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Summary 
 

 

In recent years, the Air Supported Vessels (ASVs) has received some interest due to 

increasing oil prices and the stricter regulations on emissions. The ASVs have the 

potential of reducing fuel consumption with less drag by adopting air cavity 

underneath its hull surface. Research so far has been mainly focused on the 

mechanism and effectiveness of the air cavity for drag reduction, i.e., the resistance 

in calm water condition. Other hydrodynamic performances of the ASVs are rarely 

studied. 

 

In this thesis, it is attempted to address some of the other hydrodynamic problems for 

the ASV, namely, wash wave field, motion response in waves and the stability. New 

mathematical models have been proposed to tackle these problems. The models 

cover the steady flow, frequency domain analysis (seakeeping) and time domain 

analysis (the dynamic stability). Emphases are placed on numerical calculation of the 

flow field generated by the excess pressure inside the cavity. 

 

Although the analytic expressions of the potential flow field by a pressure patch 

moving on the free surface are well known, the numerical calculations remain 

challenging. The singularities and highly oscillatory behaviour of the velocity 

potentials and the free surface elevations will cause numerical instability problem. In 

this study, new numerical schemes are proposed and the irregularities have been 

successfully removed.  

 

A number of case studies have been carried out to verify the proposed mathematical 

models and numerical methods. Satisfactory agreements have been found as far as 

there are other computations or measurements for comparison; or reasonable results 

are obtained. It is expected that the mathematical model, the numerical methods and 

tools established in the present study can be a supplementary means for developing 

the ASV at both design and operational stages.  
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Chapter 1   Introduction 
 

 

In recent years, improving the competitiveness, safety and security of shipping has 

becoming a major objective of maritime transportation. Increasing fuel prices and 

strong environmental concerns (regulations and cargo carrier demands) have changed 

the competitive landscape. To meet the changing commercial market and economic 

environments, new vessel designs will be required with more flexibility in their 

design and will be more energy efficient and cost effective to operate. Key drivers 

for enhanced ship technologies include advanced ship design and propulsion 

technologies and operation system and processes. There are a number of emerging 

technologies and techniques becoming available for use on-board ship, which will 

support improved efficiency and quality of maritime transport services (reliability, 

safety, security and environmental performance). 

 

A ship can be considered to be efficient if it is profitable, environmentally 

compatible and if it complies with safety, health and environment policy. There are 

several methods of adapting a vessel’s hull to improve performance, reduce fuel 

consumption and lower emissions such as changing the hull shape, dimensions, 

displacement and block coefficient to reduce the vessel’s resistance of a ship.  

 

The concept of drag reduction by supplying air under the ship’s bottom was proposed 

in the 19th century by the famous scientists Froude and Laval. However, many 

attempts to implement this idea in practice have failed because this process is not as 

straightforward as it seems. Deep physical understanding of multiphase flow is 

required to achieve a positive outcome. The Research Institute in St Petersburg 

contributed significantly in 1960’s. Potential benefits of air injection under ship hulls 

without flexible seals have always been of interest to the shipbuilding community 

worldwide. However, until the last decade or so, development attempts were not 

serious enough to achieve convincing results. In recent years, R&D activity in this 

field was significantly increased in Europe, USA, Japan, Korea, Australia and China. 
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Because of the commercial nature of these projects, reliable data is not yet available 

to judge for certain the progress in air cavity technology. 

 

The resistance of a ship is conventionally decomposed into the following three 

components: the wave-making resistance, the frictional drag and the viscous form 

drag. For high-speed craft, wind drag should also be considered, but this will not 

discussed in the present study. The Air Cavity Ship (ACS) concept is based on 

successful usage of bottom ventilation (artificial cavitation). Air is supplied 

underneath a special profile, so that a steady air layer is generated which separates a 

part of the bottom from contact with water.  Compared to conventional displacement 

hulls, Air Cavity Ship (ACS) with captured air plenums has potentials in reducing 

frictional resistance because the wetted area of the vessel is significantly reduced.  

For ship with a low speed, the frictional drag is a major part of the total resistance, 

while the power spent on the cavity maintaining the air flow is less than 3% of the 

total propulsive power of a vessel. The potential reduction of the total resistance and 

power saving are significant.  

 

The high-speed version of the Air Cavity Ship (here we call it as the Air Supported 

Vessel, ASV) also has potentials for resistance reduction and power saving. In this 

case, the wetted hull area is reduced by three effects: first is the air cavity underneath 

the hull; secondly, the excess pressure inside the cushion is higher than that of an 

ACS at low speed, this pressure force will lift the hull upwards, and reduce the 

wetted hull area. Thirdly, the forward part of the rigid hull is specifically designed as 

a planing surface. When the vessel is at a high-speed, the planing surface will 

generate dynamic lift and reduce the wetted hull area even further. The total 

frictional resistance is reduced with a higher excess cushion pressure but the fan 

power is increased instead. In addition the wave-making resistance due to cushion 

pressure increase but at small rates fairly constant for a certain range of speed. 

Together with a moderate residual resistance, the total resistance of the ASV is 

reduced and a power saving can be reached.  
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A schematic arrangement of the air cavities for low speed displacement ships and 

high-speed planing crafts is illustrated in Figure 1.1 (Matvvev, 2009). A recess is 

made on the hull bottom that accommodates the air cavities. The air is injected into 

the front part of the cavities and leaks from the cavity trail. Several cavities may be 

arranged for slower ships. 

 

 

 

 

 

 

 

Figure 1.1  Hulls with air cavities: (top) displacement, (beow) planing hull. (1) air 

cavity; (2) air blower [Matveev, 2009] 

 

Harley Shipbuilding in the USA (Harley, 1996) and SES Europe in Norway (Tudem, 

2002) have developed the air supported platform called the ‘Air Lifted Vessel’ 

(ALV), which is essentially a catamaran with air cushion similar to that of an SES 

but the hulls have planing sections in front of the bottom recess and no flexible seals 

are used. Another characteristic feature of the ALV is the longitudinal keels on the 

sides of the cavity that prevent air from escaping. The reported resistance reduction 

is around 25%  based on tank testing (Allenstrom et al. 2001, 2003).  The ASV could 

also be a mono-hull (Gokeay et al., 2004). 

 

 

 

 

 

 

 

 

Figure 1.2 Mono-hull of ASV (Gokeay et al., 2004) 
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Figure 1.3  The hull form of the Air Supported Vessel by Harley (1996) 

 

A similar and more familiar concept is the surface effect ship (SES), where air is also 

pumped under the ship’s bottom. Such a vessel usually has flexible bow and stern 

skirts enclosing the space between the two thin side-hulls. The air cushion vehicle 

(ACV) also uses the compressed air under hull to support the vessel’s weight, but it 

has no permanently submerged hull at speed (Faltinsen, 2005).  

 

Although the principle of the ASV seems similar to that of an SES, there are 

significant differences. First, there are no flexible seals on an ASV. The air layer is 

contained by solid hull parts, which not only prevent air leakage from the cushion, 

but also influence the air cavity characteristics. Secondly, the air flow rate needed to 

support the air cushion on an ASV is about ten times less than on an SES. Therefore, 

an ASV is a much more economical means of transportation.  

 

Another popular concept is drag reduction achieved by using micro-bubbles (Fukuda 

et al., 2000). It is normally easier from the technical side to create a bubbly flow 

instead of large stable air cavities, but the overall effectiveness of this idea is still 

under investigation. Air bubble motion usually includes a random component, and 
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some bubbles may stick to the hull. These effects can even augment the effective 

roughness of a hull surface and lead to an increase in drag. 

  

The most distinguish feature of the ASV from conventional ship is the air cavity 

induced flow. The disturbed flow could be steady (in case of the calm water 

resistance problem) and unsteady (e.g., for ship travelling in waves). Also, part of the 

flow is disturbed by the rigid part of the hull. Theoretical and numerical analyses of 

the flows and hull form optimization are aimed at creating effective approach to ASV 

design.  

 

Most of the studies on the air cavity ship so far have been focused on hydrodynamics 

in calm water, which is the resistance problem of the vessel in still water (see, for 

example, Gokcay et al., 2004, Matveev, 2007, Matveev et al. 2009). As part of the 

process of developing an ASV, the design tools should cover other performances as 

well. The ship should travel on a wave condition. Ship motions in waves will affect 

performance of the air cavity on the drag reduction considerably. On the other hand, 

ship motion in a seaway has implications on its performances, such as sea sickness of 

the crew members and passengers and effectiveness of equipment on board as well.  

 

One of the particular concerns for ASV is so called wash wake effect. The wash 

wave of a high-speed craft could be potentially damaging to the environment of the 

shore lines, dangerous to swimmers in the tourist attractions and potential impact on 

marine wildlife habitats. Significant problems related to wash in the marine 

environment have been reported. High-speed craft operators have to undertake a risk 

assessment with respect to wash in order to get an operational permit in some 

countries (e.g., Denmark, U.K.). Low wake wash is becoming one of the key 

objectives of HSC design. In any case, an efficient and reliable numerical method for 

predicting the wake wash wave of the ASV is desirable. 

 

Marine accidents may result tragic consequence. International developments 

pertaining to high speed craft acknowledge the necessary of improvements of marine 

safety standards for high speed craft in order to maintain the highest practical level of 
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safety. However, the continuous update of stability rules and regulations for 

advanced high speed vessels is greatly influenced by the fact that there are many 

different types of high speed vehicles, and many different alternative design 

solutions within each category, so a meaningful way to set safety and operational 

standard is to use performance based criteria and safety levels to which any type of 

craft must verify compliance. The design feature of the ASV requires a close look at 

its stability issues, both static and dynamic. 

 

The present study attempts to address some of the hydrodynamic characteristics of 

the ASV, in particular, the ASV catamaran. Chapter 2 presents the aim of the thesis 

and Chapter 3 describes the approach adopted. A critical review of the relevant 

researches is given in Chapter 4. The boundary value problems to describe the steady 

and unsteady potential flows around the vessel are presented in Chapter 5. Forces, 

moments and equations of motions of the vessel are also derived in this chapter. 

Chapter 6 deals with the three dimensional steady flow of a pressure distribution 

moving on the free surface. Emphasis is placed on the numerical solutions for 

rectangular pressure patch, which is the elementary solution of the problem. The 

singularity and highly oscillatory behaviour is properly handled. Chapter 7 is the case 

studies for the steady potential flow problem: prediction of 3D hydrodynamic 

pressure distribution of flat plate planing hull, flat plate planing catamaran hull and 

prismatic planing hull. Chapter 8 is the case study of application for the wash wave 

prediction of the ASV. Chapter 9 presents solution of the unsteady potential flow of a 

pulsating and moving pressure distribution on the free surface. It concentrates on the 

numerical aspects, where reliable numerical schemes are provided for the 4 wave 

numbers at different frequencies and field point locations. Equations of motions of 

the ASV in waves in frequency domain are presented for the seakeeping analysis. 

Additional equations to couple the air pressure in the cavity (cushion) and the vessel 

motions are established by using the adiabatic gas law and air flow continuity 

equation. Chapter 10 is a case study of seakeeping prediction for the ASV in 

frequency domain. Motion responses (pitch, heave roll and vertical acceleration at 

bow) of the ALV, E40, in irregular waves have been predicted for a range of Froude 

numbers and wave heading angles. Chapter 11 deals with the stability of the ASV. 
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The transverse static stability at zero speed, longitudinal dynamic stabilities and 

stability in manoeuvring in calm water are considered. The mathematical models for 

the dynamic stability analysis are nonlinear and are solved in the time domain. The 

time domain representation of the cushion pressure force is calculated by the impulse 

response function approach. Chapter 12 is the case study for the stability 

performances of the ASV. A longitudinal dynamic instability was identified for pitch 

and heave motions in calm water for the ALV E40. This phenomenon is connected to 

the vessel design parameters and characteristics of the fan system. The simulated 

results in manoeuvring (turning and directional stability) are also checked against the 

IMO requirements. Chapter 13 summarizes the main achievements and contributions 

of the present study. Chapter 14 presents recommendations for the future work based 

on the present study. A list of references is given at the end of the thesis.  
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Chapter 2  Aims 
 

The main objective of the present thesis is to develop mathematical models and their 

associated numerical methods to predict the hydrodynamic performance of ASV 

ships; it is expected that the developed analysis methods and developed tools will be 

helpful in design and operation of the ASVs.  The aim of this thesis is set specifically 

as follows: 

 

1. To carry out numerical computations for the flow disturbed by the ASV in 

calm waters; 

2. To carry out numerical computations for the fluid flow of the ASV travelling 

in harmonic motion; 

3. To establish mathematical models and numerical methods for seakeeping 

prediction of the ASV in frequency domain; 

4. To establish mathematical models and numerical methods for the dynamic 

stability analysis of the ASV. 

 

A number of case studies will be provided to demonstrate the effectiveness and 

applicability of the numerical methods. 
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Chapter 3  Approach Adopted 
 

 

Unlike conventional ships, the Air Supported Vessels have three components of 

vertical forces to support the vessel’s weight: compressed air pressure force, 

hydrodynamic lift and buoyancy. The proportional of each of the component varies 

for different vessel designs and their speeds. For a high speed application, the air 

pressure force and the hydrodynamic lift may be dominant. The disturbance of the 

vessel and the external reaction forces on the ship come from both the pressure 

distribution and the wetted rigid hull. The fluid flow around the hull is rather 

complex, and numerical prediction of the external force on the vessel is challenging. 

There will be wave-breaking and sprays. The mixture of water and air may exist 

inside the cushion(s). There will also viscous effect on the flow. 

 

In the present study, a number of assumptions will be made. First, the fluid (water) is 

assumed as ideal and incompressible, no viscous effect will be taken into account 

unless otherwise indicated, the water flow is assumed to be irrotational. Therefore, 

the water flow field can be described by potential flow theory. Secondly, the wave 

breaking and the spray are ignored as well; thirdly, the two-phase flow of mixture 

air/water inside the cushion is treated as air, however, the compressibility of the air 

inside the cushion will be considered, and the air pressure is assumed as 

inhomogeneous. Finally, the free surface boundary condition is linearised at the 

undisturbed free surface and the vessel hull boundary condition is linearised on the 

mean wetted hull surface. 

 

The potential flow theory assumption implies that no viscous effect is taken into 

account. This means that only wave-making resistance can be predicted, the residual 

and frictional resistance components need to use other approaches if one want to 

predict the total resistance of the vessel, such as model testing or RANSE CFD 

(Computational Fluid Dynamics). Viscous effect on the resistance of a ship is 

important, such as viscous pressure resistance and frictional resistance. Normally, the 

total resistance of the ASV consists of the frictional resistance, wave-making 
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resistance due to the cushion pressure, the residual resistance and wind drag. The 

residual resistance contains wave pattern resistance created by the hull, viscous 

pressure resistance, spray and eddy-making resistance, and possible induced 

resistance if there is a cross flow about the side keels (Allenstron et al. 2001). Due to 

the assumptions made in the present study, it is unable to predict the residual 

resistance component of the ASV, some approximate approach will be needed and 

comparison can be made with model testing. The viscous effect is less important for 

seakeeping problem, except for ship roll damping. Linearsation of the free surface 

condition and hull boundary condition restricts our study on small amplitudes for 

both the incident wave and vessel motions.  

 

With growing capabilities of CFD, hydrodynamics of realistic ship hulls can be 

modelled in great detail, including viscous effects. This is particularly the case for 

prediction of ship resistance in calm water, see for example, Larsson et al (2011). 

However, for the unsteady ship flow problem, such as seakeeping of a ship in waves, 

the current capability of CFD is unable to provide results in an acceptable time frame 

due to the needs for evaluation of ship motions in a variety of sea states under a large 

number of headings. Simplified flow models, such as those based on the potential 

flow theory, remain as the main approach to tackle the problem of the ship-wave 

interaction. 

 

The fluid flow around the ASVs is mathematically modelled by the disturbances of a 

pressure distribution and the wetted part of the rigid hull moving on the free surface, 

see Figure 3.1.  

 

 

Figure 3.1  Air cushion and rigid hull of the ASV 
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Both the steady and unsteady pressure components are considered in the present 

study. In solving the steady and unsteady flow problems, the projected area of the air 

cavities on the free surface will be discretised into rectangular pressure patches. The 

solution of a pressure patch is the elementary solution of the problem and involves 

most of the computational efforts. The adiabatic gas law is used to couple the 

pressure in the cushion and the vessel motions. The seakeeping motion prediction 

will be carried out in frequency domain, while the dynamic stability analysis 

including manoeuvring simulations is carried out in the time domain. In the time 

domain models, the non-linear effect for coupling vessel motions and the cushion 

pressure is included.  

 

When a vessel is designed, we need to predict its performance, such as 

resistance/powering, wash wave, seakeeping, etc, during its operation, this is called 

the direct problem. On the other hand, if the vessel’s performance(s) is specified in 

advance, and one needs to find the suitable design, this is called the indirect problem. 

The present study deals with the direct problem for the ASV, i.e., prediction of the 

hydrodynamic performances. With the developed mathematical model/tools, the 

effect of parameters of the hull, such as hull dimensions, dimensions of the air 

cushion, fan system(s), etc., on the vessel’s performance can be investigated.  

 

In order to solve the direct problem, normally three approaches can be used: model 

test, full scale trial and numerical prediction. In the numerical prediction method, a 

mathematical model should be established for the physical problem concerned, and a 

numerical method is used to solve the mathematical model. The numerical results 

should be validated against the model test and/or full scale measurements. Once the 

numerical tools for solving the direct problem have been established, these tools can 

be used to address the indirect problem, for example, how the design parameters 

affect the performances of the vessel. Model tests and full scale trails are far more 

expensive to be adopted to address the indirect problem. 
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Chapter 4   Critical Review 
 

In this Chapter, previous studies relating the hydrodynamic performances of the Air 
Supported Vessels, such as, the steady flow, hydrodynamics of planing hulls, far field wash 
wave prediction, ship motion in waves (seakeeping) and the stability are critically reviewed.  
 

4.1 Prediction of the Steady Flow 
  

Flows resulting from the Air Supported Vessels and high-speed planing crafts can be 

modelled via a moving distribution of pressure at the free (air/water) surface (for 

example Faltinsen 2005, Doctors 1985), or by using a free-surface pressure 

distribution together with distributions of source over the rigid side-hulls (modelled 

as thin ships) (Choi et al. 2005, Doctors & McKesson 2006).  The main difference 

between the two methods is that the effect of the rigid side hulls is considered in the 

late approach. When the vessel’s weight is mainly supported by the cushion excess 

pressure force or hydrodynamic lift force, the moving pressure distribution only 

method is expected to be a reasonable approximation. However, when buoyancy 

plays a more important role, the combined moving pressure distribution and source 

distribution method should be used, such as an Air Cavity Ship with a low to 

medium design speed. The computational effort will be doubled for the combined 

method. 

 

Accordingly, flows resulting from a moving pressure patch on the free surface have 

been considered in a series of classic studies. In particular, the wave drag of a 

pressure patch advancing at a constant speed along a straight path on the free surface 

is considered in Havelock (1932) for deep water and in Lunde (1951) for finite water 

depth. Wave-drag calculations are also reported in Newman and Poole (1962) and 

Barratt (1965). The wave drag of a moving pressure patch on the free surface in 

steady and accelerated motions is considered in Doctors and Sharma (1972). The 

complexities and uncertainties associated with pressure distributions with shape 

edges are further examined in Zilman (2006).  
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The basic computational task of evaluating the steady near-field flow resulting from 

a moving pressure distribution on the free surface is considered in Doctors (1975) for 

deep water. The Green function for the steady flow in deep water has also been 

considered in a number of studies, where alternative mathematical representations 

and practical approximations – based on complementary near-field and far-field 

asymptotic approximations, and numerical approximations based on Chebyshev 

polynomials or table interpolation – are given (e.g., Noblesse 1978, 1981, Newman 

1987, Telste & Noblesse 1989, Masson et al. 1991 and Ponizy et al. 1994).  

 

More recently, Noblesse et al. (2009) presented a practical evaluation method for 

evaluating the free-surface elevation caused by the moving free-surface patch. The 

key ingredient of the method is a highly simplified analytical approximation to the 

local-flow component in the expression for the Green function associated with the 

classic Michell-Kelvin linearized free-surface boundary condition. The 

computational procedure for determining the free-surface elevation due to the 

passage of a pressure distribution is a complicated problem. In general, the 

calculation of the free surface elevation involves a quadruple integral – two for the 

dimensions of the disturber, one for the direction of the propagated plane waves and 

another for their wave number – some of which are computationally challenging due 

to the rapidly oscillating and singular integrands. Scullen and Tuck (2011) described 

an efficient and accurate method for computing the linearized free-surface 

disturbance of a moving pressure distribution. A method for desingularising the 

local-field integrand so that the free surface elevation can be calculated beneath the 

applied pressure patch is presented.  

 

Besides the free-surface Green function method, several researches have been carried 

out via Rankine source distribution method. Matveev (2007) presents an approximate 

model for calculating wave patterns in the upstream part of long air cavities in a 

simplified, horizontal-plane geometry. The model is extended for multi-wave cavity 

configurations (Matveev, 2009). The aim of the study is to determine dimensions of a 

hull recess that accommodates the air cavity of an Air Cavity Ship. Rankine sources 

are distributed on the free surface inside and outside the air cavity. The influence of 
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the recess planform boundaries and other factors on the wave patterns is studied 

parametrically. Choi et al. (2005) use a time domain boundary element method to 

study the wave-making resistance of an ACS. The effects of the dimension and size 

of the air cavity on the resistance characteristics are investigated. 

  

There are some on-going efforts to apply RANSE volume method for modelling the 

steady flow around an Air Cavity Ship. Dogrul et al (2010) use a commercial CFD 

code to investigate frictional resistance of an equivalent flat plate of an ACS’s wetted 

surface at various air flow velocities and ship’s Froude numbers. Insel et al. (2010) 

simulate the steady flow of more complicate geometry of the hull and the air cavities 

by RANSE method. The flow patterns are compared with model tests. 

 

4.2  Hydrodynamics of Planing Hull 
 

When a craft is planing, the majority of its weight is supported by the hydrodynamic 

lift and the flow is assumed separating smoothly from the trailing edge and part of 

the side hull. This feature of planing allows researchers to adopt a pressure 

distribution on the water surface to represent the effect of the wetted area of a 

planing surface, and to establish an integral equation which relates the unknown 

pressure on the planing surface to its hull offsets.  

 

Early studies on the planing problems were seen in the 1930’s, but until the 1960’s 

theoretical investigations were restricted mainly to linearised two-dimensional 

planing (Maruo, 1951). The three dimensional planing problem was tackled in the 

1960’s, but always with restrictions on either the planing speed or aspect ratio of the 

planing surface (Maruo, 1967; Wang and Rispin, 1971; Shen and Ogilve, 1972; 

Tuck, 1975). Doctors (1975) may be the first to study the three dimensional planing 

without these restrictions. In his approach, finite pressure elements were adopted to 

represent the wetted area of a planing surface and in an iterative procedure the wetted 

area was adjusted to satisfy the trailing-edge Kutta condition until it finally reached a 

constant, but the pressure distributions thus obtained were seriously oscillatory. 

