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Abstract  

 

Centralized model predictive control (MPC) is often considered impractical, 

inflexible and unsuitable for controlling large-scale systems due to several factors 

such as large computational effort and difficulty to meet all operational objectives. 

Therefore, industrial large-scale systems are usually controlled by a distributed 

control framework. In this thesis, novel sequential nonlinear Distributed Model 

Predictive Control (DMPC) algorithms for large-scale systems that can handle 

constraints are proposed. The proposed algorithms are based on nonlinear MPC 

strategy, which uses a state-dependent nonlinear model to reduce the complexity of 

solving optimization problem. In this distributed framework, the overall system is 

divided into several interconnected subsystems and each subsystem is controlled by 

local MPC. These local MPCs solve convex optimization problem and exchange 

information via one directional communication channel at each sampling time to 

achieve the global performance. The proposed algorithms are applied to an industrial 

power plant model to improve power generation efficiency. A non-linear dynamic 

model of Combined Cycle Power Plant (CCPP) using the laws of physics was first 

developed and simulated using decentralized PID controllers.  Then, a supervisory 

controller using linear constrained MPC was designed to tune the performance of the 

PID controllers.  Next, a supervisory centralized nonlinear model predictive control 

(NMPC) algorithm based on state-dependent models was developed to control the 

nonlinear plant over a wide operating range.  Finally, two sequential DMPC 

algorithms based on state-dependent models were developed. The lack of states 

measurement were handled by designing nonlinear distributed state estimation 

algorithms using state-dependent differential Riccati equation (SDDRE) Kalman 

filter. Numerical simulation results show that the performance of the proposed 

DMPC algorithms is close to the centralized NMPC but computationally more 

efficient compared to the centralized one. 
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1. Introduction  

 

1.1 Background 

During the last few decades, the ever-growing demand for electric power, 

deregulation of power industry and its associated competition and more strict 

environmental legislation have given rise to an increasing interest in Combined 

Cycle Power Plants (CCPP) due to their high efficiencies and their low emission. 

CCPP or Combined Cycle Gas Turbine (CCGT) is a power plant system in which 

two types of turbines, namely a gas turbine and a steam turbine, are combined in one 

cycle to generate electricity. The purpose of introducing combined cycle in power 

plants is to reduce energy loss. Their main role is to use the waste heat of the gas 

turbine exhaust gases to produce additional electricity.  

The power plant is a highly complex, nonlinear, and time varying system, where its 

control is of a multi-loop nature with interactions between different loops. The most 

common control strategy used is decentralized multi-loop controller to stabilize the 

outputs. The well-known Proportional Integral Derivative (PID) regulatory 

controllers have been employed in each loop due to their simplicity and ease of 

tuning. However, to improve the economic operation, an advanced control strategy is 

needed. Model based Predictive Control (MPC) has received wide acceptance in 

process industries because of its ability to handle constraints and its optimization 

based formulation (Qin and Badgwell, 2003).  

In power plant applications MPC is usually implemented using a supervisory control 

strategy. In this strategy, the MPC provides optimum set-points to the regulatory 

level, based on a dynamic optimisation procedure. The basic concept of MPC 

method is to use a model of the system to predict the future control inputs and 

outputs behaviour of the process over a prediction horizon. Then, future control 

inputs are optimized such that the predicted response of the system has some 

desirable features. Therefore, to apply MPC it is required to develop a moderately 
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complex non-linear model that can capture the key dynamical properties over a wide 

range of operating conditions. There are three types of models that have been used 

for calculating the predicted outputs in MPC implementations:  

1- First principles models (white-box) obtained from the analysis of physical 

systems at the fundamental level. These use scientific principles such as, 

Newton’s‎ law,‎ laws‎ of‎ thermodynamics‎ and‎ mass and energy balances to 

derive an analytical model. The advantage of first–principle models is that 

they are globally valid. Therefore, these models are expected to provide better 

extrapolation accuracy than empirical models, and can be used to predict the 

process dynamic over a wide range of operations (Åström and Bell, 2000). 

2- Input-output models (black-box) obtained from the observed behaviour of the 

physical system (data-driven). A model structure is first selected. Then, the 

model parameters are identified based on measurements of input and output 

signals from the true system using system identification. The resulting model 

is called an empirical model or black–box model.  Empirical models are 

generally easier to obtain than first-principles models because of their 

generally lower dimensionality but they often provide inaccurate predictions 

for operating conditions that are outside the range used for model 

identification (Qin and Badgwell, 2003). 

3- Hybrid first principles empirical models (gray-box) are developed by 

combining the first–principle knowledge with empirical modelling 

approaches. This is the case when some physical insights are available, but 

several parameters remain to be determined from observed data.  This allows 

the advantages of each modelling approach to be exploited (Åström and Bell, 

2000).  

MPC methods may be divided into two main categories: linear model predictive 

control (LMPC) and nonlinear model predictive control (NMPC) techniques. LMPC 

refers to a family of MPC schemes in which linear or linearized models are used to 

predict the system dynamics. LMPC is acceptable when the process operates at a 

single operating point and the controller is used only for disturbances rejection.  
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The power plant process dynamic often exhibits severely nonlinear behaviour. In 

addition, the demands for rapid changes in power generation require frequent 

changes from one operating point to another and often near the boundary of 

admissible region. This suggests the need for NMPC strategies. NMPC techniques 

involve solving nonlinear differential equations and a nonlinear dynamic 

optimization problem online. This computational effort is one of the main obstacles 

to the adoption of non-linear predictive controller in a wider context. In addition, 

using a nonlinear model may change the control problem from a convex optimisation 

problem to a non-convex non-linear program, for which global optimum solution 

cannot be guaranteed. This has motivated the study of alternative MPC approaches, 

requiring the solution of simpler optimization problems in real-time. Most of these 

approaches are based on linear time-varying (LTV) prediction through local Jacobian 

linearization (Kouvaritakis et al., 1999) or state dependent description of the 

nonlinear system (Cloutier, 1997). The state dependent representation of a system 

model avoids model linearization. Non-linearity is handled by the replacement of the 

original nonlinear system with a sequence of linear time-varying systems whose 

solutions will converge to the solution of the nonlinear problem. 

The NMPC approach, based on the state-dependent model, has been demonstrated 

for many applications, such as for helicopter control application in (Dutka et al., 

2003), for flight control in (Youssef et al., 2003) and for cruise control in (Shakouri 

and Ordys, 2011). Recently, Grimble (2013) pointed out the potential of using state-

dependent modelling and control methods for industrial process applications. 

However, to the best of the author's knowledge, there have been no studies which use 

the state-dependent NMPC approach to control large-scale power plant systems.  

For large-scale process, different control solutions can be developed using MPC, 

such as centralized, decentralized and distributed control techniques. The centralized 

MPC formulation is based on a centralized system model with a centralized control 

problem (single agent), where all the interactions are considered and all the control 

inputs are computed in one optimization problem, providing better performance. 

However, the use of centralized control strategy for a large scale system is often 

considered impractical due to the high on-line computation requirement, and 
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undesirable properties with respect to fault tolerance and reliability (Dunbar and 

Murray, 2004; Zheng et al., 2011). Therefore, distributed model predictive control 

(DMPC) architectures have received great attention, motivated by their advantage of 

providing similar performance to centralized MPC while maintaining flexibility 

against failures and partial shut-downs due to their decentralized nature. 

DMPC control strategies for large-scale industrial process described in literature can 

be classified into two groups namely decentralized and distributed MPC. The 

distributed structure consists of decomposing the centralized MPC control problem 

into n subproblems, where each subproblem solves an MPC control problem for a 

particular subsystem. Then, the controllers are coordinated online among themselves 

via exchange of information in order to ensure feasibility. In this strategy, all 

distributed controllers can be evaluated in parallel as in Vaccarini et al. (2009) for 

example, or in sequential order as in Richards and How (2007), or based on 

neighbourhood optimization as in Zhang and Li, (2007). In the decentralized 

structure, there is no exchange of information between the control agents. A 

comprehensive literature review of decentralized and distributed control strategies 

can be found in survey papers (Rawlings and Stewart, 2008; Negenborn et al., 2009; 

Scattolini, 2009; Al-Gherwi et al., 2011; Christofides et al., 2012). 

In literature, there are only a few papers that consider nonlinear DMPC. For example, 

Necoara et al. (2009) and Zheng et al. (2009) proposed a nonlinear DMPC for a 

nonlinear large scale process. In this method, the prediction model of each MPC is 

linearized using a successive on-line linearization method. Liu et al. (2009) and Chen 

et al. (2012) proposed nonlinear sequential DMPC methods for nonlinear systems. 

These strategies need a high computational effort in large-scale systems because they 

involve solving nonlinear differential equations and a nonlinear dynamic 

optimization problem online. Recently, nonlinear DMPC has attracted increasing 

attention for large-scale systems applications (Christofides et al., 2013). 

Most of the DMPC schemes mentioned in the literature depend on the assumption of 

availability of the measurement of complete states (Christofides et al., 2013). 

However, in a large-scale control system it is possible that measurements of all states 
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are not available. Therefore, it is important to study distributed state estimation 

schemes for a large scale-system in order to integrate them with DMPC control 

algorithms to achieve the desired level of stability, performance and robustness. One 

approach is to design a centralized observer that sends the estimated state to all 

distributed controllers. However, for large scale systems, centralized implementation 

of a Kalman filter state estimator may be computationally expensive or even difficult 

to construct. Therefore, distributed estimation has attracted increasing attention with 

the development of large-scale sensor networks.  

 

1.2 Research Objectives  

 

Following the preceding discussion, a number of objectives for the design of a 

nonlinear DMPC strategy to control a large-scale CCPP system have been defined, as 

follows: 

1- Development of a nonlinear DMPC based on a state-dependent model of 

an interconnected large-scale CCPP to provide a reduction in the 

complexity of the NMPC online optimization problem and improve 

performance through constrained optimisation.  

2- Development of centralized NMPC based on a state-dependent model of 

CCPP. 

3- Development of a distributed nonlinear observer based on the state-

dependent Riccati equation (SDRE) Kalman filter. 

4- Development of a non-linear CCPP MATLAB/SIMULINK model that is 

suitable for use in designing and testing model based controllers. 

5- Applications of the above methods to a number of CCPP architecture to 

demonstrate improved performance and energy optimization.  

 



6 

1.3 Summary of Research Contributions 

 

The original contributions of this thesis can be summarised as follows:  

1- Novel sequential nonlinear constrained DMPC algorithms for large-scale 

systems are proposed. These algorithms are based on a nonlinear MPC 

strategy that uses a state-dependent nonlinear model to avoid the complexity 

of solving the non-convex nonlinear optimization problem. In the first 

algorithm, the interactions from all previous subsystems are considered as 

input disturbances, whereas in the second algorithm, interactions are 

modelled as functions of states and estimated from the previous time step. 

The proposed algorithms are applied to an industrial combined cycle power 

plant model. Comparison between the centralized NMPC and the DMPC 

schemes has been performed. Numerical simulation results show that the 

performance of the proposed DMPC algorithms is close to the centralized 

NMPC but computationally much more efficient. 

2- Two sequential distributed nonlinear estimators are proposed to estimate all 

subsystem states. These estimation methods are based on the SDRE Kalman 

filter. In the first sequential estimation algorithm, each agent must include all 

previous subsystem models and it requires every subsystem node to send its 

measurements to all subsequent subsystem nodes in a one directional 

communication channel and once at each time step. However, in the second 

algorithm, each subsystem includes its model and all previous interactions, 

which are modelled as functions of previous states. Therefore, this sequential 

algorithm needs less computation effort and requires every subsystem node to 

send its state estimates and control input to all subsequent subsystem nodes. 

3- A supervisory constrained centralized nonlinear model predictive (NMPC) 

control strategy based on the LTV state-dependent model is formulated and 

applied for the regulation of a nonlinear power plant model. The main 

difference with the previous work in this area is that the complete algorithm 

using an optimization procedure, a nonlinear estimator and constraints are 
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employed to design a 2nd level controller to generate optimal set points for 1st 

level regulating PID loops.  

4- A nonlinear CCPP model is developed and simulated using a 

MATLAB\SIMULINK S-functions environment. This model is based on the 

principles of mass, energy and momentum conservations that can capture the 

key dynamical properties over a wide operating range. The contribution here 

is the modification of the boiler model described in (Ordys et al., 1994) to 

include shrink and swell dynamics. Another contribution is the formulation of 

all nonlinear power plant subsystem models into state-dependent coefficient 

(SDC) discrete models to be used in the NMPC control design.  

5- The generalized Internal Model Control (IMC) and Relay feedback tuning 

methods are used to tune PID loops of power plant system. Simulation results 

show that the PID tuning rules based on IMC tuning method gives better 

closed loop performance than the Relay feedback method. 

 

1.4 Outline of the Thesis 

The structure of the thesis is described hereunder. 

In Chapter 2, the modelling and simulation of CCPP is presented. The CCPP model 

is based on first principles of physics. Section 2.2 describes the configuration of the 

most popular types of CCPP. In section 2.3 the main subsystems of CCPP, such as a 

boiler, steam turbine and gas turbine are described. Dynamic models of the main 

components of the CCPP that have been developed and used in this thesis are 

described in section 2.4, which focuses on modelling of the boiler with a new model 

simulator being presented. This model can capture much of the system dynamics, 

such as the shrink and swell phenomenon. Section 2.5 describes the PID regulatory 

control of CCPP. It also describes the IMC and relay feedback tuning methods. Good 

model accuracy and control performance have been achieved, as confirmed by 

simulation. In section 2.6, the CCPP model is approximated by a simpler model in 
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order to simplify the derivation of the nonlinear state-dependent coefficient matrices 

that will be used in Chapter 4. 

Chapter 3 presents a supervisory linear MPC controller to improve the control 

performance of CCPP by providing the optimal set-points for the PID regulatory 

level. Output constraints are also included in solving the optimization problem. A 

Kalman filter observer is used to estimate the system states. Section 3.2 describes the 

supervisory control strategy. Section 3.3 describes the MPC algorithm formulation 

based on a discrete-time linear state-space model. This section also describes the 

changes to the MPC formulation when adding measured input disturbances and 

output constraints. This linear MPC algorithm is used as a basis for the development 

of LTV state-dependent NMPC in Chapter 4. Section 3.4 presents the validation 

results of the linearized model. This is done by comparing the simulation of 

linearized and nonlinear models using the same frequency and step input signals. 

Simulation results of supervisory MPC are also presented in this section. Simulation 

results have shown that the supervisory MPC has better performance than classical 

PID control schemes and allows handling constraints.  

Chapter 4 presents a supervisory constrained NMPC algorithm based on the LTV 

state-dependent model of the nonlinear CCPP described in Chapter 2. A nonlinear 

estimator based on the SDRE Kalman filter is used to estimate the unmeasured states. 

Section 4.2 describes the SDRE control method. Section 4.3 describes how to derive 

the parameterization of SDC representation. Section 4.4 presents the formulation of 

the NMPC algorithm. In section 4.5, nonlinear estimation methods are reviewed, 

including the formulations of state-dependent algebraic Riccati equations (SDARE) 

and state-dependent differential Riccati equation (SDDRE) filters. Section 4.6 

presents application of the NMPC algorithm to a nonlinear boiler model and then to 

the nonlinear power plant model. In this section, the state-dependent coefficient 

(SDC) representations for both models are presented. It also presents the simulation 

results of NMPC algorithms that show a good tracking and disturbance rejection 

performance and the ability to handle constraints.  
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Chapter 5 presents new nonlinear sequential DMPC algorithms based on state-

dependent NMPC discussed in the previous chapter. Section 5.1 describes a state of 

the art review of the different DMPC methods, such as decentralized MPC, 

communication-based (non-cooperative) DMPC, and cooperative-based DMPC.  

Section 5.2 describes the sequential DMPC architecture. Section 5.3 presents the 

proposed two nonlinear sequential DMPC algorithm formulations. These two 

algorithms require decomposition of the model of the entire system into N 

subsystems models and the solution of corresponding N convex-optimization 

problems. The difference between these algorithms is related to how the interactions 

between subsystems in the DMPC solution are considered. Section 5.4 describes the 

proposed distributed nonlinear state estimation algorithms which are based on an 

SDDRE Kalman filter. The distributed models of the power plant model formulated 

in SDC representation are described in section 5.5. Simulation results of both 

distributed nonlinear state estimation algorithms and DMPC controllers are presented 

in section 5.6, which is followed by the conclusion in section 5.7.  

Chapter 6 presents a summary and conclusions of this thesis, along with a 

discussion of its limitations and suggestion of potential areas for further future work. 
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Abokhatwa, S. and R. Katebi (2013). “Sequential Distributed Nonlinear State-

Dependent Model Predictive Control and Estimation.” Submitted for IET journal of 

control theory and applications. 

Abokhatwa, S. and R. Katebi (2013). “Nonlinear State-Dependent Model Predictive 
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2. Modelling and Simulation of 

Combined Cycle Power Plant 

2.1 Introduction 

During the last few decades, electrical power generation has undergone several 

extremely significant changes. These include deregulation and privatization of the 

power industry and its associated competition, which has led to great interest in 

economic and financial concerns rather than just purely engineering. Moreover, very 

efficient (over 38%) gas turbines have been developed with high power output, low 

cost and short construction time. Additionally, there has been an increased interest in 

environmental issues, leading to an assessment of existing greenhouse gas emissions. 

As a result, the use of gas turbines in electricity generation has been growing rapidly 

(Flynn, 2003). These have given rise to increasing interest in CCPP due to their high 

efficiencies and low emissions (Wood, 2008).  

