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Abstract 

 

The global oil and gas industry have seen an increase in the number of installations moving 

towards decommissioning. Offshore decommissioning is a complex, challenging and costly 

activity, making safety one of the major concerns. The decommissioning operation is, therefore, 

riskier than capital projects, partly due to the uniqueness of every offshore installation, and mainly 

because these installations were not designed for removal during their development phases. The 

extent of associated risks is deep and wide due to limited data and incomplete knowledge of the 

equipment conditions. For this reason, it is important to capture every uncertainty that can be 

introduced at the operational level, or existing hazards due to the hostile environment, technical 

difficulties, and the timing of the decommissioning operations. Conventional accident modelling 

techniques cannot capture the complex interactions among contributing elements. To assess the 

safety risks, a dynamic safety analysis of the accident is, thus, necessary. 

In this thesis, a dynamic integrated safety analysis model is proposed and developed to capture 

both planned and evolving risks during the various stages of decommissioning. First, the failure 

data are obtained from source-to-source and are processed utilizing Hierarchical Bayesian 

Analysis. Then, the system failure and potential accident scenarios are built on bowtie model 

which is mapped into a Bayesian network with advanced relaxation techniques. The Dynamic 

Integrated Safety Analysis (DISA) allows for the combination of reliability tools to identify safety-

critical causals and their evolution into single undesirable failure through the utilisation of source-

to-source variability, time-dependent prediction, diagnostic, and economic risk assessment to 

support effective recommendations and decisions-making.  

The DISA framework is applied to the Elgin platform well abandonment and Brent Alpha jacket 

structure decommissioning and the results are validated through sensitivity analysis. Through a 

dynamic-diagnostic and multi-factor regression analysis, the loss values of accident contributory 

factors are also presented. The study shows that integrating Hierarchical Bayesian Analysis 

(HBA) and dynamic Bayesian networks (DBN) application to modelling time-variant risks are 

essential to achieve a well-informed decommissioning decision through the identification of safety 

critical barriers that could be mitigated against to drive down the cost of remediation. 

Keyword: Decommissioning, dynamic safety model, hierarchical Bayesian analysis, plugging 

and abandonment, 
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Chapter 1: Introduction 

1.1 Outline 

This introductory Chapter presents the background motivation for the increasing need for 

decommissioning offshore oil and gas installations. It also establishes the challenges associated 

with decommissioning and the need for the development and adoption of dynamic safety model. 

Furthermore, the structure of the research is presented to demonstrate the relevance, credence, 

and permanence of the thesis to the readers.  

1.2 Overview 

Decommissioning in the oil and gas industry has been attracting both industrial and research 

talents and will continue to do so for the foreseeable future – the need to decommission offshore 

assets has become an actual business driven by regulations and asset integrity issues. Many of 

the assets have reached their design and economic lives for which maintenance and asset life 

extension activities have become infeasible. The extent of depletion of the reservoir, which tends 

to increase the cost of production through inefficient enhanced oil recovery, thereby leading to 

economically unviable activity also contributed to the need for decommissioning. 

Many of the offshore installations around the world have been in service for over 30 years and 

were put in place without consideration for their removal after they have reached the intended 

design life. There exist associated challenges with each subsystem of an oil and gas field, from 

subsea to topside. For example, in the case of a well plugging and abandonment (hereafter, well 

P&A), every well differs from every other well both in design, configuration and hydrocarbon type 

(oil well or gas well). Furthermore, every layer of a well is dissimilar to the layers before and after 

it, making it overly complex to model a one-size-fits-all solution for every well P&A operation. 

Moreover, due to the long years of service of the structures, it is often difficult to ascertain the 

remaining useful life (RUL) of an ageing facility due to incomplete or lack of inspection and 
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maintenance records, in some cases. In addition, the presence of hidden flaws and structural 

degradation of the platform can further introduce additional unknowns to the integrity concerns.  

Typically, decommissioning activity is a technically extensive and hazardous operation, posing 

risk to on/offshore personnel due to their direct exposure, the environment because of the impact 

of dumped disused structures or hydrocarbon release, and economic risk. The cost of 

decommissioning offshore installations is huge and usually estimated by forecast through Asset 

Retirement Obligation (ARO) with associated uncertainties. Generally, the exact cost of 

decommissioning a platform cannot be explicitly determined as the seabed clean-up and pipework 

removal costs are often shared between many linked installations. The overall removal operation 

precludes a return on investment, making safety one of the core areas of interest both to operators 

and stakeholders alike. Safety assessment of decommissioning operations is often interpreted in 

terms of risk. The risk is, generally, characterised by three categories: risk to on/offshore 

personnel, environmental risk, and economic risk.  

Risk is described as a measure of accident likelihood and consequence of its occurrence (Aven 

and Heide, 2009). Although, there has been no recorded fatalities in the North Sea, during the 

decommissioning operations till date. However, near misses and accidents are a norm rather than 

exceptions during such a time-dependent and complex activity. Due to the cost of remediating 

catastrophic scenarios during- and/or post-decommissioning, it becomes overly necessary for 

operators to ensure absolute safety. For illustrative purpose, the quantitative risk assessment 

carried out on the Ekofisk I field estimated the potential loss of life (PLL) of decommissioning 13 

steel piled jackets (SPJs) for both the leave-in-place and complete removal scenarios to be 8% 

and 29%, respectively (ConocoPhillips, 1999). This result revealed that the probability of a 

catastrophic event for the complete removal scenario outweighs that of the leave-in-place 

scenario. Furthermore, these probabilities represent the sum of all risks over the entire 

decommissioning activity and do not represent the accident evolution over time.  
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1.3 Decommissioning and Abandonment Uncertainty 

The nature and stages of operations required to completely remove offshore installations from 

the field are complex and involve several activities. Some of the activities include site preparation, 

lifting operations, and severance of risers, conductors, and substructures as shown in Figure 1-1. 

Some of the major challenges are the unknown conditions of the structural and/or material state 

and the sparsity of data that may lead to unplanned accidents. To address these challenges, the 

complete inspection and repair (I&R) records must be studied, and an appropriate obsolescence 

mitigation and management plan implemented. However, both the I&R records and the 

obsolescence strategies are either incomplete or lacking. In addition, the physical, chemical, and 

mechanical failures associated with the operations need to be captured in their entirety to aid in 

the safety assessment analysis. These failure modes and evolving reservoir condition are all 

variables of uncertainty.  

 

Figure 1-1 A typical steel jacket platform. 
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1.4 Need for Dynamic Safety Analysis 

Decommissioning activity is known to be as expensive, risky, and complex as a capital project. 

According to the Oil and Gas UK decommissioning survey report, the total anticipated expenditure 

for decommissioning operations on the United Kingdom Continental Shelf (UKCS) between 2015 

and 2024 is £16.9 billion primarily due to the new projects entering the survey timeframe (OGUK, 

2020). The cost of getting it wrong goes beyond remediation and liabilities: it could lead to a legal 

battle between the operators and stakeholders and/or the local authorities. In particular, the cost 

of removing topsides, steel pile jackets and subsea infrastructure alone accounts for about 18 

percent or £3 billion of the total decommissioning expenditure forecast over the next 10 years. 

Figure 1-2 depicts the forecasted well decommissioning activities “making safe” in the North Sea. 

For this reason, it is important to ensure the safe removal of all offshore installations in a manner 

that will strengthen operators’ reputation and stakeholders’ trust. The activity is often the last of 

the available options pursued by producers after all other options such as late-life extension and 

opportunity for re-use have proven infeasible. Due to regulation demands, an oil and gas conduit 

is expected to be made safe through flushing and cleaning to the extent possible, all risers and 

conductors severed and retrieved as required, and the site returned to its original state. Many of 

the offshore installations have been exposed to the harsh environments for over 30 years which 

is exceedingly above their usual design life of 25 years. This, in turn, introduces additional 

uncertainty to the associated risks of decommissioning. In addition, due to weather fluctuations 

and other time-dependent factors such as setting of cement plugs during well P&A, a dynamic 

safety model is required to capture, assess, and reassess the likelihood of an undesirable 

occurrence. The dynamic safety model is based on incorporating statistical methods through 

Hierarchical Bayesian Analysis with Bayesian networks to conduct comprehensive probabilistic 

risk analysis on the accident model.  
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Figure 1-2. Forecasted well decommissioning activity in the North Sea (OGUK, 2020). 

 

1.5 Research Motivation 

One of the notable challenges of probabilistic risk analysis is the sparsity of failure data required 

as input to examine the potential occurrence of a futile decommissioning operation. The current 

industrial practice is to obtain failure data from analogous industries such as mining, aerospace, 

and even drilling operations to quantify the failure events using probabilistic risk analysis. This is 

due, in part, to the lack of complete historical data and mainly because decommissioning 

operations are dictated by many factors across regions. Some of the factors include operators’ 

internal policies, well and platform types, fluid severity, among others. To this end, it is necessary 

to develop a framework that can aggregate the available failure data in the form of a distribution 

with considerable confidence level as input in the probabilistic risk analysis. It is worth mentioning 

that the focus of this thesis is to develop the proposed model and validate its applicability through 

real life case studies. The proposed approach has not been adopted in the decommissioning 

analysis thus far.  
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1.6 Thesis Structure 

This thesis is written in a chronological format. The outlines of the succeeding Chapters are as 

presented below: 

Chapter 2 presents the aim and objectives of the research work to the safety and risk analysis of 

offshore oil and gas decommissioning programme with respect to a complete removal operation. 

Chapter 3 discusses the critical review of literatures relevant to the research work. These include 

a comprehensive description of decommissioning processes, well plugging and abandonment 

operations and probabilistic risk analysis. 

Chapter 4 introduces the failure analysis framework development which consists of the accident 

scenarios analysis and evolution model including Bayesian network problem formulation, 

mapping techniques and probability updating and adapting analysis. This Chapter is presented 

and published in: the Proceedings of the 38th International Conference on Ocean, Marine and 

Arctic Engineering, OMAE2018-68375, Spain, Madrid. 

Chapter 5 presents the failure analysis of decommissioning and abandonment and introduces the 

Hierarchical Bayesian Analysis model incorporated with Bayesian network with appropriate 

relaxation strategies to account for the effects of uncaptured hazards, parameter modelling and 

overall model uncertainty. This Chapter is published in the Journal of Process Safety and 

Environmental Protection. 

Chapter 6 presents the dynamic risk analysis of well plugging and abandonment under uncertain 

condition and limited data. Fault tree model is developed for the permanent well P&A operation 

and mapped into a corresponding Bayesian network to investigate the most probable cause of 

failure through diagnostic, prognostic, and sensitivity analyses. This Chapter is published in the 

Journal of Reliability Engineering and System Safety. 
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Chapter 7 presents relevant case studies based on published technical documents and lessons 

learned through the Elgin well plugging and abandonment operational failure. 

Chapter 8 demonstrates the applicability of the proposed methodology in its entirety using 

presented case studies in Chapter 7. The accident models are analysed and verified through 

sensitivity analysis. The framework for the decommissioning operations covering the focused area 

of this thesis is presented in Figure 1-3 below. 

Chapter 9 presents the application of the safety model for estimating the economic risk values of 

causations using field-specific design parameters to develop a multi-factor regression model. It 

further discusses the conversion method of failure probabilities into loss values and validated the 

risk profile by way of an integrated dynamic-diagnostic analysis.  

Chapter 10 presents the discussion following from the obtained results. It discusses the novelty 

and contribution of the research work particularly focusing on how it benefits both the academic 

community and the industry, the strength of the proposed methodology including the constraints 

and limitations supporting the safety design philosophy.  

Chapter 11 summarises the findings of the research, proposes recommendations for future 

research based on objective quality evidence from observed results and suggested the future 

work to be carried forward from this research by the wider scientific community. 
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Figure 1-3. Framework of Decommissioning Operations. 
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Chapter 2: Main Aim and Objectives 

2.1 Outline 

This Chapter outlined the aim and objectives of this research in terms of the scope and the 

pathways to achieving the intended goals. It also presents the areas of unanswered questions 

and how those areas have been thoroughly explored including own contributions to the wider 

applicability of decommissioning operation. 

2.2 Research Scope 

The scope of this research covers the complete decommissioning of offshore oil and gas 

installations and extends to the model development of a combined safety assessment algorithm 

from well plugging and abandonment operations to jacket structures removal. 

2.2.1 Research Question 

Safety of personnel, the environment and oil and gas producers’ reputation are all important when 

planning for decommissioning. Although, the risk associated with humans should not be limited 

to numbers alone due to many interacting factors such as technical, safety, environmental and 

socio-economic considerations that must be balanced. It is, however, pertinent to develop a 

strategy for which metrics can be used to assess the extent of safety available to 

decommissioning in its entirety. Both qualitative and quantitative risk analysis have been 

extensively adopted to proffer solutions to health and safety challenges. However, the quantitative 

risk analysis can better support the estimation of decommissioning figures in terms of cost and 

risk. Many of the activities involved in decommissioning an oil and gas field are not directly related 

to well established planning templates and some infrastructures are shared between different 

platforms, making it especially difficult to determine the actual economic risk of decommissioning.  
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Therefore, this thesis set out to answer the following research question: Can all the attributes of 

planned and evolving uncertainties, encountered during decommissioning and abandonment 

operations, be modelled using advanced logic formalisms and dynamic integrated safety 

assessment framework? 

2.2.2 Research Aim 

The aim of this thesis is to develop a complete and comprehensive dynamic safety framework for 

decommissioning operations such as jacket substructures and well plugging and abandonment. 

This will facilitate the identification of both planned and unplanned (evolving) risks, because many 

of the risk assessment methodologies applied in the offshore decommissioning industry have 

focused on static (planned) risks and the anticipated hazards are experience-driven involving 

subjective failure data. To capture the overall inherent hazards, a dynamic safety and risk 

assessment model is highly necessary. 

2.2.3 Research Objectives 

The primary objective is to develop a dynamic safety assessment model using prior and posterior 

failure probabilities rather than static failure probabilities. To this end, the primary objective is sub-

divided into the following: 

(i) To identify gaps in the literature by examining the current state of knowledge related to 

offshore decommissioning and oil and gas well plugging and abandonment. 

(ii) To demonstrate the applicability and suitability of a gamma distribution function using 

Hierarchical Bayesian Analysis as a tool for estimation of failure data with 95% confidence 

level (Addressed in Chapters 4 and 5). 

(iii) To develop a safety analysis based on Hierarchical Bayesian Analysis (HBA) model to 

quantify the failure probabilities of offshore installations decommissioning operational 
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hazards and demonstrate the applicability of the proposed model on a permanent 

abandonment case study. (Addressed in Chapter 6). 

(iv) To develop a probabilistic risk analysis for offshore well plugging and abandonment 

operations built on advanced logic formalism to address the issues of uncertain reservoir 

conditions and limited failure data (Addressed in Chapters 6 and 7). 

(v) To develop dynamic risk-based sensitivity analysis model that can be applied to each 

phase of decommissioning and abandonment operations subject to time-dependent 

accident evolution (Addressed in Chapter 8).  

(vi) To develop a dynamic economic risk analysis based on multi-factor regression model and 

failure probability to forecast the future value of money in terms of loss values incurred 

from impact of failure. (Addressed in Chapter 9). 

(vii) To summarise the main findings, concluding remarks from obtained results, research 

contribution, and propose potential outlook for further research. (Addressed in Chapters 

10 and 11). 

For objective (i), the results are envisaged to be achieved through critical review of literature 

consisting of decommissioning and abandonment operational sequence and probabilistic safety 

analysis related topics with emphasis on academic publications found on ScienceDirect, Scopus, 

Taylor & Francis and Google Scholar, technical reports from decommissioning industry, 

regulatory bodies, and Joint Industrial Project, JIP (ABB, 2017) reports. The quality of the critical 

literature review outcomes is validated through peer review process in scientific journals and 

remarks from integrity, safety, and risk engineering experts. 

For objective (ii), the results are envisaged to be obtained through the mathematical model 

governing the Gamma distribution function and are coded in MATLAB due to its numerical 

complexity and unknown parameters that need to be adequately represented. The quality of the 

gamma distribution model is embedded in the Hierarchical Bayesian Analysis (HBA) and the 
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recommendations taken from industry experts (Decom World). Although, Weibull distribution is 

used to compare the relevance of the HBA in this work, it was not presented in the published 

paper.  

For objective (iii), the system description leading to the hazard identification analysis are 

envisaged to be developed through comprehensive and systematic review of literature, wellbore 

schematic, and technical documents on the permanent abandonment of oil and gas wells. The 

dynamic safety model formulation, governing equations, boundary conditions, parameters 

introduced, and assumptions are validated through comments from industry professionals (for 

example, Shell UK decommissioning managers) during OMAE 2018 conference, academic and 

research community via article peer-review processes, and process safety experts at the Center 

for Risk, Integrity, and Safety Engineering (C-RISE) research group in Canada. 

For objective (iv), the appropriate relaxation strategies are envisaged to be built on the premise 

that reservoir condition is unknown at the time of cessation of production due to a number of 

reasons such as the lack of maintenance records or insufficient documentation of lessons learned 

during maintenance, inspection, and repair over the service life of the well to be abandoned. In 

addition, relevant inputs are obtained from source-to-source including but not limited to wellbore 

schematics, technical documents, published papers, decom world and oil and gas authority’s 

(OGA) databases depending on the methodology requirements. The results emanating from the 

case study adopted to justify the applicability of the developed safety analysis model are reviewed 

by the research partners at C-RISE and by the reliability engineering and system safety journals 

peer reviewers. The second part of this objective focused on the development of link and leak 

probabilities to model the effect of limited failure data on the result accuracy. The link probability 

is directed towards ignorance modelling, since the underlining assumption is that the reservoir 

condition is uncertain, and the degree of belief must account for this uncertainty. The leak 

probability, on the other hand,  strive to account for the potential occurrence of an accident even 
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when there is no accident contributory factor present. One instance when this scenario occurs is 

when all the accident causals have not been completely captured or an indirect causal has not 

been modelled. To that end, the model response is improved through the implementation of 

sensitivity analysis to control key performance parameters based on Accident Precursor Data 

(APD). 

For objective (v), all inputs are envisaged to be obtained from preceding objectives and 

experiential learning based on Bayesian inference is applied to the matured model to investigate 

the identified key performance parameters and their influence on the responsiveness of the 

accident scenarios. Safety critical analysis is examined, and the quality of the developed model 

is validated through peer-reviewed comments and remarks from safety exert partners at the C-

RISE research group. It is worth to mention that the accuracy of the developed dynamic safety 

model herein depends on the quality of results obtained from the previous objectives in their 

entirety. Therefore, the comprehensive reviews of each preceding objective by experts at C-RISE 

invariably confirm the credence of objective (v). 

For objective (vi), the accident model, top event failure estimation and economic risk analysis 

formulation including the mathematical model used to obtain the cost data to perform dynamic-

diagnostic forecast are envisaged to be validated through a parameter-driven sensitivity analysis. 

In addition, the HBA results used to obtain the failure probabilities was similar to those obtained 

from objective (ii).  

For objective (vii), the correctness of the conclusions drawn from the research are envisaged to 

be validated through the summary of main findings emanating from the analysis of the developed 

framework. 
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Chapter 3: Critical Review Of Literature 
 

3.1 Outline 

This Chapter outlined the relevant literature, addressing the current state of knowledge. It 

provides the width and depth of the decommissioning of offshore oil and gas installations 

processes and options. The elements of well plugging and abandonment strategies and steel 

piled jackets (SPJs), are also discussed including a comprehensive presentation of the dynamic 

safety analysis techniques. 

3.2 Decommissioning Processes 

Decommissioning is defined by the International Association of Oil & Gas Producers (IOGP) as 

the cessation of production of hydrocarbons, making safe the well reservoir and the removal of 

offshore installations and the subsequent site remediation to its original state (IOGP, 2018). The 

decommissioning process involves several stages, typically sequential – from well plugging and 

abandonment, structural (topside and jackets or concrete substructures) removal, to the 

severance of pipes, risers and conduits connecting the platform to the oil and gas treatment facility 

subsea. The process is experience-driven, requiring sophisticated removal techniques and 

dedicated barges or cranes to ensure safety to the personnel, assets, and the environment. The 

structures to be decommissioned are characterised by complexity and hydrocarbon-containing, 

with interacting subsystems. These interactions among the subsystems are often dynamic in 

nature, for example, the setting of cement during plugging and abandonment operation, weather 

windows or degradation of mechanical plugs, among others. To a large extent, noncompliance 

due to human factors (Song et al., 2016), cutting and lifting operations, and equipment failure are 

imminent during decommissioning operation, making the process susceptible to accidents 

(Abdussamie, 2018). From the decommissioning incident database (DID) through the Joint 
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Industry Project guidance for safety case management (ABB, 2017) findings, lack of failure data 

and comprehensive lessons learned, a significant level of decommissioning incidents from recent 

projects revealed that no life has been lost so far from a total of 562 logged incidents (OGUK, 

2020). However, 22 incidents were considered to have been potentially fatal and another 11 was 

reported to have resulted in permanent injury. 22 incidents are associated with lost time injuries, 

33 medical treatments with another 34 cases of medical aid, 159 near misses and 313 involving 

structural flaws with potential catastrophic condition (Figure 3-1). 

 

Figure 3-1. 562 decommissioning incidents from 2005-2015 (OGUK 2015). 

 

In recent decades, many high-level decommissioning and abandonment accidents have been 

recorded. For example, the plugging and abonnement (P&A) operation in the G-4 well of the Troll 

Field on the Norwegian Continental Shelf (NCS) operated by Statoil, and the Elgin well plugging, 

and abandonment operational failure operated by Total are notable cases where cascading of 

events have resulted in economic and assets losses (Fam et al., 2020; Total, 2013). In addition, 

lifting, cutting, and towing operational accidents such as the Bohai number 2 oil rig, the mobile 

offshore drilling unit (MODU) ROWAN GORILLA I and, the West Gamma accommodation jack-
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up rig incident were considered some of the catastrophic accidents in the oil and gas industry. In 

the latter scenario, structural failure, loss of towline and flooding were identified as the main 

causes of the accident (Vinnem, 2007). More recently, Fang and Duan (2014) reported a typhoon 

experienced on the CNOOC Offshore Oil 298 project during transportation resulted to 68 fatalities 

in 2006. For this reason, it is necessary to develop a probabilistic safety model capable of 

assessing risks prior to incidence occurrence. Probabilistic Safety Analysis (PSA) is a standard 

technique for evaluating the safety of complex and critical engineering systems. This technique 

is applicable to all phases of the offshore decommissioning life cycle – from cessation of 

production, well P&A, topside and substructure removal to transportation onshore. The primary 

objective of safety assessment techniques is the identification, quantification, and evaluation of 

all potential hazards to prevent them and subsequently mitigate the residual risk. It is important 

to integrate management oversight and engineering analyses to formulate a comprehensive and 

systematic approach to effectively manage complex system risks (Fam et al., 2021a; Fam et al., 

2021b; Johnson et al., 2021; Cepin & Mavko 1997). Decommissioning safety primarily focuses 

on prevention and mitigation of major accidents emanating from personnel exposure, assets 

losses and environmental hazards. The key steps in the safety assessment of decommissioning 

operation are hazard identification, failure analysis, risk assessment and management. Hazard 

identification steps primarily identify all potential hazards associated with the decommissioning 

activities and may analyse how these hazards interact and evolve into accidents (Rathnayaka et 

al., 2010).  

Risk can be used as a parameter to measure offshore decommissioning safety and it is 

quantitatively expressed as a product of probability and its corresponding consequences (Fam et 

al., 2021a; Fam et al., 2021b). Risk management involves the techniques to systematically work 

with the risk information to prevent, control and mitigate the associated losses due to personnel 

exposure. The aggregated processes of risk quantification and estimation, risk evaluation, risk-
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based decision-making, and design improvement (Khan et al. 2015; Modarres 2006), all constitute 

risk management. To objectively quantify and estimate the risks associated with 

decommissioning, an accident scenario modelling technique has proven effective (Nichol et al., 

2000). The accident scenario modelling helps to develop an appropriate preventive measure 

focusing on the overall elements of a decommissioned platform – from causations to safety 

barriers and consequence modelling.  

Accident models give detailed conceptualisation of the characteristic accident, and essentially 

display the relationship between causes and effects in its entirety. They are risk assessment 

technique to explain the causes of accidents (Sarvestani et al., 2021; Zhang et al., 2021; Qureshi, 

2007). 

3.3 Substructure Decommissioning Strategies 

3.3.1 Opportunities for Re-Use.  

The cost of decommissioning is as high as those of capital projects. For this reason, options to 

extend the life of an asset or re-use often come ahead of decommissioning. The legal obligations 

also put pressure on the operator, in terms of prohibiting the dumping and leaving offshore 

installations wholly, or in part, on the sea (OSPAR, 1998). Due to technical difficulties associated 

with the removal of offshore jacket footings, the decommissioning team must explore every 

possible non-oil and gas applications for the platform. The re-use opportunity involves the detailed 

review and examination of the feasibility of other options. The lack or insufficient maintenance 

data may introduce uncertainty into the review, and this can influence the decision to re-use or 

decommission the installations. The remaining useful life (RUL) of these structures are often 

analysed using appropriate stress analysis software tools such as SACS, ANSYS, and Abaqus 

amongst others (Varde et al., 2014) and experiment-based approach (Ahmadzadeh and 

Lundberg, 2013). For instance, Ramirez-Ledesma et al (2021) modified the RUL equation for 
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offshore platforms pipes and plates through characterisation of their  chemical compositions, 

microstructures, and mechanical properties. Qin et al (2021) predicted the RUL intervals based 

on constant stress accelerated life test data. The prediction interval was assessed using Monte 

Carlo simulation. 

 

3.3.2 Partial Removal.  

The partial removal involves the separation of the upper part of the jacket structure from the 

footings. The re-use of jacket structure is associated with its own risk, but the cost and safety 

aspects of partial and complete removal are relatively higher. This is expected as the partial 

removal involves cutting through the jacket legs including the pontoon and diagonal bracings. The 

depth at which the jacket is severed depends on existing local and international regulations. 

OSPAR 98/3 recommends the nominal depth of cut to be approximately 51.2 m above the seabed 

to avoid cutting through external and internal piles including the layers of grout associated with it 

(OSPAR, 1998; IMO, 1989; Shell, 2017). 

 

3.3.3 Complete Removal.  

The complete removal of jacket structure can be performed using reverse installation method or 

single lift vessels (SLVs). The reverse installation is a method of re-floating and towing to shore. 

This is, typically, the most acceptable option for removal by all concerned stakeholders. However, 

the risk associated with this method is higher than for other options. It is classified into stage-wise 

operation: Offshore preparations, attachment of additional buoyancy, towing and dismantling. The 

offshore preparations involve completely severing all the conductors and making safe the internal 

buoyancy chambers. It is worth mentioning that the seals must be fit-for-purpose and checked 

rigorously to avoid unplanned surprises. The high-pressure air pump is used to displace all 

seawater in the legs and flooded members and consequently de-ballasted and held in place by 
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its own weight on the seabed. The additional buoyancy attachment is to compensate for the heavy 

weight of the jacket due to the presence of steel piles and grout around the piles and inside the 

pontoon legs. The towing and dismantling stages are carried out accordingly depending on the 

exact disposition of buoyancy and flooded compartments. The SLV, on the other hand, has a 

more technical advantage than the reverse installation method due to its proven feasibility to 

remove the whole jacket in one piece. The SLV is considerably expensive to hire but proven to 

satisfy the technical, engineering, safety and environmental impacts assessment when compared 

to the reverse installation option (Ahiaga-Dagbui et al., 2017; Shell, 2017; Rassenfoss, 2014). 

3.4 Well Plugging and Abandonment 

The need to permanently plug and abandon a well after it has reached the end of its life cycle is 

driven by several factors, some of which are economic reasons and extent of formation fluids 

depletion in the reservoir, among others. The primary objectives of a Well P&A operation are to 

prevent the discharge of formation fluids to the environment through leakage pathways, and also 

to create a barrier between formation fluids and fresh water (Johnson et al., 2021; Nicot, 2009). 

To protect operator’s planned financial commitments, permanent well abandonment operation is 

often carried out with the intent that the well will remain sealed forever. However, plugging a well 

permanently without failure due to degradation over time is not realistic (Miyazaki, 2009) and a 

difficult engineering standard when compared with the 30- to 40-year design life expected of most 

oil and gas installations. For this reason, inspection and remediation are as important as adequate 

plugging and abandonment. 

3.4.1 Well P&A Categories 

Well P&A operations are categorised as shut-ins, temporary or permanent. In a shut-in scenario, 

the well is typically plugged for economic reasons and can be side-tracked when the appraisal 

proved worthy. The temporary abandonment is done with the intention to re-enter the well in the 
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foreseeable future, and the well is often referred to as a ‘suspended’ well. The design intent of a 

permanent well abandonment operation is such that the well cannot and should not be re-entered. 

Permanently plugged and abandoned wells represent the worst-case scenario attributed to all or 

most of the current and future P&A operations in terms of (i) the subsea environment (ii) the 

unknown nature of the reservoir, and (iii) wellbore dynamics. As a result, permanent P&A is a 

suitable case study for analysing the safety risks. To that end, the plugged and abandoned well 

is designed to maintain an everlasting integrity, so the well barriers and mechanical plugs put in 

place during P&A operations are intended to be permanent. The plugging material employed 

should ensure an integrity period that is, as a minimum, twice the planned abandonment period 

(NORSOK, 2004).  

The procedure for permanently plugging and abandoning a well is such that mechanical or cement 

plugs are set in the wellbore at specific intervals to disallow hydrocarbon-containing fluid flow. 

The P&A process often requires a workover rig and cement is pumped into the wellbore. The P&A 

operation duration is dependent on the number of plugs planned to be set within the well.  

3.4.2 Critical Nature of Well P&A 

During decommissioning, it is important to isolate the oil and gas well(s) from the production 

facilities and careful compliance with the national regulations, operator’s standards, and 

contractor’s code of practice, to avoid surprises that may lead to a chain of undesired events. Due 

to ageing, the plugging and abandoning of aged wells come with several risks, which could range 

from low- to high-levels of risk. One of the major challenges is that every well differs from every 

other well, even within the same field, in design and construction. Similarly, due to operational 

completions and interventions carried out on the well over time, proper documentation is often 

lacking, or even misleading in some cases. It is not uncommon that every layer of a depositional 

formation bears no resemblance to the layers above and below it (King and King, 2013). These 
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uncertainties necessitate robust and comprehensive risk reduction techniques to tackle the 

incident-prone and hazardous operation. 

3.5 Well P&A Techniques 

The plugging and abandonment of oil and gas wells often require that oilfield cement (or resin, 

which is currently under study) is injected into the wellbore and mechanical plugs are strategically 

placed at specific intervals to prevent gas migration and/or oils from leaking through various failure 

modes within the wellbore as shown in Figure 3-2. The bottom plugs are first set while the tubing 

is retrieved uphole. This is followed by placing stopped plug for the rig-based or balanced plug for 

the rigless method. The casings are then cut to a certain depth – usually 5m Below Mudline (BML). 

The need to ensure the integrity of permanent well P&A is driven by the desire to protect the 

environment. Although, the offshore industry regulation in the 20th century was focused on the 

need to protect the oil and gas resources and not the environment (NPC, 2011). The requirements 

and regulations governing well P&A operations vary for different countries due to contrasting 

geological formations, pressure levels in the wellbore and well geometry. Typically, a common 

requirement is that minimum of one permanent well barrier must be placed between well surface 

and a potential source of flow (Schoenmakers, 2014). Wells are designed and constructed as 

pressure vessels whose primary function is to contain and allow the flow of formation fluids. Well 

P&A is, therefore, a process of plugging the well using cement and mechanical plugs to prevent 

leakage of formation fluids at various but specific locations in the wellbore. There are currently 

two techniques used for plugging and abandoning wells, that is, the rig-based and the rigless 

methods (Rassenfoss, 2014; Schoenmakers, 2014; Kirby et al., 2004). The rigless method is 

further divided into the coiled tubing (CT) and the through-tubing (TT) categories. The plugging 

and abandonment selection criteria are largely driven by economics, type of well, accessibility, 

regional and national regulations, and associated risks.  
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Figure 3-2 Permanent Well P&A Schematic 

3.5.1 Rig-Based method 

The rig-based method involves plugging the well with cement and mechanical plugs, severing 

and retrieving the tubing using either an existing platform or mobilising a new one. The operation 

is more convenient and relatively flexible but can be overly expensive, especially in the case of 

mobilisation, because of the cost of daily hire. This method, however, is applicable to all wells 

because it can handle pressure surges or highly deviated wellbore (Kierans et al., 2004). 

3.5.2 Rigless method 

The rigless method involves a series of remotely controlled steps to permanently plug a well. It 

can be achieved with the help of coiled tubing, CT or through-tubing, TT techniques. For the CT, 

the kill-weight fluid, which is intended to counterbalance the wellbore pressure is delivered down 

the CT (Rudnik et al., 2013; Kirby et al., 2004). The CT is similar to the rig-based due to its 

capability to retrieve tubing and circulate cement downhole, although the energy required to 

perform the operation is high and can be relatively expensive when compared to TT. CT is widely 
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adopted the world over but often required in specialised and or exceptional scenarios where wells 

remediation has to be done before abandonment (Kirby et al., 2004; Kaiser, 2017). The TT, on 

the other hand, involves pumping kill-weight fluid and cement downhole through the existing 

tubing. This method is the most efficient and cost effective but, not applicable to all wells (Rudnik 

et al., 2013). This is, especially due to the risk of formation damage inherent in killing the well. 

From the foregoing, the concept of Design for Decommissioning (DfD) is the current best practices 

in the offshore decommissioning industry. The DfD holds that any assets removal operation 

offshore must satisfy the Comparative Assessment (CA) policy. The CA allows for the 

comprehensive balance between technological, safety, economic, social and environmental 

impact assessment prior to a decision to adopting a selected decommission strategy. This 

objective selection effort does not permit oil and gas producers to decide at will without satisfying 

both regional and international conventions. Based on this, Figure 3-3 illustrates all aspects that 

need to be considered when designing for offshore decommissioning, but only the highlighted 

areas (in red) are considered in this thesis. For instance, a balance between technological, safety, 

environmental, social, and economic considerations of a decommissioning project must be 

ensured to provide a complete turnkey operation. To achieve this, advancements in technology 

for the removal, reuse and recycling of the retrieved assets must be explored. Safety 

consideration deals with data validation and uncertainty management. In the context of 

environmental consideration, sites and facilities characterisation should be accorded 

considerable level of effort. The decontamination strategy for the sites seeks to address social 

impact while adopting the least expensive methods for decommissioning the installations. To that 

end, the operation is constrained by strict guidelines and regulations by both regional and 

international bodies, and an environmental impact assessment developed where the benefit of 

adopting selected decommissioning methodology is laid bare including the case for hierarchical 

choice – that is, whether to extend assets life or to decommission. 
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Figure 3-3 Review Framework for Decommissioning and Abandonment. 

 

3.6 Current Industrial Approach to Safety 

3.6.1 State of Knowledge 

Decommissioning and abandonment safety focus mainly on the prevention and mitigation of 

accidents to offshore personnel, loss of assets and contamination of the environment. The 

evolution of such accidents can lead to hydrocarbon release, fire, and explosion when an ignition 

source is present. To tackle the decommissioning and abandonment accidents effectively, it is 

necessary to develop the overall accident scenarios model. A comprehensive accident scenarios 

model provides an exhaustive formulation of accident characteristics, and fundamentally depicts 
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the cause-consequence relationship among the contributory factors (Fam et. al, 2021a; Qureshi, 

2007). 

However, several accident scenarios models have been developed to address the causes and 

consequences of complex engineering systems. For example, fault trees (FT), event trees (ET), 

critical path model, petri nets and Bayesian networks are common forms of such models (Kamil 

et al., 2019; Abimbola et al., 2016; Adedigba et al., 2016; Khakzad et al., 2013). These models 

are built on cascaded events emanating into an undesired occurrence in systematic hierarchies 

rather than causations from single chain of events (Khan et al., 2021; Ding et al., 2020; Hollnagel, 

2002; Hollnagel and Goteman, 1982). The concept of cascading of events, generally referred to 

as the Domino Effect Theory, was widely adopted in diverse industries to investigate the cause-

consequence relationship in an accident scenario (Kamil et al., 2019; Ding et al., 2019). It thrives 

on the idea that an accident cannot occur if any causation factor is disconnected or eliminated 

from the chain of events leading to the accident. The strength of the Domino Effect Theory is in 

its ability to model simple to complex sequential accidents. It is not able to handle nonlinear 

interactions among accident causations. 

A suitable model for illustrating the causes of accidents in complex engineering systems are called 

“epidemiological accident models (EAM)” (Zhang et al., 2021). The model describes the evolution 

of accidents and uncaptured but unavoidable hazards occurring concurrently in space and time. 

The EAM is based on the argument that the occurrence of an accident is dictated by the combined 

interaction of accident-induced agents and environmental elements capable of compromising 

safety. The EAM provides the basis for which complex engineering systems safety are addressed, 

a process beyond the capability of the sequential accident models. One of such EAMs is the 

Swiss Cheese Model (SCM) used to demonstrate how the human element and organisational 

failure independently contribute to the accident evolution process with associated multi-attribute 

causations (Underwood and Waterson, 2014).  
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The SCM is especially, suited to the prevention of accidents emanating from human factors. The 

structure of the SCM is such that the primary cheese slices are sequentially positioned along the 

accident causation path. The cheese slices depict the safety barriers put in place to prevent the 

accident, and the holes on the first and through the cheese slice represent the uncaptured or 

hidden hazards. The holes on the last cheese slice represent unsafe acts that can compromise 

the overall integrity of the relevant safety barriers (Rathnayaka et al., 2011; Katsakiori et al., 2009). 

The holes change as the failure mode changes. If the holes are aligned, all protective safety 

barriers would have failed, making the occurrence of an accident imminent.  

Modern accident models have been developed to address the overall system characteristic 

performance rather than focusing on the individual cause-consequence and EAM formulations 

discussed above. One of such models is the systemic accident model (SAM), which holds that 

accident evolution is as a result of variation in the system (Stroeve et al., 2009). The SAM 

assumes that engineering systems constitutes various elements constantly interacting in dynamic 

equilibrium through information and control in a feedback loop. Hollnagel (2002) and Qureshi 

(2007) established that accident occurs due to flaws in the complex interactions among 

contributing elements involving human, organisational, physical and software system 

components. Some notable SAM have been developed and implemented to address hierarchical 

socio-technical framework (Rasmussen, 1997) and the systems theoretical accident model and 

processes (STAMP) that views the occurrence of accidents as a function of inadequate control 

and implementation of relevant safety barriers connected with system constraints captured at the 

planning, development, design, and operational phases rather than individual component failures 

(Rathnayaka et al., 2011a; Leveson, 2004). 

Other SAMs include CREAM (Cognitive Reliability, Error and Analysis Method); FRAM 

(Functional Resonance Accident Model) and DREAM (Drivers Reliability, Error and Analysis 

Method) (Leveson, 2020; Leveson, 2004). The CREAM utilizes the cognitive characteristics of 
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human element as causation factors for assessing the end consequences of system reliability 

and safety. The FRAM models the resonance behavior of a dynamic component of the system 

and how it induces hazards that can initiate series of interconnected chain of events leading to an 

accident. The DREAM model is an extension of the CREAM, particularly, developed to address 

the drivers peculiar to traffic systems accidents (Hollnagel, 2004; Hollnagel, 1988). It is worth 

mentioning that the SAMs are generally suited for dynamic and nonlinear interactions among 

accident contributory factors, including where potential safety issues may arise due to resonance.  

More recently, efforts have been made to numerically assess the cause-consequence relationship 

among interacting factors that influences the system safety under changing conditions. To that 

end, probabilistic theory has been developed and adopted in diverse industry to study the cause 

and consequence of failures in the system based on the theory of causality. For example, Pearl 

(2000) modelled a structural causal formalism to indicate the accident evolution and describe the 

probabilistic causal model as a binary possibility of occurrence and non-occurrence. 

Many of these models – EAM, SAM and their forms – rely on the availability of failure data and 

cannot thrive where data sparsity is a norm as is the case with offshore decommissioning and 

abandonment operations. To address this issue, fuzzy set and evidential theory have been 

developed, adopted, and applied to sizeable numbers of industrial safety issues aimed at 

providing an analytical method of obtaining failure probabilities from expert judgement. For 

instance, Lin and Wang (1997) combined fuzzy set theories using experts elicitation to 

evaluate the failure probability of events causation for a robot drilling system. Their work was built 

on the triangular and trapezoidal fuzzy numbers. The fuzzy set was incorporated with fault tree, 

in a term referred to as Fuzzy Fault Tree Analysis  (FFTA), to calculate the failure probabilities 

with fault tree analysis (FTA) (Tyagi et al., 2010) and implemented for analysing oil and gas 

transmission pipelines safety risks (Yuhua and Datao, 2005). Sahin and Kum (2015) proposed a 

model to investigate the marine accident in arctic and harsh environment using FFTA and 

https://www.sciencedirect.com/science/article/pii/S0029801815004734#bib12
https://www.sciencedirect.com/topics/engineering/fuzzy-set-theory
https://www.sciencedirect.com/topics/engineering/failure-probability
https://www.sciencedirect.com/science/article/pii/S0029801815004734#bib24
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Lavasani et al (2015) utilised the same FFTA to quantify the risk analysis of leakage in abandoned 

oil and natural-gas wells. Forms of FFTA has been combined with the Analytic Hierarchy Process 

(AHP) to conduct risk assessment during a fire and explosion accident for steel oil storage tanks 

in the process industry (Shi et al., 2014). While fuzzy set and evidence theory have proven to be 

promising in estimation of failure probabilities where there are lack of historical data or sufficient 

knowledge of system uncertainty, it cannot provide the needed precision in estimation due to the 

subjective nature of expert elicitation. The expert elicitation introduces additional uncertainty to 

the accident model and is not suited for decommissioning and abandonment application. The 

existing accident models, able to address accident causations acting sequentially and non-

sequentially, cannot (i) objectively estimate failure probabilities with considerable confidence 

level, where sufficient failure data is lacking; (ii) capture evolving hazards as operational 

conditions change over time; (iii) model dependencies among interacting causations without 

considerably extending the accident model with additional advanced logic gates.  

3.6.2 Research on Risk Analysis and Cost of Decommissioning Operations 

In accordance with the existing comparative assessment framework presented in Figure 3-3, an 

extension from conventional probabilistic risk analysis to robust uncertainty modelling is required 

to capture the accident contributory factors of the decommissioning and abandonment operations 

in their entirety. This extension ensures that the planned and unplanned hazards can be 

accounted for and consequently enable a safer operation. In addition, a case-specific risk profile 

is implemented for interpreting the susceptibility of decommissioned platform to prevent any 

potential single failure that may culminate in a futile operation (Faber et al., 2002). In their study, 

Faber et al (2002) introduced the application of belief networks to addressing decommissioning 

of fixed offshore platforms. Their work focused on demonstrating the wider application area of 

uncertainty modelling using gravity-based structure (GBS) as case study. The work relied on 

guesstimates to estimate the risk profile of ascent and/or descent of a GBS during removal 

https://www.sciencedirect.com/topics/engineering/oil-storage
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/chemical-industry
https://www.sciencedirect.com/science/article/pii/S0029801815004734#bib26
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operation. Their results were case-specific and could not be extended to diverse on/offshore 

installations, and the belief networks model was static as it thrived on the conventional AND/OR 

logic gates. It is also worth mentioning that the accident model used in their analysis could not be 

validated to have been entirely capable of representing practical scenarios. In addition, several 

recent studies focused on the quantitative risk and cost assessment of the fixed offshore structural 

removal and wellbore plugging and abandonments. The assessment of the approaches 

implemented with respect to their effectiveness on addressing the safety analysis requirements 

for decommissioning and abandonment operations is presented in Table 3-1. 

Abdussamie et al. (2018) studied the hazards associated with the lifting operations and 

transportation of offshore structures and attempted to quantify the risk due to mechanical and 

structural failures. The work proposed the application of fuzzy set theory using rule-based fuzzy 

logic models to estimate the risk values including sensitivity analysis for the purpose of ranking 

the failure modes. The focus of their research was on transport barges and Heavy Lift Vessels 

(HLVs) during load-out and or float-off operational phase, making it an installation-oriented effort 

rather than decommissioning. A commonality established in their work is that no exact and off-

the-shelf failure probabilities currently exist for this technically challenging installation and 

decommissioning activities and methodologies to develop these risk values is crucial to delivering 

safe offshore operations. 

Lavasani et al. (2015) presented the application of Fuzzy Fault Tree Analysis (FFTA) to address 

the lack of failure data to assess the risk of well plugging and abandonment hazard. The work 

assumed that the well P&A operation was successful but sought to estimate the failure probability 

to conduct static risk analysis. They assumed the failure probability values reported in the Mineral 

Management Services (MMS) risk analysis of abandoned wells report and applied FFTA to 

estimate other causal events of interest. However, the empirical formula and estimation effort 

cannot be justified to encourage oil and gas producers to adopt this methodology. In addition, the 
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question of how efficient FFTA approach to uncertainty modelling without introducing 

uncontrollable unknowns into the modelling still holds, within the wider offshore decommissioning 

community. 

Kaiser, M.J. (2017) argued that over 11000 wells have been plugged and abandoned in the 

federal waters of the Gulf of Mexico between 2004 and 2015, but no studies exist on the 

operational reliability and the frequency of remediation activity. The work proposed a means to 

estimate the probability that a dry tree well abandoned using rigless methods requires remediation 

after initial operations are completed. A margin of error approach was adopted from a population 

mean of wells investigated. A random sample of 502 platform wells in water depth below 400 ft 

were tracked for five years to identify bubbling or leaking events and observed that 9 of those 502 

wells required remediation after operations were performed with estimated probability of 0.018 at 

95% confidence interval at [0.006, 0.03]. While the research output was a step in the right 

direction, the method of probability estimation is static in nature, did not account for the nonlinear 

and nonsequential events interaction, and the focus was on the Guld of Mexico without flexibility 

to adapt the approach to other regions with benign or harsher environments than the Gul of 

Mexico. 

Tan et al. (2018) investigated the simultaneous dismantling of topsides of multiple offshore 

platforms with focus on module lift planning. They formulated the lift planning optimization problem 

and developed a web system integrating Building Information Modelling (BIM) and Geographical 

Information System (GIS) to address the module lifting challenges. Three heuristic algorithms 

were implemented and compared to obtain the module layout with the minimum total lift time, and 

the algorithms were integrated into a developed BIM/GIS-based web system. While the work 

paved way for a structured lifting planning operations on topsides, it did not offer additional insight 

into the risks associated with overall removal and site remediation in the event of failure. 
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Kaiser, M.J. (2015) presented the application of settled liability data to infer private information on 

the cost of decommissioning in the Gulf of Mexico (GoM). The article thrived on the normalisation 

of cost from 17 public oil and gas companies and estimate was performed on a regional basis 

and by operator category from 2008 to 2012. The established that the average cost of asset 

removal is approximately $6.4 million USD in water depth less than 200 ft and $15.6 million USD 

in over 200 ft. Average cost statistics were also suggested as a market index for decommissioning 

activity in the GoM. Although, this cost values provided basis for further analysis, but the estimate 

was based on a specific field and region, making the results untenable for other regions. 

