvenile.
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Figure 7.8: Effect Plot for Second Alternate for Proportion Mature
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Figure 7.9: Effect plot for Gamma(4) Maturation

g 1
p x

4
β

w
∞

g 2
b

−400 −200 0 200 400
Effect Size (thousand tonnes)

P
ar

am
et

er

High−Low
High−Med
Med−Low

120



In Appendix C the effect plots for the fractional designs are given for these

three models (figures C.4, C.5, and C.6). We note that in this case a ninth

design from Connor and Zelen (1959) generated by the identity

I = ACDE = BC2DE2F

and a 27th design generated by

I = ABD = ACE = CDF.

are used as the fractional designs. The ninth design predicts the effects extremely

well and is never more than 2% out on the true value of the effect. It is often as

little as a tenth of a percent out. A larger difference is seen with the 27th frac-

tional design, due to the increased confounding of main effects with interaction

effects (in particular all main effects are now aliased with two-way interactions).

When fish mature with an exponential distribution, this design sees the pro-

portion mature and maximum weight parameter switch order of importance.

However, for the case where all fish mature at the same age or via a cumulative

gamma(4) distribution this design gives the same order of importance as the full

design.

This model, in terms of sensitivity of parameters, is fairly robust to assump-

tions made about how the population matures. All of these models could be

expected to follow similar evolutionary strategies and could be managed by a

fisheries manager with the same guiding ideas. It should be noted that the

current level of fishing would have to be lowered if it was believed that all fish

matured concurrently, as under this model the population is in a non-viable state

(see table 5.3). This model is not realistic, however, and has been included only

as it is a common assumption in many models that fish mature concurrently.

7.3.2 Alternate models for Growth

Next the different growth models will be considered. The sensitivities were found

using seven factors in all cases even though with power growth model there are

two parameters for young growth rather than one, giving a total of eight factors.
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Table 7.11: Chosen Parameter Values for Alternate Growth Models

Parameter Low Medium High

Power Model

b 1.03 1.1 1.17

β 20.5 22 23.5

g1p 0.78 0.86 0.94

Logistic Model

w0L
0.25 0.27 0.31

g2 0.55 0.6 0.666

w∞L
11 12.5 14.4

β 20 22 24

g1 0.73 0.85 0.95

Gompertz Model

G 4.9 5 5.13

gG 0.36 0.38 0.407

w0G
0.083 0.097 0.092

β 20 22 24

g1 0.73 0.85 0.95
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Figure 7.10: Effect Plot for Power Growth
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In this case we used the multiplicative term of the young growth function for the

sensitivity analysis. The levels for parameters which were different from those

used for the main model are given in table 7.11.

We begin by looking at the effects found for the parameters as in figures 7.10,

7.11, and 7.12. These once again are for the full design. For the power model

(figure 7.10) the only changes in parameters are for β as this model requires a

higher fertility level to be viable, while the parameter for young growth varies

from 0.78 to 0.86 to 0.94. Once again the medium level is the value fit in chapter

4 while the exterior levels were chosen on an ‘ad hoc’ basis. The low value for

the b parameter was increased in order to obtain more viable combinations of

parameters. The results of the sensitivity analysis are similar to the main model

in that the three most important parameters are the older growth parameters.

The b parameter has decreased in importance and the effect size is just smaller

than the g2 effect size. The proportion mature parameters have the next largest

effect. The fertility parameter now has the least effect, while the young growth

parameter for this model has significantly more effect than it did when linear
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Figure 7.11: Effect Plot for Logistic Growth
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Figure 7.12: Effect Plot for Gompertz Growth
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growth was considered. Note also that under this model there are only positive

effects for this parameter, i.e. there appears to be no advantage in growing

slowly, unlike the case for the main model.

For the Logistic growth model (figure 7.11) the growth parameters which

were fit for older cod in chapter 4 have been used as the high levels of the

growth parameters, rather than the medium levels as in the other designs. This

is so that the two growth curve model could be kept, otherwise certain parameter

level combinations required having only one growth curve over the lifetime of the

fish. The fit for g1 from chapter 4 provides a minimum level for this parameter

for the same reason. The fertility parameter, β, had to be increased so that

viable populations existed at all parameter levels. The results are quite different

for this model, with the order of importance of parameters being the reverse of

that for the main model. The proportion mature and young growth parameter

are the most important, while two of the three older growth parameters are

relatively unimportant. Notice that the young growth parameter now only has

a positive effect as we do not include a value low enough to be beneficial to the

population. The parameter woL
now has a change in sign of effect, showing that

the medium value is the least fit of the three end values tried.

The Gompertz growth model (figure 7.12) also differs substantially from the

main model. The parameters chosen for this model were chosen in the same

way as for the Logistic model. The two most important parameters are the

proportion mature parameters followed by two of the growth parameters. The

fertility parameter β is almost as important as the second of these, G. The

young growth parameter is no longer least important, and has quite a large

effect size, with no negative effect being seen. The least important parameter

is the w0G
parameter which is purely multiplicative in this model. It should be

noted that there are significant interactions between parameters taking place.

This can be seen in figure C.9, where the smallest fractional design gives very

different results for the effects in comparison to the full design.

This shows that the model is not robust, in terms of life history sensitivities,

with respect to the growth curve chosen for older fish. This sensitivity analysis
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was also tried for the Logistic and Gompertz models with the young growth

being refitted when these older growth curves were fit. The ensuing sensitivity

analysis, however, found the same results. The power growth model made far less

of a change to the importance of various parameters, with the most important

part of life history being how weight is added for older fish. One would, however,

expect to observe quite different evolutionary paths being favourable for the two

models where older growth has changed. It is noted once again that if growth

in the North Sea is at a maximum, then all models would suggest that there

would be a change in maturation, towards fish maturing at an earlier age. This

is true for the Logistic and Gompertz growth models, even if the population is

not at a maximal growth rate. This all suggests that how the population grows

as older fish has a key effect on model outcome, and thus it is important this

this growth function is modelled correctly.

7.3.3 Comparison with Results from Similar Work

Other papers have looked at the same problem for cod, using different methods

(as mentioned in chapter 6). Thompson and Stokes (1996) who used a similar

model only with a genetic component had very similar results, finding that fast

growing fish were favored, unless a very large initial capture size was used or

if mortality rates were extremely high (higher than those used in their study).

This was also true for an unfished model. Similarly Blythe and Stokes (1990)

found that harvesting promotes increased body size although their later paper,

Stokes and Blythe (1991), did find a downward pressure on size at age. Whether

body size is increasing for the population is debatable. As previously mentioned

Oosthuizen and Daan (1974) speculated that North Sea cod may have reached

a maximum growth rate, citing that no change has been seen in growth rate

for the last 80 years (Daan 1978; Hempel 1978). However both Jennings et al.

(1999) and Thompson and Stokes (1996) suggest that there is evidence that the

growth rate for cod has increased, and Jennings et al. (1999) state that this is

a general phenomenon for fishes of the North Sea.

