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Abstract 

 

This thesis reports on the design and development of a prototype condition monitoring 

system. The prototype system was developed for British Energy to assist the Rotating 

Plant and Dynamics Team in assessing the routine alarms triggered by their on-line 

condition monitoring system which continually monitor their turbine generators. The 

prototype comprises of two distinct modules. The first module is a Rule-Based Expert 

System which assesses the routine alarms using knowledge captured from the condition 

monitoring experts within the Rotating Plant and Dynamics Team. A Rule-Based Expert 

System approach was chosen so that there was a clear and transparent explanation 

provided with each assessment which allows the expert user to verify the result through 

following the assessment rationale. The second module is a learning assistant which was 

developed to assist the experts and knowledge elicitation engineer in capturing the 

explicit rule based knowledge used by a Rule-Based Expert Systems. This module uses a 

novel adapted version of the Machine Learning (ML) approach, Explanation Based 

Generalisation (EBG), to help derive knowledge from single training example and 

background causal behavioural knowledge of the turbine generator. This thesis outlines 

the rationale behind the selection of these approaches for the prototype system 

developed through a review of both Artificial Intelligence (AI) and ML approaches. A 

detailed description of the design approach and system architecture is given for both 

modules and a comprehensive review of the performance of both modules based on the 

results of system testing on genuine case study data is presented.  
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Chapter 1 

 
1 Introduction 

 

1.1 Introduction to Research 

 
Condition monitoring approaches are being employed more regularly within industrial 

applications to assist in asset management of strategically important equipment 

[Awadallah & Morcos, 2003], [Han & Song, 2003a] and [Cauvin et al, 1998]. The need 

for improved reliability and plant lifetime extension is particularly prevalent in sectors 

which are faced with the challenge of ageing infrastructure. One area in particular, 

which is heavily reliant on an ageing infrastructure largely built in the 1960’s, is the 

electrical utility and generation sector. Strategic assets such as transformers, generators, 

nuclear reactors, circuit breakers and switchboards are approaching or have already 

passed their expected design lifetime. With a growing energy demand and reduced 

personnel to operate and maintain such systems, companies are exploring more and 

more approaches to effectively and efficiently manage their assets. One company which 

has such aspirations and is actively exploring approaches to more effectively manage 

their most strategically important assets is British Energy. 

 

Significant emphasis is placed on the condition monitoring of turbine generators at each 

of British Energy’s nuclear power stations within the UK. A core team of condition 

monitoring experts continually assess the behaviour of each turbine generator. This 

assessment is achieved by analysing key signals captured from transducers on the 

turbine generator sets which when correctly interpreted can indicate how the equipment 

is behaving. Beran monitoring systems as described in section 2.2 have been installed in 

each station to capture and feedback the raw transducer data to the condition monitoring 

experts for inspection. Typical signals captured by the Beran system from the 

transducers are operational parameters such as load, rotor current, temperature etc along 

with eccentricity and vibration measurements. Alarm limits are set within the Beran 

system by the condition monitoring experts to continually monitor important signals 
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which can indicate a change in equipment behaviour. The purpose of the alarms are to 

alert staff to a potential behavioural change on the turbine generator which may 

constitute a problem which requires further investigation. Therefore, it is the job of the 

condition monitoring expert to diagnose the cause of the alarm and from this determine 

if it constitutes a problem and/or determine any remedial actions which must be taken in 

relation to the assessment. All of the alarms triggered by the Beran system are audited 

by an external body on a quarterly basis to ensure that all events occurring on the turbine 

are being thoroughly and accurately assessed. Advanced signal processing tools such as 

FFT’s and magnitude and phase plots are provided by the Beran system which allow 

experts to view the data in various representations which assist in determining the alarm 

cause and can provide more detail to the assessment.  

 

A problem associated with this approach is that the large volume of condition 

monitoring data required to assess each alarm can greatly intensify the workload of the 

relatively few experts qualified to interpret the data when many alarms are triggered. 

This problem is compounded in instances where the alarm is triggered but has no further 

operational consequence hence providing little or no information on the equipment 

behaviour. This research aims to support British Energy by creating novel data analysis 

and learning methods leading to an automated system to reduce the burden of analysis 

currently imposed upon the small team of turbine generator condition monitoring 

experts. The system also aims to standardise the analysis approach over all of the British 

Energy locations throughout the UK to provide consistent and accurate assessments for 

the external quarterly audits. In a strategically important application such as this it is 

important that the users build confidence in such a system. For this reason a significant 

emphasis has been placed on the explanation provided by the system’s reporting facility. 

Rule-Based Expert System technology has been chosen specifically due to its ability to 

provide a clear and logical rationale through its explicit knowledge base. An additional 

benefit for choosing such an approach was the opportunity to capture the knowledge of a 

small number of turbine generator condition monitoring experts within British Energy. 

Acquiring the domain knowledge for the system’s knowledge base during the 
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development stage of the Rule-Based Expert System was an intensive and time 

consuming process, taking key personnel out of daily duties while it happened. 

Therefore a learning module was also developed during the course of the project to 

assist the experts in deriving explicit heuristic knowledge to improve the performance of 

the Rule-Based Expert System. The Explanation Based Generalisation (EBG) approach, 

which the learning module is based upon, was selected due to its compatibility with the 

learning problem encountered in this type of domain in that there is access to relatively 

few training examples but a multitude of domain knowledge exists. 

 

In terms of the novelty of the research undertaken, three primary contributions can be 

identified: 

 

! Augmentation of the existing condition monitoring approach through the 

introduction of intelligent automated processing. 

The application of the Rule-Based Expert System developed for this project is 

novel. The system had to augment a well established approach to turbine 

generator condition monitoring within British energy. It had to be designed to 

interface with the existing condition monitoring system and provide the British 

Energy experts with the well defined information required for them to perform 

their assessment. 

 

! Novel use of graphical approaches to provide explanation of Rule-Based 

Expert System rationale. 

Central to the ethos of the Rule-Based Expert System design was the 

effectiveness of how the assessment explanation was fed back to the user. In 

addition to the use of rule-based explanation, novel approaches to graphically 

highlight features used within the assessment have been incorporated into the 

developed prototype to assist the user during verification. 
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! Novel semi-autonomous approach to diagnostic condition monitoring 

knowledge derivation. 

The learning module developed to assist in deriving explicit heuristic knowledge 

for the Rule-Based Expert System is novel in both its approach and application. 

The learning module designed and developed uses an adapted approach of EBG 

that utilises causal fault and behavioural models. The module aims to reduce the 

burden associated with capturing knowledge for Rule-Based Expert System 

applications. 

 

1.2 Thesis Outline 

 

Chapter 2 outlines the area of research covered in this thesis namely condition 

monitoring. A general overview of why condition monitoring is applied in many 

industrial applications and the various approaches employed in different applications are 

discussed. In addition a detailed description is given of the turbine generator condition 

monitoring system used within all British Energy locations throughout the UK, which is 

the Beran monitoring system. Chapter 3 reviews the area of AI. The first part of the 

chapter focuses on the 3 approaches, Rule-Based Expert Systems, Artificial Neural 

Networks (ANNs) and Model-Based Diagnosis (MBD), commonly used within 

diagnostic tasks. The second part of the chapter gives an overview of the Machine 

Learning (ML) domain and reviews approaches such as analytical learning, rule 

induction, Case Based Reasoning (CBR), Bayesian approaches and Hidden Markov 

Models (HMMs). Chapter 4 describes in detail the Rule-Based Expert System designed 

and implemented for British Energy. This includes a review of the knowledge 

engineering approach used to capture and document the expert knowledge, an in-depth 

description of the final design and an assessment of how the prototype performed in 

assessing genuine historical alarms from the Beran system. Chapter 5 reviews in detail 

the learning module developed for British Energy. This includes a full description of the 

causal knowledge modelling approach developed specifically for this project, the novel 
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approach developed for the module and its performance when tested on historical case 

studies of genuine faults which occurred on British Energy turbine generator sets. 

Chapter 6 details the conclusions and contributions from the research and outlines areas 

of further work that can be undertaken as an extension to this research. 
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Chapter 2 

 
2 Condition Monitoring 

 

2.1 Condition Monitoring Applications 

 
Condition monitoring is a commonly used approach within a wide range of sectors to 

allow organisations to more effectively manage their assets. The approach relies upon 

access to some form of data which can either directly or indirectly infer some condition 

or behaviour of the equipment being analysed. From this the asset owner can make a 

more informed decision on how the equipment should be effectively operated or 

maintained based on its predicted state. In practice it has been employed to assist in the 

monitoring of expensive or strategically important assets to plan maintenance outages, 

make operational adjustments based on the predicted condition and determine fault 

locations. Condition monitoring is used in cases where an accurate assessment of 

components central to the operation of strategically important or expensive plant items is 

difficult to achieve through direct human inspection. Therefore an important aspect of 

most condition monitoring approaches is that they are non-intrusive and don’t require an 

interruption of the equipment’s normal operation. 

 

There are a wide range of applications where condition monitoring approaches have 

been applied over numerous sectors. Factors which influence the deployment of 

condition monitoring approaches are the cost of implementation versus the return on 

reduced maintenance costs and/or increased production. Generally a significant 

emphasis is placed on the monitoring of larger and more expensive items such as large 

turbine generators, transformers and reactor cores. The condition monitoring of large 

turbine generators historically relies on the monitoring of alarms generated from the 

continuous monitoring of equipment parameters such as vibration, steam temperature 

and operational parameters such as load [Cauvin et al, 1998 and Gonzalez et al, 1986]. 

These parameters are normally measured through transducers positioned at strategically 
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important positions on the equipment. How the data is interpreted is dependent on the 

sophistication of the condition monitoring approach itself. The most basic approach 

would be for an alarm to trigger based on the absolute value of some measured 

parameter. This alerts the operator to some anomaly on the system so that an analysis of 

the condition of the equipment can be performed based on the various parameters at his 

or her disposal. The analysis could be performed on the absolute values of the 

parameters captured but more sophisticated approaches exist which are able to dissect 

these parameters in an attempt to extract more information from the raw data signals, 

particularly from the vibration signals. A commonly used approach would be to dissect 

the vibration into individual frequency components through the use of an FFT [Lynn & 

Fuerst, 1998]. This can allow common behaviours or fault types to be diagnosed based 

on the predominant frequency components normally associated with those behaviours. 

One such turbine generator condition monitoring system which has incorporated an FFT 

analysis tool is the Beran system which is described in detail in section 2.2. The analysis 

of temperature is largely based on expected operating temperature and any deviations 

from that which may indicate a particular behaviour or problem. Another common data 

type used to monitor generators in particular is the electrical data derived from the 

generating equipment. One simple approach is to match the power output of the 

generator against the input power to the turbines. This must take into consideration the 

designed operating characteristics of the equipment itself such as the efficiency of the 

turbine and generator. A difference in the expected performance against the actual 

performance may indicate some form of problem which has to be further investigated to 

determine its cause. More sophisticated forms of analysing electrical data exist where 

the signal is dissected into individual frequency components using an FFT. This is a 

similar approach to that applied to vibration signals in order to uncover underlying 

behaviours which are not apparent in the raw signal. The name given to this analysis is 

Current Signature Analysis (CSA) [Royo & Arcega, 2007]. No examples could be found 

of the CSA approach being applied to large turbine generator sets but an example of it 

being applied to squirrel cage wind turbine generators is given in [Royo & Arcega, 

2007]. Here the authors demonstrated that through analysing the frequency spectrum of 
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the current signals broken rotor bars, turn to turn stator faults and bearing damage could 

be detected. 

 

Electrical transformers found within the distribution network and to a lesser extent 

within industrial facilities are another type of high cost and strategically important 

device which are commonly the subject of condition monitoring procedures. One widely 

adopted condition monitoring approach used to determine the condition of the device’s 

insulation, both paper and oil, is Disolved Gas Analysis (DGA) [CIGRE, 2003]. DGA is 

an approach where oil samples are taken from the insulating oil of a transformer and 

then chemically analysed to determine whether the internal insulation is of a good 

condition. Among some of the conditions, which can be identified through DGA, are 

high levels of water within the oil insulation itself which can significantly impact on the 

dielectric strength of the device. DGA can also identify breakdown in the paper 

insulation through the identification of a high Degree of Polymerisation (DP) in the 

given oil sample. This measures the level of degradation in the cellulose by interpreting 

the generation of Furans in the oil [CIGRE, 2003]. The presence of high DP can also be 

used to indicate that partial discharge or arcing, which are common modes of 

transformer failure, are taking place [CIGRE, 2003]. Another approach for detecting 

partial discharge within transformers is through the use of Ultra High Frequency (UHF) 

signals [Judd et al, 2002]. UHF signals are captured via probes positioned externally on 

the transformer body. The signals are captured and then processed through advanced 

signal processing approaches to produce a spectra. Highly skilled personnel are then able 

to analyse this spectra to identify the presence of any partial discharge activity within the 

transformer. Systems have also been developed to automate the interpretation of the 

UHF signals such as COMMAS [McArthur et al, 2004]. 

 

Another important, expensive plant item where methods of condition monitoring are 

becoming more common is the reactor core used to house the radioactive material within 

nuclear power stations [West et al, 2006]. The life of the reactor core essentially 

determines the life of the nuclear power plant. The importance of such an item is 
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twofold due to the implications associated with lost revenue during unplanned downtime 

and perhaps more importantly the risk to human life and environment if such a piece of 

infrastructure were to catastrophically fail. A type of degradation is the cracking of the 

graphite bricks which comprise the reactor core. One of the more traditional approaches 

used to monitor and diagnose such deficiencies is through visual inspections via cameras 

which are fed down the refuelling tubes embedded within the reactor but this can only be 

performed during equipment outages. A more advanced approach to detecting the same 

type of deficiency is to capture and analyse the variations in frictional pull exerted by the 

pulley system otherwise known as a Fuel Grab Load Trace (FGLT) when refuelling the 

core [West et al, 2006]. Variations in frictional pull can be used to identify areas where 

the refuelling cylinder is not uniform, which in turn indicates some form of deformity in 

the core. The main cause of these deformities is cracking of the graphite bricks.  

 

The nuclear reactor core application described above is a good example of where 

existing data is re-used for the purposes of condition monitoring. This is in contrast to 

the transformer and turbine generator applications where sensing equipment is installed 

specifically for condition monitoring purposes. A result of installing sensing equipment 

specifically for condition monitoring purposes is the increase in cost. As a result, 

condition monitoring has traditionally been applied to equipment which has a high 

enough cost, or is strategically important to the company’s business needs, to merit the 

high cost of implementing such approaches. There are, however, condition monitoring 

approaches which utilise some form of data which already exist as a by-product of the 

operation or maintenance of the equipment such as the FGLT described above. A good 

example of this type of application is the condition monitoring of induction motors 

through CSA [Thomson & Fenger, 2001] & [Culbert & Rohdes, 2007]. CSA has been 

applied to induction motors to monitor their electrical and mechanical behaviour. The 

approach dissects the motor current signal using FFTs to determine their frequency 

distribution. The frequency distribution can then be interpreted to determine if the motor 

is exhibiting any degraded and/or faulty behaviour. One of the main benefits of this type 

of approach is that, with the exception of the device which captures and processes the 
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current signals, there needs to be no installation of any additional transducers which can 

be expensive. The current drawn by the motor is accessible from the starter cubicle 

within the supplying substation meaning that monitoring devices such as these are 

relatively cheap and easy to install. The ability to install cheaper devices on less 

expensive but larger volumes of equipment provides the potential to increase the 

efficiency of plant wide processes further by introducing more condition based 

maintenance plans for parts of the process which were traditionally left to routine 

maintenance schedules.  

 

One of the primary benefits of using condition monitoring to assess plant equipment is 

that it allows companies to move from a routine based maintenance schedule, whereby 

outages are planned based on the time elapsed since the previous shutdown, to a 

schedule based on the condition or performance of the equipment. The advantage of this 

is that the cost of an outage is only incurred when some form of maintenance is required. 

The business can have parts which have long lead times ordered in advance so that the 

outage is not extended anymore than it needs to be. The net effect is a reduction in 

maintenance costs where the outage is planned and where there is prior knowledge of 

problems present on the equipment. In addition, the safety of employees, customers and 

the public is increased where operators have a better understanding of the condition of 

the equipment being operated. 

 

A consequence of the growing need for sophisticated forms of condition monitoring is 

the increased workload placed upon company experts to analyse and interpret the data 

produced by these approaches. Much work has been done to help minimise the effort 

required to assess this data using automated systems. Automated systems exist which 

assist humans in some form to help monitor the condition of equipment or systems. At 

the lowest level are systems which continually monitor raw data signals and trigger an 

alarm or warning when pre-defined limits are breached, eliminating the need for 

continuous human monitoring of the raw data streams. A level up from this is provided 

by packages which in addition to triggering alarms provide the user with advanced 
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processing tools which allow the raw sensor data to be viewed in various formats. The 

additional information made available by these techniques enables the operator to 

uncover events which otherwise may not have been found using only the raw data. 

 

British Energy is a company that is affected by the problem of having to process ever 

increasing volumes of data collected by various condition monitoring approaches. One 

division within the company which is particularly affected by this problem is the 

Rotating Plant and Dynamics Team which is responsible for the safe operation and 

maintenance of some of British Energy’s most strategically important assets, such as the 

16 turbine generator sets throughout its eight UK nuclear power locations. The rotating 

plant team has developed a process for the condition monitoring of its turbine generators 

to help standardise the approach employed by each team member, who is responsible for 

his/her own particular location within the UK. The process developed has only been 

made possible by the installation of an on-line condition monitoring system (the Beran 

system) which is fully described in the following section. 

 

2.2 Beran System 

 

The online condition monitoring system used by British Energy to monitor their turbine 

generators is developed by Beran Instruments Limited and is referred to within British 

Energy and throughout this thesis as the Beran system. The specific version used 

throughout all of British Energy’s locations is the Beran 766. The Beran system is an 

online condition monitoring tool which can be used for the analysis of any type of 

rotating equipment providing there is access to raw data signals. The Beran system 

captures raw data from transducers positioned on the equipment to allow condition 

monitoring experts to analyse and interpret the signals both in real time or 

retrospectively. Typical signals captured by the Beran system from the transducers are 

operational parameters such as voltage, stator current, rotor current, steam and bearing 

temperatures along with eccentricity and vibration measurements. From this the system 
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can infer useful parameters such as the system load components such as the real, reactive 

and apparent power. The Beran system is able to dissect the overall vibration signals into 

vectors which specify the behaviour of the magnitude and phase of each harmonic. A 

first order vibration would imply that it occurs once every cycle, i.e. the fundamental 

frequency or first harmonic. Therefore for a turbine rotating at the rate of 3000rpm, first 

order vibration would be at a frequency of 50Hz. Similarly a second order vibration, or 

second harmonic, would occur at twice the frequency of the first order, therefore in this 

instance occurring at a rate of 100Hz. The orders of vibration are each identified by two 

parameters. These are magnitude and phase. The magnitude parameter as the name 

implies represents the peak to peak amplitude of the vibration signal. In addition to this 

the phase angle, that is the value by which the signal is leading or lagging the keyway 

reference point on the rotor shaft, is also specified.  

 

Alarm limits can be set to monitor the value of any of the parameters monitored by the 

system. These can be parameters measured directly by the system, such as absolute 

vibration levels, steam or bearing temperatures. Alarm limits can also be set to monitor 

derived parameters such as first and second order vibration magnitude and phase, 

generator load, reactive loads etc. The system allows each of the monitored parameters 

to be defined as either an alert or an alarm. Alarms are normally parameters which are of 

greater importance than alerts and therefore require immediate investigation if triggered. 

For example, an alarm may be set to trigger when a critical level of vibration, which 

may impact on the safe operation of the equipment, if reached. Alerts can be set for less 

critical parameters which may indicate a change in equipment behaviour but may not 

necessarily represent a critical state. For example changes in first and second order 

magnitude and phase can indicate a change in behaviour without the equipment reaching 

a state which impacts on the safe operation of equipment. Therefore, such parameters are 

typically set to alerts, so that the experts are made aware to further investigate the cause 

of such changes. The Beran system indicates any alarms or alerts which have occurred 

on the system in a grid format as shown in figure 2.1. The alarm status and alarm display 

screen given in figure 2.1 indicates that there are two alerts active on the monitored 
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equipment. Both of the alerts are on the order 1 parameter which is either the first order 

vibration magnitude or phase of the rotating equipment on both channels 8 and 10. All 

alerts are highlighted in yellow. There are no alarms in this example which are 

highlighted in red. If the parameter is coloured green then this indicates that there is 

neither an alarm or alert present. 

 

 

Figure 2.1: Alarm status and alarm display screen captured from the Beran on-line condition 

monitoring system. 

 

The Beran system provides numerous signal processing tools to allow condition 

monitoring experts to investigate the cause of any alarms or alerts present on any of the 

channels. One of the signal processing tools provided by the Beran system is the ability 

to plot any of the measured signals in time series. Any signal from any channel can be 

selected and the time period over which the signal is viewed is specified. An example of 

the time series plot is given in figure 2.2. 

 

In this example the overall vibration amplitude and first and second order magnitude and 

phase for channel 8 has been plotted. The data has been plotted over a period of an hour 

on 08/06/04. The data can be viewed in two different resolutions. The highest resolution 

is where a sample is captured every 5 seconds over a period of an hour. This type of data 
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is referred to as buffer data and is only captured when an alarm or alert is activated. The 

higher resolution data is captured 30 minutes before and after the alarm triggering. This 

is achieved by a rolling buffer, where the system continually saves 30 minutes worth of 

high resolution data. Therefore, when an alarm is triggered, the 30 minutes worth of data 

contained in the rolling buffer is saved to memory in addition to a further 30 minutes 

worth of high resolution data following the alarm. The time series data plots given in 

figure 2.2 are examples of the buffer data type. The other type of time series data 

available is of a lower 10 minute sample rate resolution. This type of data is constantly 

saved to the hard disk therefore the period can be defined over any date and time the 

system has been operational. 

 

 

Figure 2.2: Time series data display captured from the Beran on-line condition monitoring system. 

 

An additional signal processing tool provided by the Beran system to assist the condition 

monitoring experts in their analysis is the ability to decompose vibration signals into 

their individual frequency components using the FFT function. An example of an FFT 

plot taken from the Beran System is given in figure 2.3. An FFT plot depicts the 

distribution of the magnitudes of a particular signal over a certain frequency spectrum. 

This allows experts to quickly determine at what frequencies significant magnitudes are 

present. For example the first FFT plot in figure 2.3 has a significant magnitude present 

at the first order frequency (50Hz) along with smaller magnitudes at the second and sub-

synchronous frequencies. However the second FFT plot contains a much higher 
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proportion of second order frequency magnitude (100Hz) which may be indicative of a 

particular behaviour such as misalignment faults.  

 

 

Figure 2.3: FFT plots captured from the Beran on-line condition monitoring system. 

 

Another signal processing tool provided by the Beran system allows the user to monitor 

the variation in amplitude and phase of any order of vector over time with respect to the 

alarm limits set for that vector. The user is able to view this information using a 

magnitude and phase plot. An example of a magnitude and phase plot taken from the 

Beran system is given in figure 2.4. The plot depicts the movement of the first order 

vector over time. The alarm limits are denoted by the circle. As can be seen in figure 2.4 

the vector position highlighted by the dark red colour starts within the alarm limits and 

over time moves outside of the limits, which is denoted by the transition in colour to 

yellow. The remaining colours on the scale have been omitted from the plot.  
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The Beran system also provides additional tools such as alarm logs which allow the user 

to view the sequence of alarms which have been triggered through an alarm log. A file 

list screen indicates file types which have been saved for a particular channel. Typical 

files saved for a channel are associated with the run-up and run-down of the turbine 

generator, which enables the expert to easily determine its state, i.e. whether the it is off-

line or on-line. 

 

 

Figure 2.4: Magnitude and phase plots captured from the Beran on-line condition monitoring 

system. 

 

2.3 British Energy Turbine Generator Condition Monitoring Approach 

 

A significant emphasis is placed on the condition monitoring of turbine generators at 

each of British Energy’s nuclear power stations within the UK. The condition 

monitoring of each turbine generator aims to continually assess the behaviour of each 

plant item to ensure that incipient faults are diagnosed as early as possible. Early fault 

detection can allow plant operators to take remedial action in the form of operational 

changes which will help avoid or minimise the damage caused by the fault and assist in 



 17 

the effective planning of outages. British Energy has a core team of three full time 

employees and five part time contractor staff who continually assess the behaviour of 

each turbine generator. This assessment is achieved by analysing key signals captured 

from transducers on the turbine generator sets which, when correctly interpreted, can 

indicate how the equipment is behaving.  The Beran system described in section 2.2 has 

been installed at eight British Energy UK nuclear power locations to capture and 

feedback the raw transducer data to the condition monitoring experts for inspection. In 

addition the Rotating Plant and Dynamics Team has developed a process to maximise 

the facilities provided by the Beran system to ensure that each alarm triggered is fully 

assessed. The process also helps standardise the condition monitoring process across the 

whole of the rotating equipment group, ensuring that the analysis performed at all 

locations is consistent. 

 

The first stage of the process is to set alarms or alerts on the Beran system, which 

continually monitors important signals and can indicate a change in equipment 

behaviour. The purpose of these is to alert staff to potential behavioural changes on the 

turbine generator, which may constitute a problem requiring further investigation. There 

are a standard set of signals which are monitored across all British Energy locations. In 

addition, the experts are able to set additional alarms outside the standard set if they feel 

it will assist them in the assessment process. The standard alarms set across all locations 

are as follows: 

 

! Subsynch High – Alarm triggers when the magnitude of the sub-synchronous 

frequency components are too high. 

! 1X Vector – Alarm triggers when the first order vector moves outside of the 

alarm zone. A movement in either the magnitude, phase or both in the first order 

component can initiate this alarm. 

! 2X Vector – Alarm triggers for the same reasons as the IX Vector alarm except 

the second order component is being monitored. 
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! 1X Step – Alarm triggers when there is a significant change in the first order 

component vector. This could be triggered by a significant change in the first 

order magnitude, phase or both. 

! Zone 2 – Alarm triggers when overall vibration or eccentricity falls within the 

predefined zone 2 limits. These limits indicate the severity of the vibration with 

zone 2 being the lowest level of vibration out of the 3 alarms. 

! Zone 3 – Same as for zone 2 except the predefined zone 3 limits are used. Zone 3 

limits represent a higher level of vibration than the those given by zone 2 limits 

! Zone 4 – Same as for both zones 2 & 3 except the predefined zone 4 limits are 

used. Zone 4 limits represent a severe level of vibration which would indicate 

serious problems on the turbine generator. 

 

The sub-synchronous high alarm can alert the condition monitoring expert to the 

presence of various fault types which can be characterised by a high magnitude at one of 

the sub-synchronous frequencies. The triggering of this type of alarm may prompt the 

expert to investigate the sub-synchronous frequencies further to determine which one is 

at a high magnitude and then relate this to a particular behaviour. Common fault types 

which can be represented by higher than normal sub-synchronous components are rotor 

rub and oil instability. A rotor rub fault is commonly represented by higher than average 

frequency magnitude at between 1/2X and 1/3X the running speed although the precise 

location of the frequency component is dependent upon the position of the machine 

critical speed in relation to the running speed. Oil instability can be highlighted by 

higher than average magnitudes at between 0.42X and 0.47X the running speed. Again 

the precise location of the frequency component cannot be precisely specified for all 

examples of oil instability since it is dependent on a number of variables. 

 

The 1X Vector, 2X Vector and 1X Step alarms alert the expert to changes which have 

occurred in first or second order vibration. These parameters are of particular interest, 

given that many fault types produce changes in both of these components which may be 

masked if the expert were to only analyse overall amplitudes. Common faults, which can 
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be diagnosed by large magnitudes at 1X the running speed are various forms of 

imbalance such as static imbalance and rotor imbalance. Both of these conditions will 

always have a 1X component which dominates the spectrum. Therefore the triggering of 

the 1X vector alarm can alert the condition monitoring experts to investigate the 

presence of such faults. Misalignment fault types such as angular, parallel or bearing are 

highlighted by large frequency magnitudes at both 1X and 2X the running speed. 

Therefore the triggering of either the 1X Vector or 2X Vector alarms can lead the 

condition monitoring experts to investigate such faults. The triggering of a 1X Step 

alarm can be indicative of a serious fault such as the loss of a piece of material from the 

rotor which would cause a sudden change in balance and in turn cause a sudden change 

in the 1X Vector. The Zone type alarms monitor the overall amplitude primarily to alert 

the experts to when the turbine generator may be reaching problematic levels of 

vibration. 

 

The condition monitoring expert must diagnose the cause of any triggered alarm and 

from this determine if it constitutes a problem and/or determine any remedial actions 

which must be taken in relation to the assessment. Each alarm must have an alarm 

checksheet completed which ensures that the expert explores the majority of the 

potential causes of the alarm. An example of the alarm checksheet is given in figure 2.5.  

 

 

Figure 2.5: Alarm checksheet completed for every Beran alarm triggered. 

 

The first 7 entries in the checksheet are concerned with capturing data from the overall 

amplitude, sub-synchronous 1X and 2X vector signals in the Beran system. The first 

entry OA Amp requires that the approximate value of the overall amplitude signal for 

that particular channel is recorded. The Zone entry asks the expert to enter what zone the 

overall magnitude level falls within i.e. 1, 2, 3 or 4 with 1 being the lowest level of 
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vibration and 4 being the highest. The most dominant sub-synchronous magnitude 

including the frequency it falls within is recorded in entry 3: ‘Non-synch. Amp/Freq’. 

The 1st and 2nd order magnitude and phase levels are recorded in the ‘1x Amp’, ‘1x 

Phase (*lag)’, ‘2x Amp’ and ‘2x Phase (*lag)’ entries. The next 5 entries are questions 

which guide the expert into exploring particular alarm causes. The ‘OA Genuine?’ entry 

prompts the expert to assess whether the overall amplitude signal is genuine or not. If 

the signal is not genuine then this can indicate that there is some form of signal fault on 

the channel and therefore explain the cause of the alarm. The next ‘entry OA ~ 

!(1x+2x)?’ asks the user to consider if the overall vibration amplitude level seems to be 

made up of mainly the 1st and 2nd order frequency amplitudes. If they are not then this 

would prompt the expert to investigate other ordered frequencies to determine what 

additional significant frequency components there are, either at sub-synchronous or 

multiples of the operating speed. The presence of other significant frequency 

components apart from 1st and 2nd order frequency components can indicate the presence 

of faults such as rotor rub and oil instability mentioned previously. The next entry, ‘Step 

"1x?’, prompts the expert to determine if there has been a step change in the 1st order 

vector in either the magnitude, phase or both. Such an event can be indicative of a 

serious fault such as a loss of material from the rotor. The ‘Signif. "2x?’ asks the user to 

determine whether there has been a significant change in the second order vector in 

either the phase, magnitude or both. Any such change can alert the expert to faults such 

as a cracked shaft, looseness or misalignment. The final question, ‘Operational change?’, 

is to determine if an operational change has occurred which could be related to the 

alarm. A common cause of alarms is a change in operation which has some impact on 

one of the monitored parameters, in particular ones which are operating close to their 

alarm limits. 

 

In some instances, the expert can conclude the root cause of the alarm based solely on 

the data captured to complete the checksheet entries, allowing the ‘Commentary’ entry 

of the checksheet to be completed without any further investigation. The Commentary 

entry contains the cause of the alarm and any remedial actions required based on the 
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given assessment. The cause of some alarms cannot be concluded following the 

completion of the checksheet entries, since additional information is required to 

determine the cause. In this situation the expert will investigate the alarm further using 

other signals associated with the affected channel or data relating to neighbouring 

channels. Once the cause of the alarm is concluded the Commentary section of the 

checksheet is completed, 

  

The results of these analyses can be monitored to determine if any faults are developing 

on the equipment and to subsequently plan any actions which may have to be taken 

based on these results. Much emphasis is placed on monitoring and reporting of these 

behavioural changes as a result of the strategic importance of plant items such as turbine 

generators. Regulatory bodies undertake quarterly inspections of all alarms triggered by 

the Beran system in each station to ensure that all events are being thoroughly and 

accurately assessed. 

 

Experience has shown that many alarms are commonly caused by faulty signals, signal 

drift or changes in operational parameters which cause the vibration signals to 

temporarily move outside their limits. Generally these signals do not provide the experts 

with information on the health or state of the equipment and so have no further 

operational consequence. However each alarm must be inspected by one of the three full 

time staff and five part time contractors within British Energy who are qualified to do 

so. This effectively intensifies the already substantial daily workload on this small team. 

 

This problem prompted British Energy to commission a project which aimed to develop 

a system capable of automatically diagnosing the cause of each alarm triggered by the 

Beran system. The system had to enable an expert to select an assessed alarm, review the 

system analysis and then sign off the alarm. This would allow the expert to quickly 

confirm alarms of no further operational consequence and focus their time and expertise 

on diagnosing incipient faults which may impact on the health and operation of the 

turbine generator. In addition the system should assist in standardising the analysis 
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performed across all British Energy locations so that the results are accurate and 

consistent for the external quarterly audit. 

 

This research has employed approaches from the area of Artificial Intelligence (AI) to 

develop an automated system for the turbine generator condition monitoring application 

detailed above. In addition, this research has used an approach from a subgroup of AI 

called Machine Learning (ML) to develop a novel approach to the problem of capturing 

the required knowledge for an automated system. The next chapter reviews the area of 

AI and in doing so justifies the approaches chosen for the project. 
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Chapter 3 

 
3 Artificial Intelligence for Diagnosis & Learning 

 

3.1 Introduction 

 
Artificial Intelligence (AI) is defined by [Barr and Feigenbaum, 1981] as “the part of 

computer science concerned with designing intelligent computer systems, that is, 

systems which exhibit the characteristics we associate with intelligence in human 

behaviour – understanding language, learning, reasoning, solving problems and so on.” 

As outlined in chapter 2 the aim of the project was to develop a system capable of 

automatically assessing the Beran system alarms to assist the experts in the alarm 

assessment process. Therefore one of the primary aims of the automated system is to 

perform the analysis which is already undertaken by the human experts at present. AI 

approaches would therefore seem suited to this task due to their ability to reason with 

“characteristics we associate with intelligence in human behaviour” and “reasoning.” 

Additionally the system developed has to be able to perform the analysis automatically 

which again is a trait of AI approaches since they are “computer systems.” It is for these 

reasons that the area of AI was researched to find solutions to the British Energy turbine 

generator condition monitoring problem. 

 

AI techniques which have been applied to condition monitoring as a tool for diagnosis 

include Model-Based Diagnosis (MBD) [Davis and Hamscher, 1988], Rule-Based 

Expert Systems [Jackson, 1999], Case-Based Reasoning (CBR) [Kolodner, 1993], 

statistical based approaches such as Artificial Neural Networks (ANNs) [Haykin, 1999] 

and Hidden Markov Models (HMMs) [Rabiner, 1989]. These techniques use some form 

of knowledge to solve a pre-defined task and the type of knowledge utilised varies 

depending on the adopted approach. MBD, Rule-Based Expert Systems and CBR utilise 

a more explicit form of symbolic knowledge which is more easily interpreted and 

understood by humans whereas the statistical based knowledge used in ANNs and 
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HMMs are less so. How this knowledge is derived or captured is also dependent on the 

approach. Typically the knowledge adopted by Rule-Based Expert Systems is captured 

and formalised through a knowledge engineering approach such as CommonKADS 

[Schreiber et al, 2000]. The models used by MBD approaches may already exist as part 

of the design package for a piece of equipment or may have to be developed specifically 

for the system. The knowledge used by a CBR system is derived from a collection of 

examples associated with a particular subject of interest, therefore it is common to adopt 

this approach where an adequate collection of examples exist and are accessible. 

Approaches such as ANNs or HMMs derive knowledge from the statistical distributions 

contained in a collection of examples on a particular subject and therefore rely on having 

access to that collection of examples. 

 

A growing area of AI which is concerned with the automated acquisition of knowledge 

is Machine Learning (ML). ML can be defined as “any change in a system that allows it 

to perform better the second time on repetition of the same task or on another task drawn 

from the same population” [Simon, 1983]. ML techniques offer the potential for 

automated systems to learn knowledge from training data or in some cases already 

existing knowledge used in conjunction with training data. ML approaches include 

ANNs, CBR and HMMs which were mentioned in the previous paragraph when 

discussing AI approaches. Other ML techniques include Bayesian learning [Mitchell, 

1997], rule induction algorithms such as C4.5 [Mejia-Lavelle & Rodriguez-Oritz, 1998] 

and its successor C.5 [Strachan 2005], Explanation Based Generalisation (EBG) 

[Mitchell et al, 1986] and Explanation Based Learning (EBL) [DeJong & Mooney, 

1986]. As already discussed ANNs, CBR and HMMs can be used as AI approaches to 

diagnosis. It was also stated that all three of these techniques derive their knowledge in 

some form from a population of examples relating to the subject of interest. It is this 

derivation of knowledge from a collection of examples which make all three of these 

approaches examples of machine learning. Bayesian approaches are also statistical based 

and can learn knowledge from the statistical data contained within a body of training 

examples. Rule induction algorithms such as C4.5 and C.5 use a collection of training 
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examples to derive explicit rule based knowledge which is in a form to that used by 

Rule-Based Expert Systems. EBG and EBL are both ML approaches which use existing 

knowledge of the area of interest to derive explicit rule based knowledge using few or in 

some cases single training examples. 

 

The aim of this chapter is to review AI approaches, which have been used to develop 

both automated systems for condition monitoring and diagnosis applications and ones 

which are capable of deriving the knowledge used by these systems. The first half of this 

chapter will review AI techniques which have been applied to condition monitoring and 

diagnosis problems. This will focus primarily on Rule-Based Expert Systems, ANNs and 

MBD approaches since a significant proportion of academic literature for industrial 

applications has reported on these approaches. Examples of other AI approaches, which 

have been used in the area of diagnosis, will be discussed where appropriate. A detailed 

discussion on the CBR and HMM approaches is left to the second half of the chapter 

which reviews AI approaches associated with ML. This discussion also includes a 

discussion on Bayesian learning, EBG, EBL and rule induction approaches such as C4.5 

and C.5. Rule-Based Expert Systems, MBD and CBR are all commonly referred to as 

examples of Expert Systems due to their use of explicit knowledge. However, the 

remainder of this thesis will use the term Expert Systems to refer only to Rule-Based 

Expert Systems and not MBD or CBR. 

 

3.2 Expert Systems 

 

The approach employed by Expert Systems is based around two key aspects of human 

reasoning:  

 

1. Some body of domain knowledge which can interpret input data to derive 

conclusions.  
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2. A reasoning approach which determines how this knowledge is applied in order 

to derive a solution.  

 

A high level overview of a typical Expert System is illustrated in figure 3.1. The input 

data is fed into the signal to symbol transformation module to derive qualitative 

symbolic data from the raw input signal. The transformed qualitative data is uploaded to 

working memory, sometimes referred to as the interpreter, which controls how the input 

symbols are matched with the individual fragments of knowledge contained within the 

knowledge base. This can be thought of as a local level of control which tasks include 

resolving conflict where more than one item of knowledge can be activated and whether 

the knowledge should be activated using known data or alternatively reasoned 

backwards from the goals to be achieved. A global level of control is facilitated by the 

inference mechanism which is used to determine the order in which tasks are undertaken 

by controlling the flow of knowledge uploaded to the working memory. The conclusions 

drawn from the input data by the applied knowledge are then fed to the end user by 

means of an appropriate interface. 

 

Four important considerations when designing an Expert System are: 

 

! Knowledge Capture 

! Knowledge Representation 

! Inference Mechanism 

! System Maintenance 

 

The first consideration is concerned with how the knowledge used by the Expert System 

is captured from the domain experts. Once this knowledge has been captured it must be 

transformed into a suitable representation which allows it to be utilised. The third 

consideration deals with the reasoning approach which should be used in order to 

maximise the performance of the domain knowledge in order to achieve the required 

task. Finally, the designer must consider how the system, once implemented, can be 
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maintained and who is responsible for its maintenance. Each of these considerations are 

discussed in the following sections. 

 

 

 

Figure 3.1: Overview of the main Expert System components 

 

3.2.1 Knowledge Capture 

 

The most common approach to capturing expert knowledge is through a knowledge 

engineering approach which in general can be divided into the following areas: 

 

! Knowledge elicitation – The process of capturing the expert knowledge. 

! Knowledge modelling – The process of recording & modelling the 

knowledge captured at the elicitation stage. 

! Knowledge Analysis – The process of reviewing and correcting the 

knowledge captured and modelled at the knowledge elicitation stage. 

! Knowledge Structure – Determining the most suitable representation for the 

captured knowledge within the Expert System. 
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One of the first attempts at knowledge elicitation was protocol analysis [Newell & 

Simon, 1972] where experts were encouraged to think aloud when performing tasks so 

that both their approach and knowledge could be observed and recorded. This technique 

still forms the basis of most approaches to knowledge elicitation which typically involve 

an interview between the domain experts and the knowledge engineer. It is common for 

the first interviews to take the format of protocol analysis to allow the knowledge 

engineers to gain a general understanding of the problem area and allow the experts to 

get used to ‘thinking aloud.’ Once the knowledge engineers have gained a more firm 

understanding of the area then the interviews can become more focussed on particular 

aspects of the problem in a bid to make the captured knowledge as detailed, correct and 

error free as possible. These interviews are normally recorded using audio and video 

recording media. 

 

The knowledge captured during the interviews is recorded then transcribed and finally 

transformed into knowledge models. The transcripts are structured documents which 

detail both the expert’s reasoning approach and domain knowledge. The transcript is 

then reviewed by the expert and his/her peers to find and correct errors or areas where 

more knowledge is required. The reviewed transcript is corrected and this process is 

continued until the knowledge contained within the transcript is correct.  

 

The knowledge must then be transformed into a format whereby it can be used as the 

knowledge base for the software implementation of the Expert System. It is common for 

the knowledge to be modelled in some format which reflects how it can be utilised by 

the Expert System prior to the knowledge being encoded into a knowledge base. The 

modelling formalisms selected at this stage should be understandable to the experts so 

that they can be further validated and at the same time bear some relation as to how the 

knowledge will be represented and reasoned with by the system.  

 

There is no de facto approach to modelling the captured knowledge, but one notable 

formal methodology is CommonKADS [Schreiber et al, 2000]. CommondKADS offers 
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a complete modelling formalism for representing both the domain knowledge and the 

reasoning approach applied to any particular problem. The knowledge is divided into 

three main categories; task; inference; and domain. The task knowledge defines the 

overall objective of the problem, for instance a common objective of a condition 

monitoring system might be to identify and/or ‘diagnose a fault’. This overall objective 

can then be dissected into smaller sub-tasks, which when performed, achieve this overall 

goal. Therefore the ‘diagnose a fault’ task may be divided into ‘locate anomaly’, 

‘capture data’, ‘extract features’, ‘identify events’, ‘apply diagnostic knowledge’, and 

finally, ‘select or construct diagnostic conclusion’. 

 

The inference knowledge models the reasoning approach used to achieve the overall 

objective. In effect, the inference approach assigns in what order the tasks are completed 

and highlights the flow of information including input data, derived data and domain 

knowledge. The domain knowledge models any concepts, theories, rules or any other 

piece of relevant information which is particular to the problem being analysed. For 

instance, if the above diagnosis task is in the field of transformer condition monitoring, 

then the domain knowledge might include details on how to analyse the information 

derived by ultra high frequency partial discharge signal analysis or a gas in oil sample.  

 

CommonKADS offers a formal modelling mechanism to model the domain knowledge 

which is compatible with the Unified Modelling Language (UML), a standard used 

within the computer science community for modelling object-oriented data for 

programming languages such as Java (http//www.uml.org). The models are also intuitive 

for experts, with no background in computer science, to understand the tasks undertaken 

by the systems, the flow of data and how the knowledge is represented which assists at 

the knowledge verification stage. 

 

It is vital that experts with the required expertise for the domain of interest exist in order 

to capture the necessary knowledge for an Expert System using a knowledge 

engineering approach. This requirement was fulfilled for the turbine generator condition 
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monitoring project since certain members of the Rotating Plant and Dynamics Team 

were willing to participate in the project. The above knowledge engineering process 

described so far has been purely manual, in that the interview process and the creating of 

knowledge transcripts and models is undertaken by humans. This process has been 

shown to be time consuming [Fenton et al, 2001], [Awadallah & Morcos, 2003] and is 

therefore only beneficial in projects where there is a high return on the associated high 

cost in using such a technique to develop an Expert System. Due to the operational 

importance of the turbine generators to British Energy’s core business and the already 

time consuming nature of the existing manual analysis process it was felt that the use of 

a knowledge engineering approach in such an application would be beneficial. 

