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Abstract

Abstract

Despite their outstanding achievements in a number of different fields, conven-

tional neural network-based solutions often fall short in terms of concrete ap-

plicability to edge devices and systems with limited autonomy or computational

resources. This is due to the intensive computations that are required to process

input data and the size of modern neural networks, which also test the memory

requirement of a given setup. Neuromorphic (NM) computing offers a shift in

this paradigm by enabling low-power Artificial Intelligence (AI) through sparse

and localized computations, and low latency thanks to its asynchronicity. Spiking

Neural Networks (SNN), with spiking neurons at their core, represent the algo-

rithmic foundation of Neuromorphic AI. In recent years, the research on SNNs

has been highly proactive with several advancements being proposed in various

contexts, in an effort to try and bridge the performance gap with conventional ap-

proaches that has traditionally characterized the field of NM computing. Whilst

research efforts are showing promising results, there is still a lack of shared foun-

dational knowledge and understanding of the interplay between different compo-

nents, particularly the spiking neuron models. Furthermore, a reason for debate

is given by what represents a good task for the SNNs to be evaluated given that

more traditional ones might not fully highlight the representational abilities of

SNNs. As such, new directions of research are always sought, where new tasks

that could benefit from the use of SNNs’ feature extraction abilities are explored.

This thesis aims to address the above points as a means to help advance the

overall knowledge in the field of Neuromorphic computing with SNNs. The start-

ing point of the investigations resides in the understanding of the importance of

spiking neurons in an NM machine learning (ML) pipeline. In the neuroscience

literature, spiking neuron models are extensively discussed as they are the means

by which scientists model the human brain. Such mathematical models deter-

mine how incoming information affects the internal state of a neuron in relation

to one or more variables, and regulate the emission of spikes, the signals that

neurons use to communicate information. The same level of attention is not nor-
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Abstract

mally paid when employing neuron models in engineering pipelines and, often,

the simplest model, the Leaky Integrate-and-Fire (LIF), is used for its simplicity

and efficiency. Starting from a selection of three relatively simple models, this

thesis presents a study aimed at highlighting whether the choice of any neuron

model is more appropriate with respect to another one. This is tested within a

simple framework where an SNN is trained with Spike Time-Dependent Plasticity

(STDP), a biologically inspired unsupervised learning rule. The tasks presented

to the SNN are image classification tasks based on NM datasets of increasing

difficulty. The study reveals that higher levels of complexity in the neuronal dy-

namics can in fact prove beneficial where the complexity of the temporal features

in the data is also higher. The thesis continues with an exploration of a possi-

ble approach to a field that is not often considered for NM applications: that of

time series forecasting. The proposed approach encompasses two main aspects: a

novel neuron population encoding system, and two novel bespoke loss functions.

The encoding system leverages concepts from the differencing transform used in

time series analysis and gets inspiration from neuromorphic vision sensors. In

this way, the encoded signal is not only rendered more stationary and amenable

to processing but it is also shown to approximate the derivative of the signal

itself. The proposed loss functions build upon biological concepts and from the

knowledge about the encoding step. The overall solution comprising the encoding

system and one of the proposed loss functions is shown to outperform the refer-

ence system, thereby demonstrating the potential of SNNs to be applied in this

domain. Finally, a novel solution to surface Electromyography (sEMG) gesture

classification is presented. sEMG is a crucial technology frequently utilized in

health-related applications, including prosthetics, where the advantages brought

by NM engineering could be highly beneficial. The solution comprises the use of

Resonate-and-Fire (RF) neurons, a type of neuron that has been shown to ap-

proximate a Short Time Fourier Transform (STFT), to encode EMG signals into

a spike-frequency domain whilst performing filtering on the unwanted frequen-

cies. This is paired with a novel decoding approach that leverages a convolutional

layer to transform the signal back into the temporal domain, thereby enabling

hyperparameter optimization on the encoding neurons. The overall solution is

tested on a challenging dataset and is shown to outperform reference works on

the same task. This final piece of research not only underscores the importance

of the selection of appropriate spiking neurons for a given task but also how this

can enable closing the performance gap between NM computing and conventional

methods whilst maintaining the advantages of neuromorphic technologies.
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Introduction

Chapter 1

Introduction

Artificial Intelligence (AI) and Machine Learning (ML) have seen rapid advance-

ments, profoundly impacting numerous domains by offering intelligent solutions

to complex problems [1]. This renaissance in AI research is largely credited to

significant breakthroughs in Deep Learning (DL), particularly highlighted by the

success of Convolutional Neural Networks (CNNs) in the 2012 ImageNet Chal-

lenge [2, 3]. This event, which involved the classification of images into 1000

distinct categories, showcased CNNs’ ability to achieve and even surpass human-

level performance in image recognition tasks.

The influence of AI and ML extends across various fields [1], demonstrating

the versatility and potential of these technologies. In the realm of computer

vision, deep learning techniques have revolutionized image and video analysis,

enabling advancements in facial recognition, autonomous driving, and medical

imaging [4]. Natural language processing (NLP) has similarly benefited, with

AI models now excelling in tasks such as language translation, sentiment anal-

ysis, and conversational agents [5]. Moreover, AI applications in robotics have

enhanced capabilities in navigation, manipulation, and human-robot interaction,

further illustrating the transformative impact of these technologies [6].

As AI technologies mature, there is an increasing drive for their integration

into everyday devices, leading to the proliferation of the Internet of Things (IoT)

and autonomous devices [7]. The vision of ubiquitous AI involves embedding

intelligence into a myriad of interconnected devices, from household appliances

to industrial machinery, enabling them to communicate, make decisions, and

optimize their operations autonomously. This integration promises to enhance

efficiency, reduce costs, and improve the quality of life across various sectors,

including healthcare, transportation, and smart cities [7].

However, the widespread deployment of AI and IoT presents several chal-
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lenges. One of the primary concerns is the need for energy-efficient computing

solutions. Traditional AI models, particularly deep learning networks, require

substantial computational power and energy [8], which is not sustainable for IoT

devices that often operate under strict power constraints. Additionally, the vast

amount of data generated by IoT devices necessitates real-time processing and

decision-making [9], which further exacerbates the demand for efficient AI so-

lutions. In light of these challenges, Neuromorphic (NM) computing paradigms

offer a transformative shift in the development and deployment of AI applica-

tions [10]. Thanks to the underlying low-power and low-latency advantages that

it offers, NM computing-based solutions hold the potential to enable AI-backed

IoT devices capable of performing on-the-fly operations whilst maintaining power

consumption levels that permit long-term autonomy.

1.1 Research Motivations

The motivation behind the research presented in this thesis is rooted in the desire

to explore and expand the boundaries of Neuromorphic computing. Traditional

deep learning approaches, while powerful, often require substantial computational

resources and energy consumption [10, 11]. Neuromorphic computing, inspired

by the brain’s architecture and functioning, offers a promising alternative by em-

ulating neural processes through spiking neurons and specialized hardware [10].

Spiking neurons represent the core of a Spiking Neural Network (SNN), which

in turn is the key component of Neuromorphic AI systems. Spiking neurons are

modelled after their biological counterparts in the human brain and have the

peculiar capability to process information in the time dimension. This is due to

the fact that, as per their mathematical model, they hold an internal state that

varies through time, and every input that is received perturbs this very state in

a way that depends on the timing of the input itself, i.e. when it was received

[12]. As a result of the evolution of their internal state, spiking neurons emit

so-called spikes whenever a set threshold is reached and communicate, in this

way, information with the rest of the neural network [13, 14]. Because spikes

are not emitted at every point in time, but only once the threshold is reached,

on top of enabling time-based computations, spiking neurons actuate a sparse

communication system, thereby reducing the power requirements of the system,

which in more conventional cases would suffer from having to constantly propa-

gate information through the network, even when information is potentially zero

[10, 15]. The above is enabled by brain-inspired NM hardware, which differs from
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the conventional von Neumann architectures and provides the physical substrate

onto which SNNs can be implemented at their best. As a matter of fact NM

chips enable low-power and asynchronous information processing which is typical

of the human brain, thus providing the perfect pairing for the SNNs [15].

The exploration into SNNs and their applications aims to address several key

points. Firstly, there is a growing need for energy-efficient computing solutions,

particularly for embedded autonomous systems and IoT devices where power

constraints are critical [7]. Secondly, the unique properties of the diverse spiking

neuron models present in the literature [12, 16] highlight the variety of contexts

in which either type of model can be beneficial to a given system. Each model

has the potential to process and extract temporal information in a different way,

thus making it more or less suitable in specific use cases [17]. Lastly, expanding

the scope of the applications of NM computing solutions can lead to the design of

more robust and adaptive AI systems for a number of different fields, including

time series forecasting and prosthetics [10].

To address the above, this thesis delves into the potential of employing differ-

ent types of spiking neurons, and into the exploration of avenues that live both

within and beyond the conventional neuromorphic application domains. By in-

vestigating various spiking neuron models, encoding systems, and learning rules,

the aim is to contribute to the growing body of knowledge in this emerging field

and highlight the advantages and possibilities associated with neuromorphic com-

puting. By exploring possible new avenues of applications, the goal is on one hand

to broaden the spectrum of domains that could benefit from the use of NM-based

systems, and on the other hand to find valid tasks that can be used to evaluate

the performance of an SNN, which is still a very active field of research [18].

The above is achieved by means of a progressive approach that begins by look-

ing at a foundational component of an SNN, the spiking neuron, to understand

the capabilities of different models with varying complexity to be more or less

apt at solving a task. This evolves into the use of a relatively simple form of a

population of spiking neurons able to encode the information present in an input

signal in a way that leverages concepts from the classical processing methods for

time series, and concepts from the operational design of event-based vision sen-

sors. These are used in combination with two novel loss functions to construct

a system for the prediction of time series. Time series, albeit not normally con-

sidered a conventional NM task due to the data being collected using non-NM

hardware, naturally embed the concept of time and can therefore benefit from

the computational paradigms brought by NM technologies. This thesis focuses
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on energy load forecasting using two different types of datasets, however, the

developed algorithms are task-agnostic, and can in principle be applied to any

type of time series forecasting problem. Finally, the employment of the Resonate-

and-Fire (RF) spiking neurons [19] for the encoding of Electromyography (EMG)

signal into a spike-frequency domain not only serves as a further demonstration

of the importance of using the correct spiking neuron model for a given task, but

also that bridging the gap between conventional ML and NM-based solution in

terms of accuracy is an attainable feat. As a matter of fact, despite providing

sensible improvements in terms of power efficiency, SNNs have often fallen short

in accuracy when compared against more conventional systems [10]. However,

as shown later on in this thesis, this gap can be closed by adopting a suitable

combination of spiking neuron models such that their information encoding and

feature extraction capability is optimized for the task at hand. The application

domain for the above solution is limited to the EMG classification of gestures.

Nevertheless, the algorithm is once again agnostic of the data, if not for engi-

neered hyperparameters. The algorithm can in fact be in principle applied to any

data source that features information in the frequency domain. One relatable

example is provided by electroencephalogram (EEG) signals, which are collected

similarly to EMG signals. Furthermore, thanks to the developed decoding scheme

which is able to transcode spike-frequency encoded information into time-based

discretized signals, it is possible to conceive other potential applications that go

beyond the scope of classification models and delve into that of generative models

by providing a way to generate new signals starting from a sequence of spikes.

1.2 Original Contributions

The studies carried out as part of this thesis and briefly anticipated in the previous

section led to a number of novel contributions to the NM scientific community,

that are here summarized.

• Design of a testing framework for spiking neuron models, and

analysis of the advantages and disadvantages of using more or less

complex models. The study involves the use of three carefully selected

models within a relatively simple context. The developed SNN is trained

entirely through the Spike-Timing-Dependent Plasticity (STDP) learning

rule and an in-depth study is carried out to understand the interplay be-

tween the use of certain neuron models and STDP (Chapter 4). This has

been made possible thanks to the development of an expansion to Spyke-
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Torch [20], a framework to develop SNNs. This extension revolves around

the implementation of a number of spiking neuron models and is reported

in Appendix A for reference.

• Development of a novel encoding scheme inspired by the concept

of differencing for time series signals and by Neuromorphic vision

sensors. This differencing encoding is shown to approximate the derivative

of a signal and is employed to approach the time series forecasting problem,

which requires some sort of translation of the information into spikes for

the SNN to be able to process it. The encoding system is shown to enable

learning firstly by initial tests on dummy sinusoid signals, and then on data

taken from electricity load forecasting datasets [21–23] (Chapter 5).

• Definition of two novel loss functions for the SLAYER [24] learn-

ing rule. These, in combination with the encoding presented at the previ-

ous point, are thoroughly tested and combined with the standard learning

rule for SLAYER. The DecodingLoss is shown to consistently allow achiev-

ing higher levels of performance than the other options (Chapter 5).

• Design of a novel EMG signal classification pipeline based on the

use of Resonate-and-Fire neurons for the encoding of the infor-

mation. A bank of RF neurons senses an EMG signal and produces spikes

whenever certain frequencies are found, thus creating a spike-frequency rep-

resentation. Such a pipeline allows to achieve extremely high accuracy lev-

els on a very challenging EMG gestures dataset [25], enough to performing

better than other works from both the NM and conventional DL literature

(Chapter 6).

• Design of a novel decoding methodology for RF neuron encoding

based on the use of convolutional layers to transform a signal in

the spike-frequency domain back into the original domain. Such a

decoding system allows the encoded-decoded signal to be compared against

its original version, thus not only allowing hyper-parameter optimization,

but also enhancing interpretability (Chapter 6).
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1.3 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 covers the rele-

vant literature from the conventional Deep Learning field and the NM computing

domain. From the DL point of view, this encompasses a brief history of Arti-

ficial Neural Network (ANN)s and Convolutional Neural Network (CNN), and

highlights the importance of activation and loss functions. The backpropaga-

tion algorithm is also presented as being at the core of an NM learning system

employed later. From the NM computing point of view, the chapter reports a

number of different spiking neuron models that are relevant to this work but

also touches on concepts like neural coding and unsupervised/supervised learn-

ing systems. The chapter concludes with a review of the most prominent software

frameworks for the development of SNNs. Chapter 3 delves into two relevant ap-

plications, time series forecasting and EMG gesture classification, that have been

a target of study in this thesis. The Chapter provides a brief overview of the clas-

sical methodologies to approach each application so as to provide a contextual

background and finally reviews the literature that is more pertinent to the per-

formed studies. Chapter 4 details a study of the performance differences of three

single-variable spiking neurons. The spiking neurons are tested within relatively

simple image classification scenarios and insights regarding their differences are

discussed. Chapter 5 presents an approach to the time series forecasting problem.

The approach leverages concepts from the differencing transform and event vi-

sion sensors to design an encoding system for time series data. The Chapter also

introduces the two novel loss functions that are employed and discussed in the

study. Chapter 6 describes a proposed solution to the EMG gesture classification

problem which employs RF spiking neurons. The proposed pipeline leverages the

encoding and the decoding of the information from the EMG signals to build

a classification framework that is able to compete with and surpass the current

state of the art. Finally, Chapter 7 summarises the most important findings from

the studies carried out in this thesis and outlines interesting research directions

to be explored in the future.

6



Introduction

1.4 List of Publications

1. D. L. Manna, A. Vicente-Sola, P. Kirkland, T. J. Bihl, and G. Di Caterina,

“Simple and complex spiking neurons: perspectives and analysis in a simple

STDP scenario,” Neuromorphic Computing and Engineering, vol. 2, no. 4,

p. 044009, 2022.

2. A. Vicente-Sola, D. L. Manna, P. Kirkland, G. Di Caterina, and T.

Bihl, “Keys to accurate feature extraction using residual spiking neural

networks,” Neuromorphic Computing and Engineering, vol. 2, no. 4, p.

044001, 2022.

3. P. Kirkland, D. Manna, A. Vicente, and G. Di Caterina, “Unsupervised

spiking instance segmentation on event data using STDP features,” IEEE

Transactions on Computers, vol. 71, no. 11, pp. 2728–2739, 2022.

4. D. L. Manna, A. Vicente-Sola, P. Kirkland, T. J. Bihl, and G. Di Cate-

rina, “Frameworks for snns: a review of data science-oriented software and

an expansion of SpykeTorch,” in International Conference on Engineering

Applications of Neural Networks, pp. 227–238, Springer Nature Switzerland

Cham, 2023.

5. P. Chaudhari, A. Vicente-Sola, A. Basu, D. L. Manna, P. Kirkland, and

G. Di Caterina, “Sign language recognition using spiking neural networks,”

Procedia Computer Science, vol. 235, pp. 2674–2683, 2024.

6. T. J. Bihl, P. Farr, G. Di Caterina, P. Kirkland, A. Vicente Sola, D. L.

Manna, J. Liu, and K. Combs, “Exploring spiking neural networks (snn)

for low size, weight, and power (swap) benefits”, 57th Annual Hawaii In-

ternational Conference on System Sciences (HICSS24), 2024.

7. D. L. Manna, A. Vicente-Sola, P. Kirkland, T. J. Bihl, and G. Di Caterina,

“Time Series Forecasting via Derivative Spike Encoding and Bespoke Loss

Functions for Spiking Neural Networks,” Computers, Vol 13, no. 8, p. 202,

2024.

7



Neuromorphic Computing and Neural Networks

Chapter 2

Neuromorphic Computing and

Neural Networks

2.1 Conventional Neural Networks

Since the breakthrough of Convolutional Neural Networks in 2012 [3] within the

ImageNet Challenge [2] — a prominent image classification competition featur-

ing 1000 classes such as dog breeds, cars, and birds — Neural Networks (NNs)

and CNNs, in particular, have soared in popularity, initiating a renewed wave

in artificial intelligence known as Deep Learning. This surge has led to an ex-

ponential increase in publications annually and the inclusion of deep learning

topics in most engineering conferences. However, the concept of Neural Networks

is not new, tracing back to the work of McCulloch and Pitts in the 1940s [26].

Their research was inspired by the brain’s architecture, employing a network

of connected neurons to perform tasks like classification and recognition. The

backpropagation learning mechanism, crucial to deep learning, was developed by

several researchers in the 1960s [27] and later implemented on computers in the

1970s. It was first applied to neural networks in 1974 [28].

The rise of neural networks, especially CNNs, was significantly propelled by

the advent of Graphics Processing Units (GPUs) in the late 2000s [29]. GPUs,

with their massively parallel processing capabilities, can process data between

4 and 70 times faster than Central Processing Units (CPUs) [27, 30], drasti-

cally accelerating the learning process. This computational power paired with

large datasets enabled neural networks to surpass human performance in the

ImageNet challenge by 2015 [31]. Following this initial success in image classifi-

cation, ANNs and, more in general, DL-based methods have been proven to be

extremely well suited for a number of different applications. In this thesis, the
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concept of ANN stands at the core of the performed studies, although featuring

characteristics that differ from the more conventional ones found in the literature.

Nevertheless, the basic mechanics of NNs interconnections, activation functions

and backpropagation still apply in a certain way.

For this reason, this section briefly reviews neural networks and their main

characteristics. Section 2.1.1 covers Artificial Neural Networks and Convolu-

tional Neural Networks, focussing on the types of layers that differentiate them.

Section 2.1.2 introduces activation functions and gives examples of possible con-

ventional ones. Section 2.1.4 discusses the backpropagation algorithm. Section

2.1.3 presents the concept of cost functions and their importance within a DL

pipeline.

2.1.1 ANNs and CNNs

As previously anticipated, the concept of neural networks dates back to the early

1940s with Warren McCulloch and Walter Pitts’ pioneering work, which laid

the groundwork for artificial neural networks [26]. They introduced a simplified

model of a biological neuron, known as the McCulloch-Pitts neuron (Eq. (2.1)),

which used a binary threshold logic to simulate the basic functioning of neural

activity. This model set the stage for subsequent developments in the field of

artificial intelligence and neural computation.

y = H

(
n∑

i=1

xi

)
(2.1)

Following the McCulloch-Pitts model, Frank Rosenblatt introduced the Per-

ceptron in 1958 [32], which became one of the first instances of an ANN capable of

learning. The perception, defined by Eq. (2.2), demonstrated the potential of NNs

in pattern recognition tasks but also highlighted limitations, such as its inability

to solve non-linearly separable problems. The latter issue was addressed by the

introduction of multi-layer perceptrons (MLPs), non-linear activation functions,

and the backpropagation algorithm in the 1980s, pioneered by Rumelhart, Hin-

ton, and Williams [33]. These advancements allowed for deeper networks and the

learning of more complex patterns.

y = σ(
n∑

i=1

wixi + b) (2.2)

While traditional ANNs had made significant strides, they encountered limi-

tations in processing structured grid-like data, such as images. Yann LeCun and
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his colleagues addressed these challenges by developing the first CNNs in the late

1980s and early 1990s. LeCun’s 1998 paper on LeNet-5 [34], a CNN architecture

designed for handwritten digit recognition, demonstrated the power of CNNs in

handling spatial hierarchies through local receptive fields, shared weights, and

spatial subsampling (pooling).

The unique architecture of CNNs, with their convolutional layers and pooling

layers, enabled the automatic extraction of spatial features from images, making

them particularly effective for image-related tasks. The introduction of large-scale

datasets such as ImageNet and advancements in GPU technology in the 2010s

led to a renaissance in CNN research and applications [35]. Notable architectures

like AlexNet (2012) [3], VGGNet (2014) [36], and ResNet (2015) [37] pushed the

boundaries of image classification accuracy and deep learning capabilities.

In practical terms, what differentiates an ANN from a CNN is mainly the

connectivity pattern found within the network. An ANN is normally considered

to be composed of a series of so-called fully connected layers. Fully connected,

or dense, layers do exactly what the name suggests: connect every neuron in one

layer to every input, so that given an N-dimensional input and an M-dimensional

layer (i.e. a layer with M neurons), the total number of connections is NxM .

Conversely, a so-called Convolutional (Conv) layer is a connection scheme that

performs a cross-correlation operation (differently from what the name suggests)

[35]. Conv layers are characterized by a set of filters (kernels) and a stride. The

kernels are cross-correlated with the input using the stride as the quantity of shift

across the input at each computation. Theoretically, the kernels can be of any

dimension, however, the most common cases see them used as 2D or 3D kernels.

The result of utilizing a Conv layer is the production of a feature map given by the

sum of the element-wise (Hadamard) product between the elements in the input

and in the kernel. Fig. 2.1 provides a visual example of the operation performed

as part of the convolutional layer, while the following is the formulation of the

Conv layer operation for a 2-dimensional case:

(I ∗K)ij =

k1−1∑
m=0

k2−1∑
n=0

Km,n · Ii−m,j−n + b, (2.3)

where I is the input, K is the kernel, i and j represent the stride indices, m

and n represent the coordinates of each element within the kernel, and b is the

bias.

The size of the feature map depends on the initial input size, the kernel size,

the stride, and the presence of padding (placeholder values, normally 0, placed
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Input Feature Map
3 5 2 8 1

9 7 5 4 3

2 0 6 1 6

6 3 7 9 2

1 4 9 5 1

7 6 1

-14 -10 0

-2 5 9

Output Feature Map

=

Convolutional Filter

-1 0 0

1 1 0

0 0 -1
x

Fig. 2.1: Simple Visual Example of Convolutional Layer with kernel 3x3 and stride
1. The input (5x5 matrix) is parsed by the 3x3 kernel starting from the top left corner
and moving right and downwards. The output feature map contains the sum of the
element-wise product between the input in a given location and the kernel. Notably,
the output feature map is reduced in size.

around the input), and can be calculated according to the following formula:

nout =
nin + 2p− k

s
+ 1, (2.4)

where nout is the output size along one dimension, nin is the size of the input along

the same dimension, p is the amount of padding (calculated times 2 to account for

padding at the beginning and at the end), and s is the stride. Therefore, where a

fully connected layer with M neurons would produce an output that is of size M,

a 2D Conv layer with M kernels would produce an output that is MxHoutxWout.

In the limit case of a Conv layer with kernel size equal to the input size, the

output of the Conv layer and of the Fully connected layer would be the same in

size.

2.1.2 Activation Functions and Dropout

As briefly discussed in the previous section, in the development of Artificial Neu-

ral Networks the use of non-linear activation functions was a critical point in

allowing to solve non-linearly separable problems. Functions such as the sigmoid

or the tanh were necessary to break the linearity of Perceptrons and to increase

the depth of the networks [35, 38], thus rendering the solution of increasingly

complex tasks attainable. A further step was possible with the introduction of

the Rectified Linear Unit (ReLU), which made it possible to avoid issues such

as slow convergence and vanishing gradient, problems in which the previously

mentioned functions incurred. The ReLU is defined in the following way:

σ(x) = max(0, x) =

x if x ≥ 0,

0 if x < 0.
(2.5)
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Fig. 2.2: Example of different activation functions.

It is hence linear with x whenever this is positive and 0 otherwise. In other

words, it is a thresholding function with threshold in 0. The use of ReLUs has

been observed to be the most important factor to improve the performance of a

neural network [39]. Nevertheless, also ReLUs suffer from training issues when

deployed in deep NNs, therefore further solutions were sought and this brought

to the development of generalizations of the ReLU function (e.g. leakyReLU[40],

PReLU [41], ELU[42], Swish [43], and so on) which often proved to be more

effective than the original form [44]. Fig. 2.2 shows some of these for comparison.

More in general, the literature is rich with examples regarding how the use of

activation functions has improved the performance of neural networks [45–50].

Another important algorithmic change was the introduction of Dropout [51].

The core idea behind dropout is to randomly ”drop out” a subset of neurons

during the training phase of a neural network. This means that for each training

iteration, a portion of neurons is temporarily removed from the network, along

with all their incoming and outgoing connections. By doing so, dropout prevents

the network from becoming overly reliant on any particular neurons, thereby

reducing the risk of overfitting.

The practical effect of dropout is akin to training a large number of differ-

ent neural network architectures in parallel and then averaging their predictions

during the test phase. This ensemble-like behaviour enhances the generalization

capability of the model. Dropout is typically applied only during the training

phase and disabled during testing, where the full network is used to make pre-

dictions. The introduction of dropout has become a standard technique in the

deep learning community due to its simplicity and effectiveness in improving the
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performance of neural networks across various tasks and domains, although as

network architecture moves away from dense connectivity, the need for dropout

also fades.

2.1.3 Cost Functions

The backpropagation algorithm represents the learning backbone of most of the

conventional DL approaches. Nevertheless, what truly defines the goal of a given

DL solution is the Cost function [35]. Cost functions, also known as loss functions,

play a pivotal role in training neural networks. Cost functions are crucial because

they provide a measure of how well the neural network is performing. As outlined

in the previous section, during training, the backpropagation algorithm uses the

gradient of the cost function with respect to the network’s weights to update

them in a way that reduces the cost. This iterative process, driven by the cost

function, helps the model learn from the data and improve its predictions.

For a cost function to be effective in a deep learning context, it must have the

following features:

• Differentiability. The cost function must be differentiable with respect

to the model parameters (weights and biases). This is essential because

backpropagation relies on computing gradients to update the parameters.

• Convexity (Desirable but not Necessary). While not strictly required,

convex cost functions are easier to optimize because they have a single

global minimum. However, many deep learning models use non-convex

cost functions due to the complexity of the networks, and optimization

techniques are designed to handle such scenarios.

• Continuity. The cost function should be continuous to ensure smooth

updates during the training process. Discontinuities can lead to unstable

training and convergence issues.

• Representation of Error. The cost function should accurately reflect the

discrepancy between the predicted and actual values. It should penalize

larger errors more heavily to encourage the model to reduce significant

discrepancies.

Several cost functions are commonly used in deep learning, depending on the

nature of the problem (regression, classification, etc.). One example is the Mean

Squared Error (MSE). This is commonly used in regression tasks as it measures
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the average squared difference between the predicted and actual values. It is

defined as:

MSE =
1

n

n∑
i=1

(ŷi − yi)
2, (2.6)

where ŷi is the predicted value, yi is the actual value, and n is the number of

samples.

Another example is given by the Cross-Entropy loss function. Commonly used

for classification tasks, the cross-entropy loss measures the difference between

the true probability distribution and the predicted probability distribution. For

binary classification, it is defined as:

Cross-Entropy Loss = − 1

n

n∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (2.7)

For multi-class classification, the categorical cross-entropy loss is used:

Categorical Cross-Entropy Loss = − 1

n

n∑
i=1

c∑
j=1

yij log(ŷij) (2.8)

where c is the number of classes, yij is a binary indicator (0 or 1) if class label

j is the correct classification for sample i, and ŷij is the predicted probability of

sample i being in class j.

The above represent two of the most commonly used cost functions, however,

the literature is rich with a plethora of different ones for various tasks [52]. In

this work, where backpropagation-based algorithms are employed, loss function

selection plays a pivotal role in the success of a learning pipeline, so much so that

ad-hoc functions are devised to improve the performance of a system on specific

tasks.

2.1.4 The Backpropagation Algorithm

In the preceding sections, it was hinted how Backpropagation has been a corner-

stone algorithm in the training of artificial neural networks. The backpropaga-

tion algorithm is a supervised learning technique used for minimizing the error

in the network’s predictions. It gained widespread recognition in the 1980s, with

the seminal paper by David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.

Williams [33], and became the standard method for training neural networks. It

builds on the simple idea that for a system to reach some (local) minimum, param-

eters can be adjusted in a direction that is opposite to the derivative (or gradient
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with respect to a variable in case of multi-variate functions) of the function that

needs to be minimized. The gradient of a function represents the direction and

rate of the steepest increase in the function’s value, so moving in the opposite

direction (the negative gradient) leads to the steepest decrease, thus minimizing

the function. This concept is also known as the Steepest Descent or Gradient

Descent (GD) and is at the core of the Backpropagation algorithm.

Backpropagation operates through a two-phase process: the forward pass and

the backward pass. In the forward pass, the input data is fed through the network

to produce an output. Let’s denote the input vector as x. Each layer of the

network consists of weights (W), biases (b), and activation functions (σ).

For a single neuron in a layer, the output a is calculated as:

a = σ(W · x + b). (2.9)

This process is repeated for each layer until the final output is produced.

The backward pass involves computing the gradient of the loss function with

respect to each weight and bias in the network and then updating these param-

eters to minimize the loss. This involves the use of the chain rule from calculus.

The chain rule helps in calculating the derivatives of composite functions. In the

context of backpropagation, if we want to find the gradient of the loss L with

respect to the weights W, we need to consider how changes in W affect the loss

through each intermediate variable.