There is also agreement with the seminal papers of Law and Grey (1989)
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and Stokes and Blythe (1991) that it should be expected that populations will

mature earlier. This has already been observed for several different cod popu-

lations including Scotian shelf (Beacham 1983) and the North Sea populations

(Jennings, Greenstreet, and Reynolds 1999; Rowell 1991; Oosthuizen and Daan

1974).

7.4 Reducing Fishing for Maximum Results

7.4.1 Construction of Design

The next concern is fishing mortality and how it effects the population. I used

the Taguchi method of section 7.1.3 to search for this effect, by creating a noise

design and a control design and then proceeding to test each run of the control

design on every run of the noise design. The outcome variables were fitness, in

the form of equilibrium Adult Biomass, and equilibrium yield from the popula-

tion. Equilibrium yield is simply calculated by using the integral of the mortality

at age times the equilibrium biomass at age over all ages included in the model.

The noise matrix consists of values of the parameters which are not con-

trolled, namely the life history parameters. The smallest fractional design from

the previous section is used, the L27(3
13) design, which has 27 runs. Thus each

set of control levels is studied for 27 underlying situations. The parameter levels

used in the noise matrices are the same as those for the previous section.

The control matrix has three factors, the initial length at entry to the fishery,

a term which increases or decreases fishing mortality over the fished age classes,

and a term for the length of peak fishing mortality. A full design has been used

for this matrix, with three levels, thus we have a 33 or 27 run design. Therefore

the analysis consists of 729 simulation runs. The parameter levels used are

given in table 7.12. The fishing mortality curve for the population is altered

using these different levels for the three parameters. This is done in the same

way that the values in table 4.2 were used to fit the fishing mortality for the

standard population.

When initial length of entry to the fishery is changed from 25 centimeters to

127



Table 7.12: Chosen Parameter Values for Sensitivity Analysis of Fishing Param-

eters

Parameter Low Medium High

Initial length 22 25 35

Length at peak 42 47 70

Level of Fishing -0.1 0 0.1

either 22 or 35 centimeters, the fishing curve is refit (and in the later case the

total fishing mortality at 32 is set to 0 prior to this refitting). These values were

chosen as end points as the length weight relationship is believed only to be valid

for fish of 22 centimeters and above (Daan 1974), and 35cm is the legal catch size

of cod (Alverson et al. 1994). Hence, the latter case ensures that no undersized

cod are caught, and that most fish will be caught at a size much larger than

minimum capture size. Such a large size could be achieved by increasing mesh

size of nets, although it is unlikely that the EU would agree to setting such a

large mesh size, as it would have a large impact on the whiting fishery (Alverson

et al. (1994), Oliver (2001)).

When the peak length of fishing mortality is changed, the value in table 4.2

of 47 is changed to either 42 or 70 centimeters, and the fishing curve is refit.

This is in many ways unrealistic, as if the peak length for fishing mortality were

changed it is likely that fishing mortality for all lengths would change. This

does, however, give an idea of what would happen if small changes were made to

the shape of the fishing mortality curve. Values of this parameter were chosen

to remain between 40 and 98 centimeters, which are the surrounding lengths

used to help define the fishing mortality curve (see table 4.2).

Finally the level of fishing was changed by increasing or decreasing by 0.1

over the fishing mortality curve. This was done by changing the second column

of table 4.2 accordingly and refitting the fishing curve. Note that as there

cannot be negative fishing mortality, that fishing mortality will be increased or

decreased on a sliding scale between 0 and 0.1 between the initial length of entry
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to the fishery and second level defining the fishing mortality (either 32 or 40 cm,

depending on which run is used). This parameter is completely controllable

in terms of effort and quotas set for the North Sea. It should be mentioned

that estimating the mortality inflicted in a year is quite difficult and often not

completely determined till later years when all cohorts alive that year have died

(See chapter 2).

7.4.2 Results

When studying the table of grand average effects (see table 7.13) it is clear the

total level of fishing has most impact on the fitness and yield of the stock,

with the initial length of fishing being second in importance. Notice that the

population is fitter and equilibrium yield increases if the level of fishing mortality

is decreased and if the initial length of capture is increased. A population is also

fitter if its peak mortality occurs at an early age, this is as mortality tails off for

longer fish. Thus moving forward the peak decreases the region of high mortality,

enabling more fish to survive to older age and hence to reproduce more often

and more successfully.

We next look at the effects of changing between levels in figure 7.13. The

order of importance of effects is the same as for the table of grand average effects.

Notice that there is a significantly more important effect for changing the level

of mortality when changing from the low to medium level than from medium

to high level. This suggests that there is an increasing return as this parameter

Table 7.13: Grand Average Effects for Fishing Parameters: Observe that the level

of mortality is the key component of the fishing curve, with fitness increasing as

it decreases. Initial length is the next important factor, only as initial length

increases so do fitness and yield.

Parameter Initial Length Peak Length Level of Mortality

Fitness 121 -91 -335

Yield 221 -28 -395
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Figure 7.13: Fishing Effect Plot: The level of fishing mortality is clearly the most

important factor. Notice that for this factor there is a larger effect from changing

from the medium to low level than medium to high although the parameter value

has been changed by the same amount
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Figure 7.14: Interaction Plots. The black line is the low level, red the medium

level and green the high level. As in all three graphs the lines are virtually

parallel, we do not expect there to be significant two-way interactions

is lowered. Obviously at some point lowering the mortality level will begin to

decrease the yield, however for the values of the parameter chosen this effect

is not evident. Notice also that changing the peak of mortality has very little

effect on yield, and in terms of economics it would certainly make little sense to

try and change this facet of the mortality.

Interaction plots, figure 7.14, have been made for the three parameters with

respect to fitness. It is clear that any interaction effects are relatively unimpor-

tant, as the lines in the plot are virtually parallel in all cases.

7.4.3 Implications for the Fishery

There is one clear implication of the grand average effects and the level effect

plot. If it is desired to increase the equilibrium adult biomass and hence resilience

of the population to environmental effects and occasions of over fishing, the key

is to decrease the level of fishing. Although increasing the initial length at

entry to the fishery will have an impact, it is less pronounced than the effect

of reducing fishing mortality as a whole. Decreasing the level of fishing should
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also increase yield in the long term, making this a very sensible action. However

changing the initial length by as much as 10 centimeters has a small effect on

yield in comparison. Thus it is suggested that it should be a priority to lower

the general level of mortality experienced by cod, rather than concentrating on

mesh sizes.

It must be stated however, that this work has been done with a deterministic

model. In the real world, recruitment to the fishery has very high variability,

therefore in the real world situation increasing mesh size may have more impact

than in this model. If very low recruitment years are completely fished out be-

fore they can reproduce, this could have an extreme effect on the population.