 

There have been some attempts at developing on-line tools which work with the domain 

expert to assist in capturing knowledge. One example stemmed from the development of 

ONCOCIN [Shortliffe, 1981], an Expert System which develops treatment plans for 

cancer patients. The knowledge acquisition tool developed is known as OPAL and its 

approach to assisting with knowledge capture is based mainly on its user interface. 

Entities and relationships corresponding to drug treatments are entered via graphical 

forms where the user selects items from a menu of alternatives. These forms are then 

translated into frames (section 3.2.2.3) and are linked with other objects within the 

knowledge base through a hierarchy. The user is also allowed to enter procedural 

knowledge which relates to plans for administering combinations of drugs. The 

acquisition of this knowledge is again facilitated by the programmes graphical user 

interface, which allows the user to create icons standing for plan elements and arrange 

them into a graphical structure. The user can then position and draw connections 

between these elements to create charts which mimic the control flow. These can then be 

converted into a format which the system is able to utilise. OPAL’s main asset was its 

graphical user interface and its use of forms and icons which allowed the user to enter 

the domain entities and relationships along with the procedural knowledge. In addition, 

OPAL’s ability to translate this knowledge into a form which could be utilised by an 

automated system was also very important. It is worth noting that OPAL’s functions 
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were mainly passive in that there was no assistance given to the expert in deriving the 

domain knowledge unlike manual knowledge elicitation where the interviewer will 

encourage the expert to consider different scenarios. OPAL has lead to the development 

of a general purpose system called PROTÉGÉ and its subsequent successors 

[http://protege.stanford.edu/]. Although some research has been undertaken in 

developing tools, which assist with the knowledge capture process, knowledge 

engineering for Expert Systems is still largely an intensive human based process. It is for 

this reason that as part of the British Energy turbine generator condition monitoring 

project, methods of introducing machine learning based AI approaches were researched 

as discussed in sections 3.6 to 3.11 which lead to the development of a semi-automated 

learning module as described in chapter 5. 

 

3.2.2 Knowledge Representation 

 

A system developer must determine how the knowledge captured at the knowledge 

elicitation stage is represented within the knowledge base. Certain approaches are more 

suited to problems with particular characteristics than others, but no definitive rules exist 

to determine what representation to choose. Three approaches to knowledge 

representation are formal logic representations, production rules and frames. 

 

3.2.2.1 Logic 

 

A formal approach to representing the knowledge of a particular domain is through logic 

approaches [Russell & Norvig, 1995] such as propositional logic. Propositional logic 

allows sentences to be constructed from atomic sentences which consist of single 

indivisible propositional symbols such as ‘bearing vibration high’ or one of the truth 

values ‘true’ or ‘false’. Complex sentences are constructed by applying logical 

connectives to the atomic sentences. These logical connectives are negation (¬), 
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conjunction (#), disjunction ($), implication (%) and bi-conditional (&). A formal 

grammar can then be defined as shown in figure 3.2.  

 

A knowledge base can then be constructed by defining complex sentences for the 

domain of interest such as ‘bearing A vibration high’ % ‘bearing A out of balance’. It 

should be apparent that in using this approach each propositional symbol must be 

explicitly defined and therefore no general statements can de defined. 

 

 

 

 

Figure 3.2: Propositional logic grammar  

 

First order logic is a more expressive form of knowledge representation which allows 

objects and relations to be defined. For example the statements “rotor of turbine A has 

fault stiction” and “rotor of turbine B has fault stiction” would each be represented as a 

single proposition in propositional logic. First order logic allows statements like this to 

be defined in a way which is more closely related to natural language processing. It 

achieves this by expanding the syntax of propositional logic to include symbols which 

represent objects, relationships and functions. Objects are represented by constant 

symbols, relationships are represented by predicate symbols and functions are 

represented by function symbols. Therefore ‘turbine A’, ‘turbine B’ and ‘stiction’ could 

be represented by object symbols, ‘rotor’ could be represented as a function symbol and 

‘has fault’ could be represented as a predicate symbol to construct the 

‘HasFault(Rotor(TurbineA), Stiction)’ and ‘HasFault(Rotor(TurbineB), Stiction)’ first 
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order logic sentences. These atomic sentences can then be used to form complex 

sentences using the same approach and logical connectives as used by propositional 

logic.  

 

First order logic also provides a method of defining variables which allows whole 

collections of objects to be reasoned with as opposed to defining each one individually. 

This is achieved through two standard quantifiers called the universal and existential 

quantifier. The universal quantifier ('), meaning “for all”, allows sentences to be 

constructed which refer to a whole body of variables. For example, the statement 'x 

Rotor(x) % Rotates(x) reads as “for all of x, if x is a rotor then x rotates.” This allows 

general statements to be made without having to name each rotor individually and state 

that it rotates. The universal quantifier ((), meaning “there exists an”, allows sentences 

to be constructed which refer to some objects within a body of variables. For example, 

the statement (x SupportedBy(x, PedestalA)#Bearing(x) can be read as “there exists a 

bearing which is supported by pedestal A.” This gives permits generality through 

allowing a statement to be made about some object without naming that specific 

instance. 

 

Knowledge relating to a particular domain can be represented using the rich syntax and 

semantics offered by first order logic. The full expressiveness offered by this 

representation has found popularity in mathematical theorem proving [Newell et al, 

1963], [Newell & Simon, 1963] and acted as the basis for the general problem solver 

PROLOG [Clocksin & Mellish, 1984]. Logic is also a popular form of knowledge 

representation for symbolic Machine Learning (ML) approaches such as Explanation 

Based Generalisation (EBG) [Mitchell et al, 1986]. These applications are well suited to 

this type of representation because the laws governing these domains are well defined 

and complete, meaning that any conclusions drawn are correct. However, it is more 

difficult for the domain knowledge of real world problems to be represented in this way. 

This is because real world problems can only be modelled using theories which are 

approximate and don’t always hold true in every conceivable situation. Therefore, an 
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accurate representation of the domain knowledge is either not possible or prohibitively 

complex. The turbine generator condition monitoring application is an example of where 

it is very difficult to construct a domain theory using logic due to the complexity of the 

domain. 

 

3.2.2.2 Production Rules 

 

A simplified form of propositional and first order logic is that of horn clauses [Luger & 

Stubblefield, 1998]. Horn clauses represent knowledge in a form which relates more 

closely to the type of knowledge used by humans to reason about complex domains. 

Horn clauses are implications where the antecedent is composed of positive literals (P1, 

P2, …, Pn) and the consequent is a single positive literal (Q) as in equation 3.1.  

 

 

3.1 

 

Horn clauses were the pre-cursor to production rules [Jackson, 1999] which have 

become a mainstay in knowledge representation in Expert Systems. Production rules are 

in the form of if <condition> then <conclusion>. The condition in the statement can be 

made up of multiple conditions whereas only a single conclusion is permitted as is the 

case for horn clauses. Production rules have become widely used because they allow the 

knowledge to be represented in a format which resembles more closely the way humans 

store their knowledge. For instance a turbine generator condition monitoring expert, 

when attempting to diagnose a fault, does not under normal circumstances revert back to 

the fundamental laws governing the operation of turbine generators such as 

thermodynamics, mechanics, electrical theory, etc. Instead the expert will refer to 

experience of the domain where observations of the equipment behaviour relate to a 

particular state or fault. For example an expert may conclude that if there is a step 

change in either the first order magnitude or phase then this may imply that a significant 
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piece of the rotor blade has become detached from the main body of the rotor. The 

expert can deduce this through his/her own experience of the domain and is unlikely to 

go back to first principles to derive the same conclusion. This is an approximate form of 

reasoning because the observation mappings are acting as a shortcut to the conclusion by 

directing search as opposed to exhaustively searching the potential solution space. 

Knowledge represented as production rules is commonly referred to as heuristic 

knowledge since the actual knowledge prunes the search space as opposed to relying 

purely on heuristic search methods. 

 

A further advantage of simplifying the knowledge in this way is that more simplified 

inference approaches can be adopted to search the knowledge to derive conclusions than 

those adopted in logic. One such inference algorithm is forward chaining which takes 

the known facts of a problem and applies them to the knowledge base. A conclusion is 

activated and added to the existing facts whenever a fact or group of facts matches with 

the rule’s conditions. This process is repeated until the query is answered (if one exists) 

or there are no new facts to be derived. The direction of the reasoning in forward 

chaining is highlighted in figure 3.3. An alternative to forward chaining is backward 

chaining which selects the goal from the consequent and chains backwards through the 

clauses to determine if the facts support the proof. The direction of the reasoning in 

backward chaining is highlighted in figure 3.3. 

 

 

Figure 3.3: Forward and Backward reasoning inference approaches. 
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Production rules are well suited to representing knowledge in domains which can move 

from the states of a particular problem towards the solution or vice versa. The turbine 

generator condition monitoring application is an example of a problem where the expert 

analyses the state of the equipment using the information provided by the Beran system 

and utilises this to deduce its behaviour. Production rules do not explicitly represent the 

properties and interrelationships of complex objects found in real world domains. One 

knowledge representation approach which can represent this associative knowledge is a 

frame-based representation. 

 

3.2.2.3 Frames 

 

Frames [Luger & Stubblefield, 1998] attempt to organise knowledge into categories in a 

similar way to how humans organise their knowledge of similar objects which share 

common characteristics. It achieves this by grouping together all of the properties 

associated with a particular object using a single data structure. The object being 

represented could be that of a typical object found in the real world such as a car, a 

species of animal such as bird or could even be used to represent a group of faults which 

are closely related. A frame has a single slot which is used to store the entity that it 

represents. For example a frame structure which represents a car would have a slot to 

indicate this. Further slots contain the common attributes associated with the object, or 

procedures which can be used to derive additional information. Multiple related frames 

are normally arranged into a hierarchy, where frames lower down the network can 

inherit values for slots from higher up the hierarchy. The fundamental idea is that the 

properties and procedures represented higher up the frame system represent things that 

are typically true about the entity of interest, whereas the frames at lower levels contain 

slots that are particular to specific types of the entity represented. For example, a frame 

structure could be constructed for a ‘bearing fault’. The primary frame structure at the 

top of the hierarchy may contain a slot to indicate that a high vibration is normally 

associated with the fault. Further down the hierarchy various types of bearing faults may 
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be specified such as oil whirl which will specify that the bearing would have to be 

lubricated by oil and that an increase in vibration would be expected at 0.42x and 0.48x 

the running speed. Alternatively a inner race type bearing fault could be specified which 

would indicate that the bearing would have to be of a ball bearing type and would 

exhibit a frequency distribution which is dependent on the number of ball bearings and 

the running speed. Frames are useful in instances where objects must be represented that 

share many similarities, but also have unique differences. As is outlined in section 4.3.1, 

there are only nine alarm causes identified for the turbine generator condition 

monitoring application and most of them exhibit distinct features from one another. 

Therefore, using frames as a form of knowledge representation for this particular 

problem was not necessary. However, there is a case for using such an approach if a 

system had to be developed to diagnose fault types where there is commonality between 

various faults. 

 

3.2.3 Inference 

 

The inference approach of an Expert System is concerned with the process undertaken to 

achieve the overall goal of the system. The overall task of a system, e.g. diagnosis, 

classification, etc., can be dissected into smaller sub-tasks. Once the overall task has 

been dissected then the order in which these smaller sub-tasks are undertaken must be 

determined, in addition to the flow of information between tasks and any additional 

knowledge required to achieve the goals. Therefore the inference approach is effectively 

the reasoning process undertaken to achieve the overall goal. 

 

The CommonKADS methodology [Schreiber et al, 2000] attempts to use general 

inference approaches to common tasks which have to be undertaken by a Knowledge 

Based System (KBS). For example the CommondKADS methodology suggests that the 

diagnosis task is divided into the following: 
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! Cover – Determine all possible causes of complaint. 

! Select – Select a single possible cause from a whole population of causes. 

! Specify – Choose an observable entity which could be used to confirm or rule 

out hypotheses. 

! Obtain – Acquire the actual value of the observable entity specified in the 

previous step. 

! Verify – This step checks the candidate cause to determine if it should remain as 

a potential hypothesis for the complaint. 

 

These tasks can then be represented within an inference structure like the one given in 

figure 3.4 which is suggested by the CommonKADS methodology in [Schreiber et al, 

2000]. 

 

 

Figure 3.4: Generic CommonKADS inference structure to the task of diagnosis. 

 

An alternative to using generic structures suggested by knowledge modelling approaches 

such as CommonKADS is to develop a specific approach for a particular task. This can 

be achieved using the results obtained from the knowledge elicitation process. The 

transcripts resulting from the knowledge elicitation exercises, are normally structured to 

describe more manageable sub-tasks individually, to reflect the natural approach adopted 

by the expert. This information is used firstly to develop the task model. The 
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information contained within the task model then defines the tasks associated with the 

inference approach. In addition, the transcript will also specify the ordering in which 

these tasks are carried out and any knowledge required to achieve each. All of this 

information can then be combined to construct a specific inference approach for the 

overall task. This method was used to develop the inference approach utilised for the 

turbine generator condition monitoring application and is described in detail in section 

4.3.2. 

 

3.2.4 System Maintenance 

 

The designer must also consider how the Expert System is to be maintained once 

implemented. This is an especially important consideration for Expert Systems since it is 

common that the knowledge contained within the knowledge base will have to be 

updated and/or revised, based on the performance of the system and further experience 

gained in the field. Therefore, some issues that the designer must consider are: 

 

• Who will maintain the knowledge base? 

• How will feedback on the system performance be recorded? 

• Will any tools be provided to assist in updating the knowledge base? 

 

The system designer must determine up front who is expected to maintain the 

knowledge base. Traditionally it has been the job of the knowledge engineer and/or the 

system maintenance engineer to perform this task. However, there may be scope to 

include the expert user(s) in this process to varying degrees. For instance, it is beneficial 

that the performance of the system is recorded, especially for instances where the system 

has failed to provided an accurate diagnosis. Given that the expert user is best placed to 

identify when inaccurate assessments have occurred then it is sensible for the system 

designer to provide facilities for the expert to record these instances. This then allows 

the knowledge engineer and/or the system maintenance engineer to analyse this 
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information and determine what updates are required in the knowledge base. It may also 

be desirable to provide tools for the expert user, to assist them in deriving new 

knowledge in instances where the system does not perform adequately, such as, the one 

described in chapter five of this thesis. 

3.2.5 Practical Issues for Expert System Applications 

 

The main disadvantage of Expert Systems is the difficulty associated with acquiring the 

necessary knowledge for a particular subject/area and transforming this into a suitable 

format which can be utilised by the system. The knowledge engineering approach is in 

most cases time consuming and labour intensive which therefore makes it expensive. 

This has meant that within industry Expert Systems have mostly been developed for 

applications which merit the initial large investment. Such applications may be where 

the system is developed to monitor strategically important or expensive plant items. 

Another difficulty, which can arise with Expert Systems, is that there may be no way of 

acquiring the knowledge of a particular area due to the lack of expertise. This problem is 

particularly relevant where the application involves some form of recent emerging 

technology or a newly developed device. 

 

Applications where this difficulty in acquiring knowledge is offset by the importance of 

the system being monitored and where the domain is well understood are well suited to 

the use of Expert Systems. The explicit symbolic nature of the knowledge used by 

Expert Systems allows a rationale of the assessment to be built up by referencing the 

rules whose triggering led to the conclusion. This allows the users to build confidence in 

the system assessments because they can clearly understand the rationale behind each 

decision. This is also a benefit in instances where an incorrect assessment is constructed 

so the user can follow the reasoning and determine where the knowledge must be 

updated. 
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There are however drawbacks associated with expert systems which are present 

regardless of the application. The first is the problem known as “conflict resolution.” 

This problem refers to cases when the input data to the Expert System results in multiple 

conclusions or in a diagnostic sense the symptoms are consistent with more than one 

possible diagnosis. This problem has more impact in areas where the system is being 

designed to supply users, who have little or no knowledge in a particular domain, with a 

definitive answer to some query. It is not as much of an issue where the system is 

designed as a decision support system for a user who is expected to have a certain level 

of knowledge for a given application and where explanation of the assessment rationale 

is provided. Another problem inherent in Expert Systems is that the knowledge remains 

static unless further knowledge engineering is undertaken to manually update the 

knowledge base. In effect there is no automated learning undertaken which allows the 

knowledge to be updated based on prior performances. This therefore makes Expert 

Systems expensive and time consuming to maintain or expand.  

  

3.2.6 Applied Expert Systems 

 

Expert Systems have been in use for the condition monitoring support and fault 

diagnosis of systems and equipment in numerous applications within the power systems 

domain. An alarm processing and fault diagnosis Expert System is reported in 

[Protopapas et al, 1991] which interrogates the non-expert user to enter information such 

as power system protection flags and maintenance information to determine the cause of 

faults on a distribution network. The system utilises diagnostic rules which have been 

captured from field experts and are represented using a tree structure. The information 

entered by the user is added to the relevant nodes at the root of each tree to determine if 

all of the conditions within the tree are satisfied. If all of the conditions within the tree 

are satisfied then the system concludes that the fault represented by that fault tree has 

occurred. The tree also allows the user to visualise the rationale produced for any of the 
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system conclusions since the information input by the user can be traced through the tree 

back to the conclusion.  

 

Another alarm processing Expert System for fault diagnosis on a power distribution 

network is described in [Minakawa et al, 1995]. The system was developed for and 

implemented on one of Japan’s power distribution networks. The system required, on 

average, three engineers to investigate and develop a prototype system over a period of 

27 months and 10 engineers to develop the prototype to the implementation stage over a 

further 12 months. This demonstrates the significant effort required to design and 

construct an Expert System, meaning that only applications where there is the required 

economic return are considered for such systems. The authors also discuss the problem 

of conflict resolution where multiple conclusions exist for a single event. The system 

deals with this problem by trying to add additional knowledge to the Expert System 

which attempts to differentiate between competing hypotheses. This additional 

knowledge requires additional information from the protection relay event recorders 

which is not available in all cases due to some areas of the network possessing less 

modern and advanced technology. The authors explain that this lack of detail in some of 

the information recovered from the system explains that when the system is tested, only 

34% of correct conclusions have only a single hypothesis, whereas 56% have more than 

one. The authors predict that the solutions where conflict exists could be reduced by 

improving the information fed back to the Expert System. The system employs 

explanation by taking the system diagnosis and simulating it back to the user using the 

power network single line diagram which the operators use to monitor the network on a 

day to day basis. This therefore relays the rationale back to the operators using a 

graphical user interface and one with which they are familiar and is easily understood. 

 

An Expert System is reported in [Strachan et al, 2008] which diagnoses faults on HV 

Power Transformers. The system utilises Ultra High Frequency (UHF) data captured 

from probes placed on the outer casing of the transformer. This UHF data can be used to 

construct what is known as Phase Resolved Partial Discharge (PRPD) patterns which 
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transformer condition monitoring experts can interpret to diagnose and locate Partial 

Discharge (PD) behaviour. The Expert System attempts to extract the same features 

from the PRPD data using statistical analysis which the human experts would in their 

own analysis. The statistical description of the PRPD is analysed using a rule based 

approach to determine the physical discharge behaviour being exhibited, potential 

discharge sources, the failure type and its location within the transformer. The authors 

report that the system’s performance benefits from the explanation provided with each 

assessment due to the explicit nature of the knowledge, in contrast to other pattern 

recognition techniques which generally provide little or no explanation. The knowledge 

utilised by the Expert System was captured from experts using a knowledge engineering 

approach but there is no indication given as to the level of resources required to capture 

the knowledge. 

 

One of the earliest examples of an Expert System application in the domain of turbine 

generator diagnosis was the on-line diagnostic support tool described in [Gonzalez et al, 

1986]. The system captured data from multiple sensors placed on the turbine generator 

and from this performed an analysis on the data to determine if there was a problem on 

the equipment. A confidence factor was calculated for each diagnosis to deal with the 

issue of conflict resolution from probabilities associated with that fault captured at the 

knowledge elicitation stage and probabilities associated with the reliability of the sensor 

data captured. The confidence factors associated with the sensor reading were derived 

using knowledge on the failure characteristics of the sensors themselves. The users were 

able to view a rationale for the diagnosis in the form of a tree structure which also 

included confidence factors associated with sensor readings and with the diagnoses 

themselves. The system also provided the operator with suggested tests which could be 

undertaken on the equipment to provide a higher confidence in the diagnosis or disprove 

it. An input facility was therefore provided where the operator could enter additional 

data captured from the tests performed. The system would also advise the operator on 

any action which should be taken based on the assessment of the equipment state. 

Despite the system being implemented on-line with fully operational turbine generators, 
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none of the major faults occurred on any of the turbine sets which could adequately test 

the system. At the time of writing the paper, the authors were only able to verify that the 

system was able to diagnose sensor faults which had occurred on the equipment. The 

authors also reported on the large amount of knowledge elicitation exercises which were 

performed over a 6 month period with a knowledge elicitation engineer and multiple 

employees from the Westinghouse Electric Corporation 

 

The system reported in [Gemmell, 1995] was developed to provide ScottishPower with 

an on-line turbo alternator condition monitoring tool to be used in real time by the 

equipment operators. As well as providing diagnostic assessments based on the 

measured data, it also provided a module which validated the raw data signals using 

knowledge on cross sensor corroboration. The author reports on how a structural model 

of the turbo alternator was developed using an object-oriented programming approach. 

These models could also be used to store condition monitoring data associated with each 

component. The diagnostic knowledge within the rule base was developed using a 

production rule knowledge representation. Similarly to [Gonzalez et al, 1986], a lack of 

data to test all of the rules in the knowledge base is reported due to major faults rarely 

occurring. However, the system performed well when tested for two major fault groups 

using historical case studies. 

 

The use of a tree structure explanation in [Protopapas et al, 1991] and [Gonzalez et al, 

1986] demonstrated that Expert System approaches were useful in applications where 

the system is required to provide an explanation of the rationale to the user. It was also 

demonstrated in [Minakawa et al, 1995] that alternative approaches to explanation could 

also be employed such as simulation and the use of graphical formats with which the 

operators/experts are familiar. The condition monitoring experts at British Energy 

specifically requested that any system developed would have to provide the user with an 

explanation of the assessment. Therefore the Expert System approach would appear well 

suited for providing the necessary explanation for this application either through the 

reporting of the knowledge used to derive the conclusion or through novel forms of 
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graphical explanation or both. The degree of human resources required to develop the 

Expert System reported in [Minakawa et al, 1995] and [Gonzalez et al, 1986] 

demonstrate that applications where there is a strategic importance or high capital cost 

should only be considered for the application of Expert Systems. There is no doubt that 

the British Energy turbine generator condition monitoring project is such an application 

due to the high capital cost of the equipment and the high operating losses which would 

be inflicted upon the company if the generators were to experience a forced outage. 

However the time consuming nature of the traditional methods of knowledge capture do 

indicate that a particular area of research is in the development of approaches to assist in 

this process. Another important issue highlighted in [Minakawa et al, 1995] and 

[Gonzalez et al, 1986] was that Expert Systems are required to deal with the issue of 

conflict resolution. The approach in [Minakawa et al, 1995] to dealing with conflict was 

to use more detailed data on the events and in turn more detailed knowledge in order to 

differentiate between conflicting hypotheses whereas [Gonzalez et al, 1986] employed a 

from of approximate reasoning which used probability factors captured from the experts 

themselves. If an Expert System were to be developed for the turbine generator 

condition monitoring application, then the issue of conflict resolution would have to be 

addressed. Finally both [Gemmell, 1995] and [Gonzalez et al, 1986] allude to the fact 

that genuine faults on the equipment are relatively rare, meaning that it is difficult to 

acquire any form of training data within this application which would allow more data 

intensive techniques to be employed, as opposed to more knowledge based techniques 

such as Expert Systems. 

 

3.2.7 Further Reading 

 

For a more detailed discussion on the historical development of Expert Systems, the 

various approaches and technologies employed by Expert Systems and detailed 

descriptions on seminal systems in areas outside of the power systems domain the reader 
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is guided to [Jackson, 1999], [Luger & Stubblefield, 1998] and [Russell & Norvig, 

1995]. 

 

3.3 Artificial Neural Networks  

 

ANNs are primarily a biologically inspired attempt to recreate intelligence using an 

approach similar to the way in which the human brain processes the vast quantities of 

data captured by human senses. The data in an ANN is processed by a densely 

interconnected network of artificial neurons which store knowledge implicitly through 

interconnecting weights. This is in contrast to the symbolic based AI methods, which 

represent problem spaces using symbols that model certain characteristics in the domain 

of interest. ANNs also have the ability to learn as well as interpret data by adapting the 

weights between interconnecting neurons through the use of learning algorithms. 

 

One of the earliest examples of using neurons in the field of computing was by 

McCulloch & Pitts [McCulloch & Pitts, 1943]. They demonstrated how any logic 

function could be realised using a simple neuron which consisted of two logic inputs, a 

bias input and a single output. This work was important in demonstrating that these 

neurons were able to implement computational functions, although interest in the 

technology only started to grow with the development of learning algorithms such as 

that used by [Rosenblatt, 1958], which used perceptron neurons as shown in figure 3.5. 

 

 

Figure 3.5: A perceptron net which can learn linearly separable functions 
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Where bias = 1, x1 and x2 are the two variable input values, and w1, w2 and w3 are the 

weighting factors used to multiply inputs x1, x2 and bias respectively. Therefore, f(net) is 

as given in equation 3.2. 

 

 

3.2 

 

In equation 3.2, if f(net) is above or equal to 0 then the output is set at 1 otherwise the 

output is set to –1. If the signs of both the f(net) output and the training data are the same 

then the weights remain unchanged. If the signs are not the same then the weights are 

updated using a learning function. Perceptrons were able to learn linearly separable 

functions by comparing the network’s output with the desired result and then feeding 

back the error between each to adapt the weights within the network. A limitation of 

these single layered networks was their inability to learn non-linearly separable 

functions. This limitation was only overcome with the introduction of multilayered 

networks and the use of continuous threshold functions which were differentiable such 

as that used by back-propagation learning algorithms [Haykin, 1999]. Back-propagation 

networks are, like perceptron learning, are a form of supervised networks which means 

that the data used to train the network is labelled to indicate the classification of each 

example. In addition to this type of supervised approach, unsupervised approaches such 

as the self organising map (SOM) [Haykin, 1999] were developed. Both of these 

approaches will now be described in the following sections. 

 

3.3.1 Back-propagation Artificial Neural Network 

 

The basic unit in a back-propagation ANN is the Sigmoid unit as shown in figure 3.6. 

The Sigmoid unit computes the linear combinations of its inputs and then applies this 

value to a continuous threshold function. The continuous nature of the threshold function 

allows it to be differentiable, as opposed to the discrete non-differentiable threshold 
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function used by the perceptron given in figure 3.5.  This attribute allows the Sigmoid 

unit to utilise what is known as the delta rule which enables multi-layer networks to 

learn non-linearly separable functions. This is a very powerful tool since a significant 

amount of data analysed in practical implementation problems normally exhibit non-

linear characteristics. Before examining how a multi-layered back-propagation network 

is able to learn non-linear functions, it is necessary to consider how a single Sigmoid 

unit is able to learn linear functions using both the gradient descent algorithm and the 

stochastic approximation learning rule.  

 

 

Figure 3.6: Sigmoid unit used in a back-propagation ANN. 

 

The key idea behind the gradient descent algorithm is to search the hypothesis space to 

determine the weight vector which minimises the output error of a Sigmoid unit and 

hence find a function which best describes the training data. The unit output error is 

minimised by reducing the mean squared error of the single unit. The hypothesis space is 

searched to find the steepest gradient by differentiating the error with respect to each 

individual weight component on the unit input. This derivative can be expressed in terms 

of the node inputs, the expected output and the actual output. This allows the rule, which 

calculates by how much each individual weight in the network is updated, to be 

expressed in terms of the same parameters as in equation 3.3. A comprehensive 

explanation of how equation 3.3 is derived is given in [Mitchell, 1997]. 

 

 

3.3 
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Where "wi is the change in weight, xid denotes the single input component xi for training 

example d, td is the target value for training example d, od is the output for training 

example d and ) is a positive constant called the learning rate. The gradient descent rule 

learns the weight vector for a single unit by randomly initialising each weight. Each 

example is then applied to the network and the amount by which each weight is updated 

is calculated using equation 3.3. Each weight is then updated and the process is repeated 

until the error has been minimised and the solution weight vector is found. A variation 

of this is the stochastic gradient descent, which instead of finding the mean squared error 

over all the examples, finds the mean squared error of a single example and uses the 

results to update the weight vector. This is achieved by applying one training example at 

a time as opposed to running all training examples at once. This method provides an 

approximation to the minimisation of error, but is computationally much more efficient. 

The weights of the unit are updated using the delta rule, as shown in equation 3.4. 

Comprehensive explanation of how equation 3.4 is derived is presented in [Mitchell, 

1997]. 

 

 

3.4 

 

Where t, o and xi are the target value, unit output, and ith input respectively for the 

training example in question. Back-propagation networks are constructed using Sigmoid 

units as shown in figure 3.7.  These are multilayered networks which typically consist of 

an input layer, a hidden layer and an output layer. The multilayered network 

configuration means that the solution space is multi-dimensioned which enables non-

linear functions to be represented using such networks. This ability to represent non-

linear functions is a very powerful tool in real-world domains which require the 

interpretation of non-linear data sets. The learning algorithm used by a back-propagation 

network is based on the same gradient descent or stochastic approximation approaches 
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explained above. Back-propagation networks, however, can have multiple output nodes 

and contain at least one layer of nodes where the expected output of each unit is not 

known directly.  

 

 

Figure 3.7: Multilayered back-propagation network consisting of input, hidden and single node 

output layer. 

 

The back-propagation learning algorithm attempts to reduce the error of the solution 

space in the same way as a single Sigmoid unit. Since a back-propagation network can 

contain multiple output units then, the sum of the squared error over all of the units is 

minimised. The calculation of the magnitude by which each weight in the network 

should be modified is different in a multi-layered network due to the added complexity. 

A detailed discussion on the equations used to update the weights on both output and 

hidden layers can be found in [Mitchell, 1997]. The back-propagation algorithm 

searches the solution space using an approach identical to gradient descent as outlined 

earlier. The weights of the network are randomly initialised and all examples are applied 

to the network to determine the error of each unit. All of the training examples are then 

applied to the updated network and the unit weights are again updated accordingly. This 

process is repeated until the error margin is reduced to an accepable level. 
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3.3.2 Self Organising Map Artificial Neural Network 

 

The objective of a SOM network is to learn a function which groups together input 

examples that exhibit some form of similarity. It achieves this by taking an input 

example, which is represented as some vector of an arbitrary length, and transforming 

this onto a 2-dimensional lattice. The network must therefore be capable of grouping 

together similar input vectors on the lattice in a topological fashion. The interconnecting 

weights between each input and output unit are trained so that a function exists which 

can cluster input examples with similar features. However, the training data used to train 

a SOM is not labelled to assist the training algorithm as is the case for back-propagation 

networks. Labelling of the data is not necessary since the network aims to group together 

similarly featured objects, not objects of a particular classification.  

 

A SOM network is composed of a 2-dimensional lattice of output neurons. Each neuron 

has weighted connection to each component of the input vector. An example of SOM 

network with a 3 component input vector and a 3x3 output lattice is depicted in figure 

3.8 [Haykin, 1999]. The input vector v has values A, B and C. Each output is labelled on 

and each weight vector is labelled wnv where n = 1, 2, …, 8 and v = A, B, C. 

 

 

Figure 3.8: A SOM network with a 3 component input vector A, B and C and a 3x3 output lattice. 
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The algorithm, which trains the network, is composed of three main stages. These stages 

are: 

 

! Competition  

! Cooperation 

! Adaptation 

 

In competition each output neuron computes its output in relation to the input vector and 

the interconnecting weights. The neuron with the largest valued output is deemed the 

winner and this is commonly calculated by minimising the distance between both the 

input vector and the weight vector as described in [Haykin, 1999]. 

 

The winning output unit is found during the competition process, it is the task of the 

cooperation process to determine the location in the output lattice of a neighbourhood of 

nodes which will have their weights updated. These nodes which will have their weights 

updated are defined as the excited nodes. This neighbourhood is calculated using a 

Gaussian distribution as described in [Haykin, 1999] which shrinks with each iteration in 

the training process. 

 

The final stage of adaptation updates the weights of each excited neuron within the 

neighbourhood so that the application of a similar input to the network would result in 

each updated node producing a higher valued output. A detailed description of the 

equation used to update each weight in the neighbourhood can be found in [Haykin, 

1999]. This equation effectively moves the weight vector of the winning neuron and the 

excited neurons closer to that of the input vector.  

 

To train a SOM the weights within the network are firstly randomly initialised. A 

training example is then selected from a population of training examples and is applied 

to the three step process of competition, cooperation and adaptation outlined above. 
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Another training example is then selected and the whole process completed until the 

SOM meets the required termination criteria. 

 

3.3.3 Practical Issues for Artificial Neural Network Applications 

 

ANNs have been applied to a considerable number of domains encompassing a vast 

array of problems. Arguably the biggest advantage of this approach is the ability of the 

network to acquire the necessary knowledge to perform a specific task using a learning 

algorithm like those described for the back-propagation and SOM networks. This ability 

to learn is a very powerful tool in domains where the acquisition of knowledge for a 

particular task is either costly, time-consuming or problematic to acquire. This provides 

system developers with a method of developing an intelligent automated system without 

the need to implement a full knowledge engineering approach to acquire the knowledge. 

This saves both on development time and excludes the need for a highly skilled expert in 

the domain of interest. 

 

Another benefit of the ANN approach is the robustness of the learned functions which 

makes them robust to errors in the data. This is an especially powerful attribute when the 

network is used to interpret data taken from sensors, such as those in machine condition 

monitoring applications. This type of data will likely contain noise which may increase 

or decrease throughout the lifetime of a particular piece of plant. Complex real world 

domains will also have high degrees of non-linearity due to the complexity of the 

processes encountered in such applications. The high performance of ANNs in learning 

non-linear functions makes them particularly useful in such complex domains. 

 

As well as the speed in which knowledge of a particular domain can be acquired through 

automated learning algorithms, ANNs are able to assess input data at very fast 

processing speeds. This makes the approach useful in applications where close to real 

time assessments must be made in order to implement actions in a timely fashion. An 
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example of where this attribute finds particular favour is in control or protection 

problems where actions must be made quickly in response to the inputs and operating 

conditions of the network. 

 

ANNs require the availability of a suitable data set which is representative of the 

problem being addressed. Supervised learning, which is required by back-propagation 

networks, means that this data must be appropriately labelled to provide performance 

feedback for the learning algorithm. The training data doesn’t have to be labelled for 

unsupervised learning approaches used in SOM networks since, the similarities in the 

data are being derived as opposed to grouping the examples into pre-defined categories. 

It is therefore imperative that, regardless of the specific technique chosen, there must 

exist a suitable data set which is representative of the problem domain. As larger, faster 

and cheaper storage devices become available, adequate training data is becoming 

available for a significant number of applications. However, problems arise where 

access to suitable data is not permitted due to poor data storage approaches or the rarity 

of particular events. 

 

A final consideration must be paid to the form in which the knowledge is represented. 

The knowledge acquired by an ANN is implicit in the interconnecting weights between 

neurons, inputs and outputs. Although this knowledge representation allows ANNs to 

quickly and accurately process noisy data sets, it doesn’t provide any explanation or 

rationale which is easily understood by a system operator. The lack of explanation 

provided by ANNs means that user confidence can be lost, or at the very least reduced, 

when the network performs poorly. 

 

3.3.4 Applied Artificial Neural Networks 

 

ANNs have been applied to a wide range of condition monitoring and fault diagnosis 

tasks. One area is the condition monitoring of nuclear power plants [Embrechts & 
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Benedek, 2004] and [Steele et al, 2003]. In [Embrechts & Benedek, 2004] a back-

propagation ANN is trained to determine if the monitored equipment is exhibiting signs 

of one of twenty pre-defined faults. Fuel grab load data from the refueling of nuclear 

reactors is analysed in [Steele et al, 2003] using ANNs. Features are derived from load 

trace data and used as inputs to an ANN for classification. 

 

ANNs have also found application in the condition monitoring of power transformers 

[McArthur et al, 2004], [Wang et al, 2000], [Wang et al, 1998] and [Booth & McDonald, 

1998]. The multi-agent system in [McArthur et al, 2004] uses a back-propagation ANN 

to detect and classify transformer faults from a feature vector made up of statistical 

measures derived from Ultra High Frequency (UHF) sensor data. A similar ANN is used 

in parallel with an Expert System in [Wang et al, 2000] and [Wang et al, 1998] to detect 

abnormal transformer behaviour through diagnosis of various pre-defined faults. Each 

fault type is assigned a dedicated ANN which applies oil sample information as inputs to 

the network. In [Booth & McDonald, 1998] a back-propagation ANN is trained to 

predict transformer vibration behaviour from thermal and current inputs. This provided a 

useful technique for comparing “healthy” modelled behaviour with actual vibration data 

captured from the test transformer. The paper also reported a SOM network which was 

successfully trained to classify instances of “healthy” and “unhealthy” transformer 

behaviour. 

 

A SOM network was also used in [Wu & Chow, 2004] to detect faults generated by a 

three-phase induction motor test rig. The network used feature vectors derived from the 

frequency distribution of the vibration data and showed a high success rate at detecting 

mechanical and electrical fault types as well as normal behaviour. A similar approach is 

used in [Li et al, 2000], in that various frequency based features are extracted from the 

bearing time-series vibration data and fed into a back-propagation neural network. This 

technique was shown to perform well at diagnosing faults on test apparatus within the 

laboratory. 
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There were two issues associated with the turbine generator condition monitoring 

application which meant that ANNs were unsuitable. The first was that there was no 

training data in an electronic format which could be used to train a network. The data 

associated with the alarms generated for the Beran system were all stored in paper 

format and any digital data on the Beran system archive was still in its raw data format. 

It would have been possible to transfer the paper records to a digital format and 

transform the raw signal data into a format to be used as training data but the effort and 

resources required to do this were seen as being prohibitive. The other issue was the fact 

that the British Energy condition monitoring experts had specifically requested for there 

to be some form of assessment rationale so that any assessment could be verified. 

Therefore, ANNs which provide little or no explanation of their assessment, were not 

suited to this particular task. 

 

3.3.5 Further Reading 

 

For a more complete and in depth discussion on ANNs including its origins, seminal 

applications outside of the power systems domain and the varying algorithms adopted, 

the reader is guided to the following texts [Haykin, 1999] and [Mitchell, 1997]. 

 

3.4 Model-Based Diagnosis 

 

Some of the earliest examples of MBD began to emerge in the 1970’s, with the 1980’s 

witnessing considerable growth in the technology [Davis & Hamscher, 1988]. MBD 

attempts to diagnose faulty behaviour using models of the domain of interest such as 

structural, functional, fault etc. Initially it was developed as a potential solution to some 

of the limitations which Expert Systems imposed. Central to the Expert System approach 

is the use of the empirical associations which associate observed symptoms with 

underlying faults in the system. The relationships were in most cases built up through 

experience of the device rather than knowledge of the structure or behaviour. This meant 
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that Expert Systems were inherently device dependent; that is, a new rule set was 

required for each new device. This issue became especially prevalent in areas such as 

electronics where the rate at which new devices were being designed and manufactured 

created time constraints for collecting the required knowledge to develop such systems.  

 

MBD is, by contrast, device independent due to the fact that it works from models of 

normal behaviour typically available at the design stage. Given a model of normal 

behaviour of the device, work can begin on diagnosing faults in a relatively short period 

of time. The advantages brought by such an approach are that where suitable models of 

the device of interest are available then there can be significant cost savings in the effort 

required to develop such a diagnostic device. MBD approaches are also more likely to 

diagnose faults within a system which have not been encountered before, as opposed to 

expert systems whose empirical associations rely on previous experience of encountered 

problems. 

  

3.4.1 Model-Based Diagnosis Approach 

 

The basic MBD paradigm is one of observation and prediction as shown in figure 3.9 

from [Davis & Hamscher, 1988]. The actual device is typically some physical system 

whose behaviour can be observed. In addition to this, a model of the actual device can 

be used to make predictions about the expected correct behaviour. Any discrepancies 

between the observed behaviour (what the device is actually doing) and the predicted 

behaviour (what the device is supposed to be doing) are treated as an interesting event. 

A fundamental assumption in this approach is that the model accurately simulates 

correct behaviour of the device, which therefore implies that any deviation from this 

predicted correct behaviour is deemed as a fault. 
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Figure 3.9: Basic MBD paradigm where the basis of diagnosis is the interaction of observation and 

prediction 

 

On location of a discrepancy the task is to determine which component or components in 

the model could have failed in a way that accounts for all of the observed discrepancies. 

This is achieved by the following 3 stage approach: 

 

! Hypothesis generation 

! Testing 

! Discrimination 

 

Hypothesis generation is concerned with reasoning from a symptom to a collection of 

components whose misbehaviour could have caused that symptom. The next stage of the 

process is to test the candidate set to determine which components can account for all 

observations of device behaviour. The final stage of discrimination attempts to deduce 

what remaining candidates in the set are the most likely cause of failure through testing. 

The following sections will now explore some of the most common approaches in MBD 

employed to achieve the three aforementioned stages. A standard textbook example 

taken from [Davis & Hamscher, 1988] has been used throughout the following sections 

to assist in explaining each of these approaches. 

 

3.4.1.1 Hypothesis Generation 

 
The fundamental task here is that given a discrepancy, determine which components 

could have misbehaved in a way to produce that discrepancy. The simplest approach to 

achieving this would be to use a generator which simply nominates all of the 

components within the device. Figure 3.10 shows graphically a simple function.  
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MULT-1

ADD-1

ADD-2

MULT-3

MULT-2

A = 3

B = 3

C = 2

D = 2

E = 3

G = 12

[F = 10]

F = 12

 

Figure 3.10: MBD example where potential candidates MULT-1, MULT-2, MULT-3, ADD-1 and 

ADD-2 could account for the discrepancy at F. 

 

There are five numeric inputs A, B, C, D and E, three multipliers MULT-1, MULT-2 

and MULT-3, two adders ADD-1 and ADD-2, and 2 outputs F and G. MULT-1 

multiplies inputs A and C together, MULT-2, B and D, and MULT-3, C and E. Output F 

is calculated by adding together the output of MULT-1 and MULT-2, and output G is 

derived by adding together the output of MULT-2 and MULT-3. The outputs which are 

not bracketed are the predicted outputs whereas the outputs in brackets are those 

observed. It can be seen from the example in figure 3.10 that the output value F 

observed differs from the expected value. Therefore, a hypothesis approach, which 

simply nominates all of the components within the function, would identify components 

MULT-1, MULT-2, MULT-3, ADD-1 and ADD-2 as being potentially faulty from the 

device depicted in figure 3.10. 

 

It should be apparent that this approach is not very intelligent but it can be improved by 

implementing a few simple rules to the search. These are: 

 

! To be a suspect, a component must have been connected to the discrepancy. 

! Only consider components upstream of the discrepancy as potential candidates. 

! Only consider inputs which influence the output of a device to avoid following 

unnecessary inputs upstream. 



 60 

! Information from more than one discrepancy can be used to further constrain the 

suspect generation. 

 

The first rule would have no affect on the candidates generated from the previous 

example, since all components are connected to the discrepancy. The second rule would 

reduce the hypothesis set to MULT-1, MULT-2 and ADD-1. The third rule would not 

reduce the hypothesis set any further in the above example but could be used in other 

situations to effectively reason about a components behaviour to determine irrelevant 

inputs. The fourth rule is useful in cases where more than one discrepancy exists as 

shown in figure 3.11. Discrepancy F yields the candidates MULT-1, MULT-2 and 

ADD-1, whereas discrepancy G yields MULT-2, MULT-3 and ADD-2. Assuming a 

single point of failure, the hypothesis set could be reduced to the intersection point of 

both candidate sets i.e. MULT-2. 

 

 

Figure 3.11: MBD example where the single potential candidate MULT-2 could account for both 

discrepancies at F and G assuming a single point of failure. 

