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Abstract 

The growing adoption of Carbon Fibre Reinforced Plastic (CFRP) composites in 

safety-critical structures, such as aircraft fuselages and wind turbine blades, requires 

thorough inspection process to ensure material integrity and prevent catastrophic 

failures. These inspections are conducted using Non-Destructive Evaluation (NDE), a 

collective term for methods that assess the quality of materials without causing 

damage. Among these methods, Ultrasonic Testing (UT) stands out as a preferred 

inspection technique in the aerospace industry. The field of NDE has experienced 

significant advancements with the introduction of advanced sensor technologies and 

robotic manipulators, which have automated and accelerated data acquisition 

processes. However, data analysis and interpretation remain predominantly manual, 

making the process time-consuming and prone to human error, thus creating a 

bottleneck in manufacturing. Recent advancements in Artificial Intelligence (AI) 

present new opportunities to automate these tasks. 

This thesis explores the application of AI techniques to analyse UT datasets obtained 

from reference CFRP samples representative of those used in the aerospace industry. 

The initial research focused on evaluating the performance of supervised AI methods, 

specifically object detection models, in defect detection tasks using ultrasonic C-scan 

images, which represent the top cross-sectional view of the inspected materials. As a 

baseline, both a traditional signal thresholding technique and an enhanced statistical 

thresholding method, based on theoretical mathematical distributions fitted to the 

observed data, were examined. The primary contribution of this work is the 

demonstration of the superior performance of AI models in this context over 

thresholding methods. Additionally, supervised training was conducted exclusively on 

simulated data, thereby addressing the data scarcity challenge. 

Building on this, an unsupervised AI method in the form of anomaly detection was 

explored. This approach addressed the scarcity of datasets containing defective 

indications and the challenges of relying on large-scale simulations, which require 

significant computational resources and extensive manual effort to generate ground 

truths for supervised training. A two-step workflow was developed, comprising an 

automated signal gating method based on unsupervised clustering and an autoencoder 
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model serving as an anomaly detector applied to ultrasonic B-scans (which represent 

cross-sectional images of the material). The key advantages of this method include a 

streamlined development process focused on the use of pristine data (in this thesis, the 

term pristine refers to samples that contain no intentional or unintentional 

manufacturing defects that are detectable using the ultrasonic inspection setup 

employed, within the limits of its resolution), which is more readily available, and the 

elimination of ground truth generation requirements. This workflow was successfully 

applied to samples with both uniform thickness and complex geometries. Additionally, 

this research investigated the impact of human factors on AI results and highlighted 

the challenges posed by inconsistent data quality during scans. 

The final stage of this research focused on strategies for integrating the developed AI 

models into NDE data analysis, driven by the recent evolution towards NDE 4.0 (a 

concept that combines digitalisation, automation, and connectivity to modernise NDE) 

focused on enabling fully automated systems. Despite significant research in this field, 

implementation strategies are often underexplored, and clearly defined automation 

levels achievable with AI remain lacking. To address these gaps, four levels of data 

analysis automation using AI were defined and evaluated. Additionally, the 

synchronous use of multiple AI models, each designed to process distinct views of the 

ultrasonic data, enabled cross-validation between models. This approach enhanced 

trust in the automated system while offering mechanisms to mitigate potential 

performance degradation of NDE operators using such systems. Furthermore, this 

strategy aligns with NDE 4.0 objectives, transitioning operators into supervisory roles 

while delegating repetitive tasks to the AI systems. The developed methods were 

evaluated in a case study involving complex geometry samples, demonstrating their 

effectiveness for potential industrial applications. 

Overall, this thesis proposes methods to assist in automating NDE data analysis 

processes for UT of CFRP composites, with the primary goal of enhancing accuracy 

and reducing analysis time to address the current bottleneck in aerospace 

manufacturing. 
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Chapter 1: Introduction 

1.1 Industrial Motivation and Research Context 

Composite materials have become integral in industries such as renewable energy, 

biomedicine, aerospace, sports, construction, and the automotive sector. Among these 

composites, Carbon Fibre Reinforced Plastics (CFRPs) stand out due to their 

lightweight structure, strength-to-weight ratio, and resistance to fatigue and corrosion 

[1], [2], [3]. Aerospace and renewable energy are two main sectors that use CFRPs to 

construct safety-critical components. 

In the aerospace industry, one of the earliest recorded applications of composites dates 

back to the introduction of the F-14 and F-15 military fighter jets in 1976, where boron-

reinforced composites were utilised to construct empennages. By 1983, commercial 

aircraft like the Airbus A300 and A310 incorporated composites for secondary 

components [1]. In the following years, the use of composites moved from secondary 

to primary structural components. Nowadays, composite materials account for 53% 

and 50 % of structural weight for flagship aircraft models such as Airbus A350 XWB 

and Boeing 787 Dreamliner, respectively [4], [5]. The use of CFRPs also contributed 

to significant ecological benefits, with the Boeing 787 Dreamliner achieving 21% 

greater fuel efficiency than its predecessors [2].  

An overview of several commercial and military aircraft models with their respective 

structural mass percentages of composite materials used is presented in Table 1. Figure 

1 illustrates the increase in the adoption of composites in Airbus and Boeing 

commercial aircraft over the years. 
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Table 1 Examples of composite material usage in commercial and military aircraft, including the 

manufacturer, model, year, and structural percentage. 

Manufacturer Type Model Year Structural % Source 

Airbus Commercial A320 1988 28% [6] 

Boeing Commercial 777 1995 12% [2], [7] 

Airbus Commercial A380 2007 20 – 22% [1], [8] 

Boeing Commercial 787 2011 50% [2], [4] 

Airbus Commercial A350 XWB 2015 53% [5] 

McDonnell Douglas Military F-15 1976 2% [1], [9] 

McDonnell Douglas Military F-18 1983 19% [1], [10] 

Eurofighter Military Typhoon 2003 40% [11] 

Lockheed Martin Military F-22 2005 24% [2], [12] 

Lockheed Martin Military F-35 2015 35% [2], [13] 

 

 

Figure 1 Structural percentage mass of composites used in Airbus and Boeing commercial aircraft 

models throughout the years. 

However, while composites offer great benefits to industries mentioned above, several 

downsides have been recognised. These materials are highly anisotropic and prone to 

complex failure modes such as delamination, fibre breakage, matrix cracking, and 

porosity. Many of these defects may form during manufacturing or in-service use and 

often remain hidden beneath the surface, making visual inspection ineffective. 

Furthermore, composites typically fail in a brittle and sudden manner, without clear 

warning signs [14], [15].  
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There have been several important examples of composite material failure that 

illustrate the critical need for detailed inspection. For instance, Boeing 787 Dreamliner 

fleet underwent additional inspections after delamination issues were identified in 

composite fuselage sections. These flaws did not lead to catastrophic failures, but they 

highlighted the challenges of detecting and addressing defect early in service life [16]. 

Another widely discussed example was the crash of American Airlines Flight 587 in 

2001 due to the vertical stabiliser failure. Although the primary cause was determined 

to be human error in turbulent flight conditions, prior report had noted delamination in 

the same structural component, which drew the attention to the need for thorough 

inspection procedures [17]. 

Given these risks, the use of composite materials in high-value, safety-critical 

components requires comprehensive Non-Destructive Evaluation (NDE), a process of 

examining materials without causing damage or altering their functionality. Common 

NDE techniques include Ultrasonic Testing (UT), radiographic testing, eddy current 

testing, and visual testing. The choice of a suitable NDE method depends on various 

factors, such as the material's characteristics, geometry, safety considerations, and the 

specific defects being targeted. UT has become a preferred modality in aerospace due 

to its ability to provide volumetric inspection, assess internal structure, and offer 

flexibility and ease of use, making it ideal for detecting a wide range of defects. The 

approximate market size of the NDE industry in The United States in 2021 was 2.43 

billion dollars, with UT representing a major portion, approximately 660 million 

dollars [18]. Growth projections indicate that the NDE market could reach 16.66 

billion dollars by 2029, driven primarily by the aerospace industry's high standards for 

material quality and the oil and gas industry's need for robust pipeline inspection 

methods. 

Advancements in NDE sensor technology have been paralleled by improvements in 

robotics, particularly through the integration of sensors with industrial manipulators 

for deployment. As a result, precision and repeatability of NDE processes greatly 

increased, reducing the reliance on manual inspection skills of highly trained certified 

inspectors [19], while accelerating the data acquisition process by generating large 

volumes of data in a very short time. However, data interpretation remains 
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predominantly manual and lags behind acquisition speeds, increasing the risk of 

human error and creating bottlenecks in manufacturing [20], [21]. Therefore, the 

development of automated data interpretation tools to aid the decision-making process 

would complement the automated robotic systems currently used within the industry, 

serving as a key enabler for realising the full potential of industrial automation in line 

with the NDE 4.0. Artificial Intelligence (AI) technology has been recognised as a key 

enabler for resolving data interpretation bottlenecks and tackling repetitive tasks 

currently performed by humans. However, the uptake and implementation in industry 

settings is still limited, particularly in safety-critical sectors such as aerospace. This is 

due to several factors, including the relatively early stage of research into the 

application of AI for NDE, and the lack of consensus around the fundamental 

requirements AI systems must meet to be considered reliable and trustworthy for such 

applications [22]. Furthermore, safety-critical industries are typically cautious in 

adopting new technologies as the consequence of failure can be severe. Lastly, while 

broader AI standards are beginning to emerge (e.g., first legal framework on the use 

of AI in the European Union the “AI Act” came into force in August 2024 and will 

gradually be implemented in practice, starting with February 2025 [23], [24]), similar 

regulatory guidelines for AI enabled NDE are lacking. Some efforts do exist, most 

notably a set of technical reports and recommended practices published by the 

European Network for Inspection and Qualification (ENIQ) [25], as well as the 

“Handbook of Nondestructive Evaluation 4.0” [26], a 2025 publication that is only 

beginning to explore the potential impact and opportunities of AI and how it may shape 

the future NDE landscape. 

In the last decade, the field of AI has experienced a surge in research interest, 

particularly in computer vision with seminal works such as the development of 

powerful model architectures like AlexNet [27] and ResNet [28], as well as the use of 

large datasets like ImageNet [29] for model training. One of the key drivers of this 

surge is the demonstrated ability of AI models to outperform humans in complex and 

high-dimensional tasks. For example, the AlphaGo and AlphaZero fundamentally 

changed the way how professional Go and chess players approach their respective 

game, and no human has matched their performance since [30], [31]. AI models have 

also achieved diagnostic accuracy that exceeds that of experienced trained medical 
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professionals in specific medical tasks [32] and are showing increasing promise in 

outperforming NDE professionals [21]. Additionally, AI model AlphaFold has 

resolved difficulty solvable problems like protein structure prediction, significantly 

accelerating research in the biomedical sciences.  

Another factor behind the increased interest in AI is the limitation of traditional rule-

based system when applied to real-world data, which is often noisy and subjective to 

variability. As discussed in Chapter 4, such systems tend to struggle under these 

conditions due to their rigidity. In contrast, AI models can learn directly from data and 

adapt to patterns that may be difficult or impossible to manually specify.  

Finally, significant progress in the Graphics Processing Unit (GPU) market, alongside 

the availability of open-sourced datasets (e.g., Kaggle competitions [33]), and 

development of AI frameworks (such as PyTorch and TensorFlow) significantly 

lowered the barrier for entry for research. 

Although evaluating the market size for AI technologies is challenging, some reports 

suggest that the market, valued at 757 billion dollars in 2025, is expected to grow 

approximately fivefold by 2034 [34].  

The outlined driving factors for the future production of CFRPs, combined with the 

growing adoption of automated robotic setups for NDE, and the emergence of new AI 

technologies, provide strong motivation to explore and research automated solutions 

for addressing data interpretation bottlenecks. 

1.2 Aims and Objectives 

The main aims and objectives of this PhD thesis are: 

• To investigate and understand the current state of the art in UT methods used 

for NDE of CFRPs, with a specific focus on the aerospace industry. 

• To investigate the current state of the art in research on the application of AI 

technologies within NDE workflows and assess their adoption and use in 

industrial practices. 

• To acquire and analyse UT data from various CFRP reference samples using a 

robotic manipulator setup that mirrors industrial practices. 



23 

 

• To develop and evaluate AI-driven workflows for the automated processing of 

ultrasonic inspection data, with the goal of improving defect detection and 

characterisation, and accelerating analysis. 

• To explore both supervised and unsupervised AI approaches, including the use 

of synthetic data and domain-specific augmentation strategies for model 

training. 

• To investigate multi-model analysis across multiple ultrasonic scan views, and 

to propose a tiered framework for integrating AI into existing NDE workflows. 

1.3 Outline of Thesis Structure 

The remainder of the thesis is structured as follows: 

• Chapter 2 provides an overview of UT, CFRPs, AI, and the application of AI 

methods in NDE. This chapter serves as a background research and literature 

review to identify gaps in the knowledge and outline the motivation for the 

present work. 

• Chapter 3 describes the automated NDE robotic setup used to capture the UT 

data used in this thesis. It details the UT and robotic setups, data processing 

techniques, CFRP reference samples, and the used hardware. 

• Chapter 4 presents a comparative study of traditional and AI methods for defect 

detection in ultrasonic amplitude C-scans. 

• Chapter 5 introduces a two-stage unsupervised approach for ultrasonic 

Brightness scan (B-scan) analysis, based on an automated gating method and 

an anomaly detection AI model. 

• Chapter 6 explores strategies for implementing developed AI models into NDE 

workflows, with a focus on the simultaneous processing of different ultrasonic 

views to achieve comprehensive analysis. 

• Chapter 7 concludes the main findings and limitations of the thesis and 

discusses potential future research trajectories. 
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1.4 Contributions to Knowledge 

The work presented in this thesis is focused on the automated analysis of UT data from 

CFRP samples. The key contributions are summarised: 

• Successful training of object detection AI models using purely synthetic 

ultrasonic C-scan data, addressing the lack of open, labelled datasets in this 

domain. Transfer learning techniques were employed by incorporating 

domain-specific augmentations derived from noise profiles of real inspection 

data, helping bridge the gap between simulated and real-world conditions. The 

models were validated on real inspection data and showed generalisable 

performance. A comparative analysis was conducted against traditional 

statistical thresholding methods, which remain standard practice in industry. 

• Development of a two-step data analysis workflow for ultrasonic B-scans, 

which includes an automated signal gating method to remove prominent 

geometrical features from the captured data using unsupervised clustering, and 

an AI-based anomaly detection model trained exclusively on pristine (in this 

thesis, the term pristine refers to samples that contain no intentional or 

unintentional manufacturing defects that are detectable using the ultrasonic 

inspection setup employed, within the limits of its resolution) experimental 

data, thus reducing the need for labour-intensive ground truth labelling. 

• Proposal and discussion of integration strategies for the developed AI models, 

focusing on automation levels ranging from operator assistance tools to highly 

automated solutions that are adaptable to various risk profiles. While similar 

integration challenges and solutions have been explored in different fields (e.g., 

biomedical and medical domains), this thesis contributes the framework for 

implementing such strategies in NDE data analysis workflows. 

• Development of a multimodal, multiview ensemble approach to defect 

detection that synchronously combines outputs from three AI models analysing 

different ultrasonic data views, including B-scans, C-scans, and 3D volumetric 

inspections. This ensemble design provides a cross-validation mechanism and 

flexible implementation strategies, addressing limitations in earlier NDE 

research which typically does not leverage multiple data views in combination. 
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Chapter 2: Background Research 

2.1 Ultrasonic Testing  

Ultrasound refers to acoustic waves whose frequency exceeds 20 kHz, placing them 

beyond the human hearing range [35]. Ultrasonic testing is the most used NDE method 

due to its flexibility, ease of use, and safety [36], [37], and it is employed in industries 

such as aerospace, construction, automotive, and energy for inspection of metal and 

composite materials [38], [39], [40], [41]. A range of UT techniques is available, such 

as the conventional piezoelectric transducer method, laser UT, and Phased Array 

Ultrasonic Testing (PAUT), each suitable to specific applications. These techniques 

utilise different wave propagation modes, including longitudinal, shear, surface, and 

guided waves, depending on the inspection requirements. This thesis focuses on the 

use of normal-incidence longitudinal ultrasonic waves for volumetric inspection, as 

this is the standard industrial practice for CFRP inspection. Longitudinal waves are 

preferred as most internal defects in composites tend to be oriented parallel to the 

surface, making normal beam inspection effective for their detection. 

UT offers several advantages, including near-instant display of results, flexible 

operating frequencies that can be tuned based on the inspection requirements and the 

material composition, and the ability to examine the internal structures without the 

need for extensive component preparation procedures [36], [37], [42], [43]. However, 

some disadvantages of UT have been recognised. For thicker objects, the penetration 

depth of ultrasound may be insufficient to propagate effectively through the entire 

structure, depending on the material composition and test frequency [44]. 

Additionally, conventional UT is unable to detect defects smaller than half of the 

wavelength of the incident soundwave, due to fundamental diffraction limits [44]. 

While some experimental techniques have explored sub-wavelength detection using 

AI super-resolution approaches [45], these remain in early research stages. Similarly, 

defects located parallel to the ultrasound beam may go undetected [37], [44].  

2.1.1 Fundamentals of Ultrasound 

Ultrasonic waves are defined as self-sustaining mechanical waves that cause a series 

of compressions and rarefactions when propagating through a medium. Common types 

of ultrasound waves include longitudinal, transversal, Rayleigh, and Lamb waves. The 
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ultrasound wave propagation is extensively covered in existing literature [46], [47], 

therefore only one-dimensional wave equation in isotropic media is presented in Eq.1: 
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 Eq.1 

Where p is the pressure amplitude, x is the one-dimensional distance, v is the wave 

speed, t is the time, and u is the particle displacement amplitude. This form of the wave 

equation applies specifically to longitudinal waves propagating in a linear, isotropic 

medium. 

Operating frequency is a crucial parameter as it directly determines both the resolution 

and penetration depth. Higher-frequency ultrasonic waves have shorter wavelengths, 

allowing for interaction with smaller features within the material at the expense of 

decreased penetration depth. In contrast, lower frequency operation produces waves 

of longer wavelengths that penetrate deeper into the material but sacrifice resolution. 

Therefore, achieving a suitable balance between operating frequency, penetrating 

depth, and the required level of detail resolved by the waves is essential when choosing 

UT parameters. The relationship between operating frequency and wavelengths is 

given in Eq.2: 

 𝑓 =  
𝑣

𝜆
 Eq.2 

Where f is the operating frequency of the ultrasonic system and λ is the wavelength. 

This equation assumes a constant wave velocity v, which is valid for homogeneous 

and isotropic materials. However, CFRPs are inhomogeneous and anisotropic, and 

wave velocity varies with direction and frequency (making CFRPs dispersive media). 

In practical UT, a constant velocity is often assumed as an 

approximation/simplification. However, advanced imaging techniques (discussed in 

section 2.1.8) require a more accurate velocity model to account for variations within 

the material for reliable image reconstruction. 

2.1.2 Ultrasonic Beam 

In its simplest form, UT waves are generated using a piezoelectric crystal that enables 

the conversion of input electrical voltage into mechanical vibrations and vice versa 
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[48]. These vibrations produce ultrasonic waves of high frequency that propagate 

through materials and are altered due to the scattering and attenuating mechanisms. 

When an ultrasonic transducer is excited, it generates pressure waves which propagate 

and form ultrasonic beams described by three distinct areas. The area closest to the 

source of ultrasound is characterised by both constructive and destructive wave 

interactions, creating a non-uniform distribution of energy and intensity as the 

ultrasonic beam is still converging. This can cause artefacts during the scan and 

diminish the quality of the imaging, leading to inconsistent measurements and complex 

interference patterns. This zone is called the near field or Fresnel zone and is often 

avoided in NDE applications, particularly for single element transducers, through 

transducer design, stand-off wedges to offset the transducer from the inspected 

material, focusing techniques, or shorter ultrasonic pulse [37].  

The middle portion of the beam is called the focal zone and is characterised by the 

smallest beam diameter, resulting in overall highest lateral resolution. Additionally, 

this zone contains the peak pressure point measured from the source, which can be 

approximated with Eq.3: 

 𝑁 ≈
𝐷2

4𝜆
 Eq.3 

Where N is the distance from the source to the peak pressure point and D is the 

dimension of the circular ultrasonic transducer. The focal zone is the most suitable part 

of the beam for NDE inspection as it results in a high energy measurement and a good 

resolution, making it particularly efficient for the inspection of smaller parts and 

defects [49]. In focused single-element transducers, the focal point is fixed by design, 

whereas in advanced techniques like PAUT, the focal zone can be dynamically 

adjusted through ultrasonic setup parameters. This is achieved through the application 

of delay laws, where each element in the array is excited at controlled time steps. By 

adjusting these delays, the emitted wavefront can be steered and focused at different 

depths or angles without moving the probe physically. This principle and its 

implementation are further detailed in Section 2.1.8. Lastly, the far field or Fraunhofer 

zone is further away from the source and can be described by a uniform ultrasonic 

beam with fewer energy fluctuations, and its distance from the source is described with 

Eq.4:  
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 𝑁 ≈
4𝐷2

𝜆
 Eq.4 

The factors mentioned above (wavelength and transducer dimensions) also influence 

beam spread, a phenomenon where ultrasonic wave diverges from its initial direction 

as it propagates through the material. Lower-frequency waves and smaller transducer 

sizes result in greater beam divergence, which can be estimated using Eq.5 [50]: 

 sin Θ = 1.22
𝜆

𝐷
 Eq.5 

Where ϴ is the angle of divergence. Excessive beam spread reduces spatial resolution 

but can be mitigated by using higher-frequency transducers, larger transducer 

apertures, or focusing techniques, as further discussed in Section 2.1.8. A simplified 

illustration of an ultrasonic beam with the above-described zones is shown in Figure 

2. 

 

Figure 2 An example illustration of an ultrasonic beam with near field, focal zone, and far field 

marked 

2.1.3 Wave Velocity 

Wave velocity refers to the speed at which ultrasonic waves propagate through a 

material and is primarily influenced by the material properties. For longitudinal waves, 

velocity can be determined through Eq.6 [51]: 

 𝑣 =  √
𝐸

𝜌
 Eq.6 
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Where E is Young’s modulus, and ρ is the material’s density. Wave velocity varies 

within the same material depending on the wave mode. For example, shear waves, 

which depend on the shear modulus G, typically propagate at lower speeds than 

longitudinal waves [52]. 

UT relies on measuring the time taken for a wave to travel to reflecting features within 

the inspected material (i.e. front wall, back wall, or reflective defects) and return to the 

transducer. This Time-of-Flight (ToF) measurement allows for depth estimation, and 

is given by Eq.7: 

 𝑑 =  
𝑣 ∗ 𝑡

2
 Eq.7 

where d is the distance travelled, and t is total travel time. Precise knowledge of wave 

velocity is crucial for accurate feature localisation and material thickness 

measurements. However, in highly anisotropic materials such as CFRPs, wave 

velocity estimation becomes complex due to variations in stiffness and density across 

different fibre orientations, which are further discussed in Section 2.1.8 and Chapter 

4. 

2.1.4 Attenuation 

Attenuation of the ultrasonic waves refers to the loss of energy during propagation, 

resulting from multiple underlying phenomena such as the conversion of wave energy 

to kinetic energy in the form of heat and perceived attenuation due to scattering. 

Scattering occurs when ultrasonic waves interact with features smaller than their 

wavelength, causing energy dissipation. This phenomenon is particularly pronounced 

in CFRPs, which exhibit high levels of attenuation due to their anisotropic nature, as 

well as the non-linear relationship between attenuation and frequency, influenced by 

factors such as complex fibre orientation, layering, and heterogeneity within the 

material [37], [53], [54]. For comparison, metallic materials generally exhibit a more 

linear attenuation with respect to frequency, where signal loss increases in a relatively 

predictable manner as the frequency rises [55]. Attenuation can be mathematically 

expressed with Eq.8 [56]:  

 𝐴 =  𝐴0𝑒−𝛼𝑥 Eq.8 
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Where A is the pressure amplitude of the ultrasonic wave after transmission, A0 is the 

pressure amplitude of the initial pulse, α is the attenuation coefficient, and x is the 

travelled distance. The usual practice is to present attenuation with a logarithmic scale 

with Decibel (dB) units: 

 𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 =  20𝑙𝑜𝑔10(𝐴0/𝐴) Eq.9 

In other words, when features of the same size are present at varying depths within the 

sample, those located at larger depths with greater acoustic path from the source show 

lower amplitude signals compared to closer features. The effects of attenuation are 

demonstrated in sections 2.1.9 and 2.1.12, while methods to compensate for this 

phenomenon are discussed in Section 2.1.14. 

2.1.5 Conventional Ultrasonic Testing 

The first conventional UT method is the pulse-echo technique, where the same 

ultrasonic transducer produces an ultrasound pulse that propagates into the material 

and records the returning reflections. Depending on the mode of application, the 

transducer is either air-coupled, used in immersion, or directly coupled in contact to 

the object with the help of a coupling medium. The coupling medium (or couplant) 

helps to address the acoustic impedance mismatch between the mediums and 

eliminates air pockets which act as strong reflectors, promoting overall energy 

propagation into the material [57]. Typically, in manual ultrasonic inspection, a thin 

layer of coupling gel is used, whereas, in automated UT inspection, it is usually a thin 

layer of water. The constant thickness and proper application of coupling are critical 

to the performance of the ultrasonic setup as inconsistencies can lead to the decoupling 

of the ultrasonic probe and uneven energy transmission into the material [58]. From a 

data-driven perspective, such uneven energy transmission creates inconsistencies in 

the recorded amplitudes and introduces unexpected variability and noise into the 

ultrasonic signals, which can degrade the performance and robustness of AI models 

trained on such data (this phenomenon is further discussed in section 5.8).  

Upon encountering object boundaries, defects, or other discontinuities, a portion of the 

initial wave is reflected to the transducer, where the pressure amplitude is received and 

converted to voltage owing to the piezoelectric effect. Recorded wave amplitudes can 

be visualised as an Amplitude scan (A-scan), a representation of wave amplitudes over 
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time. In pristine samples, areas of higher amplitude typically correspond to front and 

back wall reflections. However, when defects are present, part of the wave is reflected 

off the defect and back to the transducer, creating an additional indication in the A-

scan that appears earlier in time than the back wall reflection. Pulse-echo mode of 

operation is presented in Figure 3. 

 

Figure 3 Illustration of pulse-echo inspection configuration with corresponding A-scan 

representations. Green indicates a pristine scan, while purple represents a defective scan. 

The use of a single transducer for both transmission and reception induces a ringdown 

effect which can obscure portions of the useful signal, thus creating a dead (or blind) 

zone [59]. This masking effect can be mitigated by using acoustic wedges that offset 

the original pulse away from the surface. The use of wedges necessitates adjustment 

in the ultrasonic setup depending on the geometry and properties of the wedge. 

Additionally, wedges can be in 0° configuration for normal incidence or angled to 

redirect the beam at an angle. 

Since both transmission and reception of UT signals are performed on the same 

surface, the pulse-echo technique is suitable for industrial applications where access is 

limited to one side. On the downside, the pulse-echo method faces challenges with 

rough surfaces that obstruct the wave penetration, very thin materials where a large 

portion of the A-scan can be masked by initial pulse reverberations, and near-surface 

discontinuities located in the near-field of the ultrasonic beam. 
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The second type of conventional ultrasonic testing is the pitch-catch mode, where two 

ultrasonic transducers are used. These transducers can be placed on the same or 

opposite surfaces of the material (in which case it is referred to as through-

transmission), depending on the application. In this mode, one transducer generates 

ultrasonic waves, and the other receives it, and unlike pulse-echo, dead zones in the 

signal are eliminated [26]. This mode requires precise alignment of the transducers, 

and in through transmission, the depth information about features within the material 

is lost. Pitch-catch is often used in inspection of welds [43], inspection of polymers 

[44], and structural health monitoring for corrosion [45]. However, this method is 

generally not applicable for composite materials due to their anisotropic nature. 

Angled or steered beams in such materials are more susceptible to scattering and 

attenuation, often resulting in degraded signal quality compared to pulse-echo 

techniques. While some studies have explored the use of pitch-catch for static 

inspection of unidirectional composites [60], these approaches are limited in scope and 

are not well suited to the automated scanning strategies employed in this thesis. 

Therefore, the focus is shifted towards pulse-echo methods. The operating principle of 

through transmission pitch-catch ultrasonic scanning is presented in Figure 4. 

 

Figure 4 Illustration of through transmission pitch-catch inspection configuration with corresponding 

A-scan representations. Green indicates a pristine scan, while purple represents a defective scan. 
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2.1.6 Normal Incidence 

Normal incidence occurs when an ultrasonic wave approaches an interface between 

two mediums perpendicularly. At an interface with another material, acoustic waves 

can change due to phenomena of reflection, diffraction, transmission, refraction, and 

mode conversion. Generally, the difference in acoustic impedance between two 

materials determines how much the incident wave is altered at the interface. Materials 

with similar acoustic impedance cause fewer changes to the wave compared to those 

with highly dissimilar impedance. Acoustic impedance, measured in kg/sm2, 

quantifies a material's resistance to the transmission of waves and is given in Eq.10: 

 𝑍 =  𝜌𝑣 Eq.10 

Where Z is the acoustic impedance, and ρ is the density of the material. Changes in 

wave energy at interfaces are characterised by transmission and reflection coefficients, 

which define the amount of wave energy transmitted or reflected. These coefficients 

are determined by the acoustic impedance of the materials involved and are 

represented in Eq.11 and Eq.12:  

 𝑅 =  
𝑍2 − 𝑍1

𝑍1 + 𝑍2
 Eq.11 

 𝑇 =  
2 ∗ 𝑍2

𝑍1 + 𝑍2
 Eq.12 

Where Z1 and Z2 are acoustic impedances of the first and second medium, respectively. 

Normal incidence corresponding to Eq.11 and Eq.12 is illustrated with Figure 5. 

 

Figure 5 Illustration of transmitted and reflected waves at the interface with normal incidence 

between two mediums. 
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2.1.7 Snell’s Law and Oblique Incidence 

When an ultrasonic wave encounters an interface between two mediums at an angle, 

part of the wave is reflected into the original medium, while the other part is refracted 

into the subsequent medium. Refraction results in a change in waves direction (angle), 

and can be described by Snell’s law [47], as shown in Eq.13. This phenomenon is 

visually represented in Figure 6. 

 

Figure 6 Illustration of reflected and transmitted waves at the interface with oblique incidence 

between two mediums. 

 
sin 𝜃𝑖

𝑣𝑖
=

sin 𝜃𝑟𝑙

𝑣𝑟𝑙
=

sin 𝜃𝑡𝑠

𝑣𝑡𝑠
=

sin 𝜃𝑡𝑙

𝑣𝑡𝑙
 Eq.13 

Where:  

θi and vi are the angle and wave speed of the incident wave 

θrl and vrl are the angle and wave speed of reflected longitudinal wave 

θts and vts are the angle and wave speed of transmitted transversal wave 

θtl and vtl are the angle and wave speed of transmitted longitudinal wave 

In instances where the refracted longitudinal wave exceeds 90° angle (critical angle), 

the refraction is accompanied by mode conversion. Mode conversion is a physical 

phenomenon where incident wave creates waves of different types (e.g., longitudinal 
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waves create shear waves). This behaviour is often utilised in NDE where spatial 

resolution can be improved with shear waves which have shorter wavelengths [61], 

[62]. 

While this description provides insight into wave interaction at a high level, factors 

such as the angle of incidence, surface roughness, absorption, attenuation, and the type 

of bonding between interfaces influence transmission and reflection. These factors 

contribute to complex and nonlinear behaviour that depends on specific properties at 

a smaller, local scale. 

These physical factors impact data-driven methods by introducing variability and 

stochastic effects in the ultrasonic signals that are difficult to model precisely. Finite 

Element Analysis (FEA) simulations attempt to capture some of these complexities, 

but many aspects remain challenging to predict or simulate. As a result, data-driven 

approaches must account for inherent noise and uncertainty in the input data to produce 

generalisable outcomes. While real experimental data naturally includes this 

variability and can help models learn to cope with it, simulated datasets often lack such 

stochastic characteristics, making it more difficult for models trained solely on 

synthetic data to generalise to real-world scenarios (this is further discussed in section 

4.4). 

2.1.8 Phased Array Ultrasonic Testing 

In recent years, there has been a noticeable increase in the adoption of PAUT [36], 

[63]. Ultrasonic arrays consist of multiple individual piezoelectric transducers, 

arranged in an array configuration. PAUT has found wide application in various NDE 

tasks due to their flexibility, high resolution imaging, and reduced inspection times 

due to a larger coverage area [58], [64]. Each ultrasonic array can be described by 

several key characteristics: the number of individual elements it comprises, the 

elevation (the size of elements in the dimension normal to the inspection surface), the 

pitch (the distance between the midpoints of neighbouring elements), and the kerf (the 

size of the gap between two individual ultrasonic elements). Array elements and its 

properties are illustrated in Figure 7. 
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Figure 7 Ultrasonic array schematic illustrating pitch, kerf, elevation, and length of the array, 

The scanning with PAUT arrays is typically performed by moving along the 

component in a direction perpendicular to the transducer’s elevation axis. While 

exciting all elements at once to generate a plane wave, similar to the operation of a 

single transducer is possible, the array elements can be excited/activated for reception 

individually at different time stamps. This allows for the creation of a series of time 

delays, also known as delay laws, to achieve different ultrasonic beam forms and 

propagation orientations. Different forms of delay laws enable: 

• Beam steering, where the propagation angle for the generated wavefront can 

be changed with respect to the arrays’ normal. 

• Focusing, where parabolic delay laws create a focal point for the generated 

beam. 

• Creation of sub-apertures, where a subgroup of array elements is excited 

simultaneously to generate more energy, create larger wavefronts that travel 

into the sample, and improve the signal-to-noise ratio [65], [66], [67]. 

Examples of beam steering, beam focusing, and sub-apertures are presented in Figure 

8. 
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Figure 8 Illustration of phased array delay laws: a) sub-aperture firing: b) focusing, c) beam steering. 

This electronic control of array elements is a significant advantage of PAUTs, reducing 

the need for physical alteration of the probe's position and angle. Lastly, the 

introduction of PAUT enabled the use of newer data acquisition methods, such as Full 

Matrix Capture (FMC), which records the full combination of transmit/receive 

possibilities in an array configuration to be leveraged to form high-resolution advanced 

images capturing greater detail, with algorithms such as Total Focusing Method (TFM) 

[68].  

However, these techniques cannot be effectively used with CFRPs due to the highly 

anisotropic and dispersive nature, which causes the wave velocity to vary with both 

direction and frequency. This violates the assumptions of constant wave speed 

underlying the 1D wave equation (as shown in Eq.1). Since the wave velocity is critical 

for ToF calculations in TFM, this variability introduces challenges that can result in 

imprecise imaging. Although some adjustments have been made to algorithms to 

address these issues with CFRPs [69], [70], such techniques remain largely limited to 

laboratory settings, with minimal industrial uptake. Furthermore, ray tracing 

calculations used in TFM are computationally intensive and time-consuming, making 

real-time imaging difficult. As a result, electronic scanning methods such as linear 

scans remain widely accepted in the industry, providing sufficient performance for 

practical NDE applications.  
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To aid with the following chapters, Figure 9 presents the different ultrasonic 

views/projections used throughout this thesis. 