CCPP is a power plant system in which two types of turbines, namely a gas turbine 

and a steam turbine, are combined in one cycle to generate electricity as shown in 

Figure ‎2.1. The purpose of introducing a combined cycle in power plants is to 

reduce losses of energy from gas turbine to produce additional electricity.  

The efficiency of the modern combined cycle plant has reached a level of 60%. Most 

of the remaining fuel energy that is wasted in this conversion process is released into 

the environment as waste heat. The principle behind combined heat and power 

(CHP), also known as co-generation, is to recover and make beneficial use of this 

heat. By using the heat output from the electricity production for heating or industrial 

applications, CHP plants generally convert 75-80% of the fuel source into useful 

energy, while the most modern CHP plants reach efficiencies of 90% or more (Wood, 

2008).  
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Figure ‎2.1: Combined cycle power plant 

In this chapter, a CCPP and its subsystems, such as a boiler, steam turbine and gas 

turbine, will first be described. Then, a non-linear CCPP MATLAB/SIMULINK 

model will be developed, covering the simulator and the regulatory level controls. 

The non-linear model is based on the principles of mass, energy and momentum 

conservations that can capture the key dynamical properties over a wide operating 

range and is suitable for use in designing a multivariable model based controller. 

 

2.2 Configurations of CCPP  

There is a wide variety of CCPP schemes. Tomlinson and McCullough (1996) 

classify CCPP systems into two main types: single-shaft and multi-shaft 

configuration. The advantages of single-shaft arrangement include operating 

simplicity, higher reliability, minimum land requirements, low cost and convenient 

daily start-stop operation. The key advantage of a multi-shaft arrangement is its 

higher steam cycle efficiency (Tomlinson and McCullough, 1996). The classification 

of CCPP can also be based on the Heat Recovery Steam Generator (HRSG) design 

methods and steam turbine type. According to several authors (Ordys et al., 1994; 

Tomlinson and McCullough, 1996; Chase and Kehoe, 2000; Blood and Britain, 2003; 

Kehlhofer et al., 2009; Rayaprolu, 2010), the most popular types of CCPP are:  
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1- Unfired single pressure HRSG  

2- CCPP with supplementary fired boiler 

3- Multiple-Pressure HRSG 

 

2.2.1 Unfired Single Pressure HRSG 

As shown in Figure ‎2.2, this steam cycle has an unfired HRSG with superheater, 

evaporator, and economizer sections. Energy is recovered from the exhaust gas by 

convective heat transfer. This is the simplest steam cycle that can be applied in a 

combined cycle and it has been used extensively. It results in a low installed cost. 

Although it does not produce the highest combined-cycle thermal efficiency, it is an 

economic solution when fuel is inexpensive (Chase and Kehoe, 2000). 

 

 
 

Figure ‎2.2: Unfired single pressure HRSG (Ordys et al., 1994) 

 
 

2.2.2 CCPP with Supplementary Fired Boiler 

An additional firing of the HRSG, as shown in Figure ‎2.3, may be used in the CCPP 

to increase the amount and the temperature of the generated steam. However, using 

supplemental firing will not raise the combined cycle efficiency. This configuration 

has advantages such as an increased amount and better control of system thermal 

output and the ability to burn fuels not suitable for gas turbines (Ordys et al., 1994). 
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Figure ‎2.3: Supplementary fired HRSG (Ordys et al., 1994) 

 

2.2.3 Multiple-pressure HRSG 

 

Multi-pressure steam generation is used to maximize energy recovery from gas 

turbines that have high exhaust temperature as a means of increasing the energy 

conversion efficiency (Blood and Britain, 2003). A dual-pressure arrangement can 

increase the power output and the cycle efficiency of a single-pressure system by up 

to 11% and 4%, respectively (Kehlhofer et al., 2009; Rayaprolu, 2010). Most modern  

CCPP gas turbine of 100 MW and above that have an approximate rated exhaust gas 

temperature of 538°C incorporate three-pressure HRSGs (Rayaprolu, 2010). The 

three-pressure non-reheat CCPP is shown in Figure ‎2.4. The pressure levels are 

designated as HP, IP, and LP, denoting high, intermediate, and low, respectively. To 

optimize the lower pressure end of steam turbine performance and increase the 

combined cycle efficiency, the reheat steam circuit is commonly used with gas 

turbines that have an exhaust temperature of 593°C or greater. Modern CCPPs with 

three-pressure HRSGs and steam reheat can reach efficiency above 60% (Rayaprolu, 

2010).  
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Figure ‎2.4: Three-pressure non-reheat CCPP  

 

2.3 Combined Cycle Components  

2.3.1  Boiler (HRSG) 

A heat recovery steam generator or HRSG is an energy recovery heat exchanger that 

recovers heat from a hot gas stream. It produces steam that can be used to drive a 

steam turbine. HRSGs consist of four major components. They are the evaporator, 

superheater, reheater, and economizer, as shown in Figure ‎2.5. 

The classification of an HRSG (boiler) depends on its application, design or 

operation. For example, it may be a fired or non-fired HRSG, single pressure or multi 

pressure HRSG, and horizontal or vertical design shape (Blood and Britain, 2003; 

Rayaprolu, 2010). One of the most common types of boiler used for steam generation 

in thermal power plants is the drum boiler. 

 

http://en.wikipedia.org/wiki/Energy_recovery
http://en.wikipedia.org/wiki/Heat_exchanger
http://en.wikipedia.org/wiki/Evaporator
http://en.wikipedia.org/wiki/Superheater
http://en.wikipedia.org/wiki/Economizer
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Figure ‎2.5: Boiler schematic diagram 

 

2.3.1.1 Drum Type HRSGs 

This boiler employs a large drum for the separation of steam and water. There are 

two types of drum boilers, one that uses natural circulation in the downcomer-riser 

loop and one where water is circulated using a pump. A drum boiler consists of 

several components: the drum, risers, economizer, reheater and superheater. A 

typical drum-type boiler is depicted in Figure ‎2.5. The feed-water, leaving the 

economizer, flows into the downcomer and then enters the risers. In the risers the 

heat from the gas turbine exhaust is used to increase the water temperature to cause 

evaporation. The generated steam leaves the drum and flows to the steam turbine 

through the superheater. A superheater is a heat exchanger that adds more heat to the 

steam‎created‎by‎the‎boiler.‎This‎increases‎the‎steam’s‎enthalpy, allowing more work 

by the turbine to be generated. An attemperator is used to control the temperature of 

the steam exiting the superheater by mixing water at a lower temperature with the 

superheated steam. The advantages of the drum-type HRSG are the simple 

construction of the evaporator walls. A disadvantage is the pressure limit which 

prevents its use in steam power plants with supercritical pressures and high 

efficiencies (Rayaprolu, 2010). 
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2.3.2  Gas Turbine 

The industrial power plant gas turbine consists of three major components, as shown 

in Figure ‎2.6: the compressor, the combustion chamber, and the turbine. The 

compressor drives air into a combustion chamber where combustion takes place 

when fuel (gas or oil) is added. The exhaust gas resulting from the combustion is 

expanded through the turbine to drive a generator and the compressor. A gas turbine 

has several advantages as a power source (Kehlhofer et al., 2009). It can be easily 

assembled and erected and it can have an efficiency ranging from 25% to 40%. It 

also has a high start-up speed, reaching approximately 100% load within 12 minutes 

in the case of a 70 MW gas turbine (Wittchow, 2002). 

 

 

Figure ‎2.6: Gas turbine - schematic diagram 

2.3.3  Steam Turbine 

A steam turbine is a mechanical device that converts thermal steam energy into 

mechanical work. The turbine is directly coupled to an electrical generator to convert 

the rotational mechanical energy into electrical energy. Steam turbines can be 

classified according to their exhaust pressure as condensing or non-condensing 

(backpressure) types. Condensing turbines are most commonly found in electrical 

power plants. These turbines operate with exhaust pressures well below atmospheric 

pressure. Backpressure turbines operate with exhaust pressures that are equal or 

greater than the atmospheric pressure. These turbines are most widely used in 

process steam applications such as refineries, district heating units, and desalination 

facilities (Kehlhofer et al., 2009). In a CCPP, a condensing steam turbine uses the 

superheated steam from the HRSG to produce electricity. A reheat turbine can also 

be used to increase efficiency.   

http://en.wikipedia.org/wiki/Thermal_energy
http://www.answers.com/topic/desalinate
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As shown in Figure ‎2.7, a steam turbine can be divided into three main components, 

namely the high pressure (HP) section, the intermediate pressure (IP) section, and the 

low pressure (LP) section. The steam from the HRSG enters the HP section via the 

main admission control valves. After passing through the HP section, the steam is 

circulated to the HRSG to be reheated. The steam then passes through the IP section 

and finally through the LP section before entering the condenser.  

 

 

Figure ‎2.7: Steam turbine – schematic diagram 

2.3.4  Condenser  

A condenser is a device used in steam turbines to condense the steam that exits the 

steam turbine. The most common type of condenser applied in industry is the shell 

and tube type, where the heat is removed from the steam by the use of a cooling 

medium, usually air or water.  

2.4 Non-linear Model of CCPP 

The first step in the modelling procedure of large-scale CCPP using first principles is 

to break each unit down into smaller subsystems called modules. The next step is to 

establish suitable mathematical equations for each module that can represent the 

actual plant behaviour. The output of one module serves as the input to subsequent 

modules, along with additional input parameters that may be required.  

The dynamic model of the main components of the fired CCPP that were developed 

and used in this thesis is described in this section. All models were implemented 

using MATLAB/SIMULINK S-functions. 
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2.4.1 HRSG (Boiler) Model  

In the literature, boiler models vary between simple ones (for example, Astrom and 

Bell (1988) and De Mello (1991)) and very complex ones (for example, McDonald 

and Kwatny (1970) and Busi and Cori (1977)). Ordys et al. (1994) describe a 

moderately complicated boiler model for a CCPP that is suitable for model based 

control. It consists of the following subsystems: furnace, risers, drum, superheater, 

reheater, and economizer. This model is based mainly on the paper of Chien et al. 

(1958) with some extensions from the paper of Nicholson (1964). The furnace model 

was created from Nicholson (1964), Busi and Cori (1977) and  Rhine et al. (1991). 

This model has been widely used for model based control systems (for example, 

Saez et al. (2005) and Harish et al. (2010)). However, it has the drawback that the 

boiler model cannot capture the boiler shrink and swell phenomenon, where bubbles 

of steam below the water surface level will shrink or swell, causing the level to 

initially move in the opposite direction to that expected. This phenomenon causes the 

non-minimum phase behaviour of level dynamics. 

In this thesis, the boiler model described in Ordys et al (1994) is modified by 

replacing the risers and drum model with a simple fourth order non-linear drum 

model (Åström and Bell, 2000) that can capture much of the system dynamics, such 

as the shrink and swell phenomenon. The complete boiler system consists of an 

economizer, reheater, superheater, furnace, risers, and drum, as shown in Figure ‎2.5.  

The analytical model of the drum system is developed based upon mass and energy 

balance. The global mass and energy balances are given by: 

  s st w wt f s

d
V V q q

dt
                                                  (2.1)

 s s st w w wt t t p m p f f s s

d
h V h V pV m C t Q q h q h

dt
                                (2.2)  

where stV and wtV represent the total steam and water volumes, respectively, Qp is the 

heat flow rate to the risers, fq is the feedwater mass flow rate, sq  is the steam mass 

flow rate, and sh , wh fh are the specific enthalpy of steam, water and feedwater, 
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respectively. s and w  are steam and water density. Cp and tm is the specific heat 

and temperature of metal. mt is the total metal mass. The total volume of the drum, 

downcomers, and risers is: 

 t s wV V V                                                             (2.3) 

The global energy balance for the riser section is given by:  
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                              (2.4) 

where rq  is the total mass flow rate out of the risers and dcq is the total mass flow 

rate into the risers, rV  represents the riser volume, r is the steam quality at the riser 

outlet, and v is the average volume fraction. The nominal of the dynamics equation 

can be summarized as: 
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                      (2.5) 

The model consists of four states: drum pressure p , total water volume wtV , steam 

quality at the riser outlet r  , and volume of steam under the liquid level in the drum

sdV . 
0

sdV is the volume of steam in the drum when there is no condensation. The 

coefficients e11, e12, e21, e22, e32, e33, e42, e43, and e44 can be obtained from (Åström 

and Bell, 2000). 

The drum level  measured from its normal operating level is: 
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The volume of water in the drum is: 

 (1 )wd wt dc v rV V V V                                                   (2.7) 

The simulation is carried out based on an approximation of steam tables with 

quadratic functions as follows (Mrunalini et al., 2006): 
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Where 
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The feedwater specific enthalpy hf  can be calculated as follows (Åström and Bell, 

2000):  
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In this study, the drum model was simulated using Skegton power plant data, as 

presented in Ordys et al. (1994). Due to a lack of data availability, some parameters 

0( ,sd dV T and K ) were assumed by scaling down the values from Åström and Bell 

(2000). The total drum volume was calculated from Ordys et al. (1994) as follows:      
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                                                         (2.11)                                             

where _m dl and w represent the total drum liquid mass and the drum water density, 

respectively. The steam quality r is obtained by solving the following two non-

linear equilibrium equations using the Fsolve MATLAB function:  

 
 2 w dc w s v r

p r c

fr

A g V
Q h

k

   



                                      (2.12)

 1 ln 1
( )

w s w s
v r

w s w s r s

   
 

     

  
         

                          (2.13)

The steam volume in the drum is calculated as follows: 

 
 

0 d w f

sd sd f

s c

T h h
V V q

h


                                               (2.14)

Parameters and the calculated equilibrium values used in the simulation are listed in 

Table 2.1 and Table 2.2. 

Table 2.1: Boiler parameters  

Parameter Value Parameter Value 

Total metal mass   mt 45,000 kg Drum mass     md 15,000 kg
 

Riser metal mass   mr 22,500 kg Riser volume   Vr 6.53 m
3 

Residence time     Td 2.93 s Drum volume  Vd 9.25 m
3 

Friction coefficient  
frk  2.98 Area of drum   Ad 1.17 m

2
 

Empirical parameter Β 0.3 Area – downcomer Adc 0.1 m
2 

V
0

sd 1.572 m
3
 Downcomer volume  Vdc 2.1 m

3 
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Table 2.2: The inputs and initial states for boiler 

Inputs Value Initial states Value 

Steam flow rate 12 kg/s Total water volume 10.87 m3 

Water flow rate 12 kg/s Drum pressure 4.5417 Mpa 

Heating value 24.48 MW Steam quality 0.02334 

Feedwater enthalpy 5.6105 kJ/kg Volume of steam in drum 0.9882 m3 

 

In order to verify the correct behaviour of the simulated model, open loop tests were 

performed by simulating the response to 3.4 kg/s step change in steam flow rate, as 

shown in Figure ‎2.8. 

 

Figure ‎2.8: Open loop response to step change in steam flow rate 

As shown in Figure ‎2.8, the pressure and the water volume both decreased due to the 

increase in steam flow from boiler-drum to steam turbine. The decrease in pressure 

also led to an increase in the evaporation rate which in turn led to a decrease in total 

water volume. The pressure drop also caused the steam quality at the riser outlet to 

increase initially and then decrease due to the increased steam flow rate. The steam 
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volume in the drum (Vsd) increased slightly due to a pressure drop. Finally, the figure 

shows the initial increase of the drum water level due to the shrink and swell 

phenomenon. The open loop simulation results were in good agreement with Åström 

and Bell’s‎(2000) results.  

A comparison between the open loop results of this new drum model and the drum 

and riser model of Ordys et al.(1994) using the Skegton power plant data is shown in 

Figure 2.9. The results show the advantage of this model in terms of capturing the 

shrink and swell non-minimum phase behaviour. 

 

Figure ‎2.9: Comparison between two drum boiler models   

To create a complete boiler model, the boiler drum model was integrated with the 

other boiler subsystems models, which are the furnace, economiser, reheater, and 

superheater, as described in Ordys et al.(1994) and given in Appendix A. The 

complete boiler process was represented by a 16th order non-linear model using the 

MATLAB/SIMULINK S-function.  
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Figure ‎2.10 presents a block diagram of the boiler model including the 

interconnected subsystems.  

 

Figure ‎2.10: Boiler block diagram 

 

2.4.2  Gas Turbine Model 

Gas turbine complex dynamic models based upon fundamental mass, momentum and 

energy balances have been reported by various authors (Hussain and Seifi, 1992; 

Schobeiri et al., 1994; Camporeale et al., 2006). Rowen (1983) presented a simplified 

mathematical model of a heavy-duty single-shaft gas turbine. Ordys et al. (1994) 

described an intermediate gas turbine model based on Rowen (1983) and Hussain 

and Seifi (1992). This model has been validated using real data from a 350-MW 

CCPP in Chile (Saez et al., 2007). It has been used in a predictive supervisory 

controller (for example, Saez et al.(2007) and Hooshmandi et al.(2009)).  

In this thesis, the Skegton (34 MW output power) gas turbine model described in 

Ordys et al.(1994) was used to construct a MATLAB/SIMULINK simulator. The gas 

turbine model is divided into four modules: fuel system (fuel valve and actuator), 

compressor, combustor, and turbine as shown in Figure ‎2.11. 
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Figure ‎2.11: Gas turbine block diagram 

The fuel dynamic module shown in Figure ‎2.11 is designed to provide energy input 

to the gas turbine in proportion to the product of command signal times the unit 

speed, as shown in Figure ‎2.12 (Rowen, 1983). The input signal DF  is the fuel 

demand signal from the gas turbine control block. The output signal is the fuel flow 

fGw  to the combustion. The fuel limit is used to ensure that the fuel signal remains 

within physically obtainable values. The 0.23 offset value is the no load self-

sustaining condition essential to maintain the compressor in operation. The fuel is fed 

into the combustor through two valves in series. The first valve controls the pressure 

between the two valves, and the second regulates the actual fuel flow. The transport 

delay is related to the combustion reaction (Rowen, 1983). 