Whereas in this model, recruitment does not have the extreme behaviour exhib-

ited by real world populations (see figure 1.3) and there is no danger of having

comparatively weak years in the population.

7.4.4 Alternate maturation models

Next consider the effect of fishing parameters on the alternate models for propor-

tion mature. Only the results for the equilibrium adult biomass are discussed,

as results for yield are very similar. We first consider the third alternate model,

which has a gamma(3) distribution for maturation.

On comparison with the graph for the main model (see figures 7.13 7.15)

we observe that these are virtually identical results, and suggest that the two

models can be considered in the same way from the view of a fisheries manager.

To examine the fishing parameters for these three alternate models for pro-

portion mature the 27th design mentioned in section 7.3.1 was used. We include

the plots of effects in Appendix C in figure C.10. These match the results for the

main model and for when the gamma(3) function for maturation is used. Note

that the initial length of capture is proportionally more important for all three

models especially that with exponential maturation, although it still comes sec-

ond in importance to the level of fishing. For the exponential model this is due

to the relatively large number of fish that start reproduction before reaching the

initial length of 35 centimeters.
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Figure 7.15: Plot of Effects of Fishing Parameters on Fitness in Model with

Gamma(3) Maturation
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Fishing Parameters for Alternate Growth Models

For all three models the overall level of fishing has clearly the most impact on the

population (see figures 7.16, 7.17, and 7.18), while the initial length is second

in importance. Observe that for all three models the length at peak fishing

mortality is almost as important as the initial length when the effect from high

to low level is considered. In summary, the results are a close match with those

of the main model, with the same being true for yield from the three models.

7.5 Conclusions

Thus one main conclusion can be drawn from the work in this section. Namely,

that in order to increase equilibrium levels of adult biomass, and also increase

yield, the most important change which can be made to the fishery is to decrease

the level of fishing. This conclusion resulted, no matter what assumptions were
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Figure 7.16: Plot of Effects on Fitness for Power Growth Model
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Figure 7.17: Plot of Effects on Fitness for Gompertz Growth Model
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Figure 7.18: Plot of Effects on Fitness for Logistic Growth Model
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made about how fish grew or how they matured. Increasing initial length of

entry to the fishery also seems a sensible step, even if it does not have as large

an impact as decreasing the fishing mortality. As stated earlier, this model does

not consider the high variability of recruitment, and as such in the real world

initial length on entry to the fishery may have a far more emphatic effect on

population fitness.

This agrees with the work of Stokes and Blythe (1991) who found that de-

creasing the harvest rate would increase equilibrium yield but that raising the

size at first capture would have little effect on yield. Similarly Brown and Par-

man (1991) find that a manager who considers evolutionary effects will select a

lower harvest rate than one who is concerned only with current effects on the

population.
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Chapter 8

Seasonal and Spatial

Considerations

In this chapter, seasonal and spatial considerations will be examined as final

additions to the model. Both will be explored with very simple model additions.

Seasonality shall be included by making the fertility function a simple step

function, where fish reproduce for a quarter of the year (between February and

April). When considering the spatial additions, the model will be divided into

two regions, and I will look briefly at some of the changes that this can bring in

terms of the ability of populations to invade.

8.1 The Effect of Seasonal Reproduction

Cod do not spawn year round, instead for the North Sea there is a peak in their

spawning from February to April (Anonymous 1981). As such, a model which

includes a reproductive term all year round has the potential to be misleading.

Thus the model will now be changed such that

f(0.5, t) = R(t) =
∫ ∞

0.5
B(a, t− 0.5)f(a, t− 0.5)da (8.1)

where if t is such that the day of the year is between approximately the 26th

and 117th of the year then B = β and otherwise B = 0 and hence R(t) is zero.

Therefore, spawning will take place during February through April. Although
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this introduces seasonality in a simple way, this is still a gross generalization as

spawning is not uniform through the spawning season. This is due to temper-

ature dependence for egg production (Fox, O’Brien, Dickey-Collas, and Nash

2000) and females spawning batches of eggs (ten to twenty batches per season)

which differ in quality and quantity of eggs (MacKenzie, Tomkiewicz, Köster,

and Nissling 1998). This lack of uniformity, however, will be ignored in the

interests of simplicity.

8.1.1 Transfer Functions

A common way to examine seasonal additions to a model is to use transfer

functions. These functions are used as they give a relationship between input

and output functions. Thus if the fertility term is thought of as the input

function, the transfer function will give information on how the output function,

in this case the adult biomass, will react.

These functions are frequently defined using Laplace transforms but in this

case they will be defined using Fourier transforms. The transfer function is

the ratio of the Fourier transform of the output function, Adult Biomass, to

the Fourier transform of the input function, Fertility. Therefore if the Fourier

transform of the input is multiplied by the transfer function the result is the

Fourier transform of the output function. Thus the transfer function shows

which frequencies in the input function will most affect the output function.

Two equations can now be written for the number of 6 month old fish,

R = βe
−A
K A, (8.2)

and the change in Adult Biomass,

dA

dt
=

∫ dp(a)

da
p(a)w(a)S(a)R(t− a)da +

∫ dw(a)

da
p(a)w(a)S(a)R(t− a)da

−
∫

δ(a)p(a)w(a)S(a)R(t− a)da. (8.3)

The notation in these equations is the same as in chapter 4 with: p(a) the

proportion mature, w(a) the weight at age, S(a) the survival to age, β the

production parameter, K the competition parameter and δ(a) the mortality.
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The differential equation for adult biomass gives the change in adult biomass

with respect to time as each age class increases weight and proportion mature

and suffers mortality.

The system is then linearized by letting

A = A∗ + θ(t) (8.4)

R = R∗ + ρ(t) (8.5)

β = β∗ + γ(t) (8.6)

where θ(t), ρ(t), γ(t) are all assumed to be small.

On substitution of these linearizations into 8.2

R∗ + ρ(t) = (β∗ + γ(t))e−
A∗+θ(t)

K (A∗ + θ(t)) (8.7)

= (β∗ + γ(t))e
−A∗

K (1− θ(t)/K)(A∗ + θ(t)) (8.8)

ρ(t) = βe
A∗
K (1− A∗

K
)θ(t) + γ(t)e

A∗
K A∗ (8.9)

This can then be substituted into the differential equation 8.4. The following

substitutions are made for ease of reading. Let

Q = βe
A∗
K (1− A∗

K
) (8.10)

P = e
A∗
K A∗ (8.11)

u1(a) =
dp(a)

da
p(a)w(a)S(a) (8.12)

u2(a) =
dw(a)

da
p(a)w(a)S(a) (8.13)

u3(a) = µ(a)p(a)w(a)S(a). (8.14)

Hence,

ρ(t) = Qθ(t) + Pγ(t).