Wellicome and Jahangeer (1978) and Tong (1989) prescribed the wetted area in 
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advance, then calculated the pressure distribution and shape of the transom. The 

pressure oscillation, which Doctors found, was avoided when the number of buttocks 

was not more than five or six, otherwise it would still occur. The reason for such 

oscillation was believed to be the pressure discontinuities at the side edges of the 

constant pressure element they employed.  

 

To avoid the pressure oscillation problem, Cheng and Wellicome (1994) developed a 

pressure strip method, in which a planing surface is represented by an assemblage of 

strips of transversely variable pressure placed on the mean free surface. The pressure 

oscillatory problem was successfully removed. But the transverse strip method was 

less successful for prismatic planing hulls (Cheng and Wellicome, 1999). Studies of 

Tuck, Scullen and Lazauskes, (2002) and Wang and Day (2007) showed the same 

problem of numerical instability in which the predicted pressure distribution shows a 

grid-scale oscillatory behaviour. 

 

More recently, Noblesse, Delhommeau and Yang (2009) provided a practical 

evaluation method for the point pressure free surface Green function of the steady 

flow. Scullen and Tuck (2011) provide a numerical method for calculating the three 

dimensional near-field and far-field free-surface elevation due to moving pressure 

distributions. No prediction for the hydrodynamic pressure distribution was provided 

for those studies. 

 

Methods using various computational techniques have been developed to tackle the 

planing hydrodynamic problem. Lai and Troesch (1996) developed a three-

dimensional numerical model using vortex lattice method to solve the steady planing 

problem. A special vortex condition is applied to obtain the detailed flows at the 

leading, side and trailing edges. Matsumura and Katsui (1999) modelled the wetted 

surface of the planing craft in still water using vortex line and the circulation 

distribution around the longitudinal sections. Savander et al. (2002) formulated the 

boundary value problem for the steady planing surfaces and utilized a relation 

between the perturbation potential and vortex distribution. They obtained numerical 

results involving hydrodynamic pressure, lift and resistance for a planing craft at 
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various speeds. Zhao et al. (1997) carried out a 2.5D (2D+ t) analysis of a high-speed 

planing craft in calm water. Taravella et al. (2011) developed a general solution for a 

flat and slender planing surface with a vortex distribution method. Faltinsen (2005) 

gave details on the hydrodynamics of a planing vehicle. Ghassemi et al. (2008), 

Matveev et al. (2009) and Kohanasal et al. (2010) adopt Rankine source panel 

method for the steady potential flow of a planing hull. 

  

With growing capabilities of computational fluid dynamics, hydrodynamics of 

realistic high-speed ship hulls can be modelled in great details, including viscous 

effects. Subramanian et al. (2007) carried out a RANSE simulation for the steady 

flow around a planing hull.  

 

In parallel with the theoretical development, numerous experimental studies of 

planing hydrodynamics have also been carried out, for example, Clement et al. 

(1963), Kapryan et al. (1955), Latorre (1982), Scottorf (1932), Shoemaker (1934). 

Savitsky (1964) derived regression formulae for prismatic planing hulls from a series 

of model tests, the formulae have been widely used in the prediction of the 

hydrodynamic characteristics of a planing craft. Katayama et al. (2002) performed 

the resistance test for the high-speed planing craft with prismatic hull forms at 

various speeds and reported the lift and resistance coefficients. 

 

4.3  Seakeeping Prediction of the Air Supported Vessels 
 

Traditionally, seakeeping predictions for ships are to solve the diffraction/radiation 

problem (2D, 2.5D and 3D) and to calculate hydrodynamic and wave exciting 

force/moments on the vessel. For an Air Supported Vessel, additional 

forces/moments of the excess pressure in the air cushion will be applied on the hull 

surface. In some cases, this excess pressure forces form major part of the external 

forces (e.g., the ALV). There was significant focus on understanding of the relevant 

physics, which led to the development of simulation models in the 1970’s and 

1980’s. Doctors (1972, 1974 and 1977) coupled a linearized hydrodynamic model 

based on Green’s function method and a compressible fluid model for the air cushion 
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to simulate the motion of a fully-skirted Air Cushion Vehicles (ACVs) in waves. The 

vehicle and air cushion dynamics were coupled to the free surface elevation via a 

pressure term added to the free surface boundary condition in the region beneath the 

air cushion. This work demonstrated the importance of treating the air cushion as a 

compressible fluid and showed the effect that a deformable free surface has on the 

unsteady vehicle motion. In particular, the relationship between the vessel motion 

and the cushion dynamic pressure was established; the mathematical expression for 

the free surface elevation due to a moving and oscillating pressure distribution was 

derived and some numerical results were provided. Similar approaches were 

developed by others to investigate seakeeping performance of the ACV. Collectively, 

these works have formed the basis for standard physics-based dynamic simulation 

models of the Air Supported Vessels (Yun et al. 2005). 

 

Several models have been suggested to simulate the air flow in the air chamber. 

Doctors (1974), Chen (1977) and Kim et al. (1981) assumed the bubble (or cushion) 

pressure is spatially homogeneous, and only changes with time. The key challenge 

for this method remains as the evaluation of the free surface elevation at a field 

location for any combination of frequency and ship speed generated by a pulsating 

and moving pressure distribution on the free surface due to, not only the singularities 

and highly oscillatory integrands, but also wave numbers involved depending on the 

frequency and forward speed. 

 

Sorensen and Egeland (1995) developed a simulation model for a SES which solved 

the one-dimensional wave equation for velocity potential to model the longitudinal 

pressure distribution inside the air chamber. This capability was used in the design of 

a ride control system and to reduce the cobblestone effect and significantly improve 

the motions of the vessel. Steen and Faltinsen (1995) studied high frequency 

dynamic response of a SES equipped with a flexible bag aft seal. The mathematical 

model accounts for the motions and accelerations in heave and pitch induced by both 

the unsteady uniform pressure and the spatially varying air cushion pressure (with 

modal solutions). Okita, Sahin and Hyman (2001) carried out a numerical study on 

disturbance during the unsteady motion of a two-dimensional pressure distribution, 
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and indicated the difficulties in convergence for evaluation of the free surface profile 

because of the highly oscillatory integrand. 

 

Thill et al. (2005) developed a mathematical model for seakeeping prediction of the 

air cavity ships. An air chamber dynamics model with spatially homogeneous 

chamber pressure distribution is incorporated to a 3D time domain 

radiation/diffraction panel code. The code uses a linearized free surface boundary 

condition and distribution of the transient Green function on the hull surface. 

Milewski et al. (2007) implemented a three-dimensional compressible fluid model to 

describe the air flow in the chamber of an ACV with small length/beam ratio. The 

hydrodynamic part of the flow (due to the wetted part of the rigid hul) is simulated 

by a time domain Rankine source panel method.  

 

Several model tests have been carried out on the seakeeping performances for the 

ASVs. Allenstrom et al. (2001, 2003) investigated motions of the ALV in irregular 

head waves in a towing tank. Thill et al (2005) measured seakeeping characteristics 

of an Air Cavity Ship in head and oblique waves and compared the motion response 

with/without air chamber with numerical simulations. The results indicated that the 

seakeeping characteristics of the investigated ship are not significantly affected by 

the use of either bubbles or air chambers for the air lubrication. Power saving may 

become negative when using air chambers at relatively low speed. It also reveals that 

predictions for air chambers dynamics such as the variations of air volume, pressures 

and air losses seem to be in qualitative agreement with expectations. Cheng et al 

(2011) and Dong et al (2011) carried out model tests of vessel motion in waves for 

ASV mono-hull crafts (hard-chin planing hull). It was found that a properly design 

cavity can reduce resistance and motion response in waves as well. 

   

4.4  Stability Study of the Air Supported Vessels 
 

A classification of general type of instability of mono-hull ships was presented by 

Cohen and Blount (1987). Compared to conventional ships and their stability rule, 

safety codes for high speed craft need to include further requirements. High speed 
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vehicles are in particular much more sensitive to problems associated with motions, 

transverse and longitudinal stability, control and behaviour in different sea states. 

The dynamic stability of high speed vessels both in calm water and in waves is in 

general poorly understood (Faltinsen, 2005). It should be noticed that the importance 

of hydrostatic pressure relative to hydrodynamic pressure decrease with increasing 

forward speed. One should also note that the rudder, cavitation and ventilation 

phenomena will influence the dynamic stability of high speed vessels. For catamaran, 

since it has a larger beam than a mono-hull, the catamaran with the same position of 

the centre of gravity as the mono-hull will have the clearly highest metacentric 

height.  

 

Porpoising is a longitudinal dynamic instability for coupled heave and pitch motion 

for planing vessel, see for example, Savitsky (1964), Faltinsen (2005). Design 

guidelines are available for predicting and avoiding porpoising (Blount and Codega, 

1992). Inception of porpoising can be found by a linear stability analysis. Small 

perturbations from the steady equilibrium position are then dynamically examined. 

There are no excitations, for instance, due to wave loads. If a small initial 

perturbation is given to the system and the motions grow with time, the system is 

unstable. A nonlinear stability analysis is needed to get a measure of how larger the 

unstable motion may be.   

 

For an Air Supported Vessel, location of ship’s centre of gravity (both longitudinal 

and vertical from the keel), metacentric height, cushion beam, side-hull form and 

draught, air cushion pressure, and ratio between buoyancy and air pressure forces are 

the most relevant parameters to their stability. Other design variables that 

significantly affect stability are 

 

  1.   Side hull length and dead-rise; 

  2.   Type of bow and stern seal; 

  3.   Size and location of skegs, fences and rudders; 

  4.  Type of propulsion system; 

  5.  Type of manoeuvring system. 
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When operating close to a capsizing condition in the above mentioned situations, 

behaviour of SES and the ASV is extremely complex and, in many cases defies 

analytic treatment. Non-linearities in forces and moments which result from such 

behaviour must be mainly assessed by model testing or full scale trials. Therefore 

step-by-step approach to evaluate stability of SES and ASV is preferred. A study of 

adaptation of the stability rules and tools to SES was carried out by Papanikolous et 

al (2002). The stability criteria which can be applied to SES and the applicability of 

the HSC code (IMO, 2000) were presented. Vassalos (1995), Blyth (1983), Lavis 

(1979), and Gonzalez (2002) have provided the stability criteria in calm water and 

waves for SES.  

 

Kaplan, Bentson and Davis (1981) carried out a direct simulation of behaviour of 

SES. A description was given of importance of dynamics problem and their influence 

on the performance and design of SES. The interrelationship between analytical 

studies and test data, from models and manned test craft, is discussed together with a 

description of the problems associated with scaling motion responses between model 

scale and full-scale vessels due to the important influence of air pressure. The 

development of a non-linear computer program that describes the six degree of 

freedom motion of SES was given, showing its application to the prediction of 

horizontal plane manoeuvring and vertical plane motion in waves. Kaplan (1995) 

studied the manoeuvring and stability of SES and catamaran ships. The procedures 

used for determining the manoeuvrability of the cushion borne surface effect ships 

were described and illustrated, including theoretical prediction techniques and their 

comparison with model test data and full scale test craft trajectories. The results 

shown the hydrodynamic forces on the side hulls are less dependence on the cushion 

pressure. Wade and Wang (1977) carried out model tests in a free surface water 

tunnel to measure forces and moments on a typical SES side-hull. These measured 

data is used to validate the use of slender body theory for the prediction of side-hull 

hydrodynamic characteristics. Generally correlation of the data with the theory was 

very good.  

 

The study of stability for the ASVs is scarce in the public domain. 
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Chapter 5  Mathematical Model 
 

 
In this Chapter, the boundary value problem for the Air Supported Vessel travelling in waves 
will be presented within the potential flow theory. Both the steady and unsteady flows will 
be considered. The boundary value problems are further linearized. These mathematical 
models form the theoretical basis of the present study. 
 

5.1 The Boundary Value Problem 
 

To describe the flow fields and motions of a rigid body translating forward with 

mean speed, U , three Cartesian co-ordinate systems will be defined. The system 

XYZO   is fixed in space, system 0000 zyxo   is fixed with respect to the body and 

system xyzo   is the steady translating system with the mean forward velocity of the 

ship. The steady translating system ( xyzo  ) is an inertial frame with the x axis 

translating on the undisturbed free surface with the same forward velocity U  of the 

ship. The orientations of the axes of the Cartesian co-ordinate systems are defined as 

in Figure 5.1. The xoy plane is on the undisturbed free surface, ox axes pointing 

towards the bow and oz axes pointing upwards. When the ship moving at a constant 

forward speed and without the oscillatory motions (steady state), the system oxyz  and 

system 0000 zyxo  coincide, xoz plane is on the longitudinal symmetric plane and 

oz axes is through the centre of gravity ( . .GC ) of the ship.  

 
Figure 5.1  The coordinate systems 
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Figure 5.2 Air cushion of an Air Supported Vessel 

 

The heading angle of the incoming wave is defined as angle between x  axes and the 

wave direction, with 0180   representing head wave and 00   being following 

wave. The encounter wave frequency is defined as 

2cosU
g

                                                                (5.1) 

where U  is the mean forward speed of the vessel,   is wave frequency of a regular 

incoming wave, g  is acceleration due to gravity. 

 
It is assumed that the fluid is ideal (no viscous effect will be taken into account 

unless otherwise indicated), water is incompressible and the water flow is 

irrotational. The external force on the vessel is given: 

  t tp ds


 F n                                                               (5.2) 

where tp  is the pressure distribution over the hull surface ( ) and n  is normal of  . 

  consists two parts: one is the wetted hull surface and another is part of the surface 

of the air chamber for the ASV. The pressure distribution on the cushion consists of 

two components: 0 ( , )P x y , a steady state excess pressure (time-independent); and 

( , , )P x y t , the unsteady excess pressure (time-varying part). The water flow field 

around the vessel can be described by a velocity potential, ( , , , )x y z t , which satisfies 

Laplace equation: 
2 2 2

2 2 2 0
x y z

     
  

  
                                                      (5.3) 

PPSc 0:  
00  0180  
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By using the velocity potential, the pressure distribution in the water flow field can 

be calculated by Bernoulli equation: 

21 1
2 2

ap p gz U
t

 
      


                                    (5.4) 

where   is water density. On the water surface, there are two boundary conditions: 

1. the pressure should equal to the atmospheric pressure ( ap ) outside the 

cushion area; and equal to the cushion pressure inside the chambers; 

2. a fluid particle can not leave the surface. 

In mathematical terms, those conditions are given by 

 2 0 /       ( , )1 1
2 2 0                        ( , )

c

c

P P x y S
g U

t x y S



  

       
                  (5.5) 

where cS  is the cushion area, and 

t t
     
 

                                                                      (5.6) 

both on ( , , )z x y t , the unknown momentary position of the water surface, which 

given by 

02       ( , )1 1 1 1
0              ( , )2 2

c

c

P P x y S
U

x y Sg t g



             

                  (5.7) 

These conditions are well known as the dynamic and kinematic conditions.  

 

The vessel is assumed to be impermeable, so no water particles can come across this 

boundary. The normal velocity of the fluid (water) should therefore equal to the 

normal velocity of the vessel on the instantaneous wetted hull surface, )(tS : 

n
  


V n                                     on  )(tS                      (5.8) 

where V  is the velocity of the points on the hull surface.  

 

On the bottom of the fluid domain, no fluid particles may cross this boundary: 

0
z

 


                                         z                        (5.9) 

We also need to provide initial condition. It is assumed that at 0t   the fluid is 

undisturbed:  

( , , , 0) 0x y z                                                                 (5.10) 
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and 

( , , ,0) 0x y z
t

 


                                                             (5.11) 

To make the solution of the above mathematical model unique, we have to impose an 

extra condition, called radiation condition. This condition states that the radiated 

waves should travel away from the vessel. 

5.2  Linearization of the boundary conditions 
 

The problem formulated in the previous section contains several non-linearities, 

namely, the free surface boundary conditions and the hull boundary condition. It is 

very difficult (if not impossible) to solve this boundary value problem. In this study, 

these boundary conditions will be linearised. There are many ways to linearize the 

free surface boundary condition. One can use the uniform incoming flow to replace 

the steady flow and the free surface condition is expanded at the undisturbed free 

surface, the linearised free surface boundary condition is called as the Neumann-

Kelvin condition (Newman, 1978). Another approach is to use the steady double 

body flow as the basis flow and the free surface boundary condition is expanded at 

the free surface corresponding to the double body flow, see for example, Sclavounos 

et al. (1993, 2003), Raven (1996), Bertram (1999), Xie et al. (2007). Linearization of 

the boundary conditions restricts our results to small amplitudes of the motions and 

the incoming waves, and the steady disturbance flow is small comparing with the 

incoming uniform flow.  

 

The total velocity potential is split into three components 

( , , , ) ( , , ) ( , , , )s ux y z t x y z x y z t                                         (5.12) 

where   is velocity potential of the incoming uniform flow  

Ux                                                                                 (5.13) 

and s  and u  are velocity potentials of the steady and  unsteady disturbance flows, 

respectively. It is assumed that the steady flow and unsteady disturbance flow are 

much less than the incoming uniform flow: 

s ,       u                                                            (5.14) 

The total free surface elevation consists of two parts: 
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( , , ) ( , ) ( , , )s ux y t x y x y t                                                      (5.15) 

where ( , )s x y  and ( , , )u x y t  are the free surface elevations of the steady flow and 

unsteady flow, respectively. Substituting (5.12), (5.13) and (5.15) into the dynamic 

free surface boundary condition (5.5) and the kinematic free surface boundary 

condition (5.6), neglecting the higher order terms, the followings are obtained: 

   0 /        ( , )
0                          ( , )

cu s u
s u

c

P P x y S
U g

t x x x y S
    

                
       ( , , )z x y t     (5.16) 

and 

u s u s uU U
t x x z z
        

   
    

                                  ( , , )z x y t     (5.17) 

(5.16) and (5.17) are expanded about the undisturbed free surface, 0z  , separating 

the steady and unsteady (time-dependent) parts, one obtains: for the steady flow 

0 /       ( , )
0               ( , )

cs
s

c

P x y S
g U

x y Sx



 

    
                           0z            (5.18) 

0s sU
x z
  

 
 

                                                       0z            (5.19) 

Substituting (5.18) into (5.19), the linearized free surface boundary condition for the 

steady flow potential is 

02
2

2

          ( , )

0                   ( , )

cs s

c

PU x y S
xU g

zx
x y S

  
        

                   0z            (5.20) 

For the unsteady flow 

/       ( , )
0              ( , )

cu u
u

c

P x y S
U g

x y St x
 


  

      
                 0z            (5.21) 

0u u uU
t x z
    

  
  

                                           0z             (5.22) 

Substituting (5.21) into (5.22), the linearized free surface boundary condition for the 

unsteady flow potential is 

2 2 2
2

2 2

1          ( , )
2

0                                 ( , )

cu u u u

c

P PU x y S
U U g x t

t x zt x
x y S

   


                     

       0z           (5.23) 

The body boundary condition (5.8), which is satisfied on the instantaneous hull 

surface, can be also linearized about the mean hull surface. The unsteady velocity 

potential consists of potentials of incident wave and other perturbation flows: 
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( , , , ) ( , , , ) ( , , , )u I px y z t x y z t x y z t                                                  (5.24) 

It is assumed that the vessel undergoes 3 translational motions 1 2 3( , , )q q qξ  along 

x  , y   and z  axes, respectively; and 3 rotational motions 4 5 6( , , )q q qθ  about these 

axes, the hull boundary condition (5.8) can be written as 
6

1

u I
j j

j
q n

n n
 



 
    

  w n                              on )(tS            (5.25) 

where I  is velocity potential of the incident wave, and w  is velocity distribution of 

the steady flow 

s   w                                             on )(tS            (5.26) 

and 

1 2 3

4 5 6

( , , )     
( , , )

n n n
n n n


  

n
r n

                                                              (5.27) 

The local displacements of a point on the instantaneous wetted hull surface )(tS  due 

to the translational and rotational motions with respect to the mean hull surface, 0S , 

is 

  α ξ θ r                                                                       (5.28) 

where r  is position vector of the point at the body fixed system. Under the 

assumption of small amplitude of vessel motions, velocity of the steady flow is 

expanded at the mean hull position: 

 
0

)()( StS wαww                                                       (5.29) 

On the other hand, the instantaneous hull surface )(tS  is reached from the mean 

position by 3 translating motions ),,( 321 qqqξ  and 3 rotating motions ),,( 654 qqqθ . 

The translating motions of the ship will not change the hull surface normal vector, 

whilst the rotating motions will. It is assumed that 

bzbybxS nnn kjin 
0

                                                      (5.30) 

where bbb kji ,, are the unit vectors of the body fixed coordinate system. When the ship 

has a roll motion, 4q , the new unit vectors are 














bbb

bbb

bb

qq
qq

kjk
kjj

ii

44
'

44
'

'

cossin
   sincos

                             
                                                    (5.31) 

Under the assumption of small amplitude motion, (5.31) becomes 
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
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
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


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















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





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b
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b

b

q
q

k
j
i

k
j
i

10
10

001

4

4
'

'

'

                                                    (5.32) 

By using the same procedure for pitch ( 5q ) and yaw ( 6q ) motions, the following 

relationship can be obtained: 

0
)()( )( StSt nθnn                                                              (5.33) 

Substituting (5.29) and (5.33) into (5.25), neglecting the higher order terms, the hull 

boundary conditions are as follows. For the steady flow 

1
s Un

n n
  

  
 

                                             on 0S            (5.34) 

And for the unsteady flow 
6

1

p I
j j j j

j
q n Uq m

n n
 



                                     on 0S            (5.35) 

where 

1 2 3
1( , , ) ( )m m m
U

  n w                                                      (5.36) 

4 5 6
1( , , ) ( )( )m m m
U

   n r w                                               (5.37) 

 

5.3  Force, Moment and Equations of the Motions 
 

Once the velocity potentials have been solved and the pressure distribution around 

the vessel hull has been obtained, it is possible to calculate the forces/moments 

acting on the vessel. There are two components of force acting on the hull surface: 

the excess pressure force in the cushion chambers and the hydrodynamic pressure 

forces on the wetted rigid side hulls. 

 
 )()(

0, )(
tS

jj
t

jt dspndsnPPF                     1, 2,..., 6j              (5.38) 

where ( )t  is the instantaneous cushion chamber surface. Under assumption of small 

amplitude motions for the vessel, (5.38) is expanded at the mean hull surface 

position.  

0 0
0 0 0( )( ) ( ) ( ) ( )tP P P P P

  
    α                                           (5.39) 

00
)()( SStS ppp                                                                 (5.40) 
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where 0  is the mean cushion chamber surface and 0S  is the mean wetted rigid hull 

surface. Substituting (5.39) and (5.40) into (5.38), and also making use of (5.33), the 

forces/moments acting on the vessel can be calculated up to the first order as 
0

, ( )t j j jF F F t                               1, 2,..., 6j                    (5.41) 

The steady force/moments are 

 
 00

0
0

S
jsjj dsnpdsnPF                                                     (5.42) 

where sp  is the steady hydrodynamic pressure distribution 

 21
2sp U gz      w w                                                 (5.43) 

Due to symmetry of the hull, the non-zero steady forces and moments are 

longitudinal force (wave-making resistance), vertical (sinkage) force and trim 

moment, i.e., for 1,3,5j  . 