Suppose the loss L depends on an intermediate variable z, which in turn

depends on y, and y depends on x:

L = L(z), z = z(y), y = y(x) (2.10)

Using the chain rule, the derivative of L with respect to x is:

∂L

∂x
=

∂L

∂z
· ∂z
∂y
· ∂y
∂x

(2.11)

In neural networks, this means the gradient of the loss with respect to the

weights is computed layer by layer, starting from the output layer and moving

backward to the input layer.

GD is used to update the weights and biases to minimize the loss function. If

θ represents the weights and biases, the update rule is:

θ ← θ − η
∂L

∂θ
(2.12)
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where:

• η is the learning rate,

• ∂L
∂θ

is the gradient of the loss with respect to the parameters.

The use of the learning rate serves to perform small enough steps to not overshoot

beyond the minima, however, using too small values can reduce convergence speed

or hamper reaching minima altogether.

By iteratively performing these steps, the network learns to minimize the loss

function, effectively training the model.

2.1.5 Optimizers

Backpropagation refers to the methodology used to compute gradients across a

neural network, facilitating the optimization process. These gradients are sub-

sequently utilized to update the network’s weights, which is achieved through

the application of the GD algorithm, as introduced earlier. GD is an iterative

optimization algorithm, or optimizer, designed to identify minima, ideally global

minima, within a given loss landscape. In the context of deep learning, back-

propagation and GD are intrinsically linked, as the latter relies on the former to

compute the necessary gradients for optimization.

GD operates by leveraging the entire dataset to compute updates, and, with

an appropriately chosen learning rate, it converges gradually but steadily toward

the minima. However, the application of GD to large datasets poses significant

challenges. The requirement to process the entire dataset for each update results

in substantial computational and memory overhead, often rendering the approach

impractical for modern deep learning tasks. Moreover, the lack of stochasticity in

GD, owing to its use of the complete dataset, can cause the algorithm to converge

to suboptimal local minima rather than global ones [35].

To address the limitations of GD, Stochastic Gradient Descent (SGD) is com-

monly employed as an alternative. Unlike GD, SGD updates weights by comput-

ing gradients using a single randomly selected data point or a small subset of data

points (mini-batch). This approach reduces the computational burden, making

optimization feasible even for large datasets. Additionally, the inherent noise in-

troduced by using only a subset of data during each update aids in escaping local

minima, thus increasing the likelihood of finding better solutions.

However, the adoption of SGD introduces new challenges, such as the need

for careful fine-tuning of hyperparameters, including the learning rate and mini-

batch size. While SGD often achieves faster initial progress compared to GD,
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it is also more susceptible to divergence, where the optimization process fails to

converge and the performance deteriorates. Proper tuning of hyperparameters is

therefore critical to ensure that SGD achieves convergence to meaningful minima

points and maintains stable learning dynamics.

Stochastic Gradient Descent (SGD) remains one of the most widely utilized

optimization algorithms in deep learning. However, over the years, more so-

phisticated variants have been developed to address its limitations and improve

convergence. One such variant which is frequently employed is the Adaptive Mo-

ment Estimation (Adam) algorithm. This algorithm is particularly notable for its

use of the first and second moments of the loss function to accelerate convergence

and its ability to define parameter-specific adaptive learning rates. The Adam

algorithm is employed in this thesis in Chapters 5 and 6.

The Adam algorithm is mathematically defined by the following set of equa-

tions:

mt = β1 ·mt−1 + (1− β1) ·
∂L

∂θ
, (2.13)

vt = β2 · vt−1 + (1− β2) ·
∂2L

∂θ2
, (2.14)

m̂t =
mt

1− βt
1

, (2.15)

v̂t =
vt

1− βt
2

, (2.16)

θt ← θt−1 − η · m̂t√
v̂t + ϵ

, (2.17)

where mt and vt identify the first and second-order moments of the gradient of L

with respect to θ respectively, m̂t and v̂t are the initialization bias corrections (to

account for the moments being initialized to 0), and θt is the set of weights to be

updated. β1 and β2 are two hyper-parameters that regulate the effect of the first

and second-order moments on the overall weight update, η is the learning rate

and ϵ is a small constant to avoid division by 0.

In general terms, all optimizers require the definition of some hyperparame-

ters. While some of them are optimizer-specific, the learning rate and the (mini-)

batch size are necessary. The learning rate regulates the extent of each weight

update. As seen in the previous section, backpropagation allows the calculation

of the error through different layers in a neural network. The weight update is

then calculated to be inversely proportional to the gradient of the cost function.

The magnitude of such updates, however, requires regulation. As a matter of
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Fig. 2.3: Examples of SGD optimization with right-sized (left) and high LR (right).
The red arrows represent the direction of the next update as determined by the algo-
rithm. The plots show how, despite the right-hand side example starting from a lower
loss value, the updates to the parameters θ lead to a diverging behaviour, ultimately
reaching a higher loss value.

fact, if the weight update is too large the optimization process can end up di-

verging from the minima instead of converging to them. Figure 2.3 depicts this

possibility. In the left-hand side plot, thanks to the use of a learning rate that

scales down the weight updates, the algorithm converges steadily to the minimum

point. In the right-hand side plot, while approaching the local minima, the weight

updates drive the optimization to constantly overshoot the minimum, effectively

diverging from it. The batch size, on the other hand, regulates how much of the

data is processed at one time, and how much of it is considered per each opti-

mization step. Using a batch size that equals the size of the dataset degenerates

SGD into GD. Using a batch size of one allows for more frequent weight updates

and lower memory utilization, but can lead to slow convergence and decreased

generalization ability. The right value to use for the batch size is thus a delicate

and task-specific process and a correct sizing can make the difference between a

solution converging to some minima and one not. In this work, the batch size

varies depending on the task at hand and on the hardware constraints.
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2.2 Neuromorphic Computing

Neuromorphic Computing, similarly to the neural networks, is rooted in the inte-

gration of neural circuits into electronic systems. Both disciplines have a shared

and intricate history, evolving from foundational works such as the McCulloch-

Pitts Neuron [26], the perceptron [32], and the Neocognitron [53] (which models

the retina). The field of NM engineering began with research into the Very-Large-

Scale Integration (VLSI) of transistors, focusing particularly on their non-linear

properties. Carver Mead introduced the term Neuromorphic Engineering to char-

acterize a new engineering discipline inspired by biological design principles and

architectures [54].

In modern times, NM Computing and Engineering is regarded to as an inter-

disciplinary subject that encompasses concepts from biology, neuroscience, math-

ematics, computer science, and engineering to design artificial neural systems [10].

The goal of such neural systems can be very diverse, ranging from closely replicat-

ing biological systems to providing low-power, low-latency and highly adaptable

automated systems for tasks like visual information processing, audio classifi-

cation and SLAM tasks, to name a few. Efforts to closely replicate biological

systems include Boahen’s neuromorphic circuit at Stanford University and its

Braindrop (formerly Neurogrid) processor [55], Izhikevich’s mathematical model

of spiking neurons [56], and Eliasmith’s large-scale brain modelling [57]. On the

other hand, works based on the methodologies discussed in Section 2.1 merely

seek to find algorithmic solutions to solve a plethora of different problems, and

are only loosely inspired by the human brain. If we consider the above as the two

extremes of biological plausibility and implausibility, NM computing-based solu-

tions sit in a middle ground and try to draw the most out of the two. Notable

examples include converting Neural Networks to SNNs [58–62], and employing

deep learning and NNs in Neuromorphic Sensors for applications in classifica-

tion [63, 64], image recognition [65, 66], and optical flow [67, 68], where Spiking

Convolutional Neural Networks (SCNNs), a type of NM CNN where activation

functions are essentially substituted by spiking neurons, are trained to solve these

tasks. These examples underscore the increasing interest in this interdisciplinary

space, allowing the advantages of NM computing and engineering, such as energy

efficiency, to be combined with the ease of training provided by deep learning

techniques.

This Section functions as a review of the key elements relevant to this thesis

that constitute the field of NM Computing and Engineering. Section 2.2.1 delves
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into the variety of spiking neuron models that have been theorized in the literature

and that are often employed in developing SNNs. Section 2.2.2 introduces the

concept of neural information coding and encoding systems. Section 2.2.3 details

the most prominent learning methodologies for SNNs. Section 2.2.5 reports a

thorough review of the available software frameworks for the development of

SNNs.

2.2.1 Spiking Neuron Models

Neurons in the human brain are extremely complex cells and are present in a

wide variety of functions, shapes and components [12]. Figure 2.4 shows a repre-

sentation of a so-called pyramidal neuron. In here it is notable that the neuron

features a specific shape, pyramidal, and has several components. The central

part is called the Soma, and is were the majority of the activity is conveyed.

The shorter fibres connecting into the soma are called dendrites. These are the

input means to the neurons and subdivide in many smaller branches depending

on the number of incoming connections that the neuron developed. The longer

fibre is called the axon and is the output means of the neuron. Spikes travel

through the axon. At the points of contact between one neuron’s axon and an-

other neuron’s dendrites are the synapses. This is where information is passed

from one into the other depending on the strength of said synapse. Furthermore,

axons and dendrites are further composed of smaller blocks. Due to this level of

complexity and to the inherent difficulty in studying them, researchers have often

developed mathematical models that could approximate (some of) the observed

behaviours. Models that approximate the compartmentalization of the neurons

and their shape also exist, but they are more often employed for single-neuron

analysis. Instead, this thesis focuses on the use of so-called point neurons. While

this is a simplification, it can be argued that the use of a network of point neurons

can effectively approximate the behaviour of a single compartment neuron, while

at the same time allowing the definition of larger networks. The point Spiking

Neuron Model (SNM) that have been theorized in the literature vary in their

objective and their mathematical complexity. Their objective is to describe the

observed behaviours of human brain neurons in response to certain stimuli [12].

A possible way to quantify their complexity is by estimating the Floating Point

Operations per second (FLOPs) that are required to run the model on hardware.

Tab. 2.1 is a collection of a few of them, reported with their mathematical model,

typology and number of floating point operations per millisecond (FLOPS/ms)

when available.. SNMs are normally characterized by a system of differential
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Fig. 2.4: Example of a neuron cell, adapted from [12].

equations where variables evolve through time. When one of these variables, the

membrane potential, reaches a pre-defined threshold Vth, the spiking neuron is

said to emit a spike and is reset to a certain value Vreset. Spikes are stereotypical

signals that neurons use to communicate information and are completely charac-

terized by the time at which they occurred (meaning that the shape of a spike is

always the same, hence it has no meaning).

While conventional DL also borrows the idea of neurons, the spiking neurons

used in NM computing have two crucial differences. The first one is in their

output which, as mentioned earlier is, normally, a binary 0/1 spike. This allows

for a network of spiking neurons to significantly reduce the amount of information

propagated in the network. The second one is in the fact that they retain their

state (the membrane potential) for future computations. This allows to consider

the concept of sequentiality between two or more inputs. Indeed, it means that the

output at time t1 = t0 + ∆t is influenced by the amount of potential accumulated

since time t0. Furthermore, the membrane potential of spiking neurons tends to

return to a resting state over some time according to the dynamics specified in

their differential equation. This further expands the concept of sequentiality to

include that of time. Since the potential can vary in different ways depending on

the neuron model, two or more inputs can be temporally related depending on

when and on how distant in time they appeared.

The literature is rich with a plethora of different neuron models, mostly de-

scribing the dynamics of the soma (core) of the cortical neurons. These can be
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roughly subdivided into two larger groups, the bio-physical or conductance-based

models and the event-based or integrate-and-fire models. Whilst some of the

theorized models feature an extremely fine-grain level of detail of how a brain

neuron behaves, it is important to note that when transposed into simulations on

software, inherent limitations are present from the need to discretize continuous

variables. As such, approximation errors can incur as well as numerical instabili-

ties in the results due to some of the differential equations needing to be resolved

numerically rather than mathematically. Such limitations need to be taken into

account whenever creating software simulations.
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Fig. 2.5: Schematics of the Hodgkin-Huxley neuron model from the Neuronal Dynam-
ics book [12].

2.2.1.1 Conductance-based Models

This class of neuron models is characterized by the fact that all the variables and

parameters present in the model have a biophysical correspondence and are there-

fore measurable through experiments [89]. Among them, the Hodgkin-Huxley’s

(HH) model [86]is considered to be one of the most important in computational

neuroscience and defines a system of 4 non-linear differential equation with four

variables and a number of parameters. The schematics of the model can be

found in Fig. 2.5, where its equivalent circuit is reported. While higher levels

of complexity can be reached by including further variables in the model, this

is not amenable to mathematical analysis. In fact, other simpler conductance-

based models have been derived in the literature in order to ease the analysis

while still retaining biophysical plausibility. Some examples are the FitzHugh-

Nagumo model [82, 83], the Hindmarsh-Rose [84] and the Morris-Lecar model

[85]. Nevertheless, they still remain rather complex for what concerns analysis

and computation, therefore this family of neuron models is often used only when

studying single-cell or small population dynamics [56].

2.2.1.2 Integrate-and-Fire Models

The family of Integrate-and-Fire (IF) or phenomenological neuron models com-

prises all those models that aim to model the spike generation mechanism, rather

than the specific biophysical components of neurons [12]. Integrate-and-fire mod-

els require at least two equations, one describing the dynamics of the membrane

potential and the other one defining the action potential generation. Events are

integrated over time and convey electrical charges that can cause excitation or

inhibition of the membrane potential of the receiving neuron. The literature has

seen the definition of several different types of neurons in this family. Neverthe-
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less, the most prominently used one in NM computing applications and SNNs is

the Leaky Integrate-and-Fire (LIF) [61, 90–99], despite its limitations in terms of

representational power (see Section 2.2.1.2.1), due to its simplicity and compu-

tational efficiency. This section covers some amongst the most relevant models

that have been considered for the development of Spiking Neural Networks.

2.2.1.2.1 Leaky Integrate-and-Fire The simplest model, apart from the

perfect integrator, is the Leaky Integrate-and-Fire [70]. The dynamics of the

membrane potential are here described by the following linear differential equa-

tion:

τm
du

dt
= −(u(t)− urest) + R · I (2.18)

where τm is the membrane time constant, u(t) is the membrane potential as a

function of time, urest is the resting potential of the membrane, R is a resistance

and I is the incoming current.

Although it has been shown that this model lacks the ability to describe the

most of the neuronal spiking patterns and sub-threshold behaviors [12, 56], it

is the most common choice for the development of large scale neural networks

mostly because of its efficiency [61, 90–99]. By assuming that at time t = t0 the

membrane potential takes the value u(t0) = urest + ∆u, and that for t > t0, the

input current becomes null I = 0, the solution to (2.18) would be the following:

u(t) = urest + ∆u exp

(
−t− t0

τm

)
for t > t0. (2.19)

Hence the membrane potential would decay at a pace dependent on τm until

returning to the resting potential urest. As mentioned earlier, spiking neurons

communicate information through short pulses called spikes. It is thus possible

to write the current as an amount of charge q being carried in a very short moment

in time modelled by a Dirac δ-function, I = qδ(t). By doing this, when a neuron

in it’s resting state u(t0) = urest receives such a pulse current, the membrane

potential will make a jump ∆u = q
C

[12] and will then continue evolving according

to (2.19). While the above is a correct formulation of the LIF neuron model in

a continuous time domain, when developing software implementations the time

is commonly discretized into time steps [100]. As such, different formulations of

the LIF neuron model can be found that approximate in a way or an other the

above. A common discrete formulation considers a decay or leak factor α ∈ [0, 1]
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that retains a percentage of the membrane potential at the previous time step:

u[t] = (1− α)u[t− 1] + x[t], (2.20)

where u[t] represent the membrane potential at discrete time t, α is the decay

constant and x[t] is the input current. The state of the neuron is thus calculated at

every time step. A smaller time step will thus result in more precise calculations,

but longer simulation times [100], and viceversa. Similar discretization strategies

are also considered for other SNMs.

2.2.1.2.2 Exponential Integrate-and-Fire The Exponential Integrate-and-

Fire (EIF) [77] expands on the LIF neuron by adding an exponential dependency

from the previous state of the membrane potential in an attempt to account for

some non-linear dynamics witnessed from observations [12]. The dynamics of the

membrane potential are described by the following differential equation:

τm
du

dt
= −(u(t)− urest) + ∆T exp

(
u(t)−Θrh

∆T

)
+ R · I, (2.21)

where ∆T is a parameter determining the sharpness of the exponential curve and

Θrh is the rheobase threshold. When u > Θrh the exponential term becomes

prominent over the linear one, leading to an upswing of the curve that takes

the membrane potential to infinity in finite time. Smaller values of ∆T make

the upswing extremely sharp, and in the limit of ∆T → 0 the EIF becomes a

LIF model with a firing threshold in Vth = Θrh. A visual representation of the

patterns above can be found in Fig. 2.6.

2.2.1.2.3 Quadratic Integrate-and-Fire The Quadratic Integrate-and-Fire

(QIF) or Theta neuron [79, 89], employs a quadratic dependency from the previ-

ous state of the membrane potential:

τm
du

dt
= a0(u(t)− uc)(u(t)− urest) + R · I, (2.22)

where a0 is a parameter of the model that regulates the magnitude of the depen-

dency from the membrane potential and uc is a cut-off threshold such that when

I = 0 and u > uc the membrane potential grows until the emission of a spike.

Typical values of a0 are in the order of 10−2 and it affects the quadratic curve

by making it sharper and very negative for bigger values and smoother and less

negative for smaller ones.
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Fig. 2.6: Example of EIF neurons with fixed Θrh and varying ∆T . On the x-axis the
membrane potential u, on the y-axis its next state update du. In the top left corner
the curve approximates a LIF.
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2.2.1.2.4 Resonate-and-Fire Resonate-and-Fire (RF) neurons are a par-

ticular type of phenomenological neurons whose internal state is defined by a

complex number. The first model of RF neuron was theorized by Izhikevich in

2001 [75] when he presented a complex-valued state neuron that showed oscil-

lating sub-threshold behaviours when excited. Such model is described by the

following formulation:z′ = I + (b + iω)z

z ← z0(z) if Im z = athresh,
(2.23)

where I is the input current, (b + iω) is an internal parameter, z is the neuron’s

complex state, z0 is the reset value or function, and athresh is the threshold to

be reached for spike emission. For an RF neuron to emit spikes, the incoming

stimulation is required to be nearly resonant with the neuron’s internal oscillation

frequency. More relevant to the work presented in this thesis however, is the RF

neuron version proposed by Frady et al. [19, 76]. Their proposed model slightly

differs from Izhikevich’s one and can be formulated in the following way. Let

zk = a+ ib be the internal complex-valued state of the k-th RF neuron. Then the

update rule for the state of the RF neuron at time step t can be expressed as:

zk[t] = λke
iω∆tzk[t− 1] + ak[t]

ϕ[t] =


ℜ(zk[t]) if

ℑ(zk[t]) = 0

ℜ(zk[t]) >= Vth

0 otherwise

(2.24)

Here, λk is the decay factor, ω is the resonant frequency, ∆t is the timestep

duration, and ak[t] represents the accumulated synaptic input at timestep t. ϕ[t]

represents the spiking function, which produces a (graded) spike equal to the

neuron’s state Real part ℜ(zk[t]) whenever the real part is above a set threshold

Vth and the imaginary part ℑ(zk[t]) crosses the 0.

By comparing this with the previous model, the following points can be high-

lighted:

• Both models are governed by their resonant frequency ω, with the one by

Frady et al. explicitating a decay factor λk ∈ (0, 1).

• The latter model features a different spiking function that considers both

the imaginary and real part of the neuron’s state and emits spikes with

value ̸= 0, thus allowing implementation only in modern NM chips [101].
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• The latter model does not have a reset function when a spike is emitted.

This type of RF neuron can be used to perform efficient spectral analysis

by acting as a bank of filters that compute the Short-Time Fourier Transform

(STFT) of input signals. The neurons output complex-valued coefficients as a

timing pattern of graded spikes, encoding the spectral information in a sparse and

event-driven manner. This significantly reduces the communication bandwidth

compared to conventional STFT methods while maintaining high reconstruction

accuracy.

2.2.1.2.5 Adaptive Spiking Neurons Both the QIF and the EIF feature

a further level of complexity with respect to the LIF due to the inclusion of

non-linear dependencies that affect both the computational costs and the ease of

analysis but allow for a more precise generation of spikes [12]. Additionally, a

hidden cost lies in the use of two extra parameters in each of them.

With the inclusion of adaptation variables within the neuron model, it is pos-

sible to account for a yet larger number of spiking patterns and to render possible

the manifestation of spike bursts, spike-adaptation responses and irregular spik-

ing [12]. This comes at the cost of more differential equations in the model (one

per variable) and two relevant examples are given by the Adaptive Exponential

Integrate-and-Fire (AdEx) [78] neuron model which builds on top of the EIF,

and by Izhikevich’s (IZ) neuron model [16] which builds on top of the QIF. Their

mathematical model can be found in Tab. 2.1. Another example that is relevant to

this thesis is given by the Current-Based Leaky Integrate-and-Fire (CuBa) [102]

neuron model where the dendritic current is modulated by a separate differential

equation as described in the following:

u[t] = (1− αu)u[t− 1] + x[t]

v[t] = (1− αv) v[t− 1] + u[t] + bias

s[t] = v[t] ≥ ϑ

v[t] = v[t] (1− s[t]),

(2.25)

where u[t] represents the dendritic current at time t, x[t] is the input to the

dendrites, αu is the current’s decay rate, αv is the voltage’s decay rate, v[t] is the

neuron’s internal voltage at time t, and ϑ is a set threshold. The presence of the

dendritic current with a programmable decay allows for a wider range of appli-

cations and for the retention, to some extent, of previous inputs in a way similar

to a recursive dendritic connection. When αu = 1, the CuBa model becomes a

standard LIF neuron.
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A number of neuron models have been theorized in the literature, all answering

different modelling needs or considering different aspects of the observed neu-

ronal behaviours. The ones cited above are amongst the most relevant for what

concerns this thesis and NM computing. As reported above, the LIF model is

the most widely used in the development of SNN for NM applications, but at the

same time, models like the AdEx and Izhikevich’s have received a lot of attention

in the literature. The EIF and the QIF are on one hand the baseline of the AdEx

and IZ models respectively, and, on the other hand, a slightly more complex

single-variable alternative to the LIF neuron model. The CuBa neuron model

represents a generalized version of the LIF with the capacity to retain incoming

information. The RF neuron represents yet another typology of neuron that can

be exploited for engineering applications thanks to its features.

2.2.1.3 Analyses of Spiking Neurons in the Literature

Although most of the works relating to using SNNs for ML applications focus

on employing a type of neuron without concern for their representational abil-

ities (see Section 2.2.1.2), the literature reports of some works analysing the

neuron models more specifically. Many of these works on spiking neurons con-

centrate on the neurobiological aspects they expose. One of the most influen-

tial works in this matter is the one by Izhikevich [56], which compared several

models of spiking neurons (LIF, LIF with adaptation, LIF-or-burst, resonate-

and-fire, QIF, Izhikevich’s, FitzHugh-Nagumo, Hindmarsh-Rose, Morris-Lecar,

Wilson, Hodgkin-Huxley), outlining their ability to reproduce observed neuronal

behaviours and the cost (in terms of floating-point operations) of implementing

such neurons in software applications. Similar work was conducted in [103], but

focusing on a smaller subset of neurons (LIF, Izhikevich’s, FitzHugh-Nagumo,

Wilson, Hodgkin-Huxley) and analysing their numerical stability. Although they

closely study spiking neuron models, the two studies above concentrate on their

computational costs and the intrinsic biological mechanics that each model can

reproduce. However, they do not consider the effect of using spiking neurons

with different dynamics in an ML system. For example, they do not test whether

different types of neuron models enable learning different features, or achieving

higher performance levels in certain tasks.

A number of other works concentrate on the efficacy of neuron models in repre-

senting observed cortical neuron firing patterns. One example is given by [104],

where the authors make an exploratory analysis of how parameters influence
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Izhikevich’s neurons in showing different spiking patterns. Still regarding Izhike-

vich’s neurons, Kumar et al. [105] estimate parameters that allow the neuron

model to optimally reproduce a given spike train. Teeter et al. [106] use a gen-

eralized version of the LIF neuron model (GLIF) to understand whether more

complex models allow predicting spike timing behaviours more closely; they con-

clude that this ability does not increase monotonically with the complexity, nor

with the ability to reproduce sub-threshold dynamics. In [107] it is argued that

integrate-and-fire neuron models are good enough estimators of input spike trains

when coupled with an adaptation variable. This is both quantitatively and qual-

itatively shown by the authors and provides a solid ground for the adoption of

this family of neuron models.

Finally, in [108] the authors compare different neuron models embedded in a

liquid state machine (LSM), a particular type of reservoir computing network.

They evaluate their model with two different input patterns and use Euclidean

distance and entropy to estimate the ”separation” ability of the LSM, i.e. its abil-

ity to generate different response patterns for different stimuli. They test their

LSM using six spiking neuron models (IF, resonate-and-fire, FitzHugh-Nagumo,

Hindmarsh-Rose, Morris-Lecar, and Izhikevich’s) and perform experiments vary-

ing the density of the connections between the neurons. They found that the LSM

failed to achieve satisfactory levels of separation only when using Izhikevich’s neu-

rons. Other models allowed better separation levels depending on the density of

the connections. They conclude by postulating that, for LSM implementations,

Morris-Lecar, resonate-and-fire, and Hindmarsh-Rose models are most suitable.

Overall, the works reviewed above offer different kinds of insights into the use of

spiking neuron models. They demonstrate that differences are in fact found in

the way they produce spike patterns, or that the inclusion of complexity per se

is not necessarily going to improve the model’s performance. Nevertheless, with

a few exceptions, the focus of these studies often relates to neurobiological in-

vestigations, rather than ML or engineering ones. NM computing and SNNs are

more often being employed to approach tasks that relate to everyday uses, like

classification, tracking and forecasting [10]. They are thus a function by means

of which it is possible to resolve engineering problems. As such, investigating the

employment of different types of spiking neurons as a way to improve an SNN’s

performance on specific tasks could be an interesting research development direc-

tion.

35



Neuromorphic Computing and Neural Networks

2.2.2 Neural Coding Algorithms

In order to understand what the spikes exchanged within an SNN signify, the

concept of neural coding needs to be introduced. This is about determining what

conveys information in spike trains, however, the exact mechanisms of spiking

neuron coding remain a debated topic in neuroscience [109–111]. Neural cod-

ing implementations generally fall into two categories: rate-based and temporal-

based. Fig. 2.7 presents popular implementations from both categories, which

are elaborated upon in the following sections.

Fig. 2.7: Illustration of three popular coding schemes for rate-based and temporal-
based neuron coding.
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2.2.2.1 Rate Coding

Rate coding refers to methods that use firing rates for encoding information.

This means that in a spike train, the information is conveyed by the number of

spikes present in a certain window of time. This section explores three common

methods: Spike Counter, Spike Density, and Spiking Population Activity.

2.2.2.1.1 Spike Counter Spike Counter [12] considers the temporal average

of spikes in a time window ∆t, thus conveying information in the frequency of

spikes. This is visually shown in the top left of Fig. 2.7, and can be formulated

in the following way:

Count(t) =
nsp(∆t)

∆t
(2.26)

2.2.2.1.2 Spike Density Spike Density [12] is about applying the spike counter

method across different stimuli to the same neuron, thus obtaining a Peri-Stimulus-

Time Histogram (PSTH). The number of spike occurrences within a predefined

time window over nK runs K is summed and divided by both ∆t and K to yield

the spike density PSTH:

Density(t) =
1

∆t

nK(t; t + ∆t)

K
(2.27)

2.2.2.1.3 Spiking Population Activity Spiking Population Activity [12] is

similar to Spike Density, but it measures spiking activity across multiple neurons

rather than across multiple stimuli The spike counts are thus summed from N

neurons over ∆t, then divides by ∆t and N :

Activity(t) =
1

∆t

nact(t; t + ∆t)

N
(2.28)

This method reduces neuron variability and allows simultaneous representa-

tion of various stimulus attributes. Despite its advantages, it requires identical

neuron connections, posing biological and implementation challenges [112, 113].
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2.2.2.2 Temporal Coding

Temporal coding, or spike coding, is an alternative to rate coding. Figure 2.7

illustrates three popular temporal coding schemes: Rank/Order Coding, Time

To First Spike (TTFS), and Latency Coding.

2.2.2.2.1 Rank/Order Rank/Order coding, shown in the top right panel of

Fig. 2.7, encodes information based on the order of neurons’ first spikes. This

method assumes neurons rarely spike more than once per stimulus. Thorpe et

al. [114] demonstrated this through a binary classification task where subjects

identified animals in images displayed for 20ms, suggesting that low latency pro-

cessing required sparse order-based coding. This method has shown promise in

fast object classification tasks, mimicking the visual system’s low latency response

[115, 116].

2.2.2.2.2 Time To First Spike Time-to-First Spike (TTFS), illustrated in

Figure 2.7, encodes information in the time between stimulus initiation and the

first spike. The firing time Tinput−xic of an input neuron ai encodes the magnitude

of an input variable xi ∈ R, where c > 0 and Tinput is the stimulus arrival time

[117, 118]. This allows low latency processing of rich information, as shown in

encoding touch signals from fingers [119], and has been used in recent methods

to backpropagate errors from temporal differences [120, 121].

2.2.2.2.3 Latency Latency coding, also depicted in Figure 2.7, extends TTFS

by considering the relative timing between all consecutive spikes, not just the first.

Precise spike timing plays a crucial role in the nervous system and temporal-based

learning rules [122, 123]. While typically used in feed-forward networks due to

the challenges of maintaining precise timing in recurrent networks, latency coding

has been explored within reservoir computing to retain this precision [124, 125].

2.2.3 Learning Rules

The previous sections explored various design choices for SNNs, such as neuron

models and coding schemes. However, the real challenge lies in enabling these net-

works to learn effectively from data. Learning involves modifying synaptic weights

over time, a concept that revolutionized ANNs with the advent of backpropaga-

tion (see Section 2.1.4). Unfortunately, backpropagation is not directly applicable

to SNNs due to their discrete, asynchronous spikes and non-differentiable nature.
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Developing robust learning algorithms for SNNs remains a complex task, influ-

enced by their closer resemblance to biological systems.