 

 
 

 

Figure 9 Demonstration of A-scan, B-scan, and C-scan ultrasonic views used throughout this thesis. 

2.1.9 Ultrasonic A-scans 

The A-scan representation displays the captured ultrasonic wave amplitudes in time. 

This format is typically used with single-element transducers, allowing an NDE 

operator to estimate the thickness of the inspected sample by measuring the peak-to-

peak distance between the front and back wall indications. However, A-scans require 

expertise to interpret as they provide limited spatial information. Despite this 

limitation, A-scans are valuable for detecting typical CFRP composite defects 

(explained in Section 2.2), such as delaminations and impact damages and determining 

their depth due to the high temporal resolution [71]. A representation of a pristine and 

defective A-scan, captured from a CFRP sample containing a defect, is shown in 

Figure 10. 
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a) Schematic of inspected component with defect marked in red 

 

 

Figure 10 a) Schematic of a CFRP component containing a defect (marked with red); b) Example of a 

pristine ultrasonic A-scan, with labels indicating the front and back walls; and c) example of a 

defective ultrasonic A-scan, showing the front and back wall labels along with a labelled defect. 

2.1.10 Signal Time Gating 

Raw ultrasonic signals are typically acquired in the form of Radio Frequency (RF) 

signals, which contain both amplitude and phase information. RF data consists of both 

positive and negative values, representing the oscillatory nature of the ultrasonic wave. 

Other forms of signal representation include rectified data, where the absolute values 

of the signal are taken to remove negative amplitudes. Additionally, enveloped signals, 

often obtained using the Hilbert transform, provide a smooth representation of the 

signal envelope but sacrifice phase information (detailed in Section 2.1.11) 

The application of several signal processing methods is used to aid the interpretation 

of captured ultrasonic data. Time gating involves applying a windowing technique to 

the time-series data to isolate areas of interest. Geometrical features at interfaces 

between different materials, like front and back walls, exhibit higher amplitudes 

compared to other structures within the sample. These indications, if not excluded, can 
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mask weaker ultrasonic signals of interest, such as discontinuities and defects. 

Therefore, windowing focuses on eliminating the contribution of such features in scan 

images to enhance the visibility of relevant signals and is a crucial step in the 

preparation of C-scan views, explained in Section 2.1.13. However, as windowing is 

applied manually, it introduces a degree of subjectivity and errors in the selection of 

gating boundaries may unintentionally exclude important features or retain unwanted 

signals, which can affect the data analysis steps. An example of signal gating is 

illustrated in Figure 11. 

 

Figure 11 An example of an ultrasonic A-scan with time gating. 

2.1.11 Hilbert Transform 

Hilbert transform is a mathematical method used to envelop signals, commonly 

applied in time-series data analysis to examine instantaneous amplitude responses 

[72]. This transformation generates a complex signal which consists of phase shifting 

every Fourier transform component by 90°. Specifically in UT, applying the Hilbert 

transform to each A-scan signal and visualising the real component results in an 

enveloped signal that effectively represents only instantaneous amplitude response 

while eliminating phase information. This technique is particularly useful in scenarios 

where multiple reflections occur within a short time segment [73]. The Hilbert 

transform is crucial when generating C-scan views of the ultrasonic data, as discussed 

further in section 2.1.13. An example of RF and Hilbert-processed signal is presented 

in the Figure 12. 
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Figure 12 Comparison of RF and Hilbert-processed A-scans. 

2.1.12 Ultrasonic B-scans 

When using PAUT systems, each transducer (in single-element sub-aperture scanning) 

or group of elements (in multi-element sub-aperture scanning) generates an A-scan. 

By stacking the A-scans according to the location of the of the elements used for 

acquisition and representing the amplitudes on a colour scale, a B-scan representation 

can be produced. A B-scan provides a cross-sectional view of the scanned sample, 

allowing both the localisation of features within the active aperture of the array and 

the depth estimation of potential defects. B-scans are widely used in NDE and 

biomedical applications [67], [74]. However, B-scans lack spatial contextual 

information along the axis of PAUT array movement (i.e. perpendicular to the 

transducer’s elevation axis), which can lead to difficulties when sizing defects. 

Furthermore, it is often impractical to examine all individual B-scans within the scans 

of large components, as this would be time-inefficient. An example of both pristine 

and defective B-scans, captured from a CFRP sample containing a defect, is presented 

in Figure 13. 
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a) Schematic of inspected component with defect marked in red 

 

 

Figure 13 a) Schematic of a CFRP component containing a defect (marked with red); b) A pristine 

ultrasonic B-scan with labels marking the front and back walls; and c) A defective ultrasonic B-scan 

with labels marking the front and back walls, alongside additional annotations highlighting the defect 

and the associated loss of the back wall signal due to the defect. 

2.1.13 Ultrasonic C-scans 

Combining PAUT inspection with the mechanical movement of the array enables the 

capture of a series of B-scans at different positions along the component. These B-

scans are stacked based on their positional encoding to form a three-dimensional (3D) 

volumetric scan of the component. The dimensions of the 3D scan include the robotic 

movement axis (defining the positions of the B-scans), the time axis (representing the 

length of each individual A-scan), and the array axis (representing the number of A-

scans captured by the array). 

A C-scan is a format that represents a two-dimensional (2D) slice parallel to the sample 

surface of such 3D volumetric data. It is created by applying a time gate to the A-scan 

signals and plotting the amplitudes versus the 2D scanning positions in form of a 

heat/intensity map. Hilbert transform is crucial step for C-scan generation as RF data 

contains a mix of positive and negative peaks that can compromise the visualisation 
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quality of C-scans by potentially missing maximum amplitudes. Therefore, applying 

the Hilbert transform ensures that C-scans accurately depict the peak amplitudes of 

interest without the interference of phase information. Lastly, signal gating is a critical 

step because it determines which portion of the A-scan data contributes to the C-scan 

image. If the gate is too wide or misaligned, it may include unwanted reflections or 

miss important signals from internal features. For example, front wall reflections 

typically do not contribute to defect analysis and, if included, would appear as bright 

spots without providing any insight into the internal structure. On the other hand, back 

wall reflections may or may not be relevant depending on the inspection objective 

(they are sometimes intentionally excluded to focus on internal features or included 

when monitoring full material thickness). 

It is also possible to plot the time corresponding to high amplitude features versus the 

2D scan position data to create ToF C-scans. C-scans preserve spatial information in 

three dimensions, therefore making them easier to interpret. By adjusting the time 

gating parameters, it is possible to focus on specific depths such as the internal 

structure of the material or the back wall indication [75], [76]. Representations of both 

amplitude and TOF C-scan are shown in Figure 14. 
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a) Side view of inspected component with defects marked in red 

 

 

Figure 14 a) Side view schematic of a CFRP component containing two scanned defects at different 

depths; b) An excerpt of an amplitude C-scan showing two defects of higher amplitude; and c) An 

excerpt of a TOF C-scan showing the same two defects. 

 

2.1.14 Time Varied Gain 

Gain refers to the amplification of a signal to enhance its strength relative to the noise 

floor. Hardware gain is applied during data acquisition using analogue amplification 

stages, directly affecting the raw signal before digitisation, with the goal of ensuring 

the captured signal is strong enough. In contrast, software gain is implemented post-

acquisition through digital processing. While software gain allows for flexible 

adjustments to the captured data, it cannot recover details that may be lost if improper 

hardware gain is used. 
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To compensate for attenuation effects, Time Varied Gain (TVG) is often used as an 

additional signal processing step. TVG progressively increases the gain as the 

ultrasonic wave travels further, compensating for the signal loss that occurs with 

longer propagation paths. TVG applied via the controller compensates for attenuation 

in real-time during the scan, while post-processing TVG allows for flexible 

adjustments after data acquisition. The former provides immediate correction, while 

the latter enables more flexible adjustments, but cannot address issues arising from 

inadequate gain setting during acquisition, such as insufficient signal strength at the 

initial capture. 

In composite materials, especially for thinner samples such as those studied in this 

work, both TVG during capture and post-processing TVG are valid options. Since the 

ultrasonic pulses are relatively short and do not suffer from significant temporal 

broadening, the degradation of signal-to-noise ratio (SNR) commonly associated with 

longer pulses in TVG is minimised [77]. In practice, applying TVG during capture 

generally offers better SNR, but this approach is best suited to stable inspection setups 

scanning components of consistent geometry and material properties, where the TVG 

parameters can be calibrated and remain constant. When geometry or material 

properties vary, the TVG settings during capture may require frequent adjustments and 

recalibration, which can be time-consuming and impractical. In such cases, post-

processing TVG provides valuable flexibility to adapt gain compensation after data 

acquisition without the need for repeated hardware recalibration. 

Figure 15 illustrates a linear ramp TVG is applied to the B-scan from Figure 13. The 

shape and parameters of TVG are often determined experimentally by measuring 

attenuation in dB/mm and compensating for the corresponding signal drop to ensure 

consistent amplitude. A different approach would be the implementation of Time 

Compensated Gain (TCG) by using standard reference samples manufactured from the 

same material as the test object with a series of side-drilled/flat bottom holes at various 

depths to establish a TCG curve that yields consistent amplitude indications from all 

the holes; however, this approach was not pursued in this thesis.  



47 

 

 

Figure 15 a) The shape of linear ramp TVG; and b) the effect it has on the B-scan representation. 

2.2 Composite Materials, Ultrasonic Inspection Procedures in the Aerospace 

Industry, and Common Defects 

2.2.1 Composite Manufacturing and Inspection in the Aerospace Industry 

CFRPs are manufactured through a complex process of layering carbon fibre sheets 

and using thermoset polymer resin as a matrix material to bond them together. Overall, 

the manufacturing process can be divided into prefabrication and curing processes 

[78]. In the prefabrication stage, resin can be incorporated into the fibre material using 

either resin transfer moulding or the prepreg method. In resin transfer mould, dry fibre 

preforms are placed inside a mould and are infused with resin. Alternatively, in the 

prepreg method, fibres are injected with resin before being laid up, either manually or 

through automated layup technologies. While hand layup processes are still widely 

used due to the low initial equipment expenditures, they also remain necessary for 

complex layup scenarios that are challenging to automate. However, these processes 

are labour-intensive and demonstrate a higher chance of material variability [79], [80].  

Following prefabrication, the most common method for curing CFRPs is autoclave 

curing, which applies both high pressure and temperature to solidify the CFRP into its 

final form. However, this method involves high energy expenditure and upfront costs, 

particularly larger autoclaves used for large components often used in aerospace 

manufacturing. In contrast, out-of-autoclave processes offer a more cost-effective 

alternative by using lower pressure levels, reducing the energy required for curing. 

Additionally, out-of-autoclave method utilises alternative heating mechanisms, such 
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as ovens or heat blankets [81], which significantly reduce operational costs while still 

achieving high material quality [82]. 

The layered construction of CFRPs, with varying fibre orientations, enhances 

mechanical properties in multiple directions. However, it also introduces anisotropy, 

which impacts materials behaviour under different loading conditions. During the 

manufacturing process, defects in various forms, such as porosity, fibre misalignment, 

and delaminations, may emerge, posing risks to safety and increasing the likelihood of 

critical material failure [42], [83]. If left unaddressed, these flaws can significantly 

influence material properties, such as strength [84], and lead to material failure when 

exposed to cyclic stresses during service [83]. 

PAUT has emerged as the preferred NDE modality in the aerospace industry due to its 

flexibility, safety, ease of integration with robotic setups, and the capability to detect 

various types of critical defects [85], [86], [87]. While the central operating frequency 

for UT typically ranges between 20 kHz and 25 MHz, frequencies in the range of 1 to 

5 MHz are most commonly used for the inspection of CFRPs [37]. This range offers 

an effective trade-off between penetration depth and spatial resolution. Lower 

frequencies (e.g., 1 to 2.25 MHz) are suitable for inspecting thicker components due 

to better penetration, while 5 MHz probes are generally used for standard aerospace 

applications. Although higher frequency probes can be employed, there is a risk of 

resonance occurring. While resonance is intentionally used in some ultrasonic NDE 

applications [88], its effects in CFRPs can be problematic, as operating frequencies 

around 12 MHz increase reflections between ply interfaces, leading to greater masking 

of useful ultrasonic responses [89], [90]. Furthermore, higher frequencies result in 

reduced penetration depth, making them unsuitable for scanning thicker material 

samples, and increased attenuation, which is directly proportional to the operating 

frequency. 

As CFRPs are used in safety-critical components such as wing covers and aircraft 

fuselages, extensive post-manufacturing NDE inspection is conducted [87]. However, 

the anisotropic nature of CFRPs poses challenges due to the complex scattering and 

high attenuation, resulting in a low signal-to-noise ratio in the captured data, which 

reduces the probability of detection [91], [92]. Additionally, the ultrasonic wave 
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velocity in CFRPs is angle-dependent, varying with fibre orientation, complicating 

accurate ToF measurements. Combined with multiple stacked layers and different 

types of thermoset polymers, this makes multi-layer wave refraction calculations for 

advanced imaging techniques such as TFM computationally demanding. Lastly, the 

complex geometries and varying thicknesses of CFRP components further complicate 

inspection. 

As a result, electronic scanning methods such as linear scans remain widely accepted 

in the industry, providing sufficient performance for practical NDE applications. 

Regardless of the imaging approach used, NDE operators rely on analysing multiple 

ultrasonic views, primarily B-scans and C-scans, simultaneously to evaluate scanned 

components. The overall NDE workflow for aerospace industry is further discussed in 

Chapter 6. However, it's important to note that not one ultrasonic view is suitable for 

detecting all types of defects. Figure 16 illustrates the applicability of different 

ultrasonic views for different defect types. 
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Figure 16 Applicability of different UT modalities for different defect types. Green indicates high 

applicability, blue indicates good applicability, yellow limited applicability, and pink no applicability. 

(adapted from [71]) 

Advancements in PAUT have been paralleled by significant improvements in the field 

of robotics, such as advancements in robotic path planning and the use of modern 

robotic manipulators for sensor delivery, thus enabling automated scanning [19], [58], 

[93], [94], [95]. The integration of PAUT and industrial manipulators has greatly 

improved the inspection processes of large and complex components, enabling high 
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precision, reduced scan times, and overall enhancing the NDE process in terms of 

reliability and safety for the inspection of high-value aerospace components [96]. 

2.2.2 Delaminations 

Delaminations, one of the most common post-manufacturing defects [97], refer to the 

detachment of individual layers of carbon fibre sheets, creating disbond between the 

layers [98], [99]. Delaminations compromise the structural integrity of components by 

reducing their load-bearing capacity, particularly in applications where high bending, 

or shear forces are present as CFRPs lack strength in the direction perpendicular to the 

layered sheets [100].  

Delaminations can originate from various sources and are broadly categorised into 

manufacturing and in-service defects. Manufacturing induced delaminations often 

occur due to improper curing, residual stresses from differential thermal expansion 

between fibre and matrix materials, trapped air, or moisture absorption, all of which 

lead to weak interfacial bonding between composite layers [101], [102]. Additional 

factors such as poor resin flow during vacuum infusion or inconsistencies in layup 

procedures can also contribute to delamination formation. In-service delaminations are 

predominantly formed through impact damage and extensive thermal and cyclic 

loading, where repeated expansion and contraction introduce stress, leading to the 

progressive separation of layers at weak interfaces [103]. 

Delaminations vary in size and can propagate under operational loads, which is often 

described by three failure modes: Mode I (Opening mode) where tensile stresses pull 

the layers apart; Mode II (Sliding mode) where shear forces cause slipping between 

the layers; and Mode III (Tearing mode) where out-of-plane shear and twisting forces 

cause propagation [104]. Delamination growth poses a significant risk to materials’ 

structural integrity, as it directly reduces compressive, tensile, and shear strength 

[102], increasing the likelihood of catastrophic failure. Given the use of CFRP’s in 

high-value safety-critical applications, early identification and characterisation of 

these defects is essential. 

Due to their orientation parallel to the carbon sheet layers, delaminations are good 

reflectors of ultrasound normal beam inspection and are characterised by high 
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amplitude areas when visualised. They also obstruct the acoustic path to the back wall, 

causing a loss/reduction of back wall echo which can be observed in Figure 13. The 

thesis will focus on delamination defects in CFRPs. Delamination example caused by 

low velocity impact is shown in Figure 17. 

 

Figure 17 Example CFRP delamination caused by a low velocity impact. Reproduced without 

modification from [105]. CC BY-NC-ND 4.0 license (https://creativecommons.org/licenses/by-nc-

nd/4.0/deed.en) 

2.2.3 Voids and Porosities 

Voids are trapped air or gas bubbles within CFRPs, whereas porosities refer to smaller, 

dispersed voids throughout the material. These defects primarily originate during 

manufacturing and can significantly impact the mechanical performance and long-

term durability of CFRPs. Voids and porosities introduce localised material 

weaknesses that serve as stress concentrators, promoting material degradation under 

cyclic loading. 

Their formation is often attributed to incomplete resin impregnation, suboptimal 

curing conditions, improper control of processing parameters (resin viscosity, 

pressure, and temperature), or external factors such as increased moisture levels or 

contamination [106], [107]. Their presence directly affects mechanical properties by 

reducing strength, fatigue life, and impact toughness [108], [109], [110], thereby 

increasing the risk of material failure. All CFRPs contain porosities, expressed as a 

percentage of the volume that must fall within an allowable range.  

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
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Voids can be identified using UT due to the high acoustic impedance mismatch 

between the air pockets and composite materials, resulting in an ultrasonic response 

comparable to delaminations. However, identifying porosities is more challenging due 

to their smaller size and weaker acoustic response. Porosities typically appear in 

clusters rather than as isolated defects, and when clustered, they can create a 

shadowing effect on the back wall echo. This shadowing, along with increased 

attenuation in the captured signals, can serve as an indicator of porosity presence. An 

example porosity in CFRPs is shown in Figure 18. 

 

Figure 18 Example CFRP porosity. Reproduced without modification from [111]. CC BY 4.0 license 

(https://creativecommons.org/licenses/by/4.0/deed.en) 

2.2.4 Inclusions 

Inclusions refer to any foreign materials incorporated into the composite structure 

during the manufacturing process. These can include various particles or materials 

from the environment, used equipment, or even residual contaminants from processing 

steps, such as resin or carbon fibres [112]. Inclusions can vary in size, shape, and 

material composition, and their presence can significantly impact the mechanical 

properties of CFRPs. These inclusions act as stress concentration points, which can 

serve as initiation sites for more critical defects (such as delaminations) while also 

deteriorating the material's strength and fatigue resistance [112] [113]. The aerospace 

industry aims to minimise the occurrence of such inclusions by conducting 

manufacturing processes in controlled and clean environments.  

https://creativecommons.org/licenses/by/4.0/deed.en
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Detection using UT can vary significantly; unintended inclusions, such as carbon 

fibres, may produce an acoustic response similar to the surrounding material, posing 

challenges for detection. However, inclusions with a different acoustic impedance are 

easier to detect. 

2.2.5 Fibre Waviness 

Fibre waviness in composite materials refers to deviations in the orientation of carbon 

fibres from their intended alignment within the matrix. This phenomenon can manifest 

as either in-plane waviness, where variations occur within the composite layer, or out-

of-plane waviness, where variations occur perpendicular to the composite layer.  

Waviness can occur due to various factors during the manufacturing process, such as 

the placement errors in automated or manual layup, uneven thermal gradients during 

curing, improper consolidation for complex geometry parts, fibre misalignment, or the 

presence of inclusions [114], [115]. Fibre waviness is considered a critical defect 

because it disrupts the intended fibre reinforcement structure, weakening the 

composite's ability to bear load efficiently, and decreasing static strength, stiffness, 

and fatigue resistance [116], [117].  

Using UT, fibre waviness can be identified primarily from ultrasonic B-scans, where 

it may cause distortion of the incident waves. This distortion can mask other features 

present within the material, making detection and sizing of other features more 

challenging [90]. Additionally, the presence of waviness can affect the accuracy of 

thickness measurements. An example micrograph of fibre waviness in CFRPs is 

shown in Figure 19. 

 

Figure 19 An example of fibre waviness in CFRP components (adapted from [118]) 
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2.3 Artificial Intelligence 

There exist numerous definitions of Artificial Intelligence. For the purposes of this 

thesis, the definition provided by the UK National Cyber Security Centre will be 

followed: "Artificial Intelligence describes computer systems which can perform tasks 

usually requiring human intelligence" [119]. Machine Learning (ML), a subset of AI, 

is defined as "a method by which computers find patterns in data or solve problems 

automatically without being explicitly programmed" [120]. Lastly, for Deep Learning 

(DL), a subcategory of ML, the following definition will be used the definition 

proposed by Yann LeCun et al. will be followed: "Deep learning allows computational 

models composed of multiple processing layers to learn representations of data with 

multiple levels of abstraction" [121]. 

Tasks tackled by ML can be described as classification tasks, where the aim is to 

categorise data in one of the predefined classes, or regression tasks where the aim is to 

predict some continuous variable. An illustration of the categorisation of AI is 

presented in Figure 20. 

 

Figure 20 Illustrative representation of Artificial Intelligence (red), Machine Learning (green) and 

Deep Learning (purple) 

The increase in the adoption of AI during the past decade can be attributed to several 

factors. Firstly, the creation of large readily available datasets for AI training has led 

to the development of more accurate and powerful models. Secondly, advancements 

in computing power, especially the availability of GPUs, have significantly reduced 

the time needed to train such models. Additionally, the availability of open-source 
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tools like PyTorch [122] and TensorFlow [123] has lowered the entry barrier for new 

research and applications, which paired with increased investment and interest from 

industry and academic institutions resulted in a massive influx of new publications. 

One of the AI categorisations is based on the type of training, which includes 

supervised, unsupervised, self-supervised, and reinforcement learning approaches.  

Supervised learning involves training models on labelled datasets, pairing each data 

point with ground truth. During training, both the input data and correct output 

predictions are presented to the model, to learn patterns and features that will enable 

the operation on new unseen data. This approach is widely used for classification and 

regression tasks, as well as for more complex applications like object detection, which 

combines the two to localise objects within images [121]. Unsupervised learning 

leverages unlabelled datasets, where no ground truth is provided during training, with 

the objective of identifying underlying patterns or distributions within the data. This 

approach is commonly used for tasks such as clustering, dimensionality reduction, and 

anomaly detection. Self-supervised learning lies between supervised and unsupervised 

learning, utilising automatically generated pseudo-labels directly derived from the 

data, which reduces the need for manually generated ground truth [124]. This approach 

has shown potential for tasks where large datasets are available, particularly in speech 

recognition [125], [126] and computer vision [127], [128]. Reinforcement learning 

[129] involves a model interacting with its environment to learn actions that maximise 

behaviours influenced by a reward function. During training, the model selects actions 

within the environment and receives feedback from a user-defined reward function. 

This feedback adjusts the model and influences its subsequent actions. Reinforcement 

learning is often applied in robotics [130], self-driving cars [131], and games [30], 

[31], where models use a trial-and-error approach to optimise their behaviour.  

2.3.1 Basic Deep Learning Neural Network  

The most basic form of deep learning (DL) networks is a neural network (NN) model 

consisting of an input layer, multiple hidden layers, and an output layer. In contrast, 

simpler NNs may have no hidden layers (single layer perceptrons) or just one hidden 

layer (shallow NNs). Each layer comprises interconnected nodes known as neurons or 

perceptrons, which were first introduced in the 1940s [132] and applied in the 1950s 



56 

 

[133]. In the example presented in Figure 21, the classification Neural Network (NN) 

consists of an input layer, two hidden layers, and an output layer. 

 

Figure 21 The basic architecture of a deep neural network. Blue represents the neurons, while black 

lines indicate the connections between them. The input, hidden, and output layers are labelled on the 

plot. 

During the forward pass, data undergoes transformations that typically reduce its 

dimensions within hidden layers. The interactions between neurons involve three main 

components: 

• Weights, which determine the strength of connections between neurons. 

• Biases, which are added to the output of neurons to introduce flexibility. 

• Activation functions, which introduce non-linearities, allowing the model to 

capture complex patterns in the data. 

Mathematically, the output of the neuron can be represented with Eq.14: 

 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (∑(𝐼𝑛𝑝𝑢𝑡𝑖 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡𝑖) + 𝐵𝑖𝑎𝑠

𝑛

𝑖=1

) Eq.14 

There are many activation functions, with the most commonly used being the Sigmoid, 

hyperbolic tangent (Tanh), and Rectified Linear Unit (ReLU). These can 

mathematically be presented with Eq.15, Eq.16, and Eq.17:  

 𝑅𝑒𝐿𝑈 = 𝑓(𝑥) = max (0, 𝑥) Eq.15 
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 𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 = 𝑓(𝑥) = tanh (x) Eq.16 

 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 = 𝑓(𝑥) =
1

1 + 𝑒−𝑥
 Eq.17 

The choice of activation functions is strongly influenced by the application and task 

requirements. The sigmoid activation function outputs values bounded between 0 and 

1, making it commonly used in classification tasks. The tanh activation function, which 

outputs values between -1 and 1, was the preferred activation function in early ML 

research. These activation functions do not just shape individual neuron behaviour but 

also influence the types of functions the network can learn. Sigmoid and tanh 

encourage smooth and bounded transitions, which are useful learning gradual 

relationships but may suffer from vanishing gradients in the deeper networks. Today 

the most popular activation function, especially in DL is ReLU. ReLU was introduced 

in [134], and unlike previous functions is unbounded for the positive input values, 

meaning its output ranges from 0 to infinity. ReLU encourages sparse and piecewise 

linear activations, allowing the network to focus on more complex non-linear 

functions.  

 Several iterations of ReLU were introduced, like Gaussian Linear Unit (GeLU) and 

Exponential Linear Unit (ELU) [135], [136] which are unbounded on both positive 

and negative sides. However, unlike ReLU, ELU and GeLU add smoothness around 

zero, helping to maintain stable gradient flow. By stacking multiple layers of the 

described computations, the models gain the ability to tackle complex non-linear tasks. 

Discussed activation functions are illustrated in Figure 22.  
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Figure 22 Illustration of ReLU, Tanh, and Sigmoid activation functions (blue, orange, and green) 

The backward pass involves calculating the gradient of the loss function with respect 

to the network parameters using backpropagation. During this process, the gradients 

are propagated backward through the layers of the network, adjusting the weights and 

biases. However, in networks with many layers (deep networks), the gradients 

calculated during backpropagation can diminish exponentially, leading to what is 

known as the vanishing gradient problem. This phenomenon occurs when the gradients 

become very small, preventing the network from learning effectively in earlier layers, 

especially when certain activation functions (like sigmoid or tanh) are used. 

When designing a model, trainable parameters (weights and biases) are initialised 

randomly, meaning the model does not contain any “knowledge” about how to perform 

a specific task. The process of adjusting these parameters iteratively is called training, 

and each iteration is commonly referred to as a training epoch. A training epoch refers 

to the number of times the entire training dataset is passed forward through the 

network. During the forward pass, data is processed, and in the backward pass, 

gradients are computed and propagated backwards. Model parameters are then updated 

based on these gradients.  

Depending on the network task and output, a defined loss function between the 

expected and received output influences the updating of the model’s parameters. The 

loss function serves as a measure of the network’s performance and can take various 

forms. For regression tasks, the loss function is often represented as Mean Squared 

Error (MSE), while in classification tasks, cross-entropy loss is commonly used. 

However, there are numerous other types of loss functions such as mean absolute error, 

Huber loss, and hinge loss, among others. To provide an illustrative understanding of 

how a loss function behaves during training, Figure 23  illustrates a simple 3D loss 

landscape, where the vertical axis represents the loss value for different combinations 

of model parameters. In such a landscape, optimisation algorithms attempt to find the 

lowest point (i.e., minimal loss), which corresponds to the best model parameters. 
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Figure 23 Illustration of an example loss landscape, with global minimum marked in red 

 

The optimisation process is performed by an optimiser, which iteratively makes 

incremental changes to the network parameters to minimise the defined loss function 

f(ϴ), where ϴ represents trainable model parameters. One of the foundational 

optimisation algorithms is gradient descent, which updates the parameters in the 

opposite direction of the gradient of the calculated loss, and is show with Eq.18: 

 𝜃 = 𝜃 −  𝜂 × ∇𝜃𝑓(𝜃) Eq.18 

where η is the learning rate, and ∇ϴf(ϴ) is the gradient of the loss with respect to the 

model parameters [137]. In Stochastic Gradient Descent (SGD) [138], this update is 

performed using a mini-batch of the training data rather than entire dataset, which 

introduces noise into the process but allows for scalability to large datasets and helps 

escape shallow local minima by encouraging wider exploration of the parameter space. 

However, in basic SGD, selecting an appropriate learning rate can be challenging. A 

low learning rate may lead to slow convergence, while a high learning rate can cause 

unstable oscillations in parameter updates or divergence. This sensitivity often 

necessitates the use of learning rate schedulers to adapt the learning rate during training 

(though this introduces another layer of complexity, as these schedulers must be 

defined in advance). Lastly, SGD can struggle with minimising highly non-convex 

loss functions, which are common in DL tasks. 
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To address these challenges, momentum-based methods were developed, which 

accumulate a moving average of past gradients to smooth the updates and accelerate 

convergence in relevant directions. This process can be described with Eq.19 and 

Eq.20: 

 𝑣𝑡 = 𝛾𝑣𝑡−1 +  𝜂 × ∇𝜃𝑓(𝜃) Eq.19 

 𝜃 = 𝜃 − 𝑣𝑡 Eq.20 

 

where γ is momentum term and vt is the velocity vector that builds over time. Modern 

iterations of this algorithm such as adaptive gradient algorithm [139] and Adaptive 

Moment Estimation (ADAM) [140] stand out as popular choices. The model’s 

trainable parameters updating is performed in reverse order, starting from the final 

network layer, and moving backwards through the network.  

Hyperparameters are parameters that control the model architecture and training 

process. While it would be impractical to list all possible hyperparameters, some 

common examples include the number of neurons in each layer (refer to Figure 21), 

the number of training iterations, the choice of activation functions (refer to Figure 

22), the selection of optimisation algorithms, and the number of hidden layers. One of 

the most important hyperparameters is the learning rate, which determines the 

magnitude of updates to the trainable parameters. Small learning rates lead to minor 

network updates, increasing the risk of getting stuck in the local minima of the loss 

function without reaching the global minimum, leading to suboptimal model 

parameters. On the other hand, large learning rates can destabilise the training process 

by overshooting optimal weight and bias values with new updates. To strike the right 

balance, some optimisers use adaptive learning rates, while learning rate schedulers 

can be employed to make predefined changes in the learning rate after certain training 

iterations.  

The batch size hyperparameter determines the number of data samples processed in 

each iteration of the training loop. In training, the model iterates over the entire dataset 

during each training epoch. However, processing the entire dataset at once is often 

impractical due to memory constraints, while processing one data point at a time would 

be inefficient, especially for large datasets. To address this, the dataset is divided into 
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smaller batches and is processed concurrently during training to utilise parallel 

computing capabilities offered by modern GPUs. Choosing an appropriate batch size 

involves trade-offs. Larger batch sizes can lead to faster computation times per epoch 

but require more memory, potentially limiting the size of the model that can be trained. 

On the other hand, smaller batch sizes consume less memory per batch but may 

increase the variance in gradient estimates due to smaller sample sizes, which can 

impact the stability of training. 

The model’s performance during training is typically monitored by tracking the trend 

of loss function across training epochs. Ideally, this evaluation is performed on a 

separate dataset originating from the same domain and distribution as the training 

dataset, called the validation dataset. As the validation dataset is not directly used 

during training, it plays a crucial role in preventing overfitting, a phenomenon where 

the model fails to generalise well to new inputs. To further mitigate the risks of 

overfitting, additional regularisation techniques during training can be used, such as 

weight decay [141], batch normalisation [142], or early stopping. Validation data can 

also be used to guide model architecture selection and hyperparameter tuning. 

Overall, choosing the right combination of model architecture and hyperparameters 

depends on the specific task and application and presents a challenging task. This 

thesis primarily focuses on the use of Convolutional Neural Networks (CNN), due to 

their proven effectiveness in processing spatially structured data such as ultrasonic C-

scan and B-scan images. However, the basic principles, training methods, and 

reasoning behind neural networks introduced in this section remain consistent across 

various architectures. A training loop described in this section is illustrated in Figure 

24. 

 

Figure 24 Flowchart of a supervised training loop. 
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2.3.2 Convolutional Neural Networks  

Convolution layers offer an alternative to connected neurons and are building blocks 

of CNNs. CNN revolutionised the field of computer vision, starting with the LeNet 

network for handwritten digit classification in the 1990s [143] and later with AlexNet 

[27], the seminal model that started the current wave of AI research. Following the 

introduction of AlexNet, many models improved upon the CNN structure aimed 

towards vision tasks on large datasets. Notable examples include the Visual Geometry 

Group (VGG) network, which advanced the field by incorporating a significantly 

deeper architecture [144]; Residual Networks (ResNet) where skip connections 

effectively reduced the effect of vanishing gradients, thus enabling construction and 

training models with many hidden layers [28]; and, more recently, the integration of 

transformer structures with CNNs [145]. 

CNNs are often used in classification, object detection, and segmentation tasks. Object 

detection involves both localisation and classification of objects within an image by 

generating bounding boxes around them. Image segmentation is a more complex task, 

as it assigns a class to each pixel in the input image, producing a detailed and precise 

segmentation map. However, convolutional layers are not limited to image data - they 

can also be applied to time-series data and other data formats. Despite their advantages, 

CNNs are computationally intensive during training and require large datasets to 

achieve optimal performance. 

CNNs process inputs in a grid-like format using filters (kernels) to create feature maps. 

Convolutional layers are often followed by activation functions to introduce non-

linearity into the overall model. This dimensionality reduction extracts only the most 

relevant features for specific tasks and lowers the overall number of trainable 

parameters. Furthermore, pooling layers, such as max pooling or average pooling, 

summarise regions of the feature maps by retaining essential information while 

discarding less relevant details. This reduces the spatial dimensions of feature maps, 

decreasing computational complexity and improving model efficiency. An example of 

a convolution operation is illustrated in Figure 25, pooling operations in Figure 26, 

while the basic CNN architecture is presented in Figure 27. 
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Figure 25 Illustration of the convolution operation in a CNN. The input image is convolved with a 

kernel to produce a feature map, where each value represents the sum of element-wise multiplications 

between the kernel and image segments. 

 

Figure 26 Illustration of how pooling operation in a CNN. Max pooling retains maximum value 

observed within a specified kernel, while average pooling provides an average value in the observed 

kernel. 

 

Figure 27 Basic convolutional neural network architecture, containing max pooling and linear layers 

towards the end. 
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2.4 Machine Learning in Ultrasonic Testing: A-scans 

While a broad range of ML techniques have been applied to UT data, certain trends 

and gaps are evident across the literature. Research has predominantly focused on A-

scan data, with limited exploration of B-scans and C-scans due to their acquisition 

complexity. There is also a noticeable lack of studies combining multiple scan types. 

Moreover, data scarcity remains a recurring challenge, often addressed using synthetic 

data and transfer learning. These themes are discussed in more detail throughout 

sections 2.4 - 2.8 and are revisited in the concluding summary 2.9. 

