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ABSTRACT 

One of the main reasons for the restricted application of holography 
in acoustic imaging is the limited resolution due to the relatively 

small numerical aperture for a given physical aperture. There is also 

a lack of suitable acoustic area detectors which provide adequate 

sensitivity and spatial resolution and which can be extended over large 

areas. The number of points at which the hologram can be sampled is 

limited by time or cost considerations. A requirement therefore 

exists for investigating signal processing techniques for resolution 
improvement in acoustic holography. Fortunately, the availability of 
linear detectors in acoustics and the relatively small amount of 

available data make such techniques easier to implement, especially 

with the increased availability of fast, efficient, and cheap computers 

and signal processing devices. 

This thesis treats the limited resolution in holography as one 
facet of the basic problem of diffraction and wavelength limitations 

on the resolution of imaging systems. Although a number of techniques 

have been reported in the literature for resolving beyond the diffraction 
limit both in optics and microwaves, these suffer from sensitivity to 

noise, the requirement for a priori information on the object' or the 

need for long computation times. The thesis proposes a new method for 

resolution improvement by aperture expansion using the principle of 

analytic continuation. This method has the advantages of computation 

simplicity, versatility, and robustness against noise. In the proposed 
technique, the hologram function is modelled using the data at the 

available limited aperture and the model is used to predict new points 

outside this aperture. A number of predictive models are discussed 

together with a method for correcting the predicted data. The effect 

of disturbing noise is then considered. Simulation results are presented 
for both noise-free and noisy data when imaging single and multiple 

point objects and the extension of the technique to. the imaging of 

continuous objects is discussed. Examples for doubling the size of an 

aperture in the presence of 30% relative noise are given. An experi- 

mental holographic imaging system is described which has been designed 

and implemented to allow verification of the proposed aperture expansion 

algorithm on realistic measured holograms. 
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CHAPTER 1 

INTRODUCTION 



1.1 Acoustic Holography 

Holography is a coherent imaging technique based on the principle 

of wavefront reconstruction. Although the two mechanisms of 
interference and. diffraction which form the basis of the technique 

have been understood for many years, it was only in 1948 that Gabor 

suggested their application to three-dimensional imaging in optics 

as an ingenious way of preserving the complex spatial distribution 

of a given wavefront,, storing it, and using it for later reconstruction. 
The practical application of the technique on a wide scale had to 

wait until the advent of laser in the early sixties which provided 
the required coherent sources. The success achieved with optical. 
holography has encouraged research in other regions of the electro- 

magnetic spectrum and in acoustics which has become the main area of 
the application of holography outside the optical domain. The early 
techniques of acoustic holography were replicas of those used in optics,. 

as in the case of the liquid surface method for example. However, 

operation at the acoustic frequencies offers a number of advantages 

which have simplified the imaging process considerably and led to a 

great diversity of the techniques used for hologram recording and 
image reconstruction. For example, the physical reference wave which 
is necessary. in conventional holography can be replaced by an 

electronically simulated reference. Moreover, the process of 

recording the hologram as an interference pattern for optical 

reconstruction can even be avoided completely, with the image calculated 
by the computer from a set of linearly detected hologram data. 

Although acoustic imaging was already a well-developed art at the 

advent of holography, a large amount of interest has been shown in the 

holographic approach to acoustic imaging. This is because the 

holographic concept enjoys a number of advantages over conventional 

acoustic imaging techniques. For example, holography offers a 

considerable simplification in the data collection stage of the 

imaging process since only the complex spatial distribution (as the 

amplitude and phase data or the real and imaginary components) at the 

hologram plane is required. In particular, the fact that the 

temporal aspects of the received acoustic signal are discarded at an 

early stage of the process and replaced by a set of DC values makes 
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holography more advantageous compared to beamforming techniques which 

rely on time delay information for image reconstruction. Since the 

processing in such systems must be performed at the acoustic frequency, 

they are generally more complex, bulky and costly and consume larger 

amounts of power in comparison with equivalent holographic systems. 
Holography also has a very large depth of field since it does not 

rely on focusing during hologram acquisition. In that sense, a two- 

dimensional hologram is a compact record of a three-dimensional volume 
in the imaged space within which any plane can be brought into 

focus when the hologram is reconstructed. In conventional imaging 

techniques, the number of planes at which focusing can be achieved 
is often restricted by difficulties in focusing the received waves. 
Moreover, since in holography the computer can be used for image 

reconstruction, this reduces the amount of special purpose hardware 

required and allows for a considerable amount and a wide range of 

signal processing techniques to be performed to improve the image 

quality and to analyse, display, store, and compare the resulting 
images. 

Acoustic holography has been used in a number of applications which 
include : microscopy, nondestructive testing, underwater viewing, 

seismic imaging, and medical diagnostics. However, the extent to which 
holography has been implemented in practical systems has been rather 
limited in relation to the large amount of interest shown in the 

technique and considering the potential advantages it offers. This 

can be partially attributed to a number of limitations due to the 

coherent nature of holography and to operating at the acoustic 
frequency. As a coherent imaging technique, holography suffers from 

the problem of speckle and other artefacts which reduce the intelligi- 

bility of the resulting images. The main problem caused by operating 
in the acoustic domain is the limited image resolution because of 
the relatively small numerical apertures for a given physical 

aperture due to the large wavelength. This thesis is mainly concerned 

with this problem and proposes a new technique for resolution improve- 

ment. 
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A number of other limitations in holography are associated with 
the conventional approach of recording the hologram as an interference 

pattern which is optically reconstructed. The time-lag involved in 

preparing the optical transparancy is often unacceptable in situations 

which require real-time imaging. Moreover, optically reconstructed 
images are degraded by the distortion due to the large disparity 

between the wavelengths used for recording and reconstruction and the 

interference from unwanted reconstruction products which are the 

result of using a spatial carrier reference wave at the recording stage. 

These problems can be largely overcome by measuring the complex 

hologram directly and using the computer to perform the linear 

transforms required for image reconstruction. With the increase in 

the availability of high speed, large capacity, and inexpensive 

computers and signal processing devices, the computer can play a 

major role in improving the performance of holography by solving the 

problems associated with the conventional approach, performing the 

signal processing required for alleviating more basic problems 

such as the limited resolution, and integrating the various aspects of 
the holographic imaging process. 
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1.2 Resolution Improvement in Acoustic Holography 

The requirement for resolution improvement in acoustic holography 
is basically dictated by the limited size of the numerical aperture 
for a given physical aperture. This problem is aggravated even further 

by practical limitations which restrict the size of physical 

apertures in acoustics with the required sensitivity and spatial 

resolution and which can be afforded economically or scanned at a 

reasonable speed. Fortunately, the very cause of the problem, i. e. 

operating at the acoustic frequencies which are much lower compared 
to those in optics, makes it easier to implement techniques for 

overcoming it. Linear detectors, which are readily available in 

acoustics, are capable of sensing the complex acoustic field and 
therefore allow for a wider range of possibilities for manipulating the 
data for image improvement compared-to the case of optics-where only 
intensity detectors are available. The limited numerical aperture, 

a disadvantage in itself, helps make data processing for resolution 
improvement a more feasible proposition since the relatively small 

amount of data can be manipulated speedily and cost-effectively by 

mini or microcomputers. 

The problem of extending the resolving power beyond that of a 

given physical aperture has been extensively treated in the fields 

of optics and microwaves. Since the propagation part of the imaging 

process can be approximated to that of Fourier transforming the object 
function, this problem amounts to that of extrapolating the spectrum 

of a given finite object beyond the limit set by the size of the 

physical aperture asrimplied in object restoration techniques in 

optics. In spectral analysis, the dual problem is encountered where 
it is required to estimate the spectrum of a band-limited signal by 

extrapolating the corresponding time function beyond a given time 

window. Noise in the measured data sets the limit on the amount of 

resolution improvement that can be achieved and methods vary widely 
in their robustness against noise and therefore in their effectiveness 

when used on realistic data. Although a number of techniques have 

been reported in the literature for resolution improvement in acoustic 
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holography, work in this direction appears to be somewhat isolated 

from the mainstream of the relevant activities in the fields of 

optics and spectral analysis. In this thesis, the relevant techniques 

for resolution improvement in the various fields are described and 
the prospects for their application in holography discussed. A 

new method for resolution improvement beyond the diffraction 

limit through expanding the hologram aperture is then presented. This 

method has the advantage of being computationally simple and robust 

against noise. 
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1.3 Aims, Layout, and Contributions of the Thesis 

1.3.1 Aims of the Thesis 

This thesis reports the results of a research program carried out 

with the following aims in mind. 

1) Investigating the limitations of acoustic holography in 

general together with the methods which could be used to overcome 
these limitations, with particular reference to the role of the 

computer and the use of signal processing techniques. 

2) Investigating the problem of limited resolution in acoustic 
holography as it relates to the basic problems of diffraction and 

wavelength limitations on the resolution of other imaging techniques. 

3) Investigating the techniques for resolution improvement beyond 

the diffraction limit in the fields of optics, microwaves, and 

acoustics. 

4) The development of a technique for improving resolution in 

acoustic holography which is computationally simple, more versatile, 

and robust against noise. 

5) Verifying the proposed method using both simulated and 

experimentally measured holograms. 

1.3.2 Layout of the Thesis 

Following this introductory chapter, Chapter 2 of the thesis 

reviews the history, principles, and techniques of holography. The 

methods for hologram acquisition and image reconstruction are 
discussed, with particular emphasis on aspects of hologram sampling 

and computer reconstruction due to their relevance to the simulation 

and experimental work reported in later chapters. In section 
2.5.2. which deals with computer reconstruction, mathematical 
treatment is given for both the Fresnel integral and the backward 

wave (frequency domain) reconstruction algorithms. The latter method 
is used for image reconstruction from both simulated and measured 
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data which are. reported in Chapters 4,5, and 7. The main design 

parameters of an acoustic holographic imaging system; such as 

resolution, range, and field of view are discussed with emphasis on 
the way in which each of these parameters is influenced by other 

parameters and the various trade-offs involved. The advantages of 
holography as an imaging system are then considered and acoustic 
holography is compared with other acoustic imaging techniques 

including B-scan, lens systems, and beamforming systems. The main 

applications of acoustic holography are reviewed and the limitations of 
the technique discussed, together with ways in which the use of the 

computer and the implementation of signal processing techniques can 
help alleviate some of these limitations. 

Chapter 3 is devoted to reviewing the techniques for resolution 
improvement in the fields of optics and microwaves, and in acoustic 
holography. This chapter starts with a brief analysis of the aperture- 
limited resolution in holography. The first group of techniques 

discussed are those related to aperture synthesis. The problem of 

resolution improvement beyond the Rayleigh diffraction limit of a given 

aperture in optics is discussed together with some historical back- 

ground .A group of techniques for object restoration are then 

considered with emphasis on the relationship between this approach and 

resolution improvement in acoustic holography. For comparison between 

the various techniques, simplicity of the computations and robustness 

against noise have been prime considerations since these tend to 

limit the usefulness of such techniques in practical situations. 
Techniques for improving resolution in acoustic holography both 

beyond the diffraction limit and the wavelength limit are reviewed 

with emphasis on aperture expansion methods. Due to their relevance 
to the aperture expansion method described in the remainder of the 

thesis, the main data fitting and function extrapolation algorithms 

are breifly discussed. 

Chapter 4 presents a description of the new aperture expansion 
technique and contains the simulation tests performed on noiseless 
hologram data together with the relevant error analyses. The 

hologram function for a finite object in the Fresnel zone is shown 
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to be analytic and therefore can be extended in space. A number of 
basic polynomial, linear, and hybrid models which represent the 
hologram signal over the. available limited aperture are described 

and the results obtained when the models are used to predict new 

points outside this aperture are given for the case of simple 1-point 

and 2-point objects. Examples showing resolution distances of 0.25 

the Rayleigh limit in the case of 2-points are given. For simplicity, 

only line holograms are considered. An error analysis based on 
Taylor-series expansion is presented and a method for correcting the 

predicted data to improve on the prediction accuracy is suggested. 
Aperture expansion is shown to, yield the expected improvement in 

range resolution. The technique is then extended to imaging more 

complex objects consisting of a number of discrete points which 

simulate quasi-continuous objects. 

The performance of the aperture expansion algorithm in the 

presence of various forms of noise is considered in Chapter 5 together 

with the modifications required to the models described in Chapter 4 
in order to achieve stability with noise. A statistical analsis 
of the effects of measurement errors and errors in the positioning 
of the hologram samples is presented. The stability of the polynomial 
model with noise is discussed and it is shown that this stability 
increases when the matrix describing the model takes a triangular 

form. The performance of the triangular polynomial model is then 

considered for the case of a 1-point object with and without noise. 
The stability with noise is achieved at the expense of some loss in 

prediction accuracy and a triangular corrective model is employed. 
Imaging of multiple-point objects is then discussed using the linear 

model which assumes the triangular form due to the windowing effect 

at the construction stage. The effect of the computation accuracy 

and the round-off errors due to the limited word length of the 

computer is discussed for both the triangular and the square matrix 

models. 

In order to verify the effectiveness of the proposed technique 

when used on realistic measured holograms, an experimental holographic 
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imaging system has been designed and constructed; this is described 

in Chapter 6. This employs a microcomputer system based on a 
TMS 9900 16-bit microprocessor for controlling the various aspects of 
the imaging process which include aperture scanning, data acquisition, 
image reconstruction, hologram and image display, in addition to 

interfacing to a minicomputer which performs aperture expansion. The 

hardware and software for measuring the amplitude and phase of the 

complex hologram are described. Various aspects of the hardware and 

software design of the display system employed are discussed, with 

emphasis on the techniques adopted for economizing on the cost of the 

display memory by reducing the speed requirements and the method used 
for simplifying and speeding up the accessing of this memory by the 

microprocessor. The microprocessor software for image reconstruction 

which includes a two-dimensional FFT algorithm is described. 

Chapter 7 deals with the experimental results obtained using a 

single point object. The problem of hologram tilt is addressed 
because of its influence on the measured holograms and reconstructed 
images, together with methods for compensating, for the tilt effect. 
The experimental layout which allows for the correction of hologram 
tilt is then described. Images reconstructed from the full length of 
the measured line holograms are presented and the factors contributing 
to errors in these images are discussed. Results for aperture 

expansion are given where the measured aperture or part of it is 

enlarged by a factor of two. Methods for improving on the quality 
of the images obtained from predicted data are discussed, including 

the smoothing of the measured hologram data to reduce the effects 

of errors. At the end of this chapter, a number of simulation results 

on two-dimensional holograms are presented to demonstrate some 

aspects of resolution in holography. 

In Chapter 8 the final conclusions are made and suggestions for 

future work regarding both the theoretical and experimental aspects 

of the research are presented. 
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1.3.3 Contributions of the Thesis 

It is believed that this thesis makes the following contributions 
to the field of resolution improvement in acoustic holography and to 

acoustic holographic imaging in general: 

1) The thesis highlights the link between resolution improvement 

by aperture expansion in holography when imaging finite objects in the 

far field and the techniques of object restoration in optics and the 

extrapolation of band-limited time signals in spectral analysis. A 

common factor among all these techniques is that they attempt to 

extend the knowledge about the spectrum of the signal beyond the 

limit set by practical considerations which restrict the window over 

which the data is collected either in the space domain or time 

domain respectively. The three classes of techniques are based on 
the fact that the spectrum of a finite object, or the function with 

a band-limited spectrum, is analytic and can therefore be continued 
beyond a given region over which it is known. In spite of this 

striking similarity, methods adopted in optics or spectral analysis 
are rarely mentioned in the literature in the context of resolution 
improvement in acoustic holography; while it is believed that it 

would be beneficial to treat the problem in holography as one facet 

of the more universal problem and to make use of the techniques 
developed in the other fields. 

2) The Fresnel hologram of a finite object is shown to be an 

analytic function. Moreover, analogy with the problem of extrapolating 
time-limited functions in spectral analysis indicates that the 

hologram function is analytic in space regardless of the object range 

given that the hologram spectrum is band-limited. This serves to 

remove the restrictions on the imaging geometry for analytic 

continuation to be applied for aperture expansion. 

3) A 
. 
new technique for resolution improvement in holography is 

proposed which is based on aperture expansion through analytic 

continuation. With this technique, a model is fitted to the 

hologram data within the available aperture and is then used to 
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predict the data at new points outside this aperture. This method is 

believed to have the following advantages compared to other techniques 

reported in the literature for resolution improvement in optics 

and in acoustic holography: 

a) The method is computationally simple and is not inherently 

iterative. The model is constructed by solving a set of 
linear equations and prediction is performed through a 

recurrence relationship. Other iterative techniques require 
long computation times which restrict. the use of such techniques 

for resolution improvement when near real-time operation is 

required. 

b) The method does not require-the knowledge or estimation of 
the extent of the finite object to be imaged. The requirement 
for the object extent to be known or estimated demands additional 

a priori information which can restrict the application of 
other techniques. Moreover, the effectiveness of such techniques 
depends on the accuracy with which this parameter is estimated 
and the algorithms used may fail if the true object extent is 

underestimated. 

c) The algorithm operates directly on the hologram data without 

requirement for modifying this data or changing the acquisition 
procedure. In some other techniques, such modifications require 

additional a priori information on the object and may introduce 

errors in the processed data. 

d) The algorithm is valid for objects in the Fresnel zone and 
therefore reduces the restrictions on the imaging range and 
the extent of both the object and the hologram aperture. This 

makes the method more versatile and allows for a wider range 

of imaging geometries. 

e) The method is robust against noise and offers some flexibility 

in achieving a compromise between prediction accuracy and noise 

sensitivity by proper choice of the model used. Experimental 

results have indicated the effectiveness of the method with 
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realistic holographic data. 

f) Simulation tests performed on discrete quasi-continuous objects 

suggest that the technique would be suitable for use with 

continuous objects. 

4) The experimental 
designed and constructed 

small minicomputers and 
desirable integration be 

imaging process together 

resolution improvement. 

holographic imaging system which has been 

serves to demonstrate the capabilities of 

microprocessor systems in achieving the 

tween the various aspects of the holographic 

with the attendant signal processing for 

5) A novel technique'for digitally measuring the phase of the 

hologram signal is described. The digital phase measurement allows 

shorter acoustic pulses to be used compared to the conventional techniques 

of measuring the real and imaginary components as DC levels using 
balanced mixers. The use of shorter pulses should improve the range 

resolution of holographic imaging systems. 
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CHAPTER 2 

A REVIEW OF ACOUSTIC HOLOGRAPHY 



2.1 Introduction 

Since its advent as an off-shoot of optical holography in the 

late sixties, acoustic holography has been the subject of a considerable 

amount of research, especially during the first decade of its develop- 

ment. Although it started by following the same lines adopted in 

optical holography, it was not long before the advantages offered 
by working in the acoustical domain made their impact. This manifested 
itself in simplifying the processes involved and in the great diversity 

of techniques offered for hologram acquisition and image reconstruction. 

In this chapter, following a short historical background, the 

basic principles of holography are reviewed together with the techniques 

used for recording and reconstructing acoustic holograms. Here, the 

word 'hologram' is used in a broader sense than just the photograph of 

a diffraction pattern caused by the interference between an object wave 

and a mutually coherent reference wave, rather the record of the 

complex amplitude of the field across the wavefront at a given plane 

which is sufficient to reconstruct a replica of the wavefront at other 

planes. Emphasis will be on the fundamental techniques rather than the 

details of systems and equipment. Because of its relevance to the 

work described in this thesis, the method of digital image reconstruction 

will be dealt with in more detail. 

Main design aspects of holography as an acoustic imaging system are 
then considered. The relationships governing the various system para- 

meters such as resolution, range, and field of view are derived and the 

factors and trade-offs affecting the system design briefly discussed. 

This is followed by a comparison between holography and other imaging 

techniques, such as B-scan, lens, and beam-forming systems. Towards the 

end of the chapter the various areas of applications for acoustic 
holography in the fields of nondestructive evaluation, underwater 
imaging, medical diagnostics, and seismic imaging are discussed. The 

limitations associated with acoustic holography are then considered 
together with prospects for overcoming some of these limitations. 
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2.2 Historical Background [1], [2], [3] 

Attempts to use sound for imaging date back in history to the 

early decades of this century [4]-[6]. However, the past two decades 

have witnessed a spurt of new research activity in this field, stemming 

primarily from the progress made in optical holography and the advent 

of laser. 

Holography was initiated as an interferometric technique for 

coherently recording the exact complex wavefront of an optical wave 

and subsequently reconstructing it using coherent light. As a method 

of imaging, holography is based on the principle wavefront reconstruction 
investigated originally by Bragg [7]. This principle allows the wave- 
front of a propagating wave to be reconstructed at any plane with the 

knowledge of the exact complex field of the wave at one plane. 
Optical detectors, such as photographic plates are of the square- 
law type and therefore sense only the light intensity with the phase 
information being lost in the process as in ordinary photography. It 

was Gabor [8] who first recognized that both the amplitude and 

phase information of an object wave can be stored in the fringe 

pattern obtained when the object wave is present simultaneously with a 
suitable coherent reference on a recording medium, even when that 

medium responds only to intensity. However, it was not until the 

advent of laser in the early sixties that the modern revolution in 

holography began. Laser provided the required light sources with 

coherence lengths long enough to make it easy to record and reconstruct 
holograms. In 1962 Leith and Upatneiks [9] have established the link 

between the techniques used in holography and the concepts of 

communication and information theory, suggesting a modification of the 

Gabor's original technique, which greatly generalized and improved the 

holographic process. In 1964 great popular interest was created when 
the same authors [10] demonstrated the three dimensional imaging 

capabilities of holography. The success in optical holography 

prompted efforts to investigate the use of holography in other parts of 

electromagnetic spectrum and with other forms of radiation. 

The early experiments with acoustic holography were direct analogues 
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of optical holography methods which employed a separate 

reference beam and used square-law area detectors. The first ultrasonic 
hologram [3] was recorded by P. Greguss [11] in 1965 using a photo- 

graphic plate whose exposure depended upon chemical changes introduced 

by the impenging sound. This was followed by the now well-known 

method of liquid-surface holography [12], also known as the static 

ripple method. In this technique, the acoustic hologram is recorded 

as deformations on the surface of a liquid-air interface. Other 

intensity-sensitive acoustic detectors reported in the literature for 

use in holography include liquid crystals [13], thermoplastic films [14], 

and suspended particles [15]. 

Linear detectors, which are readily available in acoustics, 
have greater sensitivity than intensity detectors. They also offer 
the advantage of replacing the acoustic reference with an electronically 

simulated reference during the recording of the hologram. This 

simplifies the recording process and adds to its flexibility. Additionally, 

the relatively large wavelengths in acoustics have made it possible 
to sample the hologram at a finite number of discrete points instead 

of continuously recording it in space as in the case of area detectors. 
Thurstone [16) was the first to describe such a system in an elementary 
form in 1966 using mechanical scanning. Since then, this category 

of sampled holograms has featured prominantly in the literature. 

In search for more speedy methods of scanning the hologram aperture, 
the Sokolov tube arrangement which had been in use for direct imaging 

for a number of years was employed [17]. Another method for rapidly 
forming acoustic holograms using a laser scanning technique was 
described by Korpel and Desmares [18] in 1969. This technique is known 

as the dynamic ripple or solid-surface method. 

The relatively small numerical apertures in acoustic holography 

have also made it possible to use piezoelectric arrays to sample 
the hologram [19]. Arrays made up of other types of transducers have 

also been reported in the literature, these include the electrosta- 
tic [20] and the condenser microphone [21] types. 
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A number of techniques have been used for simulating the 

acoustic reference electronically in sampled holographic systems. 
These include the addition [22] or multiplication [23] with an electronic 
wave of the same frequency as that of the object wave, followed by 
low pass filtering and DC biasing. Other methods employ frequency 

offsetting a signal derived from-the electronic. signal used to 

insonify the object [24]. 

Although the linear detectors used in the methods described' 

above detect the complex amplitude of the object wave, the end product 

after mixing with the simulated reference is a hologram transparny 

for optical reconstruction. With fast computers becoming available 

and with the discovery of the Cooley and Tukey algorithm (25] for the 

Fast Fourier Transform in 1965, it has become possible to use 

computers to reconstruct acoustic holograms. Computers can be used 
to reconstruct a digitized form of a hologram transparancy by 

simulating the diffraction of coherent radiation by the hologram in 

direct correspondance with the process of optical reconstruction. 
Alternatively, the computer can operate directly on the data 

corresponding to the measured complex amplitude of the object wave 
over the hologram plane. In this way the process of recording the 
hologram as an interference pattern, whether actual or simulated, is 
bypassed altogether. 

In 1969, Sondhi [26] reconstructed the image of an object from 

measurements of the amplitude and phase at a discrete set of sampling 

points in a plane at some distance from the object. In the same 

year, Boyer et al [27] reported a similar technique using the Fresnel 

approximation. In the following year the same authors [28] 

described a more powerful technique of wavefront reconstruction by 

backward wave propagation in the frequency domain, thus removing the 

restrictions on the object range and aperture size which limited the 

application of the Fresnel method. 

Acoustic holography has found application in areas such as seismic 
imaging [29], medical diagnostics [30], underwater viewing [19], [31], 

and nondestructive evaluation [32]. As the digital processing becomes 
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faster and cheaper, the use of dedicated microcomputers and signal 

processing devices should reduce the problems of speed, and cost 

associated with the data processing for digital image reconstruction 

and wider applications of the principles of holography can be 

expected. 

Acoustic holography today represents several different processes 

and techniques which have played an important role in the field of 

acoustic imaging. Equally significant has been the influence of the 

holographic approach on the entire field of acoustic imaging in 

fertilizing and refining existing imaging concepts and techniques. 
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2.3 Principles of Holography 

It is well known in physics that coherent light, or any form 

of monochromatic radiation, which passes through an aperture is fully 

described by the amplitude and phase distribution within that aperture. 
According to the principle of wavefront reconstruction, this information 

is sufficient to reconstruct the wavefront at other planes along the 

path of propagation of the incident wave. If the incident wave 

carries information about an object, it will be possible to obtain 

an image of the object. To perform this method of imaging in optics 

was not possible before the introduction of the concept of holography 

as a two-step process by Gabor in 1948 and the discovery of laser as 

a source of coherent light later in the early sixties. 

2.3.1 Imaging With Wavefront Reconstruction 

Gabor [8] showed that phase information of an arbitrary coherent 

optical wavefront can be recoded on square-law detectors, which are 
the only type of detectors available in optics, by converting this 

information into intensity variations for recording purposes. This is 

achieved by allowing the wave to interfere with a mutually coherent 

reference wave of known amplitude and phase. The intensity of the 

resulting interference pattern is recorded on a photographic film 

which Gabor called 'Hologram', i. e. 'total recording'. At the end of 
this recording step the hologram contains both the amplitude and phase 
information of the original wavefront. 

In the second step, the original wavefront is reconstructed by 

illuminating the hologram by a coherent wave. The fringe pattern 

recorded on the hologram acts as a diffraction grating and causes 
the incident wave to be diffracted, thus generating new waves which 
include the original wavefront. If the original wavefront is obtained 
by transmission through, or reflection off, an illuminated object, the 

reconstructed wavefront furnishes a three-dimensional image of the 

object. The key mechanisms involved in holography are therefore 

interference in the recording step, and diffraction in the reconstruc- 
tion step. 
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Fig. 2.1a depicts the recording process. Let the object 

wavefront at the hologram plane be given by: 

a(x, y) = a(x, y) exp[-jq(x, y)] ° (2.1) 

and the reference wavefront be: 

A(x, y) = A(x, y) exp[-j*(x, y)] (2.2) 

where a(x, y), A(x, y) are the amplitude distributions, and cp(x, y), i(x, y) 

are the phase distributions of the object and reference waves over the 

recording plane. 

The reference wave interferes with the object wave at the 

recording plane, the intensity of the sum of the two waves is given 
by: 

I(x, y) _ IA(x, y) + a(x, y) 12 

_ IA(x, y)12 + (a(x, y)12 + 2A(x, y)a(x, y) 

cos[*(x, Y)-q(x, Y)] (2.3) 

The first two terms are the intensities of the two interferring 

waves, while the third term contains their amplitudes and relative 

phase. The expansion in eqn. (2.3) can also be written in the form: 

I(x, y) =JAI2 +ja(x, y)12 + A*a(x, y)+Aa*(x, y) (2.4) 

where '*' indicates the complex conjugate in the space co-ordinates. 
The photographic film at the hologram plane provides a linear 

mapping of the intensity. incident during exposure into amplitude 
transmittance, T(x, y) after the film is developed which is proportional 
to I(x, y) in eqn. (2.4). 

To reconstruct the object wavefront a(x, y) the developed 

transparancy is illuminated by a coherent reconstruction wave B(x, y). 
The light transmitted through the transparancy is given by: 

B(x, y) T(x, y) = JA12 B +ja12 B +A*Ba + ABa* 
(2.5) 

u1 +u2+u3+u4 
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where the space co-ordinates x, y were omitted for simplicity. 

If the reference wavefront is assumed to have a uniform intensity 

over the recording surface, then 1A12 will have no spatial variations 

and therefore causes no diffraction of the constructing wave B. The 

first term uý is therefore an attenuated version of the incident 

wave B(x, y) , referred to in optics as the zero order term. The 

second term is a non-image-forming term since the phase portion of 
the object wave, a, is missing. It represents a noise-like background. 

The prospect for reconstructing the original wavefront, a, lies 

therefore in the remaining two terms u3 and u4. 

If the illuminating wave B is chosen to be an exact duplication 

of the reference wave A used in the recording process, i. e. B=A, then 

the third term in eqn. (2.5) becomes JA12 a(x, y) which is, up to a 

simple multiplicative constant, an exact replica of the original 

object wavefront as shown in Fig. 2.1b. For an observer at the 

right hand side of the hologram, the transmitted wave component u3 
as defined by eqn. (2.5) would appear to be diverging from the 

original object. Thus the term u3 can be regarded as generating a 
virtual image of the object . 

Similarly, if B is a spatial conjugate of the reference wave, i. e. 
B=A*, then the fourth component of the transmitted field, u4. is 

proportional to the conjugate of the original object wavefront, Fig. 
2.1c. This wavefront converges in the space to the right hand side 

of the hologram to form a real image of the object corresponding to an 

actual focusing of light. 

It should be noted that in both cases of wavefront reconstruction, 
the field component of interest, i. e. u3 for B=A or u4 for B=A* , 
is accompanied by three additional unwanted components. Obviously, 

such components have to be separated in space from the required 

wavefront in order to remove any extraneous interference with the 

required image. 
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2.3.2 Gabor's on-axis holography 

In the arrangement for holographic imaging first proposed by 

Gabor, colinear object and reference waves were used as illustrated 

in Fig. 2.2a. A highly transmittive object is illuminated by a 

collimated coherent wave. Because of the high average transmittance 

of the object it passes a strong uniform plane wave which acts as a 
reference together with a weak scattered wave which is generated by 

the small spatial variations in the object transmittance and therefore 

carries object information. In this case, therefore, the object wave 
is much smaller in amplitude than the reference wave, i. e. a(x, y) « A, 

and the object supplies the required reference wave through its 

average high transmittance. 

The developed transparancy is illuminated by a normally incident 

plane wave of uniform amplitude B, Fig. 2.2b. The resulting transmitted 

field amplitude is proportional to: 

BI(x, y) = BIA12 +Bla(x, y) 12 + BAa(x, y)+BAa*(x, y) 
(2.6) 

=U1 +u2+u3+u4 

where use has been made of the fact that A=A* since A is normal to 
the hologram. Because both A and B are uniform, the third term u3 
represents a field component which is proportional to the original 
scattered wave a(x, y). This wave creates a virtual image of the 

original object located at distance z from the hologram (Fig. 2.2b). 

This is the same distance between the actual object and the photographic 
film during recording. Similarly, the fourth term leads to the formation 

of a real image of the object at the same distance on the opposite 

side of the hologram transparancy. 

The basic limitation of this type of hologram is that both 

images occupy the same space, around the hologram axis, accompanied 
by the zero order term u1 and the noise term u2 in eqn. (2.6). To 

reduce the effect of the noise term and prevent it from dominating 

the image components, the magnitude of the object wave must be much 

smaller than the reference wave. In practice this restricts the 
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use of Gabor's hologram in many applications. Another serious limit- 

ation is the difficulty in separating the twin images generated. 
When one image is brought to focus, it is always accompanied by a 
defocused contribution from the other image which adds spurious 
details in the image. 

2.3.3 Leith-Upatneiks'_0ff-Axis Holography 

The most common type of holograms is the off-axis or offset- 

reference type described by Leith and Upatneiks [9]. This hologram 

avoids the restrictions on the nature of object transmittance and 
the problems of inseparability of the twin images and other 

reconstruction products which severely limit the use of the original 
Gabor hologram. This is achieved by introducing a separate and 
distinct reference wave during the recording process rather than 

depending on the object to transmit the reference. The reference wave 
is introduced at an angle which can be chosen large enough to 

separate the reconstruction products in space. 

Fig. 2.3a shows an arrangement for recording an off-axis 
hologram. A collimated coherent light beam is split'into two portions, 
one illuminating the object and the other deflected by a prism to fall 

on the recording film at an angle e with the film normal. The 

tilted plane wave comprising the reference interferes with the object 

wave and the resulting amplitude distribution across the film is 

given by: 

u(x, y) -A exp(-j2ýmax) + a(x, y) (2.7) 

where A 
. 
is the uniform amplitude of the incident reference wave 

and a is the spatial frequency of the reference wave, 

sine cycles/mm (2.8) 

and a(x, y) is the object wave, eqn. (2.1). 

The intensity distribution across the film is given by: 

I(x, y) - A2+la(x, y)J2+A a(x, y)exp(j2itax)+Aa*(x, y)exp(-j2max) 
... 

(2.9) 
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Eqn. (2.4) describing the on-axis hologram is a special case of 

eqn. (2.9) when 0-0 and therefore a-0. 

Combining the last two terms of eqn. (2.9) yields: 

I(x, y) - A2 + la(x, y)12+ 2 Aa(x, y)cos[2itax-p(x, y)] (2.10) 

The last term of eqn. (2.10) reveals that the amplitude and phase of 
the object wave have been recorded, respectively, as amplitude and 

phase variations of a spatial carrier of frequency a which is 

produced by the reference wave. 

The reconstruction process is illustrated in Fig. 2.3b where the 

developed transparancy of the recorded film is illuminated by a 

normally incident uniform plane wave of amplitude B. Dropping 

unimportant constants related to film development and using eqn. (2.9), 

the field transmitted by the hologram has four distinct components: 

u1 = BA2 

u2 =B Ia(x, y)I2 

u3 = BA a(x, y) exp (j2max) (2.11) 

u4 = BA a*(x, y) exp(-j2iax) 

The field component u1 represents the zero order undiffracted 

plane wave travelling along the hologram axis. The second component 

u2 is a noise term which carries some spatial variations and therefore 

would generate wave components at various angles with the optical axis. 
Component u3 is proportional with the object wave, therefore it 

generates a virtual image of the object at distance z from the hologram. 

The linear exponential term in u3 indicates that the image is deflected 

at an angle e off the hologram axis, e being the angle of incidence of 
the reference wave during recording. Similarly component u4 generates 

a real image at the opposite side of the hologram and at the same 
distance from it, but deflected at an angle -e from the axis. 

Fig. 2.3b shows that if the angle e is large enough the twin 

images will be separated from each other and from the remaining 

reconstruction products. Frequency domain analysis [33] shows that 
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complete separation is achieved when the spatial frequency of the. 

reference across the recording plane, a, satisfies 

a> 3B (2.12) 

where B is the width of the spatial frequency spectrum of the object 

in cycles/mm. Consider the critical value of the carrier frequency at 

which the reconstruction products can just be separated. From eqns. (2.8) 

and (2.12) the corresponding minimum angle of incidence of the 

reference wave is given by: 

0 
min - sin-' 3BA (2.13) 

In this case, the maximum spatial frequency on the hologram is: 

f- 46 (2.14) 
max 

Although off-axis holography succeeds in separating the twin 

images, this is achieved only at the expense of increasing the spatial 
frequency content of the hologram which is a direct consequence of using 

a tilted reference wave with a carrier frequency a as compared to 

zero carrier frequency in the case of on-axis holography. In acoustics, 
the spatial resolution during the recording of the hologram is often 

restricted by technical difficulties or due to time and cost consider- 

ations. Since the spatial frequency of the reference increases with the 

increase in the angle 0, the minimum value should be used which is 

just enough for image separation. 

2.3.4 Holographic Images 

The images obtained when the hologram is reconstructed retain all 

the three dimensional characteristics of the original scene. One 

particular effect that is readily noticed in the case of the virtual 

image is the parallax effect, where the observer can look behind objects 

in the foreground by simply changing his viewing position. The observer 

in this case reconstructs somewhat different areas of the hologram 

corresponding to different wavefronts scattered from the object 

during recording, and therefore obtains different views. 

24 



In general, holographic images suffer from a number of drawbacks 
[33] unique to coherent and non diffused illumination. One of the 

problems associated with coherent imaging in general is the speckle 

effect which is responsible for the granular texture of coherent images. 

Due to the roughness of most objects relative to the wavelength of the 

illuminating radiation and the high coherence of the illuminating 

source, constructive and destructive interference takes place between 

waves scattered by various points on the object thus leading to the 

grainy appearance of the image. The size of the individual speckles 

can be shown [34] to be roughly the same size of a single resolution 

cell on the object. This indicates that when a particular object 
is near the resolution limit of the imaging system, the speckle 

effect not only affects the appearance of the image but can also 

affect the resolution and add spurious details in the image. Because 

the speckle size is inversely proportional to the numerical aperture 
of the hologram, speckle is a more serious problem in acoustic 
holography due to the limited aperture because of the large wavelength. 

Another problem which characterizes images obtained through 

reflection holography is that of specular reflections. Smooth 

objects, relative to the radiation wavelength, cause reflections' from 

mirror like parts to dominate the hologram signal. When the hologram 
is reconstructed this causes highlights in the image. If the 
dynamic range of the recording medium is not large enough then 

spherical objects may appear as points and cylindrical ones as lines. 
Again, because of the large wavelength in acoustics, objects considered 

rough in optics are smooth relative to the acoustic wavelength. This 

makes the specular reflections more serious in acoustics. Although 

diffuse illumination can help remedy this problem, it tends to 

increase the speckle effect in the image. Another coherence effect 
in holographic images is that of edge riging [33] which causes the 

edges of objects in a coherent image to be less sharply defined in 

comparison with the case of images obtained by incoherent illumination. 

Of particular importance to the use of holography in acoustics is 

the magnification parameter [33] which relates the object dimensions 

to the dimensions of the virtual image. When the reconstruction 
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wavelength is'different from the recording wavelength, as in the 

case of reconstructing an acoustic hologram optically, the manification 
in the depth dimension is greater than in the lateral dimensions. 

This causes distortion in the resulting three-dimensional image. 
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2.4 Hologram Acquisition Techniques 

In optics there is virtually one basic technique for acquiring 
the holographic information; by recording the hologram as an 
interference pattern between the object wave and a reference wave 

when they simultaneously impenge on the recording photographic 

plate. Similarly, optical reconstruction of the hologram transparancy 

is the most viable and suitable method for recovering the optical 
image. In acoustics, however, a number of factors have contributed 
to the great diversity in the techniques used in hologram acquisition and 
image reconstruction. These factors include: 

1) The lack of suitable area detectors of the square-law type 

which could replace the photographic plate in acoustics with equally 
high sensitivity and resolution in detecting distributions of acoustic 
intensity. 

2) The availability of linear detectors which are sensitive to 

the complex amplitude of the acoustic signal. 

3) The feasibility of sampling the acoustic hologram at a 
finite number of points because of the smaller numerical apertures 
and lower spatial frequencies compared to optics. 

4) The problems associated with optical reconstruction of 
acoustic images due to the use of different wavelengths in the 2 steps 

of the holographic process. 

5) The feasibility, and advantages, of using the computer to 

reconstruct the image from holographic complex data in acoustics. 

This led to a wide range of methods which achieve the basic 

principle of acoustic imaging by wavefront reconstruction. These 

methods vary. from direct analogues of the optical techniques, such 

as the liquid surface method, to techniques where the computer calculates 
the image by operating on a set of data without even the need for 

a hologram to be recorded as an interference pattern. A large 

group of methods employ a reference wave simulated electronically. 

All hologram acquisition techniques, with the exception of those 
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using square-law detectors employ some form of spatial sampling and 

use an electronic reference in one form or another. Before reviewing 
the various techniques of hologram acquisition, some aspects of hologram 

sampling are discussed together with the use of electronic reference 

waves in acoustic holography. 

2.4.1 Some Aspects of Hologram Sampling 

- The subject of sampled and scanned holograms is discussed in a 

number of publications [35], [36]. Because of the large wavelength, 

acoustic holograms can be sampled at a relatively large spacing. 
For reasons of speed, economy, and convenience, the sampling frequency 

should be kept to the minimum required for the proper acquisition of 
the hologram information. Additionally, the finite size of the 

sampling detector also affects the sampling of the hologram. 

. The Sampling Frequency 

Let g(x, y) be a band-limited function describing the spatial 
hologram distribution in the xy plane. This function can be the 

result of interference of the object wave with a simulated or actual 
reference. Assume that the hologram is sampled over an infinite 

aperture in two dimensions at an infinite number of equally spaced 
points on an orthogonal lattice using an ideal point detector. Let 

Ax and Ay be the sample spacings in the x and y directions respectively. 
Since g(x, y) is assumed to be band limited, its specturm, G(fx, fy) 

is non zero over only a finite region of the frequency space extending 

over ± fx 
max 

in the fx direction and ± fy max in the fy direction. 

The spectrum of the sampled hologram , Gs(fx, fy) is the result 

of a convolution in the frequency domain between the spectrum G(fxofy) 

and that of the array of sampling Delta functions located at the 

sampling points, hence 

Co m 
G(f, f )=EE G(fx- -, fy öy ) (2.15) 

SXy m=-�n--- 

This spectrum consists of a multiplicity of the spectrum G(fx, fy) 

each centred about each point (n/ox, m/ey); n, m=-m,... *, in the fx, f 
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plane. The centres of the hologram function spectra are therefore 

separated by 1/Ax in the fX direction and 1/ay in the fy directions. 

When the hologram is optically reconstructed, each of the spectra 
is capable of producing an image corresponding to the hologram 

function. Therefore, the effect of hologram sampling is that 

multiple images are produced. The physical explanation of this is that 

the sampling lattice has the same effect as a two-dimensional 

grating superimposed on the continuous hologram transparancy. When 

the transparancy is illuminated by coherent light for reconstruction, 
the light usually diffracted to form the image in the case of a 

continuous hologram is further diffracted by the lattice grating to 

form additional multiple images arranged orthogonally to the grating 
lines. 

These multiple images would overlap in space if their spectra 

overlap in the frequency domain. To prevent this, the spacing 
between the centres of the spectra in eqn. (2.15) must be greater 
than or equal to the total spectrum width in that direction. The 

upper bounds for the sampling intervals are therefore 

eX <2 f1 and AY <2f1 (2.16) 
X max y max 

when these two conditions are satisfied, no aliasing of the spectra 
takes place and it is theoretically possible to recover the original 
function g(x, y) exactly by passing the sampled function through a 
linear filter that transmits only the centre spectrum (n=0, m=0) of 

eqn. (2.15) without distortion while perfectly excluding all other 
terms. Eqn. (2.16) indicates that the samples should be spaced 

at half the period of the finest fringe to be recorded or less. 

To determine the maximum spatial frequency over the hologram, 

consider the simple one-dimensional case illustrated in Fig. -2.4. 
Any object can be considered as a series of points and the maximum 
frequency over the hologram aperture will be that corresponding to 

an extreme point on the object. In Fig. 2.4 two points represent 
the object and the reference at co-ordinates (x1, z1) and (x2,22) 
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respectively. Assuming that the two points radiate in phase, the 

phase of the resultant signal incident on the hologram at point 
(x, 0) is given by: 

'(x) =K (rj - r2) (2.17) 

where r and r2 are the distances between the point on the hologram 

and the object and reference points respectively and K is the 

wave number; K =21t/A where A is the wavelength. 

rj [z12+(x-x1)2]2 (2.18) 

r2 = [z22+(x-x2)2]2 (2.19) 

fx, the spatial frequency in cycles/mm at point x is given by: 

1a fx 2-n ax 
1 arl art 

a ax - ax 
] (2.20) 

Using eqns (2.18) and (2.19), fx is given by: 

x-x1 x-x2 
fx =C r1 - r2 

] (2.21) 

Applying the Fresnel approximation, 

rl' . r, and r2 . r2 (2.22) 

where r1 and r2 are the distances between the centre of the hologram 

and the object and reference points respectively, yields: 

x+ 
ý (x2 

X1 
) 

x ýº rý r2 r2 r1 

1(r-r1)x+1 (sine 
2+ sine1) (2.23) 

12 

where 01 and e2 are the angles between r1 and r2 respectively and 
the z axis. If plane waves are assumed for both the object and 

reference radiation, then r1 =W and r2 =- in eqn. (2.23) and fx 
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becomes constant over the hologram aperture at a value given by: 

sine 1+ sine2 
fx 

A 
(2.24) 

Eqn. (2.24) shows that the spatial frequency of the hologram 

increases as the angle between the object and reference waves increases. 

This indicates that the on-axis type of holography is more tolerant 

to large sampling spacing than the off-axis type. 

For a given inclination of the plane reference wave, the 

maximum spatial frequency will be determined by the wave components 

originating from points on the object furthest from the reference 

wave. If the furthest plane wave component makes an angle e1 
max 

with the hologram normal, then from eqns. (2.16) and (2.24) the 

maximum sample spacing allowable for proper sampling of the hologram 

is given by: 

(2.25) exmax -2 sine1 max + sine2 

For a given sample spacing ax, the requirement for proper sampling 
of the hologram restricts the field of view to rays arriving within 
a maximum angle given by: 

e1 
max sin-1 [ 

2äx - sin e2 ] (2.26) 

A 
. 
commonly used reference wave is that of a plane wave normally 

incident on the hologram plane. This also corresponds to the 

case when the complex object field is measured directly. In this 

case the phase is measured relative to the electronic signal used to 

generate the insonifying wave. This electronic reference therefore 

has a constant phase and hence simulates a plane wave normally 
incident on the hologram. For such a reference wave 02=0 and 
from eqns. (2.25) and (2.26), oxmax and 01 

max are given by: 
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xmax =2 sine 
a1 

max 
(2.27) 

e1 
max = sin-' Ze x 

(2.28) 

Eqns. (2.26) and (2.28) show that limitations on the sample spacing 

of the hologram restrict the field of view in a holographic imaging 

system. 

. Effect of Detector Size on Hologram Sampling 

In the above analysis it was assumed that the sampling is 

achieved using an ideal point detector. In practice, however, the 

detector will have a finite aperture over which the received signal is 

integrated and the resulting signal assigned to the sample value 

at the position of the aperture. centre, i. e. 

9'(Päxr 9äy)= 11 9(x 9 y)P(x-Päx, y-9äy) dxdy (2.29) 
_m -CO 

where g'(pox, gAy) is the new value assigned for the sample at 
coordinates(pnx, gny)and p, q are integers defining the position of 
the centre of the detector aperture on the sampling lattice and 

p(x-pAx, y-qoy) is the detector sensitivity function over its aperture, 

centred at the sample coordinates ( pox, qoy). 