This section discusses two main approaches to SNN learning that are relevant

to this thesis: unsupervised learning methods based on Hebbian rules and spike

timing, and supervised learning techniques allowing error backpropagation.

2.2.3.1 Unsupervised Learning

Unsupervised learning in SNNs draws inspiration from biological principles, where

neurons learn from local activity without specific task instructions. Hebbian

Learning [126], proposed by Donald Hebb, is a foundational rule that has in-

spired various unsupervised approaches[127–131], but the general rule is that if

a presynaptic spike occurs shortly before a neuron’s firing, the relevant synaptic

connection would be strengthened (Long Term Potentiation – LTP). Otherwise,

the same synapse would be weakened (Long Term Depression – LTD). This pro-

cess is called Spike-Timing-Dependent Plasticity (STDP) and it is believed that

it could be the underlying learning and information storage processing system in

the brain.

In practical terms, the weight change ∆wj at synapse j depends on the timing

difference between pre- and postsynaptic spikes:

∆wj =
N∑

f=1

N∑
n=1

W
(
tni − tfj

)
(2.29)

where W (∆t) is an STDP learning window function. A typical function is the

one formulated as:

W (∆t) =

{
A+e

−∆t
τ+ ∆t > 0

A−e
∆t
τ− ∆t < 0

(2.30)

This function is derived from experimental data [132] and models [133], with

parameters A+ and A− and time constants τ+ and τ− typically around 10ms. In

this thesis, the STDP learning rule has played a crucial role in the study of the

spiking neuron models. In particular, the STDP learning rule that is employed

is an approximation found in [134] and is formulated as follows:

∆Wi,j =

A+ × (Wi,j − LB)× (UB −Wi,j) if Tj ≤ Ti,

A− × (Wi,j − LB)× (UB −Wi,j) if Tj > Ti,
(2.31)
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where Wi,j is the weight of the synapse connecting neuron j (pre-synaptic)

to neuron i (post-synaptic), LB and UB are a lower and an upper bound value

respectively, Tj is the timing of the spike emitted by neuron j, Ti the timing of the

spike emitted by neuron i, and A+ and A− are two parameters used to scale the

weight update. Through this system, the weights tend to be saturated towards 0

or 1, thus providing a form of automatic regularization and avoiding problems like

the divergence of the weight values. At the same time, because weights that are

closer to the saturation points receive minor weight updates, this implementation

of STDP can lead to dead neurons due to partial saturation: neurons are triggered

enough times to start learning certain features, but eventually ”lose” the race

towards learning it and are left in a state they can hardly move away from. This

makes this STDP rule potentially more sensitive to the order of presentation of

the data, which is the true drive for the learning of such features.

2.2.3.2 Supervised Learning

Supervised learning uses labelled data to guide the learning process and has been

highly successful with ANNs. Translating this success to SNNs is challenging due

to the discrete nature of spikes. However, several supervised SNN learning algo-

rithms have been developed, such as ReSuMe [125], SPAN [135], and Chronotron

[136]. These methods approach the spiking neuron problem in different ways:

• STDP-Based Supervision: Training that incorporates STDP rules [125,

137].

• Empirical Weight Computation: Directly computing network weights

[138].

• Spike Behavior Approximation: Approximating spike behavior to gen-

erate conventional errors [135].

A notable supervised method by Bohte et al., SpikeProp [139], introduced a

way to backpropagate the gradient in SNNs. This has inspired various methods

[96, 140–143]. The main challenge is that spikes are non-differentiable. Different

strategies have been proposed to overcome this:

• Spike Timing Approximation: Approximating spike timings [140].

• Surrogate Functions: Replacing spikes with surrogate functions for dif-

ferentiation [143].
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• Temporal Coding Exploitation: Using time coding aspects to calculate

errors [96].

• Designing Differentiable Models: Creating models that allow gradient

evaluation [142].

• Spatio-Temporal Framework: Backpropagating gradients along both

network depth and time dimensions [141].

Another promising method which is particularly relevant to this thesis is Spike

Layer Error Reassignment (SLAYER) [24], which approximates the derivative of

the spike function using a temporal credit assignment policy for backpropagating

errors.

In Section 2.1.4, the concept of GD was introduced as being at the core of

(most of) the conventional DL training algorithms. While such concepts work

seamlessly in conventional DL, applying them to NM computing is not as straight-

forward. The whole algorithm is based on the calculation of the gradient of the

cost function with respect to each of the NN components. In DL activation func-

tions, which are normally derivable or quasi-derivable, are used. In SNNs, activa-

tion functions are replaced by spiking neurons which are non-derivable by nature

due to their spiking function effectively resulting in Dirac’s deltas. Nevertheless,

the algorithms presented in this section are in fact based on GD and backprop-

agation. This is because, to overcome the issue, researchers were required to

resort to other techniques in order to allow the calculation of the gradient and

finally devised the concept of Surrogate Gradient. The Surrogate gradient acts

as a proxy for spiking neurons during the backward pass, providing a surrogate

derivable function or some approximations of the spiking functions around the

spiking time. In this way, gradient descent and backpropagation are possible in

the NM domain too.

2.2.4 Neuromorphic Hardware

Research in the NM field has been strongly led by the hardware developments.

As a matter of fact, the advantages that the NM approach offers are entirely due

to the possibilities that arise from te use of NM hardware. When referring to

hardware, the focus is mainly on processors, which can host the computational

models to process data like SNNs, and sensors, which provide an interface to

perceive the world. This thesis, however, approaches the NM domain from an al-

gorithmic perspective, thus focusing on the study of the algorithmic components
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of SNNs that could be finally deployed onto NM hardware. At the same time, it

aims to provide potential new directions for hardware developments by showing

the applicability of SNNs to a broader range of scenarios and use cases. Nev-

ertheless, it is important to ensure that the developed algorithms would still be

able to harness the energy, latency and scaling characteristics of the underlying

NM hardware. The following sections provide a brief overview of the existing NM

hardware with an accent on the most relevant components.

2.2.4.1 Neuromorphic Processors

A major breakthrough in neuromorphic processing occurred in 2008 with the

launch of DARPA’s Systems of Neuromorphic Adaptive Plastic Scalable Electron-

ics (SyNAPSE) program. This initiative led to the creation of the IBM TrueNorth

chip in 2014 [144], a neuromorphic processor designed to handle large-scale neu-

ral networks while maintaining exceptionally low power consumption. TrueNorth

employs a crossbar array architecture, using time-multiplexed neuron updates

and limited precision for synaptic weights. Despite these design constraints, it

supports one million neurons and 256 million synapses distributed across 4096

neurosynaptic cores. The development of TrueNorth signified a pivotal moment,

as it marked the involvement of a major commercial entity in the neuromorphic

computing domain.

Before TrueNorth, neuromorphic research had primarily been driven by aca-

demic projects, such as the Spiking Neural Network Architecture (SpiNNaker)

[145]. Funded by the European Union’s Human Brain Project (HBP) [146], SpiN-

Naker was initially developed to serve neuroscience, robotics, and computer sci-

ence research. Its architecture integrates general-purpose ARM cores with tightly

coupled memory on a single chip, offering high reconfigurability by running neu-

ron models as software. The current SpiNNaker system connects over one million

ARM cores, enabling the simulation of more than a billion spiking neurons with

realistic synaptic connectivity (1,000 to 10,000 synapses per neuron) at 1 ms time

steps. This configuration is estimated to simulate 1% of the human brain’s func-

tionality [145], with plans for SpiNNaker 2 aiming to scale up to the full brain

using a 10-million-core design [147].

Another neuromorphic solution emerging from the HBP is the BrainScaleS

platform [148]. This waferscale neuromorphic system combines analog and digital

technologies, supporting up to 40 million synapses for 180,000 neurons. Brain-

ScaleS leverages HiCANN neurocores interconnected on wafers, enabling precise

modeling of biological neural networks at speeds exceeding real time.
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Braindrop [149] represents another advancement in neuromorphic systems,

developed as a successor to the NeuroGrid platform [150]. This mixed-analog-

digital architecture is underpinned by the Neural Engineering Framework (NEF)

[151], which simplifies the design of non-linear dynamic systems. By abstracting

hardware implementation, the NEF framework mitigates challenges associated

with the variability of analog neurons and eliminates the need for users to possess

specialized hardware expertise.

More recently, Intel has entered the neuromorphic space with its Loihi pro-

cessor [152]. Loihi is a digital neuromorphic chip that supports the evaluation

of large-scale spiking neural networks (SNNs) and provides flexible neuron con-

figurations. Designed to cater to both research and practical applications, Loihi

integrates on-chip learning capabilities with support for diverse learning rules,

neuron models, and coding schemes. The chip includes 128 neuromorphic cores,

which collectively house 130,000 leaky integrate-and-fire neurons and 130 million

synapses. Its modular architecture allows multiple chips to be combined for scal-

ability [153]. The more recent Loihi 2 processor [101] takes this even further and

introduces the possibility of programmable spiking neurons.

The DYNAP chip series [154, 155], including DYNAP-SEL, DYNAP-SE2,

and DYNAP-CNN [156], further expands the neuromorphic processor landscape.

The SEL and SE2 chips both feature 1,000 analog spiking neurons based on the

adaptive exponential integrate-and-fire model. The SE2 includes 65,000 synapses

with adjustable delays, weights, and short-term plasticity, while the SEL offers

up to 80,000 reconfigurable synapses, including 8,000 with integrated spike-based

learning capabilities. The DYNAP-CNN chip, designed for spiking convolutional

neural networks, includes one million spiking ReLU neurons per chip and inte-

grates seamlessly with dynamic vision sensors [156].

Collectively, these developments in the processing units have been a critical

factor in the increase in interest and push in the NM field. NM chips define what

can be attained in terms of algorithmic implementations on potential real-world

applications, and effectively enable the low power, low latency computations that

NM is known for.
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2.2.4.2 Neuromorphic Sensors

Neuromorphic sensors have garnered significant interest from both academic cir-

cles and industry. This innovative sensing approach seeks to address the limita-

tions of traditional sensors, which often generate vast amounts of redundant data,

leading to excessive power consumption [157]. Examples of neuromorphic sen-

sors include silicon retinas (event-based cameras or neuromorphic vision sensors)

[158–161], silicon cochleae (neuromorphic audio sensors) [162, 163], electronic

nose systems (neuromorphic olfactory sensors) [164], and robotic skin (neuro-

morphic tactile sensors) [165].

Among these, the most prominent is the neuromorphic vision sensor (NVS).

The NVS, along with most other neuromorphic sensors, utilizes the Address Event

Representation (AER) [166], a standardized method for processing sensor out-

puts. These bio-inspired vision devices emulate the functionality of biological

retinas and operate differently from conventional cameras. Instead of recording

all information at regular intervals, they produce outputs only when a change is

detected.

This operation enables the sensors to capture luminosity changes at specific

moments, producing a continuous temporal derivative of luminosity. Each change

generates an event, e = [x, y, ts, p], where x and y represent spatial coordinates,

ts is the timestamp of the detected change, and p ∈ {1,−1} indicates a positive

or negative change in brightness. This mechanism increases signal sparsity, allows

asynchronous output, and provides microsecond temporal resolution, significantly

reducing power consumption and bandwidth requirements.

The NVS offers a dramatic improvement in temporal resolution, with output

rates ranging from 1 to 3 orders of magnitude higher than traditional sensors

(33 ms for conventional sensors versus 15 µs for event-based sensors) [160]. This

capability enables the NVS to function as an ultra-high-speed camera, effectively

achieving the equivalent of 66,000 frames per second for up to 800 pixels, without

the need to process unchanged pixels. Another notable feature of the NVS is

its high dynamic range, exceeding 140 dB compared to the 60 dB typical of

conventional cameras [160, 161]. This allows event-based cameras to perform

well under varying lighting conditions, including rapidly changing brightness and

low-light environments where traditional cameras fail.

Neuromorphic sensors represent the best way to identify suitable application

for an immediate implementation, as they provide a means to sense information

in a NM way (high dynamics, sparse and event-based sensing), thus allowing

the creation of an end-to-end NM system in principle. In this thesis, NVS have
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been indirectly used through two NM sensor-based datasets in Chapter 4. Other

chapters explore other avenues of applications and information encoding, but can

be viewed as a starting point to develop future NM sensors so as to enable such

applications to be NM from end to end.

2.2.5 Frameworks for SNNs

The development of Deep Learning algorithms was greatly eased by the introduc-

tion of purposely developed software packages. These packages, or frameworks,

usually offer a wide range of software tools that aim to speed up the development

of ML pipelines as well as make the algorithms available to a larger audience.

When referring to conventional DL, i.e. non Neuromorphic, several famous li-

braries exist, such as TensorFlow (TF) [167], PyTorch [168] or Caffe [169]. The

field of Neuromorphic engineering has recently seen the emergence of several new

software frameworks thanks to the renewed interest in its potential. However,

these frameworks are often in an early development stage when compared to

their conventional DL counterpart, being limited in the tools they offer, their

documentation, and the support from the community. Some more established

frameworks also exist, but they are often directed towards particular communi-

ties and use cases [15], or they are neuroscience-oriented frameworks rather than

NM-ML development tools. Furthermore, effective data science algorithms that

can close the gap with other conventional methodologies still need to be devel-

oped. Indeed, research highlights that, thanks to their use of sparse event-based

communications, algorithms employing SNNs can be shown to be more energy

efficient than others based on conventional CNNs [170], however, they are not as

effective on ML tasks in terms of accuracy. Hence the importance of having good

software frameworks that enable customization, simulation and deployment of

SNNs. This requires combining a number of key elements into a pipeline such as

learning rules, connectivity patterns, and spiking neurons. Regarding the spiking

neurons, emerging NM chips such as Loihi 2 [101] allow the use of customized

models. It has been shown in the literature that different types of neuron models

can solve certain tasks more effectively than other models [17, 76]. Therefore it

can be beneficial for researchers to use a framework that enables seamless exper-

imentation with different types of neurons.

In the literature, when presenting a new software framework, authors often

provide a brief report on other similar works, and draw comparisons with them

[20, 171]. In these instances, differences in terms of offered features are high-

lighted, as well as the advantages of using the newly presented software over the
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existing ones. Other works specifically focus on reviewing the existing frameworks

for the development of SNNs. One example is given by [172], where the authors

make a subdivision of the software packages into three main groups depending

on whether they are NM chips toolchains, SNN simulation frameworks or frame-

works that integrate SNNs and DNNs. Another work [170] gives an introduc-

tory overview of SNNs and then reviews some prominent simulation frameworks.

The authors also define a simple classification task and compare the accuracy

and execution time obtained by using the different frameworks. These previ-

ous two works consider frameworks regardless of their research orientation, i.e.

they consider both neuroscience-oriented and data science-oriented frameworks.

In the following sections, nine of the most prominent data science-oriented soft-

ware frameworks for the development of SNNs will be briefly reviewed, with a

particular highlight on available spiking neuron models and learning rules. The

review focuses on data science-oriented frameworks because they are more rele-

vant to the focus of this manuscript, and because the aim is to provide a more

specific reference to frameworks that are useful to develop NM applications in

this domain.

2.2.5.1 Software Frameworks

Many of the software libraries for the development of SNNs are oriented toward

the needs of the neuroscience and neurobiology fields [170]. Because SNNs pro-

cess inputs and communicate information in a way similar to the human brain,

they are particularly well suited for simulations of brain areas activations. Nev-

ertheless, the recent emergence of NM engineering as a field for developing ML

algorithms has highlighted the need for suitable frameworks. Researchers have

been active in the implementation of software tools that can ease the develop-

ment of NM algorithms in this direction. In the following sections, nine amongst

them are briefly reviewed, and a summary of some of their prominent features is

reported in Table 2.2.
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Tab. 2.2. Key elements of the reviewed frameworks. The “A-” stands for adaptive,
whereas “H-” stand for heterogeneous.

Framework Nengo Lava
SNN

Toolbox
Norse PySNN snnTorch SpikingJelly BindsNet SpykeTorch

Spiking
Neurons

LIF
A-LIF
IZ

LIF

RF*

A-LIF*

A-RF*

A-IZ*

Σ−∆

IF

LIF
AdEx
EIF
IZ

LSNN

IF
LIF
A-LIF

LIF
Recurrent LIF
2nd Order LIF

LSNN

IF
LIF
pLIF
QIF
EIF

IF
LIF
A-LIF
IZ

SRM

IF

LIF**

QIF**

EIF**

AdEx**

IZ**

H-Neurons**

Learning
Rules

Oja
BCM
BP

SLAYER
STDP
3-Factor

Pre-trained
SuperSpike
STDP

STDP
MSTDP

MSTDPET

BPTT
RTRL

BP
STDP
Hebbian

MSTDPET

STDP
R-STDP

Conversion
from

TF/Keras PyTorch

TF/Keras
PyTorch
Caffe

Lasagne

- - - PyTorch PyTorch -

Destination
Backend/Platform

Loihi
FPGA

SpiNNaker
MPI

CPU/GPU

Loihi
CPU/GPU

SpiNNaker
Loihi
pyNN
Brian2

MegaSim

CPU/GPU CPU/GPU CPU/GPU CPU/GPU CPU/GPU CPU/GPU

*Only available in Lava-DL.
**Added in this work (see Appendix A).

2.2.5.1.1 Nengo Nengo [173] is a Python package for building and deploying

neural networks. It is composed of several sub-packages to be used in case of dif-

ferent needs and destination platforms. NengoDL is to be used when aiming to

convert a CNN built using TF/Keras into its Nengo spiking version. NengoLoihi

allows to deploy NNs natively built in the Nengo Core package onto Loihi chips.

Other packages are NengoFPGA, NengoSpiNNaker, NengoOCL and NengoMPI.

Nengo builds on top of a theoretical framework called the Neural Engineering

Framework (NEF) [174]. Computations are based on the three principles of the

NEF: neural representation, transformation, and neural dynamics. Neurons in

Nengo are organized in Ensembles, and different types of neuron models are

available, among which the LIF[70], and IZ[16] models. Connections between

ensembles are designed to allow a transformation of the information from one

ensemble to another. Training in Nengo is possible with the Oja [175], BCM

[176] and backpropagation learning rules. Using Nengo as a tool for the develop-

ment of SNNs has the main advantage of having the possibility to target a wide

variety of backends and to convert conventional DNNs into a spiking equivalent

[170]. Nengo also allows for a certain degree of customization of the components;

however, it remains very oriented towards the NEF structure.
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2.2.5.1.2 SNN Toolbox SNN Toolbox [62] provides a set of tools to perform

automated conversion from conventional ANN models into SNNs. Conversion is

possible from three different DL frameworks, namely TF/Keras, PyTorch, Caffe

and Lasagne [177]. The framework supports conversion to models for PyNN [178],

Brian2 [179], MegaSim [180], SpiNNaker [181], and Loihi [182] where the SNN

can be simulated or deployed. However, depending on the components used in the

original ANN, some of the target platforms might not be available. During the

conversion phase, IF neurons are used for a one-to-one substitution. These are

then tuned so that their mean firing rate approximates the activation of the cor-

responding neuron in the original ANN. Neural networks must be pre-trained in

their original framework. Tuning conversion parameters and performing inference

is possible either through the command line or through a simple GUI.

2.2.5.1.3 Lava Lava [183] is a relatively recent framework built by Intel’s

Neuromorphic Computing Lab (NCL). The framework results from an evolution

from the Nx SDK software for Loihi chips, but aims to target other hardware

platforms as well. Lava is composed of 4 main packages, namely Lava (core),

Lava-DL, Lava Dynamic Neural Fields (DNF) and Lava Optimization. The cur-

rent state of the platform includes the development of deep SNNs trained with

SLAYER [24], and of SNNs converted from PyTorch. On-chip training through

SLAYER is currently not available. Instead, models need to be trained off-chip,

and weights must be exported to be used within the Lava core package. Within

Lava-DL, a number of neuron models are defined, such as the LIF, RF [75], RF

Izhikevich, Adaptive LIF [12], Adaptive RF, and Sigma-Delta [184] modulation

models. The core package currently supports LIF and Sigma-Delta modulation

neurons. Recent developments in the framework have seen the implementation of

on-chip learning functionalities through STDP and customized 3-factor learning

rules.
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2.2.5.1.4 PyTorch-based Frameworks

Norse

Norse [185] is a relatively recent PyTorch-based framework. It was devel-

oped with the aim of easing the construction of SNNs for ML solutions. This

framework offers a wide range of neuron models, such as the LIF, LIF variants

and extensions, and Izhikevich’s model. It also provides a LSNN [186], a spiking

version of the LSTM (Long Short-Term Memory) [187]. Norse has a functional

programming style. Neurons are mainly implemented as functions and do not

hold an internal state. Instead, the previous state of the neuron needs to be

provided as an argument at each iteration. The framework mainly allows for two

types of learning: STDP [134], and SuperSpike [143]. Therefore, both local un-

supervised learning and surrogate gradient learning are possible. Overall, Norse

provides a good degree of flexibility and allows leveraging all of the features of

PyTorch, such as GPU acceleration.

PySNN

PySNN [188] is another framework based on PyTorch aimed at developing ML

algorithms. Similarly to Nengo, connections between two neurons are modelled as

separate objects that have properties and can affect the transmission of a signal.

For instance, they can explicitly account for connection delays. Neuron models in

PySNN embed the concept of spike trace, which can be used for learning purposes.

Some available neuron models are the IF, LIF and ALIF. Concerning the learning

rules, it is possible to use either STDP or MSTDPET (Modulated STDP with

Eligibility Traces) [189]. The framework also provides some useful utilities to

load some NM datasets. A downside of using PySNN is that the documentation

is not complete.

SnnTorch

SnnTorch [190] also bases its architecture on PyTorch. Connectivity between

layers is enabled by leveraging PyTorch standard layers. Spiking neurons are

thought to be used as intermediate layers between these. Spiking neurons are

modelled as classes that hold their own internal state. Available models include

LIF-based models, second-order LIF models, recurrent LIF models, and LSTM

memory cells. Learning in snnTorch takes place with BP Through Time (BPTT)

using surrogate gradient functions to calculate the gradient of the spiking neurons.

The framework also offers the possibility to use a Real-Time Recurrent Learning

(RTRL) rule, which applies weight updates at each time step, rather than at
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the end of a sequence of inputs. The network output can be interpreted using

both a rate-based approach and a time-to-first-spike (TTFS) approach. Finally,

snnTorch provides access to the N-MNIST [191], DVS Gestures [192], and the

Spiking Heidelberg Digits [193] datasets, and includes useful network activity

visualization tools.

SpikingJelly

SpikingJelly [194] is a framework using PyTorch as a backend and adopting

its coding style throughout. It provides implementations of IF, LIF, parametric

LIF (pLIF), QIF, and Exponential IF neuron [77] models. The firing of neurons

in SpikingJelly is approximated by a surrogate function (such as the sigmoid)

that allows differentiation. The framework provides several utilities to read NM

and non-NM datasets. Concerning the NM datasets, it is possible to both read

them with a fixed integration time-window and with a fixed number of frames.

Among the available datasets, there are the CIFAR10-DVS [195] dataset, the DVS

Gestures dataset, the N-Caltech101 [191] dataset, and the N-MNIST dataset.

Finally, SpikingJelly also provides functionality for ANN to SNN conversion from

PyTorch.

BindsNet

BindsNet [171] is a library for the development of biologically inspired SNNs.

Despite having PyTorch as a backend, the coding style differs slightly. Execution

is implemented by running the network for a certain amount of time on some input

rather than explicitly looping through the dataset. BindsNet supports several

types of neuron models: IF, LIF, LIF with adaptive thresholds, Izhikevich’s,

and Spike Response Model (SRM)-based [12] models. Connections are modelled

explicitly and link one node of the network with another. Recurrent connections

are also possible. The provided learning rules are biologically inspired and can be

either two-factor (STDP or Hebbian) or three-factor (MSTDPET); hence no BP-

based learning rule is proposed. Through sub-classing, it is possible to customize

neurons, input encoding and learning rules. The framework also provides utility

tools to load datasets, such as the spoken MNIST, and DAVIS [160] camera-

based datasets. Finally, BindsNet includes a conversion system to convert neural

networks developed in PyTorch into SNNs.
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SpykeTorch

SpykeTorch [20] is PyTorch-based library for building SNNs with at most one

spike per neuron. This means that for each sequence of inputs, each neuron is

allowed to fire only once. Because of this, tensor operations can be easily used

to compute neuron activations. Because NM data includes the concept of time,

what is normally treated as the batch dimension in PyTorch is interpreted as

the time dimension in SpykeTorch. The framework is built to support STDP

and Reward-modulated STDP (R-STDP) with a k-Winner Takes All (kWTA)

paradigm to perform training only on the top k neurons at a time, and using

convolutions as a connection scheme. The only available neuron model is the IF,

which is provided as a function. Finally, the framework provides functionalities

to encode non-NM input through difference of Gaussians and intensity to latency

transforms, as well as some inhibition functions.

2.3 Conclusions

In this Chapter, fundamental elements that compose the field of conventional

Neural Networks and NM computing have been laid out. The initial excursus on

conventional Neural Networks provides the ground to understanding the differ-

ences with their spiking counterparts, and to understanding some key components

utilized in later chapters. Topics ranging from types of layers and activation func-

tions to the backpropagation algorithm are covered, helping to understand the

foundations on which Spiking Neural Networks have been developed. Neural

network structures based on both fully connected and convolutional layers are

presented. The concept of activation functions is closely related to the role of

spiking neurons in an SNN. Loss functions, which are a key contribution pre-

sented in Chapter 5, are also discussed. Concerning NM computing, Spiking

Neuron models within SNNs and SCNNs represent a core component that ef-

fectively differentiates them from conventional ANNs and CNNs. A review of

the most relevant ones is presented, as well as a review of works focusing on

studying their properties. This is particularly relevant for Chapter 4, as such

works are critically reviewed by highlighting their focus as being primarily on the

neurobiological aspects of spiking neurons. Due to the increased interest in ap-

plying NM concepts to engineering problems, this emphasizes the need for further

understanding of spiking neurons as a way to enhance the effectiveness of said

approaches. Moving on, neural coding algorithms are an ever-present concept in

designing SNN pipelines. These are particularly relevant for Chapters 5 and 6,
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and the key concepts behind them are thus presented. Learning rules are what

enable an NN to learn from some given data. In NM computing they take both

inspiration from biology and from teachings from conventional DL. Throughout

the following Chapters, both types will be employed, therefore relevant examples

are reported. Finally, simulations are the starting point when designing an NM

pipeline. Such simulations are enabled by software frameworks, which help speed

up the overall process. Because of this, a review of the most prominent ones is

also reported in the sections above.
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Chapter 3

Neuromorphic Applications in

the Time Series and EMG

Domains

3.1 Introduction

When delving into the diverse application domains of NM computing, researchers

predominantly focus on tasks such as image classification [196], object detection

[197] and tracking [198], SLAM [199], and optical flow [10]. These tasks represent

the cornerstone of current research efforts in the field. However, the scope of

NM computing is continually expanding as researchers seek to uncover novel

applications that can harness the unique advantages offered by NM paradigms.

This chapter provides a brief introduction to two promising applications that

have been explored in this thesis as potential research avenues for NM-based

solutions. First, the chapter discusses time series forecasting, presenting the

most conventional methods for processing data and performing forecasting. The

chapter also reviews the relevant literature that underpins the work detailed in

Chapter 5, offering a comprehensive background to contextualize the research

findings. Subsequently, the chapter introduces the Electromyography (EMG)

gesture classification task. This section highlights the use of the Ninapro dataset

[25], which is a pivotal resource utilized in Chapter 6. Additionally, the chapter

references significant literature related to solving the EMG gesture classification

task, thereby providing a thorough foundation for understanding the approaches

and methodologies applied in this area of research.

In summary, this chapter aims to present a broad overview of these two emerg-

ing applications, underscoring their potential to benefit from NM computing
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paradigms and setting the stage for the detailed discussions and analyses pre-

sented in the subsequent chapters.

Fig. 3.1: Example of a Stationary and a Non-Stationary signal). The stationary (blue
line) signal is white noise, while the non-stationary (orange line) signal exhibits a linear
trend.

3.2 Time Series Forecasting

Time series forecasting is essential for predicting future values based on historical

data, and it has applications across various domains such as finance, economics,

meteorology, and engineering [200–202]. Time series are composed of data points

indexed by time, and can be broadly classified into stationary and non-stationary

categories [203]. An example of this can be found in Fig. 3.1. Stationary time

series are characterized by statistical properties such as mean, variance, and au-

tocorrelation that remain constant over time. This consistency simplifies the

analysis and forecasting processes, making stationary time series ideal for apply-

ing many statistical methods. Non-stationary time series, on the other hand,

exhibit changing statistical properties over time. These changes can manifest

as trends (see Fig. 3.1 for an example of a linear trend), seasonal patterns, or

structural breaks, which complicate the modelling process . Non-stationary time

series can lead to unreliable and misleading results if not appropriately addressed.

Therefore, transforming non-stationary time series into stationary ones is a cru-

cial step in time series analysis. Techniques such as differencing, detrending, and

seasonal adjustment are commonly used to achieve stationarity [203]. The meth-

ods employed for time series forecasting have experienced a profound evolution
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over the years, reflecting a significant shift from traditional statistical techniques

to more advanced modern methodologies [201]. Initially, forecasting relied heavily

on classical statistical approaches, which were grounded in fundamental mathe-

matical principles and aimed at identifying patterns and trends within historical

data [200, 203]. However, as the field progressed, the focus began to shift to-

wards incorporating modern machine learning techniques [202], which introduced

new algorithms and computational methods capable of handling more complex

and dynamic data sets. The latest advancements in this domain have further

advanced the state of forecasting by integrating sophisticated neural network

models, which leverage deep learning architectures to capture intricate patterns

and dependencies within the data [202].

3.2.1 Classical Methods

Classical methods of time series forecasting are well-established and widely used

due to their simplicity and interpretability. These methods include the Autore-

gressive Integrated Moving Average (ARIMA) [200], which combines autoregres-

sion, differencing, and moving averages to model time series data. It is possible

to define an ARIMA(p, d, q) model as the following (adapted from [203]):

y′t = c + ϕ1y
′
t−1 + · · ·+ ϕpy

′
t−p + θ1ϵt−1 + · · ·+ θqϵt−q + ϵt, (3.1)

where y′t is the differenced series, ϕp are the autoregressive model parameters,

θq are the moving average model parameters, ϵt is white noise, and p, d, and q

denote the order of the autoregressive part, of the differencing (of y) and of the

moving average part respectively. ARIMA is highly interpretable and effective

for univariate time series that are stationary or can be made stationary through

differencing. It is particularly useful for capturing linear patterns and trends in

data. However, ARIMA requires the time series to be stationary, necessitating

pre-processing steps like differencing, and may struggle with capturing non-linear

relationships and complex patterns in the data [204]. The Seasonal ARIMA

(SARIMA) is a version of the ARIMA that is able to account for and model

seasonal effects in the data.