 

The unsteady forces/moments also consist of two components: the excess air 

pressure in the cushion chambers and the hydrodynamic pressure on the rigid side 

hulls. For the force/moment due to the excess air pressure: 

,1

,2

,3

0
0

p

p c

p l
l

F
F A
F P

                 


                                                         (5.44) 

,4 4

,5 0 0 5

,6 0
0

cl c l
lp

p c cl c l
l

p

y A P
F q
F P h A q x A P
F

 
     
                   

 


                                     (5.45) 

where l  is cushion chamber index, ( , , )cl cl clx y z  is the cushion pressure centre. cA  is 

cushion area for the demi-hull. The forces/moments due to the hydrodynamic 

pressure can be calculated in a similar way 

 

00

)( 543,
S

j
S

jwjw dsnxqyqqgdsnpF                                (5.46) 

1, 2,..., 6j  , where the first order hydrodynamic pressure distribution is  

 u
w up

t


  


   


w                                                         (5.47) 
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The second term in (5.46) is the hydrostatic restoring force/moment, and can be 

further calculated as: 

,3 3 5[ ]s wl
wp

F gA q g xdxdy q                                                     (5.48) 

2
,4 4[ ] s B

wp

F g y dxdy z q                                                       (5.49) 

2
,5 3 5[ ] [ ] s B

wp wp

F g xdxdy q g x dxdy z q                                  (5.50) 

where   is the displacement volume; Bz  is vertical centre of buoyancy. Substituting 

(5.47) into (5.46), the hydrodynamic forces and moments are 

 





00

)(,
S

ju
S

j
u

jH dsndsn
t

F 


 w                                       (5.51) 

Since the origin of coordinate system is located on the undisturbed free surface, not 

at the centre of gravity of the vessel, there will non-zero components due to gravity 

force: 

,g j g jF mgz q                             4,5j                             (5.52) 

The total velocity potential of the unsteady flow consists of the velocity potentials of 

the incident wave, the diffraction wave and the 6 radiation waves. The velocity 

potential of the incident wave in the translating frame can be written as (Newman, 

1978) 

 ti
aI ezyxtzyx  ),,(Re),,,( 0                                                         (5.53) 

where a  is amplitude of the incident wave; 0  is the complex amplitude of velocity 

potential of the incident wave in the translating frame: 

)sincos(
0 ),,( 


 yxikkzeeigzyx                                                       (5.54) 

where gk2 . The velocity potential of the diffraction wave is expressed as 

 ti
aD ezyxtzyx  ),,( Re),,,( 7                                                      (5.55) 

 where 7  is the complex amplitude of the velocity potential in space for the 

diffraction wave. The vessel motions are expressed as 

 ( ) Re i t
j jq t e                                                                (5.56) 

where , 1, 2,...,6j j  , are the complex amplitudes of the vessel motions. The velocity 

potential of the radiation wave for the thj  motion mode is expressed as  
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 ti
jjjr ezyxtzyx  ),,(Re),,,(,                                            (5.57) 

where , 1, 2,..., 6j j   are the complex amplitude in space of the velocity potentials for 

the radiation waves. 

 

In summary, the total unsteady velocity potential can be written as: 

 
6

0 7
1

( , , , ) Re{[ ( , , ) ( , , ) ( , , )] }i t
u a j j

j
x y z t x y z x y z x y z e      



                (5.58) 

Substituting (5.56) and (5.58) into (5.51), the integrated unsteady forces/moments 

relating to the incident and diffraction waves are the wave exciting forces/moment, 

whilst the integrated forces/moments relating to the radiation waves are the added 

mass and damping coefficient. The total velocity potential of the radiation waves is: 

 



6

1

6

1
, ),,(Re),,,(),,,(

k

ti
kk

k
krR ezyxtzyxtzyx                               (5.59) 

Substituting (5.59) into (5.51), the thj  component of the unsteady forces relating to 

the radiation wave is 

  





00

)(,
S

jR
S

j
R

jR dsndsn
t
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

 w                                             (5.60) 

From (5.59) 

}Re{
6

1

ti

k
kk

R ei
t

 




                                                                 (5.61) 

}Re{
6

1

ti

k
kkR e  



                                                                  (5.62) 

Substituting (5.61) and (5.62) into (5.60): 

}])([Re{}][Re{
6

1

6

1
,

00

  



k

ti

S
jkk

k

ti

S
jkkjR edsnwedsniF            (5.63) 

Normally, the radiation forces are expressed as 

    



6

1
, )(

k
kjkkjkjR qBqAtF                                                        (5.64) 

where jkA  and jkB  are the added mass and damping coefficients, respectively. 

Comparing (5.63) and (5.64), and using equation (5.56), the added mass and 

damping coefficients are calculated as: 
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


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
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



 
00

)(Re2
S

jk
S

jkjk dsnwdsniA 

                                (5.65) 

  












 
00

)(Im
S

jk
S

jkjk dsnwdsniB 

                                   (5.66) 

By using Newton’s law, the equations of motions for the vessel in wave can be 

written as 

   [ ][ ] [ ][ ] [ ] [ ]w p    M A q B q C q F F                                    (5.67) 

where the mass matrix [ ]M  is 

44 46

55

64 66

0 0 0 0
0 0 0 0
0 0 0 0 0

[ ]
0 0 0

0 0 0 0
0 0 0 0

g

g

g

g

m mz
m mz

m
mz I I

mz I
I I

 
  
 

  
 

 
 
  

M                               (5.68) 

where m  is mass of the vessel; gz  is vertical coordinate of centre of gravity; jkI  is the 

inertia moment: 
2 2

44 ( )I y z dm                  2 2
55 ( )I x z dm                   (5.69) 

2 2
66 ( )I x y dm                 46 64( )I xy dm I                   (5.70) 

The non-zero restoring matrix coefficients are 

33 wpC gA                                                                          (5.71) 

35 53
wp

C C g xdxdy                                                            (5.72) 

2
44 [ ]B g

wp

C g y dxdy z mgz                                                (5.73) 

2
55 [ ]B g

wp

C g x dxdy z mgz                                               (5.74) 

where wp  is the water plane. The air excess forces/moments are calculated by (5.44) 

and (5.45). 
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Chapter 6  The Three Dimensional Steady Flow Problem 
 

 

This Chapter describes the three dimensional steady flow problem of a pressure patch 

moving on the free surface. Numerical calculation and behaviour of the elementary solution 

of a rectangular pressure patch is studied in detail. A reliable and effective numerical 

approach has been presented.    

 

6.1 Solution of the Boundary Value Problem 
 

Assuming a pressure distribution, ),(  , is moving on a calm water surface with 

speed, U . The flow field is solved by velocity potential theory. Velocity potential of 

the steady flow is split into velocity potentials of the incoming uniform flow and the 

disturbance flow:  

( , , ) ( , , ) ( , , )s sx y z x y z x y z                                                          (6.1) 

where   and s  are velocity potentials of the incoming uniform flow and the steady 

disturbance flow, respectively, and  

Ux                                                                                     (6.2) 

It is assumed that the disturbance flow is small comparing with the incoming uniform 

flow: s , the velocity potential of the disturbance flow satisfies Laplace 

equation in the fluid domain: 
2 2 2

2 2 2 0s s s

x y z
    

  
  

                                                                (6.3) 

On the free surface, the velocity potential of the disturbance flow and the free surface 

elevation, ( , )s x y , satisfy the linearized kinematic and dynamic boundary conditions: 

0s sU
x z
  

 
 

                                              on 0z                (6.4) 

( , ) ( , ) 0s
s

x y g x y U
x






  


                          on 0z                (6.5) 

On the sea bottom and far field upstream: 

0s                                                  z                        (6.6) 

0s                                                  x                       (6.7) 
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The boundary value problem formulated in (6.3) – (6.7) for the steady disturbance 

flow is solved by Laplace transformation method, and can be expressed as 

(Wehausen and Laitone, 1960) 
/ 2

2 2
00 0
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c
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            (6.8) 

where cS  is the area on which the pressure is applied and 2
0 /k g U  is the wave 

number.   is the pressure distribution and defined as: 

0

( , )      ( , )
( , ,0)

    0           ( , )
c

c

x y x y S
P x y

x y S
 

  
                                                  (6.9) 

The expression of the free surface elevation, ( , )s x y , can be obtained by substituting 

velocity potential (6.8) into the dynamic free surface condition (6.5): 
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                (6.10) 

The application of (6.10) lies on two fronts: firstly, one can use this expression to 

predict the wave field generated by a known pressure distribution, ( , )  ,  moving 

on the free surface. This is of practical interest in predicting wash waves of high 

speed craft such as ACV, SES and ASV. The wash wave of high speed craft could be 

potentially damaging to the environment of the shore lines and dangerous to 

swimmers in the tourist attractions. Secondly, if the free surface elevation, ( , )s x y , is 

known, the pressure distribution over the wetted hull surface can be predicted by 

solving the integral equation. Both of the above problems will be investigated in the 

present study.  

 

6.2  Numerical Method for a Rectangular Pressure Patch 
 

Several methods of discretisation have been proposed for numerical calculation of 

(6.10). Cheng and Wellicome (1994) divided the pressure applied area into a number 

of transverse strips, the pressure along the span of a strip is expressed by a sine series 
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)5.0(
2

sin)(                                                      (6.11) 

where B  is the width of the pressure applied area, nA  are the coefficients. 

 

Doctors (1975), Wang and Day (2007) discretize the pressure applied area into 

rectangular elements, the pressure strength over each element is represented with a 

pyramid shape: 

           0( , ) 1 1p p
a b
 

 
  

    
  

                                                     (6.12) 

where bbaa     ; , and ,  a b  are the half length and beam of the panel, 

respectively, 0p  is constant for each panel. The continuity of the pressure strength at 

the edges of each element will be maintained with the discretisation in (6.12). The 

mathematical formulation of the analytic solution for each of the pyramidal pressure 

element is more complex than its counterpart of the constant pressure element, 

Doctors (1975).  

 

In the present study, the cushion area, cS , is divided into a number of rectangular 

panels, iS , as well, but the pressure strength over each panel is assumed to be 

constant, see Figure 6.1. The total free surface elevation at a field point is sum of the 

contributions from all of the rectangular pressure patches:  

 s
1

( , ) ( , )
N

i i j j ji
j

x y p D 


                                                                 (6.13) 

where jiD  is called as the influence coefficient at field point ( ,i ix y ) by a pressure 

element located at ( ,j j  ) with unit pressure strength.  

 

 

 

 

 

 

Figure 6.1  Discretization of the pressure applied area 
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Figure 6.2  Definition of a rectangular pressure element, S  

 

The solution of a rectangular pressure patch with constant pressure strength is the 

elementary solution of the problem. Figure 6.2 shows a rectangular pressure element 

on the free surface. Without losing generality, one can assume 

0
0

      ,
( , )

0         ,
x a y b

P x y
x a y b

 
 

         
                                        (6.14) 

where 0  is the pressure strength and is a constant; a  and b  are half length and 

beam of the rectangular patch, respectively. The free surface elevation at a field point 

( ,j jx y ) induced by a pressure element of unit strength located on ( ,i i  ) can be 

expressed as (Kim and Tsakonas, 1980) 
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where 

i

i

i

i

   1      ( , ) is inside S                     
0.5     ( , ) is on the boundary of S

0.25     ( , ) is at the corner of S        
0      ( , ) is outside S                 
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x y
x y
x y
x y


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                                 (6.16) 

and ( ), 1, 2,...,8ms m  , are the distance scales defined as 
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An example of the definitions for 1( )s   is shown in Figure 6.3, where the index of 

,j i  are omitted. In this example, the pressure source panel is located at point ( , )P    

and the field point is located at ( , )Q x y . Distance between point A and B is 

( )AB x a    and distance between point B and Q is ( )BQ y b   . The angular 

variable is  . The projection of AB  on the ray line is ( ) cosAC x a    , and 

projection of BQ  on the ray line is ( ) sinDQ y b    . 1( )s   is the sum of these two 

projections: 

1( ) ( ) cos ( ) sins AC DQ x a y b                                    (6.18) 

Similar definitions can be found for other ( )ms  .  

 

 

 

 

 

 

 

 

Figure 6.3 Definition of 1( )s   

 

)(1 E  in (6.15) is the exponential integral (Abramowtiz and Stegun,1970): 
( )

1
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There is also a series expression for this integral 
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where 0.5772...   is the Euler’s constant.  (6.15) is rewritten as 
8
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/ 2 2

20
1 1 0

0

exp[ sec ( )] ( sec ( ))
sin cos

m
m m

ik sJ E ik s d
     

 
                                 (6.22) 



 

 37 

/ 2 2
0

2
0

exp[ sec ( )][1 sgn( )]
sin cos

m
m m

ik sJ i s d
   

 
                                     (6.23) 

for 1, 2,...,8m  .  The main difficulties in numerical calculation for 1mJ  in (6.22) and 

2mJ  in (6.23) are the singularities in the integrands and the highly oscillatory 

behaviour. It can be seen that the integrands in (6.23) have highly oscillatory 

behaviour when   approaches / 2 .  

 

A commonly used method is to make a variable change of 

tanu                                                                  (6.24) 

to stretch the dimension in the fast oscillatory region, see for example, Doctors, 

1975, Wang and Day, 2007.  With this variable transformation, one has ( 1m ) 
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It can be seen from (6.26) that the integrand is highly oscillatory with monotonically 

decay amplitude when u  (i.e., 2/  ). The convergence of (6.26) at the upper 

limit is complicated by the fact that 
2

01 )( ubykt           as   u                                     (6.27) 

The oscillating behaviour will depends on the vessel speed (i.e., 0k ), the relative 

location between the field point and source point ( y ) and size of the pressure 

element ( b ) as well. It will be difficult to calculate this integral with a high accuracy. 

Numerical tests indicate that the evaluation of the induced coefficients requires high 

accuracy in order to obtain accurate hydrodynamic pressure distribution for the 

planing hulls.  

 

In the present study, the following variable change is introduced to stretch the highly 

oscillatory behaviour of the integrands: 
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where 0 0( ), ( )k y b k y b     , 0, 0   . By doing this, the integrands in (6.22) and 

(6.23) are stretched:  
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where 2 2 2
1 4 ,G u      2 2 2

2 4G u     , 0 ( )k x a    and 0 ( )k x a   . It 

can be seen that the highly oscillatory behaviour of the integrands has been 

eliminated as u   (i.e., / 2  ), in fact, ( )mt u u  as u  . The integrals in 
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(6.29) and (6.30) have a logarithmic singularity at lower limit of 0u  , however, 

when summing up all the 8 terms together, it will be regular. In fact, the integrands 

will have the following property: 
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This singularity can be removed by the following method: 
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for 1, 4,6, 7m  .  Similar expressions can be derived for 2,3,5,8m  . It can be shown 

that the second integral in (6.38) and (6.39) have no contribution when they are 

summarised over all m : 
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The integrands in the first integrals of (6.38) and (6.39) are regular at 0u   (i.e., 

0  ). 

 

The convergence behaviour of (6.29) and (6.30) at the upper limits are analysed as 

follows. For larger w , the following asymptotic expression can be used 

(Abramowitz and Stegun, 1970) 

1 2 3 4
1 1 2! 3!( ) ....we E w
w w w w

                                                  (6.42) 

Therefore, the first integral in (6.38) is convergent. On the other hand, the integrands 

in the first integral of (6.39) are oscillatory functions whose amplitudes 

monotonically decay as u  , thus the convergence can be easily achieved (similar 

to that of an alternating decay series). 
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Another singularity problem in the integrals is the logarithmic singularity in the 

integrands of (6.29), which is equally important for this problem. There will be zero 

points for  

( ) 0mt u                                       1, 2,...,8m                               (6.43) 

Substituting (6.35) and (6.36) into (6.43), one can get these zero points as: 
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  




                                                                      (6.45) 

2 2

2,5û
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Theoretically, this singularity is integrable, an accurate integrating scheme is 

required. In fact, by using Taylor’s expansion: 
'ˆ ˆ ˆ( ) ( ) ( )( ) ...m m m m m mt u t u t u u u                                                             (6.48)                                                      

where ' ˆ( )m mt u  is the first order derivate at zero point of ( ) 0mt u  , i.e. ˆ( ) 0m mt u  . On the 

other hand, 
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After keeping up-to the 1st order term:  
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Assuming   is a small positive real number, for 1, 4,6, 7m   
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It can be seen that 1 0  as  0mJ    . The same procedure can be applied for the cases 

of 2,3,5,8m  . Thus, the logarithmic singularity is integrable. Having shown 

convergence of the integrals in the influence coefficients, the next is to demonstrate a 
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practical and effective method for the evaluation of these coefficients. (6.21) is 

rewritten as  

1 2( , ) ( , ) ( , ) ( , )D x y gD x y D x y D x y                                         (6.52) 
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where cu  is the truncated upper limit of the infinite integrals, and 
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In order to calculate the influence coefficients with high accuracy, it may be worth to 

look at characteristics of the integrands in (6.53) and (6.54). Some of samples of the 

integrands are shown in Figures 6.4 ~ 6.7. The element length based Froude number 

is defined as / 2nf U ag . In Figure 6.4 and Figure 6.6, the major contribution to the 

integral, 1D , is coming from the regions near the logarithmic singularity points 

( ˆ 0.01737u   in Figure 6.4, ˆ 6.5401u  and ˆ 7.8446u  in Figure 6.6). The integrands 

change sharply near these points, the slope also depends on craft speed and the 

length/beam ratio of the element. An accurate scheme should be used near these 

regions during the numerical integration: fine steps will be needed in Simpson’s rule 

or a proper interval in Gaussian quadrature scheme is necessary. In Figures 6.5 and 

6.7, the integrands of 2D  show an oscillatory behaviour with monotonic decay 

amplitude, as it is expected the oscillating period trends to be approximately 2 , see 

(6.35) and (6.36). A sharp change near 0u   can be observed. 

 

 
 
 
 
 

Figure  6.4 Integrand in (6.53) for / 1.64, 7.429na b f  at ( , ) (0, 0)x y   

-900

-600

-300

0
0.00 0.05 0.10 0.15 0.20 0.25 0.30

u

f1(u)



 

 42 

 
 
 
 
 
 
 

Figure 6.5 Integrand in (6.54) for / 1.64, 7.429na b f  at ( , ) (0, 0)x y   

 
 
 
 
 
 
 
 

Figure 6.6 Integrand in (6.53) for / 1.64, 7.429na b f  at ( , ) ( 22 ,0)x y a   

 
 
 
 
 
 
 

Figure 6.7 Integrand in (6.54) for / 1.64, 7.429na b f  at ( , ) ( 22 ,0)x y a   

 
 
 
 
 
 
 
 

Figure 6.8 Convergence of 1D  for / 1.64, 7.429na b f  at field points A ( 11 , 2a b ) and C 

( 11 ,8a b ) 
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Figure 6.9 Convergence of 2D  for / 1.64, 7.429na b f  at field points A ( 11 , 2a b ) and B 

( 0, 0 )  

 
In the numerical calculations, the infinite integrations in (6.52) are truncated at some 

upper limits, cu , as shown in (6.53) and (6.54). Figures 6.8 and 6.9 show examples of 

convergence of the integrals in (6.53) and (6.54) at three field points: A ( 11 , 2a b ), B 

( 0, 0 ) and C ( 11 ,8a b ); the pressure panel is located at ( 0, 0 ) with a length/beam ratio 

of / 1.64a b   and the panel length based Froude number / 2 7.429nf U ag  . It can 

be seen that when truncating at about 50cu  , 1D  is convergent quite well (with 4 

digital accuracy), while for 2D , the upper limit ( cu ) should be more than 30000 to 

reach the same accuracy. This means that 1D  converges quicker than 2D . This 

property is useful for improving efficiency of numerical calculation due to frequent 

calls of exponential function consumes relatively more computing time. In order to 

predict the hydrodynamic pressure distribution on the planing hulls, normally, the 

relative coordinates will need to cover the region of [ ~ ], [ , ]x L L y B B    , where L  

is water plane length of the planing hull, while B is the hull beam. The symmetric 

properties also can be used to save the computing effort. 1( , )D x y  is symmetric about 

0x   and 0y  , i.e., 1 1( , ) ( , )D x y D x y  , 1 1( , ) ( , )D x y D x y  , 1 1( , ) ( , )D x y D x y   , only 

values for the first quarter of the domain need to be calculated. On the other hand, 

2 ( , )D x y  is symmetric about x  axes: 2 2( , ) ( , )D x y D x y  , thus only values on the first 

and second quarters need to be calculated. Figure 6.10 and 6.11 show samples of the 

influence coefficients. 

 

As mentioned previously, the logarithmic singularity points in 1 ( )mF u  also play an 

important role in the evaluation of the influence coefficients. If there are xN  panels 
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in longitudinal direction and yN  panels in transverse direction (maximum), then 

2 /w xa L N , 2 / yb B N . The minimum and maximum locations of the logarithmic 

singularity points will be 
2

min 2 2

1 1ˆ( ) 1
2 (2 1)n y

au
f N b

      
                                               (6.57) 

2
2

max 2

(2 1)ˆ( ) 1 (2 1)
2

x
x

n

N au N
f b
      

 
                                         (6.58) 

 

 

 
 
 
 
 

Figure 6.10 Sample of the influence coefficient 1( , )D x y  

 
 
 
 
 
 
 

Figure 6.11 Sample of the influence coefficient 2 ( , )D x y  

 
It can be observed from (6.57) that, when the number of the buttocks for a planing 

craft, yN , is large; the panel length based Froude number, nf , is also large as well, 

thus the minimum value of the singularity point is very small, ˆ 0u  , which requires 

a proper integration scheme. 