This section serves as an overview of recent studies that utilise A-scan data as input 

for ML methods. In [146], [147], the authors focused on UT A-scans of welds, 

introducing an automated defect classification method based on a PNN. This approach 

utilised handcrafted features from time and frequency domains to determine the class 

of individual A-scans. The developed model demonstrated good results in detecting 

cracks, porosities, and slags, with an advantage in terms of improved computational 

efficiency. 

In [148], the authors investigated the application of NNs in assessing fatigue life and 

tensile strength of welds produced through resistance spot welding. The network input 

was the number and amplitudes of ultrasound echoes, while the fatigue life and tensile 

strength were set as outputs. Approximately 200 weld samples were created, with 60 

of them paired based on matching UT A-scans. This pairing strategy proved essential 

due to the destructive nature of both fatigue and tensile strength tests, making it 

impossible to obtain both values from the same sample. By pairing samples, 

researchers were able to conduct both tests on identical specimens, creating a model 

capable of predicting the physical properties of welds from UT A-scan data. 

In the subsequent study [149], UT was used to evaluate the quality of resistance spot 

welds. A mathematical model of wave propagation in such joints was developed, 

followed by Finite Element Analysis (FEA) simulation. A 14% error in theoretical 

calculations, attributed to wave attenuation, was corrected via trial-and-error before 

being used as input for a NN. The trained model, tested on both simulated and real 

data, classified welds as acceptable or undersized, achieving over 90% accuracy across 

12 test samples.  
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The authors of [150] developed a CNN capable of accurately recognising crack 

dimensions, location, and orientation in load-bearing structures. Training data was 

simulated using FEA software, incorporating virtual models with artificial defects. 

Modifications to the dimensions, depth, and location of the voids resulted in a dataset 

comprising 900 samples. Initially, the CNN performed poorly, which the authors 

attributed to the small training dataset size. However, after augmenting the dataset 

using the parameter-space augmentation (where new data points were simulated by 

randomly sampling within the defined parameter ranges), the CNN's performance 

improved significantly. This augmentation strategy complemented the 900 structured 

samples with an additional 300 randomly generated cases, helping to mimic the 

variability expected in real experimental scans. To validate the model, 21 UT 

experiments were conducted on 3D-printed samples, achieving an accuracy of over 

90%. 

In [151], the application of various ML models on NDE data collected from butt-fused 

joints in polyethene gas pipes was investigated. The authors created 20 pristine and 30 

flawed sample welding joints, with 100 A-scans collected per joint, resulting in a total 

of 5000 A-scans serving as inputs. A comparative analysis of various ML and DL 

models showed that CNNs delivered the best overall performance for classification 

tasks. 

Researchers in [152] employed different feature extraction methods to generate inputs 

for an NN classifier. A total of 400 A-scan signals were obtained from carbon steel 

plate test samples containing welding defects. The authors reported poor performance 

when raw UT data was being used, which paired with a substantial need for high 

computing power, underscored the need for a dimensionality reduction. To address 

this challenge, they applied the discrete Fourier, discrete cosine, and discrete wavelet 

transforms, resulting in substantial improvements in training and model performance. 

In [153], the authors compared weld flaw classification performance between NN and 

DL models using 720 ultrasound signals from two ultrasonic transducers with varying 

operating frequencies. They specifically investigated the impact of the applied drop-

out regularisation method to prevent overfitting. DL demonstrated higher overall 

accuracy. 
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In their follow-up study [154], the authors expanded their work by comparing the 

performance of CNN and NN models in noisy environments. They augmented the 

dataset from their earlier study by introducing time shifts and varying levels of 

Gaussian white noise, resulting in five datasets with different noise levels. The findings 

showed that while NN performed well under low noise conditions, its performance 

declined at higher noise levels. In contrast, CNN consistently outperformed NN, 

particularly in high-noise classification tasks. The study suggests that CNN is a more 

robust method for industrial applications, where UT data is potentially subject to 

varying levels of noise. 

In their last study [155], the authors extended their research by integrating a denoising 

AE into their workflow. The denoising AE demonstrated significant benefits by 

enhancing classification performance across all noise levels while minimising signal 

degradation. The authors concluded that incorporating the AE improved CNN 

performance, making it more viable for real-world applications. 

In [156] the authors explored the classification of thermal ageing defects in cast 

austenitic stainless steel, commonly used in nuclear power plants. Their study involved 

recording and processing 125 ultrasonic A-scans used to train three ML models. All 

models achieved high accuracy when processing data with high peak-to-peak 

amplitudes. However, KNNs and SVMs exhibited decreased performance with data 

featuring lower peak-to-peak values, whereas NN maintained consistently high 

accuracy across varying data conditions. This study underscores the NN approach as 

a superior choice for this application compared to older ML approaches. 

Authors of [157] focused their research on laser UT for selective laser melting of steel 

in additive manufacturing. They compared a feature extraction using principal 

component analysis with directly handcrafted features from A-scans in training of a 

NN. The study found that the principal component analysis feature extraction approach 

outperformed handcrafted features, underscoring the importance of effective feature 

extraction for improving classification tasks. 

In [158] researchers utilised 6000 UT A-scans from CFRPs, including both flawed and 

pristine samples. The study aimed to compare various classifiers and hyperparameters 

to identify the optimal ML algorithm. CNN emerged as the best classifier, surpassing 
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NN and SVM in performance. Furthermore, the authors acknowledged the potential 

noise and inaccuracies associated with the direct generation of C-scans from 

unprocessed A-scans. To mitigate these issues, they proposed reconstructing C-scans 

using already classified A-scan data. 

In the study detailed in [159], the authors employed a DBSCAN algorithm to classify 

defects in pressure tubes used in nuclear reactors. This unsupervised method clusters 

statistical signal features without requiring predefined class labels, demonstrating its 

potential for defect detection in UT signals. 

Researchers in [160] developed a CNN integrated with a gate recurrent unit (A type of 

recurrent neural network that captures sequential patterns in data by retaining 

important past information and filtering out less relevant details [173]) to classify 

defect and non-defect areas of a braided composite material from A-scans. The dataset 

consisted of 3600 A-scans from a reference sample with three types of debonding 

defects. Comparative analysis against various ML methods demonstrated that the 

addition of a gate recurrent unit increased the performance. 

In [161], A-scan UT data was used alongside an SVM classifier with various feature 

extraction methods to classify defects in gas pipe girth welds. Feature extraction 

methods including CNN, discrete wavelet transform, wavelet packet transform, 

Shannon entropy, and statistical features were evaluated using a dataset of 2160 A-

scans obtained via an electromagnetic acoustic transducer. CNN feature extraction 

method outperformed all other techniques. The authors hypothesised that this superior 

performance stems from its ability to extract a larger number of high-level features 

compared to the other methods. 

A study presented in [162], compared several ML methods for classifying 

carburisation levels in industrial pipes using 200 A-scans. Feature extraction was 

performed using discrete Fourier transform, which served as input for NN, KNN, and 

decision tree algorithms. The study included a small hyperparameter investigation 

focusing on different activation functions for NN. KNN achieved 100% accuracy, NN 

scored 99.1%, and the decision tree reached 87.6% accuracy. 
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In [163], the authors developed an NN classifier for additive manufacturing 

components, using UT to evaluate porosity levels. The study aimed to classify porosity 

levels into 6 classes, trained on 24 samples manufactured with varying selective laser 

melting parameters. Reported results showed an overall accuracy of 93%, which was 

validated by testing with three new samples produced using a different set of 

parameters, where the model successfully classified the new data. 

In the follow-up study [164], researchers explored the impact of different surface 

qualities on ultrasonic signals used as input for CNN, deep NN, and NN classifiers in 

porosity level classification. CNN demonstrated the best performance, even with UT 

data of low signal-to-noise ratio resulting from interaction with rough surfaces. 

However, the training and testing datasets were derived from the same samples, 

introducing a significant risk of data leakage that potentially masks the true 

performance of the developed models. 

Authors of [165] conducted a proof-of-concept study to assess the tool degradation in 

friction stir welding using simulated UT data. The study aimed to determine tool length 

and compared 16 traditional ML models. Experimental verification indicated that the 

random forest algorithm performed best, achieving an average error of 2.1% compared 

to ground truth measurements. 

In [166] researchers addressed the challenge of detecting defects obscured by larger 

geometrical features in composite materials using UT. Gaussian chirplet 

decomposition was applied to 14763 experimentally acquired A-scans to extract 

features for the training of a DL algorithm. Despite extended training times, the 

developed model successfully differentiated small flaws that were previously 

undetectable. 

In [167] researchers utilised 75 A-scan signals from carbon and stainless-steel welds 

with defects. They trained a LSTM network on both raw signals and statistical features 

extracted from them. Training on raw signals resulted in poor performance, whereas 

feature extraction significantly improved overall performance. 

Study detailed in [168] used DL to determine defect depth in CFRPs. The authors have 

compared the performance of the CNN-LSTM network to the CNN network on gated 
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A-scan signals. Optical microscope measurements were used as ground truth, with 

results showing that the CNN-LSTM was the best overall approach, achieving 

predictions with an 8% relative depth error. 

Authors of [169] explored aluminium-epoxy joint adhesive bond quality classification. 

Both the dataset and extracted features were explored with extensive statistical testing, 

with promising classification results. Despite the challenge of manually extracting 

features for classification, researchers demonstrated potential in enhancing model 

transparency and understanding the impact of signal features on the results. 

Authors of [170] employed air-coupled UT for inspection of impact damage in several 

types of composites. Several DL networks were developed and tested, with authors 

reporting promising results on a relatively simple dataset. 

Study detailed in [171] developed a 1D-CNN model for reconstruction of rough 

surface morphology. PAUT systems struggle with rough surfaces as they influence the 

energy propagation into the sample due to wave scattering. The proposed network was 

trained on FEA-simulated data using aluminium blocks with known surface roughness. 

The goal of the network was to accurately reconstruct the surface profile from reflected 

ultrasonic signals, even when using a reduced number of sensors. The performance of 

the model was compared to that of a TFM algorithm, and it was shown that the model 

outperforms it, especially in inspection scenarios where fewer transducers are used. 

This work highlights the potential of ML models to handle imperfect signals and 

challenging inspection scenarios, and it may serve as an additional step in the data 

acquisition and preprocessing pipeline to improve data quality. 

In [172], the authors inspected adhesive joints between aluminium and CFRPs using 

two samples containing a total of nine defects, inspected with an immersion PAUT 

setup. After acquisition, the A-scan signals were gated, bandpass filtered, and aligned 

to compensate for sample curvature. From the processed A-scans, 32 ultrasonic 

features were extracted in both time and frequency domains (e.g., as peak-to-peak 

amplitude, zero-crossing rate, and harmonic noise ratio). These features underwent an 

outlier removal process before being analysed for statistical significance. The most 

relevant features were then used to train a SVM classifier, which achieved 83% 

accuracy in defect classification and 97% accuracy in depth estimation. However, the 
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use of discrete categories for depth estimation is somewhat counterintuitive, as 

accurately localising the exact depth of defects is critical in practical inspection 

scenarios. Despite this, the study presents a promising approach by leveraging 

explainable and physically interpretable features. 

While A-scans provide high-resolution temporal information from individual 

transducer elements, they lack the spatial context that B-scans or C-scans offer. This 

presents a key challenge for both human interpretation and ML models. In practice, 

NDE operators often rely not only on the waveform shape of a single A-scan, but also 

on its location within the scan area and its relationship to neighbouring A-scans. 

Without this contextual information, the network may struggle or fail to identify 

patterns that are only apparent across multiple A-scans. 

2.5 Machine Learning in Ultrasonic Testing: B-scans 

An alternative approach to training ML models involves using B-scans. The authors 

of [21] highlighted the benefits of using augmented data to train ML algorithms. Data 

from PAUT using the transmit-receive shear beam technique on metal pipe welds was 

augmented by removing and then reintroducing defects with varying locations and 

dimensions using virtual flaw software (a tool that generates synthetic defects on 

pristine data, serving as a form of data augmentation for ML training). A VGG-based 

model trained on this augmented data correctly classified all defects, outperforming 

human inspectors who had more false calls, indicating that modern ML models are 

capable of matching or exceeding NDE operator performance. 

In the follow-up study [175], the authors applied a similar augmentation method on 

UT scans of austenite welds. A VGG-like architecture was trained on a simulated 

defective/undefective dataset and achieved the performance level of NDE operators. 

However, the model initially had a 14% false call rate when trained with all defect 

sizes. To improve generalisability, the authors refined the model by training it 

exclusively on larger defects, significantly reducing the false call rate to 2.3%. 

In continuation of previous work with virtual flaw software, study [174] examines the 

impact of different defect types on an ML model's performance. The developed model 

excelled at detecting larger defects when trained on small ones but struggled with 

smaller defects when trained on large ones. This highlights a clear correlation between 
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model performance and the level of generalisation to the diversity of defect sizes in 

the training data. 

The authors of [176] used 4000 UT B-scans from six stainless steel blocks with 68 

unique defects. A comparative study of various object detection models was 

conducted, with the EfficientDet-D0 model achieving the results due to the custom 

anchor box design proposed by the authors. The EfficientDet-D0 outperformed the 

previous state of the art algorithm YOLO by 9%, demonstrating the potential of object 

detection models in NDE workflows.  

In subsequent work [177], the authors explored integrating sequences of ultrasound B-

scans into object detection models. This aimed to mimic human inspectors' visual 

inspection process, where assessing the surrounding area provides context for 

evaluating defects. Recognising that defects can span multiple B-scans, they 

experimented with two approaches: a) adding a sequence of 3 B-scans to the input; 

and b) extracting features from 3 sequential B-scans and merging them before the 

detection phase. The authors found that while the former approach showed no 

improvement, the latter method enhanced accuracy by up to 3.4%. 

The final work by the same authors [178] aimed to refine detection methods for B-

scans, focusing on addressing extreme aspect ratios common in UT. These extreme 

ratios arise due to differences in resolution between the spatial domain, limited by 

ultrasonic probe geometry, and the time domain, captured with higher resolution. The 

authors introduced a modified detection model, drawing inspiration from U-net 

models. The proposed changes reduced the number of trainable parameters, leading to 

great improvements in inference time while enhancing mean average precision by up 

to 2.7%. 

In [179], defect detection in UT B-scan data was tackled using YOLO and SSD object 

detection models. The dataset comprised 490 images, featuring 157 challenging 

instances where NDE operators struggled with proper detection. The study found that 

the YOLO model achieved an average precision of 89.7%, outperforming SSD which 

achieved 84.5%, albeit with slower inference speeds. 
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In their follow-up research [180], the authors explored B-scan analysis using state-of-

the-art anomaly detection algorithms. Among the tested methods, the PaDiM model 

showed the best performance, suggesting its potential application for anomaly 

detection in NDE.  

In another study on the same dataset [181], researchers explored anomaly detection 

methods using a modified VAE architecture inspired by the GANomaly model [184]. 

In this approach, an additional encoder is added after the decoder to generate latent 

representations of the reconstructed input. This second encoder is trained separately 

from the rest of the network, as reusing the original encoder for reconstructions proved 

ineffective. During inference, differences between the latent representations of the 

original input and its reconstruction are used as the anomaly score. While this method 

yielded promising results, it struggled to accurately identify smaller defects. It was 

also observed that large geometric features in the data sometimes produced higher 

reconstruction errors than actual anomalies, leading to false positives. 

In [182], the authors modified a YOLO-based architecture for defect detection in B-

scan data acquired from aluminium blocks. The dataset included both simulated and 

experimental scans containing artificial defects. Several architectural changes were 

proposed, including the replacement of strided convolutions with SPD-conv [185], the 

integration of attention mechanisms, and the use of an adaptive feature pyramid 

network [186]. These modifications significantly improved model performance, 

achieving an F1 score of 75.68% for defect detection, outperforming both the Faster 

R-CNN baseline (62.50%) and the standard YOLO model (66.67%). This study 

demonstrates that targeted architectural modifications can enhance the applicability of 

general-purpose object detection models to UT inspection data. 

The study detailed in [183] investigated the classification of B-scans acquired from 

wind turbine blades using a 4 element ultrasonic transducer mounted on a robotic arm. 

The objective was to categorise scans into one of four classes: defective and non-

defective in the cap zone, and defective and non-defective in the cap-web zone. The 

data acquisition setup differed from that used in this thesis, as a water pumping system 

was used for coupling and generating B-scans was achieved through post-processing 

of incrementally acquired signals as the transducers moved across the sample. A 
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conventional CNN classification model was applied, achieving strong performance 

with classification accuracies exceeding 89% in various scenarios. To address class 

imbalance in the available datasets, the authors used a weighted loss approach that 

assigned higher importance to underrepresented classes during training. However, the 

use of classification outputs as a form of pseudo-localisation of defects within the scan 

is an unconventional approach that departs from typical strategies in NDE (i.e. the use 

of bounding boxes). 

2.6 Machine Learning in Ultrasonic Testing: C-scans 

Similar to B-scans, C-scans have also been infrequently utilised as inputs for ML 

models in academic research. In [187], researchers modified the YOLO family of 

models to tackle defect classification tasks in ultrasonic C-scans of aircraft 

components. Several changes were introduced to the models, the use of dilated 

convolutions and an additional A-scan signal classification network. The authors 

reported promising results and have highlighted the potential for object detection 

models to effectively analyse C-scan data. 

Study [188] utilised a dataset previously explored in [178], this time visualising the 

data as C-scans. The used DL model was a CNN that classified each row of the 

ultrasonic C-scan as either defective or non-defective. Although positive results were 

reported, this approach differs from the typical analysis method used for such data, 

including those found in other research works or how a human NDE operator would 

interpret an ultrasonic C-scan. In standard NDE practice, C-scans are interpreted as 2D 

spatial maps representing variations in signal amplitude or time-of-flight, allowing 

operators to visually identify defect signals in relation to surrounding regions. Human 

operators typically analyse the spatial relationships across the entire scan area (not just 

isolated rows) to detect and characterise defects. By reducing the analysis to per row 

classification, the proposed method disregards this spatial context, which is especially 

important when defects span multiple rows or are presented as non-linear geometries. 

PAUT was used for evaluating adhesive bonds in [77], where researchers used a DL 

model as a classification tool. The proposed workflow involved extraction of 18 

features that serve as an input to the model. The study concluded that this method 
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enables real-time inference on thermoplastic composites, offering flexibility to handle 

the significant heterogeneity typical of composite materials. 

In [189] the authors showcased the capability of transformer enhanced network to 

classify material texture from UT backscattering C-scans. The authors reported that 

transformer-based networks outperformed CNN-based ones.  

Classification of out-of-plane fibre waviness was explored in [190]. Experimental 

samples were prepared by adding material strips during the layup stage to induce this 

waviness. Several preprocessing steps were used, such as alignment of the scans to 

account for imperfections during the immersion scanning and contrast enhancement. 

However, a potential issue of data leakage arose because multiple C-scans were 

generated from the same original scan used for training data extraction. 

Authors of [191] conducted a comparative study on various ML models for binary 

classification of defects in CFRP components used in aircraft. The task was framed as 

a segmentation problem, where each pixel is assigned a class. Several models were 

tested, using both raw signals and signals transformed with discrete Fourier transform. 

Overall, the U-net model achieved the best performance. 

The study detailed in [192] used an immersion UT setup to inspect composite panels 

containing artificial impact damage. A total of 60 C-scans were captured, and data 

augmentation techniques such as random flipping, rotation, and cropping were applied 

to generate a dataset of 1,150 images (300 without defects and 850 with defects). A 

range of classification models were evaluated (including ResNet variants, VGG, and 

MobileNet), with transfer learning used to improve performance. However, a potential 

concern arises regarding the generation and use of training data. Specifically, creating 

a large number of augmented samples from a small number of original scans and then 

randomly splitting them into training and validation sets poses a risk of data leakage, 

as structurally similar images may be present in both datasets. Nevertheless, the study 

demonstrated that transfer learning is a valuable tool, as DenseNet121 model achieved 

98.8% accuracy during evaluation. 

The authors of [193] examined impact damage in composite materials using ToF C-

scans acquired manually with a 5 MHz PAUT transducer. The experimental dataset 
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consisted of 19 images, which were augmented through scaling, rotation, and elastic 

deformation. By analysing the damage patterns, the authors identified and measured 

“petal-like” impact delamination features, which were then statistically modelled to 

generate additional synthetic data using a custom Python script using three data 

configurations: (1) experimental data only, (2) experimental data with augmentation, 

and (3) experimental data combined with both augmented and synthetic data. The best 

segmentation performance was achieved when both augmented and synthetic data 

were included, reaching an average IoU of 88.2% with a 4.7% deviation, compared to 

66.9% IoU with a 10.3% deviation when using only experimental data. 

2.7 Machine Learning in Ultrasonic Testing: Alternative Works 

This section provides details on works that focused on alternative input data or the use 

of generative models. In [194], the authors compared various feature extraction 

methods and ML models based on their classification performance using wave 

propagation images, which were generated by a laser ultrasonic imaging system. This 

system captures ultrasonic waves as they travel through the material, with a receiving 

transducer detecting the waves and producing time-series snapshots that visualise the 

amplitude of the waves at different points, essentially creating a dynamic image of 

wave propagation across the inspected specimen. The data used in this study was 

acquired from flawed fabricated steel plates and augmented during the training phase 

to enhance model performance. The authors concluded that even relatively simple DL 

methods achieve accuracy levels comparable to those of handcrafted visual feature 

extraction and traditional ML approaches. Lastly, authors have identified the scarcity 

of publicly available data as the primary challenge in the development of ML in the 

NDE field. 

In the follow-up work [195], the authors introduced an open-source dataset of images, 

comprising over 7000 images of pristine and defective steel plates. In addition to this, 

the performances of various DL models were compared. The authors concluded that 

deeper networks with improved cross-layer connections perform better on image data 

from smaller datasets. Cross-layer connections (e.g. skip connections) allow 

information to flow more easily between non-adjacent layers, helping to preserve 

important features and gradients during training. These connections mitigate problems 
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like vanishing gradients and enable more effective learning in deeper architectures 

[28]. 

Lastly, in study [196] by the same authors, a spatial-temporal CNN for the analysis of 

video data generated in their previous work. Video data in this context is presented as 

a 3D representation of a signal, incorporating dimensions of height, width, and time. 

The dataset consisted of 50 videos comprising a total of 7004 individual frames. To 

integrate temporal information into the model, the authors explored three distinct 

approaches. Across their experiments, several ML models were evaluated, again 

confirming the superior performance of deeper DL networks. 

Authors of [197] used a modified VGG-16 model to classify defects in concrete blocks 

using ultrasonic tomography. Due to the limited dataset comprising only 246 B-scans, 

the researchers employed the dropout method and data augmentation techniques to 

mitigate potential model overfitting. Despite the dataset's constraints, the model 

demonstrated high accuracy and proved effective for this application. However, the 

authors acknowledged limitations, such as the dataset containing only one type of 

easily visible defects. 

In [198], the authors investigated the determination of crack length and orientation in 

metal workflows with plane wave imaging using multiple ultrasonic transducers. The 

study also addressed the challenges in NDE research related to limited datasets by 

creating simulated data using FEA and ray-based models. The model outperformed the 

standard 6 dB drop method, achieving high accuracy in predicting crack lengths and 

orientations, and correctly sizing 97% of the tested dataset. 

In the follow-up study [199], the authors investigated various domain adaptation 

methods aimed at enhancing simulated data for training purposes. These included 

training on a weighted combination of experimental and simulated data, Regression 

and Contrastive Semantic Alignment (RCSA), which encourages the model to learn 

similar features for data points with similar labels regardless of whether they come 

from simulated or real data, and adversarial domain adaptation, which trains the model 

to confuse a separate domain classifier so that it cannot distinguish between simulated 

and real data features. These methods were evaluated based on their impact on the 

performance of a CNN model. Overall, adversarial domain adaptation proved to be 
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computationally intensive with many tuneable parameters, while RCSA adaptation 

was chosen as the best approach due to its easier implementation (only one tuneable 

parameter) and improved performance of the final CNN model, even when utilising 

limited training datasets. 

In the subsequent work [200], the quantification of uncertainty using ML models was 

evaluated using the deep ensembles and Monte Carlo dropout methods. The authors 

suggest that such analyses will be crucial for future developments, particularly as data-

driven NDE modalities which require rigorous regulatory qualification. 

In [201], a method of explainable dimensionality reduction for crack characterisation 

was introduced, comparing 2D Gaussian elliptical function fitting with the traditional 

6 dB method and principal component analysis. The proposed method achieves high 

accuracy in sizing and orientation identification for cracks while significantly reducing 

the dimensionality of input data. Its advantage lies in the transparent nature of the 

parameters derived from the fitted Gaussian elliptical function, contrasting the “black 

box” nature of ML models. 

Domain adaptation was explored in [202], where the authors compared A-scan noise 

addition, C-scan noise addition, superposition of real noise, and GAN methods to 

enhance UT datasets captured from CFRP samples. The GAN approach demonstrated 

superior performance in classification tasks by using GAN-generated synthetic data to 

train a CNN. However, the complexity involved in training and implementing GANs 

posed challenges. As a result, the more interpretable method of A-scan noise addition 

emerged as a promising alternative for achieving effective domain adaptation. 

The study detailed in [203] investigated defect detection in seven steel weld samples 

using a PAUT setup with an angled wedge, FMC, and different probe frequencies. 

From the acquired FMC data, the authors generated a dataset of over 136,000 sectorial 

scans by varying reconstruction parameters, with approximately one-third containing 

defects. Labelling was performed using a custom-built tool directly on the TFM 

reconstructions, under the assumption that defects visible in TFM images would also 

be present in the corresponding PAUT views. Each scan was classified as either 

defective or defect-free. The authors noted a key challenge in interpreting complex 

sectorial scans: they are not self-contained and typically require contextual and/or 
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geometric knowledge during manual analysis. To address this additional geometric 

information about the weld was provided to the model. A CNN classifier achieved an 

F-score of 93%. 

Authors of [204] also investigated PAUT data from steel welds, this time using a U-

Net-based architecture for defect segmentation on individual sectorial scans. The 

segmented outputs were then concatenated to reconstruct a 3D representation of the 

defects. A total of 196 ultrasonic volumes were acquired, and the 6 dB drop method 

was employed for labelling. However, the paper does not clearly specify the number 

of sectorial scans used or the details of the train/validation split. Moreover, it appears 

that no separate test set was used, which raises concerns about the reported results. 

In [205], three thick steel welds were inspected using PAUT, producing 677 sectorial 

scans, each paired with an A-scan extracted from the main beamline (i.e., the central 

beam in the sectorial scan). Ground truth labels (non-defective, true defective, and 

pseudo defective) were established using X-ray, which helped address the common 

challenge in weld inspection where ultrasonic artefacts can mimic real defects. To 

process this multimodal data, a ResNet50 network was employed for sectorial scan 

feature extraction, while a gated recurrent unit was used to process A-scan data. The 

outputs were concatenated and passed through fully connected layers for final 

classification. This fusion approach achieved great performance, with an F1 score of 

98.19%, outperforming alternative ML models such as SVM, LSTM, and AlexNet. 

2.8 Transfer Learning 

Transfer learning is the process of repurposing already trained ML models and 

adjusting them to tackle different tasks. In this approach, models are first trained on a 

source domain dataset, and for a new task, some retraining of the model parameters is 

facilitated through a new target domain dataset. This method allows for achieving 

improved model performance without the need to have a large, labelled target dataset, 

due to the efficient use of the model’s features that were previously learned. An 

illustration of transfer learning principle is presented in Figure 28. 
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Figure 28 Illustration of the transfer learning process.  

Domain adaptation is a subset of transfer learning that focuses on situations where the 

source and target datasets different in their distributions (domain shift) but the task 

remains the same [206]. These methods aim to reduce the discrepancy between source 

and target data representations so that model trained on one domain performs well on 

another. 

Several academic works successfully used transfer learning, including domain 

adaptation, in the field of NDE. In [207], the challenge of limited X-ray imaging of 

CFRP material defect datasets was addressed using transfer learning and feature 

distribution alignment (a domain adaptation method) to classify defect, improving 

model accuracy by 24% with just 40 target domain images. This study demonstrates 

that transfer learning in combination with domain adaptation is a valuable tool for 

overcoming data scarcity, reducing the need for extensive dataset labelling without 

sacrificing model accuracy.  

In another study by the same authors [208], the focus was on cylindrical metal shells 

commonly used in the automobile and military industries. The authors have developed 

a detection model pre-trained on ImageNet and successfully deployed it on a target 

domain of 2045 images, achieving a high model accuracy.  

In [209], object detection models for thermographic images of CFRP using transfer 

learning were evaluated. By adapting models pre-trained on Canadian Institute For 

Advanced Research (CIFAR-10) and ImageNet [29], [210] the study achieved 

promising results despite the source datasets greatly differing from the target domain.  
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Studies [211] and [212] combined transfer learning and radiographic imaging of welds. 

Several pre-trained classification networks were adapted to X-ray data, demonstrating 

that the transfer learning approach achieved the best results. 

Transfer learning has proven effective with ultrasonic data in medical applications. 

Work detailed in [213] focused on using ultrasonic data from 185 clinical studies, 

where DL models based on AlexNet and VGG-16 achieved superior performance 

compared to an abdominal radiologist, who had an accuracy of 71.7%. The DL models 

achieved 77.3% and 77.9% accuracy, respectively, showing the ability of ML models 

to surpass human operators in accuracy, even with smaller datasets aided by transfer 

learning.  

Another study [214] applied transfer learning to develop an automated system for 

classifying abdominal ultrasonic images, achieving an accuracy of over 90%. The 

classification of breast cancer from ultrasonic images was explored in [215]. Transfer 

learning enabled improvements of over 15% compared to training from scratch.  

Overall, these studies highlight the advantages of transfer learning and domain 

adaptation, leveraging models pre-trained on different datasets of transformed data for 

improved performance on specific tasks from a new target domain. This thesis 

leverages both transfer learning and domain adaptation to improve model 

performance. Domain adaptation (refer to Section 4.6) is used to bridge the gap 

between real and synthetic data distributions. Meanwhile, transfer learning (refer to 

Section 4.10) is used to enhance training stability and efficiency, as randomly 

initialised weights in object detection models often lead to suboptimal convergence. 

Combining these approaches allows for better handling of limited real data and more 

stability during model training. 

2.9 Closing Remarks 

The background research resulted in several key findings: 

• ML research in the field of NDE has experienced substantial growth in recent 

years. 

• Research in ML for UT primarily focuses on welds, with a smaller body of 

works focused on CFRP materials. 
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• Most studies concentrate on processing A-scan signals, with B- and C-scans 

rarely utilised as inputs for ML networks. This is largely due to the higher cost 

and complexity of phased array equipment required for B- and C-scans, as well 

as the need for automated scanning systems to reliably generate C-scans. 

Consequently, many researchers rely on the more accessible A-scan data. 

• Existing studies typically rely on a single type of input (A-, B-, or C-scan), 

without combining multiple ultrasonic views. 

• There is a clear trend towards using DL approaches, which frequently 

outperform traditional ML with hand-crafted features. 

• Data scarcity poses a challenge and barrier to the development of ML models. 

Many studies acknowledge this issue and propose solutions in the form of data 

augmentation, synthetic data generation, and transfer learning methods. 

These findings highlight key gaps in the current state of ML for UT, particularly the 

underutilisation of B-scan and C-scan data and the ongoing challenge of data scarcity. 

To address these limitations, the remainder of this thesis explores DL approaches for 

defect detection using B-scan and C-scan inputs, an area that remains underexplored 

in the literature. Chapter 4 investigates a supervised defect detection approach 

incorporating transfer learning, synthetic data for model training, and augmentation 

techniques to mitigate data scarcity, while Chapter 5 explores an unsupervised 

anomaly detection approach where only pristine data is used for training. Finally, 

Chapter 6 examines the integration of multiple ultrasonic views in a multi-modal 

workflow, aligning with how NDE operators interpret inspection data in real-world 

scenarios and proposing strategies for collaborative data analysis between human 

experts and DL models. 

For a comprehensive review of the state of the art of ML research in NDE please refer 

to [22], [216], [217]. The field of ML is advancing rapidly, and a comprehensive 

discussion of network structures, hyperparameters, and other technical details is 

beyond the scope of this thesis. For an extensive overview of vocabulary and terms 

used in the field of ML, please refer to [218]. 
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2.10 On the Use of Performance Metrics 

The performance of ML models is typically evaluated using performance metrics such 

as accuracy, precision, recall, F1 score, and Area Under the Curve (AUC), among 

others. Each metric offers a different perspective on how well the model performs for 

a given task. However, in the field of NDE (especially in defect detection) performance 

is often reported in the form of a Probability of Detection (POD) curve. A POD curve 

reflects how confidently defects of varying sizes can be identified by a given method. 

A commonly used indicator derived from this curve is a90/95, which denotes the 

defect size that can be detected with 90% probability at 95% confidence [219]. 

In this thesis, standard ML performance metrics were used instead of POD curves, and 

different metrics were selected based on the nature of each task: 

• Chapter 4: Object detection methods were evaluated using precision, recall, F1 

score, precision-recall curves, AUC, and Intersection over Union (IoU). 

• Chapter 5: The anomaly detection model was assessed using False Positive 

Rate (FPR) and True Positive Rate (TPR), which were used to generate 

Receiver Operating Characteristic (ROC) curves and compute the AUC. 

• Chapter 6: The models were again evaluated with precision, recall, and F1 

score. 

Each respective chapter includes definitions and explanations of the selected metrics. 

The reason POD curves were not used in this work is due to the limited amount of 

available testing data. Generating a reliable POD curve requires repeated testing across 

a wide range of defect sizes, with multiple samples per defect size (often tens or more) 

to establish statistically meaningful confidence bounds. Given the data constraints, 

using POD analysis would have resulted in unstable, noisy, and unreliable estimates. 

Therefore, traditional ML metrics were adopted to provide more consistent and 

interpretable performance evaluation within the context of this thesis. 

It is also important to note that the quality and consistency of human labelling has a 

significant impact on the reported performance metrics. For example, in object 

detection tasks, a one-pixel offset in annotation corresponds to approximately 0.8 mm 

in real-world coordinates, which can substantially affect metrics such as IoU. Perfect 
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labelling is challenging, so pragmatic approaches were adopted. In Chapter 4, the IoU 

threshold for a correct detection was lowered to 0.25, similar to other NDE studies 

[220], acknowledging that predictions with higher IoUs were sometimes flagged as 

incorrect due to minor annotation offsets, even though they were visually accurate and 

practically useful. For the anomaly detection task in Chapter 5, where three observers 

labelled the data, inter-observer variability was addressed by averaging the labelled 

regions. These practical compromises had a considerable influence on the final 

performance metrics and may underrepresent the model’s real-world effectiveness. 

These issues, and their implications, are discussed in more depth in section 5.9. 
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Chapter 3: Experimental Setup and Materials 

3.1 Ultrasonic Setup 

The ultrasonic NDE inspection setup used in this thesis is based on the previous work 

presented in [93]. It combines PAUT sensor, a Force-Torque (FT) sensor, an industrial 

robotic manipulator, and a Personal Computer (PC) desktop unit for automated data 

acquisition from different CFRP panels.  

The focal point of the ultrasonic setup was the 5 MHz PAUT roller probe 

Olympus/Evident Inspection Solutions RollerFORM-5L64 [221] and Peak NDT Ltd. 