 

3.4.1.2 Hypothesis Testing 

 

Once all of the candidate components in the system have been identified, it is required to 

test each hypothesis to determine if it can account for each of the observations made 

about the device. The simplest method to achieve this is to simulate in turn all of the 

ways in which each component in the hypothesis can malfunction using the original 
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observed inputs. If the overall modelled behaviour is inconsistent with the observations, 

then the hypothesis can be discarded, whereas hypotheses which match with the 

observations can be retained. Another approach for hypothesis testing is constraint 

suspension. The basic idea behind constraint suspension is to test each component in the 

system to determine if any of them can account for the inconsistency. This is achieved 

by modelling each component as a set of constraints such as that given in figure 3.12 for 

an adder. Here the behaviour of an adder is represented by a set of expressions which 

capture the relationships between the values on the terminals of the component.  

 

 

Figure 3.12: The behaviour description of an adder 

 

Constraint suspension achieves hypothesis testing by removing the constraints for the 

suspect and leaving in place all remaining constraints. The observed values are then 

placed into the reduced constraints network. If no inconsistency is met during this 

simulation this would imply that the current suspect is consistent with all of the 

observations and is therefore a suspect hypothesis. If the network is still inconsistent 

with the constraint suspended then the suspect can be eliminated. One big advantage of 

this approach is that no assumptions are made regarding how any of the candidates could 

fail. It is in this sense that model-based approaches using a model of correct behaviour 

covers a broader class of faults than traditional techniques which pre-specify the modes 

of failure.  
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3.4.1.3 Hypothesis Discrimination 

 

The next stage in the MBD process is that of hypothesis discrimination which attempts 

to distinguish between the multiple hypothesis that survive the hypothesis testing. This 

stage essentially entails gathering new information on the behaviour of the device using 

one of two approaches. The first approach is referred to as probing which involves 

making additional observations and the second is referred to as testing which requires 

that the inputs of the actual device are changed to obtain new observations. In both cases 

the goal is to gain the most information at the least cost. 

 

3.4.1.3.1. Probing 

 

The simplest approach to probing is to use the structural information to generate the set 

of all possible locations and pick any places which have not been measured yet. This 

basic approach can be refined by starting at the discrepancy and following it upstream to 

a component whose output is incorrect but its input is correct. This more advanced 

approach is referred to as the guided probe. For example the discrepancy in figure 3.13, 

where the value 5 is predicted as the output but 3 is observed instead, would be probed 

first at terminals A and Z since if these are measured to have their predicted values then 

this would imply that MAX-1 must be faulty. If Z has any number other than 5 then we 

probe upstream at both B and Y to see if they are 1 or 4 respectively until we find the 

culprit. The guided probe technique can be extended to use information about 

component behaviour to reduce the probes required. 
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Figure 3.13: The guided probe approach to hypothesis discrimination. 

 

The guided probe is a simple and effective approach but is linear in its search. This 

approach can however be refined further to produce a more efficient search. In the 

current example it should be apparent that the most effective position for the first probe 

would be at Y. If the value does not match the predicted one then half of the components 

can be eliminated from the search, that is, those upstream of the probe. The process of 

cutting the search space in half can be continued at each step producing the traditional 

binary search. In some cases there may be several places which appear equally 

informative. It is sometimes possible in instances such as these to eliminate candidates 

for probe points when there is information on failure probabilities of the considered 

components. This information can be used to test the component with the greatest 

chance of failure than those that are least likely to fail. 

 

3.4.1.3.2. Testing 

 

Testing is the second approach to hypothesis discrimination. This approach uses new 

inputs to the actual device to create further observations which can be used to gain more 

information on the behaviour of the device. A valid hypothesis should be consistent with 

the new observations created by the new test inputs. As with the probing approach the 

difficulty is to find the test which will provide the maximum amount of information for 

the discrimination process. If the set of tests is pre-set at a finite amount then the optimal 
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approach is to select the test which will split the set in half. If the set of tests possible is 

infinite then the goal is to develop tests which will test each component.  

 

3.4.2 Practical Issues for Model-Based Diagnosis Applications 

 

MBD is a symbolic AI approach which utilises models of the domain of interest as its 

source of knowledge, as opposed to the empirical heuristic associations used by the 

Expert System approach. This makes MBD an attractive option in instances where an 

adequate model of the domain of interest exists since little or no effort is required to 

acquire the knowledge base. This is in contrast to the time consuming and expensive 

knowledge engineering process required to develop the knowledge base for Expert 

Systems. This is particularly useful in applications where devices become obsolete in 

short spaces of time but models are readily available. The short useful lifetime of such 

devices make Expert Systems prohibitive due to the length of time required to acquire 

the necessary knowledge since the device could become obsolete before the knowledge 

engineering approach is completed. With MBD however, a system can be developed 

relatively quickly given the access to adequate models. A good example of this arises in 

the electronics industry, where continuous developments in the technology mean that 

devices have increasingly shorter lifetimes but access to logical models is facilitated as 

soon as the product is developed. The use of models, which are built both on formal 

logical foundations, and correct expected behaviour, as opposed to known faulty 

behaviour, make it possible for such systems to diagnose novel behaviours or faults. 

 

There are some limitations to the MBD approach. One limitation arises in domains 

which do not have access to an adequate model of the problem being addressed. In some 

of these situations it is possible to develop a model but this would only be feasible where 

the time and expense involved is merited by the application. It can also be the case that 

some domains are so complex or lack a clear logical foundation that the development of 

a useful model is not possible. Therefore the difficulty in acquiring expert knowledge is 
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replaced by the difficulty in acquiring or developing a model. A further limitation of 

MBD systems is one which is shared with the Expert System approach. The MBD 

approach has no method of assessing its performance on a particular task and feeding 

this back into the system to make improvements to the model. Therefore, MBD is unable 

to learn knew knowledge as is the case for Expert Systems. 

 

3.4.3 Applied Model-Based Diagnosis 

 

There have been very few examples of MBD being applied to complex power system 

problems largely due to the difficulty in developing adequate models of the domain. 

However the most notable example of such a system being applied to turbine generator 

condition monitoring is TIGER [Trave-Massuyes & Milne, 1997]. The system consists 

of a rule-based and a model based diagnosis module. The model based diagnosis module 

CA-EN is a qualitative technique which seeks to compare the expected system 

behaviour with the observed behaviour in order to locate discrepancies between both 

signals. Knowledge is represented within the causal models either empirically as cause 

and effect relationships or by equations which represent the physics of the underlying 

system behaviour. When a discrepancy between the expected behaviour and the 

observed behaviour is detected over a predefined period then the fault diagnosis element 

of the MBD module is initiated to determine a component or set of components which 

can explain the discrepancy. TIGER has received much attention from industrial parties 

and has been successful in diagnosing various faults over numerous gas-turbines as 

reported in [Milne et al, 2001]. 

 

An MBD toolset based on the GDE [Davis & Hamscher, 1988] is described in 

[Davidson et al, 2003]. This toolset is aimed specifically at utilising powers system 

protection simulation models which are commonly used by protection engineers to 

design and maintain protection schemes on transmission and distribution networks. The 

MBD toolset is able to capture a model from various protection simulation packages 
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available. The model is composed of two document types. The first document describes 

the overall structure and connectivity of the model components. The second document 

models the behaviour of the components within the model structure such as the inputs 

required and how to simulate the behaviour of the component given these inputs. The 

diagnostic element of the toolset uses a discrepancy based approach to identify candidate 

components which have misbehaved during a protection operation. A later version of the 

system described in [Davidson et al, 2005] adds abductive MBR methods to the toolset 

to determine how a component has failed once it has been identified by the consistency 

based approach. The abductive based approach relies on the availability of fault models 

which describe failure modes for each component based on previous experience. The 

advantage of this toolset is that it allows existing models of a protection system, which 

have been produced for the purpose of protection setting validation/grading and system 

design, to then be utilised for diagnostic purposes. MBD is particularly suited to this 

domain since existing models of protection systems already exist for many applications. 

The authors do point out that the diagnostic results produced by the toolset are 

dependent on the quality of the model and its suitability to the task at hand. 

 

The application of MBD for the turbine generator condition monitoring application is 

limited since there are no detailed models of normal behaviour for the 660MW turbine 

generator sets within British Energy. One option explored was the development of such 

a set of models which detailed the normal behaviour of the turbine generator sets. British 

Energy had previously invested some resources in an attempt to develop models 

associated with certain functional areas of the turbines. To model only specific elements 

of the sets was demanding on resources plus the results drawn from the exercises were 

not as beneficial or consistent as had been initially hoped for. Given the limited 

resources at disposal for the turbine generator project it was felt that the scale and 

complexity of the task to develop such models was too prohibitive. Therefore MBD was 

rejected as an approach for developing an automated system for the turbine generator 

condition monitoring project. 
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3.4.4 Further Reading 

 

No comprehensive textbooks currently exist for the area of MBD which are equivalent 

to those that can be found for ANNs and Expert Systems. A more complete discussion 

on the approaches covered in this section can be found in [Davis & Hamscher, 1988] 

and the collection of papers for which the aforementioned paper was included within 

[Hamscher et al, 1992] gives a more detailed overview of the area of MBD. 

 

3.5 Condition Monitoring Approach Selection 

 

From the three AI approaches so far described in this chapter, one had to be selected to 

develop an automated system which was capable of assessing the alarms generated by 

the Beran system. The British Energy condition monitoring experts had expressed that 

the system produced should provide some explanation of its assessment so that the 

results could be verified. As explained in section 3.3.3, ANNs are poor at providing 

explanation of their assessments since the knowledge utilised by this approach is 

difficult for humans to interpret. Additionally, the ANN approach requires training data 

to develop such a system which was not available for the turbine generator condition 

monitoring project. Therefore the ANN approach was rejected as an approach for the 

automated system. The MBD approach was also rejected since there was no existing 

model of normal behaviour of the 660MW turbine generator sets within British Energy. 

Additionally the development of such a model was viewed as being too large a task for 

the resources at the project’s disposal. The chosen solution for the automated system 

was the Expert System approach. Expert Systems have been shown to provide good 

explanation through the utilisation of the heuristic knowledge used to derive assessment 

conclusions as described in section 3.2.6. Additionally, the knowledge required to 

develop the Expert System was available from the British Energy Experts. A more 

detailed explanation of the technique selection is given in section 4.2.  
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Another facet of the turbine generator condition monitoring project was the development 

of a learning module which was designed to assist in capturing the knowledge required 

by the Expert System. The learning module was developed using an ML approach. The 

area of ML is reviewed in the remaining sections in this chapter. 

 

3.6 Machine Learning Taxonomy 

 

A complete literature review of the area of ML is outwith the scope of this thesis. The 

second half of this chapter does however aim to give an overview of the area of ML 

which will assist in explaining the choice of technique for the learning module for the 

turbine generator condition monitoring project. An example of a high-level ML 

taxonomy is given in figure 3.14. It can be seen that the area of ML can be divided into 

four broad categories. These are: 

 

• Symbolic based approaches 

• Instance based learning 

• Connectionist networks 

• Statistical/probabilistic approaches 

 

Symbolic based approaches are, as the name implies, techniques which utilise symbolic 

data like that used in rule-based systems. The two categories of symbolic approaches are 

instance based learning and analytical learning. Instance based learning techniques are 

data driven techniques which use the statistical properties of data sets to extract 

commonalities which can lead to rule-based relationships. Analytical methods are 

knowledge based techniques which use background knowledge of the particular area of 

interest in conjunction with a small amount of training data to derive heuristic 

expressions. Instance based learning approaches are commonly referred to as CBR 

systems. CBR systems do not derive explicit or implicit knowledge directly to be used in 

some form of knowledge base. Instead they store examples in what is referred to as a 
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case base and use a similarity measurement to determine which case or cases match 

closest to the current example under investigation. An area of machine learning, which 

has already been covered in detail in section 3.3, is ANNs or connectionist systems. 

These approaches are again data driven in that they use large data sets to update the 

statistical knowledge implicit within the network neurons to improve the system 

performance. The final category encompasses a broad range of techniques which utilise 

the statistical properties within, mostly, large data sets to infer knowledge. Two 

approaches which fall within this category, and are discussed in the second half of this 

chapter, are Hidden Markov Models and Bayesian learning techniques. 

 

 

Figure 3.14: High level Machine Learning taxonomy. 

 

The taxonomy given in figure 3.14 is by no means the definitive thinking on how the 

area of machine learning should be split. For example one line of thinking may divide 

the approaches into data driven and analytical. It could be argued that there is 

considerable overlap in the categories within the taxonomy. For example it could be 

argued that inductive symbolic methods along with connectionist networks should come 

under the statistical/probabilistic heading since they derive their knowledge from the 

statistical information contained within large training sets. Therefore the taxonomy 

given in figure 3.14 is a method of breaking down the vast area of machine learning. The 

remainder of the chapter will now give an overview of each of the categories outlined in 
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the taxonomy which have not already been covered in previous sections and will 

describe some of the most common techniques within each particular area. 

 

3.7 Symbol-Based Learning 

 

Symbol-based learning techniques are primarily concerned with deriving the type of 

explicit symbol based knowledge such as that found in Expert Systems i.e. heuristic rule 

based expressions. The two primary approaches to deriving this type of knowledge are 

analytical or inductive based learning techniques. Analytical techniques utilise 

background information such as domain knowledge alongside a single or few training 

examples to derive heuristic rule based expressions. This approach can be thought of as 

knowledge driven, due to the use of some background knowledge of the area of interest. 

Inductive rule-based approaches use no background information on the domain but 

instead search for similarities within the data set to derive empirical associations. This 

type of approach requires large enough data sets to determine similar features between 

training data which is of a similar type. Therefore these techniques are effectively 

utilising the statistical distribution of the data set to derive the knowledge. This type of 

approach is commonly referred to as a data driven approach. Common approaches to 

both types of learning are explained in the following sections. 

 

3.7.1 Analytical Learning 

 

The two most common and widely researched analytical symbolic ML approaches are 

Explanation Based Learning (EBL) [DeJong & Mooney, 1986] and Explanation Based 

Generalisation (EBG) [Mitchell et al, 1986].  

 

The EBG problem can be summarised as follows: 
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Given: 

! Goal Concept: A concept definition describing the concept to be learned. 

! Training Example: An example of the goal concept. 

! Domain Theory: A set of rules and facts to be used in explaining how the 

training example is an example of the goal concept. 

! Operationality Criterion: specifies the form in which the learned concept 

definition must be expressed. 

 

Determine : 

! A generalisation of the training example that is a sufficient concept definition for 

the goal concept and that satisfies the operationality criterion. 

 

The EBG problem definition means that a system employing an EBG approach would be 

able to derive an expression which, in most condition monitoring cases, would be a 

diagnostic rule or heuristic. For example the turbine generator condition monitoring 

application may require a rule which is able to diagnose a rotor out of balance fault. 

Rotor out of balance would then become the goal concept. To derive this rule, the EBG 

approach would require an example of a rotor out of balance fault. This would be the 

training example in terms of the EBG problem definition. Initially this training example 

will contain facts which are not directly associated with the fact that it is an example of 

an out of balance fault. The EBG approach will use existing background knowledge on 

the domain of interest to sort out the information associated with the training example, 

so that only features relevant are used to construct the rule. This background knowledge 

relates to the domain theory in the EBG problem definition and would consist of 

knowledge of out of balance rotor faults for the derivation of the diagnostic rule. It is 

this use of background knowledge to determine the relevant features in the training 

example which encompasses the learning element of the EBG approach. The EBG 

problem definition also specifies that the expression learned must be expressed in a 

suitable format. This format is known as the operationality criterion. If, for example, the 

purpose of learning an expression for a rotor out of balance fault was to use this within 
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an on-line diagnostic system, then the expression would have to contain terms which the 

on-line system would have access to. Therefore, if the on-line system never had access 

to temperature data of the turbine, temperature data would not be used in the 

operationality criterion. 

 

The EBG approach used to solve the problem outlined above is: 

 

1 Explain: Construct an explanation in terms of the domain theory that proves how 

the training example satisfies the goal concept definition. 

2 Generalise: Determine a set of sufficient conditions under which the explanation 

structure holds, stated in terms that satisfy the operationality criterion. 

 

Therefore, the EBG approach firstly proves the training example to be an instance of the 

goal concept by using the domain knowledge to prove it. The background knowledge 

would therefore have to logically prove that the training example fitted the criteria of 

that required to be an example of the concept definition. The logical explanation which 

proves that the example fulfils the goal concept criteria can then be transformed into an 

expression which can be used to identify other examples of the goal concept. It is the 

derivation of this expression which the second stage of the EBG approach is concerned 

with. Following the first stage the explanation is particular to the training example used 

to derive it. Therefore this explanation has to be generalised so that other examples 

which are of the same goal concept but not identical can be recognised by the derived 

expression. 

 

An example will be used to show how EBG uses the above approach to derive rule 

based heuristics. The example is based on the one given in [Mitchell, 1997]. A problem 

definition is given in figure 3.15. 
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Figure 3.15: Example of a problem definition for the EBG safe to stack problem. 

 

The problem definition in figure 3.15 indicates that the goal concept is to derive an 

expression to identify examples of where one object x is safe to stack on top of another 

object y which is denoted as SAFE-TO-STACK(x, y). The operationality criterion 

specifies that the expression derived by the EBG approach must be expressed in terms of 

the predicates given in the training example such as COLOUR, VOLUME and 

DENSITY. This expression is derived using the domain theory, which as shown in 

figure 3.15 contains knowledge such as how to determine the weight of an object 

through its volume and density, and the process of generalisation. The first step of the 

EBG approach is to construct an explanation of how the training example satisfies the 

goal concept. Essentially the domain theory is used to distinguish from the training data 

what pieces of information are relevant to the goal concept SAFE-TO-STACK(x, y). 

The explanation for this problem definition is shown in figure 3.16. 
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Figure 3.16: Explanation composed by the EBG approach to indicate how the current example fits 

the safe to stack criteria. 

 

The explanation structure shows that OBJ1 and OBJ2 fulfil the goal concept of SAFE-

TO-STACK(x, y). The weights of each object are determined from the Domain theory 

given in figure 3.15 through the use of the WEIGHT(p1, w1) expression for OBJ1 and 

the WEIGHT(p1, 5) (default) expression for OBJ2. From this it is inferred that OBJ1 is 

lighter than OBJ2 through the LIGHTER(p1, p2) expression given in the domain 

knowledge in figure 3.15. Therefore it is inferred that it is safe to stack OBJ1 onto OBJ2 

using the expression given the domain theory in figure 3.15, that is, 

SAFETOSTACK(p1, p2) * LIGHTER(p1, p2). Note that the explanation structure has 

been constructed so that each of its branches terminates in an expression that satisfies 

the operationality criterion given in figure 3.15. 

 

While the first step in the EBG process isolates the relevant features in the training 

example it does not determine the generalised constraints within the explanation 

structure. Although the feature VOLUME (OBJ1, 1) given in figure 3.16 is relevant to 

explaining how the present training example fulfils the goal concept it does not contain 

general enough constraints which would encompass every training example of the goal 

concept. For example, consider a second training example which is identical to the one 

given in figure 3.15 except that VOLUME(OBJ1, 1) is replaced for VOLUME(OBJ1, 

2). It should be apparent that, in this new example, it is still safe to stack OBJ1 on top of 

OBJ2 since OBJ1 is still lighter than OBJ2, that is 0.2 is less than 5. However the 
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explanation developed by the EBG algorithm so far given in figure 3.16 would be unable 

to deduce this because it is only capable of recognising examples which contain the 

attributes VOLUME(OBJ1, 1), DENSITY(OBJ1, 0.1) and TYPE(OBJ2, ENDTABLE) 

as being safe to stack OBJ1 on top of OBJ2. The EBG approach would be able to prove 

that this second example is an instance of safe to stack by proving it again using the 

domain theory. This is undesirable since it is time consuming, especially for problems 

where the explanation is large. It is therefore desirable to generalise the explanation 

given in figure 3.16 so that similar examples of safe to stack, which are not exactly the 

same as the training example given in figure 3.15, can be classified.  

 

This process of generalisation is performed by the second stage of the EBG process. 

This is achieved by using goal regression [Mitchell et al, 1986], which determines 

sufficient conditions under which the rule can infer the formula. The first stage of the 

regression process (R1) as shown in figure 3.17 starts with taking the goal concept 

which in our example is SAFETOSTACK(x, y). The regression approach then takes the 

expression from the domain knowledge which was used in the explanation given in 

figure 3.16. This expression is SAFETOSTACK(p1, p2) * LIGHTER(p1, p2) as shown 

in figure 3.17. To translate SAFETOSTACK(p1, p2) into the form of our goal concept 

SAFETOSTACK(x, y) we need to make the substitutions x = p1 and y = p2. Therefore 

LIGHTER(p1, p2) is put into the form required by the goal concept LIGHTER(x, y) by 

making these substitutions as shown in figure 3.17. 

 

 

Figure 3.17: Regression of SAFETOSTACK(x, y) expression from the derived explanation 
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The next stage in the regression process (R2) is to regress the LIGHTER(x, y) attribute 

as shown in figure 3.18. The expression used to develop the explanation in figure 3.16, 

LIGHTER (p1, p2) * WEIGHT (p1, w1) # WEIGHT (p2, w2) # LESSTHAN (w1, 

w2), is applied. Again the substitutions x = p1 and y = p2 are again used to translate 

each attribute into the form required for the goal concept expression SAFETOSTACK(x, 

y) as shown in figure 3.18. 

 

 

Figure 3.18: Regression of LIGHTER(x, y) expression from the derived explanation 

 

The next stage in the regression process (R3) is to regress the WEIGHT(x, w1) 

expression as shown in figure 3.19. The expression used in generating the explanation in 

figure 3.16, WEIGHT (p1, w1) * VOLUME (p1, v1) # DENSITY (p1, d1) # 

EQUAL(w1, TIMES(v1, d1)), is applied. The substitutions x = p1 and w1 = w1 have to 

be applied to each attribute so that they are in the form required for the goal concept 

SAFETOSTACK(x, y) as shown in figure 3.19. 

 

 

Figure 3.19: Regression of WEIGHT(x, w1) expression from the derived explanation  
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The next stage in the regression process (R4) is to regress the WEIGHT(y, w2) attribute 

as shown in figure 3.20. The expression used to generate the explanation in figure 3.16, 

WEIGHT (p1, 5) (default) * TYPE (p1, ENDTABLE), is applied. The substitutions y = 

p1 and w2 = 5 have to be applied to the attributes so that they are in the form required 

for the goal concept SAFETOSTACK(x, y) as shown in figure 3.20. 

 

 

Figure 3.20: Regression of WEIGHT(y, w2) expression from the derived explanation 

 

Finally the LESSTHAN(w1, w2) attribute has the w2 = 5 applied to it to derive 

LESSTHAN(w1, 5). The full regression process is summarised in figure 3.21. The fully 

regressed expression derived by the EBG approach for the goal concept SAFE-TO-

STACK (x, y) is derived by conjugating all of the attributes at the bottom of the 

regressed explanation tree. Therefore the final expression is VOLUME(x, v1) # 

DENSITY(x, d1) # EQUAL(w1, TIMES(v1, d1)) # LESSTHAN(w1, 5) # TYPE(y, 

ENDTABLE). It should be apparent that a second example identical to that given in 

figure 3.15, except that VOLUME(OBJ1, 1) is replaced for VOLUME(OBJ1, 2), can 

now be classified as being safe to stack using the generalised expression derived by the 

EBG approach. There is no requirement to prove, using the domain theory, that this 

second example is an example of safe to stack, since a generalised expression now exists 

which is capable of classifying it and any other examples of safe to stack which contain 

the required attributes and fulfil the necessary criteria. The EBG approach has therefore 

learned a generalised expression using the single training example and the domain 

theory. 

 



 78 

 

Figure 3.21: A reduced form of goal regression is used to generalise the constraints of the expression 

so that other examples of the concept can be classified. 

 

An alternative approach to analytical symbolic learning is given in [DeJong & Mooney, 

1986]. This approach is called EBL and is in many ways similar to the EBG approach 

previously outlined. The authors outline what they see as being weaknesses in the EBG 

approach. The main weakness identified is that the goal regression approach used in the 

EBG approach is not general enough. This is because only the variables within the 

predicates are generalised and not the predicates themselves. For example, in the safe to 

stack example outlined above, the authors argue that the derived expression would be 

unable to classify an example where the object’s volume and density is not given, but it 

is stated that the object is an ashtray and that the ashtray weighs only 1. It should be 

apparent that the object still weighs less than the end table and it should therefore be safe 

to stack. Therefore the authors argue that an approach which is able to generalise the 

predicates to encompass this would be more powerful than that proposed in [Mitchell et 

al, 1986]. The authors also argue that the use of an operationality criterion is limiting 

since the criterion might not always be operational. This argument is true if it is the case 

that the information relating to the example is captured in a non-structured way, say 

through natural language. For example, two different people may describe the same 
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scenario in two different ways. This would require two different operationality criterion 

if expressions had to be learned to recognise that scenario but from two different 

descriptions. To alleviate these problems the authors propose generalising the derived 

expression further using schemata, which allows sections of knowledge which are 

related to be grouped together and utilised within the expression. For example, if some 

derived expression contained the predicate GUN, a schemata might be available called 

WEAPON which contains the predicate GUN along with other types of weapon such as 

KNIFE etc. The predicate GUN could therefore be substituted for the more general 

predicate WEAPON, which would make the derived expression more general. To 

incorporate the use of schemata the authors provide a different approach to deriving the 

expression than that employed for the EBG approach in [Mitchell et al, 1986]. One of 

the differences is the use of goal regression has to be excluded in favour of an approach 

which employs schemata to generalise the predicates as well as the variables. The 

authors also argue that the operationality criteria could be eliminated through the use of 

schemata. This is because the generalised expression could always be used to classify an 

example which uses predicates which are more specific by referring to the schemata 

therefore eliminating the need to define an operationality criterion. 

 

3.7.2 Applied Analytical Learning 

 

One of the few examples where an analytical learning approach has found an application 

in fault diagnosis is in [Kobayashi & Nakamura, 1991]. Here the EBG approach is used 

to derive diagnostic heuristics for a cigarette making machine. Instead of using a formal 

first order logic knowledge representation, as traditionally used in EBG approaches, the 

authors used causal fault models to construct fault explanations. The constraint imposed 

on EBG approaches which adopt a first order logic is that the domain knowledge must 

be perfect i.e. the expressions within the domain knowledge must be logically correct. 

However the use of causal models eliminates this need for a perfect domain theory since 

the models are defining approximate relationships from the expert’s previous 

experience. The authors also describe a knowledge refinement approach whereby the 
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heuristic expression derived is compared against existing expressions associated with 

that concept and either generalised or made more specific using a technique called 

difference analysis. In addition to this the authors also used what are called negative 

literals in the explanation generation to add more detail to the derived heuristics. 

Negative literals are features which are not present in the training data but their absences 

can go some way to differentiating the current hypothesis with another. For example in 

turbine generator condition monitoring the absence of a particular vibration component 

could differentiate between one behaviour and another. The authors demonstrated the 

usefulness of their approach by running an experiment where 88 new training examples 

were applied to their causal model using the EBG approach. This experiment managed 

to generate 79 new heuristic rules which were not already contained within the existing 

rule base. One important consideration which was not included in this work which 

would have to be dealt with in turbine generator condition monitoring applications 

would be the inclusion of temporal constraints both into the causal model and ultimately 

in the heuristic expressions derived for the rule base. One other aspect of this work was 

the method in which the causal model was constructed. The model was constructed 

using nodes which could represent either causes, symptoms or faults and each of these 

were able to be causally linked. The model therefore seemed chaotic in structure and 

there was no discussion on whether the developed model could be easily transferred 

from one type of cigarette making machine to another which may exhibit subtly different 

behaviours. 

 
Analytical approaches rely on the availability of a domain theory to distinguish between 

relevant and irrelevant knowledge in the training data. The turbine generator condition 

monitoring problem is one such application where there is access to such a domain 

theory through the use of knowledge elicitation in conjunction with the British Energy 

experts. The turbine generator condition monitoring application is also affected by the 

problem of having very few training examples for genuine faults on the equipment due 

to the rarity of such events. This constraint is less of a problem for analytical approaches 
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since they are able to learn from single training examples through the application of the 

domain knowledge. 

 

Access to a suitable domain theory is not always possible. Therefore alternative 

approaches to learning must be employed. The alternative to using knowledge of a 

particular domain is to utilise the statistical distributions within large training data sets 

by searching for common features within training examples which fall within a 

particular classification. One such approach is inductive based learning which is 

described in the following section. 

 

3.7.3 Inductive Based Learning 

 

There are several inductive approaches which are predominately symbolic based. One 

approach, called version space search [Mitchell, 1982], works by taking a positive 

instance of the training data to use as an expression for the concept being learned. This 

concept is specific to the single training example and therefore requires generalisation to 

be of any real benefit. The expression is generalised using additional positive training 

examples to generalise the features further. Negative training instances can also be used 

to improve expressions which are overly general. 

 

Another inductive based approach makes use of decision trees. A decision tree consists 

of linked nodes where the nodes at the bottom of the tree are called leaf nodes and 

represent a particular classification. An example to be classified is input at the primary 

node at the top of the tree. The primary node will pose a question and the answer to this 

will determine the next node in the tree which should be progressed to. If the next node 

is a leaf node then the example will be defined as the classification relating to that leaf 

node, otherwise another question will be asked of the example. One of the earliest 

examples of an inductive decision tree approach is ID3 [Quinlan, 1986]. ID3 constructs 

a decision tree by partitioning the training data set into smaller subsets by selecting a 
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property and then testing each training example against that property. The algorithm 

recursively partitions the data further using each property in turn until all of the training 

examples have been partitioned into disjoint sets. The order in which the tests are made 

is of importance in constructing the simplest decision tree, therefore ID3 relies heavily 

on its approach to selecting the test at each node. A worked example taken from [Luger 

& Stubblefield, 1998] now follows to explain how the ID3 approach derives a decision 

tree form a collection of training examples. Consider how the data in table 3.1 is used to 

construct a decision tree using the ID3 approach. 

 

Table 3.1: Training examples for decision tree learning training example 

 

 

 

 

 

 

 

 

 

 

The first task is to select what property from the training examples to use as the first 

node in the decision tree. The approach adopted by ID3 for selecting the property comes 

from the area of information theory [Shannon, 1948]. This approach is based on 

determining what property would supply the highest level of information if selected as 

the test for that particular node. To determine the test which supplies the highest level of 

information, that is the highest information gain, the measure of entropy from 

information theory is used. Entropy is defined as: 

 

No. Risk Credit History Debt Collateral Income 
1 High Bad High None $0 to $15 
2 High Unknown High None $15 to $35 
3 Moderate Unknown Low None $15 to $35 
4 High Unknown Low None $0 to $15 
5 Low Unknown Low None Over $35 
6 Low Unknown Low Adequate Over $35 
7 High Bad Low None $0 to $15 
8 Moderate Bad Low Adequate Over $35 
9 Low Good Low None Over $35 
10 Low Good High Adequate Over $35 
11 High Good High None $0 to $15 
12 Moderate Good High None $15 to $35 
13 Low Good High None Over $35 
14 High Bad High None $15 to $35 
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3.5 

 

Where S is a collection of examples and pi is the proportion of S belonging to class i. 

Entropy(S) is defined as the uncertainty of event S, where an entropy of 0 indicates that 

there is no uncertainty since all examples in S belong to a single class i. The test which 

gives the highest information gain is one which gives the largest reduction in entropy 

when partitioning the examples according to that particular test. Therefore information 

gain is calculated using: 

 

 

3.6. 

 

Where Gain(S, A) is the information gain of an attribute A, relative to a collection of 

examples S. Values(A) is the set of all possible values of attribute A, and Sv is the 

subset of S for which attribute A has value v. The first term in equation 3.6 is the 

entropy value of the original collection of examples S and the second term is the 

expected entropy after S is partitioned using attribute A. 

 

If we select property income from the example given in table 3.1, the training set will be 

partitioned into S1 = {1,4,7,11}, S2 = {2,3,12,14} and S3 = {5,6,8,9,10,13}. The entropy 

value from the original set of data S is calculated as: 

 

Entropy(S) = -phighlog2phigh – pmodlog2pmod – plowlog2plow  

                   = -(6/14)log2(6/14) – (3/14)log2(3/14) – (5/14)log2(5/14) 

                   = 0.524 + 0.476 + 0.531 

                   = 1.531 bits 
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The entropy values for the remaining subsets S1, S2 and S3 following the use of the 

property income to partition the data are: 

 

Entropy(S1) = -phighlog2phigh – pmodlog2pmod – plowlog2plow  

                    = -(4/4)log2(4/4) – (0)log2(0) – (0)log2(0) 

                    = 0 bits 

 

Entropy(S2) = -phighlog2phigh – pmodlog2pmod – plowlog2plow  

                    = -(2/4)log2(2/4) – (2/4)log2(2/4) – (0)log2(0) 

                    = 0.5 + 0.5 

                    = 1 bit 

 

Entropy(S2) = -phighlog2phigh – pmodlog2pmod – plowlog2plow  

                    = -(0)log2(0) – (1/6)log2(1/6) – (5/6)log2(5/6) 

                    = 0.431 + 0.219 

                    = 0.650 bits 

 

Finally the information gain using the attribute income can be calculated as follows: 

 

Gain(s, income) = 1.531 – (4/14*0) – (4/14*1) – (6/14*0.650) = 0.966 bits 

 

Similarly it can be shown that: 

 

Gain(S, credit history) = 0.266 

 Gain(S, debt) = 0.581 

 Gain(S, collateral) = 0.756 

 

Because income provides the most information gain then ID3 will select it as the root of 

the tree as shown in figure 3.22. 
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Figure 3.22: Income is selected as the root node of the decision tree using the ID3 approach 

 

Since examples {1,4,7,11} can’t be split any further this becomes a leaf node which 

denotes that any person with an income between $0 to $15k is a high risk. This analysis 

is continually applied to the two remaining training sub-sets until each set cannot be 

divided any further and the tree is completed as shown in figure 3.23. 

 

 

Figure 3.23: Complete decision tree derived from the data in table 3.1 using the ID3 approach 

 

Some problems arise with this approach in instances where some of the data within the 

training set is erroneous or missing. Also the ID3 approach does not allow the use of 

continuous data. Further decision tree approaches have been developed to try and 
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alleviate some of these problems. These approaches are C4.5 [Quinlan, 1993] and C5.0 

[Strachan, 2005]. 

 

3.7.4 Applied Inductive Learning Approaches 

 

Decision tree approaches have been shown to be effective at deriving rule-based 

knowledge in a wide range of applications. Some of these applications have been within 

the area of condition monitoring and fault diagnosis in power systems domains. C4.5 is 

applied to data taken from a power generation database in [Mejia-Lavelle & Rodriguez-

Oritz, 1998]. The authors report on a decision tree and subsequent rules which are 

derived using the C4.5 algorithm. The rules are intended to determine if a power 

generating plant is deemed to be high performing based on information such as the 

capacity of the plant and information relating to staff etc. The C5.0 algorithm is applied 

in [McArthur et al, 2004] and [Strachan, 2005] to derive heuristic rules capable of 

detecting partial discharge faults from UHF transformer data. The authors demonstrate 

that symbolic rules can be derived from abstract numerical data. The authors also make 

an attempt at translating the derived rules so that they are more meaningful to the human 

expert user. It is reported that a significant amount of training data is used to derive the 

knowledge. The C.5 algorithm is also used in [Strachan, 2005] and [Strachan et al, 2007] 

to learn heuristic rules for a circuit breaker condition monitoring system from features 

extracted from trip coil data. In this application the K-Means clustering approach is used 

to derive distinct groups of circuit breaker behaviour from unclassified data. The C.5 

algorithm is then used to derive rules to classify these clusters based on the feature 

vector derived from the current signal. This approach was used as a platform to assist 

domain experts in identifying key features for identifying unhealthy circuit breakers and 

therefore deriving explicit rules for a decision support system. One aspect of this 

application which made it suitable for the application of clustering and rule induction 

approaches was that there was a sufficient population of training data available.  
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Although decision tree rule induction has been shown to be effective in all of these 

applications, it does rely on the existence of a sufficient training data set as demonstrated 

in all of the applications reviewed. With respect to the turbine generator condition 

monitoring application, a sufficient training set was not available due to the rarity of 

genuine faults on such pieces of equipment. 

 

3.8 Connectionist Networks 

 

Another area of ML outlined in the hierarchy in figure 3.14 is Connectionist Networks 

which are more commonly known as ANNs. ANNs have already been discussed at 

length in section 3.3 where they were described as an AI approach to diagnostic problem 

solving. They were included in this section because ANNs have been widely adopted as 

an approach to diagnostic problem solving for applications over multiple domains, not 

least in power system diagnostic and condition monitoring problems. Any discussion of 

AI diagnosis would not be complete without such an overview. However, fundamentally 

ANNs are ML techniques in that they take training data and use this to incrementally 

improve their performance at carrying out a particular function using feedback on the 

performance of the previous attempt. The knowledge learned by ANNs is, however, 

inherently different from the type of knowledge learned by the symbolic based learning 

techniques outlined in the previous section. The type of knowledge derived by ANNs is 

implicit in the weighting factors assigned to each neuron within the network. These 

neurons do not relate in anyway to the semantics of the problem domain. That is, they do 

not represent any symbolic based knowledge which is commonly associated with the 

area of interest. This type of implicit knowledge can only be interpreted by the ANN 

approach itself and is in most cases, if not all, meaningless to humans. Therefore, the 

ANN approach is not suitable for applications, such as the turbine generator condition 

monitoring application, where the learned knowledge must be integrated with a system 

which utilises a symbolic based approach and where the rationale behind an assessment 

is of particular importance. 
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3.9 Instance Based Learning 

 

Instance based learning (commonly referred to as CBR) [Kolodner, 1993] is an attempt 

to draw conclusions or make decisions on a particular problem based on previous 

examples and their associated conclusions. This process is closely matched to the 

intuitive approach used by humans when referencing previous instances of a given 

situation with a current problem to determine if any conclusions can be drawn and 

applied to the current situation. 

 

A CBR system contains a knowledge base, which is composed of previous cases within 

a particular problem domain. These cases are composed of three primary component 

parts. 

 

1. Problem/situation description: the state of the world at the time the case 

occurred. 

2. Solution: the stated or derived solution to the problem specified in the problem 

description. 

3. Outcome: the resulting state of the world when the solution was recorded. 

 

The first stage in the CBR approach is to retrieve previous cases which are similar to the 

current case under investigation. The retrieved cases must then be analysed to determine 

what action should be taken in relation to the current case. A solution taken from a 

single case might be re-used if it bears a close enough resemblance to the current 

example or it may be the case that an aggregation of several case solutions is put 

forward as a revised solution. The final stage in the process is to determine if the case 

should be retained thereby enhancing the knowledge within the system. The three stage 

process can be summarised as follows: 
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! Retrieve similar cases. 

! Derive conclusion through either re-use of a single conclusion or adaptation 

of several conclusions. 

! Retain current example within case base. 

 

Each of the three stages are explained further in the following sub sections. 

 

3.9.1 Retrieve Similar Cases 

 

This stage of the CBR approach compares the current case against all historical cases in 

the knowledge base in order to measure the similarity between each. This is achieved by 

comparing the relevant features of the current case with all of, or a specially selected 

population, of historical cases from the knowledge base. Searching only a specially 

selected population of the cases is of benefit where there may be a large number of cases 

to match against. The search can be performed more quickly if the case base is 

partitioned so that only cases which share a similarity with the current case are matched 

against. This approach can lead to improvements in efficiency, especially for large case 

bases. The features of a case may be represented either qualitatively as symbols, 

quantitatively or both. CBR approaches therefore require approaches for comparing both 

types of data  

 

CBR makes no attempt to derive an explicit expression such as those generated in the 

aforementioned symbolic based approaches, nor do they derive a weighted network as in 

the ANN approach, which once derived can be used to interpret new cases directly 

without having to revert back to the training data. Instead each time a new instance 

needs processed the CBR approach relies purely on matching this against the case base 

examples to assess the new data. The CBR approach relies heavily on the availability of 

suitable cases being available to make the comparison between the new instance and the 

population of training data, in addition to the data being of a reliable accuracy. 
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The features used to describe a case are also used as the indices for matching one case 

against another. CBR approaches do not require an exact match between all of the 

indices for the cases to be matched as is the case with database searches. Instead cases 

can be partially matched in that not all indices are the same or the same index may not 

match exactly. Therefore, it should be clear that an important performance factor in CBR 

techniques is the approach adopted for retrieving similar cases. One such approach is 

that of the k nearest neighbour [Strachan, 2005]. 

 

Once a population of similar cases has been selected by the similarity approach it is 

required to rank each in order to determine which should be brought forward to the next 

stage for consideration of re-use.  

 

3.9.2 Derive Conclusion 

 

Each case has associated with it a solution to the problem defined within the case. In 

some situations the retrieved case may be deemed a close enough match to the current 

case for the conclusion to simply be re-used without having to make any changes. In 

other instances it may be necessary to adapt the conclusion either through adapting the 

existing conclusion to suit the current situation or by aggregating the solution to multiple 

solutions to construct a single solution. The process by which the current conclusion is 

made to fit more closely with the current situation is known as adaptation. This involves 

determining which elements of the existing solution should be changed and what actual 

changes should be made to these elements. 

 

In domains which generally contain clearly defined conclusions, the process of 

adaptation may never be required. Alternatively, systems which act more as an advisory 

tool to expert users may leave any adaptation to be undertaken manually. Automated 

adaptation relies on determining the differences between the case under analysis and the 
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current solution case and applying heuristics to these differences to determine a suitable 

new conclusion. Automated adaptation may involve a new component being introduced 

to an old solution (insertion), a component being removed from an existing solution 

(deletion), a component being replaced (substitution) or an old solution may require 

extensive changes (transformation). It should be noted that the extensive use of 

adaptation introduces a knowledge based element in addition to the basic inductive 

approach which underpins CBR. 

 

3.9.3 Retain Case 

 

In most CBR applications it is impractical and too costly to retain every case processed 

by the system. Therefore a decision must be taken following assessment of each case on 

whether to retain it in the case base or not. The most important consideration when 

determining the most suitable case is the closeness of the match between the current case 

and those in the case base. When deciding if a case should be retained or not, the most 

important consideration is whether it is unique enough to add value to the already 

existing cases. Although the case will have displayed a degree of similarity with others 

already present in the case base, it may not have been a complete match and therefore 

may contain new information which can be utilised by the CBR system.  

 

3.9.4 Applied Case-Based Reasoning 

 

Although there are few examples of CBR being applied to diagnosis and condition 

monitoring tasks within the area of power systems, there have been some notable 

attempts in other domains. The CBR system described in [Derere, 2000] diagnoses faults 

on diesel-electric trains through the use of a case base constructed specifically for the 

project. The system matches information taken from the train control modules to 

determine which subsystem is causing the fault. The system then locates the particular 

cause of the fault by asking the technician a series of questions to add more detail to the 
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case information and therefore provide a more accurate assessment. This application of 

CBR demonstrates that the approach can be useful for constructing a whole system but it 

demonstrates that there would be little benefit in using it to derive knowledge for an 

Expert System since no explicit knowledge is derived.  Another domain where CBR has 

been used for the purpose of diagnosis is medicine. PROTOS [Porter, 1986] was a CBR 

system which was designed to diagnose hearing disorders using patient records which 

contained symptoms, history and test results. This application again demonstrated that 

CBR was well suited to being the main approach in which to build an intelligent system 

i.e. an alternative to using an approach such as an Expert System. CBR however is not 

well suited for deriving knowledge to be utilised by alternative approaches. This is 

primarily because the CBR approach does not derive any explicit knowledge. Instead the 

learning and the derivation of knowledge is derived by the CBR technique used to 

measure similarity. Therefore CBR had to be discounted as an approach for deriving 

knowledge to be used within the Expert System developed for the turbine generator 

condition monitoring application. 

 

3.10 Statistical Based Approaches 

 

The heading of statistical based approaches has been used in the taxonomy given in 

figure 3.14 to encompass a multitude of techniques whose roots derive firmly from the 

probabilistic/statistical area of mathematics. This thesis has already touched upon some 

techniques which derive from a statistical background such as ANNs or even as 

demonstrated by Mitchell in version space search or inductive decision tree approaches 

such as ID3 [Mitchell, 1997]. These approaches, however, have been separated from 

statistical based approaches either due to the fact that they have been so widely adopted 

in the area of automated diagnosis they merit being in a field of their own, or because 

they primarily deal with a specific data type as is the case for the symbolic based 

techniques. To give an insight into some other forms of statistical based approaches this 

section gives an overview of two techniques which have found much application in 
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recent years. The first discussed is the area of Bayesian based approaches which 

encompasses the Bayesian classifier, the naïve Bayesian classifier and Bayesian Belief 

networks. The second area discussed is Hidden Markov Models (HMMs). 