Since the detector sensitivity can be assumed an even function, 

then from eqn. (2.29), the new function g'(x, y) is related to g(x, y) 
by: 

9'(x, Y) = g(x, y) * P(x, Y) (2.30) 

where * denotes spatial covolution. The hologram signal at the 

sampling point is therefore given in the frequency domain by: 

G'(fx2fy) = G(ff) . P(fxIfy) (2.31) 

where P(fx, fy) is the spatial frequency spectrum of the detector 

sensitivity function p(x, y). 
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Eqn. (2.31) shows that the hologram spectrum is shaped by the 

spectrum of the detector function before any effects of periodic 
sampling are introduced. If the detector aperture is wide enough, 
its frequency spectrum becomes narrow and some high frequency components 

of the hologram spectrum may be attenuated or cut off, thus leading 

to loss of information. This loss of spatial information is equivalent 
to a reduction in the-size of the hologram aperture and therefore 

causes deterioration in resolution and loss of fine details in the 

image. Moreover, limitations on the maximum spatial frequency 

that can be sampled on the hologram reduce the field of view. On 
the other hand, the sensitivity of the detecting transducer increases 

with the increase in its aperture area. This makes the choice of 
the detector aperture size a trade-off between sensitivity on one 
hand and resoltuion and the field of view on the other. 

Consider the case of a circular detector of diameter a with 
uniform sensitivity over its aperture. It can be shown [37] that 
the influence of the detector function becomes negligible if: 

a<1.22 [xf] 
min 

where (afImin is the minimum fringe width on the hologram, i. e. 

max + fy 2 C'xf]min - 1/ (fx 2 
maxi 

(2.32) 

(2.33) 

where fx 
max and fy 

max are the maximum spatial frequencies in the 

x and y directions respectively. 

2.4.2 Electronic Reference in Acoustic Holography 

Linear acoustic detectors, such as hydrophones and microphones, 

which are small enough to measure the local field amplitudes can 
be used to map out complex amplitude distributions across the 

hologram plane. The results can be used directly for computer 

reconstruction of the image,, or an electronic reference signal can 
be added to synthesize a hologram for optical reconstruction. The 

electronic synthesis of the reference wave has simplified the .. 
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hologram recording, increased the flexibility of the process, and 
led to a wide range of holographic methods and approaches. This 

section deals with the use of the electronic reference in the 

measurement of the complex field hologram and in the simulation of 

a plane wave acoustic reference. 

. Measurement of the Complex Field Hologram 

Sampling the complex acoustic field for reconstruction by the 

computer represents the most efficient sampling method for hologram 

acquisition. The phase of the received signal from the object wave 
is measured relative to the signal which generates the acoustic wave 
insonifying the object using a phase detector (Fig. 2.5a). The 

resulting phase together with the amplitude of the received signal 

at every point in the sampled hologram constitute the data inputs 

to the computer for image reconstruction [27], [28], [38]. 

In another method reported in the literature 1391- [41] the real 

and imaginary components constitute the data inputs to the computer. 
Fig. 2.5b illustrates a hardware implementation of this technique. 
The received signal enters two identical channels each consisting 
of a mixer, an integrator, and a digital to analog converter. The 

mixer in one of the channels multiplies the received signal by a 

component which is in phase with the insonifying signal. After the 
harmonic components in the product are filtered out, this channel 

produces a DC output which is proportional to the real part of the 

spatial complex field. Similarly, the imaginary part of the field 

is obtained through multiplication by a signal in phase quadrature 
with the insonifying signal in the other channel. 

Simulation of a Plane Wave Acoustic Reference 

The above two methods for holographic data acquisition implicitly 

use a reference whose phase is constant over the hologram aperture. 
This is equivalent to a wave normally incident to the hologram. 

Consider the simulation of an electronic reference at a general 
inclination angle with the hologram plane. To simplify the analysis 

without affecting its generality the object is assumed to be 
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illuminated by a plane wave normally incident to the hologram plane 

while the reference to be simulated is a plane wave incident at 

angle e with the hologram normal. This recording configuration is 

similar to that shown in Fig. 2.3a, for which the hologram intensity 

is given in eqn. (2.10). From eqn. (2.8), the angle 0 of the 

reference wave is related to the spatial carrier frequency 
.a 

by 

sine = as (2.34) 

Consider a mechanically scanned hologram, Fig. 2.6, of a similar 

configuration to that of Fig. 2.3a with the exception that the 

physical reference wave is to be electronically simulated. The 

effective reference wave is shown dashed in Fig. 2.6. The object 

signal is linearly detected at a number of points spaced at distance 

ex and is given by: 

a(x, y) =a (x, y) sinfwt-c(x, y)] (2.35) 

To simulate an inclined plane wave reference, a signal derived from 
the insonifying signal has its phase stepped by an increment AT 
between the samples. The spatial rate at which the phase of the 

simulated signal is varied along the hologram scan is: 

B= (2.36) 

and the simulated signal at point x on the scan has the form: 

R=A sin[wt- ßx) (2.37) 

At every sample point along the scan the detected and the simulated 

signals are multiplied in a balanced mixer and the harmonic components 
filtered out by a low pass filter. The resulting DC term is given 
by: 

I'(x, y) =2A a(x, y) cos[gx-q, (x, y)] (2.38) 

Comparing eqns. (2.38) and (2.10), and recalling that the third term 

in eqn. (2.10) is the only term responsible for the reconstruction 
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of the twin images, it is obvious that the hologram signal obtained 

with the simulated reference in Fig. 2.6 is similar to that with a 

physical reference in Fig. 2.3a. From the comparison of eqns. (2.38) 

and (2.10) and taking eqn. (2.36)into account, eqn. (2.34) shows 
that the two reference waves will be equivalent when: 

sine =aA 

- 
AY (2.39) 
2nc Tx- 

For an on-axis reference e=0 and 49=0, while with Ax= A an off-axis 

reference at 0=30° is simulated when np=7t. 

This method for the electronic simulation of the reference wave 
has the advantage that the noise generating term la(x, y)12, is absent 
from the hologram signal. This improves the quality of the resulting 
images and reduces the requirement on the sampling of the hologram, 

cf. sec. 2.3.3. 

The simulation of the reference wave by an electrical signal 
whose phase is continuously varied in space is used when the hologram 
is mechanically scanned [42] or when an array of fixed transducers 

is used to sample the hologram [43]. Fast scanning methods such as 

electron beam scanning of the ultrasonic camera [24], [44] and the 

laser beam scanning [18] provide a more convenient means of intro- 

ducing the electronic reference using a frequency offset. If the 

frequency of the insonifying signal is offset by ew before it is mixed 

with the object wave then the angle of the simulated reference is 

given by: 

sine = 
Aw 2ý (2.40) 

x 

where vX is the scanning speed 

2.4.3 Review of Basic Methods of Hologram Acquisition 

In this section the basic methods for recording the hologram 

or acquiring the holographic data are briefly described. These 
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include the liquid-surface method, the dynamic ripple method, the 

ultrasonic camera technique, and the sampling of the hologram using 

arrays or mechanical scanning. 

. Liquid-Surface (Static Ripple) Holography 

This was one of the earliest techniques for recording and 

reconstructing acoustic holograms in real time [12], [45]. Fig. 2.7 

shows a simplified diagram for the arrangement used. Two immersed 

transducers generate the acoustic wave insonifying the object 
together with a mutually coherent reference wave. The object and 

reference waves interfere at the liquid-air interface causing 
deformations in the liquid surface which represent the resulting 

acoustic hologram. 

The surface of the liquid can be photographed to form a transparancy 

for optical reconstruction. Real time reconstruction can also be 

achieved as shown in Fig. 2.7. A 
. 
laser beam illuminates the 

surface ripples and, upon reflection from the surface, it is modulated 
by the surface configuration. The image resulting from the 
diffraction of the illuminating laser by the hologram fringes is 
detected by a TV camera and displayed. 

One of the basic limitations of this method, apart from the much 
lower sensitivity compared to piezoelectric detectors, is its spatial 
frequency limitations. Detailed analysis [46] shows that the liquid 

surface acts as a low pass filter in the spatial frequency domain 

and therefore suppresses the higher frequency components in the 

interference pattern. This limits the angle of the reference beam that 

can be used and makes this method best suited for on-axis holography. 

By-pulsing the acoustic waves it is possible to increase the 

spatial cut-off frequency of the transfer function of the liquid 

surface and to improve on the image quality in general [1]. 

. Solid-Surface (Dynamic Ripple), Laser Beam Scanning Technique 

In this technique [18] the object wave impenges on a solid 

surface coated by a light reflecting layer. A 
. 
laser beam scans 
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the surface and picks up the local acoustic excitations as linear 

phase variations. These are transformed into amplitude variations in 

an electrical signal using a knife edge placed in front of a photo- 
detector. The electrical signal is then mixed with an appropriate 

reference signal to produce a hologram in real time which is displayed 

and can be photographed for optical reconstruction. This method of 
hologram detection has better resolution and sensitivity compared 
to the liquid surface method and is therefore suitable for high 

frequency imaging. 

. Hologram Recording with the Ultrasonic Camera 

The ultrasonic camera (Solokov tube) was adapted by Fritzler et 

al [24] for use in recording holograms with both physical and 

electronic references. A schematic diagram for the apparatus used 
in the latter case is shown in Fig. 2.8. A quartz crystal located 

at the front window of a cathode ray tube is irradiated by the object 

wave. This induces voltages in the piezoelectric crystal whose 
magnitude at any point on its surface varies linearly with the 
instantaneous amplitude of the acoustic signal at that point. This 

voltage modulates the intensity of the secondary emission generated by 
the scanning electron beam. The resulting signal is amplified 
in the electron multiplier and in an RF amplifier before it is mixed 

with an electronic reference of the frequency offset type whose phase 
is locked onto that of the signal generator during the blanking period 

of each scanning frame in the vertical direction. The frequency 

offset Aw controls the angle of the simulated plane reference wave with 
the horizontal as given by eqn. (2.40). The resulting hologram is 

displayed and may be photographed for optical reconstruction. 

Although this method has the advantages of fast scanning and 

simplicity of operation, it suffers from a number of basic limitations 

which restrict its use in holography. The ultrasonic camera suffers 
from a limited field of view of approximately ± 10° from the tube 

axis for operation in water [21] due to the impedence mismatch 
between water and the piezoelectric material. This creates severe 
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limitations on the imaging geometry and the use of off-axis acoustic 

reference waves. Further limitations on the field of view at low 

operating frequencies arise from the large thickness of the piezoelectric 

plate which has to be used in order to maintain operation at 

resonance for optimum sensitivity since this limits the spatial 

sampling resolution [37]. At higher frequencies, the reduced thickness 

of the plate often restricts the size of the plate for considerations 

of mechanical strength and therefore limits the aperture area 

available. 

. Hologram Sampling with Arrays 

Piezoelectric arrays as linear area receivers have a number of 

advantages over the' piezoelectric plate discussed in the previous 

section in connection with the ultrasonic camera. In the case of 

arrays, the mechanical strength is no longer a limiting factor, and 
therefore large apertures can be covered. The sampling spatial 

resolution of the array is no longer limited by the element thickness, 

but will be determined by the size and the spacing between the array 

elements. Moreover, because each element of the receiving array can 
be processed individually, its signal can be integrated over the 

full time of the signal duration, therefore increasing the sensitivity. 
Such arrays have been used in holography both in linear [39] and two- 

dimensional [41] configurations. 

The cost of building two-dimensional piezoelectric arrays rises 

rapidly with the increase in the array size. To achieve the most 

efficient use of the number of array elements, most holographic 

array systems reported in the literature are used to detect the 

complex field hologram-rather than the interference pattern with a 

real or simulated reference. This is achieved by measuring either 
the amplitude and phase or the real and imaginary parts as described 

in section 2.4.2 To further economize on the array size, synthetic 

aperture techniques [47], [48] have been used so that a combination 

of a sparse transmitting array and a small filled receiving array 

can sample a large aperture area. The majority of holographic array 

systems in existance are used for underwater. imaging. Because of the 
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large distances involved and therefore the large apertures required, 

arrays provide the most practical way for hologram sampling, especially 
in the hostile underwater environment. 

Electrostatic receiving arrays have also been demonstrated as 
linear array detectors for hologram sampling [20], [21], [49]. The 

advantages of these arrays in their potential simplicity, especially 
their amenability to printing techniques. An array of N2 elements 

can be fabricated using only 2N electrodes by printing a set of N 

line electrodes as rows on one side of a plastic film and another set 

as columns on the other side. Although this technique allows arrays 

of large size to be built at a relatively low cost, electrostatic 

arrays in general suffer from lower sensitivity and greater inter- 

element cross-talk compared to piezoelectric arrays. 

. Mechanical Scanning 

Mechanical scanning provides a convenient and economic way of 
sampling the hologram information. An appropriate detector such as 

a small hydrophone or a focused transducer scans the hologram plane, 
usually in a raster format, to detect the interference pattern between 
the object wave and an acoustic reference wave. More commonly, the 

reference wave is simulated electronically by mixing the received - 
object signal with a suitable reference derived from the insonifying 

signal. The resulting interference pattern is photographically 
recorded and used for optical reconstruction. The hologram acquisition 

process is simplified when only the complex field of the object wave 
is measured. (see section 2.5.2). 

Mechanical scanning of the hologram has the advantage of 

covering very large apertures, with the sampling resolution set by 

the detector size for most applications. This makes it capable of 

producing good quality holograms and images. This method also has 

the advantage of relatively simple and inexpensive apparatus, especially 

when the scanning control is performed by a microcomputer which 
later computes the image. A 

. 
serious drawback of-this technique is 

the long time required for scanning the hologram and the requirement 
for moving parts in the appratus. Where these two factors are not a 

serious objection, mechanical scanning technique has its place, as in 

applications such as on-shore nondestructive testing [50]. 
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2.5 Image Reconstruction Techniques 

In acoustic holography, the techniques used for image reconstruction 

are classified into two main categories: optical reconstruction and 

computer reconstruction. A number of techniques have also been 

reported in the literature which employ acoustic waves for hologram 

reconstruction. In one technique [51], the information from a 

recorded intensity hologram is converted to binary (two-state) form 

and etched into a metal plate. When this plate is insonified, it 

diffracts the acoustic waves and the resulting real image is detected 

and displayed. In another technique [52], the data corresponding 
to the intensity hologram is used to drive the elements of a two- 

dimensional array in phase. The real image formed at a distance 

from the array is detected using another receiver array. 

2.5.. 1 Optical Reconstruction 

The optical method is, the natural choice for reconstructing 

acoustic holograms recorded on a photographic film and developed as an 
optical transparancy [53]. This technique is in use in a number of 
applications which include medical diagnostics [54], nondestructive 
testing [55], and seismic imaging [56]. The photographic recording 
is usually achieved by photographing the acoustic interference pattern 
generated on a. liquid surface interface or displayed on the face of 
a CRT tube or the screen of a TV monitor. The acoustic hologram is 

photographically reduced to suit the optical system and the developed 
transparancy is used for reconstruction. The process of optically 

reconstructing an off-axis hologram has been described in section 
2.3.3 and is shown schematically in Fig. 2.3b. 

The optical method of image reconstruction has a number of 

advantages. The imaging is performed almost instantly once the 
hologram transparancy has been prepared. The ability of the optical 
technique for handling very large amounts of data at the speed of 
light is remarkable. In optical holography this method has the 

great advantage of presenting three-dimensional virtual images which 
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have all the effects associated with seeing the object in real life. 

Unfortunately, when using optical waves to reconstruct a hologram 

recorded with a radiation whose wavelength differs considerably from 

the optical wavelength, which is the case in acoustic and microwave 
holography, the resulting image suffers from severe distortion which 

renders three-dimensional imaging in this case almost unpractical. 
This is caused by the large disparity between the magnification 
factors in both the depth and lateral directions [57]. 

The loss of the ability to view acoustic images in three dimen- 

sions using optical reconstruction is not a problem when imaging 

planar objects. Moreover, it is possible to view the image of 
three-dimensional objects at any desired plane by focusing the 

reconstruction optics at such a plane, and this is considered adequate 
for most practical applications. It should also be noted that 

even without the depth distortion problem, the three-dimensional 

acoustic images would not have the same realistic quality of the 

optical images [58]. In optical holography, one of the most intriguing 
features of three-dimensional images is the parallax effect which enables 
the observer to see 'hidden' parts of the object by moving his head 

sideways. This is achieved by utilizing different portions of 
the hologram aperture area. In acoustics however, the wavelength is 
large and the numerical aperture is too small to allow for such an 
effect. 

In addition to the depth distortion, the wavelength mismatch 
together with the need to reduce the acoustic hologram in size 

cause spherical aberration in the reconstructed waves [59]. Image 

degradation is also caused by imperfections in the photographic and 

optical apparatus used for hologram recording and reconstruction [60]. 

Conventional optical reconstruction in which a photographic 
transparancy has to be prepared from the acoustic interference pattern 
has the main drawback of the long time delays associated with 

photographic processing which makes the technique unsuitable for 

real time imaging. In many applications, such as medical diagnostics 

and underwater imaging, it is desirable to have real time imaging 
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capability from the linear-detection, fast scanning techniques for 

hologram recording which have the advantages of high resolution and 
high sensitivity compared with the liquid surface method. A number 

of systems [61], [62] have been proposed to obtain real time optical 

reconstruction from a scanned hologram using electro-optical 

area modulators. 

2.5.2 Computer Reconstruction 

When optical radiation is used for recording a hologram, it is 

convenient to do the reconstruction optically; therefore using 

a single photographic transparancy for the three tasks of detection, 

storage, and spatial modulation of light during reconstruction. However, 

when the original illumination is non-optical (e. g. acoustic or micro- 

wave radiation) this convenience is no longer available since 
detection is not usually satisfactory with photographic films. Of 

course the choice of optical methods for reconstructing optically 

generated holograms was not just a matter of convenience. The 

enormous amounts of data in optical holograms has meant that optical 
processing is almost the only practical way of performing the linear 
transforms required for image reconstruction efficiently and speedily. 
There is also the unsurpassed capability of optical reconstruction 
for presenting realistic three-dimensional images in a way which no 

other method of display can achieve. However, when considering long 

wavelength holography where the wavelength is many times the optical 
wavelength, the choice of optical reconstruction needs re-examination. 

As indicated in section 2.5.1, because of the large wavelength 

mismatch in the recording and reconstruction stages, the possibility 

of obtaining good three-dimensional images optically from acoustic 
holograms is almost ruled out. On the other hand, because of the 

large wavelength, numerical apertures encountered in acoustic 
holography are much smaller for a given physical aperture than in 

optical holography and the required sampling frequencies are equally 

smaller. This means that the amount of data in an acoustic hologram 

is much smaller than in an optical hologram of the same aperture 

size, and is therefore well within the capability of present day 
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mini or microcomputers and inexpensive storage devices. The discovery 

of the Fast Fourier Transform (FFT) algorithm [25] in 1965 for performing 
the discrete Fourier transform and the formulation of the reconstruction 

process in a manner amenable to the use of such algorithm [27], [28] 

has meant that the data processing required for image reconstruction 

can be performed, on these fairly modest amounts of data, with 

reasonable speed and efficiency. 

In fact, computer reconstruction is not only feasible, but'also 

has a number of advantages over optical reconstruction. The technique 

is much simpler because no optical equipment, including laser, are 

required. All the factors relating to the reconstruction optics and 

contributing to image degradation will be avoided. The method also 

offers great flexibility in the processing of data. This allows for 

compensating for image degration, making quantitative analysis on 

reconstructed images, and performing various filtering and image 

processing and enhancement techniques [63]-[70]. With digital 

reconstruction it would be possible to superimpose, linearly, images 

corresponding to different angles of illumination in order to reduce 
the effect of specular reflections on the image. The ability to 

manipulate hologram and image data plays an important role in 

synthetic aperture techniques [47], [48] which aim at increasing the 

effective aperture of the acoustic hologram. 

There are basically two main techniques for image reconstruction 
using the computer. In the first technique the computer simulates the 

illumination of an intensity hologram recorded as an interference 

pattern and calculates the scattered wavefronts. The result is a 
typical holographic reconstruction which includes conjugate images, a 

zero order component, and a noise component if a noise terms exists 
in the hologram record. This method has been used to reconstruct 
both optical [603, [711and acoustic [72], [73] holograms. 

A 
. 
more practical method which is more advantageous regarding 

hologram acquisition, image reconstruction, and image quality, is to 

sample the hologram information as the complex data of the object 
field without the need for recording the hologram as an interference 
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pattern between the object field and a reference wave. The computer 
then operates on this complex data to calculate the wavefield at the 

object plane which represents the required image. To appreciate 
the relevance of this method one has to recall that holography is 

essentially a technique for imaging by wavefront reconstruction. The 

wavefront is uniquely defined by its complex field at the measurement 

plane. The hologram in the sense of an interference pattern was 
found to be a must in optics. This is not only because there is no 

other way of recording the complex field but also because it is 

the only means of reconstructing the image optically. However the 

introduction of a spatial carrier in the form of an on-axis reference 

wave introduces extraneous terms to the required image in the 

form of the conjugate image, the zero order, and noise terms. To 

separate the required image from the unwanted components in space, 
the concept of off-axis holography has been introduced. This, 

however, could be achieved only at the expense of increasing the 

spatial frequency content of the hologram. 

In acoustics, linear detectors are readily available and the 

need for optical reconstruction is not as compelling as in the case 
for optical holography. The bypassing of the process of recording 
the acoustic hologram has a number of advantages. The limitations 

arising during the recording of the optical intensity hologram which 

cause image degradation would be avoided. The absence of a spatial 

carrier means that there will be no interference with the computed 
image from other extraneous terms. 

Another advantage of particular importance in acoustics is the 

increased efficiency in sampling the hologram information. From 

eqn. (2.14), when the spatial carrier has the critical value given 
in eqn. (2.13), the highest frequency component in the hologram is 

4 cycles/mm where ß is the spatial bandwidth of the object wave. 
However, when the object wave is sampled directly without using 

a reference the highest frequency is only ß cycles/mm. This shows that 

in this case a four fold increase in the sampling efficiency is 

achieved with the direct measurement of the complex object field. For 
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example, if N points at spacing Ax are required to sample an inter- 

ference hologram over a given area, they can be reduced to N/4 spaced 

at 4ox to sample the complex field over the same area. If the N 

points are spread out with the new larger spacing they will cover 
four times the size of the original aperture, hence increasing the 

resolution by the same ratio. If a sampling detector of diameter 

a is used to sample the interference hologram, it can be replaced with 

a bigger, and hence more sensitive, detector with diameter 4a when 

sampling the complex field alone; without increasing the band- 

limiting of the sampled spectrum due to the spectrum of the detector 

aperture function, cf. sec. 2.4.1. 

Such a saving in the sampling efficiency is not very important 

in optics because of the availability of area detectors with high 

resolution capability in the form of the photographic plate, together 

with efficient 'area' data processors in the form of optical image 

reconstruction. In acoustics, however, the area detectors available, 

such as the liquid surface, have resolution and sensitivity limitations 

and the hologram is often sampled at a discrete number of points. 
The sampling process is either time consuming (as in mechanical 

scanning) or costly (as in array sampling). Therefore an improvement 

in the sampling requirement is much more welcome in acoustics not only 
because of the improvement in the image quality and the advantages in 

the data acquisition phase but also in the reconstruction phase 

using the computer. This is because the reduction in the number 

of sampling points required reduces the computer storage requirements 

and speeds up the reconstruction process. 

As an example for the advantages gained consider a two- 

dimensional array used to sample the hologram.. A reduction in the number 

of elements in each direction by. a factor of 4 reduces the array cost 

by a factor of 16. An increase in the sample spacing by the same 
factor of 4 makes the array easier to manufacture and reduces the 

inter-element cross-talk and therefore improves the overall system 

performance. Increasing the element size increases the sensitivity, 

and also simplifies the manufacturing process especially at high 
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frequencies. The storage requirement for the input data during the 

digital reconstruction is reduced by a factor of 16 and the speed of 
the reconstruction process is also increased. 

The speed and the capacity for handling data in the case of 

computer reconstruction are undoubtedly limited compared with the 

optical method. However, this is not a serious limitation in the 

case of the relatively small amounts of data encountered in acoustic 
holography. Moreover, this problem is being alleviated by the 

increase in the speed and storage capacity of modern computers and 
the decrease in their cost together with the availability of dedicated 

signal processing devices. Other limitations arise from the effects 

of quantization of the hologram data into a number of discrete 

levels for digital processing by the computer. The chief effect of 
the quantization errors is a reduction in image contrast, although 
it is possible for false image details to be introduced [60]. 

One of the other drawbacks unique to computer reconstruction 
is that the focusing distance at which the image is to be computed 
must be known beforehand for use in the reconstruction algorithm. 
In optical reconstruction this problem does not arise when observing 
the virtual image of an object because the focus is found automatically 
by an eye-brain interaction. This is not a very serious limitation 
in acoustics as the object distance can be measured by some other 
means such as pulse echo technique. Holographic imaging can then 
be used to obtain an image of the object at such range or nearby 
ranges. Moreover, a number of techniques have been suggested to 

overcome this problem. One method [74] employs an automatic object 

recognition scheme in which the computer calculates a series of 
images at a number of planes in the depth region of interest and 
decides the most likely position of the object using an edge 
detection algorithm. More recently, Sepehr et al [75] have described 

an automatic focusing technique which does not require the knowledge 

of a value for the range as a data input. This technique, however, 
is applicable only for planar objects and is limited to images with 
low spatial frequency content. 
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There are mainly two methods for computer reconstruction of 
complex field holograms, namely the Fresnel integral algorithm and the 
backward wave propagation (frequency domain) algorithm. The two 

techniques are described below. 

. The Fresnel Integral Reconstruction Algorithm [271, [761 

'Referring to Fig. 2.9, the basic problem in imaging with 

wavefront reconstruction can be stated as follows : given a complex 
field distribution u(x, y) of the object wave arriving at the 

hologram xy plane determine the corresponding field distribution 

u0(xo, yo) scattered or generated at the object plane xo, y0 which is 

parallel to the hologram plane at distance z from it. The distribution 

uo(xo, yo) is taken as a representation of the object distribution and 
therefore as the required image. 

According to the Huygens-Fresnel principle, each point on the 

wavefront at the xo, yo plane acts as a secondary point source 
radiating a spherical wave. The field amplitude at any point (x, y) 
on a plane at distance z is obtained as the resultant of contributions 
from all such point sources and can be readily written in the form of 
the superposition integral [33] as: 

u(x, y) = Jf h(x, y, z ; xo, yd o)uo(xo, yo) dxo dyo (2.41) 

where h(x, y, z ; xo, yo, o) is the impulse response of the propagation 
process which denotes the contribution at point (x, y, z) on the 
hologram plane due to a Delta function input, i. e. a point source, 
at point (xo, yo, o) on the object plane. This is given as [33]: 

h(x, y, z ; xo, Yo, o) 
ýý exprKr cos(n, r) (2.42) 

where K is the wavenumber, K= 21E/X, A is the wavelength ,r is the 
distance between points (xo, yo, o) and (x, y, z), r is the vector pointing 
from (x, y, z) to (xo, yo, o) and n is the vector normal to the object 
plane in the negative z direction. (see Fig. 2.9). 
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In most cases the distance z between the object and hologram 

planes is much greater than the maximum linear dimensions of interest 

in both planes. This allows the following approximations to be made: 

(i) cos(, )' 1 

r -z 
in the denominator of eqn. (2.42) 

(iii) r= [z2+(x-x0)2+(y-yo)2]' 
(2.43) 

yx°)2 
+1 (y-°)2 ] i z[1+ 2(x-z z 

in the exponent of eqn. (2.42). 

The above assumption concerning r in the exponent is known as the 

Fresnel approximation and is valid as long as the distance z is large 

enough so. that higher order terms in the binomial expansion of r 
leading to this approximation do not significantly change the value of 
the superposition integral in eqn. (2.41). To give an indication of the 

restrictions on z for. the validity of the approximation, the phase 
change contributed by the next higher order term only will be much 
less than 1 radian if z satisfies: 

z3> > 4- [ (x-x0)2 + (Y-yo)2 Amax (2.44) 

Applying the approximations in (2.43) and substituting the impulse 

function from eqn. (2.42) into eqn. (2.41) yields: 

u(x, Y) = 
expjKz 1! u (x 'y ) exp{, 

L [(x-x )2+(Y-Y )21 ? dx dy 
jaz 

-. 
ooo 2z 0000 

... (2.45) 

Expanding the quadratic terms in the exponent and rearranging gives: 

1 Co 2 
u(x, y) = eýxäz'L exp[j 2zK uo(xo, yo)exp[J 

K (xo +y02)]} 
-Co 

2z 

exp{ -j 21z[( ýZ) xo + (-) yo ]} dxo dyo (2.46) 
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If fX and fy are defined as: 

fx 
ýZ , fy (2.47) 

then the expression within the integration signs takes the form of a 
Fourier transform evaluated at the frequencies fx. and fyI 

u(x, y) = expjKz expt 
2 (x2+y2)]F[uo(x0x , yo)exp ý (xo2+yo )J 

... (2.48) 

where F indicates the Fourier transform evaluated at the spatial 
frequencies fx and fy defined in eqn. (2.47). This can be written 
in the form: 

exp(-jK1) u(x, y) exp[- 
2 (x2+y2)] = F[uo(xo, yo)exp . (x02+yö )] 2 

(jxz)- 

... (2.49) 

In imaging with wavefront reconstruction, the field distribution 

u(x, y) is known and it is required to determine the image distribution 

u(xo, yo). Taking the inverse Fourier transform (F-1) of both 

sides in eqn. (2.49) and solving for u(xo, yo) gives: 

uo(xolyo) = eX ( Kz 
exp 

i (xö +yo ) F-1 { u(x, y) 
2 

(jAz)- 

exp[ 
2 (x2+y2)]} (2.50) 

The term exp(-jKz) is a constant phase shift, (jxz)-fis a constant 

and the phase shift exp[ 
2 (xo2+yo )] is a function of the 

coordinates in the image plane. Therefore all these terms will not 

cause any spatial variations in the image intensity and hence can be 
ignored, thus: 
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uo(xo, yo) = F-1{u(x, y)exp[ 
2 (x2+y2)]} (2.51) 

This equation forms the basis for the Fresnel integral method of 

numerical reconstruction from the complex field distribution u(x, y) 
in the hologram plane. The reconstruction algorithm consists of the 

following steps: 

1) Multiplying u(x, y) by a quadratic focusing factor 

exp[ 
2 (x2+y2)] which is a function of the distance z 

at which the image is to be reconstructed. 

2) Taking the inverse Fourier transform of the result to obtain 
the image complex distribution u0(xo, yo). The image intensity 

is given by ju0(xo, yo)12. 

Referring to Fig. 2.10, the hologram plane xy is sampled at a 
finite number of NxN points spaced at ox in the x direction and Ay 

in the y direction. In view of eqn. (2.48), the hologram space is 

equivalent to a spatial frequency space where the frequency coordinates 

are related to the space coordinates by eqn. (2.47). The sample spacings 
in that equivalent frequency space are therefore given by: 

Ax efx az efy Az 

in the fx and fy directions respectively. 

(2.52) 

Let p, q be the point indices in the x and y directions respectively 
in the hologram space and in the fX and fy directions respectively 
in the equivalent spatial frequency space. Multiplication by the 

focusing function in the equivalent frequency space is obtained as: 

u'(pefxgAfy) = u(pox, goy) exp 
2 [(pox)2 +(goy)2J 

p, q = 0,1,..., N-1 (2.53) 
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The image field is calculated by obtaining the inverse Fourier transform 

of the function u' in eqn. (2.53). If r, L are the point indices 

and axo, Ayo the sample spacings in the x0 and yo directions in the 

image plane, then the image complex field is given by: 

N-1 N-1 
ua(rnxd2 yo) _ 

ý2 
EE u'(pefxpgAfy) exp{+j2ii. [(pofx)(rox0) 

N q-0 p-0 

+ (gofy)(Loyo)]} 

r, t = 0,19..., N-1 (2.54) 

The sample spacings in the image plane are: 

1 Axo = Nnf 'a yo = NAf 
(2.55) 

xy 

Substituting fx and fy from eqn. (2.52), 

Ax Az Ay Xz (2.56) 
0= Nnx o=y 

The image intensity distribution uä (rexo, tayo) is the square of the 

modulus of the result in eqn. (2.54). 

. Backward Wave Propagation (Frequency Domain) Reconstruction 

Algorithm [29], [74], [76] 

In the Fresnel integral method the diffraction equations have 

been manipulated so that the propoagation process, apart from a 

quadratic phase multiplicative factor, is represented by a Fourier 

transform which enables image reconstruction at a reasonable speed 

using the FFT algorithm, eqn. (2.51). However, the approximations 

made, eqn. (2.43), in order to arrive at this form restrict the 

use of this method to large distances compared to the aperture size, 

eqn. (2.75), thus making it inappropriate for near-field imaging and 
for high resolution, large numerical aperture imaging systems. 
These systems are required for many applications such as medical 
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diagnostics where there is a delicate balance between attenuation 
and resolution which determines the operating range. 

This restriction on the imaging range can be overcome by using 
the backward wave propagation method based on the frequency domain 

representation of the diffraction process. In the spatial frequency 

domain the propagation phenomenon can be regarded as a linear 

dispersive spatial filter with a finite spatial bandwidth [33]. 

Referring to Fig. 2.9; let U0(fx, fy) and U(fx, fy) be the spatial 
Fourier transforms of the complex object and hologram distributions 

uo(xo, yo) and u(x, y) respectively, i. e. 

a* 
U0(fxofy) =If u(xo, yo)exp[-j2n(fxx0+fyya)] dxö yo (2.57) 

-co 

co 
U (fx, fy) =5f u(x, y) exp[-j2n(fxx+fyy)] dxdy (2.58) 

-420 

Propagation from the object plane to the hologram plane at 
distance z from the object plane can be expressed in the frequency 
domain by the relationship: 

U(fX, fy) = U0(fX, fy) H(fx, fy) (2.59) 

where H(fx, fy) is the propagation transfer function, given by [33]: 

HCfxgfy) = exp {j 2nz [1-(afx)2_(afy)2]2 } (2.60) 

For spatial frequencies such that (Afx)2 + (afy)2 <1 the transfer 

function is a phase shift which depends on z, the propagation 
distance. For wave components having (afx)2 + (xfy)2 >1 the 
transfer function becomes a negative exponential which severely 

attenuates these waves as they propagate. These evanescent waves 
decay rapidly and they become negligible after propagating a few 

wavelengths. This makes the detection of such waves practically 
impossible at the hologram plane, particularly in optics where the 

wavelength is very short. Because of their high spatial frequencies, 
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these waves carry information on fine details in the object which would 
be lost leading to some image degradation. The limiting case 
(Afx)2 + (Afy)2 =1 represents the waves propagating normal to the 

z axis and hence contribute no net power flow in the z direction. The 

propagation transfer function can therefore be simplified as 
follows: 

exp(j 
ZT-rz[1- Ufx)2-(afy)2]/ } fx2+fy2< 1 

H(fx, fY) _ 
0fx2+fy2> 12 

A 

... (2.61) 

In the inverse (backward) propagation problem, the image spectrum 
can be obtained from the complex hologram spectrum by solving eqn. 
(2.59) for U0(fx, fy), 

U0(fxPfy) = H-1 (fx, fy) U(fx, fy) (2.62) 

Assuming that no evanecent waves are recorded at the hologram plane, 
the transfer function for the inverse propagation is given by: 

exp{-J 21-`z[1-(af )2(af )2J 
35 

}f Z+f 2< 
H-1(fx, fy) xyxy). 2 

0 
x2+fy2 

> 
ý2 

X 

... (2.63) 

The image in the space domain u0(xo, yo) is obtained by taking the 
inverse Fourier transform of the result obtained in eqn. (2.62). 

The steps required to perform image reconstruction by backward 

wave propagation in the frequency domain are illustrated in Fig. 2.11 

and can be summarized as follows: 

1) Taking the Fourier transform of the complex hologram data 

2) Multiplying the complex hologram spectrum by H-1(f 
x, 

fy) 
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evaluated'at the required reconstruction distance z. This step 

corresponds to focusing in the frequency domain. 

3) Taking the inverse Fourier transform of the result to 

obtain the image complex field. The image intensity is the square 

of the modulus of this, field. 

Referring to Fig. 2.11, the hologram 

the discrete form , of NxN samples spaced 
directions. Its complex spectrum U(fx, fy 

number of samples spaced in the frequency 

fx, fy directions where: 

nf- 'ef x Nnx y= NAy 

field u(x, y) consists, in 

at ex', Ay in the x and y 

consists of the same 
domain at efx, ofy in the 

(2.64) 

If p, q are the point indices in the hologram space in the x, y 
directions respectively and m, n the point indices in the frequency 

domain in the fx, f 
ydirections respectively, then the discrete 

Fourier transform operation is given by: 

N-1 N-1 
U(mnfxnAfy)= EE u(pox , gAy)exp( -j2n[(pex)(mefx)+(goy)(nofy A) 

q=o p=0 
m, n=0,1y..., N-1 (2.65) 

Multiplying by the inverse propagation transfer function to obtain 
the image complex spectrum yields: 

U(mnfxnafy)exP{ -j27tz [1-(amofx)2-(Anofy)2 } 

Uo(mofxnAfy) = m2(Afx)2+n2(ofy2 < 
12 

A 
0 m2(Afx)2+n2(Afy2 

12 

A 

N-1 (2.66) 

The image field in the space domain is obtained by calculating the 

inverse Fourier transform of the result in eqn. (2.66), 
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N-1 N-1 
uo(rexo, layo) 

ý2 
EE0 

o(mofxnafy) exp{+j2Tt[(mofx)(roxo) 
IV n-0m-0 

+(nofy)(Rey0)1) r, R =0,1,...., N-1 (2.67) 

where r, L are the point indices in the image space in the xo and y0 
directions respectively. The image field therefore consists of NxN 

points spaced at Axo, Ay0 in the xo and yo directions, where 

Axo N1 ' Ayo - Nn1 f 
(2.68) 

X 

Substituting for efx and nfy from eqn. (2.64) yields, 

AX = AX 
O 

Comparing eqns. (2.69) and 
integral method, the samples 
same spacing in the hologram 

image space do not vary with 

I' Ayo = ey (2.69) 

2.56) shows that, contrary to the Fresnel 

in the image plane are spaced at the 

plane and therefore the dimensions of the 

the reconstruction distance z. 

Although the frequency domain method requires an extra FFT 

operation compared with the Fresnel integral method, there is no limit 

on the minimum diffraction distance used which makes this method 
useful for many imaging applications. Moreover, because the hologram 

and image spectra are available as intermediate steps in the reconstru- 

ction process, a wide range of frequency domain image processing 
techniques can be easily applied, e. g. [63]-[67]. These techniques 
include filtering, edge enhancement, deconvolution of the detector 

aperture function, and enhancement of signals corresponding to small 

objects in the image. 
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2.6 Design Considerations in Holographic Imaging Systems 

The performance of a holographic imaging system is determined by 

a set of parameters such as resolution, field of view, range, and image 

quality. In this section these parameters are briefly discussed 

with emphasis on the way they are influenced by the design 

specifications such as the aperture size, the spatial sampling 
frequency, the pulse width, etc., and the various trade-offs involved. 

In order to narrow down the field of the discussion, reference will 
be made to the case of an underwater system which employs a sound 
transmitter to insonify the object and a filled receiving array of 

piezoelectric elements to sample the complex hologram. The image 

is reconstructed digitally using one of the algorithms discussed 

in section 2.5.2. 

2.6.1 Resolution 

An important parameter in any imaging system is the lateral 

resolution which determines the minimum distance between two points 
in the object plane beyond which the images of the two points cannot 
be resolved. Assume a hologram aperture of size D. For an object 

close to the hologram axis at a distance z from the hologram, the 

lateral resolution dR is given by [35]: 

AZ aR D 
(2.70) 

This shows that the lateral resolution increases with the increase 

in the numerical aperture of the hologram. A more detailed analysis 

of resolution is presented in section 3.2. 

Another useful measure of resolution is that along the normal 
to the object plane. This range, or depth, resolution is a measure 

of the ability of the imaging system to resolve objects close in 

range. It also determines the depth of focus, over which parts of an 

object can be brought into focus for lateral imaging at one time 

without need for refocusing. According to one criterion [35] the 

range resolution is defined as the axial distance from the focal 
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plane which causes 20% drop in the image intensity and is given by: 

6R=2 a(Z)2 (2.71) 

All parts of an object within ±6R from the focal plane can be 

considered in focus at one time and therefore the depth of focus, df, 
is given by: 

df _ 4x(Z)2 (2.72) 

As in photography, there are conflicting requirements for increased 
depth of focus and increased lateral resolution. To be able to image 

sections of an object which has a large extension in the depth 
direction without the need for refocusing, a large depth of focus 
is required. This can be achieved by reducing the aperture size, D, 

at the expense of the lateral resolution and the resulting images will 
not be sharply defined. 

To achieve the best image resolution, the size of the numerical 
aperture in an imaging system must be as large as possible. - This will 
be usually limited by physical and economic constraints. Increasing 
the operating frequency increases the numerical aperture for a 
given physical size but may require extra array elements to match the 
increase in the spatial frequency content of the hologram. Moreover, 
increasing the frequency tends to limit the operating range due to 
increased attenuation. In a practical system the resolution may be 
limited by noise considerations rather than imaging criteria. For 

example in a pulsed underwater system, due to the increased attenuation 
at large ranges, the minimum target size which reflects enough energy 
to be detected at the receiving array with signal-to-noise ratio 

greater than unity exceeds. the lateral resolution predicted by the 
Rayleigh criterion and therefore sets the limit for the lateral 

resolution of-the system [77]. 

From eqns. (2.71) and (2.72), apart from very short ranges, the 

range resolution and the depth of focus will be unacceptably high. 
When acoustic pulses are used, the depth of focus will be limited 
to the thickness of the sector of the object volume which is illuminated 
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by the pulse, i. e. 

df = cT (2.73) 

SRI =c T/2 (2.74) 

where c is the speed of sound in the medium and T is the pulse width. 
In practice, the minimum value of the pulse width will be limited 

by the receiver bandwidth and noise considerations. The maximum 

value is determined by the requirement to reduce the effects of 

positional stability and object motion on the accuracy of the hologram 

measurement. 

2.6.2 Range 

The minimum range of the system will be determined by 

reverberations, the possibility of saturation in-the receiver circuits 
due to strong returns, and limitations imposed by the reconstruction 

algorithm employed, cf. -sec. 2.5.2. The. maximum range will be set 
by resolution requirements. This is affected by the aperture size, 
the operating frequency, the transmitter power and directivity, 

sensitivity and directivity of the array elements, target strength, 

system noise, pulse length, attenuation, operating frequency, and 

stability and motion requirements. 

2.6.3 Field of View 

The field of view is governed by the directivity of both the 

sound transmitter and the receiving array. It will be further 

limited by the angle of the reference beam, c. f. eqn. (2.26). For 

a given system the largest field of view is obtained when a reference 
beam normal to the hologram plane is used (or simulated). This is 

the reference implied when the complex hologram is measured relative 
to a reference signal with a constant phase. In this case the total 

field of view, 2@ 1 max ' is obtained from eqn. (2.28) as, 

2 e1 
max 

2 sin-' (ZAX (2.75) 
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where a is the wavelength and Ax is the spacing between the receiving 

array elements in the x direction. For equal element spacing in both 

the x and y directions this will be equal to the field of view in the 

y direction. For small values of eI 
max 

the field of view can be 

expressed approximately as: 

Ze a 
1 max ox 

(2.76) 

i. e. the total field of view in radians is approximately equal to the 

inverse of the element spacing in wavelengths. 

The element spacing for a given aperture size will be limited 

by economic and physical constraints. Moreover, the value of the field 

of view predicted by eqn. (2.76) is reduced due to the finite size of 
the receiving elements which limits the maximum spatial frequency that 

can be sampled, cf. sec. 2.4.1. As the sensitivity of the receiving 

element increases with the increase in its size, this might lead 

to some trade-off between the field of view and resolution at large 

ranges in a noise limited system. Adjacent element cross-talk 
in the receiving array reduces the independence of the neighbouring 

processing channels and therefore has the same effect as increasing 

the area of the sampling detector. 

2.6.4 Image Parameters 

The number of independent elements in the image will be equal 
to the number of resolution elements within the field of view. 
Assuming a square receiving array of N by N elements with equal 

element spacing in bothx and y directions, i. e. Ax = ay =A. 
Angular resolution da in each direction is obtained approximately 
from eqn. (2.70) as 6 /z for small angles. Substituting the 

approximate value of NA for the aperture size D yields: 

as Nö 
(2.77) 

From eqns. (2.76) and (2.77), the number of resolution elements 

within the field of view in each direction is: 
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20i 
max 

d 
a 

N (2.78) 

The number of resolvable picture elements in the two-dimensional 

image is therefore approximately equal to N2, the number of array 

elements. 

Another parameter of particular interest in acoustic holography 

and acoustic imaging in general is the dynamic range in the image 

because of the specularity problem associated with the long wavelength 

and relative smoothness of the surfaces of most objects of interest, 

cf. sec. 2.3.4. Large dynamic range is usually required for the 

imaging device in order to show the non-specular returns of much 
lower amplitude which carry much information about the object. In 

a practical system, however,, the dynamic range in the image is 

limited by the nonuniformities and the limited dynamic range of the 

hologram channel processors [78]. It is also influenced by the 

number of quantization. levels used in digitizing the hologram 

information, cf. sec. 2.5.2. 

Image signal-to-noise ratio is determined by the effect of both 

the spatial and temporal sources of noise in the imaging system. 
Temporal noise includes ambient acoustic noise and thermal noise in the 

system electronics. The effect of thermal noise can be reduced by 

increasing the pulse width although this reduces the range resolution, 

cf. eqn. (2.74). Spatial noise in the reconstructed image is mainly 
due to nonuniformities, both in amplitude and phase, in the gains of 
the channel processors during hologram acquisition. Since each image 

point is some linear combination of all hologram signal, cf. eqns. (2.54), 

(2.67), the random spatial noise in the hologram is reduced by a 
factor equal to the square root of the number of independent channels 

averaged in the linear combination [79]. 
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2.7 Holography Versus Other Acoustic Imaging Techniques. 

When holography came into being, acoustic imaging was already 

a mature art with a long and successful history [4]-[6]. The problem 

of phase measurement in optics, for which holography offered an 
ingenious solution, never existed in acoustics because of the 

availability of linear detectors. Moreover, holographic three- 

dimensional image reconstruction from acoustic holograms is riddled 

with distortion problems which make it virtually unrealizable at 
the frequencies of interest in most applications. In spite of this, 

acoustic holography has aroused great interest and found a number of 

applications. It is interesting to note that the new technique 

has been well integrated with other techniques used for non-holographic 
imaging. For example section 2.4 illustrates how available scanning 
techniques have been used for hologram recording and acquisition. 
Sections 2.4 and 2.5 have shown that factors unique to acoustic 

radiation, such as'the large wavelength and the availability of 
linear detectors, have made their impact in simplifying the holographic 

process and increasing its versatility, both in the acquisition and 

reconstruction phases. 

Perhaps the main advantage of the holographic approach is the 

great simplicity and ease with which the acoustic information about 

an object field is recorded and processed to produce a visual 
image.. An example for this advantage can be cited from the field 

of seismic imaging [80]. Before the application of holographic 

principles, wave equation migration techniques used for seismic 

exploration required that a full-time trace of each detector in the 

receiving array be recorded and stored. Holography replaces this 

requirement by the need to measure only two quantities; the amplitude 

and phase of the received wave relative to a reference at each 
detector. This achieves great savings in the amount of data to be 

stored and processed. In addition to reducing the time and cost of 
the imaging process as a whole, holography allows for a large variety 

of method for conditioning, analysing, interpreting, reconstructing 

and displaying this information. Holograms may be added, subtracted, 
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filtered, correlated, and so on before being reconstructed. This 

capability allows one to take advantage of modern minicomputers and 

associated image processing hardware to increase the efficiency and 

effectiveness of seismic data processing. 

Another advantage which is inherent in holography, by virtue of 

the wavefront reconstruction principle it embodies, is that a holögram 

is a compact two-dimensional record of a three-dimensional volume. 

The hologram is by definition a record of the complex field of the 

object wave at a given plane. According to the principle of wavefront 

reconstruction this is sufficient to reconstruct the object wave 

at any plane within the volume which contributed the signals 

recorded on the hologram plane. 