Kaiser and Liu (2014) adapted the work decomposition algorithms developed by Proserv Offshore 

to estimate the cost for well plugging and abandonment, conductor severance and removal, 

pipeline abandonment, umbilical and flowline removal, and platform removal for the 53 Deepwater 

fixed platforms and compliant towers in the GoM. The cost decomposition thrives on the 

development of multi-factor regression analysis for each of the installations to be decommissioned 

and were presented by stage and operators. While this was a comprehensive analysis, the 

amount of data needed for such analysis would require non-disclosure agreements and thereby 

limit publication of results in its entirety. In addition, the regression model is field-specific and 

would require significant modification to suit other regions. The work also did not account for the 

future value of money, inflation rates, and Assets Retirement Obligation (ARO). 

Li and Hu (2021) motivated their research by questioning the evaluation method of regression 

method applicable to offshore decommissioning such as that presented by Kaiser and Liu (2014). 

To that end, they conducted a review of many Multi-Criteria Decision Analysis (MCDA) models 

and their applicability to offshore decommissioning. The work focused on the comprehensive 

review of the cost assessment model including the general framework and methodology of the 

cost assessment model and associated accuracy. The authors established that current cost 

regression model is flawed due to the lack of basic data and the incomplete MCDA method used. 
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Despite the credible argument raised and the proposal to adopt MCDA in cost assessment, the 

authors did not consider the critical drivers of decommissioning cost and, the importance of 

dynamic cost model formulation since a futile decommissioning operation has a knock-on effect 

on the overall cost. 

More recently, Fam et al. (2020) developed a dynamic safety analysis model to assess the risks 

inherent in a well plugging and abandonment operation. The work thrived on the introduction of 

common cause failures and human reliability model to assess the failure probability of the top 

event failure within a dynamic Bayesian network. They utilised two sets of data in their analysis: 

one obtained from human reliability factor model; and the other from literature. However, the 

source of the data used for common cause failure was not identified, making it necessary to have 

a common method for generating and processing failure data. 

For this reason, several statistical tools exist for the estimation of sparse failure data. However, 

the collection and capturing of such failure data often occur at a multi-stage level since the data 

are obtained from analogous operations. Among the applicable techniques to tackle the multi-

stage data analysis, Hierarchical Bayesian Analysis (HBA) appears to be the most suitable. The 

HBA is able to incorporate a diverse category of information sources and types and build upon its 

multi-stage parameter handling capabilities. HBA has been widely adopted in various fields to 

cater for the variabilities associated with source-to-source uncertainty through the development 

of a multi-stage priors for the parameter of interest such as unreliability, time-to-failure, failure rate 

or failure probability (Siu and Kelly, 1998; Kelly and Smith, 2009; Yan and Haimes, 2010; Kelly 

and Smith, 2011). For example, Martz and Bryson (1984) applied a form of Bayes’ theorem to 

combine and compute five dissimilar sources of data to estimate low probability – high 

consequence events. Kaplan (1983) applied the two-stage Bayes’ approach to incorporate three 

different data sources for modelling plant-to-plant variability, a method . The model was driven by 

the need to address data sparsity within the heavy machinery industry (Siu and Kelly, 1998). 
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Traditionally, the HBA model has been adopted in major accident probabilistic risk analysis 

modelling using Accident Precursor Data (APD) as input to predict the most probable cause(s) of 

failure (Yang et. al., 2015; Khakzad et al., 2014a; Khakzad et. al., 2014b; Yang et. al., 2013).  

Table 3-1: Safety assessment methods from literature 

Literature  Static 
PRA 

FFTA MCDA BN DBN Cost Comment 

Abdussamie et 

al. (2018) 
 ✓     

To assess structural and 

mechanical failures during 

lifting and transportation of 

offshore structures. No failure 

data collection incorporated in 

approach. 

Faber et al. 

(2002)  
   ✓   

BN of Gravity-Based 

Structures (GBS) to assess 

ascent/descent risk profile. 

Failure date were 

guesstimates.  

Lavasani et al. 

(2015) 
 ✓     

Applied FFTA on well plugging 

and abandonment system to 

estimate failure probability of 

accident contributory factors. 

Accident model on a very high 

level and dynamic nature of 

interacting events not 

accounted for in analysis. 

Kaiser, M.J. 

(2015)  
     ✓ 

Applied settled liability on cost 

of decommissioning. No safety 

metrics assessed or estimated. 

Kaiser, M.J. 

(2017)  
✓      

Applied margin of error 

approach to estimate mean 

probability of failure. Method 

did not account for the 

nonlinear and nonsequential 

events interaction. 

Kaiser and Liu 

2014  
     ✓ 

Work decomposition algorithm 

to estimate cost. Applied on 

well plugging and 

abandonment and other 

subsea installations. No safety 

metrics estimated. 
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Tan et al. (2018) 

BIM/GIS-based 

web system.  

      
Algorithm developed based on 

module lift planning. No safety 

or risk metrics considered. 

Li and Hu (2021)  
  ✓   ✓ 

Multi-Criteria Decision 

Analysis to assess 

decommissioning cost. Study 

is semi-qualitative. 

 

3.6.3 Uncertainty in accident modelling 

The interactions between accident causals in complex engineering systems are nonlinear and 

nonsequential due to several factors that may be present concurrently (Adedigba et al., 2016). 

This nonlinearity is due to the cascade of failure which are induced in no particular order because 

complex engineering systems and especially decommissioning and abandonment operations are 

rare accident events with the capability to be resilient to planned hazards. In the event of 

unplanned hazards within the complex systems, the modelled response to accidents is 

compromised and further exacerbated by the time-variant accident causals which are often 

underestimated during the planning and cessation of production phases. This challenge can be 

addressed by incorporating advanced logic formalism into existing and proven accident model 

that can represent the effects of uncaptured or unplanned hazards and integrated with time-

dependence safety models. The concept of incorporating advanced logic gates within accident 

models to tackle uncertainties in accident scenarios formulation was introduced in the 1980s 

(Jensen and Nielson, 2007; Bearfield and Marsh, 2005; Bobbio et al., 2001), for example, used 

in diagnosis of liver disorders (Onisko et al., 2001). While there have been sizable numbers of 

studies emanating from this early research, the focus of the present work is on the most recent 

publications, discussing the mapping of conventional probabilistic risk analysis into uncertainty 

models incorporating advanced logic gates to elicit conditional dependencies, and closely related 

to offshore operations or process systems. 
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Fam et al. (2021a) incorporated Human Reliability Analysis (HRA) with dynamic accident 

modelling to predict the risk profile of well plugging and abandonment as a long-term monitoring 

tool. The long-term monitoring is extended to capture a group of oil and gas wells clustered within 

the same field and linked by common dependencies. A Noisy-OR gate was developed for 

capturing multi-variable dependencies among accident contributory factors. A dynamic Bayesian 

network was adopted to reflect temporal effect to forecast the compromised integrity of the 

plugged and abandoned well over a decade. While this approach allowed for the prediction and 

diagnosis of a wellbore leakage in the rare accident system studied, the estimation of the safety 

critical nature of interacting causal events has not been demonstrated. 

Wang et al. (2021) used the K2 structure learning algorithm and a Bayesian network parameter 

learning method to develop a Dynamic Bayesian network for the Escape, Evacuation and Rescue 

(EER) plan on an offshore platform. In this study, the K2 structure learning algorithm was used 

for establishing a reliability prediction model, the Bayesian network parameter learning was used 

for the safety assessment and the development of the Dynamic Bayesian network structure. The 

developed safety model relied on a transition probability which was determined through a Markov 

method. The primary contributory factors leading to evacuation failure was estimated using 

diagnostic reasoning as well as providing insights for the development of cost effective EER 

strategies. However, the accident model did not consider the effect of uncertainty in the modelling 

parameters and/or the degree of belief. 

Abimbola et al. (2016) transformed a bowtie into a Bayesian network for assessing the reliability 

of offshore well integrity during casing and cementing operations. The bowtie was used to analyse 

failure scenarios and the Bayesian network for modelling the conditional dependencies and to 

perform probability updating. The conditional dependencies were developed based on the Noisy-

OR formalism to account for the occurrence of a single top-level failure where a leak probability 

is present. Then, the estimated safety metrics were used to assess the strength of influence of 
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the accident contributory factors. Through a diagnostic analysis, the key elements to ensuring the 

integrity of cementing operation were identified and relevant risk control measures established to 

improve well integrity operations. 

Bobbio et al. (2001) comprehensively demonstrated the mapping of fault trees into Bayesian 

networks including the need for advanced relaxation strategies such as Noisy-Or and Leaky 

Noisy-OR and extended to multi-state variables modelling to handle the time-consuming 

elicitation of failure probabilities commonly inherent within the conditional probability tables in a 

Bayesian Belief Network. The permanence of their work was tested on a generic multiprocessor 

system and was based on the assumption that failure of systems or subsystems is sequentially 

dependent. This need not be true in practical terms as cascading of failure is not uncommon in 

complex engineering systems like decommissioning and abandonment operations. 

Khakzad et al. (2013) extended the work of Bobbio et al. (2001) to map bowtie into Bayesian 

network to address the modelling issues relating to causal events dependency. Their work was 

illustrated with a process accident from the U.S. Chemical Safety Board as case study. The 

methodology presented benefitted from the many modelling capabilities of dynamic safety 

analysis. However, this paper did not incorporate advanced logic gates to account for 

uncertainties in modelling parameters or address the critical nature of decommissioning 

operations. 

Many solutions have been proffered by researchers for the development of multi-factor systems 

to address decommissioning activities (Sommer et al., 2018; Fam et al., 2018; Akinyemi et al., 

2019; Zagonari, 2020, Rouse et al., 2018; Zhang et al., 2021). However, these diverse solutions 

focused on the different areas of consideration – such as environmental, technical, safety, social 

and economic – in the decommissioning and abandonment domain, rather than the activity in its 

entirety. 
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The presented studies indicates that all currently explored probabilistic safety analysis have not 

explored complex and/or integrated safety model thus far. For example, Fam et al. (2021a) did 

not develop the accident model beyond the extent of this present work for well plugging and 

abandonment failure and relied on analogous data that has not been processed; Wang et al. 

(2021) used Dynamic Bayesian network but did not take the effect of statistically dependent 

events into account. Abimbola et al. (2016) and Khakzad et al. (2013) used uncertainty models 

capable of depicting multi-state variables and built the accident cause-consequence in a bowtie 

but did not consider the effect of data paucity in the respective systems studied. Bobbio et al. 

(2001) mapped FTA into its corresponding Bayesian networks and applied it on a simple system. 

Lavasani et al. (2015) used Fuzzy Fault Tree Analysis (FFTA) on a simplified well plugging and 

abandonment system. A notable observation from all these studies revealed that only Fam et al. 

(2021a) and Lavasani et al. (2015) used a plugged and abandoned well as a case study, others 

were applied to systems outside the decommissioning and abandonment domain. 

Table 3-2: Analysis of research studies on uncertainty modelling 

Literature  Static 
PRA 

FFTA MCDA BN DBN Cost Comment 

Fam et al. 

(2021a) 
   ✓ ✓  

Applied Dynamic Bayesian 

network on well plugging and 

abandonment operations. Safety 

metrics estimated. 

Wang et al. 

(2021) 
   ✓ ✓  

Applied Dynamic Bayesian 

network on EER strategies on 

offshore platforms. Safety metrics 

estimated. 

Abimbola et al. 

(2016) 
✓   ✓   

Applied to well integrity operations 

using advanced logic gates. 

Safety metrics estimated. 

Bobbio et al. 

(2001) 
✓   ✓   

Developed based on elicitation 

complexity. Applied to a generic 

multiprocessor. 

Khakzad et al. 

(2013) 
✓   ✓   

BT-to-BN mapping of process 

plant accident. Applied to U.S. 

Chemical Safety Board accident. 

Safety metrics estimated. 
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3.7 Current Research Direction 

Following from the analysis of the current state of knowledge evident by the reviewed literature, 

several research gaps and potential roadmap for further research were identified as shall be seen 

below. 

With respect to the failure data collection methods in the existing study: 

1. Decommissioning and abandonment activities have not benefitted from operation-specific 

failure data and common data analysis methods across the industry. Improvement in the 

data collection, processing and utilisation methods to foster completeness and unification 

of the accident scenarios analysis need to be promoted. 

2. The implementation and incorporation of such collected failure data could be improved 

through a dedicated decommissioning and abandonment Accident Precursor Data (APD) 

database to reduce the reliance on experts’ subjective judgements. 

3. Analogous data from similar operations such as drilling, mining and/or aerospace could 

be collected and aggregated using source-to-source variability techniques. 

4. Permanence of source-to-source data collection and statistical processing of the inherent 

variability could also be investigated. 

With respect to the accident scenarios modelling methods: 

5. Development of nonlinear accident model where each accident contributory factor is not 

statistically independent of the other, could be explored. 

6. Development of non-sequential accident model where cascading of failure is a probable 

scenario could be investigated. 

7. Development of a finitely complex cause-consequence model where failure outcomes of 

interest could be evaluated in both forward and reverse direction could be considered. 
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8. Integration of conventional PRA/QRA with modern probabilistic safety analysis methods 

to benefit from both capabilities could be trialed. 

9. Application of time-dependent safety analysis methods to well plugging and abandonment 

operation. 

10. Incorporation of robust safety analysis model to capture both planned and evolving 

hazards could be considered. 

With respect to accident parameters uncertainty modelling: 

11. Introduction of parameter uncertainty models built into the safety analysis to reduce the 

influence of unknowns such as uncertain reservoir conditions and limited failure data, 

could be considered. 

12. Incorporation of accident models into real-time monitoring device to capture planned and 

unplanned incidences could be explored. 

With respect to well plugging and abandonment operations safety assessment: 

13. Integration of statistical methods for small-sized data analysis and robust safety 

assessment could be considered. 

14. Application of dynamic safety assessment capable of long-term monitoring of plugged and 

abandoned wells. 

With respect to the steel piled jacket removal 

15. Application of safety assessment, in terms of, economic risk to forecast the future value 

of decommissioning could be investigated. 

16. Incorporation of dynamic safety model with parameter uncertainty models for ascertaining 

the safety of complete assets removal operation. 
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3.8 Identification of Research Gap 

As can be inferred from above, decommissioning and abandonment operations are technically 

intensive requiring specialised skills and the overall knowledge of the operational phases. To 

conduct probabilistic safety analysis of these complex engineering systems, both planned and 

unplanned hazards associated with the process in its entirety need to be captured. One major 

and notable challenge identified above, is the sparsity of failure data required to quantify and 

assess the single, most probable failure capable of leading to a futile decommissioning operation. 

Typically, failure data are usually obtained from analogous activity and this approach often 

introduce additional uncertainty to the safety risk analysis.  

In this PhD thesis, the following research gaps emanating from the analysis of current state of 

knowledge presented in Section 3.7 culminated in the selections discussed below. 

3.8.1 Research gaps 1, 3, 4 and 13 

The accuracy of a quantitative risk assessment is as important as the reliability of failure data 

used in the estimation. Since the identified research gaps emphasised the lack or sparsity of such 

data, developing a systematic approach to collect and process the data to a considerable 

confidence level becomes necessary, so that all source-to-source data variability are adequately 

addressed. The focus will be on statistical improvement of small-sized data cleaning methods, in 

specific Hierarchical Bayesian analysis (HBA), with application to decommissioning and 

abandonment system. 

The HBA method has been considered an invaluable method for aggregating the failure 

probabilities of accident contributory factors to overcome the challenges of small-sized failure 

data often encounter during decommissioning and abandonment operational risk assessment. 

Furthermore, the HBA has the potential to estimate probabilities at a multi-stage level with 

acceptable confidence interval in which a stage under consideration is statistically dependent on 
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the prior stage, making the method more beneficial compared to single-level modelling methods. 

Therefore, it would be advantageous to adopt a new method that can incorporate the HBA. 

However, the complete safety assessment would require an appropriate model for the HBA, and 

for this, Weibull distribution (a single-stage modelling method) can be investigated and compared 

with Gamma distribution (a multi-stage modelling method) to allow for an objective quality method 

selection. 

3.8.2 Research Gaps 7-8 

The Fault Tree Analysis (FTA), Event Tree Analysis (ETA) and bowtie (BT) can be effective and 

proven methods for capturing the interrelationships and dependencies that exist between 

interacting accident contributory factors. These PRA/QRA tools, albeit conventional, are well 

suited for analysing the modellable failures (Khakzad et al., 2014). Although, FTA is simple to 

formulate and can be applied to any finite system, however, other tools capable of addressing 

common cause failures and time-dependencies could be preferred for handling rare accident 

systems such as decommissioning and abandonment operations (Khakzad et al., 2011). To 

benefit from its simplicity, FTA can be used to develop the accident causation model and 

transform into other models for further analysis. The ETA thrives on events consequence 

modelling emanating from the identification of a single point failure and associated multi-point 

failures resulting from lack of containment within the investigated system (Adedigba et al., 2016). 

While Ramos et al (2020) proposed a dedicated Event Sequence Diagram (ESD) for depicting 

consequence modelling, ETA method is selected in this work, due to simplicity in its formulation. 

The BT thrives on the combinatorial strength of both FTA and ETA to develop a robust cause-

consequence relationship for the interacting accident elements. While the BT offers the 

advantages of both tools in its constituents and associated simplicity, it cannot adapt to the 

dynamic nature of complex engineering systems (Khakzad et al., 2013) such as decommissioning 

and abandonment operations.  
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For these reasons, the conventional PRA/QRA tools would be developed to support the accident 

scenarios modelling effort. However, the BT model would be mapped onto other methods capable 

of uncertainty, common cause failures and dynamic modelling. 

3.8.3 Research Gaps 5, 9-11 and 14 

The past and current research studies on decommissioning and abandonment safety analysis 

have focused on the conventional PRA/QRA approaches. Although, these tools are invaluable for 

static safety assessments, they are not able to account for the often-encountered changes in the 

cementing job or pressure buildups within the system. Research in  the process systems industry 

have shown that uncertainty and long-term monitoring of assets are possible through the 

formulation of advanced reliability models such as Artificial Neural Networks (ANN), Bayesian 

networks (BNs), Dynamic Bayesian Networks (DBNs) and Fuzzy Bayesian Networks (FBN) (Shi 

et al., 2018; Abimbola et al., 2016; Shi et al., 2014; Khakzad et al., 2013).  

Since ANN is computation intensive requiring elicitation of multitude data points to monitor the 

condition of assets and noting that, decommissioning is not an investment. Motivating the offshore 

community to adopt ANN would require a level of effort disproportionate to the time available for 

this study. In addition, fuzzy set theory has been discounted in Section 3.6.2 due to its 

computation effort that cannot be justified for the purpose of this research work. Therefore, by 

developing the accident models from the PRA/QRA tools and mapping these into Bayesian 

networks and consequently, the dynamic Bayesian networks to conduct safety risk analysis it is 

envisaged that the rigour of the time-dependent analysis will be significantly enhanced. The 

transformation into BN and DBN will enable the model to be finitely complex without considerably 

impacting the computation effort, improve the dependency among interacting elements, capture 

planned and evolving hazards and tackle the temporal effect of key performance events from all 
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interacting events. Table 3-3 illustrates the merits and demerits of BN and establishes the benefit 

of adopting dynamic BNs for the purpose of accommodating time-dependent events. 

By incorporating the HBA, the PRA/QRA tools and the BN and DBN into an integrated framework 

the challenges identified in each method would have been improved at every stage in the 

formalism. The combined framework  (Dynamic Integrated Safety Analysis (DISA)) will provide 

insight into the optimisation of rare accident models and will be capable of addressing the overall 

decommissioning and abandonment challenges, in relation to risk profile predictions.  

Table 3-3. Merits and demerits of BNs 

Strengths Weaknesses 

BNs can handle complex and nonlinear 

interactions among accident contributory factors, 

which are norms in the context of 

decommissioning and abandonment operation. 

Elicitation of prior marginal probabilities is a 

complex task with no well-defined guidelines 

on the computation of the conditional 

probability tables. 

Can accommodate variety of relaxation strategies 

within its conditional probability tables. 

Elicitation of the dependence among events’ 

marginal probabilities depend strongly on the 

degree of belief. 

Can handle complex engineering models 

considerably well even when data is limited or 

sparse. 

Data paucity can introduce additional 

uncertainty in the estimated outcomes. 

BNs can update prior probabilities when new 

information becomes available. 

BNs cannot adapt to variations in events as a 

function of time. Hence, the incorporation of 

DBNs. 

Can adapt prior probabilities to update events 

through experiential learning. 

BNs are believed to be capable of handling 

complex models but the degree of complexity 

remains unknown.  

 

3.8.4 Research Gaps 15 and 16 

This thesis will also focus on the integration of economic risks and uncertainty parametric 

modelling within the DISA framework, as potential resilience in accident modelling is beneficial to 
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rare accident models. More specifically, considering the complex nature of the decommissioning 

and abandonment operations, decision-makers will benefit from a robust computational 

framework that is able to yield reliable failure probabilities and predict the future value of money 

on demand. The DISA framework, being made up of several tools and parameters enhancement, 

can incorporate captured hazards, evolving hazards and current market data to estimate the 

probability of system failure and the cost of actualising the failure. Therefore, it would be an 

invigorating learning experience to investigate how the DISA results could be utilised to develop 

and predict the long-term monitoring of decommissioning and abandonment operations and how 

hazards could be spotted shortly before they manifest into undesirable events. 

3.8.5 Rationale for Research Gaps 6 and 12 Exclusion 

Although the main reason for excluding these research gaps in the analysis is the time-bound 

PhD duration. However, additional reasons are offered below: 

Research gap 6. The development of a detailed and comprehensive non-sequential 

accident model for decommissioning and abandonment operations do not currently exist. The 

level of efforts required to verify and validate such models would require case-specific data which 

may lead to collaboration with the industry. This will not only limit publication of results but also 

consume time. 

Research gap 12. The development of real-time monitoring device to capture planned and 

unplanned incidences would demand considerable level of effort in the investigation of the device 

in terms of fit, form and functionality. It would, therefore, be prudent to first improve the existing 

accident models and gain insight into the DISA framework and its effectiveness prior to developing 

the real-time device. 
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3.9 Concluding Remarks 

Based on the foregoing, this PhD thesis will develop a Dynamic Integrated Safety Analysis (DISA) 

framework for conducting safety analysis based on HBA and DBN probabilistic tools. The DISA 

framework will be used to reduce parameter uncertainty modelling and consequently, estimate 

both risks and cost models for the decommissioning and abandonment of offshore oil and gas 

installations.  

3.10 Chapter Summary 

HBA is a statistical method that can address the issue of small-sized failure data that is typical of 

decommissioning operation. The current research direction focused on how to improve the 

existing static method of conducting probabilistic risk analysis by incorporating several tools such 

as the  HBA with DBN to predict the risk profile and cost of remediation. Several research studies 

conducted to date focused on the static safety analysis of decommissioning and abandonment 

systems, dynamic safety modelling of process systems and on the development of dynamic safety 

analysis of well plugging and abandonment without addressing the issue of data paucity. Despite 

this progress, there exist sizable number of research gaps in relation to dynamic safety 

assessment, parameter uncertainty modelling and economic risk assessment. Through the 

incorporation of HBA with other methods such as BT (with its FTA and ETA constituents) and 

mapping into its corresponding BN and DBN equivalents, it is envisaged that some of the data 

paucity and uncertainty challenges will be relaxed.  

This integrated safety framework can be considered the primary novelty this PhD thesis 

contributes to the wider research community. Other secondary contributions emanating from this 

thesis can be considered an extension of the application of the DISA framework to 

decommissioning accidents, since no such method currently exist in the decommissioning and 

abandonment domain, thus far. 
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Chapter 4: FRAMEWORK DEVELOPMENT 

4.1 Outline 

This Chapter presents the methodology adopted in this thesis aimed at developing and 

demonstrating a framework to conduct a probabilistic risk analysis for the decommissioning and 

abandonment operation of oil and gas installations. First, a comprehensive hazard identification 

analysis is developed to capture all possible causal events that may lead to a single accident-

initiating hazard. The evolution of identified hazard into accidents including the relevant safety 

barriers and their associated failure mode is also developed and depicted in a bowtie. The bowtie 

is then mapped onto a Bayesian network, where quantified failure data are fed for assessing the 

risk. The failure data are then obtained through source-to-source variability techniques using 

Hierarchical Bayesian Analysis model. Consequently, explanation is proffered on the 

combinations of proposed methods in specific sequence and scenarios. The steps involved in the 

framework development are also presented. 

4.2 Justification for Method Steps 

Following on from the discussion in Chapter three (3), the conventional probabilistic safety 

analysis methods are inadequate for performing risk analysis of rare accidents. In addition, the 

hazard identification methods commonly adopted can fallshort to capture salient but imperceptible 

hazards which may introduce uncertainties into the accident model. More specifically, the failure 

data needed as inputs for the estimation of the top-level risk are often lacking or insufficient due 

to the unique nature of the decommissioning and abandonment systems. Therefore, it proposed 

to integrate a Hierarchical Bayesian Analysis (HBA) and Dynamic Bayesian Networks (DBN) with 

advanced relaxation strategies, in specific Noisy OR gate, leaky Noisy OR gate and imprecise 

leaky Noisy OR gate, to form a Dynamic Integrated Safety Analysis (DISA) framework, which can 

proffer a more comprehensive insight into the accident scenarios analysis. The justification for 
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the selection and the anticipated benefits were provided in Section 3.8, however, same is 

extended below to establish the rationale for the sequential application of proposed framework. 

4.3 Dynamic Integrated Safety Analysis (DISA) Framework 

The dynamic risk assessment technique is based on the framework shown in Figure 4-1. 

This methodology follows a systematic solution step as presented below: 

• Step 1: Accident scenarios analysis are conducted through system- and 

subsystems-level definition, hazard identification, and operational phases failure 

analysis.  

• Step 2: A cause-consequence relationship is developed to visualise the accident 

evolution, in the form of BT – combining the strengths of FTA and ETA. The 

constructed BT is then transformed into its corresponding BN as discussed in 

Section 4.4. 

• Step 3: The failure data used in the probabilistic risk analysis asinput to estimate 

the single failure capable of initiating the undesirable end consequences are then 

computed in this step. The computation algorithm is a statistical approacj based 

on HBA method to aggregate the small-sized data into a mean distribution at 95% 

confidence interval. 

• Step 4: Uncertainty modeliing is formulated in this step to handle potential 

uncertainty that can be introduced into the model. This type of uncertainties can 

emanate from the parametric modelling assumptions, small-sized data 

aggregation and the effect of uncaptured hazards. The family of uncertain models 

adopted is the advanced logic gates for overcoming or relaxing the identified 

limitations of static PRA/QRA models. 
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• Step 5: The BN is further translated into DBN using appropriate formalism 

incorporating uncertainty and time-based conditional probability modelling. Within 

the formulated DBN, Probabilistic risk analysis and dynamic safety analysis are 

performed using the failure data obtained through HBA in step 3. 

• Step 6: Model validation using the three-step analysis in Section 4.9 is performed 

and risk control measures proposed for selected case study. This model validation 

exercise is essential to test the applicability, credence and permanence of the 

DISA framework. 

• Step 7: Economic risk modelling is introduced to interpret the safety risks in terms 

of the financial implications of failing to capture and remediating any hazard or 

combination of hazards that can culminate into catastrophe.  

Summarily, the proposed method introduces a dynamic integrated safety analysis 

incorporating Hierarchical Bayesian Analysis (HBA) with Bayesian networks (BNs) to address 

the identified gaps. The HBA is adopted to address the issue of data sparsity. HBA is 

especially capable of aggregating the small data size and present the probability of failure as 

a mean of distribution with 95% confidence level. The BNs is used to flexibly adjust the failure 

data to reflect real-time observations as more information about the uncertainty become 

available. The time dependency of operations is also accounted for using the BNs robust 

computation engine, and further transition into dynamic state modelling based on the Markov 

chain. The proposed DISA framework has not been adopted in the offshore decommissioning 

and abandonment operations thus far. The DISA results are used to support the development 

of risk control measures, monitor, and control the decommissioning and abandonment 

process to enhance safety while saving the cost of remediation. The method steps must be 

applied sequentially and the DISA step is discussed in more detail in the succeeding sections 
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to cover the application of methodology in its entirety. Step 3 is exclusively discussed in 

Chapter 5 since the data collection approach is a standalone and an important input to the 

DISA framework. The subsequent Chapters present the application of developed steps to 

selected case studies. 
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Figure 4-1 Dynamic Integrated Safety Analysis Framework. 

 

Figure 4-1 is the overall framework and the steps in frames 1, 2 and 3 satisfy the objectives (1)-

(3).The steps in frames 4 and 5 satisfy the objectives (4) and (5), which further provide the basis 
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for accomplishing objective (6) and objective (7) built on the observed trends from model 

responses of all obtained results. 

4.4 Hazard Identification (Step 1) 

Hazard identification (HAZID) is a technique used to examine the operational sequence of a 

system and evaluate the potential of any of the system components to cause harm (Leveson, 

2020; Johansen and Rausand, 2014; Qureshi, 2007; Leveson, 2004). The HAZID belongs to the 

family of risk assessment tools for investigating the root causes and failure modes of complex 

systems. Risk assessment is conducted following a thorough HAZID analysis including risk 

factors capable of initiating accidents. Risk analysis is the process where the identified risks 

associated with the hazards are analysed and evaluated – typically, quantitatively. As part of a 

comprehensive risk management, the final step is a risk control process where measures are put 

in place to eliminate or mitigate the hazard.  

4.5 Accident Evolution Model (Step 2) 

4.5.1 Fault Tree Analysis (FTA)  

Fault tree analysis is one of the widely adopted techniques for safety, risk, and reliability 

assessments. It is a deterministic and deductive logic gate used to depict the relationships 

between causal events of an undesired scenario and their criticalities. The constituents of an FT 

comprise of basic event, intermediate event, and top event. The basic events are the minimum 

faults that can initiate a potential fault or harm to the subsystems of a component. The 

intermediate events are sets of faults in the subsystem capable of causing a potential accident. 

The top event is the most critical hazard that can initiate major accidents especially when the 

safety barriers implemented are insufficient or deteriorate over time. The top event represents the 

highest-level incidence in the accident model hierarchy and fleshes out into various scenarios 
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called fault or intermediate events until the primary causals or basic events are completed 

identified and captured within the FTA model (Crowl and Louvar, 2002). FTAs are better 

represented and constructed only when event trees have been developed and the initiating (top) 

event identified (Khakzad et al., 2011). The FT can only handle binary state for events and each 

event is assumed to be statistically independent of the other. It also relies on logic gate operations 

to formulate the relationships among interacting events, without the possibility of accommodating 

intermediate state for events i.e., either true or false; yes or no; success or failure etc. The most 

commonly used logic gates are the OR-gate and the AND-gate (Rausand and Hoyland, 2004). 

The OR-gate is characterised by serial connection of the interacting events such that the failure 

of any single component or subsystem results to the failure of the system in its entirety. On the 

other hand, the AND-gate is used to represent the interaction of components or subsystems in 

parallel such that the overall system failure requires the simultaneous failure of all components. 

Equations (4-1) and (4-2) represent OR-gate and AND-gate, respectively. 

 𝑝(𝐶𝑖) = ∏ (1 − 𝑝𝑖)
𝑛
𝑖∈𝐶𝑖

  (4-1) 

and 

 𝑝(𝐶𝑖) = ∏ 𝑝𝑖
𝑛
𝑖∈𝐶𝑖

  (4-2) 

The FT can represent accident scenarios in both qualitative and quantitative models. In the 

qualitative model, the logical relationship among events leading to the top event is illustrated 

explicitly. It depicts the possible combination of events, termed Minimal Cut Sets (MCS) that must 

be present for the accident initiating hazard to occur. In the quantitative model, the failure 

probability of the top event is estimated from the Boolean algebraic combination of basic events 

through the intermediates to the top event (Nivolianitou et al., 2004). However, the application of 

FT in the analysis of complex systems is undermined by its associated significant error margin. 
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In addition, its assumption of statistical independence of events limits its use in modelling mutually 

exclusive events, common cause failures or complex dependency events. The presence of 

generic and imprecise failure data adds to the uncertainty in the results obtained from FTA. Its 

binary state limits its application in multi-variable and multi-state events (Khakzad, et al., 2011; 

Bobbio, et al., 2001). To that end, efforts have been made to reduce the uncertainties in FTA 

through the development of fuzzy set and evidence theory-based FT analysis (Ferdous et al. 

2009; Markowski et al. 2009) and hybrid FTA (Liu et al.,  2013; Lin and Wang, 1997).  

4.5.2 Event Tree Analysis (ETA)  

The event tree is a widely adopted tool for consequence scenarios modelling. It is an inductive 

technique which begins with an initiating event and terminates at a loss which may be major, 

minor or a near miss. Each of the possible outcome is referred to as, a consequence or an end 

event. Like the FT, it can represent accidents qualitatively and quantitatively. Qualitatively, it 

provides the logical relationship of how a failure can occur and quantitatively, the probability of 

occurrence can be estimated. An event tree can capture accident scenarios including the inherent 

safety functions implemented to prevent the occurrence of an accident in a sequence of events. 

The structure of an ET is rather progressive and inductive. The progressive outlook ensures that 

end consequences are initiated by a single hazard (initiating event). It combines all possible 

scenarios of implemented safety barriers functioning or otherwise. The safety barriers are 

systematically positioned within the ET to demonstrate that one barrier effectiveness must have 

deteriorated for the succeeding barrier to be activated. It is also possible to activate two barriers 

concurrently in some complex engineering systems. However, it also suffers from the use of 

generic and imprecise data. Meel and Seider (2006) advanced the use of ET through the 

development of plant-specific dynamic assessment methodology which utilizes Accident 

Precursor Data to predict the frequencies of end-states abnormal events. In the same vein is the 

work of Kalantarnia et al. (2009) in which the posterior failure probabilities of safety barriers is 
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determined by Bayesian updating mechanism. Further application of ET methodology to process 

accident modelling and an offshore drilling accident, utilizing FT principle for safety barriers and 

Bayesian updating mechanism using accident precursors was conducted by Rathnayaka et al. 

(2011b, 2013). 

The occurrence probabilities of the end consequences given that the implemented safety barriers 

have failed are often assumed to follow the binomial distribution function given below. 

 𝑝(𝐶𝑖) = ∏ 𝑀𝑛𝑖,𝑗𝑁(1−𝑛𝑖,𝑗)
𝑖:𝑗∈𝑆𝐵𝑖

 (4-3) 

Where M and N are the failure and success probabilities of safety barriers, respectively; ni,j is the 

number of successive branches prior to failure occurrence of the end consequences. Typically, 0 

≤ ni,j ≤ 1. SBi is the safety barrier at the instant i. 

4.5.3 Bowtie Model 

The bow-tie technique is a complete safety risk modelling tool whose constituents are the FT and 

ET. The FT is depicted as the input, with its top event as the initiating event of the ET. The ET is 

the output end of the bowtie. The combination of both FT and ET especially, makes the bowtie a 

systematic and robust risk analysis technique. Here, both the cause of an accident, barriers to 

ensure safety and the consequence of such accident can be visualised in its entirety and 

optimised accordingly. Bowtie is widely adopted in the diverse field of analysis due to its capability 

to offer the advantages of FT and ET. For example, bow-tie has been applied in a Layer of 

Protection Analysis (LOPA) (Markowski and Kotynia, 2011; Pasman and Rogers, 2013) and dust 

explosion accident (Khakzad et al., 2013; Yuan et al., 2015). Detailed information on the 

construction and analysis of risk within bowtie can be found in the literature (Ferdous et al., 2013; 

Khakzad et al., 2012; Mokhtari et al., 2011). It is worth mentioning that bowtie, despite its 
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potentials, is also limited in its ability to adapt to dynamic accident scenarios and 

interdependencies among complex interacting events. 

Consequently, the identified hazards can be fully represented on an FT and the accident-initiating 

hazard, often referred to as the top event, becomes the initiating event of an ET. The accident 

evolution presents the logical relationship among causes of hazard, called primary events (𝑃𝐸𝑆) 

and how they manifest into faults, expressed as intermediate events (𝐼𝐸𝑆) through to the top event 

(𝑇𝐸), all on the FT side. On the ET side, the safety barriers (𝑆𝐵𝑖) put in place to prevent or mitigate 

the hazard evolving into an accident and the potential consequences (𝐶𝑖), should the implemented 

barriers fail. For example, Figure 4-2 illustrates an accident scenario and its corresponding 

evolution into end consequences for which probabilities of 𝐶1 and 𝐶3 can be expressed as 

 𝑝(𝐶1) = 𝑝(𝑇𝐸). 𝑝(𝑆𝐵̅̅̅̅
1). 𝑝(𝑆𝐵̅̅̅̅

2). 𝑝(𝑆𝐵̅̅̅̅
3)    (4-4) 

and  

𝑝(𝐶3) = 𝑝(𝑇𝐸). 𝑝(𝑆𝐵̅̅̅̅
1). 𝑝(𝑆𝐵2)     (4-5) 

Where 𝑝(𝑇𝐸) is the top event occurrence probability obtained from the Boolean algebraic 

operands of the primary and intermediate events, 𝑝(𝑃𝐸𝑖) and 𝑝(𝐼𝐸𝑖). 𝑝(𝑆𝐵𝑖) and 𝑝(𝑆𝐵̅̅̅̅
𝑖) are the 

occurrence and non-occurrence probabilities of the safety barrier 𝑖.  
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Figure 4-2 Accident Evolution in BT model. 

 

Estimation of the occurrence probabilities of end-consequences makes it feasible to evaluate the 

Potential Loss of Life (PLL). However, the failure probabilities of primary or causal events are 

rarely available, making it necessary to adopt a suitable statistical method with acceptable 

confidence level. In addition, as BT has its strength in cause-consequence visualisation, it cannot 

be used to address time-dependency of events and complexity of connected engineering systems 

such as decommissioning and abandonment installations. To tackle the latter issue, the BT 

structure will be mapped into its corresponding BN equivalent, as shall be seen in subsequent 

Section.  

4.5.4 Bayesian Networks (BNs)  

The Bayesian network (BN) is a graphical technique for representing a set of conditional 

dependencies among discrete random variables. BN is a probabilistic methodology for risk 

prediction under uncertainty due to its flexibility and transparency. It offers the potential to 

construct complex interacting and nonlinear events and is capable of handling multi-variable 
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systems and their dependencies under uncertainty. It consists of both qualitative and quantitative 

constituents. The qualitative part is a Directed Acyclic Graph (DAG) with nodes representing 

discrete random variables and arcs depicting direct causal relationships among interacting nodes. 

The quantitative part represents the relationships between the interacting variables which are 

specified within Conditional Probability Tables (CPT) to indicate the strength of influence among 

the interacting nodes. The elicitation of the prior marginal probabilities is key to the accuracy of 

the estimated failure probability for the parameter of interest, in this case, the top event. The  

Conditional Probability Table (CPT) used to specify the conditional probabilities comprises sets 

of values for the parent nodes. Consider Figure 4-3 with set of variables Yi. Y1
 and Y2 are the root 

nodes; Y3 and Y4 are the intermediate nodes; and Y5 is the leaf node. The root nodes 

corresponding to basic events in an FT are assigned marginal prior probabilities. The intermediate 

and leaf nodes are given CPTs based on the level of influence of their parent nodes. The theory 

and practice of BN is not the focus of this thesis but its applicability to the task under consideration. 

Comprehensive information regarding BN can be found in the literature (Bobbio et al., 2001; 

Jensen and Nielsen, 2007). 

 

 

Figure 4-3 A typical BN structures 
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Each state of Yi is represented by binary outcomes 𝑦𝑖  and �̅�𝑖. The BN joint probability distribution 

follows the product rule as given in Equation 4-6. 

 𝑃(𝑦𝑖) = ∏ 𝑃(5
𝑖=1 𝑦𝑖|𝑦𝜇(𝑖)) (4-6) 

Where 𝑃(𝑦𝑖) is the joint probability distribution of the state variables 𝑦𝑖. 𝜇(𝑖) is the parent of 

variable node 𝑖. Equation (4-6) can be expanded according to the product rule as: 

 𝑃(𝑦𝑖) = 𝑃(𝑦5|𝑦4, 𝑦3) ⋅ 𝑃(𝑦4|𝑦2, 𝑦1) ⋅ 𝑃(𝑦3|𝑦1) ⋅ 𝑃(𝑦2) ⋅ 𝑃(𝑦1) (4-7) 

Equation 4-6 can be extended to accommodate large but finite number of variables with 

combination of states, making BN well suited to handle complex and nonlinear systems. Given 

the availability of new evidence, 𝐸, the posterior (updated) probabilities of Figure 4-3 can be 

obtained by: 

 𝑃(𝑦𝑖|𝐸) =
𝑃(𝐸,𝑦𝑖)

𝑃(𝐸)
 (4-8) 

4.5 Mapping BT to BNs 

The main purpose of mapping a bowtie into BNs is to make numerical elicitation using advanced 

logic gates possible. The notable logic gates which BNs can accommodate include noisy-OR, 

noisy-AND, leaky noisy-OR, etc. Another purpose of such transformation is due to the robust 

computation engine of the BN to accommodate different combinations of sequential and non-

sequential accident causal factors. The BNs like the BT, offer the benefit of representing accident 

models qualitatively and quantitatively. In the qualitative mapping algorithm for the FT side, the 

Basic or Causal Events (CEs), Intermediate Events (IEs), and the Top Event (TE) become the 

root nodes, intermediate nodes, and leaf node of the BN, respectively as depicted in Figure 4-4. 

The leaf node is often referred to as a pivot node in the case of a fully developed BT. 
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Figure 4-4 FT-to-BNs similitude mapping 

The logic gates connecting the events of the FT are represented by directed arcs. On the 

quantitative part, the failure probabilities of the primary events become the marginal prior 

probabilities for the root nodes within the BN. To account for event scenario conditional 

dependency in the BN model, appropriate logic gates are developed to elicit the failure probability 

for each intermediate and leaf node. The elicitation is performed within the Conditional Probability 

Table (CPT) of each node (Bobbio et al., 2001; Bearfield and Marsh, 2005; Lampis and Andrews, 

2009; Khakzad et al., 2013a, 2013b) as illustrated in Figure 4-5. 

 

Figure 4-5 FT-to-BN Qualitative and quantitative mapping algorithm 
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To map ET, on the other hand, the safety barriers are depicted by safety nodes, 𝑆𝐵𝑖 and each 

end consequence becomes a leaf node. When the BT is transformed into the corresponding BN, 

the top event is expressed as a pivot node linking the FT and the ET. The relationship between 

the safety nodes and/or between a safety node and the pivot node is such that there must be 

conditional dependencies before a causal arc can be directed from a preceding node to a 

succeeding node i.e., from 𝑆𝐵𝑖 to 𝑆𝐵𝑖+1, or 𝑇𝐸 to 𝑆𝐵𝑖 as shown in Figure 4-6. Where there are 

safety barriers conditionally dependent on end consequences, the linking process follows the 

same argument. The elicitation of the end consequence occurrence probabilities is done through 

their Conditional Probability Tables like the intermediate and pivot nodes discussed in the FT 

mapping. The failure probabilities of the safety nodes are the inputs in the consequence node 

CPT. The estimation of the consequence nodes is performed as if the occurrence of safety 

barriers and pivot node were logically independent. 

𝑃(𝑆𝐵𝑖|𝑇𝐸) ≠ 𝑃(𝑆𝐵𝑖|(1 − 𝑇𝐸))      (4-9) 

And  

𝑃(𝐶𝑖|𝑆𝐵𝑖) ≠ 𝑃(𝐶𝑖|(1 − 𝑆𝐵𝑖))      (4-10) 
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Figure 4-6 ET-to-BN Qualitative and quantitative mapping algorithm 

 

4.6 Modelling Failure Probability (Step 3) 

The HBA modelling method, its formulation and applicability to the estimation of failure 

probabilities of causations with associated confidence interval analysis are discussed below. 

4.6.1 Hierarchical Bayesian Analysis (HBA) Modelling 

Following the mapping algorithm discussed in Section 4.4, the root nodes need to be assigned 

marginal prior probabilities. The marginal prior probabilities can only be obtained through 

aggregation since the failure data are often sparse and affected by the source-to-source 

variability. The data sparsity necessitates the application of hierarchical Bayesian models, due to 

their capability in modelling unmeasured or uncaptured failure data structured in groups. Different 

but statistically related parameters – called non-informative priors – are assigned to predict the 

mean distribution of each group using intermediate number of parameters. The representation 
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and interpretation of these group-level parameters are then used to describe group-level 

differences for predictors obtained from related accident sources. The hierarchical Bayesian 

models are especially suitable for decommissioning and abandonment accidents model where 

failure data size is infinitesimally small. The benefit of group-level parameters is that there is no 

independent variability among the grouped dataset but assumes that there exists a constraint 

bounded by statistical distribution. The distribution – such as Normal, Weibull, Gamma, etc. – is 

modelled with a pre-defined variance. Hierarchical Bayesian models are particularly used to 

account for sources of individual- and group-level variability and uncertainty when estimating 

group-level coefficients, making it superior to classical statistical models which require averaging 

over individual level variation. The hierarchical models thrive on the strength across groups of 

datasets while minimizing the effects of small sample sizes. Its modelling algorithm allows random 

effects to absorb unmeasured variations with high confidence interval leading to significantly low 

bias in the estimation.  

For illustration purpose, given that failure datasets, 𝑦𝑖 for decommissioning 20 Steel Piled Jackets 

(SPJs) failure causals were obtained from different sources over 8 weeks weather window. 𝑦𝑖𝑗 is 

the number of SPJ 𝑖 at week 𝑗, and 𝑁𝑖 is the number of trials for each decommissioning operational 

hazard. Table 4-1 shows a typical group dataset that is collected for the observations. 
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Table 4-1. SPJs failure data obtained from 20 sources. 

Source 
Number of 

failures (𝑦𝑖) 

Number of 

trials(𝑁𝑖) 

1 0 140 

2 0 130 

3 0 130 

. . . 

. . . 

. . . 

. . . 

18 4 167 

19 5 151 

20 10 150 

 

The argument here is that each SPJ can be represented by a regression line with own slope 𝑚𝑖 

and intercept 𝑐𝑖, and all SPJs follow a common distribution with regression line pattern having 

group slope 𝑚𝑖 = 𝜇𝑖 and group intercept 𝑐𝑖 = 𝛾𝑖. A conventional distribution would typically be 

represented by an average population growth line given by 𝐸(𝑦𝑖𝑗) = 𝛾𝑖 + 𝜇𝑖𝑥𝑗. The hierarchical 

models thrive on the group- and individual-level estimates by assuming that the datasets are 

distributed over some parameters of interest, often referred to as non-informative priors. The 

distribution benefits from the strength of various statistical distribution models, as can be seen 

below: 

𝑦𝑖𝑗  ~ 𝑁(𝛼𝑖 + 𝛽𝑖(𝑥𝑗 − �̅�), 𝜏𝑐) 
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𝛼𝑖 ~ 𝑁(𝛼𝑐 , 𝜏𝛼) 

𝛽𝑖  ~ 𝑁(𝛽𝑐 , 𝜏𝛽) 

Where 𝛼𝑖 and 𝛽𝑖 are the hyperprior parameters distributed over the mean and variance estimated 

from the independent non-informative priors αc, βc, τα, τβ, τc. The choice of selected distribution is 

dependent on the strength and application area under study (El-Gheriani et al., 2017a; 2017b). 