 

3.10.1 Bayesian Learning Approaches 

 

Bayes theorem provides an inference to determine the probability of some event given a 

set of observations and prior knowledge. The prior knowledge required by Bayes 

theorem relates to the likelihood of the set of observations given that the event has 

occurred and both the probability of the event given no observations and the probability 

of the set of observations. Bayes theorem is defined as: 

 

 

3.7 

 

Where P(h) is the probability of the event given no observations. Similarly P(D) denotes 

the probability of the set of observations. P(D|h) denotes the likelihood of the set of 

observations given that the event has occurred. Finally, P(h|D) is the probability of the 

event given a set of observations. Bayes theorem can be extended to perform diagnosis 

problems using either the Bayes optimal classifier or the naïve Bayes classifier. A full 

discussion of how Bayes theorem can be used to derive both of these is given in 

[Mitchell, 1997]. Both classifiers extend Bayes theorem to determine the most likely 

event which has occurred given the set of observations. The optimal Bayes classifier 

obtains the best performance that can be achieved from the observations and knowledge 

given but can be very costly to compute whereas the naïve Bayes classifier makes some 

simplifying assumptions in order to reduce this processing cost. The naïve Bayes 

classifier introduces the assumption of conditional independence in that the states 

observed are not dependent on one another. For example the conditional independence 
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assumption would mean that the relationship between an increase in steam input to a 

turbine and the subsequent increase in electrical watts produced by the generator are not 

related i.e. there is no conditional probability held between both observations. 

 

An example of where a Bayes classifier has been applied to an industrial related problem 

is given in [Haji & Toliyat, 2001]. The authors used a simplified experimental set-up to 

test the use of a Bayes classifier to diagnose a rotor bar fault on a lab based induction 

motor. The experimental set-up captured information relating to the speed of the motor 

and from features extracted from the measured torque. The experiment was run for both 

a healthy motor and one which had a rotor bar fault introduced. The access to such a lab 

based set-up allowed the authors to produce multiple training examples which could be 

used to derive the probabilistic knowledge for the Bayes classifier. The authors report 

good results for the Bayes classifier at diagnosing a single example of a rotor bar fault, 

however the degree at which the experiment had been simplified (the classifier only had 

to choose between healthy and rotor bar fault) did not prove the approaches applicability 

to a complex real world application. In addition the experimental set-up provided the 

authors with multiple examples to train the classifier which may not be the case in 

certain real world industrial applications such as the turbine generator condition 

monitoring application. 

 

Bayesian belief networks provide an intermediate approach between the naïve Bayes 

classifier assumption of conditional independence and the optimal Bayes classifier 

which ignores conditional independence completely. It does this by constructing a 

network which indicates the conditional probabilities held between variables. The 

example of a Baysian belief network given in figure 3.24(a) from [Mitchell, 1997] 

represents the joint probability distribution over variables ‘Storm’, ‘Lightning’, 

‘Thunder’, ‘ForestFire’, ‘Campfire’ and ‘BusTourGroup’. 
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Figure 3.24: Baysian belief network. 

 

The conditional probability table given for the variable ‘Campfire’ in figure 3.24(b) 

describes the probability distribution for that variable given the values of its immediate 

predecessors ‘Storm’ and ‘BusTourGroup’. ‘BusTourGroup’, ‘Storm’ and ‘Campfire’ 

have been abbreviated to ‘B’, ‘S’ and ‘C’ respectively in the conditional probability 

table. The conditional probability table in figure 3.24(b) indicates that given there is a 

‘Storm’ and a ‘BusTourGroup’ there is a probability of 0.4 that a ‘Campfire’ will be lit 

but if there is a ‘Storm’ and no ‘BusTourGroup’ there is still a probability of 0.1 that the 

‘Campfire’ will be lit. This is accounting for the fact that there may be someone not in 

the ‘BusTourGroup’ present to light the ‘Campfire’. In addition, the Baysian belief 

network asserts the conditional independence of the variables within the network. If two 

variables are not linked by a directed path then they are said to be conditionally 

independent. For example, it is shown in figure 3.24(a) that the ‘Campfire’ node is 

conditionally independent of all other variables apart from its parents ‘Storm’ and 

‘BusTourGroup’. Bayesian belief networks provide a convenient means of combining 

causal and probabilistic knowledge with Baysian inference approaches to infer new 

knowledge. Approaches have been developed to learn the conditional probabilities of 

Bayesian belief networks. These approaches are similar to those used to derive the 

weights in ANNs as described in section 3.3.1 and include the gradient descent approach 

used in [Yongli et al, 2006] & [Yan & Lanqin, 2006]. Some other applications of 

Bayesian networks rely on the experience of a domain expert to assign the conditional 



 96 

probabilities such as in [Chien et al, 2002]. All researched industrial applications where 

Bayesian networks have been applied have relied on experts to develop the network 

structure manually through their experience although there is some discussion in 

[Mitchell, 1997] of instances where the network structure has been developed using 

learning approaches. 

 

3.10.2 Applied Bayesian Networks 

 

A Bayesian network is used in [Chien et al, 2002] for fault diagnosis on a network 

distribution feeder. The network’s causal dependencies along with the conditional 

distributions were derived through consultation with condition monitoring experts, not 

through learning approaches. The causal network related typical observations or 

information which could be captured by the distribution network owner such as the 

reporting of fires, customer complaints etc, with hypothesis of what has happened and 

the resulting impact this situation would have on the network. The authors show that the 

Bayesian network developed performed well at predicting the state of the network 

following a fault when compared against historical data. However, from a learning 

viewpoint, the authors relied completely on the experts to provide the relevant 

probabilistic knowledge for the network as opposed to learning this automatically. As 

acknowledged by the authors there is a limit to the level of precision obtained by 

capturing the probabilistic knowledge in this way which could in turn reduce the 

accuracy of such a system. Additionally, since the knowledge is not being captured 

automatically, an additional burden is placed on the development of the system in the 

form of additional knowledge elicitation. 

 

Another application of Bayesian Networks is reported in [Yongli et al, 2006] & [Yan & 

Lanqin, 2006]. Both of these papers describe an approach to diagnosing the location of 

faults on a power systems network. Logical fault models for the failure of transmission 

lines, transformers and busbars are transformed into Bayesian Networks. These fault 
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models can then be applied to any power systems network topology to derive the 

location of any transmission line, busbar or transformer fault on the network. The 

conditional probabilities within the Bayesian Networks are learned using an approach 

analogous to the back-propagation approach used for learning the neuron weights in 

ANN’s described in section 3.3.1. The conditional probabilities are initialised and 

training data is then applied to the Bayesian Networks. The output of the Bayesian 

Networks can then be used to update the conditional probabilities. This process is then 

repeated until a termination criteria is met. The benefits of using this approach, in such 

an application is reported as the Bayesian Networks ability to make an accurate 

diagnosis in instances where the data is incomplete or missing. This problem is prevalent 

in this application since the failure of a circuit breaker to open or even the operation of a 

breaker being lost over the data transmission system is common. The authors also 

highlight that the 3 basic logical models are easily applied to any power system network 

to derive the required Bayesian Network. The application does however benefit from the 

availability of training data to derive the conditional probabilities required for the 

Bayesian Networks. Bayesian approaches seem to provide little benefit with respect to 

the derivation of explicit knowledge for the turbine generator condition monitoring 

Expert System. This is because they do not derive explicit knowledge and because the 

application does not have access to a large set of training data.  

 

3.10.3 Hidden Markov Models 

 

Hidden Markov Models (HMMs) are an attempt at modelling a particular system 

probabilistically. HMMs are an extension of the Markov Process which describes a 

system in terms of states, a state transition matrix and a set of initial conditions. To 

illustrate lets take an example from [Sonka et al, 1999] which models a simplified 

weather system as shown in figure 3.25. 
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Figure 3.25: A Markov process which models a simplified weather system. 

 

The weather system is represented as a Markov Process as the states Sunny, Cloudy and 

Rainy, the state transition matrix (A) which defines the probability of moving from one 

state to the other plus the initial conditions (+) which indicates the probability of the 

system initially being in that particular state. The weather system can then be 

represented as a state transition diagram as shown in figure 3.26.  

 

 

Figure 3.26: State transition diagram for the weather system Markov Process. 

 

In some instances we may not have access to the observable being modelled but we may 

have access to a related observable as in figure 3.27. 
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Figure 3.27: A confusion matrix probabilistically relates the moisture content of seaweed to the task 

of predicting the weather. 

 

The matrix depicted in figure 3.27 lists the probability of a given weather condition 

given the moisture content of seaweed. The name given to this type of matrix is the 

confusion matrix (B). The additional information provided by the confusion matrix can 

be added to the state transition diagram as shown in figure 3.28.  

 

 

Figure 3.28: State transition diagram with additional observable data added for the weather system 

Markov Process. 

 

HMMs use a confusion matrix (B) combined with the initial conditions (+) and a state 

transition matrix (A), here the state transition matrix is said to be hidden, to perform one 

of three problems. 
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1. The first is known as the evaluation problem, which given a model (,) and a set 

of observations (O), how do we compute the probability that the observed 

sequence was produced by the model i.e. P(O|,). 

2. The second problem is to uncover the hidden part of the model i.e. to uncover the 

states which are most likely to have produced observations (O) given model (,). 

3. The last problem is where we attempt to optimise the model parameters (,) that 

best describe how a set of observations (O) are produced. 

 

All HMM problems are defined as follows: 

 

1. The number of states (N) in the model. Although these states are hidden the 

number normally corresponds to some physical attribute of the system. 

2. The number of distinct observation symbols per state (M). The observation 

symbols correspond to the output of the system being modelled, therefore in the 

weather examples this would be sunny, cloudy and rainy. 

3. The state transition probability distribution (A). 

4. The confusion matrix (B). 

5. The initial conditions (+). 

 

From a learning perspective, HMMs offer a lot of potential to diagnostic problems 

where there is a lack of understanding of the domain or where the area is very complex. 

The third type of problem outlined above suggests an approach to learning a model of a 

particular domain without the need for knowledge elicitation. This approach is similar to 

that undertaken by ANNs but HMMs differ in two key areas. The first is that HMMs are 

temporally dependent in that the derivation of the output state is dependent on the 

previous n states. This is advantageous in the fault diagnosis and condition monitoring 

domain since two behaviours may appear similar when a snapshot of some data set is 

taken, but when put into a temporal context and analysed against previous states, they 

can exhibit distinct behaviours. A second difference is in the representation of the 
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learned knowledge. ANNs are traditionally difficult for humans to interpret. However, 

the states within the HMM model commonly have some physical significance to that 

system [Rabiner, 1989] which offers the potential of the users being able to interpret the 

knowledge learned. Once these statistical models have been developed HMMs can be 

used much in the same way as ANNs for tasks such as anomaly detection and fault 

diagnosis. Anomaly detection can be achieved by performing the second type of 

problem outlined above. A model of good behaviour of a system can be developed and 

then compared against the observed behaviour of a system. When the real system is 

behaving as expected the HMM process will predict from the observed behaviour that 

hidden state transitions, which are more likely to occur according to the model, have 

produced the observations. In contrast the HMM process will predict from a set of 

observations, for a system deviating from normal behaviour, hidden state transitions 

which have less likelihood of occurring according to the state transition models learned 

for normal behaviour. HMMs can also be used for fault diagnosis by undertaking the 

first type of HMM problem outlined above. Models of faulty behaviour can be 

developed from training data in the same way that a model of healthy behaviour can be. 

These models can then be compared against the observed behaviour to determine which 

maximises P(O|,).  

 

3.10.4 Applied Hidden Markov Models 

 

There have been some examples of HMMs being applied to industrial based problems. 

One of these is reported in [Brown et al, 2007]. Here the authors report on the 

development of an anomaly detection agent which was integrated with the existing agent 

based transformer condition monitoring system COMMAS. The anomaly detection 

agent was developed by firstly developing a model of good transformer behaviour. The 

model was developed to utilise features extracted from Ultra High Frequency (UHF) 

partial discharge data. The hidden states of the HMM were determined using clustering 

approaches and the state transition probabilities were learned using the Expectation 
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Maximisation (EM) [Baum et al, 1970] learning approach. The model of healthy 

behaviour could then be used to detect anomalies in transformer behaviour using the 

Viterbi algorithm [Forney, 1973] which predicts the most likely state based on the 

observations and a given model. Instances where the algorithm predicted an unlikely 

state would imply that the transformer in question was deviating from normal behaviour. 

The anomaly detection approach described in this paper provides an avenue of research 

in relation to the transformer condition monitoring application. Such an approach would 

provide an alternative to the limit checking approach employed by the Beran system 

described in section 2.2. The data stored currently by the Beran system would provide 

such an approach with adequate data to train a model for turbine generator normal 

behaviour. Therefore this field of development should be explored as a further avenue of 

research within this area. 

 

Another application of HMMs is reported in [Nakamura et al, 2007]. Here the authors 

have trained multiple HMMs for varying degrees of winding turn-to-turn faults on 

induction motors using an experimental set-up. Observed features derived from the 

current waveform of an induction motor can then be compared against these fault 

models to determine which produces the highest likelihood P(O|,). The fault model 

which produces the highest likelihood P(O|,) would indicate the fault type affecting the 

induction motor. The tests performed highlighted that the models were not always able 

to differentiate between a healthy motor and a faulty one. Another approach for 

diagnosing faults in induction motors using HMMs is proposed in [Ocak & Loparo, 

2001]. This approach attempts to diagnose mechanical faults on the motor using 

vibration data. Models were developed for each fault type using vibration data captured 

from an experimental set-up with various faults introduced. The observed vibration 

features were then matched against the HMM fault models and the one with the highest 

likelihood P(O|,) determined the fault which the motor was experiencing. Both of these 

applications demonstrated how HMMs could be used for fault diagnosis applications; 

however both examples used experimental set-ups to train and test their systems. This 

allowed the authors to create suitable training data to train the models. Such an 



 103 

experimental set-up is not available for the turbine generator condition monitoring 

application. Another limitation of all of the HMM applications described is the form in 

which the knowledge learned is represented. The learning module for the turbine 

generator application requires that the knowledge learned is compatible with the Expert 

System developed, which the HMM probabilistic models would not be. 

 

3.11 Learning Technique Selection 

 

Section 3.5 explained that the diagnostic AI approach selected for the turbine generator 

condition monitoring application was the Expert System approach. The objective was 

therefore to select an approach suitable for the application which would be able to assist 

in the derivation of knowledge for the diagnostic system. The approach therefore had to 

be capable of deriving knowledge which is compatible with the Expert System 

approach; that is symbolic heuristic knowledge. This requirement therefore eliminated 

all of the ML approaches with the exception of the two symbolic ones. Another 

constraint placed on the selection of the ML approach was that training data for genuine 

turbine generator faults was not available in large sets. Therefore the ML approach 

selected would have to be capable of deriving the knowledge from single training 

examples. This constraint therefore omitted rule induction approaches such as ID3, C4.5 

and C5.0. The only remaining suitable area of ML was that of symbolic analytical 

approaches. This area of ML was well suited to the turbine generator condition 

monitoring problem since there was access to domain knowledge from the British 

Energy experts and at least some examples of the faults to be learned were available 

from historical raw data on the Beran system. Specifically the EBG approach was 

selected for this particular application since its problem definition matched well with the 

learning problem encountered for this project as explained in detail in section 5.3. 

 

The following chapter will now describe in detail the Expert System developed for 

British Energy for the turbine generator condition monitoring application. 
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Chapter 4 

 
4 Alarm Assessment Expert System 

 

4.1 Introduction 

 

The previous chapter gave a detailed overview of the main Artificial Intelligence (AI) 

and Machine Learning (ML) techniques which have been adopted in condition 

monitoring and diagnosis applications. This chapter will now outline in detail the Expert 

System which has been developed to assist the turbine generator condition monitoring 

task outlined in section 2.3. Section 4.2 outlines the rationale behind selecting the Expert 

System approach. Section 4.3 outlines the knowledge engineering approach used to 

derive the design of the Expert System. Section 4.4 then demonstrates how the results of 

the knowledge engineering approach were used to develop the architecture of the 

system. Section 4.5 describes how the system design was realised as a prototype system 

by outlining how the key features were extracted from the data, how the interface was 

designed to maximise the information extracted by the Expert System and how this 

assisted the experts at the verification stage. A review of how the system performed on 

real data taken from the Beran condition monitoring system is then detailed in section 

4.6 by contrasting the Expert System results with British Energy’s historical records. 

Section 4.7 then discusses the overall performance of the Expert System and any 

additional features along with improvements which could be implemented to integrate it 

with British Energy’s on-line system. 

 

4.2 Technique Selection 

 

British Energy’s approach to turbine generator condition monitoring was outlined in 

section 2.3. It was shown that all of the experts throughout British Energy’s UK 

locations use a standard approach to analyse the alarms generated by the Beran condition 
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monitoring system described in section 2.2. The final outcome of the analysis is a fully 

completed checksheet for each alarm, which notes important parameters in the analysis 

process and ultimately the cause of the alarm. The results of these analyses can be 

monitored to determine if any faults are developing on the equipment and to 

subsequently plan any actions which may have to be taken based on these results. Much 

emphasis is placed on the monitoring and reporting of these behavioural changes as a 

result of the strategic importance of plant items such as turbine generators. In addition, 

regulatory bodies undertake quarterly inspections of all alarms triggered by the Beran 

system in each station to ensure that all events are being thoroughly and accurately 

assessed. 

 

Experience has shown that many alarms are commonly caused by faulty signals, signal 

drift or changes in operational parameters which cause the vibration signals to 

temporarily move outside their limits. Generally these signals do not provide the experts 

with information on the health or state of the equipment and so have no further 

operational consequence. However, each alarm must be inspected by the three full time 

employees and five part time contractors within British Energy who are qualified to do 

so. This effectively intensifies the already substantial daily workload on this small team. 

 

This problem prompted British Energy to commission a project which aimed to develop 

a system capable of automatically completing the checksheet and diagnosing the cause 

of each alarm triggered by the Beran system. The system had to enable an expert to 

select an assessed alarm, review the system analysis and then sign off the alarm. This 

would allow the expert to quickly confirm alarms of no further operational consequence 

and focus their time and expertise on diagnosing incipient faults which may impact on 

the health and operation of the turbine generator. In addition the system was to assist in 

standardising the analysis performed across all British Energy locations so that the 

results are accurate and consistent for the external quarterly audit. 
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The Expert System approach was the AI approach chosen to realise an automated system 

for the aforementioned problem. The reasons for choosing this approach can be 

summarised as: 

 

! The development team had access to expert diagnostic knowledge. 

! The rationale provided by the explicit knowledge provides an explanation to each 

assessment. 

! Assessment explanations would enable experts to quickly verify the alarm cause 

! The assessment explanation increases the level of user confidence. 

! Expert knowledge is captured and recorded for the company archive and used to 

standardise the analysis performed across all UK locations.  

 

One of the primary reasons for selecting the Expert System approach was the availability 

of knowledge. 660MW turbine generator sets are complex and dynamic machines 

meaning that modelling the domain of interest was prohibitive. An MBD approach, as 

discussed in section 3.4, requires that functional models of the domain are available. 

Such models deemed accurate enough were simply not available for the British Energy 

turbine generator sets, nor was it deemed a feasible task to develop such models. It was 

however more practical to acquire heuristic based diagnostic knowledge from the 

company experts who were involved in the project. The use of a knowledge engineering 

approach also presented the opportunity of developing a knowledge base of the 

experience which had been accumulated for the company archive. This would also assist 

in standardising the analysis performed across all of British Energy’s UK locations. 

 

Another important reason for adopting the expert system approach was due to the 

representation of the knowledge, which in particular, had an impact how the system 

explanations would be presented to the end user. ANNs, as discussed in section 3.3, 

store knowledge in an implicit form which humans are unable to easily interpret. ANN 

results are normally presented to the user as a single classification with little or no 

explanation of the rationale used to derive the outcome. This lack of explanation means 
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that user confidence is lost, or at the very least reduced, whenever a misclassification 

occurs. This inherent lack of transparency is a problem not shared by Expert Systems. 

On the contrary, an Expert System’s explicit knowledge base provides a rationale and 

subsequently an explanation to support each assessment. This level of transparency is 

important for verifying correct diagnoses and even more so in cases of misdiagnosis, 

which will undoubtedly occur with any automated system, since it allows users and 

system maintenance engineers to locate and correct areas of vulnerability within the 

system.  

 

4.3 Knowledge Engineering 

 

A formal knowledge engineering approach was adopted to realise the Expert System 

design. The knowledge engineering methodology used was that of CommonKADS 

[Schreiber et al, 2000]. Knowledge engineering is concerned with capturing knowledge 

from experts through knowledge elicitation interviews and then documenting this using 

knowledge transcripts and models as discussed in section 3.2.1. The formal knowledge 

engineering approach used to capture British Energy expert knowledge for turbine 

generator condition monitoring is summarised in figure 4.1. 

 

The first stage is knowledge elicitation where experts are interviewed in order to 

determine their approach and the knowledge used to fulfil the task in question. The form 

of knowledge elicitation interview adopted is dependent on the type of information 

being captured and the stage of the elicitation process. For instance, the first interviews 

conducted are normally less structured than later interviews to allow the expert to give 

general descriptions of the problem area normally through the means of worked 

examples. Interviews later in the elicitation process will become more structured by the 

knowledge engineers who having a better understanding of the problem will want to 

acquire more detail on specific areas. The knowledge captured during these interviews is 

recorded into what is known as a knowledge transcript. The knowledge transcripts 
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document all of the relevant information such as reasoning strategy, knowledge and 

tasks in a structured format. The transcript is continually updated and refined through a 

validation process following each knowledge elicitation interview. The validation 

process is an iterative process between the knowledge engineers, experts and their peers. 

Once the transcripts are completed and verified the knowledge contained within them is 

transformed into knowledge models. The purpose of the knowledge models is to extract 

the key information from the transcripts such as the approach and knowledge specific to 

the task. The CommonKADS knowledge modelling methodology segregates the 

knowledge into three areas: 

 

! Task Knowledge 

! Inference Knowledge 

! Domain Knowledge 

 

The overall task and how it is subdivided into smaller more manageable goals is 

represented by the task knowledge. Task models normally embody a tree structure where 

the primary goal is represented by the root node. The primary goal can then be dissected 

into sub-goals which in turn can be further divided until an adequate level of task 

description has been met. Inference knowledge is used to model the reasoning approach 

adopted to achieve the goals set out in the task knowledge. This typically involves 

stipulating the order in which tasks are implemented, the flow of data between tasks and 

the knowledge required to fulfil these tasks. The domain knowledge is particular to the 

area under investigation and is required to interpret the information to achieve the tasks 

outlined in the task model. The domain knowledge can represent different types of 

knowledge such as concepts, theories or simple heuristics which map symptoms to 

conclusions. CommonKADS suggests representing the domain knowledge using models 

which are compatible with the Unified Modelling Language (UML) which is a de facto 

standard for representing data-structures in object-oriented software platforms such as 

Java (http//www.uml.org). 
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Figure 4.1: Overview the formal engineering approach used to capture expert knowledge for the 

turbine generator condition monitoring Expert System. 

 

The following sections detail the results obtained from the knowledge engineering 

exercises undertaken with the 3 British Energy condition monitoring experts. The 

knowledge models within these sections therefore outline the best practice human expert 

approach to the assessment of turbine generator condition monitoring alarms. This 

should not be confused with the automated system design which is ultimately derived 

from these models. The system design is covered in detail in section 4.4. 

 

4.3.1 Task Knowledge 

 

The tasks undertaken by British Energy condition monitoring experts when assessing the 

condition of their turbine generators are summarised in the task models in figure 4.2. It 

can be seen from the figure that the five main tasks undertaken when analysing the 

alarms triggered by the Beran condition monitoring system are: 
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Figure 4.2: Task model for turbine generator condition monitoring alarm assessment 
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! Select Alarm 

! Determine if Signal is Genuine 

! Build Channel Profile 

! Classify Alarm 

! Alarm Reporting 

 

The expert first of all selects an alarm for assessment by consulting the Beran system. 

When there is an alarm it is selected by the expert who then determines what data is 

required for the assessment. This data is then downloaded from the Beran system. 

 

The first piece of analysis undertaken is to determine if the signal is genuine i.e. is the 

data being measured accurately or is there a problem with the measuring equipment. The 

FFT data is analysed to determine if the channel’s frequency distribution exhibits that of 

a genuine signal. The expert inspects the real-time FFT data to determine if there are 

features which would indicate some error in the captured data. These features include 

the level of base noise, which can indicate noise in the channel, the nature of the spikes 

at multiples of the operating frequency, which can indicate loose sensors or verify 

genuine signals, and the spikes at sub-synchronous frequencies which can also be 

indicative of various faults as shown in figure 4.3. 
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Figure 4.3: Determine if signal is genuine task from the turbine generator condition monitoring task 

model. 

 

The build channel profile task requires the expert to analyse various bodies of data to 

determine the channel behaviour at and around the time of alarm firing. General 

parameters of interest such as the signal spread, average etc are approximated as shown 

in figure 4.4. These values can help the expert build up a general picture of how the 

channel is behaving. Also examined are the gradual changes which have occurred in the 

signals. Specifically correlations between changes and whether they could be possible 

contributing factors to the alarm as shown in figure 4.4.  

 

 

Figure 4.4: Calculate General Parameters and Extract Trends tasks, which fall under the Build 

Channel Profile task, from the turbine generator condition monitoring task model. 
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The FFT data captured at the time of alarm firing is then analysed in a similar fashion to 

how the real-time FFT data is analysed when determining if the signal is genuine. The 

features taken from the FFT can help determine possible causes of the alarm especially 

certain fault types as shown in figure 4.3. The current speed and the speed of the 

machine when the alarm fired are checked to determine the state of the machine as 

shown in figure 4.5. The buffer data as described in section 2.2 is also analysed to 

determine if sudden changes occurred which could constitute certain fault types as 

shown in figure 4.5. Finally, all the information is combined to compile a complete 

overview of the channel behaviour as shown in figure 4.5. 

 

 

Figure 4.5: Determine Machine States, Extract Step Changes and Create Profile tasks, which fall 

under the Build Channel Profile task, from the turbine generator condition monitoring task model. 

 

The next task is to determine the cause of the alarm. This is achieved by analysing the 

channel profile derived from the sensor data and determining if any of the information or 

features correspond with known alarm causes. In effect, the experts look for symptoms 

which relate to particular alarm causes thereby classifying the alarm. The causes of 

Beran alarms identified by the experts are summarised in figure 4.6.  
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Figure 4.6: Potential causes of alarm on the Beran turbine generator condition monitoring system 

 

Alarms triggered due to a Sensor Error may exhibit the characteristics of noise or 

abnormal high or low reading levels. Drift alarms are the result of small temporary 

movements in either the first or second order vectors which fall outside of the alarm 

limits. Drift movements do not have any corresponding change in the operational 

parameters which could explain the temporary change in the vector. Operational Change 

alarms are caused by a change in the operational data such as the load, MVAr or rotor 

current which cause a temporary change in the vibration data. Genuine Machine Change 

alarms indicate that some problem or fault has occurred on the turbine which requires 

further investigation. The change could either be Unattributed i.e. there is no 

corresponding change in any of the operational parameters which seem to have caused 

the change or a Genuine Fault which would have a distinguishable cause in the data such 

as a change in load etc. All of the above alarm causes are explained in greater detail in 

section 4.5.5. 

 

The final task requires that the assessment results are recorded. The results along with 

important information taken from the alarm channel profile are entered into a Beran 

alarm checksheet, an example of which is given in figure 2.5.  

 

A brief description of each of the entries now follows: 
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! OA Amp – The OA Amp entry requires that an approximation of the overall 

amplitude vibration of the affected channel is recorded. This is not always simply 

an average but must account for fluctuations in vibration etc. 

! Zone – The zone gives some indication of the severity of the alarm and is 

calculated in relation to the overall amplitude level. The zones range from 1 to 4 

with 1 being the least severe (lowest level of vibration) 4 being the most (highest 

level of vibration). 

! Non-synch. Amp/Freq – Here a note is taken of the non-synchronous amplitude 

and frequency. A note is taken of the amplitude, but the frequency is only noted 

in cases where the amplitude is large, in which case the FFT is consulted to 

locate the frequency location of the high amplitude. 

! 1x Amp – This entry requires an approximation of the first order amplitude level. 

As for the OA Amp entry the value is not always an average but must account 

for fluctuations. 

! 1x Phase (*lag) – This is the same as 1x Amp entry except the signal under 

analysis is the first order phase as opposed to the magnitude. 

! 2x Amp - This is the same as 1x Amp entry except the second order magnitude 

signal is analysed. 

! 2x Phase (*lag) - This is the same as 1x Amp entry except the second order 

phase signal is analysed. 

! OA Genuine? – This entry records if the overall amplitude level observed seems 

genuine. Methods for detecting non-genuine signals are the occurrence of signal 

faults and the overall amplitude not approximately equalling the addition of the 

first and second order magnitudes. 

! OA ~ !(1x+2x)? – This entry indicates whether the first and second order 

magnitude levels approximately equal the overall level. 

! Step "1x? – This entry indicates if a step change occurs in the first order 

magnitude or phase. 

! Signif. "2x? – This entry indicates if a significant change occurs in the second 

order magnitude or phase. 
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! Operational Change? – This entry indicates if there has been a change in any of 

the operational parameters such as load, rotor current, steam temperatures etc. 

! Commentary – The primary purpose of this entry is to indicate the cause of the 

alarm and any remedial action which must be taken 

 

The experts identified the completion of this checksheet as the primary objective of the 

automated system being developed. 

 

4.3.2 Inference Knowledge 

 

The knowledge engineering activity also resulted in inference models which outlined the 

reasoning approach used by the experts. The high level inference model derived is given 

in figure 4.7.  

 

Signal Fault 

Classification Rules

Determine if Signal

is Genuine

Build Channel

Profile

Alarm ReportingClassify Alarm

Alarm Database

Selected Alarm

Details

Signal Genuine Channel Profile

Alarm ClassificationClassification
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Rules

Completed

Checksheet

Select Alarm

Feature Extraction

 Rules

 

Figure 4.7: High level inference model for the turbine generator alarm assessment task 
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The inference model outlines the reasoning approach which must be undertaken to 

complete the tasks outlined in the task model. The high level tasks in the task model 

become inferences in the inference model. Therefore the ‘Determine if Signal is 

Genuine’ task in figure 4.2(a) becomes an inference in the inference model. The 

inference model outlines the flow of data between each inference, the ordering in which 

the inferences are undertaken and the knowledge required to complete the inferences.  

 

The inference models can be constructed using four main component types as defined in 

[Schreiber et al, 2000] and shown in figure 4.8. The first is an inference which 

effectively denotes a reasoning step. Therefore, as already described above, the model 

will contain inferences (sometimes referred to as inference steps) which relate back to 

the tasks outlined in the task model such as ‘Determine if Signal is Genuine.’ Inferences 

are denoted in the model as ovals as shown in figure 4.8. The next component type is a 

dynamic knowledge role. This is a type of input or output knowledge to or from an 

inference who’s value can vary depending on the instance. For example, a dynamic 

knowledge role input to the ‘Determine if Signal is Genuine’ inference may be to give 

details of the triggered alarm under investigation, and the output would be if the signal is 

genuine or not. The information both input to and output from the inference will vary 

depending upon the alarm. Dynamic knowledge roles are denoted by rectangles in the 

inference model as shown in figure 4.8. Another component type is a static knowledge 

role which is an inference input that remains constant regardless of the instance. For 

example the ‘Determine if Signal is Genuine’ inference step may require knowledge on 

how to determine if a channel is exhibiting faulty characteristics. This knowledge will 

remain constant regardless of the alarm being examined. Static knowledge roles are 

represented by two parallel lines in the inference model as shown in figure 4.8. The final 

component which can be used in the inference model is known as a transfer function. A 

transfer function is where the reasoning process must interface with the external world to 

capture some information. Transfer functions are denoted by rounded rectangular boxes 

as shown in figure 4.8. In figure 4.7 the ‘Select Alarm’ task from the task model in 
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figure 4.2(a) is represented as a transfer function since the expert captures the alarm 

information from the condition monitoring system for analysis. 

 

 

Figure 4.8: Component types which are defined by the CommonKADS methodology for inference 

models. 

 

The first task undertaken is to select an alarm for analysis. This is achieved by 

inspecting the alarm database on the Beran system and from this selecting the alarm and 

recording its details such as time of triggering, turbine, etc. The alarm details are then 

used to select the data required to complete the ‘Determine if Signal is Genuine’ and 

‘Build Channel Profile tasks’. Both of these tasks require the input of expert knowledge 

in order to complete their objective. Knowledge on how to analyse the real-time FFT 

signals, such as how to interpret spikes and at what frequencies, are applied by the 

‘Determine if Signal is Genuine’ reasoning step. Knowledge on how to extract features 

and key parameters are used by the ‘Build Channel Profile’ reasoning step. An indicator 

of whether the signal is genuine, or not, in addition to the channel profile are used as 

inputs to the ‘Classify Alarm’ reasoning step. Diagnostic knowledge is then applied to 

the information to determine a classification for the alarm. This classification is then 

passed to the alarm reporting inference step along with the channel profile to compile 

the alarm report. Knowledge on alarm reporting is used to distinguish the relevant 

information required to complete the check sheet given in figure 2.5. Further inference 

models were also developed to depict the reasoning process for all of the tasks defined 

within the assess routine alarms inference model. These models dissect each high level 

task to add more detail to how they are achieved by highlighting the flow of data, the 

steps involved and the knowledge required. All of the low level inference models 

developed for the alarm assessment task are given in appendix A. 
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4.3.3 Domain Knowledge 

 

In addition to the task and inference knowledge derived by the knowledge engineering 

approach, domain knowledge which details information which is specific to the task 

being undertaken was also captured and recorded into the knowledge transcripts. This 

knowledge was not transformed into models since it could be represented and better 

understood as production rules. Each production rule developed related to one of the 

alarm classifications which resulted from the elicitation process. These alarm 

classifications are summarised in figure 4.6. A complete review of the production rules 

derived is given in section 4.5.4 and 4.5.5. 

 

4.4 System Design 

 

Section 4.3 reviewed in detail the results obtained from the knowledge engineering 

exercise undertaken with the three British Energy condition monitoring experts. These 

knowledge models are constructed with the human expert acting as the reasoning agent. 

The final stage of the design process was to adapt these models so the condition 

monitoring alarm assessment could be undertaken by an automated reasoning system.  

 

There were some issues associated with the knowledge models developed for the human 

reasoning approach which led to changes in the approach developed for the automated 

system. The first issue was the availability of FFT data. The Beran system was able to 

save the time series data to excel files which allowed interpretation programs to be 

easily developed to read that type of data. The FFT files saved by the Beran system were 

however encrypted and therefore no program could be developed to interpret this type of 

data. British Energy were reluctant to involve Beran at such an early stage to determine 

how the FFT files could be decoded which meant that FFT data was not available for the 

automated system to analyse. The result was that all automated feature extraction on the 
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FFT data was not included in the Expert System prototype. Therefore, the ‘Extract Real-

Time FFT Characteristics’ and ‘Extract Channel Frequency Characteristics’ tasks in 

figure 4.2 were unable to be implemented. Instead, the prototype developed asks the user 

to enter some of the key FFT features through a manual inspection of the FFT data and 

was represented as ‘Manually Enter FFT Data’ in the task model given in figure 4.9. 

This allowed the diagnostic knowledge which interprets the FFT features to be included 

in the automated system. The manually entered FFT data was solely used in the 

automated system to determine if the signal was genuine or not. Therefore ‘Determine if 

Signal is Genuine’ is the only remaining task in the automated system task model in 

figure 4.9 which utilises FFT information.  

 

The ‘Retrieve Low Resolution Data’ and ‘Retrieve Buffer Data’ were brought under the 

‘Select Data’ task with the ‘Select Alarm’ task. Also, both of the data collection tasks 

are only referenced once since the automated system collects the data at the same time. 

This is in contrast to the expert who may look at various data sets at different stages in 

the analysis process. The machine states are derived from the low resolution data in the 

automated system as opposed to the machine state log used in the manual process. This 

allowed the ‘Determine Machine States’ task to be moved directly under the ‘Build 

Channel Profile’ task. The revised task model for the automated system is given in 

figure 4.9. 

 

 

Figure 4.9: Alarm assessment module high level task model. 
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From this a high level inference model was developed which outlined the reasoning 

steps undertaken by the Expert System. The high level inference model is given in figure 

4.10. The alarm database acts as the input data to the Expert System. The ‘Select Data’ 

inference, along with rules which determine what information is required to perform the 

assessment, are used to capture the required alarm data. This is then passed to the ‘Build 

Channel Profile’ inference, which uses rules to derive the channel profile. This profile is 

then used to determine the alarm classification by the ‘Classify Alarm’ inference. Both 

the alarm classification and the channel profile are the input to the ‘Alarm Reporting’ 

inference to construct the alarm report. 

 

 

Figure 4.10: Alarm assessment module high level inference model. 

 

The Expert System approach given in the inference model in figure 4.10 can be 

summarised by the system flow diagram given in figure 4.11. The Expert System can be 

divided into the three modules ‘Select Data’, ‘Extract Channel Profile’ and ‘Classify 

Alarm’. Each module has an inference, which performs the required reasoning, and a 
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knowledge base which contains the necessary knowledge, in a rule based format, 

required to perform the analysis. 

 

 

Figure 4.11: Overview of alarm assessment Expert System architecture. 

 

The ‘Select Data’ module interfaces with the Beran system to retrieve details of 

triggered alarms. Appropriate signal types for further analysis are determined using the 

following alarm information: 

 

• Type of alarm triggered (e.g. overall or 1st order vibration alarm) 

• Position of the Beran channel (e.g. front low pressure rotor) 

 

Experience gained by the condition monitoring experts had revealed that certain alarm 

types require specific condition monitoring data. For example a sub-synchronous high 

alarm will require an analysis of sub-synchronous magnitude and phase whereas 

operational parameters, such as generator load, take precedence for vector and zone type 

alarms. Equally, the Beran channel position can influence the data selection process. For 
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instance, steam parameters, such as governor valve positions, are selected ahead of 

further operational data, e.g. rotor current, when the alarm triggers at the high pressure 

end of the turbine. The module must also determine the various data representations 

required for analysis. In general, all data representations are used for further analysis 

except in cases where buffer data is not available. This situation can arise when buffer 

data is not saved for certain alarm types. 

 

The ‘Extract Channel Profile’ module locates relevant features from the condition 

monitoring data and represents them qualitatively as symbolic data objects. These 

features are then used to instantiate rules within the ‘Classify Alarm’ module. Each 

feature was defined mathematically through consultation with the condition monitoring 

experts by developing a standard model for each feature and then defining each of the 

key descriptors associated with that model. Specific instances of the features could then 

be defined by varying the limits of the descriptors in the model. This approach to feature 

extraction is covered in greater detail in section 4.5.3. This method of data extraction 

was selected since the rationale behind each feature representation is transparent to the 

user and limits used to define features are easily amendable. To gain user confidence in 

such a strategically important application requires that the rationale behind any decision 

is traceable. This is equally true for tasks such as feature extraction. The user should be 

able to track through the analysis and easily locate where the system has incorrectly 

interpreted the data in the event of any misdiagnoses. The knowledge can be updated 

accordingly once the cause of such a misinterpretation is located. Turbine generators are 

highly complex dynamic systems which result in a multitude of various operating 

regions throughout the system. Therefore, flexibility in defining the same feature over 

multiple channels must be facilitated. This is achieved by varying the limits used to 

define each feature accordingly. The ‘Extract Channel Profile’ module consolidates all 

of the features to form the channel profile once all the raw data analysis is complete. 

This is then passed to the ‘Classify Alarm’ module for further analysis. 

 

The ‘Classify Alarm’ module uses the feature profile to instantiate the diagnostic rules 
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within the ‘Classify Alarm’ knowledge base. The heuristic rules are arranged 

hierarchically into different categories of alarm cause. The four main categories are 

given in figure 4.6 and are summarized as: 

 

! Signal Fault – Commonly caused by electrical noise, zero or abnormally high 

sensor readings. 

! Operational Change – A change in an operational parameter such as load, rotor 

current or MVArs which has caused a temporary change in the vibration 

characteristics. 

! Drift – A slight temporary change in vibration characteristics due to an unknown 

cause. 

! Genuine Change – A permanent change in vibration characteristics due to an 

unknown cause or a genuine fault. 

 

The assessment conclusion along with a report, which includes the rules instantiated 

during the assessment and all of the completed checksheet entries are output to the 

expert for verification. The expert can view any of the condition monitoring signals 

which were used in the diagnosis. All of the features located by the ‘Extract Channel 

Profile’ module are highlighted to augment the experts understanding of the alarm 

analysis. Restrictions on access to the FFT data on the Beran system meant that 

information on the frequency characteristics of the data had to be entered manually 

therefore a method in which the user inputs this to the system had to be developed. 

 

4.5 Software Implementation 

 

The software implementation of the Expert System had to be realised in many different 

stages. The first stage dealt with how the necessary data would be captured from the 

Beran System. This would fulfil the ‘Select Data’ task outlined in the system task model 

in figure 4.9. Once the data is captured by the Expert System the information of interest 
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must be derived from the raw data i.e. the system would have to perform the analysis 

required to fulfil the ‘Build Channel Profile’ task in figure 4.9. This task is achieved by 

the system feature extraction where information such as the trend profile of the signal 

and step changes are derived. The transformed data then has to be passed to the working 

memory to be processed by the rules in the knowledge base to fulfil the ‘Classify Alarm’ 

task in figure 4.9. The knowledge base determines modes of behaviour by analysing the 

extracted features and then uses this information to determine the conclusions in which 

the expert user is interested in. Some of the modes of behaviour which are of particular 

interest are the stability of the signal and how the signal varies over particular time 

periods. These modes of behaviour then dictate how the results are calculated and 

presented to the expert to complete the ‘Alarm Reporting’ task given in figure 4.9. 

Central to the design concept of the Expert System is the user interface which attempts 

to relay all of the important information back to the user. This is achieved by 

highlighting the features extracted by the system at the signal to symbol transformation 

stage as well as outputting the decision tree which determined the alarm cause. These 

tools allow the user to visually verify that the system is picking up on relevant features 

and then using these features to arrive at valid conclusions. Each of these stages required 

of the automated implementation of the prototype Expert System are now reviewed in 

the remainder of this section. 

 

4.5.1 Data Capture 

 

The first stage of the automated alarm assessment process is to retrieve the necessary 

condition monitoring data from the Beran system. This relates to the ‘Select Data’ task 

given in figure 4.9. In practice this task would be achieved by the Expert System 

completing the ‘Select Alarm’ task in figure 4.9 by interfacing with the Beran system to 

detect any triggered alarms which have not been analysed by the system. Once an alarm 

has been selected the relevant condition monitoring data can be retrieved from the Beran 

system raw data archive. The two data types captured are the low resolution and buffer 
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data as described in section 2.2. The capturing of both data types would complete the 

‘Retrieve Low Resolution Data’ and ‘Retrieve Buffer Data’ task in figure 4.9. The 

selection of data retrieved is dependent on the type of alarm and the channel position on 

the turbine. Due to restrictions on how the Expert System was allowed to interface with 

British Energy’s on-line system, the prototype developed was unable to automatically 

search for and retrieve data from the Beran system. Instead, historical case studies were 

selected by the experts and the relevant condition monitoring data was manually 

captured and then uploaded to the Expert System.  

 

4.5.2 Data Entry 

 

The tasks which involve analysing the frequency data have been omitted from the 

prototype due to the unavailability of the FFT data at the time of writing this thesis. It 

was therefore only possible to include a task whereby the information on the channel 

frequency distribution is entered manually. The information required of the user was as 

follows: 

 

! Are there spikes in the FFT at multiples of the operating frequency? – This 

feature can help identity signal faults and looseness of components. 

! The shape of the frequency spikes, if there are any, are they broad or narrow? – 

This type of information can help differentiate between certain faults which 

exhibit similar characteristics. 

! Whether there is base noise in the FFT? – This can help diagnose a noise fault in 

the transducers. 