Now as dA/dt = dθ/dt we can write

dθ

dt
=

∫
u1(a)(Qθ(t− a) + Pγ(t− a))da +∫
u2(a)(Qθ(t− a) + Pγ(t− a))da−∫
u3(a)(Qθ(t− a) + Pγ(t− a))da.
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Applying Fourier transforms to both sides, such that θ̃ is the transform of θ we

obtain

iωθ̃ = P γ̃(ũ1 + ũ2 − ũ3) + Qθ̃(ũ1 + ũ2 − ũ3). (8.15)

The transfer function can now be written simply as T (ω) = θ̃/γ̃ or

T (ω) =
P (ũ1 + ũ2 − ũ3)

iω −Q(ũ1 + ũ2 − ũ3)
.

This transfer function is not only correct for the fished model, but also for

the alternate models with exponential and cumulative gamma functions for the

proportion mature, as well as the alternate growth models. A small change is

made when considering the transfer function for the model where all fish mature

concurrently, as with all fish maturing at a single age, p(a) is not a continuous

function.

Unfortunately, due to the intractability of the fishing function, I am unable

to calculate the transfer function using Fourier transforms for any of the models.

However, FFTs can be used to estimate the value of the transfer function. The

plots of the transfer functions for the unfished and fished models are given in

figure 8.1. In the unfished case a period of approximately 44.5 years in the

fertility function will have the maximum effect on adult biomass. The period is

simply the inverse of the frequency. In the fished case periods of 19 and 6 years

have the most impact on adult biomass.

The period of the function used for the fertility function is one year. From

examining the graphs it is clear that there is no large effect on the adult biomass

when the fertility function has frequency one. Thus we would not expect that

there would be a large change in the resultant behaviour of the population with

the change in fertility function. If there were, however, some systematic change

in fertility corresponding to either the 6 or 19 year period, we would expect a

more dramatic effect to be noticeable.

8.1.2 Simulation results

Simulation results are given as a comparison. Although certain periodicities

of seasonal behaviour may have a great impact on the model behaviour, these
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Figure 8.1: Transfer Functions for the Population.We see that there will be an

increase in impact on the model with decreasing frequency. For the fishing model

there are two regions in which an increased frequency is seen, corresponding

to periods of 19.5 and 6.23 years, while for the unfished model there is a peak

corresponding to a period of 44.5 years.
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Table 8.1: Behaviour of the Seasonal Model For Different Levels of Fertility

Boundary of large scale behaviour Estimate of β value

Viability 52-53

Oscillatory convergence 175-180

Oscillatory Divergence 980-985

simulations are for the seasonal behaviour of interest which has a period of a

single year. Thus, the fertility and hence reproduction of the population behave

as a step function which is zero apart from short period in the spring of each

year.

In figure 8.2 simulation results for different values of β are shown. As now

the population only reproduces for a quarter of a year, we expect that the values

of β needed to see each type of behaviour will be roughly four times as large.

Note that in all simulations, even if it appears as though the population has

settled to equilibrium, there remains a small variation in this value due to the

seasonal behaviour of the model. However in terms of larger scale behaviour,

the results can be compared to the model without seasonality. In table 8.1

rough suggestions of where limits between different types of behaviour lie are

given. A comparable value for equilibrium biomass, as for the normal model

with β = 15.9, is found for β = 61.3 where the biomass cycles in a small region

surrounding 155 thousand tonnes. In general a rough estimate is obtained by

multiplying the value found for the boundary of the nonseasonal model by four.

In the figure 8.2 the behaviour of the seasonal model for different values of β

is presented. Again, it is emphasized, that although the population may appear

to have achieved equilibrium, there are constant small oscillations in the value to

which the population settles. This is due to the time dependency in the model

which only disappears if the population becomes extinct.
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Figure 8.2: Plots of Behaviour for Various Values of β
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8.2 The Effect of Migration

Until now one main feature of the North Sea has been ignored, that it has size,

i.e. that there is a distinct possibility that fish are not equally dispersed through

the sea. An approximate regional grouping has been arrived at for the North

Sea with six regions (Brander (1994) quoting the ICES North Sea Roundfish

Working Group from 1970 and 1971). These six regions are the Norwegian side

of the Skagerrak; the Danish side of the Skagerrak; one or possibly several coastal

regions from Flaborough to the Scottish east and north coasts; the central North

Sea; the Southern Bight, from the Straits of Dover to latitude 54◦N; the English

Channel, south and west of the Straits of Dover (Brander 1994). Although these

suspected regions exist for stocks there is no clear basis for the distinction on a

genetic basis (Brander 1994).

Rather than consider separate regions which do not intermix, two regions

which experience two way migration will be used in the new spatial model al-

though their exact location is not identified. This can be thought of as the two

final locations in the migratory route of a regional stock. In the North Sea, this

migration is on a small scale varying from 20 to 120 miles between spawning

feeding grounds (Brander 1994). This is not typical as other stocks such as the

Newfoundland and North-East Arctic stocks can travel 500 km (approximately

300 miles) or more (Rose, deYoung, and Colbourne 1995)

The two regions will have different main purposes, the first being a spawning

ground and the second a feeding ground. The stocks will spawn for a quarter of

a year, with migration towards the spawning ground beginning approximately a

month and a half before spawning and continuing through spawning. Migration

occurs towards the feeding grounds during the rest of the year. A model where

spawning happens throughout the year is also examined.

8.2.1 Introduction to Spatial model

The general spatial model is written in terms of differential equations. The

number of fish entering the population must be calculated for both regions, and
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6 month old fish are assumed to join the population in the region in which they

were spawned. Remember

A =
∫ 25

0.5
p(a)w(a)S(a)R(t− a)da.

Thus the change in adult biomass is the sum of the change in maturity and the

change in weight, minus the change due to mortality, plus the change due to

migration. Here the migration term is written as two directional terms where ν1

is migration from region one to region two and ν2 is migration from region two

to region one.

R1 = β ∗ exp(−A1(t− 0.5)/K1)A1(t− 0.5)

R2 = β ∗ exp(−A2(t− 0.5)/K2)A2(t− 0.5)

dA1

dt
=

∫ 50

0.5

dp(a)

da
A1da +

∫ 50

0.5

dw(a)

da
A1da−

∫ 50

50
δ1(a)A1da− ν1A1 + νA2

dA2

dt
=

∫ 50

0.5

dp(a)

da
A2da +

∫ 50

0.5

dw(a)

da
A2da−

∫ 50

50
δ2(a)A1da + ν1A1 − ν2A2

Thus the spatial model can be represented by a set of four equations, two of

which are differential equations for adult biomass.