Whereas conventional models rely on the independent contribution of data (likelihood) and 

parameter (prior) model to estimate failure probability of events, the hierarchical models take 

advantage of the likelihood, prior and hyperprior parameters in its probability estimation, making 

it a robust and realistic method of probability calculation under uncertainty. In this study, 

hierarchical model capability is demonstrated to address the offshore decommissioning and 

abandonment safety issues. For the sake of simplicity, the model can be visualised in the form 

below: 

𝑝(𝜃1, 𝜃2, 𝜃3|𝑦1, 𝑦2) ∝ 𝑝(𝑦2|𝜃1, 𝜃2, 𝑦1)   likelihood 

           × 𝑝(𝜃1|𝜃3)𝑝(𝜃2)     prior 

              × 𝑝(𝜃3)     hyperprior 

Where 𝜃𝑗 is the mean of 𝑗 (with 𝑗 = 1,2,3…) groups dataset with each, collected over 𝑁𝑗  trials 

(demands or observations); 𝑦𝑖𝑗 is the 𝑖𝑡ℎ (with 𝑖 = 1,2,3…) measurement from the 𝑗𝑡ℎ group of 

data and 𝜎𝑗
2 is the variance of each group dataset, often assumed to be known. The group mean 

𝜇 is then obtained from the mean 𝜃𝑗 estimated for each of the 𝑗 groups dataset. As shall be seen 

later in subsequent Chapters, the group mean, and variance will be chosen to be of equal 

magnitude to condition the distribution in accordance with the strength of the application 

distribution category (El-Gheriani et al., 2017a). The hierarchical model for given data size 𝑦𝑖𝑗 
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having priors for each sub-group through 𝑝(𝛽|𝛼) and requiring a hyperprior distribution parameter 

of interest, 𝑝(𝛼) is represented in hierarchy as shown in Figure 4-7. 

 

Figure 4-7 Hierarchical Model Representation. 

4.6.2 Hierarchical Bayesian Analysis (HBA) Formulation 

The HBA is a useful technique in probabilistic risk analysis for scenarios where failure data is 

lacking or sparse. HBA can incorporate a wide range of information in the estimation process 

where analogous data from similar operation are available. The analogous data, collected from 

different activities such as drilling, mining and production are aggregated using source-to-source 

variability concept (Khakzad et al., 2014; Lunn et al., 2009; Siu and Kelly, 1998). One major 

concern of any uncertainty modelling is the degree of accuracy in collecting or developing where 

applicable, an appropriate prior failure distribution. Generally, the two stage Bayesian and 

empirical Bayes’ theorem are adopted in Probabilistic Risk Assessment (PRA) for estimating prior 

distributions. A multi-stage prior distribution is utilized in the hierarchical model which is very 

complex to analyse numerically. Recently, the development of Markov Chain Monte Carlo 

(MCMC) sampling software makes a comprehensive Hierarchical Bayesian Analysis controllable 

(Kelly and Smith, 2011; 2009). As data sparsity is a common setback in the decommissioning and 

abandonment industry, there is a need to aggregate the datasets from a variety of sources. The 

following steps are required to develop such datasets within HBA. 
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The first step requires that a likelihood function with parameter of interest ϕ be specified for the 

data set (𝑦). Then an informative prior distribution can be developed for this parameter by 

considering that the parameter ϕ follows a generic distribution ϕ~ω0(ϕ|α, β) which represents 

the first stage prior. The hyper-parameters (α, β) that characterise this prior are also uncertain 

and are considered to follow a diffusive or non-informative distribution 𝑔0(α, β), which is known as 

a second stage prior or hyper prior distribution.  

The data set (𝑦) along with Bayes theorem can be used to update the second stage prior in order 

to have a posterior distribution for α and β, i.e., 𝑔1(α, β|y). It is calculated using the two-

dimensional form of Bayes theorem: 

 𝑔1(𝛼, 𝛽|𝑦) =
𝑔0(𝛼,𝛽) 𝐿(𝑦|𝛼, 𝛽)

∬ 𝑔0(𝛼,𝛽) 𝐿(𝑦|𝛼, 𝛽)𝑑𝛼 𝑑𝛽
       (4-11) 

where the likelihood function of α and β, i.e., 𝐿(𝑦|α, β), is achieved by averaging the likelihood 

function of ϕ, i.e., 𝐿(𝑦|ϕ) over all values of ϕ: 

 𝐿(𝑦|𝛼, 𝛽) =  ∫ 𝐿(𝑦|𝜙) 𝜔0(𝜙|𝛼, 𝛽)𝑑𝜙         (4-12) 

The posterior of the hyper-parameters (α, β), i.e., 𝑔1(α, β|y) will be used to update the first stage 

prior ω0(ϕ|α, β) to obtain the posterior predictive distribution ω1(ϕ|y). This distribution is known 

as the population variability curve (PVC) and can be written as: 

 𝜔1(𝜙|𝑦) =  ∬ 𝜔0(𝜙|𝛼, 𝛽) 𝑔1(𝛼, 𝛽|𝑦) 𝑑𝛼 𝑑𝛽      (4-13) 

This distribution represents the source–to-source uncertainty in ϕ and can be used as an 

informative prior distribution when more case-specific data become available:  

𝜔1(𝜙|𝑦∗, 𝑦) =
𝜔1(𝜙|𝑦) 𝐿(𝑦∗

|𝜙)

∫ 𝜔1(𝜙|𝑦) 𝐿(𝑦∗
|𝜙)𝑑𝜙

            (4-14) 

𝜔1(𝜙|𝑦∗, 𝑦)  ∝  𝜔1(𝜙|𝑦)𝐿(𝑦∗|𝜙)              (4-15) 
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4.7 Uncertainty Modelling (Step 4) 

Due to the many limitations of the AND- and OR-gates in modelling all potential interactions 

among causes and their effects, it is necessary to implement more advanced logics to handle the 

uncertainties associated with causations representation. Although, the theory of reasoning under 

uncertainty is well covered by Bayesian networks robust computation engine. However, numerous 

challenges are a commonplace in the problem formulation due to the lack or insufficient 

knowledge of the precise failure data and the assumptions built into the parameter modelling. To 

address these uncertainties associated with failure data and model parameters, three relaxation 

strategies – the noisy-OR (N-OR), leaky noisy-OR (LN-OR), and the imprecise leaky noisy-OR 

(ILN-OR) are developed and tailored to suit the elicitation issues (Fallet-Fidry et al., 2012;  

Antonucci, 2011).  

4.7.1 Noisy-OR 

The N-OR logic gate is part of proven tools widely adopted in the safety and risk analysis of 

process systems and medical sciences field. The N-OR gate is, especially, popular because of 

its ability to reduce the dependence elicitation of the conditional probabilities from exponential to 

linear causals within a Bayesian network. It relies on the assumption that a single causation can 

trigger the occurrence of an undesired event provided the causal is unhindered, that is, even if a 

causal is actively present (in its true state), such causal may still not be sufficient to initiate the 

end event occurrence (Pearl, 1988). This underlying assumption is realistic and often encountered 

in practice, however, events such as Boiling Liquid Expanding Vapour Explosion (BLEVE) caused 

by the rupture of a pressurized liquid vessel above its boiling point has been reported to have 

occurred even when the liquid is not flammable or without notable rupture of the vessel. The 

BLEVE is one of a rare accidents scenario where the end consequence may occur without the 
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causal being in its true state, necessitating the need to accommodate a ‘leaky’ probability in the 

model formulation.  

The Noisy-OR gate is one form of canonical interaction that is extensively used in Bayesian 

networks. The Noisy-OR gate belongs to the category of models widely referred to as being 

Independent of Causal Influences (ICI). The Noisy-OR gate is applicable when there are 

numerous possible causes 𝐴1, 𝐴2, 𝐴3 … , 𝐴𝑛 of an effect variable 𝑌. The model has two 

assumptions: (1) Each of the causes 𝐴𝑖  has a probability 𝑝𝑖 strong enough to cause Y, when other 

causes are absent. (2) Each of the causes 𝐴𝑖 influences 𝑌 independently from each other. The 

noisy model requires specification of 𝑛 parameters 𝑝1, 𝑝2..., 𝑝𝑛. 𝑝𝑖 is the probability that effect Y 

is true given that cause 𝐴𝑖 is true and all other causes 𝐴𝑗, 𝑗 ≠  𝑖, are false (Oniśko et al., 2001). 

Therefore, the two outcomes of variable 𝐴𝑖 are represented by 𝑎𝑖 and �̅�𝑖. The probability of 𝑦 

provided a subset 𝐴𝑗 of the 𝐴𝑖 ’s that are true is given by the following formula, from which the 

complete CPT of 𝑌 is conditional on its parents 𝐴1, 𝐴2 … . , 𝐴𝑛 can be derived. 

𝑝(𝑌|𝐴𝑗) = 1 − ∏ (1 − 𝑝𝑖)𝑖:𝐴𝑖𝜖𝐴𝑗
    (4-16) 

The Noisy-OR model benefits from a considerable reduction in the number of probabilities needed 

to elicit the interactions among causations and consequences within the CPT. The model only 

requires “𝑛” probabilities, unlike the unrestricted model which needs 2𝑛 probabilities to completely 

elicit the cause-consequence interactions (Heckerman & Breese 1996). 

4.7.2  Leaky Noisy-OR 

The leaky N-OR logic gate is an extended form of the N-OR gate developed to account for the 

possible occurrence of an undesirable event even though none of the causations is actively 

present (Medina-Oliva et al., 2009; Simon and Weber, 2009). The leaky N-OR thrives on the 

assumption that an uncaptured hazard with a nonzero probability is independently sufficient to 
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trigger an accident even though all captured causals are inactive (i.e., in their false states). This 

uncaptured hazard is termed a ‘leak probability’. Since a BN, despite its numerous uncertainty 

modelling potentials, is a family of parametric models intended to represent problems as close to 

realistic as possible, it also falls short to completely represent accident practicality. To that end, 

the application of ‘leaky probability’ is crucial to represent the uncaptured variables that can 

influence the outcome of a rare accident event. The leak probability is the probability that the leak 

scenario exists. The precision of such leaky probability modelling is dependent on the derivation 

of a probability that the child node could be active (i.e., present) given that each of the causal 

(parent node) explicitly identified in the Bayesian network was inactive (i.e., absent). Forms of the 

leaky N-OR gates have been developed as a strategy to relax the conditional probabilities by 

different researchers as can be found in literatures (Lemmer and Gossnik, 2004; Bobbio et al., 

2001; Onisko et al., 2001). From the foregoing, one critical issue that has not been considered in 

both N-OR and LN-OR is the comprehensive elicitation of the uncaptured probabilities. In addition, 

the N-OR and LN-OR formalisms describe the uncaptured probabilities in accident scenarios 

where only a single cause is present, but in practice, many causes may be active concurrently 

thereby undermining the quantification assumptions and precisions of these models.  

Since the Noisy-OR gate does not consider the situation where a subsystem could fail despite 

that its components are all active and functional. Therefore, the leaky Noisy-OR considers a 

situation where the consequence variable is true though all its causes are false. The Leaky model 

presumes a positive probability called leaky probability (𝑙). Leaky probability is the probability that 

effect 𝑌 will occur spontaneously though all its causes are false. The model is applicable where it 

is impossible to capture all potential causes that could make effect 𝑌 occur. The effect of leaky 

probability could be easily modelled by the influence between 𝐴𝑖 and 𝑌 that has changed due to 

the addition of an unknown or uncaptured hazard (Bobbio et al. 2001; Wasyluk 2001; Zagorecki 
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& Druzdzel 2004). Therefore, the leaky Noisy-OR gate formula that can be used to calculate the 

probability of 𝑌 given the subset 𝐴𝑗 of the 𝐴𝑖 which are true is expressed as. 

𝑝(𝑌|𝐴𝑗) = 1 − [(1 − 𝑙) ∏ (1 − 𝑝𝑖)𝑖:𝐴𝑖𝜖𝐴𝑗
]   (4-17) 

The Leaky Noisy-OR (LN-OR) formalism is especially, applicable to decommissioning and 

abandonment operations where reservoir conditions, the age of the well and platform, 

mechanical, physical, and chemical damages within the casings of the wellbore are all variables 

of uncertainty and could be more. The accident contribution from each node  𝐴1,  𝐴2 and  𝐴3 is 

assumed to be independently capable of leading to the consequence node 𝐴4 when other root 

nodes are absent. In practice, this need not be true, as there are uncaptured hazardous events 

not represented in the model that can cause the failure of the system. These uncaptured events 

are accounted for by introducing an additional parameter 𝑙 ‘leaky probability’, such that 0 ≤ 𝑙𝑜 <

1. The leak probability assumes that the occurrence of uncaptured events will adequately provide 

new knowledge of the consequence event by incorporating another causal variable 𝐿, with a ‘link 

probability’, given by 𝑙𝑜 = 𝑃𝑖. It is to be noted that this additional parameter, albeit efficient, does 

not consider the uncertainty associated with leak probability, link probability and the outcomes of 

the parent variables in the accident model (Antonucci, 2011; Fallet-Fidry et al., 2012; Babaleye et 

al., 2019). These uncertainties can be parametised using data uncertainty modelling formalism.  

4.7.3 Extended Leaky Noisy-OR 

To compliment, rather than, phase out the capabilities of the N-OR and LN-OR logic gates, an 

imprecise leaky N-OR gate is formulated with the view to a wider and realistic representation of 

the uncaptured probabilities. Antonucci (2011) proposed the ILN-OR formulation to allow for the 

probabilities to be flexible enough to represent sets of distributions in intervals, as an improvement 

to the common single probability distributions. Fallet-Fidry et al. (2012) applied this improved 

probability formulation in their evidential network-based extension to support risk analyses. Three 
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areas of uncertainties are present in the other two models, and these are the prior probabilities, 

the leak probability used to define the uncaptured hazards, and the link probability associating 

the parent nodes to their corresponding child node. To put these in context, the prior probabilities 

are estimated from sparse failure data obtained from source-to-source or exert judgement and 

are lacking in sufficient knowledge of the overall state or condition of the system to be analysed. 

The number of uncaptured hazards including their occurrence or nonoccurrence states cannot be 

ascertained in most cases. Furthermore, the strength of influence of a modelled causal event on 

its outcome is also a variable of uncertainty. The ILN-OR offer a unique probability modelling 

advantage referred to as “ignorance”. The concept of ignorance model centers around the 

understanding that accident contributory factors can exist beyond binary states. Often, each 

causal is represented to be true or false, but no co-existence of states has been thought possible. 

However, it could be practical to assume that the presence of a single causal may not lead to the 

failure of its end consequence. This means that the existence of a cause does not imply it is 

sufficiently capable to cause the end event to fail. To this end, it is realistic to adopt a model that 

can present this new knowledge or evidence using interval-based probabilities due to its 

robustness.  

Therefore, the extension of the LN-OR – imprecise noisy-OR (ILN-OR) – is introduced to account 

for the uncertainty associated with elicitation parameters and unknown condition of the reservoir 

leading to inaccurate failure data state variables estimations in the risk model (Fallet-Fidry et al., 

2012). The ILN-OR assumes that occurrence and non-occurrence representation of state 

variables are not sufficient due to the probability that the state variable may or may not exist. For 

the sake of simplicity, the leaky probability, and corresponding link probability are assigned a 

lower and upper bound, such that 𝑙𝑚𝑖𝑛 ≤ 𝑙𝑜 < 𝑙𝑚𝑎𝑥 and 𝑃𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑖 < 𝑃𝑖,𝑚𝑎𝑥. Such assignments 

will enable the state variables to be represented as either being true, false, or true-false 

simultaneously. This is primarily a practical way to obtain failure probabilities in intervals rather 
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than discrete values, to provide the risk assessor enough information to develop a conservative 

safety mechanism. Thus, an extended CPT for the accident model is given by. 

𝑝(𝐴𝑖 = {𝑎𝑖}|𝐴𝑗,𝑗≠𝑖) = 1 − [(1 − 𝑙𝑚𝑖𝑛) ∏ (1 − 𝑝𝑖,𝑚𝑖𝑛)]𝑖:𝑙𝑗𝜖𝐴𝑗
    (4-18) 

 𝑝(𝐴𝑖 = {�̅�𝑖}|𝐴𝑗,𝑗≠𝑖) = [(1 − 𝑙𝑚𝑎𝑥) ∏ (1 − 𝑝𝑖,𝑚𝑎𝑥) ∙ ∏ (1 − 𝑝𝑖,𝑚𝑎𝑥)]𝑖:𝑙𝑗𝜖𝐴𝑖𝑗
]𝑖:𝑙𝑗𝜖𝐴𝑗
   (4-19) 

𝑝(𝐴𝑖 = {𝑎𝑖, �̅�𝑖}|𝐴𝑗,𝑗≠𝑖) = [(1 − 𝑙𝑚𝑖𝑛) ∏ (1 − 𝑝𝑖,𝑚𝑖𝑛)] − (1 − 𝑙𝑚𝑎𝑥) ∏ (1 − 𝑝𝑖,𝑚𝑎𝑥) ∙𝑖:𝑙𝑗𝜖𝐴𝑗𝑖:𝑙𝑗𝜖𝐴𝑗

∏ (1 − 𝑝𝑖,𝑚𝑎𝑥)]𝑖:𝑙𝑗𝜖𝐴𝑖𝑗
]         (4-20) 

Where 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 are the minimum and maximum leak probabilities, 𝑝𝑖,𝑚𝑖𝑛 and 𝑝𝑖,𝑚𝑎𝑥 are the 

corresponding link probabilities, 𝑝(𝐴𝑖 = {𝑎𝑖}|𝐴𝑗,𝑗≠𝑖) is the occurrence probability of 𝐴𝑖 given the 

failure of 𝐴𝑗,𝑗≠𝑖, 𝑝(𝐴𝑖 = {�̅�𝑖}|𝐴𝑗,𝑗≠𝑖) is the  non-occurrence probability of  𝐴𝑖 given the failure  of 

𝐴𝑗,𝑗≠𝑖, and 𝑝(𝐴𝑖 = {𝑎𝑖, �̅�𝑖}|𝐴𝑗,𝑗≠𝑖) is the probability of ignorance of occurrence or non-occurrence 

of 𝐴𝑖 given the failure of 𝐴𝑗,𝑗≠𝑖. 

Equations (4-18), (4-19) and (4-20) enable the states of both parent and child nodes to be 

specified with more than binary states. To incorporate the uncertainty of the states of the parent 

variables, 𝑎3, �̅�3 a modality probability 𝑥 is assigned. For example, the CPT of 𝐴3 given the 

causations 𝐴1 and 𝐴2 is as presented in Table 4-2. Imprecise leaky noisy-OR CPT for node 𝑨𝟑, 

where 𝑝𝑖,𝑚𝑖𝑛 is assumed to be equal to 𝑝𝑖,𝑚𝑎𝑥 and 𝑙𝑜 = 𝑙𝑚𝑖𝑛 = 𝑙𝑚𝑎𝑥. 

Table 4-2. Imprecise leaky noisy-OR CPT for node 𝑨𝟑 

𝐴1 𝑎1 
 

�̅�1 
 

𝑎1, �̅�1 

𝐴2 𝑎2 �̅�2 𝑎2, �̅�2 𝑎2 �̅�2 𝑎2, �̅�2 𝑎2 �̅�2 𝑎2, �̅�2 

𝑎3 𝑝1𝑝2 𝑝1 𝑥𝑝1  𝑝2 𝑙𝑜 𝑥𝑙𝑜  𝑥𝑝2 𝑥𝑙𝑜 𝑥2𝑙𝑜 

�̅�3 (1 − 𝑝1)(1 − 𝑝2) 1 − 𝑝1 1 − 𝑥𝑝1  1 − 𝑝2 1 𝑥  1 − 𝑥𝑝2 𝑥 𝑥2 

𝑎3, �̅�3 
𝑝2 + 𝑝1 − 1 2𝑝1 − 1 2𝑥𝑝1 − 1  2𝑝2 − 1 𝑙𝑜 

𝑥(𝑙𝑜

− 1) 
 

2𝑥𝑝2 − 1 𝑥(𝑙𝑜 − 1) 𝑥2(𝑙𝑜 − 1) 
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4.8 Dynamic Bayesian Network (Step 5) 

Dynamic Bayesian network (DBN) is a form of BN that thrives on temporal dependencies of 

accident contributory factors to model the dynamic behavior of localised random variables. DBN 

is a method used in rare accident scenarios where localised model events evolve over time. Each 

localised model is represented as a time slice and is connected to other localised models via 

temporal arcs. Each time slice depicts a static BN at a given time step 𝑡, such that a node at the 

time step (𝑡 + 1) is conditionally dependent on both the parents of the (𝑡 + 1)𝑡ℎ time slice and the 

parents of the 𝑡𝑡ℎ time slice, as shown in Figure 4-8. The temporal arcs linking interacting random 

variables in different time slices denote a time-variant probabilistic dependence. The DBN thrives 

under two fundamental assumptions to avert infinite complexities in its computation. The first 

being that the model must be stationary and the other being that the model must follow the Markov 

chain formalism. The stationary requirement requires that the laws governing the relationship 

among interacting events remain constant, although the probability distribution of the events might 

evolve. The Markov Chain formalism requires implies that the posterior states of interest depend 

on a finite number of prior states, even though, there are sufficient historical data with infinite prior 

states. 

 

Figure 4-8 DBN model with temporal dependence 
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The computational robustness of DBN aims to proffer localised model response where accident 

evolution is imminent, such as is the case with decommissioning and abandonment operation. 

One additional advantage offered by the DBN is in its capability to model probability distribution 

over a finite random variable with infinite number of constraints. Consider Figure 4-3 (above),  

 𝑃(𝑦𝑖
𝑡) = ∏ 𝑃(5

𝑖=1 𝑦𝑖
𝑡|𝑦𝑖

𝑡−1, 𝑦𝜇(𝑖)
𝑡−1, 𝑦𝜇(𝑖)

𝑡 ) (4-21) 

Where 𝑃(𝑦𝑖
𝑡) is the joint probability distribution of the state variables 𝑦𝑖 of the 𝑖𝑡ℎ node in time-

slice 𝑡. 𝜇(𝑖) is the parent of variable node 𝑖, which can be at the same time-slice 𝑡 or the preceding 

time-slice (𝑡 − 1).  

For a pair of BNs, 𝐵𝑁1 and 𝐵𝑁∗, the DBN defines the characteristics of 𝐵𝑁1 with a prior failure 

probability 𝑝(𝑦1), and defines 𝐵𝑁∗ as a two-slice temporal Bayesian network with dependencies 

modelled as a product of the CPTs within the temporal BN. The first node of the two-slice temporal 

BN is assigned a statistically independent prior state distribution with a node, 𝑝(𝑦𝑖
𝑖:𝑁) and all nodes 

in the subsequent time-slice are assigned their corresponding CPTs. The joint probability 

distribution of a DBN with an 𝑁𝑡 slices is given by: 

 𝑝(𝑦𝑖:𝑁𝑡

𝑖:𝑁 ) = ∏ 𝑃𝐵𝑁1(𝑁
𝑖=1 𝑦𝑖

𝑡|𝑦𝜇(𝑖)
𝑡 ) × ∏ ∏ 𝑃𝐵𝑁∗

𝑁𝑡
𝑡=2 (𝑁

𝑡=1 𝑦𝑖
𝑡|𝑦𝜇(𝑖)

𝑡 ) (4-22) 

4.9 Model Validation (Step 6) 

This research work is motivated by the scarcity of historical data or literature and where there are 

such data, it is often sparse due to limited knowledge of the decommissioning and abandonment 

operational hazards in its entirety. To that end, it is both a necessity and a matter of significance 

to verify and validate the correctness of the quantitative risk assessment methodology proposed. 

This is especially required to provide an objective quality evidence with a considerable confidence 

level in the obtained failure probability results. Therefore, this research work is validated in a 
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series of steps, as discussed below. 

(i) Model Formulation Verification. In this step, the model is formulated based on the 

phases of activity needed to decommission and abandon the systems. The potential 

accident scenarios from each phase are analysed and systematically constructed 

using appropriate accident scenarios analysis and evolution tool – bowtie, fault tree 

and event tree – to ensure that the model has been formulated in the most practical 

and realistic manner. For the sake of reasonable argument, the bowtie developed for 

the accident scenarios in this thesis were conducted and examined by a combination 

of reputable academics and industry experts in a technical workshop.  

(ii) Techniques Comparative Analysis. Conventional quantitative risk assessment - such 

as FT, ET, and BT – though able to analyse the risks associated with simple to complex 

engineering systems, they are not capable of modelling common cause failures, 

dependencies amongst accident contributory factors or dynamic behaviour of events 

from a time 𝑡 to 𝑡 + 𝛿𝑡. The results obtained from the proposed model are examined 

and compared with those obtained through the conventional QRA. To preserve the 

confidence in modelling and analysis, similar data obtained through HBA as shall be 

seen in succeeding Chapter, are used as priors in both the conventional QRA and the 

proposed dynamic safety model. 

(iii) Sensitivity Analysis. The degree of response of an infinitesimally small change in the 

accident contributory factors on the accident itself has been a proven method to 

examine how sensitive the consequences are to their associated causals. Several 

methods such as the Birnbaum Importance Measure (BIM), the Improvement Potential 

Measure (IPM), Risk Achievement Worth (RAW), Risk Reduction Worth (RRW), the 

Criticality Importance Measure (CIM), Fussell-Vesely’s Measure (FVM), and the 

Shannon’s Mutual Information (entropy reduction) method are commonplace within 

the reliability industry for predicting the safety critical factors (Chybowski et al., 2014; 
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Verma et al., 2010; Fricks and Trivedi, 2003). In the context of DBN, the entropy 

reduction sensitivity model is the most robust and widely used measure of safety 

critical factors during information sources ranking (Kjærulff and Madsen, 2013). It 

defines the mutual information among sources as the total potential uncertainty 

reduction, 𝑅 given the original uncertainty in 𝑅𝑖 prior to consulting 𝑅𝑗. The entropy 

reduction, as a sensitivity measure, enables the reduction of one variable through the 

knowledge of another related variable as expressed in Equation (4-21).  

𝐼(𝑅𝑖,𝑅𝑗)
𝐸𝑅 = − ∑ ∑ 𝑝(𝑅𝑖, 𝑅𝑗)𝑗𝑖 𝑙𝑜𝑔

𝑝(𝑅𝑖,𝑅𝑗)

𝑝(𝑅𝑖)𝑝(𝑅𝑗)
   (4-21) 

 

Where 

𝑰(𝑹𝒊,𝑹𝒋)
𝑬𝑹 = 

the importance measure by entropy reduction of root causes 

𝑹𝒊 and 𝑹𝒋 

(𝑅𝑖, 𝑅𝑗) = root causes 𝑅𝑖  and 𝑅𝑗, respectively. 

 𝑝(𝑅𝑖 , 𝑅𝑗) = the joint probability distribution function of root causes 𝑅𝑖  and 𝑅𝑗 

 

𝑝(𝑅𝑖), 𝑝(𝑅𝑗) = 
the probability distributions of root causes 𝑅𝑖 and 𝑅𝑗, 

respectively 

However, as decommissioning and abandonment operation is not an investment, there is 

generally no considerable incentive to implement elaborate analysis. As a result, the sensitivity 

analysis adopted in this study relies on Fussell-Vesely’s importance measure metric, 𝐼𝑀𝐵𝑗

𝐹𝑉. The 

𝐼𝑀𝐵𝑗

𝐹𝑉 is a form of risk reduction worth and is expressed as shown in Equation (4-22). 

𝐼𝑀𝐵𝑗

𝐹𝑉 =
𝜕𝑝(𝐵𝑖)

𝑇𝐸

𝜕𝑝(𝐵𝑗)

𝑝(𝐵𝑗)

𝑝(𝐵𝑗)
𝑇𝐸 =

𝑝(𝐵𝑗)
𝑇𝐸 −𝑝(𝐵𝑗=0)

𝑇𝐸

𝑝(𝐵𝑗)
𝑇𝐸    (4-22) 
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Where 
𝑰𝑴𝑩𝒋

𝑭𝑽 = Fussell-Vesely’s importance measure metric 

𝑝(𝐵𝑗) = Failure probability of root cause 𝐵𝑗 

𝑝(𝐵𝑗)
𝑇𝐸 = the parent risk level defined by the top event failure probability  

𝑝(𝐵𝑗=0)
𝑇𝐸 = 

the decreased risk level with the basic event of interest optimised or 

assumed to be active i.e., with 100% reliability or in its true state. 

 

4.10 Economic Risk Modelling (Step 7) 

The economic risk model commences after the risk analysis results have been obtained, as 

discussed from steps 1 to 6. The Economic Risk Analysis (ERA) builds upon the failure 

probabilities obtained in the dynamic state modelling steps following validations through sensitivity 

analysis.  The tools and techniques from steps 1-6 are also used herein to ensure the assessment 

is complete, comprehensive and robust. The ERA is developed to account for the future value of 

money and provide a substitute for the unknown inflation rates and Assets Retirement Obligation 

(ARO) information. It laid bare the implications of failing to capture hazards before thy manifest 

into an uncontrollable and undesired event, that may result in heavy financial burden on the Oil 

and Gas producers in the event of site remediations and clean-ups. 

4.11 Research Framework 

The framework of this study is aimed at developing a systematic approach to address several 

identified concerns related to decommissioning and abandonment of offshore well P&A and Steel 

Piled Jacket (SPJ) removal. One of the major issues is the sparsity of failure data needed to 

conduct a detailed probabilistic risk analysis. This data paucity forms the basis for developing a 

statistical method capable of addressing the issues associated with small-sized data analysis in 

the Chapter 5. The problem of unknown reservoir conditions associated with plugging and 
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abandonment, the influence of time dependence on the model response and method to reduce 

the associated modelling and parameter uncertainties are as presented in Figure 4-9.  

 

Figure 4-9 Research framework flowchart 
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Chapter 5:  Sparse Data Modelling for Risk Analysis  

5.1 Outline 

This Chapter demonstrates the application of the Hierarchical Bayesian Analysis to aggregate the 

failure probabilities of accident contributory factors as a mean distribution with 95% confidence 

level. The HBA methodology thrive on the statistical models capable of modelling multi-stage data 

based on the concept of source-to-source variability. Weibull and Gamma distributions are 

presented in Section 5.3. Section 5.4 presents the application of the proposed HBA models and 

comparisons are made between both methods using the data obtained in a Design-for-

Decommissioning (DfD) workshop. Results and discussions emanating from the analysis are 

presented in Section 5.5 followed by the concluding remarks on the credence of the proposed 

methodology in Section 5.6.  

5.2 Introduction 

Decommissioning and abandonment operations are characterised by inherent and environmental 

risks. To quantify these risks, a comprehensive quantitative risk analysis must be performed. 

However, the complexity of the operation and overall knowledge of associated hazards often rely 

on the personnel’s experience. Literature and historical information required to obtain failure 

probabilities are usually sparse or lacking, altogether. Therefore, it is not uncommon to adopt a 

variety of information sources from analogous operations such as mining, aerospace, and related 

offshore drilling hazards. One major issue associated with such approach is the additional 

uncertainties introduced due to assumptions and dissimilarities of operational sequences. The 

risk estimation becomes inaccurate leading to consequences capable of endangering personnel 

lives, the environment, and loss of assets to be decommissioned and/or abandoned.  

The primary concern with well integrity assurance during and after abandonment is the release of 

hydrocarbon-containing fluid which may lead to fire and explosion if ignition source is present. 
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The accurate prediction of potential release of hydrocarbon-containing fluid is necessary to 

preserve the safety of complex engineering activities. The consequence of such inaccurate 

accident prediction can be significant, putting human life and the environment at stake. A 

parameter of interest (such as failure rate, failure probability, Mean Time to Failure (MTTF) etc.) 

needs to be defined and calculated to ascertain the risk level associated with major accidents. To 

address the afore-mentioned issues, it is necessary to develop a considerable risk estimates 

capable of aggregating sparse failure data for each causal event and yielding acceptable risk 

value for the parameter of interest. This is, especially, important in order to obtain considerable 

results with reduced uncertainty and acceptable confidence level. The gathered data from 

analogous sources with unrelated characteristics emanating from dissimilar operational 

conditions, geographical location, topology, operational sequence, and subjective expert opinions 

can be aggregated to obtain the desired estimates through systematic quantitative risk analysis. 

This approach has become a commonplace in the decommissioning and abandonment industry 

to address the challenges posed by data availability and sparsity. What is not common, on the 

other hand, is the standardization of a robust technique required to accurately estimate the failure 

probability or failure rate of the high-level hazardous event using these partially related group-

level data.  

Generally, APD is often used as input to the HBA models for conducting probabilistic risk analysis. 

However, the APD is typically flawed since they are often obtained from variety of source with 

unrelated complexities, locations, and activities. The implication of implementing such analogous 

data is that it does not exactly reflect the inherent chain of events leading to the evolution of 

accident under study, making the risk analysis depending on the APD susceptible to a degree of 

uncertainty.  

In this thesis, a method to aggregate the source-to-source data based on statistical distribution is 

introduced. In particular, the two-parameter Weibull distribution and the Gamma distribution are 



81 
 

compared as viable methods to process the collected data with 95% confidence level. The 

distribution method yielding the most practical approximation suitable for the type of accident 

scenarios analysis in this study would then be the primary source of failure data used throughout 

the rest of this work, as shall be seen later in subsequent Chapters. 

5.3 Selection of relevant data distribution method  

5.3.1 Weibull Distribution 

The empirical Weibull distribution function was developed primarily to describe the reliability of 

technical products as an extended form of the exponential family of statistical distributions (Rinne, 

2008; Weibull, 1951). It has been widely used in numerous industries to obtain reasonable 

estimates for parameters of interests. For example, in stress and structural analysis where 

breaking strength data have paucity limitations or in survival analyses (Lawless, 2003) and 

extreme value prediction (Carter and Challenor, 1983). Duerr and Grashoff (1999) adopted the 

Weibull distribution function to demonstrate and describe the heat exchanger cleaning-in-place 

kinetics in the process industry.  

Forms of Weibull distribution have been developed by many researchers to address multitude of 

engineering challenges and peculiar cases similar to those encountered in decommissioning and 

abandonment operations. For instance, the Weibull distribution is characterised by its survival 

and hazard functions. The hazard function is often represented by an increasing, constant, and 

decreasing rate, making it unsuitable for modelling sizable numbers of real lifetime data 

encountered in practical engineering systems which follow the bathtub-shaped failure rate. The 

common forms of Weibull distribution ranges from two- to five-parameter. Notable extensions of 

the two-parameter family are the flexible Weibull distribution (Bebbington et al., 2007) and the 

truncated Weibull distribution (Zhang and Xie, 2011). The two-parameter form has a Probability 

Density Function (PDF) given by 
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𝑝(𝑦) =
𝛼

𝛽
(

𝑦

𝛽
)

𝛼−1
𝑒

−(
𝑦

𝛽
)

𝛼

 , 𝑝(𝑦) ≥ 0, 𝛼, 𝛽 > 0   (5-1) 

Where 𝛼 and 𝛽 are the shape and scale parameters, respectively. These hyper-parameters help 

to characterise the degree of spread amongst the source-to-source data and are related to one 

another as expressed below 

𝛽2 = 𝜎2 [(Γ (1 +
2

𝛼
)) − (Γ2 (1 +

1

𝛼
))]

−1

   (5-2) 

Where Γ and 𝜎2 are the gamma function and variance of the distribution, respectively. Equation 

(5-2) reveals that the scale parameter increases proportionately with the variance in the data and 

the shape parameter 𝛼 is associated with the availability of sufficient failure data, that is, a low 𝛼-

value indicates the presence of data while a high 𝛼-value implies data paucity. For the sake of 

simplicity, datasets with 𝛼 < 1 exhibits a decreasing failure rate over time. Where 𝛼 > 1, the failure 

rate increases with time and a unity shape parameter indicates a constant failure rate. The gamma 

function Γ of the distribution shown in Equation 5-2 is expressed as 

Γ (𝑘) = ∫ e−y𝑦𝑘−1𝑑𝑦
∞

0
      (5-3) 

Generally, the gamma function can be interpreted numerically if the right-hand term converges to 

a real number such that Γ(𝑘) = (𝑘 − 1)!. Given the set of data from source-to-source, the 

expected Mean Time to Failure (MTTF (�̅�)) or Weibull mean life for a decommissioning and 

abandonment accident occurrence is estimated by 

�̅� = 𝛽Γ (1 +
1

𝛼
)      (5-4) 

Equation (5-4) holds that the MTTF demarcates causations that have the Most Probable Cause 

(MPC) of failure from causations whose influence on the overall accident scenarios are 

insubstantial. For example, large values of �̅� indicates increased proportion of causations with 

fitness on the Weibull distribution plot and vice versa.  
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5.3.1.1 Numerical Estimation of Parameters 

In the statistical estimation of a probability distribution of parameters, Maximum Likelihood 

Estimator (MLE) is the widely adopted method used to maximise a likelihood function such that 

the observed datasets are the most probable data for the study of interest. The MLE thrive on the 

assumption that observed data are independent and identically distributed, in practice, this need 

not be true, making the assumption an additional source of uncertainty especially for very small 

sample size. Nwobi and Ugomma (2014) compared methods for the estimation of MLE 

parameters using the Mean Square Error (MSE) and the Kolmogorov-Smirnov (KS) criteria. 

However, estimation of the failure probability for each accident causations using the Weibull 

distribution method requires extra effort of interpolating the distribution with relatively less reliable 

goodness fit. To address this, the MLE of the scale parameter 𝛽 given the shape parameter 𝛼 is 

given by 

𝛽 = (
1

𝑁
∑ 𝑦𝑖

𝛼𝑁
𝑖=1 )

1

𝛼
    (5-5) 

Where 𝑦𝑖 is the dataset and 𝑁 is the observed number of trials or demands during the 

decommissioning and abandonment operation. From Equation (5-5), the MLE for 𝛼 can be 

obtained numerically from the implicit solution of the function 

1

𝑁
∑ 𝑦𝑖

𝛼 ln 𝑦𝑖
𝑁
𝑖=1

1

𝑁
∑ 𝑦𝑖

𝛼𝑁
𝑖=1

−
1

𝛼
−

1

𝑁
∑ ln 𝑦𝑖

𝑁
𝑖=1 = 0   (5-6) 

5.3.1.2 Linearised Estimation of Parameters 

The Cumulative Density Function (CDF) of Equation (5-1) is obtained from the unreliability term 

given by 

   𝑃(𝑦) = 1 − 𝑒
−(

𝑦

𝛽
)

𝛼

  , 𝑃(𝑦) ≥ 0, 𝛼, 𝛽 > 0 (5-7) 
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The linearised form of the CDF is given by Equation (5-8) below and can be depicted on a Weibull 

plot which takes the form of the equation of a straight line with slope 𝑚 and intercept 𝑐. Equation 

5-7 is resolved with variables change as  

ln(1 − 𝑃(𝑦)) = − (
𝑦

𝛽
)

𝛼
       

ln(− ln(1 − 𝑃(𝑦))) = 𝛼 ln 𝑦 − 𝛼 ln 𝛽   (5-8) 

Where Equation (5-8) compares with 𝑧 = 𝑚𝑦 + 𝑐 from which 𝑚 = 𝛼 (the slope or shape 

parameter) and 𝑐 = −𝛼. 𝑙𝑛𝛽, the intercept. Since both dependent and independent variables have 

been linearised in logarithmic forms, a straight-line log-log plot can be used to describe the data 

characteristics. The interpretation of this linearised model follows that a sparse dataset modelled 

as a Weibull distribution is expected to yield a linear Weibull plot.  

To process the data, an empirical distribution function should be defined to facilitate the estimation 

of the ordinate axes (unreliability). One of such function is the Bernard’s approximation expressed 

as 

𝑃(𝑦) =
𝑘−0.3

𝑛+0.4
     (5-9) 

Where 𝑘 is the event failure order and 𝑛, the sample size. The approximation assumes that the 

true probability of failure 𝑃(𝑦) value should occur at the 𝑘𝑡ℎ failure from a sample size 𝑛 at a 

confidence level of 50%. Although, this method helps to manually compute the failure probability 

of an event of interest, it is by no means an easy task due to the amount of effort required.  

5.3.2 Gamma Distribution 

The gamma distribution is an extended form of several other statistical distributions such as the 

exponential distribution, the Weibull distribution, the log-normal distribution, the Chi-squared 

distribution, and the Erlang distribution. It is especially suitable for estimating datasets of interests 
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and estimation parameters. The gamma distribution thrives on the understanding that it is 

potentially a difficult task to obtain a posterior inference from a prior distribution, which represents 

the current state of knowledge of the events under study (El-Gheriani et al, 2017a). For example, 

datasets sourced from a single source of similar group of sources are expected to produce a 

predictable trend. In practical scenarios encountered among complex engineering systems, this 

expectation is not usually true. It is not uncommon to observe dissimilarities in the model 

parameters due to dependency amongst the data, particularly, when the available sample size is 

quantitatively small. In addition, Gamma distribution has been proven to be well suited for 

modelling temporal variability in deteriorated assets and for predicting inspection and 

maintenance intervals due to the informative prior and posterior possibilities (Pandey et al., 2009; 

Van Noortwijk, 2009). In general, data analysis tools such as regression analysis and/or Monte 

Carlo simulation would graphically show a unique correlation between the distributions. 

Independent assumptions from these correlations can immediately invalidate the results obtained 

through these methods (Seco et al., 2001).  

For this reason, Gamma distribution can be adopted to estimate the parameter of dependence 

using the prior knowledge of the distribution. As a family of the reliability tools, it can be used to 

model the lifetime of systems or components. For a given random variable 𝑦 distributed over a 

standard gamma distribution, the Probability Density Function (PDF) is expressed as 

   𝑝(𝑦|𝛼, 𝛽) =  {
𝛽𝛼

Γ(𝛼)
𝑦(𝛼−1)𝑒−𝛽𝑦, 𝑦 > 0

0       , 𝑦 ≤ 0
   (5-10) 

Where 𝛼 > 0 is the shape parameter defining the shape of the distribution, and 𝛽 > 0 is the scale 

parameter representing the spread among the dataset distribution. The mean and variance of the 

distribution are given by 

𝜇 = 𝛼𝛽 =
(Γ(1+

1

𝛼
))

𝛽Γ(𝛼)
     (5-11) 
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𝜎2 = 𝛼𝛽2 =
(Γ(1+

2

𝛼
))Γ(𝛼)−(Γ2(1+

2

𝛼
))

𝛽2Γ2(𝛼)
   (5-12) 

The parameter estimation technique also uses the maximum likelihood estimation approach 

similar to that discussed for Weibull distribution. One advantage offered by the gamma distribution 

is its ability to model multi-stage level distribution, making it especially ideal for decommissioning 

and abandonment scenarios where many factors contribute to the uncertainty. The gamma 

distribution thrives in the modelling due to its conjugate prior for the precision of a normal 

distribution. That is, it is a conjugate pair to itself – both the prior and posterior distributions are in 

the same gamma distribution family. A convenient conjugate pair of the Gamma distribution can 

be a Poisson or a Binomial likelihood, as the following proof would show. Given a set of data 𝑌𝑖 

distributed over 𝜆, a Poisson distribution of the form below is generated 

𝑌𝑖~𝑃𝑜(𝜆)  

𝑃(𝑌𝑖  | 𝜆) =
𝜆𝑌𝑖𝑒−𝜆

𝑌𝑖!
     (5-13) 

For a prior 𝜆 distributed over gamma with given shape and scale parameters of interest 𝛼 and 𝛽, 

then 

𝜆~𝑔𝑎𝑚𝑚𝑎(𝛼, 𝛽) 

𝑃(𝜆 | 𝛼, 𝛽) =
1

Γ(𝛼)
𝛽𝛼𝜆𝛼−1𝑒−𝛽𝜆    (5-14) 

The primary aim here is to demonstrate that the posterior distribution of 𝜆 has a similar form to 

the right-hand side of Equation (5-14). Since Bayes’ theorem is used to estimate under 

uncertainty, it can be inferred here to justify the proof, thus 

𝑃(𝜆 | 𝑌𝑖) =
𝑃(𝑌𝑖 | 𝜆)𝑃(𝜆)

𝑃(𝑌𝑖)
     (5-15) 
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It can be seen that the denominator of Equation (5-15) does not contain 𝜆 and can be excluded 

from the likelihood expression in comparison with the right-hand side of Equation (5-14). The 

posterior distribution will be proportional to the likelihood probability of 𝑌𝑖 given 𝜆 and expressed 

as 

𝑃′(𝑌𝑖) ∝ 𝑃(𝑌𝑖  | 𝜆)𝑃(𝜆)     (5-16) 

Assuming 𝑌𝑖 = (

𝑦1
𝑦2
.
.

𝑦𝑁

) are interchangeable and independent variables, then 

𝑝(𝑌𝑖  | 𝜆) =  ∏
𝜆𝑌𝑖𝑒−𝜆

𝑌𝑖!
𝑁
𝑖=1 =

𝜆(𝑌1+𝑌2+⋯+𝑌𝑁)𝑒−𝑁𝜆

∏ 𝑌𝑖!𝑁
𝑖=1

   (5-17) 

Similarly, the denominator of Equation (5-17) can be discarded as it does not contain 𝜆 term; From 

which the likelihood function becomes 𝑃(𝑌𝑖  | 𝜆) ∝  𝜆(𝑌1+𝑌2+⋯+𝑌𝑁)𝑒−𝑁𝜆. Noting that the averaging of 

the random variable 𝑦 can be expressed as ∑ 𝑦𝑖
𝑁
𝑖=1 = 𝑁�̅�. The likelihood function invariably 

simplifies to 

𝑃(𝑌𝑖  | 𝜆) =  𝜆𝑁�̅�𝑒−𝑁𝜆     (5-18) 

The posterior distribution can now be formulated such that 𝑃(𝜆 | 𝑌𝑖) ∝ 𝑃(𝑌𝑖  | 𝜆)𝑃(𝜆) which yields, 

𝑃(𝜆 | 𝑌𝑖) =  𝜆𝑁�̅�𝑒−𝑁𝜆𝜆𝛼−1𝑒−𝛽𝜆 =  𝜆𝑁�̅�+𝛼−1𝑒−(𝛽+𝑁)𝜆  (5-19) 

Equation (5-19) excludes the term 
𝛽𝛼

Γ(𝛼)
 because it is independent of 𝜆. It is worthy of note that this 

equation is a form of gamma distribution with parameters 𝜆~𝑔𝑎𝑚𝑚𝑎(𝑁�̅� + 𝛼, 𝛽 + 𝑁). Therefore, 

it can be inferred that the posterior probability distribution of a gamma prior is a conjugate pair of 

Poisson (or Binomial) likelihood function.  
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5.4 Application of Methodology 

The Elgin oil well platform represents a suitable real life plugging and abandonment accident 

wherein personnel struggled to understand the failure mechanisms and dynamics. The absence 

of an ignition source invariably helped to contain what could have been a life-threatening 

catastrophe. By and large, the blowout and uncontrollable spill dragged on for over seven (7) 

weeks before the well was eventually killed (Total, 2013). The plugging and abandonment 

operations are typically experienced-driven and as a result flawed by subjective expert judgement 

of incidence possibilities. Therefore, it is necessary to reduce the uncertainties associated with 

this rigorous activity to the barest minimum. It is a common encounter that different experts in a 

group would rank a single event occurrence differently. This observation is exacerbated as the 

expert group widens and events become larger. The notable challenges surrounding the well 

attributes are the knowledge of the platform, nature of the reservoir and the wellbore design as 

indicated in Table 5-1. In accident scenarios analyses, the probability of occurrence and the 

resulting consequence(s) are important metrics for establishing the risks of any system. These 

two properties are not directly obtainable in the decommissioning and abandonment of oil and 

gas wells. This is especially the case due to the uncertainty in the well attributes condition and 

limited data readily available for the risk estimation. 