 

Figure 6.12 shows a comparison of the free surface elevation of a rectangular 

pressure element with length/beam ratio of / 1.0B L   at 0.71Fn  . The wave cut is 

taken at / 2( )y B b  . The wave elevation of the present prediction agrees well with 

that of Kim et al (1981), who adopted a different numerical scheme.  
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Figure 6.12 Comparison of wave cut at by  , 71.0,1/  Fnab  

 

Table 6.1  Sample of the induced coefficients ( 04.9,34.1/  fnab , ,x y  are longitudinal and 
lateral distances to centre of the element, respectively) 

y  

x  

0 2b 4b 6b 8b 

-7 l  -0.809781E-01 0.267377E-01 0.552860E-02 0.246351E-02 0.143168E-02 

-6 l  -0.697273E-01 0.231254E-01 0.481483E-02 0.216792E-02 0.126788E-02 

-5 l  -0.582469E-01 0.194874E-01 0.405869E-02 0.185975E-02 0.110599E-02 

-4 l  -0.465847E-01 0.157250E-01 0.338853E-02 0.155573E-02 0.952134E-03 

-3 l  -0.347012E-01 0.119831E-01 0.265249E-02 0.128658E-02 0.806927E-03 

-2 l  -0.227081E-01 0.826154E-02 0.201714E-02 0.104593E-02 0.676633E-03 

- l  -0.102581E-01 0.485673E-02 0.139680E-02 0.829829E-03 0.562147E-03 

0 0.367811E-02 0.214768E-02 0.988816E-03 0.622272E-03 0.464104E-03 

l  0.156091E-02 0.944974E-03 0.661455E-03 0.476320E-03 0.386360E-03 

2 l  0.758113E-03 0.576489E-03 0.459877E-03 0.372690E-03 0.322092E-03 

3 l  0.510338E-03 0.374945E-03 0.354668E-03 0.312561E-03 0.268896E-03 

4 l  0.417445E-03 0.303526E-03 0.240145E-03 0.258015E-03 0.226030E-03 

5 l  0.275688E-03 0.231732E-03 0.245897E-03 0.207067E-03 0.189273E-03 

6 l  0.170239E-03 0.255575E-03 0.182931E-03 0.166518E-03 0.161186E-03 

7 l  0.153567E-03 0.182703E-03 0.181568E-03 0.149332E-03 0.138721E-03 

 

 

Table 6.1 is an example of the influence coefficients for a pressure element with 

/ 1.34b a  , / 2 9.04fn U ag  . A 3-D view is also shown in Figure 6.13. It is observed 

that the differences between the flow patterns down stream and up stream of the 

pressure element are significant due to the high element length Froude Number ( fn ). 
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In the present constant pressure distribution method, the “self-induced coefficient” is 

different from that of the conventional source distribution method, in which the self-

induced coefficient is 2  (Newman, 1978). Figure 6.14 shows an example of the 

self-induced coefficients at the central line for a pressure element with length Froude 

Number 08.7fn  and 00.1  ,67.1/ ab  and 56.0  respectively. It is observed that the self-

induced coefficients change much along the flow direction, especially for the 

element with lower beam-length ratio. This corresponds to the cases in which more 

number of buttocks is employed in the prediction of the hydrodynamic pressure 

distribution.  Figure 6.15 shows 3-D view of the self-induced coefficients for an 

element of /  1.0b a   at 08.7fn . 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 6.13  3-D view of the induced coefficients of a pressure element ( / 2 ; / 2X x a Y y b  , 
agUfn 2/ ) 
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Figure 6.14  Sample of pressure element self-induced coefficients at central line ( / 2X x a ) 
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Figure 6.15  Sample of the self-induced coefficients of a element ( / 2 ;  / 2X x a Y y b  ) 
 
 

6.3  Summary 
 

In this chapter, a mathematical model for solving the steady potential flow of a 

pressure patch moving on the free surface is presented. An effective and efficient 

numerical method is proposed to tackle the singularity and high oscillation problem 

in calculation of the elementary solution of the free surface elevation resultant from a 

pressure patch moving on the free surface. The numerical scheme has the advantages 

of good convergence for a general field location, panel size/shape and forward speed 

(Froude Number). The high accuracy numerical scheme is valid for calculation of the 

wave surface elevations at both near field and far-field, and also independent of the 

vessel forward speed. This is particularly important because the present numerical 

method will be applicable for both prediction of dynamic pressure distribution of a 

planing hull and the wash wave problem. 

 

Numerical examples are provided for the elementary solution of a moving 

rectangular pressure patch. The results are well behaved, which is essential for some 

of the hydrodynamic problems, such as wave pattern of an ASV, wash wave 

prediction of an ASV, and prediction of hydrodynamic pressure distribution of a 

planing craft.  
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Chapter 7  Case Study – Hydrodynamics of Planing Hulls 
 

 

In this Chapter, solution of the steady potential flow for a pressure patch moving on the free 
surface is applied to predict the hydrodynamic pressure distribution for the planing hulls. 
The selected hull forms are: three-dimensional flat plate planing hull, flat plate planing 
catamaran and prismatic planing hulls.  The flat plate planing hull is a planing hull with a flat 
bottom; a flat plate planing catamaran is a planing catamaran whose bottoms of the demi-
hulls are flat. Method of the application and numerical results are provided and discussed.  
 

7.1 Introduction 
 

When a craft is planing, a major part of its weight is supported by the hydrodynamic 

lift and the flow separates smoothly from trailing edge and part of the side hull. This 

feature of planing allows researchers to adopt a pressure distribution on the water 

surface to represent the effect of the wetted area of a planing surface, and to establish 

an integral equation which relates the unknown pressure on the planing surface to its 

hull offsets. Although the fundamentals for establishing the integral equation are the 

same, numerical approaches to solve the problem may be significantly different for 

different authors.  

 

Most of early studies on planing hydrodynamics dealt with two dimensional 

problems or three dimensional problems with restrictions on Froude number or 

aspect ratio (Maruo, 1967, Wang et al., 1971, Tuck, 1975). Based on Maruo’s (1967) 

slender planing theory, Taravella and Vorus (2011) have developed a general 

solution for flat and slender planing surface with vertex distribution method. Finite 

pressure elements were adopted to represent a three-dimensional planing surface 

without imposing restrictions on Froude number and aspect ratio (Doctors, 1975, 

Wellicome and Jahangeer, 1978, Tong, 1989). However these results showed 

unrealistic oscillatory pressure distribution. To solve the pressure oscillatory 

problem, transverse strips of variable pressure were proposed to represent a 

rectangular planing surface and achieved satisfactory convergence for flat plate hulls 

(Cheng and Wellicome, 1994) and flat planing catamaran (Cheng and Wellicome, 
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1999). The transverse strip method was less successful for prismatic planing hulls 

(Cheng and Wellicome, 1999).  

 

In order to avoid the oscillatory behaviour of the predicted hydrodynamic pressure, a 

least square method was utilized in which the number of the free surface elevation 

points is much larger than that of the pressure source points on the hull (Tuck, 

Scullen and Lazauskes, 2002), this is effectively a filtering approach (averaging), the 

obtained pressure is then smoother.  Pyramidal pressure element distribution model 

originally developed by Doctors (1975) was adopted to solve the planing problem, 

and it was found that the matrix for solving the unknown pressure is ill conditioned 

(Wang and Day, 2007). The Singular Value Decomposition technique is used to 

tackle the problem. In mathematical terms, this is a similar process to filter the 

pressure distribution. The numerical instability problem will be investigated in this 

chapter.   

 

7.2 Flat Plate Planing Hull 
 

The hydrodynamic problem of a 3-D flat planing hull is illustrated in Figure 7.1. The 

planing hull is moving on the calm water surface with forward speed of U  and a 

small trim angle of  . The problem is to find dynamic pressure distribution on the 

wetted hull surface: 

( , )          ( , )
( , )

0                   ( , )
c

c

p S
x y

S
   

 


   
                                                  (7.1) 

 

 
Figure 7.1  The hydrodynamic problem of flat plate planing hull 

( L  length,   trim angle, U  forward speed, s  free surface elevation) 
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In order to solve the planing hydrodynamic problem, the planing surface is replaced 

by a pressure distribution and the kinematic free surface condition will be utilised, in 

which the pressure induced free surface elevation underneath the planing hull is set 

equal to the hull vertical offset: 

     
/ 2 2

2 2
00 0

1( , ) ( , ) sec  P.V. cos[ ( )cos ]cos[ ( )sin ]
sec

c

s
S

kx y p d d d k x k y dk
U k k



          
  



  
    

               
/ 22 2

0 0 0
4

0

sin[ ( )sec ]cos[ ( )sec sin ] ( , )( , )
cos

cS

k k x k y x yp d d d
g g

     
    

  
  

     

 ),(ˆ yxz                                                                   ( , ) cx y S                      (7.2) 

Since the offset of the planing hull, ),(ˆ yxz , is known for a giving design, in order to 

obtain the pressure distribution, ),( p , we need to solve integral equation (7.2). In 

doing so, the planing surface, cS , is divided into a number of rectangular elements, 

over which the pressure strength is constant, see Figure 7.2. In discretised form of 

(7.2), the free surface elevation on a field point ( ,j jx y ) can be expressed as 

,
1

( , )
N

s j j j i i
i

x y D p


                                                             (7.3) 

where ,j iD  is the wave elevation at field point ( ,j jx y ) by a pressure element located at 

( ,i i  ) with unit strength and can be calculated by the numerical method described in 

Chapter 6. Substituting (7.3) into (7.2), one obtains: 

,
1

ˆ( , )
N

j i i j j
i

D p z x y


                                1,2,...,j N              (7.4) 

 

 
 

Figure 7.2  Representation of the flat plate planing hull by pressure elements 
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L 
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In order to satisfy the Kutta condition at the trailing edge of the planing hull, an 

additional row of elements are added at stern of the hull, see Figure 7.2. By 

satisfying a Kutta condition, the flow detaches freely from stern of the craft, and the 

pressure is atmospheric pressure at the trailing edge. The free surface elevations on 

the Kutta panels are to be determined:  

,
1

( , )
N

N k i i N k N k
i

D p z x y  


                           1,2,...,k K           (7.5) 

where K  is total number of the Kutta elements. (7.4) and (7.5) form a close set of 

linear algebra equations for the unknown pressure strength , 1, 2,...,jp j N  on the 

wetted hull surface and the trailing edge profile at the stern , 1, 2,...,N kz k K  . In the 

present study, the spray root is ignored for the flat plate planing hull. The vertical 

hull offsets can be expressed as 

ˆ j j jz H x                                                                 (7.6) 

where   is the trim angle, which is assumed to be small, jH  is the transom stern 

profile. The non-dimensional pressure coefficient is defined as 

20.5p
pc
U 




                                                            (7.7) 

Non-dimensional lift force and pressure centre are defined as 

20.5
L

L
FC

U BL 



                                                        (7.8) 

cp
CP

l
L

L
                                                                    (7.9) 

where LF  is lift force, cpl  is the distance between the dynamic pressure centre and 

stern of the hull.  

 

The problem for solving the hydrodynamic pressure distribution mentioned above is 

a “particularly unpleasant task” (Tuck et al., 2002). It was found that the obtained 

pressure distribution has a grid-scale oscillatory behaviour. Figure 7.3 shows an 

example of convergence of the pressure distribution at the central line of a flat plate 

planing hull. Beam/length ratio of the hull is / 0.67B L   and the length Froude 

number 2.86Fn  . Four truncations of the upper limit for the integral 2D  are selected: 

1000,1500,5000,50000cu  , respectively. It can be seen that at the lower truncations 

( 1000,1500cu  ), the predicted pressure distributions clearly show grid-scale 
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oscillatory behaviour, this was also found in the works of Doctors (1975), Tong 

(1989), Tuck et al (2002) and Wang and Day (2007), even negative pressure exists. 

However, as the truncation of the integral increases to 5000,50000cu  , the influence 

coefficients are expected to be converged with higher accuracy, and the grid scale 

oscillatory behaviour of the predicted pressure distribution disappears. Figure 7.4 is 

the 3D views of the predicted pressure distribution with and without oscillation, 

respectively. This shows that the truncation of the integrals of the influence 

coefficients play a vital role in obtaining realistic pressure distribution on the planing 

surface and eliminating the numerical instability. Numerical tests so far demonstrated 

that for a normal planing surface the truncation of integral 2D  at 30000cu   will result 

a reasonably smooth pressure distribution.  

 

 

 

 

 

 

Figure 7.3 Convergence of pressure distribution on the central line of a flat plate hull 

 

 

 

 

 

 

 a) 

 

 

 

 

 

 

b) 

Figure 7.4 Pressure distribution of a flat plate hull( a: 2000cu  ; b: 50000cu  ) 
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To avoid the pressure oscillatory problem, Cheng and Wellicome (1994) developed a 

pressure strip method, in which a planing surface is represented by an assemblage of 

strips of transversely variable pressure placed on the mean free surface. Figure 7.5 is 

a comparison between the present results and a model test measurement for pressure 

distribution at the central line of a flat plate of / 1.22B L  , and length Froude number 

/ 3.86Fn U gL  . The agreement is fairly satisfactory, and no oscillatory behaviour 

exists for the results of the present prediction. There are discrepancies between the 

model test and the numerical predictions at the bow region, this may be due to the 

assumption of ignoring the spray root made in the theoretical model.  

 

 

 

 

 

 

 

Figure 7.5 Comparison of pressure distribution at the central plane of a flat plate hull 

 

Figure 7.6 shows the pressure distribution of a flat plate planing hull with 

beam/length ratio of / 0.5B L  . 176 pressure panels were used in the calculation, 

which is equal to the number of hull offset points. Draft at stern and trim angle is 

prescribed before the calculation. It can be seen that the obtained pressure 

distribution is free of the grid-scale oscillation. A similar case was also predicted by 

Tuck et al. (2002). In the calculation of Tuck et al., the hull length is 80L m  and 

width is 40B m , displacement is 3200 tones and craft speed is 40 knots. 2000 hull 

offset points and 176 pressure elements were used for the least square approach in 

the calculation. The result is reproduced and shown in Figure 7.7 for the purpose of 

comparison. The Froude number of Tuck et al. differs from that of the present study, 

thus the pressure magnitude and distributions of the two computations may be 

different. Nevertheless it can be clearly seen that results of Tuck et al. still have some 

small wavy oscillations after the least square process 
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Figure 7.6 Pressure distribution of a flat plate hull ( 2.0Fn  )  

 

 
Figure 7.7  Pressure distribution of a flat plate with 5.0/ LB  at 0.73Fn  , mL 80 ,  

Tuck et al. (2002),     
 

Figure 7.8 shows a comparison of the present prediction with other published 

numerical results. The agreement is good. Figure 7.9 is a convergence study of the 

transversal pressure distributions for various numbers of buttocks to discretise the 

planing hull. The pressure distribution converges well. Figures 7.10 ~ 7.12 show the 

3D views of the pressure distributions for flat planing plates with length/beam ratio 

/ 0.5,  1.0B L   and 1.2 , respectively. The predicted pressure distribution over the 

planing surface is quite smooth and no grid-scale oscillatory behaviour exists.  

 

Figure 7.13 is the predicted transom stern profile for a flat plate planing hull with 

/ 0.5, 2.24B L Fn  . For a given rectangular wetted area, which is supposed to 

correspond to a flat plate, the predicted transom profile is slightly bended in order to 

satisfy the Kutta condition as shown in Figure 7.13. Furthermore, a prescribed wetted 

area may correspond to slightly different transom profiles at different planing speed. 

Fortunately the influence of such a small hull curvature on the hydrodynamic force is 

negligible, and the effect of the planing speed on the transom profile is hardly 

discernible (Cheng and Wellicome, 1994).  
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Figure 7.8 Pressure distribution on the central plane of a flat plate planing hull  ( 5.0/ LB , 

24.2Fn ) 
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Figure 7.9  Convergence of the pressure distribution for a flat plate planing hull with various 

patches at  the bow ( 11xi Nx  ) on flat planing hull ( 2.1/ LB , 50.1Fn ) 

 

 
Figure 7.10  3-D pressure distribution of a flat plate planing hull ( 5.0/ LB , 

24.2Fn , 72.0  ,581.0  CPL LC ) 
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Figure 7.11  3-D pressure distribution of a flat plate planing hull ( 0.1/ LB ,  

79.0  ,796.0  CPL LC ) 
 

 
Figure 7.12  3-D pressure distribution of a flat plate planing hull ( 2.1/ LB , 50.1Fn , 

721.0 ,988.0  CPL LC ) 
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Figure 7.13  Predicted trailing-edge profile for a flat plate planing hull ( 5.0/ LB , 24.2Fn ) 

 

7.3  Flat Plate Planing Catamaran 
 

The pressure patch distribution method is also applied to the hydrodynamic analysis 

of the flat plate planing catamaran. The two demi-hulls are represented by two 

pressure distributions on the free surface. At the trailing edge of each demi-hull, 
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some Kutta panels are added in which the pressure is atmospheric pressure (omitted 

in Figure 7.13) and the profiles are to be determined with the pressure integral 

equations. The spray root on the bow region is ignored. The hydrodynamic 

interaction between the two demi planing hulls can be investigated. Length and beam 

of the demi-hull are L  and B , respectively. Distance between the central lines of the 

two demi-hulls is pS . The wetted hull surface of the flat plate planing catamaran is 

divided into a number of rectangular panels, see Figure 7.14.   

 
Figure 7.14  Discretization of the catamaran demi-hulls 

 

Figure 7.15 shows the central line pressure distribution of the demi-hull for a flat 

plate catamaran with / 0.35, / 0.4pB L S L  . At lower speed, there are higher pressure 

regions on the aft part of the hull; as the craft speed increases, the dynamic pressure 

on the aft part of hull decreases and the pressure centre shifts towards to the bow. 

The predicted pressure distributions are well behaved and without the grid-scale 

oscillation. Figure 7.16 is a sample of the predicted pressure distribution on the flat 

plate catamaran hull at the length based Froude number / 2.5Fn U gL  , and again, 

pressure distribution over the whole hull surface exhibits the same characteristics and 

free of the numerical instability.  
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Figure 7.15 Pressure on the central line of demi-hull for a flat plate catamaran planing hull 
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Figure 7.16  Pressure distribution of a flat plate planing catamaran at 5.2Fn  

 

Figures 7.17 and 7.18 show the effect of the demi-hull separation on the dynamic lift 

and the pressure centre. The separations between the two demi-hulls are 

/ 0.4, 0.5pS L   and 0.7 , respectively. The results of the flat plate planing mono-hull 

which is the same as the demi-hull are also plotted for the comparison. For a 

catamaran hull, the non-dimensional lift is defined as 

2 20.5 2
L

L
FC

U B 



                                                  (7.10) 

where LF  is the lift force,   is the trim angle and the factor 2  in the numerator means 

for the two demi-hulls. The non-dimensional pressure centre is defined as 

cp
cp

x
L

L
                                                                 (7.11) 

where cpx  is distance of the pressure centre to stern. For mono planing hull, the lift 

coefficient is defined as  

2 20.5
L

L
FC
U B 

                                                      (7.12) 

The hydrodynamic interaction between the demi-hulls can be observed in Figure 

7.17. The dynamic lift is much different from that of the mono-hull for a closer demi-

hull separation. However, the trends of lift force against the craft speed are similar. 

Figure 7.18 presents the results of the predicted pressure centre. The pressure centre 

is less sensitive to the demi-hull separation. Figures 7.19 and 7.20 show effects of the 

demi-hull separation on the central line pressure. The dynamic pressure increases as 

the demi-hull separation decreases.  

 

It should be mentioned that a linear potential theory is used in the present study, 

therefore, the non-linear effects such as the spray was not accounted for. This may 
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affect the validity of the present results (like any other similar theories) in some cases 

(e.g., Cheng and Wellcome, 1999).  
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Fig. 7.17  Lift coefficient for the flat plate catamaran planing hulls 
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Figure 7.18  Pressure centre for the flat plate catamaran planing hulls 
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Figure 7.19 Pressure on the central line for the flat plate planing catamaran 
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Figure 7.20 Pressure on the central line for the flat plate planing catamaran 
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7.4  Prismatic Planing Hull 
 

The pressure patch method is used to predict the hydrodynamic pressure distribution 

for a prismatic planing hull. Figure 7.21 shows definition of the hull, where   and   

are the deadrise angle and trim angle, respectively. B  is the hull beam; CL  and KL  are 

the wetted chine length and keel length, respectively. The pressure patch 

arrangement is depictured in Figure 7.22. 

 
Figure 7.21 Definition of the prismatic planing hull 

 

 
Figure 7.22  Panel distribution for a prismatic planing hull 

 

Figures 7.23 and 7.24 show the dynamic lift and pressure centre of a prismatic 

planing hull whose chine and keel wetted lengths are / 1.5, / 1.0K CL B L B  , respectively. 

The predicted results of Cheng and Wellicome (1999) using the transverse pressure 

strip method and results obtained by Savitsky’s empirical formula (Savitsky, 1964) 

are also plotted in the figures. It is noticed from these figures that the present results 

agree with that of Savitsky better than those predicted by Cheng and Wellicome. The 

lift force coefficients of Cheng and Wellicome are sensitive to Froude numbers. This 

is probably because the transverse strip with sine series pressure terms will have 

difficulty in modelling the pressure distribution at the fore part of the hull. In fact, as 

it can be seen from Figures 7.25 ~ 7.27, there are stagnation points along the front 

waterline where the dynamic pressure is high. The constant pressure patch 
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distribution method has the flexibility of modelling this type of pressure distribution, 

while in the transverse strip method, the pressure trends to zero near both ends of 

each strip (see, equation (6.5)), therefore it would be unable to reflect this type of 

distribution.  Definition of the non-dimensional lift force for a prismatic hull is the 

same as in equation (7.12), while the non-dimensional pressure centre is defined as 

/cp cpL x B . The definitions of LC  and cpL  for the prismatic hulls in this study are 

slightly different from those of Cheng and Wellicome (1999). These results are 

transformed into the present definitions and shown in Figure 7.23  and 7.24 for the 

comparison. Figure 7.28 shows an example of predicted trailing edge profile for a 

prismatic planing hull with the wetted keel length of / 1.5KL B   and the wetted chine 

length / 1.0CL B  . The predicted trailing edge profiles are slightly bended in 

comparison to the real hull transom stern. However, the effect of planing speed on 

the transom profile is hardly distinguishable (see Figure 7.28) and the influence of 

such a small hull curvature on the hydrodynamic force is negligible. 
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Figure 7.23 Lift coefficient for a prismatic planing hull ( / 1.5, / 1.0K CL B L B  ) 
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Figure 7.24  Pressure centre of a prismatic planing hull ( / 1.5, / 1.0K CL B L B  ) 
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Lk=B=1.5, Lc/B=1.0, Fb=3.5
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Figure 7.25  Pressure distribution for a prismatic planing hull 

 

 
Figure 7.26  Pressure distribution for a prismatic planing hull ( / 1.5, / 1.0K CL B L B  ) 

 

 
Figure 7.27  Pressure distribution for a prismatic planing hull ( / 1.5, / 1.0K CL B L B  ) 
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Figure 7.28  Predicted trailing edge profile of a prismatic planing hull 

( / 1.5, / 1.0K CL B L B  ) 
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7.5  Summary 
 

In this Chapter, solution of the steady potential flow of a pressure patch moving on 

the free surface has been applied to predict the hydrodynamic pressure distributions 

of some planing crafts: flat plate hull, flat plate catamaran and prismatic hull. Results 

obtained by the present method show satisfactory agreements with other researches. 

The numerical instability of the grid-scale oscillatory behaviour in the predicted 

pressure distribution over the planing hull surfaces found in some previous studies 

has been eliminated.  
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Chapter 8  Case Study – Prediction of Wash Waves 
 

 

In Chapter 7, the elementary solution of a pressure patch moving on the free surface 

presented in Chapter 6 is applied to the prediction of the hydrodynamic pressure distribution 

for a planing hull, where the relative position between the pressure source point and the field 

point is relatively small. In this Chapter, the elementary solution of a pressure patch moving 

on the free surface is used to predict the wash wave of SES and ASV. The main difference 

between predictions of the hydrodynamic pressure for a planing hull and that of the wash 

waves is that the relative position between the pressure source point and the field point is 

relatively large for the wash wave prediction. The method of the application and numerical 

results are provided and discussed.  

 

8.1  Wash Wave Predictions for SES 
 

For vessels whose weight is mainly supported by hydrodynamic force (e,g, planing 

crafts), SES or ASV (e.g., the ALV), the displacement of the rigid hull for these 

vessels is a small portion of its weight (less than 20%), it is expected that waves 

generated by the rigid hull may be neglected, and the wash wave fields can be 

predicted by the pressure patch distribution method.  

 

As mentioned previously, unlike the prediction of the hydrodynamic pressure of a 

planing hull, the relative position between the source point and field point is large for 

the wash wave calculation. Since the distance between the source point and the field 

point has been taken into consideration in the variable transformation of the 

numerical scheme for evaluation of the free surface elevation in the present study, 

see, equation (6.28), the procedure proposed in Chapter 6 can be adopted in the wash 

wave prediction directly. 