8.2.2 Examination of Results of Simulations

Having derived the spatial model a Solver program was created to run simu-

lations. The program is similar to that in Appendix B, except now four pop-

ulations are considered as there are resident and invader populations for both

regions. The invading population was set to have exactly the same parameters

as the resident population, apart from the maximum weight (w∞) which was

slightly higher. This provides a competing population which is only slightly

more competitive in the single region case, allowing any change in which popu-

lation is favoured to be more obvious. The programs ran for 200 years with only

the resident population in order for it to achieve equilibrium, and then 5 years

worth of age 6 month fish of the invader stock were added before allowing the

program to run as normal. The simulations were left to run for 1000 years total
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(hence 800 years with both populations) to observe whether the invader popu-

lation would die out or establish itself. In the latter case it was also of interest

how well established it was able to become in the time frame. Several different

scenarios were run including both seasonal and non-seasonal reproduction to see

if the migration by itself would have an effect or if seasonality of reproduction

was essential. In the case of seasonal reproduction, migration starts approxi-

mately a month before spawning. I also studied three different fishing regimes:

fishing both regions, only the spawning region or only the feeding region. In

each case the fishing mortality function from chapter 4 was used for each fished

region.

This gave six scenarios. For each situation a series of 336 simulations were

run to create a graph. This graph compares populations at the end of 1000 years

under different levels of migration and with different time lags in spawning and

migration between the resident and invader populations. The lag in each graph is

how many weeks before the invading population, the resident population began

migration and spawning. At high levels of migration, all spawning in the seasonal

model takes place in the spawning region, while under low levels of migration

and nonseasonal spawning, spawning takes place in both regions.

For each plot the lag in weeks between the resident population and invader

population spawning is plotted on the horizontal whilst the vertical axis gives

the percentage migrating between the regions per week. The colours code the

proportion of residents to invaders for the population in region one, the spawning

region. This is calculated by dividing for the first region the adult biomass of

residents by that of invaders and then taking the log base ten. If there are

no residents in the population this was coded to be −10 and if there were no

invaders left in the population this was coded as 10 (these values were well

beyond the limits of the other values found). Results were very similar when

this proportion was calculated using the second region or the whole population.

In the graphs the parameter region where the invaders have died out are

white. The blue regions are where the invaders have almost equaled or just

exceeded the resident population levels, and correspond to a scaling close to zero
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(zero being when the populations are equal in biomass). The lighter colors show

parameter regions where the invader population is growing, however this growth

is quite slow and at the end of 800 years co-existence the resident population is

still the larger of the two populations.

In figure 8.3 we study the case where both the feeding and spawning regions

are fished. In the first graph reproduction is seasonal while in the second there

is no reproductive seasonal behaviour. We observe that there is an effect due to

the spatial component, even when reproduction is nonseasonal. Examining the

graph for the nonseasonal behaviour, it is clear that increased migration and an

increased lag in spawning allow the invading population to dominate the popu-

lation more quickly. When seasonal reproduction is added this picture changes,

as now the fastest domination by the invader population is for a mid-value of

percentage migrating, and for a lag of spawning of about seven weeks. For

all combinations of parameters, under both types of reproduction, the invading

population is successful but the invasion rate is slow.

In figure 8.4 only region one, the spawning region, is fished. This has a very

dramatic effect on the population. There is now a very clear difference between

the seasonal and nonseasonal case. The non-seasonal case is similar to that

where both regions were fished, only there is now an increase in the speed with

which the invading population dominates the population for high migration and

large lags in spawning time. There are also regions at relatively smaller lags and

lower migration rates, where there is a decrease in the rate of domination of the

resident population in comparison with the case where both regions were fished.

A completely different picture emerges for the seasonal case. There is now

a large region where the invader population becomes extinct (the area coloured

white in the graph) and migration rates must be either very large or very small

to avoid this region if the lag in spawning is larger than two weeks. This suggests

creating a reservoir which included the feeding grounds could have substantially

detrimental effects for the population, with smaller fish being favoured by selec-

tion. Also notice that if the migration levels are high, selection for larger fish

(the invaders) does increase, unlike the situation where both regions were fished.
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Figure 8.3: Spatial Behaviour: These graphs are for the situation where both

regions are fished. The top graph shows the results for year round reproduction

while the other graph shows seasonal reproduction. The colour in the graph

becomes darker as the proportion of invaders in the population increases. In the

non seasonal case invaders dominate more quickly with increasing migration,

and lag in spawning. For the seasonal case a peak is reached with a lag of seven

weeks and a medium level of migration.
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Figure 8.4: Spatial Behaviour: These graphs are for the situation where the

spawning region is fished. The top graph shows the results for year round repro-

duction while the other graph shows seasonal reproduction. The colour in the

graph becomes darker as the proportion of invaders in the population increases.

Thus in the seasonal case the white area represents a parameter region where the

invading population becomes extinct. Otherwise in both graphs, the larger fish

are increasingly favored as lag in spawning increases and migration increases.
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Figure 8.5: Spatial Behaviour: These graphs are for the situation where the

feeding region is fished. The top graph shows the results for year round repro-

duction while the other graph shows seasonal reproduction. The colour in the

graph becomes darker as the proportion of invaders in the population increases.

The seasonal and non-seasonal cases are very similar with increased migration

and lag in spawning favouring increased selection of the invading population
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The final situation is when the feeding region is fished, as shown in figure 8.5.

There is very little difference between the seasonal and nonseasonal situation in

this case. In both cases the invading population dominates more quickly if the

percentage migrating and lag in spawning increases. Hence there is a large

difference in result if the feeding ground as opposed to the spawning ground is

fished.

Therefore even with a very simple spatial model, it is evident that spatial

considerations are important. Using seasonal terms in the model can have a

greater effect, especially in conjunction with migration. Furthermore we see

that a lag in the spawning term has little effect in a non migratory model (this

can be seen by examining the contour graphs for 0% migration), but can have

a noticeable impact when migration (and hence a degree of spatial modelling)

is included in the model. Similar results are obtained using invader populations

with different parameter changes.

This shows further that the pattern of fishing in a spatial context can have

a great impact on the population, possibly changing how fish will grow and

mature. It certainly also suggests that any marine reserves which are created,

should be well thought out, as if such reserves have the effect of favouring smaller

fish, they could be damaging to the population from an economical sense.

8.3 Discussion

The results for the spatial form of the model, show that there is much room

for future work on this aspect. If introducing a simple two region dynamic can

have such an effect on model results, then considering a more accurate depiction

of the ocean including dispersion effects and different migration routes, may

have an even more interesting effect on results. We do note that these spatial

results appear contrary to those found by Law and Grey (1989) who found that

greatest yields from the fishery would be obtained when fishing was centered on

spawners. The results in this chapter show that although larger fish are favoured

by high migration rates and large lags in spawning, there are levels of migration
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which favour smaller fish. One difference in the two models is that, in the paper

by Law and Grey (1989), immature fish are not caught in the spawner fishery,

as young fish do not migrate to the spawning grounds in their model. Hence,

their model provides a method of restricting fishing to older fish (or raising the

initial length at capture), which from the previous chapter would be beneficial

both to fitness and yield. Thus essentially there is an agreement between the

models on the effect of capturing small fish.
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Part IV

Discussion and Conclusions
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Appendix A

Downhill Simplex Method

As non linear functions are fit to the data, the standard method of least squares

taught in beginner’s statistics classes is not a useful method. I decided to use the

Downhill simplex method introduced by Nelder and Mead in 1965, which has

the advantages that derivative calculations are not performed and the program

used (an adaptation of that in Press et al. 1989) is fairly concise.