  

Once the condition monitoring data has been uploaded to memory, the user is asked to 

answer yes or no to the above questions to complete the ‘Manually Enter FFT Data’ task 

given in figure 4.9. These answers are transformed into qualitative symbols and 

uploaded to the system’s working memory to determine if the signal is genuine or not by 
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applying rules AC1 and AC2 given in appendix B. The application of this knowledge 

fulfils the ‘Classify Alarm’ and hence the ‘Determine if Signal is Genuine’ tasks in 

figure 4.9. 

 

4.5.3 Build Channel Profile 

 

The next task undertaken once the data has been extracted from the Beran system is that 

of ‘Build Channel Profile’. This task is essentially the signal to symbol transformation of 

the system. The data is analysed by the system in an attempt to draw out features which 

can help identify the cause of the alarm, in the same way that the human experts will 

analyse the data plots on the Beran interface to draw out features which are common to 

certain behaviour types. Algorithms were developed to extract trends and step changes 

from the times series data and complete the ‘Identify Step Changes’ and ‘Identify 

Trends’ tasks outlined in figure 4.9. These features are extracted using standard models 

of step changes and trends defined by the experts. Associated with each model are 

parameters which make up a complete description of the feature. These parameters can 

have their limits varied to allow the location of features over various channels which 

exhibit different operating points from one another. These processes are described in 

detail in this section.  

 

Each turbine generator set has a channel for every bearing on the unit. Therefore the 

number of channels per turbine generator ranges from 10 to 12 depending on the 

configuration of the unit, i.e. 2 bearings per HP, MP and LP turbine, and generator. Each 

channel will therefore have its own overall amplitude vibration signal and the associated 

first and second order magnitude vibration data, FFT, etc. The algorithms developed are 

the same for each channel on the turbine generator set but the limits associated with the 

features for each channel are stored in their own individual rule base. Therefore, if an 

alarm from channel 2 on turbine 1 was being analysed then the limit rule base for that 

particular channel would be run to upload all the relevant limit values. The system must 
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also interpret the machine state to complete the ‘Determine Machine State’ task given in 

figure 4.9. The derivation of the machine states is described in this section. The two 

remaining tasks under ‘Build Channel Profile’ in figure 4.9 are ‘Calculate General 

Parameters’, which is the derivation of the signal spread and mean in addition to some 

other parameters of general interest, and finally ‘Create Profile’ which compiles all of 

the aforementioned features into one profile. 

 

4.5.3.1 Trend Profile 

 

One feature of the data which is of interest in the alarm assessment analysis process is 

the gradual gradient profile of the signals. Of interest are gradual increases or deceases 

in the data or periods of stability. The term commonly used to describe this type of 

feature is trend. The trends present in each of the times series data signals must be 

extracted as indicated by the ‘Identify Trends’ task in figure 4.9. The trend parameter is 

focussed more on describing general fluctuations which take place over extended time 

periods as opposed to sharp changes. These features are of interest since many alarms 

can be explained by correlating increases in vibration signals against causal operational 

events. It is important to clarify as clearly as possible the type of descriptions compiled 

by the experts during their analysis before explaining how this signal to symbol 

transformation is achieved by the Expert System. The overall amplitude signal given in 

figure 4.12 is typical of the type of data analysed by a condition monitoring expert. 

 

A typical description given by an expert of such a signal during the knowledge 

elicitation interviews was: 

 

“The first half of the signal is relatively stable with maybe a slight downward trend. 

Then there is a period of noisy data but it still maintains a relatively stable average. This 

is followed by a short period of stability which soon encounters another period of noise. 
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This second period of noise is combined with a gradual upwards trend which continues 

on throughout a period relatively free of noise before stabilising.” 

 

 

Figure 4.12: Overall amplitude signal taken from the Beran system. 

 

This type of interpretation is what comes naturally to humans, so it wouldn’t take an 

expert in condition monitoring to describe the above signal in those terms. It bears a 

strong similarity to how most people would describe such a signal. The description is 

very approximate and makes quite significant abstractions in order to provide a succinct 

and easy to understand description. This form of approximate human interpretation is no 

menial task for an automated computer system to perform. One of the primary 

difficulties is the level of noise contained within the signal which makes it difficult for 

any algorithm to follow a general trend. Another difficulty is the lack of definition 

available to describe these gradual changes. Estimations, by virtue, lack any form of 

definition. For these reasons any trend profile description derived by an automated 

system will not correlate exactly with that derived by the human expert but it should be 

possible to acquire an initial approximation. There now follows a description of the 

approach adopted by the Expert System to extracting an overall description of the trend 

profile. 
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The basic idea behind the trend extraction algorithm is to break the signal into periods 

and from this determine the type of behaviour exhibited in each. Once this is complete 

the results can be combined in order to construct a more complete description of the 

trend profile. The first task is to break the signal down into the specified number of 

distinct periods. This number is determined by the trend period size. Using this value 

and the file size, the number of periods to be set is derived. For example, the signal in 

figure 4.13(a) has been broken down into 5 periods of size 3 in figure 4.13(b). This 

period was set to 1 day in the prototype Expert System developed. Various periods were 

experimented with and output to the user interface for the expert to review. The expert 

felt that the period of 1 day produced a trend profile description which correlated closely 

with a manual analysis. 

 

 

Figure 4.13: Samples of the continuous signal are broken down into periods of a pre-defined size 

 

Each period then has its average, minimum, maximum, spread, end average and start 

average calculated. The end average is the average magnitude over a pre-defined number 

of samples at the end of the period. Similarly, the start average is the average magnitude 

over a pre-defined number of samples at the start of the period. 

 

These derived parameters are then used to build up a description of the period. The trend 

description consists of two primary components. These are the level in which the period 

resides and the trending profile of the period i.e. is it increasing, decreasing etc. The 

description of the level in which the period resides is simply calculated by comparing its 

average against the predefined trend level limits assigned in the channel’s limit rule 



 131 

base. If the average falls below the lower limit then the period level is labelled as low, if 

the average is above an assigned limit then it is labelled as high otherwise it is stable. 

This is highlighted in figure 4.14. 

 

 

Figure 4.14: Assignment of level value in trend description. 

 

The period’s trend profile descriptor is calculated using the period start average and end 

average along with some tolerance values set within the channel’s limit rule base for 

each signal type. The rules then determine if the signal has trended upwards, downwards 

or remained stable during the period. A tolerance value is set in the assign limits rule 

base which assists in determining whether the period has increased or decreased in value 

or has remained stable. If the end average is less than or equal to the start average plus 

the tolerance value and greater than or equal to the start average minus the tolerance 

value then it is labelled as stable as shown in figure 4.15(a). If the end average is greater 

than the start average plus the tolerance then it is defined as increasing as shown in 

figure 4.15(b). If the end average is less than the start average minus the tolerance then it 

is defined as decreasing as shown in figure 4.15(c). The overall signal is broken down 

into periods, which have trend profiles of either increasing, decreasing or stable and 

have average magnitude levels which are either high, low or stable once this 

interpretation has been completed. 

 

On completion of this task the trend profile descriptors are combined to give general 

descriptions of the signal. For example any extended periods of an increasing signal 

should be identified by consecutive periods with a trend profile descriptor of increasing 
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value. It should also be possible to identify areas where the magnitude of the signal is 

particularly high or low. 

 

 

Figure 4.15: Derivation of the trend profile behaviour. Figure 4.15 (a) shows a trend period, which 

would have its trend profile descriptor set to stable. Figure 4.15 (b) shows a trend period, which 

would have its trend profile descriptor set to increasing. Figure 4.15 (c) shows a trend period, which 

would have its trend profile descriptor set to decreasing. 

 

4.5.3.2 Machine State 

 

The next stage in the ‘Build Channel Profile’ task model is to determine the machine 

state as indicated by the ‘Determine Machine State’ task in figure 4.9. The machine can 

be in one of three states. These are online, run up/down or offline. The machine is online 

when it is rotating at or close to 3000rpm. The machine is offline if it is rotating less 

than a pre-defined level of 50rpm. If the machine is rotating at a speed within these 

limits then the state is set to run up/down. These limits are set within the channel’s 

assign limit rule base. The rpm values which are compared against the limits are 
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averages taken over pre-defined periods as performed for the derivation of the trend 

descriptors. Therefore a period size relating to the machine state is assigned within the 

limits rules base. The state of each period is determined by taking the rpm average over 

each period and then comparing this value to the limits. This approach to determining 

the machine state is depicted in figure 4.16. 

 

 

Figure 4.16: Derivation of machine state. 

 

4.5.3.3 Step Changes 

 

The next stage in the ‘Build Channel Profile’ task is to extract any step changes which 

may exist in the file. This analysis is required to complete the ‘Identify Step Changes’ 

task given in figure 4.9. Unlike the calculation of the general parameters, extraction of 

trends and the determining of the machine state, the steps are extracted through the use 

of an algorithm which is coded into the automated system as opposed to the use of a rule 

base. The reason for this is the number of rule bases which would be required to extract 

the features used for the step change analysis. Another reason for hard coding this task 

into the automated system is due to the approach being more algorithmic as opposed to 

rule based. Before describing the features of the algorithm used to extract step changes, 

it is necessary to provide a definition. Figure 4.17 depicts some of the important features 

associated with both an upwards and downwards step change.  

 

Two of the most obvious parameters define the steepness of the change which must 

occur in order to be a step change. These two parameters are the step period and the step 

magnitude and they are set within the assign limits rule base. Any changes which exceed 
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the step magnitude within the step period are defined as potential step changes. In 

addition to exhibiting a sudden change in magnitude a step must also show a degree of 

stability in both the period before and after the change occurs. The period before the 

change occurs is called the lead and the period following the change is called the tail. 

Both of these are set within the assign limits rule base. If the change is downwards then 

the magnitude of the data contained within the step’s lead period should be above a 

certain limit and the data within the tail period should be below a certain limit as shown 

in figure 4.17(a). The opposite of this applies if the change is upwards as shown in 

figure 4.17(b). These limits are calculated using the appropriate tolerance values which 

are set using the assign limits stage. These limits account for the fact that the sensor 

signals oscillate somewhat due to the natural noise levels in the channel. The number of 

samples which fall within these limits in both the lead and tail are then compared against 

a value which denotes the minimum number of samples required in each to constitute a 

step change. These limits are calculated using further tolerance values which are set at 

the assign limits stage. The purpose of this limit is to account for noise spikes which 

may occur in the data even when the data is relatively stable. 

 

 

Figure 4.17: Definition of decreasing and rising step changes within the Expert System. 
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4.5.3.4 Compile Profile 

 

The final task of ‘Build Channel Profile’ in the task model in figure 4.9 is ‘Compile 

Profile’. The purpose behind this task is to collate all of the information derived from the 

previous tasks into one profile which describes the channel. Therefore this task is 

achieved by collecting together all of the features and information derived during the 

previous tasks and passing this information onto the ‘Classify Alarm’ task.  

 

4.5.4 Compile Channel Description 

 

The next stage is to compile a description of the behaviour of the channel. In practice, 

this task requires a two pronged approach which entails completing all of the check 

sheet entries currently completed manually by the experts and using this along with 

some additional information to deduce what caused the alarm to trigger. An example of 

the check sheet required to be completed by the experts is given in figure 2.5. 

 

All of the information is derived using expert diagnostic knowledge captured at the 

knowledge elicitation stage and recorded in the knowledge transcripts. The knowledge 

contained within these transcripts for the most part is expressed in general terms used by 

the experts. In order to transfer this knowledge onto an automated system it is necessary 

to add a significant level of detail to the knowledge definitions mostly through adding 

knowledge which the experts may have overlooked due to its procedural nature. For 

example, some of the knowledge contained within both transcripts describes operational 

changes occurring close to the time of alarm firing. The word close must be defined in 

more detail so as an automated system can recognise whether the change occurs closely. 

Another example is when compiling a description of the general signal behaviour like 

completely stable, generally stable, noisy etc. These terms required a more exact 

definition in order to be deducible from the condition monitoring data. 
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4.5.4.1 Vibration File Stability 

 

A large percentage of the rules contained within the rule base are concerned with 

determining events which occur in certain files. Six vibration files are assessed: overall 

amplitude; first order magnitude; first order phase; second order magnitude; second 

order phase; and sub-synchronous amplitude. They are assessed to determine the overall 

stability of the signal, whether any changes have occurred within various periods of 

interest and what the level of vibration was in particular regions. The overall stability of 

each vibration parameter is defined in terms of one of the following categories: 

 

! Completely Stable – 100% of trend periods have a change state equal to stable. 

! Relatively stable – more than or equal to 70% and less than 100% of trend 

periods have a change state equal to stable. 

! Unstable – less than 70% of trend periods have a change state equal to stable 

 

The noise status of each vibration parameter is defined as either noisy or not noisy. A 

noisy signal has over 30% of its trend periods in the change state equal to noisy. A not 

noisy signal has less than or equal to 30% of its trend periods in a change state equal to 

noisy. 

 

Each of the six vibration files have been assessed with respect to stability using rules 

file13 to file17 in appendix B. 

 

4.5.4.2 Vibration Events 

 

There are also rules in place which determine if any events such as trends and step 

changes occurred within a certain period as well as what the state of the level descriptor 

was within these predefined periods. The vibration data is analysed to determine if there 

is a high or low value in the phase or magnitude level following the alarm as given in 

rules file1 to file3 in appendix B. Another piece of information recorded is whether the 
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signal was within the stable level region before or after the alarm was fired as given in 

rules file4 to file7 in appendix B. There are also rules which determine if a change in any 

of the periods occurs within the period after the alarm or if the change descriptors were 

of a purely stable nature as given in rules file8 to file12 in appendix B.  

 

4.5.4.3 Vibration Check Sheet Entries 

 

The next step is to calculate the values of the vibration parameters ‘OA Amp’, ‘1x 

Amp’, ‘1x Phase’, ‘2x Amp’, ‘2x Phase’ and ‘Non-synchronous Amp/Freq’ entries, 

which are placed in the checksheet. The rules used to calculate the correct value for each 

of these entries are the same but the values and events utilised within the rules are 

derived from the appropriate file. The rules use the information on the file stability and 

the vibration events to determine the checksheet entries. There are 4 variables associated 

with the checksheet entry of each file. A value is calculated for one or more of these 

variables depending on the behaviour of the signal. The first 2 of these variables denote 

the file spread by storing the minimum and maximum recorded values from the data. 

These values are only recorded for instances where the file has been deemed noisy. This 

is implemented by rule file25 in appendix B. If it has been determined that a low or high 

level has been read after the alarm has triggered, and the signal is within the stable 

region before the alarm triggered, then it is necessary to record both the higher and 

lower level and store these as two overall amplitude values for the checksheeet.  This is 

implemented by rules file19 & file21 given in appendix B. In all other situations a single 

value is calculated in rules file18, file20, file22, file23 & file24 given in appendix B. 

 

The overall amplitude value derived is used to determine what is entered into the ‘Zone’ 

entry. The overall amplitude level calculated is checked against the zone limits to 

determine if the channel falls within zone 1, 2, 3 or 4. Rules CH7 to CH14 in appendix B 

are used to determine this value. 
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Another entry calculated using the vibration information is the ‘OA ~ !(1x+2x)?’ entry. 

The values calculated for first order magnitude and second order magnitude are added 

together to determine if they are approximately equal to the overall amplitude value. The 

overall amplitude variable is multiplied by a tolerance factor to determine a range of 

values for the approximation. Rules CH15 to CH17 in appendix B are used to determine 

the result for this entry. 

 

4.5.4.4 Vibration Step Events 

 

Also completed are the entries which indicate whether a step change has occurred in 

both the first and second order signals. When undertaken manually, the experts analyse 

the magnitude and phase to determine if a sudden change occurs. Currently the 

automated system only analyses the magnitude files for a step change because the nature 

of the phase readings can result in false step change readings. For example, if the phase 

is situated close to the 180° point then a movement of only a couple of degrees can give 

a reading of approximately -180°. Although the change would be of a small magnitude, 

this could be mistaken for a large magnitude change, if the difference between the points 

is calculated by simply subtracting one angle from the other. Therefore the ‘Step "1x?’ 

and ‘Signif. "2x?’ entries are completed by checking if any steps were extracted at the 

‘Extract Step Changes’ stage within the first and second order magnitude files 

respectively. Rule file27 determines this for both the 1st and 2nd order magnitude files. 

 

Since the development of the system, a potential solution to identifying whether large 

changes in both the 1st and 2nd order phases has been considered. The proposed solution 

would be to determine the difference in magnitude between the vibration points on the 

2-dimensional magnitude and phase plot. This could be achieved through the use of 

trigonometry and rules which determine when to add and subtract the distances 

calculated on the x and y magnitude axes calculated between each point. If it is 

determined that there is a large difference in the 2 dimensional magnitude and phase plot 



 139 

then the system can firstly look towards the difference in vibration magnitude to 

determine if this is the contributing factor. If this is not the contributing factor then it can 

be deduced that a large difference in the vibration phase is the primary contributing 

factor. This additional functionality will have to be researched, tested and added to any 

future implementations of the Expert System. 

 

4.5.4.5 Operational Events 

 

The next stage is to determine what events occurred in the operational signals. The only 

operational parameters which have been processed by the automated system to date are 

the Generator Load, Generator Rotor Current and the Generator MVArs since these were 

the only files identified as being necessary for the analysis. The key events of interest 

here are whether any changes have occurred (steps or trends) within a specified period 

before the alarm was triggered. The main purpose of this analysis is to determine if any 

changes in the operational parameters could explain corresponding changes in the 

vibration parameters which lead to the alarm triggering. 

 

The first feature searched for is whether a trend change has occurred within the specified 

period or none at all. This change can be of either an increasing or decreasing nature. 

Rules op1 to op3 in appendix B are used to determine if any of these changes occurred. 

A similar process is undertaken for determining if any steps have occurred within the 

specified period using rules op4 to op6 given in appendix B. The ‘Operational Change?’ 

entry can be completed once this information has been derived. Each of the three 

operational files Generator Load, Generator Rotor Current and Generator MVArs are 

checked to determine if any steps or trends occurred within the specified period. If so 

then the operational change variable is set to true. This checksheet entry is completed by 

rules CH1 to CH6 in appendix B. 
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4.5.5 Classify Alarm 

 

The next stage is to classify the alarm according to one of the alarm classifications 

defined in figure 4.6. 

4.5.5.1 Signal Faults 

 

Rules are in place to determine if any signal faults have occurred on the channel. The 

four sensor fault types identified in the knowledge transcripts were ‘Electrical Noise’, 

‘Zero Sensor Reading’, ‘Excessive Sensor Level Reading’ and ‘Zero Rpm Reading’ as 

given in figure 4.6. 

 

The electrical noise fault can be identified in two ways. The first method is to determine 

if there are spikes on the channel’s FFT at multiples of the operating frequency. The 

second feature which can identify an electrical noise fault is a high level of base noise in 

the FFT data. The rules which diagnose these faults must rely on the information entered 

manually at the data entry level as described in section 4.5.2 since the FFT is currently 

unavailable in a suitable format for analysis. The two rules which interpret the data 

entered manually are AC1 and AC2 in appendix B. 

 

The overall amplitude data is analysed to determine if either a zero sensor or excessive 

sensor level error has occurred on the channel. The associated zero sensor reading rule 

AC3 in appendix B checks the raw data for any data samples within a specified period 

which fall below a set limit and that the system state was not offline at the time of alarm 

firing. The excessive sensor level rule AC4 in appendix B analyses the data in a similar 

fashion except the samples are checked against a limit which denotes an excessive level. 

Finally the rpm data is analysed using the same approach as used for determining if the 

overall signal read zero by AC5 in appendix B. 
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The remainder of the rules are concerned with checking for alarm causes which are in 

some way related to changes in the vibration signals. The three main categories for these 

causes are ‘Operational Change’, ‘Drift’ or ‘Genuine Change’.  

 

4.5.5.2 Operational Changes 

 

An operational change is where some vibration movement has been caused by a change 

in one of the three operational parameters already discussed. A key characteristic of the 

operational change is that the level of change is not large. Therefore the variables of 

interest are: 

 

! Whether a change in one of the operational parameters has occurred? 

! Has there been a corresponding change in the relevant vibration parameter?  

! Has this change remained within its stable level limits following the alarm? 

 

The vibration signal analysed is dependent on the alarm cause. Therefore if the alarm 

was of type ‘1X Vector’ then the 1st order magnitude and phase is analysed, if ‘2X 

Vector’ then 2nd order magnitude and phase, if ‘Sub-Synch High’ then sub-synchronous 

amplitude and the overall amplitude is used for any ‘Zone’ type alarms. Rules AC6 and 

AC7 in appendix B are concerned with determining this type of event. 

 

4.5.5.3 Genuine Large Vibration Change 

 

Another possible type of operational change would be for the relevant vibration signal to 

move outside of its stable level region after the alarm has triggered and return back 

within this region. Therefore the data is analysed to determine if a trend change or step 

change occurred in the operational parameter prior to the time of alarm firing. The 

relevant vibration signal which is again dependent on the alarm type is checked to find if 

a high level occurs after the alarm and if a stable level also occurs after the alarm. The 
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analysis performed to find this type of behaviour is derived by rules AC8 & AC9 in 

appendix B. 

 

4.5.5.4 Genuine Change No Recovery 

 

A genuine change with no recovery is caused by a change in an operational parameter in 

the form of a step or trend prior to the alarm. This results in the vibration signal 

increasing to a high level and not recovering back to within its stable level region. This 

alarm cause is very similar to the operational change which causes the vibration to move 

to a high level, as described previously, only a genuine change is characterised by no 

recovery. The analysis performed to find this type of behaviour is performed by rules 

AC10 & AC11 in appendix B. 

 

4.5.5.5 Unattributed Change 

 

Another possible alarm cause is an unattributed genuine change. This type of alarm is 

characterised by a high level of vibration after the alarm which does not recover. There 

is however no corresponding change in the operational parameters to account for the 

change in vibration. This particular type of behaviour is derived by rule AC12 in 

appendix B. 

 

4.5.5.6 Drift 

 

Finally the rules analyse the data to determine if the alarm was caused due to drift. Drift 

is characterised by a slight change in the vibration, which moves it from outside of the 

alarm limits, and no apparent corresponding operational change which has caused it. 

Ideally a slight change in the relevant vibration should be observed by the system but in 

some cases the movement is so slight that it is difficult to detect due to the approximate 

feature extraction. Therefore the rules which detect drift only check that the vibration 
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falls within the stable level region and that no operational change has occurred. This 

particular type of behaviour is derived by rule AC13 in appendix B. 

 

4.5.6 User Interface 

 

So far, how the Expert System captures the data and then interprets this to arrive at 

conclusions on the alarm cause, and particular behavioural properties of the channel has 

been detailed. The automated processing of the data is however only a portion of the 

functionality provided by the Expert System design which assists the expert in 

processing the condition monitoring alarms. One of the primary reasons for selecting 

Expert System technology was due to the transparency in the assessment rationale 

provided by such a technique. This transparency is traditionally provided by the tree 

explanation structure generated by the rules which arrived at the final conclusion. This 

method of transparency can be a very powerful tool if used in an appropriate fashion and 

is included within the Expert System design as one of two main explanation functions 

provided. The second explanation feature was developed when researching how novel 

methods of explanation could be incorporated into Expert System design. This second 

explanation feature aims to visually highlight to the user key features derived from the 

raw data which were used by the Expert System in arriving at its conclusions. It does 

this primarily by highlighting some of the features of key interest to the experts when 

building a picture of the channel behaviour. The features which are highlighted by the 

current Expert System prototype were selected by determining which ones would 

provide the most information to the user in explaining how the conclusion was deduced. 

Throughout the knowledge elicitation process the experts highlighted the importance of 

vibration and operational parameter features such as the general profile and step changes 

and how this information was critical to a large percentage of assessments. Therefore the 

interface developed provides functionality which attempts to relay to the user the key 

features derived and subsequently used in the alarm cause analysis process. The 



 144 

approach in which the developed prototype system achieves this goal is outlined in this 

section as is some of the other functionality provided by the interface design. 

 

4.5.6.1 Alarm Selection 

 

The functionality built into the Expert System interface will allow users to access the 

current or historical alarms from any of the Beran monitored turbines throughout all of 

the British Energy facilities. An example of one of the selection screens currently used 

within the developed prototype system in given in figure 4.18.  

 

 

Figure 4.18: Historical or current alarm selection screen. 

 

Here the user is prompted to select from the database of current alarms which have been 

assessed by the system but not yet verified or historical alarms which have been both 

assessed by the system and verified by the expert. The current alarm list would be the 

most common selection but the historical alarm list would be useful in situations where 

audits of previously assessed alarms would have to be carried out as is currently 

performed on a quarterly basis at all British Energy locations.  
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An example of the screen which allows the expert user to select a current alarm for 

verification is given in figure 4.19. 

 

 

Figure 4.19: Current alarm selection screen. 

 

Here the user is provided with the details of the triggered alarm such as the turbine it 

was triggered on, the channel, the date and time, the alarm type and the cause of the 

alarm as assessed by the system. The alarm cause determined by the system provides a 

natural ordering of priority. For example, alarms which have been assessed as a genuine 

change would be of a higher priority than those assessed as a signal fault. Therefore the 

pre-processing undertaken enables the experts to prioritise which alarms are assessed 

first and increases the chances of locating genuine problems at an earlier stage than what 

would be possible with no pre-processing. This is especially true in situations, where 

vast amounts of alarms have been triggered, and only a small percentage, allude to a 

genuine problem on the machine. One additional piece of functionality which can add 

benefit to this type of interface screen would be some form of traffic light labelling 
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which would visually enhance the priority levels of each alarm. For example high 

priority alarms may be highlighted in red whereas alarms of a lower priority may be 

labelled green. 

 

4.5.6.2 Assessment Results 

 

When the expert selects the alarm in which he/she is to verify, the alarm analysis results 

screen, an example of which is given in figure 4.20, is displayed to the user. It is here 

that the system attempts to relay back to the user in a novel fashion some of the key 

features extracted at the analysis stage. The two primary features which the current 

prototype system aims to highlight to the user are the gradual trend profile of the system 

and any step changes. In addition to these features the checksheet entry results are 

displayed along with any header information. 

 

 

Figure 4.20: Analysis results screen. 
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4.5.6.3 Feature Extraction 

 

The trend profile derived by the system is conveyed back to the user by highlighting the 

background of the signal with the relevant colour to indicate if the signal was increasing, 

decreasing, stable or noisy. The generator load signal depicted in figure 4.21 highlights 

how the trend profile of the signal is fed back to the user. Stable periods are highlighted 

with a green background, decreasing regions with a grey background, increasing areas 

with a light blue and noisy regions are in red. This approach to visually highlighting the 

trend features allows the user to instantly determine how accurate the system’s analysis 

compares with his/hers. Therefore if the alarm cause flagged up by the system related to 

a gradual operational change in some parameter, the expert could quickly analyse that 

parameter, locate the trend change and determine if it is valid or not. 

 

 

Figure 4.21: Feature extraction fed back to the user. 

 

Another explanation facility provided by the expert system which is also shown in figure 

4.21 is the highlighting of step changes which occur in the signal. The step changes are 

highlighted by a black vertical line running through the graph at the positions where step 

changes are located.  It can be seen that there are three areas on the graph where step 

changes have been located in this particular signal. This again allows the user to 

instantly locate where any step changes have been found in the data by the signal to 
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symbol transformation so that any results relating to these features in the checksheet can 

be quickly verified. 

 

4.5.6.4 Assessment Rationale 

 

Another explanation facility put into the Expert System design was the reporting of the 

system rationale by displaying what rules were triggered to arrive at the assessment 

conclusion. This tool was not fully implemented into the final prototype due to 

development time constraints. The current prototype outputs a list of the rules which 

generated the system conclusion. Each rule contains its own identifier and the identifier 

of the rule which fired it meaning that the tree structure of the explanation can be easily 

deduced manually using the existing information. The next version of the system should 

contain functionality which outputs the explanation in a tree structure automatically via 

the user interface. However some work was undertaken to enhance the information 

conveyed by the explanations. In order for a rule based explanation tree to be of any 

assistance to the expert user in verifying the system rationale, the triggered rules which 

appear in the explanation would have to mean something. Therefore, all of the rules 

placed in the knowledge base were given a description which explained the rationale 

behind the firing of each rule. This allows the rationale of each rule to be displayed in 

the explanation tree, enabling the user to verify the rationale. An example of one of the 

explanation trees generated by the system is given in figure 4.22. 

 

This explanation tree indicates that this particular alarm has been triggered due to a rotor 

current operational change. This has been derived due to the triggering of rules which 

indicate that a rising change has occurred in the rotor current, a rising change has 

occurred in the first order magnitude and this change has not been of a high level. It 

should be apparent that this method of explanation allows the user to quickly determine 

the rationale which has lead to the conclusion. The users would firstly have to become 

familiar with the meaning of the rule descriptions but for the most part they are self 
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explanatory. The system can be improved upon by generating these explanations using 

the tree structure format shown in figure 4.22 automatically within the user interface and 

then linking these explanations directly with the features which triggered these rules. For 

example, rule RC 1, which indicates that a rising change occurred in the rotor current 

would have been triggered by a feature in the rotor current data. It would add value to 

the system if the user were able to click on this rule and then be taken directly to the 

features which triggered it. 

 

 

Figure 4.22: Explanation tree generated by Expert System to explain the rationale behind the alarm 

being diagnosed as a rotor current operational change. 

 

4.6 System Testing 

 

Testing has been carried out on the Expert System module. Of most interest was the 

analysis performed by the module on the alarm data. Therefore test data in the form of 

previously assessed alarms were used to assess how well the module performed. The 

module performance was measured against how close the checksheet results derived 

automatically by the prototype compared with the historical records which were 

completed manually. Also of interest was how well the module’s feature extraction rules 

and algorithms performed in extracting a description of the signal behaviour. To assess 

this function the module’s description of the signals is compared with that given by a 

turbine generator condition monitoring expert from British Energy. 
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Only data taken from turbines at one of British Energy’s locations was used to test the 

system because the system developers were able to gain access to this more easily. 

Alarms from channels 5, 6, 9 and 11 were tested from turbine 1 and an alarm from 

channel 9 was tested from turbine 2. 

 

4.6.1 Turbine 1 

 

This section will review the Expert System performance at analysing each of the test 

case studies from turbine 1. 

 

4.6.1.1 Channel 5 

 

There were two alarms analysed on channel 5 of turbine 1. The first of these alarms was 

triggered as a 1X Vector alarm on the 26/11/04 which on inspection of the data was 

caused due to a change in load. The FFT characteristics appeared to be normal from the 

manual inspection of the plots so when prompted the user answered that there were no 

spikes or base noise on the FFT plots. The results derived by the Expert System and 

completed manually by the expert are summarised in table 4.1. 
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Table 4.1: Check sheet results for alarm turbine 1, channel 5, 26/11/04 

 

 

The module indicated three potential causes of the alarm. These were Load, Rotor 

Current or MVAr change. The manual inspection had determined that the alarm had 

been triggered due to a load change. The rationale provided by the system for these 3 

diagnoses are given in figure 4.23. Table 4.2 can be used to relate the rule numbers 

given in figure 4.23 to the rules listed in appendix B. 

 

Check Sheet Entry Manual Expert System 

OA 

Zone 

1X Amp 

2X Amp 

1X + 2X ! OA 

Non-Synch Amp 

1X Phase 

2X Phase 

1X Step 

2X Step 

Op Change 

Cause 

13 

1 

11 

2 

Y 

7 

-37 

78 

N 

N 

Y 

Load Change 

12.343 

1 

10.445 

1.5617 

Y 

5.7021 

-31.39 

74.851 

N 

N 

Y 

Load/Rotor 

Current/Mvar 

Change 
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Figure 4.23: Rationale produced by the Expert System for assessment of alarm on turbine 1, 

channel 5, 26/11/04  

 

It should be clear that all 3 assessments have deduced that a rising change in the 1st order 

magnitude has triggered the alarm and that this change never fell within the high or low 

level set out by the channel limits. Each assessment then provides a different explanation 

as to the cause of this change. Figure 4.23(a) indicates that the change was caused by a 

rising change in rotor current through the triggering of RC 1. Figure 4.23(b) indicates 

that the change was caused by a rising change in the MVArs through the triggering of 
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MVA 1. Finally, figure 4.23(c) indicates that the change was caused by a step change in 

the load through the triggering of L 4. 

 

Table 4.2: Conversion table to relate the rules used in the rationale in figure 4.23 to those listed in 

appendix B 

Expert System Rule Number Appendix Rule Number 

AC 38 AC 6 

AC 70 AC 6 

AC 8 AC 7 

RC 1 RC 1 

MVA 1 MVA 1 

L 4 L 4 

1M 8 1M 8 

1M 3 1M 3 

 

The user can then plot the graphs to determine visually what features extracted by the 

system led to the above assessment being deduced. Figure 4.24 highlights the feature 

extraction results produced by the system for this alarm assessment. The expert user can 

easily deduce the features which triggered each alarm in the assessment rationale 

therefore speeding up the verification process and building user confidence in the 

system. The trend change in both the MVAr and rotor current signals which triggered 

rules MVA 1 and RC 1 respectively in the assessment rationale are clearly visible as is 

the step change in the generator load which resulted in rule L 4 triggering. In practice the 

user can use this explanation function to determine what the actual cause was, based on 

the suggestions output by the system. In this example the expert deduced that the 

original assessment of a load change produced in the original manual assessment and 

provided as one of the three conclusions by the Expert System was the main cause of the 

alarm. This is mainly because the change in load in this case initiated the changes in 

rotor current and MVAr.  

 

This example demonstrates that the Expert System uses the explanation facilities 

provided and the expert verification to deal with resolving conflict in the system 
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assessments. Since the system assessments are verified by the user as opposed to being 

used as a definitive conclusion, the need for conflict resolution was not identified as 

being of primary importance to the system design and could be implemented as part of 

the evolution of the system. An approach which could be used to differentiate between 

multiple conclusions would be to add additional knowledge to identify the most likely 

conclusion. For example, the conflict here could be resolved by additional knowledge 

which identifies that a change in load would initiate both the change in rotor current and 

MVArs therefore making load change the primary cause. This approach in addition to 

alternative approaches for dealing more effectively with the issue of conflict resolution 

will have to be investigated further for future project developments. 

 

 

Figure 4.24: Feature extraction results highlight the features which produced the assessment 

rationale for the Beran alarm triggered on turbine 1, channel 5 on 26/11/04 
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It should also be apparent from the results given in table 4.1 that the numerical values 

given by the system do not correlate exactly with those given in the manual assessment. 

The results were reviewed by the company experts and they felt that the system results 

correlated well with those in the manual assessment. Therefore, the expert verified that 

the results provided by the system would be accepted to be put forward for the 

checksheet report. However, the difference in numerical results was discussed and it was 

felt that the discrepancy could be explained by the approximate nature of the assessment 

performed by the expert. In practice the expert will be performing an assessment on 

several alarms with a limited amount of time. Therefore, the accuracy of the numerical 

values entered in the checksheet is not seen to be important as long as they are within a 

certain tolerance. This tolerance varies depending on the magnitude of the signal. For 

example the results given in table 4.1 show that the 2nd order magnitude was 

approximated in the manual analysis as being 2µm peak to peak (p-p) whereas the 

Expert System which is using the verified knowledge calculates it to be 1.5617µm p-p. 

In percentage terms this is a significant difference but since the vibration magnitude 

would have to be greater than 63µm p-p to fall outside of zone 1 the difference of 0.5µm 

p-p appears insignificant. Alternatively if the manual analysis estimated a vibration 

magnitude as being at 80µm p-p and the system calculated it to be 60µm p-p then this 

would be a significant difference since the first value is in ‘Zone 2’ and the second is in 

‘Zone 1’. The expert also highlighted that there is error in the expert analysis when 

visually interpreting time series plots on a screen since the resolution of the plot may not 

permit accurate readings to be easily obtained. It was concluded that the analysis 

performed by the system was producing more accurate numerical readings compared 

with the manual analysis due to the aforementioned reasons. Therefore, the Expert 

System showed its ability to increase the accuracy and the consistency of the numerical 

checksheet analysis by eliminating the human error introduced in the manual analysis. 

 

The next alarm tested on channel 5 on turbine 1 was again triggered as a ‘1X Vector’ 

alarm on the 08/02/06. Again the FFT data showed no abnormal signs of behaviour 
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therefore it was manually input to the system that no spike or base noise was present in 

the FFT plots. The Expert System results and manual results are given in table 4.3.  

 

The non-synchronous amplitude is higher for the module results than that recorded in the 

manual analysis and there is no frequency given since the module doesn’t have access to 

the FFT data to determine the particular frequency that this magnitude dominates. In 

addition there are discrepancies in the numerical values given for the 1st and 2nd order 

phases. On inspection of the results with company experts it was concluded that the 

system was producing the more accurate results due to the approximate nature of the 

manual analysis as explained for the previous results. It is however important that 

methods of automatically calculating the dominant sub-synchronous frequency are 

researched once the FFT data becomes available so that this information can be input to 

the final checksheet report.  

 

Table 4.3: Check sheet results for alarm turbine 1, channel 5, 08/02/06 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are further discrepancies in the overall amplitude and first order magnitude values. 

An inspection of the results found that the manual analysis had outperformed the system 

Check Sheet Entry Manual Expert System 

OA 

Zone 

1X Amp 

2X Amp 

1X + 2X ! OA 

Non-Synch Amp 

1X Phase 

2X Phase 

1X Step 

2X Step 

Op Change 

Cause 

15.6 

1 

14.6 

1.3 

Y 

4.1/16.4 

-69 

72 

N 

N 

Y 

Load Increase 

13.004 

1 

11.240 

1.4290 

Y 

5.4821 

-61.24 

63.212 

N 

N 

Y 

Load/Rotor 

Current Change 



 157 

in this instance. It can be seen from figure 4.25 that the manual analysis has noted the 

peak value close to the alarm firing in both the overall amplitude and 1st order magnitude 

plots. The system on the other hand has recorded an average for both signals. The 

knowledge within the system has been designed to record maximum values close to the 

time of alarm firing only in instances where the magnitude exceeds a maximum level 

defined for that channel. In this instance the magnitude did not exceed this value, 

therefore the average was only taken. The expert who was verifying the results did 

express that in instances where there has been upwards trending close to the firing of the 

alarm, it is best practice to record the peak magnitude within that vicinity.  

 

 

Figure 4.25: Overall level magnitude and 1st order magnitude plots highlight where the expert has 

read the peak magnitude values and input both values to the checksheet. 

 

It is important that this feedback at the system result verification stage is used to update 

the existing knowledge base so that such functionality is included in later versions of the 

Expert System. This highlights an important advantage of the Expert System approach, 

where due to the transparency of the rationale provided by the system results, the system 
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developer and experts are able to interrogate the results and determine how they can be 

improved upon. This has the effect of both improving the analysis performed by the 

system and at the same time building user confidence in the system. This was one of the 

primary reasons for selecting the Expert System approach as outlined in section 4.2. 

 

The module does not specify that an increase in the load triggers the alarm but does 

indicate that either a load or rotor current change was the cause. The rationale produced 

by the system for both of these assessments is given in figure 4.26. 

 

  

 

Figure 4.26: Rationale produced by the Expert System for assessment of alarm on turbine 1, 

channel 5, 08/02/06 

 

The rules given in figure 4.26 can be matched to those described in appendix B using 

table 4.2. Both rationales indicate that the alarm triggered on an increase in the 1st order 

magnitude which fell within the normal magnitude limits stipulated by the channel 
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limits. Figure 4.26(a) indicates that a trend change in the rotor current was the cause for 

the change through the triggering of rule RC 1. Figure 4.26(b) indicates that a step 

change in the generator load was the cause through the triggering of rule L 4. The expert 

user can verify the presence of these features in both the rotor current and generator load 

through an analysis of the feature extraction results as shown in figure 4.27. 

 

 

Figure 4.27: Feature extraction results highlight the features which produced the assessment 

rationale for the Beran alarm triggered on turbine 1, channel 5 on 08/02/06 

 

The trend change in the rotor current signal which triggered rule RC 1 in the assessment 

rationale is clearly visible as is the step change in the generator load which resulted in 

rule L 4 triggering. The expert was able to quickly verify that the alarm was triggered 

due to a load increase through the use of the rationale and the visually highlighted 

feature extraction results. The reason that the change in load was deemed to be he 

primary cause was for the same reason as the previous example, that is the change in 

load would have been the cause of the change in rotor current. This example again 
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shows how the Expert System does not implement automated conflict resolution but 

uses the user and the system explanation to resolve the conflict at the assessment 

confirmation stage. Again a future development of the system could be to investigate an 

implement approaches to conflict resolution to provide the expert with less assessments 

to verify.  

 

This example demonstrates that the Expert System was able to identify the cause of the 

alarm and effectively feed this information back to the user through the system’s 

explanation facilities. It also demonstrated the strength of the Expert System approach in 

being able to identify areas where the results were not as expected and use this to update 

the knowledge to improve the system performance for further alarms. This was 

demonstrated for the overall amplitude and 1st order magnitude cases where the system 

did not identify the correct location in the graph to derive the associated checksheet 

entries, the transparent nature of the knowledge allowed the expert and system developer 

to determine why there was a discrepancy and feed this information back so that later 

versions could be updated with improved knowledge. 

 

4.6.1.2 Channel 6 

 

The next alarm tested on the module was taken from channel 6 on turbine 1 and was 

triggered on 31/10/04. The alarm was triggered as a 1X Vector alarm and there were no 

signs of abnormal behaviour in the FFT. Therefore it was entered manually into the 

system that no spikes or base noise appeared within the FFT plot. The results for this test 

are given in table 4.4. 
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Table 4.4: Check sheet results for alarm turbine 1, channel 6, 31/10/04 

 

 

The results for the module analysis and the manual analysis compare well with the 

exception of the second order phase. The reason for the discrepancy is that the phase 

value is situated on the 180° mark which means that the signal is alternating between 

approximately the 180° mark and the -180° mark. An average of the signal is being 

taken since the signal has been described as stable by the ‘Extract Channel Profile’ 

module and so this equates to approximately 0°. This problem is discussed in section 

4.5.4.4 as is a solution proposed which if developed further could correctly calculate the 

differences in the phase signals. The review of the differences between the manual and 

system derived checksheet entries concluded that it was again due to the approximations 

made by the expert in the manual analysis. Therefore the Expert System was again 

producing more accurate results than the manual analysis. The alarm cause was assessed 

to be ‘Drift’ in both the manual and automated analysis. The rationale produced by the 

system for the ‘Drift’ assessment is given in figure 4.28. 

 

Check Sheet Entry Manual Expert System 

OA 

Zone 

1X Amp 

2X Amp 

1X + 2X ! OA 

Non-Synch Amp 

1X Phase 

2X Phase 

1X Step 

2X Step 

Op Change 

Cause 

12 

1 

9 

6 

Y 

6 

80 

!180 

N 

N 

N 

Drift 

11.306 

1 

8.1370 

5.2712 

Y 

5.4195 

77.104 

-5.348 

N 

N 

N 

Drift 
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Figure 4.28: Rationale produced by the Expert System for assessment of alarm on turbine 1, 

channel 6, 31/10/04 

 

Table 4.5 can be used to match the rules given in the explanation in figure 4.28 to those 

given in appendix B.  

 

It can be seen from the rationale produced by the system that the alarm was assessed as 

drift because no change was located in any of the operational parameters. This is verified 

by the triggering of rules L 3, L6, MVA 3, MVA 6, RC 3 and RC 6. In addition the level 

of the 1st order magnitude remained within normal limits, which is verified by the firing 

of rule 1M 3. This indicated that the change was ‘Drift’ as opposed to a ‘Genuine 

Unattributed Change’. These results can be quickly verified through analysis of the 

feature extraction results given figure 4.29. 

 

Table 4.5: Conversion table to relate the rules used in the rationale in figure 4.28 to those listed in 

appendix B 

Expert System Rule Number Appendix Rule Number 

AC 150 AC 13 

L 3 L 3 

L 6 L 6 

RC 3 RC 3 

RC 6 RC 6 

MVA 3 MVA 3 

MVA 6 MVA 6 

1M 3 1M 3 
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It can be seen from figure 4.29 that the load signal remains stable throughout the period 

of alarm firing. There is some movement in the MVAr and rotor current signals but this 

occurs after the alarm has triggered therefore implying that neither of these changes 

were the cause. This example again demonstrates the accuracy of the Expert System 

assessment and how the user is able to easily validate the assessment using the 

explanation functions provided by the tool. 