 

We recall the free surface elevation generated by a rectangular pressure patch of 

equation (6.21): 

1 2( , ) ( , ) ( , )s x y x y x y                                                           (8.1) 
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where 0P  is the pressure strength on the element. For planing hulls, the pressure 

strength can be obtained by solving the integral equation relating the pressure 

distribution to the hull vertical offsets, see Chapter 7; whilst for SES and the ALV, 

where the cushion pressure is assumed as constant, and the excess pressure is 

approximated as the average pressure on the cushion which is the vessel’s weight 

divided by the cushion area and neglecting the small portion of the displacement 

value from buoyancy and hydrodynamic lift from the wetted part of the rigid hull.  

 

It is known that the rate at which the pressure is transferring energy to the fluid is 

equal to the power consumption. Therefore the wave-making resistance of a constant 

pressure patch is 

( , ) ( , ,0)
c

s
w

S

R U p x y x y dxdy
z


  
                                           (8.3) 

By using the kinematic free surface boundary condition (6.4), the wave-making 

resistance for a rectangular pressure patch with constant pressure strength of 0P  can 

be written as 

 0 ( , ) ( , )
b

w s s
b

R P a y a y dy 


                                               (8.4) 

Figure 8.1 shows a comparison of wave cut for a rectangular pressure patch, while 

Figure 8.2 shows the predicted wave-making resistance for a rectangular pressure 

patch. The agreements between the present predictions and other published results 

are satisfactory. It is also noticed that 0wC   as nf  . The non-dimensional wave 

elevation and wave-making resistance are defined as 

0

sg
P

 
                                                                     (8.5) 
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Figure 8.1 Comparison of the wave cuts at 0y  , 0.57Fn   

  

 

 

 

 

 

Figure 8.2  Wave-making resistance of a rectangular pressure patch ( / 0.5, /b a fn U ga  ) 

 

 

 

 

 

 

Figure 8.3 Components of the wash wave of a SES ( / 0.2, 1.0, 0, 40B L Fn y L m    ) 

 

 

 

 

 

 

 

Figure 8.4 Local effect part of the wash wave of a SES ( 1 1 0/g P   , 1.5Fn  ) 
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It may be helpful to notice some of the properties of (8.2). In fact, 1 ( , )x y  is a local 

wave, and decays quickly when the relative distance increases, see Figures 8.3 and 

8.4. In Figure 8.3, the wave elevation of the local effect part ( 1 1zta  ) is relatively 

small at the longitudinal location beyond 2x L  up-stream and 2x L   down-stream 

from midship of the vessel. The second term, 2 ( , )x y , is the wave term, and will 

propagate far away from the vessel.  

 

Figure 8.5 is a bird’s view of the wave field for a rectangular pressure patch. The 

Kelvin wave pattern is clearly observed in this picture. Figures 8.6 and 8.7 show the 

wash wave fields of a SES at 0.5Fn   and 1.5 , respectively. The contribution of the 

wash waves from the rigid side hulls of the SES has been neglected. The vessel has a 

displacement of 200 tons, its cushion length is 40m and the beam-length ratio is 

/ 0.2b a  . It can be seen that there are divergent and transversal wave systems at 

0.5Fn  , however, only divergent wave system exists at a high Froude number 

( 1.5Fn  ). 

 

 
 

 

 

 

 

Figure 8.5  Wave pattern of a rectangular pressure patch with  5.0/ ab  at 71.0Fn  

 

 

 

 

 

 

 

Figure 8.6 Wash wave of a SES at 0.5Fn   
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Figure 8.7 Wash wave of a SES at 1.5Fn   

 

8.2  Wash Wave Prediction for the ALV 
 

The wash wave field of an Air-Lifted Vessel is also calculated by the pressure patch 

method. Details of the ALV are described in Chapter 10. The vessel has two cushion 

chambers and similar to catamaran configuration.  Beam/length ratio of demi-hull of 

the ALV is / 0.16c cB L  , the separation between the central planes of the demi-hulls is 

/ 0.32p cS L  . Its displacement is 200 tons and length is 40m. The major part of weight 

of the vessel is supported by the excess pressure in the cushions (Allenstrom et al. 

2003), thus, the effect of the steady wave caused by the rigid side-hull walls is 

ignored. Figure 8.8 shows pressure element representation of the cushions for the 

ALV.  

 

 

 

 

 

 

 

Figure 8.8 representation of the cushion area of an Air Lifted Vessel 

 

The total wash wave field of the vessel is the sum of all the contributions from each 

of the cushion pressure elements: 
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and the wave-making resistance can be calculated as 

,
1

N

w w j
j

R R


                                                                      (8.8) 

where N  is the total number of the elements, ,w jR  is the wave-making resistance of 

the thj  rectangular pressure patch, and is calculated by (8.4) 
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                                                   (8.9) 

where  jp  is the pressure strength of the rectangular element. Substituting (8.9) into 

(8.8), the wave-making resistance of the ALV is 

,
1 1
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w w j j
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                                     (8.10) 

Several wash wave criteria have been proposed. Anderson et al. (2000) suggested the 

following non-dimensional number: 

w

w
gD
RQ                                                                          (8.11) 

as the means of comparison in terms of ship wash wave for different type of vessel 

and/or at different speed, where wD  is the dead weight of the vessel. Zaraphonitis et 

al. (2002) adopted the following wave wash definition: 




2

1

2

12
),(

1
x

x
s dxyx

xx
W                                                 (8.12) 

where y  is wave-cut location, 21, xx  are the starting and ending points of the 

integration interval along the wave-cut. Papanikolaou (2010) used (8.12) as one of 

the design objectives for ship hull form design. Allenstrom et al. (2003) used wave 

energy per metre wave front in deep water as the measure of the wash wave 

2 2 2 2
1

1( ) ( )( / 2 ) 1961 ( )
8

E y gH y gT H y T                        (8.13) 

where )(yH  is the wave height of the wave front of the wave-cut at the location 

yy  , T  is the wave period. 
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In the present study, the wave energy is also taken as the wash wave criteria, and the 

wave energy is defined as 

21 ( )
8 mE g H y                                                          (8.14) 

where )(yHm  is the maximum wave height of the wave-cut at the distance of y y , 

  is the corresponding wave length of the wave with the maximum wave height. 

 

It should be mentioned that the wave energies calculated by (8.13) and (8.14) may be 

different, this is because the maximum wave height does not necessarily occur in the 

wave front, especially when a vessel is travelling at high speed, as discussed late.  

 

Figure 8.9 is the predicted wave-making resistance by the excess pressure inside the 

two cushions for two ALV designs. Each design has the same demi-hull geometry, 

but the separations between the demi-hulls are 0.26 and 0.65, respectively. The 

wave-making resistance for a single demi-hull is also plotted in the figure. For each 

of the Air Lifted Vessel configuration, the resistance coefficients have a hump. The 

interactions between the two demi-hulls can be also identified in this picture. When 

vessel length Froude number is between 0.45 and 0.65, the resistance coefficients 

increase with decrease of separation distance of the demi-hull; however, when 

Froude number is larger than 0.72, the effect of the separation distance between the 

demi-hulls on the wave-making resistance coefficient has a opposite trends, i.e., 

increasing the separation distance will result a decrease for the resistance by the 

present definition of wave-making resistance coefficient in equation (8.6).  

 
 

 

 

 

 

Figure 8.9  Wave-making resistance due to the cushion excess pressure of the ALV 
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An attempt is made to compare the resistance of the ALV based on the wave-making 

resistance of the cushion pressure predicted by the present numerical method and that 

of model test. Following Allenstrom et al. (2001,2003), the total resistance of the 

ALV in calm water is represented by:  

windreswft RRRRR                                                        (8.15) 

where fR  is the frictional resistance;  wR  is the wave-making resistance due to 

cushion pressure, resR  is the residual resistance – mainly containing wave pattern 

resistance created by the rigid part of the hull, some spray and eddy-making 

resistance, and finally windR  is the wind drag. The frictional resistance is calculated 

by: 

wff SUCR 2

2
1                                                               (8.16) 

where wS  is area of the wetted hull surface, U  is vessel speed, fC  is the frictional 

coefficient which is calculated by the ITTC formula:  

2)2(log
075.0



Rn

C f                                                              (8.17) 

where Rn  is length based Reynolds number. The wind drag is calculated by 

Taawind AUCR 2

2
1                                                         (8.18) 

where aC  is the drag coefficient, a  is the air density and TA  is the transverse 

projected area of  the above water part of the hull. For calculation of the residual 

resistance, two methods are adopted: for lower vessel speed ( 3/ 3/1  gUFn ), the 

estimate method for the resistance of a conventional catamaran is used, details can be 

found in Zhao et al (2009). While for higher vessel speed ( 3/ 3/1  gUFn , the 

fore rigid part of the ALV hull is treated as a planing surface, the residual resistance 

is calculated as 
*  Lres FR                                                              (8.19) 

where LF  is the lift on the planing surface, *  is the angle of attack and   is a 

coefficient representing the interface effect between the demi-hulls (Zhao et al. 

2009). 
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The comparison between the predicted total resistance and that of the model test 

(Allenstrom et al. 2003) is shown in Figure 8.10. The agreement is reasonably 

satisfactory, but improvement may be made, for example, the predicted resistance at 

about 5.0Fn  is lower than the model test measurement. 

 

 

 

 

 

 

 

Figure 8.10 Comparison of total resistance of the ALV E40 

 

 

 

 

 

 

 

Figure 8.11 Comparison of the predicted and measured (Allenstrom et al., 2003) 

wave energy of the wash wave at 50y m  from the central line for the ALV E40  

 

A comparison between the wave energies of the wash wave predicted by the present 

numerical method and that of model test/full scale measurements (Allenstrom et al. 

2003) for the ALV E40 is presented in Figure 8.11. The location of the wave–cut is 

50y m  from the centre line of the vessel at full scale. The wave energy is calculated 

by equation (8.13). At the lower vessel speed range ( 2.1Fn ), the trends of both 

numerical and measurements are the same except a couple of scatted point from the 

measurements. At higher vessel speed range ( 2.1Fn ), the predicted values are larger 

than that of the tank model tests. The reason is not clear yet. One possibility is that, 

at a high vessel speed, the wash wave (also the tank wall reflection wave) travels 

very quickly, and it may be difficult to record the first 3 undisturbed wave cycles.   
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The maximum wave height against the transversal distance from the central line of 

the ALV at various vessel speeds is shown in Figure 8.12. It can be seen that the 

maximum wave heights decay quicker at high Froude numbers, which means that 

when the vessel is travelling at high speed, there will be less wash wave height for 

the same transversal range of distance. The location of the maximum wave height is 

shown in Figure 8.13. The Kelvin line ( 019.28  ) is also shown. It can be observed 

that, for Fn=0.5, the calculated points fit with Kelvin line very well; however, for the 

other three higher Froude numbers ( 1.0,  1.5,  2.0Fn  ), the points do not follow Kelvin 

line due to the fact that they do not occur in the wave fronts.  Figure 8.14 shows the 

wash wave energy calculated with equation (8.14). The trend is similar to the 

maximum wave height shown in Figure 8.12. However, the fact that the effect of 

wave period (or length) is taken into account in this criterion makes them different 

from the maximum wave height criterion. Figures 8.15 and 8.16 are samples of the 

wash wave pattern of the ALV with the basic design. 

 

 

 

 

 

 

 

 

Figure 8.12  The maximum wash wave height of the ALV 

 

 

 

 

 

 

 

Figure 8.13 Location of the maximum wave height of the ALV 
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Figure 8.14  Wave energy per meter of the ALV 

 

 
Figure 8.15 Wave pattern of an ALV at 0.5Fn   

 

 
Figure 8.16 Wave pattern of an ALV at 1.5Fn   
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majority weight of the vessel is supported by the air cushions. A validation with 

model test/full scale measurement supports this approximation.  

 

8.3  Summary 
 

In this Chapter, solution of the steady potential flow of a pressure patch moving on 

the free surface has been applied to the wash wave predictions for SES and the ASV. 

The present numerical approach can be used to predict the wash wave of a planing 

craft where the planing carft is replaced by a pressure distribution.  
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Chapter 9  The Three Dimensional Unsteady Flow Problem 
 

 

In this Chapter, numerical methods for solving the potential flow of a pulsating and moving 

pressure distribution on the free surface are presented. Emphasis is placed on the free surface 

waves generated by the pressure patch. New numerical schemes are proposed for calculating 

the three-dimensional free surface elevation. Numerical results of the free surface elevation, 

escape area, escape volume are validated with existing results, and a fairly good agreement 

has been found. The solution of the free surface elevation is essential for predicting the 

unsteady motions of Air Supported Vessels. The equations of motions of the vessel in waves 

are also derived by using the adiabatic gas law in the air cushion. 

 

9.1  Solution of the Unsteady Flow of a Pulsating Pressure Patch 
 

It is assumed that a pulsating and moving pressure distribution on the free surface is: 

( , )    ( , )
0                  other

i t
cx y e x y SP

 
 


                                         (9.1) 

The boundary value problem for the unsteady velocity potential described in Chapter 

5 can be solved by using Fourier transformation method. The velocity potential (after 

the transient time period) can be written as (Wehausen and Laitone, 1960, Kim and 

Tsakonas, 1981 ): 

 ( , , , ) Re ( , , ) i t
u x y z t x y z e                                                 (9.2) 

where 
/ 2 / 2

2 2 2
1 2 22 2

0 0 0 0 0

1 ( , ) sec ( , ) sec ( , ) sec ( , )
4

c

cS

d d d dk k d dk k d dk k
U

 



             
 

            
  

         

(9.3) 

and 

 
1 2( ) ( )

1 2
1

1 2 1 2

( , ) cos
k z ir k z ir k ke ek Uk

k k k k k k
  

   
       

                          (9.4) 

 
1 2( ) ( )

3 4
2

3 4 3 4

( , ) cos
k z ir k z ir k ke ek Uk

k k k k k k
  

   
       

                          (9.5) 

1

2

( ) cos ( ) sin
( ) cos ( ) sin

r x y
r x y

   
   

   
    

                                                      (9.6) 
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The wave numbers are defined as 
2

1 00.5 sec 1 2 cos 1 4 cosk k                                                (9.7) 

2
2 00.5 sec 1 2 cos 1 4 cosk k                                               (9.8) 

2
3 00.5 sec 1 2 cos 1 4 cosk k                                                (9.9) 

2
4 00.5 sec 1 2 cos 1 4 cosk k                                              (9.10) 

with the reduced frequency, /U g  ,  and 

1cos (1/ 4 )        0.25
      0                  0.25c

 




 
 


                                                (9.11) 

The wave surface elevation is calculated by (5.20): 

 P U i
g g x g

  



   


                                0z                   (9.12) 

Following the approach adopted for the steady flow problem, the cushion area, cS , is 

discretized into a number of rectangular patches. The wave surface elevation at a 

field point ( ,j jx y ) will be sum of the contributions from all of the pressure patches. 

Solution for a rectangular pressure patch located on :iS [ ;  ]j i j ix a y b     , with 

strength 0
i te  , is the elementary solution for the problem, where 0  is constant. The 

free surface elevation due to a moving and oscillating rectangular pressure patch with 

unit strength will be (see Appendix C): 

 
8

0 1 2 3 4 5 62
1

1( , ) ( 1)
4

ji m
p j j m m m m m m m

m
x y J J J J J J J

g g
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
   

               (9.13) 

where 
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                             41 4
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                                 44 4
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    44 4

0

sin( )[1 sgn( )][1 sgn( )]
2 sin cos 4 cos 1
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i mk sr m m rk s s ki e d
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 


                             (9.20) 

and ( ), 1, 2,...,8ms m  , is defined in (6.11). The static pressure is discontinuous along 

the periphery of the pressure patch. The value of discontinuities is defined as 

0 0 0( , ) [ ( 0, ) ( 0, )] / 2a y a y a y                                       (9.21) 

At the corner, 0 0( 0, 0) 0.25 ( , )a b a b        . Hence, the total non-dimensional 

elevation is obtained by adding the following to the dynamic term: 
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static

0

0.5       or   
1.0      ,         
0.25         at corners         

x a y b
g x a y b 

   
    

                                        (9.22) 

 It is noticed that 

   
2

1 2/ 2 / 2
lim                     limk k

g   


 

                                     (9.23) 

   
2

3 4/ 2 / 2
lim                     limk k

g   


 

                                      (9.24) 

The wave system in (9.14) is a local wave and non-oscillatory component. This local 

wave will disappear at the far field from the pressure patch. The first terms in (9.15) 

and (9.16) are local waves as well. The second terms in (9.15) and (9.16) are wave 

terms. These waves propagate down stream from the pressure patch in a wedge-

shaped region, and the wave relating to 2k  travels faster than the wave relating to 1k . 

There will be transverse and divergent wave components. When 4/1 , the wave 

components relating to wave number 3k  and 4k  are local  waves. When 4/1  (i.e., 

0c ), the first terms in (9.17) and (9.18) are local waves, the remaining terms are 

the wave terms. The propagating wave relating to wave number 4k  is behind the 

moving pressure patch and its direction is the same as the direction of moving 

pressure.  Waves relating to 3k  will propagate up-stream, but this wave is relatively 

small. A detailed analysis of the unsteady wave system can be found in Chen et al. 

(1999) and Chen et al. 2001). 

 

9.2 Numerical Methods 
 

Evaluation of the free surface elevation (9.13) is hampered by the singularities in the 

integrand of ,i mJ  and by their highly oscillatory behaviour. For example, the 

integrand of 0mJ  becomes infinite when 0   and  / 2  ; also 2 mk s   as 

/ 2  . To overcome these difficulties, we write the integrand as 

, , ,( ) ( ) / ( )i m i m i mF f g   , where , ( )i mf   is regular and , ( )i mg   has a zero of order one at 

a  . Thus the integral of , ( )i mF   may be written as  
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, , , ,
, ' '

, , , ,

( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )( )

b b b

a a a

i m i m i m a i m a
i m

i m i m i m a a i m a a

f f f f
J d d d

g g g g

  

  

   
  

       
   

      
       

             (9.25) 

On the right hand side of (9.25), it is observed that the integrand of the first integral 

is regular at a  . It can also be shown that the second integral makes no 

contribution after summation for all 'm s  in (9.13).  The same approach can be applied 

to the cases of b  . In this way, the singularities in the integrals of the free surface 

elevation can be removed.  

 

For 3 4 5, ,m m mJ J J  and 6mJ , there is a singularity of order ½ at c  , which is 

theoretically integrable: 

21 4 cos sin sin
2 2

c c   
 


         

   
                                    (9.26) 

where ( , / 2)c   . A direct integration scheme can be used to calculate 

0 1 3 5, , ,m m m mJ J J J  and 6mJ  in (9.13).  

 

It then remains to calculate 2mJ  and 4mJ . The integrands becomes highly oscillatory 

when / 2  . To stretch the integrands, the same variable changes as equation 

(6.17), which is reproduced here: 

2

2

sin             1, 4,6,7
cos
sin             2,3,5,8

cos

m
u

m






  
 


                                       (6.17) 

By doing this, the highly oscillatory integrands in (9.16) and (9.18) are stretched. For 

example: 

21 2 1
2 2 2

2( )
4

ut k s u
u

 
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 
   
 

   

                                      (9.27) 

where ( )   is a regular function of   (and also of u  as well): 

   1( ) 1 2 cos 1 4 cos
2

                                                           (9.28) 

therefore 

     2 2 2/ 2 /2
lim lim ( ) ( ) lim ( ) ( )m m mu

t k s k u s u u
   

 
  

                                  (9.29) 

(9.16) becomes 
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 
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u u u
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   
       1, 4,6, 7m      (9.30) 

 
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0

2 [ ( ) (1 sgn( ))]

4 4 1 4 cos ( )
mitm m
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u E it i sJ e du

u u u



    

  
 

   
       2,3,5,8m      (9.31) 

Equations (9.30) and (9.31) are now easy to facilitate numerical integration. Similar 

formulations can be derived for (9.18). Care is also advised when handling the 

logarithmic singularity in the integrals of (9.14) ~ (9.20) as for the steady flow 

problem in Chapter 6. For the cases of  0   or 0  , which means at the boundary 

of the pressure patch ( y b   or y b  ), one can leave those terms whose ( )ms   

are the same and their contributions counteract each other, the same procedure can be 

applied. 

 

The escape area of a rectangular pressure patch is defined as the area under the free 

surface elevation at the stern side of the pressure patch: 





b

b
pp dyya ),,()(                                                    (9.32) 

The escape volume is defined as the volume of the free surface elevation over the 

pressure patch: 

 
 


a

a

b

b
pp dxdyyxv ),,()(                                               (9.33) 

A number of convergence studies have been carried out in order to find the proper 

numerical scheme for the free surface elevations generated by the moving and 

oscillating pressure patch. A rectangular pressure patch is selected for validation of 

the numerical scheme outlined above. The length-beam ratio of the pressure patch is 

/ 1a b  , and the patch length Froude number is 0.5fn  . The free surface elevations 

of the rectangular pressure patch at reduced frequencies of 0.2375   and 0.275  

(below and above the critical value of 0.25  ) are compared with an existing results. 

Due to the phase effect, there are real ( Re ) and imaginary ( Im ) parts for the free 

surface elevation. Wave cuts at y b  and the escape area at the stern ( x a  ) were 

compared with those of Doctors (1975), who used a different numerical scheme.  
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The comparisons of the wave cut are shown in Figure 9.1 and 9.2. The agreements 

are very satisfactory. Comparison of the escape area against the reduced frequency is 

shown in Figure 9.3 for the same pressure patch. Both real and imaginary parts agree 

well with those of Doctors prediction. The calculated escape volume of a rectangular 

pressure patch with / 0.156b a   at 0.72Fn   is compared with those of Nakos et al. 

(1991). The agreement is also satisfactory. The non-dimensional free surface 

elevation, escape area and escape volume per unit pressure are defined as 

p pg                                                                 (9.34) 

p
p

g
L

 
                                                                (9.35) 

2
p

p

gv
v

L


                                                                (9.36) 

Respectively, where ( 2 )L a  is length of the pressure patch. 
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Figure 9.1 Non-dimensional free surface elevation at 0y   for a rectangular pressure patch 

/ 1, 0.2375b a    
 

Fn=0.50

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-4 -3 -2 -1 0 1 2 3 4x/a

Re, present
Re, Doctors'
Im, present
Im, Doctors'

 
Figure 9.2 Non-dimensional free surface elevation at y b  for a rectangular pressure patch 

/ 1, 0.275b a    
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Figure 9.3 Non-dimensional escape area at x a   for a rectangular pressure patch 

/ 1, 0.5b a Fn   
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Figure 9.4 Non-dimensional escape volume at x a   for a rectangular pressure patch 

/ 0.156, 0.72b a Fn   
 

 

9.3 Equation of Motions 
 

In Chapter 5, equations of motions for the ASV have been derived, see equation 

(5.68). The unknown cushion pressure(s) is included in those equations. In order to 

make the problem complete, an additional equation for the cushion pressure is 

needed. It is assumed that amplitudes of the incident wave and motions of the vessel 

are small. The external forces/moments acting on the vessel are the pressure force in 

the cushion chamber and the hydrodynamic force on the wetted rigid hull due to the 

incident wave, diffraction and radiation waves. There is also a hydrostatic restoring 

force. The hydrodynamic force can be calculated by a method for a conventional 

ship. If the wetted rigid side hulls are slender bodies, a strip theory may be used 

(Salvesen, Tuck and Faltinsen, 1970). For a more general hull design, a rational 3D 
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diffraction/radiation approach will be needed (see for example, Sclavounos et al., 

2003, Xie et al., 2012).  