 

Figure ‎2.12: Fuel dynamic block diagram 

 

The dynamic behaviour of the compressor, combustor and turbine are described by 

means of algebraic equations representing the thermodynamic transformations and 

kinematic balance, as described in Ordys et al.(1994) and listed in Appendix A.  
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2.4.3 Steam Turbine Model 

A complex steam turbine dynamic model based upon fundamental mass, momentum 

and energy balances has been described by various authors (Committee, 1973; Ray, 

1980; De Mello, 1991). A simplified linear model for transient stability studies of 

electrical network has also been proposed by them (Committee, 1973; Ray, 1980; De 

Mello, 1991). Ordys et al. (1994) presented an intermediate model that includes the 

more important non-linearities associated with the turbine. This model has been used 

for model based control (for example, in Flynn (2003) and Saez et al. (2005)).  

In this thesis, the steam turbine model equations are adopted from Ordys et al. (1994). 

These equations are programmed using MATLAB S-Function and simulated with the 

reheater module by using Skegton (11 MW output power) Steam turbine data. The 

steam turbine model is divided into three modules: high pressure section (HP), 

intermediate pressure section (IP), and low pressure section (LP). Figure ‎2.13 shows 

the complete steam turbine model including the boiler reheater module. 

 

Figure ‎2.13: Steam turbine block diagram 

2.4.4 Electrical Generator Model 

In this study, a simple generator model was used which included only the real power 

and frequency variation, as follows (Ordys et al., 1994): 
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where g , Hi and Di are the frequency of the generator, the inertia constant and the 

damping coefficient, respectively, and 0 represents the synchronous frequency. The 

model block diagram is shown in Figure ‎2.14. 

 

Figure ‎2.14: Electrical generator block diagram 

 

2.5  Control System for Combined Cycle Power Plant  

2.5.1 Control Configurations 

The complexity and size of the combined cycle power plant requires large interacting 

control loops. For example, the boiler with its control loops and the steam and gas 

turbines with their associated loops and auxiliary control loops. Coordinated total 

plant-wide is required for optimized system operation. Consequently, a control 

system of a power plant consists of a hierarchy Distributed Control System (DCS), as 

shown in Figure ‎2.15. The DCS distributes the hardware physically throughout the 

plant. The system reads process inputs such as thermocouples and pressure sensors, 

calculates the optimal outputs, allows operator interface, and drives output devices 

such as valve actuators and pumps. To reduce the amount of wiring to a central 

location, control is done by digital controllers located near the process instruments, 

as shown in Figure ‎2.15.  
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Figure ‎2.15: Distributed control system (Chokshi and McFarlane, 2008) 

As shown in Figure ‎2.15, the basic function of a DCS can be classified into two 

groups: regulatory control level and supervisory control. The main purpose of the 

regulatory control layer is to keep the plant in safe and stable operation. The 

supervisory controller provides the regulatory level set-points based on the 

optimization of the objective function. Therefore, the main tasks of the supervisory 

level are: to move the system from one operating point to another without 

oscillations, to handle the process output and input constraints and to provide a high 

level of disturbance rejection. 

At the regulatory level, the decentralized or multi-loop PID control configuration is 

the most common practice for most industrial processes. In this configuration, the 

multi input/multi output (MIMO) system is divided into individual single 

input/single output (SISO) loops according to a previous selection of the pairings 

between inputs and outputs. This configuration might not be optimal for systems 

where the different loops are highly coupled and the controllers are tuned 

individually. Therefore, a tuning procedure is needed to consider the interactions 

between subsystems.   

There are many methods for the optimal pairing of controlled variables but the most 

common is the Relative Gain Array (RGA) due to its simplicity and utility. The RGA 
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was introduced by Bristol (1966) as a steady-state measure of process interaction in 

decentralized control. Skogestad and Morari (1987) demonstrated that the RGA 

calculation can be expressed in matrix notation    as function of steady-state gain 

matrix G0 as follows : 

 
1

0 0( )TG G                                                        (2.16) 

2.5.2 Decentralized PID Tuning  

Control of interacting multivariable processes can be realized either by centralized 

MIMO controllers or by decentralized controllers. Decentralized PID control has 

been widely used in MIMO industrial processes due to the simplicity in 

implementation and loop failure tolerance of the resulting control system. In this 

configuration, the MIMO system is divided into individual SISO PID loops and 

tuned mainly on a single loop basis. However, the process interactions in MIMO 

process makes the proper tuning of decentralized controllers much more difficult 

than that of SISO PID controllers. This is because adjusting one loop may affect the 

performance of the others or destabilize the entire system. For this reason, the 

number of tuning methods for a MIMO system is limited. 

The tuning methods for decentralized controllers described in the literature can be 

classified under three groups, namely, the detuning method, sequential closing 

method, and independent design method. In the detuning method, each controller of 

the multi loop control system is first designed using single loop tuning rules, 

ignoring process interactions from other loops. Then, each controller is detuned to 

preserve stability or to meet some performance specification. Among these methods 

is the Biggest Log Modulus (BLT) proposed by Luyben (1986). In the sequential 

closing methods such as relay feedback method, each controller is tuned sequentially, 

where the input-output pair of the fastest loops is tuned and this loop is closed. Then, 

the controller of the lower loops is tuned while the first controller is closed and so on 

(Mayne, 1973; Loh et al., 1993). Finally, in the independent design methods, for 

example IMC methods, each controller is designed based on the open-loop and 

closed-loop paired transfer functions, while satisfying some constraints to guarantee 

stability and performance (Skogestad and Morari, 1989; Vu and Lee, 2010).  
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Various advanced methods have been used to obtain optimum PID parameters, such 

as genetic algorithms (Herreros et al., 2002), particle swarm optimization (de Moura 

Oliveira, 2005), and multi-objective infh robust techniques based on linear matrix 

inequalities (LMIs) (Takahashi et al., 1996; Goncalves et al., 2008). However, these 

methods have problems of either enormous computation efforts or difficulty in 

tackling non-convex optimization problems (Goncalves et al., 2008).   

In this study, relay feedback and IMC tuning methods for decentralized control are 

considered to tune PID parameters of power plant regulatory controllers. 

 

2.5.2.1 Relay Feedback Tuning Method 

A relay feedback auto-tuning technique based in the Ziegler-Nichols method for 

closed loop systems was proposed by Åström and Hägglund (1984; 1988)  . In this 

method, the controller is replaced by a relay which induces a sustained oscillation. 

The frequency of this oscillation ( uP ) and its amplitude (A), as shown in Figure ‎2.16, 

can be used to determine the parameters of the PID controller based on Ziegler-

Nichols tuning rules. The advantages of the relay feedback technique are that the 

tuning can be done online and there is less chance of the system becoming unstable 

during the tuning of the PID controller since it is a closed-loop method. The ultimate 

gain can be computed as: 

 
4

cu

h
K

A
                                                          (2.17) 

where h is the height of the relay input and A is the amplitude of oscillation, as 

shown in Figure ‎2.16. 
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Figure ‎2.16: Closed-loop response of relay feedback 

 Having determined the ultimate gain cuK  and the oscillation period uP , the PI 

controller tuning parameters can be obtained using Ziegler-Nichols or Tyreus-

Luyben rules (Luyben and Luyben, 1997), as shown in Table 2.3.   

 

                Table 2.3: Ziegler-Nichols and Tyreus-Luyben tuning rules for PI 

Controller method Kp Ti 

Ziegler-Nichols  / 2.2cuK  uP /1.2 

Tyreus-Luyben 0.31 cuK  2.2 uP  

 

 

In relay auto-tuning for a MIMO control system, the relay feedback method is 

usually applied using a sequential design strategy. This strategy involves closing 

each loop once it is tuned, until all loops are covered. Example of this approach can 

be found in Loh et al. (1993). The tuning sequence should be repeated in an iterative 

manner to account for the effect of loop interactions. Faster convergence can be 

achieved when the fast loop is tuned first (Yu, 2006). However, for unstable control 

systems it is better to close the unstable loop first in order to cope with instabilities.  
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2.5.2.2 Internal Model Control Tuning Method 

The PID parameter tuning method based on the IMC was developed by Rlvera et 

al.(1986). In this approach, the control tuning is based on a priori process model and 

a low pass filter is included for robustness. This method has the advantage of only 

using a single tuning parameter to achieve a clear tradeoff between closed-loop 

performance and robustness to model inaccuracies. Lee et al. (2006) suggested 

modifying IMC_PID tuning methods for different types of processes. In these 

methods, the PID parameters are obtained by a Maclaurin series expansion in the 

Laplace variable of the simple feedback form of a multivariable IMC controller. 

Skogestad (2003) proposed a modified SIMC method to improve the load 

disturbance rejection. Lieslehto and Koivo (1987) developed a multivariable tuning 

method based on the IMC technique. In the multivariable tuning method based on 

IMC technique, the PID parameters are usually designed by ignoring process 

interactions and then the individual loops are detuned iteratively to satisfy robust 

stability and to meet some performance requirement (Grosdidier and Morari, 1986; 

Lee et al., 2004; Vu et al., 2007).  

The block diagram for conventional feedback control is shown in Figure ‎2.17(a), 

where 
*
cg is the PI controller and given by: 
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g K
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 
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 
                                                   (2.18) 

where cK and I are the proportional gain and the integral time, respectively.   

The structure of the IMC is shown in Figure ‎2.17(b), where cg and g are the IMC 

controller and the internal model, respectively. In the IMC design, the process model 

is factored as: 

 g g g                                                            (2.19) 
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Figure ‎2.17: (a) conventional configuration and (b) IMC configuration 

 

where g contains the time delay and RHP zeros of the model, and g  is the 

invertible part which can be used as the controller cg . A low pass filter is added in 

series with the controller to attenuate the modelling error. The low pass filter can be 

defined as:  

 
1

(1 )n
f

s



                                                       (2.20) 

where‎the‎time‎constant‎λ‎is‎used as a fine tuning parameter of the IMC method and 

represents the closed loop speed of response. The parameter n represents the order of 

the filter and is usually selected as first order (n=1) in a first order open-loop stable 

process. 

 Given the Laplace transfer function of a process model without delay: 
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The IMC controller cg is given by: 
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By comparing Figure ‎2.17(a) with Figure ‎2.17(b), the following relation is given: 
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From this equation, the gain and integral time of the ideal PI controller can be 

defined as: 

 cK
K




                                                           (2.24) 

 I                                                               (2.25) 

For first or second order models with relatively small delay, the standard IMC 

controllers provide sluggish disturbance rejections because I is very large. To solve 

this problem, Skogestad (2003) has proposed limiting the value of I : 

  1min ,4( )I                                                     (2.26) 

where 1 and   are the largest time constant and the time delay, respectively. 

 

The generalized IMC-PID approach can be extended to unstable processes. Given a 

first order delayed unstable process: 
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                                                       (2.27) 

The tuning rules based on the IMC_PID method for this process can be calculated as 

follows (Lee et al., 2000):  
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2.5.3 Regulatory Control of CCPP  

The main purpose of the regulatory control layer is to keep the plant in safe and 

stable operation, by keeping the controlled variables at or close to their set-points. 

2.5.3.1  Boiler Control Scheme 

The boiler control system consists of four simple proportional integral (PI) control 

loops designed to meet the set-point requirements, as shown in Figure ‎2.18. They are: 

adjusting the induced draught fan speed to control the air pressure in the furnace, 

regulating a feed-water supply to maintain the drum water level, adjusting the 

superheat spray water flow to control the superheat steam temperature, and adjusting 

the fuel supply to the boiler to control the superheated steam pressure. In this case, 

the controlled variables are superheated steam pressure (Ps), drum level (l), 

superheated steam temperature (Ts) and furnace gas pressure (PG). The manipulated 

variables are fuel flow (wf), feedwater flow (we), attemperator water flow (wa), and 

air flow to the furnace (wA). 
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Figure ‎2.18: Boiler control system 

2.5.3.2 Gas Turbine Control Scheme 

The gas turbine control scheme is adopted from Rowen (1983), Ordys et al.(1994) 

and Saez et al. (2007). In this scheme, the main control loop is the speed governor. It 

detects frequency deviation from the nominal value and determines the controlled 

variable (fuel demand dF ). The speed governor loop shares its controlled variable 

dF with a temperature controller and the power controller. These three different 

controllers’‎ outputs‎ are‎ compared‎ into‎ a‎ low‎ value‎ select‎ (LVS) function, which 

selects the minimum of three incoming signals. The fuel demand signal is then fed to 

the gas turbine model through the fuel dynamic model as shown in Figure ‎2.19. 

The temperature control consists of two branches. The main branch is a proportional- 

integral (PI) controller, which acts as an air supply control ( aw ). The second branch 

is a proportional controller, which acts as a fuel demand controller through the LVS 

minimum value function. It is used to control the exhaust temperature when the main 

controller is not enough to maintain safe temperatures. A proportional-integral (PI) 

controller is used to control the injected steam flow into the combustion chamber 

( isw ) to control gas turbine NOx emission rates. 

 

 

 

 
Boiler Model Superheated steam 

temperature (Ts) 

PI 

PI 

PI 

PI 

Set point 

- 

- 

- 

- 

Ps 

l 

Ts 

PG 

Fuel flow (wf) 

Feedwater flow (we) 

Attemporation 

water flow (wA) 

Air flow to 

furnace (wa) 

Superheated steam 

pressure (Ps) 

Drum water 

level (l) 

Furnace air 

pressure (PG) 



38 

 

Figure ‎2.19: Simplified representation of gas turbine control scheme 

2.5.3.3 Steam Turbine Control Scheme  

In combined cycle power plants (CCPP), the objective of the steam turbine controller 

is to regulate the steam turbine generator (power demand control) and steam turbine 

governor valves. Three modes of control are available as follows (Flynn, 2003):  

 

1- Boiler following mode (constant pressure mode): as shown in Figure ‎2.20, the 

power-demand signal controls the turbine governor valve to meet the load, 

while the fuel and air flow signals (firing rate) control the steam pressure in 

the boiler controller to keep the pressure at a constant level. This is the most 

common control mode in classical thermal power plants due to its fast 

responses to power demand. 

2- Turbine following mode: in this mode the power-demand signal is fed 

directly to the boiler control system to regulate the boiler firing rate. The 

steam pressure is controlled by steam turbine governor valves. This mode 

achieves very stable responses with minimum pressure and temperature 

fluctuations and allows the generating units to operate continuously at their 

maximum capacity rating. However, the response to power load changes is 

slow. Therefore, this method is preferred for base-load thermal plants. 
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3- Sliding-pressure mode: this mode of operation allows the pressure to be 

modified for changes in power load demand. For example, this control mode 

reduces the boiler pressure set-point at lower loads in order to reduce control 

valve throttling. This mode combines some of the advantages of the previous 

modes but at the same time is complex and requires coordinated control. 

 

The steam turbine control system presented in this study is based on boiler follow 

mode, as in Sáez et al.(2008). As shown in Figure ‎2.20, the steam flow from the 

boiler (win) is regulated by a PID controller to meet the load demand. The steam 

pressure and temperature are controlled in the boiler system. 

 

 

Figure ‎2.20: Boiler follow mode 

2.5.3.4 CCPP Complete Model 

Subsystem modules of CCPP have been described and implemented in MATLAB 

SIMULINK S-functions which provide an efficient algorithm for integration. 

Figure ‎2.21 show the hierarchical structure of CCPP. SIMULINK block diagrams of 

CCPP are listed in Appendix B.  It consists of three subsystems: boiler system, gas 

turbine and generator system, and steam turbine and generator system. As shown in 

Figure 2.21, an integrated CCPP model is constructed by connecting these three main 

modules. This model describes the closed loop dynamic relationship between 

controlled variables (CVs) and controlled variable set-points. The controlled 

variables of the complete CCPP system have been chosen as follows: superheated 

boiler pressure (Ps), boiler drum level (L), boiler superheated temperature (Ts), 

furnace gas pressure (PG), gas turbine exhaust temperature (TGout), power of gas 

turbine (PmG), gas turbine speed (Omega), NOx level in gas turbine exhaust gases 

(gNOx), and power of steam turbine (Pms). 
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Figure ‎2.21: Complete CCPP system 

2.5.3.5 Simulation and Results 

In this simulation, the CCPP PID parameters in Ordys et al. (1994) are first used and 

then each controller is detuned sequentially using a trial and error method to preserve 

stability and to achieve good tracking and disturbance rejection performance. The 

tuning parameters used in this simulation are listed in Table 2.4. Advanced methods 

for PID tuning can be used to optimize the closed-loop performance. IMC and relay 

feedback tuning methods will be used in the next section to tune the PID parameters 

of boiler-turbine unit. 

 

Table 2.4: CCPP tuning parameters 

 Kp Ki Kd 

Exhaust temp.  -4.0 -1.0 ___ 

Gas turbine Power  0.05 0.5 ___ 

Speed  0.05 0.5 0.1 

Nox emission -0.001 -0.01 ___ 

Drum pressure 1.5e-5 1e-6 ___ 

Water level 27.0 0.05 ___ 

Superheated temp. -0.1 -0.1 ___ 

Furnace pressure 2.25e-4 3.17e-5 ___ 

Gas turbine Power  1.23 1.23 ___ 
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To assess the performance of each module and for the complete CCPP, tests have 

been performed to the CCPP system with PID controllers. These tests are the model 

response to disturbances, set-points changes and load demand. 