 

As shown in Table 5-1, a hydrocarbon-containing and flowing or non-flowing reservoir have a high 

impact on the end consequence. However, the fluid severity can both be influenced by a high 

probability of occurrence and equally high influence on the end consequence. In terms of the 

wellbore, the probability of failure is driven by ageing and service life of components. Where the 

integrity of the wellbore is intact, the failure of the system is not imminent and as such, not 

influenced by the end consequence. For the platform, both environmental zone, facility complexity 

and its monitoring and control type have a strong influence on the end consequence rather than 
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the probability of occurrence of these attributes. Based on this definition, the data collection 

process takes input from the attribute assignments against the strength of influence defined by 

the probability and consequence of occurrence. 

Table 5-1. Well plugging and abandonment attributes in risk analysis 

 

Systems 

 

Attributes 

Influences 

Probability Consequence 

Reservoir Flowing/Non-flowing 

Fluid type (oil or gas) 

Fluid severity (sour or non-sour) 

 

 

✓ 

✓ 

✓ 

✓ 

Wellbore Age 

Component type 

✓ 

✓ 

 

 

Platform Environmental zone 

Major/minor facility 

Manned/unmanned facility 

 

 

 

✓ 

✓ 

✓ 

 = Not attributed to influence 
  ✓ = Attributed to influence 

 

As this study is motivated by the paucity of data and the need to rely on source-to-source 

variability, it is necessary to replicate the data collection process in a way that represents practical 

experience in the decommissioning and abandonment industry. Therefore, the dataset presented 

in this case study describes the ranking from 10 engineers and academics with considerable field 

experience. The data is obtained via a Design for Decommissioning (DfD) workshop conducted 

at the University of Strathclyde in the Summer of 2017. It represents equivalent failure data 

collected from different sources, a scenario similar to expert judgements at an individual-level 

from a sample of respondents believed to have equal but varying knowledge and experience – 

subject matter experts. It is worth mentioning that these data are guestimates and possibilities 

due to the unfamiliar nature of some specific causal events, making it pertinent to adopt the HBA 

presented herein. The data were collected for pre-defined failures of the basic events identified 

by the Mineral Management Service, MMS (Nichol et al., 2000) report on the risk assessment of 
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temporarily abandoned or shut-in wells as shown in Table 5-2. The work established that the top-

level hazard is the leakage of hydrocarbon to the mudline and this PhD thesis has been built on 

that as it is a globally accepted well integrity failure.  

In a top-down deduction manner, the zone isolating barrier is dependent on the occurrence of 

excessive pressure differentials and/or injection into nearby wells such as, sidetracking for the 

purpose of Enhanced Oil Recovery (EOR). Also, the actualisation of hydrocarbon leak through 

the primary plug is sufficient to compromise the plugged and abandoned well. Yielding of casing 

strings is also a potential cause of compromised wellbore integrity and unbalanced load of the 

formation fluid or geological forces can yield the casing strings. An unhindered hydrocarbon leak 

from downhole through the production plug can also compromise the well integrity independently. 

The annulus barrier degradation is a common cause failure which when combined with debonding 

of plug s and casing strings can lead to hydrocarbon leak through the casing hangar/assembly, 

and when insufficient barrier length can compromise the overall well integrity. The insufficient 

barrier length occurs due to a loss of barrier during cementing or inadequate barrier density. The 

annulus barrier can also be contaminated if the mood removal process is poor, or the barrier 

shrinks. The combination of such contamination and a degradation in the annulus barrier can also 

lead to the top-level failure, and it is on the basis of this system description that Table 5-2 is 

formulated. 
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Table 5-2. Causal events and description 

 

Causal 

events 

 

Description 

Dependency 

Intermediate 

Events 
Description 

B1.1 Pressure differentials B1 zone isolating barrier 

B1.2 Injection into nearby wells   

B2 Leak through lower/primary plug   

B3.1 Prolong exposure to migrating fluid   

B3.2.1 Formation fluids load effect B3.2 Yielding of casing 

B3.2.2 Geological forces B3 Secondary well barrier failure 

B4 Leak through production plug   

B5.1 De-bonding of plug & casing B5 Leak through casing hangar/assembly 

B5.2, B6.2, B7.2 Annulus barrier degradation   

B6.1.1 Inadequate barrier density B6.1 Insufficient barrier length 

B6.1.2 Loss of barrier   

B7.1.1 Poor mud removal B7.1 Contamination of annulus barrier 

B7.1.2 Barrier shrinkage   

 

The collected data for the identified causations is as shown in Table 5-3. The source column 

represents the guestimates and possibilities obtained and recorded by the 10 participants, 

assuming a similitude characteristic with data coming from related but dissimilar activities such 

as drilling, intervention, workover, or completion operations. The duration of leak column 

represents the number of trials or demands for which the well plugging and abandonment 

operation failure is active before the well was successfully killed. Furthermore, the causal events 

can only be aggregated due to the small sample size to conduct probabilistic risk analysis. The 

process of aggregating such data can then be performed using the two-parameter Weibull 

distribution and the gamma distribution, as shall be seen in the succeeding Sections. 
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Table 5-3. Accident Precursor Data (APD) obtained as guestimates and possibilities of occurrence. 

Source 
Duration of 

the leak 

(𝑁𝑖) 

B2 B1.1 B1.2 B3.1 B3.2.1 B3.2.2 B4 B5.1 B5.2 B6.1.1 B6.1.2 B6.2 B7.1.1 B7.1.2 B7.2 

1 1 - 2 2 1 1 - 1 - 3 3 1 3 - 8 3 

2 3 1 - - - - 1 1 - 1 3 2 1 - 1 1 

3 3 - - 1 3 - 1 2 2 - 1 2 - - - - 

4 1 1 1 - 1 1 - 3 - 5 - 1 5 1 1 5 

5 1 2 - - - - 2 3 5 - 1 - - 2 10 - 

6 2 3 3 4 - 3 5 - 5 - 1 - - 3 3 - 

7 5 3 1 1 1 - 3 4 4 2 - - 2 3 3 2 

8 1 4 - - - - 2 - - - - 3 - 4 - - 

9 1 5 1 1 - 2 - 5 6 1 - - 1 5 - 1 

10 2 1 1 1 7 - 1 7 6 1 1 - 1 1 1 1 
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5.4.1 Weibull Distribution Approach 

The shape and scale parameters can be empirically estimated using the linearization 

technique discussed in Section 5.2.1.2, as expressed by Equation (5-8). Taking causation 

event B1.1 for example, the Accident Precursor Data (APD) observed can be reorganized 

ascendingly as seen in Table 5-5 below through ranking. 

Table 5-4. Weibull estimation for causation event B1.1 

Rank (𝒌) Source 
Duration of 

the leak (𝑵𝒊) 
B1.1 𝒚 = 𝐁𝟏.𝟏𝑵𝒊 𝑷(𝒚) 𝐥𝐧 (− 𝐥𝐧(𝟏 − 𝑷(𝒚))) 𝒍𝒏𝒚 

1 1 1 2 2 0.06731 -2.66384 0.69315 

2 4 1 - - 0.16346 -1.72326 - 

3 5 1 - - 0.25962 -1.20202 - 

4 8 1 - - 0.35577 -0.82167 - 

5 9 1 1 1 0.45192 -0.50860 0 

6 6 2 3 6 0.54808 -0.23007 1.79176 

7 10 2 1 2 0.64423 0.03292 0.69315 

8 2 3 1 3 0.74038 0.29903 1.09861 

9 3 3 - - 0.83654 0.59398 - 

10 7 5 1 5 0.93269 0.99269 1.60944 

 

Column 6 of Table 5-5 is the median rank used to estimate the proportion of the dataset that 

would fail by the end of the leak duration. Polyfitting the last two column on a straight-line 

graph as a polynomial function of order one using the MATLAB command polyfit( 

ln (− ln(1 − 𝑃(𝑦))) , lny, 1) yields a best fit of [0.24748, 0.71806]. Therefore, a best fit line of 

the form 𝑦 =  0.24748𝑥 + 0.71806 indicates that the slope is 0.24748 with a vertical intercept 

of 0.71806 (Appendix A). Equating these values with the right-hand side term of Equation (5-

8) gives the approximate values of the shape and scale parameters to be 𝛼 = 0.24748, and 

−𝛼 ln 𝛽 = 0.71806, from which, 𝛽 = 0.05494. With 𝛼 and 𝛽 values known, the failure 
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probability of causal event 𝐵1.1 can be aggregated using the Weibull MATLAB algorithm 

wblpdf(1.9, 0.24748, 0.05494) to obtain 𝑝(𝑦) = 0.0106.  

5.4.2 Gamma Distribution Approach 

Gamma distribution is especially suitable for predicting the parameter of interest until a future 

event occurs. Given that the dataset available for such prediction is sparse, it is not accurate 

to linearize the shape and scale parameters. In addition, the result of a linearised 𝛼 and 𝛽 

values would yield a much larger value for Gamma distribution than it did for Weibull 

distribution, making it necessary to systematically estimate these parameters. For example, a 

MATLAB script for the estimated parameters from previous Section – gampdf( 0.24748, 

0.05494, 1.9) – would yield 𝑝(𝑦) = 0.1794 which is approximately 17 times larger. To that end, 

aggregating the dataset to follow a gamma distribution would require the hyper prior 

parameters to also follow a gamma distribution through Hierarchical Bayesian Analysis (HBA) 

method. The main advantage is that the Gamma distribution allows data to be examined at a 

multi-stage level. 

The HBA method has been comprehensively discussed in Section 3.5.5 and its formalism is 

such that the Probability Density Function (PDF) can be analysed using Binomial properties 

where occurrence probability is the parameter of interest needed (or available) to represent 

the data, thus 

𝑃𝑓(𝑦𝑖|𝑃) = (
𝑁𝑖

𝑦𝑖
) 𝑃𝑦𝑖(1 − 𝑃)(𝑁𝑖−𝑦𝑖),  0 ≤ 𝑦𝑖 ≤ 𝑁𝑖 (5-20) 

The first stage prior distribution for the data set obtained from Equation (5-20) gives 

𝑓0(𝑃|𝛼, 𝛽) =
𝛤(𝛼+𝛽)

𝛤(𝛼)𝛤(𝛽)
𝑃(𝛼−1)(1 − 𝑃)𝛽−1  (5-21) 

In the case where discrete data representing the failure 𝑦 is presented in the form of failure 

rate, 𝜆 and exposure time, 𝑡, then the likelihood function follows a Poisson distribution given 

by Equation (5-22). 
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𝑃𝑓(𝑦𝑖|λi) =
(𝜆𝑖𝑡)𝑦𝑖𝑒−𝜆𝑖𝑡

𝑦𝑖!
,   𝑖 = 0,1, ….    (5-22) 

The corresponding first stage prior distribution for the data set yields Equation (5-23). 

𝑓0(𝜆|𝛼, 𝛽) =
𝛽𝛼𝜆𝛼−1𝑒𝛽𝜆

𝛤(𝛼)
     (5-23) 

It is evident from Equations (5-20) through (5-23) that prior knowledge of the occurrence 

probability or failure rate is required to assess the parameter of interest. In practice, this 

information is lacking, and approximate estimation relies heavily on experience. Therefore, it 

is necessary to predict a mean and variance value small enough to model the distribution. The 

distributions of the hyper-prior parameters α and β are assumed to have a gamma distribution 

with mean and variance (𝜇𝑦 = αβ, 𝜎𝑦
2 = αβ2) equal to 1.00e-4 in this analysis. From the 

foregoing, the posterior predictive distribution emanating from the first stage prior distribution 

and (α, β) - estimation follows  

𝑦𝑖~𝑏𝑖𝑛(𝑃𝑖 , 𝑁𝑖) 
𝑃𝑖~𝑏𝑒𝑡𝑎(𝛼, 𝛽) 

𝛼~𝑔𝑎𝑚𝑚𝑎(𝜇𝑦, 𝜎𝑦
2) 

𝛽~𝑔𝑎𝑚𝑚𝑎(𝜇𝑦, 𝜎𝑦
2) 

 

The gamma distribution model is coded in MATLAB (R2018a), taking advantage of its in-built 

gamma pdf tools as shown in Figure 5-1 and APPENDIX H. The aggregation procedure within 

HBA enables the failure probabilities to be obtained as a mean value with 95% confidence 

interval. 
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𝒇(𝒚), 𝒚 = (𝒚𝟏, … , 𝒚𝒌)𝑻     % Objective function 

𝒚𝒊(𝒊 = 𝟏, 𝟐, … , 𝒏)       % Initialize a population of causations from source-to-source 

for 𝒊 = 𝟏: 𝒏          % All 𝒏 source-to-source data points 

  for 𝒋 = 𝟏: 𝒌         % All 𝒌 causation events 

  𝑵𝒋,𝒌(𝒌 = 𝟏, 𝟐, … , 𝑵)     % List the number of P&A operations 𝑵𝒋,𝒌 recorded  

 𝝁 = 𝒎𝒆𝒂𝒏(𝒚𝒊. 𝑵𝒋,𝒌 𝒔𝒖𝒎(𝑵𝒋,𝒌)⁄ ) % Estimate the mean parametrically 

 𝝈 = 𝒔𝒕𝒅(𝒚𝒊. 𝑵𝒋,𝒌 𝒔𝒖𝒎(𝑵𝒋,𝒌)⁄ )  % Estimate the standard parametrically 

 (𝜶, 𝜷) = 𝒈𝒂𝒎𝒑𝒅𝒇(𝝁, 𝝈)    % Estimate the shape and scale parameters 

end 

𝒑(𝒚𝒊) = 𝒑(𝜶𝒊, 𝜷𝒊)        % Obtain the mean probability from the distribution 

end 

Post-process results and visualization 

Figure 5-1. MATLAB code for probability estimation 

 

5.5 Result and Discussion 

The results obtained from the methods discussed in Section 5.3.1 and Section 5.3.2 are as 

shown in Table 5-6. The aggregated failure probabilities for all causal events leading to the 

top-level failure, characterised by the leakage of hydrocarbon to the mudline, using both 

methods have been reported and compared. The results summary illustrates the probability 

modelling capabilities of both methods and further demonstrates the variability in their 

estimation accuracies. As the Gamma distribution relies heavily on the strength of the 

Hierarchical Bayesian Analysis (HBA) where the reported failure probabilities are obtained 

from a multi-level solution process, the aggregated values are the mean distribution from the 

posterior predictive distribution.  
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Table 5-5. Failure probability of causal events using Weibull and Gamma Distribution. 

Events Description 𝑝𝑤𝑒𝑖𝑏𝑢𝑙𝑙(𝑦) 𝑝𝐺𝑎𝑚𝑚𝑎(𝑦) 
Relative 

Difference 

B1.1 Pressure differentials 0.0106 0.0850 8.02 

B1.2 Injection into nearby walls 0.0256 0.1050 4.10 

B2 Leak through lower/primary plug 0.0079 0.1900 24.05 

B3.1 Prolong exposure to migrating fluid 0.0221 0.1470 6.65 

B3.2.1 Formation fluids load effect 0.0372 0.0500 1.34 

B3.2.2 Geological forces effect 0.0143 0.1860 13.01 

B4 Leak through production plug 0.0067 0.2750 41.04 

B5.1 De-bonding between plugs and casing 0.0061 0.2950 48.36 

B5.2 Annulus barrier degradation 0.0163 0.1200 7.36 

B6.1.1 Inadequate barrier density 0.0209 0.0595 2.85 

B6.1.2 Loss of barrier 0.0278 0.0850 3.06 

B6.2 Annulus barrier degradation 0.0033 0.1200 36.36 

B7.1.1 Poor mud removal 0.0066 0.1750 26.51 

B7.1.2 Barrier shrinkage 0.0064 0.2250 35.16 

B7.2 Annulus barrier degradation 0.0182 0.1200 6.59 

 

The relative difference was used as a form of importance measure to compare the two 

methods. The results in Table 5-5 revealed that the occurrence probability obtained using the 

Gamma distribution is significantly higher than those obtained through Weibull approximation 

method. It can be inferred that Weibull distribution, albeit able to estimate approximate 

occurrence probabilities through linearisation, underestimates the values making it less than 

suitable in decommissioning risk analysis where uncertainties are desired to be minimised. 

For instance, 𝑝𝐺𝑎𝑚𝑚𝑎(𝑦) =  134% × 𝑝𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑦) for the formation fluids load effects probability 

and much larger in other events. Furthermore, the relative difference between these methods 

showed a progressive increase and would continue to do so in the presence of new evidence, 

making the HBA method flexible. This trend is especially desirable where data uncertainty 

tends to null as the knowledge of equipment and reservoir condition become evident.  
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In scenarios where the causal event’s prior failure probability approaches the mean 

distribution value of the probability, the relative difference will converge, that is, tend to unity. 

This special scenario is observed in event B3.2.1 with a relative difference of ~34%. Therefore, 

it is noteworthy that the HBA method is flexible and well suited to the technical challenges 

posed by decommissioning and abandonment operational risks.  

The mean values from the posterior predictive Gamma distributions representing the exact 

values of the causal events failure probability predicted with 95% confidence level are as 

shown in Table 5-6. A closer look at the Weibull distribution probability estimation method and 

its associated confidence levels revealed a noteworthy bias to be especially suitable for 

estimating the failure probability of new components, making this method unreliable for the 

accuracy of estimation desirable in the context of decommissioning and abandonment. It is 

also observed that causal events B5.2, B6.2 and B7.2 are repeated events modelled within the 

fault tree using the common cause failure formalism, yet the Weibull distribution method 

returned different values for each event due to the median rank techniques adopted. This 

discrepancy further limits the application area of the Weibull distribution in the cessation of 

production phase failure analysis.  
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Table 5-6. Causal events failure probability with 95% confidence level. 

Events 
Gamma Distribution Weibull Distribution 

Probability 95% CI Probability 95% CI 

B1.1 0.0850 (0.0778, 0.0923) 0.0106 (0.0032, 0.0180) 

B1.2 0.1050 (0.0942, 0.1159) 0.0256 (0.0182, 0.0330) 

B2 0.1900 (0.1598, 0.2203) 0.0079 (0.0005, 0.0153) 

B3.1 0.1470 (0.1102, 0.1838) 0.0221 (0.0147, 0.0296) 

B3.2.1 0.0500 (0.0445, 0.0555) 0.0372 (0.0298, 0.0446) 

B3.2.2 0.1860 (0.1484, 0.2236) 0.0143 (0.0069, 0.0217) 

B4 0.2750 (0.2091, 0.3410) 0.0067 (0.0005, 0.0129) 

B5.1 0.2950 (0.2274, 0.3262) 0.0061 (0.0058, 0.0064) 

B5.2 0.1200 (0.1044, 0.1356) 0.0163 (0.0132, 0.0194) 

B6.1.1 0.0595 (0.0478, 0.0712) 0.0209 (0.0135, 0.0283) 

B6.1.2 0.0850 (0.0757, 0.0943) 0.0278 (0.0204, 0.0352) 

B6.2 0.1200 (0.1044, 0.1356) 0.0033 (0.0024, 0.0042) 

B7.1.1 0.1750 (0.1425, 0.2075) 0.0066 (0.0057, 0.0075) 

B7.1.2 0.2250 (0.1843, 0.2657) 0.0064 (0.0056, 0.0072) 

B7.2 0.1200 (0.1044, 0.1356) 0.0182 (0.0106, 0.0258) 

 

It has been shown that the Weibull distribution approach offers a linearisation technique to 

ease the computation of parameters of interest. However, due to the systematic approach of 

median ranking for each dataset and sequencing, the method fell short in benefiting from the 

multi-level estimation process which is within the HBA capability. In addition, the Weibull 

distribution does not capture the common cause failure which emanates from annulus barrier 

degradation repetition and is overly sensitive to paucity in the data. This resulted in the 
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underestimation or overestimation of the mean probability distribution which is not a direct 

representative of the sparse data likelihood and may further introduce additional uncertainty. 

5.6 Conclusion 

The failure analysis of decommissioning and abandonment operations is experience-driven 

and does not often rely on sufficient or accurate data, making the analysis susceptible to high 

degrees of uncertainty. The uncertainties vary in form and can emanate from data paucity, 

model formulation and or assumptions of the inherent risks due to limited knowledge of the 

overall operational sequence. The knowledge of the hazards become evident only after the 

operation is in progress and it is desirable to develop a methodology capable of aggregating 

and updating the available data when new information become available. The approach 

developed in this research work is based on Hierarchical Bayesian Analysis (HBA) to tackle 

the uncertainty issue and is compared with a similar statistical tool – the Weibull distribution – 

in terms of strength and modelling capabilities. The HBA utilized the collected Accident 

Precursor Data (APD) from similar or analogous operation. The source-to-source variability 

are considered using the multi-stage hierarchy to estimate the posterior predictive distribution 

for each event’s failure probability with aggregated mean and variance at 95% confidence 

level.  

The Weibull distribution, on the other hand, is demonstrated to be capable of modelling data 

paucity but fall short in predicting the failure probability with similar level of accuracy and does 

not have the ability to incorporate temporal variability in the model. This is due to its empirical 

linearisation procedure where ranking of the dataset influences the convergence. The relative 

difference, measured in percentage, between both methods was used to substantiate the 

strength and superior modelling capability of the HBA technique. The relative differences for 

each event were seen to vary from 1.34 to ~50, in the de-bonding between mechanical plugs 

and casing, making the HBA a better estimator for the decommissioning and abandonment 

operational failure analysis.  
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5.7 Summary 

This Chapter presented the statistical methods underpinning Hierarchical Bayesian Analysis 

to estimate the failure probabilities of accident contributory factors when such data is sparse 

and obtained from source-to-source. The variability inherent in the data collection process 

introduced additional uncertainty to the data and reliance on it for safety analysis means that 

sufficient confidence level was required. The methods investigated here were the two-

parameter Weibull distribution and the Gamma distribution. The Weibull distribution thrives on 

analysing components’ reliability where the interaction among parameters can be linearised, 

whereas the Gamma distribution is suited to parameter of interest prediction until a future 

event occurs and is capable of multi-level modelling. The results were presented for similar 

small-sized datasets and both methods were investigated for linearisation and numerical 

computation in MATLAB. The results obtained for Weibull distribution were reported to be 

lesser than those from the Gamma distribution, making the latter best suited to the failure 

analysis of decommissioning and abandonment operations that are prone to risks 

underestimation. Moreover, the variation between both methods, measured by their relative 

differences, ranged between 34% to ~5000% in favour of Gamma distribution through the 

Hierarchical Bayesian Analysis. The succeeding Chapters present the case studies and use 

the results of the HBA for further analysis. 
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Chapter 6: Case Study – Permanent Abandonment System 

6.1 Outline 

This Chapter demonstrates the application of the Dynamic Integrated Safety Analysis (DISA) 

model discussed in Chapter 4. The case study presents the accident evolution scenarios for 

the Elgin Platform with wellbore failure modes reported by The Minerals Management Service 

(MMS, 2000). The case study system description is presented in detail and the data obtained 

from Chapter 5 are presented in Section 6.2. The development of the FTA, ETA, BT tools, BN 

and DBN models are described analytically in Section 6.3. Section 6.4 presents the dynamic 

failure analysis outcomes followed by the Chapter summary to offer concluding remarks on 

the presented model formulation.  

6.2 Introduction 

The framework is applied on the 22/30c-G4 well of the Elgin Platform located in the middle of 

the North Sea between Scotland and Norway, approximately 240 km East of Aberdeen. 

Cessation of production is already in place and the well was undergoing plugging and 

abandonment operation when natural gas in enormous quantity began to leak into the wellbore 

due to an abrupt pressure differential that could not be bled off in good time. The principal 

particulars of the well are as shown in Table 6-1 below. 

Table 6-1. Case study principal particulars. 

Platform Particulars Well conditions 

Reservoir condition HT/HP 

Ocean depth 90 m 

Reservoir depth 5500 m 

Reservoir temperature 190 ℃ 

Reservoir pressure 1100 bar 

Fluid type Natural gas 

Fluid severity Sour 
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An uncertainty related to a zone within the wellbore at vertical depth between 5130 m and 

5370 m further exacerbated due to the pore pressure gradient between 2150 𝑘𝑔/𝑚3 and 2200 

𝑘𝑔/𝑚3 including the potential occurrence of a ballooning effect (Total, 2013).  

To demonstrate the applicability of the framework, sufficient failure data and overall knowledge 

of the reservoir at the cessation of production is required. Unfortunately, this two information 

are often lacking due, in part, to the accessibility of decommissioning database and incomplete 

maintenance records of the well during service. In addition, there are fewer research papers 

focusing on present study due to data paucity. Therefore, the previous Chapter presented a 

unique approach to obtain and process relevant data which would then be relied upon in this 

Chapter.  

In general, the wellbore casings schematic is examined in detail to identify the barrier and/or 

mechanical plugs at each strategic zones and potential hazards that could compromise their 

integrity. This exercise was achieved through a Design for Decommissioning (DfD) and 

abandonment workshop involving 10 engineers and academic participants with considerable 

field experience (Appendix B). Two types of data were collected for each causal (or basic) 

event – the failure guesstimates and the number of trials representing the duration of leak 

before the well was killed. The well was intended to be shut-in before it was deemed 

uneconomical and problematic and consequently, abandoned permanently. To that end, the 

overall Permanent Abandonment (PA) sequence would be investigated in the trained DBN 

model to validate its performance characteristics and potentially anticipate the inspection 

and/or maintenance regime.  

It is worth mentioning that the exact nature of the fluid characteristics was not known except 

that the well is pressure depleted by ca. 800 bar and will continue to do so until completely 

plugged. Moreover, the reservoir was reported to be nonviable economically prior to cessation 

of production. In addition, the rate of gas leakage from the wellbore was recorded to be 

approximately 2 kg/s equivalent to 12 mmcf/day with a large sheen of condensate on the water 

surface. The natural gas is being released atop the G4-wellhead platform at a low pressure of 
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5 bar emanating from a non-producing reservoir above the Elgin formation. These accident 

evolution over time further necessitates dynamic safety modelling. As decommissioning, 

plugging and abandonment operations are not an investment and the cost of overseeing the 

activities are estimated to be close to those of capital projects, oil and gas operators adopt 

conventional quantitative risk analysis to mitigate the accident levels although these 

techniques are able to address events with known interactions, cannot accommodate the 

dynamic nature of a blowout, leakage or natural seepage commonly encountered during 

plugging and abandonment. For this reason, the static nature of conventional quantitative risk 

analysis undermines it credence to capture, assess and mitigate against dynamic failure. 

The design for decommissioning workshop yielded a dataset, representing source-to-source 

variability as detailed and analysed in Chapter 5. The data is used as a dataset for the purpose 

of simulation to train the DBN models to substantiate their performance and permanence. The 

data was collected for both basic events and associated safety barriers implemented to reduce 

the likelihood of fire and explosion and are presented in Appendix C.  

6.3 Accident model formulation 

This Section presents the model formulation for the case studies with the fault tree, event tree 

and bowtie as the starting point through to the BNs with relevant relaxation strategies, and 

then BNs transformation into corresponding DBNs.  

6.3.1 Reliability model for permanent abandonment system 

6.3.1.1 FTA for Permanent Abandonment System 

Following the accident evolution of the G4-well, a representative schematic is constructed for 

the wellbore plugging characteristics as depicted in Figure 6-1. The schematic for the PA is 

imminent as a reference for shut-in and temporary abandonment wells. The boundaries of the 

PA need to be clarified prior to formulating the FT model. The leakage of hydrocarbon to 
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mudline is identified to be the top event of the FT. The top event is then subdivided into three 

subsystems, representing the system constraints as depicted Figure 6-2. 

 

 

Figure 6-1 Permanent Abandonment Well Schematic (adapted from Nichol et al, 2000) 

 

It is worth mentioning that the well schematic and associated boundary conditions were a 

result of comprehensive hazard identification workshop by experts, on the barrier plugs at 

different layers. In addition, as FT analysis is static in nature with basic Boolean logic and the 

failure rate or mean time to failure (MTTF) are unavailable, the system Most Probable Cause 

(MPC) will be determined using the Minimum Cut-Set (MCS). The mean distribution values 

estimated in previous Chapter will be used as the prior failure probability for each basic event. 

In addition, the potential leak route is characterised by the casing containment, with primary 

focus on the surface casing and production casing. From the physical inspection of the well 

schematic, it was found that leak routes via other casings would yield no significant effect due 

to the longer paths the leaking fluid would have to overcome while migrating uphole.  

a- Production zone 

b- Zonal isolation plug 

c- Primary barrier plug 

d- Casing shoe 

e- Secondary barrier plug 

f- Production seal to mudline 

g- Surface seal to mudline 

h- Conductor seal to mudline 

 



106 
 

 

Figure 6-2 Well PA leak route  

 

As seen in Figure 6-2, the leakage of hydrocarbon to mudline is divided into the leak through 

isolation plug (B1), leak through lower plug (B2) and leak through upper plug (B3-7) and 

associated barriers subsystems. The leak route is illustrated by Figure 6-3, where cross flow 

to other formation due to failure of the primary cement outside the production casing is 

negligible. For the leak through isolation plug, pore pressure build-up (B1.1) and injection into 

nearby well (B1.2) are enough to compromise the isolation plug. The leak through the primary 

or lower plug closest to the production casing caused by cascade of other events is modelled 

as a single point failure in the FT model. Lastly, the combined leak through the upper or 

secondary plug is divided into leak through the upper plug (B3) and a combined effect of leak 

caused by the annulus and production plugs (B4-7). The annular plug tends to keep the 

pressure slightly above the pore pressure to prevent the ingress of formation fluids into the 

wellbore.  
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Figure 6-3 Limiting conditions for well PA systems failure 

All the causal dependent subsystems are expanded and explained in detail as shall be seen 

in subsequent paragraphs. Overall, there are a total of 15 basic events in the FT model 

representing the failure of the abandonment operation as shown in Table 6-2. 

Table 6-2. Basic Events for permanent abandonment FT 

Events Identifier Event Description 

B1.1 Pressure differentials 

B1.2 Injection into nearby walls 

B2 Leak through lower/primary plug 

B3.1 Prolong exposure to migrating fluid 

B3.2.1 Formation fluids load effect 

B3.2.2 Geological forces 

B4 Leak through lower/primary plug 

B5.1 De-bonding of plug & casing 

B5.2, B6.2, B7.2 Annulus barrier degradation 

B6.1.1 Inadequate barrier density 

B6.1.2 Loss of barrier 

B7.1.1 Poor mud removal 

B7.1.2 Barrier shrinkage 
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A seven stage FT is constructed for the case study permanent abandonment well consisting 

of 13 gates and 15 basic events including 3 repeated events. Figure 6-4 depicts the fault tree 

for the chain of events within the wellbore leading to the permanent abandonment well failure 

top event. The FT model was developed using PTC Windchill®  FTA software tool. The 

formulation was limited to static gates, as the cost of implementing time-variant dynamic gates 

add to the cost of overall decommissioning not to mention the advanced modelling efforts 

required. The applicable gates are AND/OR for the sake of representing the interactions of 

the basic events in a precise, realistic, and practical sense. Moreover, the static logic gates 

are utilized to preserve the capability of the FT model, and this would be mapped into a 

dedicated dynamic model as shall be seen later in this Chapter. 
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Figure 6-4 Fault tree for well plugging and abandonment failure. 

 

As seen from Figure 6-4, the leak to mudline top event is connected to its subsystems by an 

‘OR’ gate, making the failure of the top event certain should any one of the three subsystems 

be true, because all the barrier plugs are crucial to maintain the integrity of the plugging and 

abandonment operation. In this model, all basic events are assumed to be statistically 

independent in order to capture all possible critical paths in the system. In the leak through 
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upper plug subsystem (B3), prolong exposure of migrating fluid (B3.1) and yielding of the casing 

(B3.2) are the identified components. These components are modelled using the ‘OR’ gate 

assuming the any one of them must fail for the upper plug to fail. The casing can yield because 

of either formation fluid load or geological forces, modelled through an ‘OR’ gate. 

The FT model in the combined leak through annulus and production plugs system (B4-7) is 

formulated using an ‘AND’ gate assuming that both the combined leak through the annulus 

barrier (B5-7) and the leak through production plug (B4) must be compromised for the 

subsystem to fail in its entirety. The combined leak through annulus barrier is then separated 

into the leak through casing assembly (B5) and the leak through the surface and annulus plugs 

(B6-7), both of which have been modelled with an ‘OR’ gate. The leak through the casing 

assembly is further separated into a type of failure caused by de-bonding between plug and 

casing (B5.1) and the degradation of the annulus barrier (B5.2). Both (B5.1) and (B5.2) are 

interacting via an ‘OR’ gate, indicating that any one of them can trigger the leak through the 

casing assembly.  

The leak through surface-annulus plug is then separated into the leak through conductor 

casing B6 and leak through casing hangar (B7). The leak through casing hangar is caused by 

annulus barrier degradation (B7.2) and contamination of the barrier and is modelled using an 

‘AND’ gate assuming that both contamination and degradation of the annulus barrier must be 

true for the casing hangar to fail. The contamination of barrier is initiated by potential poor mud 

removal (B7.1.1) or shrinkage of the barrier (B7.1.2). Both basic events are interrelated by an 

‘OR’ gate assuming that any one of them must fail for the barrier to be contaminated.  

The leak through conductor casing (B6) is characterised by the failure due to insufficient barrier 

length (B6.1) to provide a good seal job and degradation of annulus barrier (B6.2). The 

subsystem is described by an ‘OR’ gate indicating that the failure of any one of B6.1 and B6.2 

must fail for the fluid to leak through the conductor casing. Insufficient barrier length is 

modelled using ‘OR’ gate to represent the contributions from inadequate barrier density (B6.1.1) 
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and loss of barrier (B6.1.2) within the layer. This means that the failure of any one of its 

components is enough to render the barrier length insufficient.  

6.3.1.2 ETA for Permanent Abandonment System 

The ET for the case study was formulated based on the assumption that the well abandonment 

of interest is rig-based, making the potential of fire and explosion likely. The top event of the 

FT, characterised by the leak of hydrocarbon to mudline, becomes the initiating event (IE) of 

the ET. The ET consist of three level representation of the accident evolution – the initiating 

event, safety barriers and the end consequences. The presence of ignition source would 

escalate the extent of loss if proper mitigation were not implemented. Therefore, the safety 

barrier phase in the ET corresponds to the various strategies developed to deal with the 

accidental event. The safety barriers serve to respond to cascading of events by impeding the 

accident sequence or mitigating the end consequences.  

Numerous technical meetings, research group discussions and peer-reviewed publications 

have taken place as part of this research study to validate the identified safety barriers. 

Notable contributions from professional engineers (P.Eng.) and offshore and maritime industry 

experts have confirmed the BT structure, and all were in agreement. Based on the information 

available in the peer-reviewed publications, this sequential and nonsequential accident has 

been modelled. The accident contributory factors are systematically structured into five safety 

barriers in way of the accident evolution route to prevent the end consequences. A brief 

description of these modelled safety barriers is given below. 

Hydrocarbon detection sensor (HDS): The release of hydrocarbon within the wellbore at any 

of the barrier plug zone is primarily responsible for the loss of containment that initiates the 

accident process. The hydrocarbon detection sensor is a barrier designed to notify monitoring 

personnel if there has been polarity difference between water at mudline and leaked 

hydrocarbon. It prevents the occurrence of hydrocarbon release uphole to the surrounding 

water. It has been identified that operational error, inspection error, maintenance error and 
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design error are the major factors that influence the failure of the hydrocarbon detection 

system as depicted in Figure 6-5. 

 

Figure 6-5 Hydrocarbon detection sensor network 

 

Ignition prevention system (IPS): Ignition prevention system controls the escalation of vapor 

cloud into pool fire in the likely event of fire and explosion. The reliability of the ignition 

prevention system is an essential factor in the occurrence of catastrophe, as fire cannot ensue 

without the ignition barrier prior failure. To prevent fire and explosion during plugging and 

abandonment operation, an IPS safety barrier must be installed to focus on all potential 

ignition sources and consequently prevent the outburst of fire and explosion. The major factors 

that influence the failure of this barrier are the hot work failure and human error around 

noncompliance as shown in Figure 6-6. 

 

Figure 6-6 Ignition prevention system network 
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Flame Arrestor System (FAS): The primary function of this barrier is to isolate the flame 

pathway through the prevention of one or more mechanisms needed to propagate flamelets. 

For flame to propagate, an ignition source, fuel, and oxygen must be present. To avoid domino 

effect, the FAS is triggered to trap the flame while allowing gases an easy passage. It 

minimises the extent and duration of explosion by absorbing the dissipating heat. The FAS is 

immediately relied on to disconnect the combustion elements (temperature, oxygen, and 

hydrocarbon), soon as fire and explosion events occur. The failure of the FAS escalated fire, 

loss of the offshore asset and nearby properties including casualties, necessitating the 

installation of an alarm and sprinkler system (AaS). The major factors that are responsible for 

the failure of the FAS barrier are the fire detection system failure, human error (in the area of 

noncompliance), and emergency shutdown failure as illustrated in Figure 6-7. 

 

Figure 6-7 Flame arrester system network 

 

Alarm and Sprinkler System (AaS): The function of the AaS is to extinguish, contain, or control 

the fire and explosion when the FAS barrier fails to isolate the fire escalating elements on 

demand. The activation of the AaS provides warning to offshore personnel on the severity 

level of the outburst, as well as notifies the emergency evacuation plan team to respond to 

the alarm. The only factor influencing the failure of this barrier is the reliability or unavailability 

of the FAS on demand. 

Emergency Evacuation System (EES): The EES reduces the extent of damage caused by fire 

and explosion due to the consequent failure of preceding safety barriers. The primary function 

for the installation of this barrier is to prevent fatalities. The timing of the AaS to function on 
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demand is hugely important in this scenario; otherwise, the emergency evacuation plan might 

be insignificant following a catastrophe. The failure of the emergency evacuation plan leads 

to significant damage to offshore assets and nearby properties including fatalities. Major 

factors influencing the failure of this barrier are the evacuation error, communication error and 

emergency preparedness failure as shown in Figure 6-8. 

 

Figure 6-8 Emergency evacuation system network 

 

Subsequently, for each identified safety barrier, a list of additional causal events or factors is 

developed, and relevant safety barriers emanated to address them until the end consequence 

is eliminated or mitigated against. The leak to mudline initiating event, associated safety 

barriers and potential consequences resulting from the worst-case scenarios is formulated as 

illustrated in the structure of Figure 6-9. 
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Figure 6-9 Well PA event tree structure 

 Figure 6-9 shows all the potential accident scenarios and sequence of events leading to the 

end consequences. In the ‘Safety Barrier’ segment, characterised by HDS, IPS, FAS, AaS 

and EES, for each barrier all possible measures are identified, recorded, and implemented in 

the sequence they will be triggered. The functionality of the safety barriers is then categorized 

into binary functions depending on whether they perform their intended task or not, typically, 

as ‘works’ or ‘fails’. In the ‘Consequence’ column, all possible outcomes such as near miss, 

minor and/or major fire and explosion etc. that may incur huge cost of remediation are 

identified and recorded. Finally, the joint product of the frequency of the initiating event and 

the conditional probability of safety barriers in way of the end event sequence for each path is 

estimated and recorded to ease consequence occurrence probabilities estimation.  

Information collected for the well abandonment event tree formulation is based on the work of                              

Nichol et al. (2000), Lavasani et al. (2015), Abimbola et al (2016), Babaleye et al (2019a, 

2019b), Fam et al. (2020), and experts’ opinion and validation by way of feedbacks from 

experts. During the accident evolution development stage, several technical meetings among 

experts and research group were held to collect modellable information. To this end, 
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information was collected from the Centre for Risk, Integrity and Safety Engineering (C-RISE) 

research group, two oil and gas operators and one consultancy company. Particularly, 

participating experts included researchers, academics, and engineers with considerable years 

of field experience.  

6.3.1.3 BT for Permanent Abandonment System 

Following the construction of the FT and ET, the BT is modelled with the FT on the left end 

representing the root causes of the top event. The top event then becomes the initiating event 

for the ET represented on the right end of the BT model and depicting the possible outcomes 

resulting from the failures of implemented safety barriers. As the BT is especially suited to 

visualise cause-consequence relationships among interacting events, all calculations would 

be conducted within the dedicated dynamic model.  

 

 

Figure 6-10 Bowtie structure 

6.3.1.4 Consequence Modelling for Permanent Abandonment System 

Decommissioning and abandonment accidents are characterized by the personnel safety, 

environmental safety, and the loss of asset due to fire and explosion. Personnel safety is 

accounted for by the loss of personnel's life during the plugging operation due to fire, 

explosion, and suffocation. The environmental risk is defined by the amount of hydrocarbon 

Causal k 
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spill and its adverse effect on marine lives, nearby residents, potential property damage and 

the cost of remediation. The loss of asset is attributed to the potential loss of the rig used for 

the abandonment operation. Fire and explosion are the main threat given the scenario that 

hydrocarbon has leaked uphole to mudline. The evolution of a catastrophe is assumed to 

emanate from the point where a leak exists, and this study assumes the well contained non-

sour formation fluids. The leak propagates to the formation of fire or hazardous cloud until it 

is escalated through an ignition source. For a gas well, a jet fire (or pool fire for a liquid well) 

propagates. A vapour cloud is formed in the absence of an ignition source and may be 

escalated by the wind. The consequence of such leak from C2 to C6 and their occurrence 

sequence represented on the event tree constituents of Figure 6-9 above. To preserve the 

practicality of the consequence model, a safe state C1 is added to represent the non-

occurrence of the accident. 

6.3.2 Development of uncertainty models 

6.3.2.1 Data Processing 

The first step after the collection of data during the design for decommissioning workshop was 

to clean the dataset for analysis. The data cleaning function has been written to file using 

MATLAB (Appendix E). Prior to the analysis, the unrefined dataset is backed-up and stored 

on two trusted repositories in ‘StrathCloud’ and ‘Mendeley', partly because of accessibility for 

future reference, and partly due to journal peer-review requirement. Data for leak to mudline 

representing basic events considered to have insignificant effect on the permanent 

abandonment, or risk factors identified for the primary cement outside the production casing 

are removed from the dataset, as in both cases the accident model has overly long chains of 

event with very low probability contributions. Where there are void cells within the dataset, 

these have been substituted with zero values for the sake of computation. In addition, datasets 

recorded as zeros are treated like the void cells cleaning approach. A .*txt file corresponding 

to void cells and zero values occurrences is also stored, making it possible to identify 
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fluctuations between source-to-source variability. Consequently, the processed data is then 

obtained and used for analysis and training in the developed relaxation strategies and the 

dynamic failure models such as the BN and DBN. 

6.3.2.2 Noisy-OR gate formalism 

The N-OR gate developed for relaxing the conditional probability table to express conditional 

dependency among interacting events consists of a 𝑖 − 𝑏𝑦 − 𝑗 events represented by 2𝑛 

conditional dependencies. Elicitations were specified for each contributory factor to 

accommodate the effect of data paucity and thus, reduce the model uncertainties. Several 

relaxation strategies were studied and analysed, however, this formalism and that which 

follows next were adopted as the practically suitable for conditioning the data based on the 

training input dataset of Chapter 5. The conditional probability for conventional ‘AND’ and ‘OR’ 

gate prior to implementing the N-OR to train the data is shown in Figure 6-11. 

 

Figure 6-11 Node CPT outputs (a) OR gate (b) And gate 
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In this formalism, the underlying principle of this type of gate is based on the assumption that 

any accident causal element is independently capable to influence the common outcome, 

commonly referred to as ‘child’, even if other causes are absent. In other words, the common 

child can only be initiated given that at least one of the causal elements is true and unhindered 

(Neapolitan, 2009). As the failure probabilities are obtained as mean distributions for all input 

data, the refined data are conditioned according to Equation 6-1 to standardize the range of 

dependent child variables in the range [0,1]. 

𝑝(𝑎 | �̅�1, �̅�2, . . . , 𝑏𝑓 , . . . , �̅�𝑛−1, �̅�𝑛)  =  𝑝𝑓     (6-1)  

where 𝑛 is a causal binary variable 𝐵1, 𝐵2, . . . , 𝐵𝑛−1, 𝐵𝑛 with a common outcome (child) 𝐴. 

The objective of the N-OR gate process is to address the uncertainty related to parametric 

modelling within the conditional probability table due to uncaptured hazards. Captured 

hazards represents performance parameter measurements within the expert opinion, 

historical data, or literature limits for the well permanent abandonment failure. In the case of 

uncaptured data, these usually represents noise or faulty data. To satisfactorily model the 

single failure capable of independently initiating the outcome, the conditional probability table 

for the leak through casing assembly as shown in Figure 6-12 will be computed as illustrated 

in Table 6-3 and numerically expressed as 

𝑃(𝐵5 = 𝑏5|𝐵5.1 = 𝑏5.1, 𝐵7.2 = 𝑏7.2) = 𝑃𝑏5.1𝑃𝑏7.2 

𝑃(𝐵5 = 𝑏5|𝐵5.1 = �̅�5.1, 𝐵7.2 = �̅�7.2) = 0 

𝑃(𝐵5 = 𝑏5|𝐵5.1 = 𝑏5.1, 𝐵7.2 = �̅�7.2) = 𝑃𝑏5.1 

𝑃(𝐵5 = 𝑏5|𝐵5.1 = �̅�5.1, 𝐵7.2 = 𝑏7.2) = 𝑃𝑏7.2 

𝑃(𝐵5 = �̅�5|𝐵5.1 = 𝑏5.1, 𝐵7.2 = 𝑏7.2) = (1 − 𝑃𝑏5.1)(1 − 𝑃𝑏7.2) 

𝑃(𝐵5 = �̅�5|𝐵5.1 = �̅�5.1, 𝐵7.2 = �̅�7.2) = 1 

𝑃(𝐵5 = �̅�5|𝐵5.1 = 𝑏5.1, 𝐵7.2 = �̅�7.2) = (1 − 𝑃𝑏5.1) 
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𝑃(𝐵5 = �̅�5|𝐵5.1 = �̅�5.1, 𝐵7.2 = 𝑏7.2) =  (1 − 𝑃𝑏7.2) 

 

 

Figure 6-12 Leak through casing assembly fault tree 

 

Since the N-OR formalism is a generalization of the logical OR-gate, a link probability 

connecting each conditional probability to the failure probability of each unique combination 

of causes 𝐵𝑖 given by 𝑙𝛼 is estimated as follow. 

 

Table 6-3. N-OR CPT for leak through casing assembly. 

Outcomes 𝐁𝟓.𝟏 𝐁𝟕.𝟐 𝒍𝜶 �̅�𝜶 𝐁𝟓 

1 F F 0 1 𝑙𝛼1 × (1 − 𝑃𝑏5.1) × (1 − 𝑃𝑏7.2) 

2 F T 0.9 0.1 𝑙𝛼2 × (1 − 𝑃𝑏5.1) × 𝑃𝑏7.2 

3 T F 0.8 0.2 𝑙𝛼3 × 𝑃𝑏5.1 × (1 − 𝑃𝑏7.2) 

4 T T 0.98 0.02 = 0.2 × 0.1 𝑙𝛼4 × 𝑃𝑏5.1 × 𝑃𝑏7.2 

 

The link probability corresponds to uncaptured data for each causation, as the event or series 

of events leading to their occurrence are not completely known. Thus, the contribution of this 

added uncertainty is incorporated into the conditional probability table to fully define the 

dependence amongst interacting causations and are used to strengthen the degree of belief 

through experiential learning. The CPT computation to condition the dynamic model is 
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intensive due to the 2𝑛 parameters required and therefore, MATLAB code is developed for the 

sake of simplicity as presented in APPENDIX D. 