 

 

Figure 4.29: Feature extraction results highlight the features which produced the assessment 

rationale for the Beran alarm triggered on turbine 1, channel 6 on 31/10/04 

 

4.6.1.3 Channel 9 

 

The next alarm tested on the module was from channel 9 on turbine 1. This alarm 

occurred on 03/12/04 and was triggered by a ‘1X Vector’ alarm. A manual inspection of 
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the FFT data showed that there were no abnormal characteristics in base noise or 

frequency spikes. The test results are given in table 4.6. 

 

Many of the entries calculated by the Expert System compare almost exactly with the 

values derived manually by the expert. There are however some discrepancies between 

both sets of results. The numerical entries match very closely between both assessments 

although it was concluded that all the differences between both assessments were due to 

the approximations incurred during the manual assessment, with the Expert System 

producing more accurate results. A good example which demonstrates this is the non-

synchronous amplitude entry. The time series data can be seen in figure 4.30 where the 

average of the signal has been plotted on top of the raw signal. It can be clearly seen that 

the average falls closer to 4.6µm p-p as opposed to the 6 estimated in the manual 

assessment.  

 

Table 4.6: Check sheet results for alarm turbine 1, channel 9, 03/12/04 
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The expert who completed the checksheet determined that the addition of the first and 

second order magnitudes did not approximately equate to the value of the overall 

amplitude whereas the Expert System’s diagnostic knowledge calculated that they were 

approximately equal. The expert who compared both sets of results felt that the system 

conclusion was correct. The best practice agreed upon at the knowledge elicitation stage 

for this particular chaecksheet entry was that if the addition of the 1st and second order 

magnitudes fell within +50% and –20% of the overall amplitude value then both values 

were deemed to be approximately equal to each other. The results from this analysis 

fulfil this condition therefore the Expert System correctly determined that both values 

were approximately equal to each other. The expert was unable to conclusively state 

why the manual analysis was completed incorrectly and could only speculate that the 

best practice had not been adequately cascaded to the rest of the team. Therefore the 

Expert System results combined with the best practice derived during the knowledge 

engineering process provided the expert with a learning point which could be fed back to 

the Rotating Plant and Dynamics Team. 

 

 

Figure 4.30: The average value plotted on the sub-synchronous magnitude plots highlights that the 

Expert System correctly approximated the average to approximately 4.6 as opposed to 6 which was 

entered in the manual analysis. 
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Another discrepancy was that the Expert System picked up a change in the MVAr 

operational parameter sufficiently close to the time of alarm firing to record that an 

operational change occurred. The manual results show that the expert performing this 

particular assessment concluded that no change had occurred in any of the operational 

parameters. Additionally the manual assessment concluded that the alarm had been 

caused by either a low rotor current or a potential change in MVArs which contradicts 

the assessment that there was no operational change.  Again the experts who compared 

both sets of results felt that the Expert System had performed more accurately in picking 

up the change in the MVAR signal. The rationale produced for the MVAr change alarm 

assessment is given in figure 4.31. 

 

 

Figure 4.31: Rationale produced by the Expert System for assessment of alarm on turbine 1, 

channel 9, 03/12/04 

 

The rules given in the explanation in figure 4.31 can be related back to the rules listed in 

appendix B using table 4.7. 

 

Table 4.7: Conversion table to relate the rules used in the rationale in figure 4.31 to those listed in 

appendix B 

Expert System Rule Number Appendix Rule Number 

AC 70 AC 6 

1M 3 1M 3 

1M 8 1M 8 

MVA 1 MVA 1 
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The rationale indicates that a trend change in the MVAr signal highlighted by the 

triggering of rule MVA 1 caused the change in the first order magnitude as indicated by 

the triggering of rule AC 70. This rationale can be verified by analysing the feature 

extraction given in figure 4.32. The graphs show that there is a change in the MVArs 

which occurs on the 1st December, approximately 2 days before the alarm. This falls 

within the time window, elicited at the knowledge engineering stage, in which a change 

in an operational parameter is able to effect a change in a vibration parameter. The 

system concludes that it is this change which causes the change in the 1st order 

magnitude. This assessment was verified by the expert. The rotor current signal is also 

plotted in figure 4.32 to highlight how the change in this parameter preceding the time of 

alarm triggering occurred on the 29th November, approximately 4 days before the alarm. 

This falls outside the period set at the knowledge elicitation stage in which an 

operational change can induce a change in vibration parameter. Therefore the Expert 

System correctly assessed that this was not a contributing factor to the change in the 1st 

order vibration. In addition it can also be deduced from the plot that there is no abnormal 

drop in rotor current therefore contradicting the manual analysis listed in table 4.6. The 

expert verifying the results was unable to conclusively determine why the original 

manual analysis contained these inconsistencies. 

 

This case study demonstrates that the assessment produced by the Expert System has 

located features which were not found in the manual analysis and highlighted incorrect 

assessments and contradictions in the original manual analysis. It also demonstrated how 

the assessment rationale and the visual aids provided by the explanation functions 

allowed the expert to review and confirm the Expert System assessment and discount 

elements of the manual analysis. This is a powerful tool in ensuring that all possibilities 

of alarm cause are identified therefore ensuring that the most accurate assessments are 

produced. 
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Figure 4.32: Feature extraction results highlight the features which produced the assessment 

rationale for the Beran alarm triggered on turbine 1, channel 9 on 03/12/04 

 

4.6.1.4 Channel 11 

 

The next alarm used to test the module was taken from channel 11 on turbine 1 and 

occurred on 19/12/04. This alarm was triggered as a signal low alarm. No abnormal 

behaviour was observed in the manual inspection of the FFT. The test results are given 

in table 4.8. Note that there are bracketed values in table 4.8. This denotes that a 

maximum and minimum value for that signal was recorded. This is implemented when 

either a large or low value is recorded in the signal following the alarm, but only in 

instances where the signal has been relatively stable before the alarm. For example, in 

table 4.8 the expert system has recorded a maximum overall amplitude of 14.278µm p-p 
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and a minimum of 1.0438µm p-p since the signal was recorded as being relatively stable 

and then recording a low value following the alarm. 

 

The review of the results indicated that the Expert System had recorded all of the 

numerical entries more accurately than the manual analysis with the exception of the 2nd 

order magnitude. The increase in accuracy for most of the numerical entries could be 

explained by the approximate nature of the manual analysis as discussed for the previous 

alarms. The expert system only recorded a single value for the 2nd order phase entry 

because it did not record an abnormally high or low level following the alarm. The 

expert explained that it was good practice to record a maximum and minimum in all of 

the vibration signals if one is recorded for the overall amplitude, 1st order magnitude and 

second order magnitude signals. This knowledge had not been recorded at the 

knowledge elicitation stage because the scenario had never arisen in the worked 

examples in the earlier knowledge elicitation sessions, neither had the possibility been 

explored at the later more structured meetings as discussed in section 4.3. This 

knowledge will be used to update the knowledge base on the next version of the system. 
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Table 4.8: Check sheet results for alarm turbine 1, channel 11, 19/12/04 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Expert System outperformed the manual analysis by giving more detail as to the 

cause of the alarm. The system determined the alarm to be a ‘Zero Sensor Error’ which 

is a type of signal fault. This was diagnosed through the triggering of rule AC 3: Alarm 

triggered due to zero sensor reading which relates to rule AC 3 in appendix B. This rule 

effectively analyses the overall signal to determine if a certain number of samples fall 

below a threshold point within a specified period. Figure 4.33 highlights where these 

low value readings were read by the system. This example again demonstrates that the 

Expert System is able to provide accurate results which are able to be quickly and easily 

verified by the expert user. It also highlighted how in instances where the system output 

does not exactly match that expected by the user, the cause of the discrepancy can be 

located and this learning fed back into later versions to improve the performance further. 

 

Check Sheet Entry Manual Expert System 

OA 

Zone 

1X Amp 

2X Amp 

1X + 2X ! OA 

Non-Synch Amp 

1X Phase 

2X Phase 

1X Step 

2X Step 

Op Change 

Cause 

13-1 

1 

11-0.8 

3.4-0.6 

Y 

5-1 

153-(-120) 

38-29 

Y 

Y 

N 

Signal Fault 

14.278-(1.0438) 

1 

12.4-(0.4259) 

3.9295-(0.6306) 

Y 

5.7467-(1.0147) 

150.65-(-98.30) 

26.827 

Y 

Y 

N 

Zero Sensor 

Reading 
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Low sensor reading in

overall magnitude

produced alarm  

Figure 4.33: Low level reading which produced the Beran alarm on turbine 1, channel 11 on 

19/12/04 

 

The next alarm tested was also taken from channel 11 on turbine 1 and occurred on 

08/07/06. This alarm was triggered by a signal low alarm and there was no abnormal 

behaviour observed in the FFT plot at the manual inspection stage. The results of this 

test are given in Table 4.9. 

 

On review of the numerical entries it was confirmed that the Expert System produced 

more accurate results than the manual analysis due to the error introduced by the expert 

inspection of the signals as explained for the previous alarms. There is a large 

discrepancy in the calculation of the 1st order phase. The verification stage discovered 

that the user had incorrectly noted the minimum value where there was a severe noise 

spike. The best practice taken from the knowledge elicitation exercises had determined 

that instances of severe noise should not be used for the derivation of the checksheet 

values. Therefore the Expert System had correctly excluded the noise spike to determine 

the 1st order phase entry.  
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Table 4.9: Check sheet results for alarm turbine 1, channel 11, 08/07/06 

 

 

Other differences between the manual and system assessment were in detecting steps in 

the first and second order magnitude and in also detecting an operational change. Steps 

do occur in the first and second order phase signals as well as changes in the operational 

signals as can be seen in figure 4.34. One explanation for these discrepancies would be 

that the expert never defined these as changes in the checksheet because the steps in the 

vibration signals were caused by the signal regaining the reading after having a signal 

error and because the operational changes never contributed directly to the alarm. 

However the best practice derived for the Expert System indicated that the changes in 

both the operational and vibration signals should always be noted regardless of the 

cause. The expert reviewing the results also agreed with this reasoning and confirmed 

that the Expert System analysis was correct. The alarm cause was diagnosed again by 

the AC 3 rule as was the case for the previous alarm on channel 11 reviewed in this 

section.  

 

Check Sheet Entry Manual Expert System 

OA 

Zone 

1X Amp 

2X Amp 

1X + 2X ! OA 

Non-Synch Amp 

1X Phase 

2X Phase 

1X Step 

2X Step 

Op Change 

Cause 

0.71 

1 

0.56 

0.4 

Y 

0.9 

-180 

-15 

N 

N 

N 

Low Signal 

1.1997 

1 

0.9598 

0.3621 

Y 

0.8722 

-65.15 

-16.63 

Y 

Y 

Y 

Zero Sensor 

Reading 
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Figure 4.34: Feature extraction results highlight the features which produced the assessment 

rationale for the Beran alarm triggered on turbine 1, channel 11 on 08/07/06 

 

The results for this alarm again demonstrate the benefits of the Expert System in its 

ability to accurately and consistently assess the data. This is highlighted in the Expert 

System providing more accurate readings and highlighting areas where the manual 

analysis had noted incorrect conclusions when compared with the best practice captured 

at the knowledge engineering stage. 

 

4.6.2 Turbine 2 

 

The system was also tested on a single alarm from turbine 2. This alarm was triggered 

on channel nine and is reviewed in the following section. 
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4.6.2.1 Channel 9 

 

The final alarm used for testing the module was from channel 9 on turbine 2 on 

08/01/06. This alarm was triggered as a ‘1X Vector’ alarm and the manual inspection of 

the FFT data showed no abnormal behaviour which had to be entered into the system. 

The results for this test are given in table 4.10. 

 

Table 4.10: Check sheet results for alarm turbine 2, channel 9, 08/01/06 

 

 

It can be seen that there is a discrepancy in the overall amplitude and 1st order magnitude 

value calculated. The expert has noted the peak value which occurred before the alarm 

was fired, whereas the average value after the alarm has been noted by the module as 

shown in figure 4.35. The expert reviewing the results agreed with the values noted in 

the manual analysis. The reason for this discrepancy is the same for that explained for 

the alarm which triggered on channel 5 on turbine 1 on 08/02/06 and reviewed in section 

4.6.1.1. The reason being that it is best practice to record the maximum value where 

there has been oscillation close to the alarm firing. This had not been brought out at the 

knowledge engineering process and will therefore be fed back to update the knowledge 

Check Sheet Entry Manual Expert System 

OA 

Zone 

1X Amp 

2X Amp 

1X + 2X ! OA 

Non-Synch Amp 

1X Phase 

2X Phase 

1X Step 

2X Step 

Op Change 

Cause 

62 

1 

57.1 

26.3 

N 

6.2/18 

145 

29.7 

N 

N 

Y 

Load Change 

50.435 

1 

51.924 

25.026 

N 

5.3931 

145.91 

36.292 

Y 

Y 

Y 

Load/Rotor 

Current Change 



 175 

base for later implementations of the system. The expert agreed that the system had 

recorded all of the other numerical entries more accurately than the manual analysis. No 

dominant frequency value has been noted for the non-synchronous entry since the 

module has no access to the FFT data. The module uncovered step changes in the first 

and second order magnitude as shown in figure 4.35, whereas the expert had not. The 

expert agreed that steps changes had occurred in the signals and should have been noted 

in the checksheet. There was no clear explanation as to why these features had been 

omitted in the original manual analysis. 

 

 

Figure 4.35: Discrepancies between manual and system results in values calculated and events 

detected for Beran alarm on turbine 2, channel 9 on 08/01/06 
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The rationale for the assessment results are given in figure 4.36. The system detected 

that the 1st order magnitude changed but remained within normal operating limits. A step 

change in the load or a trend change in the rotor current were judged to have been the 

causes. The rules given in the rationale can be matched back to those given in appendix 

B using table 4.2. The features extracted by the system which produced the rationale in 

figure 4.36 are shown in figure 4.37. 

 

   

 

Figure 4.36: Rationale produced by the Expert System for assessment of alarm on turbine 2, 

channel 9, 08/01/06 

 

It can be clearly seen from figure 4.37 that the Expert System has correctly located the 

operational changes and related then back to the change in 1st order magnitude. The 

expert agreed with this assessment but explained that the load change would be the 

primary contributing factor. This is similar to the alarm triggered on channel 5 on 

turbine 1 on 26/11/04 in section 4.6.1.1 where multiple causes of the alarm were 
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identified. The explanation functions allow the expert to easily identify and verify the 

primary cause but as stated for the previous alarms, approaches to conflict resolution 

should be researched for future implementations of the system.  

 

 

Figure 4.37: Feature extraction results highlight the features which produced the assessment 

rationale for the Beran alarm triggered on turbine 2, channel 9 on 08/01/06 

 

Overall this example again demonstrates many of the benefits of the Expert System. The 

first is the accuracy of the numerical values calculated by the system. The second 

advantage is the transparency of the reasoning approach which allowed the expert to 

determine why there were discrepancies in the overall amplitude and 1st order magnitude 

values. This allows the system performance to be continually monitored and improved 

upon. This example also highlighted how the explanation facilities assist the expert in 

resolving conflict in the assessment conclusions and how a future development would be 

to introduce automated conflict resolution to the system using additional knowledge. 
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4.7 Evaluation 

 

The results obtained from testing on real alarm case studies chosen from the British 

Energy archive given in section 4.6 demonstrate that the Expert System prototype 

designed and developed for British Energy is well suited to the turbine generator 

condition monitoring task. The system in all cases produced assessments of the alarms 

which the experts were able to verify as being the causes of the alarm. Most of the 

numerical entries derived by the Expert System were deemed to be more accurate than 

the manual analysis due to the error introduced from estimating values from a time 

series plot. The high performance of the system can be explained by the following 

important design factors: 

 

! Comprehensive expert knowledge on alarm assessment 

! Transparent rationale 

! Visually aided feature extraction 

 

One of the primary reasons for selecting the Expert System approach for this particular 

application was that expert knowledge on how to perform alarm assessment was readily 

available from the British Energy condition monitoring experts themselves. The system 

developers were able to extract and document this knowledge through the use of the 

formal knowledge engineering approach detailed in section 4.3. The performance of the 

Expert System in deriving the required data for the checksheet and the alarm 

assessments for the case studies demonstrates that the initial assumption that the turbine 

generator condition monitoring task could be performed using a rule based approach was 

proved to be correct. However, the case studies did highlight some areas where some 

improvement is required. The testing highlighted some instances where the system is not 

selecting the correct point on the time series data to derive some of the numerical 

entries. The transparent nature of the Expert System knowledge however provides a 

method of interrogating the results and the associated rationale to determine where the 

knowledge needs to be updated to provide the correct results. The initial knowledge 
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engineering process attempts to mitigate this problem by engaging as many experts as 

possible and exploring a multitude of scenarios. The results also highlighted a common 

problem associated with rule based approaches known as conflict resolution. This effect 

is particularly problematic in cases where the Expert System is being used to give a 

definitive answer on some problem to users who are not experts in that particular area. 

In these instances, methods of resolving the conflict would have to be sought to identify 

which out of all the assessments is most probable. This system however is intended to 

act as an assistant to the expert and so multiple conclusions can be easily interrogated by 

the user to determine the actual cause. A future development for later versions of the 

system will be to explore methods of conflict resolution so that it is performed 

automatically. In particular I was found that the conflicts which arose during system 

testing could be rectified by adding additional rules to the Expert System knowledge 

base. 

 

Much emphasis was placed on making the assessment rationales meaningful to the user 

so that he/she could quickly understand each step taken in the analysis. This was 

achieved primarily by providing each rule with a description explaining the information 

which could be taken from that particular rule having fired. The result of this approach is 

an explanation tree which clearly feeds back to the user what events have been located in 

the data and how these have resulted in the assessment conclusion. The rationale proved 

crucial in gaining the user confidence in the system since on occasions where there was 

conflict in the assessment conclusions or debate over the accuracy of the assessment, the 

user was able to easily check the rationale and then reference the appropriate signal to 

determine if the conclusions derived were in fact accurate. This explanation 

functionality can be enhanced in future versions of the system by generating the 

explanation tree structure automatically via the system user interface. 

 

The last factor which enabled the prototype system to perform well in this particular 

application was the novel use of visual aids to allow the expert to quickly determine 

which features had been located by the system and subsequently used in the analysis. 
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This tool used in conjunction with the assessment rationale allowed the user to clearly 

deduce which events were located and subsequently used by the system to derive the 

conclusion. In addition, the events derived by the feature extraction module were shown 

to match closely to that of the expert’s interpretation of the data. 

 

The case studies demonstrate that the novel approach to combining these two forms of 

explanation, both rationale and features, greatly enhance the application of such rule 

based approaches in this type of application. The rationale forms the basis of the 

validation process by indicating the type of features or events which were located by the 

signal to symbol transformation and what conclusions were then drawn from this. The 

user can then reference the necessary signals and determine for themselves if the 

features highlighted are correctly identified and if the conclusions drawn are in fact 

correct. This approach provides a means of enhancing the symbolic information derived 

and utilised by Expert Systems which humans are able to identify and interpret. The next 

step to enhancing this functionality would be to improve the interface so that the linkage 

between both the rationale and the features extracted become more easily distinguished. 

At present none of the features identified in the data plots are linked back to the 

explanation. This could be improved upon by simply labelling each of the features and 

referencing them in any of the explanations which they appear in or by automatically 

directing the user to a feature used in the triggering of a certain rule when clicking on the 

rule within the explanation tree. 

 

In addition to acting as an assistant for the expert user and therefore providing potential 

for the process of alarm assessment to become more efficient, the Expert System also 

has the potential to make the assessments more accurate than a purely manual approach. 

This is demonstrated in the case study results by the prototype picking up on 

inconsistencies in the original assessments. Using the Expert System to provide an initial 

analysis of the data will in some cases provide the user with assessment explanations 

which may have been overlooked or missed in some cases of manual assessment. 

Another advantage is the ability to assess the alarms prior to any manual inspection of 
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the data. This provides a natural ordering of priority for the user as he/she logs onto the 

system. The pre-processing undertaken enables the experts to prioritise what alarms are 

assessed first and increases the chances of locating genuine problems in the turbine at an 

earlier stage than would be possible with no pre-processing. This is especially true in 

situations where vast amounts of alarms have been triggered and only a small percentage 

allude to a genuine problem on the machine. 

 

The prototype will now be taken forward in an attempt to realise a full on-line 

implementation which can be integrated with British Energy’s system. There are some 

improvements to be made to the current prototype which should be undertaken before a 

full on-line version of the system is developed. There is the development of the 

explanation facility to more effectively link the rationale and feature extraction results as 

already discussed. There is also the updating of certain elements of the knowledge base, 

based on the feedback received from the testing. Improvements could also be made to 

the alarm screen to visually indicate the priority of alarms through some type of traffic 

light indication. The system also needs extended to automatically assess and interpret 

FFT data. This can only be achieved by involving both Beran and British Energy in 

discussions on how to gain access to the FFT data in a digital format. An approach to 

also capturing the data automatically from the Beran system should also be discussed as 

should methods of integrating the Expert System with British Energy’s on-line network. 

 

The final consideration is concerned with extending the current knowledge base so that 

the system extends its capability in the signals that are analysed, such as, steam, 

temperature and pressure etc, in addition to the level of depth in which the system 

assessments can go to. The system currently gives a relatively high level assessment 

particularly when it arrives at assessments of genuine faults. There are a vast array of 

genuine faults which could occur on turbine generators such as misalignment, cracked 

shaft, stiction to name just a few. One of the next stages of development should see the 

current knowledge base extended so that the level of detail provided by the system is 

extended to cover such specific fault types. The first option available to the system 
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developers is to undertake more knowledge elicitation as outlined in section 4.3. The 

second option would be to investigate methods of automatically or at least semi-

automatically capturing this knowledge in an attempt to speed up the notoriously time 

consuming and labour intensive knowledge engineering process. It was decided to 

research methods of implementing the second option to develop a method of assisting in 

the knowledge engineering process. An area of AI which shows the most potential in 

assisting with the development of new knowledge is Machine Learning (ML) as 

discussed in chapter 3. A learning module has been developed using an ML approach to 

assist in the knowledge engineering process for the British Energy turbine generator 

condition project. This learning module will now be described in detail in the following 

chapter. 
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Chapter 5 

 

5 Learning Module 

 

5.1 Introduction 

 

One of the main challenges facing automated systems which exhibit intelligence is their 

ability to learn the knowledge required to interpret data. This was demonstrated in 

chapter 4 when a detailed description of the specification, design and performance of the 

novel Expert System used to analyse alarms from a turbine generator condition 

monitoring system was described. Although the system performs well in processing the 

real data, the time consuming and labour intensive nature of capturing the necessary 

knowledge was shown to be the primary drawback of such a technique. An area of AI 

which aims to alleviate this bottleneck by automatically capturing the knowledge which 

is capable of interpreting data is Machine Learning (ML). Various ML techniques were 

discussed as were examples of how these techniques have been applied in various 

domains in chapter 3. 

 

This chapter describes the novel learning module, which was developed for the 

condition monitoring Expert System using an adapted version of Explanation Based 

Generalisation (EBG). Section 5.2 outlines the objectives of the learning module. 

Following this a full explanation of why the learning module was developed using an 

adapted version of EBG is given in section 5.3. A detailed description of its design 

which includes a review of the modelling formalism used by the module and an 

explanation of the algorithm adopted is given in sections 5.4 and 5.5. A worked example 

is referred to throughout this section to illustrate how the module performs its analysis. 

The final part of the chapter reviews the performance of the module when tested on real 

fault data taken form the Beran system in section 5.6 and an evaluation of the approach 

is given in section 5.7. 
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5.2 Learning Module Objectives 

 

Chapter 4 demonstrated that one of the main drawbacks of using the Expert System 

approach for automated turbine generator condition monitoring is the time consuming 

and labour intensive process required to capture the diagnostic knowledge. Even with 

this drawback, Expert Systems are still an attractive option for strategically important 

applications such as turbine generator condition monitoring where explanation and 

transparency are vital in gaining user confidence in such systems. The explicit 

knowledge base provides a rationale and subsequently an explanation to support each 

assessment. This level of transparency is important for verifying correct diagnoses and 

even more so in cases of misdiagnosis, which will undoubtedly occur with any 

automated system, since it allows users and system maintenance engineers to locate and 

correct areas of vulnerability within the system.  

 

A learning module has been developed to augment the Expert System developed for 

British Energy. The learning module’s primary function is to assist the experts in 

deriving new heuristics where an appropriate expression does not exist. The primary 

indicator for using the module will be in situations where the existing Expert System 

knowledge is not able to correctly assess one of the Beran alarms or does not provide 

enough detail in its assessment. The Expert System will output the alarm assessment to 

the user for verification as shown in figure 5.1. Alarms verified by the expert are 

uploaded to the alarm database along with any additional comments, but the learning 

module is activated if the expert determines that the assessment is incorrect as shown in 

figure 5.1. 

 

The learning module aims to reduce the burden placed on the expert in deriving 

knowledge for the Expert System. However, it is not expected to derive the knowledge 

completely automatically without any input from the expert, therefore he/she is included 

in the process. Firstly, the user is expected to instantiate the module on occasions where 

an incorrect or non-detailed assessment has been performed by the system. Since the 
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user has deemed the assessment incorrect or not detailed enough it is assumed that 

he/she knows the correct assessment. Part of the process therefore requires the expert to 

upload the correct alarm cause to the learning module to guide the analysis as shown in 

figure 5.1. Additionally the user is expected to upload all of the information associated 

with the alarm which has been derived by the Expert System (channel profile) as shown 

in figure 5.1. This data acts as the training example for the learning module.  

 

 

Figure 5.1: An overview of how the learning module integrates with the turbine generator condition 

monitoring approach. 

 

The learning module will attempt to derive a suitable expression for the alarm using the 

correct classification and alarm information uploaded by the expert in conjunction with 

knowledge of the domain as shown in figure 5.1. Benefit can only be added to the 

project if the learning module were to reduce the amount of knowledge elicitation 

required over the course of the project, however this does not mean completely 

eliminating the knowledge engineering process. Therefore the knowledge used to assist 

in the derivation of the expressions may be captured through knowledge elicitation 

exercises carried out specifically for the capture of knowledge used by the learning 

module.  

 

The Expert System will still be operating within a strategically important domain. 

Therefore, the knowledge derived by the learning module will still have to be verified 

before being uploaded to the system as shown in figure 5.1. This verification will be 

performed by the expert to ensure that a complete and correct heuristic is uploaded to the 
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Expert System’s knowledge base. The expressions derived by the learning module 

should be clear and understandable to humans and compatible with the heuristic 

knowledge used by the Expert System. Additional explanation or rationale provided 

with the assessment will assist with the verification process.  

 

The learning module objectives are to: 

 

! Assist the experts in deriving turbine generator condition monitoring fault 

knowledge. 

! Reduce but not eliminate the amount of knowledge elicitation required to derive 

heuristic expressions over the course of the project. 

! Involve the expert in the knowledge derivation process by triggering the 

assessment and verifying the results. 

! Derive knowledge which is compatible with the Expert System’s knowledge 

base. 

! Provide explanations to assist in verification of the expressions. 

! Derive expressions from a single training example. 

 

To emphasise how the module is intended to function a hypothetical example from the 

British Energy application will be considered. If the Expert System was to assess an 

alarm as being a genuine fault but on closer analysis of the data the expert deemed the 

cause to be a rotor rub, the module would be activated. Although the system is not 

incorrect in this instance the expert is adding detail to the assessment by indicating that 

the alarm is a rotor rub which is a sub-category of a genuine fault The expert would 

activate the module by uploading the channel profile derived by the Expert System in 

addition to the updated alarm cause. Before uploading the data the expert would have to 

check that the features extracted by the Expert System in the signal to symbol 

transformation were accurate, otherwise the cause of the incorrect feature extraction 

would have to be investigated. The learning module would then assess the uploaded data 

to derive an expression for a rotor rub fault which can then be verified by an expert. The 
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main objective is to assist the expert in deriving new fault knowledge therefore the final 

expression derived by the module may have to be adapted or updated by the expert. Any 

explanations provided with the results which assist the expert would be of benefit.  

 

5.3 Technique Selection 

 

Given the objectives outlined in section 5.2 it can be surmised that the learning module 

developed for the Expert System would be required to derive knowledge in a format 

which is compatible with its knowledge base. Further to this the knowledge would have 

to be easily interpreted by a human expert during the verification process. Therefore a 

ML technique which can derive symbolic knowledge is more suited since it is easily 

interpreted by human experts and is compatible with the type of knowledge used in the 

Expert System detailed in chapter 4. This requirement eliminates the possibility of using 

ANNs since the knowledge derived is implicit within the network itself and is therefore 

not easily understood by humans. Another requirement of the selected ML technique 

was that it is capable of deriving knowledge from very few and in some instances single 

training examples since genuine turbine generator faults are rare. Furthermore, no 

laboratory set-up exists which can accurately simulate the faulty behaviour of a 660MW 

unit. Therefore, there is little training data available.  This requirement eliminated the 

possibility of using techniques such as rule induction, Case-Based Reasoning (CBR) and 

statistical/probabilistic techniques such as HMMs since all of these techniques rely on a 

large training data set to derive knowledge.  

 

Analytical learning is the only ML technique found during this research that is able to 

learn from single examples and where the resultant knowledge is symbolic based. 

Analytical learning techniques do however require background knowledge on the 

subject under investigation in order to determine what features are relevant to the 

problem. Fortunately this knowledge is available from the experts, but as stated in the 

learning module objectives, it is important that the level of knowledge elicitation is 
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reduced otherwise the benefit provided by the module would be much diminished. The 

analytical learning approach adopted for the learning module was EBG. The EBG 

problem definition as defined in section 3.7.1 shows the greatest similarity with that of 

the learning module’s problem. The learning module is required to construct a heuristic 

capable of identifying a particular fault which the Expert System is not able to assess. 

This requirement is facilitated in the EBG algorithm by the goal concept which is 

identified in the algorithms’ problem definition in section 3.7.1. The learning module 

has access to fault diagnosis knowledge which will be captured from the experts. This 

knowledge is also identified in the EBG problem definition as the domain theory in 

section 3.7.1. The learning module has access to only a single training example since 

genuine turbine generator faults rarely occur. This training instance derived by the 

Expert System is identified in the EBG problem definition as the training example in 

section 3.7.1. Finally the learned heuristic must be in a form which is compatible with 

the existing knowledge and where the explicit symbols can be derived from the Beran 

condition monitoring data. This requirement is accounted for by the operationality 

criterion in the EBG problem definition in section 3.7.1. For this particular application 

the presence of an operationality criterion is an advantage since all of the expressions 

derived by the module would have to utilise symbols which can be derived by the Beran 

system, therefore the use of schemata as proposed by the EBL approach would be of no 

benefit. 

 

It should be clear that the information required by the EBG problem definition outlined 

in section 3.7.1 is available in the turbine generator condition monitoring application. To 

summarise: 

 

! goal concept – Fault type which new heuristic is required. 

! domain theory - Fault diagnosis knowledge. 

! training example – Channel profile derived by Expert System. 

! operationality criterion – Features which can be derived from Beran data. 
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It should also be clear that the functionality provided by the EBG approach provides a 

means of fulfilling the objectives outlined in section 5.3. It is for this reason that the 

EBG approach was selected as the basis for the learning module approach. For reasons 

which are discussed later in section 5.4, the EBG approach in its purest form was not 

used. Instead an adapted novel version of the approach was developed and implemented 

for this particular application. Before these differences are investigated, it is necessary to 

discuss the knowledge modelling methodology adopted for the learning module. An in 

depth analysis of the knowledge modelling approach and the reasons for adopting this 

approach are discussed in the following section. 

 

5.4 Knowledge Modelling 

 

One of the difficulties with the EBG approach detailed in [Mitchell et al, 1986] was that 

in order for it to be effective at producing valid heuristics and not erroneous or 

inconsistent explanations the domain theory had to be complete and consistent. To 

produce a domain theory for turbine generator condition monitoring tasks using first 

order logic which is complete and consistent would at present be an insurmountable 

task. This is due to the level of complexity which arises in attempting to accurately 

model a domain which encompasses numerous technical disciplines such as 

thermodynamics, mechanical, fluid-dynamics, electromagnetism etc. A complete 

representation of all the theories, concepts and equations required to model the turbine 

generator domain is not possible. One of the difficulties with using first order logic is 

that the generalised theories have to be applicable over all of the data used to derive the 

heuristic expressions. The problem is that the 660MW turbine sets from which the real 

condition monitoring data is captured from are complex systems and therefore there 

would be many deviations from the generalised theories which describe such an area. 

One way of overcoming this would be to include further concepts which account for all 

of the exceptions from the generalised theory. Even if this was possible, which is 

questionable, it would be a complex and time consuming task.  
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An alternative to the use of first order logic would be to approximate the knowledge and 

make it less generalised and more specific to the problem being addressed much in the 

same way that production rules can be used to produce a generalisation of a domain 

theory. One approach which enables the knowledge to be made more specific to the 

problem area and allows for approximations to exist is that of causal modelling 

[Kobayashi & Nakamura, 1991]. Causal modelling attempts to represent the causal 

interactions present within a system when some event takes place. These causal 

interactions take place within a system in addition to the observable events detected. 

Causal models aim to merge the hidden causal events with observable ones to develop a 

more in-depth representation of the chain of interactions which lead to certain 

behaviours. 

 

The most common approach to causal modelling is to take a concept and from that 

concept determine all of the causal interactions which would take place within the 

system in order for this concept to be realised. A conceptual example of this type of 

causal model is given in figure 5.2. Within the causal explanation would be observable 

states which could be used to recognise examples of the particular concept being 

analysed. There will also be unobservable states which are interactions which occur 

within a system but are hidden to normal methods of detection. Also within the model 

will be the concept itself. However the concept will be denoted as a standard node in the 

model in the same way as the observable and unobservable states are shown in figure 

5.2. This approach to causal modelling has found application within second generation 

Expert Systems such as [Console & Torasso, 1988], [Console et al, 1989] and [Steels, 

1985]. The causal knowledge used in these applications is sometimes referred to as 

“deep knowledge” [Steels, 1985] since the additional information provides further detail 

to the observable data. 

 

One of the main disadvantages of using such an approach is that all of the causal 

interactions for a particular concept are mapped out when the model is developed. This 
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is because the concept node is an integral part of the model and therefore has to be 

included from the start to define all of the relationships within the model. Therefore, all 

of the interactions which take place in a system for a given concept must be understood 

when developing the model. In practice this would require the knowledge elicitation 

process to work through a system’s behaviour in the event of a fault and would, in 

effect, be very similar to that undertaken during Expert System development but with an 

additional deeper level of knowledge. Another facet of this approach is that there is 

relatively little structure to the nature of the observable event defined within the model. 

For example the causal events defined within the model in [Console & Torasso, 1988], 

[Console et al, 1989] are described using the type of language which may be expected of 

an expert during a knowledge elicitation interview. There are no rules governing the 

permitted states within the model, instead the expert would define such states as the 

knowledge engineering process proceeded. 

 

 

Figure 5.2: Traditional approach to causal modelling where all interactions for a system are defined 

up-front. 

 

Another approach to causal modelling is to simply define the effect or effects associated 

with a cause or combination of causes at each stage in the process as opposed to 

prescribing every causal event associated with a particular behaviour. This is a more 

modular approach where the expert and knowledge engineer analyse the behaviour of a 

certain component of the system for a particular behaviour without considering the 

effect on the whole system. The behaviour of these components can be contained within 
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a look-up table where the cause and effect relationships can be defined for each type of 

behaviour. A causal model can then be constructed from the look-up table behaviours as 

opposed to being explicitly defined at the knowledge elicitation stage.  A conceptual 

example of the type of causal model constructed by such an approach is given in figure 

5.3. Here it can be assumed that the majority of the causal nodes were generated by a 

default concept behaviour e.g. normal behaviour. There is however one node which has 

a concept node pointing towards it via a dashed arrow. This indicates that this node has 

been generated using a non-default concept behaviour e.g. faulty behaviour.  

 

 

Figure 5.3: Alternative approach to causal modelling individual component interactions are defined 

across all behaviours and the derivation of the complete system behaviour is constructed using these 

individual behaviours. 

 

This approach still enables a form of approximate reasoning which eliminates the 

problem associated with first order logic when used in EBG. It also has the advantage on 

not having to work through a complete system of behaviour for a particular fault type at 

the knowledge elicitation stage similar to that required in the development of Expert 

Systems. Instead the expert can simply define behaviours on a component by component 

basis leaving the overall system behaviour to be derived by combining these individual 

behaviours. For these reasons this modular approach to causal modelling was selected as 

the knowledge representation formalism for the novel adapted EBG approach used for 

the learning module. This approach is discussed in greater detail in the following 

sections. 
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5.4.1 Aims & Objectives 

 

The aim of the causal knowledge modelling formalism for this project is twofold: 

 

1. Eliminate the requirement for a complete understanding of the turbine generator 

behaviour under fault or normal behaviour conditions when the models are being 

developed. 

2. Provide a formal structure for the modelling of the turbine generator behavioural 

knowledge. 

 

The first aim was facilitated by adopting an approach to causal modelling which only 

defines the cause and effect of a particular action under a certain condition. This means 

that a complete understanding of the entire behaviour of the system under a particular 

condition did not have to be understood at the knowledge elicitation level. Instead, by 

combining all of the individual behaviours of each system component under a certain 

condition, a complete description of the system behaviour can be incrementally 

constructed without the need for an understanding of the whole system. 

 

The second aim was realised by restricting the modelling of the turbine generator to 

defined components and properties. This was achieved by firstly defining the turbine 

generator in terms of its mechanical structure. The mechanical structure could then be 

easily divided into sub-structures such as generator, high pressure rotor, low pressure 

rotor, etc., and from this be further sub-divided into component parts. Properties 

associated with the component parts were then defined. For example the thermodynamic 

and electromechanical properties were identified and defined for each relevant 

component. From here the various states associated with the properties could be defined. 

The language in which the behaviour of the turbine generator could be described was 

restricted by formally defining the turbine generator set in this way. The causal models 
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constructed for this project were limited to the mechanical structure of the turbine 

generator and the various properties derived from these components. For example the 

mechanical structure of a generator may be defined in terms of the components in figure 

5.4. It can be seen that the sub-structure can be defined in terms of its components such 

as the shaft, stator, rotor etc. 

 

 

Figure 5.4: High-level overview of the mechanical structure of a generator. 

 

Each individual component can then have its properties defined. Figure 5.5 lists some of 

the properties which may be identified with each generator component. For example, 

properties associated with the generator shaft are balance, dimension, temperature, 

vibration and speed. States for each of the properties can then be defined to complete the 

language in which the turbine generator behaviour is described. As an example, the 

temperature property might have its states defined as increase, decrease, high, low, etc. 

 

The main advantage of using a modular approach to model the turbine generator is that 

various configurations can be constructed by combining the modules defined over 

multiple knowledge elicitation projects. This means that each configuration of turbine 

generator does not have to be taken on an individual basis for the purpose of knowledge 

elicitation. Instead typical sub-systems of varying types of turbine generator can be 

analysed over individual knowledge elicitation projects. These sub-systems can then be 

combined to create varying system configurations. For example, two turbine generators 

may each consist of a High Pressure (HP) turbine, Medium Pressure (MP) turbine, 3 
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Low Pressure (LP) turbines and a generator sub-system. If the LP modules were 

constructed using different blade types then this may lead to differing behaviours under 

normal and fault type conditions. If the knowledge modelling approach adopted required 

that all of the causal interactions under each condition had to be defined at the 

knowledge elicitation stage as used in [Console & Torasso, 1988], [Console et al, 1989] 

and [Kobayashi & Nakamura, 1991] then each turbine generator set would have to be 

treated as a separate entity. Therefore knowledge elicitation would have to be 

undertaken for both types for each condition of interest. Alternatively, if the modular 

approach, as adopted for the learning module, was used then models for each varying 

type of sub-system for each condition of interest can be developed through knowledge 

elicitation. The two turbine generator configurations can then be constructed by 

combining each of the relevant sub-systems. This means that the models developed for 

the HP, MP and generator can be reused and a separate analysis of both complete 

systems under the conditions of interest is avoided.  

 

 

Figure 5.5: Properties associated with each of the components in the generator. 

 

5.4.2 Formal Knowledge Modelling Approach  

 

The previous section outlined the aims and objectives of the knowledge modelling 

approach for the learning module. This section describes how this has been achieved 

using a novel knowledge modelling formalism developed for this project. Section 5.4.2.1 

describes the main component of the approach. These are the Look-Up Tables (LUTs) 
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which are used to store the causal behaviours between component property pairs. 

Section 5.4.2.2 explains the use of ‘&’ nodes in the LUTs to model behaviours which 

must be conjugated together. Section 5.4.2.3 explains the use of the ‘no change’ operator 

which allows the causal knowledge formalism to recognise instances where the there has 

been no change in a parameter following the change in some other parameter. Section 

5.4.2.4 describes the use of operational and non-operational nodes and section 5.4.2.5 

outlines the rules governing the definition of component/property pairs. 

 

5.4.2.1 Look-Up Tables 

 

The causal models, which represent the behaviour of the turbine generator components, 

are realised using LUTs. A LUT is constructed for each component/property pair and is 

defined for each behaviour of interest. All of the states associated with the property are 

then listed in the LUT and from this the affected component/property pairs are defined. 

An example of how each of the causal LUTs are formed is given in figure 5.6. The 

acronyms for each of the properties are defined in the LUTs. For example Generator 

Rotor Coil Temperature is represented as GRCT-OA. The OA part of the acronym 

stands for overall which implies it is the overall amplitude of the signal and not a 1st or 

2nd order magnitude or phase plot. It is shown that changes in the generator rotor coil 

temperature cause changes in both the generator rotor coil dimension and the generator 

rotor temperature. Changes in the generator rotor coil dimension cause changes in the 

balance of the generator rotor. A stiction fault causes a change in the causal behaviour 

when there is a change in the generator rotor coil temperature. This is why there are two 

LUTs for the generator rotor coil temperature, one for normal behaviour and one for 

faulty stiction behaviour. It should be noted that the symptoms of a sticion fault are only 

apparent when the generator rotor coil temperature is decreasing. In this case, the 

generator rotor coil dimension contracts unevenly. No unique behaviour is exhibited 

under stiction fault conditions if the generator rotor coil temperature was to increase, 

which is why ‘N/A’ is the entry here for the generator rotor coil dimension. Instead only 
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normal behaviour would be exhibited which is for the generator rotor coil dimension to 

expand evenly. 

 

 

Figure 5.6: Example of typical look-up tables constructed which derive the causal models. 

 

5.4.2.2 The ‘&’ Operator 

 

By default the effects which are derived from the causal LUTs are disjunctions of one 

another. For example the occurrence of cause 1 from the LUT in figure 5.7 results in 

effect 1 or effect 2 or effect 3. The modelling of turbine generator behaviour requires 

that certain causal events lead to multiple effects which must all be present for the initial 

causal event to have occurred. Therefore, causal effects which are the conjugation of one 
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another must be defined in order for the knowledge modelling language to effectively 

represent the turbine generator domain. 

 

 

Figure 5.7: The effects of each cause within this look-up table are the disjunctions of one another 

 

This requirement has been facilitated in the learning module modelling language by 

defining the special operator ‘&’. This operator is added to any effects which are 

required to be the conjunction of one another. Each ‘&’ operator has associated with it a 

number to denote which effects are to be conjugated with one another. For example the 

occurrence of cause 1 from the LUT in figure 5.8 results in effect 1 and effect 2 being 

conjugated with one another, and effect 4 and effect 5 being conjugated together. 

Therefore cause 1 = (effect 1 ! effect 2) " effect 3 " (effect 4 ! effect 5), where, !, is a 

conjunction and, ", is a disjunction. Notice that a numerical label is attached to each of 

the ‘&’ operators to indicate which effect is conjugated with one another. When a node 

appears in an explanation tree as described in section 5.5.3 which is derived using an ‘&’ 

operator then it is defined as an ‘&’ node. 

 

 

Figure 5.8: Look-up tables which permit effects to be conjugated together using the ‘&’ special 

operator. 

 



 199 

5.4.2.3 No Change Operator 

 

Causal models traditionally only permit the modelling of cause and effects. Both the 

cause and effects are changes which occur in a system and can be identified in some 

way. In addition to this, the effects by definition must occur after the cause. This 

property of causal modelling is a limitation within the turbine generator domain. In some 

instances the property of interest is the absence of an apparent change in a component in 

the event of some causal interaction. For example, if some property of a component was 

not to increase and instead stay the same in the event of some causal interaction then this 

may imply a certain type of behaviour. This phenomenon is traditionally not well 

modelled using causal models since there is an interest in the behaviour both before and 

after the causal event has occurred. Therefore a special state has been defined for the 

learning module which addresses this limitation. The special state is known simply as 

‘no change’ and is denoted as NCh. When the causal model indicates that a certain 

component/parameter pair has a NCh state in relation to a causal event then this implies 

that the level property of the state should be unchanged both before and after the causal 

event. 