  

Figure ‎2.22 to Figure ‎2.26 show the responses of the controlled outputs and the 

manipulated inputs for the CCPP (boiler, gas turbine and steam turbine) to step 

changes in boiler superheated pressure set-point at t = 250 (s) plus ramp and step 

changes‎ in‎gas‎and‎steam‎turbines’‎ load‎demand.‎From‎these‎ results‎ it‎ is‎clear‎ that‎

the system has good tracking performance. In addition, these tests prove the stability 

of the system over the working range.  

Dynamic responses of the boiler to step disturbances in boiler inlet fuel flow (wf) are 

shown in Figure ‎2.27. As shown in this figure, the disturbance can be eliminated 

using the PID controllers. 

 

 

Figure ‎2.22: Boiler response to step changes in boiler superheated pressure 
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Figure ‎2.23: Boiler response to step changes in boiler superheated pressure  

(Manipulated inputs) 

 

 

Figure ‎2.24: Gas turbine response to ramp and step changes in gas turbine power 

demand (Controlled outputs) 
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Figure ‎2.25: Gas turbine response to ramp and step changes in gas turbine power 

demand (Manipulated inputs) 

 

 

 

Figure ‎2.26: Steam turbine response to set-points changes in boiler pressure and 

steam turbine power demand (Controlled and manipulated variables) 
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Figure ‎2.27: Boiler response to +5% step disturbance in boiler inlet fuel flow (wf) 

(Controlled outputs)  

 

2.6 Simplified CCPP Model  

In this section, the CCPP model is approximated (reduced) by a simpler model in 

order to simplify the derivation of the nonlinear state-dependent matrices that will be 

discussed in Chapter 4. The following assumptions are considered: 

1- The effect of economizer dynamics is ignored, as it makes an insignificant 

influence to overall system dynamics.  Therefore, the feed water specific 

enthalpy entering the drum boiler is assumed to be constant. 

2- Assume that there is no reheater in the steam turbine. 

3- The steam turbine model is approximated by a single stage steam turbine 

model, where the output power is scaled up to be identical to the original 

model. Figure ‎2.28 shows a comparison between the original and reduced 

model responses to step changes in steam turbine power demand at 100 sec 

and step disturbance in inlet steam at 200 sec. It is clear that the reduced 

model can capture well the dynamic properties of the original model. 
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Figure ‎2.28: Comparison between reduced and complete steam turbine models 

Figure ‎2.29 shows a block diagram of the reduced boiler model that includes the 

following interconnected subsystems: drum and riser model, furnace model, and 

superheater model.  

 

Figure ‎2.29: Block diagram of reduced boiler model 
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equations. As shown in Figure ‎2.30, the boiler-turbine control system consists of four 

decentralized PI control loops, designed to meet the set-point requirements.  

 

Figure ‎2.30: Boiler-turbine control system 

2.6.1 Decentralized PID Tuning of the Simplified Boiler-turbine System 

In this section, relay feedback and internal model control (IMC) tuning methods 

described in section ‎2.5.2 will be used to tune the PID parameters of boiler-turbine 

system. 

2.6.1.1 Relay Feedback Tuning Results  

The relay feedback method described in section ‎2.5.2.1 is applied to the MIMO 

decentralized PI controller for the boiler-turbine system. Starting with the second 

loop, the controller parameters converge in 3 iterations. Table 2.5 shows the results 

of the ultimate gain ( cuK ) and the ultimate frequency ( uP ) for the four loops.   

Table 2.5: Ultimate gain and ultimate frequency for the four loops 

 1-Pressure loop 2- Level loop 3-Temperature loop  4- Power loop 

cuK
 

19.6943 29.4413 1.1683 57.4955 

uP
 

37.65 126.15 2.25 0.75 

 

The results of the PI tuning parameters using Tyreus-Luyben rules and Ziegler-

Nichols rules are compared in Table 2.6.  
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Table 2.6: PI tuning results 

PI settings

i
c c

K
G K

s
   

Tyreus-Luyben  rules Ziegler-Nichols rules 

Loop1 Loop2 Loop3 Loop4 Loop1 Loop2 Loop3 Loop4 

cK
 

6.1545 9.1268 -0.3651 17.9674 8.9520 13.382 -0.5311 26.1343 

iK
 

0.0743 0.03288 -0.0737 10.889 0.2853 0.127 -0.2832 41.8149 

 

 

A comparison between these two methods to set-point changes are shown in 

Figure ‎2.31 to Figure ‎2.34. It is clearly shown in these figures that the Ziegler-

Nichols tunings result is a very good disturbance rejection but gives an aggressive 

response compared to the Tyreus-Luyben method. However, in the water level loop, 

the controller response is very slow by using both tuning rules, as shown in 

Figure ‎2.32. 

 

Figure ‎2.31: Ziegler and Tyreus response comparison (boiler pressure)  
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Figure ‎2.32: Ziegler and Tyreus response comparison (water level)  

 

 

 
 

Figure ‎2.33: Ziegler and Tyreus response comparison (superheated temp.) 
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Figure ‎2.34: Ziegler and Tyreus response comparison (output power) 

 

 

2.6.1.2 IMC Tuning Results 

The Skogestad (2003) tuning method described in section ‎2.5.2.2 is used to obtain 

the controller parameters. Firstly, the MIMO transfer function of the process is found 

by linearization around an operating point. Then, the reduction functions in MATAB 

(Balreal and Modred) are used to reduce the diagonal elements of the process to a 

first order system. The process transfer function can be approximated by ignoring the 

interactions as follows: 

 

Pressure loop:  

The transfer function between fuel valve input and output pressure is: 
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Water level loop: 

 

The transfer function between feed-water and water level in the boiler drum is: 
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Temperature loop: 

 

The transfer function between the attemperator water valve and superheated 

temperature is: 

 33

0.2964

0.006941
G

s





                                                  (2.34) 

Power loop:  

The transfer function between the steam governor valve and output power is: 

 

 44

0.1191

1
G

s



                                                       (2.35) 

 

The optimal value of the tuning parameter is determined by a trade-off between fast 

response and good disturbance rejection by selecting a small value of  or a slow 

response and better stability and robustness when selecting a large  . In a power 

plant process, the very fast closed loop response is limited by the actuator saturation 

and the disturbance produced from the interactions between loops.   

 

Note that it is not always possible to achieve stability using independent IMC_PI 

tuning design method due to omitting the interactions. Different papers have described 

methods for detuning the multi-loop controllers designed using the IMC-PI rules to take 

into account the interactions of the multivariable systems (Skogestad and Morari, 1989; 

Vu and Lee, 2010). However in this case the interactions have been considered by the 

careful selection of the tuning parameters for each of the loops based on the closed–loop 

performance. 

The results of IMC and relay feedback (Tyreus rules) tuning parameters and 

performance are listed in Table 2.7. Comparisons between these two methods are 

shown in Figure ‎2.35, Figure ‎2.36, Figure ‎2.37, and Figure ‎2.38. As can be seen in 

these figures and Table 2.7, the advantage of the IMC method is that it can be tuned 

to provide good performances, comparable with real power plant (Ordys et al., 1994) 

and with settling time less than 120s in boiler system and 50s in steam turbine system.  
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Table 2.7: IMC and relay feedback tuning parameters and performance 

 IMC Relay feedback (Tyreus) 

 Loop1 Loop2 Loop3 Loop4 Loop1 Loop2 Loop3 Loop4 

  10 65 7 10 ----- ----- ----- ------ 

cK  
7.5131 23.697 -0.48197 0.8396 6.1545 9.1268 -0.36511 17.9674 

iK  
0.1878 0.182 -0.0172 0.8396 0.0743 0.0329 -0.07376 10.889 

Overshoot (%) 13.2 14 4.65 ------ 9 19.9 5.88 ----- 

Rise time (s) 14.7 26.3 16.8 22 20.3 89.9 7.11 1.9 

Settling 

time(s)  

108 111 106 39.1 177 748 49.1 5.06 

Gm inf 8.62 inf inf inf 16.9 inf inf 

Pm (deg) 76.6 50.6 121 90 82 58.8 127 99.7 

 

 

 

 

 
Figure ‎2.35: IMC and relay step response comparison (loop 1) 
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Figure ‎2.36: IMC and relay step response comparison (loop 2) 

 

 
 

 
Figure ‎2.37: IMC and relay step response comparison (loop 3) 
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Figure ‎2.38: IMC and relay step response comparison (loop 4) 

 

 

2.7 Conclusions 

In this chapter, a non-linear CCPP model was developed in S-function MATLAB-
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operating range and are suitable for use in designing a model based controller. In this 

work, a new boiler model that captures much of the system dynamics, such as the 

shrink and swell phenomenon, was developed. Validation of the model was 

performed through comparison of the simulation results with the published data. 

Dynamic responses of the CCPP system with a PID controller to step disturbances, 

set-point changes and ramp changes in the load have been presented that prove the 

system stability with acceptable performance. In order to simplify the derivation of 

the non-linear state-dependent matrices of CCPP, a reduced CCPP model was 

presented that can capture much of the original model dynamics.  

 

 

0 50 100 150 200 250 300 350 400 450 500
0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

Time

S
te

a
m

 T
u
rb

in
e
 P

o
w

e
r 

(p
u
)

 

 

Ref.

Relay feedback

IMC



54 

3. Supervisory Model Predictive 

Control Design for a Combined 

Cycle Power Plant 

3.1 Introduction 

The PID controller is traditionally used in power plant control systems. The need for 

energy efficiency and the tightening of environmental regulations have influenced 

the need for more advanced control strategies. Model based predictive control (MPC) 

has demonstrated its performance and gained much popularity in the process 

industries (Qin and Badgwell, 2003). This is mainly due to its ability to handle 

constraints. 

LMPC refers to a family of MPC schemes in which linear or linearized models are 

used to predict system dynamics. LMPC is acceptable when the process operates at a 

single operating point and the controller is used only for disturbance rejection. 

NMPC techniques involve solving nonlinear differential equations and nonlinear 

dynamic optimization problems online that require high computational effort.  

Since the appearance of the first contribution to model based predictive control in 

Richalet et al. (1978), many different forms have evolved, such as dynamic matrix 

control (DCM), generalized predictive control (GPC), and linear quadratic 

generalized predictive control (LQGPC) (Grimble and Ordys, 2001). The main 

differences between methods are seen in the type of model used and how the cost 

function is defined. The key features of MPC are as follows:  

 

1. Multi-variable control 

2. Constraints can be easily included 

3. Can be used in either supervisory or primary control modes  

4. Systems with a large time delay or unstable systems can be controlled  
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The basic MPC structure and approach are simply presented in Figure ‎3.1 and 

Figure ‎3.2 respectively. The basic concept behind all MPC formulation is to use a 

model of the system to predict the future output ˆ( | )y k j k behaviour of the process 

over a horizon. The future control inputs ( )u k j are then optimized such that the 

predicted response of the system has desirable features. This optimum solution is 

done by solving a quadratic cost function. The first input in the optimal sequence is 

applied to the system and the process is repeated for the next time step.  

 

Figure ‎3.1: MPC basic structure 

 

Figure ‎3.2: MPC approach 

In the literature, there are some papers that deal with power plant control using MPC. 

For example, Katebi and Johnson (1997) described application of a decentralized 

predictive control scheme based on state space representation of generalized 

predictive control (GPC). Prasad et al. (2002) presented a non-linear MPC method to 

control a thermal power plant. This made use of successive linearization to obtain a 

linear model from a non-linear state space plant model. Extended Kalman filtering 
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(EKF) was used to estimate the state space model. The linear model was then used to 

formulate the predictive control routine. It also proposed a hierarchical MPC 

approach based on supervisory and regulatory levels. In it, the lower level PI loops 

help stabilize the unstable drum-boiler dynamic. The effectiveness of this method in 

disturbance rejection was reported. Saez et al. (2005) presented a supervisory model 

predictive  control for a thermal power plant.  

In this chapter, a supervisory predictive controller will be used to control the CCPP 

using a linearized state space model of the CCPP. The supervisory MPC provides the 

regulatory level set-points based on the objective function dynamic optimization. A 

Kalman filter is used to estimate the system state. 

 

3.2 Control Strategy 

The proposed control strategy consists of two levels: a regulatory PID level and a 

supervisory MPC optimization level. As discussed in Chapter 2, section 2.5.1, the 

supervisory level is used to provide optimal set-points for the regulatory level. The 

regulatory control layer manipulates and tracks the set-points, as shown in Figure ‎3.3. 

        

           Figure ‎3.3: Supervisory control structure 

 

3.3  Formulation of Model Predictive Control 

In this section, a generalized MPC formulation based on linear discrete-time state 

space model will be described. The state space MPC multivariable formulation 

presented below is based on Wills (2004) and Maciejowski (2002).  
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3.3.1 Linearization  

In order to design a model based control strategy, nonlinear systems can be 

approximated with equivalent linear systems. The linearized model must capture the 

main system dynamics. The nonlinear model can often be linearized by taking a 

Taylor’s‎series‎approximation‎at‎the‎nominal‎operating‎point.‎For‎simple‎models this 

can be done analytically by hand or using symbolic math software. For complex 

systems, a linear model can be approximated by using the MATLAB\SIMULINK 

Control Design toolbox.  

Given a system of nonlinear differential equations in continuous time: 

 
( , , )

( , , )

x f x u t

y g x u t




                                                        (3.1) 

where x, y and u represent the states, outputs and inputs respectively. 

Making a Taylor expansion around an operating point yields an approximation of the 

nonlinear system(3.1): 

 
x A x B u

y C x D u

  

  

 

 
                                                    (3.2) 

where A, B, C and D are constant coefficient matrices. These matrices are defined as 

the Jacobians of the system, evaluated at the operating point as follows: 

 

 

0 0 0 0

0 0 0 0
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x u
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                                      (3.3) 

where   

 

0

0

0

x x x

u u u

y y y







 

 

 

                                                         (3.4) 

0 0,x u and 0y  are the nominal operating point values. 
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In this thesis, in order to design a supervisory predictive controller, the complex non-

linear model of CCPP, including the PI controllers, will be linearized by using the 

Graphic User Interface (GUI) SIMULINK Control Design toolbox.   

3.3.2  Plant Model and Prediction 

As the name suggests, model predictive control uses a model to make predictions 

which are then used for control purposes. The CCPP can be modelled using the 

linearized, discrete-time, state space system of system (3.1) as follows: 

 

 ( 1) ( ) ( ) kx k Ax k Bu k                                              (3.5)

 ( ) ( ) ky k Cx k                                                     (3.6) 

where x, u and y  are vectors of state variables, inputs and outputs respectively; A, B, 

and C are constant matrices; and k  and k  are the state and measurement noise 

assumed to be Gaussian distributed with zero mean.  

Based on the state space model (A, B, C), the future values of the plant states and 

outputs over the prediction horizon may be obtained sequentially as follows: 
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             (3.7) 

The predicted output variables are calculated as follows: 

 ˆ ˆ( | ) ( | )i p i i p iy k N k Cx k N k                                            (3.8) 
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1
1 1

1

ˆ ˆ( | ) ( 1| ) ( | )
p

p p

N
N N j

i p i i i i i

j

y k N k CA x k k C A Bu k j k


  



                     (3.9) 

For the time horizon from 1 to pN (prediction horizon), the output predictor can be 

represented in a vector form as follows: 

 ˆ ˆ( )iY x k U                                                       (3.10) 

where 
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3.3.3 Cost Function  

The general aim of the control law is that the future output ( ŷ ) on the considered 

horizon should follow a determined reference signal (r) and, at the same time, the 

control effort (U) necessary for doing so should be penalized. The cost function to be 

minimized to obtain the optimal control input kU  at discrete-time k is of the 

following quadratic form: 
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1
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| | 1|
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1
ˆ( ) || || || ||
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pN Nc
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j j

J U y r u u


    

 

                            (3.11) 

where Np and Nc are the prediction and control horizons respectively, Q is the 

weighting on the tracking error, and  S  is the weighting on the control increments. In 

this study, it is assumed that the control horizon is equal to the prediction horizon.  

The summation terms in equation (3.11) can be expanded as follows (Wills, 2004):     

 
2 2

|

1

1 1
ˆ|| || || ||

2 2

pN

z k j k k j Q k k Q
j

y r Y R  



                                     (3.12) 

Using equation(3.10), the objective function can be written as: 

 
21

ˆ|| ( ) ||
2

z i k k Q
x k U R                                              (3.13)

 
21

ˆ|| ( ( )) ||
2

z k k i Q
U R x k                                             (3.14)

 
21

ˆ|| || , ( )
2

z k k iQ
U b b R x k                                      (3.15)

 
1

( ) ( )
2

T
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1
( )

2

T T T T

z k k kU Q U Qb U C                                          (3.17) 

This objective function can be expressed as a quadratic programming (QP) problem 

as follows: 

 1

1

2

T T

z k z k z kU H U g U C                                                (3.18) 

where 
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ˆ( ( ))

T

z

T

k i

g Qb

Q R x k

 

  
                                              (3.20) 

                                                                



























pNk

k

k

r

.

.

r

R

1

,                    

























Q

.

.

Q

Q

Q   ,             



























pNk

k

k

u

.

.

u

U

1

 

 

C1 is a constant term that can be discarded since it does not influence the solution of 

the problem. 

The other term of the cost function is expressed as follows: 
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Equation (3.22) can be expressed as follows: 

 

 1 2

1
( )

2

T T

u k k u k kU SU M u U C                                          (3.23)

where 

 1

2

2
0

,. . .