MicroPulse 6 [222] ultrasonic controller. The probe, consisting of 64 individual 

elements with a pitch of 0.8 mm and a total active aperture of 51.2 mm, was selected 

for its geometry and rolling capability, making it ideal for integration with robotic 

manipulators. The roller probe tyre was made from low-attenuation material with a 

similar acoustic impedance to water/glycol to improve coupling and wave propagation. 

The interior of the tyre was filled and pressurised with glycol to prevent the formation 

of air bubbles. The choice of glycol over deionised water was made as per the 

manufacturer’s instructions the water needs to be replaced often in order not to damage 

metal parts of the assembly and to diminish the probability of air bubble formation. 

For this project, frequent changing of the water would be a time-consuming task, as 

the roller probe would have to be removed from the robotic setup and dismantled 

weekly. To this end, glycol was used as it does not require frequent refills while having 

similar acoustic properties to water. Detailed specifications of the roller probe are 

shown in Table 2, while the cross-sectional schematic is shown in Figure 29. 

Table 2 Technical characteristics of the phased array ultrasonic roller probe used in this thesis.  

Manufacturer Olympus/Evident Inspection Solutions 

Model RollerFORM-5L-64 

Central operating frequency 5 MHz 

Number of elements 64 

Delay line height 25 mm 

Pitch 0.8 mm 

Elevation 6.4 mm 

Active aperture 51.2 mm 
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Figure 29 Cross-section schematic of phased array ultrasonic roller probe. 

The ultrasonic controller was used to create custom delay laws and to drive the PAUT. 

With 128 transmission and reception channels, the ultrasonic controller offered 

flexibility in delay law design with the custom coding instruction language, edited with 

the central desktop PC unit. The sampling rate of 100 MHz and the 16-bit digitiser for 

amplitude values were employed. Due to the relatively high attenuation in CFRPs 

[223], a linear unfocused scanning mode was used with the sub-aperture of 4 array 

elements. This effectively lowered the amount of total recorded A-scans to 61 and the 

active aperture to 48.8 mm, while increasing the amount of energy being transferred 

into the material. An overall hardware gain of 22.5 dB was applied upon reception of 

the signal, in addition to TVG added during post-processing. The use of TVG enhances 

the signal amplitudes in the later stages of the ultrasonic propagation, compensating 

for the highly attenuative nature of the inspected CFRP material, as is set to 1.5 

dB/mm, which was determined experimentally by matching amplitude responses of 

front and back wall. The voltage of the pulse was set at 80 V while the pulse length 

was 100 ns. A time delay of 11.7ms before data acquisition was added to avoid 

recording the initial ultrasonic pulse. A scanning speed of 10 mm/s was paired with a 

pulse repetition rate of 760 Hz. Digital 6 MHz low-pass and 2 MHz high-pass filters 

were used to filter out unwanted higher frequency signals that might induce resonance 

of near-surface carbon fibre layers [90]. 
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3.2 Robotic Setup 

The industrial robotic manipulator KUKA KR90 R3100 Extra HA was used for the 

delivery of the PAUT assembly [224]. This manipulator is the key enabler of the 

automated NDE system, as it allows for controlled automated sensor delivery. Its 

potential has been recognised in various academic works focused on robotics, such as 

[58], [64], [93], [94], [95], [225]. This model allows for a maximum payload of 90 kg 

with a reach of 3095 mm, but instead of utilising its high payload capacity, the focus 

in this work is on its high reach for scanning larger composite samples. The 6 degrees 

of freedom with the combination of an extra translation axis provided by tracks 

mounted in the lab allowed for coverage of a large area for flexible scanning. Most 

importantly, the pose repeatability of ± 0.04 mm allows for repeatable experiments, 

making sure the PAUT sensor is positioned at the same location between the different 

scans. The described robotic setup also enabled programmatic movement of the roller 

probe at a constant speed. 

Even though the probe is used on the surface with sprayed water coupling between its 

tyre and the component’s surface, achieving stable and constant contact force is crucial 

for sustained image quality during the mechanical scan. Therefore, real-time 

corrections and control were implemented for the PAUT probe's orientation normal to 

the component’s surface and translation along the surface to maintain a constant 

coupling force throughout the surface raster scan. The real-time vertical position 

control was enabled through the KUKA RobotSensorInterface software package and 

an adaptive force-torque motion control program created within the central LabVIEW 

environment. This was based on real-time measurements from a Schunk GmbH & Co. 

FTN-GAMMA-IP65 SI-130-10 force torque sensor mounted between the probe and 

the robot’s end effector [226]. This sensor measures multi-axis force and torque, 

providing feedback for precise contact control during inspection. FT enabled 3-

dimensional measurements of forces and torques, within a range of 400 N in the 

vertical direction and 130 N in the horizontal directions. FT also served as a fail-safe 

measure programmed to stop the movement of the industrial manipulator if the contact 

force exceeds a preset value, which was set to 150 N to protect the PAUT roller probe. 

The PAUT, FT, and industrial manipulator assembly are shown in Figure 30. 
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Figure 30 Experimental setup assembly used in this thesis. 

All robotic movements, path-planning, and real-time tool pose corrections were 

programmed within the LabVIEW Virtual Instrument environment on a desktop PC 

connected to the robotic controller via ethernet cable and Transmission Control 

Protocol/Internet Protocol (TCP/IP) data communication protocol. The LabVIEW 

program also pushed PAUT settings to, and recorded data from the PEAK MP6, 

recorded data from the FT sensor, and communicated with the robotic controller, 

creating UT scanning data accompanied by the encoded robotic positions and FT 

sensor reading. Because of this, post-processing of the data allowed for precise 

rasterisation. As the active aperture equalled 48.8 mm, depending on the sample size, 

multiple robotic passes with an offset of 48 mm and a 0.8 mm overlap were performed 

to create a rasterised scan of samples. An example of a robotic path planning for a 

rasterised scan is presented in Figure 31, while a block diagram of the experimental 

setup is illustrated in Figure 32. 

               

                     

              

                        

                   

                       

                      

                     



88 

 

 

Figure 31 Robotic path planning for a rasterised scan, showing sequential passes starting at 

designated positions (coloured boxes) and moving along the Y-axis. Full lines indicate scanning 

motion, and dotted lines indicate transitions along the X-axis for complete sample coverage. 

 

  

Figure 32 Block diagram of the experimental setup. 
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LabVIEW was also used to store the data in a custom binary format, storing the 

metadata, raw UT signals, positional data from the robotic controller, and FT readings. 

Next, a custom Python script was used to read and process this data, before storing it 

to the hard disk. All data were stored as a NumPy array [227], with a format of 

[Scanning step, Time samples, A-scans]. Data were normalised to the maximum value 

observed throughout the whole ultrasonic scan. In addition to this, the Hilbert 

transform processing was applied, resulting in separate files containing the raw, 

normalised, and Hilbert-processed data.  

3.3 Carbon Fibre Reinforced Plastic Composite Samples 

A total of thirteen CFRP samples, with thicknesses ranging from 2.20 mm to 21.2 mm, 

were manufactured to a Bombardier aerospace process specification standard and 

supplied by Spirit AeroSystems. These samples were produced using the resin infusion 

method, woven fabric sheets, and Cycom 890 polymer. Of these, eight pristine 

samples, with thicknesses ranging from 2.2 mm to 6 mm, are detailed in Table 3. The 

remaining samples contain intentionally introduced defects and are described in 

Sections 3.3.1 to 3.3.5. 

Table 3 Technical details of pristine CFRP samples examined in this thesis. 

Sample ID Dimensions 

[mm] 

Thickness 

[mm] 

Number of B-scans 

[-] 

Estimated number 

of layers [-] 

1 254.0 × 254.0 2.20 1000 8 

2 254.0 × 254.0 2.14 1000 8 

3 254.0 × 254.0 2.75 750 10 

4 254.0 × 254.0 2.75 1000 10 

5 254.0 × 254.0 4.25 1000 10 

6 254.0 × 254.0 4.25 1000 16 

7 254.0 × 254.0 6.00 1000 22 

8 254.0 × 254.0 6.00 1250 22 

 

To capture acoustic responses similar to those produced by delaminations, Flat Bottom 

Holes (FBHs) were fabricated in two samples, and rectangular Teflon and other 

polymer inserts were embedded into three samples (detailed in subsequent sections). 
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FBHs and Teflon inserts are commonly used to mimic the acoustic responses of the 

delaminations that can occur during the manufacturing processes [228].  

According to the current internal guidelines of Spirit AeroSystems for NDE inspection 

(internal document, not publicly accessible), critical defect sizes are specified 

according to their type and location on the aircraft. For delaminations, the largest 

allowable flaw area that would not be categorised as a defect, ranges from 60 to 500 

mm2. However, to challenge and understand the limits of the defect detection 

algorithms and PAUT inspection setup, FBHs with diameters ranging from 3.0 to 9.0 

mm, and rectangular Teflon and other polymer inserts with dimensions of 4.0 × 4.0 to 

20.0 × 10.0 mm were embedded into CFRP samples. This was done to scrutinise the 

performance of defect detection algorithms and test flaws with areas between 7.0 and 

200.0 mm2. 1.0 mm diameter FBHs were also trialled in this project, however, the 

current measurement setup was unable to capture them.  

 

3.3.1 Sample A 

The first defective CFRP sample (referred to as Sample A) measured 254.0 mm × 

254.0 mm × 8.6 mm and comprised 32 layers. It featured drilled FBHs with diameters 

of 3.0 mm, 6.0 mm, and 9.0 mm, each with a tolerance of +/- 0.2 mm, positioned at 

depths of 1.5 mm, 3.0 mm, 4.5 mm, 6.0 mm, and 7.5 mm from the front face of the 

sample, with a depth tolerance of +/- 0.3 mm. The FBHs were spaced 35 mm apart on 

the X-axis and 30 mm apart on the Y-axis. Scanning of Sample A resulted in 750 B-

scans. The amplitude C-scan with the exclusion surface and backwall echoes and the 

model of Sample A are presented in Figure 33 while its associated details are shown 

in Table 4. 
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a) Amplitude C-scan of Sample A b) Model of Sample A 

 

 

Figure 33 a) Amplitude C-scan of sample A and b) Model of a defective CFRP Sample A 

 

 

Table 4 Technical details for defective CFRP Sample A 

Defect 

ID 

Diameter 

[mm] 

~Depth 

[mm] 

Defect 

ID 

Diameter 

[mm] 

~Depth 

[mm] 

Defect 

ID 

Diameter 

[mm] 

~Depth 

[mm] 

1 9.0 7.5 6 6.0 7.5 11 3.0 7.5 

2 9.0 6.0 7 6.0 6.0 12 3.0 6.0 

3 9.0 4.5 8 6.0 4.5 13 3.0 4.5 

4 9.0 3.0 9 6.0 3.0 14 3.0 3.0 

5 9.0 1.5 10 6.0 1.5 15 3.0 1.5 

 

 

3.3.2  Sample B 

The second defective CFRP sample (referred to as Sample B) measured 254.0 mm × 

254.0 mm × 8.6 mm and was similarly constructed as Sample A, with the addition of 

4.0 mm and 7.0 mm FBHs, resulting in a total of 25 defects. UT scans of Sample B 

resulted in 1150 B-scans. The amplitude C-scan and the model for Sample B is 

illustrated in Figure 34 while the details are presented in Table 5. 
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a) Amplitude C-scan of Sample B b) Model of Sample B 

 

 

Figure 34 a) Amplitude C-scan of sample B and b) Model of a defective CFRP Sample B 

 

Table 5 Technical details for defective CFRP Sample B 

Defect 

ID 

Diameter 

[mm] 

~Depth 

[mm] 

Defect 

ID 

Diameter 

[mm] 

~Depth 

[mm] 

Defect 

ID 

Diameter 

[mm] 

~Depth 

]mm] 

1 3.0 7.5 10 6.0 1.5 19 7.0 3.0 

2 3.0 6.0 11 9.0 3.0 20 7.0 1.5 

3 3.0 4.5 12 9.0 1.5 21 4.0 3.0 

4 3.0 3.0 13 9.0 3.0 22 4.0 1.5 

5 3.0 1.5 14 9.0 1.5 23 4.0 3.0 

6 6.0 7.5 15 9.0 3.0 24 4.0 1.5 

7 6.0 6.0 16 7.0 7.5 25 4.0 3.0 

8 6.0 4.5 17 7.0 6.0    

9 6.0 3.0 18 7.0 4.5    

 

3.3.3 Sample C 

The third defective CFRP sample (referred to as Sample C) was a large, stepped 

specimen measuring 780.0 mm × 200.0 mm, with thicknesses ranging from 7.5 mm to 

16.0 mm in increments of 2.1 mm. At each thickness step, three square-shaped 6.0 mm 

× 6.0 mm Teflon inserts were embedded. These inserts were positioned immediately 

after the front wall, in the middle of the sample, and near the back wall. Inspection of 

sample C resulted in 2070 B-scans. The amplitude C-scan and model for sample C is 

 54.0 mm
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depicted in Figure 35, while the technical details are shown in Table 6. Due to the 

physical limitations of the used ultrasonic setup, discussed in section 5.10, the thickest 

section of the sample was excluded from the analysis. 

a) Amplitude C-scan of Sample C 

 

b) Model of Sample C 

 

Figure 35 a) Amplitude C-scan of sample C and b) Model of a defective CFRP Sample C 

Table 6 Technical details for defective CFRP Sample C 

Defect 

ID 

Start/end 

plies 

~Depth 

[mm] 

Sample 

thickness 

[mm] 

Defect 

ID 

Start/end 

plies 

~Depth 

[mm] 

Sample 

thickness 

[mm] 

1 2 / 3 0.65 13.50 13 18 / 19 4.80 9.59 

2 2 / 3 0.65 13.50 14 18 / 19 4.80 9.59 

3 2 / 3 0.65 11.70 15 14 / 15 3.76 7.46 

4 2 / 3 0.65 11.70 16 14 / 15 3.76 7.46 

5 2 / 3 0.65 9.59 17 50 / 51 13.11 13.50 

6 2 / 3 0.65 9.59 18 50 / 51 13.11 13.50 

7 2 / 3 0.65 7.46 19 42 / 43 11.03 11.70 

8 2 / 3 0.65 7.46 20 42 / 43 11.03 11.70 

9 26 / 27 6.88 13.50 21 34 / 35 8.96 9.59 

10 26 / 27 6.88 13.50 22 34 / 35 8.96 9.59 

11 22 / 23 5.84 11.70 23 26 / 27 6.88 7.46 

12 22 / 23 5.84 11.70 24 26 / 27 6.88 7.46 
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3.3.4 Sample D 

The fourth defective CFRP sample (referred to as Sample D) was a smaller stepped 

sample measuring 300.0 mm × 90.0 mm, containing embedded rectangular Teflon 

tapes of sizes 12.0 mm, 6.0 mm, and 4.0 mm. The sample had varying thicknesses at 

different steps: 21.2 mm, 16.3 mm, 13.8 mm, 10.9 mm, and 7.9 mm (79, 61, 51, 41, 

and 29 layers respectively). At each thickness step, nine embedded inserts were 

positioned: one of each dimension near the front wall, in the middle of the sample, and 

near the back wall. 

Scanning this sample was challenging due to its small size and the proximity of defects 

to the sample edges, posing risks to the PAUT roller probe when operating near the 

boundaries. As shown in the amplitude C-scan in Figure 36, this led to the omission 

of several defects. The amplitude C-scan and the model for sample D is illustrated in 

Figure 36.  

a) Amplitude C-scan of Sample D b) Model of Sample D 

 
 

Figure 36 a) Amplitude C-scan of sample D and b) Model of a defective CFRP Sample D 

 

3.3.5 Sample E 

The last defective CFRP sample (referred to as Sample E) was composed of a flat panel 

skin surface (thickness of 7.8 mm or 29 layers) co-cured with three stringer sections 

(thickness of 12.5 mm or 47 layers). The sample contained 12 Teflon inserts, with 6 

located immediately beneath the surface and 6 beneath the stringer sections, as detailed 

in Table 7. The sizes of the inserts were 20.0 × 10.0 mm, 10.0 × 5.0 mm, and 5.0 × 5.0 

UT roller probe

Subsurface

Middle of the sample

Close to the back wall

  .0 x   .0,  .0 x  .0, and 4.0 x

4.0 mm Teflon inserts located 

  .5 mm
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mm. Overall, the sample consisted of 3600 individual B-scans. The amplitude C-scan 

and model of sample E is illustrated in Figure 37. 

 

a) Amplitude C-scan of Sample E 

Cyan: Subsurface inserts / Orange: Stringer inserts 

 

 

b) Model of Sample E 

 

Figure 37 a) Amplitude C-scan of sample E and b) Model of a defective CFRP Sample E 
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Table 7 Technical details for defective CFRP Sample E 

Defect 

ID 

Insert size 

[mm × mm] 

Start/end plies ~Depth 

[mm] 

Sample thickness 

[mm] 

1 5.0 × 5.0 2/3 0.9 7.8 

2 10.0 × 10.0 2/3 0.9 7.8 

3 20.0 × 10.0 2/3 0.9 7.8 

4 5.0 × 5.0 2/3 0.9 7.8 

5 10.0 × 10.0 2/3 0.9 7.8 

6 20.0 × 10.0 2/3 0.9 7.8 

7 5.0 × 5.0 18/19 6.8 12.5 

8 10.0 × 10.0 18/19 6.8 12.5 

9 20.0 × 10.0 18/19 6.8 12.5 

10 5.0 × 5.0 18/19 6.8 12.5 

11 10.0 × 10.0 18/19 6.8 12.5 

12 20.0 × 10.0 18/19 6.8 12.5 

3.4 Hardware and Software Setup 

The AI models described in this thesis were initially prototyped on a Windows 11 Dell 

Precision 5570 laptop with an Intel i9-12900H 2.50 GHz Central Processing Unit 

(CPU), 64 GB of Random Access Memory (RAM), and an NVIDIA RTX A2000 8GB 

GPU. These models were developed using the Python programming language and the 

PyTorch [142] framework. Prototyping on a laptop allowed efficient use of available 

computing power before finalising the model architecture. 

Following prototyping, the AI models were trained and tested on a high-performance 

desktop Windows 11 PC. This system was equipped with an Nvidia RTX 3090 Ti 

GPU, 128 GB of RAM, and two Intel® Xeon® Gold 6428 2.50 GHz CPUs. This setup 

provided enhanced computational capabilities necessary for extensive model training 

and testing. 

Simulation work in EXTENDE CIVA [229] and POGO [230] was conducted on 

another high-performance PC setup. This system featured an Intel® Xeon(R) Gold 

6248R CPU, Nvidia RTX 3090 Ti GPU, and 192 GB of RAM. The simulation setup 

and parameters are detailed in Section 4.3, where their relevance to the supervised 

defect detection approach is further discussed. 



97 

 

3.5 Conclusion 

In summary, the experimental NDE setup comprised a PAUT roller probe and 

controller, a robotic manipulator for precise scanning, and a FT sensor to maintain 

consistent contact pressure. A set of CFRP test samples was scanned to acquire 

inspection data from specimens with varying thicknesses, layup configurations, and 

geometries. Additionally, simulation software was used to complement the 

experimental data and support the training of supervised AI models. 

The collected and simulated ultrasonic data form the foundation for the analyses in the 

following chapters. In Chapter 4, simulated data are used for training supervised 

models, while experimental data serve for validation and performance evaluation. 

Chapter 5 adopts an unsupervised approach for the development of AI models, where 

both training and validation is performed collected data. Lastly, Chapter 6 integrates 

the methodologies from Chapters 4 and 5, applying them to the most complex dataset, 

captured from a real aircraft component (sample E), to evaluate how the developed 

techniques align with real-world NDE practices and inspection scenarios. 
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Chapter 4: Supervised Object Detection Machine Learning Approach 

Analysis of Amplitude C-scans 

4.1 Chapter Overview 

Given the limited past research investigations and the broad gap in the knowledge 

regarding automated defect detection, this chapter focuses on a comparison between 

the capability of various defect detection methodologies applied to amplitude C-scans 

of CFRP components. Firstly, an amplitude thresholding method, frequently used 

within the industry, was trialled as a baseline for comparison. Afterwards, an 

improvement was shown with the implementation of the statistical amplitude 

thresholding method, inspired by previous work in the fusion of ultrasonic data [231]. 

Lastly, the reliability of AI algorithms based on widely used object detection models 

such as YOLO, Faster Region-based Convolutional Neural Network (R-CNN), and 

RetinaNet was investigated, highlighting their key strengths and shortcomings. The 

training datasets were created using the semi-analytical simulation software CIVA and 

were further augmented with A-scan noise profiles based on the method proposed in 

[202]. This approach reduces reliance on large volumes of experimentally acquired 

defect data, which are difficult to obtain (especially for real defects in CFRP 

components). There are currently no publicly available datasets containing large, 

labelled collection of such defects. While mimicking the UT inspection process is a 

non-trivial task, it is considerably more feasible than replicating the manufacturing 

conditions under which representative defects may occur is extremely costly and 

challenging to control. As a result, gathering a sufficiently diverse and well-annotated 

experimental dataset for supervised learning is often infeasible. However, by 

generating synthetic but representative training data, the AI models can be effectively 

trained without requiring extensive experimental datasets (i.e., real ultrasonic data 

acquired from physical inspections). Their performance was subsequently evaluated 

on real ultrasonic amplitude C-scans of CFRP samples A, B, C, and D. 

4.2 Contributions 

This work introduces an object detection model training pipeline for ultrasonic C-scan 

images of CFRP components, characterised by its reliance on fully synthetic training 

data combined with explainable data augmentation (domain adaptation). The pipeline 
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begins with the generation of a dataset using CIVA software simulation, incorporating 

realistic variations in defect size, depth, and orientation. To improve model 

generalisation, real A-scan noise profiles were extracted from experimental CFRP 

scans and integrated into the synthetic images. 

Three object-detection architectures (YOLOv5, Faster R-CNN, and RetinaNet) were 

adapted, trained, and validated on this synthetic data, then evaluated on independent 

experimental dataset. By performing multiple training runs with fixed random seeds, 

the study established that the training process is repeatable and stable across different 

data splits. The optimal model from each architecture was selected for final 

performance reporting, and a comparative assessment of computational efficiency and 

detection accuracy was conducted. Results demonstrate that augmented synthetic data 

can substitute for real-world training data, providing an effective and scalable solution 

for training ML models for ultrasonic NDE applications. 

In addition to ML approaches, this work also benchmarked conventional industry-

relevant defect detection technique (amplitude thresholding method) and an improved 

statistical thresholding method based on fitting mathematical distributions to pixel 

intensity histograms in C-scan data. This provided a clear baseline for assessing the 

relative benefits and limitations of AI-driven techniques in practical settings. 

4.3 Introduction 

In recent years, there has been an abundance of development of new object detection 

models with examples being R-CNN, Fast R-CNN, Faster R-CNN, Efficient-Det, and 

YOLO [232], [233], [234], [235], [236], [237]. These models use a complex 

architecture to extract regions of interest of an input image, outputting the bounding 

box and class of the object in the form of a vector. Despite the rise in the number of 

academic publications, object detection models have seen limited implementation with 

UT data. Performances of EfficientDet, RetinaNet, and YOLO models on B-scans of 

steel samples were compared in [178]. Authors have reported promising results with 

architectural changes to address the issue of extreme aspect ratios observed in UT B-

scans. Similarly, object detection on ultrasonic B-scans was evaluated in [179], 

demonstrating the use of YOLO and SSD models and highlighting the differences in 

performance in inference speed between the tested models. Lastly, researchers in [177] 
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combined EfficientDet and several methods that enabled the processing of additional 

B-scans in the sequence, improving on the baseline results. 

In industrial applications, defect localisation and sizing are usually performed 

manually through visual inspection of the C-scan, while applying different thresholds 

to the image. The most used method is a 6 dB drop where a threshold value is imposed 

on the signal to separate pristine and potentially defective regions. Researchers have 

used a 6 dB drop to separate damaged and undamaged areas in a C-scan image to 

assess the extent and size of impact damage [238]. The authors compared how sizing 

results vary with different methods and proposed a new algorithm that improves the 

sizing and shape of the damage. Limitations of the 6dB method were recognised in 

[239], especially when sizing defects that are smaller than the width of the ultrasonic 

beam. As an improvement the authors developed an AI approach that can 

automatically acquire different thresholding values, hence reducing the errors in 

quantification of defects. A semi-automated detection algorithm was proposed in 

[240]. This approach works on ToF C-scans, where the user defines areas of interest 

and threshold values which are in turn used for automated analysis. However, these 

traditional methods are inherently subjective and limited in flexibility. Although 6dB 

drop method remains commonly used, NDE operators often adjust thresholds 

depending on the scan location and the specific features under examination. 

Furthermore, thresholding performs well primarily when inspecting well-defined, 

stable signals, which are rarely the case in CFRP scans which exhibit complex signal 

characteristics [22]. Due to these challenges, ML approaches have been recognised as 

a promising solution due to their adaptability to non-linear signal patterns from data. 

However, it is noted that safety-critical industries such as aerospace remain cautious 

in adopting automation, primarily due to the safety concerns, the need for 

transparency, reliability, seamless integration into existing workflows, and the 

requirement for workforce upskilling [20]. 

Automatic defect localisation in CFRPs has been scarcely explored in the past; authors 

of [241] developed a time-dependent thresholding that improved the detection of micro 

flaws in UT C-scans of stainless-steel samples. Statistical analysis of backscattering 

noise to determine defect locations was used in [242], but the scope of this work was 

limited. Several works have used Otsu thresholding to segment ultrasonic images into 
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clusters of areas with similar acoustic properties [243], [244], [245]. Otsu’s method is 

a global thresholding technique that determines the optimal threshold by minimising 

the variance between foreground and background pixels, based on the assumption of 

a bimodal histogram distribution of image intensities. However, this assumption limits 

its industrial application as ultrasonic data typically contains complex signals that do 

not follow a clear bimodal distribution [246]. 

The most recent work was presented in [247], where an AI object detection model 

successfully localised damage on ToF C-scans of aircraft wings. The authors 

demonstrated an accuracy of 94.5% for the best-performing model when training and 

testing on experimentally collected data.  

While the experimental samples described in Chapter 3 provide valuable real-world 

data, their size remains relatively small, especially when compared to the large open-

source datasets commonly used in ML research (e.g., COCO dataset [248]). As 

previously highlighted, obtaining large and well-annotated datasets from real 

ultrasonic inspections, particularly for CFRP composites, is challenging. Therefore, in 

this work, which focuses on supervised object detection models, the experimental data 

from Chapter 3 is reserved for model testing, while simulated datasets are used for 

training. The generation of simulated data is detailed in Section 4.3. 

4.4 Generation of Simulated Data 

For the generation of simulated data, a semi-analytical NDE UT software CIVA by 

EXTENDE S.A. was used [229]. This approach is more efficient and less 

computationally demanding than using the FEA software, as it uses ray tracing theory. 

Ray tracing theory models the propagation of ultrasonic waves as straight-line paths 

(rays) that reflect and refract at interfaces, based on geometric acoustics. While 

computationally efficient, it neglects complex wave phenomena like scattering, wave 

dispersion, and mode conversion, which are critical in capturing the true acoustic 

behaviour of composite materials. As a result, it fails to capture realistic noise 

characteristics caused by inter-laminar scattering and diffraction. FEA software, on the 

other hand, can simulate and calculate complex interactions between the wave and 

individual layers of the composite with greater accuracy, resulting in a more 

representative simulation. However, this often requires a painstaking definition of 
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individual layer’s properties and dimensions. To gain an understanding of simulation 

time differences between CIVA and FEA, a similar scenario of a probe on a defective 

sample was modelled in CIVA and an FEA wave propagation software POGO [230]. 

Both simulations were executed on a high-performance PC detailed in section 3.4. The 

CPU-intensive CIVA simulation was completed in less than 2 minutes, whereas 

POGO FEA simulations even with GPU parallelisation took more than 2 hours of 

processing. In this study, 300 simulations of defect responses were created to include 

a variety of defect sizes at different depths in the CFRP sample. Given the large 

number of simulations and the observed time discrepancy between the CIVA and FEA, 

a semi-analytical modelling approach was used, with an attempt to reintroduce the 

compromised signal features in the post-processing stage. 

Upon deciding on the simulation software, a square composite sample with dimensions 

of 100.0 mm × 150.0 mm × 8.0 mm was created and a range of FBHs were introduced 

in the model. A parametric sweep study was used for ease of data collection, where 

FBHs’ diameters ranged from  .0 to  5.0 mm, each placed at depths of  .5 to 7.5 mm 

in steps of 0.5 mm measured from the inspection surface. Each simulation in the sweep 

contained one defect in the centre of the sample. The flow chart of the simulation 

process and an example output data for a defect of 6.0 mm at a depth of 4.5 mm are 

displayed in Figure 38 in a form of an amplitude C-scan.  

 
 

Figure 38 Simulation process flow chart for the parametric sweep of defect size and depth (left) and 

an example of simulated C-scan image of a 6.0 mm FBH at 4.5 mm depth (right) 

The composite model was defined with a total of 8 carbon fibre layers in orientations 

of 0°, 45°, 90°, -45°, 0°, 45°, 90°, and -45 ° with the thickness of each layer being 1 

mm. This was different from the experimental samples which were made with non-

crimp fabric. Fibre layers were considered transversely isotropic with a density of 1670 

kg/m3 while polymer matrix was defined as isotropic material with a density of 1230 

kg/m3. Longitudinal and transversal wave velocities were set at 2488 m/s and 1134 
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m/s, respectively. These values were determined experimentally by conducting an 

ultrasonic scan on a pristine sample with known thickness. Next, on ultrasonic data, 

the distance between front and back wall reflections was calculated and correlated with 

the sampling rate of the ultrasonic controller. Lastly, the speed of sound was calculated 

with: 

 𝑣 =  
2 ∗ 𝑑

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑓𝑠
 Eq.21 

Where v is the speed of sound in m/s, d is the thickness of the material in m, nsamples is 

the number of time samples in the ultrasonic data between the front and back wall 

responses, and fs is the sampling frequency of the acquisition equipment which was set 

at 100 MHz. Wave attenuation was set to follow the power attenuation law given by: 

 𝛼(𝑓) =  ∑ 𝛼𝑝 ∗ 𝑓𝑝

𝑛

𝑝=1

 Eq.22 

Where αp is wave attenuation given in dB/mm, f is the frequency in Hz, and p is the 

power of the frequency. For this study αp was set at 0.815 dB/mm and p was 4. 

To create a scanning path simulation, an immersion linear phased array with 64 

elements, 0.8 mm pitch and an element gap of 0.1 mm was modelled with a stand-off 

of 20.0 mm from the sample filled with water with no assumed attenuation and a 

velocity of 1483 m/s. The operating frequency of the array was set to 5 MHz with 

Hanning windowing. Scanning was performed in linear mode with a sub-aperture of 4 

elements to match the experimental setup. The step of array movement was set to 

match the array element pitch of 0.8 mm and was moved across the defect in a total of 

64 steps. Overall, this resulted in a total of 300 simulations of FBHs, that were used 

for the training of the AI models. 

4.5 Signal Processing and Imaging 

Simulated data and captured experimental data were stored as 3D arrays comprised of 

all A-scans collected along the electronic and mechanical scanning direction of the 

array and the robotic arm, respectively.  

Data were normalised with respect to the maximum amplitude occurring across all 

captured A-scans. Next, a Hilbert transform was applied to each A-scan to extract the 
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envelope of the signal, followed by time gating to remove the front and back wall 

responses. Time gating was done manually for each sample due to the varying material 

thicknesses. Lastly, maximum amplitudes of gated signals were used to construct 

amplitude C-scan images. To illustrate the difference between a simulated and real 

amplitude C-scan, a comparison is shown in Figure 39. 

 

Figure 39 Illustration of a C-scan containing a defect a) Simulated amplitude C-scan; and b) 

Experimental amplitude C-scan 

4.6 Augmentation of Synthetic Data 

When comparing the C-scans presented in Figure 38 and Figure 39, there is a clear 

difference in structural noise that the CIVA model failed to capture. This also 

adversely affects the defect response as the defect indication from the CIVA model 

looks undisturbed and uniform. AI models benefit from training on data that represents 

reality as accurately as possible; therefore, a post-processing approach should be used 

to overcome the lack of modelling noise which is present in the experimental data. To 

this end, the method of A-scan noise addition proposed by [202] was implemented. 

The foundation of this noise augmentation approach stems from the fact that each A-

scan is composed of structural noise, resulting from interactions between individual 

material layers, and random noise from sources such as electrical interference. The 

authors have demonstrated that this method improves the performance of AI models 

compared to the use of raw simulated data. For noise profile analysis, a pristine CFRP 

sample was used. In this context, the noise augmentation method can also be seen as a 

form of regularisation, helping to prevent the model from overfitting to idealised, 

noise-free simulations. Moreover, because the added noise profiles are grounded in the 

physical characteristics of ultrasonic wave interactions with CFRP structures, this 
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approach introduces a limited but meaningful degree of physics-informed modelling 

into the training process. 

To separate structural noise from random noise in the A-scan signals, a two-step 

process was used. 

Step 1: Estimation of structural noise 

The goal here was to isolate consistent noise patterns caused by the internal structure 

of the composite (i.e., inter-laminar reflections). 

1. First, all A-scans across the full scan were averaged to obtain a global mean A-

scan. This averaging reduces the influence of random noise and helps capture 

the stable structural features that are constant across scan. 

2. Then, for each B-scan in the dataset, all its A-scans were averaged to produce 

a B-scan-specific mean A-scan. 

3. By subtracting the global mean A-scan (from step one) from each B-scan's 

mean A-scan, variations pertaining to structural noise were isolated. 

4. This process was repeated across all B-scans. The resulting structural noise 

data was compiled into a histogram and modelled using a normal distribution, 

with a standard deviation of 0.003. 

Step 2: Estimation of random noise 

This step aimed to capture the random signal fluctuations due to electronic or 

environmental sources. 

1. For each B-scan, the B-scan average A-scan (from the structural noise step) 

was subtracted from each individual A-scan within that B-scan. 

2. This subtraction removes consistent features (i.e., structural noise), leaving 

behind the purely random noise component. 

3. Again, this was repeated for all B-scans. The aggregated random noise data 

was approximated with a normal distribution, with a measured standard 

deviation of 0.013. 

The process for the calculation of structural and random noise is presented in Figure 

40. 
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Figure 40 Process for determination of structural (blue) and random (green) noise components. 

The generation of a new noise profile was performed by applying mean structural noise 

and adding a variance that corresponds to the normal distribution. Following this, the 

random noise component is added with the mean and variances calculated in the 

previous steps. Figure 41 illustrates the simulated response, generated noise, and the 

final combined synthetic image. 

 

Figure 41 Representation of augmentation results. A) Simulated defect response; b) Generated noise; 

and c) combined image. 

4.7 Amplitude Image Thresholding 

The first method of defect detection that was explored in this work was amplitude 

image thresholding. In industry, a 6 dB drop on A-scans is often used for defect sizing, 

but in this work, the approach is adapted for defect detection and localisation. 