I solve by minimizing the sum of squares. The method works by creating

a N+1 dimensional shape (simplex) on N unknown parameters. This simplex

is created using initial guesses at parameters and the step size. Once given

an initial simplex a series of reflections, expansions and contractions are used

to move the simplex downhill towards a maximization of the sum of squares.

Most steps taken are reflections, reflecting the corner of the simplex with largest

error value through the opposite face of the simplex to a point with a lower

error calculation. When it is possible, the method can then expand the simplex

to find areas with lower error calculations, and when such an area is found

contracts to find the lowest point, eventually contracting in all directions. When

all movements of corners are below a specified tolerance, the algorithm is then

stopped and a minimum has been found.

At this stage it should be mentioned that if the error structure is complicated,

it is possible that the minimum found is only a local minimum, and the algorithm

should be restarted in order to check that the global minimum has not been

missed.
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Appendix B

Solver Programs

Solver (Gurney, Tobia, Watt, and Dobby 1998a) is a package for solving systems

of differential equations. It requires two programs to be input, a constants (.con)

and a definitions (. def) file. The constants file lists any constants that shall

remain fixed for the duration of the program and also gives the number of state

variables, constants, output variables, plotting variables and variables for which

historical data is needed.

The definition file, has four key programs which are used by solver. These

are called Get History, Get Initial State, Get Gradient, and Get Memo. Each of

these is designed to give Solver a specific piece of information. The Get History

program, sets historical values for any parameters which are needed at times

prior to the start of the simulation. The program Get Initial State sets initial

values for state parameters. If not all state parameters are initialized in this

program then Solver will ask the user to supply these values. The Get Gradient

program feeds solver the differential equations which must be solved. Finally the

Get Memo program has the principal function of outputting the data, although

in my program it also recycles cohorts and finds the number of fish which will

join the population in six months.

In the next two sections the two basic programs are included, from which all

simulations in this thesis have been run. The alternate proportion mature and

growth models have slight changes to individual programs to give the correct

functions but are otherwise identical. For the spatial simulations four popu-
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lations must be tracked as opposed to one. This is as there are resident and

invader populations in both regions. For these simulations the functions dealing

with seasonal reproduction and migration have been called in the body of the

main program.
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B.1 Constants Program

{************************************************************}

{** **}

{**** EBTsingle.CON ****}

{** **}

{************************************************************}

CONST Cohorts =250; {*The maximum number and age *}

MaxAge =25; {* of age groups considered *}

IstateVars = 3; {*Types of state variables *}

AuxVars = 0;

NoofStaVar = IstateVars*Cohorts+AuxVars+1;

NoofHisVar = 1;

NoofOptVar = 5; {*These lines set up the State*}

NoofPltVar = 2; {*Historical, Output, Plotting*}

NoofCoeffs = 1; {*and Constant variables *}

RingBufLen = 500001;

Clock=NoofStaVar;

ClockThreshold=0.99999999;

CohortWidth=MaxAge/Cohorts;

wr=0.01; {*Recruitment weight*}

b=1.1034208; {*Growth constants *}

myswitch=2.66;

g2=0.26033235;

g1=0.7326;

wf=17.7252186;

bl=3; {*Length conversion *}

al=0.0104;

deltao = 0.2; {*Natural Mortality Rates*}

delta1 =0.8;

delta2 =0.35;

delta3 =0.25;

lenone=25; {*Fishing Mortality Parameters*}

lentwo=32;

lenthree=40;

lenfour=47;

lenfive=98;
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fish1=0;

fish2a=0.0642857;

fish3a= 0.0725;

fish3b=0.45;

fish4a=0.0028571428;

fish4b=1.03;

fish5a=-0.0058823529;

fish5b=1.05;

fish6a= 0.75;

py= 3.983855; {*Maturation Parameters*}

px=0.003581546;

rstar =7000000; {*Initial value*}

myk = 1000000000; {*Competition coefficient*}

167



B.2 Definition Program

{************************************************************}

{** **}

{** EBTsingle.DEF **}

{** **}

{************************************************************}

Type

shortarray= array[1..Cohorts] of double;

VAR ClockGrad,beta:DOUBLE; CurRecCo:INTEGER; leninf:double;

function myexp(x:double):double;

{*Exponentiation Function*}

var z:DOUBLE;

BEGIN

IF x<-50 THEN z:=0

ELSE z:=exp(x);

myexp:=z;

end;

function power1(x:double;y:double):double;

{*A power function which assumes x is non-negative*}

var z:DOUBLE;

BEGIN

IF x>0.0 THEN z:=myexp(y*ln(x))

ELSE IF y=0 THEN z:=1 Else z:=0;

power1:=z;

end;

function findadwt( add:integer;S:SVEC; p:shortarray):double;

var z,x,y:double; i,num,age,wt:integer;

{*This function finds adultweight, where p is an array of*}

{*proportion mature and S is the vector with age,numbers *}

{*and weights *}

begin

z:=0;

For i:=1 to cohorts

Do Begin

num:=i+add*cohorts; age:=num+cohorts; wt:=age+cohorts;

z:=z+p[i]*S[wt]

END;

findadwt:=z;

end;
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procedure findavage( S:SVEC;add:integer;var A:shortarray );

var i, age,wt,num:integer;

{*This function finds the average age for each cohort *}

{* and stores them in an array *}

begin

For i:=1 to cohorts

Do Begin

num:=i+add*cohorts; age:=num+cohorts; wt:=age+cohorts;

IF S[num]=0 THEN A[i]:=0.0 ELSE A[i]:=S[age]/S[num];

END;

END;

procedure findpmat(A:shortarray;mat1:double; mat2:double;

var P:shortarray);

var i:integer;

{*This function finds the proportion mature for each *}

{*cohort and puts it in an array *}

begin

For i:=1 to cohorts

Do Begin

IF A[i]>30.0 THEN P[i]:=1.0

Else IF A[i]>0.1 THEN

P[i]:=1.0-myexp(-mat2*power1(A[i],mat1))

Else P[i]:=0.0;

END;

END;

function findrec(add:integer;S:SVEC;b,Adult:double;

p:shortarray):double;

var z,x,y,myexpadult:double; i,num,age,wt:integer;

{*This program finds the recruitment where p is the array of*}

{*proportion mature Adult is the Adult weight, b is the beta*}

{*parameter and S contains age,weight and numbers. add shows*}

{*where in the vector S the values should be placed. *}

begin

z:=0;

myadult:=myexp(-Adult/myk);

For i:=1 to cohorts

Do Begin

num:=i+add*cohorts; age:=num+cohorts; wt:=age+cohorts;

z:=z+ p[i]*b*S[wt]*myexpadult;