Another classical method is Exponential Smoothing with error terms (ETS

- Error, Trend, Seasonal), known for its flexibility in handling a wide range of

time series patterns, including trends and seasonality. Many different types of

ETS models are possible depending on the choice of the ETS components. A

simple one is the exponential smoothing with additive errors ETS(A,N,N) (A =
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Additive, N = None) [203]:

Forecast equation ŷt+1|t = ℓt

Smoothing equation ℓt = αyt + (1− α)ℓt−1,
(3.2)

where ŷt+1|t represents the forecast value at time t+1, ℓt is the smoothed value

at time, and α is a smoothing parameter considering the previous value of time

series yt and the previously smoothed value. ETS models are particularly effective

for short-term forecasting and are easy to implement. However, they may not

perform well with long-term forecasts or in the presence of complex, non-linear

relationships, and require careful selection of smoothing parameters [205]. The

Holt-Winters method extends exponential smoothing to capture both trend and

seasonality [206]. It is straightforward to implement and effective for data with

strong seasonal patterns. However, it may not perform well for non-linear trends

or when the seasonal pattern changes over time.

The Seasonal Decomposition using Loess (STL) [207] of Time Series is a ro-

bust method for decomposing time series data into seasonal, trend, and residual

components. This non-parametric approach offers flexibility and adaptability to

various types of data. However, STL can be computationally intensive, partic-

ularly for large datasets, and requires a substantial amount of historical data

to accurately capture the seasonal component. Despite these challenges, STL

remains a versatile and robust time series decomposition method [208].

Finally, Wavelet-based and Fourier forecasting methods provide a useful way

to enhance forecasting accuracy by offering complementary perspectives on time

series data [209, 210]. Wavelet methods excel at handling non-stationary data and

capturing localized features across multiple scales, making them adept at detect-

ing transient patterns and anomalies. In contrast, Fourier methods are powerful

for identifying and modeling periodic behaviors in stationary data through fre-

quency decomposition.

3.2.2 Conventional Machine Learning

The advancement of machine learning has significantly impacted time series fore-

casting by enabling the analysis of large datasets and intricate patterns that

classical methods struggle to capture. Recurrent Neural Networks (RNNs) are

particularly notable for their ability to handle sequential data and effectively

capture temporal dependencies [211]. RNNs maintain a hidden state that retains

information from previous inputs, making them adept at modelling time series
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Fig. 3.2: Schematics of a typical LSTM cell, adapted from [213].

with complex temporal patterns. However, challenges such as vanishing gradients

can hinder their performance in capturing long-term dependencies [212]. More-

over, the training of RNNs requires substantial computational resources, which

can be a limiting factor in practical applications. Long Short-Term Memory

Networks (LSTMs) address the limitations of traditional RNNs by incorporating

memory cells that store information for longer periods [213, 214]. These LSTM

cells are internally composed of three ”gates”: the forget, the input, and the

output gates. A schematic of this is reported in Fig. 3.2, which shows the use

of the cell’s state (Ct) for retention of long-term information, and of the hidden

state (ht) for short-term information propagation. To be more specific, these are

internally calculated as follows:

it = σ(Wixt + Uiht−1 + bi), (3.3)

ft = σ(Wfxt + Ufht−1 + bf ), (3.4)

ot = σ(Woxt + Uoht−1 + bo), (3.5)

C̃t = tanh(WCxt + UCht−1 + bC), (3.6)

Ct = ft ∗ Ct−1 + it ∗ C̃t, (3.7)

ht = tanh(Ct) ∗ ot, (3.8)

where it, ft, ot, and C̃t are the input gate, forget gate, output gate and activa-

tion vectors respectively, W<g> refers to the set of weights associated with each

variable, b<g> to the bias for each variable, xt is the input at time t, ht and Ct

the hidden state and Cell state at time t. Each gate is thus equipped with a

set of learnable weights, that enable the LSTM to learn what to forget, what to
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Fig. 3.3: Schematics of the dot-product attention (left), and the multi-head attention
module (right), adopted from [221].

retain, and what to propagate forward [215]. This makes them highly effective

for capturing long-term dependencies in time series data. Despite their advan-

tages, LSTMs are computationally intensive [216–218], require a large amount of

training data, and can be difficult to interpret compared to classical models.

Convolutional Neural Networks (CNNs), originally developed for image pro-

cessing, have been adapted for time series forecasting by treating the data as a

spatial sequence [219]. CNNs can automatically learn hierarchical features and

are efficient in capturing local patterns. However, they may not be as effective

for capturing long-range dependencies compared to RNNs or LSTMs and also

require significant computational resources.

Transformers, known for their success in natural language processing and

computer vision tasks, are now being increasingly explored for time series fore-

casting applications. These models leverage self-attention mechanisms to capture

long-range dependencies and intricate temporal patterns [220]. Differently from

LSTMs and RNNs, they do not have any recurrent unit, and process data se-

quences at once. Data points in a sequence are first tokenized, i.e. transformed

into a numerical representation (e.g., from a text input), and then contextualized

by means of a multi-head attention mechanism (see Fig. 3.3) [221].

This is roughly based on the calculation of the following dot product attention:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (3.9)
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where Q, K, and V are the query, keys and values vectors respectively obtained

via the application of a fully connected layer to the input sequence, dk is the

dimensionality of keys, queries and values, and softmax denotes the following

operator:

softmax(xi) =
exi∑N
i exi

. (3.10)

More in general, so-called Large Language Models (LLMs) in which attention-

based mechanisms are deeply rooted, are a transformative technology that rede-

fine human-computer interaction and drive innovation across industries [222].

They are groundbreaking tools that democratize knowledge and can provide ef-

ficient solutions to several types of problems in seconds. However, such transfor-

mative power comes at a great cost, both in economic and environmental terms.

Several studies have in fact shown that the carbon footprint of LLMs is a matter

of concern [223–225]. LLMs have in fact grown to having trillions of learnable

parameters and setting up one entails weeks of GPU-intensive training, storage

costs (one LLM can occupy several gygabytes), and inference costs once its been

deployed. One example is provided by BLOOM [224], a 176-billion parameters

model which is estimated to have emitted approximately 50.5 tonnes of CO2 dur-

ing its final training phase alone. The specific task of an LLM is to process a

sequence of tokens (words) in order to perform some actions. This is in essence

a special case of time series forecasting, which makes them relevant to the top-

ics treated in this thesis. As a matter of fact, some time series forecasting is

also performed as part of the training of some LLMs [222]. They are normally

faster to train than LSTMs and RNNs, however, their complexity and compu-

tational demands of pose challenges, requiring substantial amounts of training

data to achieve optimal performance and a vast amount of hardware resources

that can often only be provided by server farms, with extensive economical and

environmental costs.

In addition to deep learning techniques, classical machine learning methods

like Support Vector Machines (SVMs) are also used in time series forecasting.

SVMs are classical machine learning methods that have been widely used in time

series forecasting due to their effectiveness in classification and regression tasks

by finding optimal hyperplanes to separate classes or predict continuous values

[226, 227]. However, SVMs can be challenging to scale with large datasets due

to the fact that the training kernel matrix grows quadratically with the size

of the data set [228] and often require careful tuning of kernel functions and

hyperparameters to achieve optimal performance
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3.2.3 Neuromorphic Computing

Within the context of Neuromorphic Computing and Spiking Neural Networks,

time series forecasting has not garnered as much attention as other types of tasks;

nevertheless, there is an interest in applying NM concepts to this domain. One

notable work [229] delves into the application of a specific type of SNN, the

Polychronous Spiking Network, for financial time series prediction. This demon-

strates the feasibility and effectiveness of SNNs in handling time series data,

particularly in the domain of financial forecasting. The authors in [230] utilize an

STDP-trained SNN to predict price spikes in price time series and deal with high-

frequency data, demonstrating encouraging results. In [231], the authors compare

conventional DL-based solutions with their spiking implementations on financial

time series, concluding that better training systems are required to bridge the

gap between the two, which sees the SNNs achieving lower-lever performance.

A crucial element to consider when attempting to apply SNNs to time series

data is the encoding. Conventional time series are composed of floating-point

numbers, which are not normally suited for SNN processing [232]. This is a com-

mon and required step whenever dealing with data that does not yet exist in an

event-based NM format. In the works presented above, the authors adopt dif-

ferent methodologies to encode the data into spikes. In [230], Poisson encoding

is utilized to transform real-valued data into random sequences of spikes; [229]

employs a one-to-one encoding system between discretized time series values and

encoding neurons, a potentially effective way that nonetheless suffers from po-

tential scaling issues. As a matter of fact, to overcome this the authors bound

the number of encoding neurons to 100 and were required to perform a min-max

scaling and rounding as pre-processing steps so that the data would fit well with

their encoding choice. Other interesting works focus primarily on the importance

of the encoding system. In [232], the authors propose an interesting encoding

scheme that accounts for multivariate time series and transforms such series into

spatial-temporal spike patterns. They achieve this by means of a population of

randomly initialised CuBa LIF neurons (see Section 2.2.1.2.5) that fire whenever

input is received that is affine to the neurons’ synaptic weights. Whilst this rep-

resents an improvement with respect to rate coding-based methods [232], their

encoding layer requires to be pre-optimized on the dataset to improve data repre-

sentation power and relies on the assumption that CuBa neurons can be effective

interpreters of the features of the time series. In [233] the authors propose a

Single-Modal Pulse Encoding Module, composed of an image feature extractor

(which considers plots of time series) and an SNN LIF-based module. The over-
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Fig. 3.4: Encoding scheme as reported in [233]. The time series undergoes prepro-
cessing transformations such as WT, then two independent SNNs parse it as an image
and as a sequence of values to produce encoding spikes. Said spikes are finally used to
produce a prediction.

all approach seems to attain state-of-the-art accuracy levels, thus highlighting

the potential of SNNs in the time series domain. Nevertheless, the encoding

scheme could potentially introduce a non-negligible overhead, as it requires sev-

eral feature extraction steps before the encoding can finally take place. This is

also testified by Fig. 3.4, where the encoding schematics are reported. Here, the

time series undergo transformations and is then parsed both as an image and

a sequence of values by two independent encoding SNNs. An encoding system

based on the interval between two spikes is proposed in [234]. This encodes the

real-valued information as the size of the time interval between two consecutive

spikes, and the same approach is employed to encode the output information from

the network. As such, small values would result in sequences of close-by spikes

in time, while large values would see more time-distanced spikes. The proposed

system, completed by an evolutionary algorithm for training, shows promising

results by reporting a lower error on the datasets used for training with respect

to other models such as an MLP and an RNN. However, the encoding system can

potentially suffer from prolonged latency periods due to the larger values need-

ing to be encoded by larger inter-spike intervals. More broadly, the authors in

[235] make a thorough review of spike encoding systems (not necessarily related

to time series forecasting), and demonstrate how the use of the correct encoding

algorithm can help bridge the performance gap between Spiking Neural Networks

and conventional Artificial Neural Networks.

Finally, notable efforts also relate to the transposition of LLM-based solution

into a NM context. In [236], the authors succesfully build and train a spike-
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based version of GPT [237], one of the first LLMs developed, and demonstrate

it’s ability to not only match the performance of its counterpart, but also to have

lower energy consumption levels by up to two orders of magnitude. An other effort

was presented in [238], where the authors expand on the spike-based LLM works

and introduce an in-depth analysis and alternative methodologies to improve

the time complexity, energy consumption and overall efficiency of these types of

models. Such solutions offer an outstanding alternative to standard LLMs, which

have been previously discussed to be extremely costly. Nevertheless, they still

require large amounts of computations, and are still required to perform some

operations non-neuromorphically. A full end-to-end NM solution could take the

advantages brought by spike-based sequence analysis even further.

3.2.4 Energy Load Datasets

The breadth of application possibilities for time series forecasting and analysis

extends to a large number of different domains. As discussed in the previous

section, time series forecasting has become an indispensable tool across a wide

array of application domains. Its versatility stems from the ability to predict

future behavior based on historical data, enabling informed decision-making and

optimization in numerous fields. This thesis narrows its scope to energy load

forecasting, a critical area within the energy sector that directly impacts opera-

tional efficiency, resource allocation, and sustainability efforts. Accurate energy

load forecasts are pivotal for balancing supply and demand, minimizing costs, and

supporting the integration of renewable energy sources into the grid, thus pro-

viding energy providers with the right tools to make choices that are beneficial

to the environment.

Furthermore, the two specific datasets that have been focused on serve the

purpose of the research carried out in Chapter 5 well. These two datasets are the

Panama Short-term electricity load forecasting (Panama) [21] and the Electricity

Transformer Temperature with one-hour resolution (ETTh1) [239] datasets. The

Panama dataset was built on top of publicly available data sources, with data

available from January 2015 until June 2020. The dataset presents visible peri-

odicity in the load, as depicted in Fig. 3.5. The figure shows the electricity load

week-by-week and, in particular, highlights peak usages within certain hours of

the day, with daily periodicity. Nevertheless, the specific energy load within each

day and corresponding days across different weeks varies. In Fig. 3.6, it can be

seen how there appears to be a positive correlation between the energy load and

the temperature in Celsius degrees. This not only hints to the variability within
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each day, but also to the variability in demand peaks across different months of

the year.

Fig. 3.5: Panama energy demand week-by-week across years 2015-2020.

Fig. 3.6: Correlation between Temperature and Electricity Load in Panama dataset,
adopted from [21]. An increase in 1 °C correlates to an increase of 74.8 MWh in energy
demand.

The ETTh1 dataset, instead, focuses on the prediction of the electricity trans-

former’s oil temperature as an indirect measure of possible peaks in the demand.

That is because electricity demand forecasting is a non-trivial task, and compa-

nies often need to make decisions based on numbers that are much more inflated

than the real world ones in order to be safe [23]. Forecasts based on the trans-

former oil temperature, on the other hand, allow to monitor the health of the

transformer itself, but can also better inform decisions to balance the electric-

ity load across different transformers and energy sources. An excerpt from the
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ETTh1 can be found in Fig. 3.7. From the plot, the data have a highly vari-

able outlook within short time periods, but also an overall decaying trend across

the reported time span. Finally, the ETTh1 dataset has become a very popular

option for energy-related time series forecasting, and can thus serve as a good

benchmarking platform for future studies.

Fig. 3.7: Excerpt from the ETTh1 dataset. The plot depicts the Oil Temperature
(target variable).

3.3 EMG Gesture Classification

EMG signals are commonly used in various clinical and biomedical applications,

particularly in myoelectric prosthetics control for muscle movement classification

[10, 240]. EMG measures the electrical impulses that muscle cells generate when

they contract and relax. This electrical activity, recorded by means of a series of

accurately positioned sensors (in the case of surface EMG (sEMG), this is on the

skin), is a direct reflection of the underlying muscle activity and offers insights

into muscle function. They are crucial for enabling precise control of prosthetic

limbs by interpreting the electrical activity generated by muscle contractions.

Through this application, individuals with limb loss can achieve more natural and

intuitive control, greatly enhancing their quality of life. However, the processing

of these signals is not trivial as they are susceptible to noise and interferences

[240, 241]. Raw EMG signals are thus put through a pipeline of operations before

classification can take place. The first step typically involves preprocessing and

windowing [242]. Preprocessing involves the use of normalization and rectification

techniques [243] among the others, as well as filtering of unwanted frequency
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Fig. 3.8: Example of simple windowing. A window of size 5 is used to scan through
the data points with an overlap of 2 time steps. Every data point appearing in the
window from time to time is then added to an array of values, thus creating a sequence
of vectors forming a data set.

bands (e.g. the 50 Hz component from the mains supply when present). The

windowing process has been deemed of utmost importance for useful information

to be visible. It consists of chunking the signal into smaller windows of a set

length in time (e.g. 260 ms) before performing any feature extraction operation.

Furthermore, windows are normally selected with a percentage of overlap with

one another so as to be able to cover more features in the data, and to potentially

obtain more frequent classification outputs in shorter periods of time [242]. A

simple example of this can be found in Fig. 3.8, where a window of size 5 (time

steps) and overlap 2 is used to create a data set starting from a single series of

data points.

Following the initial preprocessing, a feature extraction step is usually ap-

plied. This involves using a number of techniques like Mean Absolute Value

(MAV), Root Mean Square (RMS), Slope Sign Change (SSC) [243], to extract

information from each window and stack them together into a single feature vec-

tor. Depending on the number of features extracted, the pipeline might require

the introduction of a dimensionality reduction step too [244]. Examples of this

are given by Principal Component Analysis and Linear Discriminant Analysis,

65



Neuromorphic Applications

Fig. 3.9: A typical EMG processing pipeline, adapted from [243].

and they operate by reducing the feature vector to a set of features that is much

lower in dimensionality but still highly representative of the initial information.

Finally, classification may be performed by means of several options that are

briefly discussed in the following sections.

3.3.1 Conventional Methods

Conventional methods for movement classification based on EMG signals rely

on statistical algorithms like Linear Discriminant Analysis (LDA) [244], which

projects data points onto lower-dimensional spaces to discriminate them from one

class to another, or, more often, on machine learning algorithms, as evidenced

by various studies in the field [245, 246]. Some examples are SVMs, K-Nearest

Neighbor (kNN), and Random Forests [244, 247] which have occasionally been

shown to outperform statistical methods, and have been recognized for their high

accuracy in classification tasks. Fig. 3.10 exemplifies the differences in the clas-

sification planes between the mentioned methods for a 2-classes dummy dataset.

The figures show how LDA and SVM tend to separate the data more neatly along

a classification line (support, for the SVM), while the Random Forest and kNN al-

gorithms find more diverse classification criteria. However, their practical deploy-

ment is often limited due to the variability in test conditions and the significant

computational requirements needed to achieve such accuracy [11, 244]. In recent

years, deep learning techniques have emerged as a promising alternative to tradi-

tional machine learning methods [248]. These techniques have demonstrated an

enhanced ability to generalize to unseen conditions, potentially overcoming some

of the limitations posed by conventional methods [249]. Despite these advantages,

deep learning approaches remain computationally intensive, posing challenges for

their application in wearable solutions, where computational resources are typi-

cally constrained. Notable examples of research in this area include the works of
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(a) (b)

(c) (d)

Fig. 3.10: Examples of classification planes in a 2-class dummy dataset, for LDA
3.10a, (linear) SVM 3.10b, Random Forest 3.10c, and kNN 3.10d.
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Fig. 3.11: Pipeline of the stage 2 processing of sEMG spectral data in [251]. The data
is first parsed by a CNN with each channel individually. The outcome is then used for
classification by two fully connected layers.

[250, 251], where frequency-based feature extraction systems such as the Fourier

Transform (FT) and Wavelet Transform (WT) are employed before processing

the data with a classifier. In particular, [250] compares the use of Fast Fourier

Transform (FFT)-preprocessed data and data from the original EMG domain

with different window size to train a CNN of varying size. They highlight that

longer windows are preferable when employing FFT data and that overall, FFT

data enables the CNN to achieve higher levels of accuracy, albeit significantly

increasing the computational cost. In [251], the authors utilize the spectrograms

of the EMG signals to train a 2-staged system, where the first stage determines

whether the class is “Rest” or another action, and the second stage allows to

identify the specific action, depending on the outcome of stage one. The second

stage CNN is only utilized in case the outcome of the first stage classification

is “Action”. If this is the case, the spectrograms of each channel in the input

are initially processed singularly, and finally collated into a sequence of two fully

connected layers to perform the final classification. The schematics of this stage

are reported in Fig. 3.11 for better understanding.

Additionally, a similar approach is seen in [252], where the authors integrate

an attention-based system on top of the initial FT preprocessing stage. In par-

ticular, they utilize both time domain and frequency domain data to obtain in-

termediate classification results from two independent networks. These are then

concatenated, as shown in Fig. 3.12, before being fed to a secondary classifier

that produces the final classification output. This method illustrates the con-

tinuous evolution and refinement of techniques aimed at improving the accuracy

and efficiency of movement classification based on EMG signals. Nonetheless,

the computational cost of implementing this solution can be prohibitive. Has

discussed in 3.2.2, Transformers-based solutions can become rather costly to run

in terms of memory requirements and computational power requirements. In the

reviewed work, three of them are present. On top of this, the FT applied to the

data can also prove to be a costly operation [250], thus further increasing the
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Fig. 3.12: Schematics of the classification pipeline presented in [252]. The pipeline
has been adapted from the original work, and shows the progression of the operations
performed starting from the raw data pre-processing and moving onto a two-staged
classification based on transformers.

power requirements of this solution.

In summary, while both machine learning and deep learning methods show

considerable promise for EMG-based movement classification, their deployment

in practical, wearable applications remains a significant challenge due to compu-

tational constraints and variability in real-world conditions.

3.3.2 Neuromorphic Computing

The operational limitations of myoelectric prosthetics include the necessity for

timely information processing and low power consumption, which implies a low

computational budget [10]. Wearable devices have limited power and memory

constraints, and often cannot have direct access to CPUs or GPUs [253]. As

discussed, an sEMG setup is composed of a series of electrodes that sense muscle

movements. The more the electrodes, the higher the resolution, the higher the

amount of generated data. Such data can require significant memory to be stored

and could incur losses if this is not possible, thus causing disruptions. The lack

of access to performing hardware often means that data needs to be transmitted

to some computing platform for processing, thus increasing the overall latency.

If this is not the case, solutions must be scaled down to fit onto the hardware

constraints of the wearable device, with potential losses in performance and with

significant costs on the autonomy of the device itself. Such limitations bring

Neuromorphic computing systems forward as a potentially suitable alternative to

conventional solutions. As a matter of fact, despite still being scarcely applied as

highlighted by their absence in systematic review papers [249], approaches em-

ploying SNNs have been proposed for the classification of movements and gestures
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starting from EMG signals. The work in [254] showcases how a relatively simple

SNN can achieve notable accuracy levels whilst maintaining low power require-

ments and low latency. They compare two relatively simple SNNs (an SCNN and

a fully connected SNN) to other methodologies in the literature using the Ninapro

DB5 dataset. They encode EMG data using a delta encoder, which consists of

emitting a positive or negative spike whenever the signal surpasses a threshold (or

goes below its negative). In this way, for each channel, two additional channels

are created, effectively transforming the 8-channel data into 16 spike trains per

each window the signal was broken into. The fully connected SNN achieves better

results than the SCNN, with an overall accuracy of 74%. This is also deployed

on a Loihi chip, where the authors measure their models’ latency and energy

consumption as being considerably low. However, the gap in accuracy with other

methods remains large. Another work [255] presents a slightly deeper SNN which

is able to achieve higher levels of accuracy on an FPGA board. Regarding the

data encoding procedure, they utilize the same as the previously reviewed work,

but apply their encoding to the first and second derivative of the signal too,

to emphasize the speed and acceleration of muscular movements. Their FPGA-

implemented model not only achieves a higher accuracy (85.6%) than [254], but

also consumes less power (1.708 mW as opposed to the 41 mW in the previous

work). Nonetheless, despite the increase in accuracy, their solution employs a 500

ms-long window, which may pose challenges for a real-time implementation which

normally requires an overall latency < 300 ms [256], and has been shown to incur

repeatability (and thus generalization) issues [242]. Furthermore, it still lags be-

hind conventional DL methods presented in earlier sections in terms of accuracy.

In [257], the authors propose an approach that combines a delta encoder for the

EMG data, a spiking version of RNNs for feature extraction based on excitatory

and inhibitory neurons, and an STDP-trained classifier which is used to cluster

inputs into distinct groups. In Fig. 3.13 the schematics of this are reported for

an easier understanding as found in the original work. Their method is shown

to achieve better performances than some of the references whilst maintaining

low latency. The authors also estimate an extremely small average energy con-

sumption (due to the neurons) of 1.155µW . Nevertheless, this approach requires a

pre-processing step to normalize and remove outliers in the data, which could ren-

der real-time processing more challenging. Furthermore, it employs a three-stage

processing through a randomly connected RNN for feature extraction, an STDP-

trained classifier layer, and a clustering algorithm for class determination. This

could prove non-trivial to operate, and, due to the several operations performed
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Fig. 3.13: Schematics of the pipeline adopted from [257]. The raw EMG data is firstly
pre-processed to remove outliers and normalize it, then an RNN composed of excitatory
and inhibitory spiking neurons extract information for an STDP-trained classifier. The
output of this is then used to cluster the data into separate groups and thus perform
classification.
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outwith the SNNs, the overall system could potentially incur further processing

times and computational requirements. Finally, the authors in [258] utilize an

interesting approach based on the fusion of EMG data and event-camera data.

They collect gesture data as shown in Fig. 3.14 (data collection setup), pre-process

the EMG signals and parse the data using different network models. They design

two types of SNNs, a spiking CNN and a spiking MLP, that are compared to con-

ventional DL counterparts. Their solutions are also implemented and tested on

neuromorphic hardware. Their solution demonstrates a 600x increase in efficiency

with respect to more conventional systems and highlights an energy consumption

on NM hardware in the order of magnitude of µJ . An interesting point worth

considering is that, in their investigations, the use of EMG data alone always

results in considerably poorer performance (< 25% accuracy). The use of gesture

imagery always results in better performance, but the combination of the two is

the solution that provides better accuracy overall. Nevertheless, while in the case

of conventional DL it does not vary considerably, when relying on the sole use of

EMG data the energy consumption of NM hardware is on average one order of

magnitude lower as compared to imagery data. This is probably due to the much

inferior amount of information that is propagated through the network, but it

underlines how important it could be to be able to rely on the EMG data alone.

Overall, they demonstrate that a fusion approach allows for reaching higher ac-

curacy levels than single-mode-based classification (either EMG or imagery data)

and that SNNs can attain higher performance levels at a much lower energy cost.

However, the solution they present has some inherent limitations. Firstly, they

employ feature extraction prior to processing the EMG signals which introduces a

computational and temporal overhead due to the fact that this kind of computa-

tion is likely to be performed on a conventional CPU; secondly, the utilization of a

fusion between the EMG sensors and the event-based camera limits the use cases,

for instance, it would not be compatible for implementation on prosthetic devices

for everyday use; finally, the use of both types of data considerably increases the

power requirements due to the higher number of events being propagated on the

NM devices, and considerations must be made regarding the feasibility of this

with respect to the real-world implementations.

Overall, the NM community has begun to take steps towards approaching the

problem of EMG-based classification of gestures where the advantages brought by

NM substrates and information processing fit well with the operational limitations

that applications based on these sensors can have. The literature has highlighted

that SNN-based solutions offer promising results not only in terms of energy
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Fig. 3.14: EMG and event-camera fusion data collection, as reported in [258]. The
gestures are performed while wearing a Myo armband and in front of an event-based
camera. From (B), the number of channels related to the event-based camera is con-
siderably higher (NxM pixels) than the 8 channels related to the Myo.

consumption but also in terms of attainable accuracy, thus strengthening the

foundation for further research into this field. An interesting observation from

this review of the literature is that the majority of the SNNs employed to tackle

this problem have been trained using the SLAYER learning rule, in particular

within the LAVA framework. A possible explanation for this regards the ability

of SLAYER to learn delays between neurons as well as synaptic weights and in

the possibility of deployment onto Loihi chips thanks to LAVA.

3.3.3 The Ninapro Dataset

The performance of the works reported above is normally evaluated using pur-

posely built datasets. A popular one that is found across several works is the

Ninapro [25] dataset. This dataset comprises several databases with different

specifics but with the general objective of providing training and testing data

for EMG gesture recognition. Particularly relevant for this thesis is Database 5

(DB5). This comprises data regarding 52 different gestures plus the rest condi-

tion for a total of 53 subdivided into three types of exercise (A, B, and C). An

example for each exercise is reported in Fig. 3.15. The collected data relates to

10 different subjects that were asked to perform each action for 6 times each.

EMG data was recorded by means of two MYO Armbands [259] (Thalmic labs)

positioned on the forearm for a total of 16 sensors (channels in the dataset) [25].

The dataset is considered to be an extremely challenging one [254]. Due to the

fact that participants were requested to go back to the resting position after each

repetition, the dataset is extremely imbalanced, with more than 60% of the sam-
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Fig. 3.15: Replicated example gesture images from the three different exercises in the
Ninapro DB5 dataset.

ples belonging to the rest class. Fig. 3.16 reports a bar chart of the number of

samples per each class in the validation set of Exercise A (as used in Chapter 6).

Moreover, the remaining 52 classes have a relatively small number of samples.

As such this dataset provides a good testing ground for the performance and

robustness of proposed solutions, and is for this reason utilized in Chapter 6.

Fig. 3.16: Number of samples per class in the Ninapro DB5 (validation) dataset. The
”rest” class (”0”) is predominant.

3.4 Conclusions

This chapter has introduced two application domains that are of interest to this

thesis. Time series forecasting is an ever-present problem across a number of

different fields. The chapter introduces relevant background literature regarding

conventional processing systems and highlights existing Neuromorphic approaches

to this domain. From the literature, conventional approaches appear to be well

established and able to achieve high levels of forecasting ability, but not without

limitations. Conventional methods for forecasting often rely on statistical mod-

els, which include methods for accounting for sources of non-stationarity such as

seasonality and trends in the data. These models become increasingly complex
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to utilize and require high expertise in each different time series domain. Fur-

thermore, they have been shown to fall short when compared to other DL-based

solutions, especially when the data becomes increasingly complex. DL works offer

promising results, at different costs. Conventional feedforward neural networks

are not inherently capable of processing time-based information, such as the one

contained in time series. As such, more complex structures like RNNs, LSTMs

and Transformers are required. They promise high levels of accuracy but come

with the cost of large memory requirements, large data sets, large training time,

and large power consumption. One notable endeavor is represented by LLMs.