2
0

u

S S
S

S S S

S M

S S S

S S



 
  

    
    
  

    
   

 

2C is a constant term that does not depend on kU  and can be discarded. 
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Combining equation (3.18) and equation (3.23) the objective function can be 

expressed as: 

 3

1
( )

2

T T

k k k kJ U U HU U f C                                            (3.24)

where 

C3 is the combination of C1 and C2 and may be safely ignored.  

 
TH Q S                                                        (3.25) 
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ˆ( ( ))T

k i u kf Q R x k M u                                           (3.26) 

This can be expressed as:  
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                                                (3.27) 

 
T TQ Q                                                       (3.28) 

The optimal control input kU can be found by solving the QP problem equation (3.24) 

with MATLAB’s “Quadprog”‎function. 

Applying the receding horizon control principle, only the first element of the vector 

kU is used to obtain the control signal. The rest of the predicated control variables 

trajectory is discarded and at the next sample interval the procedure is repeated to 

find a new optimal solution for the control signal kU . 

 

3.3.4 MPC Formulation with Input Disturbance  

The MPC problem will now be extended by adding measured disturbance. An 

example of measured disturbance is the feed rate from an upstream process, as will 
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be discussed in Chapter 5. If a disturbance variable is known or can be measured, it 

can be included in the state-space model as follows: 

 ( 1) ( ) ( ) ( )x k Ax k Bu k Ed k                                           (3.29)

 ( ) ( )y k Cx k                                                        (3.30) 

Where ( )d k and E are the measured disturbance and disturbance matrix respectively.  

 

The output prediction can be calculated as in equation (3.7) as follows: 
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                (3.31) 

The output predictor can be represented in a vector form as follows: 

 ˆ ˆ( )i dY x k U D                                                  (3.32) 

Therefore, it is easy to see that including the disturbance term yields a new term 

equivalent to ( U ). This new term is named ( d D ). 

where 
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The introduction of the d D  term in Ŷ means that equation (3.26) in the cost 

function has to be rewritten as follows: 

 1
ˆ( ( ) )T

k i d u kf Q R x k D M u                                      (3.33) 
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3.3.5 Output Disturbance and Integral Action 

In practical applications there are always modeling errors and disturbances present. 

The MPC formulation described above contains no explicit mechanism to deal with 

these complications. Therefore, these problems have to be considered. Usually, the 

controller is designed so that it contains integral action, which ensures zero steady-

state error. There are several ways of including this integration in a state space model. 

All of them involve augmenting the state vector (Maciejowski, 2002).  

In this study, the disturbance rejection will be done by augmenting the process model 

to include constant step output disturbances (Maciejowski, 2002; Muske and 

Badgwell, 2002). In this case, the difference between the predicted and the actual 

plant output is assumed to be caused by an output step disturbance, which remains 

constant in the future and can be estimated using a Kalman filter. The augmented 

state space system is given by: 
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                                    (3.34) 
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                                                 (3.35) 

For simplicity of notation, in the remaining part of this chapter the notation of the 

augmented state space model equations (3.34) and (3.35) is written as follows: 

 
( 1) ( ) ( )

( ) ( )

k

k

x k Ax k Bu k

y k Cx k




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                                         (3.36) 

3.3.6 State Estimation  

The MPC algorithm for obtaining the optimal signal at each sample assumes that the 

present states are available. In practice, these states may not be available, so it should 

be estimated from measured outputs and known inputs. Thus, a state estimator is 

needed to estimate the states. For this purpose the Kalman filter is used to estimate 

the states of a discrete-time controlled process that is governed by a linear augmented 
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state space model as given by equation (3.36). k  and k  represent the process and 

measurement noises respectively, which are assumed to be zero mean Gaussian 

white noise with covariances wQ and R respectively.  

The Kalman filter is used to estimate the state 1|
ˆ

k kx  . The first phase of the Kalman 

filter is the time update or prediction phase. It is used to produce an estimate of the 

current state, using the estimate of the previous state: 

 1 1 1k|k k |k k
ˆ ˆx Ax Bu                                                     (3.37)

 1 1 1

T

k|k k |kP AP A Q                                                   (3.38) 

The second phase of the filter is the measurement update or correction phase, where 

the measurements are used to get a more accurate estimate.  
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1 1
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                                           (3.39)

 1 1k|k k|k k k k|k
ˆ ˆ ˆx x K ( y C x )                                              (3.40)

 | | 1( ) ( )T T

k k k k k k k kP I K C P I K C K R K                                    (3.41) 

The solution for Kalman gain kK can be solved using the dlqe function in 

MATLAB. 

3.3.7 Constrained MPC  

The MPC will be extended such that it contains constraints. Constraints are present 

in all real-world processes. The process variables should stay within specified 

boundaries due to design requirements, physical constraints and safety requirements.  

Physical constraints are the result of physical limitations of the process equipment. 

For example, actuators limit, tank levels and valve slew rates. Safety considerations 

often impose limitations on plant outputs, such as temperature, heights in tanks, and 

pressure. Therefore, the MPC problem has to take the limits of the physical system 

into consideration. Violations of the constraints must not be allowed while the 

operation is kept close to these constraints.  
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One of the major advantages of MPC is its ability to handle constraints. The 

algorithm does this by optimising predicted performance subject to constraint 

satisfaction. There are three types of constraints, namely, input constraints, output 

constraints and state constraints. In this study, the optimization problem is assumed 

to be subject to constraints on the plant outputs. 

3.3.7.1 Output Constraints 

The output of a process can be limited by introducing upper and lower output 

constraints maxy and miny . Then the output constraints are specified as: 

 min maxk jy y y                                                      (3.42) 

where  

 max 1( 1)max ( 1)max[ ,...., ]T

k j m k jy y y                                          (3.43)

 min 1( 1)min ( 1)min[ ,...., ]T

k j m k jy y y                                           (3.44) 

m is the number of outputs, j=1: Np.  

The output constraints are expressed in terms of Uk and using vector notations as 

follows (Maciejowski, 2002): 

 min max
ˆ( ) kY x k U Y                                                 (3.45) 

where 

 max 1max max[ ,...., ]T T T

mY Y Y                                                (3.46)

 min 1min min[ ,...., ]T T T

mY Y Y                                                 (3.47) 

 

Finally, the model predictive control in the presence of hard constraints is proposed 

as finding the parameter vector Uk that minimizes the cost function: 

 
1

( )
2

T T

k k k kJ U U HU U f                                               (3.48) 
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Subject to the inequality constraints: 

 c k cA U B                                                           (3.49)

where  

 cA
 

  
 

                                                         (3.50) 
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                                                 (3.51)

This‎ is‎ a‎ standard‎QP‎ optimization‎ problem‎ that‎ can‎ be‎ solved‎ using‎MATLAB’s‎

Quadprog function. 

3.3.7.2 Soft Output Constraints 

Predictive control optimization problems may become non-feasible in the presence 

of constraints. This is mainly due to model-plant mismatches, disturbances or noise. 

A simple solution to this problem is to enlarge the horizons. However, this will 

increase the computational burden and will not solve all sorts of infeasibilities 

(Afonso and Galvão, 2012). In MPC applications, soft constraints are often used on 

system states and outputs. Softening constraints is the process of removing the 

original hard constraints and adding a penalty function to the objective function (de 

Oliveira and Biegler, 1994; Zheng and Morari, 1995). 

The objective function for soft constraints to obtain kU  at any time k can be written 

as follows (Scokaert and Rawlings, 1999): 
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The added terms in the cost are the square of the maximum violation k  over the 

horizon, weighted by a constant S  and linear measures of constraints violations 

T

ks term. Tuning S  and s adjusts the relative importance of the two terms in the 

cost. Setting S  to zero effectively removes the output constraints and increasing S

leads to smaller violations or ever more hardening constraint.  

The new term in the objective function can be written in QP formulation as follows  

(Sørensen  and Kristiansen 2007): 
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where  
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The final objective function can be written in QP as follows: 
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3.3.8 MPC Tuning  

The tuning parameters of the MPC controller are the cost function weighting 

matrices Q  and S , the control horizon cN  and the prediction horizon pN . Garriga and 

Soroush (2010) presented a review of the available tuning guidelines for MPC. 

Despite some progress made so far, MPC tuning is still performed by running several 

simulations to check if the chosen tuning parameters are suitable (Shah and Engell, 

2011). The choice of these parameters has an effect on the nominal stability, 

robustness, and controller performance of the MPC algorithms. The effect of tuning 

parameters on control performance can be summarized as follows (Garriga and 

Soroush, 2010):   

1- The prediction horizon Np: A long prediction horizon leads to better 

performance and less aggressive control action and has a stabilizing effect, 

although it increases the computation burden. 

2- The control horizon cN : A larger control horizon leads to a more optimal and 

aggressive controller. In this case, the system response is faster and more 

sensitive to disturbances. In addition, long cN  leads to unnecessary control 

action and long computation time. 

3- The weighting matrices Q  and S : The diagonal matrix Q  penalises the 

tracking errors and guides the servo performance of the control system, the 

most important variables having the largest weights and less deviation from 

setpoint. The diagonal matrix S penalizes the movement of manipulated 

variables. Increasing the values of weight S  relative to weight Q  has the 

effect of reducing the control activity.   

3.3.9 MPC and Stability  

In general, the MPC problem is formulated as solving on-line a finite horizon open-

loop optimal control problem subject to constraints. However, in this general form, 

the stability of MPC control is not guaranteed (Bithmead et al., 1991). This is 

because finite horizon causes deviation between open-loop prediction and the closed-
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loop system. Closed-loop stability can be ensured by suitable tuning of MPC 

parameters and by selecting the prediction horizon sufficiently long (Maciejowski, 

2002). This method is still widely used in industry to ensure the stability of classical 

MPC algorithms (Chen, 2010).  

Several ways of guaranteeing nominal stability are investigated (Mayne et al., 2000). 

The most widely used method is the addition of terminal cost and constraints to 

explicitly ensure stability. The main idea is to evaluate the cost function over an 

infinite prediction horizon as follows:   

 | | | |
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( ) [ ]T T

k j k k j k k j k k j k
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J k x Q x u Ru
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                                     (3.56) 

where 0, 0TQ Q R    are weighting matrices of state and control input. 

The solution to an infinite horizon is computationally intractable, therefore the 

practical way of solving this problem is through the dual mode prediction scheme, 

where the infinite horizon is divided into two sub-problems (Michalska and Mayne, 

1993).     
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The infinite horizon quadratic cost is given by: 
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Therefore, the cost function can be written as follows: 
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where the terminal weight P  matrix is calculated as a solution to a fake algebraic 

Riccati equation (Maciejowski, 2002):  
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1( )T T T TP A PA A PB B PB R B PA Q                                    (3.60) 

In mode 2, for pj N , the optimization solution will yield the unconstrained linear 

quadratic regulator (LQR), where the optimal control is given by: 

 ( ) ( )u k j Kx k j                                                     (3.61)

 
1( )T TK B PB R B PA                                                (3.62) 

Here mode 1 refers to an initial horizon of pj N  , where optimal control is obtained 

by solving the constrained MPC optimization problem, as defined in the second term 

of equation (3.59). 

Another possibility for proving stability of linear MPC is to add a terminal constraint 

at the end of the horizon, which forces the state to take a particular value. This will 

result in stable closed loop when the optimization problem has a feasible solution. 

However, adding a terminal constraint is quite restrictive (Maciejowski, 2002).  

3.3.10 MPC Algorithm  

The basic MPC law is described by the following algorithm: 

1. Define output constraints. 

2. Calculate Kalman filter gain equation (3.39). 

3. Get input /output measurements and update states equation (3.40). 

4. Compute output prediction equation (3.32). 

5. Solve the optimization problem equation (3.54) . 

6. Apply first element of control input kU and shift optimal horizon one step 

forward. 

7. Let k=k+1 and go to 3. 
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3.4 Simulation and Results 

In this simulation, a constraint supervisory MPC controller presented in 

section ‎3.3.10 was used to control the CCPP simulator that was developed in Chapter 

2. As shown in Figure ‎3.4, the supervisory MPC was used to provide optimal set-

points for the regulatory level using the linearized state space model of the CCPP 

system. A Kalman filter observer was used to estimate the system states.  In this 

study, the closed -loop stability is achieved by a suitable tuning of MPC design 

parameters. 

 

Figure ‎3.4: Supervisory MPC 

3.4.1 Linearization of CCPP System 

The nonlinear model of CCPP, including the PI controllers, was linearized into a 

state space model at a given operating point using the SIMULINK control design 

program. In this simulation, it was assumed that the load operating points were 80%, 

90%, 110% and 120% of the nominal operating (100%), as listed in Table 3.1.  These 

different operating points are used to prove that the linearized model cannot cover 

wide range of operating points. The linearized models obtained using the above 

operating points had 37 states, which was reduced to an acceptable 30th order model 

using BALREAL and MODRED MATLAB functions.  
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Table 3.1: Operating points 

  80% 90% 100% 110% 120% 

Boiler pressure (pa) 63.62 10

 

64.072 10  64.525 10  64.977 10  65.43 10

 

Drum level (m) 3.314 3.728 4.142 4.556 5.05 

Boiler temp. (K) 524 598.5 655 720 786 

Gas turbine temp.(K) 814.4 916.2 1018 1118 1218 

Gas turbine power-pu 0.6 0.7 0.8 0.9 1.0 

NOx contents (ppm) 72.608 81.684 90.76 99.76 108 

Steam turbine power 0.6 0.7 0.8 0.7 0.6 

 

To validate linearization results, sinusoidal input signals were injected in both the 

nonlinear model at the nominal operating point (100%) and all linear models that 

linearized using different operating points (80%, 90%, 100%,110% and 120%). This 

comparison test was made by injection of sinusoidal input signals with +10% 

amplitude and frequency of 0.05 / secrad   in the boiler superheated pressure set-

point, as shown in Figure ‎3.5. The accuracy of the linearization is clearly shown in 

this figure.  

The linearization results were also validated by comparing the simulation outputs of 

the linear models and the nonlinear model using the same step input signals. 

Figure ‎3.6 shows the boiler superheated pressure responses to +10% step changes in 

the set-point. As shown in this figure, both the nonlinear and linear models reached 

steady state at the same time but with very small differences in the transient response 

due to the nonlinearity of the boiler system. 
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Figure ‎3.5: Nonlinear‎and‎linearized‎models’‎responses‎to‎sinusoidal‎inputs 

 

 Figure ‎3.6:‎Nonlinear‎and‎linear‎models’‎responses‎to‎step‎inputs 
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3.4.2 Supervisory MPC Results 

In this simulation, the nonlinear CCPP states were estimated using the Kalman filter; 

the prediction horizon was selected as Np= 80. The control horizon was assumed to 

be equal to the prediction horizon. The discretization time was chosen as T=1 sec. 

The weighting matrices Q and S were chosen first arbitrarily and then the role of 

each parameter was retuned using simulations. Q and S were chosen as follows: 

S= diag [7.11x10-5 5000   200     0.6517   55800   300 50000], 

Q=diag [1x10-6     5000    150   1.018    89800   250   80000] 

The introduced maximum and minimum output constraints are listed in Table . 

Table 3.2: Output constraints 

Output constraints Minimum Maximum 

Superheated boiler pressure (Pa) 64.4 10  64.65 10  

Boiler drum level (m) 3.5 4.5 

Steam turbine power (pu) 0.62 1 

 

 

Figure ‎3.7 shows the responses of the boiler drum level and steam turbine power to 

+10% step changes in boiler superheated pressure using constrained and 

unconstrained MPC. It can be observed that the imposed output constraints are 

satisfied using the constrained MPC.  

Simulation results comparing the performance of supervisory MPC and the classical 

PID controllers are shown in Figure ‎3.8 and Figure ‎3.9. These figures show that 

MPC is able to reach the setpoint faster than the PID, which continuously oscillates 

around the setpoint with a larger overshoot. Figure ‎3.8 also demonstrates how the 

constrained MPC keeps the output pressure level within the specified bounds, which 

is violated when using the PID controller. 
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Figure ‎3.7: Boiler drum level and power of steam turbine response using constrained 

and unconstrained MPC 
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Figure ‎3.8: Boiler pressure response to +10% setpoint changes and 5% output 

disturbance in boiler temperature at 300 seconds 

 

 

Figure ‎3.9: Boiler pressure response to steam turbine load change 
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3.5  Conclusions 

This chapter proposed the use of a second layer of control based on MPC to tune the 

performance of PID controllers of the CCPP. This has the advantage of including 

output constraints to provide safety limitations and satisfy environmental regulations. 

Simulation results showed that the supervisory MPC has better performance than 

classical PID control schemes and allows handling constraints.  

In linear MPC, a linear model is used to predict system dynamics, which has the 

advantage of solving convex-optimization problems. However, if the process is 

operated over a wide range of conditions, a fixed model linearized at a steady-state is 

usually not sufficient to have the predictability to cover the operating range. 

Therefore, in the next chapter, NMPC will be considered to control the CCPP, where 

this linear MPC algorithm will be used as a basis for the development of LTV state-

dependent NMPC. 
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4. Nonlinear Predictive Control and 

Estimation for an Industrial Power 

Plant State-Dependent Model 

4.1 Introduction  

The major dynamics of power plants include nonlinear behaviour, time delays and 

uncertainties. Nowadays, power generation processes need to operate under much 

tighter performance specifications. For example, economic, environmental and safety 

constraints need to be satisfied. These increasing demands can only be met by using 

advanced control strategies.  

MPC technology has made a significant impact on industrial control engineering, due 

to its ability to handle constraints. As discussed in Chapter 3, LMPC refers to a 

family of MPC schemes in which linear or linearized models are used to predict 

system dynamics. LMPC is acceptable when the process operates at a single 

operating point and the controller is only used for disturbance rejection. 