Physically, the 6dB drop on an A-scan signal represents the positions/time samples at 

which the maximum signal response loses half of its amplitude. In the ideal case, 

assuming A-scans were gated properly to exclude the front and back wall echoes, the 

maximum signal response would be created from the strong scatterers such as 

delaminations. Similarly, this loss of amplitude can be examined at an amplitude level 

other than half of the original value (e.g., 9, 12 or 18 dB). While used frequently, the 

6 dB drop often performs poorly when it comes to larger defects of irregular shape and 

defects that are smaller than the beam width of the acoustic wave [239]. A smaller 
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body of research tackled this issue and analysed alternatives to the 6 dB method [238], 

[239], [249]. The amplitude thresholding approach is hereby used as a baseline for 

comparison. 

To apply the amplitude thresholding method to the experimental data, the maximum 

pixel value of the resulting C-scan image was found, and the image was thresholded 

for 6-, 9-, and 12-dB drops (corresponding to 50%, 65% and 75% losses of amplitude). 

All pixels that had values lower than the calculated threshold were set to 0, while those 

with values larger than the threshold were set to 1, creating a binary map of the original 

image. Next, the spaghetti algorithm [250] was used to find connected components. 

The algorithm selects an unmarked pixel and assigns it to a new connected component, 

and afterwards, it moves to neighbour pixels and assigns them to the same connected 

component. This process is repeated until all pixels are assigned. Furthermore, the 

algorithm produces coordinates and areas of connected components. Lastly, resulting 

coordinates are used to create rectangles that encapsulate the corresponding defective 

area. For display purposes, these rectangles were overlaid over the original image. 

4.8 Statistical Image Thresholding 

In addition to the previous method, a statistics-based approach was also evaluated. 

This process is based on work presented in [231] where no prior knowledge about 

defects is needed, only that they have sufficiently different acoustical responses than 

defect-free areas. Firstly, a representative defect-free section of the amplitude C-scan 

from a pristine sample was extracted and used for statistical analysis. The goal of this 

method is to convert pixel values to probability values, where a higher value indicates 

a higher probability that an individual pixel belongs to a defect class. The pixel 

amplitudes in the extracted section were represented by a histogram, with a number of 

bins calculated with the Freedman-Diaconis rule [251]. Next, the SciPy Python [252] 

package was used to test theoretical distributions and determine the best Probability 

Density Function (PDF). PDF is the mathematical representation that describes the 

likelihood or probability of observing different values for some continuous variable. 

By extension, a Cumulative Density Function (CDF) is also computed. CDF is a 

related concept to PDF, as it indicates the probability of encountering a value that is 

less or equal to a point described by the PDF. Lastly, each pixel value from the original 
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image was remapped to a corresponding probability according to the CDF. For the 

current set of data, an f-distribution was determined to provide the best fit to the 

histogram. When using a pristine scan as the baseline, pixels with values similar to this 

reference are unlikely to be flagged as defects, since their probabilities remain low, 

reflecting the defect-free nature of the data. A range of probabilities was used (99, 

99.5, 99.9%) to determine defective areas in the remapped image. An example of 

generated PDF and CDF for the pristine sample is presented in Figure 42.  

 

Figure 42 Probability density function (left) and resulting cumulative density function (right) of a 

pristine sample. 

4.9 Object Detection Neural Networks 

In this chapter, the defect detection performances of YOLO, Faster R-CNN and 

RetinaNet family of models were compared. The choice of networks stems from their 

track record as state-of-the-art models on various object detection datasets, and from 

variations in their architecture that influence their inference speed and performance. 

To leverage prior knowledge and improve training efficiency given the limited 

availability of annotated ultrasonic data, transfer learning was employed. All networks 

were pre-trained on the Microsoft Common Objects in Context (COCO) dataset [248], 

which contains 80 object classes. Using these pre-trained weights as a starting point 

improves training stability and convergence compared to random parameter 

initialisation. During fine-tuning on the defect detection task, all layers of the network 

were updated (i.e., none were frozen).  Furthermore, the final classification layer was 

replaced to output only one class corresponding to defects. To ensure consistency, all 

tested AI and thresholding methods were evaluated on the same images. 
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4.9.1 Faster R-CNN 

Faster R-CNN is an ML architecture released in 2015 as an improvement over the 

earlier R-CNN models for object detection in images [232], introduced in [233]. The 

authors recognised that the region proposal step in R-CNN was the main bottleneck in 

terms of computational time and to address this the Region Proposal Networks (RPNs) 

to generate region proposals more efficiently was introduced. Faster R-CNN 

comprises two components, RPNs and Fast R-CNN that perform object classification 

on the areas proposed by RPN. These two structures share convolutional layers which 

enable end-to-end training. 

The RPN operates on the feature maps produced by earlier convolutional layers. It uses 

a sliding window approach, where a 3x3 kernel is moved over the feature map. At each 

position, the RPN predicts a set of region proposals, which are potential bounding 

boxes that might contain objects. These proposals are generated based on anchor boxes 

that have different scales and aspect ratios. Anchor boxes are predefined bounding box 

shapes that serve as a reference for generating region proposals. Following the RPN, 

the Fast R-CNN takes proposed regions and performs feature extraction using pooling 

layers that convert variable-sized region proposals into fixed-size outputs. These 

outputs are then propagated through fully connected layers that perform classification. 

For training, the authors used a multi-task loss function which combines classification 

and bounding box regression losses. ResNet50-FPN, a variation on ResNet 

architecture introduced in [253], was used for feature extraction and creation of feature 

maps. Recommended hyperparameters used by the original authors were used, with 

changes to the batch size and training epochs. For robustness and faster training 

convergence, initial pre-trained weights from a Faster R-CNN model that was trained 

on the Microsoft COCO dataset were adopted. 

4.9.2 You Only Look Once 

You Only Look Once object detection models were initially introduced in [254] , with 

multiple iterations being released in recent years from various research teams [235], 

[236], [237], [255]. Compared to the region proposal and sliding windows methods 

used in R-CNN and Fast R-CNN, YOLO introduced techniques that improved both 

accuracy and inference speed. These include single-stage detection where both 
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bounding box coordinates and class are determined with a single pass through the 

network and mosaic augmentation which enhances the training datasets. In this study, 

the implementation by the company Ultralytics [255] was utilised. This 

implementation includes architectures of varying sizes and complexities that were pre-

trained on the COCO dataset. All architecture variants share the common underlying 

structure consisting of a Cross Stage Partial (CSP) network in the backbone, a Path 

Aggregated Network (PAN) in the neck, and a YOLOv3 detection head. 

The CSP network [256] was implemented in the backbone due to its efficiency and the 

ability to deploy trained models to setups with weaker CPUs and GPUs. CSP is based 

on DenseNet and introduces the splitting of the gradient flow, which increases speed 

and performance. The focal point of CSP gradient splitting is the convolutional layer 

with 1x1 kernel size, which is computationally efficient and used to increase the 

complexity of the architecture. The spatial pyramid pooling [257] layer block is 

located at the end of the backbone and allows YOLO networks to accept input images 

of any resolution by max pooling of the same input multiple times with different kernel 

sizes and strides before concatenating them. With this method, the output is always of 

the same dimension, making it compatible for use in the subsequent layers. The neck 

is the central part of the YOLO structure, which comprises a series of network layers 

that collect and integrate various characteristics obtained from the backbone before 

passing them to the final detection layers. The neck of the YOLO model is the PAN, 

developed in 2018 [258] and first introduced in YOLOv4 [237]. In short, it is an 

improvement over the previous Feature Pyramid Network (FPN), which is based on 

feature maps of varying sizes. The improvement came from additional lateral 

connections between low- and high-level feature maps in the feature pyramid. Lastly, 

the head portion of the network produces predictions in the form of a vector with the 

class of the object and coordinates for the proposed bounding box. 

4.9.3 RetinaNet 

In 2017, the authors of [259] developed a single-stage object detection model called 

RetinaNet that achieved better performance than its two-stage counterparts. The 

novelty in this work is a new loss function that addresses the issues of class imbalances 

that can happen if cross-entropy is used as a loss function during training. The new 
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loss function is called “focal loss,” and it diminishes the losses by an order of one 

magnitude for high-probability examples like pristine CFRPs, while still retaining high 

losses for low-probability examples such as the occurrence of defects. 

Like YOLO, RetinaNet is a one-stage object detector that uses an FPN network for 

multi-scale feature representation. The classification and bounding box regression are 

handled by two smaller task-specific neural networks. The new loss function was 

combined with ResNet-101 and FPN to create RetinaNet, a model that achieved state 

of the art on the COCO dataset. However, with an inference time of 200ms, the final 

performance was less suitable for real-time tasks. In this implementation, ResNet50-

FPN was used as the backbone. Hyperparameters used by the original authors were 

followed, with changes to training epochs and batch size. Similar to previous two 

models, pre-trained weights and biases were used. Table 8 summarises main 

characteristics of each network 

Table 8 Comparison of object detection models used in this study 

Model Stages Backbone Proposal mechanism Anchor boxes 

YOLOv5 One-stage CSPDarknet53 Dense prediction Yes 

Faster 

R-CNN 
Two-stage ResNet50-FPN Region Proposal Network Yes 

RetinaNet One-stage ResNet50-FPN Dense prediction Yes 

4.10 Model Training 

The training dataset consisted of 300 synthetically generated C-scan images of size 64 

× 64 pixels. The range of generated defects ranged from 3.0 mm to 15.0 mm, at 12 

different depths starting at 1.5 mm measured from the front surface and extending to 

7.0 mm. To support model validation, 10% of this synthetic dataset was randomly set 

aside as a validation subset. The data splitting was performed using fixed random seeds 

to ensure repeatability of the training and validation splits across all network trainings. 

All defects were circular, with no deviations in shape or position within the generated 

image. A separate experimentally acquired testing dataset used for model testing 

consisted of 8 amplitude C-scans, containing a range of defect types and sizes. FBHs 

were present in samples A and B, while samples C and D contained Teflon, and other 

polymer inserts which were rectangular.  
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All networks were trained using a desktop PC detailed in the section 3.4. An overview 

of the training hyperparameters for all the models used for training are presented in 

Table 9. Hyperparameters were chosen according to values proposed by the original 

authors of the used models. While some degree of hyperparameter optimisation has 

already been conducted in previous studies by the original authors, further task-

specific tuning within the present context could yield additional performance gains. 

However, such optimisation was beyond the scope of the current study. During 

training, data augmentation in the form of random image translation, scaling, and 

vertical, and horizontal flipping was introduced, except for the YOLO family of 

models, which additionally employed mosaic augmentation. During model 

deployment onto the test dataset, no augmentations were used. All models were trained 

for 50 epochs, and model weights at the lowest validation score were saved. 

Table 9 Overview of used training hyperparameters and other technical information 

Hyperparameter 
YOLO 

Medium 

YOLO 

Large 

Faster 

R-CNN 
RetinaNet 

Epochs 50 50 50 50 

Learning rate 0.01 0.01 0.005 0.0005 

Momentum 0.937 0.937 0.9 0.9 

Optimizer SGD SGD SGD SGD 

Batch size 32 32 32 32 

Weight decay 0.0005 0.0005 0.0005 0.0005 

Model size in MB 42 MB 92 MB 159.7 MB 130.27 MB 

Parameters 21.2M 47M 41.8M 34.0M 

 

To demonstrate the convergence of models, training and validation losses are shown 

in Figure 43. Due to the small size of the training dataset, convergence in validation 

loss is achieved relatively early. 
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Figure 43 Training and validation losses for: a) Faster R-CNN; b) RetinaNet; c) YOLO 

4.10.1 Performance Metrics 

Each experiment involved training 10 networks with different fixed random seeds to 

verify training stability and convergence. The best-performing model from each set 

was then used to compute the reported performance metrics. In this study precision, 

recall, and F1 score were used as evaluation metrics. Precision is defined in Eq.23, and 

it illustrates the percentage of positive predictions that are correct according to the 

ground truth:  

 𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Eq.23 

Where TP annotates true positives and FP annotates false positives. Recall is defined 

as the likelihood of detecting objects determined by ground truth. Mathematically this 

is represented in Eq.24: 

 𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Eq.24 

Where FN denotes false negatives. F1 score is defined as a harmonic mean of precision 

and recall and is shown in Eq.25: 
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𝐹1 = 2 ∗  

𝑃 ∗ 𝑅

𝑃 + 𝑅
 Eq.25 

For NDE applications, recall is more important as it is crucial to not miss any defects 

while having some false positives is tolerable at the expense of adding to the analysis 

time. To evaluate which predictions are considered positive, Intersection Over Union 

(IoU) is used. IoU is represented in Eq.26: 

 
𝐼𝑜𝑈 =  

𝑃𝑟𝑒𝑑 ∩ 𝐺𝑇

𝑃𝑟𝑒𝑑 ∪ 𝐺𝑇
 Eq.26 

Where Pred denotes a bounding box prediction, and GT denotes Ground Truth. 

Furthermore, for a complete view of the model performance, precision-recall curves 

were constructed and Area Under Curve (AUC) were reported. For this work, it was 

decided to use an IoU value of 0.25, as for this application it is not as important to 

capture the full extent of the damage, and even the predictions with smaller overlap 

with ground truth should be considered as positive results. 

4.11 Results and Discussion 

In sample A, the application of amplitude thresholding with a 6 dB drop failed to 

identify four 3.0 mm FBHs and two smaller delaminations. This failure was attributed 

to the presence of stronger reflectors in the scan, specifically shallower 9.0 mm FBHs, 

which contained the maximum amplitude of the image. Similar observations were 

made in sample B containing FBHs, where a single 4.0 mm FBH and several 3.0 mm 

FBHs went undetected. Furthermore, in both samples C and D, the 6 dB method 

proved inadequate in identifying shallower and smaller indications, resulting in a poor 

overall defect detection performance with only 38.8% of the defects being correctly 

identified. Such low performance is also attributed to the defined IoU level of 0.25, as 

some predictions were made in the correct area but were much smaller than the 

provided ground truth.  

The use of a more aggressive 9 dB drop method led to the identification of more 

defects. However, in the samples with FBHs, the shallowest 3.0 mm defect and two 

small delaminations were once again missed. The 9 dB drop method performed well 

in detecting all Teflon inserts, however several false negative indications started to 

appear. This issue was particularly prominent in sample C, which exhibited brighter 

areas in the scan due to imperfections during the scanning process and the application 
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of gating parameters for image creation. In this case, the gating process for C-scan 

generation incorporated some reverberations from the front wall, which were 

misinterpreted as defective areas. Compared to the 6 dB drop method, the 9 dB drop 

method achieved a much higher defect detection rate of 72.5%. 

Lastly, the 12 dB drop method successfully identified most defects, albeit with an even 

higher number of false positive indications. This problem was again most pronounced 

in sample C with Teflon inserts, lowering the overall precision to 53.0%. In 

conclusion, amplitude thresholding of amplitude C-scans can yield satisfactory results 

for reflective defects when proper gating techniques are employed. However, this 

approach may face challenges when defects are located close to the samples’ front 

surface, as the gating process may include front wall reverberations with high 

amplitudes. Additionally, this method proves unreliable in instances where no defects 

are present in the scan, as numerous areas are erroneously marked as defective due to 

the maximum amplitude being taken from structural noise. Lastly, even with IoU set 

at a low threshold of 0.25, certain predictions are marked as false positives despite 

correctly identifying a small area of the defect. With the increase of IoU, the results of 

amplitude thresholding would deteriorate even further. When it comes to the maximum 

achieved F1 score, a 9 dB drop produced the best results at 70.3%. 

With the statistical method, high probability values must be used to filter out false 

positive detections. In sample A, even though the majority of defects were detected, 

the number of false positive indications outweighed the correct indications 

significantly when a 99% probability threshold was employed. The same trend was 

observed in samples C and D, where numerous false indications compromised the 

overall performance of the method with F1 score being only 50.8%. Despite this, a 

total of 95.0% of the defects were located successfully. 

By increasing the probability to 99.5%, the number of false positives decreased. This 

adjustment had a positive impact on both the overall precision and F1 score, resulting 

in increases of 8.8% and 8.1% (from 34.7% to 43.5% and from 50.8% to 58.9%). With 

a recall rate of 91.2%, the statistical image thresholding method outperformed the 

amplitude threshold technique, but with lower precision. Furthermore, similar to the 

amplitude thresholding method, the statistical approach generated false positive 
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indications when features other than defects with higher amplitudes were present in 

the image. The statistical method exhibited high sensitivity to gating parameters, 

which greatly influenced the number of false positive indications. Notably, when 

testing this method on pristine samples, no false detections occurred as the pixel values 

were close to the mean of the statistical distribution, without obvious outliers. A 

similar trend continued for the 99.9% threshold, where precision increased to 64.9%, 

but the recall dropped to 76.2%. The precision of the statistical thresholding method 

could be improved by imposing an additional area threshold in the predictions, but this 

creates a risk of filtering smaller defects. Overall, the presented method provides an 

improvement over the amplitude thresholding method, especially in the recall values, 

with room for improvement when it comes to its precision. 

The Faster R-CNN implementation trained on raw data detected all larger defects, but 

it consistently struggled to detect the smallest and deepest FBH defects. On average, 

the Faster R-CNN model performed well in generalising to rectangular-shaped defects 

and FBHs that are 4.0 mm or larger in size. The major benefit of this implementation 

is an improved precision score of 98.6% when compared to the statistical method and 

amplitude thresholding methods. This improvement is attributed to the ability of AI 

models to learn complex features that describe defective areas, whereas previous 

methods relied solely on amplitude values. As a result, the robustness of the model 

matches that of previous methods while providing increased resilience to 

imperfections in the scanning process and signal gating. When data augmentation was 

performed, it resulted in minor increases in precision, recall, F1, and AUC scores 

(1.1%, 1.2%, 1.1%, and 1.1% increase, respectively). Nevertheless, both the Faster R-

CNN trained on raw data and the augmented data show improvements over previous 

techniques by providing a more robust detection mechanism, with significant 

enhancements in precision and F1 metrics. 

Similar to the Faster R-CNN, RetinaNet provided an increase in precision when 

compared to statistical thresholding, but still oftentimes missed smaller 3.0 and 4.0 

mm FBHs. RetinaNet generalised well on the rectangular-shaped defects in samples C 

and D but had several false indications that were very close to the positive indications. 

Such false indications were refined with a better choice of Non-Maximum Suppression 

(NMS) thresholds. Furthermore, there were some instances where indications captured 
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multiple defects under the same bounding boxes. These were considered false positives 

as the clear separation between the defects is important, even when they are close in 

distance. Upon augmentation, precision dropped by 3.6% (98.4% to 94.8%), but the 

recall rate increased by 4.0% (90.9% to 94.9%). The main difference was that 3.0 mm 

and 4.0 mm defects were identified with greater recall rates than with the Faster R-

CNN. 

The medium YOLO model identified most of the defects, however, it struggled with 

sample D where some rectangular defects were missed. This observation implies that 

these networks could generalise better to the rectangular defects if some examples are 

included in the training dataset. Interestingly, similarly sized defects were identified 

in other samples, indicating a potential discrepancy in aspect ratios between the data 

used during training and inference as a cause. Sample D was created using a single 

ultrasonic pass compared to 3-5 passes in other samples, which resulted in a more 

extreme aspect ratio of visualised data. Consequently, this produced a significantly 

smaller image, with the width of the scan narrower than its height. The YOLO model 

is more susceptible to changes in aspect ratios due to its use of defined anchor boxes. 

Aligning the aspect ratios of training data with that of test data could mitigate this 

effect, potentially improving the model's performance in scenarios with varying aspect 

ratios. Furthermore, it was possible to detect the missed defects by lowering the 

confidence threshold during inference, but it resulted in a higher overall number of 

false positives. An overall AUC of 87.0% and a maximum F1 score of 91.5% was 

achieved. Augmentation of the data resulted in a minor increase in AUC and F1 scores, 

of 0.6% and 0.5%, respectively. Recall remained the same, therefore an increase in 

precision positively impacted the F1 score. 

The large YOLO models achieved similar results, all defects from samples A, B and 

C were identified. This was an interesting observation as a large YOLO network 

generalised to FBHs of all sizes even without augmentation. All missed detection came 

from sample D where networks struggled to detect smaller rectangular Teflon inserts. 

This type of defect was not present in the training data, which indicates that this 

network could benefit from the inclusion of some examples of rectangular defects. The 

addition of augmentation yielded improvements of 1.4% in AUC, 2.4% in precision, 

and the same recall at 86.9%. It is worth noting that the YOLO family of models 
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produce more bounding boxes of lower confidence, and the results are heavily 

influenced by NMS and confidence thresholds. 

Overall, all models provided an improvement over the statistical thresholding and 

amplitude thresholding methods, even when trained on raw simulation data. The 

augmentation of training data positively impacted recall and F1 scores of all models, 

with the minor exception of the large YOLO model. The augmentation led to the most 

prominent increases in FasterRCNN, which overall produced the best results for this 

dataset. Furthermore, with the optimisation of confidence, IoU, and NMS thresholds, 

this score could be refined further. Another improvement would be the implementation 

of an ensemble of different AI models, where several models would process the same 

input and provide a combined output. The good results achieved in terms of recall with 

amplitude and statistical thresholding were always followed by a low score in precision 

and vice versa, making it hard to strike a balance between all performance metrics. On 

the other hand, AI models provided more balanced and robust results throughout 

different tests. Visual representation of test results is illustrated in Figure 45, with 

ground truth being presented with red bounding boxes and test results with green 

bounding boxes. Precision and recall curves and evaluation metrics of all tested 

methods are presented in Figure 44 and Table 10. Precision and recall scores in Table 

10 are reported based on the maximum achieved F1 score.  

Unlike ML models that produce continuous confidence scores (enabling creation of 

full precision-recall curves), amplitude thresholding methods rely on fixed, physically 

meaningful criteria. Commonly used thresholds such as 6, 9, and 12 dB have clear 

interpretability in ultrasonic inspection and are standard in practice. Sweeping these 

thresholds continuously would be physically arbitrary and, more importantly, not 

reflective of how such methods are applied in real NDE scenarios. Moreover, since 

precision-recall curves for ML models are based on varying confidence scores, 

including many discrete thresholds for rule-based methods would require a different 

approach to plotting. 

For consistency and direct comparison, the same discrete approach was adopted for 

the statistical thresholding method. Although a continuous sweep of percentiles is 

technically feasible, lower thresholds (e.g., below 99.0%) would be expected to yield 
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an unusually high number of false positives, distorting the practical value of the 

analysis. Therefore, for both amplitude and statistical thresholding, a small number of 

discrete, interpretable thresholds were selected to reflect realistic usage in practice, and 

to enable a fair comparison on the same precision-recall plot as the ML-based methods. 

This links back to the issues on the use of performance metrics in AI and NDE research 

discussed in Section 2.10. 

 

Figure 44 Precision and recall curves for all tested methods of defect detection, with IoU was set at 

0.25. 

Table 10 Evaluation metrics for the experimental dataset for IoU set at 0.25. 

Method Training data / Type AUC Precision Recall F1 

Faster RCNN 
Raw 0.961 0.986 0.949 0.967 

Augmented 0.972 0.998 0.960 0.978 

RetinaNet 
Raw 0.974 0.984 0.909 0.945 

Augmented 0.965 0.948 0.949 0.949 

YOLO medium 
Raw 0.870 0.979 0.859 0.915 

Augmented 0.876 0.992 0.859 0.920 

YOLO large 
Raw 0.878 0.985 0.869 0.923 

Augmented 0.892 0.982 0.869 0.922 

Amplitude thresholding – 6 dB N/A N/A 0.456 0.388 0.419 

Amplitude thresholding – 9 dB N/A N/A 0.682 0.725 0.703 

Amplitude thresholding – 12 dB N/A N/A 0.530 0.887 0.664 

Statistical thresholding – 99% N/A N/A 0.347 0.950 0.508 

Statistical thresholding – 99.5% N/A N/A 0.435 0.912 0.589 

Statistical thresholding – 99.9% N/A N/A 0.649 0.762 0.701 
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Figure 45 Extracted sections of several testing images. Names of samples and used detection method 

are listed above each example, with the ground truth bounding box marked in red and test results in 

green. 
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Training times were modest due to the small dataset size, and the full computational 

times are presented in Table 11. The medium YOLO model was the fastest to train and 

the fastest model during inference. Amplitude thresholding was the overall fastest 

method, due to its simplicity. Statistical thresholding took 1250.8 ms per image, but 

this time is heavily influenced by the number of tested statistical distributions. The 

fitting process is repeated for each new image, but for scans with similar backscattering 

noise, it is possible to perform this process only once and significantly speed up the 

inference times. In the reported results, five candidate distributions were tested.  

Table 11. Computational times for examined methods, including training and testing times. 

Method Training time [mins] Testing/image [ms] 

Faster RCNN 6.7 47.2 

RetinaNet 11.4 79.8 

YOLO Medium 2.4 44.9 

YOLO Large 3.2 50.9 

Amplitude Thresholding N/A 0.3 

Statistical Thresholding N/A 1250.8 (1250.0 fitting + 0.81 thresholding) 

4.12 Conclusion, Limitations, and Future Work 

The main novelty of this chapter lies in demonstrating that ML-based defect detection 

in ultrasonic amplitude C-scan images can be trained and validated exclusively on 

synthetic data, eliminating the need for experimental data in the training pipeline. This 

was made possible by a data augmentation (domain adaptation) approach in which 

realistic A-scan noise profiles, extracted from experimental CFRP scans, were injected 

into simulated data. This strategy represents a practical and scalable solution to the 

limited availability of annotated experimental ultrasonic datasets.  

In this chapter, three different methods of defect detection and localisation in the 

amplitude C-scans of CFRP samples were demonstrated: amplitude image 

thresholding, statistical image thresholding, and the use of AI object detection models. 

By mimicking the industrial NDE setup, a realistic data acquisition process with 

automated ultrasonic scanning of different CFRP samples enabled the generation of 

representative datasets. The training of the models was driven by a synthetic dataset 

generated by CIVA software and further augmented by the A-scan noise addition 
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method, removing the need for the use of experimental data in the training loop. 

Through the investigations, it was concluded that: 

• The amplitude thresholding method is suitable for the detection and 

localisation of large reflective defects. However, this method was unable to 

detect smaller defects and was heavily reliant on the absence of any other 

reflective features that trigger false indications. Furthermore, this method 

performed poorly on scans where no defects were present. 

• The improvement to this method is the statistical image thresholding method, 

which outperforms amplitude thresholding by reducing false indications in 

pristine samples. However, the performance of this method was also reliant on 

the absence of high amplitude artefacts in the images. 

• Lastly, the four different AI models tested for defect detection provided 

improvement over the statistical method, by accurately identifying defective 

areas. These models also demonstrated robustness in processing pristine 

samples without producing false indications, overcoming a key limitation of 

the amplitude thresholding method. The performance of trained models was 

further improved by the application of a noise profile augmentation method to 

simulated data for domain adaptation. Validation of the models during the 

training process on a subset of the synthetic dataset was valuable as it 

diminished the need for the acquisition of a separate validation dataset.  

The study presented in this chapter has several limitations. While the trained models 

demonstrate good results for detection and localisation, they do not distinguish 

between different types of defects. Although the overall aim is to expand training and 

testing on datasets that include various types of defects, such as porosities and 

inclusions, the current lack of available data prevents addressing classification tasks. 

Additionally, while multiple training runs were conducted to assess training stability, 

the performance metrics reported here were based on the best-performing model from 

each set. A more rigorous approach would involve reporting average performance 

across runs and including statistical measures of variability. 

The AI models explored in this work represent a targeted subset of widely adopted 

high-performing object detection architectures from the broader computer vision 
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domain. While alternative architectures such as EfficientDet, different YOLO variants, 

and more recent transformer-based models (e.g., DETR [260], ViT [145]) could offer 

further performance gains, many recent developments in this space prioritise speed, 

scalability, or deployment efficiency rather than significant leaps in the detection 

accuracy. For example, Vision Transformers (ViT) are DL models that include the 

transformer architecture (originally developed for natural language processing) to 

apply attention mechanisms to object detection tasks. In theory, ViTs could offer 

improved generalisation for defect detection. However, in practice, they typically 

require very large datasets to outperform convolutional models [261]. Given the 

limited size of the datasets used in this work, such architectures were considered 

impractical. These challenges and limitations are further discussed in Section 7.3.  

Furthermore, the primary aim of this study was not to exhaustively benchmark 

architectures, but to investigate whether object detection models, when trained solely 

on synthetically generated and noise-augmented data, could reliably generalise to real 

ultrasonic C-scans. It is acknowledged that a broader architectural comparison and 

more exhaustive hyperparameter optimisation could potentially improve detection 

performance, and these are seen as valuable directions for future work. 

Lastly, it is important to highlight a broader limitation of the research landscape. In 

contrast to mainstream AI research, which benefits from standardised open datasets 

(e.g., COCO, ImageNet) and well-defined benchmarking practices, UT NDE research 

such resources and norms. Existing studies rely on proprietary or in-house data, 

making direct comparisons, reproducibility, and cross-validation of published results 

challenging. As a result, applying and comparing “state-of-the-art” ML approaches 

across different studies is inherently limited, as models are rarely evaluated on 

common data or under consistent conditions. Addressing this challenge represents a 

high-impact opportunity for the NDE research community. 

The next chapter will expand on the application of AI, particularly in automated gating 

methods, as manually gating individual samples in this work slowed down the process 

and detracted from full automation potential. Furthermore, the unsupervised training 

method will be tested to compare its performance to the supervised models presented 

in this chapter, focusing on reducing the time-consuming generation of datasets and 
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associated ground truth labels by framing the defect detection problem as one of 

anomaly detection. The generation of ground truth labels in this study was labour-

intensive and heavily influenced by the individual performing the task, making it 

challenging to label defects, particularly smaller ones, with precise and uniform 

accuracy. This subjectivity may have impacted the reported detection performance 

metrics, but it was not explored in this chapter. Several avenues can be pursued to 

address this issue. One approach is to involve multiple annotators and generate a 

consensus ground truth, which helps to remove personal bias (such approach was 

adopted in Chapter 5). Another direction would be to adapt active learning or weak 

supervised approaches, where a smaller subset of relevant data is manually labelled 

and used to train an initial model, which then assists in labelling the remaining data 

[262]. Lastly, in the case of training and validation datasets, some simulation 

environments do allow for precise generation of ground truth as defect location and 

size are predefined by design [263].   
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Chapter 5: Unsupervised Anomaly Detection for B-scan Analysis 

5.1 Chapter Overview 

Following the work presented in the previous chapter, several key challenges and 

potential for further research have been identified: 

• The generation of C-scans required manual setup of time gates tailored to 

individual samples, particularly for samples of non-uniform thicknesses. 

Therefore, the development of an automated gating method to tackle this task 

is deemed promising to increase the level of automation in data analysis. 

• The reliance on datasets with defects for supervised model training presents a 

challenge, as such datasets are not readily available, and manufacturing large 

numbers of defects is economically unfeasible. While simulation software was 

utilised in the previous chapter to address this problem, an alternative approach 

would be to frame the problem as one of anomaly detection. Ultrasonic data is 

often analysed by examining different views of ultrasonic data. Compared to 

the C-scan view, examining the data from a B-scan perspective allows for the 

creation of larger training and testing datasets. 

• Ground truth labelling depends heavily on the precision and consistency of the 

individual performing the task. Marking defects, especially smaller ones, with 

pixel-level accuracy is challenging and can introduce variability in reported 

performance metrics. The impact of this variability was not explored in the 

previous chapter.  

To address these challenges, this chapter presents a two-step defect detection process 

for ultrasonic B-scan data (explained in Section 2.1.12). The first step is an automatic 

gating process based on the DBSCAN algorithm, providing a robust and flexible 

method applicable to samples with non-uniform geometries. In the second step, a 

CNN-based AE model is employed to identify defective B-scans. The combination of 

outlined methods results in successful detection of 38 out of 40 embedded defects in 

samples A and B, and 22 out of 24 defects present in sample C, with 2070 B-scans 

processed in 1.26 ± 0.09 seconds. Lastly, a study of uncertainties was conducted to 

assess the impact of human labelling on the reported AI performance metrics. While 

the AE model was trained in an unsupervised manner using only pristine data, its 
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performance was evaluated against a labelled test set. Variability in human 

annotations, provided by three different NDE operators, influenced the reported 

detection metrics. 

5.2 Contributions 

This work presents a two-step defect detection framework for ultrasonic B-scan data 

of CFRP samples with complex geometries and embedded defects. The first step 

introduces an automated gating method leveraging the peak finding and DBSCAN 

clustering algorithms, addressing challenges associated with manual gate setup for 

samples exhibiting non-uniform thickness. This approach improves the scalability and 

robustness of preprocessing for diverse sample geometries. 

The second step employs a CNN-based AE trained in an unsupervised manner on 

pristine B-scans, framing defect detection as an anomaly detection problem. This 

approach mitigates the dependence on large, defect-labelled datasets, which are costly 

and difficult to obtain. The combined method achieves successful detection of the 

majority of embedded defects across multiple samples while processing thousands of 

B-scans efficiently. 

Additionally, the work examines uncertainties related to scan quality and repeatability, 

as well as the impact of inter-operator variability in ground truth labelling on 

performance metrics, highlighting challenges in defect annotation consistency and its 

influence on reported detection accuracy. Overall, this chapter advances UT data 

analysis by integrating automated data gating with unsupervised learning, offering a 

practical and efficient solution for real-world inspection scenarios involving limited 

defect data and samples with complex geometries. 

5.3 Introduction 

In practical industrial applications, the manual analysis and interpretation of UT scans 

typically start with a focused examination of sectioned C-scans. If these analyses 

reveal defects surpassing predefined area limits established by industrial guidelines, 

subsequent analysis of individual B-scans is performed to further examine such areas. 

In an industrially representative example, considering a pristine sample comprising 

approximately 4500 individual B-scans, an NDE inspector expends around 1.5 hours 
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to complete the analysis. In contrast, an additional hour or more is added to the process 

when defective areas are found. This additional time is allocated to the inspection of 

individual B-scans and the generation of quality reports. It is crucial to note that the 

individual inspection of every B-scan is unattainable within a reasonable timeframe. 

Therefore, the underlying idea behind the method proposed in this chapter is to serve 

as a supplementary tool for NDE inspectors, enabling the processing of all B-scans 

without incurring significant computational costs. 

Autoencoders (AE) represent a category of ML networks that have found applications 

in the detection of potential security threats [184], denoising of data [155], and 

undertaking various NDE tasks [181], [264], [265], [266], among many others. AEs 

can be divided into three distinct components: the encoder, the latent space, and the 

decoder. The encoder’s task is to process the original input data with a series of layers 

into a representation of features known as the latent space. The decoder part of the 

network aims to approximate the inverse of the encoder, taking the latent space as an 

input, and attempting to reconstruct the original inputs. AE as a concept has seen 

multiple iterations and improvements over the years, including: a) GANomaly [184] 

where additional encoder and discriminator structures are introduced; b) VAE [267] 

where the latent space is a statistical distribution; and c) U-NET models that adopt the 

encoder-decoder structure and are used for the segmentation of medical images [268]. 

In the scope of this study, attention is directed toward the utilisation of AEs as 

unsupervised defect detectors. The fundamental structure of a basic autoencoder is 

illustrated in Figure 46. 

 

Figure 46 Basic autoencoder structure. 

Anomaly detection is a method used in data science, statistics, and ML, primarily 

focused on identifying abnormal patterns or outliers within a dataset. Oftentimes data 
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follows regular patterns or can be approximated by specific statistical distributions. 