It is important to note that this advantage, which is responsible 

for the three-dimensional property of the holographic imaging, is not 

eroded by the problem of depth distortion. In optical reconstruction, 

the depth distortion manifests itself when the viewing optics are 

weakly focused in order to view the virtual image of the whole of a 

three-dimensional object. However, three-dimensional properties of 

the image can still be observed by bringing into sharp focus various 

planes of the three-dimensional image so that each can be viewed alone 

without interference from out-of-focus planes. This is demonstrated 

for a wire object at an angle with the hologram plane [59] and for 

letter objects positioned at different ranges [57]. Simulation 

results described in section 7.5 demonstrate the same criterion for 

discrete point-objects. 

The above advantage effectively means that holography has a 

very large depth of field which is not limited by the need to focus 

during the recording process. Focusing, in the sense of selecting 

a portion of the object to be imaged and excluding the rest of the 

object volume, is generally achieved in holography during the 

reconstruction phase. As the hologram contains all the information 

about the imaged volume, focusing is achieved by simply selecting the 

reconstruction plane through adjusting the reconstruction optics 

or inserting the required distance in the computer reconstruction 

algorithm. 
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A conventional imaging system, e. g. a microscope, is designed 

to have high lateral resolution and therefore the depth of focus is 

very limited. To image a large volume with such a system would 

require a sequence of continuous refocusing in order to cover the 

required volume. This is a tedious process especially when the object 
is continuously in motion. 

Holography offers unique advantageous when imaging through 

aberrating media [33], especially when both the reference and object 

waves experience the same aberration. This is particularly advantageous 
in, situations causing severe nonlinearity in the propagation of 

sound waves leading to amplitude and phase distortions in the 

propagating wavefronts [81]. 

Acoustic imaging techniques can be broadly divided, according to 

the image format, into two categories: B-scan, or sonar type, and 

orthoscopic techniques. In the first category, the image is 

presented as bearing, or lateral distance, versus depth which is 

plotted as a function of the time of propagation. In the second group 
the image is presented in a horizontal versus vertical format which 
is familiar in optical imaging. Although holography belongs to the 

"second category, it will be briefly compared with the B-scan technique 

which is widely used in medical applications. 

2.7.1 Holography Versus B-Scan Techniques 

In a B-scan imaging system, Fig. 2.12a, a weakly focused 

transducer with a long focal length performs a line scan over the 

volume to be imaged.. At every point in the scan a narrow acoustic 

pulse is transmitted. The echos received by the same transducer are 
detected and their amplitudes used to modulate the intensity of a 
display which is scanned in synchronism with the transducer such 
that the position of the spot on the display screen corresponds to 

the position in time of the acoustic return causing it, and hence 

that of the corresponding point in the object. 

Fig. 2.12b shows the corresponding arrangement using holography. 
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A'strongly focused transducer with a short focal length scans a line 
hologram, at the focus plane of the transducer, to record the 

amplitude and phase of the received waves scattered by°the object. 
It should be noted that the hologram can alternatively be ; sampled with a 
small point detector in the hologram plane. 

The basic difference between B-scan and holography is that 

while in the B-scan each sample (time trace) obtained at every 
position of the scanning transducer is treated separately, holography 

synthesizes a large aperture by processing the hologram data 

obtained over the whole scan. Therefore, the B-scan transducer has 
to provide all the lateral resolution of the system. As the hologram 

aperture can be much greater than the size of the B-scan transducer, 
lateral resolution in holography is much greater than that of the 
B-scan. 

Moreover, because adequate lateral resolution has to be maintained 
over the whole depth of field, the B-scan transducer must be weakly 
focused at a plane approximately halfway in the sector to be imaged, 

see Fig. 2.12 a. This further reduces the lateral resolution at 
shorter'and longer ranges, while in holography resolution is improved 

at shorter ranges. These conflicting requirements for large depth of 
field and good lateral resolution in B-scan technique influence the 
design of the scanning transducer and the trade-off affects the system 

performance, while in the case of holography the transducer can be 

optimized for proper sampling of the hologram at a fixed plane. 

In the depth direction, resolution is determined by the 

pulse width in the B-scan system. For very short pulses the 

effect of the receiver noise increases and could swamp returns from 

weak scattering regions. In holography, as indicated in section 2.6.1, 

the depth resolution at short ranges is determined by the aperture size. 
This means that the pulse width can be long enough to allow for the 

detection of weak targets. 

Holography and B-scan techniques can perform complementary roles 
in acoustic imaging where B-scan offers good range resolution and 
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holographic processing improves the lateral resolution.. A number of 
techniques [821, [831 have been proposed which attempt to combine the 

two techniques by processing the received signal along the linear B- 

scans holographically.. 

2.7.2 Holography Versus Other Orthoscopic Imaging Techniques 

There are three fundamental approaches to acoustic imaging which 

are capable of presenting images that are similar in appearance to 

optical images; namely lens type, beamforming, and holographic 

techniques. The basic objective in all these imaging techniques 

is to 'undo' the effect of propagation shown in Fig. 13a, where for 

simplicity the object consists of two points P1 and P2. Through 

propagation, each point on the imaging plane receives the sum of 
two wavefronts; one from each point. The process of imaging simply 

requires this sum to be decomposed to its original components, so 
that one regains separately the amplitudes of the waves coming from 

P1 and P2. 

Mathematically speaking, a linear transform of the individual 

wavefronts originating in the object plane produces their sums in 

the reception plane and therefore the imaging process attempts to, 
_ 

do the inverse of this transform as shown in section 2.5.2. The 

process of reversing the effects of propagation is usually referred 
to as the spatial processing part of image formation. In addition, 
the imaging process must also include transduction to change from 

acoustical to electrical energy and detection to convert signals 

at the high acoustic frequencies to observable DC image signals. 
Imaging techniques differ primarily in the way the spatial 

processing is performed and the order in which the three operations 

of transduction, spatial processing, and detection are performed in 

time, Fig. 2.14. 

In a lens imaging system a lens is used to perform the spatial 

processing required to form the acoustic image, Fig. 2.13b. This 

is followed by transduction of the acoustic energy into electrical 

signal at the acoustic frequency by a receiver array at the focal 

plane of the lens. The received signal is then converted to DC. 

66 



values representing the image intensity to be displayed, Fig.. 2.14a. 

A beamformer system attempts to perform the spatial processing 
function of the lens electronically. Therefore, transduction is 

performed first to convert the acoustic signals at the imaging plane 
into electrical signals at the acoustic frequency. The focusing effect 
of the lens is emulated by effectively introducing different time 
delays into the high frequency signals received by the various elements 
of the receiving array in the imaging plane. These are added together 

and the resulting signals detected to produce DC signals corresponding 
to the image for every point in the image field, Figs. 2.13c and 
2.14b. 

In holography, transduction is also the first step as in beam- 
forming systems. Contrary to beamforming techniques however, the 

electrical signals at the acoustic frequency are converted directly to 

a set of DC values corresponding to the hologram, therefore detection 

is performed at an earlier stage. This is followed by spatial 

processing of the holographic DC signals in the form of hologram 

reconstruction, Fig. 2.14c. 

Although the three techniques of acoustic imaging perform the 

same basic operations, the performance and the complexity of each 
technique depend to a large extent on the order in which these 

operations are performed. The practical realization of each 
technique suffers from a number of limitations due to the restricted 

aperture size of acoustic arrays, finite sampling of the wavefield, 

as well as amplifier noise, nonlinearities, and gain errors (both in 

amplitude and phase). The effect of such limitations on the image 

quality will-be greatly influenced by the position of the acoustic 

array in the imaging process and the order of appearance of linear 

and non-linear operations. Following is a brief comparison between 

holography and both lens and beamforming systems. 

. Holography Versus Lens Systems 

The main advantage of lens acoustic imaging systems [841 is their 

simplicity and inherent broad-band nature. The acoustic array and 
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processing electronics can be fairly. simple since they only need to 
detect the intensity of the incident acoustic radiation at the image 

plane. On the other hand, acoustic lenses with adequate numerical 

apertures can be very bulky because of the large acoustic wavelength; 

especially at low frequencies and in applications such as underwater 

viewing. As the size of the lens increases, the focal lens increases 

which generally-implies large size and bulkiness for the imaging system 

as a whole. Other problems include the difficulty in moving the lens 

or the receiving array to accommodate different focusing ranges, the 

limited depth of field, and the image distortion due to aberrations 
in the lens. 

Comparison [85] between the effects of practical limitations on 
both lens type and holographic imaging system indicates a number of 

advantages for the holographic technique. These advantages stem 

mainly from the fact that transduction, electronic amplification, and 
detection in holography are performed before the linear spatial 

processing while in a lens system these are performed in the image 

plane. This causes noise spikes, non adjacent cross-talk and dead 

channels -a common defect in acoustic arrays - to be averaged out in 

the reconstruction process in holography and therefore cause only some 

reduction in image contrast while in a lens system these can give 
the appearance of false objects. 

. Holography` Versus Beamforming Systems 

Perhaps the real competition facing holography, particularly in the 

field of underwater imaging and non-destructive testing, comes from 

beamforming imaging systems [86]. One of the basic limitations of all 
beamforming systems, however, is that the spatial processing is 

performed at the acoustic frequency, while in holography the temporal 

aspects of the received signals are discarded immediately upon the 

detection of the hologram information at a very early stage in the 

imaging process, Fig. 2.14 b, c. As the acoustic frequency increases, 

the cost, complexity, and power consumption of the signal processing 
in beamforming systems increases rapidly. Due to the same reason 
the signal processing in beamformers has to be performed in the 
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proximity of the acoustic array used for the transduction. This 
increases the bulk and power consumption of the part of the system which 
has to be carried, for example, by the diver in nondestructive 
testing applications for offshore inspection. On the other hand, 
image reconstruction in holography can be separated from data 

collection. In addition to simplifying the portable part in such 
applications, this also allows the use of sophisticated computing 

at a later stage for image reconstruction, processing, analysis, and 
storage. Moreover, the ability to use general purpose computers 

reduces the need for special purpose hardware. 

Another difficulty in beamforming imaging is that focusing at 

other than one or a very few intermediate ranges is difficult in most 
types of beamformers, since some form of variable time delay or 
phase shift is necessary with varying range [87]. In holography, 

however, because of the large depth of field, focusing at any plane 
within the imaged volume can be easily achieved by adjusting the 

reconstruction optics or inserting the required distance in the 

computer reconstruction algorithm. Moreover, while holography is suit- 

able for near field imaging, most beamformers are geared to plane 

wave processing and therefore near field imaging causes considerable 
difficulties for such systems. A 

. 
comparison [88] between holography 

and beamforming techniques shows that holography has a number of 

advantages in terms of signal-to-noise performance and processing 
complexity in many types of applications. 
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2.8' Applications 

Acoustic holography has found applications in a number of fields 

which include nondestructive testing, underwater imaging, medical 
diagnostics, and seismic processing. Applications have also been 

reported in microscopy [89] and imaging of noise sources [90]. In 

this section the main features of each application are reviewed with 

emphasis on the advantages offered by holography compared to other 
techniques and the areas where improvements are required. 

2.8.1 Nondestructive Testing (NDT) 

This was one of the first areas where the use of holography has 

been investigated [91]. Compared to conventional pulse-echo 
techniques used in NDT, holography has the advantage of providing 

an image of the actual defect which allows more accurate sizing and 

quantitative evaluation to be made, in addition to better 

resolution and greater sensitivity. An experimental investigation [92] 

on actual defects in steel has been made, in order to compare the 

results obtained from acoustic holography and conventional pulse- echo 
techniques with the actual shape and dimensions obtained by destructive 

analysis. It was found that the holography dimensions were closer 
to the true dimensions than were those determined by the other 
techniques. 

Moreover, holographic measurements made at different frequencies 

were in much better agreement than were measurements made at different 

frequencies using the conventional methods. This is because 

variations in frequency or in the size of the transducer in a conventional 

system alter the radiation pattern of its narrow beam. Similarly, 

variations in frequency together with variations in the shape, orientation, 

and the surface roughness of the defect alters its effective 

scattering pattern. The response of the conventional system, therefore, 

varies over a wide range because of the interaction between these 

two beam profiles while in holography a wide beam is used for 

sampling the hologram and the results are less dependent on variations 
in the directivity patterns. In addition, the greater amount of 
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data recorded in the hologram has an inherent capability of providing 

more information on defect shape and orientation which is more 

reliable than that obtained from conventional techniques, hence 

allowing for more accurate characterization. 

Liquid surface transmission holography has been used for 

imaging relatively small movable objects which can be trans-illuminated 

[35]. However, the majority of holographic imaging systems for NDT 

employ some form of mechanical scanning in the reflection mode, 

particularly when the test piece is accessible from one side only. 
Both optical [55] and computer[93] reconstruction have been used in 

such systems. NDT holographic systems for underwater inspection [94] 

use piezoelectric arrays for sampling the hologram. Recently a 

system has been described [95] which combines microprocessor and 

colour graphics display technologies with the principle of acoustic 
holography to provide high speed, high resolution imaging of flaws 

using the frequency domain approach for image reconstruction. 

Although the majority of NDT holographic techniques use the 

imaging feature of holography, application beyond imaging are 

possible. A number of techniques [96], [97] detect and estimate 

changes in the thickness of the test peice by observing the changes 
in the fringe spacing and counting the number of fringes on the 

hologram without reconstructing the image. In much the same way as 
in optical holography, interferometric techniques have been 

investigated in the acoustic domain [98] for deformation analysis and 

other applications for the investigation of internal defects which 

cannot be detected by similar optical techniques. In deformation 

analysis a double exposure acoustic hologram is made with deformation 

occuring between exposures. When reconstructing the hologram both 

the images of the object before and after deformation are obtained. 
These two images interfere and the resulting interference fringes mark 
the deformation. 

The majority of the problems related to the use of holography 

in NDT are related to the complexity of sound propagation in solids 
[99] such as multiple reflections, mode conversion at boundaries, and 
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the scattering nature of the medium especially in weld areas which are 

of interest. Because of the coherent nature of holography these 

effects tend to accentuate the problems of speckle and diffraction 

artefacts which interfere with the structural details of the images 

thus making their interpretation more difficult. These effects can be 

reduced if the degree of coherency of the insonifying source is slightly 
lowered by sweeping the frequency over a narrow bandwidth [100]. The 

problem of mode conversion can be reduced by insonifying the object 

normal to the surface. Time-gating can also be used to exclude shear 

waves as they are much slower than longitudinal waves and to discriminate 

against multiple reflections. However, because of the strongly 

scattering and inhomogenous nature of the propagation medium, there is 

a limit on the amount of improvement that can be achieved by time- 

gating. 

2.8.2 Underwater Imaging 

Holographic imaging techniques constitute a major part of the 

underwater imaging systems reported in the literature. In this area 

of application, holography offers a number of advantages over other. 

competitive techniques which include lens and beamforming systems, 

cf. sec. 2.7.2. These advantages make holography more suitable for use 
in the hostile underwater environment since the holographic systems 

are more. rugged and require no moving parts compared to lens systems. 
They are also lighter and consume less power compared to beamforming 

systems. 

Because of the large ranges involved and the relatively low 

frequencies used, to reduce attenuation, large apertures are required 
in underwater applications to obtain adequate resolution. This makes 

arrays the most suitable candidate for hologram sampling since the 

relative motion between the hologram plane and the object and the 

varying nature of the environment make mechanical scanning unsuitable 
in most cases. To reduce the cost of arrays, underwater 
holographic systems usually measure the complex hologram data, cf. sec. 
2.4.2. Systems reported during the last few years use filled arrays 
[78], [101] and the more economical and advanced technique of synthetic 
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aperture [48], [102], [103] 9 see section 3.3. 

In most cases, the underwater imaging system is attached to a 

moving platform or carried by a diver and therefore the system must be 

fairly insensitive-to relative motion between the object and the target. 

For this reason parallel acquisition of the hologram data is 

preferred, -where each element in the receiving array has its own 

channel processor so that the spatial distribution of the complex 
field over the hologram is obtained simultaneously. Pulsing the 

transmitted acoustic signal and gating the receivers helps in 

reducing the stability requirements,. but this also affects the noise 

performance of the imaging system, cf. sec. 2.6.1. Another problem 

associated with underwater acoustic imaging in general is that of the 

specular reflections. The conventional solution of diffuse illumination 

using a number of widely spaced insonifying sources cannot be properly 
implemented due to the limited size of the imaging platform. 

2.8.3 Medical Diagnostics 

The majority of the applications of acoustic holography in 

medicine which are reported in the literature [30], [104], [105] employ 
the liquid surface technique, mainly because of its real-time 
imaging capability which is an important requirement in medical 

applications. The disadvantages of this technique include low 

sensitivity and poor spatial resolution in sampling the hologram, in 

addition to the inconvenience of immersing the parts to be imaged in 

water. Solid surface interface methods using laser scanning and 

optical reconstruction have also been utilized to investigate the use 

of holography for imaging various types of body tissues and organs 

and for obstetrics applications [54]. 

Scanning with the more sensitive piezoelectric detectors has been 

used to image certain parts of the body such as the eye [106] in 

the reflection mode. A contact scanner similar to the type used in 

B-scan techniques has also been reported in the literature [39]. This 

system uses a linear piezoelectric array which is mechanically scanned 
in the direction perpendicular to its length. The contact scanner 

overcomes the inconvenience of using a liquid bath and increases the 

resolution for the same hologram aperture. 
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In spite of the advantages of increased lateral resolution and 
better sensitivity in holography compared to B-scan techniques, the 

application of holography in the medical field its still rather limited. 

This can be attributed to the fact that the advantages offered do not 

match the increased processing complexity that holography entails 

compared to the well-established and relatively simple B-scan 

methods. The time delay required for optical reconstruction of the 

holographic images is a. disadvantage. However, this can be overcome 
to a certain extent by using array sampling of the hologram together 

with fast computer reconstruction. A more serious problem associated 

with holographic medical imaging is caused by the coherent nature of 
the technique and the inhomogenious nature of the human body as a 

propagation medium. In addition to specular reflections, the image 

usefulness is degraded by the presence of a number of coherence 

products which tend to be confused with tissue texture and add 

spurious image details. This makes the images more difficult to 

interpret than in the case of imaging hard scatterers in a more homo- 

genous medium such as in underwater applications. 

2.8.4 Seismic Imaging 

The application of holography to the field of seismic imaging 

offers a number of advantages. The data collection phase of the 

process is greatly simplified since the recording of time traces of the 

signal recieved at the array of geophones is simply replaced by the 

measurement of the amplitude and phase of the signal. Moreover, holo- 

graphy provides great flexibility in conditioning the original data in 

various ways to improve or enhance certain aspects of the reconstructed 
image, particularly. when computer reconstruction is employed. This 

signal processing is of particular importance for the proper 
interpretation of images in seismic applications because of the complex 

nature of sound propagation in earth. 

Seismic imaging systems reported in the literature utilize both 

one-dimensional [107] and two-dimensional [56] arrays and employ both 

optical and computer reconstruction [56]. Because of the large 
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aperture required, due to the large ranges and the 

frequencies used, some forms of synthetic aperture 

utilized [108]. A large number of data processing 
been employed in seismic holographic imaging to imp 

quality of the images obtained and to extract more 
from them [64], [80], [109]. 

very low 

techniques have been 

techniques have 

prove the 

useful information 
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2.9 Limitations 

In spite of the large interest shown in holography and the 

diverse potential applications of the technique, the penetration of 
holography into operational. systems both in military and commercial 
fields is still rather limited. This is partially due to the fact 

that before the advent. of holography many conventional acoustic 

methods, such as the B-scan technique were already well established. 
[110] and they continued to give reasonable performance with relatively 

simple equipment. Moreover, being an acoustic, coherent imaging 

system based on the principle of wavefront reconstruction; holography 

has a number of limitations attributed to each of these descriptions. 

A large number of these limitations, however, are associated with 
the conventional technique of recording the hologram as an interference 

pattern and reconstructing it optically. Such limitations, therefore, 

can be reduced to a large extend by measuring the complex hologram 

data and reconstructing it numerically using the computer. The use of 
the computer also opens the door for a wide range of signal processing 
techniques which improve image quality and resolution. 

The most important drawback pertinent to all acoustic imaging 

methods, and not only to the holographic approach, arises from the 

small numerical apertures for a given physical size because of the large 

acoustic wavelength. This greatly reduces the information content 

on the imaging aperture and severely affects both lateral and range 

resolution. The significance of this limitation becomes clear when 

one realizes that working with an acoustic aperture of 300 wavelengths 
is equivalent to viewing objects in the visible world through a 0.2 mm 

pinhole. This problem is even further accentuated by the lack of 

suitable media for detecting the acoustic field with adequate 

sensitivity and spatial resolution and which can be extended over large 

areas, cf. sec. 2.4.3. Large physical apertures obtained using two- 

dimensional arrays are costly and mechanical scanning. of the aperture 

area with one detector is time consuming. A number of methods have 

been suggested for increasing the effectiveness of a given physical 

aperture which include synthetic aperture techniques and algorithms 
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for expanding the aperture or increasing the resolution. The problem 

of limited resolution in acoustic holography is the main concern of the 

work reported in this thesis. 

Another problem related to the large acoustic wavelength is that 

of the specular reflections, cf. sec. 2.3.4. This is a more serious 

problem than in optics because ordinary objects are smoother relative 

to the acoustic wavelength and therefore act as mirrors to the 

insonifying waves. The specularity problem reduces. the intelligibility 

of acoustic images especially when the dynamic range of the display 

device is limited, since only those parts producing large reflections 

could be seen. This problem can be reduced by using more than one 

source to insonify the object from different angles in order to 

provide more diffuse illumination. However, this is not always 

practical, as in the case of underwater applications. In addition, 

diffuse illumination tends to increase the speckle problem. 

The coherent nature of holography gives rise to a number of 

image artefacts which degrade the appearance of the image, interfere 

with its structural details, and make it more difficult to interpret; 

especially in medical applications where they tend to be confused 

with other image details [54]. These artefacts result mainly from 

mutual interference of signals from one part of. the object with 

those from another, and include speckle, edge ringing, and diffraction 

effects, cf. sec. 2.3.4. Since the size of the speckle is 

approximately equal to the size of the resolution cell of the imaging 

system, this problem is more severe in acoustics because of the small 

numerical apertures. Moreover, these effects also increase when the 

medium of propagation is inhomogenous and scattering and the object 

to be imaged has complex configuration leading to multiple reflections 

and mode conversions. For the same reason speckle tends to increase 

with diffuse illumination when attempting to remedy the problem 

of specular reflections. Speckle and other coherence artefacts are 

considered to be one of the most serious problems in the holographic 

approach to acoustic imaging. Since all these attefacts are products 

of coherency, they can be reduced by slightly reducing the coherency 

of the acoustic source by sweeping its frequency over a small 
bandwidth [100]. 
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As a wavefront reconstruction technique, acoustic holography 

requires the recording of, the amplitude and phase of the complex field 

at the hologram plane. The need for accurate phase measurement 

requires a degree of stability for the imaging set-up and constrains 
the relative movement between the object and the hologram plane which 

may be somewhat restrictive in certain applications such as in 

underwater imaging [77]. The stability requirement, however, is much 

more relaxed than in the case of optical-holography because of the 

large acoustic wavelength. The situation is improved when the 

hologram data is sampled instantaneously using two-dimensional filled 

arrays with a separate channel processor for each array element in order 
to achieve parallel hologram acquisition with a single transmitted 

pulse. However, this is usually not economical with large apertures 

where some form of aperture synthesis is employed using multiple 
transmissions. Pulsing the acoustic signal and limiting reception 

to within a narrow receiver gate reduces the stability requirement but 

this tends to affect the noise performance of the imaging system and 

could therefore limit resolution at large ranges, cf. sec. 2.6.1. 

The dependence of holography on phase' information makes it also 

sensitive to phase distortions in the medium caused by nonlinear sound 

propagation at high intensities. However, in certain configurations 
the holographic technique can tolerate aberration in the medium which 

are produced by such phase distortions [33]. These configurations 

assume the use of a physical reference which experiences aberration in 

the same medium and therefore this advantage is not valid when the 

reference wave is simulated. 

In its conventional form, acoustic holography shares a number of 

problems with optical holography which are related to both hologram 

recording the reconstruction. A large number of holographic acoustic 
imaging systems have adopted the technique of recording the hologram 

as an interference pattern with a reference which provides the spatial 

carrier-and reconstructing such a hologram optically. As shown in 

previous sections, this technique is neither essential nor advantageous 
in acoustics since the hologram image can be reconstructed using the 
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computer from the complex hologram data. The requirement for a 

spatial carrier introduces a conjugate image together with extraneous 
interference terms in the reconstructed image, cf. sec. 2.3. 

Furthermore, the spatial carrier frequency introduced by the 

reference increases the spatial bandwidth of the hologram. Accordingly, 

the hologram bandwidth can be up to four times the object bandwidth, 

cf. eqn (2.14). Therefore, for the same image quality of a complex 

object this type of holography requires up to a four fold increase in 

the spatial resolution of the area detector compared to the case of a 
lens system. This limitation can be avoided by measuring the complex 
hologram data since in this case the data bandwidth does not exceed the 

object bandwidth. 

Optical reconstruction introduces a considerable time delay in 

non real-time imaging techniques, and this can be disadvantage in many 

applications such as medical diagnostics. Additionally, the 

depth distortion caused by the large mismatch between the acoustic and 

the optical wavelengths, together with the small acoustic numerical 

apertures, severely limit the prospects for adequate three dimensional 

viewing of acoustic images, cf. sec. 2.5.2. 

Both problems of long time delays and wavelength mismatch can be 

circumvented by going to computer reconstruction, although three- 

dimensional image displays generated by the computer are not as realistic 

as those obtained in optical holography. The efficiency and speed of 

computer reconstruction are optimized when the reconstruction algorithm 
is applied to the complex hologram data. As electronic data 

processing becomes faster and cheaper it is possible that near real- 

time operation can be achieved. Additionally, the same microcomputer 

used for image reconstruction can also be used as the controller 
for the hologram acquisition, therefore simplifying the system and 

reducing the need for specialized hardware. A 
. 
large variety of signal 

and data processing techniques can also be employed to reduce the 

effect of other limitations and to improve the quality of the resulting 

images. 
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2.10 Conclusion 

Holography offers a wide range of possibilities in acoustic 
imaging together with a number of advantages compared to other 
techniques in the field. With fast, inexpensive, and more powerful 

microcomputers and special signal processing and display devices 

becoming available, a number of the classical problems associated 

with the conventional type of acoustic holography can be overcome. 
The key for this improvement is the replacement of the hologram 

recording by the measurement of the complex object field and the 

optical reconstruction by computer reconstruction. In this way the 

problem of wavelength distortion and the time lag associated with 

optical reconstruction can be avoided, with the possibility of near 

real-time imaging using dedicated signal processors. The system 
hardware can be kept to a minimum with the computer performing all 
the control functions during hologram acquisition, reconstruction, 

and display. 

The computer can also help in reducing the effect of more 
basic problem such as the limited numerical apertures, the specular 

reflections, and the speckle. A large number of signal processing 

methods can be used to perform synthetic aperture, aperture expansion, 

or object restoration techniques in order to improve the resolution 

obtainable from a given limited aperture. This would also reduce 
the effects of speckle on the image quality. Image processing 
techniques can reduce the specular appearance of acoustic images, 

help extract certain features from them, enhance weak returns, and 

perform focusing automatically. In short, combining holographic 

principles with the capabilities of modern microprocessors and signal 

processing devices should make it possible for holography to overcome 

a good deal of the problems it has been facing in its conventional form. 

The work reported in this thesis is mainly concerned with the 

problem of limited resolution in acoustic holography. Chapter 3 

reviews the techniques for resolution improvement in imaging systems 
in general. The new method described in Chapters 4 and 5 is based on 

expanding the hologram aperture using modelling and prediction techniques. 

The experimental implementation reported in Chapters 6 and 7 employ a 

microcomputer system for hologram acquisition, reconstruction and display. 

80 



CHAPTER 3 

TECHNIQUES FOR RESOLUTION IMPROVEMENT 



3.1 Introduction 

All imaging systems are limited in resolution by the dimensions 

of the entrance pupil, the reocrding aperture, or the data window which 

govern the capture of information by the input stage of the system. 
However, the possibility of resolution beyond the diffraction limit 

has been recognised in optics for a number of years [33] and a number 

of techniques have been developed for this purpose [111], both in the 

optical, microwave, and acoustical domains. 

In acoustical and long-wavelength holography in general the 

need for such techniques is even greater since numerical apertures are 

normally much smaller than those available in optics because of the 

large wavelength. In holography, the small numerical aperture not 

only limits resolution but also increases the speckle effect in the 

holographic image and adds to the problems associated with three- 

dimensional imaging, cf. sec. 2.9. The lack of suitable area 
detectors. in acoustics has meant that sampling the hologram aperture with 

arrays or by mechanically scanning a single detector are the most 

suitable methods which provide the required sensitivity and spatial 

resolution. However, to cover large areas using such methods is either 

costly in the case of arrays or time consuming when mechanical 

scanning is used. In underwater applications, allowed scan times are 

often restricted by the stability of the imaging plateform, the 

speed of'the objects to be imaged, and the fluctuating nature of the 

propagation medium. Additionally situations arise in the field of 

acoustic imaging where the available aperture is physically 

restricted; for example when imaging the inside of the chest through 

narrow spaces between the ribs. 

On the other hand, there is a number of factors which allow a 

wide variety and a large amount of signal processing techniques to be 

employed in acoustics in order to improve resolution and image 

quality in general. The availability of linear detectors which are 

capable of sensing the complex amplitude of the acoustic signals 

allow more signal processing possibilities than in the case of optics 

where square-law detection is the general rule. Moreover, because of 
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the relatively small amounts of data in the case of acoustics, large 

amounts of signal processing can be performed using general purpose 

computers and specialized processing hardware. This is particularly 
the case when using the complex hologram, since it corresponds to 

the minimum amount of data representing the hologram, cf. sec. 2.5.2. 

With the increasing use of the computer as the main component for system 

control and image reconstruction, such signal processing tasks can 
be carried out easily and cost effectively. It is expected that the 

revolution in microprocessor and signal processing devices will have 

a major impact, on this field. 

Techniques for resolution improvement can be classified into 

synthetic aperture methods and signal processing methods. Although 

synthetic aperture methods employ some techniques of signal processing, 
the above classification is useful as it differentiates between other 
important aspects of the two classes of techniques. Synthetic aperture 

methods are primarily based on modifying the way in which the data 

acquisition phase of the imaging process is performed so that a large 

aperture is covered using a relatively small number of transducers. The 

signal processing class of techniques operate on a given physical 

aperture on which the data acquisition has already been performed and 

attempt to improve the image resolution obtainable from such an aperture. 
However, some signal processing techniques might impose certain 

requirements on the imaging range or the detector sensitivity; see 

sec. 3.5.2. Following a formal derivation of the aperture limited 

resolution in holography, the techniques for resolution improvement in 

the fields of optics, microwaves, and acoustics are discussed with 

emphasis on those methods which are relevant to acoustic holography 

in general and the work described in this thesis in particular. 
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3.2 Aperture Limited Resolution in Acoustic Holography 

As in the case of all imaging systems, both lateral and range 

resolution in holography are limited by the size of the hologram 

aperture. Consider a hologram aperture which extends ix in the 

x direction and Ly in the y direction. A point object at (xo'yo) 

in the object plane at distance z from the hologram is represented 

by a Delta function d(xo, yo). If the distance z is large enough 

for the far-field (Fraunhofer region) approximations to apply then 

the quadratic phase terms in eqn. (2.48) can be omitted. Ignoring 

constant amplitude and phase terms, the hologram of the point 

source is: 

u(x, y) = F[S(x0, yo)] (3.1) 

where F denotes the Fourier transform evaluated at frequencies 

fX = xZ and fy fr 
. Up to a multiplicative constant which is 

a function of the object range z, the hologram function over the 

aperture is therefore given by: 

u(x, Y) _1; 2<x<2x2y<2 (3.2) 

In the equivalent frequency space this is: 

u(f of 1<f<x, 2x Kf< 
Ry 

(3.3) 
xy 2xz x 27ºz 2az y 2xz 

The image is obtained by the inverse Fourier transform of the hologram 

function, cf. eqn. (2.51). 
I zx 
2Az 2Az 

u°(x°, y°) =1J1. exp {+j21c[x0fx+y0fy11 dfx dfy 
Lx 

21z 2az 
... (3.4) 

u (x y) ý sinc (RX 
x°) 

sinc (Ry 
y° 

) (3.5) 
000 (Az)2 az Äz 
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The image intensity is therefore: 
L X, 

I=1° sinc2 ( xZ 0) sinc2 ( xZ °) (3.6) 

where 10 is the peak intensity. The intensity function has its 

first zeros in the x0 and yo directions at a distance from the 

centre given by: 

ax0 = 
X? 

, 6y0 = 
RZ (3.7) 

xy 

The width of the image point is 2dx0 and 26y0 in the two 

directions. The larger the dimensions of the hologram aperture the 

sharper the point image becomes and the better the resolution. Lateral 

resolution is usually defined as the minimum distance between two 

points in the object plane below which it is not possible to 

resolve their images. The most common resolution criterion in incoherent 

optics is the Rayleigh criterion which states that two-incoherent points 

are barely resolved when the centre of the image of one source falls 

on the first zero of the image of the other . In this case the combined 
image of the two points has a central dip of about 19% of the maximum 
intensity. According to this criterion the resolution is the distance 

between the peak of the image of one point and its first zero, as 

given by eqn. (3.7). For a square aperture of size D the resolution 
is: 

AZ 
aR -- 

in both xo and y0 directions. 

is further complicated by the 

two point sources [33]. When 

system is a number of wavelen 
be useful as an approximation 

(3.8) 

With coherent radiation the situation 

effect of relative phase between the 

the illuminating source in a coherent 

]ths in size the Rayleigh criterion can 
to the resolution of the system [35]. 

The integration limits in eqn. (3.4) indicate that the real 
limitation to resolution is caused by the fact that the hologram 

is measured only at a finite aperture relative to the wavelength A 

and the object range z. The resolution therefore increases with 
the increase in the numerical aperture ( ýx 

and ) and with the 
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decrease in the range z. It must be noted, however, that resolution 

as derived by the above analysis is a far field criterion. Most 

imaging systems operate at smaller ranges, in the near field or the 

Fresnel region. For a point, object at such ranges the wavefront 

at the hologram plane is spherical rather than plane. In order to 

achieve the aperture limited resolution in eqn. (3.8) at such ranges 
the imaging system must compensate for the wave curvature, a process 

referred to as focusing. In a lens system this is achieved by the 

lens curvature. In the Fresnel region the phase of the incident 

wave can be approximated by a quadratic phase term. This, is 

compensated for in the Fresnel integral method of image reconstruction 
by multiplying by the same exponential term with an opposite sign 
before performing the inverse linear transform, eqn. (2.51). 

Since the resolution increases with the increase in the size of 
the numerical aperture, all techniques which aim at improving the 

resolution beyond this diffraction limit attempt to extend the 

effective aperture over which the hologram data is collected. In the 

case of imaging in the far field, the hologram is equivalent to the 

Fourier transform of the object, cf. egn. (3.1). Therefore the 

extension of the hologram aperture is equivalent to extrapolating 

the object spectrum beyond the limit set by size of-the physical 

aperture. 
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3.3 Synthetic Aperture Holographic Techniques 

In its broad sense, the term "synthetic aperture" refers to the 

simulation of a filled array by the clever use of some smaller array. 
The price paid for the saving in the number of transducers used may 
include increased scan time or lower signal-to-noise ratios. Both of 
these effects may lead to some image degradation. The simplest form of 

synthetic apertures are those obtained by scanning a single transducer 

in a certain format to cover a large aperture as commonly used in 

holography, Fig. 3.2a. Although it is customary to scan the receiver, 
it has been shown [35] that similar results are obtained with the 

scanning of either the transmitter or the object, or with the 

simultaneous scanning of both the transmitter and the receiver. 

This simple form is also the basis of synthetic aperture radar 
[112) and sonar [113) which use coherent radiation in a way that is 

very similar to holography. In a typical arrangement for a synthetic 

aperture radar, as the aircraft moves along a straight path, its 

radar continuously emits successive microwave pulses. The signal 

returns are detected along the path and mixed with a coherent 

reference and the result recorded on a photographic film. This 

photographic record is developed and reconstructed optically using a 
laser as in the case of conventional holography. Because of the coher- 

ent nature of the process, the returned echos appear to be received 
by a single antenna which has a long synthetic aperture equal to the 

distance travelled. This effective large antenna length provides the 

very high resolution required for such applications as aerial 

photography. 

A number of methods have been employed to reduce the time 

required to scan a two-dimensional hologram aperture. A 
, 
linear 

receiver array can be mechanically scanned in a direction perpendicular 
to its length [39], Fig. 3.1b. Approximately equivalent results were 

obtained using a fixed array of the type mentioned above and moving a 
broad-beam transmitter in a direction perpendicular to the array [107], 

Fig. 3.1c. 
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Greater saving in time can be achieved using two crossed linear 

arrays in the arrangement known as Well's cross [114] which 

simulates simultaneous scanning of both transmitters and receivers. 
This arrangement, Fig. 3.1d, uses two perpendicular arrays; one 

containing N transmitters and the other N receivers. The transmitter 

elements are fired sequentially and for each transmission the 

returns are received by all the receiver elements. For large 

ranges the signal received by the qth receiver from a transmission 

by the pth transmitter will be approximately equal to the signal 

received by the (p, q)th element of the equivalent filled receiver 

array of N2 elements with a transmitter located at the point of 
intersection of the extensions of the two linear arrays. Because of 
the geometry employed, the resulting images suffer from conical 

aberration which is more pronounced at short ranges in addition to 

another form of aberration due to transmitter scanning. Moreover, this 

configuration uses an equal number of transmitters and receivers, 

which is not necessarily the optimum arrangement from the point of 

view of cost reduction since transmitter channels are generally more 

expensive than receiver channels. 

Another approach to aperture synthesis is to mechanically scan a 

small two-dimensional filled array of receivers in order to cover 
the required large area, Fig. 3. le. However, it is difficult in 

practice to displace such an array rapidly and accurately. Because 

of the transmitter/receiver duality [35], similar results are obtained 
if the receiver array is kept fixed and the transmitter is scanned 
by displacing it a distance equal to the size of the receiver. array 

aperture in order to cover the area required as-shown in Fig. 3.1f. 

To reduce the data acquisition time even further and to dispense 

with mechanical motion altogether, practical systems using this 

principle [43) usually employ a sparse transmitter array with 

element spacing equal to the size of the filled receiver array, Fig. 

3.1g. The transmitter elements are sequentially fired and the 

corresponding portion of the hologram data is received and stored. 
Due to the fact that scanning is effectively split between the 
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transmitter and the receiver, a phase correction should be introduced 

to the data collected during each transmission. This correction is 

introduced into the subholograms obtained for each fired transmitter 

element. These subholograms are superimposed to obtain the synthesized 
hologram which is then reconstructed. Alternatively, equivalent 

phase shifts are introduced into the subimages reconstructed from the 

individual subholograms which are then superimposed to obtain the 

final imgage (47]. In practice, there will be some phase uncertainties 
between the contributions from the individual transmissions due to 

limited mechanical stability and environmental variations. These 

cause alignment errors in the synthesized aperture and lead to 

image degradation. 

The disadvantage of sequential transmission is that large scan 
times are required which make it difficult to image moving objects and 
increases the stability requirements. A number of techniques have 

been proposed for parallel processing of the hologram information. 

In one approach [47], the transmitter elements are fired simultaneously 
but the signals driving various elements have different frequency or 

modulation coding so that the received signals can be decomposed 

into the individual subholograms. Another approach [48], [103] uses 
the transmitter array in a beamformer configuration where the phase 

of the signal fed to each transmitter element is selected so that 

the grating lobes of the transmitted beam are focused at a number 

of points in the object plane. The subimage corresponding to the 
data received by the small filled array is reconstructed. The 

phasing of the transmitter array is then changed so that the grating 
lobes are steered and focused a new set of points on the objects 

and the process is repeated until the whole image is obtained. 
Although this method achieves better tolerance to the problems of 
mechanical stability and object motion and to the phase variations 
due to the medium [48], this is achieved at the expense of increased 

complexity in the transmitter array circuitry. 

The amount of improvement in resolution and reduction in cost 
in the synthetic aperture systems which employ a sparse transmitter 

array and a small filled receiver array is determined by the number 
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of elements in the transmitter array. Generally, the size of the 

transmitter array will be limited in practice by the increase in 

acquisition time, the reduction in range resolution, and the 

increased complexity of either the beamforming circuits or the 

coding and decoding circuits when parallel acquisition is used. 

Another way of saving in the number of transducers required to 

sample a given hologram aperture is to use nonuniform sampling [79], 

Fig. 3.1h. This technique is based on random sampling and achieves 

a considerable reduction in the number of array elements for the same 
effective aperture size without the effects of undersampling, especially 
when a priori information exists on how the hologram information is 

distributed over the aperture. In this case a sampling scheme should 
be employed which samples most in the most important regions [115]. 

One disadvantage of this 'thinning' of the array is that because of 
the reduction in the number of array elements, the spatial signal-to- 

noise ratio in the reconstructed image is also reduced, cf. sec. 2.6.4. 

It should also be noted that conventional reconstruction algorithms 
assume uniform sampling of the hologram. 
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3.4 Object Restoration Techniques 

It has been recognised for some time now that diffraction does not 
impose an absolute limit on the resolving power of an imaging system. 
Toraldo di Francia [116] was the first to suggest in 1952 that 

the classical expression of 1.22 (a/D) which has been always accepted 

as a theoretical resolution limit proves to be instead only a 

practical limit set by the system nyoise and the accuracy of the 

measuring instruments. For example, the image of two points, 
however close to one another, is mathematically different from 

that of one point. Therefore, the resolution limit which causes the 

two points to be mistaken for one point is actually imposed by the 

failure of practical image receptors to sense the difference 

between the images in the two cases. Using the principles of 
information theory Toraldo proposed a new definition for the 

resolution criterion as the number of independent data which can be 

found in the image. He also introduced the concept of the 

ambiguous image, according to which if two different objects have 

identical images they can not be resolved. Toraldo has indicated 

that the key to resolution beyond the diffraction limit lies in 

utilizing as much a priori information as possible about the 

object. 

Previously, Schelkunoff [117] described the principles of super- 

gain antennas for microwaves. These results were transferred to 

optics by Toraldo who discussed a procedure for designing a super- 

resolving pupil in which improved resolution could be achieved 

over a limited field by modifying the pupil of a diffraction 

limited imaging system. However, for any substantial improvement 

in resolution, the tolerance on the pupil transmittance function 

would be severe. 

When imaging an object in the far field, the propagation of the 

waves from the object to the imaging aperture approximates to a 

spatial Fourier transform and therefore the imaging system receives 
the spectrum of the object. Due to the limited aperture in diffraction 
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limited systems, only a finite portion of the object spectrum is 

intercepted by the imaging aperture. The object spectrum is therefore 

truncated to a cut-off frequency fc which is determined by the 

aperture dimensions relative to the wavelength, i. e. the numerical 

aperture, together with the object distance, cf. eqn. (3.3). During 

the imaging process, the inverse Fourier transform is performed 

on this truncated spectrum and the resulting image will have limited 

resolution due to the loss of information corresponding to the 

high frequency components outside the passband of the imaging system. 

The same argument can be used to explain the finite resolution 
in diffraction limited systems using the concept of ambiguous image. 

Consider a set of different objects each having some fine details 

so that their true spectra extend beyond the cut-off frequency fc 

of the imaging system. Since it is possible that some of these 

objects will have the portions of their true spectra within the 

passband of the system identical, their reconstructed images based on 

such an aperture will be identical and therefore cannot be resolved 

as two different scenes, Fig. 3.2. Accordingly, two points which are 

close enough may look like a 1-point object when imaged with a 
diffraction limited system. To be able to image beyond the diffraction 

limit and therefore resolve such ambiguities, it is necessary to 

effectively increase the aperture size in order to increase the cut- 

off frequency fc or in other words extend the knowledge of the object 

spectrum beyond fc. 

Following up the idea of using a priori information as a key 

to super-resolution, Harris [118] has shown that a priori knowledge 

that the object is spatially bounded, i. e. finite in size, is 

sufficient to resolve completely the ambiguity in the object-image 

relationship. His work is based on a number of theories related to 

analytic functions [119] which indicate that the spectrum of a 

spatially bounded object is an analytic function. It is a character- 
istic of analytic functions that if the function is known exactly 
in an arbitrarily small, but finite, region of a certain plane then the 

entire function can be found uniquely by means of analytic continuation. 
This implies that a knowledge of the object spectrum within the 
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passband of the imaging system can be used to determine the full 

spectrum of the object beyond the passband without any ambiguity 

with other spectra corresponding to other objects. 

Since the true extended spectrum can be used to reconstruct the 

true object, infinite resolution can be achieved in principle for 

spatially bounded objects. In practice, however, the ability to 

continue the object spectrum beyond the cut-off frequency will be 

limited by noise and measurement accuracy since with these practical 
limitations it is not possible to know the object spectrum exactly 

over the passband. In general, the process of analytic continuation 

suffers from the problem of ill conditioning [120] where small 

errors at the input produce large errors at the output. The effect 

of noise and measurement errors depends on the type of analytic 
functions used. Unfortunately, many types of such functions 

require almost perfect precision of definition to make very small 

extensions to the spectrum. 

Harris described an analytic continuation scheme based on the 

sampling theorem. Consider a finite object which is bounded in 

space by a rectangle extending over ±Lx and ±Ly in the x and y 
directions respectively. According to the Whittaker-Shannon 

sampling theorem the object spectrum G(fxfy) can be written in terms 

of its samples at ( 
Zn , 2ý 

) as: 
xy 

W OD 

Gifxqfy) =EE G(2L ' 2L 
m=-m n=-ý xy 

m sinc[2Lx(fx 2L 
»sinc[2L(f- 

2L 
xyyy 

... (3.9) 

where sinc(x) denotes sin(nx)/, nx. In a practical system the values that 

can be readily measured at any point on the imaging aperture are 
those corresponding to G(fx, fy) on the L. H. S. of eqn. (3.9). Due 

to the limited passband of the system, the sample values G( n, m 
2LX 2Ly) 
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can be found for only a few low integer values of (n, m). To extend 
the spectrum to larger integer values n=±N, m=±M, eqn. (3.9) can be 

approximated to: 

MN 
m G(fx, fy) sis EE G( 2L '2L ) sinc[2Lx(fx 

2L 
)l sinc[2Ly(fy-2L 

m=-M n=-N xyxy 

... (3.10) 

which gives a better representation of the spectrum in at least some 
finite region beyond the passband. To determine the sample values 
G( 2n , 2ý 

) over the extended passband, the values of G(fx, fy) are 
xy 

measured at any (2N+1)(2M+1) points within the actual passband. 
Substituting G(fxfy), fx, and fy in eqn. (3.10) produces (2N+1)(2M+1) 

linear equations inthe same number of unknowns , G(2n ,ý). These 
x2y 

can be solved to produce the required sample values which extend beyond 

the passband. 

Harris applied this technique to image a numerically simulated 
two-point object. He achieved a resolution equal to 0.2 of the 

Rayleigh limit while ignoring the effect of noise. In practice, 
however, imperfections in the knowledge of the spectrum within the 

passband can be greatly magnified when the system of linear equations 
is solved for sample values outside the passband. This is because 

each sample value is expressed as a linear combination of all the 

measured values, each of which contribute some noise. It is 

estimated [1111 that a three-fold improvement in resolution 
beyond the diffraction limit using this approach may require at 
least 30 db signal-to-noise ratio in the measured signal while the 

signal to noise amplitude ratio in the restored image can be as low 

as 0.7. 

Barnes [121] adopted a more formal approach to the problem of 

object restoration in a diffraction limited imaging system. For the 

case of one-dimensional system, the imaging process is characterized 
by an integral of the form: 
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b(s) _' j g(s, x) a(x) dx (3.11) 

where x and s are the coordinates in the object space and image* 

space respectively, a(x) and b(s) are the complex amplitudes of the 

object and the image respectively, and g(s, x) is the imaging kernel. 