END;

findrec:=z;
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end;

procedure getavwt(S:Svec;add:integer; var wtarray:shortarray);

var i,num,wt,age:integer;

{This procedure finds the Average weight for each cohort}

begin

for i:=1 to cohorts

Do Begin

num:=i+add*cohorts; age:=num+cohorts; wt:=age+cohorts;

IF S[num]=0 THEN wtarray[i]:=0.0 ELSE wtarray[i]:=S[wt]/S[num];

end;

end;

procedure getmortality (B:Shortarray;al,wr:double;fish:

integer; var mort:shortarray);

var i:integer; f,m,lenconst:double;

{*This function finds the mortality term for each cohort*}

{*and places it in an array *}

Begin

lenconst:=power1(1000/al,1/3);

For i:=1 to cohorts

Do Begin

IF B[i]>4.033365399 THEN m:=deltao

ELSE IF B[i]>2.14580119 THEN m:=delta3

ELSE IF B[i]>1.00900 THEN m:=delta2

ELSE m:=delta1;

IF fish=1 THEN

Begin

IF B[i]>power1(98,3)*al/1000 Then f:=fish6a

ELSE IF B[i]>power1(47,3)*al/1000 THEN

f:=fish5a*(lenconst*power1(B[i],1/3)-lenfour)+fish5b

ELSE IF B[i]>power1(40,3)*al/1000 THEN

f:=fish4a*(lenconst*power1(B[i],1/3)-lenthree)+fish4b

ELSE IF B[i]>power1(32,3)*al/1000 THEN

f:=fish3a*(lenconst*power1(B[i],1/3)-lentwo)+fish3b

ELSE IF B[i]>power1(25,3)*al/1000 THEN

f:=fish2a*(lenconst*power1(B[i],1/3)-lenone)

Else f:=fish1;

end

ELSE f:=0;

mort[i]:=m+f;

End;

END;

procedure getcog(A:Shortarray;m,wf,b,g2,g1:double;

var cg:shortarray);
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var i:integer;

{*This procedure finds the rate of growth for each cohort*}

Begin

For i:=1 to cohorts

Do Begin

IF A[i]<m Then cg[i]:=g1

ELSE cg[i]:=3*wf*(b*g2*myexp(-g2*A[i]))*

sqr(1-b*myexp(-g2*A[i]));

end;

end;

function getnumber(A0:double;A1:double; delta:double;

rstar:double):double;

var z:double;

{*This function gets the initial number in each cohort*}

begin

z:= (myexp(-delta*A0)-myexp(-delta*A1))*rstar;

getnumber:=z;

end;

function getage(delta:double; A1:double; A0:double):double;

var z:double;

{*This function gets the initial total age in each cohort*}

begin

z:=myexp(-delta*A1)*(A1+1/delta)-

myexp(-delta*A0)*(A0+1/delta);

z:=z/(myexp(-delta*A1)-myexp(-delta*A0));

getage:=z;

end;

function getoldwt(b,g2,A0,A1,delta:double):double;

var z:double;

{*This function gets the total weight in a cohort where*}

{*the age is high enough to use the old wt function *}

begin

z:=(-b*sqr(b)*myexp(-(delta+3*g2)*A0)/(delta+3*g2) -

3*b*myexp(-(delta+g2)*A0)/(delta+g2) +

3*sqr(b)*myexp(-(delta+2*g2)*A0)/(delta+2*g2)+

myexp(-delta*A0)/delta);

z:=z +(b*sqr(b)*myexp(-(delta+3*g2)*A1)/(delta+3*g2) +

3*b*myexp(-(delta+g2)*A1)/(delta+g2) -

3*sqr(b)*myexp(-(delta+2*g2)*A1)/(delta+2*g2)-

myexp(-delta*A1)/delta);

getoldwt:=z;

end;
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function getyoungwt(A0,A1,g1,wr,delta:double):double;

var z:double;

{*This function gets the total weight in a cohort where*}

{*the age is low enough to use the young wt function *}

begin

z:=myexp(-delta*A1)*(g1*(-1/delta-A1)-wr)-

myexp(-delta*A0)*(g1*(-1/delta-A0)-wr);

getyoungwt:=z;

end;

function getmybeta(beta,t,spawnstart:double):double;

var z:double;testtime:integer;

{*This function creates a seasonal beta value*}

begin

testtime:=round(t*100)-100*round(t);

IF testtime<0 THEN testtime:=100+testtime;

IF testtime>(spawnstart+25) THEN z:=0

ELSE IF testtime<spawnstart THEN z:=0

ELSE z:=3*beta;

getmybeta:=z;

end;

function getmig1(im1,t,spstart:double):double;

var z,migstart,migend:double;testtime:integer;

{*This function is one of two controlling migration*}

begin

testtime:=round(t*100)-100*round(t);

migstart:=spstart-7;

migend:=spstart+32;

IF testtime<0 THEN testtime:=100+testtime;

IF migstart>0 THEN BEGIN

IF testtime>migend THEN z:=im1

ELSE IF testtime<migstart THEN z:=im1

ELSE z:=0;

end

ELSE begin

migstart:=100+spstart-7;

IF testtime<migend THEN z:=0

ELSE IF testtime<migstart THEN z:=im1

ELSE z:=0;

end;

getmig1:=z;

end;

function getmig2(im2,t,spstart:double):double;

var z,migstart,migend:double;testtime:integer;
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begin

{*This function is one of two controlling migration*}

testtime:=round(t*100)-100*round(t);

migstart:=spstart-7;

migend:=spstart+32;

IF testtime<0 THEN testtime:=100+testtime;

IF migstart>0 THEN

begin

IF testtime>migend THEN z:=0

ELSE IF testtime<migstart THEN z:=0

ELSE z:=im2;

end

ELSE begin

migstart:=100+spstart-7;

IF testtime<migend THEN z:=im2

ELSE IF testtime<migstart THEN z:=0

ELSE z:=im2;

end;

getmig2:=z;

end;

PROCEDURE Get_History( VAR History:HVEC; Coeffs:CVEC;

time:DOUBLE );

{*This function establishes the histories of any*}

{*variables where previous values are needed *}

BEGIN ;

History[1]:=rstar;

END;

PROCEDURE Get_Initial_State( VAR Init:SVEC; C:CVEC );

VAR num,age,wt,len:INTEGER; N0,A0,A1:DOUBLE;

{*This function gives initial values for the State Variables*}

BEGIN ClockGrad:=1/CohortWidth;

Init[Clock]:=0.0;

beta:=C[1];

FOR num:=1 TO Cohorts DO

BEGIN age:=num+Cohorts; wt:=age+Cohorts;

A0:= (Cohorts-num)*CohortWidth;

A1:= (Cohorts+1-num)*CohortWidth;

IF A0>=4 THEN Init[num]:=myexp(-1.4)*(5)*

getnumber(A0,A1,deltao,rstar)