Nowadays, the demand for rapid changes in power generation requires frequent 

changes from one operation point to another, and often near the boundary of the 

admissible region. Under these conditions, the results obtained by using an LMPC 

are poor in terms of performance, and often not sufficient for coping with the process 

requirements (Findeisen and Allgöwer, 2002). This suggests the need for nonlinear 

control strategies, which are based directly on the nonlinear model and which 

explicitly take account of the nonlinearities during the system synthesis process.   

In contrast to linear MPC, where convex quadratic programs are mostly solved 

exactly at each sampling time, the solution to the NMPC optimization problem 

requires solving a nonconvex, nonlinear problem online, which is, in general, 

computationally expensive and increases significantly with the complexity of the 
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model used in the controller. Moreover, the global solution for optimization cannot 

be guaranteed (Camacho and Bordons, 2007).  

In this chapter, a supervisory constrained NMPC strategy based on the LTV state-

dependent model is formulated and applied for the regulation of a nonlinear power 

plant to reduce the complexity of online optimization problems. The main difference 

with the previous work in this area is that the complete algorithm, using an 

optimization procedure, a nonlinear estimator and constraints, is employed to design 

a 2nd level controller to generate optimal set points for 1st level regulating PID loops. 

NMPC requires full state information for the prediction.  

 

4.2 State-Dependent Riccati Equation Control Method 

Based on the state dependent state-space model, Cloutier (1997) developed a 

nonlinear regulator technique called the State Dependent Riccati Equation (SDRE). 

This technique approaches the problem by mimicking the LQR formulation for linear 

systems. It has been applied successfully to nonlinear process systems, both in theory 

and in experimental practice (Banks et al., 2007; Çimen, 2012). The quadratic 

infinite horizon cost function is in the form:  

                
0

1

2

T T

w w

t

Minimize J x Q x u R u dt



                                             (4.1)

with the state nx  and control mu , subject to the nonlinear system constraints 

 
   

( )

x f x B x u

y C x x

 


                                                     (4.2) 

where n mB  and C are the system input and output matrices. 
n n

wQ  and 

m m

wR  are state dependent weighting matrices which satisfy 0wQ  and 0wR  for 

x .  
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Direct parameterization is used to transform the nonlinear dynamics to the state-

dependent coefficient (SDC) form: 

    x A x x B x u                                                      (4.3) 

with ( ) ( )f x A x x , where n nA  is the state matrix.  

Based on this linear-like state representation, the SDRE approach is almost the same 

as the standard LQR formulation for linear systems. However, for the SDRE 

approach, the system model matrices ( )A x  and ( )B x  are updated at every time-step 

because they depend on the state. Then, the optimal feedback control u is obtained, 

as follows: 

    1( ) Tu K x x R B x P x x                                             (4.4)                                         

where P(x) is the symmetric, positive-definite solution of the state-dependent 

Algebraic Riccati Equation (ARE):  

                    1( ) ( ) ( ) ( ) 0T T

w wA x P x P x A x P x B x R B x P x Q               (4.5) 

To ensure the desired solution of equation(4.5), the global controllability and 

observability of state-dependent system factorizations is commonly assumed. 

 

4.3 State-Dependent Coefficient (SDC) Representation 

Cloutier et al. (1996) have shown that the SDC form (4.3) can always be obtained for 

most nonlinear dynamic systems, using simple algebraic manipulations if (0) 0f   

and ( )f x  are continuously differentiable, that is 
1( )f x C . In the multivariable case, 

it is stated in (Cloutier et al., 1996) that the SDC parameterizations (4.3) are not 

unique. In fact, there are an infinite number of ways to bring the nonlinear system 

(4.2) to SDC form. This is true, provided that at least two parameterizations exist for 

(4.2). Let 1( )A x and 2 ( )A x be two distinct SDC parameterizations, then
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1 2( ) ( ) ( )f x A x x A x x  . Consider the SDC matrix 1 2( , ) ( ) (1 ) ( )A x A x A x     , 

so: 

 

       
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 

1 2, 1

1

A x x A x x A x x

f x f x

f x

  

 

  

  



                                   (4.6)

Therefore,  ,A x   is a valid SDC parameterization for all  , so that there are 

an infinite number of parameterizations corresponding to the choice of  . The non 

uniqueness of the SDC parameterization for multivariable systems creates additional 

degrees of freedom, which can be utilized to provide great design flexibility (Cloutier, 

1997). The SDC parameterization must be chosen in accordance with control system 

and state estimation design objectives. An important factor for this choice is not 

violating the controllability and observability of the system. The local stability of the 

closed loop system resulting from using the SDRE nonlinear regulation technique is 

given by the following theorem from Cloutier et al. (1996). 

 

Theorem 4.3.1: Cloutier et al. (1996) assumed that the SDC parameterization is 

chosen, such that 
1( )f x C ,  ( ), ( )C x A x  is globally observable (or at least 

detectable) and  ( ), ( )A x B x  is globally controllable (stabilizable). Then, the SDRE 

nonlinear regulation control method has a closed loop solution which is locally 

asymptotically stable. The proof can be found in (Cloutier et al., 1996). 

As in linear theory, the controllability matrix is given by: 

            
( 1)( ) ( ) ( ) ( ) ( ) ( )nM x B x A x B x A x B x                                     (4.7) 

The state-dependent observability matrix is given by: 

 

 

1

( )

( ) ( )
( )

( ) ( )n

C x

C x A x
O x

C x A x

 
 
 
 
 
 

                                                  (4.8) 
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If ( )M x  and ( )O x  have full rank for all x, then the system is controllable and 

observable. This will only guarantee local stability. The main drawback of this 

method is that it does not provide assurance of global asymptotic stability, which is a 

difficult issue in general for non-linear systems. In the literature, the stability analysis 

of the SDRE method either sacrifices performance or imposes conservative rules 

(Çimen, 2012). However, most SDRE controllers are simply implemented by 

satisfying theorem 4.3.1, and then simulation analysis is used to assess stability 

(Çimen, 2012). The other drawback of the SDRE method is that it does not explicitly 

handle constraints. 

 

4.4 Nonlinear Model Based Predictive Control 

In this section, NMPC methods that are based on LTV systems will be first discussed, 

and then NMPC strategy based on the LTV state-dependent model will be used to 

control the nonlinear power plant process.  

4.4.1 Successive Linearization 

Due to computational limitations, nonlinear MPC technology has not yet been used 

at a large industrial scale. As an alternative to a fully nonlinear MPC, a different 

MPC algorithm which uses linear time-varying predictions through local Jacobian 

linearization has been proposed in a variety of papers (Lee et al., 2002; Kouvaritakis 

et al., 1999).  

In this method, the nonlinear model dynamics are linearized at each iteration, around 

the predicted trajectories for the state and control variables obtained from the 

previous iteration. The resulting linear time varying system is used in the receding 

horizon optimization, using the QP problem. Extended Kalman filtering (EKF) can 

be used to estimate the current states from the noisy outputs. This strategy was used 

in controlling industrial  nonlinear processes, such as in Prasad et al. (2002). 

To approximate the nonlinear model using the LTV system, the nonlinear model (4.2) 

is linearized around the trajectory vector Xk+1, as follows:  
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 1 ( , ) ( , )K k k k k kx A x u x B x u u                                           (4.9)

 1 ( , ) ( , )K k k k k ky C x u x D x u u                                           (4.10)                                                                              

where: 
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The states, outputs and inputs are calculated from equations (4.9) and (4.10), as 

follows: 

 

k k k

k k k

k k k

x x x

y y y

u u u







 

 

 

                                                       (4.11) 

For highly non-linear systems, the nonlinear model is weakly approximated through 

the Taylor series expansion. This may lead to model mismatch and instability.  

 

4.4.2 Linear Parameter Varying (LPV) 

Shamma and Athans (1991) developed a new modelling framework for gain 

scheduling control, called Linear Parameter Varying (LPV). The LPV strategy 

reduces the nonlinear system to a linear time invariant (LTI) system for frozen values 

of the scheduling parameter variable. The LPV model can be obtained using 

linearization or parameterization of the state-space model as a nonlinear function of 

the scheduling parameter. A discrete LPV system is represented in state-space as: 

 ( 1) ( ( )) ( ) ( ( )) ( )x k A k x k B k u k                                        (4.12)

 ( ) ( ( )) ( ) ( ( )) ( )y k C k x k D k u k                                         (4.13) 

The parameter variable ( )k  is assumed a priori unknown. However, it can be 

measured or estimated upon operation of the system using LPV identification 

techniques. 
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The advantage of this approach is that it offers a theoretical framework to ensure  

performance and robustness of the controlled system via convex optimisation over 

LMI (Mohammadpour Velni and Grigoriadis, 2008). However, for use in the control 

of large scale industrial processes, the modelling of an LPV is very complex and 

conservative, which might be difficult to construct. In addition, the identification 

problem is very complex and requires high costs for plant testing (Xu et al., 2009).  

 

4.4.3 NMPC with State-Dependent State-Space Models 

The linear time-varying models can also be obtained using a state dependent 

description of the nonlinear system. The state dependent representation of a system 

model avoids model linearization. The non-linearity is handled by the algebraic re-

arranging of the original state-space model into a linear time-varying representation. 

Based on the state dependent state-space model, Cloutier (1997) developed a 

nonlinear regulator technique called the State Dependent Riccati Equation (SDRE). 

This technique has been described as a nonlinear extension of the well-known LQR 

formulation for linear systems.  

The use of state-space models for linear Generalised Predictive Control (GPC) was 

first proposed by Ordys and Clarke (1993). Inspired by SDRE, NMPC based on the 

state-dependent model was developed by Ordys and Grimble (2001). This approach 

has been used in many papers, such as by Dutka et al. (2003), Youssef et al.(2003), 

and by Shakouri and Ordys (2011). In this section, a supervisory constrained NMPC 

control strategy based on the LTV state-dependent model is formulated and applied 

for the regulation of a nonlinear power plant model. The technique presented here is 

adapted from (Ordys and Grimble, 2001) and  (Orlowski, 2011). 

4.4.3.1  Model Representation  

The proposed control strategy consists of two levels, a conventional PI regulatory 

level and a supervisory NMPC optimization level, as shown in Figure ‎4.1. In this two 

layers architecture, the regulator level is assumed to be the existing plant PI 

controllers. The supervisory NMPC algorithm is used as a second level controller, to 
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generate optimal set points to the lower level regulating PI loops. The advantage of 

this structure is that the NMPC algorithm is sitting on top of the existing PI control 

structure and does not interfere with the closed loop control system. In addition, the 

model used in NMPC design is, therefore, open-loop stable. 

             

Figure ‎4.1: Supervisory NMPC control strategy 

Let the system under control described by the state-dependent nonlinear model be: 

 
( ) ( )

( )

p p p p p p p

p p p p

x A x x B x u

y C x x

 


                                             (4.14)   

where: ( ), ( )p pA x B x and ( )pC x  are the SDC matrices which are chosen, such that the 

system is observable and controllable for all x.  

The state space equation describing the PI controllers can be represented as follows:  

 
c c c c

p c c c

x A x B e

u C x D e

 

 
                                                   (4.15) 

where: cx is the state of PI controllers, and e is the error signal and defined as 

pe r y  .  

Reference 

NMPC 

PI PI 

Plant 

Nonlinear 

SDKF 

States x̂  

Constraints 

U1 

U2 

1y

Output 

2y Output 

  

  

1y

 

2y  
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After appropriate substitutions, the state space equations for both the boiler model 

and the PI controller can be written as follows:   

 
1 1

1

( ) ( )

( )

x A x x B x u

y C x x

 


                                                  (4.16)

where:   

, ,
c

p

x
x u r

x

 
  
 

 

1 1 1

( )
( ) , ( ) , ( ) 0 ( )

( ) ( ) 0

c c p c

p

p c p

A B C x B
A x B x C x C x

B x C A x

   
        

  
 

The state dependent model (4.16) is discretized using the Euler integration method 

and converted to a state-dependent nonlinear discrete-time model: 

 
1 ( ) ( )

( )

k k k k k k k

k k k k

x A x x B x u

y C x x

  


                                             (4.17) 

where ( )k kA x , ( )k kB x and ( )k kC x  are the SDC discrete matrices.  

In order to achieve offset-free performance, the process model (4.17) was augmented 

to include constant step output disturbances. The augmented state-space system is 

given by: 

 
1 ( ) ( )

( )

k k k k k k k

k k k k

x A x x B x u

y C x x

  


                                             (4.18) 

where: 

 
( )( ) 0

( ) , ( ) , ( ) ( ) ,
00

kkk
k k k k k

k

xB xA x
A x B x C x C x I x

dI

     
          

   
 

For simplicity, the process model in the state-dependent coefficient form (4.18) can 

be written as follows: 
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1k k k k k k

k k k k

x A x B u w

y C x v

   

 
                                               (4.19)                                              

where: ( )k k kA A x , ( )k k kB B x and ( )k k kC C x . 0 0,.... 1pk k k N    and Np form 

the prediction horizon. kw  and kv are the process and measurement white noises, 

respectively. 

4.4.3.2 Prediction Calculation 

At the time instant k, the current estimated state ˆkx and the past input vector 

1 1 1 1 1 1

T
T T T

k k k k NpU u u u      
    , calculated at previous iteration of the control 

algorithm are used to predict the future trajectory. The first element of 1kU   has 

already been used, but the remaining part can be used by repeating the last element 

of the vector once again, i.e. 1 1 1 2p pk N k Nu u      .  

Therefore, the state prediction vector 
1 2( 1, | )

T
T T T

p k k k NX k N k x x x  
      and 

its associated matrices ( )A k j , ( )B k j   and ( )C k j  (where: j=1,...,Np ) are 

calculated iteratively, using the following equation based on the time-varying 

approximation: 

 
1 2 1 2 1

1 2 2 1 1 2 1 1

[ ... ] [ ... ] ....

[ ... ] [ .... ]

k j k j k j k k k j k j k k k

k j k j k k k k j k j k Np k j k j

X A A A x A A A B u

A A A B u A A A B u

         

              

 

 
                  (4.20) 

The state prediction equation can be represented in vector form, as follows: 

 0
ˆ ˆ ˆˆˆX x U                                                       (4.21)

where:   

 ˆ ˆˆ LB   
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The output prediction vector 
1

ˆ
T

T T

k k NpY y y 
     can be calculated as follows: 

 

0

0 1

0 0

ˆ ˆ0 0

0 0

k

k Np

C

Y X

C  

 
 
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4.4.3.3 Cost Function Minimization 

To obtain an optimal control sequence, the following performance index must be 

minimized within a prediction horizon. 

 
2 2

1| | | 1|

1

1
ˆ ˆ( , ) || || || ||

2

Np

k k k k j k k j Q k j k k j k S

j

J x U y r u u     



                         (4.22) 

Subject to constraints specified on outputs: 

 min maxky y y                                                       (4.23) 

where: Np  is the maximum output horizon, and 0Q   and 0S   are the weightings 

on the tracking error and the control increments, respectively. As discussed in 

Chapter 3, the objective function can be expressed as follows:  
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T T

k k k k k kJ x U U HU U f                                           (4.24)

where:  
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The optimal Uk can be found by solving (4.24) using the MATLAB quadratic 

programming‎ function‎ “Quadprog”.‎  The output of the process can be limited by 

introducing upper and lower output constraints, maxY  and minY , as discussed in 

Chapter 3. The output constraints are specified as min maxkY Y Y  . The output 

constraints are expressed in terms of Uk. Then, the cost function is solved subject to 

the inequality constraints: 

 c k cA U B                                                          (4.25) 

where: 
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4.4.3.4 Stability of State-Dependent NMPC  

The stability of NMPC system can either be obtained by tuning the parameters of the 

controller, or it can be achieved independently of the choice of the performance 

parameters, which is usually referred to as an NMPC with guaranteed stability. 

Different possibilities for guaranteeing the closed-loop stability for NMPC have been 

proposed (Keerthi and Gilbert, 1988; Michalska and Mayne, 1993; Chen and 

Allgöwer, 1998). Different formulations with guaranteed stability can be found in the 

survey paper by (Mayne et al., 2000). The stability is usually ensured by adding 

suitable equality or inequality constraints, and suitable additional penalty terms to the 

cost functional, as described in Chapter 3. Stability can also be ensured without these 

constraints, by selecting a sufficiently large optimization horizon, Np. However, 

NMPC with stability guarantee issues is still open, especially when integrated with a 

state observer (Camacho and Bordons, 2007; Huang et al., 2012).  

Since the stabilizing properties of MPC with linear models are well known, LTV 

techniques can be employed, in some cases, to establish stability. These techniques 

transform the original nonlinear model into a group of linear models. In this thesis, 

the proposed constrained NMPC based on the state-dependent model can be locally 

stabilized using the stability formulation for linear MPC. However, guaranteeing 

global stability without sacrificing performance or imposing conservative rules is 

still an open issue, as in the case of the SDRE controller which needs to be tackled 

(Çimen, 2012).  

In this study, the stability of the proposed NMPC based on the state-dependent model 

is ensured by selecting the SDC matrices, in order to fulfil theorem 4.3.1. Then, a 

simulation analysis is used to assess stability.   

4.4.3.5 The NMPC Algorithm 

The following steps summarize the NMPC control technique presented in this study: 

1- Estimate the current state vector ˆkx . 
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2- At k=0, the initial control trajectory ,k NpU  can be assumed to be a step control 

signal with amplitude from the normal operating range for the control.  

3- For k > 0, given the vector ,k NpU , which was calculated in the previous 

iteration after removing the first element, which has already been used in the 

previous iteration for control and repeating the last element of the vector once 

again, i.e.,  1 2k Np k Npu u    . 