Aniobject restoration scheme attempts to recover the object function 

a(x) in terms of the image function b(s) and the imaging kernel 

g(s, x). 

For a finite object, so that both the object and the image 

functions are bounded by -a and a, and using a set of orthonormal 

eigenfunctions, the restored object is given as [120]: 

Co aa (x) 0n(s) 
a(x) =EjX b(s) ds (3.12) 

n=0 -a n 

where an are the eigenvalues and an(x, s) are normalized prolate spheroidal 

wave eigehfunctions. When the number of terms in the summation 
in eqn. (3.12) is truncated to a finite value an approximate value of 

a(x) is obtained. 

One disadvantage of this method is that it generates very strong 

sidelobe responses outside the area of interest in the object plane. 
In principle, this is not a serious problem as long as illumination 

is restricted to that area. In a practical implementation, however, 

this means that great care should be taken to exclude stray light from 

parts of the object space that are outside the region of allowed 
illumination. Moreover, Rushforth and Harris [122] have shown that 

due to the amplification of errors in the reconstructed function, 

the usefulness of this method for resolution improvement using 

realistically measured data is very limited. 

Another technique for analytic continuation has been described by 

Biraud [123]. This is based on an additional a priori information 

about finite objects, namely that their radiance is a non-negative 
function. This method has been used to give resolution improvement 

of 5 times the Rayleigh limit at an amplitude signal-to-noise ratio 

of 36 in the input data. 
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The noise limitations are a common factor among all the 

restoration techniques mentioned above. A method designed to be 

more robust against noisy environments has been described by 

Gerchberg [124]. This is an iterative technique for continuing a 

given segment of the spectrum of a finite object. Ignoring the 

effects of noise, the known segment of the true spectrum is 

considered as the sum of the true wider spectrum and an error 

spectrum which is equal and opposite to the true spectrum outside 
the extent of the known segment, see Fig. 3.3. The method is based 

on reducing the energy of this error function which is implicit in 

the truncated spectrum. The technique discriminates against noise and 
distortion in the input data on the basis that, considered as 

additive functions, noise and distortion are generally not capable 

of being continued to yield a finite object while the true spectrum 

will. 

Referring to Fig. 3.4, the known portion of the spectrum, Go(f), 

is first Fourier transformed to yield the diffraction limited object 

which is then corrected by setting all of the image points outside 
the known extent of the true object to zero. The image thus modified 
is Fourier transformed to generate a spectrum which now corresponds 
to a larger imaging aperture. This spectrum is corrected by 

substituting the values of the original measured spectrum only where 
they belong, while the new data is used outside this region. These 

steps are iterated until a criterion based on the estimated object 

energy outside the known extent of the true object is satisfied. 
The continued spectrum, Gn(f) , after the nth cycle of the iterative 

process is given by: 

Gn(f) = Go (f) + (G 
n-1 

(f)*Xsinc(Xf)][1-rect(f/F)] (3.13) 

where Gn_1 (f) is the spectrum at the end of the preceding iteration, 

X is the known or estimated extent of the object, and F is the extent 

of the known segment of the spectrum. In the *above equation '*' 

denotes convolution in the spatial frequency domain. This algorithm 
has been shown to converge for finite objects when the object extent 

is known exactly or is overestimated since, in this case, the correction 
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process both in the object and spectrum domains reduces the error 
energy,. in every cycle of the iteration. 

It should be noted that this method together with all the object 

restoration techniques mentioned above require an estimation of the 

extent of the true object to be made. In this particular method and 
in the Harris technique, caution should be exercised to be sure 
that the value chosen does completely encompass the object. When the 

estimated value is greater than the extent of the true object the 

precision of both methods deteriorates. even for the case of noiseless 
data. In an example given by Gerchberg [124], the energy of the 

residual error in the restored object increases from 10% when the 

exact object extent is used to 34% when the object extent is 

overestimated by a factor of 45%. Moreover, Gerchberg's technique 

fails if the extent of the object is underestimated. 

A statistical approach to the problem of object restoration 

which is based on maximum entropy techniques has been proposed by 

Frieden [125] for the case of incoherent imaging. The method operates 

on the intensity distributions of both the image and the object which 

are assumed to have positive or zero values. The restored object is 

considered as the object distribution which is most likely to occur 
together with the set of noise values in the measured image data. 

Therefore, the method is based on maximizing the product of the 

number of ways in which the object and noise distributions can occur, 

subject to constraints of the measured image distribution and the 

given total intensity of the restored object. This corresponds to 

maximizing the entropy of both the object and the noise. The 

restoring formula is not intrinsically band limited and therefore 

resolution exceeding the Rayleigh limit can be achieved. 

Let the object to be restored be represented by the intensity 

distribution: 

O(xj) = Oj ; j=1,2,.... J (3.14) 

where xj is the location of the jth pixel in the object space and 
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J is the total number of pixels in the restored object. The total 

object intensity, Po, is assumed to be known, 

J 

o 
PE0. (3.15) 

j=1 J 

The measured values of the image intensity is known over a limited 

number of M pixels; 14<J is further degraded by additive noise. For 

a linear system this is given by: 

3 
Im = 

JE1 
0i S(ym, xi )+ nm ; m=1,2,..., M (3.16) 

where ym is the location of the mth pixel in the image space, S(ym, xi ) 

is the impulse response of the imaging system and nm is the noise 

contribution. Since the algorithm operates on non-negative quantities 

only, biased values Nm for the noise are used, 

Nm = nm 

Nm = exp[-1- Am/p] 

where B must be equal to or greater than the maximum negative value 

of the noise components. The restored object and the corresponding 

noise distribution are given by [125]: 

AM 
0ý = exp[-1-p- E 

m=1 

and 

Am S(ymxj)]; j=1,2,..., J 

; m=1,2,..., M 

(3.17) 

(3.18) 

(3.19) 

where P represents the signal-to-noise uncertainty which is considered 

acceptable. The constants u and Am ; m=1,2,..., M are obtained by 

substituting eqns. (3.18) and (3.19) into (3.15) and (3.16) and using 

eqn. (3.17). The resulting M+1 equations are highly non linear but 

can always be solved provided that the noise bias value, B, is 

sufficiently large. It should be noted that in addition to the measured 
image data and the a priori knowledge of the total object intensity, 

Po, this method requires the two parameters P and B to be estimated. 
The actual values used for these parameters influence the restoration 

considerably [125]. This method has the advantage of being tolerant 
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to noise for values up to 40% relative amplitude and of the lack of 

spurious oscillations or details in the restored image. It is 

interesting to note that although this method adopts a different 

approach in attacking the restoration problem, it achieves the same 

result of matching the spectrum of the restored object with that 

of the true object outside the optical passband. 

More recently, a similar approach has been used to improve the 

resolution of B-scan images which is limited by the spread of 

the ultrasonic beam [126]. As in the case of Frieden's method, this 

technique is applied on the magnitude data only. Due to the non- 
linearity of the entropy function, an iterative scheme is employed 
for its constrained maximization which requires substantial computing 

time when the method is applied to two-dimensional images. The 

maximum entropy technique has also been employed by Yokota et al [127] 

in an active incoherent ultrasonic imaging system which achieves 
high resolution and overcomes the problem of speckle in coherent 

systems. 
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3.5 Signal Processing Techniques for Resolution Improvement 
in Acoustic Holography 

A. number of signal processing techniques have been developed 

for improving the resolution of a given hologram aperture beyond the 

diffraction limit set by the aperture size. One technique attempts to 

estimate the hologram in an extended area from the data obtained in 

a limited area in a manner which is similar to the methods used for 

object restoration in optics [128]. Another is based on increasing 

the effective numerical aperture of a given hologram area by 

artificially increasing the temporal frequency of the acoustic signal 
[129]. Another group of techniques increase the resolution in the 

near-field beyond the wavelength limit. This includes the use of a 

modified reconstruction formula as suggested by. Williams et al [130], 
[131], or utilizing a priori information about the object [132]. 

3.5.1 Resolution Improvement Beyond the Diffraction Limit 

As shown in section 3.2, the resolution of the holographic 

imaging system is defined by the limited size of its aperture. Sato 

et al [128] have described a sequential method for resolution 
improvement by extending a given hologram aperture. The aperture 

extension is treated as an estimation problem with the objective of 
determining an estimate of the hologram in an extended area from the 
knowledge of the hologram signal in a given smaller area. The estimation 
algorithm is performed on a modified version of the hologram signal 
which corresponds to the spatial spectrum of the object. Due to its 

relevance to the work described in this thesis, Sato's technique is 

summarized below. 

Referring to Fig. 3.5, assume a one dimensional object which is 
bounded in space by the limits ±X0. According to the sampling theorem, 
the object spectrum, and therefore the corresponding modified 
hologram signal, should be sampled at a frequency interval not 
exceeding Af0 ; where ofo is given by: 

Uf 
1 

o 2X 
0 

(3.20) 
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Assume that the maximum spatial frequency of the object is limited to 

±N Of0, beyond which it vanishes. In practice, the hologram is sampled 

at a frequency interval Af which is less than Af0. Samples are 
taken at frequencies mAf where m=0, ±1,..., ±M, and M. N. The 

sampling theorem relates the hologram signal H(mof) to the independent 

samples of the band-limited object spectrum A (nAfo) ; n: 0, ±1,..., ±N 
by: 

N 
H(mnf) =E A(nef0) sinc[of (mAf - nof0)] (3.21) 

n=-N 0 

m=0, ±1,..., tM 

where sinc(x) = sin(nx)/itx. The above equation is similar to eqn. (3.10) 

which corresponds to the case of a two-dimensional object. Eqn. (3.21) 

can be represented in the following vector form: 

HM =5 AN (3.22) 

where HM is the measured hologram vector and AN is the overall 

vector representing the true hologram, or object spectrum, sampled at 
the critical frequency interval efo ; see Fig. 3.5 

HM = [H(-Mof),...., H(Mof)]T (3.23) 

AN = [A(-Nofo),..., A(-Mnfo),..., A(Mef0),... A(Nof0)]T 

... (3.24) 

where T denotes vector transpose. S is a rectangular matrix having 
(2M+1) rows and (2N+1) columns, with its (i, j)th element given by: 

Sij = sinc[ of 
(iAf - jnfo)] (3.25) 

0 
The objective is to obtain an estimate for the truncated vector 

AM of the true hologram: 

AM = [A(-Mnfo),..., A(Mef0)]T (3.26) 
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The linear mean-square estimation problem is therefore formulated as 
follows : Given the hologram data HM, derive a linear estimate HM 

for the truncated true hologram vector AM: 

HA =E HM (3.27) 

where E is a square matrix of the (2M+1) dimension which has to be 
determined so as to minimize a criterion function JM, 

iM = 11 HM - AM 112 (3.28) 

where denotes the norm of the difference vector. The 

minimization is subject to the condition in eqn. (3.22). It can be 

shown [128] that the mean square estimator matrix E is given by: 

E= S'-1 (3.29) 

where S' is a square matrix whose elements are defined by: 

S'. Sij i, j=-M,.., M ;M<N (3.30) 

The estimated hologram vector HA will contain 2M+1 samples, i. e. 
the same number of samples in the measured hologram HM. However, 

since HA is determined at a larger sampling interval Of0, it will 

extend over a larger area than the original hologram, hence improving 

resolution. The hologram expansion ratio y 
. 
is therefore given by: 

of 
Y= ofý 

(3.31) 

This shows that resolution improvement is achieved only when the 

hologram is oversampled. 

The estimation process is performed sequentially and the image is 

obtained by reconstructing the hologram at every stage of the process. 
The technique has been demonstrated with simulated objects for expansion 

ratios ranging from 2 to 5. It has been shown that the reconstructed 
images converge to the required original object as the hologram 

data is increased. 
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The effect of disturbing noise in the measured hologram data is 

magnified through the inverse matrix S'-1 , whose norm increases 

rapidly with the increase in matrix size, therefore increasing the 

noise sensitivity. This sensitivity also increases with increasing 

the hologram expansion ratio. Simulation tests using noisy data 

have indicated that considerable degradation results in the reconstructed 
images due to noise and the technique fails to resolve the imaged 

objects satisfactorily even for 1'O noise amplitudes. Sensitivity 

to noise can be reduced by proper choice of the sampling points 
during the hologram acquisition so that the row vectors of S' have 

the least dependence in order to decrease the norm of its inverse. 

Random sampling should be of considerable value in this respect. 

Using one technique to reduce noise sensitivity, this estimation 

method gives adequate results for noise amplitudes as large as 20% 

of the hologram data. 

From the above discussion, it can be seen that this technique 

for hologram aperture extension is very similar to the object 

restoration methods discussed in section 3.4, particularly the 

technique by Harris [118]. In both cases, the object is assumed to 

be spatially bounded and both techniques effectively extrapolate the 

object spectrum beyond the portion measured by the imaging aperture. 

This shows the link between techniques aiming at expanding the 

hologram aperture in acoustics and those used for object restoration 

in optics. It should also be noted that the nature of the limitations 

of both classes of techniques due to the presence of noise are quite 

similar. 

Another technique for resolution improvement by increasing the 

effectiveness of a given physical hologram area through increasing 

its equivalent numerical aperture has been proposed by Ikeda and Sato 

[129] . This is obtained through artificially increasing the 

temporal frequency of the measured hologram signal in order to get a 

signal which would be obtained if higher frequency acoustic waves 

were used. This is achieved computationally by nonlinear processing 

of the received hologram signal so that products having phase terms 

corresponding to the required higher frequencies are obtained. To 

102 

f 



prevent the formation of ghost images as a result of unwanted products 

of the nonlinear opertions, such terms are cancelled out before the 

computed hologram is reconstructed. The technique is suitable only 
for a limited number of point objects and it also requires a priori 
knowledge of the object for the signal processing to be performed. 
The effectiveness of the method has been demonstrated using computer 

simulation for objects having up to 3 points using noiseless data. 

3.5.2 Resolution Improvement Beyond the Wavelength Limit 

According to the az/D resolution criterion, resolution less than 

the wavelength of the radiation, X, is predicted for ranges, z, shorter 
than the aperture size D. However, the derivation of this criterion 

was based only on the limitations introduced by the diffraction 

effects due to the limited size of the hologram aperture, cf. sec. 3.2. 

The ability to resolve beyond the wavelength is limited by the effects 

of propagation of the waves from the object to the hologram plane. 
As shown in section 2.5.2, for spatial frequencies greater than or 

equal to (1/x) the propagation transfer function is represented by an 

attenuating factor, 

exp +j 
Lia [1-(afx)2-(afy)2]2 fx2+fy2 < 1Z 

H(fxqfy) 
221 

ex, - 
2, nz L(afx)2+(afy)2 -1]z 

fx +fy % 
Ix2 

... (3.32) 

Waves corresponding to such high frequencies, known as the evanescent 

waves, are heavily attenuated and have negligible amplitude after 

propagating a few wavelengths and therefore are not usually recorded 

on the hologram. The information carried by these waves about 

spatial fine details corresponding to the near-field of the object 

radiation are lost and the image reconstructed from the hologram will 
therefore be limited in resolution even if an infinite recording 

aperture were used. 
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In optical holography the wavelengths are so short that the 

hologram is necessarily recorded many wavelengths from the object 

with the result that the evanescent-wave components fall well below 

the noise level of the hologram recording medium. In acoustics, 
however, because of the larger wavelength, it is physically possible 
to record the hologram at distances which can be much smaller than 

the wavelength when low frequency sound is used. 

If the evanescent-wave components are not assumed negligible in 

the recorded hologram, then the approximate transfer function of the 

inverse propagation given in eqn. (2.63) should be replaced by: 

exp -j 
2ru [1-(afx)2-(Afy)2 ]' fx2+fy2 < 

12 

A 
W1(fx, fy) 

exp 
21zz [(AfX)2+(afy)2 -1]' fx2+fy2 ' .12 

a 

... (3.33) 

which should lead to improved resolution since the exponentially 
increasing amplitude term which becomes effective for frequencies 

> 1/A takes the strongly attenuated (but non zero) evanescent-wave 

components and restores them to their exact*values in the image plane. 

It should be noted that practical realization of eqn. (3.33) 

is possible only mathematically, since for frequencies > (1/a) this 

equation represents a wave with an ever increasing amplitude in the z 
direction. Physical reconstruction methods such as those using 
laser or acoustic radiation must use forward propagating waves which 

would be represented by H*(fx, fy) where * denotes the complex 

conjugate and H(fx, fy) is given by eqn. (3.32). H*(f �f ). agrees 

with H-1(fx9fy), eqn (3.33), for frequencies less than (1/A) but 

retains the exponentially decaying part for the higher frequency 

components. This further attenuates any such components which 

might have been recorded during the recording process. Therefore, 

super-resolution techniques based on eqn. (3.33) can only be implemented 

numerically. 
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One such technique has been proposed by William et al [130], 

. 
[131] for imaging vibrating plates in the near-field at low frequencies. 

The effectiveness of the technique has been experimentally demonstrated 

[131] by imaging two small unbaffled speakers driven at a frequency 

of 220 Hz and separated by a distance of 0.13 A and the hologram was 

measured at a range of 0.06 A. In the image field calculated using 
the conventional reconstruction algorithm no details smaller than 

a wavelength could be observed. When H-1(f 
Xfy) given by eqn. (3.33) was 

used for the reconstruction, the two point sources representing the 

speakers were clearly resolved. 

For general purpose applications this technique suffers from the 

requirement for near-field imaging and the use of low frequencies 

which are not practical in many situations. Additionally, the 

technique requires more precision in the measurement of the complex 
hologram signal and therefore needs better sensitivity and larger 

dynamic range for the detectors and the receiver circuits than in the. 

case of conventional reconstruction. 

Another technique for resolving beyond the wavelength limit 

has been reported by Sato et al [1321 for the case of a passive imaging 

system used for the measurement of the wavefields on the surface of 

noise emitting objects. Resolution improvement is achieved in this 

case by utilizing a set of a priori information, on the wavefield 

such as the objects' shape or the smoothness of the field as well as 
the propagation law of the waves from the object to the signal 
detectors. This data is used to calculate the relationship between 

the objects' wavefield and the hologram signal. The relationship is 

expressed in a matrix form and the image reconstruction is carried 

out by solving for the object vector. 

For a finite object, super-resolution can be achieved with this 

technique when large matrices are used and simulation results have 

indicated that resolution better than the wavelength is obtainable. 
However, the effect of noise becomes more serious with the increase 

in the matrix size. The performance with noise depends also on the 
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model used to represent the object when the matrix relationship is 

constructed. For the object models discussed [132], the signal-to- 

noise requirement varies from 20 db to 180 db depending on the model 

type. This indicates that proper choice of the model is indespensible 

in order to get the required improvement in resolution using this 

method in practical situations. 
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3.6 Extrapolation and Data Fitting Techniques 

The problem of hologram aperture expansion for increased resolution 

can be considered as that of extrapolating a band-limited function 

which is known over a finite region in space. A number of techniques 

have been proposed for solving this problem in the context of spectral 

analysis of time-limited signals. These techniques. are based on the 

fact that a bandlimited function is analytic in the entire time 

axis [133]. By the duality of the Fourier transform, this is equivalent 

to the fact that the spectrum of a spatially bounded object is analytic, 

cf. sec. 3.4. Although it is possible to extrapolate the analytic 
function beyond the known portion through analytic continuation using 

Taylor-series expansion, this approach has not been favoured in general 

due to the inherent problem of ill-conditioning [120]. 

One method of extrapolating bandlimited functions is based on 

expansion into a series of prolate spheroidal functions [133]. These 

functions also form the basis of the object restoration technique 

described by Barnes [121], cf. sec. 3.4. Let g(t) be a time-limited 

function which is known in the region -T<t<T. The bandlimited 

extrapolation of the piece g(t) is given by: 

f(t) =E ak 9k(t) 
k=0 

T 
g(t) 'Dk (t) dt (3.34) ak 

-T 

where 9k(t)are prolate spheroidal eigenfuncions. An approximate value 

of the. extrapolated function is obtained by-truncating the series in 

eqn. (3.34). 

Another technique has been proposed by Papoulis [133] . This 

is based on the error reduction method by Gerchberg [124] described in 

section 3.4. As a method of spectral estimation, this technique 

attempts to extrapolate the signal beyond the time interval -T<t<T 

over which the signal is known and therefore obtain a better estimate 

of the spectrum. This is achieved through an iterative process in 

which the error energy is reduced by alternatively setting the values 
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of the estimated spectrum outside its known extent -a, < f<a to 

zero and setting the values of the estimated time function to the 

known values within the interval -TSt. T. This can be considered 

as the dual of the Gerchberg technique used in the space/spatial 

frequency domains, since in the case of the Papoulis method the 

signal is known to be finite in the frequency domain and extrapolation 
is performed in the time domain. Compared to the prolate spheroidal 

method, this technique has the advantage that it involves the use of 
the FFT algorithms which simplify and speed up the computations. 
Moreover, for large time-bandwidth products, To , the technique 

converges rapidly and therefore can be terminated early in order to 

reduce the computation time while this does not reduce the computations 
in the prolate method. However, being an iterative technique with 
large numbers of iterations required, especially for small To products 

necessitates a large amount of computations and long execution times. 

Moreover, the method requires the bandwidth a to be known or estimated, 

and the accuracy of the extrapolation depends on the accuracy of this 

estimation. 

The aperture expansion technique described in the remaining chapters 

of this thesis is based on fitting a model for the hologram signal 

over the available aperture . The most common techniques for data 

fitting are briefly described here. Because of their simplicity, 

polynomials form the basis of the majority of data fitting algorithms. 
The main data fitting methods which use polynomials [134] are those 

which fit a polynomial model or polynomial splines to a set of given 
data points. 

Let the data given at m points at which the independent variable 
is xj, x2,..., xm be yl, y2,... gym. The function representing the data 

based on a polynomial model of order n; nSm has the general form 

f(x) = b1 91(x) + b2 U2(x) +.... bn 90) (3.35) 

where c1(x), c2(x),..., yn(x) are polynomial functions. The model 

coefficients b,, b2,.... bn are obtained from the following observation 

equations at the m data points: 

108 



yr = bý ýý(xr)+b2 'p2(xr)+,..., +bn 'fn(xr) 

r 1,2,..., m (3.36) 

Fitting a polynomial model is equivalent to solving this generally 

overdetermined system of equations subject to the minimization of an 

error criterion. Least square error is the most common criterion for 

realistic data with normally distributed errors. In this case, f(x) 

is chosen such that: 

m 
E If(xr) - yr 12 minimum 

r=1 
(3.37) 

The order of the polynomial determines the closeness of the fit to the 

actual data points. The higher the order, the closer the function to 

the data but the more the model function is influenced by errors in 

the data. Smooth fits are obtained with lower order polynomials, 

although this could lead to the loss of some fine details in the data 

function. An interpolating polynomial is that which produces a fit 

that passes through all the given data points. 

In spite of their simplicity, polynomial models in general suffer 
from ill-conditioning which makes the model sensitive to noise and 

round-off errors, especially for large model sizes. Spline fitting 

provides a more generalized form of a single polynomial which enables 

a wider variety of functions to be modelled and has the main advantage 

of numerical stability with large numbers of data points. Splines are 

a set of piecewise polynomials fitted together smoothly. In the 

general case , splines of order n(degree n-1) consist of N+n basis 

functions Vn, j 
(x) . The spline fit S(x) is given by: 

N+n 
S(x) 

jz1 
cJ IP (x) (3.38) 

where N is the necessary number of knots within the data intervals with 

n additional external knots and cj; j-1,2,..., N+n are the fit coefficients. 
Each basis function 4n, j(x) is a basis spline (B-spline) of order n in x 

with knots at x=aj-n'xj-n+1' " '' Xj and is non zero (and positive) 

only over this interval, i. e. 
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r>0 
ý. <x<a. 
i-n 

en,. lýx) (3.39) 

.0\ . <x<1 . j -n 

The non zero part of 4n, j(x) consists of n polynomial pieces each of 

degree n-1. The B-splines are generated. using a recurrence relation- 

ship [134]. Although splines are more advantageous from the point of 

view of versatility and numerical stability, they are generally more 

difficult to use for data fitting. For example, the selection of 

the knot points at which the polynomial pieces are joined should be 

made to suit the data. Moreover, this technique requires a larger 

amount of memory space to calculate the fit compared to other 

conventional polynomial methods. Since splines tend to be used 

primarily for data fitting within a given data interval, it is not 

clear if they are suitable for extrapolating a given function beyond 

a limited region over which the function is known. 
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3.7 Conclusion 

In this chapter, a number of resolution improvement techniques 

developed for use in the fields of optics, microwaves, and acoustics 

have been discussed. The common factor among all these techniques is 

that they attempt to recover the object spectrum which has been 

degraded in the imaging process. Some of this degradation is caused 
by the propagation phenomenon which acts as a low pass filter with an 

effective cut-off frequency of (1/A). Further degradation is 

caused by the limited size of the imaging aperture which, in the case 

of coherent systems, introduces a sharp cut-off at a feequency 

proportional to D/(Az) where D is the aperture size and z is the 

range. Another common feature in most signal processing techniques 

for resolution improvement is the utilization of a priori information 

on the object; whether explicitly as in the technique by Sato et al 
[132] or implicitly as in the techniques which attempt to continue 
the object spectrum beyond the diffraction limit, both in optics 
[118] and in acoustics [128]. The implied assumption of a spatially 
bounded object, and therefore the possibility of extrapolating its 

spectrum, forms the basis of all such systems. 

Holographic aperture extension techniques can be viewed as 

object restoration methods which attempt to gain more knowledge about 

the object spectrum beyond the limit set by the aperture size. They 

can also be considered as methods for extrapolating the band-limited 

hologram function in space. The key for the solution in both cases 
is the analyticity of the function to be extrapolated. Although 

analytic continuation using Taylor-series expansion offers a simple 

solution, it is generally sensitive to noise because of the ill- 

conditioning problem. 

Other techniques which give 

also their own limitations. The 

based on maximum entropy methods 

incoherent imaging system [125]. 

positive signals, they cannot be 

hologram data in a coherent systi 

better performance with noise have 

category of techniques which are 

operate on the intensity in an 
Since these techniques assume 

directly applied to the complex 

: m. Moreover the techniques require 
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the knowledge or estimation of a number of critical parameters which 
influence the performance of the algorithm, cf. sec. 3.4. The same 
disadvantage exists with the Gerchberg [124] and Papoulis [133] 

techniques where the object extent, or the hologram bandwidth, must 
be known or estimated. The effectiveness of both methods depends on 
the accuracy of this estimation and both techniques fail if this 

parameter is underestimated. Additionally the principle of error 

energy reduction, on which both techniques are based, requires a 
large number of iterations in general with each iteration involving 

two Fourier transforms. This could lead to long execution times 

when the algorithm is applied to two-dimensional holograms of practical 

aperture sizes. 

In order to take advantage of the simplicity of direct analytic 

continuation, the problem of noise sensitivity has to be solved. In 

the hologram estimation technique by Sato [128], the effect of 

noise is reduced by modifying the way in which the hologram data is 

collected. This may prove disadvantageous in a practical implementation 

of the technique, in addition to the fact that this method of 
hologram expansion is iterative. In the remaining part of this 

thesis an algorithm for hologram aperture expansion using analytic 

continuation is described. This is based on modelling the hologram 

signal over the given aperture and using the model so constructed to 

predict the signal outside this aperture. The sensitivity of the 

solution to noise is reduced by selecting a suitable form of the model 

without the need for modifying either of the acquisition or reconstruction 

phases of the holographic process. 
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CHAPTER 4 

EXPANSION OF HOLOGRAM APERTURES 

USING PREDICTION TECHNIQUES 



4.1 Introduction 

In the previous chapter it has been shown that techniques for 

resolution improvement in holography by expanding, computationally, 

a given hologram aperture are similar to object restoration techniques 

in optics when the object is in the far field of the imaging aperture. 
Under this condition, the hologram aperture receives a truncated object 

spectrum due to the limited aperture size. For a spatially bounded 

object, the hologram function is therefore an analytic function and 
hence can be extended beyond the given aperture in the same manner 
the limited spectrum is continued in object restoration techniques. 

However, in the majority of cases holographic imaging is performed 

at shorter ranges; within the Fresnel zone which extends roughly from 

D to D2/a where D is the aperture size. For such ranges the 

hologram is not identical to the object spectrum and the analyticity 

of the hologram function must be established if this criterion is to 

be used for continuing the hologram in this more general geometry. 

In the estimation technique described by Sato [128], the object 

width is assumed much smaller than the distance between the object 

and the hologram plane. This is necessary for the superposition 

integral, eqn. (2.46), to be reduced to the object spectrum. Moreover, 

the hologram signal is further modified by compensating for phase 

and amplitude terms so that the measured hologram signal is directly 

proportional to the spectrum, cf. sec. 3.5.1. These terms contain 
the range of the object which should be known beforehand for the 

aperture expansion to be performed. Although the value of the object 

range is also required as an input to the reconstruction algorithm 

when the image is numerically reconstructed, the accuracy of the 

range measurement is not very critical for this application since 
the image can be reconstructed at a number of ranges and the best 

image selected. However, as an input to the estimation algorithm, 

errors in the value of the range will give rise to additional errors 
in the modified hologram signal and therefore leads to poorer 

performance in practical systems. 
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Most analytic continuation techniques utilize the principle of 
sampling theorem in order to obtain additional samples outside the 

object spectrum [118] or to estimate a new set of samples based on the 

minimization of a least mean square error criterion [128]. Due to 
the requirement for close sampling of the given aperture, the matrix 
representing the set of linear equations which describe the system 
usually has. an inverse matrix with a very high norm [128], [132]. 

This leads to errors in the measured hologram data being greatly 
amplified and therefore limits the effectiveness of these methods 
when used with realistic data. The formulation of the processing 
algorithm is rather inflexible and the methods reported for improving 
the noise performance rely on modifying the data acquisition phase of 
the imaging process. This may be inconvenient as far as the practical 
measurement procedure is concerned and may require the use of 
unconventional reconstruction algorithms as in the case of random 
sampling suggested by Sato [128]. 

In this chapter a new method for expanding the hologram aperture 
using the principle of analytic continuation is presented [135], a 
copy of this reference is enclosed in Appendix D. The method operates 
on the hologram function directly without the need for attempts to 

reduce the problem of aperture expansion to that of continuing the 

object spectrum. This method is therefore suitable for both Fresnel 

and Fraunhofer holograms. Moreover, the new technique is not 
iterative. It takes advantage of the computational simplicity of 
the direct analytic continuation approach using polynomial and 
linear models. Compared to conventional analytic continuation 
techniques [118], [128] this method allows greater flexibility in 

combating the effects of disturbing noise which are a common feature 
in all analytic continuation techniques due to their ill-posed 

nature [120]. 

In this technique the hologram function at the available 
aperture is modelled by relating the signal at every sampling point 
to that at a number of the neighbouring points. The model 
parameters are obtained by solving the resulting set of equations. 
Analyticity is employed in the assumption that the model applies at 
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least in a limited region outside the available aperture. The values 

of the signal at new sample points are predicted point by point by 

successively applying the model outside the given aperture. 

The method avoids any modifications to the measured complex 
hologram data and therefore any uncertainties in the value of the 

object range do not contribute to the noise in the hologram data and 
the value of the object range is required only for image reconstruction. 
Additionally, the ability to choose the type of the prediction model 

and hence the structure of the system matrix makes the expansion 

algorithm more flexible in dealing with the noise problem; without 

affecting the procedures for data collection and image reconstruction. 
In practice, the choice of the prediction model will be the result of 

a trade-off between good prediction accuracy on the one hand and 

robustness against noise on the other. 

In this chapter, the analyticity of the more general form of 
the hologram function in the Fresnel region is considered. A number 

of models for predicting the hologram signal outside a given 

available aperture are described for the case of simple objects 

consisting of one or two points and an error analysis based on Taylor- 

series expansion is presented. The method is then extended to the 

more complex case of quasi-continuous objects containing a large number 

of closely spaced points which, in the limit, simulate a continuous 

object. A technique for improving the prediction accuracy is also 
discussed. This is based on constructing a corrective model by 

comparing predicted data with corresponding data which is known to be 

true within the available aperture. This model is then used to correct 

predicted data outside the available aperture. The effect of 

aperture expansion on the range resolution is also considered. 

The results described throughout this chapter are based on 

computer-simulated noiseless hologram data. The effects of noise in 

the hologram data are considered in Chapter 5 and the results with 

experimental data are described in Chapter 7. Only one-dimensional 
line holograms are considered for simplicity and the image reconstruction 
is performed digitally using the backward propagation (Frequency domain) 

algorithm described in section 2.5.2. 
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4.2 Analyticity, of the Fresnel Hologram Function 

Harris [118] has shown that the spectrum of a finite object is an 

analytic function. This forms the basis for object restoration 

techniques which aim at extrapolating the object spectrum beyond the 

passband of the far-field imaging system. Far-field holograms, in the 

Fraunhofer zone, correspond to the spatial frequency spectrum of the 

object and therefore the same principle can be utilized for extending 
the hologram aperture. However, for the more common holograms at 

shorter ranges, in the Fresnel zone, the relationship between the 

hologram and the object spectrum is less straightforward. In the 

following analysis a formal proof of the analyticity of Fresnel 

hologram is presented. This allows the principle of analytic 

continuation, and therefore the aperture expansion technique proposed 
in this chapter to be applied directly to the hologram in this. region. 

Referring to eqn. (2.48), the hologram signal for an object 
in the Fresnel zone is given'by: 

2 
u(x, Y) = expjKz exp 

2 [(x2+Y2)IF[uo(xoýYo)exp 
2 

(xo2+Yo )J 

... (4.1) 

where K is the wavenumber, z the object range, (xo, yo) are the 

coordinates in the object plane and (x, y) are the coordinates in the 

hologram plane. uo (xo, yo) and u(x, y) are the object and hologram 

functions respectively and F denotes the spatial Fourier transform 

determined at the spatial frequencies: 

x fx - az ' fy - Az 

Let f(x, y) be defined as: 

f(x, y) exp jKz 
exp (x2+y2) 

j. xz 2z 

Since the quadratic phase term in the R. H. S. of eqn. (4.3) can be 

expanded into a convergent power series for z>0, f(x, y) is an 

analytic function [136]. Eqn. (4.1) can be written as: 

(4.2) 

(4.3) 
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u(x, y) = f(x, y) F[uo(xo, ya) exp 
2 (xo2+yo2)] (4.4) 

In the Fraunhofer region the range z is much larger than the lateral 

distances in the object domain, i. e. : 

K2 
2z 

(x +yo2) «1 (4.5) 
0 

Therefore, the Fourier transform in eqn. (4.4) reduces to that of the 

object alone, i. e. to the object spectrum. For a finite object 
this spectrum is analytic and since f(x, y) is analytic the hologram 

function is also analytic and therefore analytic continuation can be 

applied directly on u(x, y) rather than u(x, y)/f(x, y), (128]. 

Consider the Fourier transform in eqn. (4.4) in the more 

general case, 

G(fxIfy) FIuo(xo, yo) exp 
2 (xa2+yö )J 

fj uo(xo, yo) exp 
2 (xo2+yo2)exp[-j2n(fxxo+fyyo)] 

-m-W 

dx0 dy0 

... (4.6) 

Let the finite dimensions of the object be bounded by ±X0/2 in the x0 
direction and ±Yo/2 in the y0 direction. The object may be 

completely described over the bounded region by the Fourier series 

pair: 
00 mx ny 

uo(xoýyo) =EE Gmn exp {j2ic[( X° 
)+( 

Y0)]} 
(4.7) 

m=-co n=-W o0 

and Yo/2 Xo/2 
mx ny 

Gmn = XýY 
!J uo(xoryo)exp {-j27L[( X°)+( Ye)]} dxö dy0 

00 
-yo/2 -Xo/2 

00 

... (4.8) 

Substituting u0(xo, yo) from (4.7) into (4.6) and replacing the 
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infinite integration limits in eqn. (4.6 ) with the spatial bounds of 
the object, ± Xo/2 and ± Yo/2 ; (This is possible since the function 

of the bounded object vanishes outside this region), 
Yo /2 X0 /2 

M mx fly 
G(fxify) =J1[EE Gmn exp {j2n[( Xo)+( Y0)1} 

-Yo/2-X0/2 
m=-- n=-m 0o 

exp 
2 (xo2+yo2)exp[-j2it(fxxo+fyyo)]dxö dy 

... (4.9) 

or Xo/2 

G(fx, fy) E Gmn j expj[21c(X - fx)xo + 2z xo2) dxo 
m--ý n=-m -X /2 0 0 

Yo/2 

j exp j[21c(Y - fY)Y0 + 2z yo2) dyo 
0 

-Yo/2 
... (4.10) 

Consider the integration: 

Xo/2 

I=j expj[2t(7 m- fx)xo+ 2z x021 dx0 (4.11) 

-X0/2 
0 

Let 
a= 271 (X - fx) (4.12) 

0 

Kz (4.13) ß=2 

X0/2 

I=I expjtaxo +8X02] dx0 

-Xo/2 

Xo/2 
2 

expj[9(x0 + 2ß )2 - 4B 1 dxo (4.14) 

-x/2 0 
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Let 
a u= x° + 20 

-x 0a u1 =2+ IT 

X 
° u2 =2+ (4.15) 

Zß 

Substituting into eqn. (4.14) yields: 
2 u2 

2 I= exp(-j a4ß) j expj (9u ) du (4.16) 
u1 

which gives: 

a2 
u2 

2 
u2 

2 I exp(- 4ß) 
[j cos(ßu ) du +jj sin(Bu ) du] (4.17) 

u1 u1 

The two integrals in eqn. (4.17) are similar to the Fresnel integrals 

[137]. Consider the first of these integrals, 

u2 
2 11=j cos(Bu) du (4.18) 

u1 

Expanding the cosine under the integral sign into a power series and 
integrating term by term yields [137]: 

24u 

1= 
[u- 

215 
5+ 

419 u9 - .... ] 2 

u1 

2 5_u5 4 
(u2-u1) 215 

(u21)+ 
419 

(u29-u19) -... (4.19) 

Similarly, the integration: 
u2 

2 I2 =j sin(Bu) du 
u1 

can be expressed as: 

(4.20) 
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I-ß Eu 3-u 3] 
--ß3 Cu u 

7] 
+ 

ßs [u 11-u 11]-.. (4.21) 
2- 113 213! 7 2- 1 5111 21 

Both series in eqns. (4.19) and (4.21) are convergent for all finite 

values of'u1 and u2. 

Following the same approach, the integral in y0 in eqn. (4.10) 

can be written as: 

where 

a'2 
V2 

2 
v2 

2 
I' = exp(-j 40 

(I cos(ßv) dv +j j sin(ßv ) dv] (4.22) 
v1 v1 

- y) a' = 2,, (Y f 
o. 

" a' 
v= yo + 20 

-Y0 a' 
v1 -2 20 

v2 = 
YZ 

+ 20 
(4.23) 

The two integrals in eqn. (4.22) have the same form of power series 

expansions in eqns. (4.19) and (4.21) with u1 and u2 replaced by v1 

and v2 respectively. Substituting in eqns. (4.17) and (4.22) and then 

into (4.10) produces: 

Go cc 
G(fxif )=EE Gmn exp [ß (a2+a12)] 

y 

L(u2-u1)+j 
113 

(u23-u13) 
2 

215(u25-u15)-j 

3 

2! 7(u27-u17 

45 

419 
(u29-u19) +i 

511ýu211-u111)-... ] 

2 
[(v2-v1)+j 

1s3 
(v23-v13) 

2! 5(v25-v15)-j 3! 7(v27-v17) 

45 
419 

(v29-v19)+i }j. 
j_1(v211-V111)-... ] (4.24) 
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Since exp[- (a2+a'2)] can be represented by a converaent Dower 

series in fx and fy then G(fx, fy) is an analytic function and therefore 

the Fresnel hologram function u(x, y) in eqn. (4.4) is analytic in x 

and y for values of z in the Fresnel zone. The analyticity of the 

Fresnel hologram function is useful in that the hologram aperture 

expansion can be performed, for the case of bounded objects, without 
the restrictions of operating in the Fraunhofer region. The 

aperture expansion algorithm can be applied directly on the measured 

complex hologram data without any modifications. 

The above analysis presents a formal proof of the analyticity of 
the hologram function for an object in the Fresnel zone. A more general 

approach to investigating the analyticity of the hologram function for 

any imaging geometry would be to consider the hologram as a truncated 

space function whose spatial spectrum is band-limited. The band-limited 

nature of the hologram spectrum is'implicit in the use of sampling techniques 

for the hologram acquisition and the low pass filtering imposed by the 

propagation process ensures that spectral components at frequencies greater 
than the cut-off frequency of (1/x) can be practically ignored. In 

this case, the hologram function is analogous to time-limited functions 

which are measured only during a finite time window and which have a 
band-limited spectrum. Since such functions are analytic in the 

time domain [133], this shows that the hologram function is analytic 
in space regardless of the object range, given that the hologram 

spectrum is band-limited. 
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4.3 Hologram Simulation and Expansion - Basic Definitions 

Consider the one-dimensional holographic imaging configuration 

shown schematically in Fig. 4.1. For simplicity, the object is 

assumed to consist of a finite number of point sources which radiate 

acoustic energy coherently. The hologram is sampled at 2M uniformly 

spaced points in a limited region which represents the available 

aperture. The sampling points are spaced at a distance a wavelength and 

the distance between the object and the hologram is z wavelengths. 
The complex hologram signal H(k) at sampling point k on the available 

aperture is: 

R A. 
H(k) =E1 exPJKr 

i=1 ri i 

ak +) ßk (4.25) 

where z is the number of points on the object, ri is the distance 

between point k on the hologram and point i on the object, K is the 

wave number; K= 2it/a, X is the wavelength, and Ai is an amplitude 
factor. ak and 0k are given by: 

R A. 
ak rl cos(K ri) (4.26) 

ßk 
i1 rl sin(K ri) (4.27) 

i 
Unless mentioned otherwise, points on the objects simulated in this 

chapter are assumed to be of equal radiation strength, i. e. Ai is a 

constant. 

It is assumed that in practice the hologram is obtained by 

measuring the two quantities. ak and 0k at the sampling points. The 

measured quantities ak and Bk will contain random components 
representing noise and can be simulated from the calculated values 

01 k and 0k as follows: 

ak = ak+ Ck (4.28) 
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ßk = ßk + {k (4.29) 

where zk and ýk are white noise processes with zero mean and variance 

described by the signal-to-noise ratio. This method will be used to 

simulate noisy hologram data when the effects of disturbing noise are 

considered in Chapter 5. 

The remainder of this chapter together with Chapter 5 are concerned 

with expanding the given available aperture by fitting a model to the 

hologram data on this part of the aperture and using the model to 

predict new additional points on each side of the given aperture in order 

to extend it from 2M points to 2N points, Fig. 4.1. Correction 

algorithms which improve the prediction accuracy are also described. 

The prediction of signals to the R. H. S. of the aperture uses a model 

which is based on the signals within the R. H. half of the available 

aperture. Similarly, the L. H. half is used to construct the model to 

be used for predicting new points to the left of the available aperture. 

The following definitions are made for the holograms at various parts 

of the aperture: 

. H(k) ;k<M is the hologram signal which is simulated or 

measured over the small available aperture. Plots related to this 

hologram are marked 'small' throughout the thesis. 

. G(k) ;k<N is the predicted hologram signal over the total 

expanded aperture. This consists of the simulated/measured signal 

over the available aperture and the predicted signals outside this 

aperture, i. e.: 
H(k) k4M 

G(k) _ 
Predicted signal at point k M<k, <N (4.30) 

Plots related to this hologram are marked 'predicted'. When the predicted 
data is further corrected to improve the accuracy the plots corresponding 
to the corrected holograms are marked 'corrected'. 

. P(k) ;kEN is the true hologram that would be obtained if the 

actual aperture were to cover the expanded aperture. Plots related to 

this hologram are marked 'true'. 
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Let G(k) = g1(k) +j g2(k) (4.31) 

P(k) = p1(k) +j p2(k) (4.32) 

The percentage error in the magnitude of the predicted signal at 

point k, is defined as: 

E(k) 100 {[g1(k) - p1(k)J2+[g2(k) - p2(k)J2 }/ /{[p1(k)]2+[p2(k)J2}/ 

;k= M+1, M+2,..., N (4.33) 

A better definition for the prediction error is that which takes 

into account the effect of the error on the image reconstruction. This 

can be obtained by weighting the error defined in eqn. (4.33) by the 

ratio IP(k)I/Pmax where jp(k)j is the modulus of the true signal at 

point k and Pmax is the maximum of the modulus of the true hologram 

signal over the expanded aperture, 

Pmax 4 max {lP(k)l I; k=1,2,.., N 

This leads to 

(4.34) 

E(k) = 100 { [g1(k)-P1(k)]2+[g2(k)-p2(k)]2}'/Pmax 

... (4.35) 

A single parameter which gives an overall indication of the 

prediction/correction errors over the aperture and their effect on the 

reconstructed image is the percentage mean error (M. E. ) over the 

aperture. This is defined as: 
NN 

M. E. _{[E E(k)J +L 
kE-E(k)] 

}1.2N (4.36) 
k=1 

L. H. S. R. H. S. 

where E(k) is as defined in eqn. (4.35) and 2N is the total number of points 
in the expanded aperture. This parameter is useful in differentiating 

between situations giving rise to the same maximum prediction 

error [E(k)] 
max while the distribution of the errors over the 

aperture, and therefore their effect on the reconstructed images, is 

significantly different. The value of the mean error will be denoted 

M. E. 1 for the predicted data and M. E. 2 for the corrected data where 

applicable. 
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4.4 The Polynomial, Space-Variant, Predictive Model 

The first hologram to be considered for aperture expansion is that 

of a single point object. In this case, a two-dimensional hologram is 

a single zone-plate corresponding to the point object. Fig. 4.2. shows 

the distributions of the real and imaginary parts of the hologram signal 

over the line hologram for a point object on the hologram axis at 

a distance of 10OX from a 64-point hologram. The sample spacing o 

is equal to U. The figure indicates that variations in the hologram 

signal increase as the distance from the centre increases. This is 

due to the increase in the spatial rate of variations in the length 

of the vector joining the hologram point to the object point which 
determines both the phase and the amplitude of the signal. The signals 

at two neighbouring points on the hologram can therefore be related 

by a spatial function which is determined by their position relative 

to the centre. 

4.4.1 The Power Series Polynomial Model 

Referring to Fig. 4.1, assume a total available aperture 

containing 2M points and a total expanded aperture containing 2N points. 

Consider the R. H. side of the aperture, the-signal at point (k) in the 

available aperture is expressed in terms of the signal at the 

preceding point (k-1) as: 

H(k) - *(k) H(k-1) (4.37) 

where H(k) and H(k-1) are the complex hologram signals and *(k) is a 

complex function of the distance dk from point k to the centre of the 

hologram, see Fig. 4.1. Polynomial expansion in dk provides a simple 

and generalized form of representing the function *(k) over the 

aperture. Therefore, l(k) is assumed to have the following truncated 

expansion: 

ý(k) = a1 +a2(dk)1 + a3(dk)2 +..... +aL(dk)L-1 

L 
al(dk)i-1 (4.38) 

i-1 
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where ai; i=1,2,..., L are complex coefficients and L is the number of 
terms in the polynomial. 