 

We will also focus our attention on heave, pitch and roll motions to simplify the 

analysis. Normally, these are the main motion modes for the vessel in waves which 

cause comfort and operational problems. The equation of motions of the ASV can be 

written as 

   [ ] [ ] h pM q F F                                                            (9.37) 

where M  is the mass/inertia matrix, q  is motion vector of the vessel, hF  is the 

external hydrodynamic force/moment, pF is the external force due to the excess 

pressure in the cushions. 



0

,
S

jwjh dsnpF                                                          (9.38) 

0

,p j c jF p n ds


                                                            (9.39) 

where wp  is the hydrodynamic pressure on the hull surface, 0 ( )cp P P   is the excess 

air pressure in the cushion chambers. The hydrodynamic pressure on the wetted part 

of the rigid hull will be calculated by a diffraction/radiation approach. The 

hydrodynamic force/moments are 
6

, ,
1

[ ]h j ji i ji i ji i w j
i

F A q B q C q F


                 1, 2,..., 6j                (9.40) 

where [ ],  [ ]ji jiA B  and [ ]jiC  are matrix of the added mass, damping coefficients and 

restoring coefficients; ,w jF  is the wave exciting forces/moments. 

 

The cushion excess pressure inside the chambers consists of two components: 

, 0 0( ) Re{  }i t
c l l lp P P t P P e                                                     (9.41) 

where l  represents index of cushions of the vessel. For the air dynamic pressure part, 

the following assumptions are made:  

 

1.  The deformation of the free surface under the oscillatory pressure patch in 

uniform translation is used to display the way in which the motion of the water 

surface participates in evaluation of the pressure variations in the plenum air; 
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2.  Pressure and volume changes are assumed to occur sufficiently rapidly so that the 

adiabatic law governs the basic thermodynamic variations in the air cushion; 

 

3. The cushion pressure is spatially homogeneous;  

 

4. The leakage of the air takes place only at the fan and stern apertures;  

 

5. The perturbed pressure and air volume have the same order of magnitudes as the 

vessel motions.  

 

The adiabatic gas law is applied to the air in the cushion chambers: 

0( ) constantl a

l

P t p P


 
                                                 (9.42) 

where ( )lP t  is the time-varying part of the cushion pressure ( or perturbed pressure); 

ap  is atmospheric pressure; 0P  is the cushion excess pressure at the equilibrium 

condition (on-cushion mode); l  is air density inside the cushion and   is the ratio of 

specific heat for gas.  

 

On the other hand, the continuity equation for the air in the cushion chambers states 

, ,[ ]l l
l l a in l out l

d VV Q Q
dt t


 


  


                                          (9.43) 

where ,in lQ  is the inflow rate of the fan system; ,out lQ  is the out flow rate; lV  is the 

cushion volume determined by the vessel motion attitude, the incident wave and the 

cushion pressure. Substituting (9.42) into (9.43) 

, ,
0

[ ( ) ( )]
( )

l l l l
l a in l out l

l a

V dP V Q t Q t
P p P dt t


 




  
  

                   (9.44) 

The outflow rate can be expressed as (Kim and Taskonas, 1981, Faltinsen, 2005), 

omitting cushion chamber index: 

02( )
out n L

a

P PQ c A



                                                      (9.45) 



 

 86 

 where ( 0.6 ~ 0.8)nc   is the flow coefficient and LA  is the air escape area of the flow 

opening at the cushion stern boundary. The free surface elevation of the incident 

wave, ( , , )w x y t , is: 

 ( cos sin )( , , ) Re ik x y i t
w ax y t e e                                                     (9.46) 

where a  is amplitude of the incident wave. Volume of each cushion chamber is 

0 3 4 5( ) [ ( , , ) ( , , )]
c

p w
S

V t V q yq xq x y t p x y t dxdy                       (9.47) 

where 0V  is the cushion volume at the equilibrium condition; ( , , )p x y t  is the free 

surface elevation due to cushion pressure. The diffraction and radiation waves inside 

the cushion chamber due to the rigid side hull are neglected. 3 4,q q  and 5q  are heave, 

roll and pitch of the vessel, respectively. (9.47) can be further written as: 

0 00 3 01 4 10 5( ) ( ) ( )p wV t V S q S q S q v t p v t                                (9.48) 

where  

c

j k
jk

S

S x y dxdy                              , 0,1j k                       (9.49) 

are moments of the cushion area; ( )pv t  is the cushion escape volume; and wv  is the 

cushion pumping volume due to the incident wave: 

( ) ( , , )
c

p p
S

v t x y t dxdy                                                    (9.50) 

( ) ( , , )
c

w w
S

v t x y t dxdy                                                    (9.51) 

Physically, the cushion escape volume is volume of the free surface elevation due to 

cushion pressure inside the cushion chamber of the ASV. The area of the air flow 

opening at the cushion stern boundary, LA , is calculated by 

0 3 4 5L L T c T T T p wA A B q y B q x B q p                                          (9.52) 

where 0LA  is area of the outflow opening at stern of the cushion at equilibrium 

condition; TB  is the cushion width at stern, Tx  is the longitudinal coordinate of the 

cushion stern aperture, ( , )c cx y  is the cushion area centre; p  is the escape area per 

unit pressure  

   ( ) ( , , )
b

a

y

p p T
y

t x y t dy                                                       (9.53) 

w  is the cushion stern escape area due to the incident waves: 
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( ) ( , , )
b

a

y

w w T
y

t x y t dy                                                       (9.54) 

The fan inflow is also expanded in the equilibrium condition: 

,
, 0,  in l

in l f in l f l

Q
Q n Q n P

p


 


                                               (9.55) 

/inQ p   is the discharge by fan per unit pressure per pair fan, the absolute is taken 

due to the air flow direction, fn  is number of inflow fans. Substituting (9.48), (9.52), 

(9.53) and (9.55) into (9.44), and is expanded about the equilibrium position, the 

linearised cushion pressure equation can be written as (omitting the cushion index l ): 

3 3 3 3 5 5 5 5 4 4 4 4pp pp p p p p p p wpb P c P b q c q b q c q b q c q F                       (9.56) 

where expression of the coefficients can be found in Appendix A. The equations for 

heave, pitch and roll of the ASV can be written as: 

33 3 33 3 33 3 35 5 35 5 53 5 00 1 2 3

53 3 53 3 53 3 55 55 5 55 5 55 5 10 1 2 5

44 44 4 44 4 44 4 01 1 2 4

( ) ( )
( ) ( )

                                    ( ) ( )

w

w

w

m A q B q C q A q B q C q S P P F
A q B q C q I A q B q c q S P P F

I A q B q c q S P P F

        
        

     

   

   

 






             (9.57) 

where wjF  is the wave exciting force/moment, 44 55,c c  are the restoring coefficients for 

roll and pitch, in which the effect of the cushion pressure is taken into account, see 

Appendix B for details. The hydrodynamic coefficients and the wave exciting 

force/moments on the thin rigid side-hull of each cushion can be calculated by a 

diffraction/radiation method. During the calculations, the vessel is treated as a multi-

hull with the same displacement volume as the ASV at on-cushion mode. Solution of 

(9.56) and (9.57) are the transfer functions for heave, pitch, roll motion of the vessel 

and the dynamic pressure in the cushion chambers in regular waves: 

 Re i t
j jq q e                           3, 4,5j                           (9.58) 

 Re i t
l lP Pe                                                                   (9.59) 

For ship motions in irregular waves, the root mean square (RMS) values are 

calculated as: 

2 1/ 2

0

( ) [ ( ( , ) / ) ( ) ]j j aRMS q S ds    


              3, 4,5j                  (9.60) 

where   is wave frequency and   is the heading angle. The ITTC wave spectrum is 

used in the present study: 
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 5 4( ) exp /S A B                                                        (9.61) 

where 4
01

2
3/1 /18.173 THA   and 4

01/73.692 TB   with 3/1H  significant wave height ( m ) and 

01T  average wave period ( s ). 

 

9.4  A Case Study for Simplified Model 
  

The equations of motion for an ASV have been derived in the previous section in 3 

degrees of freedom including the effect of the rigid side-hulls as well as multiple air 

chambers. In this section, a simplified version of these equations will be re-derived 

from the first principles. Heave is the only degree of freedom of motion considered, 

the effect of the side-hulls is ignored and the excess pressure in the cushion is 

assumed uniform in space. Despite its limitations, the proposed simplified model 

captures many important aspects of the response of ASVs in waves, without 

requiring excessive computational effort 

 

The ASV has one air cushion, and is actually a SES.  The vessel has a rectangular 

cushion with length of L  and beam of B . The vessel is travelling in head regular 

wave with forward speed of U . Equations (9.56) and (9.57) become: 

wppppppp FqcqbPcPb  3333 
                                                   (9.62) 

 PSqm 003                                                                                 (9.63) 

where LBS 00  is the cushion area, representations of ppb , ppc , 3pb   and 3pc  can be 

found in Appendix A, and 

a
wanwwp

PcvF


 0
0

2
                                                             (9.64) 

where 

tia
w ekL

k
Bv  )2/sin(                                                                  (9.65) 

tiikL
w eBe  2/                                                                            (9.66) 

Here a  is amplitude of the incident wave, gk /2  is the wave number. The 

complex amplitude of heave motion transfer function is 
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gcbiPcbi

Fq

pppppp

wp

a /)()(

~~

0
2

33

3





                                       (9.67) 

For an application, the predicted response of XR-5 model (Magnuson et al., 1975) is 

illustrated in Figure 9.5, compared with available model experimental data and the 

numerical prediction of Nakos et al. (1991). The pressure cushion of the XR-5 is of 

length 4.22m, width o.66m and height 0.22m and it sustains 94% of the vessel’s 

143.5kg weight. Details of the fan system can be found in Magnuson et al. (1975). 

 

The agreement between the present prediction and both the model experimental data 

and that of Nakos’ numerical results is satisfactory. No resonance is predicted by 

either the numerical models or the experimental data in the considered range of 

frequencies. 

 

 

 

 

 

 

 

  

Figure 9.5 Heave amplitude transfer function of a SES (XR-5) in head regular waves 

at 72.0Fn  

 

9.5  Summary 
 

In this Chapter, a numerical method for evaluation of the free surface elevation 

generated by a pulsating and moving pressure patch on the free surface is presented. 

The numerical calculations are humped by the singularities and highly oscillatory 

behaviour of the integrands. New and reliable numerical schemes are presented for 

those calculations. The present approach effectively overcame those difficulties. The 

results obtained by present method are compared with other published data and a 

good agreement has been found, which shows effectiveness of the present approach. 
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With the wave surface elevation due to cushion pressure, the coupled equations of 

motions for the ASV are derived in the frequency domain by utilising the adiabatic 

gas law in the cushion chamber(s). The hydrodynamic forces/moments can be 

calculated by a diffraction/radiation approach. These motion equations form the basis 

for the seakeeping analysis of the ASV in frequency domain in waves. The numerical 

validation is demonstrated with a case study of a simplified model for one degree of 

freedom of motion (heave) in regular head waves. The solution of wave surface 

elevation generated by a moving and pulsating pressure is also essential for the time 

domain simulation, which involves application of impulse response function 

technique as described in Chapter 11. 
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Chapter 10  Case Study – Seakeeping Prediction of the ASV 
 

 

In this Chapter, the elementary solution of a pulsating and moving pressure patch on the free 
surface in Chapter 9 is used to predict the seakeeping performance for an ASV, the ALV, 
E40,  in frequency domain.  Numerical results are provided and discussed.  
 

10.1   The Air Lifted Vessel, E40 
 

The ALV is an Air Supported Vessel with a relatively higher excess pressure in the 

cushions and a high design speed. There are two demihulls, each of which contains 

an air cushion and two fan systems. A forward planing surface ahead of the step 

creates some limited dynamic lift. The step and the forward planing surface also 

create the forward sealing of the air cushion chamber, the step being located in a 

plane close to horizontal (no part of the step is to ventilate before the other). The bow 

section is slender in order to reduce displacement forces in a seaway, and the bow 

incorporates a voluminous part above a built-in chine/spray rail to reduce deflection 

and reserve buoyancy in pitching motion. The side keels of varying height extend 

from just ahead of the step to the transom. The height of the keels is adjusted to the 

observed/expected shape of the air cushion. The only purpose of the side keels is to 

fence in the air cushion. There are spray rails on the outside of the side keels, at a 

height partly to deflect the water without wetting the rails on the upper sides. The 

cushion ceiling is at a height to avoid the sea hitting it when the vessel is moving in a 

seaway. There is a slope of ceiling aft end in order to deflect passing waves in a 

seaway. A flap or enclosure arrangement in line with the sloped portion of the ceiling 

is arranged to fence the air cushion chambers in the rear part and to create dynamic 

lift and motion damping. The air cushion concept of the ALV is patented. Details of 

the vessel can be found in Allenstrom, Liljenberg and Tudem, (2001, 2003). Figures 

10.1 ~ 10.2 are the over views of the craft, and Figure 10.3 shows the body plan. 

Table 10.1 presents the main particulars of the craft, whilst Table 10.2 summaries the 

parameters for the air cushion system. 
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(a)  

 

 
(b)  

 
c)  

Figure 10.1 The Air Lifted Vessel (ALV): a) stern view; b) bottom view; c) bird’s view 
 

 

Figure 10.2 The Air Lifted Vessel concept 
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Table 10.1 Principal particulars of the ALV, E40 

length   ( )OAL m  40 

cushion length    ( )L m  25.5 

displacement   ( )ton  175 

breadth    ( )B m  15.0 

main deck depth    ( )mD m  4.0 

draft (off-cushion)   ( )offT m  2.0 

draft (on-cushion)    ( )onT m  1.5 

centre of gravity  ( )KG m  4.0 

separation     ( )pS m  9.60 

cushion beam    ( )cB m  3.82 

cushion height    ( )cH m  1.0 

cushion centre    ( )cx m  -0.03 

 

Table 10.2  Parameters for the air cushion system 

Equilibrium cushion pressure 0P  ( 2/N m ) 7600 

Equilibrium flow rate 0inQ  ( 3 /m s ) 35 

Slope of fan inflow rate 0
/inQ p   ( 5 /m N s ) 0.000591 

Cushion area for a demi-hull cA  ( 2m ) 103.7 

Static volume for each cushion 0V  ( 3m ) 51.85 

Number of fans each chamber fn  - 2 

Flow coefficient nc  - 0.61 

Ratio of specific heat for gas   - 1.40 

 

 

 

 

 

 

 

Figure 10.3 Body-plan of the ALV E40 
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10.2  Seakeeping Analysis of the ALV in Frequency Domain 
   

In this section, a prediction for motion responses of the ALV in waves in frequency 

domain will be carried out by using the methods developed in Chapter 9. As a case 

study, the ALV E40 is selected for the calculations. It is a high speed passenger ferry 

designed by Tudem Ulf  Stephen, SES Europe AS, Norway, (2003).  

 

The unsteady wave field generated by the vessel will be similar to that of waves 

generated by a pulsating and moving pressure patch. When 4/1/  gU , the 

propagate wave will confined within a wedge-shaped region behind the vessel; for 

4/1/  gU , there will also be waves travelling up-stream. The unsteady free 

surface wave can be represented as 

tyxtyxeyxyxtyx pIpR
ti

pIpRp   sin),,(cos),,(})],,(i),,(Re{[),,(          (10.1) 

where ),,(  yxpR  and ),,(  yxpI  are real and imaginary parts of the transfer function of 

the free surface elevation, respectively. Figure 10.4 and 10.5 illustrate the perspective 

views of the unsteady wave fields system for a vessel advancing at 

50.1 ,50.0/  gLUFn  and oscillating at frequencies 0.5 ,0.1/'  gL . All the waves 

are behind the vessel and confined in a wedge-shaped region. The angle of the wedge 

depends on the oscillating frequency and Froude number. For Froude number 

50.0Fn , there are divergent and transverse wave systems at a lower oscillating 

frequency ( 0.1/'  gL ); while at a higher oscillating frequency ( 0.5' ), only 

divergent waves exist. For a high Froude number ( 50.1Fn ), there is no transverse 

waves in the wave systems for both oscillating frequencies. It is also observed that 

the angle of the wedge for a lower oscillating frequency is larger than that for a 

higher oscillating frequency. Also, angles of the wedge are smaller for a high speed  

 

Figure 10.4  Snapshots of the unsteady wave fields for 50.0Fn  at 0.1'  and 0.5'  
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Figure 10.5  Snapshots of the unsteady wave fields for 50.1Fn  at 0.1'  and 0.5'  

 

The major part of the computational effort is the numerical calculation of the escape 

volume in the cushion, equation (9.50), and the escape area at the leakage openings, 

equation (9.53). When calculating the transfer function of the free surface elevation 

due to the cushion pressure, the cushion areas are represented by a number of 

rectangular pressure patches, Figure 10.6.  

Figure 10.6 Representation of the cushion area of the ALV, E40 

 

Figures 10.7 and 10.8 show real ( ),,(  bpR yx ) and imaginary ( ),,(  bpI yx ) parts of the 

non-dimensional free surface elevation against the reduced frequency at the cushion 

longitudinal outer boundary at Froude number 0.5Fn  , respectively. It is observed 

that the free surface elevations have larger response at the lower reduced frequencies. 

As the reduced frequency increases, the free surface elevation decreases. Figures 

10.9 and 10.10 are the non-dimensional free surface elevations at stern boundary 

( Tx x ) of the air cushion of the ALV at Froude number 1.0Fn  .  

 

It can be seen from these figures that the calculated free surface elevation is smooth 

both in space and reduced frequency due to proper handling of the singularities and 

the high oscillating behaviour with the present numerical scheme. Previously 
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published results were either for lower reduced frequencies or lower Froude 

numbers. It can be also observed that the free surface elevations decrease as the 

reduced frequency ( ) increases, which means that the free surface elevation 

responses much less at a high reduced frequency.  

 

 

 
Figure 10.7 Real part of p  at the cushion outer boundary of the ALV, E40 

 

 
Figure 10.8 Imaginary part of p  at the cushion outer boundary of the ALV, E40 

 

 
Figure 10.9 Real part of p  at cushion stern boundary of the ALV, E40 



  


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Figure 10.10 Imaginary part of p  at cushion stern boundary of the ALV, E40 

 

The calculated non-dimensional escape areas against the non-dimensional encounter 

frequency at the stern opening of the ALV for Froude numbers 5.1  ,0.1  ,5.0Fn  are 

shown in Figures 10.11 ~ 10.12, respectively. Both results for the demi-hull and the 

twin-hull are given. In the twin hull calculation cases, the effect of interaction 

between the demi-hulls on the free surface elevation is taken into consideration. It 

can be seen that the demi-hulls have some interaction effect on the escape area for 

0.5Fn   and at lower encounter frequencies. As the vessel speed increases, this 

effect become much less and may be neglected. The escape areas decay quickly with 

increasing encounter frequency. Also the magnitude of the escape area at lower 

Froude number is larger than those at higher Froude numbers. At very high 

frequencies, there is nearly no free surface elevation response at all, like a flat 

surface. Since the craft is normally operating at high speed, this may probably be one 

of the reasons that the craft has a good seakeeping performance.   
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Figure 10.11 Non-dimensional escape area p  at the stern of the ALV, E40 
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Escape area, Fn=1.0
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Figure 10.12 Non-dimensional escape area p  at the stern of the ALV, E40 
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Figure 10.13  Non-dimensional escape area p  at the stern of the ALV, E40 

 

The cushion escape volumes of the ALV for Froude numbers 0.5,  1.0,  2.0Fn   are 

shown in Figures 10.14 ~ 10.15, respectively. The trends are similar to that of the 

escape area. There will be less free surface disturbance inside the air cushions at 

higher vessel speeds and high frequencies. 

 

 

 

 

 

 

 

Figure 10.14 Non-dimensional escape volume pv  of the ALV, E40 

L
g



 

L
g

  

Escape volume, Fn=0.5

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0 5 10 15 20

Re
Im

g
L

  



 

 99 

 

Escape volume, Fn=1.0
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Figure 10.15 Non-dimensional escape volume pv  of the ALV, E40 
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Figure 10.16 Non-dimensional escape volume pv  of the ALV, E40 

 

The hydrodynamic coefficients and the wave excitation force of the rigid side hulls 

in equation (9.57) are calculated by a 2D strip method (Jasionowski, 2001). This is 

justified by the fact that the rigid side hulls are slender bodies and the major part of 

the vessel weight is supported by the air cushion. With the computed escape area and 

escape volume, motion transfer functions for heave, pitch and roll of the vehicle can 

be obtained by solving equations (9.56) and (9.57). Responses in irregular waves are 

calculated by equation (9.60).  

 

There is no model test result available for the motion transfer functions in regular 

waves for the ALV.  Allenstrom et al. (2003) reported a seakeeping model test in 

irregular head waves in a towing tank. The vertical accelerations at station 16 (bow) 

were measured during the test. A comparison with the present prediction is made and 

listed in Table 10.3. 

L
g



 

L
g



 



 

 100 

 

 

Table 10.3  Vertical acceleration at station 16 (bow) of the ALV E40 
)knot(U  )(3/1 mH  )(sTz  Location )/)(RMS( 2smaz (test) )/)(RMS( 2smaz (cal.) 

55 0.88 4.0 station 16 2.80 2.43 

 

The RMS of heave, pitch and vertical acceleration on bow of the ALV at 1.0Fn   for 

a series of wave spectra and all heading angles at interval of  030  are plotted in 

Figure 10.17 ~ 10.19, respectively. The mean wave periods are selected as 01 4T s , 

s6 , s8  and 10s ; and the significant wave height is mH 13/1  . Generally speaking, 

there will be less craft responses for shorter waves (smaller mean wave periods). 

Also, the vehicle has less response in head waves than in following seas, this may be 

due to the characteristics of the free surface elevation, escape area and escape 

volume of the air cushion of the ALV.  At high values of the reduced frequency, both 

the escape area and the escape volume tend to zero. In this case, the vessel rides the 

waves.  