The noisy-OR model relies on the failure of at least one causation acting independently to 

cause the common outcome (child variable) to fail and uses a link probability to establish the 

dependence among possible outcomes. However, it is not capable of representing 

uncertainties associated with the uncaptured data, which can remotely influence the 

occurrence of the common outcome and the uncertainty introduced into the model due to 

parameterisation error. To achieve this, a form of the noisy-OR, called leaky N-OR is 

developed. 

6.3.2.3 Leaky Noisy-OR gate formalism 

The leaky noisy-OR (LN-OR) gate is developed to account for a practical scenario where the 

common outcome occurs even though there is no contribution from any of the identified 

causations. The LN-OR is especially suited to account for the likelihood of an uncaptured data 

in the probable causes of the accident. It is modelled to establish dependency for the leak of 

hydrocarbon to mudline subsystems and components level. Invariably, the LN-OR utilizes a 

leak probability to accommodate the contribution from an uncaptured cause or causes of 

failure. The conditional probability for each cause is elicited to condition the failure data related 

to each barrier plug of the permanent abandonment upper cap. The only notable parameters 

corresponding independently to the leak to mudline are the isolation plug, lower (primary) plug 

and the combined leak through upper (secondary) plug. This narrows the total number of input 

parameters for effective conditioning to eight i.e., 23 and the leak probability can be expended 

primarily on the outliers and thus, the model would have accounted for both captured and 

uncaptured contributory factors without superfluously increasing the dimensions in the 

elicitation that would compromise the robustness of the dynamic computation engine, 

reliability of the data analysis and interpretation process. 
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The uncaptured event with a leak probability 𝑝𝑜 is specified as shown in Equation 6-2, such 

that 

𝑝(𝑎 | �̅�1, �̅�2, . . . , �̅�𝑛−1, �̅�𝑛)  =  𝑙𝑜     (6-2)  

where 𝑛 is a causal binary variable of events 𝐵1, 𝐵2, . . . , 𝐵𝑛−1, 𝐵𝑛 with a common outcome 

(child) 𝐴. Typically, the value specified for 𝑙𝑜 depends largely on the degree of belief to which 

the contributory factors influence the outcome and is defined to be 5% in this study.  

During CPT elicitation, the LN-OR is defined for all combinations of events and the leak 

probability incorporated based on the input failure data prior to instantiating the overall 

probability of leak to mudline. The CPT elicitation for Figure 6-12 is highlighted in Table 6-4. 

 

Table 6-4. LN-OR CPT for leak through casing assembly. 

Outcomes 𝐁𝟓.𝟏 𝐁𝟕.𝟐 𝒍𝒐 �̅�𝒐 𝐁𝟓 

1 F F 0.05 0.95 𝑙𝑜,1 × (1 − 𝑃𝑏5.1)(1 − 𝑃𝑏7.2) 

2 F T 0.9 0.1 𝑙𝑜,2 × (1 − 𝑃𝑏5.1) × 𝑃𝑏7.2 

3 T F 0.8 0.2 𝑙𝑜,3 × 𝑃𝑏5.1 × (1 − 𝑃𝑏7.2) 

4 T T 0.98 0.02 = 0.2 × 0.1 𝑙𝑜,4 × 𝑃𝑏5.1 × 𝑃𝑏7.2 

 

6.3.3 Development of BN and DBN models 

6.3.3.1 BN Model 

In this Section, the modelled conventional bowtie structure and associated learning 

parameters are illustrated for N-OR and LN-OR formalisms for the input failure dataset. A BN 

with sufficient and well-defined nodes can model complex and dynamic systems with 

considerable accuracy and are suitable for handling nonsequential and non-linear dynamic 

problems such as the kind posed by decommissioning and abandonment systems. The 

network for the case study was formulated by using the causal events of the leak to mudline 

FT as input in the root nodes as shown in the BN generic structure. The causal or basic events 
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of the FT correspond to the basic failure events of the well PA failure. The interrelationship 

among the root nodes, characterised by various logic gates and relaxation strategies, is 

represented by an arc. The faulty or intermediate events of the FT correspond to the 

intermediate nodes on the BN from where the arcs emanating from the root nodes terminate. 

In addition, the top event corresponds to the pivot node connecting the FT to the ET side of 

the BT. The end consequences of the BT correspond to the leaf node in the BN, which is 

essentially dependent on the occurrence and nonoccurrence of the failure of safety barriers in 

place.  

 

Figure 6-13 Bayesian network for permanent abandonment operation 

 

Furthermore, the failure probabilities of the basic events are used as input for the root nodes 

in the form of prior marginal probability. The intermediate, pivot and leaf nodes probabilities 

are assigned through the conditional probability table. When dependencies among interacting 

events are not considered, the FTA yields similar results for the top event; and where the 
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safety barriers are assumed to be activated sequentially, the end consequences occurrence 

probability is the same for the ETA. These outcomes are rational and reasonable because 

each event is statistically independent and the failure datasets have not been normalized to 

condition the dataset, making FTA and ETA impractical for the present case study.  

To model dependencies that exist amongst accident causations, N-OR and LN-OR relaxation 

strategies have been developed to quantify the interactions within the child node’s conditional 

probability tables. The following four (4) steps typifies the procedure leading to BN or DBN 

elicitation of failure probability of interest. 

Step (1): Estimate the failure probability for all parent nodes within the BN, and their 

corresponding safe state probabilities. 

Step (2): Assign non-zero leak probability 𝑙𝛼 to represent dependency of all causations in the 

case of LN-OR formalism; N-OR leak probability may be assigned prior to succeeding step. 

Step (3): Elicit the conditional probability table based on N-OR and LN-OR algorithms, 

separately. 

Step (4): Estimate the top event probability by assigning the appropriate parent nodes state 

conditional probabilities i.e., safe/unsafe, yes/no, true/false, or works/fails etc. 

Based on these steps, the leak to mudline characterised by the failure of barrier plugs B1, B2 

and/or B3-7 depicted earlier in Figure 6-13 is calculated. The probability of TE, using N-OR 

logic within the BN with step (1) is as shown in Table 6-5.  

Table 6-5. Failure and safe state probabilities of top event. 

Identifier Causal description Failure probability Safe state probability 

B1 Leak through isolation plug 0.0089 0.9911 

B2 Leak through primary plug 0.1900 0.8100 

B3-7 Combined leak thru upper plug 0.1074 0.8926 

 

Step (2) yields column 5 & 6 of Table 6-6 and steps (3) and (4) are as highlighted in the same 

Table 6-4. 
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Table 6-6. N-OR CPT for leak through mudline (TE). 

States 𝐁𝟏 𝐁𝟐 𝐁𝟑−𝟕 𝒍𝒐 �̅�𝒐 𝐂𝐏𝐓(𝐓𝐄) 

1 F F F 0.00 1.00 0.00•0.9911•0.8100•0.9996=0 

2 F F T 0.90 0.10 0.90•0.9911•0.8100•0.1074=7.560E-02 

3 F T F 0.80 0.20 0.80•0.9911•0.1900•0.9996=1.506E-01 

4 F T T 0.98 0.02=0.2x0.1 0.98•0.9911•0.1900•0.1074=1.982E-02 

5 T F F 0.40 0.60 0.40•0.0089•0.8100•0.9996=2.882E-03 

6 T F T 0.94 0.6x0.1=0.06 0.94•0.0089•0.8100•0.1074=7.278E-04 

7 T T F 0.88 0.6x0.2=0.12 0.88•0.0089•0.1900•0.9996=1.487E-03 

8 T T T 0.988 0.6x0.2x0.1=0.012 0.988•0.0089•0.1900•0.1074=1.794E-04 

P(TE) = ΣCPT(TE) = 0.2533 

 

In the same manner, following the steps (1) to (4) above and assuming a leak probability of 

5% which is selected arbitrarily due to insufficient model data, the LN-OR influence on the top 

event probability can be estimated, thus 

Table 6-7. LN-OR CPT for leak through mudline (TE). 

States 𝐁𝟏 𝐁𝟐 𝐁𝟑−𝟕 𝒍𝒐 �̅�𝒐 𝐂𝐏𝐓(𝐓𝐄) 

1 F F F 0.05 0.95 0.05•0.9911•0.8100•0.9996=4.012E-02 

2 F F T 0.905 0.1x0.95=0.095 0.905•0.9911•0.8100•0.1074=7.803E-02 

3 F T F 0.810 0.2x0.95=0.19 0.810•0.9911•0.1900•0.9996=1.525E-01 

4 F T T 0.981 0.2x0.1x0.95=0.019 0.981•0.9911•0.1900•0.1074=1.984E-02 

5 T F F 0.430 0.6x0.95=0.57 0.430•0.0089•0.8100•0.9996=3.099E-03 

6 T F T 0.943 0.6x0.1x0.95=0.057 0.943•0.0089•0.8100•0.1074=7.301E-04 

7 T T F 0.886 0.6x0.2x0.95=0.114 0.886•0.0089•0.1900•0.9996=1.498E-03 

8 T T T 0.9886 0.6x0.2x0.1x0.95=0.0114 0.9886•0.0089•0.1900•0.1074=1.795E-04 

P(TE) = ΣCPT(TE) = 0.2960 

 

The ILN-OR approach is computed using the equations (14)-(16) with a lower and upper-

bound leak probabilities given by 𝑙𝑚𝑖𝑛 ≤ 𝑙 ≤ 𝑙𝑚𝑎𝑥  with 𝑙𝑚𝑖𝑛 = 0 and 𝑙𝑚𝑎𝑥 = 0.05. Furthermore, 

a modality of 1.0 is assigned to the ignorance (T,F) model. The leaky probability boundaries 
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offer the advantage of producing two sets of failure probabilities, which is in practice, realistic 

in a non-absolute and uncertain analysis. It is to be noted that each of the three causal nodes 

will be assigned three states, leading to 27 outcomes for each state of the leak through 

mudline event (top event node). In addition, the top event will be assigned three states to 

represent its occurrence (t), nonoccurrence (f), and associated ignorance (t, f). 

Table 6-8. ILN-OR CPT for leak through mudline (TE). 

States 𝐁𝟏 𝐁𝟐 𝐁𝟑−𝟕 
TE 

𝑡 𝑓 𝑡, 𝑓 

1 F F F (0, 0.05) (0.8,0.9) (0.2, 0.05) 

2 F F T 0.905 0.064 0.031 

3 F F T,F 0.800 0.200 0.000 

4 F T F 0.810 0.090 0.100 

5 F T T 0.800 0.100 0.100 

6 F T T,F 0.980 0.019 0.001 

7 F T,F F 0.400 0.400 0.200 

8 F T,F T 0.940 0.040 0.020 

9 F T,F T,F 0.88 0.060 0.060 

10 T T T 0.9880 0.006 0.006 

11 T T F 0.88 0.10 0.12 

12 T T T,F 0.800 0.200 0.000 

13 T F T 0.810 0.090 0.100 

14 T F F 0.800 0.100 0.100 

15 T F T,F 0.980 0.019 0.001 

16 T T,F T 0.400 0.400 0.200 

17 T T,F F 0.940 0.04 0.02 

18 T T,F T,F 0.88 0.06 0.06 

19 T,F T T 0.800 0.100 0.100 

20 T,F T F 0.990 0.010 0.000 

21 T,F T T,F 0.400 0.200 0.400 

22 T,F F T 0.810 0.090 0.100 

23 T,F F F 0.988 0.006 0.006 

24 T,F F T,F 0.400 0.200 0.400 

25 T,F T,F T 0.480 0.480 0.040 

26 T,F T,F F 0.495 0.495 0.010 

27 T,F T,F T,F 0.000 0.010 0.990 
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The N-OR returned a failure probability value higher than an AND-gate but lower than an OR-

gate, making it a reasonable estimate with considerable confidence in rare accident scenarios 

where cost-saving is of crucial concern. The LN-OR, on the other hand, returned a failure 

probability value higher than the N-OR taking into account the effect of uncaptured hazards in 

the accident model. 

In total, 13 N-OR, LN-OR, and ILN-OR models are developed for the failure parameters of the 

conditional probability tables of the dataset to train the BN model. The BN, DBN, and the three 

relaxation strategies were selected as they provided practically accurate network learning 

capability compared to training more generalized network models with learning algorithms 

such as the artificial neural network (ANN), fuzzy cognitive maps, and fuzzy set theory 

algorithm.  

Furthermore, the computation engine within the developed algorithm for the BN includes the 

validation of dataset dependency, thus, the dataset is utilised to learn or train the network 

using experiential learning by splitting 80% dataset for learning and 20% for diagnosis.  

6.3.3.2 DBN Model 

The DBN is constructed from the BN to accommodate the cascade of failure of the overall 

system emanating from component- and subsystem-level failures over time. This is especially 

required because BN is static in nature as its joint probability distribution is generally 

represented by an instantaneous occurrence at a specific point in time or at a time interval 

(McNaught and Zagorecki, 2010). The BN depicts a discrete time model, and it represents a 

time slice which is then linked to the succeeding time slice by a temporal dependence arc. In 

order to develop a model for time-variant analysis and forecasting, the data is divided into 

clusters in the learning and validation set i.e., the event leading to the overall failure of the 

permanent abandonment is divided into quarterly accident evolution where the datasets are 

multiplied by fractional increments – 25%, 50%, 75% and 100% time slices. The quarterly 
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increment is systematically chosen to preserve the correlation relationships of the time-variant 

data. 

As previously mentioned in Section 4.8, the DBN model uses robust time slices in its 

computation engine to dynamically predict one- or multi-step forward or backward 

propagations of the time-variant data. The number of propagations is conditioned 

experientially by instantiating the network as a multiple of the observed evidence. Experiential 

learning with different numbers of evidence characterised by new observations were 

performed to obtain a realistic prediction model that accurately describe practical scenarios of 

well P&A integrity failure.  

The elicitation of the conditional probability table for the two relaxation strategies remained 

unaltered for the dynamic model. However, the network is configured such that the time slice 

at state 𝑡𝑛−1 = 𝑡 − 1 feeds into the succeeding time-slice 𝑡𝑛 = 𝑡 and so on. This means, for 

example, that the child nodes are connected to the parent nodes in the same time slice 𝑡, and 

on the parent nodes and itself at preceding time slice 𝑡 − 1 as shown in Figure 6-14. 

 

Figure 6-14 Dynamic Bayesian network for permanent abandonment 
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6.4 Discussion 

The steps involved in conducting the proposed dynamic safety model are presented and the 

issue of underestimation of ‘AND’ gate and the overestimation of ‘OR’ gate were addressed 

by introducing advanced logic formalisms within the conditional probability table of the 

Bayesian networks to account for uncaptured hazards, dependencies among interacting 

events and the nonlinearity that may exist amongst these causations. Three models were 

developed to that end, namely, noisy-OR, leaky noisy-OR, and imprecise leaky noisy-OR. 

First, the N-OR formalism was utilised to account for the potential for the top event single 

undesired accident to occur in the presence of a single causal among many, which represents 

an event in its unhindered state. Compared to the AND/OR gates, the N-OR returned a failure 

probability value that is greater than ‘AND’ but lesser than ‘OR’ formalism, making N-OR a 

middle course representation of accident causals interaction. Secondly, the leaky N-OR 

thrived on the premise that the top event may still fail even when all its causations (parent 

nodes) do not fail. This is especially the case of a rare accident event modelling and is a 

commonplace occurrence in the offshore decommissioning industry. The leak probability 

takes a non-zero value as input and returned a value relatively higher than N-OR, AND, and 

OR models. Finally, the imprecise leaky N-OR addressed the influence of ‘ignorance’ 

incorporated into the accident scenario analysis. It thrives on the idea that the data used in 

the analysis sparse and analogous, the assumptions made by experts during hazard 

identification analysis may be flawed, and the mathematical model contained an assumed 

‘leak’ and ‘link’ probabilities that do not reflect sufficient data. It returned two failure dataset 

representing upper and lower limits that can support decision makers remarkably. 

Overall, the advanced logics demonstrated reliable performance of the BN model output and 

established that the dependency modelling would have reduced one of the many uncertainties 

associated with a rare accident of such a magnitude. The formalisms have been presented in 

their orders of superiority to address hazard identification analysis and overall risk assessment 

issues. Therefore, the result of the imprecise leaky N-OR is robust to support 
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decommissioning and abandonment decision making process at every phase since it 

combines the benefits of both N-OR and leaky N-OR. Although, its elicitation is 

computationally challenging, but its implementation has unparalleled benefit and will be 

utilised as a control limit for monitoring the decommissioning and abandonment safety 

analysis in the subsequent Chapters. 

6.5 Summary 

This Chapter introduced the model formulation using advanced logics to relax the drawbacks 

of traditional quantitative risk analysis such as the FTA, ETA and bowtie, and was applied to 

the permanent abandonment system of oil and gas wells. The reliability models were 

presented systematically following the evolution of uncertainties in accident causal parameters 

and data paucity with the underlying assumption that the reservoir condition was not 

completely known at the cessation of production. The relaxation strategies within the 

Conditional Probability Tables (CPT) were required to differentiate the accident model 

behaviour from conventional logic gates and were applied to the case study of permanent well 

plugging and abandonment operation. It was demonstrated that the proposed dependency 

modelling through the relaxation strategies can provide a realistic estimate of the top event 

occurrence probabilities better than AND/OR gates. The ability to incorporate the dependency 

models was also verified by manual calculus since the script and book-keeping are often not 

transparent within the graphical interface of software tools. However, the accident model 

formulations still need to be improved to increase precision by considering predictive and 

diagnostic tools as shall be seen in succeeding Chapters. 
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Chapter 7: Well PA Results and Discussion 

7.1 Outline 

This Section seeks to sum up and present the main findings of the dynamic failure analysis 

from the developed data and model in its entirety. The results are presented on overall system 

level such that the accident scenarios represented by the FT and the accident evolution 

represented by the ET are considered with the weakest link leading to the end consequence 

as the component (s) of interest, otherwise known as the Most Probable Cause (MPC) of 

failure.  

7.2 Static Failure Analysis outcomes for case study 

7.2.1  FTA Results 

The results summarised each of the main system characterised by barrier plug failures, safety 

barriers failure to respond on demand, and consequent catastrophe or the lack of it thereof. 

The severity of these failure modes, characterised by importance measure in the sensitivity 

analysis Section, are provided and presented in their significant order quantified by MPCs. 

For instance, as can be seen in Table 7-1, the combination of basic events leading to the top 

event estimation revealed the weakest links in the form of Minimal Cut Sets (MCS). The MCS 

provides practical intuition into the contribution of the basic events within the permanent 

abandonment accident evolution in its entirety.  
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Table 7-1 Failure probabilities of MCs for non-sour permanently abandoned well. 

MCj ESTIMATION PARAMETERS Cut Set 

Order 

Event Description MCj probability 

MC1  B2  1 Leak through the lower plug 1.90E-01 

MC2  B3.2.2 1 Geological forces effect 1.86E-01 

MC3  B3.1  1 Prolong exposure of migration fluid 1.47E-01 

MC4 B4 B5.1 2 Leak through the production plug; 

De-bonding of plug and casing 

8.11E-02 

MC5 B3.2.1 1 Formation of fluid loads effect 5.00E-02 

MC6 B4 B5.2 2 Leak through the production plug; 

Annulus barrier degradation 

3.30E-02 

MC7 B1.1B1.2 2 Pressure build-up; 

Injection into nearby wells 

8.93E-03 

MC8 B4 B6.2 B7.2 B7.1.2 4 Leak through the production plug; 

Annulus barrier degradation; 

Annulus barrier degradation; 

Barrier shrinkage 

8.91E-04 

MC9 B4 B6.2 B7.2 B7.1.1 4 Leak through the production plug; 

Annulus barrier degradation; 

Annulus barrier degradation; 

Poor mud removal 

6.93E-04 

MC10 B4 B6.1.2 B7.2 B7.1.2 4 Leak through the production plug; 

Loss of barrier; 

Annulus barrier degradation; 

Barrier shrinkage 

6.31E-04 

MC11 B4 B6.1.2 B7.2 B7.1.1 4 Leak through the production plug; 

Loss of barrier; 

Annulus barrier degradation; 

Poor mud removal 

4.91E-04 

MC12 B4 B6.1.1 B7.2 B7.1.2 4 Leak through the production plug; 

Inadequate barrier density; 

Annulus barrier degradation; 

Barrier shrinkage 

4.38E-04 

MC13 B4 B6.1.1 B7.2 B7.1.1 4 Leak through the production plug; 

Inadequate barrier density; 

Annulus barrier degradation; 

Poor mud removal 

3.41E-04 
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A closer look at Table 7-1 showed that there exist thirteen (13) minimal cut sets within the 

accident model. Of these, there are four first-order, three second order, and six fourth order 

MCS. The leak through lower plug appeared to be the Most Probable Cause (MPC) of failure 

capable of triggering the single failure characterised by top event occurrence. Similarly, the 

effect of geological forces is more probable to cause the overall system failure compared to 

the prolong exposure of migrating fluid and so on. The leak through production plug and the 

de-bonding of plug and casing must fail simultaneously to cause equivalent damage.  

The relevance of the identified minimal cut sets of the FT analysis can be described from 

practical and realistic standpoint. For instance, the most of influential conditions of the basic 

events within a subsea or topside oil/gas well are temperature, pressure, and are associated 

with the leak through the lower or primary plug subsystem of the single failure system. Barrier 

shrinkage, loss of barrier and annulus barrier degradation are seen to be critical to the single 

failure occurrence. The integrity of these components must be ensured, otherwise, leakage 

pathways would manifest and can initiate a domino effect within the wellbore. The major 

strength compromise emanating from the identified barriers failure is the sensitivity of contact 

stress between interacting well casings (Saeed et al., 2018; Ahmed et al., 2015). The contact 

stress is further impacted by the micro-annuli created by the barrier shrinkage. The shrinkage 

of barrier is attributed to the quality of the plugging or cement job as this would provide 

structural adequacy and impede corrosive formation fluids migrating into the subsea casing 

systems annuli. Although, the downhole condition is often uncertain during plugging, the 

wellbore pressure and the sourness of the formation fluids can compromise the cement 

strength and consequently degraded. Due to this observation and noting that basic events 

B5.2, B6.2, and B7.2 are common cause failures. Furthermore, the order 2nd-order minimal cut 

sets include plugging failure influencers such as the leak through the production casing, 

pressure build-up, injection into nearby well, and annulus barrier degradation. The pressure 

build-up is especially critical as it can spontaneously escalate the equilibrium of the wellbore 

if not properly monitored and controlled. Lastly, the 4th-order cut sets are related to the plug 
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integrity within the wellbore that are crucial to the non-occurrence of the leak to mudline as a 

failure such as the poor mud removal, annulus barrier degradation, and inadequate barrier 

density can trigger a cascade of failure between casings in-contact stresses.  

The results from the FTA helped in identifying critical components that require further analyses 

in a dynamic scenario to provide insight into when the plugged and abandoned well would 

have been compromised in order that sufficient control and inspection regime can be 

implemented to avert site remediation. The analysis of the FT result assumed that each 

contributory factor is statistically independent, but this need not be true as decommissioning 

and abandonment operations are a family of rare accidents with dependencies existing among 

interacting events, among events and their common causes, and also between the model 

formulation assumptions due to uncertainty. The dependencies will be the focus of the 

dynamic safety analysis herein. Prior to dynamic analysis, the FTA results would be used to 

initiate the consequence analysis within the ETA presented in the next Section to obtain the 

accident evolution results in its entirety. This further step will assist in the identification of weak 

links among the safety barriers in place and how the end consequences advances. 

7.2.2 ETA Results 

The single failure identified as the top event of the FT was used as the initiating event in the 

event tree analysis development to investigate the accident evolution scenario during 

decommissioning and abandonment phase. The ETA is based on the assumption that the 

safety barriers in place are sequential and would be triggered on-demand when the preceding 

safety barrier has failed. The occurrence probabilities of the end consequences are estimated 

through the propagation of initiating event and safety barrier failure probabilities in their states 

of interest. As noted from Figure 6-3 to 6-6, FTA is used to quantify the failure probabilities of 

all the safety barriers from the knowledge of their influencing factors discussed in Section 

6.3.1.2. It is important to note that accident evolution analysis (ETA) is not needed post-
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decommissioning as the reservoir pressure would not have been sufficient to compromise the 

well integrity after plugging and abandonment. 

 

Figure 7-1 Accident evolution results 

 

As can be deduced from Figure 7-1 above, when a hydrocarbon leak is spotted at the mudline 

or seabed (IE), the Hydrocarbon Detection Sensor (HDS) is triggered. The trigger can notify 

the Ignition Prevention System (IPS) and the subsequent safety barriers leading to a safe 

state end consequence with an occurrence probability of 32.36% (consequence 𝐶1). If the 

Emergency Evacuation System (EES), in the form of a dedicated crew with adequate training 

to rescue-and-evacuate, fails to successfully perform its intended function, the first failure 

scenario – near miss without remediation required – with an occurrence probability of 0.47% 

(consequence 𝐶2) is reported. If the Alarm and Sprinkler System (AaS) is faulty and refuses 

to initiate on-demand, then the decommissioning and abandonment crew would be unaware 
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of the imminent danger leading to potential minor injuries and loss of equipment with an 

occurrence probability of 1.06% (consequence 𝐶3). The failure of the Flame Arrestor System 

(FAS) will lead to a hazardous scenario characterised by fire, few deaths, and minor sill with 

occurrence probability of 2.48% (consequence 𝐶4). If the IPS fails to trigger due to fault or 

damage, explosion and a major hydrocarbon spill is imminent with an occurrence probability 

of 4.20% (consequence 𝐶5). If the first safety barrier (HDS) malfunctions, then all other safety 

barriers sequentially positioned to receive signals from it will be redundant and the personnel 

would have been unaware of the potential fatalities, rig loss, and considerable hydrocarbon 

spill waiting to happen with an occurrence probability of 12.15% (consequence 𝐶6). Since the 

safety barriers are propagated as though they were linear and sequential without 

consideration for dependency, the FTA and the ETA will be combined into a bowtie and 

mapped into a BN to conduct probabilistic failure analysis in the subsequent Sections. 

7.2.3 Bowtie mapping into BN Results 

The combined accident scenarios modelling within the BT is as shown in Figure 7-2, where 

each basic, intermediate, and top event becomes the root, intermediate, and leaf node of the 

BN, respectively. Three (3) advanced logic gates (Noisy-OR, Leaky Noisy-OR, and Imprecise 

Leaky Noisy-OR) are used in the BN to factor in the dependence and uncertainty associated 

with the accident model, parameter shortcomings, and model formulation assumptions. First 

on the FTA side, the failure probability of each event estimated in Chapter 5, are transformed 

to become the marginal probabilities in the BN. Furthermore, on the ETA side, each safety 

barrier is modelled to be dependent on the one preceding it and the dependency is elicited 

within its CPT as described in Section 4.  
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Figure 7-2 Bowtie model for permanent abandonment operation 

 

The permanent abandonment bowtie shows how the faulty events 𝐵1, 𝐵2, and 𝐵3−7 could 

evolve to cause the leak of hydrocarbon to the mudline. The leak of hydrocarbon to the 

mudline can propagate into loss of assets and personnel including environmental loss which 
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may lead to huge economic loss as a result of site remediation if safety barriers are not 

adequately implemented. The bowtie does not only provide an insight into the key 

performance parameters needing to be monitored and controlled during the permanent 

abandonment operation.  

7.2.4 Selection of permanent abandonment-controlled parameters 

Through the Design for Decommissioning (DfD) workshop on permanent well abandonment 

assessment methodologies, plugging and abandonment options were conducted, and 

technical solutions were discussed based upon the limited knowledge of the reservoir 

conditions. The two (2) notable concerns were the quality of cement job during plugging and 

the casing integrity characterised by yielding. These potential failure modes were further 

fleshed out to obtain the parameters used in the case study accident model depicted by the 

bowtie above. These parameters of interest are used to learn, monitor, and control the 

accident scenarios. Therefore, the parameters describing the well integrity related to the 

cement quality are the barrier shrinkage, loss of barrier, inadequate barrier, and annulus 

barrier degradation. In addition, the parameters related to the casing integrity failure are the 

pore pressure build-up, injection into nearby well, geological loads effect, and formation fluids 

load effect. For dynamic failure analysis, the parameters capable of deteriorating over time 

would be selected as inputs to instantiate the DBN. These parameters are the annulus barrier 

degradation, pressure build-up over time and loss of barrier as represented in Table 7-2 where 

✓ and  refer to key performance parameters of interest and those not of interest, 

respectively. 
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Table 7-2 Well PA-controlled parameters for inspection modelling 

Performance Data BN Analysis DBN Analysis 

Barrier shrinkage ✓  

Loss of barrier ✓ ✓ 

Inadequate barrier ✓  

Annulus barrier degradation ✓ ✓ 

Pressure build-up ✓ ✓ 

Injection into nearby well ✓  

Geological loads effect ✓  

Formation fluids load effect ✓  

 

7.2.5 Probabilistic risk analysis results 

7.2.5.1  Post-decommissioning with rigless scenario 

By way of system reliability analysis, the well plugging and abandonment schematic system 

description offers insight into the leakage routes and how it propagates into a single failure 

defined by the leak of hydrocarbon through the mudline. The prior marginal probabilities of all 

basic events are identified (as presented in Chapter 5 with mean distribution as shown in 

APPENDIX G) and assigned to the nodes. The interactions between these causations – 

between the parent nodes and their corresponding child nodes – are represented by the 

AND/OR gates in a similitude transformation from FTA and ETA into BNs. That is, the 

Conditional Probability Tables (CPT) for all basic events and their intermediates are described 

in binary 0’s and 1’s. However, the advanced logic gates Noisy-OR, Leaky Noisy-OR, and 

Imprecise Leaky Noisy-OR are separately utilised to describe the dependencies between the 

three (3) faulty events – leak through zonal isolation plug (𝐵1), leak through lower plug (𝐵2), 

and combined leak through upper plug (𝐵3−7) – leading to the top event occurrence. The 

conditional probability tables specified for the faulty events as described in Section 6.3.3.1 is 
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used to estimate the top event failure by considering the different plugging and abandonment 

reliability issues. The reliability issues combined with the uncertainty associated with data 

sparsity, modelling assumptions and parameter knowledge were incorporated within the 

relaxation strategies built into the advanced logic gates. Similar approach is used to estimate 

the end consequences during a rig-based abandonment operation. 

Due to the implementation of dependency and uncertainty models within the BNs, the top 

event estimated occurrence probability is different considerably when compared to that 

obtained from the FTA, making the BN a flexible and more practical representative of the 

accident scenarios analysis. For example, the failure probability of the top event yields 0.2835 

using the FTA, and 0.2533, 0.2960 and [0.2377, 0.7226] using N-OR, LN-OR and ILN-OR 

respectively as shown in Table 7-3. This notable difference indicates that the FTA 

overestimated the failure probabilities because it treated each contributory factor as though it 

were statistically independent. Furthermore, instantiation of the BNs model at the instance 

when the first leak of hydrocarbon to the mudline is spotted (i.e., 𝑃(𝐵𝑖 = 𝑡𝑟𝑢𝑒|𝑇𝐸 = 𝑡𝑟𝑢𝑒)) 

revealed that the leak through the upper plug between the production and surface casings is 

more probable to fail in comparison with the other accident contributory factors.  

Table 7-3 Top event failure probability comparison 

Sample size FT Analysis 

BN Analysis 

Noisy-OR Leaky Noisy-OR Imprecise Noisy-OR 

10 0.2835 0.2533 0.2960 [0.2377, 0.7226] 

 

7.2.5.2 Pre-decommissioning with rig-based scenario 

During the decommissioning operation, especially, using a rig-based approach it is not 

uncommon to encounter the end consequences described in Section 6.3.1.4 and the 

consequence model is analysed and reported herein. 
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The Noisy-OR formalism within the BNs showed that the safe condition occurrence probability 

is 62.66%, indicating that the performance reliability of the overall accident model is high given 

that all safety barriers in place are all operational on demand. Hydrocarbon release occurrence 

probability is estimated to be 20.74% and appeared to be the first and most probable incident, 

albeit the absence of an ignition source would be sufficient to interrupt the accident 

propagation medium. The absence of an ignition source is a planning issue rather than 

operational and is expected to have been factored into the risk contributors prior to 

commencement of decommissioning and abandonment operation. Vapour cloud has an 

occurrence probability of 8.75%, making its actualisation dependent on external failure due to 

planning, since a vapour cloud cannot propagate unless it is escalated by wind. To a lesser 

degree, the occurrence probability of pool fire (similar to jet fire if wellbore contains gas) is 

3.67%. Furthermore, the occurrence probability of casualties, characterised by explosion and 

major spill is found to be 3.30%. For this to happen, all safety barriers except emergency 

evacuation plan (EEP) must have failed on demand and leak of hydrocarbon spotted. The 

least consequence defined by fatalities, rig loss and considerable spill, is found to have an 

occurrence probability of 0.88% which further confirms the classification of decommissioning 

and abandonment operation as a family of rare accident events evidenced by the low 

probability-high consequence trend.  

On the other hand, the leaky Noisy-OR formalism showed a similar trend in the decreasing 

level of occurrence probabilities from safe condition to fatalities i.e., 𝐶1 − 𝐶6. However, the safe 

condition probability is found to be 63.52%. Hydrocarbon release accounted for 20.20% 

occurrence probability with a failure likelihood of vapour cloud up to 8.42%. Pool fire 

occurrence probability is estimated to be 3.49% when the casualty’s occurrence probability is 

3.54%, and the chances of fatalities occurring is 0.84%. The accident contributory factors for 

all the occurrences leading to the leak of hydrocarbon to mudline and end consequences are 

the same, validating the BN formulation from the bowtie. 
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In the ILN-OR approach, the calculations were performed in MATLAB & Simulink 

programming environment using the developed conditional probability table and the 

mathematical equations (14), (15), and (16) presented in Section 4.4.7. The results provided 

a lower bound and upper bound solutions for the occurrence probabilities. The lower-bound 

values representing an optimistic failure probability and the upper-bound, pessimistic. These 

lower- and upper-bound values also provided insight into the first sensitivity analysis for the 

investigated events as presented in Table 7-4. 

Table 7-4 Consequence modelling results 

Consequences ETA Results 

BN Results 

N-OR LN-OR ILN-OR 

𝐶1 0.3236 0.6266 0.6352 (0.5664, 0.7566) 

𝐶2 0.0047 0.2074 0.2020 (0.1135, 0.1962) 

𝐶3 0.0106 0.0875 0.0842 (0.0328, 0.0961) 

𝐶4 0.0248 0.0367 0.0349 (0.0105, 0.0543) 

𝐶5 0.0420 0.0330 0.0354 (0.0551, 0.0789) 

𝐶6 0.1215 0.0088 0.0084 (0.0078, 0.0319) 

 

7.2.6 Development of failure prediction models 

The failure of a plugged and abandoned oil and or gas well is safety critical and complex, 

making it susceptible planned and unplanned hazardous scenarios that can compromise 

safety. To predict the failure model, one of two information is required – i.e. (1) the knowledge 

about any of or both the top event and the end consequences (2) new observation about one 

or more of the causations. The analysis that takes input from the first is termed “diagnosis or 

backward propagation” , and that relying on the latter is termed “predictive of forward 

propagation”. It is worthy of mention that during decommissioning and abandonment in a rig-

based operation, BT is valid because the reservoir may still contain hydrocarbon that may 
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migrate uphole to cause disruption of the Elgin Platform type and as a result, would be used 

for diagnoses i.e., backward propagation. On the other hand, during post-decommissioning, 

only the FTA end is valid because the reservoir would have been rendered non-producing and 

any traces of hydrocarbon migration would have been killed by the barrier or mechanical plugs 

in place. As a result, the FTA would be used for predicting top event occurrence. 

7.2.6.1 Predictive Analysis 

The forward propagation analysis takes input from the key performance parameters identified 

in Table 7-2 of Section 7.2.4 to predict the uncertainty associated with the failure model within 

the BN. The identification is based on the first static preliminary results obtained from 

traditional QRA and will represent Accident Precursor Data (APD) that would be collected in 

real-time during decommissioning and abandonment operation to forecast monitoring 

intervals. This forecast is performed to obtain posterior failure probabilities for the top event 

and associated end consequences.  

From the list of performance parameters identified, it can be observed that the annulus 

degradation barrier is a common cause failure (CCF) capable of triggering the leak through 

casing assembly, the leak through conductor casing, and in combination with barrier 

contamination to cause the leak through casing hangar. Therefore, the CCF influence on the 

overall system failure can be critical. In total, 8 accident contributory factors are identified as 

performance parameters needed to investigate the leak or blowout scenario for this case 

study. The forward analysis is assessed such that the probability of leaf node (top event) will 

be updated by instantiating all the 8 causal factors to their true state representing the 

availability of evidence or new knowledge about their occurrence or non-occurrence. i.e., 

𝑃(accident = {true}|root nodes = {fail}). 
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Table 7-5 Top event updated failure probability 

Interval FT Analysis 

BN Analysis 

Noisy-OR Leaky Noisy-OR Imprecise Noisy-OR 

Prior 0.2835 0.2533 0.2960  [0.2377, 0.7226] 

Posterior 0.5517 0.4666 0.4043 [0.4742, 0.7788] 

|%∆𝑇𝐸| 48.6% 45.7% 26.8% [49.9, 7.2%] 

 

 

Table 7-5 show that there is a progressive increment in the posterior failure probabilities of the 

top event estimated through all the proposed methods. However, the upper bound posterior 

probability in the ILN-OR model is unresponsive to the influence of the performance data 

incorporated as new knowledge or evidence to update the degrees of belief associated with 

the source-to-source variability in the failure data used to generate the prior failure 

probabilities of accident causal factors. In addition, the implementation of forward propagation 

on the performance data to forecast the leak to mudline failure when real-time Accident 

Precursor Data are not readily available, leads to an overall significant increase in the top 

event occurrence probability. It is worth mentioning that the order in which the performance 

data are to be instantiated is beyond the scope of this research. To that end, experiential 

learning is adopted to investigate the trend and the strength of influence as shall be seen in 

the succeeding Section. 

The corresponding end consequences posterior probabilities with the relative differences 

computed as an absolute percentage change are as given in the Table 7-6 below. In the 

consequence modelling, the highest percentage change in prior and posterior probabilities are 

observed within the conventional ETA results, indicating that static analysis used to calculate 

the priors were overestimated. This overestimation is not acceptable in decommissioning and 

abandonment operations because a noninvestment capital project is expected to drive 
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minimum economic risk in order to motivate decision makers and attract rebates from the 

government. To that end, the advanced relaxation strategies implemented within the BN 

analysis provided a better representation of uncertainties associated with the modelling 

parameters, uncaptured hazards, and link probability. 

A closer look at the consequence events outcome revealed a similar trend as those observed 

for the top event scenarios. There is a progressive increment across all methods for 𝐶1 and  

𝐶5, and variable percentage reduction in 𝐶2, 𝐶3, 𝐶4, and 𝐶6. In the upper-bound of the imprecise 

leaky Noisy-OR logic, the degree of responsiveness ranges between 0.3% to 9.3%, making 

these consequences less sensitive to the monitoring performance data.  
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Table 7-6 Consequence modelling updated failure probability 

End 

consequences 
ETA Results 

BN Results 

N-OR LN-OR ILN-OR 

𝐶1 

𝐶1𝑝𝑟𝑖𝑜𝑟
 0.3236 0.6266 0.6352 (0.5664, 0.7566) 

𝐶1𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
 0.6981 0.6788 0.6646 (0.6344, 0.7534) 

|%∆1| 53.6% 7.7% 4.4% (10.7%, 0.4%) 

𝐶2 

𝐶2𝑝𝑟𝑖𝑜𝑟
 0.0047 0.2074 0.2020 (0.1962, 0.1135) 

𝐶2𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
 0.1631 0.1750 0.1840 (0.1656, 0.1138) 

|%∆2| 97.1% 18.5% 9.8% (18.5%, 0.3%) 

𝐶3 

𝐶3𝑝𝑟𝑖𝑜𝑟
 0.0106 0.0875 0.0842 (0.0961, 0.0328) 

𝐶3𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
 0.0597 0.0672 0.0727 (0.0731, 0.0335) 

|%∆3| 98.2% 30.2% 15.8% (31.5%, 2.1%) 

𝐶4 

𝐶4𝑝𝑟𝑖𝑜𝑟
 0.0248 0.0367 0.0349 (0.0543, 0.0105) 

𝐶4𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
 0.0216 0.0257 0.0286 (0.0387, 0.0114) 

|%∆4| 14.8% 42.8% 22.0% (40.3%, 7.9%) 

𝐶5 

𝐶5𝑝𝑟𝑖𝑜𝑟
 0.0420 0.0330 0.0354 (0.0551, 0.0789) 

𝐶5𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
 0.0524 0.0472 0.0433 (0.0645, 0.0793) 

|%∆5| 19.8% 30.1% 18.2% (31.5%, 0.5%) 

𝐶6 

𝐶6𝑝𝑟𝑖𝑜𝑟
 0.1215 0.0088 0.0084 (0.0319, 0.0078) 

𝐶6𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
 0.0052 0.0062 0.0069 (0.0237, 0.0086) 

|%∆6| 95.7% 41.9% 21.7% (34.6%, 9.3%) 

 

7.2.6.2 Experiential Learning 

The performance data is treated as though they were Accident Precursor Data obtained during 

the plugging and abandonment operation for the Elgin platform. Their observed evidence is 
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collected and recorded over the seven (7) week period for which the actual hydrocarbon 

blowout occurred as presented in Table 7-7. The Accident Precursor Data was verified through 

a thorough peer-review process in a quartile-one journal and further validated by the C-RISE 

research group to support its applicability. The data indicates the number of trials recorded for 

each accident contributory factor over the seven (7) week period for which the Elgin platform 

failed. 

 

Table 7-7 Accident Precursor Data for key performance data 

Performance Data 
 
 
 
 
 

Weeks 

B1.1 B1.2 B3.2.1 B3.2.2 B5.2 B6.1.1 B6.1.2 B7.1.2 

0 3 - - 3 2 1 - - 

1 3 2 1 1 2 1 - - 

2 2 1 1 - 2 - - - 

3 2 1 - 2 1 1 - - 

4 2 - 1 2 1 1 - - 

5 1 1 - 2 1 2 - - 

6 1 1 - 1 - 2 1 - 

7 1 - 1 1 - 2 1 1 

 

Incorporating these sets of evidence in the model through probability adaptation technique, 

the strength of influence on the top event and resulting consequences’ reliability was trained 

or learned within MATLAB and are presented in Figure 7-3.  
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Figure 7-3 Top events evolution over leak duration 

Figure 7-3 provides detailed insight into the sensitivity of the top event failure to its causals 

including how it responds to potential cascade of failures of these causals. A closer 

examination revealed that the FTA model in BN without dependency (in red asterisk) 

responded increasingly in a non-linear manner through the overall leak duration. The N-OR 

model, on the other hand, responded sharply to the performance data trend in the first week 

before stabilising in a semi-linear manner. In addition, due to the OR-logic gate used to 

formulate the model, it is apparent that the LN-OR model is a middle-course between OR and 

And logic gates, indicating that the FTA model may have been overestimated. The LN-OR 

model exhibited a similar progressive increment pattern to the FTA model. The marked 

difference being that the top event occurrence probability was higher than both the FTA- and 

N-OR models. This notable response is attributed to the incorporation of uncaptured hazards, 

possible inaccuracy in the modelling assumptions, and parameters uncertainties. Overall, the 

leak of hydrocarbon to the mudline would have exacerbated in all modelled cases by the end 

of the seventh week if the well ‘kill’ would have been unsuccessful. The observation recorded 
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and reported herein paved the way for the need to conduct a comprehensive sensitivity 

analysis in the dynamic model to support the experiential learning outcomes and 

consequently, aid a robust decision-making, as shall be seen later in Chapter 8.  

7.2.6.3 Diagnostic Analysis 

In diagnostic (backward propagation) analysis within BN, the desired information meaningful 

to decision-makers offshore are the updated (posterior) probabilities, reflecting the specific 

features of the accident under investigation and, the most probable causes (MPCs) of well 

P&A failure. To determine the posterior probabilities of the accident contributory factors, a new 

observation of the overall leak through mudline is necessary. For instance, given that it 

becomes certain that the well P&A fails, the occurrence probability of the TE is instantiated to 

unity, i.e., 𝑝(leak thru mudline) = 1. The updated failure probabilities of the causations are 

then reassessed using 𝑝(𝐶𝐸𝑖|𝑇𝐸 = {𝑇}). The results obtained from the FTA, N-OR and LN-

OR logics modelled through BN are presented in Table 7-8. It can be seen that the events 

B1.1, B1.2, B2, B4, and B5.1 have the largest posterior occurrence probabilities in all cases. Of 

these, event B2 (the leak through upper plug) is the most safety critical, thereby validating the 

observation noted in Section 7.2.5.1.  

To better estimate the most probable causes (MPCs) of the top single failure, the weakest 

links among interacting events are assessed by using the importance measure (IM) defined 

by 𝐼𝑀 = (𝑝𝑜/𝑝𝑖) where 𝑝𝑜 is the posterior probability and 𝑝𝑖 is the prior probability. The further 

away from unity the ratio, the more responsive the causal event is in contributing to the overall 

occurrence of the top event. The values of the MPC computation when ran through different 

relaxation approaches yield up-to-date top event probabilities of 1.00E+00 i.e., the worst-case 

scenario to update the accident contributory factors.  
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Table 7-8. Failure probabilities comparison of CEs based on backward propagation. 

Events 
MAPPED FT  N-OR  LN-OR  

PRIOR      POSTERIOR 𝐼𝑀𝐹𝑇 PRIOR      POSTERIOR 𝐼𝑀𝑁𝑂𝑅 PRIOR      POSTERIOR 𝐼𝑀𝐿𝑁𝑂𝑅 

B1.1  8.50E-02 1.06E-01 1.25 8.50E-02 9.56E-02 1.12 8.50E-02 9.36E-02 1.10 

B1.2  1.05E-01 1.25E-01 1.19 1.05E-01 1.15E-01 1.10 1.05E-01 1.13E-01 1.08 

B2  1.90E-01 6.70E-01 3.53 1.90E-01 6.58E-01 3.46 1.90E-01 5.73E-01 3.02 

B3.1 1.47E-01 1.50E-01 1.02 1.47E-01 1.50E-01 1.02 1.47E-01 1.49E-01 1.01 

B3.2.1 5.00E-02 5.33E-02 1.07 5.00E-02 5.33E-02 1.07 5.00E-02 5.30E-02 1.06 

B3.2.2 1.86E-01 1.89E-01 1.02 1.86E-01 1.90E-01 1.02 1.86E-01 1.88E-01 1.01 

B4 2.75E-01 4.93E-01 1.80 2.75E-01 5.22E-01 1.90 2.75E-01 4.77E-01 1.73 

B5.1 2.95E-01 4.36E-01 1.48 2.95E-01 4.55E-01 1.54 2.95E-01 4.26E-01 1.44 

B5.2 1.20E-01 1.77E-01 1.48 1.20E-01 1.85E-01 1.54 1.20E-01 1.73E-01 1.44 

B6.1.1 5.95E-02 6.04E-02 1.02 5.95E-02 6.05E-02 1.02 5.95E-02 6.03E-02 1.01 

B6.1.2 8.50E-02 8.63E-02 1.02 8.50E-02 8.65E-02 1.02 8.50E-02 8.62E-02 1.01 

B6.2 1.20E-01 1.22E-01 1.02 1.20E-01 1.22E-01 1.02 1.20E-01 1.22E-01 1.02 

B7.1.1 1.75E-01 1.77E-01 1.02 1.75E-01 1.77E-01 1.01 1.75E-01 1.76E-01 1.01 

B7.1.2 2.25E-01 2.27E-01 1.01 2.25E-01 2.27E-01 1.01 2.25E-01 2.27E-01 1.01 

B7.2 1.20E-01 1.24E-01 1.03 1.20E-01 1.25E-01 1.04 1.20E-01 1.24E-01 1.03 

 

It is observed from Table 7-8 that the posterior failure probabilities for both N-OR and LN-OR 

are less responsive to the availability of new evidence when compared with the FT similitude 

mapping results. In addition, the posterior probability for the leak through lower plug (B2) 

increased rapidly in all cases, indicating that event B2 would require higher inspection and 

monitoring priority. The posterior-to-prior probability ratios are in agreement with the sensitivity 

pattern observed using the Accident Precursor Data to train the BN model using experiential 

learning. However, the ratios only represent the relative index between guesstimates and new 

knowledge and does not provide any intrinsic information to inform risk-based decision 

making. In a rare accident scenario analysis like decommissioning and abandonment, detailed 

sensitivity analysis tends to address the components and or subsystems that are critical and 

to what extent. While the updated probabilities for the mapped FT, N-OR model, and LN-OR 

model are almost identical in terms of posterior probabilities being larger than their 

corresponding priors, there is no difference in the order of significance of the accident 

contributory factors. Mapped FT is modelled with no dependency amongst interacting causal 
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factors with the conditional probability table being binary. The N-OR model results were lower 

than those of the mapped FT, indicating that uncaptured hazards are a functional variable of 

uncertainty. The leaky N-OR model provided a more considerable results due to the 

incorporation of additional uncertainties.  