Writing eqn. (4.37) for all but the first point in the R. H. half 

of the available aperture, i. e. for k=2,3,.... M and substituting for 

*(k) from eqn. (4.38) produces the following set of M-1 linear equations 

in L unknowns which can be solved for the model coefficients a1, a2,... aL: 

H(2) H(1) H1)d H1)d2 H(1)d-1 a1 1 11 

H(3) H(2) H(2)d2 H(2)d22 H(1)d2-1 a2 

H(M) H(M-1) H(M-1)dM-1 H(M-1)d2-1 . H(M-1)dM_1 aL 

... 
(4.39) 

For an exactly determined system of equations, the number of terms 

in the polynomial, and therefore the number of model coefficients will 

be equal to the number of equations, i. e.: 

L= M-1 (4.40) 

To use the model for predicting new points, it is assumed that the 

relationship in eqn. (4.37) is also valid outside the available 

aperture, with p(k) now defined by the model coefficients a1, a21... at 

obtained by solving the matrix equation (4.39). Therefore, the signal 
G(M+1) at the first point-in the aperture extension can be predicted 
from the signal H(M) at the last point in the available aperture 

using: 

G(M+1) = 41(M+1) H(M) 

L 
E ai (dM+1)1_1] H(M) (4.41) 

i=1 

Similarly, G(M+2) is obtained from G(M+1) , and so on until the last 

point in'the expanded aperture G(N) is determined. In general G(R) 

is obtained by: 
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L 
G(L) E ai dR-1 ] G(R-1) (4.42) 

i=1 

The process of constructing the model and using it for prediction is 

repeated for the L. H. side of the aperture with the direction of 

prediction now from right to left; Fig. 4.1. 

To demonstrate the effectiveness of this predictive model, it 

was used to expand a simulated hologram aperture of 16 points (M=8), 

spaced at 1a to achieve a four-fold increase in its size (N=32). The 

object is a single point at the centre at a distance of 10OX from the 

hologram. The matrix equation (4.39), was solved using a utility 

program on the 4051 Tektronix minicomputer which employs the Gauss- 

Jordan elimination method. Appendix A contains a listing of an inter- 

active computer program in Basic which simulates and expands the 

hologram of a point object and calculates the resulting prediction 

errors. 

Fig. 4.3a shows the percentage prediction error, as defined by 

eqn. (4.35), over the aperture. The error increases slowly near the 

available aperture but since every predicted point is determined from 

the preceding point, the error accumulates as more new points are 

predicted. Therefore, the error increases rapidly towards the edges 

of the expanded aperture as shown in the figure. 

Fig. 4.3b shows the intensities of images reconstructed from the 

small (available) aperture, H(k), the expanded predicted aperture 
G(k), and the extended true aperture , P(k) , cf. sec. 4.3. The image 

intensity is much lower in the case of the small aperture due to the 

relatively small number of hologram samples which contribute to the 

image formation compared to the case of the expanded apertures. 
Comparison between the image quality and resolution in the 3 cases 

can be better made when the images are plotted with their intensities 

normalized to the same peak value, these are shown in Fig. 4.3c. The 

images obtained from both the true and the predicted holograms are 
in good agreement in spite of the 13% prediction error in the 

hologram signal at the edge of the expanded aperture. Both images 
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exhibit a reduction in the width of the point image compared to the image 

from the small aperture which indicates an improvement in resolution 

achieved by the four-fold increase in the aperture size. 

Fig. 4.4 shows the prediction error and the normalized images 

for a point object which is offset from the centre. The prediction 

error is not symmetrical in both halves of the aperture due to the 

assymmetry in the hologram function over the aperture. The aperture 

expansion yields the expected improvement in resolution as in the case 

of the point at the centre. 

4.4.2 The Effect of Object Range 

The process of constructing the predictive model and using it for 

estimating the signal at new points was repeated with the same hologram 

parameters as in Fig. 4.3 for a point object at a shorter range, the 

results are shown in Fig. 4.5. Comparison of the two figures indicates 

that the prediction errors are greater in the case of the shorter 

range. The image reconstructed from the predicted aperture in the 

case of the short range is somewhat more spread and the sidelobe level 

is increased. At shorter ranges, the spatial frequency content of 
the hologram is greater and therefore there will be larger variations 
in the hologram signal from one point on the aperture to the next. 
The hologram function is therefore less smooth at shorter ranges which 

makes the accurate prediction more difficult with a given model 

order, L, and the prediction error increases. 

In Fig. 4.6 the maximum prediction error over the expanded 

aperture is plotted versus the object range when doubling the size of 

a total available aperture of 8 points;. M=4. The figure shows that 

very accurate prediction can be obtained at large ranges. However, 

at such large ranges greater expansion ratios will be required to 

achieve the amount of resolution improvement required from a given 

aperture. Since the errors increase rapidly as more new points are 

predicted, this will tend to limit the advantage of working at 
large ranges. The optimum operating range for the expansion algorithm 
will be a compromise between relatively larger initial prediction 
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errors but-smaller expansion ratios required at short range and smaller 

initial errors but larger expansion ratios needed at large ranges. 

4.4.3 The Fourier Series Model 

Several types of polynomial expansions have been used to represent 

the spatial function i(k) in eqn. (4.37) which describe the predictive 

model. A number of orthogonal polynomials have been used including 

the Chebyshev, Legendre, and Hermite types. These three polynomials 

gave almost identical results to those obtained with the power series 

expansion in eqn. (4.38). However, a Fourier series expansion for 

the spatial function i(k) has a number of interesting characteristics 

and can yield better prediction accuracy under optimum conditions. 

For an exactly determined system, the spatial Fourier series 

expansion of *(k) is: 

L 
V(k) ai expj[(i-1)wö k] 

(4.43) 
i. 1 

where ai ; i=1,2,..., L are the model coefficients , dk is the distance 

from point k to the centre of the aperture, wo is the fundamental 

radial spatial frequency of the Fourier series, and L is the number of 

terms in the model as defined by eqn. (4.40). The fundamental frequency 

is related to the total expanded aperture by: 
0 

Co a( 
p� ) radians/wavelength (4.44) 

2 

where D2 is the total length of the expanded aperture in wavelengths 

and a is a scale factor. 

When using the Fourier series model for hologram expansion, it was 

found that the prediction accuracy depends on the choice of the 

fundamental frequency wo. In the case of a 1-point object, and for a 

given hologram configuration, there exists an optimum value for wo 

which minimizes the prediction error. This optimum value can be 

considered as that at which the pattern of spatial variations represented 

by the Fourier series matches that of the hologram function of the 

point object. 
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Fig. 4.7a shows a plot of the error in the first predicted point, 
E(M+1), versus the scale factor 

.a 
in eqn. (4.44) for a total available 

aperture of 8 points (M-4). The prediction error with the optimum 

value of the fundamental frequency is 6.6x1075ö while for the same 

configuration the error is 2.7x10-2ö when the power series model is 

used. This shows that the Fourier series expansion for the space- 

variant predictive model provides greater prediction accuracy at 

optimum conditions. However, the optimum value of wo would be 

difficult to, determine in practice where the true hologram is not 
known over the expanded aperture. This would require a search for the 

optimum image from the expanded predicted apertures which implies the 

knowledge of some a priori information about the object. 

It is interesting to note that the optimum value of wo is not 

altered when the point object is laterally offset from the centre 

while keeping at the same range. This is demonstrated in Fig. 4.7b 

where the point object is shifted 4 wavelengths from the centre. This 

agrees with the concept of matching between the hologram pattern and the 

Fourier model function at optimum frequency. When the point object is 

shifted laterally, the hologram pattern stays basically the same and 
is merely shifted sideways with the object, see section 7.5. 

The relationship between the object range and the spatial frequency 

over the hologram aperture can be obtained using eqn. (2.23) and Fig. 

2.4 which assume the general case when a reference wave is used. When 

the complex hologram is measured directly, this is equivalent to using 

a normally incident plane reference wave, i. e. 02 =0 and r2 = 40 . 
Moreover, for a point object on the hologram axis 0=0 and rý = i. 

Eqn. (2.23) for the spatial frequency fx at point x on the hologram 

reduces to: 

x fx - Az 
(4.45) 

where z is the object range and x is the wavelength. The radial spatial 
frequency wX is therefore: 

ý, x=K 
x 
z 

(4.46) 
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where K is the wavenumber. Eqn. (4.46) shows that for a given point 

on the hologram the spatial frequency is inversely proportional to the 

range. 

According to the concept of matching between the Fourier expansion 

and the hologram function, the optimum value of wo should therefore 

vary in a similar fashion with range to that of eqn. (4.46) for a 

point object. Fig. 4.8a shows the optimum value of wo which minimizes 
the error in the first predicted point at every value of the range 

versus the object range, z. Shown also in the same figure is a plot 

of the function 1/z which shares the same value at the first point 
in the curve with the wo plot. The figure shows that the two curves 

are in good agreement which indicates that the optimum frequency is 

inversely proportional to the range as expected. 

Fig. 4.8b shows the minimum error in the first point versus 

range. The slight irregularity in the curve may be parially due to 

the limited accuracy in determining the optimum frequency at each 

value of the range. 
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4.5 Error Analysis 

As illustrated in section 4.4, prediction errors result when the 

model fitted to the available hologram data is used to predict the 

signals outside the given aperture. These errors arise because the 

model does not fit the hologram function exactly due to the limited 

number of terms in the model and to the discrepancy between the model 
function and the actual hologram function. In this section, the 

fitting error in the case of the power series polynomial model 
describdd in section 4.4.1 is considered. 

Referring to the imaging configuration in Fig. 4.1, consider the 

case of a 1-point object at (xo, z) in the Fresnel region of the 

hologram. The hologram signals at points k-1 and k within the available 

aperture are: 
dx 

H(k-1) =Z exp j Kz[1+ 2( k-Z ° )2] 

-x 
H(k) -Z exp j Kz[1+ 2 (dkz ° )2] (4.47) 

where K is the wavenumber, K= 2i/A and dk-1 and dk are the distances 

between each of the two points and the centre of the hologram. The 

power series model described by eqns. (4.37) and (4.38) can be 

formulated such that the modelled function is the ratio ho(k) between 

H(k) and H(k-1), 

h (k) - 
H(k) (4.48) 

0-H k-1 

Substituting for H(k). and H(k-1) from eqn. (4.47) gives: 

h0(k) = exp j ZZ [(dk-x )2_(dk-1-xo)21 (4.49) 

This leads to: 

ho(k) = exp j 2z <<dk-dk-1)(dk 
k-1'2xo)l (4.50) 

Eqn. (4.50) indicates that ho(k) is a function of the location of 
both points k and k-1 on the hologram, the location of the object 

point in the object plane, and the range z. In the polynomial model, 
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eqn. (4.38), ho(k) is assumed to be a function of dk only and therefore 

the model does not represent h0(k) exactly even if a power series 

expansion of infinite length is used. It is expected that the 

polynomial model would represent a better fit to the hologram function, 

and therefore produce more accurate prediction, if dk_1, xo and z 

are included in the expansion. This, however, would require the 

knowledge of the object location which might restrict the application 

of the technique in situations where such a priori information is not 

available. 

Replacing (dk-dk-1) by e, the sample spacing, and using the 

approximation: 

dk+d k-1 p 2dk ;k»1 (4.51) 

Eqn. (4.50) can then be written approximately as: 

h0(k) - exp[j 
KZ (dk-xa)] (4.52) 

Therefore, for a given object range and hologram configuration, the 

hologram function ha(k) can be approximated to a complex exponential 
function of the distance (dk-xo). This explains the improvement in the 

prediction accuracy when the polynomial model is replaced by an 

optimum Fourier series model since the latter is based on expansion 
in exponential functions and therefore fits h0(k) more accurately. 

Although a complex exponential function can be represented by a 

power series, the accuracy of this representation depends on the 

number of terms in the expansion, which should ideally extend to 

infinity. Using a polynomial model of order L, the ratio function 

h0(k) is approximated as: 

ho(k) A f(dk) 4 a1+a2 dk +a3 dk2 +... + aL dk-1 (4.53) 

Expanding f(dk) in a Taylor-series about the origin (dk-0) yields: 

f(dk) = f(o) + f'(o) dk +. 
i1 ft '(o) dk2 +0000 

(L-1) 
+(L11)! f(o) (dk)L-1 + RL (dk) (4.54) 
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where RL(dk) is the error due to the truncation of the Taylor-series 

to the first L terms only. The upper bound on this error is obtained 

using the Lagrange's remainder formula [1361 as: 

; 0<d<dk (4.55) 

Comparison between eqns. (4.53) and (4.54) shows that, fitting a 

polynomial model is equivalent to expanding the hologram ratio function 

in a Taylor-series expansion about the hologram origin where the model 

coefficients are given by: 

1 
ai - U-1) ! 

(i-1) 
f(o) ; i=1,2,..., L (4.56) 

Therefore, the upper bound on the modulus of the fitting error when 

using a polynomial model of order L is given by IRLImax in eqn. (4.55). 

From eqn. (4.52), the L th derivative of the hologram ratio function, 

ho(k) at distance d is given by: 

f(L)(d) _ ('L )L exp[ 
jL- (d-x0)] (4.57) 

Since the modulus of f(L) (d) does not depend on the distance d, it can 

be substituted for If(L)(d)Imax in eqn. (4.55). This yields: 

IRl (Kodk )L (4.58) 
Lmax 11 z 

Substituting K=2i/A gives: 

1 (L) L ýRL) 
max - L! 

l f (d) I 
max 

(dk) 

a. i 

1 2rtAdk L ýRLImax 
- L! z) 

(4.59) 

where the values of o, dk, and z are in wavelengths. 

Subject to the approximations made in deriving eqn. (4.52), eqn. 
(4.59) gives an estimate of the maximum fitting error due to the use of 

a truncated polynomial expansion. It does not, however, account for 

the errors arising from representing the modelled signal as a function 

of dk only and ignoring the rest of the parameters in eqn. (4.52). 
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Therefore, IRLImax can be used only as a guide which serves to 

illustrate the way in which the error is influenced by the various 

parameters of the imaging configuration such as the model order, L, 

the range z, the sample spacing e, and the location of the sample on the 

hologram aperture as represented by dk. 

Eqn. (4.59) shows that for all values of L, the polynomial truncation 

error increases with the increase in the sample spacing A and, as 

expected from the results obtained in section 4.4, increases with the 

increase in dk and the decrease in the range z. Since e must be small 

enough to prevent aliasing effects in the sampled hologram and dk «z 

for most practical applications, the ratio ( 2, nAdk ) is normally less than 
z 

one and the error decreases with the increase in L. The truncation 

error is plotted in dbs relative to unity versus the distance dk in 

Fig. 4.9 for various values of L, A , and z. Figs. 4.10 and 4.11 show 

similar plots versus the object range z and the model order L 

respectively. The figures indicate the greater influence of variations 
in the model order on the error compared to the other parameters. 
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4.6 The Linear, Space-Invariant, Predictive Model 

When the polynomial, space-variant, model, eqn. (4.38), was used 

to expand the hologram of a 2-point object the prediction errors were 

large and although the two points can be resolved using the predicted 
hologram, the image contains spurious details of large magnitude as 

shown in Fig. 4.12. This indicates that the space-variant model does 

not adequately represent the hologram signal for the case of a 

multiple-point object. In fact, this type of model is best suited for 

describing a single pattern of spatial variations centred at the 

projection of the 1-point object on the hologram plane. For an 

object consisting of a number of points, the hologram contains the 

same number of such patterns which interfere coherently at every point 

on the hologram aperture. 

One other possibility for representing the signal at any point 
in the available aperture is to express it as a linear combination of 
the signals at all the preceding points in the aperture half under 

consideration. Therefore, the signal at point k can be written as: 

L 
H(k) =Ec. H(j) 

j=1 J 

with 
H(j)=0for j>k (4.60) 

where cj; j=1,2,..., L are the model coefficients. When eqn. (4.60) is 

written for the last (M-1) points on the aperture half; i. e. k=2,3,..., M, 

the following complex matrix is obtained for an exactly determined 

system in which the model size L is equal to M-1: 

H(2) H(1) 000 C1 

H(3) H(1) H(2) 00 c2 

H(M) H(1) H(2) H(3) H(M-1) cL 

... (4.61) 
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It is noted in this case that the square matrix of dimension (LxL) 

which represents the system of equations takes a triangular form where 
the upper triangle is filled with zeros. This is due to the 

windowing effect in eqn. (4.60) since only the data corresponding to 

one half of the available aperture is used to construct the predictive 

model for use on that side of the aperture. This matrix form has 

certain advantages in increasing the stability of the prediction 

accuracy against variations in the object parameters as discussed in 

section 4.10 and in reducing the effects of disturbing noise, see 

sections 5.3 and 5.7. 

Once the model coefficients c1, c 2,.., c L are obtained by solving the 

above matrix equation, the signal aignai at the points in the aperture 

extension can be obtained as follows: 

L 
G(M+1) =Ec G(j+1) 

j=1 
L 

G(M+2) E c. G(j+2) 
j=1 

L 
G(M+L) =Ec G(j+L) 

j=1 i 

L 
G(N) = Zr c. G(j+N-M) 

j=1 
(4.62) 

The linear predictive model was used to increase the size of 
hologram aperture four times for both a 1-point and a 2-point object. 
The errors for the case of the 1-point object are shown in Fig. 4.13a 

for both the linear and the polynomial models. It is obvious from 

the figure that the polynomial model is superior to the linear model 
for the case of the 1-point object for small expansion ratios. The 

results for the 2-point object are shown in Fig. 4.13b from which it 

is clear that the linear model gives better overall results. It is 

generally noted that the polynomial model gives better performance 

when predicting the first few points near the available aperture while 
the linear model gives greater prediction accuracy towards the edge of 
the expanded aperture. 
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4.7 The Hybrid, 'Polynomial / Linear, Predictive Model 

The results in the previous section have indicated the complementary 

nature of the polynomial (space-variant) and the linear (space-invariant) 

prediction models. The polynomial model is best suited for 1-point 

objects and, in general, gives better accuracy in the vicinity of the 

available aperture. On the other hand, the linear model is more 

suited for 2-point objects and gives improved performance away from 

the available aperture. This suggests that a combination of both 

types of models should be advantageous. 

In the hybrid, polynomial/linear predictive model, the signal at 

any point on the available aperture is related to the signal at the 

immediately preceding point through a space variant function, as in the 

polynomial model, and is also linearly related to the signals at 

a number-of the preceding points, as in the linear model. Assuming 

a power series expansion for the space variant function, the hologram 

function over the available aperture is written as: 
q 
E cj H(j) k=2,..., q+1 

1 
H(k) ai(dk)i-1+ 

J; 
H(j)=0 for j >,. k 

i=1 q 
E c. H(k-q+j-1) k=q+2, .., M 

J=1 J (4.63) 

where p is the number of polynomial (space-variant) terms and q is the 

number of linear (space-invariant) terms. in the hybrid model. ai(i=1,.., p) 

are the polynomial coefficients and cj(j=1,..., q) the linear coefficients. 
The composition of the hybrid model will be represented throughout in 

the format p/q indicating the number of polynomial/linear terms 

respectively. 

Since both the polynomial and the linear parts of the hybrid model 

must share the number of degrees of freedom in the available 

aperture, and assuming an exactly determined system of equations, then 

p+q-L=M-1 (4.64) 

Writing eqn. (4.63) for all values of k over the available aperture 

produces L linear equations in the L unknown model coefficients. For a 
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power series polynomial, these equations take the following matrix form: 

H(2) H(1) H(1)d1 . H(1)dj-1 H(1) 0.0 

H(3) H(2) H(2)d2 . H(2)d2-l H(1) H(2) .0 

H (q+1) 

H(q+2) 

H(M) 

H(q) H(q)dq . H(q)dq-1 H(1) H(2) . H(q) 

H(q+1) H(q+1)dq . H(q+1)dq+l H(2) H(3) . H(q+1) 

H(M-1) H(M-1)dM-1 . H(M-1)dM_ý H(M-q) H(M-q+1). H(M-1) 

... (4.65) 

The model coefficients a1, a2,..., ap, c1, c2,..., cq are obtained by 

solving eqn. (4.65) . The model is then used to predict hologram points 

outside the given aperture. G(M+1) is calculated from G(M) together 

with the other q-1 preceding points. Similarly G(M+2) is obtained 
from G(M+1) and the other q-1 preceding points, and so on. In 

general, the signal at point (M+&) is given by: 

G(14+0 E ai(dM+Q)i-1]G(M+&-1)+ E c. G(M+z-q+j-1) 
i=1 j_1 

... (4.66) 

By choosing the value of p and q, subject to the condition in 

eqn. (4.63), the structure of the hybrid model can be selected to. 

suit the particular application at hand. For p=L, q=0 all the 

terms correspond to a polynomial expansion which represents the optimum 

model for 1-point objects as described in section 4.4. For p=0, q=L 
the hybrid model is reduced to the linear model discussed in section 
4.6. 

For a total available aperture of 16 points, i. e. M=8 and the model 

order L=7, the optimum model for the case of a 2-point object was 
found to contain 5 polynomial terms and 2 linear terms. This hybrid 

model was used to double the size of a 16 point aperture spaced at 
1a to image a 2-point object symmetrically positioned in the object 
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plane and separated by a distance of 6x at a range of 105x from the 

hologram. The prediction errors are shown in Fig. 4.14a. The images 

reconstructed from the small, predicted, and corrected apertures are 

shown in Fig. 4.14b. 

Referring to Fig. 4.14b, the small available aperture is not 
large enough to resolve the two points since the Rayleigh resolution 
limit predicts a resolution distance of 7a for the small aperture. 
Moreover, the actual resolution limit would be worse for the case of 

coherent radiation since the two simulated points are assumed to 

radiate in phase [33]. The two points are clearly resolved with both 

the true and predicted expanded holograms. The predicted hologram 

gives a reconstructed image which is in good agreement with that 

obtained from the true hologram. This shows that the image reconstruction 

process is tolerant to prediction errors as high. as 2.0% at the edge 

of the expanded aperture. It should be noted, however, that the 

reconstruction results are also affected by the distribution of the 

errors over the hologram aperture. 

To demonstrate the advantage of this optimum hybrid model over 
the polynomial and the linear models, the later two models were used 
to expand the same hologram aperture in the above example. The 

results are shown in Fig. 4.15a for the polynomial model; p=7 and q=0 

and in Fig. 4.15b for the linear model; p=0, q=7 . In the case of the 

polynomial model, Fig. 4.15a, the images are shown normalized to the 

same peak since the intensity of the image obtained from the predicted 

aperture far exceeds those of the other two images due to the large 

prediction errors. Although the image from the predicted aperture 

shows two intensity peaks at the correct positions. corresponding to 

the two points in the object, it suffers from poor contrast and is 

cluttered with additional spurious peaks. Fig. 4.15b reveals that the 
linear model, though inferior to the optimum hybrid model, gives much 
better results than the polynomial model for the case of the 2-point 

object considered. The two points can be clearly resolved with this 

model and the central dip in the image exceeds the 19% value which 

corresponds to the Rayleigh resolution criterion. However, the image 

is obviously worse than that obtained with the optimum hybrid model. 
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Fig. 4.16 shows the prediction errors and the reconstructed images 

for a 2-point object in which the amplitude of the signal from the 

R. H. point is 0.8 of that from the other point. The optimum 5/2 hybrid 

model was used for the prediction. Although the relative signal 

strength is not recovered exactly even in the case of the true 

aperture due to the limited aperture size, the image from the predicted 

aperture is in good agreement with that from the true aperture. 

The optimum hybrid model was used to expand b given 16-point, 

aperture four times to image an object consisting of two points 

separated by a distance of 3.4x at a range of BOX. Fig. 4.17a shows the 

reconstructed images from the small, predicted, and true apertures. From 

this figure, the two points can be clearly resolved in the image from 

the predicted aperture. 

Throughout the above examples using the polynomial or the hybrid 

models, the polynomial part in the model is based on the power 

series expansion in eqn. (4.38) . In the hybrid model, it is also 

possible to use other types of expansions for the polynomial part. 
When a Fourier series expansion, eqn. (4.43), is used for the 5 polynomial 

terms in the optimum hybrid model for the case 2-point objects; it is 

possible to find an optimum value for the fundamental spatial frequency 

of the Fourier series which minimizes the prediction errors. 

Comparison between Figs. 4.17a and 4.17b indicates the advantages 

of the Fourier polynomial over the power series polynomial in reducing 
the prediction errors and therefore improving the reconstructed 
images for the case of 2-point objects as has been demonstrated in 

section 4.4.3 for the case of 1-point objects. 
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4.8 The Corrective Model 

Throughout the prediction procedures described so far in this 

chapter, only one half of the available aperture is used at a time to 

predict the hologram signal at the aperture extension adjacent to it. 

For example, referring to Fig. 4.18, the hologram signal H1 at the 

R. H. half of the available aperture is used to predict the signal G, 

at the R. H. aperture extension. 

The possibility of improving the prediction accuracy by subsequently 

correcting the predicted values of the signal using a predictive model 
has been investigated. Such a model is derived by relating the true 

signal on one half of the available aperture to the data predicted at 
the same half. This is achieved by making use of the fact that the 

hologram signals are known at both halves of the available aperture. 
Therefore, for each half of the available aperture, both the true 

data and the data predicted using a corrective model which is based on 
the other half are available. The corrective model for use with 

predictions in the R. H. aperture extension is constructed as follows; 

see Figs. 4.18 and 4.19a: 

(i) Construct a predictive model, model 1, based on the L. H. half 

of the available aperture H2. 

(ii) Predict the hologram signals at the R. H. half of the 

available aperture using the model constructed in W. Denote the 

predicted signals H. 

(iii) Construct a corrective model based on relating the known 

signals H1 to the predicted signals H1 over the R. H. half of the 

available aperture. 

Having constructed the corrective model, it can now be used to 

correct predicted data in the R. H. aperture extension, G1, to obtain 

more accurate results, G1, as follows; see Figs. 4.1$ and 4.19b: 

(i) Construct a predictive model, model 2, based on the R. H. half 

of the available aperture, H1. 
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(ii) Predict the hologram signals at the R. H. aperture extension. 
Denote the predicted signals G1. 

(iii) Apply the corrective model to correct the predicted signals 
Gil to obtain more accurate data Gi. 

The same process is repeated for correcting the L. H. half of the 

predicted aperture. 

4.8.1 The Polynomial, Space-Variant, Corrective Model 

Let the true hologram signal at point k in the R. H. half of the 

available aperture be H1(k) and the predicted signal at the same point 
be Hj(k). The polynomial, space-variant corrective model of the 

maximum size is constructed by expressing the ratio H1(k)/HjI(k) as a 

power series in the distance from the point to the aperture centre, 
for all points on the R. H. half of the available aperture, 

H1(k)/HI(k) =EU. (dk)i-1 ; k=1,2,.., M (4.67) 
i=1 

where M is the number of points in one half of the available aperture, 

ui(i=1', 2,..., M) are complex coefficients and dk is the distance from 
the centre. 

The set of equations represented by eqn. (4.67) can be solved for 

the corrective model coefficients; u1, u2,...., uM. If G11(k) is the pre- 
dicted signal at point k in the R. H. aperture extension; k=M+1, M+2,..., N, 

then the corrected signal G1(k) at the same point can be obtained as: 

M 
G1(k) = Gj(k) E ui(dk)i-1 ; k=M+1, M+2,.., N (4.68) 

i=1 

where u1, u2,..., UM are the corrective model coefficients obtained from 

eqn. (4.67) and dk is the distance from a reference point located 

midway between the Mth and the (M+1)th sample points, Fig. 4.18. 

The polynomial corrective model was used to correct hologram 
data obtained using a polynomial predictive model for the case of a 
1-point object. Fig. 4.20 shows the improvement in prediction 
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accuracy over the aperture extension obtained over the aperture 

extension with a corrective model having the maximum size M. A 

reduction of approximately 55% in the prediction error at the edge of 
the expanded aperture is achieved through correction with this model. 
At a shorter object range, Fig. 4.20b, the improvement in the 

prediction accuracy is reduced. This is expected, since the 

corrective model is based on the predictive model. At short ranges the 

effectiveness of the predictive model is reduced due to the higher 

frequency of the spatial variations over the hologram. This in turn 

reduces the effectiveness of the corrective model. 

The effect of varying the size of the corrective polynomial model 
is shown in Fig. 4.21 where the maximum error over the aperture after 

correction is plotted against the size of the model for the case of 
data predicted with a polynomial predictive model and the hologram of 

a 1-point object. For corrective models of less than the maximum 

size, M, eqn. (4.67) is written only for a limited number of points L' on 
the available aperture where L'<M. The isolated point to the left 

of the curve in Fig. 4.21 represents the maximum error over the 

aperture when no correction is applied. The figure shows that in this 

case the correction accuracy is generally improved with the increase 

in the size of the corrective model. 

4. B. 2 The Hybrid, Polynomial / Linear, Corrective Model 

When the polynomial corrective model was used to correct hologram 

data obtained using a hybrid polynomial/linear predictive model, there 

was no improvement in the overall prediction accuracy and the supposedly 

corrective process actually produced worse results than the original 

predicted data. In its general form, the corrective model could also 
take a hybrid form in which the ratio between the true and predicted 

signals, H1 (k. ) and Hj(k) respectively, at one half of the available 
aperture is represented as a spatial function plus a linear 

combination of the same ratio at a number of preceding points. 
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s H1(j) 

j: 1 
vj H1 j k=1, ... , s+1 

H1 (j) 
H (k) r;, =1 for j>k 

H1 k=E ui (d 
k) 

i-1 
+ 

H11 

1 i=1 

s H1(k-s+j-1) 
E 

j1vj H1' k-s+j-1 k=s+21.., M 
= 

where r is the number of polynomial terms, a is the number of linear 

terms, ui, u2,..., ur are the polynomial coefficients, v1, v2,.., vs are the 

linear coefficients, dk is the distance from the centre. For an exactly 
determined system of equations: 

r +s =M 

With the corrective model coefficients u1, u2,..., ur, V1, V2,..., vs 
determined by solving eqn. (4.69), the predicted signal Gi'(k) at the 

aperture extension can be corrected to give: 

rs "G (k-s+j-1) 
G1(k) = Gj (k)( E ui(dk)i-1 +j1 vj G11 k-s+j-1 i=1 = 

(4.69) 

(4.70) 

a 

; k=M+1, M+2,.., N 

with 
G1(k-s+j-1) 

Gi k-s *j-1 
1 for j s-k+1 (4.71) 

where dk is as defined for eqn. (4.68), see Fig. 4.18. 

The hybrid corrective model can lead to improvement in the prediction 

accuracy when used with either the polynomial or the hybrid predictive 

model. The performance of the corrective model, however, depends upon 
the composition of both the predictive and the corrective models. To 

investigate the optimum composition of the corrective model, the size of 
the model was kept fixed at the maximum possible value, i. e. r+s = M, 

and the number of linear terms, s , increased from 0 to M. The maximum 
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error over the expanded aperture after correction was calculated in each 
case. 

Fig. 4.22a shows the results when the model is used with a 

polynomial predictive model (p-L, q=O) for the case of a 1-point object. 
The isolated point corresponds to the maximum prediction error over the 

aperture without any correction. The figure shows that the optimum 

corrective model for use with the polynomial predictive model is a 
linear model (r_O, s=M) which reduces the prediction error to an almost 

negligible quantity. Fig . 4.22b is the corresponding plot for the 

case of a 5/2 hybrid model and a 2-point object. ' It shows that it is 

possible for certain compositions of the corrective model to increase 

the errors in the predicted signals rather than reduce them and a 

search for the optimum corrective model would therefore be required. 
The optimum model for the case considered is a 4/4 polynomial/linear 

which reduces the error by a factor of approximately 85%. Fig. 4.22c 

for the linear predictive model and a 2-point object shows that the 

prospects for a major improvement in the prediction accuracy through 

correction are much less in this case. 

The plots in Fig. 4.23 demonstrate the resolution improvement that 

can be achieved using the corrective technique on the predicted data. 

A small aperture containing 8 points (M=4) is expanded four times in 

order to image a 2-point object; optimum models were used for both 

prediction and correction. Fig. 4.23a shows the reduction in the 

prediction error and Fig. 4.23b the reconstructed images from the small, 

predicted, corrected, and true apertures. Because of its limited 

size, the small aperture cannot resolve the two points in the object. 
Due to the large prediction errors, the expanded predicted aperture 

cannot resolve them either and it is only after the correction process 
that the two points are clearly resolved. 
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4.9 The Effect of Aperture Expansion on Range Resolution 

In the previous sections the effect of expanding the hologram 

aperture on the lateral resolution has been considered. When the 

range resolution is aperture-limited, its value is given, according 
to one criterion, by eqn. (2.71). This equation defines the range 

resolution as the distance in range between the plane of focus, at 

which the image intensity is at its peak, and the plane at which 
the intensity drops by a factor of 20% of its peak value. 

To verify that range resolution is improved when the aperture is 

expanded, the hologram of a 1-point object at the centre at a distance 

of 50A from a 15X aperture (spacing = 1a) was simulated. The size of 
this aperture was doubled using the optimum predictive model, a 

polynomial model. The images corresponding to the small, predicted, 

and true apertures were reconstructed at a number of reconstruction 
distances from 5X to 85A from the hologram in steps of 5x. For every 
image reconstruction, the value of the image intensity at the centre 

was recorded. In this way, an image in-range of the point object is' 

created for each of the three apertures. Fig. 4.24 shows these 

reconstructed images versus range, normalized to the same peak value. 

This figure indicates that both the predicted and the true 

holograms produce a peak at a distance of 50A which corresponds to the 

correct object range. The image obtained from the small aperture is 

much wider than those corresponding to the holograms of the expanded 

aperture and its peak occurs at a slightly shorter range. The two 

images from the predicted and true holograms are in good agreement and 
both indicate an average resolution distance of 5.7A while eqn. (2.71) 

predicts a distance of 5.2X for the imaging geometry considered. 

The improvement in range resolution through aperture expansion 

allows the correct imaging of two objects close in range which would not 
be possible using the small available aperture. The hologram of 2 points 
located on the hologram axis at ranges 20X and 50X was simulated and 
the resulting aperture expanded by a factor of 2 using an optimum 4/4 

hybrid predictive model. The images in-range which were obtained are 
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shown in Fig. 4.25 for the small, predicted, and true apertures. Due 

to its shorter range, the point nearer to the hologram is imaged at 

the correct range with all three apertures, although the definition is 

better in the case of the two expanded apertures. The small aperture 

fails to resolve the farer point at the correct range while both the 

predicted and the true apertures image the point with an error 

of ±10% in its location in range. Part of this error may be due to 

the large steps in range (50 at which the images were reconstructed. 
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4.10 The Effect of Increased Object Complexity 

It has been shown in section 5.7 that for more than'one point in the 

object to be imaged, it is necessary to introduce a number of linear 

terms in the predictive model in order to achieve adequate prediction 

accuracies. These linear terms relate the signal at every point in 

the available aperture to the signal at the points in its near 

vicinity. A 5/2 polynomial/linear hybrid model gives optimum results 

for the 2-point objects considered. Although the linear model (0/7) 

gives less accurate prediction, the prediction accuracy can be 

adequate in many cases as demonstrated in Fig. 4.15b. The linear model 
has the advantage of providing greater stability with noisy data 

which will be discussed in Chapter 5. In this section the effects of 

increasing the complexity of the multi-point object on the performance 

of both models are considered. This includes increasing the spacing 
between the points in a 2-point object and the simulation of 

quasi-continuous objects which are represented by a large number of 

points within a given finite object width. 

4.10.1 Effect of Increasing the Point Spacing in a 2-Point Object 

Fig. 4.26 shows the maximum error over the predicted aperture 

for an expansion ratio of 2 versus the spacing between the points 

in a 2-point object symmetrically positioned relative to the hologram 

axis for the case of the 5/2 hybrid model and the 0 /7 linear model. 
The prediction errors tend to increase with increasing the spacing 
between the two points due to the increased spatial frequency content 

of the hologram. This trend is manifested more clearly in the case of 

the hybrid model than in the case of the linear model. The figure 

also shows that while the hybrid model gives better performance for 

small spacings compared with the linear model, the latter gives more 

accurate prediction for large spacings. 

4.10.2 Effect of Increasing the Number of Points Representing an 
Object of a Given Width 

As shown in Fig. 4.26, the extent of the object-in the direction 

parallel to the hologram plane has a marked effect on. the prediction 
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errors for both predictive models under consideration. In order to 

observe the effects of increasing the point density on the object, the 

object width must be fixed. The objective of this investigation is to 

determine the effectiveness of the prediction technique for common 

continuous objects which represent the limit for the discrete point 

objects when the number of points taken to represent the object tends 

to infinity. The object of a given width is represented by a number 

of uniformly spaced points along its width in the direction parallel 

to the hologram line and the density of these points can be increased 

to approach the case of a continuous object. 

The maximum prediction error encountered when doubling the size 

of a 16-point aperture using the 5/2 hybrid model is plotted versus the 

number of points taken on the object in Fig. 4.27a for 3 values of 

the object width, at the same range. The corresponding results for 

the linear model are shown in Fig. 4.27b. In both cases, as the number 

of points on the object increases, for the same object width, the 

error generally decreases towards a constant steady-state value. This 

indicates that the prediction error stabilizes as the case of a 

continuous object is approached which implies that this prediction 

technique would be useful for improving the resolution when imaging 

ordinary spatially bounded objects. It is also noted that the steady- 

state value of the error is considerably lower than the error in the 

case of a 2-point object where the two points are situated at the 

extreme ends of the object length. Therefore, the expansion of the 

hologram of a continuous object with a finite width would be even more 

accurate than when the object is represented by two points marking its 

ends. 

A comparison between Figs. 4.27a and b shows that the steady-state 

value is reached more rapidly in the case of the linear model which 
indicates that this model is relatively insensitive to changes in the 

point density. The steady-state error increases with the increase in 

the object length for the hybrid model in Fig. 4.27a while it decreases 

in the case of the linear model in Fig. 4.27b. The variations in 

the steady-state error with the object width is only about 15 dbs in the 

case of the linear model compared to approximately 35 dbs for the 
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hybrid model. This shows that the linear model is also relatively 
insensitive to variations in the object width. 

Fig. 4.28 shows the same effect of increasing the point density 

but for the same object width at 3 values of the object range. While 

the steady-state error in the case of the hybrid model varies by 

approximately 50 dbs over the range values used, Fig. 4.28a, the 

corresponding variations in the case of the linear model does not 

exceed 5 dbs; Fig. 4.28b. Therefore, the linear model is obviously 
less sensitive to variations in the distance of a quasi-continuous 
finite object from the hologram. 

The general tendency for the prediction error to decrease as the 

point density on the object increases and the fact that it approaches 

a steady-state value can be explained with reference to Fig. 4.29. For 

simplicity, assume that the object range is large enough for the 

Fraunhofer approximations to apply. In this case, as discussed in 

section 3.4, the hologram is approximately the Fourier transform of the 

object. Due to its limited aperture size, the hologram acts as a 
low-pass filter with a cut-off frequency fc which is proportional to the 

numerical aperture of the hologram. 

In Fig. 4.29, the spectrum of the discrete finite object is 

derived in steps, starting with a continuous object of a finite width 

which has a. sinc(x) spectrum as shown in Fig. 4.29a. Representing such 

an object using a number of uniformly spaced discrete points is 

equivalent to sampling the continuous object with a train of Delta 

functions spaced at distance T in the object (space) domain. This 

train of Delta functions has the spectrum shown in Fig. 4.29b which 

also consists of another train of Delta functions spaced at (1/T) in 

the frequency (hologram) domain. The multiplication involved in the 

sampling process in the space domain is equivalent to covolution in the 

frequency domain and therefore the spectrum of the discrete finite 

object consists of an infinite number of sinc(x) spectra with their 

centres spaced at a spatial frequency interval equal to (1/z), Fig. 

4.29c. 
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Superimposed on the discrete object spectrum in Fig. 4.29c is the 

transfer function of the hologram with a cut-off frequency fc. As the 

number of points used to represent an object of a given width increases, 

the spacing, z, between the points decreases and therefore the spacing 
between the sinc(x) spectra increases. This reduces the number of 
these spectra within the passband of the hologram aperture. This 

reduction in the spatial frequency content of the hologram reduces 
the prediction accuracy as noted in section 4.4.1 for the case of 1-point 

objects. When the density of the discrete points on the object is 

increased further, a stage will be reached when all the sinc(x) spectra 

will be removed outside the passband with the exception of the central 

spectrum which corresponds to the case of the continuous object. 
When this stage is reached, any further increase in the point density 

does not lead to any change in the frequency content of the hologram 

and therefore the prediction accuracy reaches its constant steady- 

state value which would be obtained if the discrete object were a 

continuous one. 

In practice, the simplified argument presented above is further 

complicated by the fact that in the Fresnel region the hologram is 

the spectrum of the product of the object function with a quadratic 

phase function, cf. eq. (2.48). Moreover, a more rigorous analysis 

should also take into account the nature of the relationship between 

the prediction accuracy and the spatial frequencies on the hologram. 

It should be noted that the Fraunhofer integral which describes 

the hologram in the far field can also be expressed in terms of the 

angular spectrum of the object distribution. In this case the hologram 

signal at a point which subtends an angle 0 at the object plane is given 
by [1281 

X 
oxxx 

H(sin e) j a( ý) exp { -j2i( 
ý) sin 6}d(-o) 

-X 0 
x 

where ± X0 represent the object extent and a (-2) is the object 
distribution. Comparison with the standard form of the Fourier transform 

shows that the frequency is now represented by sin(e). This form also 
describes the radiation pattern of the object. Fig. 4.29d shows the 
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angular spectrum of a 2-point object where the points are separated by 

a distance of A/2. In a practical situation the data can be collected 

only over a limited portion of the angular space. Fig. 4.29e illustrates 

the case when e is restricted to ±, n/2 and the two points cannot be 

resolved. 

The relative insensitivity of the linear model to the point 
density, object width, and object range can be explained by referring 
to the matrix equation which describes the model; eqn. (4.61). Because 

of the triangular form of the matrix, the model coefficients are less 

influenced by the hologram signals at the various points on the aperture 

compared to the case of the square matrix. This obviously has the 

disadvantage of reducing the prediction accuracy since the model does 

not represent the signal over the hologram aperture as accurately. On 

the other hand, this makes the results obtained with the triangular matrix 

model more stable against factors affecting the hologram signals such as 
the object width, object range, and the number of points used to 

represent a given object as demonstrated in Figs. 4.26 - 4.28. Such 

factors also include noise and measurement errors in realistic 
hologram signals as will be discussed in Chapter 5. 

4.10.3 Imaging of Quasi-Continuous Objects 

The results described above in section 4.10.2 are encouraging since 
they indicate that prediction errors approach a stable value as the 

case of the continuous object is approached. In this section the results 

obtained when imaging two quasi-continuous segments instead of 2-point 

objects are discussed. Each segment is of a finite width w and is 

represented by a number of uniformly spaced points as described in 

section 4.10.2. The point density is defined as p points/wavelength. 
The two segments are positioned in the object plane symmetrically about 
the hologram axis and separated by a distance of 5.6A, centre to centre. 
The images are obtained from holograms predicted using a 5/2 hybrid 

model and a linear model. To provide some form of a reference for 

comparison, Figs. 4.30 and 4.31 show the prediction errors and the 

reconstructed images for two points located 5.6X apart using the hybrid 

and the linear models, respectively, for prediction. 
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Figs. 4.32 - 4.35 show the corresponding results for a segment 

width of 4a. In this case the gap between the two segments is 1.6x 

and is clearly resolved by both the true and predicted holograms. In 

Figs. 4.32 and 4.33 the point density is 25 points/A while in 

Figs. 4.34 and 4.35 the density is 50 points/a. Comparing these 

figures with the corresponding figure for the case of a 2-point object 
indicates that the prediction errors are generally lower. The two 

fold increase in the point density has negligible effect on the image 

quality both in the case of the hybrid and linear models. 
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4.11 Conclusion 

A technique for increasing both lateral and aperture-limited 

range resolution in acoustic holography by aper. ture expansion has been 

described. The expansion is achieved by fitting a model to the hologram 

signal at the available aperture and using the model so constructed 
to predict the signal at new points outside the aperture. This 

approach has the advantage that it puts no restrictions on the object 

range or width which are imposed by the aperture estimation techniques 

suggested by Sato [128]. However, as in the majority of object 

restoration techniques, the object is assumed to be of finite width. 
Moreover, this prediction method operates directly on the measured 

complex hologram signal without requirement for any modifications 

which in some cases require the accurate knowledge of the object 

range for the signal processing to be performed [128]. Restrictions 

on the imaging configurations are reduced since the Fresnel hologram 

of a spatially bounded object has been shown to be an analytic function 

and therefore can be extended beyond an accurately known portion of its 

analyticity. Other estimation techniques have relied on the fact that 

the object spectrum is an analytic function and therefore restrictions 

and modifications had to be introduced on the hologram signal in 

order to arrive at a signal proportional to the object spectrum. 

Because the technique enjoys a certain degree of freedom in the 

choice of the model to be fitted for the hologram signal, it offers 

some flexibility in combating the effects of measurement errors and 
disturbing noise since the noise effects are greatly influenced by the 

form of the system matrix. In the technique by Sato [128], the noise 

effect is reduced by modifying the procedure for data acquisition 

which can be costly, time consuming or unsuitable for use with 

conventional image reconstruction algorithms. 

A 
. 
number of models have been described which suit a variety of 

object configurations. A polynomial, space-variant model gives 

optimum performance for the case of a 1-point object. In this model 
the signal at every point is related to that at the immediately 

preceding point through a spatial function. Both power series and 
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orthogonal polynomial expansions have been investigated for this model. 
For multiple-point objects it was found that in order to obtain 

adequate prediction accuracies the model should contain a number of 
linear, space-invariant terms which relate the signal to that at a 

number of preceding points. For 7 terms in the predictive model, 
5 polynomial and 2 linear terms provide optimum results for most 

configurations considered for multiple-point objects with noise-free 
data. Resolution improvement by a factor of 4 has been demonstrated 

using this model for the case of a 2-point object. Although the 

performance of the linear model is less than optimum regarding prediction 

accuracy, this model has the advantage that no decision about the model 

composition is required since it contains no polynomial terms and 
therefore it represents a more universal model for prediction in the 

case of multiple-point objects. Moreover, this model has important 

advantages regarding stability with changes affecting the hologram 

data in general, cf. sec. 4.10.2 and 3, and robustness against noise as 

will be discussed in Chapter 5. 

A method has been suggested for improving the prediction accuracy 

obtained with the predictive model. This is achieved by correcting the 

predicted data using a corrective model based on comparing predicted 
data with corresponding data which is known to be true. The corrective 

model is constructed by relating the known data over one half of the 

available aperture to the predicted data at the same half which is 

obtained using a predictive model based on the other half. 

The performance of the corrective model depends on the structure of 
both the predictive and corrective models employed and, in general, 

a search for the optimum corrective model may prove necessary. 

The application of the prediction techniques for more complex 

objects has been investigated. The results obtained with simulated 

quasi-continuous objects have indicated that as the number of points 

representing a given object is increased, the prediction error 

approaches a constant steady-state value. The linear predictive model, 

which contains no polynomial terms, exhibits greater stability with 
increased object complexity due to the triangular form of its matrix. 
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The imaging of quasi-continuous objects made up of a large number of 

closely spaced points has been demonstrated. This indicates that the 

prediction technique described in this chapter should be capable of 

achieving resolution improvement in the case of continuous objects. 
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CHAPTER 5 

APERTURE EXPANSION IN THE PRESENCE 

OF DISTURBING NOISE 



5.1 Introduction 

Noise and other practical considerations set the limit for the 

resolution obtained from a given imaging aperture [116]. Attempts which 

aim at improving the resolution beyond the diffraction limit or the 

wavelength limit are faced with the same problem, cf. chapter 3. The 

limiting effect of noise on the majority of resolution improvement 

techniques becomes immediately apparant from the principle of analytic 

continuation which such techniques employ, since this principle requires 
the exact knowledge of the analytic function within a finite region. 
This is not possible in practice due to noise, measurement and 

quantisation errors, and the limited accuracy of scanning the hologram 

and of performing the required numerical calculations. Since each of 
these factors can be considered as some form of noise, this term 

will be used when referring to these factors in general. 