 

Figures 10.20 ~ 10.22 show heave and vertical acceleration at bow of the ALV for 

1.5Fn  , respectively. Again, the vertical acceleration on bow in following waves is 

much larger than those in head waves. Although there is no experimental result 

available for validation of the approach at this stage, the obtained results seem 

reasonable. 
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Figure 10.17 RMS of heave motion of the ALV, E40 at 1.0Fn   and 1/ 3 1H m  
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Pitch RMS (deg), Fn=1.0
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Figure 10.18 RMS of pitch motion of the ALV, E40 at 1.0Fn   and 1/ 3 1H m  
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Figure 10.19 RMS of vertical acceleration at bow of the ALV, E40 at 1.0Fn   and 1/ 3 1H m  
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Figure 10.20 RMS of heave motion of the ALV E40 at 1.5Fn   and 1/3 1H m  
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Pitch RMS (deg), Fn=1.5
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Figure 10.21 RMS of pitch motion of the ALV, E40 at 1.5Fn   and 1/3 1H m  
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Figure 10.22 RMS of vertical acceleration at bow of the ALV, E40 at 1.5Fn   and 1/3 1H m  

 

10.3  Summary 
 

A case study for the seakeeping responses for the ALV, E40, in waves has been 

carried out in frequency domain. The external forces/moments acting on the hull 

arise from the hydrodynamic (added mass and damping) loads, the wave excitation – 

calculated by a strip theory – and the cushion pressure effects. Numerical results for 

the escape area, escape volume, and for the vessel motions of the ALV are provided 

and discussed. The present method therefore appears to provide a helpful means of 

assessing performance at both design and operational stages.      
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Chapter 11  Stability Analysis 
 

 

Stability and safety are important issues for an ASV. In this Chapter, a method for the 
stability analysis in calm water for the ALV will be presented, including the static state 
transverse stability at zero speed, longitudinal dynamic stability at speed in calm water, the 
stability in turning and directional stability in calm water. The stability analysis takes into 
account air compressibility in the cushion chamber. The simulations are carried out in the 
time domain. Although the analysis is for the ALV, some of it may also be applicable for a 
general ASV.  
 

11.1   Introduction 
 

The ALV has basically two operational conditions: on-cushion (cushion-borne) mode 

and off-cushion (hull-borne) mode. Although the major operation of the ALV 

involves the cushion-borne mode, the hull-borne operation should also be 

considered. This is necessary as a result of safety and survivability requirements 

since it is possible that there may be times where a failure occurs in either the lift 

system or the seals, which would result in the vessel operating in the hull-borne 

mode. In addition, during very severe sea conditions, it may be necessary for the 

ALV craft to operate only in the hull-borne mode for survival purposes. Also, there 

may be certain situations wherein purely hull-borne operation is considered for the 

vessel, dependent upon the degree of buoyancy initially designed for the sidewalls, 

for fuel conservation prior to a high-speed on-cushion mode in response to particular 

commands. In view of all these possibilities, it is necessary to develop appropriate 

means of analysis and prediction of hull-borne motions in waves. In this case, the 

method of analysis of hull-borne stability will follow the techniques applied to a 

conventional displacement ship, see for example, Vassalos et al (2008), and will not 

be discussed here. 

 

Based on the design features of the vessel, a mathematical model is presented for 

analysing the longitudinal dynamic stability, the stability in turning and the 

directional stability of the ALV in calm water. The model takes into account the air 
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compressibility in the cushion (with the adiabatic gas law), and the hydrodynamic 

forces coupled with the vessel motions. The free surface elevation induced by the 

excess pressure inside the cushion and at the periphery is represented in the time 

domain in the form of convolution integrals, whose impulse response functions are 

calculated by the transfer functions of the moving and pulsating pressure 

distributions in the frequency domain. The hydrodynamic forces acting on the rigid 

side-hulls are to be calculated by a diffraction/radiation approach in which the 

memory effect is also taken into account. The non-linear equations of motion for the 

vessel are solved using a 4th order Runge-Kutta scheme in time stepping method. 

 

11.2  The Static Transverse Stability 
 

In the steady state condition at speed, the vessel vertical force and moment about the 

transverse axis that balance the vessel require: 

0

0

2 0     
2 0

c A H

c c B cA A cH H

mg A P g L L
x A P x g x L x L




      
     

                                      (11.1) 

where m  is the mass of the vessel; AL  and HL  are the hydrodynamic lift acting on 

the hull due to the appendages and hull itself;   is the displacement volume; cA  is 

the cushion area of each demi-hull; 0P  is the mean cushion excess pressure and   is 

water density. cx , Bx , cAx  and cHx  are the longitudinal position of the centre of 

cushion pressure, buoyancy, the appendage lift and the hull lift, respectively.  

 

Model test measurements have shown that the cushion excess pressure decreases 

with increase of vessel speed, which means that the cushion excess pressure will be 

lower at higher speed, whilst the dynamic lift force plays a more important role. The 

two-phase fluid flow around the vessel is complicated and accurate prediction of all 

those terms is difficult at the present time. Ideally, captive model tests at forward 

speed should be carried out to measure the dynamic forces and moments acting on 

the rigid hull, however, this is beyond the scope of the present study. To this end, 

some empirical formulae are used. The fore body part and the stern flap are assumed 

to be lifting surfaces with different aspect ratios. The slopes of the lift force 

coefficients are taken from an aerofoil with finite aspect ratio. 
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L
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CL U S 



  


                                                  (11.2) 

where wS  is the wetted area of the lifting surface;   is the angle of attack; U  is the 

vessel forward speed and LC  is the lifting coefficient. For the stern flap, the vertical 

and horizontal forces due to the cushion excess pressure are 

0 dry

0 dry

cos
sin

AP

AP

X P S
Z P S





 

                                                     (11.3) 

where dryS  is the dry area of the flap towards to the cushion,   is the flap orientation 

angle. The hydrodynamic force acting on the flap due to the immersed part is 

calculated with equation (11.2). 

  

The static transverse stability considerations at zero speed, whilst not accurately 

representative of stability at speed, provide an essential starting point in 

understanding the stability behaviour of the ALVs. In order to gain some basic 

understanding of the transverse stability of the ALV, the transverse matecentric 

height of the ALV at zero speed is evaluated. The procedure follows that for SES  

(Blyth 1993, Faltinsen, 2005). The contributions of the restoring moment from 

hydrostatic buoyancy of side hulls and the excess cushion pressure are taken into 

account. For an ALV with side hulls of approximately constant section and wall-

sided body surface at the free surface, the initial transverse matecentric height will 

be: 

 Byygc zggSmgzhPA
mg

GM  00
1                           (11.4) 

where 0h  is water head of the cushion excess pressure; cA  is cushion area of a demi-

hull; yyS  is the transverse moment of inertia of water plane area of the ALV at on-

cushion condition. The last two terms in the right hand side of (11.4) represent the 

transverse matecentric height of a normal catamaran. It can be seen that the excess 

pressure 0P  in the cushion chamber gives a negative contribution to the matecentric 

height of the ALV. Details of derivation of (11.4) can be found in Appendix B. 
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11.3  Longitudinal Dynamic Stability Analysis in Calm Water 
 

When an ALV is travelling in calm water at high speed, analysis of the stability for 

the craft requires a dynamic model, which is presented in this section. The dynamic 

behaviour of the vessel can be described as  

][F][F][F][F]qM][ APRH [                                     (11.5) 

where M is the matrix of inertia of the craft; HF , PR F,F  and  AF  are the hydrodynamic 

force, hydrostatic force, cushion pressure force and appendage force, respectively. 

The hydrodynamic forces/moments acting on the side halls of the vessel are 

calculated by a diffraction/radiation method. The added mass and damping 

coefficients of the demi-hulls in the frequency domain are transferred into a time 

domain representation by the impulse response function method (Cummins, 1962, 

Ogilvie, 1964): 
6

,
1 0

( ) [ ( ) ( ) ( ) ( ) ]
t

H j ji i ji i
i

F t A q t h q t d  


                                        (11.6) 

where ( )jiA   are the added mass of the vessel at infinite frequency, ( )jih   are the 

retardation functions (also referred to as impulse response functions) that can be 

evaluated as: 

0 0

2 2( ) ( ) cos [ ( ) ( )]sinji ji ji jih B d a A d       
 

 

                 (11.7) 

The appendage forces are calculated by an empirical formula, in which a quasi-

steady-state assumption has been utilised. In order to get the equation for the 

pressure in the cushion chamber(s), the adiabatic gas law and the continuity equation 

in each chamber will be used: 

   

0 0

0

, ,

       l a a

l

l l a in l out l

P p P p P

d V Q Q
dt

  

 

   

  

                                                 (11.8) 

where the subscript l  stand for index of the cushion chamber(s); ,in lQ  is the inflow 

rate of the fan system, ,out lQ  is the outflow rate of the cushion chamber. lV  is the 

instantaneous cushion volume, and is a function of the craft motion and the free 

surface elevation in the cushions, see (9.47). The inflow flux of each fan system is 

normally a function of the cushion pressure. The out flow rate is given by 



 

 107 

0
, ,

2( ( ) )( ) ( ) l
out l n L l

a

P t PQ t c A t



                                              (11.9) 

The instantaneous escape area, , ( )L lA t , at the periphery of the stern ( Tx x ) is 

, , ,
,

( ) ( , , ) ( , , )L l r l T r l T
L l

A t z x y t z x y t dl                                   (11.10) 

where ,r lz  is the local relative vertical motion between the hull and the free surface, 

and is  given by 

)()()()( 530, ttqxtqZtz pTlr                                           (11.11) 

where 0Z  is the gap of the stern opening at the equilibrium condition. By using the 

principal of the impulse response function, the free surface elevation due to cushion 

excess pressure is expressed as 

0

,
0

( , , ) ( , , ) ( )          

2( , , ) ( , , ) cos( )

t

p

r

x y t h x y P t d

h x y H x y d



 

   

   





 



 





                               (11.12) 

where ),,(  yxh  is the impulse response function of the free surface elevation due to a 

unit cushion pressure. , ( , , )rH x y   is the real part of the free surface elevation transfer 

function, ),,(  yxH . These transfer functions are calculated by the pressure patch 

distribution method described in Chapter 9, where the cushion area is discretised into 

a number of rectangular pressure patches, see, Figure 10.6.  

  

Eliminating l  in (11.8), a differential equation for the cushion excess pressure lP  is 

obtained as: 

 
1/

0 0 0
, ,

0 0

( ) ( )l a l l a a l a
in l out l

l l a l

dP p P P dV p P P p P Q Q
dt V dt V p P P


 


     

      
       (11.13) 

1, 2l  . For the longitudinal motions (heave and pitch), the excess pressure in the 

cushion is the same for the port and starboard demi-hulls due to symmetry, so 

equations (11.13) and (11.5) can be written as (omitting cushion index): 

  ),,,,,( 55331 Pqqqqt
dt
dP

                                                       (11.14) 

),,,,,( 55333
3 Pqqqqt

dt
qd




                                                       (11.15) 
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),,,,,( 55335
5 Pqqqqt

dt
qd




                                                       (11.16) 

Given all the terms in the right hand sides of equation (11.14) ~ (11.16), with the 

initial conditions for the pressure, displacements and velocities for heave and pitch 

motions, the coupled non-linear equations for vessel motions and the cushion 

pressure can be solved numerically in the time domain. A Runge-Kutta scheme is 

employed for the integration of the differential equations.  

 

11.4  Stability in Manoeuvring in Calm Water  
 

The stability of the ALVs at high speed turning in calm water is an important aspect 

of the stability performance as required by the IMO High Speed Craft Code. The 

stability criteria for the intact condition require that a multi-hull craft should have 

sufficient stability in high speed turning. Annex 7 of the IMO HSC Code, Stability of 

Multihull Craft, states: when calculating the magnitude of the heel due to the effect 

of high-speed turning, a high-speed turning lever shall be developed using either the 

following formula or equivalent method specifically developed for the type of craft 

under consideration, or trials or model test data (IMO, 2000): 
21

2
U dTL KG

g R
   
 

                                                                (11.17) 

where TL =turning lever (m), U =speed of craft in turning ( /m s ), R =turning radius 

( m ); KG =height of vertical centre of gravity above keel ( m ) and d =mean draught 

( m ). In the present study, a mathematical model is presented for predicting the 

turning radius of the vessel. 

 

Extending the description of craft motions to the horizontal plane with four degrees 

of freedom, attention is paid to the two translatory motion components along x 

(surge) and y (sway) axes, and to the two angular motions about x (roll) and 

z (yaw) axes. The equations of motion in the body-fixed coordinate system are 

expressed as (Wade and Wang, 1977; Kaplan, 1995): 
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                                                                (11.18) 

where u  and v  are the linear velocity components of the craft centre of gravity 

(C.G.) along the body-fixed system; p  and r  are the angular velocities about x  and 

z axes, respectively; NKYX ,,,  are the external forces/moments applied to the craft.  

Each component of the force/moment on the vessel in calm water is expressed by a 

summation of five independent contributions: the cushion pressure force; 

inviscid/cross flow drag of side-hulls, wind force and the resulting effect of 

propulsion and control, (Wade and Wang, 1977; Kaplan, 1995), as shown next. 

         
                

          

invis drag p w
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      
     

                                    (11.19) 

The inviscid hydrodynamic force and moment are calculated as follows. The total 

apparent velocity at the cross flow plane of rigid side hull is given by 

( )rV v r f p                                                         (11.20) 

where 2/)()(  dzf g   is the vertical distance of the centre of fluid pressure from 

the body C.G.; the 2-D added mass is )( , and the kinetic energy of a unit slice of 

the fluid 

21( , ) ( ) ( )
2 rT t V                                                      (11.21) 

Neglecting the second order terms, the hydrodynamic forces and moments acting on 

a unit axial length at   are given by 
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dK d Tf
d dt v
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                                          (11.22) 

In which u  is the axial velocity of the body. The kinetic energy T  at a fixed cross 

flow plane is a function of   and time, t . The total derivate is 

d u
dt t 

 
 
 

                                                         (11.23) 
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Substituting (11.21) into (11.22), the forces and moments acting on the side hulls can 

be obtained by integration over the side hull length. 

 

The cross-flow drag is: 
1
2 d r rDrag c s V V                                                 (11.24) 

where dc = drag coefficient; s =project area. A water jet model is used (Wade and 

Wang, 1977). Wind force is calculated by formulae given by Aage (1971). 

Substituting all the external forces and moments into equations of motion of the 

vessel in calm water, the linear and angular velocities can be obtained by solving the 

equation with a Runge-Kutta scheme, and the velocity components in the body fixed 

system are transformed to the earth fixed frame by the following: 

*

*
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

                                       (11.25) 

The solution of (11.25) gives the trajectory of the craft. In the case of steady turning, 

the deflecting angle of the nozzle of the water jet is 

1

1
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2 1
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0                 0

( )      

                     

t t
t tt t t t
t t

t t
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

  


   
 

                                       (11.26) 

An ALV may be sensitive to the directional stability due to its design characterises: 

relatively shallow draught, the transom stern, the air chambers and high operational 

speed. The equations for analysis of the directional stability are the same as for 

turning simulations. An autopilot control law is also incorporated in the form 

 1 2dk k                                                                (11.27) 

where 1k and 2k  are the coefficients of the control law, and d  is the desired vessel 

direction. During the simulation, an initial yaw angle of the craft, 0 , and the desired 

orientation, d , were set up. At a particular initial vessel speed (entrance velocity of 

the vessel), time histories of the vessel motions can be obtained through the 

simulations, from which the directional stability performance of the vessel can be 

assessed.  
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11.5  Summary 
 

In this Chapter, the mathematical models for analysis of the transverse static stability 

at zero speed, the longitudinal dynamic stability in calm water and the stability in 

manoeuvring in calm water of the ASV are presented. The non-linear dynamic 

stability model in calm water taken into account of air compressibility in the cushion 

chamber(s) and can be numerically solved by a time stepping approach. These 

models could form the basis for assessing the stability performance of the ASV. It is 

expected that those tools could be helpful for designers and operators of the craft.  

 

It should be noticed that no validation has been carried out for the present 

simulations due to lack of the experimental data. The stability analysis reported here 

is mainly for the craft at on-cushion mode. The stability and survivability of the ALV 

craft at off-cushion mode (damage case) should be analysed by using other 

methods/tools.  
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Chapter 12  Case Study - Dynamic Analysis of the ASV 
 

In this Chapter, implementation of the mathematical models for the stability analysis 
described in Chapter 11 has been carried out for an ASV, the ALV, E40. Numerical results 
are provided and discussed. 
 

12.1  Stability of the ALV, E40  
 

Figure 12.1 shows the transverse static right lever of the ALV, E40 at zero speed. The 

initial transverse matecentric height is calculated by equation (11.4). It can be seen 

that the matecentric height of the vessel at on-cushion mode is lower than that of off-

cushion mode, which means that the cushion pressure has a negative effect on the 

static stability of the vessel. However, due to its catamaran type of design, the 

transverse matecentric height of the vessel remains high. 
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Figure 12.1  Transverse static stability of the ALV E40 at zero speed 

 

The dynamic model derived in Chapter 11 has been used for analysis of the 

longitudinal stability in calm water. Most of the simulation work is for the numerical 

calculation of the impulse/transfer response functions of the free surface elevation. 

The simulation requires transfer function of the free surface elevation covers the 

whole frequency range and at a relatively high Froude number. The numerical 

scheme proposed in the present study is able to facilitate these calculations. 

Previously published works are either for lower frequency range (Doctors, 1977) or 

for relatively lower speed (Kim and Tsakonas, 1981).   

 

Figures 12.2 ~ 12.4 show samples of the impulse response functions of the free 

surface elevation on different location at the stern of the ALV, E40. The vessel 
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Froude number is 1.5Fn  . It is observed that the durations of the impulse response 

functions are relatively short, normally less than 1 second. This means that the 

memory effect of the cushion pressure on the free surface elevation response lasts a 

short period of time. This property is particularly useful for calculating the 

convolution integral for free surface elevation in the time domain in equation (11.12). 

Figure 12.5 is a sample of the impulse response function for the escape volume for 

the cushion. The profile of the curve is similar to that of the free surface elevation. 

 

 

 

 

 

 

 

Figure 12.2 Impulse response function of the free surface elevation at stern of the ALV, E40 

 

 

 

 

 

 

 

Figure 12.3 Impulse response function of the free surface elevation at stern of the ALV, E40 

 

 

 

 

 

 

 

 

Figure 12.4 Impulse response function of free surface at stern of the ALV, E40 
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Figure 12.5 Impulse response function of escape volume of the ALV, E40 

 

The longitudinal dynamic stability for heave and pitch motions of the ALV E40, in 

still water are simulated with the time domain approach. The transient responses will 

be studied based on the equations of motions of the vessel in (11.14) ~ (11.16). The 

vessel is undergoing motions subject to an initial condition. This will lead to its 

equilibrant position in case of a stable condition, see Figure 12.6. However, the 

vessel motions will not decay in case of unstable conditions, see Figure 12.7.  

 

 

 

 

 

 

 

Figure 12.6  Sample of stable solution, cushion pressure, ,0inQ  is fan inflow rate at the 
equilibrium condition 

 
 

 

 

 

 

 

 

Figure 12.7  Sample of unstable solution, cushion pressure, ,0inQ  is fan inflow rate at the 
equilibrium condition 
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A number of design parameters are chosen for the simulations according to the base 

design of the ALV  E40. These include: 

 

      •   Cushion height at the equilibrium condition ( 0Z );  

      •   Fan inflow rate at the equilibrium condition ( 0,inQ ) ; 

      •   Position of centre of gravity of the vessel ( gg zx , ); 

      •   Fan discharge slope characteristics ( pQin  / ); 

      •   Particulars of the stern flap (dimension and orientation). 

 

Figure 12.8 shows some of the simulated results for the ALVs, in which 

combinations of the craft design parameters are shown for the stable/unstable 

conditions. In the unstable cases, the simulated cushion pressure is divergent. It is 

found from the simulated results that: in the case of a craft with this instability, the 

pressure in the cushions accumulates, the cushion volume and the craft motions 

increase, the escape of the accumulated air requires a large escape area, the pitch 

angle increases suddenly, and the cushion pressure collapses like a cavity breaking 

down. Typically, the craft is stable for the longitudinal position of C.G. within a 

limited range. A small inflow rate will increase chance of this instability. Also the 

stern flap angle should be set properly to ensure the craft has a correct trim altitude 

and restoring moment at speed.  

 

 

 

 

 

 

 

 

Figure 12.8  Stable/unstable boundary for the longitudinal dynamic stability of the ALV at 55 

knots in calm water  
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12.2  Stability of the ALV in Manoeuvring in Calm Water  
 

The ALV E40 is subjected simulation for its manoeuvring motion in calm water by 

using the mathematical model derived in Chapter 11. Since details of the water jet 

parameters for the vessel are not available at the time of the calculation, these 

parameters are derived from the literatures. The simulation starts with the craft in a 

straight course with the deflecting angle of the nozzle of the water jet gradually 

increasing to the desired value, and then kept fixed, thus nozzles of the water jets 

generating a turning moment.  

 

Figures 12.9 and 12.10 show some of the simulated results of the ALV turning at 

entering speed of 50 knots. The turning lever can be derived from the simulated time 

histories and by equation (11.17). The heeling angle is also a part of the output of the 

simulations. In the HSC Code, it is required that the total heel angle of the craft in the 

on-cushion mode due to beam wind and due to turning shall be less or equal to 012 . 

In the present case, the craft heel angle due to turning is about 01.7 , which is far less 

than the limited value. Figure 12.11 shows the heeling angle of the craft in turning at 

different nozzle deflecting angles. It is found that the heeling angle will increase with 

increasing deflecting angles. This is not surprising, since a larger nozzle deflecting 

angle develops larger yaw turning moment and larger turning rate. It is expected that 

at large deflecting angles, the craft will experience significant heeling and resulting 

cushion pressure collapse and instability of the craft. Other simulated results (not 

shown here) indicate that larger nozzle deflecting angle also results higher turning 

levers that worsen the stability.  

 

The effects of entering speed on turning lever and turning diameter are shown in 

Figure 12.12. The dependency of turning diameters on nozzle deflecting angle of the 

water jet is shown in Figures 12.13. It should be mentioned that the present model is 

based on relatively simple external force models, the hydrodynamic forces are 

estimates and various parameters are assumed (e.g., water jet). It is expected that 

further refinement of the model should be made and verified when more accurate 

forces/parameters are available. 
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Figures 12.14 and 12.15 are samples of the time history for the directional stability 

simulation. In this case, the initial yaw angle of the craft is 0
0 10  and the desired 

orientation is 00d ; initial vessel speed (entrance velocity of the vessel) is 50knots. 

The control parameters are taken to be 11 k  and 22 k . The simulated results 

indicate that the vessel can reach its desired orientation in about 20 seconds. Also in 

this process, the vessel undergoes roll motion due to the moment generated by the 

water jet. Numerical tests show that the control parameters 1k  and 2k  have a 

significant effect on the directional stability of the craft. Again, in order to carry out 

more realistic simulation for the ALV, actual parameters should be used as the input 

of the simulator. 

 

 

 

 

 

 

 

 

 

Figure 12.9  Trajectory of the ALV E40 at entering speed of 50 knots 

 

 

 

 

 

 

 

 

Figure 12.10 Manoeuvring motions of the ALV E40 at entering speed of 50 knots 
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Figure 12.11 Heel angle during turning of the ALV E40 at entering speed of 50knots 

 

 

 

 

 

 

 

Figure 12.12 Turning diameter of the ALV E40 at nozzle deflecting angle  0
0 6.1  

 

 

 

 

 

 

 

Figure 12.13 Turning diameter of the ALV E40 at entering speed of 50 knots 

 

 

 

 

 

 

 
Figure 12.14 Time histories of yaw and nozzle angle for the ALV E40 at entering speed of 50 

knots 
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Figure 12.15 Roll time histories for the ALV E40 at entering speed of 50 knots 

 

12.3  Summary 
 

In this Chapter, a case study for the transverse static stability at zero speed, the 

longitudinal dynamic stability in calm water and the stability for manoeuvring 

motions in calm water for an ASV, ALV E40, have been carried out. The 

mathematical models and numerical simulation method are described in Chapter 11. 