7.3 Discussion on proposed methodology 

Based on the results obtained from the model formulation and analysis from conventional PRA 

to BN comparisons, it can be seen that BN is able to accommodate advanced relaxation 

techniques to provide failure values corresponding to specific accident models. Overall, the 

modelled results indicate that FTA and ETA with their corresponding BT equivalent  yielded 

probability values higher than those obtained within the BN using N-OR but lower than those 

of LN-OR, making the conventional PRA results a middle course vis-à-vis risk analysis. More 

specifically, the top event failure values characterised by the leak of hydrocarbon to mudline, 

is demonstrated to be the initiating event for the ETA and the ILN-OR shows how this failure 

values can be presented as intervals. The interval results presentation allowed for the 

decision-makers to be able to support their risk response strategy with a lower and upper 

bound limit.   

The developed FT/ET/BT model allowed for a comprehensive and realistic visualisation of the 

overall system and the interactions among accident contributory factors, which enhanced the 

addition of new causal events to the system. The system extended the wellbore schematic 

and its potential leak pathways to include new subsystems such as the barrier contamination, 

poor mud removal, yielding of casing, and prolong exposure of migrating fluids, among others. 

The preliminary sensitivity of the top event and associated end consequences to changes in 

the causal events was demonstrated through predictive (forward propagation analysis) and 

diagnostic (backward propagation analysis) techniques. Due to the limited evidence offered 

by a single time-slice, probability adaptation was investigated through experiential learning 
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that took inputs from Accident Precursor Data over the seven (7) week period for which the 

Elgin platform experienced a blowout. 

In addition, the accident scenarios development with FT and BT which was mapped into their 

corresponding BNs allowed for the flexibility to visualise the accident evolution and can 

accommodate more accident contributory factors at component and subsystem level. In 

particular, the ease with which the developed model has been extended to cover additional 

causations which were not explicitly present in the wellbore schematic contained in the 

literature and case study adopted, permitted the incorporation of finitely complex cases where 

any given causal can become a parent to other causals. For illustrative purpose, in the case 

of the annulus barrier degradation which is both time-dependent and a common cause failure, 

any one or a combination of its “child” nodes can be triggered in several varying outcomes 

and in no particular order – a concept referred to as domino effect.  

Furthermore, the events analysis of the Elgin platform laid bare the importance of the overall 

system knowledge because the incident was escalated do to cascading of failures of the 

mechanical plugs. Several unrelated and unconnected layers of the well failed 

nonsequentially, necessitating the need to formulate the model in an advanced logical 

sequence beyond AND/OR gates. These modelling and reservoir dynamics considerations 

through the implementation of imprecise leaky noisy OR formalism coupled with failure data 

obtained from Hierarchical Bayesian Analysis with multi-stage refinements, were the focus of 

this present study. The described methodology presented a robust process for obtaining the 

top event failure probability with considerable confidence and further aided the identification 

of the most probable causes of failure that may compromise the integrity of the plugging and 

abandonment operation. 

Instantiation of the predictive analysis algorithm where key performance data were selected 

to be in their ‘true’ states yielded updated occurrence probabilities for the top event and end 

consequences with the observation that all formulated models responded incrementally 

whereas the upper bound of the imprecise leaky noisy-OR showed little to no response. In 
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addition, the instantiation of the diagnostic analysis algorithm where the top event is latched 

to its ‘true’ state yielded an expected increase in the occurrence probability of the leak through 

lower plug, making it the most probable failure capable of initiating the single undesired failure 

with unprecedented consequences.  

The methodology presented here enabled the comparison and contrasting of the strengths of 

each uncertainty model formulations in describing the accident contributory factors response. 

Through a comprehensive training of the BN model with accident precursor data, 

consideration was given to the predictive, diagnostic, and experiential learning capabilities. 

The models developed demonstrated that the leak of hydrocarbon from the reservoir to 

mudline would have significantly increased if the well were not ‘killed’ by the seventh (7th) 

week. The overall system reliability had reduced considerably even in the quasi-static BN 

model, necessitating the incorporation of a sensor to capture the accident evolution in real-

time. The accuracy to predict the model response over time need to be enforced by a detailed 

sensitivity analysis as the smaller changes in the posterior to prior probability ratios only offer 

a superficial insight into the desired trend, and this would be the focus of the succeeding 

Chapter.  

7.4 Summary  

This Chapter presented a dynamic method for the safety analysis of a non-sour oil and gas 

well during decommissioning and abandonment operation. The developed accident model 

relied upon Hierarchical Bayesian Analysis to obtain and process failure data to address the 

uncertainty associated with source-to-source variability. Due to the challenges of unknown 

reservoir condition at the point of production cessation, the model incorporated advanced 

logics such as noisy-OR, leaky noisy-OR, and imprecise leaky noisy-OR to capture the 

variables of uncertainty in its entirety. The developed model data was trained within MATLAB 

and fed into Bayesian networks to conduct probabilistic failure assessment and resulted in a 

considerably realistic safety analysis. Of particular interest was the capability of the imprecise 
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leaky noisy-OR logic to present the failure probabilities in intervals with upper and lower 

bounds. The benefit of this intervals is numerous but the notable one being in its ability to offer 

the decision-makers a robust option to guide against under- or overestimation of the 

occurrence probabilities.  
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Chapter 8: Sensitivity Analysis Development 

8.1 Outline 

The permanent plugging and abandonment failure analysis case study and results were 

presented in the preceding Chapter where the robust safety methodology provided an insight 

into the integrity of the wellbore to permit the leak of hydrocarbon to the mudline. In this 

Chapter, the selected performance data identified are tested using sensitivity analysis to 

demonstrate how small changes in these data contribute to the occurrence of the single 

system failure. To establish a failure threshold in order to predict when monitoring is due, the 

sensitivity analysis results will be compared against the upper-bound failure probability of the 

top event obtained through the imprecise leaky noisy-OR formalism. The comparison aims to 

provide a baseline for forecasting well abandonment monitoring regime and to aid decision 

making to ensure decommissioning safety. Following the brief outline of Section 8.1, the case 

for safety critical analysis is presented in Section 8.2 and Section 8.3 discusses the model 

formulation for the selected test runs followed by presentation of results obtained from tested 

scenarios in Section 8.4, while the concluding remark and Chapter summary are provided in 

Sections 8.5 and 8.6, respectively.  

8.2 Safety critical analysis description 

The critical nature of decommissioning and abandonment operations cannot be 

overemphasised and have been established to be a family of rare accident events consisting 

of complex and nonsequential failure modes. Therefore, it is important to perform a safety 

critical analysis to assess the degree of responsiveness of the top event to small alterations 

in the occurrence probabilities of the selected performance data, in order to support the 

decision to monitor or reassess the operation shortly before accidents occur. One fundamental 

argument to justify the critical nature of sensitivity analysis is that risk, in itself, is an unknown 

unknown, and even the known hazards have some level of uncertainty associated with them. 

The variables of uncertainty are numerous and often intertwined with the potential to introduce 
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significant error into the tested and validated predictions (Biao and Dawid, 2015). Sensitivity 

analysis is defined as the comprehensive study of investigating how the uncertainty in a 

system output can be allocated, qualitatively, or quantitatively, to different sources of 

uncertainty in the system inputs and how these uncertainties can influence the overall model 

behaviour (Saltelli et al., 2008; Saltelli, 2002; Zitrou et al., 2013). Sensitivity analysis is 

especially suitable for examining, quantifying, qualifying, and reassessing the accident 

scenarios pattern in an abandonment operation due to the limited data and unknown reservoir 

conditions typically encountered when production has ceased. Sensitivity analysis offers an 

added advantage for decision makers to track model behaviour and alter the conclusions that 

may have been true about a model formulation, data sparsity, and or parameters assumptions 

to consolidate a robust probabilistic safety analysis result. 

In the field of uncertainty analysis where Bayesian networks are a commonplace, many 

researchers have developed and adopted different techniques to conduct sensitivity analysis 

and can be found in the following literature (Awotwe et al., 2016; Drummond et al., 2015). 

Zitrou et al. (2013) reviewed and summarised the popular sensitivity analysis metrics defined 

by their measure of importance, including a comprehensive account of the applications areas. 

The conclusion drawn from the study favoured the changing of key performance parameter 

inputs selected within considerable range and then assessing the strength of influence of 

these variations on the model outputs of interest. While varying these selected performance 

parameters, the other parameters are kept constant with the intent to rank the input model 

contributions in their decreasing order of significance, consequently, aiding decision making 

within uncertain scenarios (Oakley, 2009). It is worth mentioning that this sensitivity analysis 

approach is relatively straightforward, both in implementation and interpretation, for small- to 

medium-sized model formulation but computation becomes challenging in complex 

engineering systems where parameters are finitely large. 

As decommissioning and abandonment operations do not generate considerable returns on 

investment, the cost of implementing sensitivity analysis needs to be minimal. To that end, the 
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use of the common Monte Carlo simulation algorithm cannot be justified due to the sizable 

numbers of model runs required. Therefore, the three common methods of sensitivity analysis 

with differing implementation attributes are explored. These methods are the Probabilistic 

Sensitivity Analysis (PSA), Marginalisation Sensitivity Analysis (MSA), and the Scenarios 

Sensitivity Analysis (SSA) as contained in the works of Zitrou et al. (2013), Saltelli et al. (2004), 

and Parmigiani (2002). The PSA is the process of defining a probability distribution for sparse 

data to quantify the uncertainty in the input parameters using the likelihood function with 

considerable scale as the distribution basis around the input parameters (Briggs et al., 2006; 

Briggs et al., 2003; Greenland, 2001). The PSA method thrive on the concept of Hierarchical 

Bayesian Analysis (HBA) discussed in Chapter 5 where the inputs to be tested within the 

Bayesian model are the posterior distributions rather than the uninformative priors. The 

obtained probability distributions for the input parameters are then processed using Monte 

Carlo simulation. Since this approach had been previously implemented to improve the 

confidence level associated with the sparse data in terms of mean distribution of failure data, 

it does not serve the comprehensive purpose intended herein.  

The Marginalisation Sensitivity Analysis (MSA) is the process of selecting one or more of the 

input parameters within an acceptable value limit and varied up to the set limits and its 

exceedance. MSA allows for the introduction of marginal deviation – where the datasets can 

be either increased, decreased, or ignored – in the input parameters away from the set limit, 

making it a flexible sensitivity analysis tool for the study at hand. Therefore, MSA enables the 

investigation of modeller-defined causal parameter state to predict failure outcomes of 

interest. The MSA is characterised by, a local sensitivity analysis, due to its capability to 

selectively examine individual input parameter to learn about the target output. 

The scenarios sensitivity analysis (SSA), on the other hand, is the process used to learn the 

impacts of changing the true value of selected parameters on the results of a model output. 

Here, the safety analyst selects values and defines relevant scenarios to understand the 

expected trend of the accident model response. While SSA can be applied to complex but 
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linear engineering systems, it is especially suited to accident models lacking sufficient data 

size, making it appropriate for the tasks this thesis seeks to address. In addition, the SSA 

approach is relatively straightforward and cost-effective but does not account for nonlinearity 

that exist among input parameters, yields unbiased results due to the arbitrary selection of 

performance parameters, and does not provide information about the probability that the 

selected parameters would be observed. To control the arbitrary selection of input parameter 

values, the approach adopted in this study utilises two measures to limit the randomisation 

effect on the model output. First, the model with the least failure probability values obtained 

from the N-OR model is selected to test SSA’s implementation. Furthermore, the upper-bound 

value obtained in the imprecise leaky noisy-OR logic i.e., 0.7226 is set as the threshold for 

which the plugged and abandoned well would be re-entered to conduct inspection and 

remediation. 

Following the selection of the N-OR model Bayesian network, the next step in the SSA 

implementation approach is to first extend the time-slice to cover 100% utilization of the HBA-

processed failure probability from time-slice 𝑡0 to 𝑡𝑖, where 𝑖 = 1,2,3,4 with an increment level 

of 25%. The justification for the time-variance analysis has been discussed in previous 

Chapter, however, its purpose is to aid in the robust prediction and diagnosis assessment of 

the oil and gas well decommissioning and abandonment operation. The underlying selection 

criteria for N-OR against other developed model is due to its occurrence probability 

underestimation which may help decision makers learn the parameters evolution trend and 

draw plausible conclusions. The input parameters of the N-OR Bayesian network after time-

slice 𝑡4 are then examined locally, where parameters are varied independently, and globally, 

where two or more parameters are assumed to be interacting in a nonlinear manner. 



159 
 

8.3 Sensitivity base case model formulation 

8.3.1 Model selection 

The application of sensitivity analysis to examine finitely complex systems can be 

computationally intensive, and the system needs to be considered locally to yield better cost-

benefit to decision makers. For this reason, the same permanently abandoned and 

decommissioned well discussed in this thesis would be investigated. This is, especially due to 

the extensive and nonsequential nature of shut-in and temporarily abandoned wells. As 

permanently abandoned wells are characterised by the terminal state of the wellbore after 

subjected to drilling, completion, temporary abandonment, and production phases through its 

life cycle, the producing horizons are plugged, and the casing strings are severed below the 

mudline.  

The important factors to be considered apart from the degraded well status are the reservoir 

attributes, well attributes, and host platform attributes.  

Reservoir attributes. The reservoir attribute is defined by the reservoir energy, the type 

of fluid, and the severity of the fluid. The reservoir energy has a significant impact on the size 

of the leak as this is driven by whether the reservoir is flowing or nonflowing. Where artificial 

lift is not required to propagate a hydrocarbon-containing fluid from reservoir to the surface, 

the reservoir energy is said to be sufficient for the well to flow. The fluid can be in a liquid- or 

gas-phase, and this determines the nature of blowout and the consequence level associated 

with such leak or seepage. Furthermore, fluid severity is a function of how sour it is, and a 

sour fluid is prone to increased corrosion with a higher likelihood to fail over time. Therefore, 

a sour fluid-containing well can pose significant safety risks compared to a non-sour well. 

Well attributes. The attributes of both subsea or topside oil and gas wells are affected 

by the well equipment age and the type of equipment. Due to in-service conditions such as 

wear, abrasion, tear, corrosion, and cyclic loading on the well, the equipment would deteriorate 

over time. Ageing of offshore assets and life extension modelling are beyond the scope of this 
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thesis. However, the effect of equipment age on the overall reliability of the well plays an 

important role in the design-for-decommissioning safety analysis. In addition, each equipment 

connected to the well such as the Xmas-Tree, packers, casing, tubing, centralizers, etc. has 

unique mean time to failure associated with it and will contribute to the modelling uncertainty. 

Host platform attributes. In regard to the level of exposure of personnel, the 

environment and the assets, the host platform wherewith decommissioning, and 

abandonment is carried out consists of the environmental zone, the size of the platform, and 

the personnel density. The larger the size of the platform, the larger the exposure area and 

the location of the field would determine the consequence of the leak. An unmanned platform 

results to zero exposure of personnel to the effect in comparison to a manned platform. 

Based on these attributes, the application of N-OR model which incorporates the effect of 

uncaptured hazards in its formulation offers a better advantage to examine how sensitive the 

output model is to the input parameters. The application of the N-OR logic gate in the 

conditional probability table of the Bayesian network model is extended into time-dependence 

analysis to aid predictive and diagnosis of the dynamic safety analysis to conduct inspection, 

monitoring and remediation campaigns. The scenarios sensitivity analysis (SSA) is 

implemented in this study, and different abandonment operational series of developments are 

demonstrated. In all the tested series of developments, the prior failure probabilities obtained 

through the Hierarchical Bayesian Analysis (HBA) is considered as base case for the 

sensitivity analysis. The sensitivity analysis model is set up by systematically varying the base 

case data following the time-variant analysis to represent real-time dynamic accident evolution 

of the leak through mudline. The design intents of performing the sensitivity analysis included 

the following: 

▪ To examine the strength of the dynamic safety model built around advanced logic N-

OR formalism to process sparse failure data and perform predictions that differ from 

base case data. 
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▪ To assess the contribution of the input parameters uncertainty on the N-OR model 

output results and provide threshold for when the first leak would be spotted to aid 

reliable predictions of inspection interval. 

▪ To investigate failure data states by using stochastic input data in the analysis to 

simulate the dynamic safety model. 

8.3.2 SSA tools and technique 

The scenarios sensitivity analysis is intended to provide sets of failure data as the model 

output of interest. However, the degree of contribution of each input parameter will be 

estimated using a metric that takes into account the effect of time variation in the analysis. 

The importance measures metric describes the amount that any single barrier plugs, or a 

combination of such plugs contributes to the failure probability of the well in its entirety. The 

metric applicable to such a dynamic safety model is the Fussell-Vesely’s formula (Chybowski 

et al., 2014; Verma et al., 2010; Van der Borst and Schoonakker, 2001) presented in Equation 

(20) of Chapter 4 and is presented in its refined form to address the variables in this analysis 

specifically.  

𝐼𝑀𝐵𝑗

𝐹𝑉 =
𝜕𝑝(𝐵𝑖)

𝑇𝐸

𝜕𝑝(𝐵𝑗)

𝑝(𝐵𝑗)

𝑝(𝐵𝑗)
𝑇𝐸 =

𝑝(𝐵𝑗)
𝑇𝐸 − 𝑝(𝐵𝑗=0)

𝑇𝐸

𝑝(𝐵𝑗)
𝑇𝐸  

As it can be seen from the Fussell-Vesely equation above, the 𝐼𝑀𝐵𝑗

𝐹𝑉 depends on the top event 

failure probability as a function of the interacting minimal cut sets. While a portion of the 

complete permanent abandonment model has been reported in Figure 8-1, the contribution of 

each accident contributory factor is presented in Table 8-1 and the most probable cause 

leading to the occurrence of the top event using the Fussell-Vesely importance measure 

metric, 𝐼𝑀𝐵𝑗

𝐹𝑉. The 𝐼𝑀𝐵𝑗

𝐹𝑉 represents the most probable cause of the hydrocarbon leak to 

mudline and a higher value denotes that the event would more than likely cause the single 

point failure. The results obtained for the noisy-OR model is similar to those of the FTA 

similitude mapping, leaky noisy-OR, and the imprecise leaky noisy-OR models. As it can be 
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noted from Table 8-1, the leak pathway compromise is expected to be exacerbated when any 

or a combination of implemented barrier is lost. The loss of such barrier can be caused by 

many different factors. While these factors have been attributed to human errors emanating 

from noncompliance to the relevant guidelines, the subject of human reliability has not been 

studied in this research work.  

Table 8-1 Safety critical failures for abandoned well system 

Identifier Failure Events 𝐼𝑀𝐵𝑗

𝐹𝑉 

B6.1.2 Loss of barrier 0.6593 

B1.1 Pressure build-up 0.5842 

B5.2 

B6.2 

B7.2 

Annulus barrier degradation 

0.5268 

0.5191 

0.5086 

B1.2 Injection into nearby walls 0.5071 

B3.1 Prolong exposure to migrating fluid 0.4083 

B7.1.1 Poor mud removal 0.3035 

B3.2.2 Geological forces 0.2559 

B2 Leak through lower/primary plug 0.2508 

B6.1.1 Inadequate barrier density 0.2383 

B3.2.1 Formation fluids load effect 0.1972 

B5.1 De-bonding of plug & casing 0.1632 

B7.1.2 Barrier shrinkage 0.1045 

B4 Leak through lower/primary plug 0.0844 

 

The leak of hydrocarbon to mudline is significantly affected by pressure buildup which is 

triggered by the injection into nearby well causing adverse pressure differentials to buildup in 

the hydrocarbon-containing plugged well. Although, this pressure surge is considered to be 

insufficient to lead to a blowout but is enough to cause a leak or seepage with huge 

remediation cost as noted in the Elgin platform failure. The failure will then upset the isolation 
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plug which could alone lead to series of cascade of failures or directly initiates the steel cap 

compromise at the mudline. The failures leading to the leak through casing assembly (B5), the 

leak through the conductor casing (B6), and the leak through casing hangar (B7) caused by the 

degradation of annulus barrier was also identified to be a safety critical subsystem. The 

degradation of annulus barrier is supported by the de-bonding between the casing and the 

barrier plug including the contamination of the barrier plug to compromise the casing 

hangar/assembly, and where such barrier plug has insufficient length the integrity of the 

conductor casing is undermined. Failure caused by the injection into nearby wells, prolong 

exposure of unset barrier plugs to migrating fluids, and poor mud removal during the plugging 

and abandonment operations were also identified to be safety critical factors that may escalate 

the potential occurrence of the overall system failure.  

A closer look at Table 8-1 revealed that loss of barrier is the most critical failure capable of 

significantly compromising the plugged and abandoned well integrity, evident by its 65.93% 

contribution. To a lesser extent is the difference in pressure between the reservoir and the 

pore pressure of the depressurized hydrocarbon causing the top event occurrence and by a 

visible margin of 58.42%. While the annulus barrier degradation is the third highest accident 

contributory factor in the investigated model, it is worthy of mention that B5.2 contributed to the 

overall system failure by 52.68%, B6.2 contributed 51.91%, and B7.2 by 50.86%. This 

observation is attributed to their different minimal cut sets, and as a common cause failure 

(CCF) in way of the overall system failure.  

8.3.3 Dynamic safety critical analysis 

The first step in the sensitivity analysis approach is the computation of the dynamic Bayesian 

network model to obtain updated failure probabilities for the performance of selected time-

dependent parameters, which will then feed into the sensitivity model as input parameters 

varied over 𝑡𝑖. The dynamic model framework also permits the transitive effect of marginalising 

a node of interest within any time-slice such that any alteration of such node, in the event of 
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new evidence, will update the failure probability all nodes interacting with the marginalised 

node. For the N-OR model under study, a portion of the 10-year estimate over four time-slices, 

indicating monitoring interval of two-and-half year, is given in Figure 8-1 below. 

 

Figure 8-1 Estimated dynamic model for abandonment monitoring over a 10-year period 

 

The results presented in Figure 8-1 above, indicates an increasing probability of leak of 

hydrocarbon through the mudline. As described earlier, remediation campaign would have to 

be initiated if and when the unreliability of the plugged and abandoned wellbore coincides with 

the set threshold of 0.7226 which represents the upper-bound failure probability using the 

imprecise leaky noisy-OR formalism. Due to the complexity of the overall model, the complete 

analysis cannot be presented herein, however, the causal events unreliability values are 

presented in Table 8-2 below.  

The results from the dynamic Bayesian network model analysis investigated by propagating 

the time-slices over a range of 𝑡0 = 1 to 𝑡9 = 10 represent the ten (10) years interval for which 

the abandoned well is expected to have been compromised, as noted by Boothroyd et al 

(2016). If at any time-slice, the resulting failure probability of the top event equals or exceeds 

the set threshold then the risk profile would have indicated such limit at which monitoring, 

inspection, and consequent remediation campaign will be initiated. Although, only the first four 

time-slices of the accident contributory factors have been shown in Table 8-2, the progressive 
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pattern in the risk profile of the top event over the 10-year period revealed that the plugged 

and abandoned well unreliability level would have increased from 2.53E-1 during the first year 

of abandonment to 3.80E-1 at the 10th year when the three – that is, Pressure build-up, 

annulus barrier degradation, and loss of barrier - mechanical barriers in place have failed. It 

is worth mentioning that the N-OR model have considered uncaptured hazards by way of 

dependency modelling which is a contributory factor in the accident scenarios analysis. This 

time-variant analysis relies on the failure of three performance parameters to yield top event 

failure probabilities below the threshold. However, where there are more interacting events, 

the top event failure probability will increase considerably due to the modelled dependencies. 

The failure probability of the top event propagated through the true state of events B1.1, B6.1.2, 

and B5.2 over the time-slices indicated a progressive increment, making the model output 

linearly dependent on the confidence level incorporated in the accident scenarios analysis. At 

the 10th time-slice, the contribution and combinational effects of these causal events will be 

further investigated in the sensitivity scenarios analysis in the next Section to establish how 

the top event responds to such variations due to limited confidence and knowledge of the 

overall interaction in the physical model. 
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Table 8-2 Summary of barrier failures over time 

Events Identifier Event Description 
Time-variant N-OR model failure 

𝑡 + 𝑡0 𝑡 + 𝑡1 𝑡 + 𝑡2 𝑡 + 𝑡3 

B1.1 Pressure differentials 8.50E-2 8.57E-2 8.72E-2 8.82E-2 

B1.2 Injection into nearby walls 1.05E-1 1.06E-1 1.08E-1 1.22E-1 

B2 Leak through lower/primary plug 1.90E-1 1.94E-1 2.01E-1 2.09E-1 

B3.1 Prolong exposure to migrating fluid 1.47E-1 1.49E-1 1.54E-1 1.61E-1 

B3.2.1 Formation fluids load effect 5.00E-2 5.03E-2 5.08E-2 5.14E-2 

B3.2.2 Geological forces 1.86E-1 1.89E-1 2.09E-1 2.16E-1 

B4 Leak through lower/primary plug 2.75E-1 2.83E-1 2.99E-1 3.31E-1 

B5.1 De-bonding of plug & casing 2.95E-1 3.04E-1 3.22E-1 3.28E-1 

B5.2, B6.2, B7.2 Annulus barrier degradation 1.20E-1 1.21E-1 1.24E-1 1.32E-1 

B6.1.1 Inadequate barrier density 5.90E-2 5.98E-2 6.05E-2 6.11E-2 

B6.1.2 Loss of barrier 8.50E-2 8.57E-2 8.72E-2 8.82E-2 

B7.1.1 Poor mud removal 1.75E-1 1.82E-1 1.97E-1 2.03E-1 

B7.1.2 Barrier shrinkage 2.25E-1 2.26E-1 2.36E-1 2.41E-1 

 

8.4 Scenario analysis results 

The sensitivity scenarios analysis is motivated by controlling the uncertainty through the 

variation of the base case failure probabilities of selected data to examine the overall failure 

response of the permanently abandoned well. The failure probabilities obtained through the 

Hierarchical Bayesian Analysis in its posterior informative forms have been used to propagate 

the accident model for a period of 10-year, after which, the abandoned well is expected to 

have deteriorated (Boothroyd et al, 2016). Figure 8-2 illustrates the graphical representation 

of the sensitivity analysis depicting the different set of inputs and the output for the prediction 

of the N-OR model. 
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Figure 8-2 Sensitivity assessment setup for input and output responses 

8.4.1 Assessment of loss of barrier failure 

The failure probability of the loss of barrier failure event is assessed by varying the base case 

(bc) value over 2% interval for the first three (3) runs and then increased to 5% and 10% for 

the last two (2) consecutive runs to examine the risk profile of the top event single failure. The 

loss of barrier failure value ranges used to learn the dynamic safety model are presented in 

Table 8-3. A total of 11 test runs are performed to study the developed N-OR model outputs. 

The test runs have been represented as 𝑏𝑐 ± 𝑎%, where 𝑎 starts at 2% from 𝑏𝑐1 to 𝑏𝑐3, and 

then increased by 5% through test runs 𝑏𝑐4 and 10% for 𝑏𝑐5 over a relative difference of 21% 

positive and negative extremes from the base case.  
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Table 8-3 Input parameter failure values for the loss of barrier plug (𝑩𝟔.𝟏.𝟐 = 𝟎. 𝟎𝟖𝟓) 

Cases Runs Loss of barrier plug [%] 

𝑏𝑐1− 𝑏𝑐 − 2% 8.330 

𝑏𝑐2− 𝑏𝑐 − 4% 8.160 

𝑏𝑐3− 𝑏𝑐 − 6% 7.990 

𝑏𝑐4− 𝑏𝑐 − 11% 7.565 

𝑏𝑐5− 𝑏𝑐 − 21% 6.715 

𝑏𝑐 𝑏𝑐 ± 0% 8.500 

𝑏𝑐1+ 𝑏𝑐 + 2% 8.670 

𝑏𝑐2+ 𝑏𝑐 + 4% 8.840 

𝑏𝑐3+ 𝑏𝑐 + 6% 9.010 

𝑏𝑐4+ 𝑏𝑐 + 11% 9.435 

𝑏𝑐5+ 𝑏𝑐 + 21% 10.285 

 

Figure 8-3 shows the test runs results for the loss of barrier plug case study. The error margin 

for test run 𝑏𝑐1− is found to be 0.21% away from the base case value and continue to decrease 

over time as the time-step increases. This observation is the first step in the validation of the 

N-OR model and its response to the slightest shift in the failure probability of the loss of barrier 

input parameter to proportionately adjust the leak of hydrocarbon to mudline output confirms 

such capability. It is worthy of mention that the prior failure probability of the loss of barrier is 

the same as the pressure buildup, making the local analysis of the pressure buildup influence 

on the output redundant. Furthermore, the consistency in the model output at difference time-

step demonstrates the robustness of the dynamic Bayesian network results for each iteration 

due to the narrow spread of the outputs over the mean and variance of the distribution. 

Therefore, reducing the loss of barrier plug failure by up to 2% of the base case yields 

considerable model response. 

In addition, 𝑏𝑐2− and 𝑏𝑐3− results show that the leak of hydrocarbon to mudline output is 

steadily adjusted further away from the base case value and the error margins show a gradual 
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increase due to the increase in the loss of barrier input parameter values from the base case 

value. For 𝑏𝑐3−, the model output yields a reasonable result as the loss of barrier input value 

decreases further leading to an increase in the error margin. In support of this observation, 

Figure 8-3 further reveals that the deviation of the outputs of 𝑏𝑐3− begins to become apparent 

on the N-OR model with a variance of 6.3% relative to the base case value. The trend is 

propagated in 𝑏𝑐4− test run and further extended to 𝑏𝑐5− wherein the error margins become 

notably wide relative to the preceding test runs. Specifically, in test run 𝑏𝑐5− the mean output 

of the dynamic model response is 8.7% compared to the 4.6% output from 𝑏𝑐4− model run 

results. Based on these results, inference can be made that the N-OR dynamic model returns 

an unreliable output in these two (2) excessively fluctuated cases.  

For 𝑏𝑐1+ and 𝑏𝑐2+ test runs, the scenarios sensitivity analysis yields realistic outputs, indicating 

that the dynamic N-OR model is responsive to input shifts up to 4% for the loss of barrier 

failure. Furthermore, the results obtained for test run 𝑏𝑐3+ indicates the starting point for a 

reasonable increase in the outputs corresponding to increased input parameter. Moreover, 

the error margins for test runs 𝑏𝑐4+ and 𝑏𝑐5+ are expectedly high for the predicted timeline of 

the abandonment due to the sudden spike in their input parameters which indicate an error 

margin of +4.6% and +8.7%, respectively from the base case value. However, the mean 

difference for both test runs remain unchanged, thereby yielding similar outputs.  
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Figure 8-3 Tornado plot for loss of barrier sensitivity case 

In the Figure 8-4 below, the datasets aim at supporting the safety critical performance of input 

parameters due to the shift from the base case value to ranges that may push the output into 

the unstable model response. While the datasets at varying test runs continue to respond 

proportionately well over the 10-year period, their unreliability increases progressively for 

increased input and vice versa for reduced input away from the base case. It is also worthy of 

mention that regardless of these close-to-identical trends in risk profile, the maximum failure 

probabilities remain below the set threshold, making it impossible for the permanent well 

abandonment to leak by the 10th year. Summarily, the results of the sensitivity analysis for the 

leak of hydrocarbon to mudline demonstrate increased compromise of the plugged and 

abandonment as the selected time-dependent input parameters deteriorate over time. 

Therefore, the risk profile validates the current state of knowledge that the lower the reliability 

of the well components, the lower is the abandonment and plugging integrity of the oil or gas 

well. The succeeding Section presents the results for a combinatorial sensitivity analysis 

where two variables strength of influence on the leak of hydrocarbon to mudline is explored. 
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Figure 8-4 Scenario sensitivity analysis response for loss of barrier influence 

8.4.2 Assessment of pressure build-up and annulus barrier degradation 

In this sensitivity scenario, these datasets are termed “base case (bc)” data and they are 

assessed with a 5% increment in both positive and negative iterations until the updated 

probabilities of the causals reach the upper bound threshold of 0.7226 or the predicted results 

yield a complete failure of the top event i.e., occurrence probability of 100%. Therefore, the 

sensitivity scenarios run is expressed as 𝑏𝑐 ± 𝑎%, where 𝑎 = 5%, 10%, 15% and so on, as can 

be seen in Table 8-4. It is worth mentioning at this point that the 5% increment was not arbitrary 

as the sensitivity analysis began with 1% and 2% increments. However, it was observed that 

the succeeding failure probability predictions showed no marked difference from the preceding 

results, necessitating the need to increase the accident model variation up to 5%. The 1% 

increase in a stepwise manner did not yield any notable change as shown in Table 8-5, 

because the base case values are well below the reference value defined by the FT analysis 

where each accident contributory factor is assumed to be statistically independent. The 

timeline defined for this analysis is based on the expected time for which the well 

abandonment integrity would have been showing signs of deterioration, at which point, the 

initial leak or seepage is spotted. The first year represents the decommissioning and 
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abandonment year where failure data are collected, and the rest of the years illustrate the 

prediction of the permanent abandonment lifespan. 

Table 8-4 Selected performance parameter variations from base case (B1.1=0.085; B5.2=0.12)  

Cases Runs 

Input parameter failure values [%] 

𝐵1.1 𝐵5.2 

𝑏𝑐1  𝑏𝑐 ± 5% [8.075, 8.925] [11.400, 12.600] 

𝑏𝑐2 𝑏𝑐 ± 10% [7.650, 9.350] [10.800, 13.200] 

𝑏𝑐3 𝑏𝑐 ± 15% [7.225, 9.775] [10.200, 13.800] 

𝑏𝑐4 𝑏𝑐 ± 20% [6.800, 10.200] [9.600, 14.400] 

𝑏𝑐5 𝑏𝑐 ± 25% [6.375, 10.625] [9.000, 15.000] 

𝑏𝑐6 𝑏𝑐 ± 30% [5.950, 11.050] [8.400, 15.600] 

𝑏𝑐7 𝑏𝑐 ± 35% [5.525, 11.475] [7.800, 16.200] 

𝑏𝑐8 𝑏𝑐 ± 40% [5.100, 11.900] [7.200, 16.800] 

𝑏𝑐9 𝑏𝑐 ± 45% [4.675, 12.325] [6.600, 17.400] 

𝑏𝑐10 𝑏𝑐 ± 50% [4.250, 12.750] [6.000, 18.000] 

 

The percentage difference in the increment was extended to 50% in all investigated runs to 

provide sufficient outputs from which adequate accident response decisions can be made and 

also, to account for the lack of comparable data for the same purpose. In total, ten (10) cases 

were set up and fed into the dynamic Bayesian model over a 10-year iteration forecast. The 

variations of the input parameters provide some level of perturbation by the percentage 

increase or reduction of each investigated data point and the output is presented in the tornado 

diagram of Figure 8-5 below. For each iteration, the sensitivity model is instantiated within the 

dynamic Bayesian network model taking into consideration the impact of computation time to 

ensure the analysis continues to appeal to the decommissioning and abandonment 

community. 
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Figure 8-5 Tornado plot for reduced sensitivity cases 

As it can be seen from Figure 8-5, the error margins fade off in the case of 𝑏𝑐 − 20% as the 

percentage difference increases, that is, from 𝑏𝑐1− to 𝑏𝑐10−. It is worth mentioning that the 

values in the bc-20% plot are negative whereas those on the bc+20% are positive, indicating 

that the error margins become insignificant in the latter plot from 𝑏𝑐10− to 𝑏𝑐1−. These error 

margins are relative to the top event failure probability base case of 25.36%. Based on these 

observations, it can be inferred that the dynamic Bayesian network model is flexible and robust 

without trading off the slightest alteration in the input values and their corresponding output 

response. Therefore, the results from this sensitivity analysis further supports the argument 

that an adequately plugged well barriers would ensure the longevity and integrity of the well 

such that the well may not require re-entry for its intended permanence. 

The results from the dynamic Bayesian network analysis for each case examined are obtained 

and the failure predictions from the upper-bound ILN-OR model of Section 7.2.6.1 is used as 

the safety threshold for the scenarios sensitivity responses, which when attained the accident 

model is said to have been extremely unreliable and inspection as well as site remediation 

plans must be executed. The tested cases have been divided into two categories from 𝑏𝑐1− to 
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𝑏𝑐10− and 𝑏𝑐1+ to 𝑏𝑐10+ for ease of presentation. The preliminary top event sensitivity results 

where the runs are increased by 1% up to 4% only in the positive propagation are as presented 

in Table 8-5. 

Table 8-5 Top event failure trend for base case variations from 1-4% 

Years 𝑏𝑐 𝑏𝑐 + 1% 𝑏𝑐 + 2% 𝑏𝑐 + 3% 𝑏𝑐 + 4% 

0-1 0.25359 0.25359 0.25359 0.25359 0.25359 

1-2 0.25360 0.25360 0.25360 0.25360 0.25360 

2-3 0.25361 0.25361 0.25361 0.25361 0.25361 

3-4 0.25363 0.25363 0.25363 0.25363 0.25363 

4-5 0.25368 0.25368 0.25368 0.25368 0.25368 

 

On the other hand, Table 8-5 presents the results for the pressure build-up and annulus barrier 

degradation influence on the top event for the N-OR model. For the tested cases with 𝑏𝑐1− to 

𝑏𝑐10−, it was noted that the obtained model response deviated progressively away from the 

base case failure probability as the percentage difference increases. More specifically, the 

failure probability decreased from 0.2536 to 0.1268, indicating an increased reliability of the 

wellbore. For 𝑏𝑐1− to 𝑏𝑐5−, the results obtained are well below the base case value which 

further demonstrates that a decrease in the top event failure value by 5% relative to their base 

case values slightly influence the N-OR model output. 
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Figure 8-6 Sensitivity scenarios analysis for increased reliability tested cases 

 

In addition, the leak to mudline values in the 𝑏𝑐6− to 𝑏𝑐10− was varied at a steady rate and 

away from its base case value because of the finite adjustments made to the pressure buildup 

and annulus barrier degradation values. For 𝑏𝑐6− at the 10th year (Figure 8-6), 1-0.116=0.884 

(88.4%) and for bc10- at the 10th year, 1-0.056 = 0.944 (94.4%). In this case, the reliability of 

the well plugging and abandonment continues to rise gradually at 88.4% and increases up to 

94.4% due to the larger parameter ranges incorporated in the investigated model which 

offered another insight into the capability of the N-OR model to yield outputs that continues to 

diverge away from each successive failure value optimised and, from the dataset median 

value. This progressive decrease in failure occurrence necessitated further sensitivity analysis 

into the positive range between 𝑏𝑐1+ to 𝑏𝑐10+ to account for all 21 cases and consequently, 

develop a systematic trend from which safety critical decisions are based.  



176 
 

For that reason, the same procedure is followed for increasing both the pressure buildup and 

annulus barrier degradation failure values from the base case for test runs 𝑏𝑐1+ to 𝑏𝑐10+ as 

shown in Table 8-6. It is worth mentioning that 21 cases are quite large to establish the risk 

profile based on the scenarios sensitivity analysis for the overall system failure, and only the 

positive portion of it has been presented herein and the negative runs can be found in 

Appendix F. However, no analysis is considered superfluous due to the lack of historic or 

literature data to compare the system performance, and a 10% increment up to 50% in both 

forward and backward direction provided sufficient information to establish the capabilities of 

the sensitivity analysis within the dynamic Bayesian network robust computation engine.  

Table 8-6 N-OR model sensitivity analysis output for a 10-yr run 

Years  𝑏𝑐  𝑏𝑐 + 10%  𝑏𝑐 + 20%  𝑏𝑐 + 30%  𝑏𝑐 + 40%  𝑏𝑐 + 50% 

0-1 0.2536 0.2611 0.2746 0.2851 0.2956 0.3062 

1-2 0.2544 0.2645 0.2768 0.2855 0.2957 0.3086 

2-3 0.2594 0.2689 0.2795 0.2900 0.2965 0.3092 

3-4 0.2659 0.2717 0.2807 0.2909 0.3023 0.3124 

4-5 0.2773 0.2845 0.2904 0.3048 0.3093 0.3158 

5-6 0.2867 0.2986 0.3072 0.3122 0.3168 0.3273 

6-7 0.2907 0.3039 0.3117 0.3222 0.3402 0.3507 

7-8 0.2981 0.3113 0.3191 0.3297 0.3476 0.3581 

8-9 0.3055 0.3187 0.3266 0.3371 0.3550 0.3655 

9-10 0.3130 0.3262 0.3340 0.3445 0.3624 0.3730 

10+ 0.3204 0.3336 0.3414 0.3519 0.3699 0.3804 
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Figure 8-7 Scenarios sensitivity analysis response for bc+a% 

As seen from Figure 8-7, gradual alteration of the pressure build-up and annulus barrier 

degradation values above the base case value have been investigated at 10% intervals until 

50% increment is reached over a 10-year abandonment period. While the tested cases all 

showed progressive increase, it was noted that these output increases were higher and 

steeper from the third year of abandonment in all cases and tend to be linear after the sixth 

year of permanent abandonment. Also, as can be seen in Figure 8-7, the maximum failure 

probability value for the worst-case scenario, bc+50%, had risen to 3.80E-1 by the tenth year 

period.  

From the foregoing, the trend between two- or multi-variable sensitivity analysis and a one-

variable scenario presented in the preceding Section, has been established to be in 

agreement. In all tested cases, the error margin is recorded to be the same across each 

positive and its corresponding negative run, and this value is found to be 9.4%. Where a 

physical reliability model becomes available for the evolution of both the pressure buildup and 

annulus barrier degradation events, a detailed prior failure probability based on real-time 

monitoring can be fed into the N-OR sensitivity model to predict the safety critical response of 
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the top event occurrence. This would enable systematic comparison between the real-time 

observation and the data obtained through source-to-source variability.  

8.5 Conclusion 

The scenarios sensitivity analysis was performed for two (2) case studies where (1) the loss 

of barrier accident contributory factor (𝐵6.1.2) and (2) the pressure buildup and annulus barrier 

degradation failures, were assessed through percentage incremental variations to examine 

the degree of responsiveness of the top event failure, characterised by the leak of hydrocarbon 

to mudline. Both models were built on the previously developed N-OR model which provided 

the lower-bound top event occurrence probability against a set threshold of 0.7226 obtained 

from the upper-bound imprecise leaky noisy-OR model. The importance of the upper and 

lower limit is to guide the analysis in a controlled manner to establish a point where the 

sensitivity analysis would be halted, indicating a state of 100% compromised integrity of the 

plugged and abandoned well.  

In case study (1), the loss of barrier prior failure probability was altered by 2% increments for 

the first three (3) runs and by 5% increments for the last two (2) runs in a forward and backward 

analysis. Moreover, the case study (2) combined and examined the influences of both the 

pressure buildup and annulus barrier degradation failure probabilities on the leak of 

hydrocarbon to mudline when these input parameters are varied at a 5% interval and 50% 

increment over a 10-year period to establish a trend for the risk profile for the model output. 

In both cases, the procedure for the analysis was preserved to ensure consistency in the 

obtained risk profile and consequently, serve as a future reference for comparing real-time 

Accident Precursor Data when they become available. 

In general, the scenarios sensitivity analysis proved to be an invaluable tool for assessing the 

accident evolution capability of the noisy-OR model output. In both the one- and two-variable 

tested cases, the findings revealed that the N-OR model is adaptable to variations in the 

accident input parameters and the model output rely on its robustness to response 
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proportionately to the input parameters fluctuations. Due to the single-value error margin 

obtained across tested runs for case study (2), the N-OR model is capable of adjusting to 

captured and uncaptured hazards as long as the dependency quantification accounts for such 

uncertainty. Since the dynamic safety model response is well within the base case set 

threshold and flexible enough to accommodate arbitrary shifts in the input parameter values, 

the developed model is robust and adaptable. That is, when the knowledge of the overall risks 

is known, the model can be extended to a finitely allowable extent. 

8.6 Summary 

In this Chapter, the capability of the dynamic safety model to conduct sensitivity analysis 

based on systematic alteration of input performance parameters for the developed noisy-OR 

accident model was presented. A comprehensive scenarios sensitivity analysis was 

conducted for the developed N-OR uncertainty model of the dynamic safety strategy based 

on one-variable and two-variable case studies of the permanent well abandonment accident 

evolution. The description of the sensitivity analysis methods was presented and the 

motivation for selecting scenarios sensitivity analysis established – primarily because other 

sensitivity analysis methods are computationally-challenging which may have huge cost 

implications and otherwise, not provide any incentive for oil and gas producers. The selection 

of accident input parameters from the accident model was presented and examined over the 

leak of hydrocarbon to mudline failure. The model output results in all tested case studies 

were presented and were supported by a concluding remark. As cost is one of the many 

justifications for the oil and gas producers to discount selected decommissioning and 

abandonment operations or options, the next Chapter focuses on the dynamic economic 

model to estimate and predict the risk value of decommissioning. 
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Chapter 9: Dynamic economic risk analysis for decommissioning 

9.1 Outline 

This Chapter presents the last major contribution of this research work. The economic risk of 

offshore assets removal is conducted to assess the cost of remediating a futile 

decommissioning operation. The strength of the developed dynamic safety model is 

demonstrated in terms of cost to provide insight into the financial implication of getting it wrong. 

The rationale for the need to estimate decommissioning cost based on overall rough order of 

magnitude along with the assessment framework are described in Section 9.2. The model 

formulation and concept validation are presented in Section 9.3 and model analysis of the 

case study is demonstrated in Section 9.4. The obtained results are discussed and concluding 

remarks are presented in Section 9.5.  

9.2 Introduction 

The need to estimate the cost of decommissioning and abandonment of offshore assets is 

driven by economic sustainability. A sustainable strategy is required to assess associated 

risks of getting it wrong to support oil producers in the development of socio-economic 

mitigation campaign. The standard procedure for assessing the viability of any 

decommissioning and abandonment activity is centered around the balance between 

technological, social, health and safety, environmental, and economic considerations. As the 

Exploration and Production (E&P) industry rely on the experience – which is often based on 

analogous knowledge of similar activities – of personnel to address decommissioning 

concerns, the overall operational lifecycle falls under the unknown unknown assessments 

category. While the industry has continued to experience advancement in technological 

development with relatively low record level of social disputes, efforts need be focused on the 

safety (and health) of personnel, environment, and assets including the cost incurred in the 

event of a futile decommissioning and abandonment operation. Previous Chapters of this 

thesis have addressed the safety concerns and the cost aspect requires similar attention. 
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Although, technical and operational challenges have been extended to post-decommissioning 

operations such as transportation methods and disposal. In addition, environmental 

challenges have been broadened to cover efficient energy use and resource conservation 

rather than merely assessing the direct impacts of spills and the marine environment. 