LLMs make concurrently use of RNNs, LSTMs and attention-based mechanisms

to process sequences of token in order to perform predictions and generate text-

based responses. Their performance makes them an outstanding transformative

technology, which, nonetheless comes at great environmental costs. In this land-

scape, Neuromorphic computing comes as an alternative both in terms of lower

power requirements (in the view of an edge-device deployable time series fore-

casting solution) and in terms of time-based computational capabilities. SNNs

have been discussed have having such capability thanks to spiking neurons and

delay-learning, and the literature shows an interest in their application to this

domain. Furthermore, despite many NM applications are mainly inclined to-

wards relatively limited autonomous systems, an NM approach could also prove

beneficial in cases similar to LLMs. Considered the scale and the amount of com-

putations of LLMs, an NM solution could stand out as an alternative capable of

achieving similar results whilst employing considerably less computations thanks

to its spike-based logic that enhances sparsity and thus reduces the overall in-

formation propagation and power consumption. When approaching this problem

with SNNs, however, time series are often required to be encoded before being

processed. Nevertheless, the encoding is often only regarded as a means to trans-

form information into spikes, rather than an opportunity to remodel the data

into a more amenable form for learning. This poses the basis for further research

in this direction, as in order to conceive an end-to-end NM process elements like

conventional pre-processing of information cannot be included, or at least not in

a form that requires conventional CPU computations. The chapter thus intro-

duces two energy load and demand forecasting used later on in chapter 5. The

two datasets, Panama and ETTh1, feature useful characteristics for the purpose

of the work carried out later on, and represent and impactful way in which time

series forecasting can be applied. Both datasets, in fact, feature different types

of non stationarity (trends, periodicity, etc.) and are thus helpful in demon-
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strating the effectiveness of the algorithms presented in chapter 5. Concerning

EMG gesture classification, classical processing pipelines are presented, along-

side deep learning solutions, similar to the time series case. Again similarly to

the time series forecasting, conventional methods have shown promising results,

both showcasing the advantages of employing frequency-based feature extraction

pre-processing techniques, and the DL ability to generalize well to unseen data.

This comes at the cost of the need for large datasets and ample computational

resources, as well as high power requirements. Neuromorphic (NM) approaches

in this area are also presented and reviewed with particular attention to those

employing Ninapro DB5, a well-known challenging EMG gesture classification

dataset, as a benchmarking dataset. The presented solutions demonstrate the

feasibility of using SNNs to resolve this task but not without limitations. The

review highlights in fact that this kind of work often falls short in either accuracy

levels or real-time processing capabilities. Many works show considerable savings

in terms of power consumption, once again underlining the potential of NM so-

lutions, but can seldom compare with conventional deep learning approaches, or

need to resort to pre-processing, convoluted architectures or extra types of input

to reach acceptable levels of performance With the literature reviewed above,

navigating through the following chapters will result in a smoother effort, as well

as understanding the gaps that the presented contributions will try to fill.
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Chapter 4

Simple and Complex Spiking

Neurons

4.1 Introduction

Building a good knowledge base for the field of NM computing requires under-

standing the different components and tools that can be used to build a system.

In the particular case of Machine Learning applied to NM, these range from Neu-

ral Network architectures to learning rules, spiking neuron models and tools to

develop them. In Section 2.2.1 it has been shown that a multitude of different

neuron models have been theorized in the literature [12]. Different neuron models

vary in mathematical complexity, in the meaning of their parameters and in the

neuronal dynamics that they expose. Nevertheless, most of the time in practical

implementations only the simplest neurons are used, regardless of the evidence on

their limitations that are present in the literature, with the LIF [70] neuron model

being the de-facto standard choice. A review of the literature also highlighted

the lack of studies on the differences in using different spiking neuron models

within Machine Learning systems in the NM field. Indeed, a justification for the

use of a neuron model with respect to its performance on a task is hardly found.

From a hardware point of view, the LIF has been shown to be more efficient and

less memory hungry to implement than multi-compartment models and the HH

model [260], thus making it an understandable first-choice when researching NM

solutions. However, the limitations discussed earlier have also been highlighted,

with more complex models being able to attain a plethora of observed neural

behaviours. But, even outwith hardware contexts, the reasoning behind the LIF

choice is only given with regard to the model’s efficiency or biological plausibility,

however, no mention of the representational abilities of a model is made. While
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this is still a plausible reasoning, it can be a limiting factor for the possible direc-

tions that both algorithmic and hardware NM research can take. Furthermore,

the lack in the exploration of what functional differences could exist in different

spiking neuron models make it not trivial to make a solid choice for a neuron

model when developing an SNN. Within some specific contexts, the choice is

constrained by the available hardware. Several neuromorphic chips allow to only

adopt the specific neuron model that the chip is able to emulate [182, 261–264].

Until recently, the only chip allowing the implementation of customized neuron

models was SpiNNaker [145]. However, the recently released Loihi 2 [101] chip

adds to the list of chips with programmable neuron models, hence highlighting

the importance of an accurate investigation on this matter.

This chapter presents a study aimed at finding whether the usage of diverse

and more complex neuron models benefits learning with STDP in SNNs. The

study simulates an extremely simple real-time scenario, where the SNN processes

an NM input one time-step at a time and performs classification. This is en-

forced both in the learning stage and in the inference stage, hence ensuring that

learning via STDP takes place in a way such that computations at each time step

are dependent on the previous updates even within the same sample, thus being

more biologically plausible [126]. A subset of single-variable spiking neurons with

differing mathematical complexities was selected for comparison. To evaluate the

above, each neuron model was employed in the same SNN and learning setting,

and a number of experiments were designed to ensure robustness in the results.

Section 2.2.3.1 reported how STDP can be susceptible to the presentation order

of the data. In order to assess whether this effect could be amplified by the usage

of any specific neuron model, the study also comprises a set of experiments specif-

ically designed to analyse this possibility. The rest of the chapter is organized

as follows: section 4.2 describes the event data utilised in the study; Section 4.3

briefly details the studied spiking neurons models; Section 4.4 describes the neural

network and learning paradigm; Section 4.5 and Section 4.6 report a brief descrip-

tion of the classification an optimization methodologies respectively; section 4.7

reports details on the results of the experiments; section 4.8 highlights some key

implications over the usage of neurons and that stem from the obtained results;

chapter 4.9 summarizes the work, underlining the most important findings and

outlining further interesting research directions.
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4.2 Event-based Data

For the purpose of this study the N-MNIST [191], and the DVS Gestures dataset

[192] are used to create binary classification tasks using couples of classes ev-

ery time. The two natively neuromorphic datasets above are selected to assess

the performance of the SCNN, while other non-native NM datasets are purpos-

edly discarded as they do not possess a temporal domain, nor data is originally

event-based. This is because tasks based on non-temporal have been shown to be

possible to solve without the use of spiking neurons [18], whereas when the data

contains temporal information, spiking neurons do play an important role, thus

highlighting the need for such type of data to evaluate their capabilities.

Data in the N-MNIST dataset is collected by recording MNIST digits shown

on a screen using a moving DVS camera. Specifically, the camera makes the same

3 predefined movements for every sample, each lasting roughly 100 ms. In this

way, although the dataset is built on top of a non-neuromorphic one, data samples

in the dataset are natively event-based, rather than being converted from a static

image. Fig. 4.1 reports the count of events per each 5 ms time step throughout all

the classes of the dataset. By contrast, data samples in the DVS Gestures dataset

(see Fig. 4.2 for the inter-class distribution of events over time) are recorded using

a fixed DVS camera in front of which participants move their arms according to

instructions. Thus, 11 different classes of gestures are obtained, including for

example arm rotation, waving or performing air guitar. The 11th class encodes

“Other” random movements and is not considered in these experiments. This is

because the overall objective of the study is to determine whether any difference

is found in the model’s performance when using different neuron types, rather

than finding the best solution to a problem. It is thus of interest to create a

relatively simple set of tasks where such a difference can more easily be noted, if

present.

Event data comes in the form of Address Event Representation (AER)-encoded

[265] files in which every sample is constituted by a sequence of events. Events

are characterized by the specific time at which they occurred, by the location on

the 2D plane and by the polarity (negative or positive light change). Similarly

to [266], to make data usable by a 2D CNN, a 2D image is populated using all

the events that took place between time t and t + dt, allowing at most 1 event

per (x, y) coordinates. For simplicity, all events are considered to be positive and

a batch size of 1 is used. As a result, the network processes only a single event
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Fig. 4.1: Visualization of the number of events over time. The figure reports the
collective mean and variation of events throughout all the classes. As can be seen,
events tend to appear always within the same time ranges for all the samples of all the
classes in the dataset, thus highlighting the lack of temporal significance. Values on
the y-axis are scaled by a factor of 105.

Tab. 4.1. Table of hand-tuned parameters used for neurons. Each column represents a
different parameter, as outlined in Section 2.2.1.2. The capacitance C is used instead of
the resistance R by leveraging the equality R = τrc/C. For every neuron, the time-step
size used was 0.02, and the voltage threshold was recalculated for every 100 samples.
Where no unit of measure is reported, parameters are considered dimensionless

Neurons τm (s) urest C ∆T Θrh a uc

LIF 0.2 0 0.1 - - - -
EIF 0.2 0 0.1 1352 216 - -
QIF 0.2 0 0.1 - - 0.01 216

image with a time resolution dt belonging to only one sample at a time. Finally,

each event, or spike, is characterized with a value of 1
ts

in line with [12]. This is

done in order to preserve the amount of charge that a spike carries regardless of

the time-step (ts) size. No further pre-processing is applied to the data.
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Fig. 4.2: Visualization of the number of events over time in the DVS Gestures dataset.
The events span across the whole time domain and are highly dense for about the first
7 seconds. At that point, they start to decrease in number, however, the tail of the
curve continues for a long time. This is due to some of the gestures lasting longer than
others.

4.3 Spiking Neurons

The phenomenological family of neuron models is arguably the preferred option

when developing spiking neural networks, as described in Section 2.2.1.2. This

work specifically concentrates on three integrate and fire neurons, namely the LIF,

the QIF and the EIF. At the core of this selection lays the LIF model. The LIF is

the most widely used neuron model that embeds a time dependency through the

membrane potential leakage. As such, it is selected as being the starting point

of the comparison and drafts the requirements for the other neuron’s selection.

The models need to be point neuron models, real-valued and single-variable in

order to ensure a fair comparison. The other models, the QIF and the EIF,

align with these requirements being point-neuron models, real-valued (no complex

numbers), and employing one single variable for computations. As a matter

of fact, their constituent dynamics equations solely depend on the value of the

membrane potential, but they all employ different types of dependencies from it.

Furthermore, they are the base on which other multi-variable and popular neuron

models are built, respectively Izhikevich’s [16] neuron and the AdEx neuron model

[12]. Finally, these two models have been reported to having better abilities to fit

observed cortical neurons [12, 89]. The parameters used for these models in the

experiments where common parameters across the three are kept the same (see
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Fig. 4.3: Diagram of the Learning Pipeline. A 2D convolution layer parses the input
spike map and produces N feature maps with width size WxH. Each value in each
feature map is fed to a distinct neuron and the one spiking earliest is chosen as a winner
by the WTA mechanism. STDP weight updates are then applied to the convolution
kernel corresponding to that neuron.

Section 4.7) are reported in Tab. 4.1. From a practical point of view, experiments

using such spiking neurons have been designed and carried out within a version of

the SpykeTorch framework that has been modified and expanded to accommodate

the needs of the study. Details about these implementations are reported in

Appendix A as they can prove useful as a reference for future studies.
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4.4 SCNN and Learning

When designing an ML pipeline including a neural network, many different fac-

tors could determine the outcome of the learning. The interest of this study is

to assess the performance of an SCNN trained via STDP when one of its compo-

nents, namely the spiking neuron model, is varied. Since the performance could

be affected by a number of other components, a simple design for the experiment

is chosen which involves the minor number of structural elements possible. The

idea is to reduce the number of components that might impact the overall sys-

tem performance, and to thus be able to draw stronger conclusions with respect

to the role of the different spiking neuron models employed. To this extent, a

simple single-layer convolutional network is employed where spiking neurons are

embedded subsequently to the convolution operation on the input. This layer

parses the input events and serves as a connection with following layer of spik-

ing neurons. Fig. 4.3 illustrates the pipeline for a better understanding. In this

setting, the weights of the kernel of the convolutional layer can be thought of as

being synapse strengths, and the resulting feature map is the input post-synaptic

potential to a set of spiking neurons arranged accordingly. In other words, the

convolution represents the connectivity scheme for the spiking neurons. The use

of a convolutional layer to link inputs with the spiking neurons allows these to

more easily learn spatial features. The weights of the convolutional layer are the

only parameters being learnt by the network and no pooling nor normalization is

applied.

Learning in these experiments is carried out via the STDP rule presented and

used in [134, 267]. This STDP rule follows the mathematical formulations given

by Eq. (2.31), which is essentially a system of two parabolic equations that are

applied depending on whether LTP or LTD needs to take place. One of the con-

sequences of using this learning rule is that weight updates are self-regularized.

In fact, the closer the weights get to the boundary values, the smaller the up-

dates will be, allowing the weights to be refined more granularly as the learning

proceeds. Another aspect that is important to highlight is in how this learning

rule is applied. While the original theorization of Hebbian rules such as STDP

states that the weight update should be proportional in value and sign on the

time-difference between the post- and the pre-synaptic spikes, in a software im-

plementation some approximations are required. Therefore, for each time step

of the execution, LTP is applied on weights connected to input locations where

there has been a spike, and LTD in all the others. In order to promote competi-
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tive and differentiated feature learning, a kWTA (with k=1) learning paradigm is

also employed. WTA allows only k neurons per time-step to be eligible for STDP

updates, specifically, the ones firing sooner.

Finally, as a homeostatic mechanism to allow neurons to keep on firing despite

the changes in their synaptic weights, individual neurons’ thresholds are period-

ically re-calculated according to Eq.(4.1). This form of adaptive thresholding is

often required when employing STDP, and is a common practice for SNNs [267].

Vthresh = λ ·R · A · ts
τm
·W · (Wk ·Hk) · nc, (4.1)

and since τm = R · C, it is possible to equivalently re-write:

Vthresh = λ · A · ts
C
·W · (Wk ·Hk ·Nc), (4.2)

where A is the amplitude of the spike, in this case assigned to be A = 1
ts

, R is the

resistance, C is the capacity, τm is the membrane time constant, W is the average

value of the synaptic weights, Wk, Hk and Nc are the width, height and depth

(number of channels) of the synaptic kernel, and λ is a regularization parameter

that takes values in the range [0, 1]. In Eq.(4.2), the term A · ts
C
· W , can be

explained as being the average effect perceived on the membrane potential as a

result of a single spike, whereas the second term, (Wk ·Hk) ·nc, scales this effect to

the size of the synaptic kernel. Therefore, Eq.(4.2) calculates what would be the

average post-synaptic potential perceived in the case the input was dense with

spikes. The parameter λ serves as a regulation of what percentage of this amount

would be necessary to reach before emitting a spike.

4.5 Classification

Because an unsupervised learning rule is employed to enable learning, labels are

not used at any point during the learning of the weights. However, labels are

needed to classify data samples, therefore a system similar to [59, 268] is put in

place that counts, for each neuron, the number of times it spiked in response to

samples having a given label. At the end of the training phase, each neuron is

assigned the label for which it spiked the most during training.

During the inference phase, for each data sample, a sequence of spikes is collected

and weighted depending on the order they arrive. More specifically, the train of

output spikes is stored for each output class. When the last time step computa-
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Tab. 4.2. Table of optimized parameters used for neurons. Each column represents a
different parameter, as outlined in Section 2.2.1. The capacitance C is used instead of
the resistance R by leveraging the equality R = τrc

C . For every neuron, the time-step
size used was 0.02, and the voltage threshold was recalculated every 100 samples. HC
stands for Hand Clapping, while RHW stands for Right Hand Wave. Where no unit of
measure is reported, parameters are considered dimensionless

Neurons 0 vs 1 HC vs RHW

τm(s) urest C ∆T Θrh a uc τm(s) urest C ∆T Θrh a uc

LIF 0.0602 0 0.2983 - - - - 0.1435 0 0.3020 - - - -
EIF 0.2578 0 0.2178 32 91.14 - - 0.2389 0 0.2086 32 69.42 - -
QIF 0.2804 0 0.2178 - - 0.001 69.72 0.0621 0 0.1026 - - 0.0393 275.95

tions are completed, for each class, a counter is increased by an amount that is

the inverse of each spike’s arrival time, thus promoting earlier spike times. For

example, if the output neuron corresponding to class X has produced spikes at

times 2,3, and 4, the counter for class X will be increased by 1/2, 1/3 and 1/4

for a total of 1.08. A label is finally assigned depending on the highest value.

4.6 Hyper-parameter Optimization

Defining a good set of parameters for a machine learning system is a non-trivial

task. This often requires a lot of expertise and hand tuning and is greatly error-

prone. To reduce the possibility of selecting sub-optimal parameters for neurons

which would result in poor performance, an optimization system is thus used to

find reasonably good parameters for the experiments. Specifically, the BOHB

optimization [269] is adopted using the HpBandSter library. This technique com-

bines Bayesian Optimization (BO) and Hyperband (HB), a resource allocation

and early stopping strategy. To use BOHB, the implementation of the SCNN

pipeline had to be adapted so that it could be optimized using the HpBandSter

library. More importantly, domains in which every parameter was allowed to

vary had to be defined. For example, the time-constant τm could be drawn from

the interval [0.06, 0.26]. Moreover, because the optimization process could be

task-specific, separate optimizations for each different task were performed. The

final parameters obtained are summarized in Tab. 4.2. As a result of this process,

more robust conclusions about the performance of the neurons can be drawn, as

a poor configuration of hyper-parameters is more unlikely to have been selected.
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4.7 Results

The SCNN is trained as outlined in Section 4.4 using a subset of the N-MNIST

and the DVS Gestures datasets. In order to maintain the task simple, 4 dis-

tinct couples of classes from each dataset are randomly selected, and, for each,

a separate binary classification task is defined. This ensures a higher degree of

generalisation of the results than the case of testing on one couple of classes

only, while also helping reduce the possibility that some results only depend on

a particular choice of coupling. This simplification is functional to the objec-

tive of the study, which is to determine whether any change in the mathematical

complexity of the neurons can impact the overall performance. It is thus not in

the scope of this study to find a solution that works well on difficult tasks, but

rather to present a simple case where such difference can be noted. To a certain

extent, by presenting a simpler problem, the overall experiment garners a higher

degree of generalization: if a difference is in fact notable, it could be amplified

in more complex tasks. Furthermore, the order in which data is presented to

the SCNN might influence a system employing STDP as a learning rule. This is

due to the fact that STDP rewards and builds on the inputs that are presented

earlier. Therefore, to ensure independence from this behaviour of STDP, every

experiment is repeated a total of 11 times per task.

4.7.1 Same Hyper-Parameters Training

Experiments are first conducted using hand-tuned hyper-parameters. These were

found by a trial-and-error practice and represent a set of parameters that enabled

learning for the task at hand. This means that neurons using these parameters

were able to emit spikes and to have the weights adjusted in a way that enabled

the learning of representations of the inputs. Where possible, the same hyper-

parameters are adopted for all the neurons in all the experiments on each dataset.

Since the QIF and the EIF models introduce two different hyper-parameters each,

each of these hyperparameters undergoes a further hand-tuning. Results of the

training sessions are shown in Tab. 4.3 for the N-MNIST-based tasks and in Tab.

4.4 for the DVS Gesture-based tasks. Here, for every task and neuron model, the

average and best test accuracies achieved are reported , calculated according to

Eq.(4.3):

accuracy =
TP + TN

TP + TN + FT + FN
, (4.3)
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Tab. 4.3. Table of results on the N-MNIST dataset. In each cell, the mean accuracy
± the standard deviation values are followed by the best accuracy found (after the
comma). Values are rounded to the closest second decimal value.

Neuron Model 0 vs 1 2 vs 9 3 vs 7 4 vs 8

LIF
0.77±0.11,

0.93
0.74±0.06,

0.79
0.73±0.04,

0.78
0.57±0.02,

0.59

EIF
0.80±0.12,

0.94
0.64±0.07,

0.71
0.65±0.04,

0.71
0.55±0.04,

0.61

QIF
0.57±0.03,

0.61
0.54±0.03,

0.58
0.51±0.02,

0.55
0.52±0.02,

0.55

Tab. 4.4. Table of results on the DVS Gestures dataset. In each cell, the mean
accuracy ± the standard deviation values are followed by the best accuracy found
(after the comma). Values are rounded to the closest second decimal value. In the
table, HC stands for Hand Clapping, RHW for Right Hand Wave, RACW for Right
Arm Clockwise, AG for Air Guitar, RACCW for Right Arm Counter Clockwise, AR
for Arm Roll, LACW for Left Arm Clockwise and AD for Air Drums.

Neuron Model HC vs RHW RACW vs AG RHCW vs AR LACW vs AD

LIF
0.53±0.06,

0.60
0.50±0.05,

0.56
0.54±0.13,

0.66
0.52±0.09,

0.69

EIF
0.58±0.12,

0.77
0.50±0.04,

0.58
0.53±0.11,

0.66
0.46±0.05,

0.52

QIF
0.57±0.10,

0.71
0.48±0.04,

0.52
0.62±0.06,

0.67
0.53±0.09,

0.75

where TP stands for true positive, TN for true negative, FT for false true and

FN for false negative. On each column (task), the best average score and the

absolute best score are highlighted in bold.

By examining the results on the N-MNIST-based tasks in Tab. 4.3, the LIF

neuron model is found to perform better than the other two on average. Indeed,

the EIF has higher average accuracy only on the 0 vs 1 task, whereas the QIF

model fails to achieve accuracy levels high enough to match any of the other two

counterparts.

Considering the results reported in Tab. 4.4 concerning the DVS Gestures

dataset, the situation differs slightly. The performance of both the LIF and the

EIF neuron models, on average, decreases drastically, whereas the QIF maintains

similar levels of accuracy as in the N-MNIST case. Nevertheless, both the EIF

and QIF demonstrate superior classification abilities throughout and their top

accuracy levels often surpass those of the LIF model. These trends in the accu-

racy levels highlight two main aspects. Firstly, the complexity of the N-MNIST
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Tab. 4.5. Table of results using optimized hyper-parameters. In each cell, the mean
accuracy ± the standard deviation values are followed by the best accuracy found (after
the comma). Values are rounded to the closest second decimal value. Optimization
and evaluation is performed on one representative task per dataset only.

Neuron Model 0 vs 1 HC vs RHW

LIF
0.95±0.02,

0.982
0.53±0.05,

0.625

EIF
0.74±0.15,

0.93
0.57±0.11,

0.67

QIF
0.90±0.05,
0.985

0.55±0.05,
0.625

data is lower than that of the DVS Gestures dataset. Indeed, in both cases,

the same neural network architecture (with the exception of the kernel size, to

account for the higher dimensionality in the Gestures data) and neuron models

were employed, yet the accuracy in the DVS Gestures is on average considerably

lower, hence highlighting the greater difficulty of the task. Data samples in the

DVS Gestures dataset arguably have richer visual and temporal features which

render the learning more difficult when compared to the N-MNIST. Secondly, the

richer temporal diversity of the features might be better represented by means

of neurons with richer voltage dynamics, such as the QIF and EIF. As shwon by

the experiments, in fact, these two are steadily better than the LIF models and

even though in some instances one performs more poorly, the other still attains

higher accuracy, possibly as a result of a better affinity to the temporal dynamics

found in that particular task.

4.7.2 Optimized Hyper-Parameters Training

As a second set of experiments, the optimization system outlined in Section 4.6

is employed to obtain a set of hyper-parameters that is heuristically optimal for a

specific scenario. The optimization is carried out on the “0 vs 1” and on the “HC

vs RHW” tasks for each neuron model individually. A total of 24 optimization

iterations is allowed for each neuron and task, to not favor any experiment over

the others. Results are reported in Tab. 4.5. Once again, after obtaining the

optimized hyper-parameters, each model is trained and evaluated a total of 11

times to increase the robustness of the results.

Since the optimization is task-specific, the models are only evaluated on the two

representative tasks they were optimized on. In the case of the “0 vs 1” task
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based on the N-MNIST, overall, the accuracy levels drastically increase. The LIF

model accuracy grows by nearly 20 percentage points on average; however, the

most striking increase is the accuracy of the QIF model, which gains 33 percent-

age points on average and 37.5 in the best case. This not only highlights the

sensitivity of neuron models to their hyper-parameters, but also confirms that

neurons with more complex dynamics can perform just as well as simpler ones.

In the case of the “HC vs RHW” task, instead, it is possible to see a slightly

different trend. In the first place, the results are surprisingly worse than those

obtained through hand-picked parameters. The hypothesis is that this is because

the optimization system required more iterations to find a good set of hyper-

parameters. As stated above, the same number of optimization iterations as in

the case of the N-MNIST dataset was allowed to maintain consistency. However,

if the objective was to attain higher accuracy levels, a greater number of iterations

would have been beneficial given the higher level of complexity in DVS Gestures

features. Secondly, although still struggling to achieve higher accuracy levels, the

SNNs employing QIF and EIF averagely outperform those with the LIF. This

confirms the results obtained using the same hyper-parameters and strengthens

the hypothesis that richer dynamics can be beneficial when employed on data

with a richer set of temporal features.

Another point worth considering is the variability of the results obtained. Span-

ning from the N-MNIST-based tasks to the Gestures-based ones, the different

neuron models demonstrate accuracy levels with a standard deviation of up to

15 percentage points. The hypothesis is that this effect is caused by the order

in which data is presented to the system in relation to the STDP learning rule

which, as reported at the beginning of this section, is sensitive to such order. It

is also possible to observe that the EIF model has higher fluctuations on average,

which could possibly reflect a higher sensitivity to this effect.

4.7.3 Sensitivity to data presentation order

The previous paragraph hypothesised the EIF neuron model was particularly

sensitive to the presentation order of the data as a result of being trained through

STDP. Driven by this, in this section, a series of controlled experiments aimed at

studying this hypothesis is performed.

In order to assess whether any neuron is more sensitive to the order of the

data, some parameters of the experiment must be constrained to ensure the fi-

nal results do not depend on these. Since a homogeneous set of neurons (they

all share the same parameterization) has been used in the experiments, the only
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Tab. 4.6. Table of standard deviations on the N-MNIST dataset. Each cell reports
the standard deviation calculated across all the experiments per each neuron and each
task. Values are rounded to the closest third decimal. For each task, the highest values
are highlighted.

Neuron Model 0 vs 1 2 vs 9 3 vs 7 4 vs 8

LIF 0.092 0.063 0.068 0.061

EIF 0.054 0.074 0.056 0.024

QIF 0.076 0.069 0.065 0.021

varying elements are the convolutional weights (randomly initialized), and the

order of the data itself. Hence, consistently with the previous methodology, a

set of 11 experiments per task and neuron model is designed in which the ini-

tialization of weights is fixed using a seed for the random number generator.

Further to this, each neuron model processes data presented in the same order.

In other words, each neuron model is evaluated using the same order of data

before changing to another order for a total of 11 times per task. By doing so,

the possibility of any neuron model displaying certain sensitivity levels as a result

of fortunate/unfortunate randomization of the data is ruled out.

As a measure of the network sensitivity to the presentation order of the data,

the standard deviation of the accuracy across all the experiments per each neuron

and task is considered. These are reported in Tab. 4.6 and Tab. 4.7. The average

sensitivity with 95% confidence intervals for each neuron model is reported in

Fig. 4.4.

A one-way analysis of variance (ANOVA) is performed to verify whether

any neuron is significantly more sensitive than others. The test assumptions

were checked. Levene’s test was non-significant (p = 0.256), indicating that

the assumption of homogeneity of variance was not violated. Normality was

checked with a Q-Q Plot. No deviations were noted. No significant difference

among the three neuron models in sensitivity to the order of the data as found,

F (2, 21) = 0.514, p = 0.605, η2p = 0.047. In the context of the experiments

above, these findings indicate that using either neuron model does not increase

nor decrease the sensitivity to the presentation order of the data.
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Tab. 4.7. Table of standard deviations on the DVS Gestures dataset. Each cell reports
the standard deviation calculated across all the experiments per each neuron and each
task. Values are rounded to the closest third decimal. For each task, the highest values
are highlighted in bold.

Neuron Model HC vs RHW RACW vs AG RHCW vs AR LACW vs AD

LIF 0.086 0.051 0.122 0.028

EIF 0.049 0.049 0.114 0.032

QIF 0.088 0.079 0.101 0.074
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Fig. 4.4: Plot of average standard deviations with 95% confidence intervals. The
average was computed across all tasks per each neuron.

4.8 Discussion

4.8.1 Implications of Using Different Neuron Models

The usage of spiking neuron models has some inherent implications on the ma-

chine learning pipeline from the implementation and the theoretical points of

view.

Concerning the implementation, spiking neurons come with a whole set of hyper-

parameters to tune. Considering the LIF, the simplest version requires a single

parameter (the time constant or a leakage term), but other implementations

might include up to 5 different parameters, such as the refractory period or the

time-step size. By using the QIF or the EIF, there are at least two new and

non-optional parameters to consider (see 2.2.1).

Determining a good set of hyper-parameters is a non-trivial task [270]. Although
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in the NM field a lot of inspiration is taken from the human brain, it is not pos-

sible to simply assume that the same parameters that work in such a complex

system would still be applicable in a simplification such as an SNN. It is hence

necessary to tweak the hyper-parameters to meet the needs of the use case or,

alternatively, to define a parameter optimization strategy that does that heuris-

tically in an automated way. However, the latter solution also often requires

making guesses about the domain in which parameters can vary and it requires a

long time to compute. Furthermore, hyper-parameters can be correlated in some

way, thus making both the hand-tuning and the automated optimization process

more difficult. As a result, from an implementation point of view, using neuron

models that require more hyper-parameters can significantly increase the usage

complexity.

From a theoretical point of view, using different neurons or varying the param-

eters means opening to different non-linear dynamics and excitability patterns.

Fig. 4.5 and Fig. 4.6 provide a visual understanding of these differences. In the

LIF, the membrane potential updates depend linearly on the previous state of the

membrane potential itself. The EIF manifests a similar relationship up to certain

values of membrane potential (Θrh), after which the relationship assumes a more

non-linear (exponential) aspect. The QIF loses any linear relationship in favour

of a quadratic one. These dynamics play a role in the excitability (regions) of a

neuron [12]. For instance, an EIF with a smooth exponential term (blue line in

Fig. 4.5b) will receive more mitigated updates throughout (slow-forgetting neu-

ron), whereas an EIF with a sharp exponential term (orange line) will receive

more negative updates up to the cutoff threshold Θrh and then highly positive

(+∞) ones, thus immediately reaching the firing threshold Vth. Hence, the second

example would be a fast-forgetting neuron, but the cut-off threshold will act as

an early firing threshold, as any subsequent update would bring the membrane

potential up and above the actual firing threshold. A similar example is reported

in Fig. 4.6, where a change in the time-constant τm makes a LIF neuron forget

faster or slower. This in turn has effects on the excitability of the neuron and its

firing pattern.