4- Substitute the calculated ,k NpU  into the state equation and calculating 

iteratively the state prediction and its associated matrices; ˆ , ,k j k j k jx A B    

and k jC     for n= 1,….., Np. 

5- Calculate the output predictions and the control vector ,k NpU .  

6- Check the differences between the control vectors: 

   , ,k Np k NpU new U old   . If this condition is not satisfied, put     

   , ,k Np k NpU old U new  then go to step (3). If the condition is satisfied, then 

apply the first element of  ,k NpU  to the plant and put k=k+1, then go to step (1). 

4.5 Non-linear Estimation 

Most NMPC schemes in literature assume the availability of the measurement of 

complete states, which is not always possible. Therefore, it is important to 

incorporate a nonlinear state observer into the NMPC scheme to estimate the non-

measurable states.  

The most commonly used state estimation method is the extended Kalman filter 

(EKF), due to its simplicity, robustness and suitability for real-time implementations 

(Lee and Ricker, 1994). The basic idea of EKF is to perform linearization at each 

time step, to approximate the nonlinear system as a time-varying system to extend 

the scope of the Kalman filter to systems described by nonlinear functions. However, 
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for non-linear systems due to approximations made during linearization the state 

estimates convergence is not guaranteed. In addition, if the initial estimate is far from 

the actual, or if the process is modelled incorrectly, the filter may quickly diverge 

(Lo and Rathamarit, 2008). 

The state-dependent Riccati equation (SDRE) filtering techniques (Mracek et al., 

1996) are rapidly emerging as nonlinear estimators for a variety of nonlinear 

applications (Çimen, 2012).  In contrast to EKF, which is based on Taylor series type 

linearization, the SDRE technique is based on state-dependent parameterization, 

which fully captures the nonlinearity by reducing the nonlinear system to a linear 

structure with state dependent coefficient (SDC) matrices. In the multivariable case, 

the SDC parameterization is not unique (Cloutier et al., 1996) and can be used to 

create additional degrees of freedom. This can be used to overcome the limitations in 

traditional filtering methods, such as singularities and the loss of observability.  

There are two commonly used approaches for the SDRE filtering technique. The first 

approach has the same structure as the steady-state linear Kalman filter (Mracek et 

al., 1996). In this approach, the Kalman gain is obtained by solving a state dependent 

algebraic Riccati equation (SDARE). This approach has disadvantages such as high 

computation costs, and the solution depends significantly on the observability 

property of the system (Jaganath et al., 2005). The second approach suggested by 

Haessig and Friedland (2002) uses a State Dependent Differential Riccati Equation 

(SDDRE) for the generation of filter gains, to avoid the observability shortcomings 

of the SDARE method.   

 

4.5.1 Extended Kalman Filter 

The most commonly used state estimation method in NMPC is the extended Kalman 

filter (EKF). Let the nonlinear model be expressed as follows: 

 
   

 

1 ,k k k k k k k

k k k k

x f x u G x

y h x





  

 
                                           (4.26) 
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where: ),( kkk uxf and )( kk xh  are assumed to be continuously differentiable, and k

and k are the process and measurement noise which are assumed to be zero mean 

Gaussian process with covariance matrices wQ  and wR , respectively.  

Using the linear Taylor series approximation of the system (4.26), the linear 

approximation at the current estimated state is derived. A detailed analysis of the 

method can be found in Chui and Chen (2009). The extended Kalman filter 

algorithm proceeds as follows:  

Initialization: 

 1/ 1 0 1/ 1 0
ˆ ˆ ,k k k kx x P P                                                    (4.27) 

Model prediction: 

 / 1 1/ 1( , )k k k k kx f x u    (4.28) 

 / 1 1/ 1 1 1/ 1 1 1 1/ 1
ˆ ˆ( ) ( )T

k k k k k K k k k wk k k kP F P F G x Q G x            (4.29) 

Measurement update: 

 
1

/ 1 / 1( )T T

k k k k k k k k wK P H H P H R 

    (4.30) 

 / / 1 / 1
ˆ ˆ ˆ( ( ))k k k k k k k kx x K y h x     (4.31) 

 | | 1( ) ( )T T

k k k k k k k k k w kP I K H P I K H K R K     (4.32) 

where: 

 
1

1/ 1 1 / 1

1

ˆ ˆ( , ), ( )k k
k k k k k k k

k k

f h
F x u H x

x x


   



 
 
 
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In EKF, the filter gain kK , 1/ kkP and kkP /  depend on previous state estimates and on 

the measurements, thus they cannot be computed off-line as in the linear Kalman 

filter. 

For non-linear systems, due to approximations made on Taylor series expansion 

during linearization, state estimates’ convergence is not guaranteed. The linearized 

model matrices are functions of the state about which the linearization was carried 

out. Therefore, model mismatch could happen due to state estimation error. This may 

lead to improper state updates, and consequently to divergence. Divergence may also 

occur if the initial state value is far from the actual.  

 

4.5.2 State-Dependent Kalman Filter 

An alternative for the extended Kalman filter is presented in this section. In this 

thesis, the emphasis is placed on state-dependent Kalman filters. The state-dependent 

Kalman filter (SDKF) was developed by Mracek et al.(1996). It combines the 

concept of linear time-varying models with the well known Kalman theory for linear 

systems. It has been used in nonlinear filter development and control designs for 

some nonlinear benchmark problems for state estimation (Çimen, 2012). The 

nonlinearities of the system are fully captured by the state-dependent representation, 

which reduces the nonlinear system to a linear structure with state dependent 

coefficients. 

4.5.2.1 SDARE Kalman Filter  

The estimation problem using the state-dependent algebraic Riccati equation is now 

analyzed. Assume that the nonlinear dynamics model (4.26) can be formulated into 

SDC form, as described in section ‎4.3: 

 
1k k k k k k

k k k k

x A x B u

y C x





   

 
 (4.33) 
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where )(,)(),( kkkkkk xCCxBBxAA  are state-dependent matrices. 

Additionally, it is assumed that  ,k kC A   is point-wise observable for all x. 

The one-step recursive update formulation of the SDARE-based observer is given by: 

 1
ˆ ˆˆˆ ˆ ˆ( )k k k k k k k k kx A x B u K y C x      (4.34) 

 k k ky C x  (4.35) 

The observer gain for the one-step formulation is given by: 

 1ˆ ˆ ˆ( )T T

k k k k k k wK P C C P C R    (4.36) 

where kP  is updated using the  state-dependent algebraic Riccati equation (SDARE):  

 
1ˆ ˆ ˆ ˆ ˆ ˆ( )T T T

k k k k k w k k k k k k wP A P P C R C P C C P A Q    
   (4.37) 

 

4.5.2.2 SDDRE Kalman Filter  

In this thesis, the emphasis is placed on the state-dependent differential Riccati 

equation Kalman (SDDRE) filter proposed by Haessig and Friedland (2002), which 

avoids the observability shortcomings and computation costs of the SDARE method.  

Consider the same system dynamics given by (4.26), and also assume that the 

nonlinear dynamics can be formulated into the state-dependent coefficient form as 

follows: 

 
( ) ( )

( )

x A x x B x u

y C x x

 


 (4.38) 

The estimated state x̂ is given by: 

 1
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )( ( ) )kx A x x B x u K x y C x x      (4.39) 
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The observer gain is given by: 

 
1ˆ ˆ ˆ( ) ( ) ( )T

wK x P x C x R   (4.40) 

where ˆ( )P x  is updated using the state-dependent differential Riccati equation 

(SDDRE):  

 
1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T

w wP x P x A x A x P x P x C x R C x P x Q     (4.41) 

The above equations show that the structure of the SDRE filter is similar to EKF. 

SDRE differs from EKF in that it uses the exact linear model, assuming the state 

estimates are accurate. In contrast, the linear model of EKF suffers from linearization 

error. 

4.5.2.3 Stability of SDRE Filter 

The minimum requirement for the local convergence of the SDRE nonlinear state 

estimator is that the system model (4.38) ( ( )f x x ) has detectable parameterization, 

and is locally Lipschitz continuous for all x in the interested domain (Banks et al., 

2007). This can be satisfied if there is a constant 0L , such that: 

 ( ) ( ) , ,f y f z L y z y z B                                   

(4.42) 

where: the open set 
mB . 

In this thesis, simulation analysis is used to verify this condition instead of analytical 

analysis due to the complexity of the system model. For example, Figure ‎4.2 shows 

the plot of Lipschitz constant L versus the pressure state using boiler model for any

, ( , 0.02)y z x x  , where the state vector x is chosen in the domain of the 

neighbourhood of the operating point 0x . From this figure it is clearly shown that L is 

bounded which demonstrates that the local Lipschitz condition is satisfied in this 

system. However, global stability of the SDRE filter is more difficult to demonstrate. 

This is because getting stable eigenvalues of the SDRE system at each sampling time 



98 

does not guarantee asymptotic stability. Although the SDRE filter has been 

successively implemented in different applications (Çimen, 2012), there are only a 

few papers in literature which provide theoretical analysis for global stability, such as 

(Jaganath et al., 2005; Banks et al., 2007; Nemra and Aouf, 2010; Beikzadeh and 

Taghirad, 2012). These methods either impose conservative conditions which can be 

violated for many applications, or require simulation to verify certain conditions or to 

find unknown parameters, especially for large scale or complex systems. So far, in 

practice, the global stability analysis has been performed using simulation tests 

(Çimen, 2012).   

New robust h-infinity SDRE filters are addressed in (Beikzadeh and Taghirad, 2012; 

Iratni et al., 2012), in order to overcome the effects of modelling uncertainty, 

measurement noise and input disturbance in the performance of the standard SDRE 

filter.  

 

Figure ‎4.2: Lipschitz constant 
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4.6 Applications of NMPC to a Nonlinear Industrial Power Plant  

4.6.1 NMPC for a Nonlinear Boiler Model 

In this section, the NMPC algorithm described in section ‎4.4.3.5 is applied to control 

a nonlinear boiler model. This boiler model includes both the fourth order Astrom 

and Bell (2000) drum-boiler model, and the furnace dynamic model described in 

Chapter 2. The optimum set-point of the boiler drum pressure 
r

dP is calculated using 

the NMPC to improve tracking and disturbance rejection, as well as to minimise an 

economic performance index. Then, using this optimum set-point, the PI controller 

regulates the steam pressure by adjusting the fuel flow to the boiler supplementary 

furnace as shown in Figure ‎4.3.  

This model will be integrated with other power plant subsystems, to form a complex 

centralized power plant model. Hence, in order to simplify the control problem, the 

water level in the drum-boiler is controlled using a PID controller, by adjusting the 

input water flow to the boiler. A nonlinear state-dependent Kalman filter (SDKF) 

will be used to estimate the system states.  

 

Figure ‎4.3: Boiler control strategy 
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4.6.1.1  State-Dependent Coefficients (SDC) Representation of Boiler Model 

This section will discuss the SDC representation of the nonlinear boiler model, which 

is used to predict the boiler outputs in the NMPC calculations. Since the water level 

is controlled by using a PI controller, the fourth-order boiler-drum model can be 

reduced to a second-order model as follows:  

 
11 12

21 22

wt
f s

wt
ir f f s s

dV dp
e e q q

dt dt

dV dp
e e Q q h q h

dt dt

  

   

                                      (4.43) 

This model can be rewritten in state-space form, as follows: 

 

 

22 12

11 22 12 21 11 22 12 21

21 11

11 22 12 21 11 22 12 21

( ) ( )

( ) ( )

f s ir f f s swt

f s ir f f s s

e q q e Q q h q hdV

dt e e e e e e e e

e q q e Q q h q hdp

dt e e e e e e e e

  
 

 

   
 

 

 (4.44) 

This model is integrated with the furnace model described in Appendix A. The 

complete model equation is expressed as follows: 

 

1 1 1

1 1 1

22 12

1

11 22 12 21 11 22 12 21

21 11

1

11 22 12 21
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( ) ( )
(3)

( ) (
(4)

A A G G ir is f g s
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e e e e e e e e

e q q e Q q h q h
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e e e e

 
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 

     

  
 

 

   
 

 11 22 12 21

)

e e e e

 (4.45)  

 

The heat transferred to the boiler drum irQ can be expressed as a function of 1(1)x  

and 1(2)x , as follows: 

 1 1 2 1(1) (2)ir m mQ Q x Q x   (4.46) 

where:  
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1 1 1

1
4

(2) (1) (1)

ref ref

m f g

pg pg

h T
Q kV T

c x c x x
 

 
    

 

 
3 1

2 2

1 1 1

4
(2) (2) (2)

ref ref

m f g
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h Tx
Q kV T

c x c x x
 

 
    

 
 

The state-space, input and output are defined as 1 1[ , , , ]f EG wtx x V p , 1 fu w and 

1 ,y p  respectively. After appropriate substitutions, the SDC model can be 

represented as follows: 

 
1 11 1 1 11 1 1

1 11 1 1

ˆ ˆ( ) ( )

ˆ( )

x A x x B x u

y C x x

 


 (4.47) 

where:  

  

11 12 13 1

21 22 2

11 1 1 11 1 11 1

32 33

41 44

0

0 0
ˆ ˆ ˆ( , ) , ( ) , ( ) 0 0 0 1

0 0 0

0 0 0

s s s l

s s l
A x u B x C x

s s

s s

   
   
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   
   

  
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The SDC model (4.47) is discretized using the Euler method and augmented with the 

PI controller, as described in section ‎4.4.3.1, to get the following model: 

 
1 11 1 1 11 1 1

1 11 1 1

ˆ ˆ( 1) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( )

x k A x x k B x u k

y k C x x k

  


 (4.48) 
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where: 

 

1 1 11 12 13 1 1

11 1 1 2 1 21 22 2 1

32 33

41 44

1 1

11 1 11 12 1

1 0 0 0

1

ˆ( , ) ,1 0

0 0 1 0

0 0 0 1

ˆ ˆ( ) , ( ) 0 0 0 0 1

0

0

i p

i p

p

p

T

Tl k Ts Ts Ts Tl k

A x u Tl k Ts Ts Tl k

Ts Ts

Ts Ts

T

Tl k

B x C xTl k

 
 

 
 
   
 

 
  

 
 
 
  
 
 
  

 

1pk and 1ik  are the PI controller gains, and T  is the sampling time. In this model, the 

state space vector is defined as 1 1 1 1 1 11 2 3 4[ , ( ), ( ), ( ), ( )]cx x x x x x , where 1cx is the PI 

controller state. 

4.6.1.2 Simulation Results 

In this simulation, the best values for the PID gains are found using the Multivariable 

PID tuning methods described in Chapter 3. The prediction horizon is selected as 

Np=10 and the sampling time T=0.02. The controller has been configured by 

choosing the weight on tracking error Q=450 and weight on control increments 

S=367. The optimization problem of MPC scheme is solved using the MATLAB 

Quadprog function provided by the optimization toolbox. Regarding the termination 

criteria for solving the NMPC problem and the maximum number of iterations, the 

values used by the simulations are 0.001 and 45, respectively. 

The performance of SDKF is demonstrated in Figure ‎4.4, which shows a comparison 

between the boiler true states and their estimates of step changes in drum pressure set 

points when the process and output noises are added to the system. The process noise 

and sensor noise are (0,0.001)N  and (0,0.01),N  respectively. The 

simulation results show a good estimate performance. 
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Figure ‎4.5 shows the boiler pressure and water level responses to set-point changes 

in the boiler pressure at 150 s. It is clearly shown that the controller has a good 

tracking performance. The controlled variable and manipulated variables are shown 

in Figure ‎4.6. 

Figure ‎4.7 and Figure ‎4.8 show the boiler output, control variable and manipulated 

variables responses to both set-point changes in boiler pressure at 150 s, and output 

step disturbance of 0.1 MPa on boiler pressure at 300 s. As shown in these figures, 

the disturbance can be eliminated efficiently through the proposed NMPC algorithm. 

 

 

Figure ‎4.4: Boiler true states and their estimates 
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Figure ‎4.5: Output response to set-point changes at 150 sec 

 

 

Figure ‎4.6: Control and manipulated variable response to set-point changes 
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Figure ‎4.7: Output response to output disturbance on boiler pressure at 300 sec 

 

 

Figure ‎4.8: Control and manipulated variables response to output disturbance  
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4.6.2 NMPC for a Nonlinear Power Plant Model 

4.6.2.1 State-Dependent Coefficients (SDC) Representation for the Power Plant 

Model 

The hierarchical structure of the considered CCPP model consists of three 

subsystems: gas turbine with a generator, boiler (HRSG) and steam turbine with a 

generator. The gas turbine model used in this study is a linear model. Therefore, it is 

assumed that the gas turbine is controlled separately using a supervisory linear MPC, 

where the gas turbine outputs Gh  and Gw  are considered to be constant input 

variables to the boiler.  The boiler is directly connected to a single steam turbine with 

a generator, to create a complete power plant. This power plant process is 

represented by an 11th order nonlinear first principles model. As shown in Figure ‎4.9, 

the power plant control system consists of three simple proportional integral (PI) 

control loops, designed to meet the set-points requirements. 

In this study, it is assumed that the boiler water level is well controlled using a PID 

controller, as discussed in the previous section. Therefore, the NMPC will be used 

only to control the boiler-drum pressure, which has an interaction effect on the 

subsequent subsystem.   

 

Figure ‎4.9: Power plant control system 
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The Furnace and Boiler Drum Pressure Model 

As discussed in section ‎4.6.1, this subsystem includes both the drum pressure 

dynamics and the supplementary firing furnace dynamics.  The boiler’s continuous 

and discrete models given in (4.47) and (4.48) are used in this study. 