However, the technical and environmental considerations are only indirectly addressed in this 

thesis and are not the primary focus. 

Furthermore, the first insight into the estimation of decommissioning cost is related to its Asset 

Retirement Obligation (ARO), indicating the assets mandatorily required to be dismantled now 

or in the future and is often contained in financial reports. This type of cost outlook is likely to 

be underestimated based on the current time value of money and require considerable 

adjustments with working interest, Net Present Value (NPV), and aggregation of cost. As 

AROs depend on uncertain market conditions and fluctuations in capital and operating costs, 

it cannot effectively capture realistic cost model.  

A potential solution to this challenging task is the development of a robust cost estimation 

method that takes input from the overall decommissioning cost to estimate economic risk of 

the operation based on the impact of each accident contributory factor. The Economic Risk 

Analysis (ERA) method is an integrated approach which incorporates dynamic safety model, 

estimated cost based on literature data and a Recommendation-to-Decommission (RtD) 

algorithm. The ERA is performed for the developed dynamic safety model using Steel Piled 

Jacket (SPJ) decommissioning case study. The choice of case study is primarily based on the 

availability of literature data for cost estimate as the Elgin platform’s plugging and 

abandonment breakdown cost is not publicly available to the best of the author’s knowledge.  

The model formulation for the dynamic ERA concept is presented in Figure 9-1. For the 

selected SPJ platform, the same failure probability estimate discussed in Chapter 5 will be 

adopted. The underlying reason for adopting the Hierarchical Bayesian Analysis (HBA) is that 

the objective statistical data commonly found in offshore database – OREDA – does not 

include failure information for decommissioning and abandonment components failure. 
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Decommissioned and abandoned components are often not reassessed once the planned 

monitoring regime is exceeded, making failure data challenging to obtain. In addition, it would 

be plausible to use the overall decommissioning cost for an already completed platform 

removal as cost baseline for estimating the economic risk of individual accident contributory 

factor at the subsystem or component level and then following preceding probability updating 

approach to obtain the posterior component-level economic risk profile. The estimation of the 

top event failure probability of the SPJ complete removal and the immediate hazards leading 

to its occurrence is based on the comprehensive review of the Brent Alpha decommissioning 

technical document.  

The component-level failure costs and their updated values obtained through the dynamic 

Bayesian model would be incorporated in the safety analysis and form the basis for which 

economic decisions are based for future decommissioning and abandonment operation and 

can be used as guidelines to compare related operations with dissimilar technical and 

environmental challenges in real-time. This Dynamic Integrated Safety Analysis (DISA) 

approach would permit the implementation of real-time risk assessment with the potential to 

incorporate variety of information into a performance metric that satisfies the safety and 

economic aspects of decommissioning and abandonment operations. The ultimate goal of a 

safe decommissioning activity is to be able to quantify and assess associated risks to drive 

down costs and uphold producers’ reputations. The costs associated with decommissioning 

is believed to be as high as those of installation and this could be more in the event of 

implementing expensive safety measures. Where there are no safety measures in place, the 

cost of remediating damages would suffice. 
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Figure 9-1 decommissioning safety workflow 

 

The main aim of the dynamic ERA is to develop a probability-based cost decision making 

model for providing the rationale for focusing available decommissioning and abandonment 

resources on safety critical accident contributory factors. The objectives are to demonstrate 

the credence of the concept and to verify its applicability to the SPJ decommissioning 

operational failure.  
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9.3 Dynamic ERA model formulation 

9.3.1 Overview (Step 0) 

The parameters of interest are related to the cost of decommissioning for a single oil and gas 

platform estimated in a specific decommissioning and abandonment campaign. As the 

operation is, in general, a known unknown rare event due to controllable and often 

uncontrollable operational circumstances, an empirical model would suffice provided it 

represents the characteristics of the oil and gas field to be decommissioned. The following 

assumptions have been considered in order to conduct the dynamic ERA analysis: 

• The dynamic ERA is performed for the only steel jacket platform in the Brent field with 

a service life of 44 years. 

• The case study removal operation proposes to leave the footings and drill cutting pile 

in situ, however, this undertaken evaluates the complete removal of the platform to 

provide insights into the worst-case scenario. 

• While the water depth around the field varied due to uneven seabed, a fixed depth of 

140 meters is taken for the analysis. 

• There are eight (8) legs and twenty-four (24) piles including approximately fifty (50) 

spans of horizontal and vertically diagonal members, making the severed conductors 

a total of 82 (Shell, 2017). 

• Brent Alpha platform 28 wells have been plugged and thus, nonproducing with several 

members severed up to material weight of 8,512 tons estimated to be recycled.  

• The cost recovered from re-use and recycling are not accounted for in this analysis.  

• The Brent Alpha Jacket (BAJ) weighs over 10,000 tons in air with a deadweight of 

28,719 tons. 

• The BAJ cutting programme is estimated to take approximately 17 days. For the sake 

of analysis, the trial is estimated for 24 days in this thesis. 



185 
 

• The economic risk of individual accident contributory factor is calculated based on the 

£60 million noted for Option 1 decommissioning assessment in the Brent Alpha 

Technical Document (Shell, 2017). As this value is a rough estimate, a quarter (£15 

million) is used in this analysis.  

• The cost of chartering the heavy lift vessel (HLV) for the Brent project is £251,000 for 

each man-year of employment and is included in the overall cost. 

• For the dynamic ERA consideration, removal technology is assumed to remain 

unchanged for the ten-year period from when decommissioning is conceived to when 

the asset is finally removed.  

The general overview of the proposed methodology for the development and validation of the 

dynamic economic risk assessment model is presented in Figure 9-2. The first step in the 

process involves the development of the accident scenario description for which the dynamic 

safety model will be applied. In the second step, Accident Precursor Data are introduced 

based on exert judgement and inputs from the 24 days observations for the cutting programme 

noted in the Brent Alpha technical document. In the third step, the cost model is formulated 

based on a multi-factor regression model. The fourth step converts the failure probabilities 

obtained through HBA process in Chapter 5 and its extension from step two (2) into expected 

value (cost) from the regression model in step (3). The fifth step presents a dynamic model 

based on simulated time step for the ten-year period monitoring of the asset post 

decommissioning and validation of the concept is achieved. During the sixth step, the 

recommended risk control measures for each accident contributory factor are provided. 
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Figure 9-2 Overview of proposed dynamic economic risk analysis 

9.3.2 Accident scenario description (Step 1) 

The safety analysis of decommissioning Steel Piled Jacket (SPJ) structures for complete 

removal operation is identified and analysed according to literature reviews (OGUK, 2020; 

Kaiser and Liu, 2014; Kierans et al., 2004; Bradbeer et al., 2009) and hazard identification is 

conducted on the operational sequence from decommissioning professionals based on their 

field experience. To determine the risk of decommissioning offshore jacket structures, all the 

potential accident scenarios must be captured, analysed and assessed in an integrated 

manner. Therefore, fault tree (FT) is developed to represent the accident causations of 

complete removal of SPJs from the description of operational sequence.  

9.3.2.1 Operational steps involved in SPJ decommissioning 

Phase 1. A route survey is first conducted to determine the locations to position and 

sever the jacket Sections including the transportation route. The survey also identifies 

uncharted things underwater such as shipwreck, oyster beds etc. 
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Phase 2. The topside is removed, and piles and conductors severed. The SPJ is then 

cut and removed in Sections that the dedicated heavy lift vessel (HLV) can sustain. The SPJ 

may be made buoyant or de-ballasted to reduce the bottom weight. A suitable severance 

method is selected based on the technical capabilities available and carried out underwater 

by divers or remotely operated vehicles. This is the Option 1 (external cutting) as discussed 

in the BAJ technical document. 

Phase 3. The HLV is then rigged to individual module previously severed, removes 

each SPJ module and loads it to the barge until the SPJ is completely removed. It is worth 

mentioning that these steps can vary depending on factors such as platform age, location and 

water depth, platform type and configuration, weight of the lifts and soil strength, among 

others. 

The main processes of the complete removal operation of a steel jacket structure from the 

fixed position offshore to a recycling yard onshore using lifting barges or HLVs is as shown in 

Figure 9-3. More information about the safety issues on the lifting barges and HLVs can be 

found in the works of Abdussamie et al. (2018) and Tan et al. (2018). It is worth mentioning 

that only the decommissioning hazards relating to the steel jacket structure is considered in 

this thesis.  

 

Figure 9-3 Main process of steel jacket decommissioning operation. 

The system failure during the steel jacket removal operation is analysed through hazard 

identification (HAZID) procedure described in Section 9.3.2.2. HAZID is conducted with 

industry experts from mid- to senior engineers and academic professionals with considerable 

decommissioning operational knowledge. The process involves subdividing the removal and 

lifting operation as shown in Table 9-1. In this thesis, emphasis is placed on the lifting safety 

issues associated with collision (or drifting), loss of stability (or buoyancy) and ascent (or 
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descent). These failures and their causes are used to construct the Bayesian networks used 

for the dynamic economic risk assessment. 

Table 9-1 Hazard identification analysis for steel piled jacket 

Hazards Taxonomy Deviation Potential Causes Potential Effects 

Station keeping Collision Loss of rig; Damage 
to barge and jacket 

Incorrect rigging; 
Environmental 
condition; Human 
error; Welding 
integrity of lifting aid; 
Soil erosion effect on 
lift; Incorrect load 
analysis. 

Uncontrollable 
heeling or trimming of 
Barge; wreckage 

Drifting Loss of station 
keeping 

Broken mooring line; 
Soil adhesion on 
initial lift-off force; 
Failure of flooded 
member(s); Soil 
erosion effect on lift; 
Uneven flooding 
effect. 

Loss of barge and 
jacket structure 
altogether; Snapping 
of mooring line could 
lead to injuries. 

Loss of stability Buoyancy CoG/CoB 
misalignment 

Calculation error; 
lifting node failure; 
Marine growth. 

Prevents barge from 
operating safely. Loss 
of barge. 

Sinking Ascent/Descent Loss of station 
keeping. 

Grouted or ungrouted 
conditions; tug 
impact; human error. 

Capsize of lifting 
barge, Injuries, or 
fatalities. 

Incorrect 
Standard 
operation 
procedure 

Noncompliance High safety risks Incorrect operation; 
Improper cutting 
procedure; Incorrect 
estimation of cutting 
time. 

Cascading of failures 
due to chain of 
events; Increase 
downtime. 

Miscellaneous Trapped 
flammable gases 

Fire/explosion Trapped gas due to 
subsea hot work; 
Trapped gas in drill 
cutting debris; Human 
error 

Severe damage to 
barge, jacket 
structure and the 
environment. Injury or 
fatalities. 

 

 

9.3.2.2 Model hazards identification 

Collision or drift. The collision or drift between the jacket and lifting barge can lead to 

a futile jacket decommissioning operation as it may result in fire and explosion. Typically, the 
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risk increases when either the lifting barge moves farther from the payload or, both the lifting 

barge and the payload collide (𝑥11). The lack of decommissioning historic data has 

necessitated the adoption of Hierarchical Bayesian Analysis integrated with Bayesian network, 

which is a proven risk analysis tool for estimating the failure probabilities of abnormal events 

under uncertainty as presented in Chapters 5, 6 and 7. 

Loss of stability. The overall effect of this collision alone is independent of whether the 

lifting vessel capsize due to the misalignment (𝑥22) of the jacket’s center of gravity (CoG) and 

its center of buoyancy (CoB). Improper cutting of the pile (𝑥28) in the footings can cause the 

differential sticking of pile or stuck-pipe (𝑥21) and consequently leads to capsize.  

Ascent or descent. A cut performed in accordance with recommended practice may 

help to prevent descent or capsize of the lifting vessel; hence, it is situated beside the CoB 

and CoG in the fault tree in Figure 9-4, which considers the complete jacket removal activity 

including footings and pile severance. The exact calculation of CoG (𝑥18) can be difficult due 

to the presence of marine growth (𝑥26), unknown residual anode thickness (𝑥25), and external 

corrosion thinning (𝑥17). The residual anode may be replaced prior to jacket removal to reduce 

the number of uncertain variables. Internal and external corrosion thinning are independent 

events, and the presence of either of them can pose a technical challenge. Grouting prevents 

the occurrence of flooding in the inner walls of the jacket and pontoon legs. It is, therefore, an 

important requirement to ascertain the grout’s integrity against deterioration (𝑥24), and 

consequently, prevents internal corrosion thinning (𝑥16). Cathodic protection and coating of 

such an aged jacket structure are expected to have deteriorated or fail at the instant of 

removal. They both prevent external corrosion thinning by absorbing soil corrosion effect on 

the external surface. 

Structural damage. The structural failure caused by accumulated cyclic load, lifting 

point failure (𝑥4), bulk explosion (𝑥5), and structural loading (𝑥7) on the jacket is capable of 

initiating collision even in the absence of overloading of the lifting crane (𝑥10) or barge 
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operational failure (𝑥9) (Zhao et al., 2015; Gerwick, 2002). This is particularly due to the 

breakage of a lifting node on the structure during lifting. The lifting node breakage is imminent 

if its residual strength is unknown or calculated incorrectly (𝑥1). To overcome the occurrence 

of crane overload, the rigging and initial lift-off force due to soil adhesion calculations must be 

accurate.  

 

Figure 9-4 Fault tree representation of SPJ accident model. 

9.3.3 Development of posterior failure probabilities (Step 2) 

Following the estimation of the prior failure probabilities procedure described in Chapter 5, the 

HBA is used to obtain mean distribution failures with 95% confidence level with the dataset 

presented in APPENDIX I using the dataset in APPENDIX J. Typically, the proposed dynamic 
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failure model will rely on Accident Precursor Data obtained from decommissioning database 

or through real-time monitoring using sensor measurements. The application of sensor 

measurements is prescriptive and a cost-benefit analysis of adopting sensors technology is at 

the discretion of the platform owners. Specifically, the updated probabilities for the selected 

accident contributory factors are estimated using equation 9-1, when the concerned event is 

implicitly represented within the BN, otherwise, the BN node of interest will be set as new 

evidence. In this study, the new evidence is taken to be implicit since it is believed that the 

estimation of failure of such rare events is based on expert judgements with associated 

uncertainty. Using experiential learning, the computation of the new evidence occurrence 

probability 𝑝(𝑒) and consequent updating is estimated for the failure probability of, say, the 

bulk explosion (𝑥5) with a prior failure probability value of 0.0517 with an observation of 

unknown residual stress-induced failure (𝑝(𝑥1) = 0.0682) where, 𝑥1 has been observed nine 

(9) times and 𝑥5 is observed twice. Then, the evidence occurrence probability is computed as 

𝑝(𝑒|9𝑥1, 2𝑥5) =
2

11
= 0.1818. The observations considered for the dynamic safety model are 

related to the 24-day trials for the cutting programme taking into account hazards posed by 

lifting operations, equipment failure, and the weather among other complications that may be 

encountered, as presented in Table 9-2 for selected failure parameters. The updated 

(posterior) failure probability of the bulk explosion at the 15th day is given by: 

𝑝(𝑥5|𝑒) =
𝑝(𝑒|𝑥5) × 𝑝(𝑥5)

∑ 𝑝(𝑒|𝑥5) × 𝑝(𝑥5)
 

𝑝(𝑥5|𝑒) =
(0.1818) × (0.0517)

(0.1818) × (0.0517) + (0.8182) × (0.9483)
 

∴  𝑝(𝑥5|𝑒) = 0.0120 

As economic risk analysis would yield the marginal difference between the expected profit and 

the expected cost for decommissioning and abandonment operations, four scenarios have 

been formulated to examine and estimate the economic benefits of the developed dynamic 

safety model. The approach is demonstrated from the least to the best beneficial scenarios, 
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given that the operation is devoid of complications. Through the application of the dynamic 

ERA framework in the decommissioning activities work package, the prior failure probabilities 

could be scaled at quartile intervals. 

The calculation procedure for the ERA is performed using the concept of expected value 

analysis (EVA) for describing the failure costs and corresponding benefits from successful 

outcome of the implemented safety measures as given in Equation 9-1 below. 

𝐸𝑉 = 𝑝(�̅�𝑖) × 𝑝𝑟 − 𝑝(𝑥𝑖) × 𝑐𝑜     (9-1) 

Where 𝑝(�̅�𝑖) is the success probability for events of interest, 𝑝𝑟 is the profit accrued for 

achieving the benefits of such reliability, 𝑝(𝑥𝑖) is the failure probability, 𝑐𝑜 is the cost incurred 

for the unreliability and, 𝐸𝑉 is the expected value of the decommissioning and abandonment 

operation. Since the cost of resale from pumps and valves, scraped steel value, and rebates 

have not been considered, the profit term of Equation (9-1) is excluded from the analysis. 
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Table 9-2 Accident Precursor Data for selected parameters 

Days 𝑥1 𝑥5 𝑥14 𝑥19 𝑥24 

1 1 - - - - 

2 1 - - - - 

3 2 1 - - - 

4 2 1 - - - 

5 2 1 - - - 

6 3 1 - - - 

7 3 1 - - - 

8 4 1 - - - 

9 5 2 - - - 

10 6 2 - - - 

11 6 2 - - - 

12 7 2 - - - 

13 7 2 - - - 

14 8 2 - - - 

15 9 2 - - - 

16 10 3 - - - 

17 10 3 - - - 

18 11 3 - - - 

19 11 3 - - - 

20 11 3 1 - - 

21 12 4 2 - - 

22 13 5 2 1 - 

23 14 6 3 1 - 

24 15 7 3 2 1 

 

 

9.3.4 Determination of decommissioning cost (Step 3) 

The cost estimation parameters considered for dynamic ERA are implicitly related to the field-

specific variables such as water depth, number of piles, conductors, and the level of effort 

centred around operating costs, for which dataset is generated using “what if” analysis to 

represent market conditions, as presented in Table 9-3. The declared cost of Asset Retirement 

Obligations (ARO) for the BAJ includes a set amount dedicated to account for the 
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implementation of DISA to drive decommissioning and abandonment needs. This includes the 

charter rate of HLVs for the lifting operations, inspection and monitoring cost, and the cost of 

transportation and dismantling onshore. For the BAJ platform, the cost of conductor severance 

and steel piled jacket removal have been given more attention. The cost of severing the 

conductors is considerably less than removing the jacket structure since the cutting operation 

is entirely performed externally using existing sever- and retrieve technology. However, 

conductors drive through the entire water column requiring additional cutting time, lifting, and 

retrieval which tends to increase the cost consequently. The conductor removal cost is 

calculated considering an average of 24 piles, 8 legs, and 50 bracings. 

Table 9-3 Brent Alpha Jacket and conductors decommissioning cost 

Platform 
Water depth, 

𝑊𝐷 (𝑚) 

Legs, piles, and 
conductors 

SPJ removal cost 
(m£) 

Conductor severance 

cost (m£) 

1 90 30 5.2 0.2 

2 120 38 7.8 0.4 

3 128 40 8.2 0.5 

4 130 52 9.8 0.9 

5 135 60 15.2 1.2 

6 140 80 16.0 1.5 

7 145 84 16.4 1.7 

8 148 90 16.4 2.3 

9 162 96 17.1 3.2 

10 165 102 17.8 4.4 

 

For the jacket structural removal, the presence of piles and its quantity further complicates the 

operation and drive the decommissioning cost further up. The use of explosives to sever the 

piles have not been considered, to match the technical document operational procedure. The 

structural removal cost includes platform preparation cost, field clearance cost, and 

compliance verification cost. Due to the sparsity of data, the decommissioning cost per 

structure is calculated through a multi-factor cost model based on above data obtained 

through “what if” analysis in MATLAB. The multi-factor regression model is dependent on 
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specific platform attributes such as removal option, removal technique, water depth, number 

of conductors, and weather window, among others. 

The multi-factor regression model is developed for the specific field with peculiar 

characteristics (Appendices M and N); however, the model is non-absolute and can be tailored 

for other fields or extended to characterise an oil and gas field consisting of variety of platforms 

with dissimilar configurations. In relation to Table 9-3 above, the model response and 

associated regression model are as presented in Figure 9-5 and Equation (9-2), respectively.  

 

 

Figure 9-5 Multi-factor regression model for (a) SPJ removal cost and (b) Conductor severance 
cost 

𝐽𝑅𝐶 = 36317𝑑𝑤 + 142,332𝑛𝑙,𝑝,𝑐 − 1,524,795   (9-2) 

Where 𝐽𝑅𝐶 is the jacket removal cost, 𝑑𝑤 is the water depth and, 𝑛𝑙,𝑝,𝑐 is the number of legs 

and piles and conductors that requiring severance. Specifically, for the BAJ which is located 

at a 140 m depth with overall 80 legs, piles and conductors, the jacket removal cost is 

estimated at £14,946,145/platform (approx. £14.9 million). Where some of the conductors 

have been cut and retrieved prior to jacket removal, the regression model based on the 

conductor severance cost will be added to the estimated value. For the purpose of analysis, 

40 conductors have been considered for removal in the Brent field and its regression model 

(a) (b) 
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𝐶𝑆𝐶 = 14244𝑑𝑤 + 35,605𝑛𝑐 − 2,704,170 yields £714,248/platform, therefore, the overall cost 

of decommissioning a single steel jacket platform based on the multi-factor regression model 

is £15,911,393/platform in addition to the HLV charter cost. It is worth mentioning that these 

model parameters and assumptions have been selected following detailed analysis of the 

Brent Alpha technical document, discussions, and advise from decommissioning engineers 

and managers including process safety experts. 

In addition, the real-time economic risk model that is achievable, to capture the costs incurred 

by the actualisation of any undesired event, through the application of the dynamic ERA 

framework will offer the advantage to be able to assess, reassess, predict, and mitigate the 

risks shortly before they occur. That, in turn, would help decision makers in planning ahead 

and as such can lead to considerable cost reduction associated site remediation. The dynamic 

ERA focuses on the evolution of cost on selected accident contributory factors capable of 

leading to a futile decommissioning operation. The next Section addresses the failure-to-cost 

conversion methodology. 

9.3.5 Failure conversion into expected cost (Step 4) 

Following the decommissioning cost evaluation in previous Section, the loss costs due to the 

actualisation of any one or combination of the accident contributory factor will be calculated in 

sequence. First, the fault tree of Figure 9-4 is converted into its corresponding Bayesian 

network as presented in Figure 9-6. Then the BN model is run through to obtain the futile 

decommissioning operational failure probability (𝑝(𝑇𝐸) = 0.05233) which is then utilised, as 

the new evidence, to estimate the updated (posterior) causal events failure probabilities. As 

the cost of decommissioning is not free of uncertainty and limitations, the loss costs at time-

slice 𝑡𝑖 can be presented in terms of economic risk. Therefore, the posterior non-occurrence 

probability of bulk explosion event (𝑥5) given the futile decommissioning probability of 0.05233 

at the 15th day is given by (See Table 9-4): 

𝑝(𝑥5|𝑇𝐸) = 0.05233 × (1 − 0.0120) = 0.051704 
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The risk value for this event is calculated using the expected value analysis of Equation (9-1) 

by incorporating the decommissioning cost 𝑐𝑜 in Section 9.3.4, thus 

𝑅𝑐(𝑥5|𝑇𝐸) = 0.005434 × £15,911,393 = £822,683 

 

Figure 9-6 Bayesian Network for SPJ/BAJ 

To minimize the effect of generic failure data due to source-to-source variability, these 

probabilities are then compared with a limiting cost of £15m – a quarter of the rough order of 

magnitude estimated by Shell UK – and a limiting probability against the causal events after 

a monitoring regime of 10-year period distributed over four scenarios of 25%, 50%, 75%, and 

100% occurrence increments. The limiting probability and cost have been set based on 

literature review of related offshore accidents and advise from process safety experts 

leveraging on field experiences and/or recommended practices. The steel piled jacket removal 

operation is continued or suspended if the posterior failure probabilities are lesser than the 

limiting probability or otherwise. The conditioning algorithm allows for most critical elements 
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of the accident contributory factors to be re-examined and modify as required. The overall 

safety of the jacket removal activity can be maintained while driving down costs associated 

with remediation from accidents and downtime. 

Table 9-4 Occurrence updated probabilities of end consequences over a 24-day period 

Days 𝑥1 𝑥5 𝑥14 𝑥19 𝑥24 

1 4.88E-2 4.96E-2 4.68E-2 5.11E-2 4.95E-2 

2 4.88E-2 4.96E-2 4.68E-2 5.11E-2 4.95E-2 

3 4.56E-2 5.09E-2 4.68E-2 5.11E-2 4.95E-2 

4 4.56E-2 5.09E-2 4.68E-2 5.11E-2 4.95E-2 

5 4.56E-2 5.09E-2 4.68E-2 5.11E-2 4.95E-2 

6 4.29E-2 5.14E-2 4.68E-2 5.11E-2 4.95E-2 

7 4.29E-2 5.14E-2 4.68E-2 5.11E-2 4.95E-2 

8 4.05E-2 5.17E-2 4.68E-2 5.11E-2 4.95E-2 

9 4.42E-2 5.12E-2 4.68E-2 5.11E-2 4.95E-2 

10 4.29E-2 5.14E-2 4.68E-2 5.11E-2 4.95E-2 

11 4.29E-2 5.14E-2 4.68E-2 5.11E-2 4.95E-2 

12 4.17E-2 5.15E-2 4.68E-2 5.11E-2 4.95E-2 

13 4.17E-2 5.15E-2 4.68E-2 5.11E-2 4.95E-2 

14 4.05E-2 5.16E-2 4.68E-2 5.11E-2 4.95E-2 

15 3.94E-2 5.17E-2 4.68E-2 5.11E-2 4.95E-2 

16 4.21E-2 5.15E-2 4.68E-2 5.11E-2 4.95E-2 

17 4.21E-2 5.15E-2 4.68E-2 5.11E-2 4.95E-2 

18 4.13E-2 5.16E-2 4.68E-2 5.11E-2 4.95E-2 

19 4.13E-2 5.16E-2 4.68E-2 5.11E-2 4.95E-2 

20 4.13E-2 5.16E-2 5.19E-2 5.11E-2 4.95E-2 

21 4.29E-2 5.15E-2 5.16E-2 5.11E-2 4.95E-2 

22 4.40E-2 5.14E-2 5.17E-2 5.23E-2 4.95E-2 

23 4.47E-2 5.14E-2 5.15E-2 5.23E-2 4.95E-2 

24 4.52E-2 5.14E-2 5.16E-2 5.22E-2 5.22E-2 

 

The above table presents the summary of the risk profile for implementing the Accident 

Precursor Data (APD) in the monitoring of the removal operation for the anticipated 24-day 
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period. The complications depicted by the selected accident contributory factors are in the 

order of their likelihood of occurrence and expected severity. The events with lesser 

observations represented by unfit structure node (𝑥14), installation flooding (𝑥19), and grout 

deterioration (𝑥24) are a family of events characterised by low probability high consequence 

events, making them more costly to remediate should they ever occur. As a result, their risk 

values would be increased by 25%, 50%, 75% and 100% of the expected £15.9m respectively. 

In addition, the significant reduction in the failure probabilities of the events indicate that more 

knowledge of the potential undesired events has become available and clearer due to accrued 

observations and evidence from daily trend as the decommissioning operation progresses.  

9.4 Model analysis and results 

The risk profile in terms of failure and cost of remediating the failure should it occur are 

discussed in this Section. In addition, a forecast beyond the 24-day removal period is 

presented for the four scenarios wherein the decommissioned site is monitored for an 

extended period of 10 years through backward propagation using the top event as the new 

evidence for 25%, 50%, 75% and 100% increments. 

9.4.1 24-day failure model response  

This Section presents the results for the failure profile observed during the 24-day activity 

period for which the BAJ is being removed following the operational sequence of SPJ 

decommissioning. The scenario demonstrates the typical Accident Precursor Data collected 

during operation which is often used to inform lessons learned. Figure 9-7 represents the 

failure model for the five selected performance parameters with activity being hindered by the 

occurrence of unknown stress-induced failure observed throughout the entire period, bulk 

explosion-related event emerged on the third day while a failure related to unfit structure node 

was spotted on the twentieth day followed by issues of rigging related to installation flooding 

on the twenty-second and grout deterioration effect on the lifting operation on the last day of 

removal, all of which are attributed to human error of some degree.  
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Figure 9-7 Failure profile for unknown stress and bulk explosion occurrences 

 

As it can be seen from the graph, the occurrence probability of the unknown stress-induced 

failure increases as that of the bulk explosion decreases gradually on the 8th , 15th and just 

after the 20th day of decommissioning operation. This trend is attributed to the decrease in the 

failure values obtained from posterior probability estimation within the Bayesian network and 

the corresponding increase in the case of the bulk explosion related incidents. The increasing 

level of threats posed by the insufficient knowledge of the jacket structures remaining useful 

life (RUL) prior to decommissioning could also lead to this observed trend. To account for the 

RUL influence on the successful removal operation, adequate maintenance record, life 

extension analysis and relevant rigging calculations er recommended practices are imminent. 

Limited knowledge of the RUL will eventually trigger an increase in the likelihood of overall 

system failure. For this reason, it is recommended that RUL be ascertained through inspection 

and detailed late life extension analysis prior to decommissioning of the jacket structure and 

improved to avert the observed model response from occurring.  
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For the other three causal events where, little evidence has been gathered during the 24-day 

period of decommissioning the jacket structure, the prior occurrence probability of the top 

event has been relied upon as the new evidence to update their values, as presented in Figure 

9-8. For instance, if the limiting probability, 𝑝𝑜 for unknown stress-induced failure is set to 

0.04375, the jacket removal operation would have been stopped at the 22nd day and the overall 

activity sequence re-examined and modified as required in accordance with the 

decommissioning safety workflow described in Figure 9-1. A potential cascade of failure that 

could trigger the occurrence of the top event through the interactions of any combination of 

these causations that appeared to be probable on the 24th day would have been prevented.  

 

Figure 9-8 Failure profile for unfit structural node, installation flooding and grout deterioration 
occurrences 

 

Whereas the failure profile depicted in Figure 9-8 showed that both the installation flooding 

and grout deterioration likelihoods increase abruptly in the same manner until the 23rd day 

when the unfit structural node began to decrease on the 19th day. Similar to the bulk explosion 
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event, the unfit structural node event is detected by mere inspection and can be averted 

through the use of adequate supporting structure during the lifting and towing operations. In 

addition, the same increasing likelihood trend, observed in the case of unknown stress-

induced failure holds true for the installation flooding and the grout deterioration events, 

although, only after the 23rd day. This capability of the dynamic safety model to be able to 

predict hazards occurrence prior to their occurrence would enable an effective and well-

informed decision support during operational decision analysis phase of decommissioning and 

abandonment with the opportunity to significantly drive down the enormous cost of 

remediation. 

9.4.2 Economic risk values 

This Section presents the economic risk results for the selected causations for different loss 

values estimated at an increasing rate of 25% as the gathered evidence decreases. Figure 

9-8 is the risk profile depicting the cost of preventing the identified hazards that may lead to 

the futile decommissioning operation and other end consequences that may put heavy 

financial burden on the oil and gas operators in the event of their occurrences.  

As shown in the Figure, installation flooding would have escalated and cost the same as the 

grout deterioration on the 24th day if the operational sequence is not halted, reviewed, and 

improved as indicated by the risk profile for the 22nd day. The cost of preventing or remediating 

the installation flooding and grout deterioration failure occurrences increase significantly when 

the cost related to unknown residual stress continues to rise steadily on the 23rd day. There is 

a sharp jump on cost associated with the bulk explosion son after the 2nd day of removal 

operation whereas the unfit structural node failure remained steady until the 19th day and 

returns to a steady growth over time. Furthermore, the most optimistic cost profile is the bulk 

explosion model where the failure was spotted and remediated on the second day as depicted 

by its flat curve followed by the unknown residual stress failure with highest fluctuation seen 

to remain below the initial cost on day 1. 
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Figure 9-9 Loss value of causations over activity period 

 

The cost profile trend is an indication that the implemented decommissioning safety workflow 

is efficient as required unless human error characterised by noncompliance is encountered. 

The level of effectiveness of the risk control measures put in place will influence the potential 

escalation of the causations in a way that the link between interacting factors is impaired to 

avert cascade of failure. If the occurrences are not guided against during the 24-day jacket 

removal period, these cost profiles will be uncontrollably high. Moreover, the grout 

deterioration cost profile further confirms that the most unwanted event cost more to 

remediate, making it possible for the decommissioning team to make a well-informed 

operational decision. Overall, the loss value significantly increases when the top event is likely 

to be overly impacted by the events with the least probability of occurrence. 
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9.4.3 Dynamic ERA results 

The risk values obtained in Section 9.4.2 are further evaluated in a backward propagation to 

predict what the risk value would be, in future rate, if the lifting and towing operations were not 

adequately monitored. This is achieved by dynamically scaling the occurrence probability of 

the top event over four scenarios of 25%, 50%, 75% and 100% respectively using the 24th day 

failure data as the starting point to update the loss values. The dynamic ERA results for the 

four-stage increment are presented in Figure 9-10. 

 

Figure 9-10 Dynamic economic risk prediction over a 10-year period 

 

The loss values for all accident contributory factors are seen to increase over time, although, 

at varying degrees. For instance, the loss function of unknown residual stress failure, bulk 

explosion, and unfit structural node failures significantly increase in a nonlinear manner, 

making their occurrence more expensive to address should appropriate risk control measures 



205 
 

be lacking or not implemented. While both the installation flooding and grout deterioration 

failures initially attracted higher costs to remediate, they both soon become unresponsive to 

further changes in the occurrence probability of the top event. This implies that when all 

hazards capable of triggering a futile decommissioning operation have been identified and 

captured in a robust dynamic safety model such as the type proposed in this thesis, the events 

with low probability and higher severity (LPHS) would have been prioritised in a similar manner 

to those with high probability high severity (HPHS). More specifically, the results presented 

indicated that for a steel piled jacket platform removal estimated for £15.9 million, the least 

severe mishap would cost approximately £720,000 to remediate whereas the most pessimistic 

scenario would cost up to £853,100. While these loss values have been based on the multi-

factor model taken inputs from the decommissioning and abandonment site, the availability of 

data from Asset Retirement Obligation (ARO) documents and historical information from 

database will likely yield higher estimates. Where the limiting cost is set to £1m, the risk 

tolerance level would have permitted the removal activities to continue or stopped and revised 

for a relatively lower remediation reserve. Based upon the results obtained, a risk control 

measure is developed to address some of the many significant accident contributory factors 

as shown in Table 9-5. 
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Table 9-5 Risk control measure for steel piled jacket removal 

Events Description Risk Control Measure RCM Hierarchy 

𝑋16 CP fails 
Replace anode prior to 

decommissioning 
Substitution 

𝑋17 
Soil erosion effect on 

lift 
Inspect structure prior to lifting 

Training and 

supervision 

𝑋18 
Failure of external 

coating 
Paint affected area Elimination 

𝑋19 Installation flooding 
Inspect inner walls of structure prior to 

lifting 

Training and 

supervision 

𝑋20 Construction defects 
Inspect hidden flaws and add 

appropriate safety factor during rigging 

Engineering control, 

training, and supervision 

𝑋21 Material defect 

Reduce the effect of material defects 

by adding appropriate safety factors in 

analysis or safety functions prior to 

lifting 

Engineering control and 

substitution 

𝑋22 Piling 
Prevent uncontrolled piling through 

training of offshore personnel. 

Training and 

supervision 

𝑋23 Ungrouted condition 
Avoid Ungrouted condition in the 

substructure. 
Elimination 

𝑋24 Grout deteriorates 

Prevent grout deterioration through 

corrective maintenance or implement 

real-time maintenance while structure 

is still operational. 

Elimination or 

Substitution depending 

on extent of 

deterioration 

𝑋25 
Residual anode weight 

unknown 

Replace the anode prior to 

decommissioning through preventive 

maintenance routine 

Substitution and 

administrative control 
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𝑋26 Marine growth 

Avoid either over- or under-estimating 

the effect of marine growth during 

rigging 

Engineering control 

𝑋27 Jammed cutter 

Prevent operator error through high 

quality inspection and operating 

procedure of the substructure cutter 

and possible training if the cutter jams. 

Training and 

supervision 

𝑋28 
Improper cutting 

procedure 

Prevent operator error through 

noncompliance with established cutting 

procedure 

Training and 

supervision; information 

and instruction 

𝑋29 Drill cutting debris 

Prevent drill cutting debris from 

depositing into the sea through 

compliance with lifting procedures. 

Engineering control 

𝑋30 
Incorrect cutting time 

estimation 

Prevent operator error through 

incorrect calculation of vital parameters 

such as the time required to cut the 

substructures 

Training and 

supervision 

𝑋31 Flooded member(s) 

Prevent operator error through 

incorrect calculation of required 

flooded members. 

Training and 

supervision 

𝑋32 Uneven flooding 

Prevent operator error in analysing 

uneven flooding within the jacket legs 

and pontoons, capable of toppling the 

substructure. 

Training and 

supervision 

 

9.5 Conclusion 

The presented Dynamic Integrated Safety Analysis (DISA) provides an alternative means to 

assess the financial implication of a futile decommissioning operation from an economic risk 

assessment standpoint. It provides a localised approach to obtain loss values for selected 

accident contributory factors based on a multi-factor regression model that takes input from 

the decommissioning and abandonment site of interest. The methodology affords the oil and 
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gas producers (OGPs) to gain insights into the cost of getting it wrong and the opportunity to 

make informed decisions based on quantifiable metrics peculiar to the field where offshore 

assets removal is required. The selection of accident contributory factors for this analysis is 

based on importance measure analysis discussed in previous Chapter to support a 

comprehensive backward propagation analysis to further allow OGPs to locally assess the 

latent impact of different component-level failures. This would enable the objective selection 

of key performance parameters needing immediate attention to distort the link capable of 

leading to cascade of failures. 

Furthermore, the developed dynamic ERA model was executed for field-specific parameters 

such as the water depth and number of conductors, piles, and bracings to be severed. The 

obtained failure probabilities are then converted into loss values by way of expected value 

analysis, with all causations exhibiting varying degrees of increase in the losses, given that 

the failures occur. The cost model is updated through an integrated dynamic diagnosis of the 

top event to predict the future-day monetary value of the failure occurrences, as presented in 

Table 9-6 and the posterior probabilities in APPENDIX K. To limit the effect of uncertainties 

and generic data used in the analysis, a limiting value is proposed for both failure probabilities 

and loss values based on the organizational risk tolerance level. However, the proposed 

model does not have control over the limit set and may be within or outside its range if the 

parameters deviate from observed risk profile or the limit was set independent of the 

decommissioning-related workflow. In addition, the diagnosis implemented was arbitrarily 

scaled over four scenarios of 25%, 50%, 75% and 100% to simulate market condition over a 

10-year period. Such increment is intended to introduce additional variation into the accident 

scenario analysis which would, otherwise, require the availability of sufficient historical or real-

time data often gathered as the decommissioning and abandonment activity progresses. The 

adoption of a percentage scaling of the top event based on the availability of new evidence or 

observation further validates the robust computation engine of the Bayesian networks and 

contributes to the adaptation capability of the developed model. However, an uncontrolled 
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generic adaptation can introduce noise into the model as it is not based on historical or real-

time data, which is why the dependency modelling using noisy-OR and other advanced logics 

discussed in preceding Chapters remain valid. 

The results obtained for dynamic probability updates showed that a limiting threshold set by 

the OGPs has the advantage to alert the personnel whether to continue the operation or to re-

assess, making it a valuable tool for failure benchmarking. It is also observed that the degree 

of responsiveness for the cost model updating is, for the most part, nonlinear and the less 

severe events having high occurrence probabilities responded considerably to the stepwise 

changes in the top event probability. In the same manner, the events 𝑥19 and 𝑥24 were less 

sensitive to the incremental variations even though these two factors had higher occurrence 

probabilities at the end of the 24th day: indicating the credence of incorporating the dynamic-

diagnosis approach in the analysis. Overall, all tested factors for each increment in the top 

event occurrence probability increase in order of their significance and proportionately from 

𝑡𝑜 = 𝑝(𝑇𝐸) up to 𝑡4 = 2𝑝(𝑇𝐸) as shown in Table 9-6.  

The development and validation of the dynamic economic risk assessment require sufficient 

data for its implementation, which is lacking in the context of decommissioning and 

abandonment. Detailed ARO is needed to accurately estimate today’s money value including 

the inflation rate and working interest, among others. In addition, Accident Precursor Data was 

required to implement the dynamic safety model within Bayesian network based on the Bayes’ 

theorem to update the failure probability of causations. As ARO was not available for the 

selected case study in this thesis, a multi-factor regression analysis sufficed which proved to 

be invaluable. When sufficient data and observations become available, it is expected that 

these would be incorporated to address the data-driven limitation. Moreover, the system 

description presented here for the jacket removal operation was based on author’s 

understanding of the operational sequence as contained in the BAJ technical document and 

feedbacks from peer reviewed journal. Therefore, future research of the proposed 
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methodology should focus on verification of approach to data application and system 

validation to support the findings presented herein. 

Table 9-6 Summary of dynamic ERA results for cost prediction in current day value 

Time slice Scenarios 𝑥1 𝑥5 𝑥14 𝑥19 𝑥24 

𝑡𝑜 = 𝑝(𝑇𝐸) 
PoF 4.52E-2 5.14E-2 5.16E-2 5.22E-2 5.22E-2 

Cost (£) 719,195 817,846 821,028 830,575 830,575 

𝑡1 = 1.25𝑝(𝑇𝐸) 
PoF 4.54E-2 5.14E-2 5.18E-2 5.23E-2 5.23E-2 

Cost (£) 722,377 818,314 824,162 831,848 832,325 

𝑡2 = 1.50𝑝(𝑇𝐸) 
PoF 4.58E-2 5.15E-2 5.21E-2 5.24E-2 5.24E-2 

Cost (£) 728,064 818,961 828,483 833,757 834,393 

𝑡3 = 1.75𝑝(𝑇𝐸) 
PoF 4.65E-2 5.16E-2 5.27E-2 5.24E-2 5.25E-2 

Cost (£) 740,589 820,536 839,012 834,330 835,205 

𝑡4 = 2𝑝(𝑇𝐸) 
PoF 5.42E-2 5.23E-2 5.76E-2 5.25E-2 5.25E-2 

Cost (£) 862,398 832,139 916,746 834,434 835,786 

*PoF = probability of failure 

Summarily, the dynamic ERA is data-driven and to benefit from the potential advantages 

offered by the proposed method, responsible maintenance records and historical data 

collection through a database should be incorporated in the offshore engineering practices 

culture from early stage under the design-for-decommissioning (DfD) approach. In general, 

the dynamic ERA demonstrated its capability to integrate different aspects of safety and cost 

modelling to provide an insight into the two important areas of the five considerations of 

technical, social, environmental, safety and economic balances. Furthermore, the 

decommissioning and abandonment operation can either be continued or discontinued (and 

reassessed) based on the limiting threshold framework to prevent impending catastrophe 

shortly before they occur. 

9.6 Summary 

This Chapter introduced a dynamic economic risk analysis performed by implementing the 

developed dynamic integrated safety model that took inputs from actual accident scenarios 



211 
 

observed and recorded over a period of 24 days, validated through accident precursor data. 

The dynamic ERA focused on the Brent Alpha field, operational sequence described in the 

technical document and a robust methodology that provided a route to estimating the loss 

value of accident contributory factors through the failure probabilities. The dynamic ERA 

incorporated time-variant analysis and backward propagation analysis to forecast and update 

the failure probabilities and consequent cost implications of the accident contributory factors 

selected through the results obtained from importance measure analysis presented in Chapter 

8. The results were presented for 24-day failure responses, estimation of the economic risk 

values characterised by loss values, and the dynamic ERA obtained through the scaling of 

top event by 25%, 50%, 75% and 100% to replicate scenarios where future value of money, 

inflation rates and overall knowledge of hazards become available as evidence in the model.  
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Chapter 10: Research Discussion  

10.1 Outline 

This Chapter presents the discussion following the trend of outcomes from the research and 

the capability of the Dynamic Integrated Safety Analysis (DISA) developed. The novelty and 

contributions of the research are presented, followed by the strengths and limitations offered 

by the research methodology. 

10.2 Novelty and Contribution 

10.2.1 Novelty 

The novelty of the research work presented herein is achieved from the developed dynamic 

integrated safety framework. In this framework, inputs from variety of strategies such as 

hierarchical Bayesian analysis, Bayesian networks and dynamic Bayesian networks were 

incorporated. In addition, various advanced logic gates were introduced into the conditional 

probability tables to incorporate dependencies among interacting accident contributory factors 

and, to model uncaptured hazards. As the research is primarily motivated by data paucity, a 

method to tackle the effect of small data size was proposed with considerable confidence 

level, making it a valuable and adaptive tool for wide range industrial application. Due to the 

rare accident classification of decommissioning and abandonment operations, the developed 

dynamic integrated safety analysis model can offer a possibility to redirect safety decisions 

from what used to be an experience-driven activity into a data-driven type, building upon the 

robust computation engine of the model. One main advantage of the model is in its ability to 

update failure data within the model and reassess the overall safety as more knowledge, 

observations, and new evidence become available. 

The first level of effort was invested in conducting a detailed evaluation of decommissioning 

and abandonment-related research through a comprehensive review of literatures, technical 

documents, and current trends published on DNVGL webpage on the findings of the Joint 
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Industrial Projects, JIP (ABB, 2017). While there are numerous equipment and components 

as part of the offshore assets needing to be decommissioned, this research focused on two 

main aspects, namely: 

(i) The plugging and abandonment of subsea wells; and  

(ii) The steel pile jacket removal.  

The present work explores the focus areas of both peer-reviewed research papers and 

industry current best decommissioning practices including regional and international 

standards, recommended practices, and regulations. Through a thorough gap analysis of the 

literature review, this research bridged the void between theory and practice. The research 

comprehensively examines the methods, tools and techniques, strategies, inputs and often 

expected outputs based on financial burdens on oil and gas producers, and the rebates from 

government to inform modelling assumptions. 

Notably, the developed model adopted Hierarchical Bayesian Analysis based on Gamma 

distribution to process analogous failure data obtained using the source-to-source variability 

concept and returned the outputs as a mean distribution with 95% confidence level, and with 

the limiting failure framework the decommissioning and abandonment operation can be halted, 

reviewed, and reassessed to avert single failure that could jeopardise the entire operation. 