The different firing abilities discussed above need to be considered within the

context of the application where the neurons are used. By considering the case

of a homogeneous SCNN that is trained on a dataset in which the temporal

distribution of events is similar for every sample, it might be pointless to have a

wide range of excitability patterns as more complex neurons have. In fact, the

increased amount of parameters would make it more difficult to find the right
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(a)

(b)

Fig. 4.5: Example of membrane potential dynamics of the spiking neuron models. In
both figures, the y-axis represents the variation of the membrane potential du, while
the x-axis represents the value of the membrane potential itself u. Fig. 4.5a compares
the three spiking neurons, whereas Fig. 4.5b is an example of how varying the sharpness
parameter ∆T can affect the dynamics of the EIF.

excitability that works well with that data. At the same time, they would likely

come at a higher computational and power cost. Conversely, if the dataset is

considerably diverse in terms of the temporal distribution of events, it would

arguably prove useful to have a broad range of excitability patterns to choose

from. Therefore, a heterogeneous network of spiking neurons would possibly be

able to learn better or simply more features. In this context, employing more

complex neurons with variable parameters can be significantly beneficial.
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(a)

(b)

(c)

Fig. 4.6: Example of Changing Hyper-Parameters in a LIF Neuron. The “Fast for-
getting” neuron (smaller time constant τm) (Fig. 4.6b) can only spike twice in response
to the input (Fig. 4.6a). The “Slow forgetting” one (Fig. 4.6c) can fire three times and
maintains a higher membrane potential throughout. Note that the “Slow forgetting”
neuron also fires earlier, i.e. it requires less (close) spikes to reach the threshold. Both
the neurons have a refractory period of 2 ms.

4.8.2 Temporal Features and Neuron Performance

In the discussed experiments, an extremely simple homogeneous SCNN was used

to perform a simple classification task on a simple subset of the N-MNIST and

DVS Gesture datasets. The N-MNIST dataset, although natively event-based,

is not naturally dynamic. The original data, the MNIST handwritten digits, are

static images that do not contain temporal dynamical features. As such, the tem-

poral features that are instead present in the N-MNIST are crafted. Furthermore,
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these dynamics are obtained by moving a DVS camera using the same sequence

of movements with the same timing. Fig. 4.2 shows that, as a result, the distribu-

tion of events throughout each sample present in the dataset is roughly the same.

This means that the temporal features are not different from one another and

are hence not discriminative of different classes of samples. Indeed, as discussed

in the previous paragraph, using a homogeneous SCNN was enough to achieve

reasonably high accuracy levels, despite the lack of diversity in the dynamics of

the embedded neurons.

Concerning the performance in such homogeneous settings with three single-

variable neuron models, it has been found that all of them have the ability to

perform well. The difference however is in the cost of using one neuron rather

than the other. From the experiments, it has been found that when hand-tuning

parameters, the LIF neuron achieved averagely high accuracy levels, with the EIF

neuron being better at times. When using a set of optimized hyper-parameters,

a considerable improvement in the overall classification accuracy was observed,

with the QIF achieving a 98.5% accuracy in the best case, thus surpassing its

counterparts. The same QIF model performed rather poorly when using non-

optimized parameters. As mentioned in Section 4.7.2, this highlights the fact

that, despite the data displaying simple spatio-temporal features, more complex

neurons are still able to perform well. The cost of achieving such results can,

however, become rather high.

When employing DVS Gesture data, the situation is slightly different. In this

case, as depicted in Fig. 4.2, there is no recurring distribution of events across

different classes. Instead, events are distributed throughout the whole time do-

main. Each class of gestures has a distribution of events that varies with respect

to the others, even more, because of the fact that different actions require a dif-

ferent time to be executed. Thus, the temporal features in this dataset are more

important and diverse. As a matter of fact, this is also shown by the results

obtained using the same network as in the previous case. Here, although the

performance gain is still modest, the EIF and QIF neurons steadily attain better

classification accuracies than the LIF model. Since the same setting was used for

all the experiments, this is likely traceable to the aforementioned differences in

temporal features, which are now more diverse and complex than those in the

N-MNIST dataset.

95



Simple and Complex Spiking Neurons

4.8.3 Temporal Features and Depth of the Network

The matter of temporal variety in the features being better represented by more

complex dynamics opens up further questions as to their use in SNNs. Indeed,

when considering a hierarchical NN, the deepest layers normally learn more ab-

stract representations, whereas the early layers typically learn to distinguish sim-

ple patterns, such as edges or corners [35]. This is easily conceivable when think-

ing about spatial features. For example, when a set of lines is recognized in the

early layers of a CNN, these could later be understood to be a square, and fur-

ther down the network as a house. Although it can be more difficult to imagine,

when the time dimension is included, similar scenarios can arise where features

relate temporally rather than only spatially. It thus seems straightforward that

the temporal relationships might vary in complexity in different stages of the

network depending on the task at hand.

It has been shown that the use of more complex neuron models improves the

performance on more complex tasks at the level of one layer. When combining

several of these layers in a hierarchical network more uses of their non-linear dy-

namics could arise, as they would combine several spatio-temporal features built

up in previous stages to understand compound featural patterns.

4.9 Conclusions

In this chapter, a simple unsupervised SCNN has been considered and the effect

on the overall performance of changing the underlying neuron models analysed.

To achieve this from a practical point of view, the framework extension developed

and discussed in Appendix A has been used. Firstly, a set of 4 binary classification

tasks has been defined using 4 couples of classes from the N-MNIST dataset on

which the SCNN has been repeatedly trained and evaluated. Experimental results

on these tasks show that all three neuron models (LIF, QIF, EIF) can achieve

top-level accuracies, albeit the more complex ones require more fine-tuning. In

a second instance, the DVS Gestures dataset is instead utilised, which exposes a

richer set of features from both the visual and temporal points of view. In this

case, the EIF and QIF steadily outperform the LIF on all 4 tasks drawn from

this dataset. Further to this, an analysis of the sensitivity to the order of pre-

sentation of the data of the SCNN with each neuron model has been performed.

The analysis shows that none of them implies a statistically relevant difference

in terms of sensitivity and that such sensitivity is probably only relatable to the

use of STDP, in these experiments. While the scenarios analyzed in this study
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focus on specific neuron models, the findings are applicable to a broader range

of neurons. This study demonstrates that variations in mathematical complexity

can influence performance levels and that these variations are closely tied to the

complexity of the dataset’s features. These insights pave the way for further re-

search into determining which neuron models are best suited for specific functions.

Additionally, the results highlight the potential performance benefits of selecting

an appropriate spiking neuron model. Furthermore, it highlights that further

research aimed at unveiling the role of the dynamics of neuron models in deep

hierarchical learning would be highly beneficial to close the gap between conven-

tional DL approaches and SNNs. These findings can also be generalized beyond

the scope of binary classification. If a difference is in fact notable when solving

a task as simple as binary classification, the simplest type of classification, when

extending to a greater number of classes such difference could become even more

evident, given the need for the separation ability of the network to be greater,

and for higher chances of fine-grain cross-class features in the data to be simi-

lar. In general, the combined use of spiking neurons and STDP to build an SNN

can lead to solutions that are more amenable to edge computing devices. If an

SNN with accurately-selected spiking neurons is deployed on edge-devices, STDP

training can be employed directly on the device thanks to the considerably lower

amount of computation and memory required for it to operate. This is because

STDP can operate weight updates in real-time and in a localized fashion, thus

not requiring computationally-intensive gradient calculations and large sets of

memory to store intermediate backpropagation results.Other future studies could

consist of analysing further relationships between the neuron models and other

components of the learning pipeline, such as the neural network architecture, and

the learning rule.
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Chapter 5

Approaching Time Series

Forecasting via Derivative Spike

Encoding and Spiking Neural

Networks

5.1 Introduction

When considering the application domains for SNNs, the literature is rich with

works focusing on resolving tasks like tracking, object detection, classification,

and optical flow, to name a few [200]. Typically the end goal of these applications

is to develop an algorithm that could be deployed onto an edge system with

limited capabilities (hence requiring low Size, Weight, and Power – SWaP), which,

as largely discussed in the literature [10], can be achieved by leveraging the NM

substrates that could host such algorithms; equally one may want to leverage

the high dynamic range of a NM camera that allows it to see rapidly-moving

objects better than a conventional vision sensor; or yet again one could inspect

a scene where the background is relatively static, and where, potentially, an NM

approach could therefore drastically reduce the memory requirements. To this

extent, researchers make use of a plethora of different datasets as a means to

validate a given NM algorithm. However, that of understanding what makes

a good dataset to prove an SNN’s worth is still a very active field of research

[18, 271] and wide consensus is yet to be reached. At the same time, the research

community is always active in trying to determine potential applications where

employing NM-based systems could prove to be beneficial when compared to

more conventional methods [10].
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Time series forecasting is an ever-present task of interest in various research

fields. Some examples are finance, meteorology, and logistics, but the list is long

[211, 214, 220, 226]. When broken down into its core components, other types

of data like videos or NM recordings can also be regarded as being time series,

as they are but a collection of time-indexed images or events. However, when

referring to time series, the most common connotation is that of time-indexed

data points that are not normally associated with the visual domain.

As discussed in Chapter 3, traditional methods for time series forecasting

include ARIMA, ETS, and STL[200]. These methods are based on mathematical

models that capture the statistical properties of the time series data, such as

trends, seasonality, and residual errors. While these methods have been widely

used for many years, they can falter in accurately capturing complex non-linear

dependencies in the data [272]. More recent methods include Wavelet-based and

Fourier transform-based ones that can capture more complex properties in the

data [209, 210].

With the recent advancements in DL, deep neural networks have become a

popular approach for time series forecasting. Methods such as LSTM networks

and RNN have shown promising results on a range of time series datasets, thus

proving deep neural networks to be a viable solution in this domain. Such models

have been further outperformed by the advent of the Transformers and, more in

general, large language models. These groundbreaking solutions have established

a strong state of the art in several fields, among which time series forecasting,

but at the cost of even more intense computational costs, as outlined in Chapter

3. However, these require utilising complex systems to be able to process data

in the time dimension, so that such methods are often unfeasible for real-time or

online deployment [217, 218].

NM computing operates on the principles of event-based information process-

ing, which is thought to be more biologically plausible and energy-efficient than

traditional, rate-based neural networks [17]. This has been rendered possible

by the technological advancements in NM vision sensors [160], and NM chips

[101, 145, 182, 261], which enable sparse, asynchronous perception and process-

ing. Such sparsity and asynchronicity can be fully exploited by means of Spiking

Neural Networks, however, in the context of time series forecasting, their inher-

ent time-based nature is what puts them forward as a potential alternative to

the current approaches in the literature. In fact, thanks to the combined action

of the learnt synaptic weights and complex internal dynamics of spiking neurons,

SNNs have the capability to create internal representations (and thus, extract)
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of complex temporal features in the data [17]. As such, they could be employed

to resolve this kind of task not only efficiently, but also effectively. As a matter

of fact, the performance gap between conventional DL algorithms and NM-based

ones has been a critical aspect limiting the use of NM systems. However, recent

research [196, 273, 274] is increasingly demonstrating how that gap can be nar-

rowed, thus bringing the SNNs close to being on par with their ANN counterparts,

if not surpassing them on certain tasks.

Chapter 3 discussed how time series can be essentially classified into station-

ary and non-stationary [200]. Non-stationary time series can potentially lead to

misleading inferences of poor performances if not adequately dealt with. As such,

many time series analysis and prediction models rely on the assumption that the

time series is stationary or take actions to remove components that make a time

series non-stationary (e.g. trends, seasonality). One such way that is considered

to be effective as a general approach to transforming non-stationary series into

stationary ones is differencing [200]. Through differencing, the effects of trends

and seasonality can be smoothened and the time series made more stationary.

Because of this, it is often employed prior to applying models like ARIMA, or

ETS (see Chapter 3).

The main research question that this chapter aims to answer is whether it is

possible to devise an NM encoding system that embeds this concept in such a

way that an SNN can learn from it to perform predictions. The working principle

behind an NM vision sensor is affine to the concept of differencing: an event is

only emitted whenever a difference in lighting is above a certain threshold [160].

Therefore, it seems reasonable to devise a perception system that not only trans-

lates real values into spikes, but that does so in a way that potentially increases

the forecasting capabilities that an SNN can achieve. This further translates into

understanding whether it is possible to enhance this learning by means of ad-hoc

designed loss functions that leverage biologically inspired concepts and the spike

representation obtained from the encoding system. By finding an answer to the

questions above, the aim is to contribute to developing time series forecasting

as a potential main direction of research, where the use of SNNs could prove a

valid alternative to conventional systems; or, on the reverse, where time series

forecasting could be used as a benchmark task to assess the performance of an

SNN model in general. In this sense, an investigation is carried out, covering

some of the main points required to construct a time series forecasting paradigm

with SNNs, starting from the encoding of the data into spikes to the design of the

learning scheme. The motivations behind these investigations are dual. Firstly,
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from an algorithmic point of view the innate ability of SNNs to process time-

based information can be a crucial element that can benefit forecasting tasks in

time series. If it is possible to engineer SNNs to leverage this core principle for

time series, the gains in performance could be outstanding. Secondly, from a

hardware-based point of view, existing solutions in DL can be extremely costly

to operate. In Chapter 3, it has been shown how tasks like sequence analysis and

forecasting solved by LLMs can be viewed as a special case of time-series. In such

a view, the design of SNN-based solutions can not only improve performance as

per the previous point, but also contribute to shifting towards more sustainable

applications.

To perform this exploration, two electricity load forecasting datasets are used.

Time series data is normally recorded by means of conventional sensors, that re-

port values in the R domain of real numbers as a continuous stream. To transform

the dataset into a format that is more amenable to an SNN, a novel encoding

algorithm inspired by the differencing system and by dynamic vision sensors is

proposed, as discussed above. A relatively simple SNN is built and is trained by

means of the SLAYER [24] learning rule, so as to verify its ability to learn from

such data. As a means to further improve the learning ability of the network, two

novel loss functions are also presented that are inspired by the biological concept

of inter-spike interval [12], and by the knowledge of the meaning of each spike

from the encoding. The exploration begins by analysing the effects of the differ-

encing encoding. To do this the encoding parameter space is manually sampled

in a manner that is suitable for the dataset at hand, the signal is reconstructed

starting from the obtained spike encoding, and the error is quantified. A more

detailed analysis shows how, given the right conditions, the representation gen-

erated through the encoding system approximates the derivative of a signal. In

order to observe whether the designed pipeline is able to perform forecasting on

a sinusoid signal, a set of experiments is performed where the decoded output is

compared with the derivative of the input signal. Following this, another series

of experiments with varying hyper-parameters and loss functions are carried out

on both datasets, aimed at gathering a number of results that can be utilized for

an in-depth and robust analysis of the proposed system.

The rest of the chapter is organized as follows. Section 5.2 elaborates on the

details of the devised system, from the encoding to the developed loss functions.

Section 5.3 Describes the experimental pipeline and reports on the results ob-

tained. Section 5.4 contains insights into the analysis of the obtained results, the

implications and the limitations of the presented methodology. Finally, Section
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Fig. 5.1: Excerpt from the Panama dataset. The blue and orange lines are the signal
and the lag-1 version of the signal respectively. The green line is the difference signal.

5.5 draw a summary of the study, highlighting key findings and possible future

directions stemming from this piece of research.

5.2 Data Encoding and Processing

To approach the time series forecasting problem two datasets are primarily used,

the Panama [21] and the ETTh1 [239] datasets. Both these datasets contain en-

ergy readings coupled with other information, such as temperature at the time of

the reading and wind speed. Peak electricity loads in Panama present a high level

of variability across different days in a month, as testified by Fig. 5.2, while the

ETTh1 is a largely used electricity load forecasting dataset that exhibits consid-

erable non-stationarity [23]. In this work, the focus is on a univariate forecasting

problem; therefore, only the electricity load readings are considered and used as

the input variable and the target variable. Fig. 5.1 reports an excerpt of the elec-

tricity load from the Panama dataset. The datasets above were collected using

conventional (non-neuromorphic) sensors; therefore, they are composed of real-

valued data points. Because of this, to conceive an end-to-end NM system, there

is the need to transform the data into a spike-based representation that can be

processed by an SNN. Therefore, this study defines an encoding mechanism that

draws inspiration from NM vision sensors [160] as a way to enact a differencing

step, while transforming the data into spikes emitted by a population of neurons.

NM vision sensors produce a positive or negative event at pixel level whenever
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Fig. 5.2: Peak electricity demand across different months in Panama. Adapted from
[22].

there is a light intensity change in the scene (positive for low-to-high, negative

for high-to-low). The change needs to be strong enough, i.e. above a chosen

threshold, for the camera to consider it as such and thus emit an event. As a

result, the NM vision sensors perform thresholding on the input, increasing spar-

sity in the representation, reducing noise propagation and omitting unchanging,

i.e. redundant, elements. Drawing inspiration from this, the encoding mechanism

transforms a real-valued input into a sequence of spikes emitted by a population

of neurons. Each neuron in such a population is responsible for emitting a spike

whenever the change in the signal is above a certain threshold V
(i)
th , both in a

positive and negative direction. Neurons can be characterized by the following

model (here assuming a positive threshold Vth):

v[t] = x[t]− v[t− 1]

s[t] =

1 if v[t] ≥ Vth

0 otherwise

v[t] = x[t],

(5.1)

where v[t] is the state of the encoding neuron at time t, x[t] is the value assumed

by the time series at time t, and s[t] is the output spike train at time t. In other

words, if the input signal has a strong enough variation from time step t to time

step t + 1, one of the neurons will emit a spike; if no change happens, or if the

change is too small, no spike will be emitted, hence encoding a differenced version
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Fig. 5.3: Schematics of the encoding paradigm. The input is concurrently parsed by
all the encoding neurons, which fire upon seeing a certain change. Inhibitory lateral
connections in the populations ensure that if a change triggers neurons with higher
thresholds, the other ones are prevented from spiking. The numbers in the encoding
neurons represent the threshold multipliers relative to each neuron, rather than the
threshold itself. If the base threshold were 0.5, they would have thresholds 1.5, 1, 0.5,
-0.5, -1 and -1.5.

of the signal whilst increasing sparsity and reducing noise, similarly to an NM

camera. Fig. 5.3 depicts a schematic example of the aforementioned encoding

system. The input is parsed by the population of encoding neurons and a spike

train is produced as an output. During the encoding, neurons associated with

higher thresholds implicitly inhibit those corresponding to lower thresholds. In

terms of simulation using the datasets above, this is achieved by considering the

difference of the input signal with a delayed version of itself by one time step. A

representation of this can be seen in Fig. 5.1 (green line).

The so-obtained encoding can be reversed by considering the threshold each

neuron is associated with. Similarly to a quantization problem, the fidelity of

the reconstruction of the original signal from the encoding is proportional to the

granularity (number of neurons and value of thresholds) of the encoding. In

order to quantify the information loss from the encoding, Tab. 5.1 reports an

exploratory search of the reconstruction MSE on the Panama dataset using a

different number of encoding neurons with different thresholds. Different sets of

multiplicative thresholds are used for the encoding, i.e. each neuron is assigned

a value n ∈ Z \ {0}, then multiplied by the base threshold, so that the actual

threshold would be V
(i)
th = n·Vth. The selection of the base thresholds is performed
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Fig. 5.4: Bar chart of the value changes in the Panama dataset. Each bar represents
the number of times that change in value is found in the data from time t to time t+1
(i.e. ∆x = x(t+ 1)− x(t)). Note that several of the changes are zero or close to zero,
hence potentially not requiring any information propagation depending on the choice
of thresholds in the encoding layer.

manually and is aided by the analysis of the value changes present in the dataset.

By visualising the count of each value change from time t to time t + 1 (e.g.

how many times the time series has had a change of 20 MWh at one time?) as

reported in Fig. 5.4, it is possible to estimate the ranges the threshold could be

varied in. In the case of the Panama dataset, there is a higher number of negative

variations, but they hardly surpass the ± 100 MWh. Interestingly, the minimum

MSE is not obtained by using the largest number of neurons and lowest threshold,

thus highlighting how threshold selection can be a crucial step. Fig. 5.5 shows an

excerpt using the parameters relative to the minimum MSE value obtained. As

it can be observed, the reconstructed signal follows rather faithfully the original

signal, except from it incurring in some information loss for certain ranges of

values.

5.2.1 Approximation of the Derivative

In its essence, the encoding system considers the average variation in amplitude

of an input signal between two points in time, such that:

m =
x(t + ∆t)− x(t)

∆t
(5.2)
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Tab. 5.1. Mean Squared Error between the original signal and reconstructed signal
using different encodings. Neuron multipliers should be interpreted as referring to two
neurons each (positive and negative versions of each). For instance, (1,2) with base
threshold 9 refers to neurons with thresholds (-18, -9, 9, 18). The range(1, 60, step=2)
indicates a range of values starting from 1 and increasing by two up to 60. In bold, are
the best MSE values from the reconstructions.

Neuron Multipliers Base Threshold

9 13 23 33 53

(1) 2852.88 2578.11 2033.40 1690.30 1476.04
(1, 2) 2259.65 1846.16 1187.73 910.15 944.43
(1, 2, 3) 1788.29 1328.03 731.51 576.37 814.01
(1, 2, 3, 4) 1417.18 962.62 478.96 433.10 800.42
(1, 2, 3, 4, 5) 1126.00 704.65 337.55 380.05 791.72
(1, 2, 3, 4, 5, 10) 494.50 274.81 311.93 354.15 773.62
(1, 2, 3, 4, 5, 10, 20, 30) 347.37 274.67 283.07 338.37 767.10
range(1, 60, step=2) 509.33 938.30 2530.13 4449.87 6885.43

Fig. 5.5: Extract from the Panama data after differencing versus its reconstructed
version.

where x(t) is the input signal and ∆t is the chosen time step. It is possible

to observe that Eq. (5.2) denotes the difference quotient, or the slope, of signal

x around time t. Interestingly, as ∆t becomes smaller, Eq. (5.2) becomes an

increasingly better approximation of the derivative of the signal over time as in

Eq. (5.3):
d

dt
x(t) ≈ x(t + ∆t)− x(t)

∆t
. (5.3)

Thus, assuming that x(t) is smooth around time t, the encoding method
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Fig. 5.6: Example of a sinusoidal input signal with its derivative and spike-encoding.
The sin (blue) and cos derivative (light green) have been scaled to match the height of
the plot. Note the concurrent presence of high-grade spikes (upper and lower rows) with
higher values in the cosine and the presence of lower-grade spikes when the derivative
approaches zero.

approximates the instantaneous rate of change, or the derivative, of x(t). In

practical terms, the goodness of such approximation is constrained by the choice

of thresholds for the neurons, which directly affects the granularity of the en-

coded changes, and by the time resolution (sampling frequency) of the datasets.

However, considering a single time step interval and a small enough threshold,

such an approximation can be relatively accurate. Fig. 5.6 intuitively shows the

goodness of the approximation when the input signal is a sine wave (hence with

a cosine derivative). Here, the amount of change in the original sinusoidal signal

is encoded by different neurons in the population. It can be seen how the activity

from different neurons closely follows the cosine curve (light green).

By means of this encoding system, there are three advantages. Firstly, by

taking the (approximate) derivative of the signal, its rate of change is being con-

sidered. This tells one how fast the signal will increase or decrease, regardless

of its absolute value at a certain point in time. Secondly, by means of the en-

coding, a differencing transform is practically applied to the input signal, which,

in the context of time series analysis, helps increase stationarity and thus make

the forecasting of the signal more precise and reliable [275, 276]. Furthermore,

envisioning the encoding system as the model for a sensing system deployed to

collect time series data, this operation which is normally performed as a pre-

processing step, happens for free as part of the sensing. Finally, the amount of

information that is propagated through the network is potentially reduced thanks

to the presence of a thresholding system that leaves out small changes in the time
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series.

5.2.2 Learning and Loss Functions

For the learning part of this work, a simple two-layer fully connected neural

network architecture is developed using Intel’s LAVA framework [183]. More

specifically, the SNN consists of two layers of fully connected LIF [70] neurons,

which can be represented by the discrete system in Eq. (2.20). The neuron is also

paired with a reset mechanism that resets the voltage to zero whenever a spike

is emitted. While in Chapter 4 it has been shown that better-performing spiking

neuron model alternatives might exist, the LIF neuron is arguably the most widely

used in the literature, hence making it a good choice for future benchmarking

purposes. Other than this, it can represent a valid option to increase efficiency,

due to its simplicity of implementation.

Regarding the learning rule, an advanced version of the SLAYER rule is em-

ployed to train the SNN in a supervised manner. SLAYER is a widely-used

spike-based back-propagation learning rule that allows using surrogate gradients

of the neuronal spiking functions to learn weights and delays in the SNN. Fur-

thermore, using SLAYER in the context of LAVA also allows seamless future

implementations on neuromorphic chips such as Loihi 2 [76]. The standard way

of utilising SLAYER is with the loss function defined by equations (6) and (7)

in [24], named SpikeTime in the LAVA framework. Through this, the trains of

target spikes and output spikes are convolved in the time dimension with a Finite

Impulse Response (FIR) exponential kernel and then compared using MSE. By

convolving with the FIR kernel, the loss aims to aid the resolution of the credit

assignment problem through time. Further to this, more experiments are carried

out utilizing two novel loss functions designed specifically for this time series fore-

casting task. The first one draws inspiration from the concept of minimizing the

differences in the inter-spike intervals (ISI) in the target and output spike train;

the second one leverages the information from the encoding paradigm to decode

the signal and compare the reconstructed versions of the target and output.
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5.2.2.1 ISILoss Function

As outlined above, the ISILoss function is inspired by the concept of minimiz-

ing the differences in inter-spike intervals between two spike trains. Ideally, the

ISIs should be computed for each spike train and then compared to each other.

However, this is non-trivial in a back-propagation environment for several rea-

sons. Two spike trains may have different numbers of spikes and, hence, different

numbers of ISIs to compare. A possible solution for this is to adopt placehold-

ers with pre-assigned values where the number of spikes differs. Still, it can be

time-consuming and sensitive to the chosen pre-assigned value for the interval.

Furthermore, this will likely include non-derivable operations, which could break

the gradient calculation chain and result in unwanted behaviours. For this reason,

a heuristic method based on transforming the spike trains by means of derivable

operations only is adopted. Specifically, a time-step vector R can be defined such

that:

R = [1, 2, . . . , N ] (5.4)

where N is the number of time steps in the spike trains. R is used to re-scale

each spike in the spike train by the time step at which it occurred:

sR(t) = s(t)⊙R (5.5)

where ⊙ denotes the element-wise multiplication (Hadamard product) between

the spike train s(t) and R. Finally, the re-scaled spike train is cumulatively

summed. This is achieved by defining the unitary upper triangular matrix T of

size N ×N :

T =


1 · · · · · · 1

. . . · · · ...
. . .

...

1

 (5.6)

and by performing a matrix multiplication with sR(t). By doing this, a vector of

size N is obtained that contains the cumulative sum of sR(t). The result is then

normalized with respect to R.

scs(t) = (sR(t) · T )⊙ 1

R
. (5.7)
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The final loss is calculated as a mean squared error of the resulting vectors:

L(scs(t), s
∗
cs(t)) =

1

N

N∑
i=0

(s(i)cs (t)− s∗(i)cs (t))2 (5.8)

where s∗cs denotes the target spike train, transformed as discussed. The idea

behind such a heuristic is that by utilizing a cumulative sum, all the time steps

present in the spike train contribute to the final loss calculation by some value

(likely) different from zero. This allows carrying along some information about

the cumulative time of the last spikes with each time step, hence assigning some

weight to their role in the spike train, even if no spike was present.

5.2.2.2 DecodingLoss Function

The DecodingLoss is a function that builds on top of another piece of knowledge

from the time series encoding: the meaning of each neuron’s firing. As a matter of

fact, by means of the derivative encoding, each neuron will be assigned a specific

threshold, and will encode values that fall in the range V
(i)
th ≤ x(t) < V

(i+1)
th .

This piece of information can be used to reconstruct a signal starting from some

output spike train s(t) (see Section 5.2), and compare it with the decoded target

spike train s∗(t). This is possible by following a similar paradigm as in Section

5.2.2.1. Firstly, it is necessary to define a vector of values that correspond to each

neuron’s threshold:

V =
[
−V (M/2)

th , . . . , −V (1)
th , V

(1)
th , . . . , V

(M/2)
th

]T
(5.9)

where V
(i)
th denotes the (positive) threshold of neuron i. A convenience unitary

vector A of size M that can be used to perform a neuron-wise addition per each

time step is also defined:

A =
[
1, . . . , 1

]T
. (5.10)

In the experiments, tests are performed both with and without this step in the

DecodingLoss function. Finally, the previously defined unary upper triangular

matrix T is utilized to perform the cumulative sum. The final reconstructed

output is thus obtained as:

srec(t) = (A · (s(t)⊙ V )) · T (5.11)

where srec(t) is the reconstructed output and can be either of size N or M × N

depending on whether the matrix multiplication by A was performed. Finally,
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the MSE is computed on the reconstructed output and target output:

L(srec(t), s
∗
rec(t)) =

1

N

N∑
i=0

(s(i)rec(t)− s∗(i)rec (t))2 (5.12)

where s∗rec(t) denotes the reconstructed target signal. In this case, the cumulative

sum has a more physical meaning than the ISILoss, as each value thus obtained

directly corresponds to the value of the reconstructed signal due to all the previous

changes. It is thus possible to make a comparison of the two signals straight in

the signal’s original domain and calculate the MSE loss on the final result of the

obtained spikes. This theoretically opens up to the SNN learning spike trains

that are not precisely the same as the target spikes, as long as the final result is

still correct.