 

5.4.2.4 Operational and Non-Operational Nodes 

 

Another facet of the knowledge modelling formalism for the novel adapted version of 

EBG is the labelling of nodes in the explanation structure as either operational or non-

operational. Explanation structures are derived by the learning module algorithm 

through the instantiating of the LUTs and are explained in greater detail in section 5.5.3. 

The explanation structures are constructed using nodes which are defined as either 

operational or non-operational nodes. This description relates back to the operationality 

criterion discussed in section 5.3. If a node is defined as operational then this implies 

that the Beran system is able to monitor and analyse the particular component defined 

within that node. For example, if a node contains the component generator rotor current 

then this would be defined as an operational node since this is a signal which is captured 
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by the Beran system and can therefore be analysed. Alternatively, if a node is defined as 

non-operational then this implies that it cannot be directly accessed or analysed by the 

Beran system. For example, a node which contains the component generator rotor 

dimension would be defined as non-operational since the Beran system does not have 

access to information relating to the dimension of the generator rotor. 

 

5.4.2.5 Component/Property Definition 

 

In order to construct a LUT for each component/property pair, the relevant components 

and their associated pairs must be defined. This is achieved by firstly identifying each 

structural subsystem associated with the turbine generator under investigation. From 

here the components associated with each of the subsystems are identified along with 

their properties. All of this is defined by the condition monitoring experts during the 

knowledge elicitation exercises. It is important to note that any form of system 

modelling involves some level of abstraction. The causal modelling undertaken for the 

learning module project was in this respect no different. The condition monitoring 

experts were required to trade off the level of detail in which the components were 

modelled against the level of complexity. The general rule of thumb which emerged 

from the knowledge elicitation exercises was that components not used directly in the 

description of turbine generator behaviour under both normal and fault conditions were 

omitted. Once each component was identified the properties associated with them were 

defined.  

 

5.5 Learning Module Approach 

 

It has been demonstrated that the most suitable approach to modelling the turbine 

generator behavioural knowledge in this particular instance would be to adopt a modular 

causal approach. In adopting causal models the need for a complete and consistent 

domain theory as required in first order logic is eliminated and a modular approach 
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allows the reusability of models over the course of the project. In addition to these 

advantages, the proposed approach allows the experts to analyse the system behaviour 

on a component by component basis therefore reducing the complexity of the elicitation 

process. The use of a causal method also enables approximate knowledge to be utilised 

by the adapted EBG approach developed for the British Energy turbine generator 

condition monitoring project. This adapted EBG approach is fully described this section. 

Section 5.5.2 describes the general approach used by the learning module. This is 

followed by an in depth analysis of the algorithm developed to achieve the novel 

adapted EBG approach in section 5.5.3. The in depth analysis is augmented by a worked 

example to assist in the explanation of how the learning module performs its analysis. 

The type of fault chosen for the worked example is a stiction fault. A brief explanation 

of a stiction fault is given in the following section. 

 

5.5.1 Stiction Fault Description 

 

Stiction faults occur when the rotor windings of the generator do not contract evenly 

after cooling, which in turn causes the rotor to become out of balance. The out of 

balance rotor results in a prolonged increase in the vibration magnitude of the generator 

rotor bearings. Stiction faults commonly manifest themselves following an increase in 

electric rotor current followed by a decrease. The increase in electric rotor current causes 

the rotor coil temperature to rise. The increased temperature evenly expands the rotor 

coils which displaces them within the rotor slots. A change in rotor balance results from 

the rotor coil displacement and this leads to a change in rotor bearing vibration 

magnitude. 

 

A later decrease in the rotor current causes a temperature reduction in the rotor coils 

which causes them to contract. Two outcomes are possible from the contraction of the 

rotor coils. The first possibility is for the rotor coils to contract evenly and move back to 

their original position within the rotor slots. This would result in the rotor rebalancing 
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itself, which causes the rotor bearing’s vibration magnitude to recover to approximately 

the same level recorded prior to the rotor current increase. The second possibility is for 

the rotor coils to contract unevenly, maintaining the rotor in an out of balance state. The 

rotors continuing out of balance state would maintain a similar level of bearing vibration 

magnitude recorded prior to the increase in rotor current. This uneven contraction is an 

effect of the rotor coils not returning to their original position within the rotor slots and 

is caused by stiction. 

 

5.5.2 General Approach 

 

The learning module has adopted a novel EBG approach which uses causal fault and 

behavioural models, along with a single training example of a particular fault, to derive a 

heuristic expression capable of classifying the fault under analysis. The learning module 

firstly derives an explanation of why the training example is of a particular fault type 

using the causal fault and behavioural knowledge. Information is then selected from the 

causal explanation and used as symptoms for the resulting heuristic. The causal fault and 

behavioural models used by the learning module do not define the temporal constraints 

between each causal event. For example the time t between event A and B, plus the 

duration d of both event A and B are not defined. Instead, the temporal information 

contained in the training example is used to define the temporal constraints within the 

explanation and subsequently the heuristic.  

 

All problems undertaken by the learning module are defined in terms of the following 

EBG problem definition: 

 

! Target Concept: The fault type which the learning module must derive a heuristic 

for. 

! Training Example: An example of the fault type being learned. 

! Domain Theory: The causal fault and behavioural models. 
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! Operationality Criterion: Defines the explicit symbols which must be used to 

define the heuristic. 

 

As with the EBG approach described in section 3.7.1, all of the learning module 

problems require a target concept. In practice this target concept will be the fault type 

defined by the expert which in the worked example is stiction. The training example 

used will have to be an example of the target concept and in practice the training 

example will be derived from the signal to symbol transformation performed by the 

Expert System. The training example for the stiction worked example is the channel 

profile given in table 5.1. 

 

Table 5.1: example of the channel profile derived for a stiction fault. 

 

 

The channel profile given in table 5.1 consists of facts regarding the behaviour of a rear 

rotor bearing. These facts are indicative of the symbolic data derived by the Extract 

Channel Profile module described in section 4.4. Each instance consists of a variable 

name, the type of signal, an abbreviation denoting the variable state and two temporal 

values within brackets. The variable is a combination of the structural element and the 

associated property. For example, the element generator rotor (GR) and the associated 

property current (C) is denoted as GRC. The type of signal defines if it is an overall 

amplitude signal or some order of the overall amplitude. For example OA denotes 

overall amplitude. The variable state defines if it is a change or a level and its state. For 

example Ch-Inc denotes that it is a change and is in an increased state. The first temporal 



 204 

value denotes when the event was triggered (manifestation time) and the second denotes 

its duration (period value). Figure 5.9 is an example of the variable generator rotor 

current overall amplitude in an increased change state with a manifestation time of 0 and 

period of 1. 

 

 

Figure 5.9: An example of how a generator rotor current variable which occurs at time period 0 and 

lasts for a period of 1 is represented in the channel profile. 

 

The domain theory will consist of LUT models derived by the condition monitoring 

experts which follow the formal knowledge modelling approach outlined in section 

5.4.2. The relevant LUT’s for the stiction fault example are given in appendix C. Finally 

the operationality criterion is dictated by the parameters which can be derived by the 

Beran monitoring system as described in section 2.2. From this the learner must derive a 

heuristic which is sufficient for the fault type using explicit symbols defined in the 

operationality criterion. 

 

The heuristic is derived using the following two stage process: 

 

1. Explain: Construct an explanation of how the training example fulfills the target 

concept using the causal fault and behavioural models. Temporal information 

from the training example should be applied to the relevant nodes within the 

explanation structure. 

2. Generalise: Determine a set of sufficient conditions on which the explanation 

holds by generalising the temporal data of the explanation structure. The 

resulting heuristic is the conjunction of each operational node of the generalised 

explanation structure. 
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Notice how the second stage in this approach is different from the one performed by the 

actual EBG approach described in section 3.7.1. The EBG approach employs a reduced 

form of regression to generalise the expression which is derived using the first order 

logic approach. This step cannot be performed on explanations which are derived using 

the causal modelling approach described in the previous section, however the temporal 

constraints within the explanation which are specific to the training example must be 

generalised.  

 

If the expert concludes that the alarm was caused by a stiction fault then the learning 

module would be activated to help derive heuristics which could diagnose this particular 

fault. The learner firstly composes an explanation of the target concept using the channel 

profile given in table 5.1, the causal fault and behavioural knowledge stored as LUT’s as 

described in section 5.4.2.1, and the algorithm which is explained in detail in the 

following section. 

 

5.5.3 Formal Algorithm 

 

The approach adopted by the learning module is a novel adapted version of EBG since 

the adopted knowledge modelling methodology uses causal models as opposed to first 

order logic. A formal algorithm therefore is required in order to implement a practical 

implementation of the general approach outlined in the previous section. The learning 

module algorithm is divided into the following three stages: 

 

1. Generate causal explanations. 

2. Generalise temporal constraints. 

3. Derive heuristic. 

 

A detailed explanation of each of the three stages now follows. 
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5.5.3.1 Generate Causal Explanations 

 

The first stage which the learning module undertakes in attempting to derive a heuristic 

expression is to compile an explanation of the example being analysed. This explanation 

is required to verify that the training example is an instance of the fault type identified 

by the expert. The explanation is derived by verifying that the training example is 

consistent with the causal models for the expected behaviour. This is achieved by 

inputting the training example observables to the causal models and then matching the 

causal effects against the remaining observables in the training example. The first stage 

in generating the causal explanation is to upload the training example to the learning 

module along with the expected fault type. This is performed manually by the expert 

user. This data is then applied to the causal fault models to derive a causal explanation. 

The causal explanation is generated by running the training example through a novel 

algorithm developed for the learning module. The algorithm takes an observable from 

the training example and matches this against the causal look-up tables in an attempt to 

find an effect. As each effect is derived the observables in the training example are 

checked to determine if there are any matches. When a match is found against any of the 

effects then this indicates that the training data is consistent with that part of the model. 

This process is repeated for all of the observables in the training example. Once this is 

completed, any causal chains remaining, which have been shown to be consistent with 

the data and are of the type of behaviour of interest, are saved as the causal explanation.  

 

The algorithm which generates this causal graph is governed by the following rules: 

 

1. If an observed node is not of special state NCh, as described in section 5.4.2.3, it 

must have a manifestation time greater than the last observed node in the branch. 

2. The level property of an observed node of special state NCh, as described in 

section 5.4.2.3, must not change state during the causal change. 
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3. A causal explanation can only begin and end on an operational node. 

4. A causal explanation must contain more than one node. 

5. A branch terminates if no LUT exists for the node under analysis. 

6. If a branch is terminated which contains a special operator ‘&’ node, as 

described in section 5.4.2.2, then all branches which contain a related special 

operator & node are terminated. 

7. A completed explanation is terminated if it does not contain a node denoting the 

behaviour of interest. 

8. If the node under analysis has both a fault and normal behaviour LUT then both 

are used. 

9. If the node under analysis does not have a fault LUT matching the fault under 

analysis then the normal behaviour LUT is used. 

10. If there is data in the profile which matches a node in the chain and meets either 

the first or second rule then the temporal data is added to the node. 

11. A branch terminates if the number of un-observed nodes exceeds the allowed 

maximum. 

12. A branch terminates if a node matches that of an earlier node in the branch and 

there are no observed nodes between the two of them. 

 

The algorithm which implements these rules and generates the causal explanation by 

applying the training data to the causal knowledge is summarised by the activity diagram 

in figure 5.10.  

 

The algorithm starts by selecting an event from the profile in order to find a root node 

for the causal graph. The first stage of the algorithm is concerned with assessing all of 

the unread nodes in the graph to determine if they generate any causal effects. This is 

achieved by searching the causal look-up tables to determine if any of them match with 

the component/property pair. The algorithm at all times generates as many causal 

branches as possible. Therefore if both a normal behaviour and fault behaviour look-up 

table exists then both are used to generate additional causal effects as defined in 
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algorithm rule 8. If only a single look-up table exists, either fault or normal behaviour, 

then that look-up table is used to generate the causal effects as defined in algorithm rule 

9. If no LUT exists for the event under analysis then the branch is terminated as defined 

in algorithm rule 5. This process is repeated for all of the unread nodes in the graph. 

 

The next stage in the algorithm aims to identify observables in the training example 

which match against the causes generated by the causal behavioural knowledge. The 

algorithm attempts to determine if the model generated by the causal knowledge is 

consistent with the training data, therefore indicating that the turbine generator set is 

behaving in a particular fashion. It starts by selecting a cause node, if available, and 

determining if the node already exists in its particular branch. This check is put in place 

to determine if the causal graph will be caught in an infinite loop. If the node is in the 

branch and there is no observed node between them then the branch is terminated as 

defined in algorithm rule 12. Alternatively if there is an observed node between them or 

if the node does not already exist in the branch then the analysis continues. Firstly it 

must be determined if the node is operational as described in section 5.4.2.4. A non 

operational node will not exist in the training data whereas an operational node might. If 

the node is operational then the training data is checked for a potentially matching event. 

If a matching event is found within the training data then its state is checked to 

determine if it is NCh as defined in algorithm rule 2. This is because NCh is a special 

operator, which requires additional interpretation as explained in section 5.4.2.3. If the 

state is not NCh and a matching event is found then the temporal data is checked to 

determine if the event occurred after that of the last observed causal event in the branch 

as defined in algorithm rule 1. If the temporal data fulfils this criterion then the status of 

the node in the causal graph is set to ‘observed’, which entails the temporal data being 

added to that node. If any of these conditions are not met then the branch under analysis 

is checked to ensure that it does not breach the maximum allowed unobserved iterations. 

If it does the branch is terminated as defined in algorithm rule 11, if not the whole 

process is repeated for any remaining cause nodes. 
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Figure 5.10: Activity diagram which details the algorithm used to generate the causal explanations 

for the learning module. 
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All of the analysis outlined above is repeated until all of the nodes are read. When all of 

the nodes are read, the causal explanation is saved. The activity diagram in figure 5.11 

highlights how each causal explanation is saved. Firstly each of the branches are 

checked for ‘&’ nodes present, as described in section 5.4.2.2, where the corresponding 

‘&’ node has been deleted. Where this type of node is found, the branch in which it is 

present is deleted as defined in algorithm rule 6. Following this, any branches which do 

not contain a node which indicates the behaviour type of interest are deleted as defined 

in algorithm rule 7. Any branches which are greater than one node are saved and any 

branches equal to one are deleted as defined in algorithm rule 4. It should be noted that 

the only time a branch of one node exists is where there is only one node in the causal 

explanation i.e. the event is not consistent with the causal knowledge.  

 

 

Figure 5.11: Activity diagram which details the steps taken in saving an explanation. 

 

The activity diagram in Figure 5.12 demonstrates the steps taken in terminating a branch 

within the explanation. When a branch is terminated, the branch is checked for any ‘&’ 

nodes as described in section 5.4.2.2. If an ‘&’ node does exist, it is saved for reference 

at the save causal explanation stage so that the corresponding ‘&’ nodes can be deleted. 

The branch is then deleted up to the last observed node. 
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Figure 5.12: Activity diagram which details the steps taken in terminating a branch. 

 

More explanation on how the algorithm derives explanations will now be given by 

reverting back to the stiction worked example. If the expert has verified that the channel 

profile given in table 5.1 is an example of stiction then the learning module can be 

activated by uploading the fault type stiction and the channel profile. This will in turn 

activate the algorithm. The algorithm will take each state from the channel profile in turn 

and match them against each LUT in the knowledge base in an attempt to generate a 

causal explanation. For the given stiction example the explanation structure is activated 

by the GRC-OA Ch-Dec (7) (1) state given in the channel profile in table 5.1. This 

becomes the root node in the stiction explanation tree. The algorithm searches the 

knowledge base for a LUT which corresponds with this node and finds the Generator 

Rotor Current LUT for normal behaviour given in figure C.1 in appendix C. This LUT 

instantiates the explanation structure given in figure 5.13, in accordance with algorithm 

rule number 9. 
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Figure 5.13: Explanation generated from the Generator Rotor Current normal behaviour LUT. 

 

The algorithm will recognise the GL-OA Ch-Dec as an operational node as described in 

section 5.4.2.4 and therefore searches the channel profile in figure 5.1 to determine if 

there are any states which match against this node. The algorithm will also check that 

any matching states occur following the root note in accordance with algorithm rule 

number 1 i.e. the manifestation time is greater than the 7 given in the root node. No 

suitable state is found. The algorithm then searches the knowledge base for LUTs which 

relate to any of the nodes given in the explanation tree. No LUT is found for the GL-OA 

node, therefore this branch is terminated in accordance with algorithm rule number 5. 

The algorithm will then move to the remaining node in the explanation. The node is non-

operational as explained in section 5.4.2.4, therefore the algorithm does not search the 

channel profile to determine if there is a relevant state. Instead the knowledge base is 

searched to determine if there is a suitable LUT. The normal behaviour and stiction fault 

behaviour LUTs for the Generator Rotor Coil Temperature state, given in figures C.3 

and C.2 in appendix C respectively, are used to give the explanation structure in figure 

5.14. This is in accordance with algorithm rule number 8. 
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Figure 5.14: Explanation generated from the Generator Rotor Coil Temperature normal and 

stiction fault behaviour LUTs. 

 

The node generated from the stiction behaviour LUT is denoted by the stiction node. All 

of the nodes are non-operational as described in section 5.4.2.4, therefore the algorithm 

does not search for any relevant states in the channel profile given in table 5.1. Instead 

the knowledge base is checked for associated LUTs. The LUT for the Generator Rotor 

Temperature node, given in figure C.6 in appendix C, generates the explanation given in 

figure 5.15 in accordance with algorithm rule number 9. 

 

 

Figure 5.15: Explanation generated from the Generator Rotor Temperature normal behaviour 

LUT. 

 

Both of these nodes are non-operational as explained in section 5.4.2.4, therefore the 

algorithm does not search for any relevant states in the channel profile given in table 5.1. 

The knowledge base is therefore checked for associated LUTs. The LUT for the 

Generator Rotor Dimension along with the Generator Rotor Balance LUT, presented in 
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figures C.9 and C.4 in appendix C respectively, generate the explanation tree given in 

figure 5.16 in accordance with algorithm rule number 9. 

 

 

Figure 5.16: Explanation generated from the Generator Rotor Balance and Generator Rotor 

Dimension normal behaviour LUTs. 

 

The algorithm finds that none of the operational nodes circled in figure 5.16 fulfil 

algorithm rule number 1. That is, having an associated state in the channel profile in 

table 5.1 which has an instantiation temporal value occurring later than that at the root of 

the explanation in figure 5.13, i.e. later than 7. The algorithm further expands this 

explanation tree only to find that nodes are repeated further down the branches. All of 

these branches can therefore be terminated back up the tree to the GRT-OA Ch-Dec 

node in figure 5.15 in accordance with algorithm rule number 12. This is because there 

are no nodes between those repeated which have been recorded in the channel profile. 

 

The next stage in the process is to analyse the GShT-OA Ch-Dec node given in figure 

5.15.  The explanation tree, given in figure 5.17, is generated in accordance with 

algorithm rule number 9, using the normal behaviour LUTs for Generator Shaft 

Temperature, Generator Shaft Dimension and Generator Rotor Balance presented in 

figures C.7, C.8 and C.4 in appendix C. 
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Figure 5.17: Explanation generated from the Generator Rotor Balance, Generator Shaft 

Temperature and Generator Shaft Dimension normal behaviour LUTs. 

 

The GRT-OA Ch-Dec node is a repeat of that further up that particular branch of the 

explanation. There is no node within this branch which relates to any of the information 

in the channel profile therefore this branch is terminated up to the GShT-OA Ch-Dec 

node in accordance with algorithm rule number 12. The remaining branches are also 

terminated in accordance with algorithm rule number 12 for the same reasons given for 

the previous explanation structure in figure 5.16. 

 

The algorithm then moves back up the explanation tree to assess the GRCD-OA CE 

node given in the in figure 5.14. This node generates the explanation structure in figure 

5.18 in accordance with algorithm rule number 9 using the normal behaviour LUTs for 

Generator Rotor Coil Dimension and Generator Rotor Balance, presented in figures C.5 

and C.4 in appendix C.  
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Figure 5.18: Explanation generated from the Generator Rotor Coil Dimension and Generator Rotor 

Balance normal behaviour LUTs. 

 

The algorithm is able to terminate all of the branches in figure 5.18 using algorithm rule 

number 12 for the same reasons given in the previous two examples shown in figures 

5.16 and 5.17. 

 

The final node in figure 5.14 which the learning algorithm generates an explanation 

structure for is the stiction fault node GRCD-OA CU. The algorithm uses the normal 

behaviour LUTs for Generator Rotor Coil Dimension and Generator Rotor Balance to 

construct the explanation given in figure 5.19 in accordance with algorithm rule number 

9. 

 

Both of the branch nodes circled in figure 5.19 are operational as described in section 

5.4.2.4. Also both nodes include the special operator no change (NCh) discussed in 

section 5.4.2.3. This operator requires a special condition in order to find a match within 

the channel profile. This special condition is defined in algorithm rules 1 and 2. The 

algorithm will search the channel profile to determine if there are any GBFV-OA or 

GBRV-OA level states which are unchanged from before and after the state which 

triggered the explanation i.e. the root node. The manifestation time of the root node is 7 

as shown in figure 5.13. Therefore, to meet the NCh criteria the state would require a 

manifestation time less than 7 but a finishing time greater 7. The GBRV-OA Lev-Hi (3) 
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(10) state listed in the channel profile in table 5.1 fulfils this NCh condition since the 

manifestation time occurs at 3 and the end time is 13 (3+10). This state can therefore be 

added to the explanation tree. The temporal data is added to the node and the state is 

changed from Lev-Hi in the profile to Lev-NCh in the explanation tree.  

 

Figure 5.19: Explanation generated from the Generator Rotor Coil Dimension and Generator Rotor 

Balance normal behaviour LUTs. 

 

This explanation structure is consistent with the channel profile since it starts with an 

observed operational node and terminates with an observed operational node as defined 

in algorithm rule 3 and can therefore be saved. The algorithm also checks the channel 

profile for any states consistent with the ‘GBFV-OA Lev-NCh’ node but there are none. 

Therefore that node is deleted in accordance with algorithm rule 5. The resulting 

explanation is shown in figure 5.20.  

 

The above process described above is repeated for all of the states in the channel profile. 

Any explanations which are shown to be consistent with the channel profile are saved by 

the algorithm for further analysis. Once the algorithm has completed its analysis the 

expert must verify that all of the explanations are valid for the target concept. 
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Figure 5.20: Final explanation structure generated for the stiction example given in table 5.1. 

 

5.5.3.2 Explanation Validation 

 

The first stage in which the user is required to analyse the module results is following 

the explanation generation stage. It is entirely possible that the module produces some 

explanations which comply with the causal knowledge but are not directly related to the 

target concept heuristic expression. It is important that these explanations are identified 

and eliminated at this stage as opposed to being filtered through to the derived heuristic. 

It is easier for the expert to eliminate an invalid explanation at this stage because the 

causal explanation is still present which assists in the verification. This would be more 

difficult to achieve if left until the heuristic is derived since the rationale behind all terms 

in the expression is not present. 

 

The expert therefore examines each of the causal chains generated for each explanation 

to ensure that the reasoning generated by the learning module is correct and relevant to 

the fault under analysis. In this example the only explanation generated by the algorithm 

for the stiction fault example deemed valid is in figure 5.20. The next stage following 

the validation of the explanation is to generalise the temporal constraints associated with 

the explanation. The process for generalising the temporal constraints of an explanation 

structure is described in the following section. 
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5.5.3.3 Generalise Temporal Constraints 

 

The next stage in the learning module approach is to generalise the manifestation 

temporal constraints contained within the causal explanations. Two types of temporal 

constraints are assigned to any observed feature within the explanation structure. These 

are the manifestation time and the period value. The manifestation time denotes the time 

in which the event started to occur. The period value indicates how long the event 

occurred for. The exact time in which the event starts to occur is not important when 

defining heuristic knowledge. For example a causal explanation for a particular fault 

type may indicate that an observable event occurred on 1st June 2006 at 12.45. Not every 

other example of this fault requires the observable event to occur at that exact time. 

Therefore, the instantiation time within the causal explanation structure is particular to 

the training example used to derive the model. These instantiation times can be 

generalised so that other instances which show the same characteristics but at different 

times can be recognised by the derived expression. This is achieved by searching the 

saved causal explanations to find the earliest manifestation time. The earliest 

manifestation time is therefore substituted by t and all further manifestation times are 

substituted with (t + original manifestation time – earliest manifestation time). The 

generalisation of the stiction fault explanation tree in figure 5.20, results in the 

explanation given in figure 5.21. 

 

 

Figure 5.21: Explanation structure with its temporal constraints generalised. 

 

The period temporal constraint is treated differently from the instantiation value because 

the length of time in which an event occurs or the time taken for an event to occur in 



 220 

relation to another event is of importance to classify other examples of that particular 

classification. These constraints, however, can’t be further generalised automatically 

without performing some inductive interpretation on the expression which in this 

application is not possible due to the lack of training data. This means that the period 

constraints of the derived heuristic will be particular to the training example used and so 

another approach to generalising these must be used. The method of achieving this is 

discussed in section 5.5.4. 

 

5.5.3.4 Derive Heuristic 

 

The final step in the learning module approach is to derive the heuristic expression from 

the causal explanations. This is achieved by simply conjugating together all of the 

operational nodes which appear in the causal explanations. Therefore the heuristic 

generated by the learning module for the stiction fault example would be that given in 

figure 5.22. 

 

 

Figure 5.22: Heuristic derived from the explanation structure given in figure 5.21. 

 

The heuristic proposed by the learning module for a stiction fault indicates that a 

decrease in generator rotor current lasting a period of 1 should cause no change in the 

level of the rear generator bearing vibration for a period of 10. The manifestation 

temporal data indicates that the decrease in generator rotor current should be preceded 

by a period of 4 by the no level change in rear generator bearing vibration, 
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5.5.4 Heuristic Verification 

 

The learning module approach was not designed to be a fully automated system which 

produced a comprehensive heuristic expression on its own. Instead the module has been 

designed to assist the expert in deriving heuristic knowledge, therefore, interaction with 

the expert user is required. The user input primarily focuses on verifying the module 

results at two key stages. These stages are: 

 

! Verification of explanation 

! Verification of heuristic 

 

The explanation verification stage was described in section 5.5.3.2. The second 

verification stage is there to perform multiple functions. As has already been explained 

in section 5.5.3.3 the period temporal constraints of the derived heuristic will be 

particular to the training example used to derive the expression. These temporal 

constraints must be generalised further in order to allow further examples of that concept 

to be properly assessed. One possibility is to automatically derive further generalised 

temporal constraints using a data intensive symbolic machine learning method such as 

candidate elimination specific to general search [Mitchell, 1982]. This method could 

further generalise the temporal constraints so that the heuristic can correctly assess all of 

the training examples. However, as discussed in section 5.3 there is a lack of training 

data available due to the rarity of genuine faults on the turbine generator which prohibits 

the use of such a technique. Instead the expert user is required to call upon their 

knowledge and experience to perform this function. They must make a judgement on 

what temporal constraints should be included within the heuristic so that it is an 

adequate general description of the target concept.  

 

Another consideration at this stage is whether any important parameters to the target 

concept have been omitted from the heuristic. If the expert felt that any features should 

be added then this would have to be facilitated through discussions with them and the 
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knowledge engineers. This review of the heuristic must be carried out in strategically 

important applications such as this. The users have to be sure that the knowledge being 

uploaded to the knowledge base encompasses their full range of experience so that the 

assessments performed by the Expert System are as accurate as possible. 

 

The previous sections have described in detail how the learning module assists the 

expert in deriving heuristic fault knowledge for the Expert System. It has explained the 

novel adapted version of EBG used by the learning module including the novel causal 

knowledge modelling formalism and learning algorithm developed specifically for this 

project. These sections have also described how the expert user interacts with the 

learning module to develop and refine the results. All of these aspects of the approach 

have been explained using a worked example to show how the learning module results 

are derived in practice. The following section will now analyse how the learning module 

performed on genuine fault data taken from one of British Energy’s turbine generators. 

 

5.6 Learning Module Results 

 

This section shows how the learning module performed when tested on real turbine 

generator condition monitoring data taken from British Energy’s Beran system. A 

British Energy condition monitoring expert was asked to select data from the Beran 

system which were examples of genuine faults. The purpose of this was to test the 

learning module’s capabilities when exposed to real condition monitoring data. As 

already explained in section 5.3, genuine faults on British Energy turbine generator sets 

are rare occurrences, therefore it was difficult to find suitable data. There was however 

an instance in July/August of 2006 where one of the units was scheduled for a 

maintenance outage. Prior to the outage it was acknowledged by the condition 

monitoring team that the set was showing typical signs of stiction. Stiction is a problem 

which affects the generator and is fully explained in section 5.5.1. Once the turbine 
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generator was put back on-line the condition monitoring team found signs of an 

additional problem known as looseness. 

 

5.6.1 Looseness Fault Description 

 

A looseness fault on a turbine generator describes a behaviour which manifests itself 

from a pedestal not sufficiently secured to its foundations. Looseness does not 

commonly occur while the turbine generator set is running on-line, since it is unlikely 

that any significant change will occur between any of the pedestals and its foundations. 

Instead it normally occurs following an outage when there is normally some kind of 

overhaul or maintenance undertaken on the equipment. This maintenance normally 

involves components being taken out for repair or inspection which subsequently 

increases the chances of components becoming less secure when re-installed. When 

looseness occurs the affected pedestal suffers from higher levels of 2nd order vibration in 

the affected bearings with the increasing speed of the turbine generator set. The 

components affected by looseness problems are primarily the pedestals and the bearings 

supported by the pedestals. The pedestals mechanically support the bearing and so the 

increase in 2nd order vibration in the pedestal is reverberated through to the bearings. 

 

These behaviour types are not catastrophic faults which would cause any significant 

level of damage to the turbine generator sets, but they do demonstrate distinguishable 

states which the condition monitoring experts use to monitor the condition of the turbine 

generator sets. The data is therefore a suitable test for the learning module to 

demonstrate that the learning module approach outlined in section 5.5 could be used by 

the company experts and system maintenance engineers to assist in deriving fault 

diagnostic knowledge. 

 

The data was captured from one of British Energy’s nuclear power stations. The turbine 

analysed is known as Turbine 2. The first set of data was captured between the period of 
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15/06/2006 and 02/08/2006 prior to the turbine being run-down. The second set of data 

was captured during the period of 14/08/2006 and 29/08/2006 following the shutdown. 

The performance of the learning module on both of these real faults is reviewed in the 

following sections. 

 

5.6.2 Stiction Fault Training Example 

 

The data selected by the British Energy condition monitoring expert as an example of 

stiction fault data was from 15/06/2006 till 02/08/2006. The overall, 1st order magnitude 

and phase, 2nd order magnitude and phase, and temperature data for bearings 6, 7, 8, 9 

and 10, as well as the generator load, generator MVArs, generator rotor current and rpm 

data were selected. All of this data can be viewed in graphical format in appendix D. 

The profile for the data was generated by the Expert System described in chapter 4 and 

can be found in appendix D. The explanation structures generated by the learning 

module are given in figure 5.23. All of the LUTs which were used to build this 

explanation can be found in appendix C. The behaviours which are not enclosed within a 

box denote normal behaviour, whereas those enclosed within a box denote that they 

have been derived from stiction fault behaviour. The first bracketed number is the 

manifestation temporal value and the second is the period temporal value for that node. 

Both of these values are in samples where one sample equates to 10 minutes. If there is 

no number in the brackets and reads “null” then this implies that the node was not 

observed in the channel profile data and there is therefore no temporal data associated 

with it. 
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Figure 5.23(a): Explanation structure generated by learning module for a stiction fault. Expert 

confirmed that this explanation did not locate the actual fault. 

  

 

Figure 5.23(b): Explanation structure generated by learning module for a stiction fault. Confirmed 

by the expert as having located the fault. 

 

A description of each abbreviation in the stiction fault explanations is given in table 5.2. 



 226 

 

Table 5.2: Description of the abbreviations found in the stiction fault explanation in figure 5.23. 

 

 

Both graphs in figure 5.23 possess nodes which are derived from a stiction fault 

behavioural LUT. This implies that the profile derived from the real data exhibits 

behaviour which is consistent with that of a stiction fault according to the behavioural 

models. The explanation in figure 5.23(a) shows that a decrease in generator rotor 

current starting at sample 1584 (22/06/2006) causes a decrease in the generator rotor coil 

temperature whereas the explanation in figure 5.23(b) relates it to a decrease which 

starts at sample 3600 (06/07/2006). Under stiction fault conditions this decrease would 

cause the generator rotor coil dimension to contract unevenly which would result in the 

generator rotor balance undergoing a negligible change. This negligible change would 

mean that the vibration profile of both generator bearings would not change which is 

verified by both the 1st order magnitude and overall level parameters not changing over 

the period in which the initiating generator rotor current decrease took place. 

 

Both explanations were structurally the same but on analysis of the raw data the expert 

concluded that the explanation structure in figure 5.23(b) had located the rise in rotor 

current and subsequent no change in vibration which indicated a stiction fault. Therefore 

the explanation given in figure 5.23(b) was put forward for the instantiation constraints 

to be further generalised. The result of which is given in figure 5.24. 



 227 

 

 

Figure 5.24: Stiction explanation structure after manifestation temporal constraints have been 

generalised. 

 

The generalised explanation structure was then used to compile a heuristic. The results 

of the heuristic composition are shown in figure 5.25. 

 

 

Figure 5.25: Stiction Heuristic derived by the learning module from the Beran Data. 

 

This heuristic, although correct, for the training data set will not pick up all examples of 

stiction fault behaviour from all data sets due to the specificity of the temporal 

constraints. Therefore the heuristic temporal constraints act as a guide for the expert to 

use his/her experience and expertise to derive more general ones. In this instance the 

expert felt that providing there is no change in the overall and 1st order vibration 
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magnitudes following the decrease in rotor current then this would be consistent with 

stiction behaviour. Therefore there is no requirement for the change in rotor current to be 

delayed which means that the temporal constraint for the rotor current decrease could be 

set to t as opposed to t + 288. In addition the instantiation constraints for all of the 

remaining no change features can be set to <= t since the only requirement is for there to 

be no change following the decrease. The length of the no change in vibration and the 

decrease in rotor current was more debatable but the expert felt that for a turbine 

generator set behaving normally there would be a decrease in vibration within 15 to 60 

minutes following the decrease in rotor current. Any delay beyond the hour would start 

to suggest a stiction fault. Therefore a no change time period of at least an hour (6 

samples) would indicate stiction behaviour. As for the duration of a change in rotor 

current, the expert felt that sudden changes which react to demand on the grid system 

were as short as 10 minutes (1 sample), but longer changes during re-fuelling can take as 

long as 24 hours (144 samples). Therefore the decrease in rotor current would require a 

maximum time period of 1 day (144 samples). 

 

The learning module located the key behaviour from the data, but there were additional 

features which had to be specified by the expert before an adequate heuristic could be 

derived. One of these features was that the vibration level would have to be high in the 

case of stiction. This high level of vibration should be maintained for the full duration of 

no change in vibration. This aspect is not specified in the derived heuristic since the 

observable states, no change in the overall and 1st order magnitudes, are derived purely 

based on the previous state in the explanation, no change in vibration. When deriving 

these observable states there is no memory of the fact that the fault is stiction. Instead 

the observable states are only derived from the fact that there is no change in the 

vibration magnitude. This highlights two aspects of the learning module approach. The 

first is that the module is unable to exhibit memory of the state of the system beyond a 

single causal step. The second is the semi-autonomous operation of the learning module 

since the module’s primary goal is to assist the expert in deriving the fault diagnostic 

knowledge, not to derive a complete heuristic on its own. 
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Once the expert had completed her analysis and put forward suggestions for both the 

temporal constraints and the additional features which were to be included in the final 

heuristic, the Expert System maintenance engineers were able to translate the results into 

a heuristic which would be suitable for the Expert System knowledge base. The profile 

for each signal is derived by compiling a description of the raw data over a 1 day period 

using the approach described in section 4.5.3.1. This period was chosen during the 

development and testing of the Expert System in conjunction with the experts. Various 

periods were experimented with and output to the user interface as demonstrated in 

section 4.5.6.3. The experts felt that the channel profile derived by setting the period 

length to 1 day gave a good representation of each of the signals. Therefore the periods 

of each feature contained in the heuristic would have to be set to a minimum of 144 

samples. This means that the period of no change would move from greater than or 

equal to 6 samples (1 hour) to 144 samples and the rotor current decrease period would 

be set to 144 samples which was the maximum period specified by the expert. 

 

This heuristic is shown in figure 5.26. The heuristic can be summarised as when the 

rotor current decreases and both of the generator bearings have no reduction in the 

overall and 1st order vibration magnitude, and the magnitude is at a high level then the 

turbine generator is showing signs of stiction behaviour. Note from the heuristic that all 

of the vibration magnitudes should have been at a high level before the change in rotor 

current occurs and that the vibration behaviour should not change 
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Figure 5.26: Stiction fault heuristic suitable for the Expert System knowledge base. 

 

5.6.3 Looseness Training Example 

 

The data selected by the British Energy condition monitoring expert as an example of 

looseness fault data was from 14/08/2006 till 29/08/2006. The overall, 1st order 

magnitude and phase, 2nd order magnitude and phase, and rpm data for bearings 6, 7, 8, 9 

and 10, as well as the generator load, generator MVArs, generator rotor current and 

temperature data were selected. All of this data can be viewed in graphical format in 

appendix E. The profile for the data was generated by the Expert System described in 

chapter 4 and can be found in appendix D. The explanation structure generated by the 

learning module is given in figure 5.27. All of the LUTs which were used to build this 

explanation can be found in appendix C. 

 

 

Figure 5.27: Explanation structure for Looseness fault generated by the learning module.  
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The behaviours which are not enclosed within a box denote normal behaviour whereas 

the ones enclosed within a box denote that they have been derived from looseness fault 

behaviour. The fault behaviour LUT used to generate this explanation is the Generator 

Front Pedestal Looseness LUT given in appendix C. This LUT implies that the 

behaviour exhibited by the channel is indicative of looseness in the pedestal at the front 

of the generator. The first bracketed number is the manifestation temporal value and the 

second is the period temporal value for that node. These values denote the number of 

samples where each sample represents 10 minute intervals. If there is no number in the 

brackets and reads “null” then this implies that the node was not observed in the channel 

profile data and there is therefore no temporal data associated with it. A description of 

each abbreviation in the looseness fault explanation chain is given in table 5.3 

 

Table 5.3: Description of the abbreviations found in the looseness fault explanation in figure 5.27. 

 

 

The explanation generated a branch which exhibits behaviour consistent with a 

looseness fault in the front pedestal of the generator. This is implied in the firing of the 

Generator Front Pedestal Looseness LUT given in appendix C. This is the pedestal 

which supports both the low pressure B rear bearing and the generator front bearing. An 

increase in the turbine rotational speed following the system outage causes an increase in 

the turbine shaft speed. The looseness present in the pedestal which supports both the 

low pressure B rear bearing and the generator front bearing causes the 2nd order vibration 

magnitude in both bearings to increase and move to a high level. Both of the increases 

and high levels were picked up by the learning module. The expert verified that this 
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explanation had highlighted the main characteristics of the looseness fault behaviour and 

so the next stage was for the temporal constraints of the explanation structure to be 

generalised. The results of which are given in figure 5.28. 

 

 

Figure 5.28: Looseness explanation structure following the generalisation of the instantiation 

temporal constraints. 

 

Following the generalisation of the temporal constraints a heuristic was compiled. The 

results of the heuristic composition are shown in figure 5.29. 

 

 

Figure 5.29: Heuristic derived by the learning module a Looseness fault. 

 

This heuristic was particular to the training example used to induce the explanation 

therefore the period temporal constraints would have to be generalised to identify other 

looseness type faults. On inspection of the heuristic the expert confirmed that the 

increase in 2nd order vibration should occur in line with the RPM increase as had been 

highlighted in the derived heuristic. The expert stipulated that the increase in 2nd order 

vibration would not continue for a longer period than the increase in RPM. Therefore the 

period for both the increase in RPM and 2nd order vibration was set to the same value 
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which was less than or equal to 288 samples. The expert determined that the 2nd order 

vibration should fall within a high level within these increases therefore the instantiation 

constraint for the 2nd order vibration high states should be set to <= t + 288. The expert 

also felt that the high level of vibration would last for as long as the turbine generator set 

was kept on-line. This period could vary dramatically but the expert felt that is was safe 

to assume that the set would be on for at least a day in the worst case scenario. Therefore 

the high 2nd order vibration level period constraint was set to >= 144. 

 

The learning module had identified the key characteristics associated with a looseness 

fault. Features not identified by the module were those which were able to distinguish a 

looseness fault from other behaviour types that showed similar characteristics. The 

expert felt that in particular looseness has similar characteristics to a shaft crack and 

misalignment fault. The feature which distinguishes looseness from a shaft crack fault is 

that a cracked shaft will normally develop on-line but looseness occurs following an 

outage. Since the rpm should remain constant at 3000rpm while on-line, the only time an 

increase in rpm realistically occurs is following an outage, therefore it was felt that the 

increase in rpm feature adequately distinguished between both of these behaviours. 

Misalignment also generates similar features to looseness, except that misalignment is 

expected to give an increase in the temperature of the affected bearings since the 

lubricating oil dissipates more energy caused by the extra loading on the bearing. 

Therefore the expert felt that the heuristic should explicitly state that there should be no 

increase within the temperature of the affected bearings while the RPM is increasing. 

This highlights one aspect of the learning module which is that it is currently unable to 

identify negative literals within the heuristic which can help distinguish between fault 

types of similar characteristics. 

 

Once the expert had completed her analysis and put forward suggestions for both the 

temporal constraints and the additional features which were to be included in the final 

heuristic, the Expert System maintenance engineers were able to translate the results into 

a heuristic suitable for the knowledge base. This heuristic is given in figure 5.30. The 
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heuristic can be summarised as following an outage, if a high level of 2nd order vibration 

is detected on the low pressure B rear bearing and the generator front bearing and there 

is no increase in bearing temperature then the turbine generator is exhibiting the 

behaviour of a looseness fault on the front generator pedestal. 

 

 

Figure 5.30: Looseness fault heuristic which could be uploaded to the Expert System knowledge 

base. 

 

5.7 Evaluation 

 

The previous section has shown how the learning module performed in assisting the 

expert in deriving heuristics using actual condition monitoring data taken from the Beran 

system. The module was able to use the causal fault and behavioural knowledge to 

automatically distinguish between features which were relevant to the fault type under 

analysis to those that were not. Both the causal explanations and the resulting derived 

heuristic produced by the learning module assisted the expert in producing the final 

verified heuristic for the Expert System. The explanation allowed the expert to follow 

the rationale produced by the system to determine that the chain of events derived from 

the data agreed with their assessment. The explanation also provided an opportunity for 

the module to highlight certain features relevant to the behaviour under analysis which 

the expert may not have otherwise picked up on. The heuristic derived from the 

explanation allowed the expert to further refine the expression so that it was made more 

representative of other examples of that fault type and so that it could distinguish 

between different faults, which exhibit similar characteristics. In both cases, the learning 
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module produced accurate explanations of a sufficient level of detail and the expert was 

able to expand on these to give a fully verified heuristic. 

 

The intention for the learning module is for it to be used as a standalone program which 

can interactively work with the expert user on his/her own to help derive heuristic 

expressions. However the two tests outlined in this chapter involved both the expert and 

the knowledge engineer using the learning module results to derive the final heuristic. 