All object restoration techniques based on continuing the object 

spectrum involve the solution of a set of linear equations. In the 

techniques which utilize the sampling theorem, for example those due 

to Harris [118] and Sato [128], the equations are solved for new 

values of the spectrum outside the spatial frequency passband of the 

imaging system. In general, these equations take the following matrix 

form: 

Ax=b (5.1) 

where x is a vector containing the unknown values of the independent 

samples in the extended spectrum, b is the data vector containing the 

measured samples within the passband, and A is a complex matrix, usually 

square for an exactly determined system. The elements of A are 
defined by the positions of the sampling points within the passband. 
For example, in the technique by Sato [128], the (i, j)th element 

of this matrix is given by: cf. eqn. (3.25): 

Aij sinc [-I- (inf - jnfo) ] (5.2) 
0 

where Af0 is the critical sampling interval for the given object spectrum 
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and of is the actual sampling interval, i is the index indicating the 

position of the measured sample within the passband, j is the index 

of the independent sample in the extended spectrum, and sinc(x) denotes 

sin(7tx)/(ltx). The unknown samples are given by: 

x A-1 b (5.3) 

Equation (5.3) indicates that each value of the unknown samples is 

a linear combination of all the measured values. Since each of these 

measured values contribute some noise, the result is a greater error 
in the calculated samples, x. The error magnification is a function 

of the magnitude of the elements of the inverse matrix A-1. The larger 
these elements the greater the error magnification that results and 
therefore the greater the sensitivity to noise. A useful parameter 
of the magnitude of the matrix elements is the Euclidean norm of the 

matrix [136]. For a matrix C, the norm is defined as: 

Ilcll °- [EE Icij 12 ]z 
ý; 

(5.4) 

In practice, the hologram is sampled at small intervals which 
correspond to small values of Af. Moreover, the hologram expansion 
ratio in the estimation technique by Sato increases with the decrease 
in ef. On the other hand, for small values of of, the row vectors of 
the matrix A become almost identical especially for matrices of large 

sizes. As a result, the norm IIA 111 becomes very large and small 

amounts of errors in the measured data cause large errors in the 

resulting image. Increasing the sample spacing improves the 

situation but reduces the margin of resolution improvement with this 

technique since a stage will be reached when all the samples within 
the hologram will be independent samples. The dependency between 

the rows of the system matrix can be reduced through random sampling. 
This, however, is not convenient since conventional image reconstruction 
techniques assume uniform sampling of the hologram. Other methods 

which attempt to solve this problem by modifying the data acquisition 

phase of the imaging process may also be undesirable due to the 

increased time or cost of the operation [128]. 

The prediction technique for hologram aperture expansion described 
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in Chapter 4 is also affected by disturbing noise in a similar way. 
In the stage of model construction for either prediction or correction, 
the system is described in the matrix form given in eqn. (5.1). In 

this case, x is the vector containing the unknown model coefficients 

and b contains the measured complex hologram signals in the available 

aperture. The structure of the matrix A 
. 
depends on the type of 

model used and in general its elements are a function of both the 

measured signals and the positions of the sampling points. In the 

general case of, the hybrid model, the matrix includes zero elements, 

cf. eqn. (4.65). The effect of noise on the model coefficients and 
hence on the resulting errors in the predicted signal is therefore 

a function of the model order as well as its type and composition. 

This indicates that this prediction technique enjoys a certain 
degree of flexibility in combating the effects of noise since the 

type of model can in principle be chosen to reduce the effect of 

noise. However., this is unlikely to be without compromising the 

prediction performance since the model with good stability to noise 
is not necessarily that which gives best prediction accuracies and hence 

a compromise has to be made. Nevertheless, the advantage of this 

approach is that adequate performance with noise can be achieved through 

signal processing means only with uniform sampling, therefore 

avoiding any modifications to the data acquisition phase or the 

requirement for non-conventional algorithms for image reconstruction. 

In this chapter, a statistical analysis of the effects of noise 

on the hologram signal and on the performance of the polynomial model 
is presented. The effects of the order, type, and composition of 
the models described in Chapter 4 on the performance with noise are 
then considered together with possible modifications which would 
increase the stability of the matrix solution. The strategy for 

achieving such improvements is to introduce some sparisty into'the 

model matrix or utilize existing sparsity in the matrix. Due to the 

reduced dependence of the model coefficients on the measured data 

with such matrices, the model becomes more robust against variations 
in such signals. When the square matrix, polynomial predictive 
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model is modified to take a triangular form, it provides adequate 

means of predicting holograms of 1-point objects in the presence of 
high levels of noise; although it must be followed by a corrective 

model of the same type. The triangular form comes naturally in the 

linear predictive model, eqn. (4.61) , and provides high stability 

and adequate prediction accuracy for the case of multiple-point 

objects. This chapter also deals with the effect of computation 

accuracy in general and on the choice of the optimum order of the 

prediction model in particular. Simulation results showing the 

effects of noise on range resolution and on the imaging of objects 

with increased complexity are also presented. 

Throughout this chapter, the noise is simulated by adding random 

components with zero mean to the calculated real and imaginary 

components of the hologram data as mentioned in section 4.3. The 

noise levels are expressed as the relative amplitude of the peak of 
the noise component with respect to'the hologram signal. 
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5.2 Effect of Noise on the Polynomial Predictive Model 

In the simulation results discussed in Chapter 4, it has been assumed 
that the hologram data is, known to an accuracy which is limited only by 

the word length of the computer used and the accuracy of performing the 

required computations. In a practical situation, however the process of 

constructing the predictive model for aperture expansion will be subject 
to the effect of noise contributed by the following sources of error: 

(1) Measurement errors in the hologram signal due to the presence 

of noise and the limited accuracy of the measuring circuits. 

(2) Quantization errors introduced when the hologram data is 

converted into a digital form for processing. 

(3) Errors introduced in the positions of the sampling points 

due to the limited precision of the scanning arrangement and the 

jitter in the movement of the hydrophone detector when mechanical 

scanning is used. When arrays are used to sample the hologram, such 

errors will be caused by the limited manufacturing tolerance on the 

locations of the array elements . The errors in the positions of 

the sampling points will be referred to as distance errors throughout 

this chapter. 

(4) The round-off errors due to the limited computation accuracy 

when solving the set of linear equations which describe the model. 

(5) Interference due to extraneous coherent returns from nearby 

objects as a result of multipath effects in a practical imaging system. 

This can be reduced by using locallized insonification and range gating 

techniques. However, this problem is beyond the scope of this thesis. 

Errors in (1) and (2) above can be considered as additive noise 

in the measured hologram signal. This section is concerned with the 

effects of this additive noise together with the distance errors on 

the hologram signal and the resulting errors in the model coefficients 

which, in turn, influence the prediction accuracy. The effect of 
the computation accuracy is discussed in section 5.8. 

5.2.1 Effect of Noise and Distance Errors on the Measured Hologram Signal 

Referring to eqn. (4.37) and Fig. 4.1, assume that the modelled 
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hologram function is the ratio between the complex hologram signals 
H(k) and H(k-1) at points k and k-1. Let this ratio in the absence 

of any noise or distance errors be ho(k), therefore: 

h (k) = 
H(k) 

oH k-1 

=* ik) (5.5) 

where *(k) is the spatial function describing the model. Additive 

noise in the measured quantities H(k) and H(k-1) introduce a random 

component nk into ho(k). Assuming that no distance errors exist in 

the positions of the sampling points, the ratio function h(k) in 

the presence of additive noise is given by: 

h(k) = h0(k) + nk (5.6) 

To investigate the effect of the distance errors in the positions 

of the samples in the hologram plane on the construction of the 

polynomial predictive model of order L, the ratio function is 

expanded as a truncated power series of the form: 

h0(k) ai dki-1 
i=1 

(5.7) 

assuming no additive noise or distance errors. In eqn. (5.7) dk is 

the distance from point k to the centre of the aperture and ai ; i-1, 

2,..., L are the complex model coefficients. In practice, dk will 
be in error by Ek , where ek is a random error in the position of 

sample k. The resulting hologram signal is therefore: 

h(k) E ai (dk + Ek)i-1 
i. 1 

i-1 i-2 (i -1)(i-2) 2 i-3 E ai[dk +(i-1)ekdk + 2! ek dk +... ] 
i. 1 

... (5.8) 

For small values of the distance error, high order terms of ek can 
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be ignored and eqn. (5.8) can be approximated to: 

h(k) pE aidk-1 + Ek[ E ai(i-1) dk-2J (5.9) 
i. 1 i=1 

Using eqn. (5.7): 

h(k) p ho(k) + ek [ 
ah 

ad 

(k) 
1 (5.10) 

k 

For a 1-point object in the Fresnel zone, h0(k) is given by eqn. (4.52), 

from which: 

ah0(k) KA 
ad k= 10 z 

h0(k) (5.11) 

Substituting in eqn. (5.10) gives: 

h(k) _ [1+ j Zý 
Ek] ho(k) (5.12) 

This shows that the distance errors appear in the hologram ratio 

function as multiplicative noise. A model showing the effects of both 

types of noise on h0(k) is shown in Fig. 5.1. Assume that the 

random error ek has zero mean and a uniform probability distribution 

over the interval -co '< ek < co where c0 is the maximum distance 

error, see Fig. 5.2. In a mechanical scanning system, c0 is 

determined by the precision of the scanning apparatus and the maximum 
jitter in the movement of the sampling detector. From the above 

assumptions, 

E (ck) =0 (5.13) 

where E denotes the expected value. The variance of ck is: 
sb 

EL ek21 =JP (Ek) ek2 dek 

-e 0 

2 
Co (5.14) 
3 
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From eqn. (5.12), the mean value of h(k) is: 

E[h(k)] = ho (k) (5.15) 

and the variance, Var [h(k)] is: 

K2A2 E2 
E[I h(k) - E[h(k)]12] 

Z2 
3 ho(k)I 2 (5.16) 

The normalized mean square error in the hologram ratio h(k) due to the 

distance errors is therefore: 

Var[h(k)] 
_ 

K2A2co2 
IE(h(k))12 3 z2 

(5.17) 

This shows that the relative error in h(k) increases at shorter 

ranges and with greater sample spacing. Both of these factors increase 

the sensitivity of the hologram signal to variations in the position 

of the sampling point over the hologram aperture. 

5.2.2 Effect of Noise and Distance Errors on the Model Coefficients 

In the noise-free case, the model coefficients are derived by 

solving the L linear equations obtained by writing eqn. (5.7) for 

k-2,3,..., M, where M is the number of hologram samples in each half 

of the aperture, cf. sec. 4.4. In vector representation, this takes 

the form: 

h=Aa 
-o - 

where A is the real matrix: 

1 d2 d22 d2 L-1 

1 d3 d32 d3 L-1 

A= . 

1 dL dL2 dL L-1 

1 d L 1 d2 L dL-1 
+ +1 L+1 

(5.18) 

(5.19) 
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and ho and a are the vectors containing the hologram signal ratios 

at every two neighbouring points k and k-1 and the model coefficients 

respectively. In the presence of distance errors, the model is 

described by eqn. (5.12) which'takes the vector form: 

c1 
0 

e2 
h={ I+ j Ka }Aa (5.20) 

0 
CL 

where ho has been substituted for from eqn. (5.18), I is the unit 

matrix, and c1, E2,..., CL are the distance errors in the positions 

of the samples at k=2,3,.... M. Let the diagonal matrix representing 
the distance errors be denoted, D, 

e1 
0 

e2 

D=0 (5.21) 

EL 

In practice, h will also contain the effect of additive noise in 

the measured hologram signals. Therefore, the combined effect of 
both types of noise is described by: 

hý +n= [I +jj D] A(a+da) (5.22) 

where da is the net error in the model coefficients and n is the 

vector representing the random components due to additive noise in 

the hologram signals, 

ný 

2 

n= (5.23) 

nL 

Subtracting eqn. (5.18) from (5.22) gives: 
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nc j-°DAa+Aaa+j ADA6a (5.24) 

The third term at the R. H. S. of eqn. (5.24) contains the products of 

rather small quantities representing the errors in the model 

coefficients and in the positions of the sampling points and therefore 

can be considered negligible, hence: 

dapq1 rt -, j 
KA A-1 D ho (5.25) 

With ek and nk as uncorrelated random variables with zero mean, 
the mean error in the solution vector a is: 

14 - 

E[da] = A-' E[n] -j 
ZA A-' E[D] ho 

=o 
The covariance of the error is: 

(5.26) 

E(da da*Tl = EL{Ä ln-j Zý A 1Dho} {A 1n+jZ- A-lDho}. *TJ 

=A1 E[n n*T](A-1) 
T 

+K2A2A1 E[Dho ho TDT] (A-' )T 
z 

since the cross-products average to zero. '*' denotes the complex 

conjugate and 'T' indicates vector or matrix transpose. The 

contribution of the additive noise is represented by: 

2 
n1I n1n2 n1n2 

2 
n2ni In2I n2% 

E (n n*Tý =E 

nLn1 nLn2 (% 12 
J 

(5.27) 

(5.28) 
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The components of the noise vector n are assumed uncorrelated, with 
identical noise distributions at the various sampling points. In this 

case, the variance of nk is constant and equal toa%2 for all values of 
k, therefore: 

0 i{j 

E[ninj*] (5.29) 
2 

ch i=j 

Substituting from eqn. (5.29) into eqn. (5.28): 

E[n n*T] =ah21 (5.30) 

Consider E[D ho ho*TDT] which represents the contribution of the 

distance errors: 

1 ho1 hol ho2 hoL] e1 
0 

s2 0 ho2 e2 

D hh h0*TDT= 

00 
eL hoL EL 

E121 ho112 E1e2 ho1ho2 E1 EL ho1hoL 

ý2e1 ho2hol X22 Iho212 E2CL ho2hoL 

CLe1 hoLhol cLe2 hoLho2 cL2 IhoLl2 

... (5.31) 

If the distance errors are assumed to be uncorrelated at the hologram 

sampling points and to have the same probability distribution with 

variance ad2 then: 
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0 i{j 
E[cieý] 

Qd2 i=j 
(5.32) 

Using egns. (5.31)-. and (5.32) produces: F Ih0112 
1h 12 0 

E[Dha hh T OT] = vd2 o2 

"2 
0 IhoL1 

... (5.33) 

Substituting from eqns. (5.30) and (5.33) into (5.27): 

1ho1 12 

20 
E(6a 6a*T] = A-'{a h2 I+ad2K222 

Ih 
o2 

1)(A-1)T 

z2 0 0 
hoL 

A-1 Q (A-') T (5.34) 

where Q is the triangular matrix: 

ah2 +a 
2 Iho1 12 

ah2 +a2Iho212 0 

0" 
vh2 +a 

2Ih 12- 

... (5.35) 

and 
e KA 

Q Zd 
(5.36) 

Let Ma be the covariance matrix of the error 6a: 

Ma = A- 1Q (A-1)T (5.37) 
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The Taxicab norm [136] of Ma, which is defined as the sum of the moduli 

of all the matrix elements, satisfies the inequality: 

IMa1I1 <I IA 
.1II1I 

IQI I1 II (A 
. 
1)TI I1 

K, IIA 11112 IIQIIJ (5.38) 

Substituting for IIQ111 from eqn. (5.35) and using eqn. (5.36) yields: 

(IMa1I1 : IIA-1II12 [L ah2 + 
K22Z 

°d2 1hoil2 

z f. 1 
... (5.39) 

The Euclidean norm [136] for the vector ho is defined as: 

L 
Iiý112 ( 

iE1 
Ihoii2 )/ (5.40) 

For the matrix A this norm is: 

I JAI 12 =iEE IAij12 )' (5.41) 
i_1 j=1 

The Euclidean norms for the components of eqn. (5.18) satisfy the 

inequality: 

11 112 
'< 

(JAI12 Iiahl2 (5.42) 

therefore, 

IAI. I2 (5.43) 
lallt 

E 
Ihoi 12 

i. 1 i. 1 

From eqns. (5.39) and (5.43): 

IIMaII1 
_1 

22 La h2 K2A22 
L2I IA 

.I 
I1 I JAI I2 2 Qd Iai I Ih I2 z 

i. 1 i_1 of 

... (5.44) 
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The quantity at the L. H. S. of eqn. (5.44) represents the noise-to- 

signal power ratio at the output of the model construction process while 
the first term inside the square brackets at the R. H. S. represents 
the noise-to-signal ratio in the input data vector h9 and the second 

K2 A term, 2 
ad2 , represents the contribution due to distance errors. 

z 
Therefore, this equation shows that the noise-to-signal ratio in the 

model coefficients is determined by the sum of the additive noise-to- 

signal ratio in the data vector due to measurement and quantization 

errors and the contribution caused by errors in the positions of the 

hologram samples. The distance errors are weighted by the factor 

K2n2 
2. Since this factor is normally «1 for most. imaging configurations, 

z 
the effect of these errors would be much smaller compared to that of the 

additive noise in the vector ho- Moreover, the equation indicates that 

the effect of both sources of error is magnified by the product 
11A11112 IJAI122 

. When the system matrix is ill-conditioned, this 

product becomes large, and small errors in the data vector ho or the 

sample positions appear greatly magnified in the model coefficients a. 
The norm product of the system matrix and its inverse is a useful 

parameter for determining the sensitivity of the predictive and corrective 

models to noise. 
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5.3 Sensitivity to Noise versus Model Type and Composition 

When noisy hologram data was simulated for the case of 1 or 2- 

point objects, the prediction errors were so large with both the 

polynomial and the hybrid models that only a few predicted points 

could be obtained with adequate accuracy even for noise levels as 
low as 1ö. This led to investigating the effect of noise as a 
function of the model composition in general. For the case of the 

hybrid model discussed in section 4.7, the optimum composition was 

obtained on the sole basis of maximizing the prediction accuracy when 
the hologram data is noiseless. However, from section 5.1 and the 

analysis given in section 5.2, the norm of the model matrix and its 

inverse, and hence the model type and composition, affect the stability 

of the matrix solution with noise and therefore the overall prediction 

accuracy. This factor must be taken into account when selecting an 

optimum model to be used with noisy data. 

The plots in Fig. 5.3 show the effect of increasing the number 

of linear terms, q, in"a hybrid prediction model of order L=9 on both 

the maximum prediction error over the aperture without noise, Fig. 5.3a, 

and with 1% noise in the hologram signal, Fig. 5.3b for the case of 

a 1-point object when doubling the size of the available aperture. The 

prediction error is plotted in dbs relative to 1%. 

These plots indicate that while the prediction performance of the 

model deteriorates with the increase in the number of linear terms, 

the sensitivity of the prediction accuracy to noise generally decreases. 

It is noted that the reduction in the sensitivity to noise far exceeds 
the increase in the prediction error without noise. Therefore, it 

is possible that the use of a model which is not considered optimum 
in the case of noiseless data would lead to results which are better 

than those obtained with an optimum but noise-sensitive model. For 

example, a 7/2 hybrid model produces an error of -26.5 dbs without 

noise but this increases to 347 dbs with 1% noise while for a 0/9 

model these figures are 45.7 dbs and 45.4 dbs respectively. 
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Fig. 5.3c shows the variations in the Euclidean norm of the inverse 

matrix IIA-111 with increasing the number of linear terms in the 

case of noiseless data. As expected, the decrease in the sensitivity 

to noise shown in Fig. 5.3b is accompanied by a decrease in the norm 

of the inverse matrix which is responsible for the increased 

magnification of the errors in the noisy hologram data. 

Fig. 5.3 also indicates the influence of the triangular form of the 

model matrix on both the sensitivity to noise and the prediction 

accuracy. When the number of linear terms in a hybrid model is 

increased, the size of the triangular portion at the top R. H. corner 

of the matrix, eqn (4.65), increases. This reduces the dependence 

between the rows of the model matrix and improves the stability of the 

solution with noise. However, the resulting increase in the number 

of zeros in the matrix makes the model less representative of the 

hologram signal over the available aperture and therefore the prediction 

accuracy of the model is reduced. This shows that by selecting a model 

which is represented by a suitable matrix it is possible in principle 

to improve the stability of the performance with noise at the expense 

of increasing the basic prediction errors. Since the improvement in 

the stability with noise can be chosen to outweigh the reduction in the 

basic prediction accuracy, it is possible to achieve an overall improve- 

ment in, the prediction performance in the presence of noise. 
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5.4 Stability of the Square and the Triangular Polynomial Models 

Consider a polynomial prediction model of order L of the type 

described in section 4.4. In order to isolate the effect of disturbing 

noise in the hologram data so that it does not influence the model 

matrix, the model is described using eqn. (5.18) where the model 

matrix is real and is given by eqn. (5.19). This matrix is only 

a function of the positions of the hologram sampling points and is 

rot affected by noise in the hologram signal. This form of the 

matrix is useful in investigating the effect of the structure of the 

model on the performance with noise. For hologram samples spaced 

uniformly at distance e wavelengths, the system matrix, A, is given by: 

1 1.5A (1.5e)2 (1.5e)L-1 

1 2.5e (2.5e)2 (2.54) L-1 

A=, (5.45) 

1 (L-0.5)e [(L-0.5)e]2 [(L-0.5)e]L-1 

1 (L+0.5)6 [(L+0.5)6]2 [(L+0.5)e]L-1 

Due to the uniform sampling, the lower rows of the matrix will tend 

to become identical for large values of the matrix size L. This leads 

to an increase in the norm IIA-111 of the inverse matrix and therefore 

an increase in the sensitivity of the solution vector, a, representing 
the model coefficients, to small perturbations in the data vector, ho, 

cf. eqn. (5.18). It is interesting to note that the uniform sampling 
has also been responsible for the high noise sensitivity in the 

estimation technique proposed by Sato since it affects the system matrix 
in basically the same way [128]. 

As a measure of the dependency between the neighbouring high order 

rows of the matrix in eqn. (5.45), consider the relative difference 

between the last two rows. If Aß_1 and AL are the last two row vectors, 
then the relative norm of the difference between the two rows is 

given by: 

a 
IIAL-AL-III 

(5.46) 
L IIALII 

where 11 Ildenotes the Euclidean norm of the vector. 
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In the matrix of eqn. (5.45), let: 

u (L+0.5)a 

v= (L-0.5)0 

For this matrix: 

(IA 
L -A L-1112 = (u-v)2+(u2-v2)2+... +(uL-1-vL-1)2 

= u2+U +U +... +u 
2(L-1) 

(5.47) 

+v2+v4+v6+... +v2(L-1) 

-2[uv+(uv)2+(uv)4+... +(uv)L-1] (5.48) 

Substituting with the sum of the L terms in each geometric series 

yields: 

22 (u2L-1) 2 (v2L-1) 2uv((uv)L-1) IJAL-AL-111 
-u 

u2 -1±v v2-1 uv-1 

and 

... (5.49) 

(IALII2 =1+ u2 + u4 + u6 +... + u2(L-1) 

u2L-1 =2 (5.50) 
u-1 

Substituting from eqns. (5.49) and (5.50) into (5.46) gives: 

222 u2-1 v2L 1 u2 1 (uv)ý" 1 dL -U +V (2 )( 
2L 

) -2uv ( 
uv-1)( 2L 

) (5.51) 
v -1 u -1 u -1 

For large matrix sizes: 

L»0.5 

and, from egn. '(5.47), u and v become approximately equal. In most 

practical cases e, the sample spacing in wavelengths, is not much 

(5.52) 
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smaller, if not greater, than unity and therefore: 

upvL n» 1 

The square of the relative norm of the difference between the last 

two rows in the matrox is therefore: 

dL213 u2+v2-2v2 

22 
PS U-V 

0 for large matrices 

(5.53) 

(5.54) 

This shows that for large model sizes, the high order rows of the 

matrix in eqn. (5.45) will tend to become equal, therefore making the 

matrix nearly rank deficient. Attempts to solve the matrix under this 

condition yields large magnification of errors in the data vector due 

to the large norm of the inverse matrix A-1 [138]. 

Eqn. (5.53) suggests that for a given model size, L, reducing the 

sample spacing o increases 8L and therefore reduces the amount of error 

magnification, In practice, however, it is often required that a 

given number of samples should be as widely spaced as possible for 

efficient sampling of the required hologram aperture. Moreover, this 

approach has the disadvantage that it affects the data acquisition phase 

of the imaging process in such a manner in which parameters such as 
the sample spacing are compromised in order to satisfy the requirements 

of the hologram expansion technique. 

A more convenient approach is to modify the model matrix in order 
to reduce the row dependence for large sizes. Consider the triangular 

matrix which consists of the top left triangle of the matrix in eqn. 
(5.45) including the diagonal elements. This takes the form: 

1 1.5k (1.5n)2 (1.5e)L'1 

1 2.5e (2.5A)2 0 

A= . 
1 (L-0.5)0 00 

1000 

(5.55) 
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The dependence between the rows of this matrix is reduced since the 

difference between any two adjacent rows Ai and Ai+1 will be greater than 

the matrix element Ai, L+1-i which is the last non zero element in 

row Ai. With this matrix it is less straightforward to predict the 

rows with the minimum relative difference. If the criterion in eqn. 
(5.46) is used as a guide it gives: 

6L- (L-0.5)e (5.56) 

Contrary to the case of the square matrix, eqn. (5.56) indicates that 

for a given L, reducing the sample spacing o will have the opposite 

effect of increasing the ill-conditioning of the triangular matrix. 
It should be noted, however, that this result is based on the assumption 
that the'last two rows are the cause of the ill-conditioning. 

In order to compare the stability of the solution using both 

the square and the triangular matrices consider the bounds on the 

perturbations in the solution vector which are caused by a given 

perturbation in the data vector. Ignoring any distance errors in the 

positions of the hologram sampling points , assume an error 6h0 
in the data vector which causes an error da in the solution vector. 
From eqn. (5.18), the model is described by: 

h0 + 5hh =A (a+ da) (5.57) 

Subtracting eqn. (5.18) from eqn. (5.57) yields: 

da = A-' 6ho (5.58) 

The Euclidean norms of the components of eqn. (5.58) satisfy the 

inequality: 

I Idal I"I IA 
.1II 

11%11 (5.59) 

Similarly, from eqn. (5.18): 

Ih 11 , IIAR. R II all (5.60) 
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From eqns. (5.59) and (5.60): 

11 11 (5.61) -a6a, IIAIII IA-1 h Tff- 11 0 11 

Similar to the results obtained in eqn. (5.44) for the covariance matrix 

of the error in the solution vector a, eqn. (5.61) indicates that the 

norm product IJAII IIA 11l 
pan be considered as a magnification 

parameter for the relative error in h0 since the larger the value of this 

product the greater the influence of a relatively small disturbance in 

the data vector on the solution. 

Another quantity which is used in the literature as an error 

magnifying parameter [138] is defined as: 

ßo 
Smax 

min 
(5.62) 

where Smax and Smin are the maximum and minimum non-zero values of the 

moduli of the singular values of the system matrix A [138]. 

The norm product IIAII IIA-11I and the ratio a can be used to 

investigate the effects of the matrix size and the sample spacing and 
the advantages of using a triangular matrix. The singular values of 
the matrix A which are required for calculating the ratio ß in eqn. (5.62) 

are obtained as the square roots of the corresponding eignevalues of 
the matrix AAT where AT is the transpose of A. 

. In Fig. 5.4 the ratio ß is plotted versus the matrix size, L, 

for both the square and the triangular models. The curves in Fig. 5.4a 

for the square model show that the error magnification increases 

rapidly with the increase in the matrix size. As expected from eqn. 
(5.53), a reduction in the sample spacing by a factor of 4 achieves 

some reduction in the value of B. A much more significant improvement 

is obtained by using the triangular matrix model as shown in Fig. 5.4b. 

With the same sample spacing of 1a in both cases, the triangular matrix 

reduces the error magnification factor by approximately 120 dbs compared 
to the case of the square matrix for L=7. The effect of the sample 
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spacing in the case of the triangular matrix is shown in Fig. 5.4c. 

For the values used for the model size and the sample spacing, the 

error magnification increases with the reduction in the sample 

spacing as predicted by eqn. (5.56). The curves corresponding to 

Figs. 5.4a, b, c are shown in Fig. 5.5 for the norm product IIAII IIA. 1II 

and are very similar to those in Fig. 5.4. 

The plots in Figs. 5.4 and 5.5 show the potential advantage of the 

triangular matrix over the square matrix regarding-the magnification 

of errors. This is confirmed by the results shown in Fig. 5.6 where 
the relative norm of the error in the solution vector 116all/lIall 

is plotted versus the matrix size for both the square and the 

triangular matrices. The error in the data vector is simulated by 

inserting random components with a relative amplitude of 104 into 

the hologram signals of a 1-point object located on the hologram axis 

at a distance of 10OX from the hologram. While the relative error 
is large and increases steadily with the increase in the model size 
in the case of the square matrix, it is much smaller and is less 

sensitive to variations in the model size in the case of the triangular 

matrix. This type of matrix, therefore, provides an adequate means 

of obtaining better stability for the solution without imposing 

restrictions on the sampling of the hologram. 
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5.5 The Triangular, Polynomial, Predictive Model 

Consider the simple case of an available aperture with M=4 shown 
in Fig. 5.7. The triangular, polynomial, predictive model is 

constructed by writing the following set of equations for the signal 

at points 2,3, and 4. 

H(2) 2 ho1 -H1= a1+a2 d2 +a3 d2 

H(3) hot -H2 

H(4) ho3 -H3 

= a1 +a2 d3 

_ a1 

The coefficients a1, a2, and a3 are obtained by solving: 

2 1 d2 d2 
[a1 

h01 

1 d3 0 a2 hot 

100 La3. h03 

(5.63) 

(5.64) 

where the matrix takes the triangular form proposed in section 5.4. 

While this form provides better solution stability as discussed in the 

previous section, eqn. (5.63) suggests that this would be at the 

expense of reduced prediction accuracy. This is because the 

signals at the available aperture do not contribute fully in determining 

the model coefficients. For example, coefficient a1 is determined 

by ho3 only while in the case of the square matrix a1 would be a 
function of hoff , hot and ho3 and the model coefficients would be a 

more accurate representation of all the available data on the 

hologram aperture. 

Having solved eqn. (5.64) for the model coefficients, the signal 

at points 5,6, and 7 outside the aperture extension can be predicted 

point by point. The origin point is shifted from 0 to 0', see Fig. 

5.7, so that the configuration of points, 4,5,6 and 7 relative to the 

new origin 0' is a replica of that of points 1,2,3 and 4 relative 
to the origin point 0. With the signal at point 4 known , the 

prediction proceeds as follows: 
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H(5) = H(4) (a1+a2 ds +a3 d512] 

H(6) = H(5) Lai+a2 d6) 

H(7) H(6) [au] (5.6.5) 

where the distances d' and d' are measured relative to the new origin 56 
0'. Further points can be predicted with reduced accuracy, e. g.: 

H(8) = H(7) [al] 

The inferior performance of the triangular matrix model compared to 

the square model in the case of noiseless data is shown in Fig. 5.8a 

for a 1-point object. The maximum prediction error in dbs relative 
to 1% when doubling the aperture size is plotted versus the matrix 

size for both the triangular and the square models. The error in the 

case of the square matrix is much smaller and decreases with the 

increase in the matrix size. On the other hand, the error is larger 

for the case of the triangular model and is less sensitive to the 

increase in the matrix size. 

Fig 5.8b shows the improvement in the performance with noise when 

using the triangular matrix. The maximum prediction error is plotted 

versus the model size with 10°0 noise in the hologram signal. While 

the error is larger and increases rapidly in the case of the square 

matrix it is much smaller and is almost constant for the triangular 

matrix. Comparison between Figs. 5.8a and 5. Bb shows that for large 

matrix sizes the improvement in the stability with noise obtained by 

using the triangular model outweighs the associated increase in the 

prediction errors. 

The effect of increasing the amount of noise on the performance of 
both types of models is shown in Fig. 5.9 for a model size L=7. The 

norm of the error in the solution vector, 116all, due to noise is 

plotted in Fig. 5.9a for noise levels from 5% to 30% and Fig. 5.9b 

shows the corresponding results for the maximum prediction error. As 

expected, Fig. 5.9b indicates that the prediction error is fairly 

insensitive to the level of noise in the case of the triangular model. 
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5.6 The Triangular, Polynomial, Corrective Model 

Although the triangular form of the polynomial model is relatively 

stable with noise, the levels of prediction errors using this model are 
too high for any significant improvement in resolution to be attained. 
To overcome this limitation, the predicted signals obtained with 
this model are corrected using a corrective model based on the 

principle discussed in section 4.8 . However, for the corrective 

model to have the required stability with noise, it is assumed to be 

of the triangular form. 

Consider the simple case of an 8-point available aperture in Fig. 

5.10 which is to be extended to 16 points. As shown in section 4.8, the 

correction of the four points to the right of the available aperture 
is achieved by using a corrective model which is based on relating the 

true signals and the predicted signals at the R. H. side of the 

available aperture. First, a predictive triangular model with size 
L_3 is derived from the data H2 at the L. H. half of the available 

aperture with the origin point at 01. This model is then used to 

predict signals at the four points in the R. H. half of this aperture 

with the origin point at 02. Denote the predicted signals H 

A triangular corrective model of size L=4 is, constructed by 

writing the following four equations which relate the known signals 
H1 to the predicted signals H1, the distances are measured from the 

origin point at 0l. 
H1(1) 

ho1 = H1 1= u1+u2 d1 + u3 d2 1 +u4 d13 

H1(2) 
hot Hý2 - u1+U2 d2 +u 3d2 2 

H1(3) 
ho3 = H(3) = u1+u2 d3 

H1(4) 
ho4 = H(4) = u1 (5.66) 
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The model coefficients u1,..., u4 are obtained by solving the matrix 

equation: 

23 1 d1 d1 d1 U1 h01 

1 d2 d22 0 u2 hot 

1 d3 00 u3 ho3 (5.67) 

1000 u4 ho4 

Having determined the coefficients of the predictive model, it can 
be used to correct the predicted signals in the R. H. aperture extension. 
The prediction and correction steps are summarized as follows: 

(i) Construct a triangular predictive model, L-3, using the true 

signals H1 at the R. H. half of the available aperture with the 

origin at 0 3. 

(ii) Use the predictive model construction in (i) to predict 4 

points in the R. H. aperture extension with origin at 04. 

Denote the predicted signals G 

(iii) Obtain the corrected signals, G1, from the predicted signals 
G11 at points 5,6,7,8 with origin at 03 using the following 

equations: 

Gß(5) = Gl'(5)[u1+u2 d5+u3 d52 +u4 d53) 

Gß(6) = Gj(6)[u1+u2 d6 +u3 d62 J 

Gß(7) = G(7)[u1+u2 d7] 

Gß(8) _ G4(8)[u1J (5.68) 

The triangular predictive and corrective models have been used to 

double the size of a 16-point aperture to image a 1-point object in the 

presence of noise. For the sake of comparison, Fig. 5.11 shows the 

results using the square model with and without noise. In Fig. 5.11a 

the reconstructed images from the small, predicted, and true apertures 
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in the case of noiseless hologram data. Since the prediction errors 

with the square model are very small in the absence of noise, the 

image obtained from the predicted aperture is almost identical with 
that from the true aperture and no further correction is necessary. 
Fig. 5.11b shows the corresponding images using the same model with a 

random component of 0.1% relative amplitude added to the simulated 
hologram signal. The figure indicates that even with such low 

levels of noise, the prediction errors using the square model are 

quite large and the quality of the resulting image is unacceptable. 

Fig. 5.12 shows the-results obtained using the triangular predictive 

and'corrective models with noiseless data. The prediction errors 
both before and after correction are shown in Fig. 5.12a which 
illustrates clearly the effectiveness of the correction technique 

in reducing the prediction errors. The images reconstructed from 

the small, predicted, corrected, and true apertures are plotted in 

Fig. 5.12b. Due to the large errors in the predicted hologram before 

correction, the corresponding image is of poor quality and no gain in 

resolution is achieved. However, with the great reduction in the 

prediction errors achieved through the use of the corrective model, the 

image from the corrected data is in good agreement with the image 

from the true aperture. 

The results with 10% noise level are shown in Fig. 5.13 . Comparing 

Figs. 5.13a and 5.12a, the prediction errors exhibit only a small 
increase due to noise because of the high stability of the triangular 

model. The image reconstructed from the corrected data is comparable 

with that from the true hologram. -Images obtained with 20% and 30% noise 
levels are shown in Fig. 5.14. The effect of using different random 

values for the noise is shown in Fig. 5.15. Because of the stability 

achieved by the triangular form of the predictive and corrective 

models, changes in the-noise levels or the noise values have little 

effect on the reconstructed images. 
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5.7 Imaging of Multiple points in the Presence of Noise 

In section 4.7, a hybrid polynomial/linear model has been 

identified as the optimum predictive model for the holograms of multiple- 

point objects. Moreover, it was also found that the linear model 

which gives adequate , if not optimum, prediction performance 

exhibits a number of desirable stability characteristics. For example, 
it has been shown in section 4.10 that prediction errors obtained 

using this model are fairly insensitive to variations in the object 

range, object width and in the number of points taken to represent 

a discrete-point object of a given width. In this section, it is 

shown that this stability extends also to. the effects of noise in 

the hologram signal and therefore the linear model provides adequate 

means for predicting the holograms of multiple-point objects in 

the presence of disturbing noise. 

Referring to eqn. (4.65) for the general hybrid model and considering 
the case of L=7 (M-8), for the 5/2 optimum hybrid model there are 

only two linear terms and the model matrix is dominated by the poly- 

nomial expansion terms in the L. H. portion of the matrix. It has 

been shown in section 5.4 that the polynomial expansions, when 

carried to their full length, tend to make the matrix nearly rank 

defficient and therefore the 5/2 hybrid model greatly magnifies the 

errors due to noise in the hologram signals. On the other hand, the 

linear model described by eqn. (4.61) takes the form of a triangular 

matrix where the upper triangle consists of zero elements. It has 

been shown in section 5.4 that the triangular matrix exhibits better 

stability with noise in the case of the polynomial model. With this 

model, the triangular form helps reduce the tendency of the higher 

order rows of the matrix to become identical and therefore cause in- 

stability. It can be shown that the triangular form performs a 

similar role in the case of the linear model, with the difference 

that this form appears naturally as a result of the windowing 

condition in eqn. (4.60). If the data contributing to the construction 

of the linear model is not restricted to one half of the available 

aperture at a time, eqn. (4.60) would be modified such that the 
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hologram signal at each point on the aperture half under consideration 
is expressed as a linear combination of L preceding points, a number 

of which would be situated on the other half. The matrix representing 
the model in this case would be: 

H(1) H(-1) H(-2) H(-L+1) 

H(2) H(1) H(-1) H(-L+2) 

A= (5.69) 

H(L-1) H(L-2) H(L-3) H(-1) 

H(L) H(L-1) H(L-2) H(1) 

where H(-1), H(-2),..., H(-L+1) are hologram signals at sampling points 

on the other half of the available aperture. 

Eqn. (5.69) indicates that neighbouring rows of the matrix contain 
hologram signals which correspond to a shift of only one sample along 
the hologram. Since the samples are taken close enough to prevent 

undersampling, neighbouring rows would be almost identical particularly 

when the spatial frequency content of the hologram is low; for example 

when the object range is large. This would cause instability in the 

same manner described in section 5.4 although it is expected that 

this instability would exist even for small matrix sizes. With the 

triangular form of the matrix for the linear model, cf. egn. (4.61), 

neighbouring rows differ by at least the value of one hologram signal 

and therefore the matrix solution is more stable with variations 
in the data vector. This explains the relative insensitivity of the 

linear model to variations in the hologram and object parameters and 

suggests that this should also be the case regarding noise in the 

hologram data. 

The maximum prediction error when doubling the size of a 16-point 

available aperture is plotted in Fig. 5.16 versus the level of noise 
from 0 to 30% for both the 5/2 hybrid model and the 0/7 linear model. 
The object consists of two points separated by 5.21 at a distance 

of 105X from the 15A available aperture. With zero noise, the 

hybrid model gives better prediction accuracy but the prediction error 
increases steadily with noise while for the linear model the error 
is fairly constant with the increase in the noise level. This curve 
is similar to that in Fig. 5.9b for the polynomial model. 
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Fig. 5.17 shows the prediction errors and reconstructed images 

obtained when the linear model is used to double the size of a 
16-point aperture to image 2 points separated by a distance of 5.2X, 

range 105X and positioned symmetrical about the hologram axis 

assuming noiseless data. The corresponding results with 10% noise 

are shown in Fig. 5.18. The increase in the prediction errors is 

very small compared to the case of noiseless data and the two points 

can still be clearly resolved. The images reconstructed with 20% 

and 30% noise in the simulated hologram signals are shown in Fig. 5.19. 

The effect of using different random values for the noise is shown in 

Fig. 5.20. The last three figures indicate that the linear predictive 

model provides the required stability for imaging multiple-point 

objects in noisy environments using the expanded apertures. 

In the above mentioned figures for images reconstructed from 

noisy hologram data, it is noted that in some cases the image 

reconstructed from a predicted hologram may appear to be of better 

quality than the image obtained from the 'true', hologram. It should 
be noted, however, that in the above examples the data in the 'true' 

hologram is itself noisy and therefore the image reconstructed from 

this hologram is in error when compared to the case of an ideal 

noise-free hologram. Due to the random nature of noise, it is possible 
that the errors in the predicted holograms are such that they 

partially offset the errors caused by noise in the 'true' hologram, 

leading to a more accurate representation of the exact hologram and 
therefore a better image. 
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5.8 Optimum Size of Available Aperture and the Effects of 
Computation Accuracy 

The number of points in the available aperture affects the 

accuracy of the predicted holograms in two ways. First, it 

determines the size of the predictive and corrective models for an 

exactly determined system and, for a given expansion ratio, it also 
determines the number of predicted points in. the aperture extension. 
Consider the simple case of a 1-point object and ignore the effects 

of disturbing noise in the hologram signal. The available aperture 

contains a total number of 2M points and it is required to predict a 

number of points equal to L, the size of the predictive model, on 
both sides of the available aperture; where L=M-1. Assume that the 

optimum predictive model, i. e. -the square polynomial type, is used 

and that the object range is large enough to prevent undersampling. 

Since the hologram in this case contains a single pattern of 

spatial variations which corresponds to the point object, it can be 

assumed that as the model size increases, with the increase in the 

number of points in the available aperture, the model becomes a more 

accurate representation of the hologram function. This assumption 
is justified by the error analysis in section 4.5 which shows that 

prediction errors using the polynomial model should decrease steadily 

with the increase in L for: 

2i 

z 

dk 
1 (5.70) 

where e is the sample spacing, dk is the distance from the predicted 

point to the centre of the aperture and z is the range. Therefore, 

under the assumption in eqn. (5.70), the increase in L leads to more 

accurate prediction of the first point in the aperture extension, 
k=M+1,, and the prediction error E(M+1) decreases steadily with the 

increase in L. Due to the accumulation of the prediction errors as 

more new points are predicted, the error at any point in the aperture 

extension will depend both on the accuracy with which the first 

point (M+1) is predicted as well as the location of the point under 

consideration relative to the available aperture. 
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The maximum error at the edge of the expanded aperture, E(M-#L), 

when predicting L points is therefore subject to two contradicting 

effects as L-increases with the increase in the size of the available 

aperture, namely 

(i) Improved prediction accuracy in the first predicted point 
E(M+1) which results in the reduction of the error E(M+L) 

as long as eqn. (5.70) is satisfied. 

(ii) As L increases, the last point in the predicted aperture, when 

. predicting L points, becomes further removed from the first 

predicted point and therefore more prediction errors accumulate. 

Accordingly, the maximum error over the aperture, E(M+L), exhibits 

a minimum at the value of L which causes the two factors to offset one 

another. This value of L corresponds to the optimum size of the 

available aperture for the given expansion ratio required. 

The above argument, however, is somewhat idealized since it 

neglects the effects of the-practical limitations on the accuracy of 

performing the computations necessary for solving the matrix equation 

and performing the prediction. The weakness of this argument in a. 

practical situation can be seen from the assumption that the error in 

the first predicted point E(M+1) decreases steadily with the increase 

in L. Obviously, even with eqn. (5.70) satisfied , the value of 
this error cannot decrease indefinitely since, sooner or later, it will 
be limited by the basic accuracy of the machine used to do the 

calculations. When E(M+1) starts to rise, it would also cause E(M+L) 

to rise. 

The computation accuracy is a function of the word length of the 

computer and the method. used for solving the matrix equation. As the 

computation accuracy decreases, the accuracy with which the 

coefficients of the prediction model which represents the signal over the 

available aperture decreases. From eqn. (5.18), assuming that both the 

matrix A and the data vector ha are free from noise, the solution 
for the model coefficients 

.E 
is given by: 
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a A-1 hß (5.71) 

In practice, due to the limited wordlength which causes round- 

off errors, the calculated inverse matrix will be error. Let this 

matrix be Ae-1 1 

Ae-1 = A71 +E (5.72) 

where E is an error matrix which represents the perturbations in Ae1 

due to computation errors. Substituting this matrix in place of Al 

in eqn. (5.71) leads to an erroneous solution vector a+ da . 

a+ sa = (A 1+E) ho (5.73) 

From eqns. (5.. 18), (5.71) and (5.73), an upper bound on the error. da 

is given by: 

IIda 
a IIAI. I IIEII (5.74) 

where IlEll is the norm of the perturbation matrix E. 

If the solution vector (a + da) in eqn. (5.73) is substituted in 

the original equation, ho = Aa ,a new value of the original data 

vector is obtained as: 

h' AÄ-' h 
-o -e -o 

(5.75) 

since the matrix product A Ae' does not exactly produce the unit matrix, 
the data calculated from substituting the solution in the original 

equations will be different from the original data. Therefore, a 

measure of the effects of the computation accuracy can be obtained 
by calculating the percentage error E(M) at the last point in the 

available aperture. Referring to eqn. (4.35) this error is given 
by: 

E(M) = 100 {[g1(M)-p1(M))2+L92(M)-p2(M)72}YPmax (5.76) 

where P1(M) +j P2(M) is the true complex hologram signal at point M 

and g1(M) +j g2(M) is the corresponding signal obtained through 
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substituting the erroneous solution into the original equations 

and Pmax is as defined in eqn. (4.34). 

Assuming noiseless hologram data, the error in the predicted 

points outside the available aperture can be considered as the 

resultant of two components: 

(i) Errors which are strictly due to the prediction process. 

(ii) Perturbations contributed by the limited computation accuracy 

which cause errors in the model coefficients. 

At short ranges, the errors of the first category are large due to 

the high spatial frequency content of the hologram and therefore these 

tend to mask the effects of the second type of errors. However, as 
the range increases, prediction errors decrease and the effects of the 

limited computation accuracy become more tangible. 

The round-off errors due to the limited wordlength and the limited 

accuracy of performing the calculations represent uncertainties in the 

numerical values and therefore can be considered as some form of noise. 
The effects of the computation accuracy on the matrix solution and the 

prediction errors are therefore similar to those of noise in general. 
Accordingly, these effects and their influence on the optimum size of 
the model and of the available aperture would be different for the 

square and the triangular models, cf. sec. 5.4. 

5.8.1 Effects of Computation Accuracy on the Performance of the 

Square Polynomial Predictive Model 

Eqn. (5.74) indicates that the influence of the limited accuracy in 

performing the matrix inversion is proportional to the norm of the 

system matrix A. From eqn. (5.19) for the case of the square polynomial 

model, as the model order L increases, both the distances dk and the 

powers to which these distances are raised increase. This increases 

the norm H A1.1 and hence the sensitivity to computation errors. Fig. 

5.21. shows the errors in the last available point E(M) (due to the 

limited computation accuracy), in the first predicted point E(M+1), 

and in the last, Lth, predicted point E(M+L) versus the matrix size L; 
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L-1 to 15 for 3 different values of the range ; z=40X, BOX, 160x . 
The object consists of one point located on the hologram axis. The 

computations were made on the tektronix 4051 minicomputer using the 
Gauss-Jordan elimination method for solving the matrix equation. 