5.3 Results

In order to evaluate the ability of the designed system to learn the prediction task,

a series of experiments comprising a number of different settings that span across

different values of parameters is devised. In the proposed pipeline, the data is

first split into smaller segments (or windows) before being encoded. Experiments

are carried out using 128 and 256 time steps-long segments, and each segment

has an overlapping of 75% with the preceding one. Using this type of windowing

operation helps augment the overall dataset, and helps the network build a more

complete representation of the data. For each input segment, a target one is

generated by looking at one time step ahead, effectively creating a challenge for

the network to learn the upcoming spike. A first batch of experiments is carried

out utilising a generated sinusoidal signal as an input, similar to what is shown

in Fig. 5.6, as a means to determine whether the system, as devised, would be

able to learn the task. A qualitative result is reported in Fig. 5.7 and 5.8, where

a target spike train is compared with the prediction from the SNN and their

respective decoded versions.

In the figures, the predicted spike train follows the periodicity found in the

target train (Fig. 5.7), aside from some mistakes, and the overall reconstruction

closely matches the target one (Fig. 5.8), thus showing how the SNN has learnt to

predict the next change in the signal. It is therefore possible to proceed to cross-

experiment the SNN with different combinations of segment lengths, number of

encoding neurons and loss functions. Each combination of parameters is repeated

150 times, for a total number of experiments exceeding 15,000. To evaluate the

111



Time Series Encoding and Forecasting

(a)

(b)

Fig. 5.7: Actual (target) spikes (5.7a) vs. predicted spikes (5.7b). In the legend,
B<N><+ or -> denote the significance of the spike bursts of each neuron. Each row
on the y-axis represents the output of a different neuron in the encoding layer. As the
number increases, the spike represents larger multiples of the initial threshold set in
the encoding. The sign denotes whether the represented change is positive or negative.

quality of the prediction, the decoded output is compared with the decoded target

sequence.

To better understand the interplay of the number of neurons with the choice

of loss function on the overall performance of the SNN, here is a report and

analysis of the boxplots of the MSE of the reconstruction of the output signal

with respect to the reconstructed target signal grouped by the number of encoding

(and thus decoding) neurons, for the case with 128-long segments. As Fig. 5.9

and 5.10 demonstrate, while the ISILoss does not seem to enable achieving better

performances than the SpikeTime Loss, possibly due to an oversimplification
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Fig. 5.8: Decoded predicted signal with targets overlaid. Note the resemblance be-
tween the two (aside from a few mistakes) and the correct prediction of periodicity.

of the initial concept to suit backpropagation needs, the DecodingLoss steadily

attains lower MSE with all hyper-parameter settings, in both datasets. As the

number of neurons increases, however, the overall error does too in all cases. The

overall performance trend across experiments with different numbers of encoding

neurons is reported in Tab. 5.2 and 5.3. Here, it can be appreciated how the

Decoding Loss achieves better results and consistently outperforms the other two

counterparts. From the tables above, an interesting observation is that the overall

errors increase with the number of encoding neurons with all the loss functions.

This is not surprising as, given that the task is evaluated against an encoded and

then decoded target rather than the original signal itself, the number of neurons

that need to be trained to perform prediction is greater. In practical terms, this

results in a more complex task, as would be a standard classification task with an

increased number of classes. This particular effect is further discussed in Section

5.4.

Motivated by the results above, the DecodingLoss-based solution is selected

for further comparisons with other more classical methods like SARIMA (see

Chapter 3). SARIMA is a model that is able to account for trends and seasonality

in the data, effectively making it a suitable option amongst the classical methods

for the data employed in this study. Through this comparison, the objective is to

provide a more solid context as to what the performance of the proposed solution

signifies and to provide a useful benchmarking point for future reference. In order

to use SARIMA, a prior must be known regarding the periodicity of the data,

which is inputted into the model prior to fitting. Furthermore, in order to ensure
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(a) (b)

(c) (d)

Fig. 5.9: Boxplot comparison of MSE on the Panama dataset for every loss function,
grouped by segment length and number of encoding neurons.Note how the DL (De-
codingLoss) and the SpikeTime loss both seem to achieve lower levels of MSE, but the
DL does so more steadily across different runs (with the exception of the 4-neurons
encoding in Fig. 5.9a).

a fair comparison, a hyperparameter search is performed to find the best-fitting

parameters. Experiments are carried out in conditions similar to the experiments

above, with the task set at predicting the next time step in the series. To obtain

single-time step predictions, the model is refitted on the newly observed data

every time a prediction is made. Results on the Panama dataset show that the

best SARIMA found via the parameter search step achieves an average MSE
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(a) (b)

(c) (d)

Fig. 5.10: Boxplot comparison of MSE on the ETTh1 dataset for every loss function,
grouped by segment length and number of encoding neurons. The trend is similar to
the Panama dataset, highlighting a consistent pattern.

between predicted and actual points of 4948.31, whereas the proposed method

reaches an average of 2531.03. An example of a prediction relative to these results

is given in Fig. 5.11. On the ETTh1 dataset, the SARIMA model achieves an

MSE of 1.72, whereas the proposed model sits at 0.39. An example prediction of

this is reported in Fig. 5.12.

115



Time Series Encoding and Forecasting

Fig. 5.11: Example from the Panama dataset of values predicted by the proposed
solution trained with the DecodingLoss function. The red dots represent the target
data points, whereas the orange line represents the reconstructed prediction.

Tab. 5.2. Collated results on the Panama dataset with each loss function against the
number of encoding neurons. In each cell, the average reconstruction MSE (rounded
to the closest integer) is reported, with the best results highlighted in bold for each
different number of encoding neurons.

Loss Fn/N. Neurons 4 8 12 16
DecodingLoss 302 938 1719 2926
ISILoss 326 1350 2669 4718
SpikeTime 283 1033 1988 3252

Tab. 5.3. Collated results on the ETTh1 dataset with each loss function against the
number of encoding neurons. In each cell, the average reconstruction MSE is reported,
with the best results highlighted in bold for each different number of encoding neurons.
The reported values are to be multiplied by 10−3.

Loss Fn/N. Neurons 4 8 12 16
DecodingLoss 2.52 4.51 5.77 6.55
ISILoss 3.36 6.71 8.16 8.72
SpikeTime 3.04 5.54 6.65 7.49

5.4 Discussions

Section 5.2 describes the nuances of the encoding system and Section 5.3 high-

lights the importance of an accurate selection of encoding parameters. What

appears clear, is that each dataset or use case requires an ad hoc optimization of

such parameters, depending on the key elements that require capturing and on

the objective of the task to learn. From a broader perspective, it is possible to
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Fig. 5.12: Example from the ETTh1 dataset of values predicted by the proposed
solution trained with the DecodingLoss function. The red dots represent the target
data points, whereas the orange line represents the reconstructed prediction.

identify two main limit cases. The first one concerns using two neurons only for

the encoding step (one for positive and one for negative changes). Here, much of

the original information could be lost due to larger changes being encoded in the

same way as smaller ones. The second one is about using an infinite number of

neurons with an infinitesimal threshold. By doing so, the original signal could be

perfectly reconstructed. The first case would be conceivable in a scenario where

the task of interest would be to merely predict whether a change is going to take

place in either direction, like a simple trend prediction system. The second case

(albeit requiring infinite computational resources) could be of interest in high-

fidelity settings, like medical imaging, or fine-grain control systems. These two

cases represent the two extremes of least computational power and least power

of representation and vice-versa, but in most cases, they would not arguably be

acceptable and a trade-off between computational power and representational

ability must be sought. By assuming another perspective, however, such a trade-

off could still be beneficial to other aspects. Let us assume, for instance, to be

aware of noise and outliers being present in the data. A typical example would be

an underlying current inducing small changes to be read from a sensor, or sudden

surges of voltage that are not informative about the phenomenon to measure. In

this case, limiting the largest represented value can be beneficial to the predic-

tion system, as well as setting a minimum threshold that would nullify smaller

changes. The encoding layer would therefore ignore values outwith the range of

interest thus acting as a passive filter for noise, which could otherwise potentially
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render the overall prediction process more difficult.

Another point worth discussing concerns the overall decrease in performance

as the number of encoding/decoding neurons increases. As previously suggested,

the reason behind this observation is likely to be attributed to the increase in

complexity that derives from adding more neurons to the system. In the experi-

ments that were devised, an input sequence is encoded into a spike representation

and is fed to the SNN. The SNN processes said sequence one time-step at a time

and outputs one or more spikes that are apt to predict the signal value in the next

time step. The predicted value (spike) is thus compared with the target value

depending on the choice of the loss function, and the quality of the prediction is

evaluated by comparing the decoded versions of the two. The output of the net-

work, therefore, is not directly compared with the same original time series values

in every case, but with its encoded and then decoded version from time to time.

This effectively equates to posing a more difficult task to the SNN every time

the neuron number increases. As discussed above, fewer encoding neurons would

naturally incur a higher quantization error due to their limited representational

power, therefore by utilizing the same neurons and comparing them against the

original time series’ signal, the MSE should be expected to be higher. Instead, by

comparing them with an encoded-decoded version of it, the quantization effect

is disregarded, therefore simplifying the task. At the same time, more neurons

should be expected to incur lower errors, as they could potentially create repre-

sentations that resemble the original signal more closely. However, for the same

reason as earlier, the overall error sits higher than the cases with fewer neurons.

Analyzing more in-depth the causes of such effects will be the focus of future

research on this topic.

A focal point regards the potential effects of utilising the DecodingLoss as op-

posed to the SpikeTime loss on the output of the SNN. The SpikeTime loss is

built to promote learning to match the exact position (in terms of which neurons

have to emit it) and the timing of the spikes. Because each spike is reached by

building up a neuron’s internal membrane potential, errors are assigned through

time, and not just at the moment of the emission of the spike (i.e. also the

preceding time steps are affected to a certain degree). When it comes to the

DecodingLoss, instead, the focus is on learning a sequence of spikes that, once

decoded, achieves the same result as some reference value, or signal, over a period

of time. This subtle difference makes it such that the SNN does not necessarily

need to learn exactly the timing and position of some spikes, so long that the

resulting decoded signal is good enough. This leaves more flexibility to the SNN,
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which has therefore access to a greater number of minima to reach, as the combi-

nations of spikes that can achieve this are larger. The degree of freedom allowed

by the DecodingLoss is, however, modifiable depending on the modelling needs

by including a decoding window in the form of a modified triangular matrix. If a

closer resemblance to the target spike train as-is is required, the decoding window

can be reduced accordingly to achieve this result. Finally, driven by the results

obtained with the DecodingLoss function, the proposed model is compared with

a classical method, SARIMA, due to its wide use and suitability to the data at

hand. The results of this comparison see the proposed method achieving lower

levels of MSE, testifying its effectiveness. Such performance is showcased in Fig.

5.11 and 5.12, where the predicted orange line closely follows the target points

(red dots). Apart from serving as a useful benchmarking point for references,

this demonstrates the effectiveness of SNNs in performing time series forecasting

without any prior knowledge of the type of data utilized (no seasonality prior

required) and without the need to refit the model every time a new observation

is seen in the test set.

5.4.1 Limitations

The work presented in this chapter envisions an end-to-end sensing and prediction

system for time series, but it does come with certain limitations. Neuromorphic

technologies have seen a surge in interest and proactive research, but remain in

the prototyping phase, lacking a general consensus on best practices. The number

and types of sensors and neuromorphic chips are limited, hence the necessity for

an encoding layer, as not all data types can be directly sensed by an ad-hoc

neuromorphic sensor. This requirement for data conversion into spikes or events

introduces an overhead that would not exist if sensors with the same sensing

capabilities were available. While this might be acceptable in the current stage

of research, it adds an extra layer of complexity.

Moreover, the power and time efficiency advantages highlighted in the litera-

ture rely on the vision of an implementation of algorithms within a fully end-to-

end neuromorphic system. However, designing or finding such a system remains

challenging. As a result, algorithms are often evaluated through simulations, and

their power and time efficiencies are often, although not always, estimated based

on specific criteria rather than measured directly.

Additionally, this work focuses on predicting one time step ahead in the time

series to demonstrate that the encoding system can effectively be used to train

an SNN on time series data. More conventional applications typically require
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predictions of multiple time steps ahead, which can be a possible direction for

future research on this topic.

5.5 Conclusions

This chapter presented an approach to the problem of time series forecasting us-

ing SNNs. This was done through the introduction of a novel encoding scheme,

inspired by the NM vision sensors, that seamlessly incorporates a differencing

transform thus not only encoding information into a spike format, but also per-

forming a free pre-processing step to help make time series more stationary. The

encoding system is also shown to be affine with the concept of the derivative of

a signal by means of a purposely built sinusoid series. The neuron encoding, in

fact, closely resembles a cosine signal. To demonstrate an SNN’s ability to learn

to predict the next upcoming spike in a so-encoded series, a relatively simple one

is built and trained using the SLAYER learning rule. Further to this, two loss

functions to be paired with SLAYER and the encoding system are developed, the

ISILoss and the DecodingLoss. An initial exploratory analysis of the encoding

system is carried out to understand its nuances, and the overall solution is tested

on a number of different parameter configurations, so as to obtain more insights

on the interplay amongst them. From the obtained results, it is possible to de-

duce that the encoding scheme can effectively be employed for time series data

to be learnt by the SNN, and that different levels of granularity in the encod-

ing resolution can yield different results. In particular, the relationship between

the number of neurons in the encoding population and the thresholds assigned

to them is discussed. It is also observed that the ISILoss does not perform at

the same level as the other two tested loss functions, potentially due to the ap-

proximation of the original concept into a version that is much simpler and more

amenable to backpropagation. At the same time, the results show a higher con-

sistency in obtaining better prediction results when employing the DecodingLoss

rather than the SpikeTime when used in combination with the encoding system.

Due to the nature of the DecodingLoss, this suggests that it might be beneficial

not to force the SNN into learning a predefined set of spikes to represent some

value, but that it could instead prove better to let it find appropriate ways to

do so from the point of view of the reconstruction accuracy. To conclude, this

chapter proposed a novel NM approach to the forecasting of time series. The

encoding leverages ideas from NM cameras, concepts from derivatives of signals,

and advantages from the differentiation process, which helps in rendering the
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data more stationary. The obtained results demonstrate an ability to learn fu-

ture spikes from the input data, however, this represents just a first step towards

further developments in this direction. Future research will focus on optimizing

the loss functions and the encoding system to better learn and represent the data

according to the task at hand, and on integrating readings from a number of

sources to implement multivariate time series forecasting.
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Chapter 6

Resonate-and-Fire Encoding and

Classification of

Electromyography Signals with

SNNs

6.1 Introduction

The accurate and timely classification of EMG signals is crucial for the develop-

ment of advanced prosthetic devices, rehabilitation tools, and human-computer

interaction systems [254]. These systems rely on precise interpretation of muscle

activity to translate user intentions into actions, making the accuracy of EMG

signal classification paramount [277, 278]. Traditional approaches to EMG signal

classification have primarily relied on conventional signal processing and machine

learning techniques. These methods typically involve feature extraction followed

by classification algorithms such as support vector machines, neural networks,

and decision trees. Amongst the traditional signal processing techniques for EMG

feature extraction, the FT and WT are often used to extract frequency-domain

features. Some examples are represented by the works in [247, 279], where fea-

tures are extracted and selected in this way before being processed by a classifier.

A similar approach is presented in [252], where the authors use an attention-

based system on top of the initial FT preprocessing. Although these approaches

can be promising in terms of performance, they require preprocessing of the data

and subsequent use of computationally hungry solutions like CNNs, which can

hamper their applicability in edge, wearable and prosthetic devices. In this re-

gard, Neuromorphic computing could represent a viable option, both in terms of
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algorithmic solutions to learn from such complex time-frequency features, and of

power efficiency thanks to the underlying NM technology. Previous works have

highlighted interest in such applications, demonstrating promising performance,

low computational power requirements, and low latency. In [254] the authors

build two relatively simple SNN architectures and implement them on the Loihi

chip [182]. Not only do they demonstrate the ability of their SNN to learn the

task with relatively good accuracy, but they also showcase very low latency and

power consumption when actually implemented on the chip. All of the above

without the need for any preprocessing of the signal. Another example is given

by [255], where the authors use a slightly deeper SNN implemented on a board.

Their solution allows them to reach even higher accuracy levels, at the cost of

requiring slightly longer data samples.

Chapter 4 proposed a study that highlighted the possibility that utilizing cer-

tain types of spiking neuron models in certain contexts could enhance the learning

capabilities of an SNN, or NM system more in general. With this consideration,

this chapter proposes a novel NM pipeline for the real-time classification of EMG

gesture signals. The proposed pipeline relies on the use of Resonate-and-Fire

spiking neurons, a special type of neuron which is modelled by a complex inter-

nal state z = a+ ib and whose dynamics have been demonstrated to approximate

the behaviour of a STFT [76] (see Section 2.2.1.2.4). This capability allows for a

more nuanced encoding of the dynamic and non-stationary nature of EMG sig-

nals, which are typically characterized by their complex temporal patterns and

frequency content. By leveraging RF neurons, the encoded signals retain critical

information necessary for accurate gesture recognition. To reduce the impact

of hand-tuning several hyper-parameters, an optimization step is performed to

find heuristically optimal parameters to encode data. To this extent, a decoding

mechanism is also introduced that allows the encoded data to be transformed

back into its original domain, thus allowing a one-to-one comparison for opti-

mization purposes. The encoding layer is followed by a relatively simple SNN

developed in Intel’s LAVA [280] framework and trained using SLAYER [24]. This

not only facilitates the implementation but also allows for seamless future deploy-

ment onto hardware platforms thanks to the features exposed by the framework.

The proposed pipeline is tested using the Ninapro DB5 dataset [25] which a com-

prehensive repository of EMG signals recorded during various hand movements,

providing a rich source of data for training and validating classification models.

This dataset includes recordings from multiple sensors placed on the forearm,

capturing a diverse range of gestures performed by different subjects. Such a

123



EMG Classification with SNNs

dataset is ideal for exploring the encoding abilities of the RF neurons and the

overall performance of the proposed system due to its challenging nature. In order

to explore the interplay of the different components and parameters, a number

of experiments were carried out on different subsets of the dataset. The obtained

results reveal that the proposed method not only achieves accuracy levels higher

than the other SNN-based approaches, but also higher than the conventional

DL-based ones on the same dataset. To summarize, this chapter presents the

following contributions:

• A novel EMG classification framework that achieves state-of-the-art perfor-

mance levels thanks to the use of RF spiking neurons and SNN.

• A decoding system from the spike-frequency domain back into the tempo-

ral domain that can enable direct comparison for optimization and inter-

pretability purposes.

• An exploration of the impact of some of the experimental parameters that

highlight interesting insights in the presented pipeline.

The rest of the chapter unfolds as follows. Section 6.2 presents the steps

taken to prepare the data; Section 6.3 details the nuances of the spike-frequency

encoding and decoding process; Section 6.4 provides a description of the employed

SNN model; Section 6.5 details the performed experiments and obtained results;

Section 6.6 summarises the work, highlights the most important findings, and

outlines possible practical implications and future works.

6.2 Data Preparation

For the purpose of this work, the Ninapro [25] DB5 dataset, a commonly utilized

dataset in the realm of Electromyography gesture recognition, was utilized as a

benchmark. In this dataset, EMG activity was recorded using two Thalmic Myo

armbands [259], each equipped with eight single differential electrodes for surface

EMG (sEMG) and a 9-axis inertial measurement unit (IMU). The armbands

sample data from the eight sEMG sensors at a frequency of 200 Hz with an 8-bit

signed resolution, streaming the data to a computer via a Bluetooth low-energy

connection using the Myo Connection application.

In the experimental setup, the subject wore the two Myo armbands placed

adjacently. The upper Myo armband was positioned near the elbow, with the first

electrode on the radio-humeral joint, in accordance with the Ninapro electrode
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configuration [25]. The lower Myo armband was placed just below the first, closer

to the hand, and tilted by 22.5 deg to fill the gaps left by the electrodes of the

upper armband.

The dataset comprises 53 different classes (52 + rest position) subdivided

into three exercises (A, B, and C) depending on the type of action participants

were asked to perform. Each action was repeated a total of 6 times by each par-

ticipant, and every repetition was interspersed by the resting position. Because

participants were required to go back to the rest position every time, this cre-

ated a strong imbalance in the dataset where ∼ 60% of the samples are resting

positions, and the remaining percentage is subdivided amongst the remaining 52

classes, which have a relatively low number of samples with respect to the number

of gestures. Furthermore, the spectral decompositions for some of the performed

gestures are nearly identical [281]. For these reasons, the Ninapro DB5 dataset

is often considered a challenging EMG dataset.

The first step for the experimental procedure is to subdivide the data samples

into 16-channels, 260 ms-long chunks with an overlapping of 80%, so as to increase

the total number of samples available for training. This value was determined

in accordance with [256] to achieve real-time classification responses. Because

the signals are sampled at 200Hz, this results in chunks with 52 data points

each (time steps). Furthermore, as a means to augment the dataset, samples are

randomly delayed (anticipated) by a value ranging between -8 and 8 time steps.

Delaying data samples any further would prove pointless due to the overlapping

utilized when creating chunks. No further pre-processing is applied to the data.

In the experimental pipeline, repetitions 2 and 5 are reserved for validation, as

per Ninapro standards [25], while the rest is employed for training.

6.3 Spike-Frequency Encoding

Electromyography data commonly takes the form of a sequence of real-valued

data points collected at a given sampling frequency and with a certain number

of channels (sensors) that are carefully positioned to pick up muscular activity

[282, 283]. Muscular activity generates electric signals that possess distinct fre-

quency characteristics based on the specific muscle and the movement involved.

Consequently, different actions can theoretically be distinguished by analyzing

these time-frequency signatures. In order to do this, we conceive a methodology

that relies on the use of Resonate-and-Fire spiking neurons. When used with the

right parameters, RF neurons have been shown to exhibit properties similar to
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the STFT [76], effectively approximating the transform in representing features in

the frequency domain. Unlike the STFT, however, the RF neurons do not abide

by the rule that a higher frequency resolution results in a lower temporal resolu-

tion. Instead, they can achieve high frequency resolution, while maintaining high

temporal resolution at the same time. An example of the STFT approximation

ability is reported in Fig. 6.1. Here, the STFT of a signal is visually compared

with the output spikes of a population of Resonate-and-Fire neurons. We base

our implementation of the RF neurons on the functionalities present in the LAVA

[280] framework, but with some modifications to the hyperparameter availability

and initialization process. In particular, in our implementation, RF neurons can

be assigned variable decay rates, as well as having a customized set of periods

(resonating frequencies). These two additions helped achieve more useful encod-

ing. From the initial experimentation, in fact, being able to assign different decay

rates to neurons with different resonating frequencies allowed for a cleaner (less

noisy) frequency encoding in that RF neurons would be more specific for the fre-

quency band they would be firing for. At the same time, the possibility to assign

a custom set of periods enables focusing on frequencies that are known to be rep-

resentative of the data of interest, thereby allowing a bank of RF neurons to act

as a passive band-pass filter. As seen in Section 2.2.1.2.4, a Resonate-and-Fire

neuron is defined by Eq. (2.24). From the equation, it is notable how the spiking

function is set to emit ℜ(zk[t]), i.e. the real part of the neuron’s internal state,

when the conditions are met. This is important as such value can be related to

the magnitude of the frequency at that moment in time, similarly to a spectrum.

This slightly differs from the more conventional conception of spiking neurons

emitting either a 0 or a 1 as a spike; however, recent technological advances [76]

have shown that the transmission of values greater than 1 between neurons can

easily be implemented in NM chips at a relatively low cost. By defining a bank

of neurons with varying resonating frequencies and decay rates, it is possible to

obtain an encoding layer that reads an EMG signal in the time dimension and

translates it into a sequence of frequency-sensitive spikes emitted by a number of

neurons. After an initial tuning phase, this work employed a set of RF neurons,

aimed at capturing the most relevant frequency information from the EMG sig-

nals. In particular, frequencies are offset at 20 Hz. This is because, below this

threshold, wider movements and instrumentation artefacts are known to be the

cause of noise. As such, by not including lower frequencies, the bank of neurons

effectively acts as a passive band-pass filter. The highest parametrized frequency

is 100 Hz. This is to avoid incurring aliasing phenomena due to the dataset being
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.1: Example of RF spike encoding with different decay values. 6.1a is the input
chirp signal with frequency increasing from 1 to 30Hz; 6.1b is the STFT of the chirp;
6.1c is the spiking output using a low decay rate; 6.1d is the spiking output using a
high decay rate; 6.1e is the spiking output using a linear decay range; 6.1f is the real
part of some of the RF neuron’s internal state for the linear decay case. Notice the
differences between the outputs with different decays. A too-high decay (6.1d )tends
to leave out lower frequencies; a too-low one (6.1c) tends to over-represent them and
introduce noise. Finally, notice the internal state of the neurons having a stronger
resonance in correspondence with their resonant frequencies.

recorded with a sampling frequency of 200 Hz.

The RF neuron class calculates the resonating frequency of the neurons based

on a specified period, which is represented by a number of discrete time steps.

To automate the generation of a set of periods for a linear range of frequencies,

the following formulation is employed.

Let linspace(a, b, n) denote a function that creates a vector of n equally spaced

values in the range [a, b]:

linspace(a, b, n) =

{
a +

k(b− a)

n− 1
| k = 0, 1, 2, . . . , n− 1

}
, (6.1)

and let fs and fo be the sampling frequency and frequency offset respectively.

The vector of resonating frequencies is thus defined as

f = linspace(fo,
fs
2
, N), (6.2)
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where N is the number of encoding neurons. To obtain the number of time

steps required to represent the frequencies in f, it is enough to take its inverse

and multiply by the sampling frequency fs:

T =
1

f
· fs. (6.3)

This is a required procedure, because, ultimately, the neuronal dynamics of the

RF neuron are based on the smallest unit of time possible, i.e. the time step. The

real value of such a unit is unimportant for computations and is dictated by the

sampling frequency or by the specifications of the final system. The represented

frequency is thus left to interpretation depending on the particular use case. For

instance, a period of T = 4 time steps in a scenario where the sampling frequency

is fs1 = 100 Hz would correspond to a frequency f1 = 1
T
· fs1 = 25 Hz, whereas

in the case of fs2 = 200 Hz the corresponding represented frequency would be

f2 = 50 Hz.

The decay in a RF neuron is also an important factor to consider when de-

signing a bank of encoding neurons. This is because the decay directly affects

the sensitivity of some neurons to certain frequencies. As mentioned earlier, the

RF neurons are an approximation of the STFT rather than an exact equivalence.

One way in which this approximation takes place is in neurons emitting spikes for

frequencies close to their resonating one. Together with the choice of threshold,

the rate of decay modulates this behaviour. In practical terms, the internal state

of a RF neuron can be considered a sinusoidal signal with frequency f . When an

incoming signal resonates with the neuron, the amplitude of the neuron’s internal

state grows. Such growth can also be triggered by nearby frequencies as long as

they do not add up destructively. The decay term is what helps mitigate this

effect by reducing the value of the internal state at a certain rate, thus restoring

it to normal. When the resonating frequency is found, the neuron should be able

to have its internal state grow up and beyond the set threshold, despite the action

of the decay parameter. It was found that employing a set of different decay rates

depending on the resonating frequency helps produce spike trains that are more

accurate in terms of their frequency representation, which in turn can result in

more easily discernible features thanks to a reduction in noisy (unwanted) spikes.

In particular, employing higher decays for higher resonating frequencies appears

to be an effective approach. In this work, a linear set of resonating frequencies

was utilized, therefore, decay rates were also initialized as a set of linearly spaced

values; however, the implementation also allows for a logarithmic scale to accom-

modate future diverse use cases. An example of the resulting encoding applied
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to a sample from the Ninapro Db5 dataset can be found in Fig. 6.2.

(a)

(b)

(c)

Fig. 6.2: Example of RF neuron encoding on a Ninapro DB5 Exercise A sample.
Fig. 6.2a reports the sEMG signal across the 8 different channels for one time window.
Fig. 6.2b and 6.2c report the encoding corresponding to channels 2 and 4, respectively.
Channel 2 appears to have much higher activity within the selected window than Chan-
nel 4, and this also shows in the RF encoding, thus likely making Channel 2 a better
predictor for this particular sample.

With the aforementioned setup, an encoding layer can be thus defined by a

bank of RF neurons with a given set of parameters. The specific values of the

parameters were obtained both empirically and by means of a Bayesian optimiza-

tion round. In order for the optimization to be possible, a decoding paradigm

was developed that could transform a spiking output from a bank of RF neu-

rons back into the original signal’s domain, so that it could be compared with
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the original signal itself to evaluate the encoding quality. The decoding process

leverages the resonating frequency and decay rate of each neuron to create a set

of convolutional kernels with values given by an exponentially decaying sinusoid

according to the following:

wk = cos(2πft) · (1− λk)t, (6.4)

where wk represents the kernel weights for the k-th RF neuron with frequency

f , and λk is the decay rate for the same neuron. The idea is that if a spike was

emitted at a certain point in time, a sinusoid with that neuron’s given frequency

was then present. However, the sinusoid would not necessarily be always present

from that moment on, thus explaining the exponential decay. This transforma-

tion can effectively be obtained by means of the correlation operation (enacted

by a convolutional layer). The result is a set of N signals with specific frequen-

cies that can then be averaged to obtain the original (reconstructed) signal. To

achieve higher precision in the computation, each kernel is required to be as big

as the incoming signal, and the signal requires appropriate padding at the begin-

ning and at the end, to accommodate the complete convolution. However, this

could potentially become a computational memory burden where the signals are

extremely long. Nevertheless, it was empirically found that relatively good qual-

ity reconstructions could be achieved by utilizing considerably smaller kernels,

as long as the represented decaying sinusoid was allowed to reach values close to

zero. For a qualitative demonstration purpose, Fig. 6.3 reports a plot of a single-

channel soundtrack (which allows an easier visualization than a multi-channel

EMG signal) and the reconstruction from its RF-encoded version by means of

the devised decoding paradigm. As anticipated, encoded signals could in this

way be compared with their original counterpart by means of a mean squared

error metric, thus enabling automated Bayesian optimization. The so-obtained

optimal parameters are reported in Tab. 6.1 and have been utilized for subsequent

experiments with the Ninapro dataset.
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Tab. 6.1. List of optimal parameters for the bank of RF neurons obtained through
optimization. The Scale parameter is an internal scaling value utilized in the Lava
framework. Where no unit of measure is reported, parameters are considered dimen-
sionless.