The limiting failure framework is especially developed as a proposed tool to be fed into a real-

time sensor device for monitoring and controlling the operational conditions and safety. In 

addition, the inclusion and strength of influence comparisons of the N-OR, LN-OR, and ILN-

OR models aided in addressing implicit or uncaptured causations during hazards identification 

stage and also, in the verification of the under- or over-estimation drawbacks inherent in the 

conventional probabilistic risk analysis tools such as FTA and ETA as these traditional 

methods are not able to consider dependency or common cause failures without incorporating 

them with advanced and often expensive logic gates. 
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Another novel attribute of the proposed Dynamic Integrated Safety Analysis (DISA) model is 

in the development of importance metrics estimation emanating from the uncertainty analysis 

to establish the most probable cause of the single undesired failure. The importance measures 

formulation then set the pace for the time-variant modelling formulated within dynamic 

Bayesian networks. The DISA model permitted the possibility to marginalise any combinations 

of performance parameters at specified time slice(s) to be locally diagnosed or predicted over 

a set period, making it a realistic and flexible failure analysis tool for learning simple- to 

complex-finite accident scenario networks (APPENDIX L). The prediction of future failure or 

economic state of selected performance parameters have been made possible through the 

dynamic model, thereby enhancing component- to system-level monitoring as the 

decommissioning and abandonment operation progresses. The DISA model is adaptable and 

allows the localization of any system interactions of interest to be evaluated in isolation or as 

part of a complex interdependencies including the incorporation of new input causations or 

existing causation data representing new evidence based on ongoing risk profile tracking or 

previously uncaptured hazards. 

In conclusion, objective quality evidence in systems identification, description, and 

assessment has been substituted for through the development of various uncertainty 

improvement strategies at different levels of the DISA model formulation, analysis, and its 

application to case studies. Moreover, the cause-consequence relationship was first 

demonstrated on FTA and ETA respectively and visualised through their corresponding bowtie 

to provide a level of objectivity in the accident formulations prior to mapping these into 

Bayesian networks through the similitude concept, taking advantage of both conventional and 

modern qualitative and quantitative assessments.  

10.2.2 Contribution 

The contribution of the developed DISA model is especially notable in theory and practice. In 

theory, the systematic transformation of the fault tree and event tree cause-consequence 
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relationships into their corresponding Bayesian networks provided a means to objectively 

verify the correctness of the accident scenarios and evolutions. In addition, the dynamic safety 

method has been analysed considering dependency which is, otherwise, a difficult task to 

accomplish by conventional quantitative assessment methods. The analysis is adaptable and 

offers opportunity for improving the safety model as more information or new evidence 

becomes available, paving way for advancement in the existing probabilistic techniques. 

Further improvement has been proposed to address unknown reservoir conditions, limited 

data, and even parameters uncertainty through the elicitation of advanced logic gates to relax 

the model. The paucity of data has been addressed through the application of hierarchical 

Bayesian analysis, due to the uniqueness of decommissioning and abandonment accident 

systems which are not captured in offshore accident database like OREDA or marine accident 

investigation Branch, MAIB report. A new methodology for the quantification of loss values as 

a measure of financial implications of unsafe operation has been demonstrated to support the 

decision to continue or revise operational work package, to foster Recommendation-to-

Decommission (RtD). A limiting failure probability is proposed to be set for the top event to 

control the effect of generic data and to determine whether to continue the jacket removal 

operation or to modify relevant parameters in order to avert catastrophe. This, in turn, provides 

the advantage of identifying when to halt the operation and consequently, manage the removal 

activity efficiently while driving down the cost of decommissioning and remediation. 

Furthermore, the application of the DISA framework is demonstrated using two case studies 

based on practical problems directly related to decommissioning and abandonment. The first 

case study is the Elgin platform permanent plugging and abandonment failure. The failure 

model consisted of three fundamental leak paths, namely: 

(i) The leak through zonal isolation plugs in the production zone; 

(ii) The leak through the secondary barrier along the surface casing; and  

(iii) The leak through primary barrier along the conductor casing.  
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Schematics of the design well was examined, and accident model formulated based on the 

technical issues reported by Total E&P (2013). Due to limited knowledge of the reservoir 

conditions and limited data, Hierarchical Bayesian Analysis was implemented to obtain failure 

probabilities for causations at the component level. Considerable effort was implemented to 

capture all possible hazards through a hazard identification workshop. The HAZID exercise 

was validated through a peer reviewed process. The case study benefitted from the DISA 

framework through dependency elicitation within the conditional probability table of the 

Bayesian networks and further analysis through dynamic modelling motivated by accident 

likelihood prediction requirement and validated by sensitivity analysis.  

The second case study is the Brent Alpha Jacket structure decommissioning characterised by 

collision or capsize of the lifting vessel based on Shell technical document. This analysis 

focused on the development of a multi-factor regression model to define the cost of removal 

of a single jacket structure. The significance of the regression model thrived on the assumption 

that no external complications exist. An operational scenario spanning 24-day activities 

formed the basis of the analysis. The cost is then converted to loss values based on the failure 

probabilities of the accident contributory factors and is further validated through integrated 

dynamic-diagnostic analysis to predict the future money value of getting it wrong. 

In practice, the DISA model can serve as a robust decision support tool for the oil and gas 

producers and other relevant stakeholders such as the decommissioning personnel, 

contractors, Oil and Gas Authority (OGA), Oil and Gas UK (OGUK), Health and Safety UK 

(HSE, UK) and regulatory bodies. The integrated model incorporating different aspects into a 

single framework makes it possible to dynamically update and adapt the model to current 

market or technical conditions as new input data become available. More so, a compact safety 

tool capable of taking generic and accident-specific inputs to provide real-time output on 

demand would be an asset to decision makers. The current state of knowledge from the safety 

analysis results for the investigated accident scenarios can be tailored and updated to 

enhance the decommissioning and permanent abandonment operations. Moreover, the 
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economic risk analysis model can be further improved and tailored to specific sites to be 

returned to its initial state. Lastly, this safety design approach can be fully developed and 

adapted to a real-time risk monitoring device for field application during decommissioning and 

abandonment operations. 

10.3 Strengths of Research Methodology 

The presented study introduced and justified the importance of adopting an advanced risk 

assessment technique to handle such a time-dependent activity as decommissioning. In the 

study, it was established that the proposed DISA model thrive in the transition from 

conventional fault tree, event tree, and bowtie analysis to its corresponding Bayesian networks 

which is capable of handling uncertainty, common cause failures, and finitely complex systems 

based on Bayes’ theorem and advanced elicitation of dependency. It was demonstrated that 

the conventional models, albeit effective and proven, cannot cope with unknown input data 

without introducing additional uncertainties or handle dynamic accident scenarios where 

operating conditions change with and/or over time. The dynamic safety model incorporates a 

holistic approach to capturing the overall systems hazards through comprehensive evaluation 

of technical documents and publicly available accident reports. For permanent well plugging 

and abandonment, all the potential leak paths are considered through standardized well 

schematic. The Brent Alpha jacket structure was analysed in a similar manner and supported 

by the availability of producer-specific technical document, thus, tackling the issue of objective 

quality evidence. In addition, the failure data used in the analysis have been collected through 

hazard identification workshop and processed using advanced statistical methods, and the 

results of this analysis can be found in the Data-in-brief journal (Babaleye et al, 2020) on 

Mendeley to foster reproducibility and verification.  

The adoption of Gamma distribution function with multi-level failure estimation and conjugate 

prior offers an unparalleled advantage compared to other studies using FFTA (Lavasani et al., 
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2015), FTA (Nichol et al., 2000), and OREDA coupled with Bayesian networks (Babaleye et 

al., 2018; Faber et al., 2002).  

The incorporation of Hierarchical Bayesian Analysis and Bayesian networks to conduct safety 

risk analysis with in-built dependency model is another advantage of the proposed 

methodology, an approach which has not been explored within the offshore decommissioning 

industry thus far. This method is oriented towards uncertainty elimination at each phase of the 

analysis, thus enhancing the safety of the operation in its entirety. The integration method is 

a strength that can be fully utilised during and post-decommissioning when compared to fuzzy 

set theory techniques (Shi et al., 2014, Lin and Wang 1998), static layer of protection analysis 

(Pasman and Rogers, 2013; Markowski and Kotynia, 2011), and bowtie (Yuan et al., 2015; 

Khakzad et al., 2013; Ferdous et al., 2013). 

In addition, the development of a dynamic integrated cost monitoring model based on the 

combination of hierarchical Bayesian analysis, Bayesian networks, multi-factor regression 

model, and time-variant diagnostic state modelling to attribute financial value on accident 

contributory factors to support safety critical elements prioritization is another important 

advantage compared to the overall decommissioning cost estimation methods (Kaiser and 

Liu, 2014), which does not account for the cost of getting it wrong and end consequences cost 

modelling (Fam et al., 2020; Babaleye et al., 2018), which relied on experience-driven or 

historical loss values. 

The applicability of the developed DISA model to both permanent well plugging and 

abandonment operation and steel piled jacket removal is a justification of the flexibility of the 

model to be adaptable to other offshore operations such as process safety, drilling, production, 

and installation and workover control systems (IWOCs) activities.  
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10.4 Research Limitations and Assumptions 

In the research and design of any engineering system, limitations and assumptions are 

necessary to account for instances that are beyond control to guide the research against 

design errors and permits continuous improvement. Therefore, the current thesis is also 

bounded by such constraints. The following are the assumptions and limitations considered in 

this study: 

System description. The identification and description of accident model for both case studies 

have been based on overly limited literature. In the case of permanent well abandonment, 

whilst there was publicly available information on the Elgin platform, the accident scenarios 

analysis and modelling rely on only the typical well design and construction schematic in 

accordance with NORSOK (2013) and the comprehensive report on risk analysis of shut-in, 

temporary and permanent abandonment of oil and gas wells submitted to the Mineral 

Management Services by Nichol et al. (2000). The hazards identified in the literature appeared 

to be high level and the basic causals, for the most part, have not been provided. In addition, 

the assumptions underlying the failure probabilities estimation for the basic causals is peculiar 

to the site for which the research was conducted and thus, is non-absolute. For the steel piled 

jacket, the technical document provided operational sequence, but the hazard identification 

and risk analysis performed to obtain the reported Potential Loss of Life (PLL) values cannot 

be verified. Therefore, the developed safety model relied on the available information and 

further expanded the accident model, making it more complex than those found in the 

literature to justify the need for a novel methodology that may attract significant cost to 

implement. 

Computation time and cost. The elicitation of dependency within the conditional probability 

table can be a challenging task. At the time of completing this thesis, there has been no 

academic publication focusing on simplification in elicitation process. Therefore, the 

development of DISA focused on the accuracy of the relationship among interacting events 

and assumed a reasonable ‘leak probability’ of 5% in the analysis in accordance with current 
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best practices. The selection is arbitrary but often between 0 and any value lesser than the 

lowest probabilities of the interacting causations. While the specification of this value is 

intended to account for uncaptured hazards, it may unintentionally be a source of uncertainty 

if not controlled. 

Dynamic state modelling. The dynamic state modelling relied on the assumption that each 

succeeding time slice is conditionally connected to the one immediately preceding, i.e., the 

Markov chain formalism. A practical way to model dynamic interactions is through the 

development of a time-based governing equation which will feed into the prior probability at 

time slice 0 to update successive ones. However, the current model relied on the posterior 

predictive probability output from the HBA process as a static prior input to update a dynamic 

state model for analysis in Chapter 8. It is worthy of mention that the Bayesian networks have 

been utilised to overcome this assumption, as the model would have considerably reduced 

the errors introduced by the static input data through dependency modelling and new evidence 

availability. 

Accident Precursor Data. Accident Precursor Data (APD) are important output of an offshore 

related activity to enhance lessons learned and provide a database for investigating accident 

or incident trend. The specified Accident Precursor Data in this analysis does not represent 

any practical measurement or even a simulated environment. It is subjective with the goal of 

demonstrating the dynamic framework capability of the accident model developed in Chapter 

9. With more accurate and sufficient data availability from companies or decommissioning 

operations, the reliability of outputs can be significantly enhanced. One way to address this 

issue would be via the development of a correlation or regression model to fit the leak 

probability objectively based on data. Overall, these limitations and assumptions would 

provide a step in the right direction for further research, as shall be seen in the next Chapter. 
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10.5 Summary 

In this Chapter, the main outcomes of the PhD thesis are discussed in its entirety. The novelty 

and contributions to the current state of knowledge and its benefits to both the academic 

community and the oil and gas industry were presented. The strengths of the developed 

methodology were further highlighted without trading off the limitations and assumptions 

governing the model setup. The next Chapter describes the conclusion drawn from the 

summary of findings. 
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Chapter 11: Research Conclusion 

11.1 Outline 

The concluding remarks based on the obtained results from this research with respect to the 

safety and failure analysis of decommissioning and abandonment are presented. The relevant 

findings are summarised to support the strengths of the developed methodology, followed by 

the recommendation for future research. The review of aim and objectives are analysed to 

demonstrate research accomplishment. 

11.2 Summary of Findings 

Motivation. The current best practices to ensuring decommissioning and abandonment 

operations are safe revolves around the development of static safety critical analysis and 

assessment of the activity sequence based upon the work breakdown structure. Typically, the 

output of such analysis is the risk to personnel measured by the Potential Loss of Life (PLL) 

using conventional probabilistic risk analysis tools such as FTA for accident modelling and 

event tree for consequence modelling. The PLL and other metrics based on the balance of 

technical, social, environmental, safety and economic considerations are then used to develop 

a comparative assessment (CA) from which a preferred decommissioning option is justified. 

One major drawback is the subjective nature of the safety assessment process due to lack of 

information as the operation is experience-driven, thereby introducing uncertainty into the 

accident scenarios. Another drawback is the assumption that the conditions associated with 

the oil and or natural gas to be plugged and abandoned, or the platform to be removed are 

constant and will remain so throughout the activity duration. It is also commonly argued that 

the abandoned wells have been depressurized to the level that they pose no threat, now and 

in the future. These assumptions have proven not to be true and necessitates adequate 

attention and the development of a new method to address these concerns. 

Implementation. The integrated model is first implemented through cause-consequence 

relation accident scenarios within a bowtie building on the benefits of both fault tree and event 
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tree with the single undesired event at the pivot. These techniques have been adopted 

primarily to provide a preliminary insight into the safety critical accident contributory factors 

and eventually support the identification of key performance parameters, which served as the 

input parameters for the rest of the dynamic analysis, through importance measure. It is 

essential to point out that the conventional FT and ET have not been relied upon for 

computation in this study, instead they helped in capturing and envisaging the accident model 

formulation and then transformed into BN where analysis are conducted. However, the results 

presented in Chapter 7, Section 7.2 are merely to emphasise the credence of adopting the 

dynamic safety model because the conventional models under- and overestimated the results 

in areas where dependency ought to have sufficed.  

Application. The proposed methodology is applied to two different case studies to 

demonstrate its permanence and relevance to the scientific community and the industry. The 

capabilities of the noisy-OR, leaky noisy-OR, and imprecise leaky noisy-OR models are further 

tested with respect to dependency modelling among interacting causations. The noisy-OR 

model addressed the issues related to uncaptured hazard and returned a top event 

occurrence probability (0.2533) lower than that obtained through the FTA result (0.2835) 

based on standard OR-gate, making it a middle course between And- and OR logic gates. 

The leaky noisy-OR model addressed the concerns related to the occurrence of accident even 

though all causations are in their ‘zero’ states, a scenario quite common amongst rare 

accidents within the offshore and process industries. On the other hand, the imprecise leaky 

noisy-OR model accounted for the uncertainties associated with leaky probability value, 

assumptions related to the model formulation itself, and the parameter failure data . It is 

important to note that the leaky probability value, 0.05, was chosen arbitrarily instead of 

developing a correlation and regression model or design of experiment, either of which would 

considerably lengthen this thesis without added value, thus, should be a topic for further 

research. The leaky noisy-OR model estimated the top event occurrence probability (0.2960) 

higher than the OR-gate, indicating that appropriate dependency assumptions would further 
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enhance the accident prediction. The results obtained from the imprecise model is superior 

compared to all previously considered models. For example, the imprecise model returned 

both a lower-bound and an upper-bound occurrence probability [0.2377, 0.7226], indicating 

that real life accident models should be best represented in intervals to provide decision 

makers the flexibility to design safety thresholds within these limits. 

Case study I failure results. Following the demonstrated capabilities of all three noisy models 

within the BN, the noisy-OR model was selected to preserve consistency in the reported 

results across all analysis. One reason for this simplification is due to the amount of effort 

required to elicit the dependencies for complex interactions. For example, the imprecise model 

required 27 outcomes for denoting the interactions among three parent nodes, and the CPT 

would exponentially increase as the number of parent nodes increases. The Bayesian network 

arrangement for the permanent well abandonment case study was trained using the failure 

data obtained through HBA as prior probabilities to predict the top event failure, characterised 

by the leak of hydrocarbon to mudline, through a forward propagation analysis formalism. The 

model was also instantiated in a backward propagation analysis, subject to the availability of 

new evidence to diagnose causal events faults based on priori knowledge. The new failure 

results are then compared with the prior to obtain the most probable cause of failure. These 

predictive and diagnostic benefits make the BN especially suited to uncertainty modelling. 

Case study I sensitivity analysis. The sensitivity analysis incorporated the capability of the 

BN and its model prediction capability to learn from prior failure data to predict the future state 

of failure. Based on the Fussell-Vesely’s importance measure, the small incremental change 

between the prior (past) and posterior (updated) probabilities were collected and ranked in 

order of their significance. The parameters with higher significance were then selected as the 

key parameters , referred to as base case, to learn how responsive the leak to mudline is to 

changes in the parameters. The SA is an important step in the analysis to investigate and 

forecast varying conditions that may escalate the overall single failure. The base case model 

response for a single test , loss of barrier 𝐵6.1.2 , demonstrated that the forecasting precision 
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u to 21% was attained and significantly increased to 50% precision when combined with 

annulus barrier degradation 𝐵5.2. 

Case study II dynamic economic risk results. The dynamic ERA demonstrated the 

economic benefit of properly prioritising and managing safety risks within the selected Brent 

Alpha jacket removal accident model. The model formulation was based on the Brent Alpha 

decommissioning technical document from which accident scenarios were derived from the 

sequence of operation. The model results indicated that both low probability high 

consequence events and high probability high consequence events would eventually incur 

similar loss values over time due to the future money value affected by working interests and 

inflations, among other uncontrollable conditions. For example, by the end of the 10-year 

period following Asset Retirement Obligation to decommissioning, the economic risk of unfit 

structure node related failure would have rose to £917,764 whereas the grout deterioration 

with its perceived severity would have been £835,786. The dynamic ERA thrives on a multi-

factor regression analysis to estimate the cost of each activity as a function of their failure 

probability, market condition, and field-specific data. The ERA can be further improved by 

incorporating the dynamic safety model into a real-time monitoring device for field operation 

during decommissioning and abandonment. 

11.3 Recommendation for Future Research 

Based on the outcomes from summary of findings and observation of the limitations emanating 

from the research and development of the dynamic integrated safety analysis framework, the 

need for future research into improvement areas were noted. This further research areas will 

complement and build upon the accomplishments of present thesis to widen its scope and 

impact. These improvement areas are highlighted below. 

Accident model. Although platforms and oil and gas wells vary in their design, construction, 

and sizes, among other factors. However, a standardised and adaptable accident model 

should be developed that can be feed into and improved by the scientific community and the 
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industry through a one-size-fits-all flexible hazard identification methods to preserve the 

completeness and correctness of the accident scenarios model. 

Dependency elicitation. The specification of dependency among interacting events should 

be further investigated and improved to considerably reduce the amount of time needed to 

completely represent the accident model. 

Asset Retirement Obligation. The integration of Asset Retirement Obligation information into 

accident model could be explored to provide a practical means through which economic risks 

are evaluated. 

Experiential learning. Accident database containing real Accident Precursor Data obtained 

during decommissioning and abandonment operations could be invaluable to train the 

Bayesian networks. This would eliminate uncertainties related to data paucity and invalidates 

source-to-source variability. 

Safety culture. A comprehensive offshore decommissioning safety culture could be 

developed and consolidated with Accident Precursor Data trained within the dynamic safety 

model in a data-driven or simulated environment. 

Physical reliability model. In the absence of publicly available decommissioning-specific 

accident data, a physical reliability model based on accurate RUL estimation could be 

developed to and implemented in HBA to improve uncertainty associated with data. 

11.4 Review of Research Objectives 

The purpose of this thesis is to contribute to the current best practices, in theory and in 

parametric verification, of decommissioning and abandonment operations. Therefore, the 

discussion of the research objective effectiveness covered in this PhD thesis are provided 

below. 
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Objective (i): To identify gaps in the literature by examining the current state of knowledge 

related to offshore decommissioning and oil and gas well plugging and 

abandonment. 

This objective has been accomplished evidenced by the detailed analysis of earlier research 

conducted on the topic as was covered in Chapters 2-3. A comprehensive review of the 

literature spanned the regulatory bodies recommended practices, method for selecting 

decommissioning options, opportunities for reuse, processes, and the types of well plugging 

and abandonment operations including the critical nature of ensuring operational safety. The 

strengths of each safety risk methodology, their advantages and shortcomings have been 

scrutinised, from which the research gaps addressed in this present thesis were identified. 

The comparative assessment (CA) often used to justify the referred decommissioning and 

abandonment option have been discussed to rely only on static quantitative analysis and 

requirement for advanced method to capture real-time data based on dynamic safety model 

presented including the data paucity exacerbated by the limited availability of literature with 

respect to the development of safety models relating to the decommissioning industry. 

Objective (ii): To demonstrate the applicability and suitability of a gamma distribution function 

using Hierarchical Bayesian Analysis as a tool for estimation of failure data with 

95% confidence level. 

This objective was covered in Chapter 5. The challenges in the formulation of the Gamma and 

Weibull distributions were highlighted. The source-to-source variability concept was adopted 

to replicate typical accident data collected for the decommissioning operation as if it were 

analogous to existing industrial practice such as the mining, aerospace or nuclear. The same 

data was adopted to demonstrate the suitability of both methods from which Gamma 

distribution, due to its multi-level computation capability including its conjugate prior advantage 

yielded the better outcome. Therefore, this objective was considered accomplished, and the 

data formed the basis of input prior failure data for the remaining Chapters of the thesis. 

Objective (iii): To develop a safety analysis based on hierarchical Bayesian model to quantify 

the failure probabilities of offshore installations decommissioning operational 
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hazards and demonstrate the applicability of the proposed dynamic safety 

framework to permanent abandonment accidents. 

This objective was covered in Chapter 6. The capability and permanence of the advanced 

logics were demonstrated taking failure input data from the Hierarchical Bayesian Analysis 

presented in Chapter 5 to estimate the top event occurrence probability. The conditional 

probability table within the Bayesian networks were elicited to account for dependency among 

interacting causal events, uncertainty in modelling and assumptions, and the instantiation of 

the dynamic safety model to obtain failure probabilities that have comparable advantages over 

the conventional fault diagnosis quantitative models. 

Objective (iv): To develop a probabilistic risk analysis for offshore well plugging and 

abandonment operations built on advanced logic formalism to address the 

issues of uncertain reservoir conditions and limited failure data. 

This objective was addressed in Chapters 6 and 7. Chapter 6 laid the foundation for the safety 

modelling through the utilisation of advanced logics to relax the limitations of conventional fault 

tree and event tree analysis. In Chapter 7, the model was entirely solved using conventional 

FTA for accident modelling and ETA for consequence modelling with the primary aim of 

gaining insights into the causal events with the most probable cause of the top event which is 

measured by importance metrics. The events with higher important measures and those that 

would normally impact the model dynamically such as annulus barrier degradation over time 

were selected as performance parameters to learn the overall system response in the dynamic 

Bayesian networks in subsequent Chapters. These selections were based on the minimal cut 

sets, importance measures, and time-variant events. Therefore, this objective criterion is 

considered satisfied. 

Objective (v): To develop dynamic risk-based sensitivity analysis model that can be applied to 

each phase of decommissioning and abandonment operations subject to time-

dependent accident evolution.  

This objective was addressed in Chapter 8. A detailed sensitivity analysis was designed and 

analysed taking input data from a risk-based standpoint noted in objective (iv) where selection 
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of input data was based on minimal cut sets, importance measures, and time-dependent 

failure components, indicating that these input data were the most safety-critical and prioritised 

accordingly. Two sensitivity analysis scenarios were set up for investigating the degree of 

responsiveness of the model output to fractional changes in input data. Three sensitivity 

analysis were identified but the selection of scenarios sensitivity analysis (SSA) was justified 

by the cost impact of adopting a computationally intensive method. The SSA was carried out 

in a dynamic Bayesian network where the posterior probabilities for subsequent time slices 

are modelled using Monte Carlo simulation with the ‘what-if’ method for computing the 

conditional probabilities. For the single and two-parameter SSA conducted, the model 

responses were proportionate with the input data variations, although, the two-parameter 

achieved a higher performance of up to 50% compared to the 21% for single parameter. 

Therefore, this objective can be considered satisfied. 

Objective (vi): To develop a dynamic economic risk analysis based on multi-factor regression 

model and failure probability to forecast the future value of money in terms of 

loss values incurred from impact of failure. (Addressed in Chapter 9). 

This objective was covered in Chapter 9 by conducting a multi-factor regression analysis to 

empirically estimate decommissioning cost based on a field-specific design parameter. The 

economic risk of encountering a failure event is estimated as a loss value using a form of 

expected value analysis. The lack of public Asset Retirement Obligation documents or cost 

estimate database necessitated the adopted approach and proved to fall within range of the 

rough order of estimate contained in the Brent Alpha technical document. Through a dynamic-

diagnostic analysis, forecast of the future value of money was provided to give an insight into 

how the cost of removal would have changed from the time an asset is considered for 

decommissioning and the time it is removed, due to market conditions, inflation, and working 

interest, among other factors. Therefore, this objective can be considered satisfactory. 

Objective (vii): To summarise the main findings, concluding remarks from obtained results, 

research contribution, and propose potential outlook for further research. 
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This objective was covered in Chapters 10 and 11. The summary of findings emanating from 

this PhD thesis, the concluding remarks, and the research contribution to the current state of 

knowledge were provided in bold italics in the preceding Chapter. Following from the notable 

strengths, assumptions, and limitations drawn from the proposed methodology in this research 

work, a proposal for the potential outlook for further research was put forward. 

11.5 Summary 

In this Chapter, the summary of findings emanating from observed results from the dynamic 

safety model is discussed, followed by the recommendations for future research to broaden 

the scope and impact of the present thesis. The breakdown of procedures and trends in the 

observed results for tested case studies were provided. To supplement the details contained 

in the thesis for further reading, references and appendices are listed in the succeeding pages. 
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APPENDIX A: Weibull estimation in MATLAB 
 

%% Weibull Function 

clear all 
close all 
clc 
a = [-2.66384 -1.72326 -1.20202 -0.82167 -0.50860 -0.23007 0.03292 0.29903 

0.59398 0.99269]; 

 
b = [0 0 0.693147181 1.386294361 1.609437912 0.693147181 1.791759469 0 

1.098612289 2.708050201]; 

 
polyfit(a,b,1) 
grid on 

 

ans 

 
p\left(y\right)=\frac{\alpha}{\beta}\left(\frac{y}{\beta}\right)^{\alpha-

1}e^{-\left(\frac{y}{\beta}\right)^\alpha} 

 
 y = [2 0 0 0 1 6 2 3 0 5]; 

 
wblpdf(1.9,0.24748, 0.05494) 

  
k = (4.50455042)*((y/0.05494).^(-0.75252)).*exp(-y/0.05494).^(0.24748); 

  
k = 0.000567397024; 

  

 

  



248 
 

APPENDIX B: Experts Ranking 
 

While it is a common practice to add weighting factor to dataset to differentiate their relative 

importance, the weighting factor collected for each expert opinion was normalised and assume 

to carry equal weightage. This is weightage could not be incorporated within HBA model since 

the statistical formulation already accounted for multi-level aggregates and variations that exist 

among the datasets. 

Table A.0-1 Experts ranking for model and data validation 

Constituent Classification Rank Weighting Factor 

Position Senior academic, Manager, Lead 5 1 

 Senior, Intermediate Engineer 4 1 

 Junior academic, Junior Engineer 3 1 

 Technician 2 1 

 Artisan 1 1 

Experience ≥  30 years 5 1 

 20 − 29  4 1 

 10 − 19  3 1 

 4 − 9  2 1 

 < 3  1 1 

Education Doctorate (PhD, EngD etc.) 5 1 

 Masters (MSc, MEng, MPhil., etc.) 4 1 

 Bachelor (BSc, BASc, BEng, etc.) 3 1 

 Technical Diploma 2 1 

 Vocational Training 1 1 

Age ≥  50  4 1 

 40 − 49  3 1 

 30 − 39  2 1 

 < 30  1 1 
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APPENDIX C: Dataset for plugged and abandoned oil and gas wells 
 

##Wed Mar 22 13:00:37 2017 

##------------------------------------------------ 

##Hazard identification with risk factors ranking techniques 

##--------------------------------------------------------------------- 

## 

##by Ahmed Babaleye 

##https://data.mendeley.com/datasets/mz3khsphdb/1 

##--------------------------------------------------------------------- 

## 

# format number 

0 

# num of precursor data types 

2 

#hazid ranking for B1.1 

2.0 0.0 0.0 1.0 0.0 3.0 1.0 0.0 1.0 1.0 

#Elgin platform leak duration for each causations 

1.0 3.0 3.0 1.0 1.0 2.0 5.0 1.0 1.0 2.0 

# num of sources  

10.0  

#hazid ranking for B1.2 

2.0 0.0 1.0 0.0 0.0 4.0 1.0 0.0 1.0 1.0 

#Elgin platform leak duration for each causations 

1.0 3.0 3.0 1.0 1.0 2.0 5.0 1.0 1.0 2.0 

# num of sources  

10.0  

#hazid ranking for B2 

0.0 1.0 0.0 1.0 2.0 3.0 3.0 4.0 5.0 1.0 

#Elgin platform leak duration for each causations 

1.0 3.0 3.0 1.0 1.0 2.0 5.0 1.0 1.0 2.0 

# num of sources  

10.0  

#hazid ranking for B3.1 

1.0 0.0 3.0 1.0 0.0 0.0 1.0 0.0 0.0 7.0 

#Elgin platform leak duration for each causations 

https://data.mendeley.com/datasets/mz3khsphdb/1
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1.0 3.0 3.0 1.0 1.0 2.0 5.0 1.0 1.0 2.0 

# num of sources  

10.0   

#hazid ranking for B3.2.1 

1.0 0.0 0.0 1.0 0.0 3.0 0.0 0.0 2.0 0.0 

#Elgin platform leak duration for each causations 

1.0 3.0 3.0 1.0 1.0 2.0 5.0 1.0 1.0 2.0 

# num of sources  

10.0  

#hazid ranking for B3.2.2 

0.0 1.0 1.0 0.0 2.0 5.0 3.0 2.0 0.0 1.0 

#Elgin platform leak duration for each causations 

1.0 3.0 3.0 1.0 1.0 2.0 5.0 1.0 1.0 2.0 

# num of sources  

10.0  

#hazid ranking for B4 

1.0 1.0 2.0 3.0 3.0 0.0 4.0 0.0 5.0 7.0 

#Elgin platform leak duration for each causations 

1.0 3.0 3.0 1.0 1.0 2.0 5.0 1.0 1.0 2.0 

# num of sources  

10.0  

#hazid ranking for B5.1 

0.0 0.0 2.0 0.0 5.0 5.0 4.0 0.0 6.0 6.0 

#Elgin platform leak duration for each causations 

1.0 3.0 3.0 1.0 1.0 2.0 5.0 1.0 1.0 2.0 

# num of sources  

10.0  

#hazid ranking for B5.2 

3.0 1.0 0.0 5.0 0.0 0.0 2.0 0.0 1.0 1.0 

#Elgin platform leak duration for each causations 

1.0 3.0 3.0 1.0 1.0 2.0 5.0 1.0 1.0 2.0 

# num of sources  

10.0  

#hazid ranking for B6.1.1 

3.0 3.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 

#Elgin platform leak duration for each causations 

1.0 3.0 3.0 1.0 1.0 2.0 5.0 1.0 1.0 2.0 



251 
 

# num of sources  

10.0  

#hazid ranking for B6.1.2 

1.0 2.0 2.0 1.0 0.0 0.0 0.0 3.0 0.0 0.0 

#Elgin platform leak duration for each causations 

1.0 3.0 3.0 1.0 1.0 2.0 5.0 1.0 1.0 2.0 

# num of sources  

10.0  

#hazid ranking for B6.2 

3.0 1.0 0.0 5.0 0.0 0.0 2.0 0.0 1.0 1.0 

#Elgin platform leak duration for each causations 

1.0 3.0 3.0 1.0 1.0 2.0 5.0 1.0 1.0 2.0 

# num of sources  

10.0  

#hazid ranking for B7.1.1 

0.0 0.0 0.0 1.0 2.0 3.0 3.0 4.0 5.0 1.0 

#Elgin platform leak duration for each causations 

1.0 3.0 3.0 1.0 1.0 2.0 5.0 1.0 1.0 2.0 

# num of sources  

10.0 

#hazid ranking for B7.1.2 

8.0 1.0 0.0 1.0 10.0 3.0 3.0 0.0 0.0 1.0 

#Elgin platform leak duration for each causations 

1.0 3.0 3.0 1.0 1.0 2.0 5.0 1.0 1.0 2.0 

# num of sources  

10.0 

#hazid ranking for B7.2 

3.0 1.0 0.0 5.0 0.0 0.0 2.0 0.0 1.0 1.0 

#Elgin platform leak duration for each causations 

1.0 3.0 3.0 1.0 1.0 2.0 5.0 1.0 1.0 2.0 

# num of sources  

10.0 

#hazid ranking for hydrocarbon detection sensor (HDS) 

0.0 0.0 0.0 0.0 3.0 8.0 4.0 7.0 2.0 1.0 

#Elgin platform leak duration for each causations 

11.0 13.0 13.0 18.0 11.0 12.0 15.0 12.0 16.0 20.0 

# num of sources  
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10.0 

#hazid ranking for ignition prevention system (IPS) 

1.0 2.0 1.0 0.0 0.0 0.0 4.0 3.0 0.0 0.0 

#Elgin platform leak duration for each causations 

11.0 13.0 13.0 18.0 11.0 12.0 15.0 12.0 16.0 20.0 

# num of sources  

10.0 

#hazid ranking for flame arrestor system (FAS) 

1.0 0.0 1.0 0.0 0.0 1.0 4.0 0.0 0.0 0.0 

#Elgin platform leak duration for each causations 

11.0 13.0 13.0 18.0 11.0 12.0 15.0 12.0 16.0 20.0 

# num of sources  

10.0  

#hazid ranking for alarm and sprinkler system (AaS) 

0.0 2.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 

#Elgin platform leak duration for each causations 

11.0 13.0 13.0 18.0 11.0 12.0 15.0 12.0 16.0 20.0 

# num of sources  

10.0 

#hazid ranking for emergency evacuation system (EES) 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 

#Elgin platform leak duration for each causations 

11.0 13.0 13.0 18.0 11.0 12.0 15.0 12.0 16.0 20.0 

# num of sources  

10.0 
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APPENDIX D: Noisy-OR Code for Conditional Probability Table 
 

n = 10; 

y = rand(n,1); 

y_= -y; 

Y = [y,y_]; 

P1 = zeros(2^n,n); 

P2 = zeros(2^n,n); 

 

for m = 1:n 

 for k = 1:2^m 

  if (mod(k,2) > 0) 

   P1((k-1)*2^(n-m)+1:k*2^(n-m),m) = Y(m,1); 

  else 

   P1((k-1)*2^(n-m)+1:k*2^(n-m),m) = Y(m,2); 

  end 

 end 

end 

 

for k = 1:size(P1,1) 

 val = 1; 

 num = find(P1(k,:) > 0); 

 if (size(num,2) > 0) 

  for m = 1:size(num,2) 

   val = val*P1(k,num(m)); 

  end 

  P1(k,n+1) = val; 

 else 

  P1(k,n+1) = 0; 

 end 

 P1(k,n+2) = 1; 

end 

 

for m = 1:n 

 for k = 1:2^m 

  if (mod(k,2) > 0) 



254 
 

   P2((k-1)*2^(n-m)+1:k*2^(n-m),m) = 1-Y(m,1); 

  else 

   P2((k-1)*2^(n-m)+1:k*2^(n-m),m) = Y(m,2); 

  end 

 end 

end 

 

for k = 1:size(P2,1) 

 val = 1; 

 num = find(P2(k,:) > 0); 

 if (size(num,2) > 0) 

  for m = 1:size(num,2) 

   val = val*P2(k,num(m)); 

  end 

  P2(k,n+1) = val; 

 else 

  P2(k,n+1) = 0; 

 end 

 P2(k,n+2) = 0; 

end 

 

P=[P1;P2]; 
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APPENDIX E: Data cleaning for elicitation in MATLAB 
 

Y = [dataset]; 

P = [conditional probabilities]; %defined on script 

n = size(Y,2); 

K1 = zeros(2^(size(Y,2)-1),size(Y,2)); 

K2 = zeros(2^(size(Y,2)-1),size(Y,2)); 

for m = 1:n 

 for k = 1:2^(m-1) 

  if (mod(k,2) > 0) 

   K1((k-1)*2^(n-m)+1:k*2^(n-m),m) = Y(1,m); 

  else 

   K1((k-1)*2^(n-m)+1:k*2^(n-m),m) = 1-Y(1,m); 

  end 

 end 

end 

for m = 1:n 

 for k = 1:2^(m-1) 

  if (mod(k,2) > 0) 

   K2((k-1)*2^(n-m)+1:k*2^(n-m),m) = 1-Y(1,m); 

  else 

   K2((k-1)*2^(n-m)+1:k*2^(n-m),m) = Y(1,m); 

  end 

 end 

end 

K = [K2;K1]; 

for k = 1:size(K,1) 

 C_pt(k,1) = K(k,1)*K(k,2)*K(k,3)*P(k,1); 

end 
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APPENDIX F: Sensitivity Analysis (Backward direction) 
 

 

Table B.0-1 N-OR model sensitivity analysis output for a 10-yr run 

Years  𝑏𝑐  𝑏𝑐 − 10%  𝑏𝑐 − 20%  𝑏𝑐 − 30%  𝑏𝑐 − 40%  𝑏𝑐 − 50% 

0-1 0.2536 0.2611 0.2746 0.2851 0.2956 0.3062 

1-2 0.2544 0.2645 0.2768 0.2855 0.2957 0.3086 

2-3 0.2594 0.2689 0.2795 0.2900 0.2965 0.3092 

3-4 0.2659 0.2717 0.2807 0.2909 0.3023 0.3124 

4-5 0.2773 0.2845 0.2904 0.3048 0.3093 0.3158 

5-6 0.2867 0.2986 0.3072 0.3122 0.3168 0.3273 

6-7 0.2907 0.3039 0.3117 0.3222 0.3402 0.3507 

7-8 0.2981 0.3113 0.3191 0.3297 0.3476 0.3581 

8-9 0.3055 0.3187 0.3266 0.3371 0.3550 0.3655 

9-10 0.3130 0.3262 0.3340 0.3445 0.3624 0.3730 

10+ 0.3204 0.3336 0.3414 0.3519 0.3699 0.3804 
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APPENDIX G: Failure probability results for PA well causations 
 

The mean probability distributions of all causations for the well plugging and abandonment 

data from analogous sources based on source-to-source variability. 
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Figure A.0-1 Mean probability distribution for PA well causations 
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APPENDIX H: Accident Precursor Data for PA well safety barriers 
 

Table C.0-1 Safety barriers APD for well plugging and abandonment 

Source Demands 
(𝑁𝑖) 

HDS IPS FAS AaS EES 

1 11 - 1 1 - - 

2 13 - 2 - 2 - 

3 13 - 1 1 - - 

4 18 - - - 1 - 

5 11 3 - - - - 

6 12 8 - 1 - - 

7 15 4 4 4 - - 

8 12 7 3 - - - 

9 16 2 - - - - 

10 20 1 - - - 1 

 

 

Figure B.0-1 Mean probability distributions for PA well safety barriers 
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APPENDIX I: Failure probability results for all SPJ causations 
 

Failure probability of steel piles jacket causations obtained from Hierarchical Bayesian 

Analysis as mean distributions. 
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Figure C.0-1 Mean probability distribution of steel piled jacket 
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APPENDIX J: Dataset for steel piled jacket removal hazards 
 

Table D.0-1 Primary events source-to-source failure data. 

Causation Failure Description 

Source 1 2 3 4 5 6 7 8 9 10 

Demand 
[𝑁𝑖] 

14 21 13 14 15 26 17 11 19 20 

𝑥1 
Unknown residual 

stress 
 0 1 2 2 3 4 5 5 5 7 

𝑥2 
Unknown residual 

fatigue life 
 0 0 0 3 3 1 6 7 7 5 

𝑥3 Fatigue failure  0 2 3 3 3 4 4 0 0 8 

𝑥4 Lifting node failure  5 2 0 0 0 4 2 5 3 1 

𝑥5 Bulk explosion  2 3 1 2 2 5 5 1 4 4 

𝑥6 Uneven loading  3 7 4 6 0 4 0 5 0 3 

𝑥7 Structural failure  7 6 6 0 4 2 0 4 3 6 

𝑥8 Incorrect operation  7 1 2 1 0 0 4 3 2 2 

𝑥9 
Barge operational 

failure 
 4 0 4 0 0 1 5 3 3 5 

𝑥10 Crane/barge overload  7 1 0 0 6 0 5 3 0 1 

𝑥11 Barge collision/drift  0 1 0 0 6 1 2 6 1 3 

𝑥12 External thinning  0 0 0 0 1 1 2 3 2 5 

𝑥13 
Hidden flaws/crack 

defects 
 2 2 1 2 1 3 1 1 2 7 

𝑥14 Flooding  8 5 8 1 3 3 1 0 4 9 

𝑥15 Grouting impact on lift  6 1 5 3 1 0 3 1 1 7 

𝑥16 Internal thinning  0 2 4 4 2 4 5 0 2 5 

𝑥17 Corrosion thinning  1 2 2 3 4 5 1 0 1 6 

𝑥18 Miscalculation of CoG  4 3 4 2 0 3 2 5 1 6 

𝑥19 External cut  1 0 0 5 0 1 2 2 3 3 

𝑥20 Internal cut  5 2 4 1 1 2 2 2 0 5 

𝑥21 Stuck pipe  1 5 2 0 3 3 4 1 6 5 

𝑥22 misalignment of CoB  2 1 3 1 1 2 0 3 6 8 

𝑥23 Ungrouted condition  2 1 0 0 3 1 4 1 2 6 

𝑥24 Grout deteriorates  3 3 1 4 2 5 1 1 0 4 

𝑥25 Residual anode wt.  0 0 3 3 1 7 4 2 1 6 

𝑥26 Marine growth  4 3 1 5 2 5 0 1 3 1 

𝑥27 Jammed cutter  0 2 2 1 2 3 2 3 1 1 

𝑥28 Cutting procedure  3 2 4 4 2 4 5 0 2 2 

𝑥29 Drill cutting debris  0 2 1 0 3 1 4 3 4 5 

𝑥30 Cutting time error  0 1 0 2 3 4 2 1 0 7 

𝑥31 Flooded member(s)  1 1 4 1 5 3 6 1 1 6 

𝑥32 Uneven flooding  2 3 3 1 4 2 5 1 1 9 
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APPENDIX K: Probability updating with new evidence 
 

Table E.0-1 Updated probability of causations with new evidence. 

Causation 
Current knowledge  New evidence 

Probability 
Ratio 

Prior probability Posterior Probability Prior Probability Posterior Probability 

𝑥1 0.0682 0.0649  0.0590 0.0587 0.99 

𝑥2 0.0804 0.0766  0.0708 0.0693 0.98 

𝑥3 0.0889 0.0889  0.0803 0.0805 1.00 

𝑥4 0.0412 0.0411  0.0371 0.0370 1.00 

𝑥5 0.0517 0.0521  0.0512 0.0511 1.00 

𝑥6 0.0807 0.0805  0.0725 0.0724 1.00 

𝑥7 0.0659 0.0657  0.0592 0.0594 1.00 

𝑥8 0.0317 0.0319  0.0286 0.0287 1.00 

𝑥9 0.0436 0.0432  0.0391 0.0389 1.00 

𝑥10 0.0570 0.0548  0.0503 0.0493 0.98 

𝑥11 0.0335 0.0322  0.0296 0.0290 0.98 

𝑥12 0.0328 0.0315  0.0289 0.0283 0.98 

𝑥13 0.0556 0.0534  0.0490 0.0481 0.98 

𝑥14 0.1066 0.1030  0.0943 0.0926 0.98 

𝑥15 0.0628 0.0606  0.0555 0.0545 0.98 

𝑥16 0.0472 0.0472  0.0425 0.0425 1.00 

𝑥17 0.0687 0.0687  0.0619 0.0620 1.00 

𝑥18 0.0389 0.0391  0.0350 0.0351 1.00 

𝑥19 0.0240 0.0239  0.0216 0.0220 1.02 

𝑥20 0.0310 0.0310  0.0279 0.0279 1.00 

𝑥21 0.0626 0.0626  0.0563 0.0563 1.00 

𝑥22 0.0880 0.0897  0.0792 0.0799 1.01 

𝑥23 0.0453 0.0455  0.0408 0.0410 1.00 
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𝑥24 0.0543 0.0543  0.0489 0.0490 1.00 

𝑥25 0.1184 0.1185  0.1069 0.1071 1.00 

𝑥26 0.0519 0.0520  0.0468 0.0469 1.00 

𝑥27 0.0149 0.0160  0.0140 0.0145 1.04 

𝑥28 0.0434 0.0464  0.0406 0.0421 1.04 

𝑥29 0.0380 0.0408  0.0356 0.0370 1.04 

𝑥30 0.0779 0.0834  0.0729 0.0756 1.04 

𝑥31 0.0574 0.0585  0.0524 0.1111 2.12 

𝑥32 0.0866 0.0882  0.0790 0.1699 2.05 
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APPENDIX L: Capsize/Descent diagnosis in Bayesian network 
 

Diagnosis of a system level fault defined by capsize or descent failure of the lifting vessel during 

decommissioning of the steel piled jacket. 

 

Figure D.0-1 Backward propagation analysis for steel piled jacket removal 
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APPENDIX M: Multi-factor Regression Analysis for SPJ Removal 
 

Table F.0-1 Regression analysis results for steel piled jacket 

𝒅𝒘  𝒏𝒍,𝒑,𝒄 𝑱𝑹𝑪 

90 30 5.20E+06 

120 38 7.80E+06 

128 40 8.20E+06 

130 52 9.80E+06 

135 60 1.52E+07 

140 80 1.60E+07 

145 84 1.64E+07 

148 90 1.64E+07 

162 96 1.71E+07 

165 102 1.78E+07 

   

SUMMARY OUTPUT      

       

Regression Statistics      

Multiple R 0.957223019      

R Square 0.916275909      
Adjusted R 
Square 0.89235474      

Standard Error 1538773.845      

Observations 10      

       

ANOVA       

  df SS MS F Significance F  
Regression 2 1.81394E+14 9.07E+13 38.30398 0.000169815  
Residual 7 1.65748E+13 2.37E+12    

Total 9 1.97969E+14        

       

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% 

Intercept -1524795.188 5305935.696 -0.28738 0.782146 -14071339.4 11021749.04 

𝑑𝑤   36317.49192 59816.81077 0.607145 0.562922 -105126.789 177761.7733 

𝑛𝑙,𝑝,𝑐 142332.1583 49149.28886 2.895915 0.02312 26112.55792 258551.7587 
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APPENDIX N: Multi-factor Regression Analysis for Conductor 
Severance 
 

Table G.0-1 Regression analysis results for conductor 

𝒅𝒘  𝒏𝒄 𝑪𝑺𝑪 

90 30 0.20E+05 

120 38 0.40E+05 

128 40 0.50E+05 

130 52 0.90E+05 

135 60 1.20E+06 

140 80 1.50E+06 

145 84 1.70E+06 

148 90 2.30E+06 

162 96 3.20E+06 

165 102 4.40E+06 

 

 