The knowledge engineer was still required to ask probing questions which would get the 

expert thinking on alternative faults which may show similar characteristics to determine 

what other features would have to be included in the expression. As already pointed out 

in the previous section these additional features normally identify events which should 

not take place and are known as negative literals. One way this role could be achieved 

automatically by the learning module would be to try and prove all other fault types and 

indicate the ones which would have produced an explanation with the same features as 

the fault under analysis but required additional features to complete the proof of the 

explanation. These additional features could be used as negative literals in the heuristic 

and could therefore be automatically posed as a question to the expert user. For example, 

if an algorithm existed for the learning module which tested alternative theories then it 

may have indicated that misalignment shared the same features as looseness plus 

additional temperature features which could not be validated against the data used in the 

example. The absence of the temperature behaviour expected for a looseness fault 

indicates that this could potentially be used as a negative literal in the case of looseness 

and could therefore be posed as a question to the expert. This question was posed to the 

expert during the testing of the learning module but through the knowledge engineer, not 

by the learning module automatically. Another algorithm would have to be developed 

for the learning module to achieve this functionality. The algorithm would have to be 

capable of testing all known fault types in the causal fault and behavioural knowledge 

base against the data. It would have to recognise instances which contain the same 

events as the suspected fault type but with additional events which can not be verified by 

the training data. This would be part of the future worked planned for this research. 
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Another aspect of the approach adopted by the learning module highlighted during 

testing was that no states are propagated through the causal explanations. In other words 

there is no memory of state in the causal models. This feature was highlighted in the 

stiction fault example where the high level of vibration included within the final verified 

heuristic was not picked up on by the learning module. The reason for this was that the 

stiction fault behaviour was picked up in the middle of the explanation structure so when 

it came to determining the observables, the module was only able to infer an increase in 

both overall and 1st order vibration because there was no memory of the stiction fault. 

This feature is deliberate in the design because the alternative would be to specify the 

effect that an increase in vibration would have under a stiction fault, meaning that the 

fault behaviour would have to be specified multiple times in the LUTs. This would, 

therefore, defeat one of the initial objectives for the causal modelling approach adopted 

which is to indicate the effect that the fault behaviour has at one particular point and not 

propagate the behaviour through to see the effects. This is the job of the learning 

module. The expert will therefore always be required to consider any special 

requirements for the level states of any parameters. Again the learning module could be 

programmed to pose this as a standard question to the expert user to eliminate the need 

for the knowledge engineer. 

 

The testing of the learning module on genuine condition monitoring data has proven that 

the novel adapted version of EBG developed for this project can automatically derive 

knowledge to assist the expert in deriving heuristics. This is one of the primary 

objectives of the learning module outlined in section 5.2. However it has also been 

indicated that further research is required to enhance the functionality of the module so 

that the type of assistance currently provided by the knowledge engineer could be 

automatically facilitated. The module must also be assessed against the second objective 

outlined in section 5.2, which is to reduce the amount of knowledge elicitation required 

over the course of the project. A thorough assessment of this is clearly not possible until 

the module is developed further and used throughout the project. Therefore, the only 
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comment which can be made on this issue at this stage is that the modular approach 

adopted by the learning module to construct the causal fault and behaviour knowledge 

should enable the reusability of knowledge over different configurations of turbine 

generator sets, eliminating the need to perform separate knowledge elicitation exercises 

for every unique item. This reusability is expected to provide savings on the amount of 

knowledge elicitation undertaken throughout the course of the project as discussed in 

section 5.4. 
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Chapter 6 

 

6 Conclusions & Further Work 

 

6.1 Conclusions 

 

This body of research has reported on work carried out in the area of automated 

condition monitoring for turbine generators. The primary objective of this work was to 

develop tools which could assist British Energy experts in the analysis of large volumes 

of data produced by their on-line condition monitoring system. The chosen approach 

was to develop an Expert System which employed explicit expert knowledge to interpret 

the raw data in order to diagnose common behaviours. A major drawback of the Expert 

System approach encountered during the development of the system was the time 

consuming and expensive nature of the knowledge engineering exercises required to 

capture the necessary knowledge. Novel methods of assisting with the knowledge 

engineering process were researched. This resulted in the development of a novel semi-

autonomous learning module which used causal knowledge of the turbine generator 

behaviour along with examples of a certain fault type to assist the expert and knowledge 

engineer in the derivation of heuristic rules which could be utilised by the Expert 

System. 

 

The strategically important nature of the application dictated that any system which was 

to assist the British Energy experts had to be designed in such a way that the user could 

be confident in the given assessments. This was achieved by focussing on providing 

transparency in the assessments performed by the system through the application of the 

explicit symbolic knowledge employed by the Expert System. Key features identified by 

the experts at the knowledge elicitation stage and therefore extracted by the signal to 

symbol transformation module were fed back to the user at the verification stage by 

visually highlighting them in the raw data plots. In addition, each of the diagnostic rules 

were given explanatory descriptions so that the chaining of the rules fired during the 
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assessment provided the user with the system rationale. Both of these explanation 

facilities were used to complement one another to provide the user with a more complete 

description on how the system arrived at its conclusions. 

 

The system was tested on genuine historical case studies selected by the experts from the 

alarm archive. The results of the tests when compared with the previous manual 

assessments and by the current team of experts indicated that the system was able to 

perform accurately in its analysis. In some cases inconsistencies in previous assessments 

were identified indicating that the automated system has the potential to make the 

assessment process more accurate when used in conjunction with the expert. The testing 

also highlighted the benefits of the novel approach to explanation integrated into the 

system. The experts were able to track the system reasoning using the rationale trees and 

identify the features used in the assessment within the raw data plots. The results 

obtained during the testing phase combined with the positive expert response to the 

explanation facilities highlighted that the Expert System approach was well suited to this 

strategically important application. One of the common drawbacks associated with this 

approach did identify itself during the testing. This was conflict resolution where the 

system provides multiple conclusions since the data is consistent with more than one 

behaviour type. This was less of a problem in this application since the system is 

designed to act as an assistant therefore multiple assessments allowed the user to explore 

all avenues before confirming the actual behaviour. However it was highlighted that the 

instances of conflict resolution encountered during the testing could be rectified in future 

versions of the system by updating the knowledge base with additional knowledge. 

 

The work carried out on the Expert System identified the difficulty with acquiring the 

expert knowledge and the growing need for new methods that can assist with the 

knowledge capture process. A learning module was developed based on the Machine 

Learning (ML) technique Explanation Based Generalisation (EBG) which was able to 

assist the expert in deriving knowledge. The novel approach uses causal turbine 

generator behavioural models in addition to a training example to derive heuristic rules 
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associated with that behaviour type. Explanations are generated which are consistent 

with the behaviour of interest and the training example. These explanations can then be 

verified by the expert before being transformed into suggested heuristic rules. The expert 

and knowledge engineer can then refine the solution to determine a suitable heuristic for 

the Expert System knowledge base. The module was tested using genuine faults selected 

by the experts from the Beran system. The module performed well, each time producing 

valid explanations and therefore identifying key features which were developed into a 

suitable heuristic for the knowledge base. 

 

In terms of novelty this body of research has demonstrated through the design and 

testing of both the Expert System and learning module the three following contributions. 

 

! Augmentation of the existing condition monitoring approach through the 

introduction of intelligent automated processing. 

The application of the Expert System developed for this project is novel. The 

system had to augment a well established approach to turbine generator condition 

monitoring within British energy. It had to be designed to interface with the 

existing condition monitoring system and provide the British Energy experts 

with the well defined information required for them to perform their assessment. 

 

! Novel use of graphical approaches to provide explanation of Expert System 

rationale. 

Central to the ethos of the Expert System design was the effectiveness of how the 

assessment explanation was fed back to the user. In addition to the use of rule-

based explanation, novel approaches to graphically highlight features used within 

the assessment have been incorporated into the developed prototype to assist the 

user during verification. 

 

! Novel semi-autonomous approach to diagnostic condition monitoring 

knowledge derivation. 
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The learning module developed to assist in deriving explicit heuristic knowledge 

for the Expert System is novel in both its approach and application. The learning 

module designed and developed uses an adapted approach of EBG that utilises 

causal fault and behavioural models. The module aims to reduce the burden 

associated with capturing knowledge for Expert System applications. 

 

6.2 Further Work 

 

The next stage in the development of the Expert System is to expand the knowledge base 

so that it is capable of identifying more behaviours. Any further knowledge elicitation 

exercises should make use of the learning module in order to determine with more 

certainty its ability to reduce the knowledge elicitation effort. British Energy has 

requested that the system is developed further so that it can be used by the experts as an 

on-line assistant. This will require the module to automatically interpret the FFT data, 

therefore methods of capturing the raw FFT data must be investigated and there will 

have to be more development in the signal to symbol transformation module so that the 

correct features are extracted from the raw data. The system will also have to be 

integrated with the existing British Energy on-line network so that all of the analysis can 

be carried out automatically for the experts to log on and check the results. The 

explanation facility should also be developed further so that both the rationale and the 

visual indication of the features are enhanced. This can be achieved by linking both, so 

that when the user selects one of the triggered rules from the explanation structure, 

he/she is then directed to the features within the raw data which triggered the rule.  

 

The learning module needs to be tested further and more rigorously assessed against 

time saved during the knowledge elicitation process. As stated in the objectives for the 

learning module, the usefulness and success of the module will ultimately be dependent 

on whether the knowledge engineering approach is made easier. The simplicity of the 

algorithmic approach should be maintained since this allows the process of capturing the 
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causal behaviour knowledge more structured and less device specific. One improvement 

however would be to incorporate negative literals into the assessment and therefore 

include them in both the explanations and the derived heuristics. As demonstrated during 

the testing, negative literals play a major role in differentiating certain behaviour types 

from one another. There does need to be a lot of development on the user interface itself 

so that the module reaches a stage whereby the system can be used on its own without 

the need for the system developer to operate it and interpret the results. One function 

which would go some way to achieving this would be for the module to automatically 

ask the user some generic questions on the module results which a knowledge engineer 

would commonly ask the expert in order to explore all avenues of that particular area. 

 

There should also be some consideration given to extending the Expert System and 

learning module beyond the turbine generator condition monitoring application. 

Applications, which should be considered for the application of the learning module, are 

those that are strategically important or even safety critical to the business. It is this type 

of application which will normally require a high level of user confidence in the system 

due to its importance to the business, making the symbolic nature of the knowledge 

derived by the learning module desirable. The application must also have access to 

expert knowledge in some form so that the heuristic knowledge, or causal models, 

required by the Expert System, or learning module respectively, are available or can be 

developed. For example, an application within British Energy, which may be suitable for 

extending the application of the Expert System or learning module, would be cooling 

water motor/pump fault diagnosis. 

 

Identifying additional applications and developing both the Expert System and learning 

module is especially pertinent for British Energy with the possibility of new nuclear 

power stations being built in the coming decades. If suitable applications can be 

identified prior to the construction of the power stations, then systems can be developed 

before the power stations come on-line. A potential benefit of developing the systems in 

parallel with the construction of the nuclear plants is that the commissioning of the 
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equipment can provide an opportunity to test the performance of the Expert System and 

learning module. It is likely that sate-of-the-art equipment would be used in the 

construction of new generation nuclear power stations, therefore, the current team of 

condition monitoring experts will not have the years of experience and knowledge on 

how the equipment behaves under normal and faulty conditions. This would mean that 

any Expert System, or learning module, developed prior to the start-up of the nuclear 

plants, would rely heavily on the experience of the equipment manufacturers, or 

alternatively, users who may have acquired a certain level of experience from using the 

equipment at alternative locations.     
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Appendix A. CommonKADS Knowledge Models 

 

 

Figure A.1: Inference model for the determine if signal is genuine task 
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Figure A.2: Inference model for the build channel profile task 
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Figure A.3: Inference model for the extract channel frequency characteristics task 
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Figure A.4: Inference model for the extract trends task 
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Figure A.5: Inference model for the calculate general parameters task 
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Figure A.6: Inference model for the determine machine state task 
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Figure A.7: Inference model for the extract step changes task 
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Figure A.8: Inference model for the classify alarm task 
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Figure A.9: Inference model for the alarm reporting task 
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Appendix B. Production Rules 

 

Vibration Event Rules 

 

Rules file1 to file27 are used to determine any events which occur in either of the 6 

vibration files analysed by the Expert System. Table B.1 can be used for the substitution 

of file in each of the rules. 

 

Table B.1: file abbreviations which can be inserted into the file rules 

 

file file description 

OA overall amplitude 

1M first order magnitude 

1P first order phase 

2M second order magnitude 

2P second order phase 

SSA sub-synchronous amplitude 

 

For example “file1” can be substituted for “OA1,” implying overall amplitude rule 1. 

Additioanly “file trend period > alarm period” can be substituted for “OA trend period > 

alarm period,” implying the overall amplitude trend period occurs after the alarm period. 

 

file1: Determine if high level in file within period after alarm 

if  file trend level = high 

 file trend period > alarm period 

 file trend period <= alarm period + defined period 

then file high level after alarm 

 

file2: Determine if low level in file within period after alarm 

if  file trend level = low 

 file trend period > alarm period 

 file trend period <= alarm period + defined period 

then file low level after alarm 

 

file3: Determine if low or high level not in file within period after alarm 

if  file trend level ! low 

 file trend level ! high 

 file trend period > alarm period 

 file trend period <= alarm period + defined period 

then file not low or high level after alarm 

 

file4: Determine if stable level in file within period before alarm 

if  file trend level = stable 
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 file trend period < alarm period 

 file trend period >= alarm period - defined period 

then file stable level before alarm 

 

file5: Determine if no stable level in file within period before alarm 

if  file trend level ! stable 

 file trend period < alarm period 

 file trend period >= alarm period - defined period 

then file no stable level before alarm 

 

file6: Determine if stable level in file within period after alarm 

if  file trend level = stable 

 file trend period > alarm period 

 file trend period <= alarm period + defined period 

then file stable level after alarm 

 

file7: Determine if no stable level in file within period after alarm 

if  file trend level ! stable 

 file trend period > alarm period 

 file trend period <= alarm period + defined period 

then file no stable level after alarm 

 

file8: Determine if rising change in file within period after alarm 

if  file trend change = rising 

 file trend period > alarm period 

 file trend period <= alarm period + defined period 

then file change after alarm 

 

file9: Determine if decreasing change in file within period after alarm 

if  file trend change = decreasing 

 file trend period > alarm period 

 file trend period <= alarm period + defined period 

then file change after alarm 

 

file10: Determine if no change in file within period after alarm 

if  file trend change ! rising 

file trend change ! decreasing 

 file trend period > alarm period 

 file trend period <= alarm period + defined period 

then file no change after alarm 

 

file11: Determine if stable change in file within period after alarm 

if  file trend change = stable 

 file trend period > alarm period 
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 file trend period <= alarm period + defined period 

then file stable change after alarm 

 

file12: Determine if no stable change in file within period after alarm 

if  file trend change ! stable 

 file trend period > alarm period 

 file trend period <= alarm period + defined period 

then file no stable change after alarm 

 

file13: Determine if file is completely stable 

if  file trend change descriptors are stable = 100% 

then file completely stable 

 

file14: Determine if file is relatively stable 

if  file trend change descriptors are stable >= 70% & <100% 

then file relatively stable 

 

file15: Determine if file is unstable 

if  file trend change descriptors are stable <70% 

then file unstable 

 

file16: Determine if file is noisy 

if  file trend change descriptors are noisy >30% 

then file noisy 

 

file17: Determine if file is not noisy 

if  file trend change descriptors are noisy <=30% 

then file not noisy 

 

file18: Calculate amplitude if file has no stable level before alarm and high level after 

if  file no stable level before alarm 

file high level after alarm 

then calc file amplitude 

 

file19: Calculate amplitude if file has stable level before alarm and high level after 

if  file stable level before alarm 

file high level after alarm 

then calc file amplitude 

 calc file amplitude high 

 

file20: Calculate amplitude if file has no stable level before alarm and low level after 

if  file no stable level before alarm 

file low level after alarm 

then calc file amplitude 
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file21: Calculate amplitude if file has stable level before alarm and low level after 

if  file stable level before alarm 

file low level after alarm 

then calc file amplitude 

 calc file amplitude low 

 

file22: Calculate amplitude if file is completely stable 

if  file completely stable 

then calc file amplitude 

 

file23: Calculate amplitude if file is relatively stable with no low or high level after 

alarm 

if  file completely stable 

 file low level after alarm 

 file high level after alarm 

then calc file amplitude 

 

file24: Calculate amplitude if file is unstable with no low or high level after alarm 

if  file unstable 

 file low level after alarm 

 file high level after alarm 

then calc file amplitude 

 

 

file25: Calculate min & max amplitude if file is noisy 

if  file noisy 

then calc file amplitude min 

 calc file amplitude max 

 

file26: Determine if file recovers 

if file stable level after alarm 

then file recovers 

 

file27: Determine if step occurred in file 

if step in file 

then file step occurred  
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Checksheet Rules 

 

Rules CH1 to CH17 are used to determine the information required to complete the 

checksheet. 

 

CH1: Operational change due to load change 

if load trend before alarm  

then load operational change 

 

CH2: Operational change due to load step 

if load step before alarm 

then load operational change 

 

CH3: Operational change due to rotor current change 

if rotor current trend before alarm 

then rotor current operational change 

 

CH4: Operational change due to rotor current step 

if rotor current step before alarm 

then rotor current operational change 

 

CH5: Operational change due to generator mvars change 

if generator mvars trend before alarm 

then generator mvars operational change 

 

CH6: Operational change due to generator mvars step 

if generator mvars step before alarm 

then generator mvars operational change 

 

CH7: Determine if overall amplitude is in zone 1 (HP/IP) 

if HP/IP channel 

 overall amplitude < 42µm 

then overall amplitude = zone 1 

 

CH8: Determine if overall amplitude is in zone 2 (HP/IP) 

if HP/IP channel 

 overall amplitude >= 42µm 

 overall amplitude < 63µm 

then overall amplitude = zone 2 

 

CH9: Determine if overall amplitude is in zone 3 (HP/IP) 

if HP/IP channel 

 overall amplitude >= 63µm 

 overall amplitude < 100µm 
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then overall amplitude = zone 3 

 

CH10: Determine if overall amplitude is in zone 4 (HP/IP) 

if HP/IP channel 

 overall amplitude > 100µm 

then overall amplitude = zone 4 

 

CH11: Determine if overall amplitude is in zone 1 (LP/GEN) 

if LP/GEN channel 

 overall amplitude < 63µm 

then overall amplitude = zone 1 

 

CH12: Determine if overall amplitude is in zone 2 (LP/GEN) 

if LP/GEN channel 

 overall amplitude >= 63µm 

 overall amplitude < 100µm 

then overall amplitude = zone 2 

 

CH13: Determine if overall amplitude is in zone 3 (LP/GEN) 

if LP/GEN channel 

 overall amplitude >= 100µm 

 overall amplitude < 163µm 

then overall amplitude = zone 3 

 

CH14: Determine if overall amplitude is in zone 4 (LP/GEN) 

if LP/GEN channel 

 overall amplitude >= 163µm 

 overall amplitude < µm 

then overall amplitude = zone 4 

 

CH15: Determine if the addition of the 1st and 2nd order magnitude approximately equals 

the overall amplitude 

if 1st order amplitude + 2nd order amplitude <= overall amplitude + tolerance 

 1st order amplitude + 2nd order amplitude >= overall amplitude - tolerance 

then 1st order amplitude + 2nd order amplitude approximately equals overall amplitude 

 

CH16: Determine if the addition of the 1st and 2nd order magnitude does not 

approximately equal the overall amplitude by being too large 

if 1st order amplitude + 2nd order amplitude > overall amplitude + tolerance 

then 1st order amplitude + 2nd order amplitude does not approximately equal overall 

amplitude 

 

CH17: Determine if the addition of the 1st and 2nd order magnitude does not 

approximately equal the overall amplitude by being too small 
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if 1st order amplitude + 2nd order amplitude < overall amplitude - tolerance 

then 1st order amplitude + 2nd order amplitude does not approximately equal overall 

amplitude 
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Operational Event Rules 

 

Rules op1 to op6 are used to determine any events which occur in either of the 3 

operational files analysed by the Expert System. Table B.2 can be used for the 

substitution of op in each of the rules. 

 

Table B.2: operational file abbreviations which can be inserted into the operational rules 

 

op op description 

L load 

RC rotor current 

MVA generator MVArs 

 

For example “op1” can be substituted for “RC1,” implying rotor current rule 1. 

Additioanly “op trend period > alarm period” can be substituted for “RC trend period < 

alarm period,” implying the rotor current trend period occurs before the alarm period. 

 

op1: Determine if rising trend in op within period before alarm 

if  op trend change = rising 

 op trend period < alarm period 

 op trend period >= alarm period - defined period 

then op trend before alarm 

 

op2: Determine if decreasing trend in op within period before alarm 

if  op trend change = decreasing 

 op trend period < alarm period 

 op trend period >= alarm period - defined period 

then op trend before alarm 

 

op3: Determine if no trend in op within period before alarm 

if  op trend change ! decreasing 

 op trend change ! rising 

 op trend period < alarm period 

 op trend period >= alarm period - defined period 

then op no trend before alarm 

 

op4: Determine if rising step in op within period before alarm 

if  op step change = rising 

 op step period < alarm period 

 op step period >= alarm period - defined period 

then op step before alarm 

 

op5: Determine if decreasing step in op within period before alarm 
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if  op step change = decreasing 

 op step period < alarm period 

 op step period >= alarm period - defined period 

then op step before alarm 

 

op6: Determine if no step in op within period before alarm 

if  op step change ! decreasing 

 op step change ! rising 

 op step period < alarm period 

 op step period >= alarm period - defined period 

then op no step before alarm 
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Alarm Cause Rules 

 

Rules AC1 to AC13 are used to determine the cause of the alarm. Table B.3 can be used 

for the substitution of alarm in each of the rules. In addition Table B.3 lists the signals 

associated with each alarm. 

 

Table B.3: alarm abbreviations which can be inserted into the alarm cause rules 

 

alarm alarm description Associated signals (file) 

first order magnitude (1M) 1X first order phase 

first order phase (1P) 

second order magnitude(2M) 2X second order phase 

second order phase (2P) 

Z2, Z3, Z4 zone 2, zone 3 & zone 4 overall amplitude (OA) 

SSH sub-sync high sub-sync amplitude (SSA) 

 

For example “op change which affected file (alarm)” can be substituted for “RC change 

which affected 1M (1X),” implying a change in rotor current affected the first order 

magnitude which triggered the first order alarm. Note that in AC13 both the magnitude 

and phase files have to be included in the rule. 

 

AC1: Electrical noise through frequency spikes 

if  spikes at operating frequency multiples 

 spikes narrow 

then electrical noise through frequency spikes 

 

AC2: Electrical noise through FFT base noise 

if  base noise in FFT 

then electrical noise through FFT base noise 

 

AC3: Zero sensor error reading 

if  machine state online 

 overall amplitude at alarm firing < zero sensor magnitude 

then zero sensor error 

 

AC4: Excessive sensor error reading 

if  overall amplitude at alarm firing > excessive sensor magnitude 

then excessive sensor error 

 

AC5:  Loss of rpm sensor error reading 

if  rpm at alarm firing < loss of rpm value 

then loss of rpm sensor error 
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AC6: op change which affected file (alarm) 

if  alarm triggered 

file change after alarm 

 file not low or high level after alarm 

op trend before alarm 

then op change 

 

AC7: op step which affected file (alarm) 

if  alarm triggered 

file change after alarm 

 file not low or high level after alarm 

op step before alarm 

then op change 

 

AC8: op change induced level change in file (alarm) 

if  alarm triggered 

file stable level after alarm 

 file high level after alarm 

op trend before alarm 

then op change 

 

AC9: op step induced level change in file (alarm) 

if  alarm triggered 

file stable level after alarm 

 file high level after alarm 

op step before alarm 

then op change 

 

AC10: op change induced genuine change in file (alarm) 

if  alarm triggered 

file no stable level after alarm 

 file high level after alarm 

op trend before alarm 

then op genuine change 

 

AC11: op step induced genuine change in file (alarm) 

if  alarm triggered 

file no stable level after alarm 

 file high level after alarm 

op step before alarm 

then op genuine change 

 

AC12: unattributed genuine change in file (alarm) 

if  alarm triggered 
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file no stable level after alarm 

 file high level after alarm 

then unattributed genuine change 

 

AC13: drift in alarm 

if  alarm triggered 

file stable level after alarm 

 file stable level after alarm (for first and second order alarms) 

 no load trend before alarm 

 no load step before alarm 

 no rotor current trend before alarm 

 no rotor current step before alarm 

 no generator mvars trend before alarm 

 no generator mvars step before alarm 

then drift 
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Appendix C. Selected Learning Module Look-Up-Tables 

 

Each look-up-table has the initiating cause on the left hand side of the table with the 

associated effects on the right hand side of the table. Each cause and effect is numbered 

so that the relevant effects are matched with their associated effects. For example, if the 

cause is labelled 1 then all the effects labelled 1 are associated with that cause. 

 

 

Figure C.1: Generator rotor current look-up-table (normal behaviour) 

 

 

Figure C.2: Generator rotor coil temperature look-up-table (stiction behaviour) 

 

 

Figure C.3: Generator rotor coil temperature look-up-table (normal behaviour) 
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Figure C.4: Generator rotor balance look-up-table (normal behaviour) 

 

 

Figure C.5: Generator rotor coil dimension look-up-table (normal behaviour) 

 

 

Figure C.6: Generator rotor temperature look-up-table (normal behaviour) 

 

 

Figure C.7: Generator shaft temperature look-up-table (normal behaviour) 
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Figure C.8: Generator shaft dimension look-up-table (normal behaviour) 

 

 

Figure C.9: Generator rotor dimension look-up-table (normal behaviour) 

 

 

Figure C.10: Generator bearing rear vibration look-up-table (normal behaviour) 
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Figure C.11: Generator bearing front vibration look-up-table (normal behaviour) 

 

 

Figure C.12: Rotations per minute look-up-table (normal behaviour) 
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Figure C.13: Turbine shaft speed look-up-table (generator pedestal front looseness fault) 
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Stiction Fault Beran Data 

 

 

Figure D.1: Turbine 2, 15/06/2006 – 02/08/2006, rotations per minute raw data 
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Figure D.2: Turbine 2, 15/06/2006 – 02/08/2006, generator load raw data 
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Figure D.3: Turbine 2, 15/06/2006 – 02/08/2006, generator rotor current raw data 
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Figure D.4: Turbine 2, 15/06/2006 – 02/08/2006, generator rotor MVArs raw data 
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Figure D.5: Turbine 2, channel 6, 15/06/2006 – 02/08/2006, low pressure A bearing rear overall 

vibration raw data 
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Figure D.6: Turbine 2, channel 6, 15/06/2006 – 02/08/2006, low pressure A bearing rear 1st order 

magnitude vibration raw data 
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Figure D.7: Turbine 2, channel 6, 15/06/2006 – 02/08/2006, low pressure A bearing rear 1st order 

phase vibration raw data 
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Figure D.8: Turbine 2, channel 6, 15/06/2006 – 02/08/2006, low pressure A bearing rear 2nd order 

magnitude vibration raw data 
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Figure D.9: Turbine 2, channel 6, 15/06/2006 – 02/08/2006, low pressure A bearing rear 2nd order 

phase vibration raw data 

 

Low Pressure B Bearing Front Overall

0

10

20

30

40

50

60

70

80

1 814 1627 2440 3253 4066 4879 5692 6505 7318

Samples

V
ib

ra
ti

o
n

 (
u

m
 p

k
-p

k
)

LPBBF-OA

 

Figure D.10: Turbine 2, channel 7, 15/06/2006 – 02/08/2006, low pressure B bearing front overall 

vibration raw data 
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Figure D.11: Turbine 2, channel 7, 15/06/2006 – 02/08/2006, low pressure B bearing front 1st order 

magnitude vibration raw data 
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Figure D.12: Turbine 2, channel 7, 15/06/2006 – 02/08/2006, low pressure B bearing front 1st order 

phase vibration raw data 
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Figure D.13: Turbine 2, channel 7, 15/06/2006 – 02/08/2006, low pressure B bearing front 2nd order 

magnitude vibration raw data 
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Figure D.14: Turbine 2, channel 7, 15/06/2006 – 02/08/2006, low pressure B bearing front 2nd order 

phase vibration raw data 
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Figure D.15: Turbine 2, channel 8, 15/06/2006 – 02/08/2006, low pressure B bearing rear overall 

vibration raw data 
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Figure D.16: Turbine 2, channel 8, 15/06/2006 – 02/08/2006, low pressure B bearing rear 1st order 

magnitude vibration raw data 
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Figure D.17: Turbine 2, channel 8, 15/06/2006 – 02/08/2006, low pressure B bearing rear 1st order 

phase vibration raw data 
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Figure D.18: Turbine 2, channel 8, 15/06/2006 – 02/08/2006, low pressure B bearing rear 2nd order 

magnitude vibration raw data 
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Figure D.19: Turbine 2, channel 8, 15/06/2006 – 02/08/2006, low pressure B bearing rear 2nd order 

phase vibration raw data 
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Figure D.20: Turbine 2, channel 9, 15/06/2006 – 02/08/2006, generator bearing front overall 

vibration raw data 
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Figure D.21: Turbine 2, channel 9, 15/06/2006 – 02/08/2006, generator bearing front 1st order 

magnitude vibration raw data 
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Figure D.22: Turbine 2, channel 9, 15/06/2006 – 02/08/2006, generator bearing front 1st order phase 

vibration raw data 
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Figure D.23: Turbine 2, channel 9, 15/06/2006 – 02/08/2006, generator bearing front 2nd order 

magnitude vibration raw data 
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Figure D.24: Turbine 2, channel 9, 15/06/2006 – 02/08/2006, generator bearing front 2nd order phase 

vibration raw data 
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Figure D.25: Turbine 2, channel 10, 15/06/2006 – 02/08/2006, generator bearing rear overall 

vibration raw data 
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Figure D.26: Turbine 2, channel 10, 15/06/2006 – 02/08/2006, generator bearing rear 1st order 

magnitude vibration raw data 
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Figure D.27: Turbine 2, channel 10, 15/06/2006 – 02/08/2006, generator bearing rear 1st order phase 

vibration raw data 
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Figure D.28: Turbine 2, channel 10, 15/06/2006 – 02/08/2006, generator bearing rear 2nd order 

magnitude vibration raw data 
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Figure D.29: Turbine 2, channel 10, 15/06/2006 – 02/08/2006, generator bearing rear 2nd order phase 

vibration raw data 
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Figure D.30: Turbine 2, channel 6, 15/06/2006 – 02/08/2006, low pressure A bearing rear 

temperature raw data 
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Figure D.31: Turbine 2, channel 7, 15/06/2006 – 02/08/2006, low pressure B bearing front 

temperature raw data 
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Figure D.32: Turbine 2, channel 8, 15/06/2006 – 02/08/2006, low pressure B bearing rear 

temperature raw data 
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Figure D.33: Turbine 2, channel 9, 15/06/2006 – 02/08/2006, generator bearing front temperature 

raw data 
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Figure D.34: Turbine 2, channel 10, 15/06/2006 – 02/08/2006, generator bearing rear temperature 

raw data 
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Stiction Fault Channel Profile 
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Appendix D. Looseness Fault Beran Data 

 

 

Figure D.35: Turbine 2, 14/08/2006 – 29/08/2006, RPM Data 
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Figure D.36: Turbine 2, 14/08/2006 – 29/08/2006, Generator Load Data 
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Figure D.37: Turbine 2, 14/08/2006 – 29/08/2006, Generator Rotor Current Data 

 

Generator MVArs

-60

-40

-20

0

20

40

60

80

100

120

1 292 583 874 1165 1456 1747 2038 2329

Samples

A
p

p
a

re
n

t 
P

o
w

e
r 

(M
V

A
r)

GVAR-OA

 

Figure D.38: Turbine 2, 14/08/2006 – 29/08/2006, Generator MVAr Data 
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Figure D.39: Turbine 2, channel 6, 14/08/2006 – 29/08/2006, Low Pressure A Bearing Rear Overall 

Amplitude Data 
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Figure D.40: Turbine 2, channel 6, 14/08/2006 – 29/08/2006, Low Pressure A Bearing Rear 1st Order 

Magnitude Data 
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Figure D.41: Turbine 2, channel 6, 14/08/2006 – 29/08/2006, Low Pressure A Bearing Rear 1st Order 

Phase Data 
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Figure D.42: Turbine 2, channel 6, 14/08/2006 – 29/08/2006, Low Pressure A Bearing Rear 2nd Order 

Magnitude Data 
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Figure D.43: Turbine 2, channel 6, 14/08/2006 – 29/08/2006, Low Pressure A Bearing Rear 2nd Order 

Phase Data 
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Figure D.44: Turbine 2, channel 7, 14/08/2006 – 29/08/2006, Low Pressure B Bearing Front Overall 

Amplitude Data 
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Figure D.45: Turbine 2, channel 7, 14/08/2006 – 29/08/2006, Low Pressure B Bearing Front 1st 

Order Magnitude Data 
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Figure D.46: Turbine 2, channel 7, 14/08/2006 – 29/08/2006, Low Pressure B Bearing Front 1st 

Order Phase Data 
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Figure D.47: Turbine 2, channel 7, 14/08/2006 – 29/08/2006, Low Pressure B Bearing Front 2nd 

Order Magnitude Data 
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Figure D.48: Turbine 2, channel 7, 14/08/2006 – 29/08/2006, Low Pressure B Bearing Front 2nd 

Order Phase Data 
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Figure D.49: Turbine 2, channel 8, 14/08/2006 – 29/08/2006, Low Pressure B Bearing Rear Overall 

Amplitude Data 
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Figure D.50: Turbine 2, channel 8, 14/08/2006 – 29/08/2006, Low Pressure B Bearing Rear 1st Order 

Magnitude Data 
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Figure D.51: Turbine 2, channel 8, 14/08/2006 – 29/08/2006, Low Pressure B Bearing Rear 1st Order 

Phase Data 
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Figure D.52: Turbine 2, channel 8, 14/08/2006 – 29/08/2006, Low Pressure B Bearing Rear 2nd Order 

Magnitude Data 
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Figure D.53: Turbine 2, channel 8, 14/08/2006 – 29/08/2006, Low Pressure B Bearing Rear 2nd Order 

Phase Data 
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Figure D.54: Turbine 2, channel 9, 14/08/2006 – 29/08/2006, Generator Bearing Front Overall 

Amplitude Data 
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Figure D.55: Turbine 2, channel 9, 14/08/2006 – 29/08/2006, Generator Bearing Front 1st Order 

Magnitude Data 

 

 

Figure D.56: Turbine 2, channel 9, 14/08/2006 – 29/08/2006, Generator Bearing Front 1st Order 

Phase Data 
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Figure D.57: Turbine 2, channel 9, 14/08/2006 – 29/08/2006, Generator Bearing Front 2nd Order 

Magnitude Data 
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Figure D.58: Turbine 2, channel 9, 14/08/2006 – 29/08/2006, Generator Bearing Front 2nd Order 

Phase Data 
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Figure D.59: Turbine 2, channel 10, 14/08/2006 – 29/08/2006, Generator Bearing Rear Overall 

Amplitude Data 
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Figure D.60: Turbine 2, channel 10, 14/08/2006 – 29/08/2006, Generator Bearing Rear 1st Order 

Magnitude Data 
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Figure D.61: Turbine 2, channel 10, 14/08/2006 – 29/08/2006, Generator Bearing Rear 1st Order 

Phase Data 
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Figure D.62: Turbine 2, channel 10, 14/08/2006 – 29/08/2006, Generator Bearing Rear 2nd Order 

Magnitude Data 
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Figure D.63: Turbine 2, channel 10, 14/08/2006 – 29/08/2006, Generator Bearing Rear 2nd Order 

Phase Data 

 

 

Figure D.64: Turbine 2, channel 6, 14/08/2006 – 29/08/2006, Low Pressure A Bearing Rear 

Temperature Data 
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Figure D.65: Turbine 2, channel 7, 14/08/2006 – 29/08/2006, Low Pressure B Bearing Front 

Temperature Data 
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Figure D.66: Turbine 2, channel 8, 14/08/2006 – 29/08/2006, Low Pressure B Bearing Rear 

Temperature Data 
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Figure D.67: Turbine 2, channel 9, 14/08/2006 – 29/08/2006, Generator Bearing Front Temperature 

Data 
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Figure D.68: Turbine 2, channel 10, 14/08/2006 – 29/08/2006, Generator Bearing Rear Temperature 

Data 

 



 289 

Channel Profile of Looseness Fault Data 

oosegpf,,, 

LPABR-OA,Level-Low,0,432 

LPABR-OA,Level-St,432,2016 

LPABR-OA,Change-Inc,0,144 

LPABR-OA,Change-St,144,144 

LPABR-OA,Change-Inc,288,144 

LPABR-OA,Change-St,432,2016 

LPABR-1M,Level-Low,0,432 

LPABR-1M,Level-St,432,2016 

LPABR-1M,Change-Inc,0,144 

LPABR-1M,Change-St,144,144 

LPABR-1M,Change-Inc,288,144 

LPABR-1M,Change-St,432,2016 

LPABR-1P,Level-St,0,2448 

LPABR-1P,Change-Dec,0,144 

LPABR-1P,Change-St,144,2304 

LPABR-2M,Level-St,0,2448 

LPABR-2M,Change-Inc,0,144 

LPABR-2M,Change-St,144,144 

LPABR-2M,Change-Inc,288,144 

LPABR-2M,Change-St,432,2016 

LPABR-2P,Level-Hi,0,144 

LPABR-2P,Level-St,144,2304 

LPABR-2P,Change-Inc,0,144 

LPABR-2P,Change-Dec,144,144 

LPABR-2P,Change-St,288,2160 

LPBBF-OA,Level-Low,0,144 

LPBBF-OA,Level-St,144,288 

LPBBF-OA,Level-Hi,432,2016 

LPBBF-OA,Change-Inc,0,432 

LPBBF-OA,Change-St,432,2016 

LPBBF-1M,Level-Low,0,144 

LPBBF-1M,Level-St,144,288 

LPBBF-1M,Level-Hi,432,2016 

LPBBF-1M,Change-Inc,0,432 

LPBBF-1M,Change-St,432,1440 

LPBBF-1M,Change-Dec,1872,144 

LPBBF-1M,Change-St,2016,432 

LPBBF-1P,Level-St,0,2448 

LPBBF-1P,Change-Dec,0,144 

LPBBF-1P,Change-St,144,2304 

LPBBF-2M,Level-St,0,2448 

LPBBF-2M,Change-Inc,0,144 

LPBBF-2M,Change-Dec,144,288 

LPBBF-2M,Change-St,432,2016 

LPBBF-2P,Level-Low,0,144 

LPBBF-2P,Level-St,144,2304 

LPBBF-2P,Change-St,0,144 

LPBBF-2P,Change-Inc,144,144 

LPBBF-2P,Change-St,288,2160 

LPBBR-OA,Level-Low,0,144 

LPBBR-OA,Level-St,144,288 

LPBBR-OA,Level-Hi,432,2016 

LPBBR-OA,Change-Inc,0,432 

LPBBR-OA,Change-St,432,1440 

LPBBR-OA,Change-Dec,1872,144 

LPBBR-OA,Change-St,2016,432 

LPBBR-1M,Level-Low,0,144 

LPBBR-1M,Level-St,144,288 

LPBBR-1M,Level-Hi,432,2016 

LPBBR-1M,Change-Inc,0,432 

LPBBR-1M,Change-St,432,1440 

LPBBR-1M,Change-Dec,1872,144 

LPBBR-1M,Change-St,2016,432 

LPBBR-1P,Level-Hi,0,144 

LPBBR-1P,Level-St,144,2304 

LPBBR-1P,Change-Dec,0,144 

LPBBR-1P,Change-St,144,2304 

LPBBR-2M,Level-St,0,288 

LPBBR-2M,Level-Hi,288,2160 

LPBBR-2M,Change-Inc,0,432 

LPBBR-2M,Change-St,432,2016 

LPBBR-2P,Level-Low,0,144 

LPBBR-2P,Level-St,144,2304 

LPBBR-2P,Change-St,0,2448 

GBF-OA,Level-Low,0,144 

GBF-OA,Level-St,144,288 

GBF-OA,Level-Hi,432,2016 

GBF-OA,Change-Inc,0,432 

GBF-OA,Change-St,432,1872 

GBF-OA,Change-Dec,2304,144 

GBF-1M,Level-Low,0,144 

GBF-1M,Level-St,144,864 

GBF-1M,Level-Hi,1008,288 

GBF-1M,Level-St,1296,576 

GBF-1M,Level-Hi,1872,144 

GBF-1M,Level-St,2016,432 

GBF-1M,Change-Inc,0,432 

GBF-1M,Change-St,432,2016 

GBF-1P,Level-Low,0,144 

GBF-1P,Level-St,144,2304 

GBF-1P,Change-Inc,0,144 

GBF-1P,Change-St,144,2304 

GBF-2M,Level-St,0,144 

GBF-2M,Level-Hi,144,2304 

GBF-2M,Change-Inc,0,144 

GBF-2M,Change-St,144,144 

GBF-2M,Change-Inc,288,144 

GBF-2M,Change-St,432,2016 

GBF-2P,Level-Low,0,144 

GBF-2P,Level-St,144,2304 

GBF-2P,Change-St,0,144 

GBF-2P,Change-Inc,144,144 

GBF-2P,Change-St,288,2160 



 290 

RPM-OA,Level-Low,0,288 

RPM-OA,Level-St,288,2160 

RPM-OA,Change-Inc,0,288 

RPM-OA,Change-St,288,2160 

GBR-OA,Level-Low,0,2448 

GBR-OA,Change-Inc,0,144 

GBR-OA,Change-St,144,144 

GBR-OA,Change-Inc,288,144 

GBR-OA,Change-St,432,2016 

GBR-1M,Level-Low,0,2448 

GBR-1M,Change-Inc,0,144 

GBR-1M,Change-St,144,144 

GBR-1M,Change-Inc,288,144 

GBR-1M,Change-St,432,2016 

GBR-1P,Level-St,0,2448 

GBR-1P,Change-Dec,0,144 

GBR-1P,Change-Inc,144,144 

GBR-1P,Change-Dec,288,144 

GBR-1P,Change-St,432,2016 

GBR-2M,Level-St,0,288 

GBR-2M,Level-Low,288,2160 

GBR-2M,Change-Inc,0,144 

GBR-2M,Change-Dec,144,288 

GBR-2M,Change-St,432,1872 

GBR-2M,Change-Inc,2304,144 

GBR-2P,Level-St,0,2448 

GBR-2P,Change-Inc,0,432 

GBR-2P,Change-Dec,432,144 

GBR-2P,Change-Inc,576,144 

GBR-2P,Change-Dec,720,144 

GBR-2P,Change-Inc,864,144 

GBR-2P,Change-Dec,1008,144 

GBR-2P,Change-Inc,1152,288 

GBR-2P,Change-Dec,1440,144 

GBR-2P,Change-Inc,1584,432 

GBR-2P,Change-St,2016,432 

GRC-OA,Level-Low,0,2448 

GRC-OA,Change-Inc,0,144 

GRC-OA,Change-St,144,144 

GRC-OA,Change-Inc,288,144 

GRC-OA,Change-St,432,720 

GRC-OA,Change-Dec,1152,144 

GRC-OA,Change-St,1296,576 

GRC-OA,Change-Dec,1872,144 

GRC-OA,Change-St,2016,432 

GVAR-OA,Level-Low,0,432 

GVAR-OA,Level-St,432,1008 

GVAR-OA,Level-Low,1440,432 

GVAR-OA,Level-St,1872,432 

GVAR-OA,Level-Low,2304,144 

GVAR-OA,Change-St,0,2448 

GL-OA,Level-Low,0,2448 

GL-OA,Change-St,0,144 

GL-OA,Change-Inc,144,432 

GL-OA,Change-St,576,576 

GL-OA,Change-Dec,1152,144 

GL-OA,Change-St,1296,576 

GL-OA,Change-Dec,1872,144 

GL-OA,Change-St,2016,144 

GL-OA,Change-Inc,2160,144 

GL-OA,Change-Dec,2304,144 

GL-OA,Step-Inc,320,0 

GL-OA,Step-Dec,1955,0 

LPABRT-OA,Level-St,0,2448 

LPABRT-OA,Change-Inc,0,144 

LPABRT-OA,Change-St,144,2304 

LPBBFT-OA,Level-St,0,2448 

LPBBFT-OA,Change-Inc,0,144 

LPBBFT-OA,Change-St,144,2304 

LPBBRT-OA,Level-St,0,2448 

LPBBRT-OA,Change-Inc,0,144 

LPBBRT-OA,Change-St,144,2304 

GBFT-OA,Level-St,0,2448 

GBFT-OA,Change-Inc,0,144 

GBFT-OA,Change-St,144,2304 

GBRT-OA,Level-St,0,2448 

GBRT-OA,Change-Inc,0,144 

GBRT-OA,Change-St,14