Parameter Value

N. Neurons 80
Threshold [2, 0.02]
Frequency [20, 100] Hz
Decay [0.00774, 0.0933]
Scale 1 <<12

Fig. 6.3: Example of single-channel soundtrack (blue) and its RF encoded-decoded
version (orange).

6.4 Spiking Neural Network

Following the encoding layer, the Spiking Neural Network receives the spike-

encoded input to process and learn features in the data. The SNN used in this

work is a relatively simple 3-layer fully connected architecture that employs CuBa

neurons (see Section 2.2.1.2.5). This neuron model is a second-order implemen-

tation of the LIF model which accounts for dendritic input decay over time. In

practical terms, this is similar to having a decaying memory of the input, which

keeps exciting the LIF for a time that depends on its decay rate, thus allowing

the creation of potentially more complex feature representations. The dynamics

of the CUBA neuron model can be found in Eq. (2.25). In Fig. 6.4 an exploration

of different values of αv with fixed αu of the CuBa model is reported. Notably,

for certain combinations of parameters, the neurons continue spiking even after

the input spikes terminate.

The first two layers of the network are designed so that the number of nodes is

proportional to the number of ‘channels‘ in the input. In this case, this is dictated

by the number N of encoding neurons. The first two layers are also able to learn

delays other than just weights by means of the SLAYER [24] learning rule. The
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(a)

(b)

Fig. 6.4: Exploration of CUBA neuron responses with varying voltage decays. The
current decay is maintained fixed at 0.15. Note especially the presence of spikes (dots)
in the output (6.4b) even after the input (6.4a) has terminated. This is made possible
by the relatively low current decay, which keeps feeding into the neurons’ voltages.

final layer is the classification layer, which thus has a number of output neurons

depending on the number of different classes, and does not introduce any delay

learning. For all the layers, weights are initialized with the initialization scheme

described in [284].

Finally, a class weight balance system was adopted. To be specific, class

weights were calculated according to the following. Let C be the total number

of classes and nc with c ∈ {0, 1, 2, . . . , C − 1} be the number of samples in the

training set per each class, then the weight for class c is defined as

wc = γ ·

C∑
c=0

nc

N · nc

, (6.5)

where γ ∈ (0, 1] is a scaling factor. When evaluating error in the loss function,

each class would then be multiplied by a so-obtained weight.
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Fig. 6.5: Example of bad (left) vs good (right) prediction results. The heatmap
represents a visual representation of the (normalized) confusion matrix obtained by
training the SNN on exercise A without any class weight (left) and with class weight
(right). In the left-hand figure, numerical results report the SNN as being relatively
accurate (∼ 70%), but in reality, it only learns to remain silent and thus classifies
everything as ”rest” (class 0).

6.5 Experiments and Results

Due to the imbalanced nature of the dataset, developing a training pipeline that

would avoid overfitting was a non-trivial task. Early experiments showed how

simply presenting the data to the network would lead to the SNN learning to

either remain silent (which is equivalent to predicting class 0, i.e. the ‘rest‘

position) or to activate one output neuron only all the time (in case the ‘rest‘

position was assigned a different class index) very quickly (Fig. 6.5). To overcome

this issue, the SNN’s hyperparameters required extensive fine-tuning. The biggest

contribution, however, was given by the use of class weights for the calculation of

the classification loss as described earlier. Given this initial setup, experiments

were carried out with a number of different configurations and dataset splits.

As anticipated in Section 6.2, repetitions 2 and 5 were reserved for validation

purposes, whereas the others were utilized for training. All the participants’

data was used for training at all times and, as per common practice, the dataset

was subdivided into Exercise A only (12+1 classes), B only (17+1 classes), C

only (23+1 classes), and all together (52+1 classes). Each training session was

allowed up to 500 training epochs to learn. As a way to compare with relevant

benchmarks in the literature [252, 254, 255, 281], initial experiments focused

mainly on Exercise A, which relates to finger gestures. A specific comparison of
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Tab. 6.2. Comparison of the performance on Ninapro DB5, exercise A. Latency
considers EMG segment length and reported processing times.

Reference Model Latency Accuracy

Vitale et al. (2022) [254] 3-layer SNN 300+5.7 ms 74%
Scrugli et al. (2024) [255] 4-layer SNN 500+31 ms 85.6%
Chen et al. (2020) [281] 4-layer CNN 260 ms + process-

ing
69.62%

Shen et al. (2022) [252] Conv. Visual
Transformer

200 ms + process-
ing

76.83%

This work 3-layer SNN with
RF neurons encod-
ing

260 + 30 ms* 92.36%

*Estimated time considering limitations imposed on the system, it does not consider hardware

measurements.

the performance in this setting can be found in Tab. 6.2. Notably, the accuracy

levels achieved through the methodology employed in this work are consistently

higher than the references, whilst maintaining a latency lower than 300 ms, thus

remaining in the real-time feasibility domain. This not only applies to other SNN-

based works, but also to conventional DL and attention-based ones, which are

more commonly found to be better performing in the literature. It is to be noted

that the latency reported for this work is based on calculations of propagation

times and delays, and is not measured from a hardware implementation, which

could result in a different value. Furthermore, the comparison is performed on

the solutions as whole pipeline as found in the literature. This includes any pre-

processing step, being the RF neuron encoding an integral part of the proposed

approach. For completeness, Fig. 6.6a reports the normalized confusion matrix

as a heatmap for the aforementioned task. Note that there does not seem to

be a tendency to prefer a class 0 to other ones. Instead, class 0 is sometimes

even misclassified as other classes: this is a direct effect of using the weight scale

system, and can be adjusted by varying the scaling factor γ. It is also possible to

notice a tendency to mistake class 9 for class 11, and vice versa. This is likely due

to the similarities in the spectral decomposition of these classes in the dataset

[254].

Overall, the designed pipeline includes several different components that could

influence the performance of the system. In particular, the number of channels

in the input signal directly affects the amount of information accessible to the

SNN and the number of hidden units it has (due to its design). The number of

classes to discriminate amongst also represents an important factor, especially in
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Tab. 6.3. Performance comparison with different settings and parameters.

Task N. Channels N. RF Neurons Delay Accuracy

Ex. A 8 80 True 88.05%
Ex. A 16 80 True 92.33%
Ex. A 16 80 False 92.20%

Ex. A 16 20 True 88.69%
Ex. A 16 80 True 92.33%
Ex. A 16 160 True 92.36%

Ex. A 16 80 True 92.33%
Ex. B 16 80 True 89.78%
Ex. C 16 80 True 82.85%
Ex. A + B + C 16 80 True 75.43%

the Ninapro DB5 dataset where a high class imbalance is present. Other factors

such as the possibility of learning delays within the SNN and the number of

encoding RF neurons could also affect its ability to learn features from the data.

To understand the effects of the above, further experiments were carried out by

varying the mentioned parameters. The results are collected in Tab. 6.3, where

they are compared against each other.

From the results, it is possible to notice a few points. Beginning with the

number of channels, it is clear that utilizing 16 channels (i.e. the input from both

the MYO bands) is beneficial to the performance (92.33% accuracy). However,

the loss in accuracy that comes from using only one channel is not disruptive, as it

still allows the SNN to achieve 88% accuracy, which sits above several other works

in the literature, thus potentially allowing a significant reduction in hardware

requirements with a relatively small loss in performance. The number of classes,

i.e. the types of exercises presented to the network, instead, does have a heavier

impact. The SNN’s performance seems to decrease with the number of classes

with the overall performance on the whole dataset dropping to 75.43%; however,

this could be expected due to the increased complexity. Fig. 6.6 reports the

heatmaps of the normalized validation confusion matrices for the different cases.

The images highlight that the vast majority of the samples are correctly classified

and that some classes are more easily misclassified as other ones, likely due to

the similarities in some of the EMG signals.

The number of encoding neurons also shows an interesting trend. Experi-

ments with 20, 80 and 160 RF neurons were carried out. As discussed in Section

6.3, the frequency spectrum that was considered in this work ranges from 20 to

100 Hz, thus allowing for 80 integer frequencies. This number was doubled (160)
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(a) (b)

(c) (d)

Fig. 6.6: Normalized Confusion Matrix Heatmaps for each of the different tasks.
Columns represent predictions, whereas rows are true labels. 6.6a is for Exercise A,
6.6b for Exercise B, 6.6c for exercise C, and 6.6d is for the complete dataset.

and quartered (20) to get an over-representation and an under-representation of

the integer frequencies respectively. The model’s performance in these different

settings increases with the number of neurons utilized for the encoding. However,

the increase in accuracy is not extremely sharp, having 88.7% with 20 neurons,

92.33% with 80, and 92.36% with 160. This indicates that the most promi-

nent features in the data could potentially be effectively represented with fewer

frequencies. In this work, the frequency set is selected linearly in the defined

space, however, other ad-hoc sets of frequencies could lead to interesting results.

Concerning the use of learnable delays, experiments have shown no significant

difference in this work, potentially due to the use of a loss function that relies on
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Fig. 6.7: Histogram of the relative time of the classification errors. Time is expressed
as the percentage from the beginning of the action until the end. As the chart shows,
most of the errors occur within the first 16% of the relative time of each action with
the overall number of errors decreasing as the relative time increases. This underlines
the increased difficulty posed by the onset of an action.

the overall count of spikes rather than their precise timing.

Finally, when considering EMG gestures signal classification it can be chal-

lenging to attribute a class to the onset of an action. This is because the muscular

activity involved in reaching a certain position can be different from that involved

in holding it [285], so much so that they are often assigned a task of their own in

practical implementations. In this work, the onset is not given a separate class,

however, further investigations were performed to understand where in the signal

the SNN would make the most mistakes. Fig. 6.7 reports the mistake counts as a

progression from 0% of the signal to 100% of it. Interestingly, most of the errors

seem to in fact occur within the first 16% of the action duration, which mostly

corresponds to the moment the action is initiated.

6.6 Conclusions

In this chapter, a novel approach to real-time Electromyography gestures sig-

nal classification was presented. The new approach leverages the power of the

Resonate-and-Fire spiking neurons along with the possibility of implementing

graded spikes in recent NM technologies. RF neurons are used to encode EMG

signals in a spike-frequency domain whilst maintaining high temporal resolution.

Furthermore, the so-designed encoding layer acts as a passive band-pass filter,

effectively leaving out unwanted frequency bands at no extra computational cost.

Due to the number of hyper-parameters necessary to operate the RF neurons

layer, a system to decode a RF-encoded signal was devised as a means to fa-

cilitate the evaluation of the quality of the spike-frequency representation by

comparing the decoded signal with the original signal. This in turn allowed for
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automatic hyper-parameter optimization which, in combination with manual tun-

ing, allowed a meaningful encoding of the data. This was further validated by the

performed experiments. Despite the use of an extremely challenging dataset, the

designed SNNs trained with the so-encoded data were in fact able to reach high

levels of validation accuracy, thereby performing better than a number of other

works found in the literature. The chapter also explores the impact of varying

some of the parameters in the pipeline on the overall performance, and it is found

that while having a higher number of encoding neurons leads to higher levels of

accuracy, a lower number of them still allows for achieving performance levels

that are comparable if not superior to the state-of-the-art. This is an interesting

result given that the set of frequencies represented with the encoding layer in

this work was obtained by mere linear sampling. If a specific set of frequencies

of interest were to be selected, this could potentially close the gap in accuracy,

thus allowing the same high-level performance with four times fewer encoding

neurons (and hidden units in the SNN). To conclude, this chapter introduced a

Neuromorphic EMG classification system that surpasses existing methodologies

in accuracy, whilst retaining real-time feasibility, low-power consumption and

low latency. This showcased how the use of the right spiking neuron model, the

Resonate-and-Fire model in this case, to process data can be beneficial to NM so-

lutions, and sets the ground for interesting future works, where the system could

be applied to real embedded use cases, potentially representing a turning point

in different fields such as robotic arm control and prosthetics.
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Chapter 7

Conclusions and Future

Directions

This thesis has investigated the capabilities and applications of Spiking Neural

Networks, thereby contributing to the advancement of the understanding of Neu-

romorphic computing paradigms. The research presents a path that begins with

the exploration of different models of spiking neurons, passing through the im-

portance of employing specific neuron models as an encoding system capable of

extracting important features from the data, to the exploration of less conven-

tional applications for the SNNs, ultimately demonstrating the ability of SNNs

to outperform existing systems whilst maintaining the Neuromorphic advantage.

Chapter 4 examines the behaviour of various spiking neuron models, namely

the LIF, EIF and QIF, in response to event-based data. The study, instigated

by the fact that the LIF represents the de facto standard choice despite the large

variety of models present in literature, reveals that while simple models like LIF

neurons can achieve satisfactory performance, more complex models such as EIF

and QIF neurons can provide enhanced sensitivity and accuracy, especially in

tasks that demand high temporal precision. This is demonstrated within the

context of a relatively simple system, so as to allow stronger conclusions to be

drawn in relation to the neuron models themselves. Thanks to this study, it has

been possible to ascertain the need for a careful choice of spiking neurons when

designing an NM system. In fact, this is often overlooked as a simple matter

of merely using a spiking neuron model for a neural network to be considered

an SNN, or as dictated by the specific hardware at hand. However, evidence

shows that different types of neurons can be more or less advantageous with

respect to resolving different types of tasks and that, by enabling this level of

customization, NM devices would become more versatile and adaptable across a
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wider range of applications. This is further testified by the recent developments

in Loihi 2, which does in fact allow spiking neuron customization. The study,

nonetheless, has its limitations. In order to ensure a fair comparison, only a

restricted set of single-variable neuron models is analyzed. This is to show how

different levels of complexity in the models can lead to different results despite

merely changing the dynamics of a single variable. However, far more complex

and variegated models are present in the literature that are also employed from

time to time. Such models could enable even further enhancements and feature

extraction capabilities. Furthermore, this study utilizes STDP as a learning rule.

The reason for this lies in the fact that STDP enables weight learning solely and

directly as the result of the spikes emitted by each neuron, and not as the result

of an overarching optimization algorithm. However, backpropagation algorithms

are now widely used in the field and could result in a completely different set of

weights being learnt.

In Chapter 5, the focus shifts to the development of a novel time series fore-

casting approach using differencing spike encoding in conjunction with SNNs.

This encoding method leverages concepts from event vision sensors and classi-

cal time series analysis to render time series more stationary and thus easier to

process and learn. It is shown that the proposed encoding system approximates

the encoding of the derivative of the incoming signal, thereby capturing dynamic

changes in input data. The chapter also presents two novel loss functions for

the SLAYER learning rule. The empirical results employing the encoding system

and learning rules demonstrate that this approach improves forecasting accuracy

with respect to the vanilla SLAYER approach, as well as conventional time se-

ries forecasting systems based on SARIMA. This demonstrates that a shift in

the conceptual design of the encoding system can prove beneficial. Encoding

systems are the means by which non-NM applications can be approached with

the use of SNNs. By all means, they are substitutes for NM sensors, which do

not yet exist in certain contexts such as time series forecasting ones. As such,

they should be thought of as a way to sense data in a way that can benefit its

learning from the SNN’s point of view by design. Time series are possibly one of

the data types that undergo the most ample pre-processing to make them more

stationary, normalize them and extract certain features. These processes do not

normally fit within an NM processing pipeline as they are (and thus require a

conventional CPU to perform them), but could be instead integrated as part of

the encoding by designing populations of neurons that react in certain ways. As

a matter of fact, this has been shown to not only be possible, but to also en-
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able achieving high-performance levels. Nonetheless, the approach presented in

this chapter has some limitations. The presented encoding system incorporates

the concept of differencing from classical time series analysis. This is but one of

the ways in which time series are pre-processed, and the inclusion of yet other

systems can be conceived. Furthermore, the DecodingLoss presented here relies

heavily on the use of the presented encoding system, and could only otherwise be

used by defining a set of arbitrary decoding value ranges, which would potentially

not be directly relatable to the input. Finally, a disadvantage of this study is in

performing next-time-step predictions only. While it is possible to maintain the

prediction stream for prolonged series, further step-ahead predictions could be of

interest in certain contexts.

Chapter 6 further explores the practical applications of SNNs by addressing

the classification of EMG signals for gesture recognition. The proposed Resonate-

and-Fire neuron encoding scheme performs encoding, filtering and feature extrac-

tion all at once at no extra cost. This is thanks to the RF neurons’ ability to

encode frequency information and, for a population of them, to behave in a man-

ner similar to a Short Time Fourier Transform. The chapter further proposes a

novel decoding system based on convolutional layers that can translate a spike-

frequency-encoded signal back into the temporal domain. This decoding system

is then utilized to perform hyperparameter optimization and thus select a set

of hyperparameters that is (heuristically) optimal for the encoding of the EMG

gesture signals. The proposed pipeline is validated on an extremely challenging

dataset, and the results show that this method achieves high classification ac-

curacy despite high class imbalance and low inter-class variance, outperforming

existing methodologies in the field. This chapter provides concrete evidence of the

efficacy of SNNs combined with suitable spiking neuron-based encoding schemes

in practical, real-world applications, reinforcing the conclusions drawn from the

previous chapters. When compared to similar works in the literature, the pro-

posed method has in fact the potential to tackle some key points raised in Chapter

3 (see 3.4) relative to competitive accuracy, real-time processing, and need for

data pre-processing. By employing RF neurons for the encoding, the method not

only enables an end-to-end NM approach but also performs useful filtering and

extraction of frequency-based features as part of the encoding step, which has

been discussed to be beneficial in the Chapter 5. The overall solution utilizes a

fully connected SNN architecture with only three layers, in a comparable way to

other works in the literature that reported low energy consumption. The use of

small time windows with an 80% overlap makes the solution affine to real-time
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processing and real-world implementations. The performance level achieved over-

all places the proposed pipeline amongst the best-performing ones in the state

of the art. For the reasons above, EMG gesture classification is deemable as a

prime avenue for NM applications, having shown that a high level of accuracy

can be attained whilst maintaining the advantages brought by NM technologies.

Nevertheless, it is worthwhile to point out some of the limitations that the study

may incur. Existing sEMG sensing devices perceive muscular activity as a stream

of continuous/discrete values at a certain sampling rate. A Neuromorphic sEMG

sensing device does not therefore exist yet that could implement an encoding

system based on the proposed RF neuron population, thus limiting the practi-

cal applicability to, for instance, a solution employing an NM chip mounted on

a more conventional board (with the annexed computational overhead derived

from buffering, synchronization, and so on). Furthermore, the proposed solution

is based on the use of 8 or 16 sEMG sensors (channels). However, for certain

types of use cases relating to prosthetics for limb replacement, it is not always

possible to fit this number of sensors, and the solution would therefore need to

be further tuned to ensure the same level of performance with a lower number of

electrodes.

In conclusion, this thesis has approached the NM field with a bottom-up ap-

proach. Investigations begin with questions about the functionalities of spiking

neurons, which are a core component of SNNs. This initial work informs on the

advantages of accurately selecting neuron model depending and their function-

ality and on the task at hand. This evolves into research on the use of spiking

neurons as an information-extracting encoding step for time series forecasting,

demonstrating how this practice can be beneficial to obtain free pre-processing

on the data. Finally, gathering the teachings learnt from the previous steps, the

work delves into the design of a state-of-the-art SNN system, which ties in ad-

hoc spiking neurons, the RF neurons, for sEMG signal encoding, filtering, and

classification.

While each individual piece of work has focused on bounded case scenarios,

the results obtained and their implications extend beyond the boundaries of the

experiments. Spiking neurons are what differentiates an SNN from a common

ANN. Despite the focus of Chapter 4 being on three simple neuron models, con-

siderations can be expanded to any other model. In particular the importance

of determining which typology of neuron better fits a particular task, and thus

the importance for hardware components (NM chips) to be able to support a

variety of models, so as to allow for all-round experimentations of NM pipelines,
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and to enable a larger pool of applications to be served by NM solutions. Time

series are a concept that sit at the foundations of any type of task that involves

time-indexed data. Aside from the specific energy load forecasting applications

discussed here, the research work is, in principle, data agnostic and can thus

be considered foundational for a breadth of other time-series-based problems.

A particular case is represented by sequence analysis such as natural language

processing. This work approaches time series with an all-new conceptual ap-

proach, where spiking neuron-based encoding is at its core. Developments based

on this conceptualization can bring to more energy efficient, and yet still com-

petitive alternatives to LLMs. The implications on a wider scope of the work on

sEMG classification step from the promising results that the developed pipeline

has shown. The use of ad-hoc spiking neuron-based encoding mechanisms, as a

matter of fact, affects not only the possibility of using SNNs to engage data that

is not normally considered NM, but also the potential for developments in the

NM sensing department. Through the results of this work, the RF neuron-based

encoding is in fact shown to be a valid candidate for an sEMG NM sensor im-

plementation, where information about muscular activity is directly sensed and

transmitted by RF neurons. As whole, this work is a demonstration of how SNNs

are closing down on the gap with conventional ANNs and, in some cases, are even

surpassing it. The advancements in the NM computing research are proceeding

at high velocity and building on top of one another. This rapid growth will soon

enable NM solutions to find their place in state-of-the-art approaches not only

delivering at the promised energy efficiency level, but also at the performance

level.

7.1 Future Directions

Looking ahead, there are several promising avenues for future research that nat-

urally emerge from the findings and insights gained through the research work

presented in this thesis. These potential directions offer opportunities to deepen

the understanding of the subject matter, explore new dimensions of the topic,

and address any limitations or open questions identified in the current work.

By building on the foundation laid by this thesis, future research can further

contribute to the advancement of knowledge in this field, potentially leading to

innovative applications and broader theoretical developments.
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Analysis of Spiking Neurons. The results and the related discussions in

Chapter 4 highlighted the importance of the choice of the neuron models within

an SNN. In particular, they showed, in principle, how neurons embedding more or

less complex internal dynamics could be more suitable for types of data that are

composed of subtle temporal features. Future works in this direction can focus

on the understanding of the interplay between neural network depth and different

types of neuron models in the extraction and learning of complex spatiotemporal

features in such data. Furthermore, interesting insights may result from investi-

gating the use of different types of neuron models paired with backpropagation-

based learning rules, as well as looking into the possibility of utilizing different

types of neuron models within the same SNN.

Time Series Forecasting. The findings in Chapter 5 demonstrated that en-

coding mechanisms embedding pre-processing concepts can be beneficial to de-

veloping SNNs for time series forecasting. Interesting future directions stemming

from this piece of research can look at embedding different types of pre-processing,

perhaps looking at seasonal differencing and second-order differencing, into the

spike encoding mechanism. Furthermore, they can regard the investigation into

using diverse types of time series, including multi-variate time series, as well as

approaching multiple time step-ahead forecasting.

EMG Gesture Classification. Chapter 6 demonstrated that SNNs can prove

more effective than conventional methods given the right setting and spiking neu-

ron model selection. Given the success of the proposed approach, future works can

look at hardware implementations in combination with existing sEMG devices,

as a means to validate the method’s suitability for real, impactful applications.

Furthermore, investigating the possibility of utilizing a very low number of EMG

sensors, as well as seeking to design a prototype of an RF-based NM EMG sensor,

promises to be extremely interesting and useful developments.
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Appendix A

Extension to the SpykeTorch

Framework

For the purpose of developing NM-ML algorithms based on STDP, SpykeTorch

allows a high degree of customization and flexibility to the user. However, as

mentioned in 2.2.5.1.4, the framework originally provides a single spiking neuron

model, the IF. This model does not have a voltage leakage factor, which means

that its internal state can only increase until it is reset. In order to accommodate

the need to test a variety of spiking neurons and hence augment the usage po-

tential of SpykeTorch, an expansion to the library is proposed that implements

a new set of eight spiking neuron models as shown in Table A.1. By introducing

more complex neuron models, the original workflow and implementation pat-

terns adopted in the original framework cannot be easily utilized. Therefore,

some details about the differences that are introduced to accommodate such neu-

ron models in the library are here discussed. The framework resulting from the

applied changes is referred to as SpykeTorch-Extended.

A.1 Implementation Details

Given their computational efficiency, the family of phenomenological spiking neu-

ron models is well suited for large-scale neural networks in the context of machine

learning. Because of this, the proposed expansion includes a subset of this family

of neurons, namely:

• Leaky Integrate-and-Fire [70],

• Exponential Integrate-and-Fire [77],

• Quadratic Integrate-and-Fire [79],
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Fig. A.1: Example flowchart for SpykeTorch-Extended. After the definition of the
components of the SNN, each data sample is required to be decomposed into its forming
time steps before being processed by the SNN. This ensures that learnt parameters will
influence the result of the next iteration.

• Adaptive Exponential Integrate-and-Fire [78],

• Izhikevich’s [16],

• Heterogeneous Neurons (LIF, QIF, QIF)

Due to the greater complexity of the newly introduced neurons, a deviation

from the original implementation of the framework is required. The expansion

thus adopts an object-oriented approach for the neurons, which allows them to

retain an internal state and other properties. Nevertheless, to maintain compat-

ibility, neuron objects are callable (i.e. utilizable like a function) and share the

same output format as in the original version. Furthermore, neurons are not re-

stricted to firing only once per input sequence. This solely depends on the choice
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of parameters for a given neuron, such as the refractory period. Another differ-

ence with the previous implementation is that neurons are expected to receive

and process events one time-step at a time. While this introduces overhead on

the computational time, it has a number of advantages. Single time-step process-

ing allows simulating real-time; at the same time, it ensures that the decay of

the membrane potential can happen before the next input is received; finally, it

allows for weight updates due to STDP to be enacted between each consecutive

input, thus allowing them to affect every subsequent moment in time and making

the system more realistic. From a more practical point of view, a neuron layer

in SpykeTorch-Extended is characterized by at least the set of parameters of a

LIF neuron; however, more complex neuron models will require more parame-

ters. A layer of neurons in this system can be better depicted as a set of neuronal

populations. The number and size of the population reflect that of the input

that is processed by the layer. Let’s consider the example where the synaptic

connection between two layers in an SNN is given by a convolutional layer. The

convolution produces a set of C feature maps of size H x W, where every element

represents the post-synaptic potential (PSP) that is going to flow into a neuron

on the receiving end. In this setting, each feature map ci with i ∈ {0, . . . , C − 1}
represents a population of N = H ·W neurons that share the same set of weights

(the kernel of the convolution). Therefore, each neuron in this population will

be receptive to the same feature in the input, but each will encode a different

spatio-temporal position for it.

As a result of the changes above, the standard workflow in SpykeTorch-

Extended was adjusted with respect to the original version. In Figure A.1, an

example flowchart of a pipeline using the new neuron models is reported. As

the flowchart highlights, each input is expected to be unravelled into all the time

steps it is composed of and, for each time step, all the events that took place in

such a time span are to be fed forward to the SNN.

A.1.1 LIF Neuron Class

The LIF neuron class is the implementation the homonym neuron model. A LIF

neuron layer is characterized by the following parameters: a time constant tau rc,

a capacitance C, a time-step size ts, a threshold, a resting potential, and by

the number of refractory timesteps. The same parameters are present also

the other classes of neurons. Neurons in this layer perform membrane updates

according to the solution of the differential equation presented in [12].
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Tab. A.1. Summary of newly added spiking neurons to SpykeTorch. All the neurons
share a base set of parameters with the LIF, but they may require more depending on
the neuron type, which are briefly reported in the short description.

Neurons Short Description
LIF [70] Uses the integral solution to the differential equation in [12].
EIF [77] Single-variable model with an exponential dependency. Has pa-

rameters delta t for the sharpness of the curve, and theta rh

as a cut-off threshold for the upswing of the curve [12].
QIF [79] Single-variable model with a quadratic dependency. Has pa-

rameters a for the steepness of the quadratic curve, and u c as
the negative-to-positive updates crossing point of the membrane
potential [12].

AdEx [78] Two-variables model similar to the EIF, but with an adapta-
tion variable. It adds parameters a and b, respectively for
adaptation-potential coupling and adaptation increase upon
spike emission.

IZ [16] Two-variables model similar to the QIF, but with an adapta-
tion variable. It adds parameters a for the time scale of the
adaptation variable, b for the sub-threshold sensitivity of the
adaptation, and d for the adaptation increase upon spike emis-
sion.

H-Neurons Heterogeneous versions of LIF, EIF, and QIF neurons with uni-
formly distributed tau rc parameter.
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A.1.2 EIF Neuron Class

The EIF class implements the EIF definition in [12]. It takes two further pa-

rameters than the LIF class, namely delta t and theta rh. The former defines

the sharpness of the exponential function, the latter determines the membrane

potential value where the function begins its upswing. If not given, theta rh is

estimated as being 3
4

of the firing threshold.

A.1.3 QIF Neuron Class

This class implement the QIF model as described in [12]. Like the EIF, it accepts

two further parameters with respect to the LIF, but these are a and u c. The for-

mer regulates the steepness of the quadratic curve, whereas the latter determines

the crossing point with the x-axis, hence the value of the membrane potential

after which the next updates will facilitate its increase even in the absence of an

input. If not given, u c is estimated as being 3
4

of the firing threshold.

A.1.4 AdEx Neuron Class

The model implemented by this class is the homonym described in [78]. Com-

pared to the EIF implementation, it accepts two further parameters, namely a,

which determines the strength of the coupling of the adaptation variable with

the membrane potential, and b, which is an amount of current by which the

adaptation gets increased every time a spike is fired.

A.1.5 Izhikevich’s Neuron Class

The class implementation of Izhikevich’s neuron model follows the differential

equations presented in [16]. The class accepts three further parameters with

respect to the LIF class. These are a, i.e. the time scale of the adaptation, b, i.e.

the sensitivity to subthreshold fluctuations of the adaptation, and d, which is an

amount of current by which the adaptation gets increased every time a spike is

fired.
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A.1.6 Heterogeneous Neuron Classes

The implemented neuron classes create a layer of spiking neurons that share

the same hyperparameters. This is referred to as being a homogeneous layer of

neurons because they all react in the same way to the same sequence of inputs.

However, it might be useful to have neurons reacting differently to one input,

since this could mean being able to learn different kinds of temporal patterns

within the same layer. Because of this, a further group of heterogeneous neuron

classes for the LIF, EIF, and QIF classes is developed. Specifically, they provide a

set of τrc values that are uniformly distributed within a range specified by the user

through the parameter tau range. Being able to have a set of spiking neurons

with different τrc allows sensibility to different time scales. The limitation to

uniform distributions was chosen to maintain simplicity, however, this can be

easily extended to custom distributions.
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