From the figure, the error E(M) increases steadily with the 

increase in the model size, L. This indicates that the limited 

computation accuracy using this method for solving the matrix on the 

Tektronix machine severely limits the performance of the square 

model for large values of L. The effect of the deterioration in the 

computation accuracy with the increase in the model size on the 

overall prediction accuracy depends on the object range. At short 
ranges, Fig. 5.21a, the relatively large prediction errors dominate 

and therefore the error in the first point E(M+1) decreases steadily 

up to L-11. Within this range of the values of L (L=1 to 11) over 
which the error in the first predicted point E(M+1) continuously 
decreases, the error in the last predicted point E(M+L) exhibits 

a shallow trough with a minimum at L-7. Since the performance in this 

region is governed mainly by prediction errors, this minimum is of the 

type described at the beginning of this section where the improvement 
in the prediction accuracy of the first point is offset by the increase 

in the size of the aperture extension. 

From L=11 upwards, the errors due to the limited computation 

accuracy dominate, therefore 'saturating' the system. In this region, 
the curve E(M+1) approximately coincides with that of E(M), with the 

error E(M+L) following closely. Since E(M) is determined by the 

effects of the computation accuracy only, the performance of the square 
model for large model sizes will be limited by this accuracy rather 
than by prediction considerations. 

At larger ranges, Figs. 5.21b, c, errors attributed to prediction 
are lower and therefore the saturation due to the effects of the 
limited computation accuracy occurs at lower values of L with the 
increase in range. Although the error E(M+L) still exhibits a minimum, 
this minimum is not dictated by prediction alone, as in the case of 
Fig. 5.21a. Since this minimum coincides with the point at which the 
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curve E(M+1) intersects that of E(M), the value of the model size at 

which this minimum occurs is a function of the range. 

The results were repeated for the same imaging geometries using 

the QR decomposition method [138] for solving the matrix equation 

on a Nova 2 computer with double precision arithmatics. The 

corresponding curves are shown in Fig. 5.22. Due to the larger 

wordlength and the use of the QR decomposition, the effects of the 

computation accuracy are much less pronounced compared to the case 

of Fig. 5.21. For example, the error E(M) is much smaller in the 

case of Fig. 5.22 and the rate at which it increases with the increase 

in the model size is significantly lower. Another sign of improvement 

is that at the shortest range, Fig. 5.22a the error in the first 

predicted point E(M+1) shows no sign of bottoming over the range of 

values L=1 to 15. This is expected when prediction is the predominant 
factor as discussed at the beginning of this section. The error 
E(M+L) has a minimum at L=7 which agrees with the value obtained from 

Fig. 5.21a. 

The results in Figs. 5.21 and 5.22 show that for large sizes of the 

square model, the overall accuracy of the predicted signals is greatly 

influenced by the accuracy of the machine used to perform the data 

processing and the method employed for solving the set of equations 

which describe the model. This influence is increased at large 

ranges when the small errors due to prediction alone are swamped by 

errors due to the limited computation accuracy. In this case, the 

optimum size of the available aperture for a"given expansion ratio 

will therefore depend on the range, the computation accuracy , and 
the method used for solving the matrix equation. 

5.8.2 Effects of Computation Accuracy on the Performance of the 

Triangular Polynomial Predictive Model 

Referring to eqn. (5.55), it is obvious that the triangular form of 
the polynomial model reduces the norm IIAil of the matrix compared to 

the case of the square model. Therefore, this model should be less 

sensitive to the effects of the limited computation accuracy. Fig. 
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5.23 shows the results corresponding to those in Fig. 5.21 when the 

triangular polynomial model is used for prediction. A 
. 
comparison 

between the two figures shows that the size of the triangular model has 

a negligible effect on the error E(M) which represents the sensitivity 

to computation accuracy. This indicates that the performance of this 

model is more robust against the effects of limited computation 

accuracy regardless of the model size and that it can tolerate a 
larger amount of round-off errors compared to the case of the square 

model. 

The variations in the prediction error at the edge of the predicted 

aperture, E(M+L) , with the model size do not exceed 35 dbs for any 

value of the object range in Fig. 5.2 3, while such variations can be 

as high as 195 dbs in the case of the square model. This shows that 

in the case of the triangular model, operation at an optimum value 

for the size of the available aperture is not as critical as in the 

case of the square model. 

The results obtained using the Nova 2 with double precision are shown 

in Fig. 5.24. In spite of the 60 dbs improvement in the computation 

accuracy as represented by E(M), compared to the results in Fig. 5.23; 

the prediction errors are almost identical to those obtained using the 

Tektronix 4051 computer. This indicates that the triangular model is 

fairly insensitive to the word length used in the calculations and 

the method employed for obtaining the model coefficients. 
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5.9 Range Resolution of Apertues Expanded in the Presence of Noise 

In section 4.9, the effect of aperture expansion on the resolution 
in range was discussed for the case of noiseless data where optimum 

models were used in order to maximize the prediction accuracy. When 

noisy data are considered the stability of the model with noise 

must be taken into account and therefore models which are less than 

optimum from the point of view of prediction may provide better 

performance in the presence of noise. Fig. 5.25 shows the results 

corresponding to those in Fig. 4.24 for imaging a 1-point object in 

range with relative noise level of 10%. Triangular polynomial models 

were used for both prediction and correction in order to achieve 
the required stability with noise. The figure indicates that 

correction is essential for obtaining the resolution improvement 

corresponding to the expansion of the hologram aperture. 

The results corresponding to Fig. 4.25 for resolving two points 
in range are shown in Fig. 5.26 with 10% noise. The point in the 

object which is further from the hologram is imaged with 30% error 
in the value of the range using the predicted hologram and -5% error 

using the corrected hologram. It should be noted also that the 

image from the true hologram has a peak at a range value which is+5% 

in error. The definition of the peak representing this object 

point in range using the corrected hologram is inferior to that in the 

case of the noiseless data, Fig. 4.25. This is mainly due to the 

increased prediction errors with the use of the triangular models 

which do not fit the hologram function as accurately as the 4/3 

hybrid predictive model used in section 4.9. 
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5.10 Imaging of Objects with Increased Complexity in the Presence 

of Noise 

The effects of increased object complexity and the imaging of 

quasi-continuous objects were considered in section 4.10. An example 
for imaging such objects with 10% noise is shown in Fig. 5.27. In 

this case the object consists of two segments of equal width spaced 

at 5.6x , centre to centre, at a distance of 95A from the hologram. 

The segment width is 4X and the linear predictive model is used for 

prediction. The prediction errors and the reconstructed images 

are similar to the results obtained for the case of noiseless data 

in Fig. 4.35 for the same point density of 50 points per 

wavelength used in both cases. 

Another aspect of complexity in the case of 2-point objects was 

considered in section 4.7 where two points of different values for 

the radiation strength were imaged using a 5/2 hybrid model to 

double the aperture size, Fig. 4.16. The corresponding results with 
10ö noise in the hologram signals are shown in Fig. 5.28 where the 

linear model was used for prediction. Although the prediction errors 

are larger compared to the case of the optimum model, the two points 

are clearly resolved from the predicted hologram. As in Fig. 4.16 

for the case of noiseless data, the correct relative radiation strength 

of 0.8 is not adequately reproduced in. the true hologram due to the 

limited aperture size and the added effect of noise in the signals 
of that. hologram in the case of Fig. 5.28. The apparant improvement 

in the relative radiation strength in the image reconstructed from the 

predicted hologram may be due to the offsetting of some of the effects 

of noise in the true hologram by the prediction errors in the predicted 
hologram, cf. sec. 5.7. 
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5.11 Conclusion 

Disturbing noise poses a limit on the effectiveness of the 

prediction technique for hologram expansion described in chapter 4. 

As in the majority of similar object restoration and hologram 

estimation techniques, the effects of noise in the measured data 

are accentuated by the requirement for uniform sampling of the 

hologram over a limited aperture. Contrary to such techniques, 

however, this prediction method has the flexibility that the 

prediction model employed can be tailored to achieve a compromise 
between high prediction accuracy and adequate stability with noise. 
In this way, adequate performance in the presence of noise can be 

achieved through data processing means only; without affecting 
the data acquisition or image reconstruction phases of the imaging 

process or the need to compromise important system parameters such as 
the sample spacing in order to achieve the same objective. 

The effects of noise are primarily due to the fact that small 

errors in the measured data are magnified in the model coefficients 

when solving the matrix equation describing the model. Therefore, 

these effects are a function of the norms of both the model matrix 

and its inverse. Due to uniform sampling, the higher order rows of 
the-square polynomial matrix tend to be identical as the matrix size 
increases and therefore , this model exhibits large sensitivity to 

noise. The row dependence can be reduced by modifying the matrix to 

an upper triangular form which achieves a considerable improvement 
in stability with noise. However, this is obtained only at the 

expense of a reduction in the prediction accuracy and it was found 

that correction using a triangular corrective model is required in 

order to achieve adequate accuracy when imagingl-point objects. 

The optimum hybrid predictive model in the case of noiseless 
data is dominated by polynomial terms and therefore suffers from the 

same drawback of noise sensitivity as the square polynomial model. 
However, the hybrid model assumes the form of a lower triangular 

matrix when the number of polynomial terms is equal to zero, i. e. 
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when the model consists of linear terms only. This matrix has similar 

stability characteristics to the triangular polynomial matrix and leads 

to adequate prediction accuracies without the requirement for 

correction when imaging multiple-point objects. Polynomial and 

linear triangular models have been used to image 1-point and 

multiple-point objects with relative noise levels as high as 30% 

when doubling the size of the available aperture. The limit on 

the amount of noise that can be tolerated appears to be set by the 

deterioration in the measured hologram rather than the error magnifi- 

cation in the model coefficients. 

Another aspect of the practical limitations which affect the 

prediction accuracies obtainable with this technique is that caused 
by the limited accuracy of performing the computations during the 

solution of the matrix equation. The effects of this limitation 

become more significant at large ranges when the small errors they 

contribute become comparable with the small prediction errors at 

such ranges. The influence of the resulting round-off errors on the 

square and the triangular models is similar to the effect of noise 

on the performance of the model. Therefore, the triangular model 

has the added advantage that it is more tolerant to this type of 

errors. This means that the prediction technique using a model of 

this form can be implemented using relatively shorter wordlengths 

and simpler methods for. the solution of the matrix equation . This 

simplifies the memory and hardware requirements and reduces the 

execution times required and therefore makes it feasible for the 

resolution enhancement to be achieved using small inexpensive 

microprocessor systems. 
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CHAPTER 6 

EXPERIMENTAL HOLOGRAPHIC IMAGING SYSTEM 



6.1 Introduction 

An experimental holographic imaging system has been designed and 
built for measuring acoustic holograms in water at a frequency of 1 MHz 

and reconstructing them digitally. This system allows the principle 

of holographic aperture expansion described in Chapters 4 and 5 to be 

verified experimentally and helps demonstrate a number of concepts 
in holographic imaging in general as will be shown in Chapter 7. 

Additionally, the system demonstrates the capabilities and advantages 

of using microprocessor technology in achieving the desirable integration 

between the various aspects of the holographic imaging process which 
include scanning, data acquisition, hologram reconstruction, and 
display. It also illustrates the merits of reconstructing the complex 

hologram digitally in simplifying and speeding up both the acquisition 

and reconstruction phases of the process. 

The system is based on the TMS9900 16-bit microprocessor and 

employs mechanical scanning of a small hydrophone detector for 

sampling the hologram aperture. The microprocessor controls the 

mechanical scanning, the transmission and reception of signals, 
hologram data acquisition, image reconstruction and the display of 
both hologram and image information. Moreover, the microprocessor 

supervises the interface between the system and a number of peripheral 
devices. The system incorporates the-following features, see Fig. 6.1: 

(1) Measuring/simulating two-dimensional complex valued holograms 

and displaying the amplitude and phase information in real- 
time on a colour TV monitor. 

(2) Reconstructing the measured/simulated holograms digitally 

using the frequency domain backward propagation method 

which employs an FFT algorithm, and displaying the 

reconstructed images on the TV monitor. 

(3) Obtaining a hardcopy of the displayed holograms and images 

on an electrostatic picture recorder. 

(4) Transferring the measured holographic data to the Tektronix 

4051 minicomputer for further processing, including aperture 
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expansion, and for storing on magnetic tape. Plots may be 

obtained on an interactive digital plotter. 

(5) Recording the measured holographic data on paper tape for 

further processing of larger holograms on mainframe computers 

if required. 

An overall view of the system components is shown in Fig. 6.2. 

For the purpose of describing the system, it can be conveniently 

divided into the following main components: 

(i) The microcomputer system 
(ii) The hologram acquisition system 

(iii) The display system 
(iv) The software for hologram simulation and image reconstruction. 

These will be covered in the following sections. The electronic 

circuits of the above subsystems are housed in a 19" rack which is shown 

in Fig. 6.3. 
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6.2 The Microcomputer System 

The TMS 9900 microprocessor system represents the central 

processing and control component of the holographic imaging system. 

It controls the aperture scanning, signal transmission and reception, 
data acquisition, display, and performs the image' reconstruction. 
Additionally it controls the interface with the Tektronix 4051 mini- 

computer, the picture recorder, the paper tape punch, and the keyboard, 

see Fig. 6.1. 

The microprocessor system is represented by the functional 

diagram shown in Fig. 6.4. It uses the TMS 9900 microprocessor as the 

central processing unit (CPU) [139]. 4k words of Erasable Programmable 

Read Only Memory (EPROM) are used to store the program codes and the 

fixed data. 12k words of Random Access Memory (RAM) are used to 

store the hologram and image data and to provide the working space 

required during hologram simulation and image reconstruction. A 

simple monitor program, the TING Monitor [139], resides in a small 
Read Only Memory (ROM) and allows the inspection/modification of the 

system memory and registers via the keyboard. It can therefore be used 
to set up the starting points for executing programs in addition to 

performing a limited range of debugging operations. An alpha-numeric 

memory and display interface module allows the TV monitor to be used 

for displaying the messages exchanged with the monitor through the 

keyboard. 

The microprocessor performs the main external control functions 

through input and output lines which constitute the Communication 

Register Unit (CRU) [139]. The signals at these input/output lines 

are multiplexed/demultiplexed to/from the microprocessor through 

the CRU bus by decoding the address of the particular line to be 

enabled. The CRU output lines can be set individually to the 

required logic levels. Alternatively, a group of such lines can be 

used to transfer data sequentially from the microprocessor to external 
devices. Similarly, individual CRU input lines may be tested for low 

or high logic levels or may be used to transfer data from external 
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devices to the microprocessor. In the experimental holographic 

imaging system the CRU lines provide the following facilities: 

a) RS 232 interface with the system keyboard or a teleprinter/ 

paper tape punch. 

b) Control of the mechanical scanning 

c) Interfacing with the hologram acquisition circuits 

d) Data and control lines for the display system 

e) Data and control lines for the parallel interface with the 
Tektronix 4051 minicomputer through its General Purpose 

Interface Bus (GPIB) 

f) Data and control lines for the interface with the 

electrostatic picture recorder. 

The microprocessor operates at a clock frequency of 3 MHz and 
has an extensive instruction set which includes both Multiply and Divide 

instructions. The 16-bit data bus is particularly useful in 

implementing the display system since it allows any point in the 256x 

256 matrix of the display memory to be accessed by the microprocessor 

with only one instruction. 
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6.3 The Hologram Acquisition System 

This data acquisition system measures the complex hologram signal 

over a two-dimensional aperture in the hologram plane. The complex 

signal is obtained by measuring the amplitude and phase of the signal 

received by a small hydrophone which is mechanically scanned in a 

raster pattern over the hologram area. The system employs a novel 

technique for measuring the phase of the received signal relative to 

the transmitted signal [1401. A 
. 
copy of this reference is enclosed 

in Appendix D. This technique measures the phase digitally by 

counting the number of pulses of a high frequency clock and has the 

advantage that the width of the acoustic pulse can be smaller 

compared to other conventional techniques for measuring the complex 

hologram, cf. sec. 2.4.2. All of the system functions, including 

mechanical scanning, data acquisition and storage, and interfacing 

with other equipment, are performed under the control of the 

microprocessor system described in section 6.2. 

Fig. 6.5 shows a block diagram of the basic components of the 

hologram acquisition system. The point object to be imaged is 

simulated by an active source in the form of a focused acoustic 

transducer which is placed at the bottom of a water tank. The signal 

received over the horizontal hologram plane is sampled at a number of 

discrete points in both directions by mechanically scanning a small 
hydrophone under microprocessor control. 

The hydrophone element, see Fig. 6.6, has a'diameter of 0.8 mm. 
At the acoustic frequency of 1 MHz, this corresponds approximately 
to A/2 in water, where A is the wavelength. Substituting this value 

as the width of the sampling detector in eqn. (2.32) shows that the 

maximum spatial frequency. over the hologram aperture can be 

approximately as high as 2/A before the transfer function due to 

the finite sampling aperture starts to influence the spectrum of the 

sampled hologram, cf. sec. 2.4.1. Assume a total width of 31A for the 

hologram aperture. For a point object on the hologram axis and a 

normally incident reference, the maximum spatial frequency over 
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the aperture is given by eqn. (4.45) as: 

fx 15.5 (6.1) 

where z is the object range in wavelengths. Since z in the 

experiments performed is of the order of 10OX or greater, the size 

of the hydrophone element is small enough for sampling such holograms 

without significantly distorting the high frequency components. 

Referring to Fig. 6.5, a1 MHz TTL square wave is converted to a 

bipolar signal and applied to a gated amplifier circuit. At every 

position of the scanning hydrophone, this circuit receives a gating 

signal of a width which is equal to the required width of the 

transmitted pulse. The gated RF signal is connected to an RF 

power amplifier which drives the acoustic transducer. The transmitted 

acoustic pulse is received by the hydrophone and is fed to a 2-stage 

low-noise pre-amplifier which can provide up to 60 dbs of gain, Fig. 

6.7. After further amplification in wide-band operational amplifiers, 
the signal is applied to the amplitude and phase measuring circuits. 
The phase measuring circuit derives its reference from the same 
1 MHz TTL signal used to generate the transmitted pulse. At every 

position of the scanning hydrophoen, the amplitude and the phase 

of the received signal relative to the transmitted signal are 

measured and their values are fed in a digital form into the micro- 

processor system where they are stored. The amplitude and phase 

are displayed in real-time on a colour TV monitor as the scan 

proceeds. At the end of the scan a hardcopy of the two-dimensional 

hologram can be obtained on the picture recorder. The data can also 
be fed to the 4051 minicomputer through the GPIB interface. 

6.3.1 Mechanical Scanning Arrangement 

The hologram acquisition system uses the water tank facility 

in the departments' offshore technology laboratory. This tank is 2.1 m 
long, 1.2 m wide, and 0.7 m deep and is fitted with arrangements for 

mechanically scanning a carriage in the x and y directions using 

two stepping motors which move the carriage in the two perpendicular 

203 



directions, Fig. 6.8. The four phases of each of the stepping motors 

are driven from a motor drive module. This module allows for TTL 

signals corresponding to the required phasing of each motor to be 

applied externally, therefore controlling the motion of the motor. 

Before a scan is initiated for the first time, the position of 

the carriage to which the hydrophone is attached is adjusted manually 

so that the hydrophone coincides with the first point in the 

hologram area to be scanned. The sample spacing and the number of 

samples are entered along with other hologram parameters into the 

microprocessor system memory before the program is executed. After 

transmission and reception of the acoustic signal is performed at 

the first sampling point, the x-motor is turned on for a specified 

number of turns which causes the carriage to move the required 

increment Ax in the x directions. This is achieved by outputting a 

sequence of data values stored in the microprocessor system EPROM, 

which corresponds to the motor phasings, on the CRU output lines 

which control the motor drive module. The operation is repeated 

after transmission and reception in the new position until a line scan 

is completed. At the end of the line scan, the y-motor is rotated 

to move. the carriage in the y direction by an increment Ay. The motion 

in the x direction is then reversed in direction by outputting the phasing 

values in the opposite sequence. The process is repeated until the 

raster scan is completed. At the end of the scan the hydrophone 

is moved automatically to the first point in the raster in preparation 
for a new scan. Fig. 6.9 shows a simplified flow chart for the 

software of the scanning operation. 

6.3.2 Transmission and Range Gating Circuits 

The transmission and range gating circuits allow the number of 

cycles in the 1 MHz transmitted acoustic pulse, together with the 

range delay and the width of the receiver gate, to be set by the 

microprocessor. A block diagram for these circuits is shown in 

Fig. 6.10. Before each transmission, the microprocessor loads the 

required number of cycles in the transmitted pulse into the parallel 

204 



load inputs of a synchronous counter, C1 in Fig. 6.10. This allows the 

number of the 1 MHz cycles in the transmitter pulse to have any 
desired value from 1 to 15. The counter is driven by the 1 MHz TTL 

clock but is normally inhibited until the arrival of a transmit 

command from the microprocessor which initiates a sequence for 

transmission, reception, and data acquisition. Since the microprocessor 

signal is asynchronous to the 1 MHz clock, this signal is first 

synchronized to this clock before being used to enable the pulse width 

counter C1. Therefore, the gating period generated by this counter 

starts in phase with the 1 MHz clock and lasts for the duration of the 

required number of cycles. This signal is fed to the gate input of 

a gating amplifier which passes only the set number of cycles of the 

bipolar 1 MHz signal to drive the power amplifier. The greatly 

amplified signal is used to drive the acoustic transmitter. 

The synchronised transmission trigger signal is also used to 

generate a receiver gate which is delayed by a given range delay from 

the transmitted pulse. The required values for both the range delay 

and the width of the receiver gate are loaded into the corresponding 

counters before each transmission. The carry signal from the range 
delay counter, C2, enables the receiver gate counter C3. To allow for 

accurate setting of both the range delay and width of the receiver 

gate, counters C2 and C3 which generate these signals are driven 

from a 10 MHz clock from which the 1 MHz signal is derived. The 

circuit is wired-up such that both intervals can be selected to within 
0.2 usec. At 1 MHz this corresponds to a distance of 0.2 a of one 

way travel of the acoustic signal. The receiver gate is used to enable 
the receiver circuits so that they receive only the direct first- 

arrival signal that reaches the hydrophone from the acoustic source 

and therefore ignore any other multipath arrivals due to reflections 

at the water surface or the walls of the tank. 

6.3.3 Phase and Amplitude Acquisition Circuits 

A block diagram of the circuits used for the acquisition of both 

the amplitude and phase of the hologram signal is shown in Fig. 6.11. 

The received signal from the hydrophone is amplified and connected to 
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the phase acquisition circuits. At the front end of these circuits, 
the signal is connected to an ECL threshold detector which is 

enabled by the receiver gate described in section 6.3.2. In order to 

limit the processing of the received signal the first received 

pulse only and ignore any other nearby arrivals that follow it, an 

additional processing gate is used. This gate starts at the point 
in time when the received signal exceeds the threshold level for the 

first time and is as wide as the gate used to generate the transmitted 

pulse. This gate is generated only once for every transmission and 
therefore guarantees that any further signals exceeding the threshold 

level will be ignored in all subsequent processing even if these occur 

within the receiver gate. The processing gate is shown in Fig. 6.12 

in relationship to other gating signals in the transmission, reception, 

and data acquisition and display sequence. The use of this gate has 

the following advantages : 

(i) Reducing the tolerance on the width of the receiver gate. 
The receiver gate can now be of a fixed width which is chosen to be 

large enough to accommodate variations in the arrival time of the 

received signals over the hologram aperture. In this case there is no 

need for calculatinga value for the range delay at every point in the 

scan. 

(ii) This method is useful in ignoring the effects of any ringing 
in the transmitted acoustic pulse. This ringing is substantial when 
the transducer is air-backed, which is the case in the focused 

transducer used for obtaining the experimental results. 

The processing gate enables an ECL zero crossing detector which 

converts the received signal into a square wave lasting for the 

duration of the gate. This square wave signal is fed to a phase 

measuring circuit together with the reference 1 MHz signal which is 

used to generate the transmitted pulse. This circuit measures and 

stores the value of the phase between the received signal and the 

1 MHz reference signal at every cycle of the received acoustic pulse 
by counting the number of pulses of a high frequency clock for the 

duration of the phase difference between the two signals. To be able 
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to make one measurement every cycle, the cycle is viewed as one that 

varies from plus to minus 1800. By using only one half of the cycle 
for the actual phase measurement, the circuit is free during the other 
half to store the results and to clear the phase counter for the 

next measurement in the new cycle. The basic phase measuring circuit 
is described in more detail in Appendix B and in [140], a copy of which 
is enclosed in Appendix D. 

Referring to Fig. 6.11 for the phase acquisition circuits in 

the hologram acquisition system, the values of the phase for every 

cycle of the received signal are stored in a small fast RAM memory. 
The RAM address is derived from a multiplexer which selects the address 

either from a cycle counter when the phase values are written into the 

RAM during signal reception or from the microprocessor during the 

post-reception data processing.. The leading edge of the selected 
(leading)input; the 1 MHz reference signal or the received signal, 
is used to increment the cycle counter for every cycle of the received 

signal. This counter is reset to zero between transmissions. Since 

the value of the threshold level is always greater than zero in order 
to prevent the system from being triggered by noise, the first cycle 

of the received acoustic pulse is ignored. This avoids erroneous 

phase measurement due to the missing part at the beginning of this 

cycle. 

The number of pulses of a 100 MHz clock are counted for the 
duration of the phase delay signal by the phase counter. The trailing 

edge of the selected leading input signal, which always comes after/ 

at the end of the phase delay signal, generates a narrow pulse from 

monostable 1 which strobes the data corresponding to the terminal 

phase count, together with the phase sign bit, into the phase RAM. 
Once this data has been stored, the phase counter can be cleared in 

preparation for the new cycle. This is accomplished by another 

narrow pulse which is generated by monostable 2.. The process is 

repeated for the remaining cycles of the received signal which lie 

within the processing gate. 
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With a 100 MHz clock, the relative phase between the two 1 MHz 

signals can be measured to within ±1 . 80. Higher measurement 

accuracy can be obtained by using higher frequency clocks. Emitter 

Coupled Logic (ECL) circuits with a typical gate propagation delay of 
2 nsec are used for gating and multiplexing the input signals. This is 

necessary in order to minimize the phase errors due to the 

differential propagation delays when the phase delay signal is obtained. 
The first stages of the phase counter are also of the ECL type to 

suit the high frequency clock. The 100 MHz clock is obtained from 

a crystal controlled ECL oscillator which is mounted, together with 

all the ECL components, on a special wire-wrap board, Fig. 6.13. 

The amplitude acquisition circuits are shown at the top right 

corner of the schematic block diagram of Fig. 6.11. The amplified 

received signal is applied to a peak detector circuit whose DC output 
is connected to an analogue to digital (A/D) converter. The peak 
detector, which is normally inhibited and its output set to zero, is 

enabled at the beginning of the processing gate. At the end of the 

analogue to digital conversion, the resulting digital number which 

corresponds to the detected peak amplitude is latched to the 8-bit 

outputs of the converter, ready for accessing by the microcomputer. 
The output pulse from the A/D converter which marks the end of 

conversion resets the peak detector to zero in preparation for the 

next transmission sequence. This pulse also indicates the end of the 

hardware signal acquisition during reception and signals the micro- 

processor to start the post-reception data acquisition. 

6.3.4 Post-Reception Data Processing and Display 

Software post-reception data processing commences after the 

acoustic pulse is received, the phase of each of its cycles stored in 

the phase RAM, and its peak amplitude detected, converted to a digital 

number, and latched at the output of the A/D converter. The address 

of the phase RAM is then switched so that it comes from the micro- 

computer system. The microprocessor transfers the stored phase data 
(in magnitude and sign format) through CRU lines to an area in the 
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microcomputer RAM. Each value of the phase clock count, Ci, stored in 

the phase RAM covers the range: 

-50 < Ci < +50 ; i_2,3,..., Nc (6.2) 

where NC is the number of cycles in the transmitted pulse. This 

corresponds to a'range of phase values given by: 

-1800 ei < +1800 ; i_2,3,..., Nc (6.3) 

Each value of the phase count is converted to a positive number Ci 

according to the sign of Ci 

C. Ci ., 0 

C! = Cl <0 
(6.4) 

100-1C1) 

The range of CI is therefore given by: 

0 Ci < 100 (6.5) 

which corresponds to the phase range 

0 ei < 3600 (6.6) 

After converting the values of the 0 to 1800 phase counts into their 

equivalent 0 to 3600 positive counts, the microprocessor calculates 

the average of these values as: 
N 

1 Ca 
v Nc-1 

c 

i=2 
(6.7) 

The average phase count is stored together with the 8-bit value of 
the peak amplitude in the two bytes of the 16-bit word in a block of 

momory within the microprocessor system RAM which is reserved for the 

storage of the hologram data. This amplitude and phase data is 

stored in a word whose location within this memory block corresponds 

to the position of the scanning hydrophone in space within the 

hologram aperture. The most significant 3 bits of the peak amplitude 

and the average phase count are fed into the display memory and 

displayed, in real-time on a colour TV monitor as the scan is performed. 
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After the amplitude and phase data are written into the display memory 
the hydrophone is moved to the next point in the scan and a new cycle 

of transmission, reception, and data acquisition is repeated, see 
Fig. 6.12 .A flow chart for the software of the post-reception data 

processing is shown in Fig. 6.14. 

6.3.5 Interface with the Electrostatic Picture Recorder 

Hardcopies of measured or simulated holograms and reconstructed 
images can be obtained using a modified Muirhead electrostatic picture 

recorder type K-580-A. The recorder is originally intended for 

recording picture information transmitted over a telephone line by a 

complementary remote transmitter. For the particular application at 
hand, the most significant 4 bits of the digital information to be 

recorded are converted to an analog form to provide the 16-gray level 

video signal of the picture. This analog signal replaces the information 

which is normally derived from the modulated carrier signal that would 
be received in usual operation. A TTL enable signal is also required 
in addition to the video signal. 

At the outset of recording a picture, the video signal must 

contain an initial start-up pulse followed by a number of phasing pulses 

which are used to synchronize the motion of the belt which carries the 

recording styli. The microprocessor is programmed to generate the 

required phasing pulses at the correct timing. To ensure synchronism 
between the recording mechanism and the retrieval of data from the 

microcomputer memory, a synchronising pulse which occurs at the 

beginning of each picture line is derived from the recorder. The 

microprocessor waits for this pulse to arrive before the data corresponding 
to a new picture line is sent to the recorder. 

A simplified flow chart for the microprocessor software for 

the recording of hardcopies is shown in Fig. 6.15. The information 

corresponding to each picture sample remains fixed for a period of 
time which depends on the number of samples in the picture. To 

represent each sample with a square picture element, the same information 

corresponding to one line of the picture data is repeated for a number 
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of recorder lines. In order to retain the appearance of a sampled 
hologram or image, a spacing is left blank between the picture elements 
both in the x and y directions by setting the picture data to produce 

a 'white' video signal. The blank spacing between the sampled picture 

elements is determined by the spacing between the hologram samples in 

space. Two examples of the hardcopies obtained in this way are 

shown in Fig. 6.16 for two simulated holograms of a 1-point object. 

6.3.6 GPIB Interface with the Tektronix 4051 Minicomputer 

The Tektronix 4051 minicomputer was used to perform aperture 

expansion and image reconstruction on one-dimensional line holograms 

obtained with the hologram acquisition system. It also allowed for 

plots of the holograms and images to be obtained on an interactive 

digital plotter. The General Purpose Interface Bus (GPIB) facility 

on the 4051 was utilized to transfer the hologram parameters and 
data from the microcomputer system to the minicomputer. This is a 
byte-serial, bit parallel method of interface [141] in which the data 

is transferred in groups of bytes on an 8-bit data bus. The GPIB 

has another 8 lines for interface control signals. The microcomputer 

system uses CRU input/output lines to provide the required data and 

control lines. 

Fig. 6.17 shows a simplified flow chart for the software on both 

the microcomputer and the 4051 sides of the interface. The microprocessor 
initiates the data transfer routine by activating a service request from 
the 4051 . The latter responds by sending a device address which sets 
the microcomputer system as a talker. The microprocessor then reads 
the address and, if it agrees with a pre-assigned value, the data is 

transmitted byte by byte by the microprocessor and read by the mini- 

computer. 
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6.4 The Colour Display System 

A versatile colour graphics display system has been developed for 

displaying both simulated and measured two-dimensional holograms and 

reconstructed images. In this system, the microprocessor is programmed 
to write the picture information into a dedicated display memory which 
is organized to provide a 256x256 picture resolution. The display 

memory is 3-bit wide, which allows for the picture information to be 

displayed in 8 colours. The microprocessor accesses this memory as a 

memory mapped device and can write into any of its locations with only 

a single instruction. Transparant access for writing into the display 

memory is available during the field blanking intervals in order to 

avoid any flickering of the display. 

The picture is displayed on a modified TV monitor which allows 

colour information to be supplied in the form of 3 TTL lines; 

corresponding to the red, green, and blue colour guns. The synchronizing 

and blanking signals are supplied separately; also in TTL format. When 

the TV monitor is not used for displaying pictures, the video signals to 

the monitor can be switched to come from an alpha-numeric display interface 

module. The TV monitor, together with a keyboard, can then be used as 

a terminal for communicating with the TING Monitor which is resident 
in the microcomputer system. This is used for the initial setting of 
the parameters for the imaging system and the starting points for 

executing the various programs. This arrangement is also useful for 

carrying out a number of basic debugging operations. 

64.1 General Description 

A schematic diagram of the colour display system is shown in Fig. 

6.18. The system consists of a synchro generator module, a timing and 
control module, in addition to the display memory cards and two line 

buffer memories each of which can store one picture line. 

The synchro generator module generates the horizontal and vertical 

synchronizing and blanking pulses, together with a number of horizontal 

and vertical clock signals. These clocks are used to drive counters 

whose parallel outputs provide the addresses. for the display and 
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line buffer memories when the contents of these memories are displayed 

on the TV screen. 

The timing and control module generates all the signals which 

control the reading and writing operations of the various memories in 

the system. The main function performed by this module is the 

multiplexing of the address bus of the display and line buffer memories. 

For example, when the microprocessor requires to write picture data 

into the display memory, a control signal from the microprocessor routes 

the data bus of the microprocessor to the column and row address lines 

of the display memory. After the picture information is written into the 

memory, it can be read by deriving the address from fast counters which 

are driven in synchronism with the sync and blanking signals from the 

synchro generator module, see Fig. 6.19. The timing and control module 

is controlled by CRU lines from the microprocessor. 

The display memory consists of 3 boards each containing 16 static 

RAM devices each having a storage capacity of 4kx1 bits. The 16 devices 

are wired up to form a matrix array of 256x256 storage locations in which 

one bit of the picture colour information is stored. The 3 pages of 

the display memory are always addressed simultaneously. During the display 

write mode, the address comes from the microprocessor. In this mode, 

the Write Enable (WE) of all the devices in the display memory is 

activated by decading the value of the dummy address assigned to this 

memory mapped operation. During the read mode, the display memory 

locations are scanned in real time in synchronism with the TV sync 

signals and the stored picture is displayed on the screen. 

Two line buffer memories are used, -each buffer can store 256x3 bits 

of information corresponding to one picture line. The buffers are two 

bipolar fast memories which are alternately loaded and unloaded with 

the colour data corresponding to successive picture lines stored in 

the display memory. While one buffer is being read into the display, the 

data corresponding to the next line down the picture is written into 

the other buffer and the two buffers alternately exchange their roles. 

A 
. 
multiplexer selects the signals from the buffer being read and 

routes it to the colour signal inputs on the TV monitor. The 'Select' 
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signal to this multiplexer is a square wave obtained by dividing the 

vertical (line) clock by 2. The reason for the use of the line buffers 

is treated in the following section. 

6.4.2 Economic Constraints on the Display Memory 

Due to the large size of the display memory, its cost would be 

high and therefore it would be advantageous to reduce the speed 

requirements on this memory. This factor was more significant at the 

time when the display system was designed a few years ago than it is 

today due to the recent increase in the availability of larger and 
faster memories at a lower cost. Writing into the display memory is 

limited by the speed of the microprocessor and can be slowed down even 
further by incorporating 'wait' cycles. Reading the display memory, 
however, must be performed fast enough so that the stored picture 
data is fed to the display at a rate which matches the line and field 

scan times of the TV raster. If the simple and straight forward approach 
is adopted, where the picture data is read directly from the memory 
to the display, then 256 memory locations must be read during each TV 

line. Assuming an active line period of 52 usec, the maximum limit on 
the duration of the memory read cycle is approximately 200 nsec. 

Although this does not call for particularly fast memory devices, 

especially by today's standards, the large size of the memory required 

would make this approach economically unfavourable. 

To reduce the speed requirements on the display memory, a 
technique is employed which has been reported in the literature in 

connection with digital scan converters [142]. With this technique, 

each four devices which comprise the rows of the 4x4 device matrix in 

the display memory are accessed simultaneously to output a'whole 

picture line into the display screen. Therefore, each device can 

operate at a much slower pace than if they were to be read in tandom 

as in the case described in the previous paragraph. The picture lines 

produced in this way are stored in a fast, but small, RAM which has 

enough capacity to hold only one picture line. This line buffer memory 

consists of 4 separate devices which are loaded simultaneously and then 

read out sequentially to the display. However, in order to ensure 
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continuous transfer of picture rows into the display, another identical 

line-buffer RAM is required. The two line-buffers are wired-up 

such that while one is being loaded by sections of a picture line 

the full length of the other is read sequentially to transfer the 

preceding picture line to the display screen. The two buffer exchange 
their roles alternately every picture line. 

The arrangement for implementing this approach is shown in 

Fig. 6.20 for one page of the display memory in which one bit of the 

picture data is stored. The scheme is identical for the other two 

pages of memory. The display memory consists of sixteen 4kxl 

static RAM devices arranged in 4 rows and 4 columns, each providing 

a 64x64 matrix of memory locations. Each of the line-buffer memories 

consist of four 64x1 fast bipolar RAM devices. The data outputs of 

each four column devices in the display memory are joined together 

and connected to the data inputs on the corresponding two devices 
in the two line-buffers. The data input to the display memory is 

common to all of its 16 devices. 

When the microprocessor writes the picture information into the 

display memory, the data bus of the microprocessor provides the 

address for the picture pixel to be accessed for writing. The Chip 

Enable (CE) inputs on the devices are wired up so that only one of the 

16 memory devices can be accessed by the microprocessor at any time. 

In the display read mode, the full length of the 8-bit row address 
for the display memory as a whole is derived from counters driven by the 

vertical (line) clock as shown in Fig. 6.19 to select the required 

picture line. Similarly, the least significant 6 bits of the column 

address are obtained from the counters driven by the horizontal clock 

(p1. These address the pixel along the selected picture line within 

each of the four row devices which contain the selected row. The 

remaining most significant 2 bits of the column address are ignored 

in such a way that all these row devices are enabled simultaneously. 
Therefore, 4 symmetrical locations along each row are accessed simultane- 

ously. The four devices in the line-buffer to be loaded are also 

enabled and their address is fed from the same horizontal clock c1. 
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The data is loaded from each of the four display memory row devices 

into the corresponding device in the line buffer. Since four data trans- 

fers are performed at the same time, only 64 transfers are required 
during the whole of the active line interval in order to load the 

256-element picture line into the buffer memory. Therefore, the 

period of the horizontal clock can be as long as 0.8 usec for an 

active line interval of 51.2 usec. This figure also represents the 

maximum limit on the access time of the display memory devices. A 

reduction in the speed requirement for the display memory by a factor 

of four can therefore be achieved with this approach. 

At the end of the line interval, the line-buffer contains a 
full picture line. During the next line interval, the four devices 

in this line-buffer are enabled sequentially and their contents are 
dumped onto the display screen. Since 256 data transfers are performed 
during the active line interval in this case, the clock producing the 

address during the reading of the line-buffer memory must have a 

period of approximately 0.2 usec . Therefore two different clock rates 

are used to provide the addresses of this memory in the read and write 

modes as shown in Fig. 6.21. The read cycle of line-buffer RAM devices 

should be 0.2 usec maximum. However, since the two buffer memories are 

small, they can be chosen to be fairly fast without any significant 

economic constraints. 

6.4.3 The Display Software 

To ensure simple and speedy access for the microprocessor to the 

display memory when writing the picture information, this memory is 

considered by the microprocessor as a memory mapped output device. 

In this mode of operation, parallel data transfer is achieved through the 

microprocessor data bus which is connected in this application to the 

address lines of the display memory during the display write mode. 

As a memory mapped device, the display memory is given a fixed 

memory address, e. g. >400 where'>' denotes hexadecimal number 

representation. Whenever the colour data corresponding to any of the 

256x256 picture pixels is to be written into the corresponding location 

in the display memory, this data is first set on the 3 CRU lines which 
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are connected to the data inputs of this memory. The 8 bits of data 

corresponding to the x address of the required pixel are loaded into 

the least significant byte of a microprocessor workspace register 
[139], e. g. R1. Similarly, the y address is loaded into the most 

significant byte of the same register. This address information is 

then transferred to the address bus of the display memory by 

executing the instruction 

MOV R1, ®> 400 

which transfers the contents of R1 to the dummy memory location whose 

address is > 400. 

The last operation carried out by the microprocessor when executing 
this instruction is a memory write cycle. During this cycle, the 

microprocessor address bus has the value >400 while its data bus has 

the contents of register R1, i. e. the display memory address. To 

enable the writing of the colour data set at the memory inputs at this 

particular address, the Write Enable (WE) input to the display memory 
is activated at this point in time by decoding the fixed memory mapped 

address (>400) as shown in Fig. 6.18. Additional memory and data bus 

control signals from the microprocessor are also decoded in order to 

prevent inadvertent accessing of the display memory and to ensure that 

the timing requirements for the write cycle of the display memory are 
fulfilled. 

There are two modes of writing the picture information into the 

display memory. These can be labelled as the bulk writing and the 

transparant (or interrupted) writing modes. In the first mode, the time 

for writing into the memory is set by the microprocessor. During this 

writing time, the display memory is accessed only by the microprocessor 

and therefore its content's cannot be displayed until the writing is 

finished and the microprocessor releases its address lines and switches 
them to the outputs of the counters of the TV raster. This method is 

useful in writing large amounts of picture data and in situations where 
the display of the information in real-time is not required. 
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In the second mode, writing is performed during the field 

blanking pulses and is therefore achieved without loss of synchronism 

of the displayed picture. In this case, the field blanking signal is 

used as the Read/Write control for the display memory. The same signal 
is used as a CRU input to be continuously tested by the microprocessor. 
The microprocessor waits for the blanking pulse to arrive in order to 

transfer the required display data to the memory. The field blanking 

lasts for approximately 2 msec and therefore this method can be used 
to write 'simple patterns with the execution time not exceeding the 

duration of the blanking pulse, although in principle transparant 

writing of more complex patterns may be extended over a number of picture 
fields. This writing mode is used to display the amplitude and phase 
data in real-time as the hologram aperture is scanned. of. sec. 6.3.4. 

This mode can also be selected by the microprocessor following a bulk 

writing mode to allow for making small modifications to a picture 

made up of a large amount of data or for adding variable markings or 
labels onto it. 

The colour display system has been mainly used for displaying 

the measured and simulated holograms together with the images 

reconstructed from them; samples of the picturs obtained are given 
in Chapter 7. This however does not fully utilize the flexibility of the 

system for displaying colour graphics. In this application the 

microprocessor writes the graphics information by calculating the x and 
y coordinates of the points describing the curves to be drawn and 

accessing the display memory locations corresponding to these 

coordinates. In a practical holographic imaging system, the graphics 
facility would be useful in displaying the outline of a test piece 
for example on which the information on the location and shape of the 
imaged object can be superimposed. 
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6.5 Software for Hologram Simulation and Image Reconstruction 

A number of microprocessor programs have been written and used to 

simulate two-dimensional holograms for simple point objects and to 

reconstruct images from both simulated and measured holograms. The 

hologram simulation is based on the approach outlined in section 4.3. 

Image reconstruction uses the backward propagation (frequency domain) 

method discussed in section 2.5.2. To ensure adequate dynamic range 

and computation accuracy, all the calculations are performed using 

floating point format. In this format, the'number is represented by 

two memory words, each 16 bit wide. Performing floating point 

arithmatics on the TMS9900 microprocessor is simplified by using a 

number of utility routines supplied by the manufacturer. These 

routines convert a number from an integer into a floating point 
format and vice versa and perform addition, subtraction, multiplication, 

and division in floating point arithmatics. It should be noted that 

no special effort has been made to optimize the software for speed 

or economy in utilizing the memory space available. Nevertheless, 

holograms made up of 32x32 samples are reconstructed and the resulting 
images displayed in less than 3 minutes. 

6.5.1 General Description 

Fig. 6.22 shows a network representation of the subroutines used 
for hologram measurement/simulation and image reconstruction and 
the display of both holograms and images. The routines are shown 
in their hierarchal order. Following is a brief description of 

each of the main routines: 

HMES : Measures amplitude and phase of hologram (uses integer 

representation)and displays the results. in real-time as 
the hologram aperture is scanned mechanically, cf. sec. 
6.3. 

MOTOR : Outputs the appropriate motor phasing signals under the 

control of HMES. 

CONVERT : Converts the amplitude and phase count information measured 
by HMES in the integer form into real and imaginary 

components in floating point format in preparation for 

image reconstruction. 
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HSIM : Simulates the hologram of a discrete point object 

containing up to 3 points using floating point 

arithmatics. Uses eqns. (4.25) to (4.27) for hologram 

simulation. Calculates and displays the amplitude and 

phase of the simulated hologram signal. 

HRCON : Reconstructs the complex hologram data to obtain an 
image at any given value of the reconstruction distance. 

Uses the backward propagation (frequency domain) method, 

cf. sec. 2.5.2. This method includes 2 two-dimensional 

FFT transforms and the use of the FOCUS routine. 

FOCUS : Multiplies the hologram data in the frequency domain 

by a focusing function. This function is determined by 

the reconstruction distance at which the image is obtained, 

cf. eqn (2.63). 

DFT : Performs a two-dimensional FFT in the forward or inverse 

directions using the Cooley and Tukey algorithm. Uses 

the SFT routine on the rows of the original data and 
then on the columns of the resulting data. 

SFT : Performs a one-dimensional FFT in the forward or inverse 

direction on a row or a column of data. 

NDIS : Calculates the intensity of the hologram spectrum or the 

reconstructed image from the complex amplitude, normalizes 
the intensity distribution relative to its peak value, 

and displays the results on the TV screen. 

HCOPY : Produces a hardcopy of the hologram, its spectrum; and 
the image intensity on the picture recoder, cf. sec. 6.3.5. 

In addition to the floating, point utility routines, the main 

routines described above use also a number of mathematical functions 

routines to calculate the functions A, sin(e), cos(e), sin-1(e) and cos-1(9) 
in floating point . These routines are described in section 6.5.3. 

6.5.2 The Two-Dimensional FFT Algorithm (OFT) 

Referring to eqn. (2.65), the two dimensional discrete Fourier 

transform of the complex function u(pax, qAy) is given by: 
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N-1 N-1 
U(mofx, n, &fy) =EE u(pnx, gny) exp( -j2Tt[(pax)(mofx) 

q=0 p=0 

+ (gey)(nefy)]} (6.8) 

; m, n=0,1,..., N-1 

where u(pex, goy) and U (mdfxnAfy) are the discrete functions in the 

space domain and the spatial frequency domain respectively. N is the 

number of data samples in each coordinate direction in both domains 

and is assumed to be a power of 2. p, q are the indices of the data 

sample in the space domain in the x and y directions respectively 

while m, n are the indices in the fx and fy directions in the 

frequency domain. This equation can be written in the form 

N-1 N-1 
U(mAf nAfy) -EE u(pOx, goy) exp {-j2n[(pAx)(mefx. )]} 

x q_O p_0 

m=0,1,..., N-1 

exp{ -j2-n[(gey)(nofy)]} (6.9) 

n=0,1,..., N-1 

where the expression between the large square brackets represents 

one dimensional, Fourier, transforms on the rows of data while the 

summation outside these brackets operates on the columns, of the 

resulting rows. This. shows that the two-dimensional transform 

can be performed by applying -one-dimensional transforms 

to the rows of data and then on the columns of the transformed rows. 
The one-dimensional transforms are performed using the SFT routine. 