Anomaly detectors aim to capture these regularities while extracting outliers or data 

points that fall outside the probable distribution. The research of AI in the domain of 

NDE faces significant challenges due to data scarcity. Specifically, acquiring genuine 

defective data is often accompanied by costly manufacturing and testing procedures 

(as highlighted in section 4.1). A key risk of using artificial or manufactured defects is 

that they may not accurately represent the complex morphology, signal response, and 

variability of real defects. This can lead to over-optimistic model performance during 

training and evaluation, with reduced generalisability when applied to real-world 

inspection scenarios. AE-based anomaly detectors offer the advantage of being 

trainable and deployable in an unsupervised manner, diminishing the need for 

extensive acquisition and labelling of data containing defective samples. Instead, 

training can be based on undefective/pristine data, allowing the AEs to learn 

distributions and representative features of undefective samples. Their performance 

can then be evaluated with the reconstruction error observed between the input and 

output data, as undefective data should exhibit successful reconstruction with lower 

errors in comparison to defective data. In practice, PAUT systems are typically 

operated in automated setups where data acquisition occurs in real time as the probe is 

robotically moved across the material surface. At each scan position, a B-scan is 

generated based on predefined focal laws and sent to a controller unit, which buffers 

the data before transferring it to a PC. During deployment, each B-scan can be passed 

through the trained model on-the-fly, as inference times are negligible compared to 

acquisition rates. The reconstruction error is computed for each B-scan and stored in a 

corresponding error array. As the scan progresses, this error map is incrementally built 

up and can be visualised in real time or post-processed to flag regions of interest (those 

with elevated reconstruction errors) indicating potential anomalies. 

In the field of NDE research, AEs have been previously used as anomaly (defect) 

detectors and denoising mechanisms. In [181], authors have developed a VAE model 

to detect defects within ultrasonic B-scans of bulk metallic materials. To enhance 

training and performance, taking inspiration from GANomaly, another encoder was 

added to the AE structure after the decoder. The study revealed that the model 

successfully identified larger defects but struggled with smaller defects that cause 
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minor reconstruction errors. Ultrasonic scans of rails were explored in [269] and [264]. 

In [269], AEs were deployed on a dataset comprising ultrasonic guided waves A-scans, 

achieving promising results. In [264], the authors have demonstrated that AE 

structures work well in the identification of different flaws that are visible in ultrasonic 

B-scans. The consistent geometry of inspected material made the application of signal 

gating easier, simplifying the dataset and positively impacting the final performance. 

In [266], authors focused on the ultrasonic dead zone, an area of an ultrasonic pulse 

close to the transmission source that can heavily mask reflections from near-field 

features. Positive results were achieved in the identification of near-surface defects, 

with the recommendation that the method be further validated on different material 

specimens and alternative defect types. In [265], through-transmission UT was used 

for the task of identification of defective adhesive bonds. Explainable anomaly scores 

were demonstrated as the sigmoid activation function was added to the calculated MSE 

between inputs and outputs of the model, presenting the anomaly score as a percentage. 

Overall, the authors have reported valuable quantitative results, but the scope of the 

study was limited. Lastly, in [155], AEs were utilised as a tool to denoise A-scans 

before classification. This method yielded great success as the classification 

performance was improved. 

During the NDE of CFRP components, various signal processing techniques are used 

to improve the interpretability and quality of visualisation, with signal gating being 

crucial when preparing C-scan representations. Appropriate gating allows for the 

exclusion of surface and backwall echoes, which often have significantly higher 

amplitudes compared to potential volumetric defects, from the selected time window. 

This results in images that provide better visibility for lower amplitude features. The 

gating process is usually performed by a human operator while automatic gating is 

rarely discussed in the academic literature. In [270], authors developed a back wall 

echo filter method based on the computation of gradients of ToF variations and 

thickness tolerances. However, this method is incompatible with complex and stepped 

materials. In regions with abrupt changes (such as steps or sharp slopes) these gradients 

exceed the algorithm’s tolerance and are mistakenly flagged as internal features, 

leading to false detections. Authors in [271] have introduced an automated UT analysis 

software that performs automated gating in two steps. The proposed approach is 
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complex and was tested only on samples with smooth and slight curvatures. The 

authors expanded the previous work in [272] by incorporating the Amplituden Laufzeit 

Ortskurven algorithm, characterising the front wall responses as echoes with the 

overall smallest ToF while other echoes correspond to defects, back wall, or 

repetitions. While yielding positive results, this method is not an all-round solution for 

gating complex geometry samples. In the study [273], authors achieved automatic 

gating on a per A-scan basis, by identifying amplitude peaks and assigning the leftmost 

peak label of the initial pulse and the rightmost peak the label of the back wall echo. 

However, this approach can misclassify echoes in the middle of the scan as defects in 

cases involving thinner samples with multiple backwall reflections. Lastly, in [274], 

the authors illustrated two adaptive gating processes for detecting defects: the first 

relies on the Computer-Aided Design (CAD) model, and the second is grounded in 

back wall echo tracking. Both approaches draw upon external knowledge, either 

through possessing a comprehensive CAD model of the inspected specimen or, in the 

latter method, by manually establishing a back-wall gate width that is larger than the 

maximum thickness of the component. 

The scope of this study encompassed the examination of 11 CFRP samples of varying 

characteristics described in section 3.3. All but three samples were undefective, 

enabling the acquisition of a relatively large number of healthy ultrasonic scans that 

were used for training the ML model. Overall, 64 manufactured defects were examined 

in this study, and the used CFRP samples are summarised in Table 12. For a visual 

representation of the CFRP samples used, readers are referred to Chapter 3, Section 

3.3. 
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Table 12 The range of defective/undefective CFRP samples used in this chapter. 

ID Dimensions [mm] Thickness [mm] B-scans total Defective B-scans Use 

1 254.0 × 254.0 2.20 1000 N/A Training 

2 254.0 × 254.0 2.14 1000 N/A Training 

3 254.0 × 254.0 2.75 750 N/A Training 

4 254.0 × 254.0 2.75 1000 N/A Training 

5 254.0 × 254.0 4.25 1000 N/A Validation 

6 254.0 × 254.0 4.25 1000 N/A Training 

7 254.0 × 254.0 6.00 1000 N/A Training 

8 254.0 × 254.0 6.00 1250 N/A Training 

A 254.0 × 254.0 8.60 750 153 Testing 

B 254.0 × 254.0 8.60 1150 239 Testing 

C 780.0 × 197.0 7.50 – 16.0 2070 215 Testing 

5.4 Machine Learning 

Before conducting experiments, a preliminary small grid-based search was performed 

to assess the range of hyperparameters and potential architectures. To ensure 

compatibility between the encoder and decoder, a reflective padding technique was 

applied before passing the B-scans to the model. This adjustment expanded the input 

dimensions [batch size, 61, 1000] to the nearest multiple of 32, allowing for flexibility 

in the input sizes the model could accommodate. 

The full network schematic is presented in  Figure 47. The encoder part of the network 

consists of four convolutional layers, each coupled with a batch normalisation layer 

[142] and a hyperbolic tangent activation function. Convolution was performed with 

square kernels of size 7 and stride of 2, resulting in dimensionality reduction as each 

convolutional layer reduced the input size by a factor of 2. The integration of batch 

normalisation served to mitigate the risk of overfitting, whereas the hyperbolic tangent 

activation function was selected due to its alignment with the amplitude extremities of 

raw B-scan data after normalisation to front wall response, which ranged between -1 

and 1. 

For the decoder architecture, bilinear interpolation upsampling layers with a factor of 

2 were integrated. This upsampling was followed by the inclusion of a convolutional 

layer, configured with a kernel size of 7, a stride of 1, and padding to preserve the 

spatial dimensions of the feature maps. This approach deviates from the utilisation of 
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transpose convolution blocks that are often used. The shift was induced due to the 

periodic artefacts that were observed in reconstructed images. These artefacts are a 

consequence of the overlap inherent in striding transpose convolutions, resulting in 

certain pixels being subjected to multiple passes by the kernel, while others receive 

only one pass. This phenomena has been observed in various works such as [205] and 

[206]. The decision to adopt the upsampling approach, as suggested in [277], has 

proven effective in mitigating artefacts, thus resulting in a clearer reconstruction.  

The training process employed MSE as the chosen loss function, measuring the 

difference between the input and output images. During training, only undefective data 

was used for both training and validation. Measures to avoid overfitting also included 

the use of L2 regularisation in the form of weight decay which was set at 0.0001. For 

all trained models, ADAM optimiser was used [140], with β  and β  values of 0.  and 

0.999 respectively. To determine the length of training, early stopping with patience 

of 10 epochs was used on calculated MSE losses on the validation dataset. Lastly, a 

batch size of 64 individual B-scans was used, with a learning rate of 0.0005. 

During inference, each B-scan is passed through the trained autoencoder, and the pixel-

wise MSE is calculated between the input and its reconstruction. Elevated 

reconstruction error indicates a deviation from normal (undefective) patterns, and this 

error is used to detect potential defects. In this chapter, no specific thresholding is 

applied to the reconstruction error, and performance is evaluated using ROC curves. 

Thresholding strategies are introduced and discussed later in Chapter 6 Section 6.6.1. 

MSE was selected as the loss and evaluation metric primarily due to its simplicity and 

stable performance during training. While MSE can be sensitive to outliers and may 

not optimally emphasise small, localised anomalies, it provided a consistent global 

reconstruction measure across entire B-scans. Alternative loss functions such as 

SmoothL1 (a combination of MSE and MAE) were considered; however, it requires 

setting a transition threshold prior to training, which introduces additional tuning 

complexity. Mean Absolute Error (MAE) could also be used during inference, as both 

MSE and MAE would rank B-scans similarly based on reconstruction quality. 

For this study, MSE was deemed sufficient given the objective was to flag anomalous 

B-scans rather than detect precise defect boundaries, and inference was performed over 
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full scan datasets. Importantly, since the task involves comparing input to 

reconstruction, multiple metrics could be adapted during inference without retraining 

the model. More localised or patch-wise comparison strategies could enhance 

sensitivity to subtle features and are highlighted as a potential avenue for future 

research. 

All models were trained and tested using the desktop PC described in section 3.4. Full 

network architecture is presented in Figure 47.  

  

Figure 47 Autoencoder architecture used in this study, with details for encoder and decoder blocks. 

There are several reasons why a custom autoencoder was developed. Currently, there 

are no publicly available AE models with pretrained weights specifically tailored for 

UT NDE data. While it is theoretically possible to adapt general-purpose AEs or 

variants designed for other domains, these models would require substantial 

architectural modifications to accommodate the extreme aspect ratio of B-scans and 

the normalised amplitude range used in this work (−  to  ). For instance, GANomaly 

uses five convolutional layers in its encoder, which would reduce the input dimensions 

by an aggressive factor of 256, which may disregard smaller structural details in the 

data. Additionally, the bounded nature of input data does not align well with the use 

of unbounded activation functions in GANomaly (LeakyReLU and ReLU). 

An additional avenue for exploration involves analysing the latent space 

representations learned by the AE. While the current approach focuses solely on 
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reconstruction error for anomaly detection, the latent embeddings may contain 

information that could be leveraged to enhance defect classification and/or clustering. 

For example, applying dimensionality reduction techniques such as PCA or Uniform 

Manifold Approximation and Projection for Dimension Reduction (UMAP) [278] 

could help visualise and cluster B-scans, potentially revealing separable patterns 

between normal and anomalous data (or even between different defect types). 

Furthermore, with some labelled data, it may be possible to fine-tune or constrain the 

latent space to support supervised classification, thereby creating a hybrid approach 

that combines anomaly detection with defect type discrimination. Several studies have 

explored such strategies. For example, in [279], an AE is combined with a 

representation network designed to encourage a more meaningful and structured latent 

space to support downstream classification/clustering tasks. Study detailed in [280] 

uses AE latent space representation for classification of cancer types, while [281] uses 

both reconstruction loss and classification losses on the latent space for improved 

performance in metabolomic analysis. These directions were not pursued in the present 

study but offer promising opportunities for future work. 

A key benefit of the outlined unsupervised method outlined is its lack of reliance on 

positive examples of defects during training. Evaluating B-scans against an expected 

defect-free reconstructing loss turns defect detection from a positive classification 

problem to an outlier identification/anomaly detection problem. While this method is 

unsuitable for defect classification, its strength lies in its robustness for defect 

detection. This is attributed to its training process, which did not involve the use of 

examples of defects, resulting in increased generalisability. To demonstrate the 

method's effectiveness, testing was conducted on various manufactured defects. While 

naturally occurring defect examples are limited, the generalisability of the method is 

expected to be robust for most defect types if the defect response yields an anomalous 

B-scan. 

5.5 Automatic Gating Method 

Following the data acquisition, prominent geometric patterns of higher amplitude were 

identified in front and back wall responses. The internal structure consists of much 

lower amplitude levels. When such data was used in conjunction with the AEs, it was 
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difficult to distinguish defective and undefective B-scans in the dataset based on 

reconstruction errors, especially for B-scans containing smaller defects (these 

observations are further discussed in sections 0 and 5.8). This complexity arose from 

the fact that defects which occupy small areas of a B-scan, whilst locally producing 

large MSE around the defect, would often be lost in the global reconstruction error 

which considers differences from all individual pixels. Similar observations were 

reported in [181] where authors have developed a VAE that provides good defect 

detection when encountering large defects, while sometimes failing to reconstruct 

undefective images or identify smaller defects. Furthermore, the authors state that 

geometrical signals usually have large reconstruction errors which in turn cause false 

positive indications. An approach that provided the solution to this was presented in 

[264], where constant geometry of the scanned specimens allowed researchers to 

effectively apply gating of the captured ultrasonic signals to remove the front and back 

wall indications, thereby reducing the complexity of the data. An example of the 

undefective/pristine B-scan and the defective B-scan are presented in Figure 13. 

Although manual gating was possible, an automated gating setup would be beneficial 

as a range of samples of various thicknesses was used to generate training and 

validation datasets. In the aerospace industry, CFRPs are used for critical components 

such as fuselage, wing covers, spoilers, and stabilisers and they are manufactured in 

various geometries and material thicknesses to serve the functional purpose and meet 

the required performance criteria for different components. For instance, CFRPs are 

used for wing components with thickness variation, having thinner measurements 

towards the wingtip and thicker measurements near the root of the wing. For this 

specific application, thicknesses of around 24 mm are used [282] with wing spars 

reaching thicknesses of 40 mm or more [283]. An example of a complex geometry 

wing cover with stringers is illustrated in Figure 48. 
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Figure 48 CFRP wing cover component with complex geometry and varying thickness. 

To this end, an automated gating approach that leverages the DBSCAN algorithm 

[284] was introduced. DBSCAN is a robust unsupervised ML clustering algorithm, 

characterised by two adjustable parameters: ε, which defines the maximum distance 

between a pair of data points for them to be considered neighbours, and 

minimum_points, a parameter specifying the minimum count of neighbouring data 

points necessary to form a distinct cluster. The proposed workflow is initiated by the 

definition of minimum amplitude threshold and minimum distance between the peaks 

used in the peak-finding algorithm. The utilisation of the peak finding algorithm was 

crucial to induce dimensionality reduction as clustering of the raw data is impractical 

due to the large number of data points, which results in poor outcomes. For this 

method, a full 3D data set was Hilbert transformed and processed at once. The 

minimum threshold amplitude used in peak finding was defined in Eq.27: 

 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =  𝑅𝑀𝑆(𝑛𝑜𝑖𝑠𝑒) ∗ 𝛼 Eq.27 

Where α signifies the scaling factor that adjusts the threshold in relation to the Root 

Mean Square (RMS) of the noise level. Next, the minimum peak distance is 

mathematically presented with Eq.28: 

 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑒𝑎𝑘 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

𝑓𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔
∗ 𝛽 Eq.28 

Where fsampling and foperating correspond to the sampling and operating frequency of the 

ultrasonic setup, respectively. The quotient of these values represents the wave packet, 

which is scaled by a tuneable parameter β. The rationale underlying this formulation 

is to decrease the overall number of identified peaks. This strategy is useful to produce 

a separation between the identified peaks in the front wall and subsequent peaks 

produced by stronger subsurface reverberations. An example of such separation 



138 

 

between the clusters is presented in Figure 49, where front wall peaks are coloured in 

blue while subsurface reverberations are indicated in red.  

 

Figure 49 Example of the automatic gating progress; Hilbert processed 3D data (left), DBSCAN 

formed clusters (right) 

The specified parameters were implemented in the peak finding algorithm sourced 

from the Python Library SciPy [252], which was used as a form of dimensionality 

reduction. Specifically, the algorithm identifies local maxima in a 1D signal by 

evaluating each data point against its neighbours within a defined window and 

applying threshold criteria for height, prominence, and distance. This allowed the most 

relevant signal peaks to be retained, effectively compressing the input representation. 

The resulting peak coordinates were then used as input to the DBSCAN clustering 

model. For flat samples, the two largest identified clusters corresponding to the front 

and back walls were chosen for the automatic gating process. However, in cases where 

samples exhibited complex stepped geometries, an additional user input variable n was 

introduced, representing the anticipated number of steps within the sample. This 

variable was used to extract produced indices of n number of clusters, starting with the 

one with the most points. 

In both scenarios, a loss of back wall response might occur due to the presence of 

reflective defects, which in turn could result in no detections from the peak finding 

algorithm in the back wall areas. Therefore, clusters that belong to the back wall were 

checked for such occurrences and interpolated, similar to the work presented in [271]. 

To finish the process, the identified clusters generated indices indicative of areas for 
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exclusion during the gating process. This outcome yielded a scan focused exclusively 

on the internal portion of the material. 

In experiments, a range of parameter values were tested to determine the optimal ones 

for the dataset used in the study. These parameters are listed in Table 13. Parameter α 

showed the largest influence on the overall results discovering that for thinner CFRP 

samples, all tested α values yielded satisfactory results. However, this was not true for 

the thicker samples, as higher α values generated a much higher threshold for peak 

detection and the back wall was not identified correctly. This was attributed to the high 

attenuation of CFRP materials (around 1.5 dB/mm), causing significant amplitude loss 

over longer acoustic paths. For β, higher values led to better separation between the 

front wall and subsurface reflections. For DBSCAN, smaller ε values produced better 

results, while higher values sometimes resulted in the unwanted merging of distinctive 

clusters. The minimum_points parameter had very little to no impact on the overall 

performance. 

Table 13 Tuneable parameters in the automatic gating process 

Parameters Used in Tested values Selected value Influence 

α Peak finding algorithm 3 – 10 4 High 

β Peak finding algorithm 1.5 – 6 6 Medium 

ε DBSCAN 7 – 12 7 Medium 

minimum_points DBSCAN 3 – 10 3 Low 

 

This process offers a twofold advantage. Firstly, it serves as a valuable component 

within the NDE inspection workflow, facilitating the automated generation of C-scans 

by excluding the front and backwall echoes. Secondly, the process contributes to a 

reduction in data complexity in the interest of the anomaly detection process, focusing 

exclusively on the material's internal structure. This enhances the effectiveness of 

subsequent approaches in detecting defects with greater ease and accuracy. A step-by-

step explanation of the automated gating workflow is provided below.  
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Automated Gating Workflow: 

1. The full 3D ultrasonic dataset is Hilbert-transformed to extract the envelope of 

the signal. 

2. Peak Detection (Dimensionality Reduction): 

a. A peak-finding algorithm is used to identify local maxima in each A-

scan. 

b. Thresholds for amplitude and distance between peaks are used to 

reduce the number of candidate points. 

3. Clustering of Peaks: 

a. The resulting peak coordinates are clustered using the DBSCAN 

algorithm. 

b. For flat samples, the two largest clusters (front wall and back wall) are 

automatically selected. 

c. For stepped/complex samples, a user-defined parameter n is used to 

extract n clusters corresponding to wall reflections at different 

thicknesses. 

d. Alternatively, for curved or irregularly shaped samples, n can be 

replaced with an area threshold, allowing more flexible identification 

of wall-related peaks. 

4. Handling Missing Back Walls: 

a. If the back wall is not detected (e.g. due to high attenuation or strong 

reflection from a defect), the corresponding cluster is interpolated. 

5. Apply Gating: 

a. Identified front and back wall indices are used to mask out the 

geometry-related signals, leaving only the internal structure for 

analysis. 

A comparison of a defective ungated and gated B-scan is shown in Figure 50. 
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Figure 50 A comparison of a) Ungated ultrasonic B-scan; and b) Gated ultrasonic B-scan 

5.6 Performance Metrics 

In this study, a set of performance metrics to evaluate trained models were considered. 

Among these metrics, the False Positive Rate (FPR) and True Positive Rate (TPR) 

were used for assessing the accuracy of binary classification tasks and are given in 

Eq.29 and Eq.30 : 

 
𝐹𝑃𝑅 =  

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)
 Eq.29 

 

 
𝑇𝑃𝑅 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑇𝑁) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)
 Eq.30 

FPR, denotes the ratio of undefective scans incorrectly identified as defective. On the 

other hand, TPR quantifies the rate at which models correctly identify defective B-

scans as such. Together, FPR and TPR form the foundation for constructing the 

Receiver Operating Characteristic (ROC) curve, a graphical representation for binary 

classification tasks. Mathematically, the coordinates of ROC curve can be presented 

with Eq.31: 

 𝑅𝑂𝐶 𝑐𝑢𝑟𝑣𝑒 =  {(𝐹𝑃𝑅1, 𝑇𝑃𝑅1), (𝐹𝑃𝑅2, 𝑇𝑃𝑅2), … , (𝐹𝑃𝑅𝑛, 𝑇𝑃𝑅𝑛), } Eq.31 

The ROC curve enables the visualisation of the trade-off between TPR and FPR at 

various thresholds. Furthermore, it enables the comparison between the presented 

methods with the AUC metric. AUC condenses the model's overall performance into 

a single scalar value and is given through Eq.32: 

 
𝑅𝑂𝐶 𝐴𝑈𝐶 =  ∫ 𝑅𝑂𝐶 𝐶𝑢𝑟𝑣𝑒(𝐹𝑃𝑅, 𝑇𝑃𝑅)𝑑𝐹𝑃𝑅 Eq.32 
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The performance metrics used in this chapter differ from those used in Chapter 4 due 

to the difference in task formulation. While Chapter 4 evaluated object detection using 

spatial metrics such as IoU and precision-recall curves, this chapter addresses scan-

level anomaly detection, for which ROC curves and AUC are more relevant. 

5.7 Training and Deployment on Simple Geometry Samples 

Training on the gated and ungated datasets yielded consistent inference results across 

repeated runs (meaning the models produced stable evaluation metrics regardless of 

random parameter initialisation). However, this consistency does not imply that the 

gated and ungated datasets performed equally as the models trained on ungated dataset 

consistently demonstrated better absolute performance, as detailed below. What varied 

between runs was the number of epochs required for convergence due to the stochastic 

nature of training and random initialisation of weights and biases. To quantify this, ten 

training repetitions on both datasets were conducted. In the case of training on ungated 

datasets, convergence was typically achieved after an average of 118 epochs, with a 

standard deviation of 62 epochs. Similarly, for gated datasets, the training process 

converged on average at 122 epochs, with a standard deviation of 77 epochs. The 

relatively high standard deviation highlights the neural network training's sensitivity 

to the initial weight and bias values. Nonetheless, it is important to note that while the 

random initialisation may impact the time taken for convergence, the performance of 

the models after convergence was not influenced, showing good convergence to a 

global minimum. An example of training convergence for both datasets is presented 

in Figure 51. 

  

Figure 51 Training and validation losses for ungated and gated datasets. 
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When assessing the ungated data reconstruction losses for samples A and B during the 

inference, several observations were noted. For sample A, both defective and 

undefective B-scans were reconstructed with comparable reconstruction loss levels, 

giving rise to interpretation difficulty as the separation between data was not 

discernible. For sample B, slightly improved outcomes were observed as spikes in 

reconstruction losses for shallow defects, such as the 3.0, 4.0, 6.0, 7.0-, and 9.0-mm 

diameter defects were identifiable. However, the deeper defects remained undetected 

and were masked with higher reconstruction errors of undefective B-scans. ROC AUC 

scores of 0.763 and 0.863 were achieved for samples A and B, respectively. From an 

NDE application viewpoint, this performance would be deemed unsatisfactory as 

important defects would remain undetected. The reason for the poor performance was 

that the reconstruction error associated with the front wall and back wall echoes 

outweighed the error corresponding to the acoustic responses of defects in the internal 

part of the material. Reconstruction losses for ungated samples A and B are presented 

in Figure 52. 
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Figure 52 Reconstruction losses and side view schematics for sample A (top) and for sample B 

(bottom) for the ungated dataset. 

When using gated datasets during training, as suggested by the results presented in 

Figure 53, major detection improvements were observed. In both samples, all 6.0, 7.0, 

and 9-mm diameter defects produced evident spikes in the reconstruction loss making 

them easily identifiable. Two 4.0 mm diameter defects located close to the front wall 

also produced elevated reconstruction error values, but three deeper defects produced 

very small deviations from the undefective B-scans. Lastly, 3.0 mm diameter defects 

produced the smallest reconstruction losses, with three defects closest to the surface 

producing small but visible spikes. The last two 3.0 mm diameter defects in both 

samples were not identified. ROC AUC scores were improved, with 0.920 and 0.922 

for samples A and B respectively as compared to the ungated data, indicating a clear 

improvement. ROC curves are presented in Figure 54. 
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Figure 53 Reconstruction losses and side view schematics for sample A (top) and for sample B 

(bottom) for gated dataset. 
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Figure 54 Receiver Operating Characteristic curve for samples A and B 

For industrial application, the typical practice would involve establishing a threshold 

to distinguish between defective and undefective samples. This approach is flexible 

and can be adjusted based on the specific requirements of the industry. For example, 

in NDE of critical components where defect detection is imperative, the threshold may 

be set more conservatively, even if it allows for some false positive indications. A 

threshold can be defined using several strategies depending on operational 

requirements and the available data. One method involves tuning the threshold using 

a separate validation dataset, aiming to minimise false negatives while maintaining 

acceptable false positive rates, and then applying the selected threshold during testing. 

Alternatively, statistical techniques can be applied, for example by selecting a 

threshold based on a specific quantile (e.g. 99th percentile) of the reconstruction error, 

similar to the statistical thresholding approach discussed in Chapter 4. Another 

practical method involves computing the median reconstruction error across a scan and 

defining the threshold as the median plus a fixed percentage margin (e.g. 20 - 30%) to 

account for natural variation in defect-free B-scans. An example of such a threshold-

based approach is demonstrated in Chapter 6. However, more advanced strategies 

involving localised analysis of reconstruction errors remain outside the scope of this 

work and are left for future research. While global metrics like MSE offer stable 

performance and consistent scoring across B-scans, they may overlook small, localised 

anomalies. Implementing a patch-wise evaluation could improve sensitivity to subtle 

defects, but would also introduce new challenges such as handling sparse data, as 

discussed in section 5.4. 
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5.8 Uncertainties Associated with the Repeatability of Ultrasonic Scans 

When employing gated datasets, two distinctive characteristics were observed within 

the reconstruction losses. First, sudden, and large spikes in the reconstruction loss, 

have already been discussed as they pertain to defects. The second feature is the 

underlying reconstruction value of undefective B-scans, which tends to average around 

specific values with minimal variances. This was expected since undefective B-scans 

do not contain features that were not observed during training; therefore, these are 

reconstructed well with consistency. However, upon further analysis, it was found that 

the scan-to-scan error level for undefective scans is varied. There are two main reasons 

for this, the inference of the data that falls outside the distribution of observed training 

data, and mathematical implications due to the loss function. The former is represented 

by several factors: 

• Sample finish quality: The training dataset contains high-quality scans 

performed on the samples with a similar surface finish. While some variance 

in surface finish is covered in the training data, significant deviations during 

testing can have a substantial impact on reconstruction errors. 

• Material anisotropy: CFRPs have complex, anisotropic structures that can 

interact unpredictably with UT. Therefore, test samples may feature different 

macro and microscale properties not observed in the training data. 

• Variability within the equipment: An inherent variance between the 

performance of individual array elements is present, as arrays are manufactured 

to operate within certain tolerances to pass the quality assessment by the 

manufacturer. 

• Variance in coupling: Performed scans vary from each other due to changes 

in coupling conditions during scans. While the process is automated, the 

coupling dynamics during the scanning are unpredictable due to the manual 

application and contribute to fluctuations in reconstruction errors across 

different scans. This has a significant impact on the energy transfer which is 

discussed in the later example. 

Mathematical variances are exhibited due to: 
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• Type of reconstruction loss: The chosen MSE loss calculates a summation of 

differences between all pixels. As a result, areas with higher amplitudes exhibit 

larger absolute errors compared to areas with lower amplitudes. This 

relationship is directly linked to coupling variance, as it is a significant factor 

in energy transfer during the scanning process.  

• Sample thickness: Scans of thicker samples result in larger B-scans in terms 

of time samples, leading to greater reconstruction error. With a larger number 

of data points to be reconstructed, the likelihood of errors occurring in the 

reconstructed image increases. Consequently, the global sum of errors in 

thicker samples tends to be larger. 

All the aforementioned occurrences lead to challenges in the repeatability of PAUT 

scans which in turn influences the performance of ML models. When the input data 

varies in quality, the model may misinterpret acquisition-related artefacts as structural 

anomalies or overlook genuine defects in poor-quality scans. This is especially 

problematic in unsupervised settings, where no ground truth is available to guide the 

learning process. As such, maintaining stable and repeatable scanning conditions 

becomes critical for human data interpretation and for the developed ML model.  

In the experiments, coupling inconsistency exhibited the highest influence on the 

reconstruction errors. As the roller-probe tyre moves over the sample surface under a 

fixed contact force, it pushes out the water film which can cause inconsistencies in the 

coupling. The tyre’s surface is slightly roughened by the manufacturer to retain water; 

however, this can sometimes lead to uneven wetting and improper coupling which 

would impede the path of the ultrasound beam. Such variations become apparent if an 

amplitude C-scan of the front wall is created, as displayed in Figure 55, where brighter 

areas indicate portions of the scan where higher amplitudes were recorded, compared 

to dimmer/darker areas of lower amplitudes corresponding to good and poor coupling, 

respectively. In the same figure, an example where the coupling between the PAUT 

and the sample was inconsistent is shown, where inconsistency creates a large variance 

in the reconstruction errors when it comes to undefective B-scans. The underlying 

reason for this issue was the excessive application of couplant onto the sample. In this 

specific scenario, reconstruction losses of certain undefective B-scans exceed the 
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reconstruction losses of defective responses, which negatively influences the final 

performance of the deployed model. While this behaviour is detrimental to defect 

detection accuracy in the current application, it also presents a valuable opportunity. 

Excessive and inconsistent reconstruction errors may indicate poor scan quality rather 

than structural anomalies. Such elevated errors could be symptomatic of acquisition 

issues such as poor coupling (e.g., dry spots), misalignment of the probe with the 

material surface, or inconsistent contact pressure. If the AE was deployed in real-time 

during data acquisition, it could serve as a quality assurance mechanism. Unusually 

high reconstruction errors could trigger alerts, prompting the operator to repeat the 

affected segment of the scan. This proactive feedback loop could be used as a tool to 

maintain consistent scan quality and is left for further research. 

  

Figure 55 Amplitude C-scan comparison of scans with good and poor coupling (left) and resulting 

reconstruction loss from the scan with inconsistent coupling (right) 

5.9 Uncertainties Associated with Human Annotations. 

The process of labelling the test datasets involved three operators (PhD students and 

postdoctoral researchers with expertise in UT NDE) who were presented with 

visualised B-scans accompanied by corresponding scan indexes (positions where the 

B-scans were acquired). As each defect has breadth and depth parallel to the inspection 

surface, it can provide indications captured across consecutive B-scan frames. 

Therefore, the operators were tasked with identifying and marking the beginning and 

concluding indexes at which defects were believed to appear within the dataset. 

However, this task proved to be quite challenging, as the achievement of consensus 

among the operators was infrequent. Notably, disparities in the identified starting and 

ending indexes exhibited variances of up to 3 indexes. This discrepancy carries 

significant implications, as frames were captured at a robotic displacement of 0.8 mm. 
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The underlying cause for this challenge stemmed from the operators’ approach, as they 

relied on observing sequences of B-scans to pinpoint defects. By navigating back and 

forth within these sequences, they searched to identify the precise starting and ending 

points of defects. This deviation from the way the AE model processes B-scans 

introduces a discrepancy, as the model doesn't operate sequentially or retrospectively 

review datasets to arrive at conclusions. To address this, future work could incorporate 

architectural changes that explicitly model sequence and context. One possible 

direction is the use of sliding windows of consecutive B-scans (such as the sequence 

approach proposed in [177]) to provide the model with immediate contextual 

information. Alternatively, sequential models such as LSTM architectures could be 

explored to capture longer-range dependencies across scan data. These approaches are 

well-suited to mimicking the way human operators evaluate defects over multiple 

frames and are therefore recommended for future research. An example of B-scan 

sequence where the individual defect is observable over several instances and a 

corresponding C-scan image with ground truths generated by operators is shown in 

Figure 56. 

  

Figure 56 A sequence of B-scans with an observable defect (left) and a C-scan of the same defect with 

marked labels from each operator (right) 

Given the lack of consensus for most defects, a pragmatic approach was adopted: 

labels from all observers were averaged, resulting in a composite ground truth. 

Outlined uncertainties associated with the labelling process, result in several 

observations. Firstly, it validates the significance of developing a robust automated 

approach for defect detection in the context of NDE, as ground truth was challenging 

to produce since the process heavily relied on the manual human interpretation of data. 

Secondly, it directly influences the reported performance of the deployed model (while 
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data and model remain unchanged) as ROC AUC varies up to 10.2% between different 

operators. To shed light on how the network’s reported performance would be 

impacted by the labelling discrepancies of different operators, the ROC curves 

constructed by using different ground truths are presented in Figure 57. 

 

Figure 57 ROC Comparison with respect to ground truth produced by different operators. 

The challenges in achieving consensus among operators reflect real-world practice. In 

many industrial settings, multiple NDE operators independently examine the same 

data without direct communication, and their findings are cross validated with any 

discrepancies investigated further. Such disagreements are therefore expected. 

Increasing the number of operators is impractical due to resource constraints and the 

specialised training required. As a result, developing automated or semi-automated 

solutions that support operators is a promising approach, with some industry initiatives 
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reportedly combining AI models with human expertise, though specific details are not 

publicly available. 

5.10 Deployment on Complex Geometry Sample 

To evaluate the automated gating method and the developed AE model, an additional 

testing dataset was created from sample C. The range of defects positioned close to the 

front wall, in the middle of the sample, and near the back wall serves as a challenging 

example to scrutinize the performance of the model. Furthermore, as the sample is 

stepped, it demonstrates the ability of the automated gating process to cope with 

sudden changes in the geometry. The sample’s geometry and the output from the 

gating process are presented in Figure 58. 

 

 

Figure 58 Schematic of sample C (left), DBSCAN output for automated gating (top right), and side 

view of the sample (bottom right). 