ELSE IF A0>=3 THEN Init[num]:=myexp(-1.2)*4*

getnumber(A0,A1,delta3,rstar)

ELSE IF A0>=2 THEN Init[num]:= myexp(-0.9)*1/delta2*

getnumber(A0,A1,delta2,rstar)
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ELSE Init[num]:=5/4*getnumber(A0,A1,delta1,rstar);

IF A0>=4 Then Init[age] :=getage(deltao,A1,A0)*Init[num]

ELSE IF A0>=3 THEN Init[age]:=getage(delta3,A1,A0)*

Init[num]

ELSE IF A0>=2 THEN Init[age]:=getage(delta2,A1,A0)*

Init[num]

ELSE Init[age]:=getage(delta1,A1,A0)*Init[num];

IF A0>=4 THEN Init[wt]:=rstar*myexp(-1.4)*wf*

getoldwt(b,g2,A0,A1,deltao)

ELSE IF A0>=3 THEN Init[wt]:=rstar*myexp(-1.2)*wf*

getoldwt(b,g2,A0,A1,delta3)

ELSE IF A0>=myswitch THEN Init[wt]:=rstar*myexp(-0.9)*

wf*getoldwt(b,g2,A0,A1,delta2)

Else IF A0>2 THEN

IF A1>myswitch THEN Init[wt]:=rstar*myexp(-0.9)*

(wf*getoldwt(b,g2,myswitch,A1,delta2)+ 1/delta2*

getyoungwt(A0,myswitch,g1,wr,delta2))

ELSE Init[wt]:=rstar*myexp(-0.9)/delta2*

getyoungwt(A0,A1,g1,wr,delta2)

ELSE Init[wt]:=rstar/delta1*

getyoungwt(A0,A1,g1,wr,delta1);

END;

CurRecCo:=1;

END;

PROCEDURE Get_Gradient( VAR G:SVEC; S:SVEC; C:CVEC;

t:DOUBLE );

VAR num ,age,wt:INTEGER;

CoR,R,AdWt,TOTWT:DOUBLE;

AVAGE, pmat,delta,CoG, AVWT:shortarray;

{*This function gives the differential equations to Solver*}

BEGIN

findavage(S,0,Avage);

findpmat(Avage,py,px,pmat);

Adwt:=findadwt(0,S,pmat);

R:=Pastvalue(1,t-0.5);

getavwt(S,0,AVWT);

getmortality(AVWT,al,wr,1,delta);

getcog(Avage,myswitch,wf,b,g2,g1,CoG);

FOR num:=1 TO Cohorts

DO BEGIN age:=num+Cohorts; wt:=age+Cohorts;

IF (num=CurRecCo) THEN CoR:=R ELSE CoR:=0.0;

G[num]:=CoR - delta[num]*S[num];

G[age]:=CoR*0.5+S[num] - delta[num]*S[age];
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G[wt]:=CoR*wR+CoG[num]*S[num]-delta[num]*S[wt];

END;

G[Clock]:=ClockGrad;

END;

PROCEDURE Get_Memo(VAR memo:MPAD; VAR S:SVEC; C:CVEC;t:DOUBLE);

VAR num,age,wt:INTEGER;

TotWt,AdWt,R,mybeta,Adnum:DOUBLE;

AVAGE,pmat,avwt,delta: shortarray;

{*This function writes the output, plots variables, recycles*}

{*the cohorts, and sets the historic values *}

BEGIN

IF S[Clock] > ClockThreshold

THEN BEGIN

IF CurRecCo<Cohorts THEN CurRecCo:=CurRecCo+1

ELSE CurRecCo:=1;

num:=CurRecCo; age:=num+Cohorts; wt:=age+Cohorts;

S[num] :=0.0;

S[age] :=0.0;

S[wt] :=0.0;

S[Clock] :=0.0;

END;

findavage(S,0,Avage);

findpmat(AVAGE,py,px,pmat);

Adwt:=findadwt(0,S,pmat);

R:=findrec(0,S,beta,Adwt,pmat);

WITH memo DO

BEGIN

opt[1]:=R;

opt[2]:=Adwt;

plt[1]:=R;

plt[2]:=AdWt;

HIS[1]:=R;

END;

END;
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Appendix C

Taguchi Sensitivity

This Appendix includes graphs mentioned in Chapter 7.
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Figure C.1: Interaction Plots: The interaction plots for the full design fishing

model are given. The black line is the low level, red the medium level and green

the high level.

10
0

40
0

70
0

g2 : b

A
du

lt 
B

io
m

as
s

1 1.1 1.17

10
0

40
0

70
0

w∞ : b
A

du
lt 

B
io

m
as

s
1 1.1 1.17 10

0
40

0

β : b

A
du

lt 
B

io
m

as
s

1 1.1 1.17

10
0

40
0

px : b

A
du

lt 
B

io
m

as
s

1 1.1 1.17 10
0

40
0

py : b

A
du

lt 
B

io
m

as
s

1 1.1 1.17 10
0

30
0

50
0

g1 : b
A

du
lt 

B
io

m
as

s
1 1.1 1.17

10
0

40
0

w∞ : b

A
du

lt 
B

io
m

as
s

0.24 0.26 0.28 10
0

30
0

50
0

β : g2

A
du

lt 
B

io
m

as
s

0.24 0.26 0.28

10
0

40
0

px : g2

A
du

lt 
B

io
m

as
s

0.24 0.26 0.28

10
0

40
0

py : g2

A
du

lt 
B

io
m

as
s

0.24 0.26 0.28

15
0

30
0

45
0

g1 : g2

A
du

lt 
B

io
m

as
s

0.24 0.26 0.28 10
0

30
0

50
0

β : w∞

A
du

lt 
B

io
m

as
s

15.5 18 20

177



Figure C.2: Interaction Plots (Continuation). The black line is the low level,

red the medium level and green the high level.
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Figure C.3: Effect Plots : The full and fractional effect plots when proportion

mature is modelled with a cumulative gamma(3) distribution.
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Figure C.4: Concurrent Maturation Effect Plots:The full and fractional effect

plots when proportion mature is modelled with a single maturation age
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Figure C.5: Exponential Effect Plots: The full and fractional effect plots when

proportion mature is modelled with an exponential distribution.
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Figure C.6: Gamma(4) Effect Plots: The full and fractional effect plots when

proportion mature is modelled with a cumulative gamma(4) distribution.
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Figure C.7: The Effects of Life History Parameters: The full and fractional effect

plots when growth is modelled with a power curve.
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Figure C.8: The Effects of Life History Parameters: The full and fractional effect

plots when growth is modelled with a logistic curve.
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Figure C.9: The Effects of Life History Parameters: The full and fractional effect

plots when growth is modelled with a Gompertz curve.
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Figure C.10: The Effects of Fishing Parameters: The effects of fishing in the

models where all fish mature at the same time, fish mature exponentially, and

fish mature following a gamma(4) function.
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