The SFT routine performs the FFT on N pairs of real and imaginary 

floating point data which are stored in a buffer area of 4N words 

within the microprocessor system RAM. At the end of the transform, 

the resulting data replaces the original data in this area of buffer 

memory. The microprocessor program uses a number of mathematical 
function routines for determining the exponential functions in 

eqn. (6.9). A 
. 
listing of the SFT program and the associated 

routines in assembly code is given in Appendix C. 
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A flow chart for the two-dimensional DFT routine is shown in Fig. 6.23. 

The algorithm operates on a matrix of NxN pairs of real and imaginary 

data stored in the system RAM, where N is a power of 2. Rows of 
data are sequentially loaded into the SFT buffer memory, Fourier 

transformed, and the resulting data fed back to replace the original 
data in the system memory. After all the data rows have been 

transformed, the process is repeated on the columns of the transformed 

data. 

6.5.3 Mathematical Functions Routines in Floating Point Format 

The microprocessor programs used for hologram simulation and 

reconstruction require a number of mathematical functions to be 

determined with adequate accuracy at a reasonable execution time 

and memory storage space. This requirement is fulfilled using four 

routines; SQRT, SINTAB, SINCOS and ANGL. These are shown in the 

software network in Fig. 6.22 and will be briefly described below. 

SQRT: 

This routine adopts an iterative method for generating the square 

root of a floating point positive number using the Newton-Raphson iter- 

ation. As a first approximation, the square root R of the number X 

is determined as the'number of odd numbers (starting from 1) whose 

sum does not exceed X. More accurate values of the root are obtained 
from the iterative equation: 

Rk+1-0.5[Rk+(X/Rk)] (6.10) 

where Rk+1 is the new root and Rk is the previous root. The routine 

used employs five iterations. 

SINTAB: 

This routine contains a look-up table of 91 values of sin(e) where 

eis an integer value in degrees in the range 0o< 900 in steps of 10. 

This range of values is sufficient to determine both sin(e) and cos(e) 
in the range 04x< 3600 . The routine is used by both SINCOS and 
ANGL routines. 
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SINCOS: 

This routine is used in conjunction with the SINTAB routine to 

evaluate sin(e) or cos(e) where e is a real number in degrees in 

floating point format. If e' is the nearest integer value which is 

less than 0 and a is the difference (e-e') then: 

sin(e) = sin (e'+a) 

sine' cosa+ sinn coso' (6.11) 

From the definition of e', 

0 <a<1° (6.12) 

Applying the following approximations for small angles 

Cosa p1 
sinn im a 180 

(6.13) 

reduces eqn. (6.11) to: 

sin(e) - sin(e') + 180 cos(el) (6.14) 

Eqn. (6.14) shows that the sine of the real valued angle can be 

approximately determined with the knowledge of. a and the values of the 

sine and cosine of the nearest lower integer value el. These values 

can be easily obtained from the look-up table in SINTAB. Similarly 

the cosine function can be evaluated as a sine function using the 

relationship: 

cos(e) = sine+90°) (6.15) 

With the approximations used in this algorithm, the values 

calculated for the sine and cosine are accurate to the third decimal 

place. This was considered adequate for the application although the 

method is capable of achieving better accuracy by using more terms in the 

series expansion of cosa and sins beyond the first term in each case 

as used in eqn. (6.13). 
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ANCL: 

Used in conjunction with the SINTAB routine, this routine determines 

the nearest integer value 9; 0<0< 360 0 to the argument of the 

complex number z= x+jy, given the values of the real and imaginary 

parts x and y. The sine of the equivalent argument er which is 

restricted to the first quarter 0< 0r < 90° is calculated as JyJ/JzJ" 

Using the look-up table in SINTAB, this sine value is used to determine 

the nearest integer value to the angle 0r . The quarter in which 
the actual argument lies is determined from the signs of both x and y 

and therefore the integer value e of the actual argument can be 

calculated from 0 
r. 
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CHAPTER 7 

EXPERIMENTAL RESULTS 



7.1 Introduction 

Experimental results have been obtained to verify the aperture 

expansion technique described in Chapters 4 and 5 using the experimental 

holographic imaging system described in Chapter 6. Both one and two- 

dimensional holograms of a point object were measured and reconstructed 

digitally. The line holograms were expanded by a factor of two and the 

images reconstructed from both small, predicted, corrected, and true 

apertures (where applicable) using the algorithms described in section 

2.5.2. The processing of line holograms was performed on. the Tektronix 

4051 minicomputer while image reconstruction from two-dimensional 

holograms was implemented on the microcomputer system using the software 

routines described in section 6.5. A number of two-dimensional holograms 

have been simulated and reconstructed for a variety of discrete point 

objects which help demonstrate a number of criteria of holographic 

imaging. Pictures of the two-dimensional holograms �their spectra, 

and the reconstructed images were obtained by photographing the colour 

display on the TV monitor, cf. sec. 6.3 and 6.5. 
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7.2 Experimental Set-up and the Problem of Hologram Tilt 

The active point-object used in the following experiments was 

simulated using a focused acoustic transducer which is made up of a 

spherical shell and has the dimensions shown in Fig. 7.1. The transducer 

is positioned at the bottom of the water tank and the hologram area 

on top of the transducer is mechanically scanned in a raster format 

and sampled with a small hydrophone. At every position of the 

sampling hydrophone, a burst of 1 MHz signal is transmitted from the 

transducer and the amplitude and phase of the received signal are 

measured. The measured holograms are displayed in real-time on a 

colour TV monitor. The hologram data corresponding to any line scan 

can be transferred to the Tektronix 4051 for further processing, see 
Fig. 6.5. 

7.2.1 Effect of Tilt on Hologram Recording 

The initial tests were performed with the transducer attached to 

a holder and placed directly on the bottom of the water tank. 
Two anomalies were observed in the first holograms recorded originally 

with this arrangement, namely: 

(i) Higher spatial frequencies than expected were encountered and 

signs of under-sampling were evident in spite of the fact that the 

samples were chosen close enough to prevent any aliasing in the 

theoretically expected holograms for the given aperture size and object 

range. 

(ii) The holograms were not symmetrical about the central fringe; 

with fringes cramped on one side of the hologram and sparsely spaced 

on the other. 

These two effects are clearly demonstrated in the photograph in 

Fig. 7.2. In a line hologram, this may lead to introducing an 

additional phase fringe at the centre of the hologram where the phase 
function should not normally exhibit much variations in this region 

opposite to the point object. This is shown in the phase plot in Fig. 7.3 
for a measured hologram. 
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These effects can be attributed to the presence of a relative 
tilt angle between the hologram plane and the bottom of the water tank. 

Referring to Fig. 7.4, Fig. 7.4a shows the case of proper alignment 

in which both planes are parallel while in Fig. 7.4b a tilt is introduced 

in the hologram plane. Consider a line hologram in the vertical 

plane containing the point object 0. The rate of variations in the phase 

of the hologram signal along the line scan is proportional to the rate 

of variations in the length of the vector OH which joins the point 

object to point H on the hologram. Comparing Figs. 7.4a and 7.4b, it 

can be seen that these variations, and accordingly the fringe spacing 

and the spatial frequency on the hologram, will not be symmetrical on 
both sides of the tilted hologram. For a positive tilt angle as shown 

in the figure, higher spatial frequencies exist on the R. H. side of 
the hologram. Those frequencies would also be higher than the frequencies 

in the case of correct alignment, hence the undue symptoms of 

undersampling. While the phase is almost constant in the central region 

of the hologram in Fig. 7.4a., the phase variations at the centre of 
the tilted hologram give rise to the additional phase fringe as 

shown in the plot of Fig. 7.3. 

The effect of this positioning error was numerically simulated by 

introducing a tilt angle in the hologram plane and the results are 

shown in Fig. 7.5 for the case of 0°, +5°, and -2.50 . It should be 

noted that the effect of the tilt in the hologram is different from that 

caused by a shift in the position of the point object. Fig. 7.6a shows 
the hologram phase with a 4a shift in the x direction parallel to the 

hologram line and no tilt in the hologram plane. In this case the 

phase pattern merely shifts with the object. Fig 7.6b simulates a 

shift of 8a in the object position in the y direction normal to the 

hologram line. Although it is possible that a new central fringe could 
be generated in this case for large shifts in the y direction, the 

hologram is different from that in the case of a tilted hologram since 

symmetry is always maintained in both halves of the hologram. 

7.2.2 Effect of Tilt on Image Reconstruction 

Referring to Fig. 7.7, assume a hologram tilted with an angle e. 
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For a point object, the signal at a point on the hologram at distance 

x from the centre is: 

H(x) T, 
exp(-jKr') (7.1) 

where K is the wavenumber, K= 2it/A, and r' is the distance between the 

object point and the hologram point. For small values of e and large 

values of r': 
r in the denominator of eqn. (7.1) 

r' (7.2) 
1r+xsine in the exponent of eqn. (7.1) 

where r is the distance between the point object and the corresponding 
hologram point assuming no tilt in the hologram plane. Substituting 

eqn. (7.2) into eqn. (7.1) yields: 

H(x) _[T exp -jKr] exp (-jKxsine) (7.3) 

The terms between the square brackets represent the hologram 

signal with zero tilt while the exponent outside these brackets represents 

a plane wave incident at an angle 0 with the untilted hologram. 

Therefore, eqn. (7.3) shows that the effect of a tilt in the hologram 

plane is equivalent to that of introducing an offset reference wave 

into the hologram signal that would be received with no tilt in the 

hologram. When the complex hologram is measured on a hologram tilted 

with angle e the resulting signal corresponds to that of a hologram 

with zero tilt mixed with an off-axis reference wave which makes an 

angle e with the normal to the untilted hologram. In fact, tilting the 

hologram plane has been reported in the literature as a means of 

providing an off-axis reference [143], [54]. Since the reconstruction 

algorithm employed, cf. sec. 2.5.2., assumes that the hologram data 

corresponds to the complex hologram, which is equivalent to the use 

of an on-axis reference, the tilt in the hologram plane introduces 

errors in the reconstructed image. 

A 
. 
simplified approach to investigate the type of errors in the 

reconstructed image due to a hologram tilt is described by referring 
to Fig. 7.7. The point 0 to be imaged lies on the vertical line passing 
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through the hologram centre at distance z from the hologram centre. The 

reconstruction algorithm assumes that the object plane is parallel to 

the hologram plane, cf. sec. 2.5.2. Therefore, when this algorithm is 

used to reconstruct the tilted hologram with z as the reconstruction 
distance, the image is obtained for points on a plane parallel to the 
tilted hologram and at distance z from it; this plane is marked P1 

in Fig. 7.7. Since point 0 does not lie on this plane, it will be out 
of focus in the reconstructed image. In order to be able to image point 
0 in focus, the reconstruction distance should be z' ; z' . z. From 

the geometry of Fig. 7.7: 

z' =z cose (7.4) 

Moreover, in the reconstructed image at plane P2, point 0 appears offset 
by a distance xö to the left if e is positive or to the right if e is 

negative, where: 

x0 - -z sine (7.5) 

Fig. 7.8 shows the reconstructed images of a point object at 
xo=0,. z=100X. The holograms are the middle portions of those whose 

phase functions are plotted in Fig. 7.5. For the case of zero tilt in 

the hologram, Fig. 7.8a, the image is at the centre of the reconstructed 

object plane and the optimum image occurs at 100x. With +5° tilt, Fig. 

7.8b, the optimum image occurs at 97.5x and is offset to the left by 

a distance of 8.5x. The values predicted by eqns. (7.4)and (7.5) for 
the optimum range and the offset distance are 99.61x and 8.71x 

respectively. for -2.5° tilt angle, Fig. 7.8c, the point is offset 
to the right and the observed values are 97.7X and 4.5x while the 

calculated values are 99.9A and 4.36x respectively. The optimum 

reconstructed image was considered throughout as that having the 

maximum peak value. 

7.2.3 Compensating for the Hologram Tilt 

In order to minimize the effects of the relative tilt between the 

scanned hologram plane and the bottom of the water tank, the focused 

transducer was mounted on a heavy brass plate fitted with three 

adjustment screws in a tripod arrangement which can be used to tilt the 
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the transducer in any direction in order to offset any misalignment, 

Fig. 7.9. The vertical position of the plate is adjusted such that the 

two-dimensional hologram recorded in the area directly on top of the 

transducer is symmetrical in both x and y directions and agrees with 

the simulated hologram for an object at the same location. A line 

scan on top of the centre of the transducer is then performed and the 

corresponding hologram data transferred to the 4051 minicomputer for 

reconstruction and expansion. 

It should be noted that the lateral offset in the position of 

the reconstructed image allows for the effects an unknown angle of 

tilt in the hologram to be compensated for computationally for the 

case of a point object at the centre if the range z is known. First, 

the value of the tilt angle e is determined by measuring the offset 

distance xö and using eqn. (7.5), xö is positive when the imaged 

point is offset to the right. The. phase of the measured hologram 

signal c(x) is then modified to TI(x) according to the relationship: 

(P'(x) _ P(x)-K x sine (7.6) 

where x is the position of the hologram sample relative to the centre, 

x is positive for points at the R. H. half of the hologram. In the 

Fresnel zone the effect of tilt on the amplitude of the hologram signal 

can be neglected, cf. eqn. (7.2). 
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7.3 Image Reconstruction From Measured Holograms 

Fig. 7.10 shows photographs of the two-dimensional holograms 

recorded for a point object on the hologram axis at a distance of 97X 

together with the hologram spectrum in the spatial frequency domain 

and the reconstructed images at focus and at two other ranges on both 

sides of the true object range. Shown also in the same figure are the 

corresponding results for a simulated hologram having the same number 

of samples and the same sample spacing as the measured hologram. The 

layout of the contents of each photograph in Figs. 7.10,12 and 13 

is shown in Fig. 7.11a. The relationship between the various 

colours in these figures and the relative data values they represent 
is given in the table in Fig. 7.11b. Fig. 7.12 shows the results when 
the hologram is measured at a distance of 144X from the point object. 
Both hologram have a number of samples N-32 spaced at a distance e=1.11A 

in both x and y directions. A comparison between the two figures 

indicates the effect of increasing the object range in reducing the 

spatial bandwidth of the hologram and in reducing-the resolution, of 

reconstructed image. Both figures indicate good agreement between 

simulated and experimental results. 

The two holograms in Fig. 7.10 and 7.12 were measured using a 
transmitted pulse having a number of cycles Nc=8. The same pulse width 

was used for the holograms presented in the remainder of this chapter. 
However, in order to show the effect of the number of cycles in the 

acoustic pulse on the accuracy of the hologram measurement and the 

quality of the reconstructed image, the hologram at z=144A was measured 

with pulses 4 cycles and 15 cycles wide. The results are shown in 

Fig. 7.13. For the case of the narrow pulse, Fig. 7.13a, although 

only three active cycles are used for the hologram data acquisition, 

cf. sec. 6.3.5, the accuracy of the measured hologram is not seriously 

affected. In fact, the quality of the reconstructed image when the 

narrow pulse is used is somewhat improved due to the improvement in the 

range resolution. The phase variations at the centre of the hologram 

in both cases may be, due to a slight residual tilt in the hologram 

plane. 
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More quantitative evaluation of the results is obtained by 

reconstructing the line hologram measured at the middle of the raster 

scan of the two-dimensional hologram. Fig. 7.14 shows the reconstructed 
images from a line hologram measured at 93A from the point object. 
Fig. 7.14a is a plot of the reconstructed image at the measured range 

of 93X while the optimum image, i. e. that having a maximum peak value, 
is shown in Fig. 7.14b and is obtained at a reconstruction distance of 
90X. Fig. 7.15 shows the corresponding results for the hologram 

measured at 144x for which the optimum range was found to be 132x. Fig. 
7.16 shows the measured amplitude and phase of the hologram measured 
at 93A compared with the calculated results at a distance close to the 

optimum range. The corresponding results for the hologram at 144X 

are shown in Fig. 7.17. 

As indicated above, the optimum image occurs at a value of the 

range which is in error compared to the measured range. The error is 

3.3% for the hologram at 93X and 8.3% in the case of the hologram 

at 144X , the optimum range being lower than the measured range in both 

cases. This error can be attributed to the following factors: 

(i) Random errors in the measured hologram signal due to additive 

noise and measurement and quantization errors. As shown in section. 
5.2.1, errors in the hologram signal are also caused by random errors 
in the positions of the hologram sampling points due to the limited 

accuracy of the mechanical scanning apparatus and to jitter in the 

movement of the sampling detector. 

(ii) The measured range is taken as the distance between geometric 
focal point of the focused transducer and the tip of the sampling 
hydrophone. However, due to the limited. aperture of the focused 

transducer, this focal 'point' will have a finite extent in the depth 

as well as the lateral directions. For the dimensions D-25.4 mm and 
z-21.6 mm for the focusing shell used, see Fig. 7.1, the criterion 
for range resolution in eqn. (2.71) gives dr -1.4x as the distance from 
the focal plane at which the radiation strength of the focal point 
drops by 20%. Since the hologram acquisition circuits operate on the 

signals that arrive first at the hydrophone detector after the acoustic 
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pulse is transmitted, the measured hologram corresponds to an object at 

a shorter range. The lower the threshold level at the receiver 

circuits, cf. sec. 6.3 , the greater the difference between the 

effective range and the measured range since the receiver circuits 

respond to weaker hologram signals from points which are further 

removed from the focal plane of the focused transducer. 

(iii) Errors in measuring the values of the object range and the 

sample spacing. Due to the limited measurement accuracy because of 
the experimental set-up and the small wavelength at the frequency of 

operation (- 1.5mm), the error in the range measurement can be as high 

as U. The quality of the reconstructed image was found to be particu- 
larly sensitive to the error in measuring the sample spacing as shown 
in Figs. 7.18 and 7.19 for the holograms at 93X and 144x respectively. 

In each of these two figures a ±5% error in the sample spacing was 

simulated by inserting in the image reconstruction algorithm a value 
for the sample spacing which is different from the measured value by 

the error factor. Fig. 7.18 indicates that up to 22% variations in 

the peak value of the optimum image are caused by a 5% error in the 

sample spacing. These variations in the peak value due to the error 
in the sample spacing influence the choice of the optimum image 

and therefore cause an error in the value selected as the optimum 

range. 

(iv) Another factor which contributes to the error in the 

observed object range is the limited range resolution due to the 

finite pulse width. For a 1MHz transmitted acoustic pulse 8 cycles 
in length, signals from a sector 8a thick contribute to the hologram 

signal and therefore objects within this sector cannot be resolved, 

cf. sec. 2.6.1. 

(v) Residual alignment errors which cause a small relative tilt 

between the hologram plane and the base of the focused transducer. 

As shown in section 7.2, these errors also cause the optimum range 

to be lower than the actual range which is the case observed in 

practice. 
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7.4 Expansion of Measured Hologram Apertures 

The prediction technique described in Chapters 4 and 5 for expanding 

a given hologram aperture has been applied for the two measured 
holograms discussed in section 7.3. Aperture expansion was performed 

using triangular predictive and corrective models. Three tests 

were made on each hologram, namely: 

(i) The measured 32-point line hologram was split into two 

halves; an inner half about the hologram axis and an outer half which 

consists of the exterior portions on each side. The inner half was 

considered as a 16-point available aperture and expanded to twice its 

size in much the same way used in the simulation tests described in 

Chapters 4 and 5. Since the hologram data is known over the outer 

portions where the small aperture is extended, the prediction errors 

can be calculated and the image from the true extended aperture can be 

reconstructed. 

(ii) The total measured aperture was expanded to twice its size 
to produce a 64-point hologram. Since the true hologram signals are 

not known over the aperture extension in this case, neither the pre- 
diction errors nor the image from the true extended hologram can be 

obtained. 

(iii) The effect of smoothing the hologram data in the available 

aperture to reduce the effect of noise on the prediction accuracy was 
investigated in both cases mentioned above. 

Fig. 7.20 shows the prediction errors and the reconstructed images 

at the optimum range when the inner half of the hologram at 93x 

was expanded to twice its size. The expansion was performed using 
triangular polynomial predictive and corrective models of the types 

described in sections 5.5 and 5.6 with model order L=7 and 8 

respectively. The corresponding results for the hologram at 144X are 

shown in Fig. 7.21. The two figures indicate the effectiveness of the 

aperture expansion technique in extending the measured hologram data 

and in achieving the attendant improvement in resolution. In both cases, 

the images reconstructed from the corrected holograms are similar 
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to those from the true holograms. As in the case of the simulation 

results described in section 5.6, correction plays a critical part in 

reducing the prediction errors obtained using the predictive model 

and therefore improving the reconstructed image. The reconstructed 
images at the measured ranges for both cases are shown in Fig. 7.22 

which indicates that resolution improvement is maintained at ranges 

other than the optimum range. 

Although the use of the corrective model improves the prediction 

accuracy, the improvement is limited by noise in the small 'available' 

aperture. Due to the random nature of noise, it causes undue 

assymmetry between the two halves of the available aperture in the case 

of the hologram of a point object located at the centre of the object 

plane. The corrective model is obtained by relating the signals pre- 
dicted using a model based on one half of the available aperture to the 

true data in the other half, cf. sec. 4.8. This implies that the 

smoothness of the hologram function over the two halves of the 

available aperture is required for the effective application of the 

corrective model. Since excessive noise in the measured data 

affects the smoothness of the hologram function, this is bound to 

influence the amount of improvement achieved using the corrective 

model. Referring to Figs. 7.: 16a and 7.17a for the measured phase 
data of the measured hologram and assuming that the simulated hologram 
in each figure represents the true phase function, it is estimated 
that noise levels as high as 30% and 45% of the phase data exist within 
the inner half of the-holograms measured at 93A and 144A respectively. 

To investigate the effect of noise on the effectiveness of the 

corrective model, the hologram data over the small'available' 

aperture was smoothed, prior to aperture expansion, using a data 

fitting utility routine [144] available on the Tektronix 4051 

minicomputer. The routine fits cubic splines to the data and the 

amount of smoothing introduced is determined by the value of a 

smoothing factor, s. The higher. the value of this factor the smoother 
the resulting function. This, however, is achieved at the expense 

of losing fine details which may correspond to genuine variations in 

the function and not to noise. The routine was applied to the hologram 
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data of the 16-point aperture at the inner half of the measured 
holograms. Since the amplitude data was found to be fairly smooth, it 

is not significantly affected by the smoothing process. Fig. 7.23a 

shows the smoothed phase function fitted to the data in the hologram 

at 931 with a smoothing factor s=300 together with the values of 
the original data. Using the coefficients of the spline fit 

determined by the 4051 routine, the values of the smoothed function 

were calculated at the hologram sampling points in the inner half 

of the measured aperture. Fig. 7.23b shows the measured hologram 

with its inner half smoothed. The corresponding results for the 

hologram at 144x are shown in Fig. 7.24 with s_200. 

The prediction errors and the reconstructed images using the 

smoothed hologram function are shown in Fig. 7.25 for the hologram 

measured at 93X. Comparing this figure with Fig. 7.20 for the 

unsmoothed hologram, it can be seen that smoothing the data achieves 

an improvement in the performance of the corrective model. For 

example, the mean error over the aperture in the corrected hologram 

is reduced by approximately 50% and there is a corresponding 
improvement in the quality of the reconstructed image. The results 
for the hologram at 144X are shown in Figs. 7.26. The prediction 

errors plotted in Fig. 7.26a indicate an improvement in the 

accuracy of the corrected hologram with smoothing, although this 

improvement is not as high as in the case of the hologram at 93A 

since the mean error is reduced by only 16% compared to the case when 

row hologram data is used for prediction. This can be attributed to 

the increased noise in the hologram considered. It should also be 

noted that the improvement in the performance of the corrective model 
depends on the choice of the smoothing factor a, therefore it is 

possible that greater improvement can be achieved by using a more 

optimum value for s. The effect on the reconstructed image is 

shown in Fig. 7.26b. 

In a practical situation only the measured data over the given 

aperture will be known, with no knowledge of the hologram signal over 
the aperture extension. This situation can be simulated by using all 
the 32 points of the measured data as the available aperture and 
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extending it to twice its size to obtain a 64-point hologram. 

Prediction was performed using triangular predictive and corrective 

models of order L=15 and 16 respectively. Since the true hologram 

data is not known outside the available aperture, no information is 

available about the prediction errors or the image from the true 

extended aperture. The reconstructed images from the small, predicted, 

and corrected holograms are shown normalized to the same peak in 

Fig. 7.27 for the holograms at 93X and 144x. The figure indicates an 
improvement in resolution in the image from the corrected hologram with 
the aperture expansion. However, this improvement is much less than 

expected from doubling the size of the hologram aperture. As in the 

case of the 16-point 'available' aperture discussed earlier , this can 
be attributed to the poor performance of the corrective model due to 

noise in the measured data and therefore can be improved by smoothing 
the data over the 32-point available aperture. Figs. 7.28 and 7.29 

show the smoothed phase function and the smoothed hologram phase with 

s=2000 for the holograms at 93A and 144A respectively. The images 

obtained from doubling the size of the smoothed holograms in the 

two cases are shown in Fig. 7.30 for the small and corrected holograms 

where the images from the predicted holograms were omitted for 

clarity. Compared to Fig. 7.27, the aperture expansion now leads to 

better improvement in resolution with the width of the point image at 
the half-power points reduced by 40ö and-50ö for the hologram at 93X 

and 144X respectively. This shows that smoothing the hologram data 

helps increase the overall prediction accuracy and improve the quality 

of the reconstructed images from expanded holograms. 
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7.5 Simulation and'Reconstruction of Two-Dimensional Holograms 

The software described in section 6.5 and the display system of section 
6.4 were used for simulating, reconstructing, and displaying a range of 
two-dimensional holograms to illustrate a number of criteria which are 

pertinent to holography. Although not directly related to the technique 

of aperture expansion presented in this thesis and the subject of 

resolution improvement in general, these results are included here 

since they serve to demonstrate using colour photographs how 

resolution is influenced by parameters of the imaging system and by 

the imaging geometry. Throughout the following figures, the layout 

of the contents of each photograph is as shown in Fig. 7.11a and the 

colour code as shown in the Table in Fig. 7.11b. The simulation of 
the complex holograms for the discrete point objects was performed on 
the basis outlined in section 4.3 and the images reconstructed using 
the backward wave propagation (frequency domain) algorithm, cf. sec. 
2.5.2. 

Fig. 7.31 illustrates the hologram and the reconstructed images 

for a 1-point object when the object is located on the hologram 

axis and when offset from the centre. As indicated in section 7.2.1., 

the hologram pattern is basically the same in both cases but is 

shifted with the point object. 

Fig. 7.32 shows the improvement in resolution and the increase 

in the spatial frequency bandwidth of the hologram with the decrease 

in the object range for the case of a 1-point object. 

Fig. 7.33 shows the effect of undersampling of the hologram and 
the resulting multiple images as described in section 2.4.1. 

Fig. 7.34 illustrates the effect of varying the reconstruction 
distance inserted into the reconstruction algorithm when images are 

obtained from a given hologram. The image in Fig. 7.. 34b is reconstructed 

at a distance which is equal to the true range of the object while 
in Fig. 7.34a and 7.34c the reconstruction distance corresponds to 

two out-of-focus ranges both smaller and greater than the true 

object range respectively. 
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Fig. 7.35 shows two points resolvedywith separation in the 

x direction in Fig. 7.35a and in the y direction in Fig. 7.35b. It 

is noted that the main variations in the amplitude of the hologram 

signal occur in the direction of the separation between the two 

points in the object. 

Fig. 7.36 illustrates the effect of increasing the spacing 
between the two points on resolution. In Fig. 7.36a, the two 

points, located at a distance of 97A from the hologram, are 

separated by a distance of 4X. The Rayleigh resolution limit for 

the 31X aperture at this range is approximately 3A. However, since 
the two points are simulated such that they radiate coherently in phase, 
they are not resolved [33]. It is noted that because of the small 

separation in this case the phase function over approximately 75% of 
the area of the hologram aperture is similar to that of a single 

point object, hence the difficulty in resolving the two points. 
Increasing the separation between the two points to 6A allows the two 

points to be resolved as shown in Fig. 7.36b. In this case the 

portion of the hologram aperture over which the phase function is 

similar to that of a single point is less than half of the total 

aperture. 

Fig. 7.37 shows the effect of doubling the linear dimensions of 
the hologram aperture on improving the resolution . The two points 
to be imaged are separated by a distance of 6x. With a 15X aperture 
these points cannot be resolved as shown in Fig. 7.37a since the 
hologram data intercepted by the small aperture carries little 
information that the object is made up of two points. -Increasing 
the size of the aperture to 31X by doubling the number of points in 
the hologram at the same sample spacing allows the two points to 
be resolved, Fig. 7.37b. 

Fig. 7.38 demonstrates the three-dimensional imaging capability 

of holography, cf. sec. 2.7. The simulated object consists of two 

points separated laterally and located at different ranges . 
Reconstructing the hologram at a distance equal to the range of one 

point images that point in focus while the other point appears out of 
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focus. The separation between the two points in range exceeds the 

aperture limited depth of focus calculated at the furthest range of the 

two points, cf. eqn. (2.72). Therefore, when the image of one point 
is brought into focus, contributions corresponding to the other 

point are comparatively small and, with the image intensity normalized 
to only 8 grey levels, these contributions do not appear in the 

displayed image. Note the difference in resolution in the case of 

each point which is caused by the differnt values of their ranges. 
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7.6 Conclusion 

In this chapter a number of experimental results have been presented 

which demonstrate the effectiveness of the prediction approach to 

hologram aperture expansion discussed in Chapters 4 and 5 when used on 

realistic holograms. In the experiments described, an active point 

object is simulated using a focused transmitting transducer and the 

hologram is measured, reconstructed and displayed using the imaging 

system described in Chapter 6. The resulting hologram is effected by 

any relative tilt between the hologram plane and the plane on which the 

transducer is mounted. It is shown that this is equivalent to introducing 

an offset reference to the complex hologram signal which corresponds 
to the case of no tilt. This leads to errors in the images reconstructed 

using algorithms based on the assumption that the complex hologram is 

measured relative to an on-axis reference. These are manifested in a 
lower value for the range of the optimum reconstructed image in 

addition to an offset in its lateral position. The tilt problem has 

been overcome by allowing for mechanical alignment of the two planes. 
Other factors which contribute to the errors in the range of the 

reconstructed images include the finite depth of the focal region of 
the transducer, the finite width of the transmitted acoustic pulse, 

errors in the measurement of the extent of the hologram scan and the 

distance between the object and the hologram plane, in addition to 

random errors in the hologram signal and in the positions of the sampling 

points. 

The results discussed have shown the usefulness of the prediction 
technique as a means of aperture expansion in practical situations. 
The measured hologram data at 32 sampling points has allowed both a 
16-point and a 32-point apertures to be doubled in size. In the case 

of the 16-point aperture the hologram signal is known over the aperture 

extensions which allows the prediction errors to be calculated and 
the images reconstructed from predicted and true holograms over the 

extended aperture to be compared. In the case of the 32-point available 

aperture no information is available on the hologram signal outside 
this aperture which is the case in practical situations of aperture 
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expansion. As in the simulated tests reported in Chapters 4 and 5, 

the corrective process is essential for the reduction of the prediction 

errors over the extended aperture in order to achieve the expected 
improvement in resolution. 

Since each corrective model is based on the data in the two 

halves of the available aperture, it is influenced by the effects of 

noise and measurement errors in the measured data on the smoothness of 
the hologram function. The results obtained have demonstrated that the 

performance of the corrective model can be improved by smoothing the 

hologram data in the available aperture before expansion in order 
to reduce noise and measurement errors, with the degree of improvement 

determined by the amount of smoothing employed. For small amounts of 

smoothing, the smoothed data follows the noisy data closely and 
therefore contains a certain amount of noise. Over-smoothing, on the 

other hand, tends to interfere with fine genuine details in the 

hologram function. Therefore, it is expected that an optimum condition 

exists. This optimum condition, however, would be a function of the 

individual hologram being considered. Another approach to improving 

the effectiveness of the corrective process is to increase the accuracy 

of the hologram measurement. 
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CHAPTER 8 
CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 



8.1 Conclusions 

From the work reported in this thesis, the following conclusions 

can be made: 

1) A number of the problems facing acoustic holography in its 

conventional form of optically reconstructing an interference pattern 

can be largely overcome by measuring the complex hologram and Using 

computer reconstruction. With faster, cheaper, and more efficient 

computers becoming more readily available, it would be economical 
to use the microcomputer as an integral part of the imaging system for 

controlling the various aspects of the imaging process including 

data acquisition, image reconstruction and processing, and display. 

With high speed computers and signal processing devices, image 

reconstruction can be performed fast enough to avoid the problem of 
time-lag associated with optical reconstruction. As shown in section 
2.5.2, the use of the complex hologram reduces the requirement on the 

spatial resolution of the hologram detectors and therefore helps 

economize the number of samples required and speed up both the data 

acquisition and image reconstruction stages of the process. Moreover, 

the absence of the spatial carrier associated with the use of a 

reference wave means that there would be no interference with the 

reconstructed image from other unwanted components. The requirement 
for a laser is avoided together with all the image distortion caused 
by the wavelength mismatch and the use of recording and reconstruction 

optics. The use of the computer together with the linear detection 

of the hologram signals allows a large amount of signal processing 
to be cost-effectively performed in order to alleviate a number of 
the more basic limitations in holography such as the limited resolution. 

2) The limited resolution in holography is one facet of the 

general problem caused by the loss of information on a given function 

due to the truncation of the function or its spectrum because of the 

limited window over which the data is collected, cf. sec. 3.4. This 

limits resolution in imaging systems and restricts the accuracy with 

which the spectrum of a time-limited function can be determined in 

spectral analysis. When the object is finite (or the time function 

is band-limited) the object spectrum (or the time function) is 
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analytic and it is possible to continue the truncated function uniquely 
beyond the limited region over which it is known and therefore improve 

resolution or increase the accuracy of spectral estimation. Noise and 

measurement errors in the known portion of the spectrum set the limit 

on the amount of improvement that can be achieved using realistic 
data. Aperture extension techniques reported in the literature 

assume imaging in the far-field region so that the data collected 

correspond to the object spectrum. However, the analogy with the 

problem in spectral analysis suggests that band-limited holograms 

correspond to an analytic function in space regardless of the 

imaging range, cf. sec. 4.2. A formal proof for the case of Fresnel 

holograms is given in the same section. 

3) From the review given in section 3.4, it is noted that the 

majority of object restoration techniques for resolution improvement 

can be traced back to the principle of analytic continuation. These 

techniques, however, can be conveniently divided into two main 

categories : those which perform this continuation directly by 

calculating the function at new points beyond the known region using 
the measured data, and those which perform the continuation indirectly. 

Examples of the latter type include the error reduction technique 

by Gerchberg [124] and the statistical approach based on the maximum 

entropy method by Frieden [125]. 

Although techniques in this latter category give improved 

performance with noise compared to conventional direct methods, they 

have a number of limitations. For example, the technique by Gerchberg 

requires a large number of iterations, each employing two Fourier 

transforms. Moreover, the method assumes the knowledge or estimation 

of the object extent and the effectiveness of the technique depends 
heavily on how close the estimated value is to the correct value and 
the algorithm fails completely if the estimated value is less than 

the correct value. The statistical approach has the basic 

disadvantage that it operates on intensity distributions and therefore 

cannot be applied directly on the complex hologram data. Moreover, 

the method also requires the estimation of a number of parameters 
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which are critical to its performance. Computationally, the method 
has the disadvantage that it requires the solution of a set of 
nonlinear equations and that there are situations in which no solution 

exists [125]. Methods which apply analytic continuation directly 

include the techniques by Harris [118] in optics and by Sato [128] 

in acoustic holography. Although these techniques are computationally 

simpler, they are less robust against noise in their basic form due 

to the ill-conditioning which results from the use of a sinc(x)/x 

model, cf. sec. 5.1. 

4) The new method proposed in this thesis for resolution 
improvement by aperture expansion has the advantage of the simplicity 

of the direct approach to analytic continuation. This method'is based 

on constructing a model to fit the measured hologram data and then 

using this model to predict new data outside the given aperture. The 

prediction accuracy increases as the fitting error between the model 

and the hologram function decreases. This depends on both the model 
function and the model order for a given hologram, cf. sec. 4.5. From 

the'simulation results discussed in section 4.4., models based on 

polynomial expansion in space give optimum results for'the case of 

a single point object. For multiple-point objects, linear terms 

which relate the signal at one point to the signals at the neighbouring 

points are required, see sections 4.6 and 4.7. 

5) Correction of the predicted data is possible using a 
corrective model which is constructed by relating the true-data at 

one half of the available aperture to the data at the same half which 
is predicted using a model based on the other half. The effectiveness 

of the correction process depends on the composition of both the 

predictive and corrective models, cf. sec. 4.8. 

6) As in the case of all analytic continuation techniques, 

noise poses the limit for the effectiveness of the proposed method. 
However, since noise sensitivity is caused by the ill-conditioning of 
the set of the linear equations describing the model, this method 
is more flexible in overcoming the problem of noise in comparison 

with similar techniques which employ direct analytic continuation. 
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In the techniques by Harris (118] and Sato [128] for example, the 

rigid formulation of the problem in the form of a sinc(x)/x model 
based on the sampling theorem leaves little room for attempts to over- 

come the ill-conditioning in the system of equations, apart from 

manipulating the sample positions by using random sampling for example 

which is not always desirable since it affects both hologram acquisition 

and reconstruction. In the proposed method, however, the selection 

of the model used is more arbitrary, with the only requirement from 

the prediction viewpoint that it represents the hologram function 

accurately. This flexibility in the choice of the model type allows 
the stability with noise to be taken into account in the selection 

of the predictive or corrective models. Unfortunately, it is often 
the case that a. model which gives good prediction accuracy suffers 
from high sensitivity to noise. However, as indicated in Chapter 5, 

a compromize can be reached in which the improvement in the stability 

with noise far exceeds the deterioration in the prediction accuracy 

and adequate overall performance is achieved in the presence of noise. 
This approach has the advantage over Sato's technique [128] that the 

stabilization with noise is built into the signal processing algorithm 

and therefore does not affect the way in which the hologram is 

sampled or reconstructed. 

The strategy adopted for stabilizing the performance of the method 

with noise is to use models which result in a triangular form of the 

system matrix. As shown in section 5.4, this triangularization 

counteracts the tendency of neighbouring rows to become equal which 
is the cause of matrix instability. This is achieved since each pair 

of neighbouring rows will be different by at least the last non-zero term of 
the lower order row when the matrix takes an upper triangular form. 

In the polynomial model, the triangular form of the matrix is 

obtained by a gradual truncation of the polynomial. expansion for points 
further down the available aperture and the resulting loss in the 

prediction accuracy necessitates the use of a triangular corrective 

model, cf. sec. 5.6. In the case of the linear model with no poly- 

nomial terms, the triangular form appears naturally as a result of 
the windowing effect when the model is constructed since data 
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contributing in the formation of the model is restricted to one half 

only of the available aperture. In the examples given in sections 5.6 

and 5.7 for the performance with noise using simulated data, both 

1-point and 2-point objects have been imaged correctly from apertures 

obtained by doubling the size of the available aperture with relative 

noise levels of up to 30%. 

7) The linear predictive model described in sections 4.6 and 5.7 has 

a number of advantages which enable it to be used as a universal 

predictive model for the case of multiple-point objects. These advantages 

can be summarized as follows: 

a) Since this model has no polynomial terms, it is of fixed 

composition and therefore can be used for a variety of imaging config- 

urations without the requirement for the optimum model composition to 

be determined as in the case of the hybrid model. In practice, 
determining the optimum model for each imaging configuration is 

inconvenient since it involves a search for the best image obtained 
from a set of models and requires a priori information about the shape 

of the object. 

b) When imaging multiple-point objects, the model gives 

adequate prediction accuracy for it to be used without the requirement 
for additional correction which simplifies the procedure for aperture 

expansion. 

c) Due to its triangular matrix form, the linear model is stable 
in the presence of noise in the hologram data and therefore can tolerate 

errors in the measured data caused by the limited accuracy of scanning 

and measuring the hologram. 

d) The relative insensitivity of the model to variations in the 

object parameters, cf. sec. 4.10, allows the model to be used for a 

wide range of imaging and object geometries including continuous objects. 

e) The stability of the model with round-off errors arising 
from the limited wordlength of the computer and the limited accuracy 

of performing the computations, cf. sec. 5.8, makes it particularly 
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useful for aperture expansion in imaging systems which employ small 

mini or microcomputer systems. 

8) Simulation results using the linear model for expanding the 

aperture in the case of-quasi-continuous objects have indicated that the 

prediction error does not increase significantly with the increase in the 

number of points representing an object of a given width. In fact, 

the error is shown to stabilize at a steady-state value as the case 

of a continuous object is approached, cf. sec. 4.10. This suggests 
that the prediction technique described in this thesis should be 

suitable for use with continuous objects. 

9) Experimental results presented in Chapter 7 have verified the 

basic principles of the aperture expansion techniques including both 

the prediction and correction algorithms for the case of a 1-point object. 
A number of practical considerations limit the accuracy of both image 

reconstruction from measured data and the expansion of the available 

aperture; these include : noise and measurement errors in the 

hologram signal, random errors in the positions of the sampling 

points, and the effect of tilt in the hologram plane. Although correction 

provides a useful means of improving the prediction accuracy, the 

results have indicated that the effectiveness of the corrective model is 

influenced by noise in the measured data which reduce the smoothness 

of the hologram function in the two havles of the aperture. Smoothing 

the hologram data before aperture expansion reduces the effect of 

noise and improves the performance of the correction process. However, 

since this improvement depends on the amount of smoothing employed, 
the optimum smoothing factor would have to be determined for each 
individual hologram which is inconvenient and requires a priori 
information on the object. Improving the accuracy of the hologram 

measurement should also reduce the effect of noise on the corrective 

model. Additionally, more practical applications are concerned with 

multiple-point objects. In this case the linear predictive model 

allows adequate performance without the requirement for correction. 

10) The experimental holographic imaging system'described in 

Chapter 6 demonstrates the advantages of using microprocessor technology 
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in integrating the various aspects of the holographic imaging process 
and reducing the need for special purpose hardware to perform the 

required functions. The system serves to illustrate the capabilities 

of small microprocessor systems in performing the tasks of hologram 

acquisition, image reconstruction and display, in addition to the 

prespects for improving the image quality through signal processing 
means. 

c 
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8.2 Suggestions for Future Work 

The work described in the previous chapters leads to a number of 

areas for improvement and future studies. These will be conveniently 
divided into those related to the theoretical and experimental aspects 

of the work. 

8.2.1 Suggested Future work Related to Theoretical Aspects 

The following theoretical points are believed to be worth 
investigating in the future: 

. Modelling Techniques 

The relative flexibility in the choice of the model which is used 

to represent the hologram function leaves room for investigating 

possible improvements both in the prediction accuracy and in the 

stability of the model with noise. In particular, the following 

points are worth mentioning: 

1) For simplicity, all the predictive and corrective models 
described throughout the thesis are based on an exactly determined 

system of equations. For the polynomial model, for example, the 

resulting function represents. an interpolating polynomial which 

satisfies all the equations and therefore the data fit described 

by the model passes through all the data points. Since such a data 

fit follows the data closely, it would be more sensitive to noise 
in the data compared to the case of a least-squares fit obtained when 
the set of equations is overdetermined. 

2) The approach adopted throughout the thesis to the modelling 

of the hologram signal has been such that the model relies only 

on the hologram parameters without the requirement for any of the 

-object parameters. However, the analysis described in section 4.5 

suggests that a more accurate representation of the hologram signal 
is obtained when other parameters such as the object range and 
location are included in the model function. Although this represents 

a requirement for additional a priori information on the object, this 
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information may be readily available in certain applications. From 

egn. (4.52), it would be expected to obtain better prediction accuracy 
from the polynomial model if the model equation (4.53) is replaced 
by: 

L Ka W=E ai[ 
Z-(dk-xo)ll-1 (8.1) 

i=1 

where the various parameters are as defined in section 4.5. 

3) The results in section 5.4 on the stability of the square and 
triangular polynomial models with noise have indicated that these 

two models represent two extremes in the trade-off between prediction 

accuracy and stability with noise, with the square model giving 

accurate prediction in the case of noiseless data but is highly sensitive 
to noise while the triangular model gives larger prediction errors 
but exhibits remarkable stability with noise. This suggests that some 

compromize between these two extreme cases might be possible. In 

particular, it is attractive to think of an adaptive method in which 
the amount of triangularization in the square matrix is made 

proportional to the noise level in the hologram signal. The model 

matrix Aad in this case would be expressed as: 

Aad = A9q A (8.2) 

where At is the lower triangular part of the square matrix Asq and 

a(0 <a< 1) is chosen to suit the noise level in the hologram signal. 

a=0 for the noise-free case and the matrix Aad reduces to that 

corresponding to the square model. For the poorest signal-to-noise 

ratio anticipated, a=1 and the triangular model is obtained. For 

intermediate noise levels the elements in the lower triangle of Ad 

will be smaller than those in the case of the square model and 

greater than the corresponding (zero) elements in the case of the 

triangular model and therefore a compromize may be achieved between 

prediction accuracy and stability with noise. 

Investigating the Effects of Errors in the Hologram Data on 
Image-Reconstruction 

Errors in the predicted points on the expanded hologram aperture 
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affect the quality of the reconstructed images and therefore set the 

limit on the amount of aperture expansion that is considered useful. 
Since the end product of the imaging process is the generation of 

an image, it is obvious that it is the influence of the errors on the 

reconstructed image, rather than the errors in themselves, that pose 
the real limit on the amount of aperture expansion. Fig. 4.5. 

illustrates this point where prediction errors greater than 200110 

have almost negligible effects on the reconstructed image of a 1-point 

object. The effect of errors in the hologram signals caused by 

amplitude and phase variations in the channel processors is mentioned 
in the literature [85], [79]. ' However, the error in this case is 

assumed to be randomly distributed over the aperture while the error 
due to prediction would be a function of the coordinates on the 

aperture since this error increases towards the edge of the 

expanded aperture. 

8.2.2 Suggested Future Work 91ated to Experimental Aspects 

The following' points summarize a number of areas for improvement 

and expansion on the experimental set-up used and the results obtained: 

1) In the design and implementation of the experimental holographic 

imaging system described in Chapter 6, no special effort has been 

directed towards optimizing the speed and memory utilization throughout 

the various stages of the imaging process. Since mechanical scanning 
causes the major portion of the time delay, a significant improvement 

can be achieved by using arrays to sample the hologram. Moreover, 

the image reconstruction and data processing can be speeded up by 

using multi- processors and/or dedicated signal processing devices. 
For example, an additional microprocessor can be used to compute the 
FFT transform of the individual rows of data corresponding to the line 

scans while the scanning of the aperture proceeds under the control 
of the main processor. Dedicated FFT transformers and signal 
processing devices, such as the AMI S2814Aand the TI TM5320 can be 

used to perform the FFT operation speedily and achieve considerable 
savings on the system memory. 
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2) The accuracy of 
improving on the mechanic 

measurement techniques. 

phase measurement may be 

100 MHz clock. Multiple 

accuracy in general. 

hologram acquisition can be increased by 

gal set-up and increasing the accuracy of 
For example, the quantization error in the 

reduced by increasing the frequency of the 

firing may be used to improve the measuring 

3) The technique described for the digital measurement of the 

phase of the hologram signal using a zero crossing detector should be 

evaluated more thoroughly. In particular, the advantages of the 

technique in improving the range resolution and the effect of using 

short pulses on the accuracy of the phase measurement should be 

investigated. 

4) Experimental results should be extended to the cases-of 

multiple-point objects and continuous objects. 

5) The imaging system may be used to perform aperture expansion 
in two dimensions on both simulated and measured holograms. From the 

analysis in section 5.8 on the effects of limited computation accuracy, 
it appears that only triangular models would be suitable for this 

application due to the limited wordlength of the microprocessor 

system. The floating point routines employed also allow for double 

precision drithmatics to be performed. 
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