Numerical results for the ALV E40 concept are presented and discussed. The effects 

of some of the design parameters of the vessel on its stability performance are 

analysed. The results appear to show applicability and effectiveness of the developed 

tools at both design and operational stage of these types of high speed crafts.  

 

The stability analysis reported here is mainly for the craft at on-cushion mode. The 

stability and survivability of the ALV crafts at off-cushion mode (damage case) 

should be analysed by using other methods/tools. It is realized that some of the 

coefficients in the numerical simulations are empirical, or borrowed from other SES 

vessels: this may partially affect the accuracy of the present prediction. It is true that 

the prediction will be improved when more accurate data made available for the 

ALVs, and validations by model tests or trials, which are not available at the 

moment, will help in improving the present numerical models. 
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Chapter 13  Contributions of the Present Study 
 

 

13.1  Achievements against the objective 
 

A hydrodynamic analysis for Air Supported Vessel has been carried out in this 

thesis. The analysis covers performances in the steady forward motion, in the 

unsteady harmonic motion and the stability. Mathematical models for the steady and 

the unsteady flows and their numerical calculating methods are presented for this 

advanced marine vehicle. A number of case studies have been provided to 

demonstrate the applicability of the approaches presented in the study. The following 

achievements have been made against the objectives: 

 

1. A numerical method is presented for evaluation of the steady potential flow 

field and the free surface elevation of a pressure underneath the Air 

Supported Vessel moving on the free surface. This is applied successfully in 

the prediction of the wash wave (far-field) and wave-making resistance (near-

field) of the vessel. It may be also applied to wave pattern prediction for other 

high speed craft, such as planing craft, SES, ACV. 

2. Numerical methods are proposed for the computation of the potential flow 

field of the pressure patch for the Air Supported Vessel moving in harmonic 

motions.  

3. A practical mathematical model for the prediction of seakeeping performance 

in waves for the ASV has been developed. Numerical examples have 

demonstrated applicability of the model.  

4. Non-linear mathematical models have been established for analysis of the 

longitudinal dynamic stability of the ASV in calm water. A time domain 

stepping algorithm is developed to solve the problem numerically, and 

reasonable results have been obtained. 

 

The content covers a wide range of hydrodynamic performances for the ASVs. The 

case studies carried out in the thesis demonstrated the applicability of those models. 
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These numerical prediction tools are expected to be helpful at both design and 

operational stages of this type of vessels. 

 

13.2  Contributions of the Present Study 
 

The contributions of this study are summarised as follows: 

 

1. The numerical method for the steady potential flow of a pressure patch 

proposed by the present study is efficient and also accurate based on the 

assumption of the linearization. The numerical instability problem in 

prediction of the hydrodynamic distribution for the three dimensional planing 

hulls found in previous studies has been solved. Further discussion about the 

limitation of the assumption is presented in the next Chapter. 

2. A practical and efficient numerical prediction tool for wash wave field of the 

ASVs has been established. 

3. A practical and efficient numerical tool for seakeeping prediction in 

frequency domain for the ASVs in waves has been established.  

4. A numerical prediction tool for the dynamic stability analysis of the ASVs 

has been established. 

5. In terms of publications, five papers have been published in peer reviewed 

international journals based on the works carried out in the present study. 
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Chapter 14  Recommendations for the Future Work 
 

 

As for any numerical approach, a number of assumptions and simplifications were 

necessary for the present study. This is due to the very complicated flow around the 

ASV. The fact that there is little experience about the hydrodynamic performances 

for this type of vessel in numerical calculation, model testing and full scale trials 

ensures that a single PhD thesis is unable to cover all these topics thoroughly, and 

further research on the subject is needed. The present study deals with various 

aspects of the hydrodynamic performances of the ASV: the steady potential flow 

(wash wave and wave-making resistance), seakeeping and the stability. The 

importance of these hydrodynamic performances will depend on the ship owner, the 

designer and the associated policies and regulations for the vessel operations. In no 

particular order of priority, the following topics are suggested: 

 

1 In calculations of the wash wave and wave-making resistance of the ASV, 

effect of the rigid hull of the vessel is not taken into account. This may be 

reasonable for a high-speed ASV, however, for a general ASV design, a 

source distribution panel method may be used to calculate this part of 

contribution. 

2 In the seakeeping prediction model, the hydrodynamic forces/moments of the 

rigid hull are calculated by a strip theory. The strip theory is applicable for 

ships at a lower Froude numbers and slender body. Although contribution of 

hydrodynamic forces/moments from the side-hulls is believed to be small in 

the case of an ALV, a more rational 3D method will certainly improve 

accuracy of the prediction for a general ASV design. A time domain non-

linear approach to solve the unsteady free surface flow field will also improve 

the present frequency domain approach.  

3 The hydrodynamic coefficients of the side-hulls used in the manoeuvring and 

the stability simulations are estimated by some approximation methods. 

Ideally, these derivatives should be measured from model testing. That will 

improve the prediction further. 
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4 More validations (tank model testing or full scale trails) are needed. This will 

improve the accuracy of the prediction and refine the mathematical models.  

5 Methods for estimation of total resistance and powering of the ASVs are  

needed; 

6 In the longer term, as the computer technology and numerical technique 

developing, a full 3D volume method (including viscous effect) to resolve the 

detailed flow around an ASV sailing in the real seaways should be carried 

out. This will remain as a challenge for hydrodynamic community in the 

future. 

7 Methods for hull form optimisation considering the hydrodynamic 

performances for the ASVs  also need to be developed.  
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Appendix A   Coefficients for the Cushion Pressure Equation 
 
 

The equation for the cushion pressure in Chapter 9 is 

 

3 3 3 3 5 5 5 5 4 4 4 4pp pp p p p p p p wpb P c P b q c q b q c q b q c q F                       (9.56) 
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In the above, 0  is the cushion air density at the equilibrium condition, 0V  is cushion 

chamber volume at the equilibrium condition. 
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Appendix B   Matecentric height of the ALV 
 
 

 

Two coordinate systems are selected: the body fixed right-handed system ' ' 'o x y z  

with the origin located on the intersection of the free surface ' 0z   and central plane 

of the vessel. Its vertical axes 'oz  is positive upward and through centre of gravity of 

the vessel. The origin of the second system o xyz  is the same as that of system 

' ' 'o x y z . When the vessel has no motion, the two systems overlap, see Figure B-1. 

 

The analysis is for a special case of ALV with side hulls of approximately constant 

section and wall-sided body surface at the free surface. The stern flaps are vertically 

placed at the stern of each demi-hull. The initial matecentric height will be derived 

for the case of the vessel at zero speed and with zero degree of  trim angle.    

 

The initial excess pressure in both port and starboard cushion chambers is 0P , which 

is equal to water head difference between the free surfaces outside and inside the 

cushion: 

0 0P gh                                                                          (B-1) 

where 0h  is the water surface depression inside the cushion chambers. The vessel is 

heeling with a small roll angle,  . Draft at the port and starboard of the craft will 

change, while the excess cushion pressure in both chambers is assumed to be 

unchanged. Due to the pressure balance between inside and outside of the cushion 

chamber, the water level depression at the centre of the cushion chambers will be 

1 0

2 0

/ 2
/ 2
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p

h h S
h h S




 
  

                                                                (B-2) 

 respectively, where pS  is the lateral distance between the cushion central planes of 

the demi-hulls, see Figure B-1. 
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The roll moments about origin due to excess cushion pressure on the four vertical 

walls: 

41 0 1

42 0 2

2( / 2)  
2( / 2)

c c

c c

F B l P h
F B l P h




 
  

                                                      (B-3) 

where cl  and cB  are the cushion length and width, respectively. Substituting (B-2) 

into (B-3), the moment due to the horizontal pressure force: 

41 42 0 02 cF F A P h                                                           (B-4) 

where c c cA l B  is cushion area of a demi-hull. The restoring moment from the 

hydrostatic pressure is calculated as follows. Firstly it is assumed the water level is 

the same inside and outside the cushion. This is a similar expression for that of a 

conventional catamaran. 

2
43

c

B
S

F g y dxdy g z                                               (B-5) 

where   is displacement volume of the rigid side hulls of the ALV. A correction 

should be made because the water level is lower inside the cushion. We can write 

this correction term for roll moments as 

 4 4 3 2' ' ' ' 'HCF g zn ds g z y n z n ds 
 

                                (B-6) 

where   is the hull surface that we have wrongly included by assuming the water 

level is the same inside and outside of the ALV. Further )',','(' 321 nnnn 
  is the hull 

surface normal component in the body fixed coordinate system. Positive normal 

direction is outwards from the hull. In the case of wall-sided body surface at the free 

surface, then 0'3 n  and 1'2 n  for all side walls, respectively.  

' 'z z y                                                                            (B-7) 

Substituting (B-7) into (B-6), 

1 2 3 4

'
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   

                              (B-8) 

where , 1, 2,3, 4i i   are the four side-walls for the demi-hull. On these side walls,  

' 0.5 0.5p cy S B                                                                 (B-9) 



 

 138 

therefore,  

4 0 0HC cF A P h                                                                  (B-10) 

Now the total roll moment acting on the vessel due to roll angle,  , is 

 2
4 0 0

c

c g B
S

F A P h mgz g y ds gz  
 

       
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                    (B-11) 

where Bz  is the vertical coordinate of the centre of buoyancy at the body fixed 

coordinate system,   is the volume of the under water hull part of the ALV. 

 

Figure B-1  Calculation of metacentric height of the ALV 

 

The matecentric height of the ALV is 

0 0
1 )c g yy BGM A P h mgz gS gz

mg
                                  (B-12) 

where m  is mass of the craft and yyS  is the transverse moment of inertia of the water 

plane area of the ALV at on-cushion condition . The last two terms in the right hand 

side of (B-12) is the matecentric height of the normal catamaran. It can be seen that 

the excess pressure 0P  in the cushion gives a negative contribution to the matecentric 

height of the ALV. For normal (mono-hull) SES, the matecentric height is, see for 

example Faltinsen [5], Blyth [6]: 

0 0
1 2 (0.5 )c g yy BGM A P h z gS g z

mg
                                (B-13) 
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which means that the present ALV design has higher matecentric height than the 

conventional SES, and is safer than the normal SES in the on-cushion mode in this 

respect.  

 

For the present ALV configurations, the hull form is much more complicate than the 

above assumed. Therefore, the application of (B-12) to the ALV is limited. The 

matecentric height of the ALV can be calculated by using a general hydrostatic 

calculation method, such as the module in PROTEUS (Jasionoski, 2001). The 

procedures are as follows.  

 

For a given heeling angle of the craft, the water line levels inside and outside cushion 

can be determined. This is done by an iterative approach. The criterion is that the 

excess pressure of each cushion chamber should be equal to the local hydrostatic 

pressure. Weight of the craft should be balanced by buoyancy and force of excess 

cushion pressure. If one side hull is exposed into the air, then the cushion pressure is 

equal to the atmosphere pressure, i.e., the excess pressure in that cushion chamber is 

zero. For each heeling angle, the cushion area will normally change. Once the 

balanced condition has been found, the restoring moments of cushion pressure and 

hydrostatic force can be calculated accordingly. 
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Appendix C   Solution of a Pulsating and Moving Pressure 
Patch 

 
 
The pulsating pressure distribution of a rectangular shape moving on the calm water 

surface at speed U , which is a simple harmonic in time, is expressed as 

( , )         ,
( , ,0; ) , 0

0                      ,

i tx y e x a y b
p x y t t

x a y b

   
 

                                      (C-1) 

The deformation of water due to the foregoing pressure distribution is assumed to be 

small and is represented by the velocity potential ( , , ; )x y z t  which is harmonic in 

space below the free surface; satisfying the differential equation 

0,                   0, 0xx yy zz z t                                                     (C-2) 

On the free surface the velocity potential   and the surface elevation ( , ; )x y t   

satisfy the linearized kinematical and dynamic boundary condition: 

0,                           0, 0t x zU z t                                               (C-3) 

and 

0,                      0, 0t z
p g U z t  

                                            (C-4) 

Eliminating   from equation (C-3) and (C-4), we have the linearized free surface 

condition 

2 12 ( ),               0, 0tt xx xt z x tU U g Up p z t   


                            (C-5) 

In addition to the foregoing,   and t  satisfy the condition being initially at rest on 

the free surface 

( , ,0;0) ( , ,0;0) 0tx y x y                                                            (C-6) 

where 0t   is valid under the assumption ( , ,0;0) 0p x y  , and on the bottom 

0,                                           , 0z z t                                        (C-7) 

In the far field, we suppose that   and its first and second derivates tend to zero for 

any given time; in fact, they tend to zero in such a way that Fourier transforms exist. 

 

We seek the form of   which satisfies the foregoing conditions by employing the 

Fourier transform technique. Define the double Fourier transforms: 
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and the inversion 
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 Here w  and u  are the longitudinal and transverse wave numbers and are related to 

the circular wave number k  and the wave angle   by 
cos
sin

w k
u k







                                                                              (C-10) 

The Fourier transform (C-8) applied to (C-2) yields 
2 0zz k                                                                             (C-11) 

The general solution of the foregoing differential equation is 

( , ; ) ( , ; )k z k zA w u t e B w u t e                                                       (C-12) 

where A  and B  are arbitrary constants. By making use of the Fourier transform of 

the bottom condition (C-7), we obtain 0B  . Hence the preceding is reduced to 

( , ; ) k zA w u t e                                                                      (C-13) 

To determine A , take the Fourier transform of the linearized free surface condition 

(C-5),  
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where 
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Substituting   from (C-13) in (C-14) yields 

2 2 2 ( ) i t
tt tA U w A i UwA g k A i Uw e 
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which by means of the Laplace transform and utilizing the initial condition 
( , ;0) ( , ;0) 0tA w u A w u   

yields the following solution in the transform plane 
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Inversion of the preceding is given by the convolution integral 
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(C-17) after integration is substituted in (C-13) and we have 
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The inverse transform of (C-18) is given by 
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where 
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Now the variables ( ,w u ) are transformed into ( ,k  ) by the relation (C-10). Replacing 

the elementary area: 

                                            dwdu kd dk  

for the intervals  0 ,k         , we have 
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To fold up the integration interval ( ,  ) to ( 0, / 2 ), the integral over ( ,  ) is 

subdivided into four quadrants 
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

  

         

and each integral is transformed into ( 0, / 2 ), we have the following 

   
/ 2

2
0 0

( , )
8

b a
i t kz

b a

i ke d d d dk e
g


     

 



 

       

31 2 4
1 2 1 2

1 2 3 4

1 1 1 1( cos )( ) ( cos )( )
i ti t i t i t

ikr ikr ikr ikre e e eUk e e Uk e e
  

   
   

 
                  

     
  (C-22) 

where 

1

2

( )cos ( )sin
( )cos ( )sin

r x y
r x y

   
   

   
   

                                                     (C-23) 

and 
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1

2

3

4

cos

cos

Uk gk

Uk gk


 




 




  




  


                                                         (C-24) 

In (C-22),   is the solution of the unsteady conditions which have been stated at the 

outset. The next step is to derive the steady-state solution from (C-22) by eliminating 

the time-dependent terms. This is achieved in the following manner: 

 

a). Determine the wave numbers ik  from 0i  ; 

b). take the proper indenting paths in the neighbourhood of  ik  in the k  plane in 

order to have the exponentials vanish in time as t  . 

 

The integration paths determined as such are therefore not arbitrary but strictly 

bound to derivation of the steady solution and to the root ik . 

 

Solving for zeros of i  in (C-24), namely, ik , we have 

1 2
0

2

1 sec [1 2 cos 1 4 cos ]
2

k
k

k
    


  


                                      (C-25a) 

3 2
0

4

1 sec [1 2 cos 1 4 cos ]
2

k
k

k
    


  


                                      (C-25b) 

with 

0 2 ,        g Uk
U g

                                                            (C-25c) 

It is seen from (C-25a) that 1k  and 2k  are positive real and 1 2k k  for interval 

0 / 2   . It is seen from (C-25b) that 3k  and 4k  are positive and real and 3 4k k  if 

1 4 cos 0    

and 3k  and 4k  are complex with 3Im( ) 0k   and 4Im( ) 0k   if 

1 4 cos 0    

In other words, 3k  and 4k  are positive real in  

/ 2c                                                          (C-26) 

and complex in the interval 

0 c                                                             (C-27) 

where 
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1 1cos
4c 

    
 

                                                  (C-28) 

Now we consider the integrals with respect to k  in the k  plane. , 1,2,3, 4i i  , in (C-

24) are expanded at ik : 

1
11

2

cos41
)()cos(

k

g
kkigkUkii





                           (C-29) 

2
22

2

cos41
)()cos(

k

g
kkigkUkii





                           (C-30) 

3
33

2

cos41
)()cos(

k

g
kkigkUkii





                         (C-31) 

4
44

2

cos41
)()cos(

k

g
kkigkUkii





                         (C-32) 

Equation (C-29) shows that, for interval 0 / 2   , the path of integration of the 

terms containing 1i te   in (C-22) in the complex k  plane should be deformed above 

the real axis in the neighbourhood of 1k  in order to have the exponentials in t  vanish 

as t   ( 1Re{ } 0i  ). The same is for 2k .  Let this deformed path be defined by 1L  

(see Figure C-1). When 3k  and 4k  are real (for / 2c    ), the integral path is 2L  and 

for case of  3k  and 4k  are complex (for 0 c   ), the integration path requires no 

deformation in order to have the exponentials in t  vanish as  t  , the integral path 

is 3L   as shown in Figure C-1.   

 

 

 

 

 

 

 

Figure C-1  The integral path 

 

Then the steady-state velocity potential (omitting the time factor i te  ) is obtained as 

1 2 3

/ 2 / 2
2 2 2

1 2 22 2
0 0, 0, 0 0,
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4

c

c
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b a L L L

i d d d dk k d dk k d dk k
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 



             
 

  

 

          
  

       

(C-32) 
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where 

1 2

1 2

( ) ( ) 1 2
1

1 2 1 2

( ) ( ) 3 4
2

3 4 3 4

1( , ) ( cos )( )

1( , ) ( cos )( )

k z ir k z ir

k z ir k z ir

k k
k Uk e e

k k k k k k

k kk Uk e e
k k k k k k

  

  

 

 

 
        

 
        

                (C-33) 

The free surface elevation at a point on the calm water surface, 0z  , is evaluated for 

a uniform pressure distribution of a rectangular shape by 

z
U i

g g g
  




                                         0z                     (C-34) 

where the first term is the static elevation while the reminder represents the elevation 

due to the dynamic effect, and is expressed as 

          
/ 2 23 2 2

1
1 22 2

11 2 1 20
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4 sin ( )

l l
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l l
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U k k k k k
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 I I                     (C-35) 

 where *  indicates the complex conjugate, and 
3 5 6 7 81 2 4

1
0

( )( )
iks iks iks iks iksiks iks ikskz

m
e e e e e e e e es dk

k

       
 I                                                (C-36) 
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       
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I               1,2j                    (C-37) 
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

I       3k  positive real   (C-38) 
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e e e e e e e e ek dk
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I      4k  positive real    (C-39) 
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

I            3k  complex         (C-40) 

3 5 6 7 81 2 4

6 4
40

( )( )
iks iks iks iks iksiks iks ikskze e e e e e e e ek dk

k k

             


I            4k  complex        (C-41) 

Integrals in (C-36) ~ (C-41) can be analysed as follows. First, we consider integral 

1
0

( )
miks

m
eI s dk

k



                                                         (C-42) 

When 0ms  , consider an integral for the closed path in the k  plane: 1 2 3 4L L L L L    , 

as shown in Figure C-2. 2L  is a quarter of a cycle with radium of R , and 4L  is a 
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quarter of a cycle with radium of  .  Since there is no pole inside the closed path, the 

integral along this closed path is zero: 

1 2 3 4

0
m m m m miks iks iks iks iks

L L L L L

e e e e edk dk dk dk dk
k k k k k

        �                                (C-43) 

Then 
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1
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m m mRiks iks iks

L

e e eJ dk dk dk
k k k



                          as 0;  R               (C-44) 
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therefore 
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m

e dt e dt e R
R s


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thus  

2 0J                                                    as R                  (C-47) 

 

 
Figure C-2  Integral path for 1( )mI s  in the k  plane ( 0ms  ) 
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                                                    (C-49) 

So that 

3 ln( )mJ s                                                 as 0                 (C-50) 

On the other hand 
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Substituting (C-47), (C-50) and (C-51) into (C-43), one obtains 

1 2 3 4
0

( ) ln( )
2

miks

m m
e iI s dk J J J s

k


                                       (C-52) 

For  0ms  , the integral path in the k  plane is on the 4th quarter, as shown in Figure 

C-3. 

 
Figure C-3  Integral path for 1( )mI s  in the k  plane ( 0ms  ) 

 

Follow the same procedure as for 0ms   , we obtain 

1 2 3 4
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( ) ln( )
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e iI s dk J J J s

k
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or 
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We then consider integral 

2
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( )
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j
j

eI k dk
k k




                   1,2;  1,2,...,8j m                          (C-55) 

For 0ms  , we consider integral along the closed path as shown in Figure C-4. Since 

there is no pole inside the path: 
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1 2 3
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      �                                (C-56) 

 
Figure C-4  Integral path for 2 ( ), 1,2jI k j   in the k  plane ( 0ms  ) 

 

Integral over 2L  is calculated as follows. 
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therefore 
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On the other hand; 
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Substituting (C-58) and (C-59) into (C-56), then 

2 1( ) ( ) j mik s
j j mI k E ik s e                                                           (C-60) 

For 0ms  , the integral path takes the form as shown in Figure C-5. There is a pole 

inside the closed path, according to residues theorem,  
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The procedures for analysing integrals over 2L  and 3L  are similar for these of the 

case of 0ms  , then we obtain: 

2 1( ) ( ) 2j m j mik s ik s
j j mI k E ik s e ie                                                           (C-62) 

or 
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Figure C-5  Integral path for 2 ( ), 1,2jI k j   in the k  plane ( 0ms  ) 

 

Similarly, one can get the following integrals ( / 2c    ): 
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When 3k  and 4k  are complex ( 0 c   ), 
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With all the individual integrals, the following can be obtained: 
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I          (C-73) 

Substituting (C-68) ~ (C-73) into (C-35), we obtain 

 
8

0 1 2 3 4 5 62
1

1 ( 1)
4

m
m m m m m m m

m

g J J J J J J J 
 

        
             (C-74) 

where , , 0,1,...,6; 1,2,...,8l mJ l m  ,  are shown in equations (9.14) ~ (9.20) in Chapter 9. 

As a special case, consider the wave elevation due to a uniformly moving non-

oscillatory pressure distribution. Then according to (C-25), we have 

1 3
2

2 4 0

0,    0
sec

k k
k k k



  
 

                                                     (C-75) 

The free surface elevation (C-35) is reduced to 
/ 2 28

1 20
1 02

1 0

exp[ sec ]1 ( 1) Re [ ( sec ) (1 sgn( ))]
2 sin cos

ms m
m m

m

g ik s
E ik s i s

  
 

  




       
   

        (C-76) 

which is equation (6.9) in Chapter 6. 

 

 

 

 