After the data acquisition process, it was observed that the scan performed on the 

thickest part of the sample exhibited a visible repetition of the tyre reflection. This 

occurred due to the disparities in velocities of CFRPs (~3000 m/s) and glycol/tyre 

(~1638 m/s), causing the reception of the second tyre reflection before the first back 

wall echo from the thickest composite material section. This ultrasonic indication was 

a limiting factor for the successful extraction of unique clusters during the automated 

gating process. To this end, that part of the scan was excluded in this case study and 

altering of the ultrasonic setup to eliminate such reflections is left for future work. 

Potential solutions to this problem include using a larger roller probe diameter to 
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extend the acoustic path inside the tyre or using an alternative liquid filler material in 

the roller probe with a lower speed of sound. These options were not explored in this 

work, as they would have required the development of a custom probe. Instead, a 

standard off-the-shelf Olympus roller probe (widely used in industry and available 

only in one size) was employed to maintain relevance to current field practice. The 

scan was performed with three robotic passes over the sample with the results 

presented in Figure 59.  

  

 

Figure 59 Reconstruction losses for gated and ungated sample C (top), ROC comparison (bottom left), 

and an example of a challenging defect (bottom right) 

All defects in the first two passes were identified successfully. In the third pass, 

containing defects close to the back wall, two defects in the thickest section were 

missed. These missed defects present a current limitation of the proposed NDE 

workflow and the performance on these types of defects could be improved with a 

better ultrasonic setup and a more in-depth analysis of CFRP attenuation properties 

which in turn would result in a more effective TVG procedure. Furthermore, these 
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defects were challenging to observe both due to their position and low acoustic 

response. An example of such a missed defect is also included in Figure 59. The 

achieved ROC AUC on the gated dataset was 0.879, an improvement from 0.815 when 

the ungated dataset was employed. Overall, this case study presents a practical 

application with a realistic scan conducted on a complex geometry sample. The 

model's deployment results in fast inference, processing 2070 samples in 1.26 ± 0.09 

seconds on a GPU-accelerated machine. 

The rapid inference achieved can be attributed to the model’s lightweight architecture. 

To further enhance inference times, exploring serialisation and saving models in 

environments better suited for production deployments, such as Open Neural Network 

Exchange or similar formats, rather than running them directly from Python scripts, 

could contribute to additional improvements in efficiency; however, this is outside the 

scope of this work. 

5.11 Conclusions, Limitations, and Future Work 

In this chapter, a two-stage defect detection method based on automated gating and 

unsupervised ML model was developed for analysing ultrasonic B-scans images of 

CFRP components. Unlike the past efforts at automated gating, the proposed method 

is agnostic to the geometry of the scanned sample, resolving limitations and heavy 

reliance on currently available methods on operators’ fine-tuning. For this stage, 

unsupervised clustering through the DBSCAN algorithm was employed to isolate the 

front wall and backwall echoes of the scanned component to prepare the data in a way 

to maximise the model’s performance in the next stage.  

The subsequent stage featured an AE-based model, tasked with processing ultrasonic 

datasets captured using an automated NDE setup that emulates an industrial 

environment. The proposed approach is fully unsupervised removing the need for 

ground truth labelling of the B-scans. This saves expert NDE operators time in 

preparing training datasets while still achieving good detection performance. The 

study yielded several key findings: 

• The AE performance on the ungated data resulted in unsatisfactory results as 

the separation between undefective and defective B-scans in terms of 

reconstruction error was not achieved. 
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• The DBSCAN-based automated gating has proved to be a practical technique, 

effectively extracting front and back wall indications from 3D datasets without 

geometric constraints, making it a strong candidate towards true automation of 

the interpretation process. 

• Implementing the automated gating process significantly increased the 

performance of the AE-based defect detector. The ROC AUC increased from 

76.3% to 92.0%, from 86.3% to 92.2%, and from 81.5% to 87.9% across the 

three different testing datasets. 

• Overall, 36 out of 40 defects produced visible reconstruction error spikes in the 

simple geometry samples, and 22 out of 24 defects in the complex geometry 

sample. Inference on a GPU-accelerated machine was rapid, processing 2070 

B-scans in 1.26 ± 0.09 seconds. 

• The overall performance of AE models was significantly influenced by the 

consistency of conducted scans. This was controlled by the stability of energy 

transmission into the sample, a factor greatly influenced by coupling quality. 

• Uncertainties stemming from variations in producing ground truth had a direct 

impact on the reported results, highlighting the potential advantages associated 

with robust automated systems within the NDE workflow. 

Limitations of this work include missed detections of the smallest defects closest to 

the back wall of the samples. Due to the nature of analysing B-scans, in industrial 

situations, this could extend to missed detection of thin defects oriented parallel to 

ultrasound beam propagation. Furthermore, controlled scans were performed where 

the entirety of the defects were captured within the active aperture of the ultrasonic 

setup. If defects are not fully captured within the active aperture, there is a risk that the 

AE model may fail to flag the B-scan containing the defect as defective. As 

demonstrated in the results section, the model performs better with larger defects. 

When a defect is fragmented across two ultrasonic passes, it effectively gets split into 

smaller pieces. These smaller fragments may not have strong enough features on their 

own to be recognised as defects by the AE model, causing them to be missed. 

Therefore, fragmentation reduces the effective size of the defect seen in each ultrasonic 

pass, increasing the likelihood of false negatives. A potential solution to mitigate the 

risk of defect fragmentation is to apply the AE model multiple times to the same data, 
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simulating a sliding window approach by generating B-scans from the captured data. 

This would reduce the likelihood of defects being fragmented, thereby improving 

detection accuracy. The additional overhead would be minimal in terms of 

computational cost, though it would introduce slightly more complexity in the code 

implementation. Furthermore, while the automated gating method improved the 

overall results of the AE model, by removing the back wall of the scan valuable 

information that pertains to the loss of the back wall is lost, which is often used in the 

analysis performed by an expert NDE operator. 

To improve the AE model, several architectural changes could be implemented and 

tested. For instance, adding another encoder, drawing inspiration from approaches like 

GANomaly, could be beneficial. Alternatively, incorporating and computing feature 

reconstruction errors, as demonstrated in [285], could be another avenue for 

enhancement. 

The next chapter will focus on combining supervised and unsupervised approaches 

detailed in Chapters 4 and 5 to analyse B-scans and amplitude C-scans concurrently, 

aiming to increase the automation level of data analysis in NDE and to mimic the 

human operator workflows. Furthermore, as the academic works focused on the use of 

AI in NDE often lack proposed integration strategies, different scenarios with varying 

levels of data analysis automation will be examined in line with the NDE 4.0 paradigm. 

Lastly, this combined approach will be applied to an industrial CFRP sample (Sample 

E), providing a challenging scenario to evaluate the developed AI-based workflow. 
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Chapter 6: Multi-Model Aggregation Strategies for Data Analysis 

6.1 Chapter Overview 

NDE 4.0 represents the integration of recent advancements in robotics, sensor 

technology, and AI, transforming and automating traditional NDE in line with Industry 

4.0 principles. Despite these advancements, data analysis in NDE is still largely 

performed manually or with traditional rule-based tools such as signal thresholding. 

These tools often struggle to effectively manage complex data patterns or high noise 

levels, leading to unreliable defect detection as examined in Chapter 4. Additionally, 

they require frequent manual adjustments to set appropriate parameters for varying 

inspection conditions, which can be inefficient and error-prone in dynamic or fast-

paced environments.  

In contrast, AI-based analysis tools have demonstrated improvements over traditional 

methods, offering greater accuracy in defect detection and adaptability to higher 

variability within captured signals. However, their adoption in industrial settings 

remains limited due to challenges associated with model trust and their “black box” 

nature. Additionally, practical guidelines for implementing AI tools into NDE 

workflow are rarely discussed, motivating this work to explore various integration 

strategies across different automation levels.  

Three levels of automation are explored, ranging from basic AI-assisted workflows, 

where tools developed in this thesis provide suggestions, to advanced applications 

where multiple AI models simultaneously process data in a comprehensive analysis, 

shifting human operators to a supervisory role. Proposed strategies of AI integration 

into the NDE automation workflow were evaluated on inspection of the two most 

challenging defective CFRP samples C and E. These samples were considered the 

most challenging due to their complex geometries. Sample C featured five distinct 

thickness steps, while Sample E (an aircraft wing cover) included both varying 

thicknesses and integrated stringer sections. These features introduce additional 

reflections and signal variations, making interpretation of the captured UT data more 

complex compared to the uniform-thickness samples examined in this thesis. 
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Unlike manual inspections, which take hours for larger components, the proposed 

approach completes the analysis in 94.03 and 57.01 seconds for the two inspected 

samples, respectively. This performance is directly compared to manual analysis, as 

described in section 6.3. While a comparison to other AI-based methods would be 

more ideal, this remains a challenge in the NDE research due to the lack of publicly 

available datasets and models, unlike the broader ML research field where 

benchmarking and direct comparison is more established (see section 4.12). 

6.2 Contributions 

This chapter introduces a flexible, multi-model framework for UT data analysis based 

on the aggregation of complementary AI models presented in Chapters 4 and 5. Rather 

than relying on a single end-to-end solution, the proposed approach distributes 

decision-making across specialised models, enabling defect detection across multiple 

ultrasonic views (B-scans, C-scans, and full 3D volumes). The methodology was 

validated on two CFRP samples containing 36 embedded defects, acquired using a 

robotic inspection setup. By designing workflows corresponding to varying levels of 

model aggregation, the chapter demonstrates how combining model outputs can 

improve detection reliability, reduce inference times, and support explainability 

through cross-model validation. Furthermore, changes to the experimental setup were 

made to enable deployment of models concurrently during data acquisition. 

Additionally, this work explores the trade-offs between automation, operator 

involvement, and system complexity across different inspection scenarios. It 

introduces an arbitration mechanism using a 3D self-supervised model to resolve 

disagreements between 2D models (AE and Faster R-CNN), effectively enabling 

scalable deployment of more expensive 3D model on lower-powered hardware. The 

chapter also examines the limitations of achieving higher levels of automation and 

discusses how model aggregation may serve as a practical intermediate strategy toward 

building trust and robustness in AI-assisted NDE systems. 

6.3 Introduction 

As mentioned in Chapter 5, current industry NDE practices in the aerospace sector 

begin with automated robotic sensor delivery and data acquisition. This initial stage is 

followed by data preparation, which includes signal processing techniques such as 
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frequency filtering, signal enveloping with the Hilbert transform [72], and signal 

gating. Next, NDE inspectors review segments of the C-scans, and if indications 

exceeding industry guidelines for allowable defect size or amplitude threshold are 

identified, the corresponding B-scans are further examined. Lastly, areas of interest 

are extracted for quality certification report creation. Automated robotic data 

acquisition for components like wing covers of midsize civil aircraft models typically 

takes around 40 minutes, with data analysis requiring a similar amount of time for 

pristine components. However, this step may be extended by an additional hour or 

more if artefacts and defects are detected. This additional time is allocated for further 

inspection of different views of the data, primarily individual B-scans around areas of 

interest, and the report generation process. The overall workflow is illustrated in Figure 

60. 

     

Figure 60 Standard NDE workflow in the aerospace sector. 

Apart from defect detection, defect sizing is another critical step in the data analysis 

workflow. Current industrial guidelines for NDE inspection describe allowable defect 

sizes based on their type and location on the aircraft. For instance, in the case of 

delaminations, the largest allowable flaw area that would not be categorised as a defect 

range from 60 to 500 mm², depending on the specific location on the aircraft. 

Traditionally, defect sizing is achieved using the 6 dB drop method, where an operator 

manually moves the probe to find the maximum amplitude and then determines the 

defect boundaries by identifying points where the amplitude drops by 6 dB (i.e., to half 

of the maximum amplitude). This method allows for fine-tuned probe positioning, 

making it highly dependent on operator skill. A similar approach can be applied to 

automated PAUT testing. However, instead of manual movement, the PAUT array is 

manipulated using industrial robotics, significantly improving repeatability, precision, 

and scanning speed. Despite these advantages, the resolution for defect sizing is 

constrained by the fixed pitch between individual transducers and the predefined scan 

step.  

Automated 
robotic data 
acquisition

Data 
preprocessing

Data analysis
Quality report 

generation
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Following detection and sizing, operators are tasked with categorising defects based 

on their physical properties, which are inferred from ultrasonic signal features. This 

classification step is critical in distinguishing between common defect types in CFRPs 

such as delaminations, porosities, and foreign object inclusions, each of which exhibits 

distinct patterns in ultrasonic data. This manual process is not only time-consuming 

and labour-intensive but also prone to inconsistencies as different operators may 

interpret the same dataset differently. The variability in human judgment introduces 

additional challenges in reproducibility and makes a fair assessment of performance 

difficult. The reliance on contextual judgment, global understanding of data, and 

external knowledge about the inspected components further highlights the complexity 

of the operator’s role. 

The above-mentioned tasks and workflow highlight the potential of automation in 

NDE data analysis, particularly in the aerospace industry, where large volumes of data 

are routinely handled. While data acquisition is predominantly automated, the 

subsequent stages of data analysis, defect identification, sizing, and classification, 

remain heavily reliant on NDE operators. In certain scenarios, basic automation tools 

can be used to analyse stable and well-defined signals. In [240], the authors introduce 

tools to assist with thickness measurements, detection of delaminations in areas with 

varying thickness, and evaluation of porosity content. These tools require human 

interaction to narrow down areas of interest and provide some input parameters, 

resulting in a reduction of analysis time by 70%. Another approach is presented in 

[271], where data analysis is based on a multi-step algorithm. However, for complex 

signals heavily influenced by geometrical features of components, overlapping 

ultrasonic echoes, or external factors such as poor scan quality, the use of advanced 

solutions is needed [22].  

It has been demonstrated that AI models are capable of outperforming humans in 

certain tasks. The study detailed in [286] explored the capability of NDE inspectors to 

distinguish between real UT data and data created by generative AI models. The study 

concluded that artificial data is indistinguishable from real data, making it an ideal 

candidate for training future inspectors and for supplementation of training datasets 

for alternative AI models. In [21], the authors compared the defect detection 

performance of an AI model with that of three NDE operators. The results showed that 
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human operators made a larger number of false calls, while the AI correctly identified 

all defects present in the data. This trend extends to other fields as well. In [32], the 

researchers demonstrated that an AI model designed for analysis and diagnosis of 

three-dimensional optical coherence tomography data matches or exceeds the accuracy 

of medical professionals with years of experience. Similarly, the researchers in [287] 

leveraged an ensemble of AI models to outperform human experts in medical diagnosis 

based on medical sonography. Despite the highlighted advancements in AI models, 

data analysis in industry remains predominantly manual, with limited adoption of new 

AI-based automation tools. Two key reasons for this are a lack of trust in the models, 

which includes concerns from both industry users and regulators, particularly in safety-

critical processes [288], and the “black box” nature of AI, where the reasoning behind 

decisions is obscured. This lack of transparency leads to greater risks in evaluating 

safety-critical components, as inaccurate predictions from an automated system could 

result in unpredicted catastrophic in-service failures. Therefore, while these studies 

confirm the potential of incorporating new AI tools into NDE workflows, advancing 

to higher automation levels will depend on building trust in these systems. 

Definitions of automation levels vary across fields and applications [289]. In the 

context of NDE, the authors of [22] propose a taxonomy for the entire NDE process, 

categorising it into Classical NDE (Level 0), Operator assistance (Level 1), Partial 

automation (Level 2), Operational automation (Level 3), and Full automation (Level 

4). In recent years, there has been a notable shift towards adopting automated solutions 

in NDE workflows, leveraging advancements in robotics, AI, and other technologies, 

recognised as NDE 4.0 [20], [22]. This transition aims to redefine the roles of human 

NDE operators, transitioning them to more supervisory positions where they oversee 

and address specific parts of the process, while automated systems manage the bulk of 

repetitive tasks. The overarching objective is to enhance efficiency while improving 

the precision and repeatability of the overall NDE workflow.  

However, this evolution introduces several challenges. First, the increased complexity 

of automated systems can make troubleshooting and maintenance more difficult, as 

operators may need to develop new skills to manage these systems effectively. At the 

same time, the mental workload on staff is likely to increase [20]. Additionally, there 

is a risk of inappropriate reliance on automation, where tasks requiring human 
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judgment are delegated to machines, potentially leading to errors or oversights. A 

study detailed in [288] assigned NDE operators detection and sizing tasks using 

automated tools and found significant levels of both disuse (operators disagreeing with 

the automation when it is correct) and misuse (operators agreeing with the automation 

when it is incorrect). To address this, the authors recommend incorporating discussions 

on the limitations of automation tools into the training of new personnel. Furthermore, 

by providing reasons behind potential automation failures, operators can develop a 

more informed and appropriate approach to using these tools, while also building trust 

through direct experience with the technology. In the context of automation, the term 

“human-in-the-loop” refers to systems where human operators remain actively 

involved in decision-making processes, while “out-of-the-loop” refers to systems 

where automation takes over tasks with no direct human involvement. Over-reliance 

on fully automated systems can result in out-of-the-loop performance degradation, 

where operators lose the ability to identify system errors and perform tasks manually. 

Studies, such as [290], have highlighted that operators relying on automation tools 

have diminished manual task performance compared to those who perform tasks 

without automation. To address these issues, it is suggested that humans maintain a 

high level of control through periodic interventions, which can help minimise system 

failure rates [291]. 

Trust can be defined as subjective anticipation of future behaviour [292], often based 

on reported performance metrics on a subset of data used in the study. This approach 

shapes the human perception of trust, which is more effectively demonstrated through 

direct interaction with the model and observation of its decisions [293]. Some 

implementations leverage the human-in-the-loop method to enhance trust, where the 

human operator oversees and supervises decisions made by the AI, facilitating 

continuous improvement of the existing models. Such an approach was explored in 

[294] where humans collaborated with AI models to build trust and enhance accuracy. 

This was achieved by identifying anomalous instances of data, labelling them, and 

incorporating them into subsequent iterations of model development. Additionally, 

allowing the human operator to question and have control over AI predictions is 

another way to build trust in probabilistic models [295]. An alternative approach is to 

adopt explainable and interpretable AI [296]. Examples of explainable AI include 
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Shapley Additive Explanations (SHAP), which quantifies feature contributions to 

predictions by assigning each input feature an importance value based on its 

contribution to the model output [297]. Another example is Gradient-weighted Class 

Activation Mapping (Grad-CAM) [298], which visualises the feature heatmaps from 

CNN layers to highlight regions that influenced the model’s decision the most. 

However, these strategies are rarely explored in the field of NDE, with the most 

notable works being [201], where the authors used a novel dimensionality reduction 

method to strengthen the explainability of the AI model used for the sizing of defects 

from UT data, and [202] which used Grad-CAM to demonstrate that the CNN learned 

similar important features when trained on real, GAN-generated, and other simulated 

data for defect detection. 

While there is a clear need to increase automation in data analysis, and some progress 

has been made with traditional methods that offer significant time savings [240] [271], 

guidelines for the practical implementation of AI tools in NDE are often lacking. 

Moreover, existing research on the adoption of AI methods for analysing UT data tends 

to focus on a single ultrasonic view (refer to Sections 2.5, 2.6, and 2.7). This approach 

does not accurately reflect how human inspectors conduct NDE, as they utilise 

multiple views to form conclusions about the inspected material. Relying on only one 

view can also overlook the strengths of other ultrasonic views, which may be better 

suited for inspecting varied locations, and detecting different types of defects or 

features. To address these gaps, this chapter focuses on: 

• Proposal and discussion of automation levels in data analysis, ranging from 

operator assistance level (Level 1) to full automation (Level 4), with a focus 

on integration strategies to minimise the risk of critical system failures. 

• Development of a comprehensive PAUT data analysis workflow utilising 

three distinct AI models that analyse B-scan views, C-scan views, and full 3D 

volumetric data in a coordinated manner. 

• Presenting a case study involving an automated robotic inspection system for 

PAUT of CFRP materials used in the aerospace industry. This case study 

examines two reference industrial samples with complex geometry using an 
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experimental setup that closely mimics industrial practices and employs 

industrial manipulators for accurate and precise measurements. 

6.4 Data Analysis: Levels of Automation  

6.4.1 Level 0: Classical NDE 

Taking inspiration from the automation levels defined for the entire NDE process 

defined in [22], Figure 61 illustrates the proposed automation levels for data analysis. 

Data analysis at level 0 of automation corresponds to classical NDE, where the 

operator manually examines all data, performs preprocessing tasks, and makes 

decisions independently. This manual approach, although still widely used due to the 

historical industrial approach in training operators and reliance on individual decision-

making, relies heavily on the operator's NDE expertise and judgment. While offering 

high traceability and explainability, it also results in longer data analysis times, higher 

operator workload, and increased likelihood of human-induced errors, particularly 

during prolonged repetitive tasks [20]. 

 

Figure 61 Proposed data analysis workflows for different levels of automation. 
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6.4.2 Level 1: Operator Assistance 

At Level 1, operator-assisted data analysis, the human operator retains responsibility 

for all decisions and tasks. AI models assist by providing suggestions and highlighting 

areas of interest, but the final decision regarding the presence/absence of defects 

(sentencing) remains with the operator. However, the risk of failure at this level of 

automation is higher than at Level 0, primarily due to the potential for inappropriate 

reliance on automation, which could lead to misuse or disuse of the AI tools. 

Therefore, this level requires moderate trust in the AI models, which are expected to 

generate suggestions while focusing on minimising false negative (failing to detect an 

actual defect) calls to accelerate the analysis process. When used correctly, operator-

assisted automation is ideal for gaining insights into scenarios where AI models may 

underperform without compromising the quality of the final NDE inspection. 

Additionally, this approach allows for continuous improvement by using those 

findings in future model re-training. Lastly, allowing operators to interact with the 

models, fine-tune inference parameters, and observe outputs during deployment could 

help build trust over time, as suggested in [293]. However, it is important to note that, 

as AI technologies are not yet widely implemented in the industry, NDE operators 

have not been trained in refining or adjusting AI tools. Therefore, additional training 

would be necessary for operators to confidently undertake this task. 

6.4.3 Level 2: Partial Automation 

Partial automation of NDE data analysis at Level 2 relies on a combined system of 

single- or multi-model processing with human-in-the-loop decision-making. For 

single-model setup, predictions with confidence scores above a set threshold are 

accepted automatically, while lower-confidence predictions are passed to a human-in-

the-loop mechanism for further review. On the other hand, multi-model configuration 

involves two AI models collaborating to identify areas with potential defect 

indications, automatically accepting them if their decisions coincide, and activating 

human-in-the-loop decision-making to resolve any disagreements. This approach 

accelerates data analysis by focusing human intervention solely on resolving model 

discrepancies rather than manually processing all data.  
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The prerequisite for this level of automation is a high trust in the models to identify all 

defective areas while tolerating some false positives. False positives are managed 

through two mechanisms: first, by cross-verifying outputs between two detection 

models, which are unlikely to produce identical false positives, and second, by 

engaging human-in-the-loop decisions when models disagree. Overall, Level 2 of 

automation is characterised by faster data analysis and reduced human workload, albeit 

at the expense of higher system complexity and an elevated risk of failure. To prevent 

human-out-of-the-loop performance degradation, operators retain the ability to 

intervene and take control at any time. They can audit AI decisions and examine 

intermediate outputs from each stage, thereby improving both explainability and 

traceability. 

6.4.4 Level 3: High Automation 

Level 3 automation operates as a fully automated multi-model system, where a third, 

higher-precision AI model resolves disagreements between the initial two AI models. 

In this work, the two initial models are selected based on a logic of mirroring the 

manual approach taken by human operators, who typically examine C-scan data first 

to identify defects and then use B-scan data for further investigation. Therefore, 

the two models work independently on C-scan and B-scan data, and with their rapid 

inference offer a balanced combination of efficiency and accuracy for defect detection. 

The third model, which operates on full 3D volumetric data, offers the highest 

precision and is reserved for the final verification of areas where the first two models 

disagree. However, it is the slowest of the three and scales the least efficiently with 

increases in data size. Instead, it is selectively applied to specific sections, replacing 

the human-in-the-loop mechanism from Level 2. 

It is important to note that different inspection scenarios may benefit from different 

combinations of AI models depending on requirements such as inference speed, 

precision, and explainability. This multi-model arrangement enables accelerated data 

analysis and reduced human workload, but introduces a higher risk of failure, 

necessitating high model trust and accuracy. At this level, used AI models must be 

scrutinised and fine-tuned for the specific application, aiming to achieve optimal 

accuracy with no tolerance for false negatives. Human operators, while removed from 
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direct involvement, transition to a supervisory role, retaining the ability to intervene, 

monitor, and override AI decisions, as necessary. This configuration delivers many 

advantages of an ideal automated system, albeit with slightly slower analysis and 

increased computational power required to run multiple AI models in parallel. 

The hierarchical multi-model approach described here is conceptually generalisable 

beyond the specific UT inspection case presented. The core principle of using multiple 

models that independently analyse complementary data representations, with a higher 

precision but slower model reserved for the final verification stage can be adapted to 

many inspections where multiple data modalities or views exist. For instance, in other 

NDE contexts, models could be tailored to work on different sensor modalities and 

combined in a similar manner. 

An example is in-process inspection of additive manufacturing components, which 

increasingly employs multi-modal inspection techniques using both eddy current and 

ultrasonic data [225]. In such scenarios, separate models can be trained on eddy current 

data and B-scan data, while a third model trained on full volumetric or C-scan data 

could serve as a verification tool. 

However, the specific models, data partitioning logic, and integration strategy would 

naturally need to be adapted for each new application. Therefore, while the overall 

architecture and principles are broadly applicable, the implementation details and 

model choices remain application specific. 

6.4.5 Level 4: Full Automation 

Level 4 automation represents an idealised long-term goal where an AI model 

surpasses human capabilities in both speed and accuracy. In this setup, a single end-

to-end model is responsible for all decision-making, eliminating the need for human 

NDE operators to inspect the data. While this approach would offer the fastest analysis, 

it comes with the highest risks and requires very high trust in the AI model, which can 

only be achieved through rigorous testing and parameter tuning. This level also 

represents an extreme case of automation, where human out-of-the-loop performance 

issues might arise. While this may be achievable and desirable in certain non–safety-

critical industries, in safety-critical domains such as aerospace, Level 4 automation is 
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more realistically envisioned as an assistive tool used in combination with human 

operators. Achieving Level 4 automation would require overcoming a series of 

technical, regulatory, and trust-related challenges. Firstly, on the technical side, the 

model must demonstrate long-term performance that surpasses that of trained human 

operators across a wide variety of conditions, test samples, and edge cases. This 

includes generalisation to out-of-distribution scenarios not present in the training data, 

such as new defects, unexpected material variations, or acquisition artefacts. 

Additionally, some form of uncertainty quantification must be built in, to enable the 

model to recognise when it is uncertain or likely to fail. From a regulatory perspective, 

AI-enabled systems (like any other tool or a process) would need to meet defined 

standards, but current regulatory frameworks for such systems are still 

underdeveloped, as highlighted in Chapter 1. In this context, the path forward likely 

involves explainable AI approaches, where the reasoning behind decisions is 

interpretable and auditable. Lastly, in terms of trust, widespread adoption would 

depend on building confidence among operators, engineers, and regulators that the AI 

system is both reliable and predictable. This trust would have to be earned through 

extensive validation, transparency in decision making, and demonstrable alignment 

with expert human judgement over long periods of time. This is further discussed in 

the conclusion of this chapter. 

It is important to note that different inspection scenarios may benefit from different 

combinations of AI models depending on requirements such as inference speed, 

precision, and explainability. As automation levels increase, several key system 

characteristics change. Higher automation levels lead to faster analysis speeds, with 

significant reductions in human workload. However, this comes at the cost of increased 

risks and system complexity. Lastly, trust in the AI system becomes crucial at higher 

levels of automation. 

The lower risk associated with human operator performance stems from their ability 

to demonstrate inspection competency through rigorous training and testing. This 

acquired expertise is expected to generalise to out-of-distribution cases, as it is based 

on fundamental principles rather than solely on pattern recognition. In contrast, AI-

based approaches often struggle with out-of-distribution scenarios, leading to higher 
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inspection risks. However, the risk level for human operators is not fixed and varies 

significantly depending on individual skill and experience. 

6.5 Data Stream Handling 

To this point, the ML models presented in Chapters 4 and 5 were evaluated in an offline 

setting (i.e., after the ultrasonic data had already been acquired and stored). However, 

deploying these models concurrently with data capture can improve overall analysis 

speed by reducing the time between acquisition and data interpretation. To explore this 

capability, the following section presents a practical implementation of real-time data 

acquisition, processing, and ML inference, incorporating several modifications to the 

experimental setup introduced in Chapter 3. A simplified schematic of the system 

architecture is provided in Figure 62 to illustrate the data flow and interaction between 

components. 

 

Figure 62 Flowchart of the experimental setup, integration of PAUT and robot, and data flow. 

The data processing, data capture, and synchronisation between individual hardware 

elements were performed on a laptop setup described in Section 3.4 . Robotic control 

was executed with JAVA code wrapped in Python syntax, while UT and AI processes 

were performed in Python 3.8. Data acquisition and processing were split into two 

Python nodes. 

The acquisition/communication node first sets up a TCP/IP connection to the UT 

equipment and listens for the User Datagram Protocol (UDP) connection established 

by the KUKA robotic controller. Once all connections are active, another TCP/IP 

connection to the processing node is initiated to maximise the utilisation of available 

computing resources. In Python, the global interpreter lock restricts true 
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multiprocessing and parallelism within a single interpreter process, therefore running 

two separate scripts concurrently allows the scripts to utilise different CPU cores 

effectively. Alternative programming languages such as C++ offer more 

straightforward solutions for parallelism but would result in more complex code and 

make implementation of the developed AI models more difficult. Another potential 

solution includes using Robotic Operating System (ROS) framework which is 

optimised for real-time applications. 

Upon establishing the connection to the processing node, the robotic controller begins 

monitoring and broadcasting its’ positions. The communication node continuously 

checks the Euclidean distance between subsequent position updates, triggering the UT 

data capture command if it surpasses the predetermined distance threshold of 0.8 mm 

(i.e. scanning step used in this study). The threshold aligns with the pitch of the used 

PAUT assembly, ensuring a square aspect ratio in the final data representation. Upon 

receiving the data, the robotic positions and UT readings are correlated and transmitted 

immediately to the processing node, repeating the process until the scan is completed. 

The processing node, upon receiving the data, performs basic data manipulation, 

including reshaping, normalisation, data padding, TVG, and Hilbert transform, before 

feeding the data into AI models. 

Additionally, it is important to address the limitations and set reasonable expectations 

for the positional triggering setup. The current configuration, with a UDP connection 

between the KUKA controller and laptop, provides a positional update rate of 250 Hz. 

This update rate may present challenges at higher scanning speeds, potentially 

resulting in positional overshooting for data capture triggers. In the conducted 

experiments, scanning speeds of up to 30 mm/s were tested and deemed satisfactory. 

Another critical aspect to consider is the resolution of ultrasonic scans. In the aerospace 

sector, the primary objective of NDE is to detect defects classified as critical based on 

their size and location on the structure. Quality control documents from Spirit 

AeroSystems indicate that delaminations ranging from 60 to 500 mm² may be allowed, 

depending on their position within the structure. When converted to equivalent circular 

defects, these areas correspond to defect diameters ranging from 8.8 to 25 mm. Given 



171 

 

this context, acquiring data at intervals of 0.8 mm ensures at least five frames per defect 

are captured. 

6.6 Artificial Intelligence Models 

6.6.1 Anomaly Autoencoder Model 

The first AI detection model and automated gating workflow used in this work are 

detailed in Chapter 5. Modifications to the automated gating method include removing 

the previously used number of steps (n) parameter, as testing showed that imposing a 

minimum cluster size was more effective for identifying clusters corresponding to 

back walls. Previously, n defined the expected number of echoes in the scan, thereby 

introducing prior assumptions about the part geometry. In contrast, the use of 

minimum cluster size threshold (required by the DBSCAN algorithm) removes this 

dependency and allows the algorithm to adaptively detect meaningful clusters 

associated with geometrical features, regardless of how many are present. This 

represents a more scalable and robust approach, especially when scanning components 

with varying geometry. Moreover, a suitable minimum cluster size can be reasonably 

estimated based on the known scale of scanned CFRP components or inferred from 

the robotic path planning.  

Surface echo is removed automatically due to a constant known offset of the inspected 

sample from the ultrasonic array, determined by the roller probe’s outer diameter. This 

deviation is justified in well calibrated and consistent scanning setups, where the front 

wall echo is stable and predictable. If probe misalignment occurs, the more flexible 

clustering-based method from Chapter 5 could be reinstated for front wall removal. 

This adaptability makes the overall approach suitable for a range of inspection 

scenarios. 

The peak-finding algorithm employs a normalised amplitude threshold of 0.25, chosen 

within the range of 0 to 1, and requires a minimum distance of 5 time samples between 

peaks to filter out minor peaks, thereby reducing data dimensionality and processing 

times. This approach deviates from the one used in Chapter 5, where an RMS-based 

thresholding method was applied. During testing, it was observed that the computed 

thresholds consistently fell within a narrow range (0.2 – 0.25), so a fixed value of 0.25 

was adopted for simplicity. The risk of missing meaningful defect signals is minimal, 
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as observed delaminations tend to produce amplitudes well above this threshold 

(especially after TVG correction and Hilbert transformation). For more sensitive or 

variable signal conditions, the threshold can be adjusted, or the original RMS method 

reintroduced. 

For DBSCAN clustering, the eps value is set to 7, consistent with values from the 

original publication. The min_number_of_peaks parameter is set manually at 250 to 

ensure defects up to 20.0 × 10.0 mm are included while excluding irrelevant clusters. 

Alternatively, this threshold can be adjusted automatically by analysing the size of the 

captured data and estimating the expected changes in material thickness. 

The AE structure remained the same, and the discrepancy between the input and output 

is quantified using MSE. To differentiate pristine from defective B-scans, an anomaly 

threshold is applied to the observed MSE errors. A single threshold is applied across 

all automation levels, set as the median value of all observed MSE errors, increased 

by 50% of the median value. This approach is based on the expectation that most B-

scans in the scanned sample are pristine. As a result, the median value of MSE will 

effectively represent the typical value for pristine B-scans, while the additional offset 

helps capture only significant deviations, accounting for smaller variations. The fixed 

threshold used in this chapter represents a simplified approach, chosen to reflect 

realistic deployment constraints in which ground truth labels are not available during 

inference. While the selected threshold is adjustable, its main purpose here is to 

support demonstration of full system functionality under automated conditions. More 

rigorous approaches to threshold selection are acknowledged and recommended for 

future work. In particular, using a separate validation sample to define and optimise 

the threshold (discussed previously in Chapter 5, Section 5.7) is seen as a promising 

avenue for more robust deployment. This method is consistent across all levels of 

automation, prioritising the safety considerations and detection of defects while 

accepting a higher rate of false positives. It is worth noting that this threshold can be 

adjusted based on the specific application scenario, and could also be defined using 

other statistical methods, such as standard deviations. 
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6.6.2 Object Detection Model 

The second model utilised in this work is the Faster R-CNN model detailed in Chapter 

4. During deployment, Faster R-CNN requires a confidence threshold to filter 

generated predictions (value between 0 and 1). Following the same logic for setting 

anomaly thresholds for the AE model, confidence thresholds are set at 0.001 for all 

automation levels. The inference process begins with the generation of amplitude C-

scans using the automated gating method described in Section 6.6.1. These C-scans 

are then fed into the Faster R-CNN model, which outputs bounding boxes that 

highlight the defects within the inspected material. Compared to the AE model, the 

Faster R-CNN offers superior detection performance and provides the ability to 

precisely locate defects in the inspection plane. 

The primary drawback of both AE and Faster R-CNN models is their "black box" 

nature, where the reasoning behind inference results is obscured. In industry sectors 

requiring clear, interpretable outputs, this is a disadvantage, as it limits transparency 

in the decision-making process. Furthermore, since the model was trained on 64 × 64 

resolution images, it can struggle when processing input images with significantly 

different aspect ratios or sizes. To overcome this challenge, a workaround involves 

applying the model on smaller sections of the scans and then collating the results. 

Although this slightly complicates the deployment of the code, it allows for efficient 

inference and reliable defect detection.  

6.6.3 Self-supervised model 

The third model was a 3D Ultrasonic Self-Supervised Segmentation (3-DUSSS) model 

designed to process full 3D volumetric data, as presented in [299]. This lightweight 

model operates by pre-training on pristine 1D scan series through the component, 

where the model attempts to predict the likely distribution for the next value in the 

sequence. The model was trained to minimise the Negative Log-Likelihood (NLL) loss 

for the Weibull distribution, as shown in Eq.33: 

 
𝑊𝑒𝑖𝑏𝑢𝑙𝑙 𝑁𝐿𝐿 𝐿𝑜𝑠𝑠 =  − log ∏ 𝑓(𝑎, 𝑏|𝑥𝑖) = − ∑ log 𝑓(𝑎, 𝑏|𝑥𝑖) 

𝑛

𝑖=0

 

𝑖=1

 Eq.33 

Here, a and b represent the scale and shape parameters, respectively, of the two-

parameter Weibull distribution predicted by the model for each input xi. 
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During inference, the model predicts the parameters of a Weibull distribution (scale a 

and shape b) for the next point in a 1D scan sequence. These predicted distributions 

are then compared against the experimentally measured values to identify anomalous 

voxels. A datapoint is flagged as defective if its observed value falls in the tail of the 

predicted distribution, based on a specified confidence threshold (e.g., a false-call rate 

of 0.001%). The model utilises a sliding window approach (a fixed-length window is 

moved sequentially across the 1D scan series), whereby if a point is considered defect 

free it is added to the series to ground the model in relation to experimental data. If the 

point is considered defective, the model uses the mean of the predicted distribution as 

a best proxy for the expected defect-free datapoint and flags the voxel as defective. 

Similar to the AE model, training was performed on pristine data, allowing the 3-

DUSSS model to learn the amplitude responses specific to carbon fibre structures. To 

ensure no data leakage, the training, validation, and testing datasets originated from 

different physical samples. The training dataset included both front and back walls, 

which minimises the impact of poor gating which could lead to removal of defect 

signatures. During inference, the model requires two parameters: the allowable false 

call rate and an area threshold. The allowable false call rate defines the maximum 

deviation a voxel can have from the predicted distribution before being considered 

defective (in this work, this was set to 0.999999). The area threshold filters out smaller 

voxel groups to minimise false positive calls, with this threshold set to 10 in the current 

work. 

The developed model excels in localisation, depth estimation, and sizing of defects, 

effectively detecting flaws as small as 3.0 mm in diameter. It offers voxel-level 

precision, allowing for accurate defect sizing and depth localisation, unlike the AE 

model (which does not offer spatial localisation) or Faster R-CNN (which tends to 

overestimate due to bounding box geometry). Furthermore, it enables volume-based 

representation, which is particularly valuable in NDE applications, where 

understanding the full defect geometry can influence repair decisions. The 3DUSSS 

method was found to perform well across the tested datasets by successfully detecting 

all known defects in samples C and E, as confirmed in earlier publications [299], [300]. 
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However, when processing large datasets, this method encounters challenges due to 

the computational demand of handling the entire scan volume, requiring a powerful 

GPU with significant memory capacity (the original study employed a setup with three 

NVIDIA GeForce RTX 3090 GPUs). Although the model itself is lightweight, the 

volume of data for processing is substantially higher than that of individual B- or C-

scan views, making GPU memory a critical factor and creating a bottleneck in data 

loading onto the GPU. Even after down-sampling data by a factor of 10 in the time 

domain, deployment on less powerful hardware, like the single GPU configuration 

used in this study, leads to processing times in the range of several minutes, far slower 

than the few seconds needed by AE and Faster-RCNN. Furthermore, the scans in this 

study are relatively small compared to those typical in industrial settings for large 

components, where AE and Faster-RCNN would likely scale better, as 3-DUSSS must 

process the entire dataset, while other methods operate on compressed 2D views. 

Additionally, 3-DUSSS faces challenges when encountering variations in thickness, 

making it more suitable for deployment along scan directions where thickness changes 

are minimal. However, despite being slower at inference than other methods, 3-

 USSS’s capability to generate a complete 3D segmentation map provides a 

comprehensive visualisation of the ultrasonic scan. This feature not only improves the 

interpretability of scan results but also allows for the creation of digital twins for 

reporting, adding practical value to the inspection process. 

6.7 Results and Discussion 

6.7.1 Level 1 – Operator Assistance 

In the Level 1 Operator Assistance level of data analysis, inference parameters for both 

the Faster R-CNN and AE models are configured to minimise the risk of false 

negatives. While the ideal performance of an NDE operator or automated system 

would result in zero false negatives and false positives, achieving this is challenging. 

In the context of NDE for safety-critical components, the emphasis is heavily on 

minimising false negatives. Missing critical defects can have severe consequences, 

while false positives, though not directly threatening to material safety, may lead to 

higher costs if unnecessary rework is done, components are scrapped, or extended data 

analysis is conducted by operators to verify whether an indication is a true positive. 
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For Faster-RCNN, the confidence threshold determines the number of defects 

identified: a higher threshold results in fewer, but more confident detections, reducing 

false positives but potentially missing smaller or more subtle defects. On the other 

hand, a lower confidence threshold increases the number of detections for smaller 

defects and fainter indications, though this often leads to more false positives. At this 

automation level, where the final decision rests with the operator and all data is 

expected to be reviewed, the preference is typically for a lower confidence threshold 

(i.e., 0.001). This setting helps minimise false negatives while relying on operators to 

review and filter out false positives, ensuring that potential defects are flagged for 

further inspection and prioritising safety by reducing the risk of overlooked critical 

defects. 

For the AE model, inference involves setting a threshold for anomaly detection based 

on observed MSE. A higher threshold flags only severe discrepancies from the MSE 

associated with pristine B-scans (i.e., significant defects), thus reducing false positives 

but potentially missing minor defects. A lower threshold, on the other hand, captures 

a larger number of indications, including minor deviations that may represent pristine 

B-scans, increasing the risk of false positives. Following a similar approach to the 

Faster R-CNN model, the AE model at this level of automation is configured to 

prioritise safety by applying a lower anomaly detection threshold (i.e., median MSE 

plus 50%). 

The detection results for Sample C from both the Faster R-CNN and AE models are 

illustrated in Figure 63 a) and b). Faster R-CNN was able to capture all defects while 

producing two false positives. However, the AE model missed two defects, located at 

the thickest section of the sample near the back wall. A B-scan from that position is 

shown in Figure 63 c), where it can be observed why defects at such locations 

complicate detection. The indication is nearly fused with the back wall echo; 

Therefore, even with an optimal gating approach, a part of the defective signal would 

also be removed. This presents a challenge, as the defect appears very small on the B-

scan level, and the C-scan amplitude response is also considerably weaker compared 

to other defects. For reference, the raw input data and ground truth annotations for 

sample C used in this analysis are described in Section 3.3.3. 
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As a comparison, Figure 63 d) shows a defect of equal size located immediately after 

the surface echo. While the main defect echo is again partially merged with the surface 

echo, as seen in the previous scenario, the several recorded ultrasonic repeats of the 

interface with a defect make detection easier. Therefore, even imperfect gating would 

leave strong reflections in the data, resulting in easier detections from both AE and 

Faster R-CNN. Lastly, Figure 63 e) presents a B-scan showing a false positive 

indication produced by the AE model. In this instance, a change in sample thickness 

results in many higher amplitude reflections caused by the interaction between the 

ultrasonic beam and sharp transition in sample geometry. Therefore, while the area 

captured in the B-scan frame is pristine, these minor indications cause a substantial 

deviation from the median MSE observed in the rest of the scan, resulting in a false 

positive flag. 
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Figure 63 a) Output of the Faster R-CNN model, and b) Output of the AE model on C-scan view of the 

sample C (cyan/orange bounding boxes); c) B-scan frame containing a missed defect indication close 

to back wall; d) Equally sized defect close to front wall with ultrasound reverberations aiding the 

defect detection; e) AE false positive resulting from minor indications received from thickness 

transition at the location of sample geometrical steps. 

In the presented examples, models are prone to generating false positive or false 

negative indications when calibrated with lower confidence and anomaly thresholds. 

Unfortunately, this approach yields results unsuitable for higher automation levels, 

especially due to the risks associated with missing defects, which could compromise 

the structural integrity of the final product if left unchecked. While false positives 

degrade the inference performance, they do not pose direct safety risks and can be 

addressed by NDE operators, albeit at the cost of additional analysis time. 

Nevertheless, the primary aim of this automation level is to assist with the analysis by 

providing informed suggestions on areas of interest, with the final decision remaining 

with the NDE operator who reviews all data. While adjusting model inference 

parameters could potentially lead to the successful detection of all defects by both 

models, changing these values on per sample basis is not feasible in the industrial 

system deployment. 

The reasoning behind choosing the AE and Faster R-CNN models as the primary 

models for this application is their fast inference times, making them suitable for 

deployment on less powerful hardware. Only the inference times of the models are 

reported in this work. Faster R-CNN processing for Sample C takes 0.22 ± 0.06 

seconds, while the AE model produces results in 2.28 ± 0.12 seconds. Specifically, the 

inference time for the AE is 1.56 ± 0.01 seconds, with an additional 0.73 ± 0.025 

seconds required for padding inputs to match the AE's convolutional structure. On the 
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other hand, running the 3-DUSSS model on sample C takes 221.34 ± 1.41 seconds. 

The results of the 3-DUSSS model are overlayed over a C-scan of the sample and 

presented in Figure 64. 

 

Figure 64 3-DUSSS segmentation output (pink) superimposed on the C-scan image of Sample C. 

The detection results for Sample E are illustrated in Figure 65 a) and b). While Faster 

R-CNN successfully identified all defects with two false positives, the AE model failed 

to detect a 5.0 × 5.0 mm defect in the stringer section. Upon further inspection, this 

defect is partially visible in the scans but was not captured in its entirety due to an 

insufficient overlap between adjacent ultrasonic passes. As a result of this scanning 

error, the defect appears smaller than its true size, reducing its amplitude response, and 

preventing it from meeting the detection threshold for the AE model. Although 

reducing the anomaly threshold further might enable detection of this defect, it would 

also result in an excessive number of false positives across the scan. This defect is 

shown in Figure 65 c). 

Additionally, while AE successfully identifies defects near the front wall, not all B-

scans containing defects are flagged. Since defects typically span several B-scan slices, 

the MSE error varies across these slices, leading to some B-scans being correctly 

classified as anomalous while others are not. This approach still serves its purpose, as 

it provides the operator with a highlighted area of interest, which is valuable for 

guiding further inspection (although achieving complete detection would be ideal). An 

example of a partially captured defect is in Figure 65 d). This example highlights the 

advantage of Faster R-CNN, which leverages the spatial context across the C-scan 

view, rather than relying solely on individual B-scan slices. For reference, the raw 

input data and ground truth annotations for Sample E used in this analysis are described 

in Section 3.3.5. 
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Figure 65 a) Output of the Faster R-CNN model and b) Output of the AE model overlaid on C-scan 

view of the sample E showing detected/missed defects (cyan and orange/red); c) Missed defect in 

stringer section; d) Partially captured defect close to the front wall. 
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Inference for FasterRCNN took 0.55 ± 0.08 seconds, while AE produced results in 

2.34 ± 0.11 seconds, with additional time for padding resulting in 0.67 ± 0.01 seconds. 

3-DUSSS model for this larger sample runs in 379.98 ± 1.21 seconds, which 

underscores the challenges in the scaling of inference time. In contrast, manual NDE 

inspection is typically reported to take significantly longer. For example, for a sample 

approximately double the size, the data interrogation is typically completed in 40 

minutes by an operator, although this time is extended by an hour or more when defects 

are present as a closer examination and sizing of defective areas is required. While 

direct measurements for human analysis of the specific samples discussed in this work 

are not available, these figures highlight the time-saving potential of the proposed AI-

based methods, which operate on the scale of seconds and minutes compared to tens 

of minutes or hours for manual inspection. The results of the 3-DUSSS model are 

overlaid on a C-scan and presented in Figure 66, showing that all defects were 

successfully detected, with five false positives. 

 

Figure 66 3-DUSSS segmentation output (pink) overlaid on the C-scan view of the sample E. 

6.8 Level 2 – Partial automation 

Level 2 of automation combines and compares the outputs of models, adding a layer 

of validation to AI predictions. In sample C, Faster R-CNN and AE agreed on 22 out 

of 24 defects, as shown in Figure 67. This agreement enhances trust in the system, as 

these areas are flagged by two independently trained AI models, each trained on 
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distinct data and ultrasonic views. Meanwhile, the nine areas of disagreement were 

flagged for human review, streamlining the analysis process. Rather than examining 

the entire dataset, the operator can now focus on these specific areas of disagreement, 

efficiently identifying the remaining two defects while filtering out false positives. For 

sample B, the models reached agreement on 11 out of 12 defects, with the human in 

the loop triggered to review five areas where the models disagreed, as shown in Figure 

68. 

 

Figure 67 Sample C) Agreement (green) and disagreement (red) between the Faster R-CNN and AE 

models. 

 

Figure 68 Sample E: Agreement (green) and disagreement (red) between the Faster R-CNN and AE 

models. 
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6.8.1 Level 3 – High automation 

The multi-model Level 3 automation produced results consistent with Level 2 in terms 

of agreement between the AE and Faster R-CNN models, with the key difference being 

that disagreements between the models were resolved by the 3-DUSSS model rather 

than through a human-in-the-loop mechanism. In Sample C, the 3-DUSSS model 

confirmed that the two false negative calls by AE were defects, resulting in the 

successful identification of all 24 defects while discarding other false positive calls. 

An example of a disagreement in Sample C is shown in Figure 69 a), where two defects 

near the back wall were detected by the Faster R-CNN but missed by the AE model 

(refer to Figure 67). In this section, both the Faster R-CNN and 3-DUSSS models 

identified one false positive each. These detections were rechecked for agreement and 

rejected as false positives. In contrast, the two detections with coinciding results were 

confirmed as true positives, resolving the disagreement between the models. Inference 

time for the 3-DUSSS model was significantly reduced compared to processing the 

full volume, taking 91.59 ± 0.83 seconds to resolve nine areas of disagreement. While 

this reduction may seem modest here, it is important to highlight that these experiments 

were conducted on relatively small scans and reference samples. For larger datasets, 

typical in industrial applications, this targeted approach would likely result in more 

substantial time savings. 
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Figure 69 Areas of disagreement between models resolved by 3-DUSSS ; a) Sample C with Faster R-

CNN (cyan) and 3-DUSSS (pink) predictions overlaid on the C-scan; b) Sample E with Faster R-CNN 

(cyan), AE (orange), and 3-DUSSS (pink) predictions overlaid on the C-scan. 

 

Similar results were observed in Sample E, where all defects were correctly identified. 

An example of model disagreement is shown in Figure 69 b), where a 5.0 × 5.0 mm 

stringer defect, missed by AE, was confirmed as a true positive by the 3-DUSSS 

model. As in the previous example, 3-DUSSS produced one false positive, which was 

rejected since it did not coincide with any other model’s detection. The inference time 

for the 3-DUSSS model to resolve five areas of disagreement was 54.12 ± 0.74 

seconds. 

Overall, Level 3 automation offers several benefits. By combining the Faster R-CNN, 

AE, and 3-DUSSS models, all defects in this study were successfully detected, with 

the 3-DUSSS model resolving areas of disagreement and filtering out false positives. 

This approach ensures fast, reliable results while enabling the use of less powerful 

hardware. Additionally, the workflow reduces both analysis time and operator 

workload, while still allowing operators to review intermediate results, examine areas 

of disagreement, and intervene if needed, thereby preventing potential performance 

degradation. This workflow achieves results close to the ideal fully automated process, 

with minimal impact on analysis time and system failure risk. An overview of the 

performance metrics for individual models, including the number of false positive and 

false negative calls, as well as inference times, is provided in Table 14. Recall is 

defined as the number of true positives divided by the sum of true positives and false 
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negatives, while precision is the number of true positives divided by the sum of true 

and false positives. The F1 score is calculated as the harmonic mean of precision and 

recall 

Table 14 Overview of reported performance metrics for different automation levels 

Automation 

Level 1 
Metric 

System 

Anomaly detection AE Faster R-CNN 3-DUSS 

Sample A Sample B Sample A Sample B Sample A Sample B 

Single model 

system 

Operator 

reviews all 

data and all 

AI model 

outputs 

Inference [s] 2.28 ± 0.12 2.34 ± 0.11 0.22 ± 0.06 0.55 ± 0.08 221.34 ± 1.41 379.98 ± 1.21  

False positives [-] 5 2 2 2 4 5 

False negatives [-] 2 1 0 0 0 0 

Precision [-] 0.815 0.846 0.923 0.857 0.857 0.706 

Recall [-] 0.917 0.917 1.000 1.000 1.000 1.000 

F1 [-] 0.863 
0.880 

0.960 
0.923 

0.923 
0.828 

     

Automation 

Level 2 
Metric 

System 

Anomaly detection AE | Faster R-CNN 

Sample A Sample B 

Two model 

system 

 Human-in-

the-loop 

mechanism 

triggered for 

disagreements 

Inference [s] 
2.44 ± 0.18 

 (2.28 ± 0.12 | 0.22 ± 0.06) 

2.89 ± 0.19 

 (2.34 ± 0.11 | 0.55 ± 0.08) 

False positives [-] 7 4 

False negatives [-] 0 0 

Flagged for Human-

in-the-loop 

mechanism [-] 

9 (7 false positives and 2 true positives) 5 (4 false positives and 1 true positive) 

     

Automation 

Level 3 
Metric 

System 

Anomaly detection AE | Faster R-CNN | 3-DUSS 

Sample A Sample B 

Three model 

system 

 Operator 

moved to 

supervisory 

role 

Inference [s] 
94.03 ± 1.01  

(2.28 ± 0.12 | 0.22 ± 0.06 | 91.59 ± 0.83) 

57.01 ± 0.93 

 (2.34 ± 0.11 | 0.55 ± 0.08 | 54.12 ± 0.74) 

False positives [-] 0 0 

False negatives [-] 0 0 

 

While for this specific scenario Faster R-CNN performs best, this does not guarantee 

that it will always outperform other models across different datasets, defect types, or 

acquisition conditions. Therefore, the system adopts a layered decision-making 
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strategy, combining outputs from multiple models to improve robustness. This reflects 

ensemble learning principles, where agreement among diverse models strengthens 

confidence in a result. Additionally, since the models operate on fundamentally 

different data representations, their decisions are independent. The 3-DUSSS model, 

while slower, is used only in higher-level decision stages to verify results from faster 

models, improving results without unnecessary processing overhead.   

6.8.2 Conclusions, Limitations, and Future Work 

In this chapter, AI-aided data analysis strategies were explored across proposed levels 

of model aggregation, focusing on the use of multiple AI models to simultaneously 

process different ultrasonic views. A case study was conducted on two defective CFRP 

reference samples containing 36 manufactured defects. These samples were inspected 

using an industrial manipulator and a PAUT roller probe to simulate industrial 

practices for inspecting large composite components. Integrating multiple models 

within the NDE data analysis workflow provided flexibility in designing workflows, 

managing intermediate results, and resolving model disagreements. This approach also 

facilitated a more robust setup leading to the successful detection of all examined 

defects. The study revealed that for: 

• Level 1 - Operator Assistance: The conservative use of AI models prioritises 

safety by minimising false negatives, at the cost of increasing false positives. 

The suggestions provided by the models accelerate data analysis while 

maintaining minimal risks associated with reliance on automation. Human 

operators validate all AI outputs and retain full control over decision-making, 

resulting in only a slight increase in system complexity. 

• Level 2 - Partial Automation: Improved results were achieved by comparing 

outputs from two models and prompting human operators to intervene in areas 

of disagreement. This comparison acts as an additional validation step for 

reported detections, aiming to increase trust in the automated process. While 

this approach speeds up data analysis, it requires a higher degree of trust in the 

models. 

• Level 3 - High Automation: Incorporating the 3-DUSSS model as an arbiter 

enabled a simultaneous analysis workflow that processes ultrasonic B-scans, 
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C-scans, and full volumetric data. The deployment of 3-DUSSS to only areas 

of disagreement greatly reduced inference times and memory requirements, 

making this strategy deployable on less powerful hardware. The combination 

of three models achieved near-ideal results while addressing model trust 

concerns with two layers of validation. 

While this research provides an analysis of the performance of different automation 

levels on fabricated defects of known size and shape, there is an opportunity to explore 

the system’s functionality when applied to naturally occurring defects, such as 

porosities, to assess the robustness of individual models across a wider range of defect 

types. Additionally, optimisation of models in terms of hyperparameter tuning, 

changes in architectures, or training regimes with new and varied data is deemed 

promising for achieving improved results.  

In future work, the developed system will be integrated into a production-level 

industrial use case to assess its scalability, robustness, and performance in a complex 

real-world environment, while also addressing integration challenges with existing 

workflows. Additionally, the expansion of defect detection models to include a broader 

range of defect types, such as porosities or foreign object inclusions, will be explored. 

As with any AI-based system, there remains a potential risk of false positives or false 

negatives. In safety-critical applications, such risks are typically mitigated through 

layered inspection strategies. In this study, no false negatives were observed across the 

tested samples when models were used in conjunction. However, further validation 

and benchmarking against larger representative datasets would be required for broader 

deployment. 

Building trust in such AI-driven systems requires more than technical performance. It 

demands transparency, reproducibility, and ongoing validation in real operational 

settings. The layered, multi-model structure introduced in this work inherently 

supports trust by enabling cross-validation between complementary models and 

providing traceable outputs. Trust can be progressively established in production 

environments through a phased rollout where AI initially supports human inspectors, 

gradually increasing automation as confidence grows. Maintaining full traceability of 

decisions, including which model contributed to specific outputs, alongside inclusion 
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of explainable features (AE residuals, Faster R-CNN bounding boxes, and voxel-level 

maps from 3-DUSS) in quality reports can improve transparency. 

Redundancy through human oversight and override capabilities also serve as a critical 

safeguard and helps mitigate risks of automation over-reliance highlighted in section 

6.3, maintaining operator skills through periodic checks and false flagging. Continuous 

monitoring of individual model outputs also enables early detection of performance 

drift or deterioration, which can help with targeted retraining or system calibration. 

Together, these strategies could form a trust-building framework that complements the 

technical robustness demonstrated in this chapter. 
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Chapter 7: Summary and Future Work 

7.1 Thesis Purpose and Scope 

The purpose of this thesis was to explore how AI technologies can considerably 

accelerate/enhance the data analysis workflows for NDE data collected via robotically 

delivered PAUT sensors. The focus was on inspecting CFRP materials employed in 

the aerospace industry for construction of high-value safety-critical components. 

Within the scope of this research were: 

• Conducting a focused literature review on AI and ML approaches for UT data 

analysis, particularly for NDE of CFRP materials, to identify research trends 

and common challenges. 

• Acquiring representative datasets of UT scans from various CFRP samples 

using an automated robotic setup similar to ones used in industry. 

• Developing AI-driven workflows to streamline data interpretation with 

emphasis on process automation. 

7.2 Summary of Key Findings 

Chapter 1 established the industrial motivation and research context, emphasizing the 

increasing adoption of CFRPs in the aerospace sector and the vital role of NDE in 

ensuring the structural integrity of final products. UT was introduced as the primary 

method for bulk inspection of CFRPs, highlighting its dominant role in the NDE. The 

integration of robotic systems for deploying UT sensors was discussed, highlighting 

the resulting improvements in data acquisition throughput and scan consistency. 

Despite these advancements, data interpretation remains a manual, slow, and labour-

intensive process prone to errors and misinterpretation and adversely affecting the 

production rate, especially when dealing with large datasets where operator fatigue can 

become a critical factor. AI was identified as a promising solution to these challenges, 

with capacity to tackle complex tasks and large volumes of data with near-human 

performance.  

Chapter 2 provided the foundational background knowledge necessary for the research 

conducted in this thesis. It began by explaining the fundamentals of ultrasound, 

including conventional UT and PAUT, as well as signal processing techniques. The 
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chapter then highlighted the specific applications of UT in inspecting CFRPs used in 

the aerospace industry, with a focus on the types of defects that can arise during 

manufacturing. Following this, basic AI concepts were introduced using examples of 

linear DL NNs and CNNs, providing a foundation for understanding the AI models 

used later in the thesis. The chapter also reviewed past academic publications 

leveraging different formats of UT data in NDE for training and testing AI models, 

identifying key challenges and summarising the state-of-the-art of AI implementation 

for UT signal analysis within the field.  

Chapter 3 detailed the experimental setup, materials, and equipment used throughout 

this thesis. It began by introducing the ultrasonic setup, comprising a PAUT roller 

probe and an ultrasonic controller. The robotic setup was then described, including the 

industrial manipulator, FT sensor, and the LabVIEW VI environment and control 

system, which enabled precise and automated data collection. Following this, the 

chapter provided an overview of the CFRP samples examined in this work. Finally, 

the hardware specifications of the PCs utilised for AI model training and simulations 

were outlined. 

Chapter 4 explored and examined various approaches for defect detection and 

localisation within ultrasonic amplitude C-scans. These included traditional signal 

thresholding based on observed amplitudes, a statistical thresholding method using 

theoretical mathematical distributions fitted to the data, and the application of several 

AI object detection models. The supervised training of AI models leveraged transfer 

learning, using pretrained model weights trained on unrelated datasets to accelerate 

convergence. In the absence of large experimental datasets, representative training data 

were generated using the semi-analytical simulation software CIVA. Additionally, a 

domain adaptation technique was employed by analysing noise profiles from real scans 

and modelling them into the simulated data to reduce the gap between synthetic and 

experimental domains. The results demonstrated that object detection models 

outperformed thresholding methods, highlighting the potential of AI for accurate and 

efficient defect detection in ultrasonic NDE workflows. 

Chapter 5 builds on the findings of the previous chapter by addressing key areas for 

improvement, particularly in signal gating and leveraging alternative UT data 
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projections to apply unsupervised learning, reframing defect detection as an anomaly 

detection problem. To this end, an unsupervised clustering approach using DBSCAN, 

combined with a peak-finding algorithm, was employed for automated gating, while 

an autoencoder architecture was used as an anomaly detector. This method enabled 

precise detection of defects larger than 4.0 mm and efficient removal of front and back 

walls from the data, regardless of the sample's geometry. Additionally, the impact of 

human labelling variability on reported performance metrics was examined, 

emphasising the uncertainties inherent in manual ground truth creation. This chapter 

demonstrated the viability of unsupervised methods for defect detection, particularly 

in scenarios where large labelled datasets are unavailable, and displayed the ability of 

clustering techniques to effectively isolate geometrical features. 

Chapter 6 combines the developed supervised and unsupervised approaches presented 

in this thesis with an additional self-supervised model into a comprehensive AI-driven 

data analysis workflow for processing ultrasonic data. This chapter addresses a gap in 

the academic literature, as AI models in NDE are framed primarily as replacements 

for human operators rather than collaborative tools. Cantero-Chinchilla et al. [22] 

outline the broader automation process in NDE and its prerequisites, however, detailed 

strategies specific to AI-driven ultrasonic data analysis remain unexplored. Similar 

discussions and implementation strategies are happening in other fields such as 

medicine, where AI tools are increasingly used for drug discovery [301] and are 

reshaping the technical requirements and training of professionals working with these 

tools. Likewise, AI is being integrated into medical imaging to assist with various tasks 

[302]. Other studies have examined the challenges and requirements for implementing 

AI-based tools in healthcare, as well as their future impact [303]. The proposed 

approach defines several levels of automation, ranging from basic levels where AI 

models provide suggestions to the NDE operator, to more advanced workflows in 

which multiple AI models collaborate to process the data. The interaction between the 

models, leveraging different ultrasonic views, simulates the manual data examination 

process performed by an NDE operator. At the same time, it incorporates mechanisms 

to increase trust in the automated system while minimising false positives and false 

negatives. Finally, the proposed integration strategy is tested and evaluated on a 
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complex geometry CFRP sample, highlighting the effectiveness of AI in industrial 

applications. 

7.3 Limitations and Future Work 

The primary limitation of applying AI to NDE tasks is the lack of readily available 

representative datasets for developing and testing. While the field of AI has seen a 

surge in new research, this progress is enabled by standardised datasets, such as 

ImageNet and COCO, which are widely used for computer vision tasks. These datasets 

enable research groups to directly compare their efforts, reducing the barrier to entry 

posed by dataset creation and labelling. Unfortunately, similar datasets are not 

available in the field of NDE, particularly for the examination of CFRP materials. Few 

notable exceptions were mentioned in Chapter 2, but at the time of writing, these 

datasets have not become standards for testing of new AI research in NDE.  

Furthermore, one of the key reasons for the scarcity of publicly available CFRP 

datasets is their proprietary nature, as they are typically originating from high-value 

components associated with defence, transportation, aerospace, and energy sectors. 

Sharing such data often requires following stringent data protection protocols. Even 

when data sharing is possible, variations in data formats pose additional challenges. 

These formats are often proprietary and can differ significantly depending on the 

inspection method used. A notable effort to standardise UT data formats was made by 

the University of Bristol, which proposed the mfmc format, however, its adoption is 

still in progress [304]. 

Because of this, alternative approaches in terms of synthetic data generation or focus 

on unsupervised methods must be taken to address this issue. While these methods 

show promising results, it is expected for supervised methods to outperform 

unsupervised methods. Therefore, future work towards creation of a publicly available 

UT datasets upon which different AI methods could be tested, and an attempt of 

exploring the development of a uniform data format would have high impact in this 

field of research. 

Another avenue not explored within this thesis is the classification of defects. Beyond 

defect localisation, detection, and sizing, an essential aspect of the NDE workflow is 

the categorisation of defects (distinguishing between different defect types such as 
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porosities, delaminations, or fibre waviness). This is inherently a supervised learning 

task, as classification relies on labelled training data. While unsupervised methods can 

group similar data patterns through clustering or dimensionality reduction (e.g., 

applying uniform manifold approximation and projection [278] or principal 

component analysis on the latent space of an autoencoder covered in Chapter 5), these 

groupings do not correspond to specific defect classes unless they are manually 

interpreted or later annotated. Therefore, unsupervised methods are insufficient for 

defect classification on their own, however they may be used as a pre-processing step 

or in combination with weak supervision approaches [305]. Furthermore, the currently 

available simulation software, CIVA, does not yet support the simulation of the defects 

such as porosities, cracks, dry spots, ply wrinkles, or fibre waviness, which would 

present a more challenging evaluation task. While one might be able to use FEA 

software to generate more realistic datasets with other types of defects, the associated 

computational cost would be prohibitively high, as discussed in Chapter 4. 

Attempts to artificially induce such defects were made but are not documented within 

this thesis. While industrial inspection scenarios were successfully replicated, 

achieving the high level of precision required for manufacturing realistic CFRP defects 

proved far more difficult. For instance, while drilling FBHs involved some degree of 

variability, these processes were still more controlled than attempts to create porosities 

by embedding small glass spheres or purposefully degassing polymer binders. These 

methods also incur significant material costs, which were financially unfeasible within 

the scope of this thesis. 

The most effective approach would be to incorporate a wide range of naturally 

occurring defects to rigorously test the performance of the developed models, with the 

expectation of encountering reduced performance. In the future, if such datasets 

become available, the work presented in Chapters 4 through 6 could be revisited to 

evaluate whether the proposed methods remain effective when tested on more diverse 

and representative datasets. 

The samples examined in this thesis were controlled, and scans were performed to 

minimise variability within the data. However, this level of control may not translate 

directly to industrial applications. While Chapter 6 demonstrated the applicability of 
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the developed methods to an industrial wing cover component, other industrial 

scenarios and components may present increased variability in scan quality and utilise 

different imaging modalities or equipment. It is worth noting, however, that some 

industrial setups (such as the one used in Spirit AeroSystems’ Belfast factory, which 

uses a water irrigation system for coupling) can produce higher-quality data than the 

roller probe used in this study. This suggests that the proposed methods may, in fact, 

be transferable to industrial environments with minimal adaptation. Nevertheless, the 

performance of the proposed models must be thoroughly tested in real-world industrial 

settings, as such environments are likely to pose greater challenges for automating data 

analysis and defect detection. 

Additionally, the regulatory aspect of employing these technologies were beyond the 

scope of this thesis but could present significant barriers to implementation. A 

potential pathway to addressing these challenges is the adoption of explainable AI 

which could enhance transparency in AI-driven systems. However, research in this 

area remains limited, with only a few academic publications exploring its applicability 

to NDE. 

Lastly, the field of AI is advancing rapidly, making it challenging to stay up to date 

with every new development, technique, and state of the art model. For instance, in 

Chapter 4, the YOLOv5 model was employed, but by the time of publication, several 

newer versions from different research groups had already been released. With each 

iteration, different architectural components were updated; for example, changes in the 

feature aggregation strategy in the neck of YOLOv7 [306], or improvements in 

inference speed in YOLOv10 through the removal of NMS [307]. YOLOv9 focused 

on lightweight architecture adjustments to better support deployment on edge 

computing [308]. While these updates could positively impact on the tasks presented 

in this thesis, most of these improvements are aimed at inference efficiency and 

deployment flexibility, rather than detection accuracy. 

A more substantial architectural shift occurred in YOLOv8 with the introduction of 

anchor-free bounding box detection. Unlike anchor-based methods, which rely on 

predefined box sizes and aspect ratios during training, anchor-free approaches predict 

object locations directly (centre of an object) and then regress the bounding box 
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dimensions [309]. This change can improve generalisation, particularly in datasets 

where object sizes vary significantly or are not well represented by predefined anchors 

used during training. However, in this study, no degradation in performance due to 

size mismatch was observed when testing on defects larger than those observed during 

training. Therefore, while anchor-free detection is a promising direction, it is not 

guaranteed to provide significant gains for the datasets and application context used in 

this thesis. Future work could explore these newer models within the same framework, 

particularly where real-time inference or deployment on constrained hardware 

becomes a primary consideration. 

Similarly, hyperparameter optimisation, although computationally intensive, could 

potentially enhance results further. Additional strategies such as test-time 

augmentation and inference with an ensemble of models also hold promise for 

improved performance. Additionally, recent advancements in large language models 

have made them increasingly multimodal, enabling their application to computer 

vision tasks. Techniques such as zero-shot or few-shot prompting offer new 

opportunities for leveraging these models; however, their significant size and 

prohibitive computational costs remain substantial barriers for research teams outside 

of large technology companies. 
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