The Superheater Model  

 

In order to ensure the optimum operating heat rate and to protect the steam turbine, 

the optimum set-point of the boiler superheater temperature 
r

sT  is calculated using 

the supervisory centralized NMPC. Then, using this optimum set-point, the PI 

controller regulates the superheater outlet temperature by controlling the 

attemperator spray water flow attw .  The inputs of this module are the drum pressure 

dP  and the heat energy gsQ  from the boiler module. The outputs to the steam turbine 

module are the temperature of the superheater steam sT , the specific enthalpy of 

superheater steam sh , and the pressure of the superheater steam sP .  

In order to represent the superheater differential equations described in Chapter 2 in 

the SDC model, the differential equations are rewritten as follows:   
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 (4.49) 

The superheated steam temperature sT  can be expressed as follows: 
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The state-space, input and output are defined as 2 1[ , , ]T

s st sx T X , 2 au w and 

2 sy T respectively. After appropriate substitutions, the SDC model can be 

represented as follows: 

 
2 22 1 2 2 22 2 2
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ˆ ˆ ˆ( , ) ( )
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y C x x
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This model is discretized using the Euler method and augmented with a PI controller, 

to get the following model: 

 
2 22 1 2 2 22 2 2

2 22 2 2

ˆ ˆ ˆ( 1) ( , ) ( ) ( ) ( )

ˆ( ) ( ) ( )
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where: 
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2pk and 2ik  are the PI controller gains, and T  is the sampling time. In this model, the 

state space vector is defined as 2 2 2 2 21 2 3[ , ( ), ( ), ( )]T

cx x x x x , where 2cx is the PI 

controller state. The input is defined as the temperature set-point 2 su T . 

 

Steam Turbine and Generator Model 

 

Once the future electrical power 
r

eP  set-point trajectory is available from the 

centralized NMPC, the PI controller regulates the steam flow inw  from the boiler to 

produce the desired electrical power eP , while the steam pressure is regulated in the 

boiler.  

In order to represent the steam turbine and generator differential equations described 

in Chapter 2 in the SDC model, the differential equations are rewritten as follows:   
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As discussed in Chapter 2, the state-space, input and output are defined as

3 [ , , , ]T

o ou o gx w x  , 3 ( / sec)in kgu w and 3 ( )m Wy P , respectively. After 

appropriate substitutions, the SDC model can be represented as follows: 
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1  and 2 are real numbers used to provide design flexibility as discussed in 

section ‎4.3, and chosen using simulation to enhance the observability as 0.4328 and 

0.5672, respectively.  

This model is discretized using the Euler method and augmented with a PI controller, 

to get the following model: 

 
3 33 2 3 3 33 3 3

3 33 3 3

ˆ ˆ ˆ( 1) ( , ) ( ) ( ) ( )

ˆ( ) ( ) ( )

x k A x x x k B x u k

y k C x x k

  


 (4.55) 

where: 
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3pk and 3ik  are the PI controller gains, and T  is the sampling time. In this model, the 

state space vector is defined as 3 3 3 3 3 31 2 3 4[ , ( ), ( ), ( ), ( )]T

cx x x x x x , where 3cx is the PI 

controller state. The input is defined as the electrical power demand 3 eu P . 

The centralized complete discrete model can be expressed as follows: 

 
ˆ ˆ( 1) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( )

x k A x x k B x u k

y k C x x k

  


 (4.56) 

where:  

 

   1 2 3 1 2 3 1 2 3

11 11 11

22 22 22

33 33 33

, , ,

0 0 0 0 0 0

( ) 0 0 , ( ) 0 0 , ( ) 0 0

0 0 0 0 0 0

T T TT T Tx x x x y y y y u u u u

A B C

A x A B x B C x C

A B C

    

     
     

  
     
          

 

Simulation Results 

In this simulation, the PID set points are manipulated using NMPC control to achieve 

a better performance. Hence, PIDs are mainly used to regulate the systems, and 

NMPC is used to improve tracking and disturbance rejection, as well as to minimise 

the economic performance index. In this simulation, the SDDRE Kalman filter 
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described in section ‎4.5.2.2 is used to estimate the system states. The initial condition 

of states used in the simulation is as follows: 

5 2 7

6

(0) [0,3.9984 10 ,0.4505,10.87,4.5417,0,13.6614,7.3707 10 ,4.5243 10 ,

0,1.5982,10.459,4.9079 10 ,1]

x    


 

The best values for the PI gains are found using the Multivariable PID tuning 

methods described in Chapter 3. The PI tuning gains for the three loops are 

Kp=[7.5131,-0.48197,0.8396] and Ki=[0.1878,-0.0172,0.8396]. The NMPC controller 

has been configured by choosing the weights on the tracking error Q= [45, 0.01, 0.5] 

and the weights on the control increments S= [43, 10, 50]. The prediction horizon for 

the optimization problem is Np= 10, with a time step of T=0.02 sec. In this simulation, 

the process noise is assumed to be (0,0.001)N  and the sensor noise is 

(0,0.01)N . 

Implementing the NMPC iterative algorithm described in section ‎4.4.3.5, where the 

required error norm for the control input to be satisfied is chosen as 0.001  , the 

maximum iteration limit is defined as max 120i  . Figure ‎4.10 shows the response of 

the boiler superheated temperature to set-point changes. It shows also the number of 

iterations required for convergence. It is clear that the norm of the error is satisfied 

during the whole trajectory. It can also be seen that, during the transition region, 

more iterations are required for convergence due to changes in the system states. 

Figure ‎4.11 depicts the closed-loop performance of the NMPC algorithm when 

process and output noises are added to the system. The simulation results show the 

strong robustness of performance against noises. The evolution of the real states and 

their estimates obtained by SDDRE estimators for the selected states are presented in 

Figure ‎4.12. The simulation results show that the SDDRE filter can attain a good 

performance.  

In order to maintain a high level of system safety, output constraints are introduced 

in this simulation. The minimum and maximum output constraints introduced are 

Ymin= [3.0MPa, 715.8oK, 0.78Pu-W] and Ymax=[6.0MPa, 718oK, 0.82Pu-W], 
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respectively. Figure ‎4.13 shows the steam turbine output power response to set point 

changes in boiler superheated temperature using constrained and unconstrained 

NMPC. The constrained and unconstrained superheated temperature responses to 

boiler pressure set point changes are shown in Figure ‎4.14 . From these figures, it can 

be clearly observed that the imposed output constraints are satisfied using the 

proposed constrained DMPC algorithms.  

Figure ‎4.15 shows the boiler pressure and superheated temperature response                       

to the output step disturbance of 0.1 MPa on the boiler pressure at 150sec. As shown 

in this figure, the disturbance can be eliminated efficiently through the proposed 

NMPC algorithm. 

Simulation result comparing the performance of supervisory NMPC and the classical 

PI controllers is shown in Figure ‎4.16. It can be seen that the NMPC controllers 

provide better response than PI controllers. NMPC has smaller overshoot and 

smoother controller action than PID controllers.  

 

Figure ‎4.10: Number of iterations required for convergence 
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Figure ‎4.11: Outputs response to set-point change with states and outputs noises  

 

 

Figure ‎4.12: System true states and their estimates 
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Figure ‎4.13: Steam turbine responses to set-point changes in superheated 

temperatures, using constrained and unconstrained NMPC  

 

 

Figure ‎4.14: Superheated temperature responses to pressure set-point changes, using 

constrained and unconstrained NMPC  
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Figure ‎4.15: Boiler pressure and superheated temperature responses to output 

disturbance on boiler pressure at 150sec 

 

 

Figure ‎4.16: Boiler pressure and superheater temperature responses to set-point 

changes in pressure using NMPC and PI controllers  
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4.7  Conclusions 

This chapter has presented an efficient supervisory NMPC algorithm based on the 

state-dependent approach for the industrial power plant process. The non-linear 

power plant system was represented in a state-dependent form to provide global 

nonlinear behaviour. The nonlinearity of the model and the lack of measurement 

were handled through nonlinear state estimation using an SDDRE Kalman filter. The 

NMPC was used in the second layer, to tune the performance of the PID controllers. 

The simulation results showed that the NMPC controller had a good tracking and 

disturbance rejection performance, and allowed the inclusion of output constraints. 
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5. Sequential Nonlinear Distributed 

Model Predictive Control (DMPC) 

and Estimation 

5.1 Introduction 

Modern industrial processes are generally composed of different subsystems, which 

are interconnected and characterized by significant interactions. At the same time, 

due to ever tightening environmental regulations coupled with high performance 

requirements, modern control systems are becoming more and more complex.  For 

these processes, different control solutions can be developed, such as centralized, 

decentralized and distributed control techniques.  

As discussed previously in Chapter 4, the centralized MPC is applied to control the 

large-scale CCPP, where its formulation is based on a centralized single agent to 

solve a single optimization problem for the entire system model, which requires a 

significant computation burden. Another disadvantage of using centralized MPC for 

large-scale systems is the non-scalability. This is due to the size of control model and 

the need to retune the centralized controller and rebuild the control model on every 

change in the system configuration as a result, for example to maintenance or 

malfunctions. For all these reasons, distributed and decentralized MPC control 

schemes have been developed for industrial processes, for example (Katebi and 

Johnson, 1997). 

Distributed model predictive control (DMPC) strategies for large-scale industrial 

process described in literature can be classified into two groups, namely 

decentralized and distributed MPC, as shown in Figure ‎5.1. A comprehensive 

literature review of these methods can be found in survey papers (Rawlings and 

Stewart, 2008; Negenborn et al., 2009; Scattolini, 2009; Al-Gherwi et al., 2011; 

Christofides et al., 2012).  
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Figure ‎5.1: Comparison between different control strategies  

Most of the distributed strategies reported in literature employ linear models to 

predict future behavior of the process in order to achieve optimal or sub-optimal 

closed-loop performance (Scheu and Marquardt, 2011).  This chapter presents a 

novel methodology for nonlinear distributed DMPC for a large-scale power plant 
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5.1.1 Decentralized model predictive control   

In the decentralized MPC structure, the overall system under control is composed of 

a number of subsystems, each one locally controlled with an MPC algorithm, where 

there is no communication between controllers and all interactions between 

subsystems are neglected, as shown in Figure ‎5.1b. In this case, each MPC solves a 

local cost function that includes only the controlled variables assigned for the 

specific subsystem without considering the solutions of the other controllers. When 

the interactions are strong, the fully decentralized controller can lead to instability 

and performance deterioration (Cui and Jacobsen, 2002). Magni and Scattolini (2006) 

propose a fully decentralized MPC algorithm for nonlinear systems. In their 

approach the closed-loop stability is ensured by the inclusion of a contractive 

constraint in the formulation of the optimization problem. However, the fully 

decentralized approach requires a conservative solution due to the absence of 

information exchange between controllers (Alessio et al., 2011).  

5.1.2 Distributed model predictive control (DMPC) 

In distributed control structure, the original large scale system is replaced by a 

number of interconnected subsystems, where the different MPC controllers exchange 

information through a network to coordinate their actions, as shown in Figure ‎5.1c. 

In previous work on distributed MPC, Katebi and Johnson (1997) proposed a 

decentralized filtering and control scheme for generalised predictive control in which 

a high level global coordinator was used to iteratively find an optimal solution. Jia 

and Krogh (2001) developed a DMPC strategy in which the controllers exchange 

their predictions by communication to coordinate their actions and improve 

performance. Recently, Rawlings and Stewart (2008), Scattolini (2009) and Stewart 

et al.(2011) have classified distributed MPC strategies found in literature into two 

types: communication-based DMPC and cooperation-based DMPC. 

5.1.2.1 Communication-based (non-cooperative) DMPC 

The first type of DMPC strategy is communication-based DMPC strategy, in which 

each local MPC solves its local cost function and exchanges predicted state and input 

trajectory information between MPCs by communication (Venkat et al., 2005). In a 
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communication-based DMPC architecture, all distributed controllers can be 

evaluated in parallel as in Vaccarini et al. (2009) for example, or in sequential order 

as in Richards and How (2007), or based on neighbourhood optimization as in Zhang 

and Li (2007).  

In literature, there are many types of distributed MPC strategies that take into 

account interactions between subsystems. For example, in Camponogara et al.(2002) 

the system under control is composed of a number of unconstrained linear discrete-

time subsystems, where the dynamical coupling between neighbouring states is 

modelled in prediction through a disturbance signal. In this scheme, the closed loop 

stability is proved by introducing a contractive constraint on the state prediction 

norm in each local MPC problem.  

In Richards and How (2007) a sequential non-cooperative DMPC is proposed for a 

class of decoupled systems. In this strategy, controllers are evaluated in sequence, 

once at each sampling time, and one-directional communication occurs between 

consecutive distributed controllers. In this architecture, as shown in Figure ‎5.2 each 

MPC controller only sends its future input trajectory and the future input trajectories 

received are sent to the next MPC controller, which reduces computation time. The 

advantage of this scheme is that it reduces numerical and communication effort 

compared to a centralized solution to the optimization problem. 

An alternative approach to sequential DMPC architecture is to evaluate all 

distributed controllers in parallel. In this architecture, each distributed controller 

communicates with all other controllers to exchange future input trajectories (Liu et 

al., 2010). Al-Gherwi et al. (2011) proposed a robust linear DMPC evaluated in 

parallel and based on an LMI approach that explicitly accounts for parametric 

uncertainty in the model. In order to enhance global control performance while 

reducing the communication burden among subsystems, Zhang and Li (2007) 

developed a new strategy based on neighbourhood optimization, in which the 

optimization objective of each local subsystem considers the performance of its 

neighbours.  
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Figure ‎5.2: Sequential DMPC scheme  (Chen et al., 2010) 

The advantage of communication-based DMPC control over fully decentralized 

control is that the control agents have accurate knowledge of the effects of all other 

agents on their local objectives. However, if the overall system is composed of 

strongly interacting subsystems, non-cooperative DMPC control can destabilize the 

plant and the performance may be worse than with decentralized control  (Rawlings 

and Stewart, 2008). 

5.1.2.2 Cooperation-based DMPC  

The second type of DMPC strategy is cooperation-based distributed MPC strategy, 

which was developed by Venkat et al. (2005). In this strategy, each controller 

optimizes a weighted sum of all local cost functions. It is based on negotiations 

among DMPC agents, where at each time step a sequence of iterations is taken 

before computing and implementing the input vector. The solution can achieve a 

global (Pareto) optimal control decision similar to that obtained by centralized MPC 

if convergence is satisfied. In addition, closed-loop stability and feasibility can still 

be ensured if the procedure is stopped at any intermediate iterate (Stewart et al., 

2010). Stewart et al. (2010) proposed a co-operative linear DMPC strategy in which 

the subsystem controllers optimize the same objective function in parallel. In this 

strategy, the closed-loop performance converges to the corresponding centralized 

control system as the iteration number increases. It can also satisfy hard input 

constraint and provide nominal stability for plants with even strongly interacting 

subsystems.  
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In Liu et al (2009; 2010) a Lyapunov-based iterative DMPC for nonlinear systems 

subject to asynchronous and delayed measurements was presented. In this strategy 

each agent has access to a full system model, which is sometimes not possible to 

obtain or needs a high computation effort in large scale systems (Maestre et al., 

2011). 

A cooperation-based DMPC strategy could achieve good closed-loop performance 

compared to communication-based DMPC. However, it requires much more 

communication resources and computational complexity (Zheng et al., 2011). 

5.2 Sequential Supervisory DMPC Architecture  

One way of simplifying the MPC solution for large-scale systems is to exploit the 

architecture or structure of the process. Many industrial processes have a serial or 

sequential structure, where the upstream sub processes affect only the downstream 

ones. This is schematically shown in Figure ‎5.3. For example, the combined cycle 

power plant process can be considered as a sequential process by assuming that the 

temperature of water coming from the condenser is constant and there is a small 

effect on boiler pressure due to the change in the steam turbine steam flow. In this 

process, a gas turbine generates electricity and the waste exhaust gas is recovered in 

a recovery boiler that produces steam, which is then expanded in a condensing 

turbine to generate electricity, as shown in Figure ‎5.4. This process plant can 

naturally be decomposed into three interconnected subsystems: gas turbine, HRSG 

boiler, and steam turbine. Furthermore, each subsystem can be decomposed into 

other subsystems. For example, the recovery boiler can be decomposed into drum 

pressure and superheater subsystems.  

                                   

Figure ‎5.3: A sequential system 

S2 S1 Sn-1 Sn 
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Figure ‎5.4: Combined cycle power plant process 

After decomposing the large-scale system into interconnected subsystems, the MPC 

controllers exchange information in one directional communication through a 

network to coordinate their actions. The goal of the decomposition is to reduce the 

complexity of the optimization problem. In order to reach global optimality, the 

interactions between the subsystems are included and solved using the Nash 

optimality concept (Nash, 1951). Since information on interactions is exchanged 

through the network, each agent can solve its local optimal problem provided that the 

previous‎agent’s‎optimal‎solution‎is‎known.‎The‎optimal‎solution‎will‎converge‎if‎all‎

agents’‎terminal conditions are satisfied and then the whole system will arrive at the 

Nash equilibrium.  

The proposed hierarchical structure control strategy consists of two levels: an 

existing plant PID classical control solution, and above this, a supervisory nonlinear 

predictive control (NMPC) optimization level, as shown in Figure ‎5.5. The 

supervisory DMPC controllers are responsible for providing optimal reference 

trajectories to the local controllers of each corresponding subsystem. The advantage 

of this structure is that the NMPC algorithm is an add-on to the existing PID control 

structure. Therefore, it does not interfere with an existing (well-proven) control 

system. Furthermore, the model used in the DMPC design is therefore open-loop 

stable. A decentralized nonlinear Kalman filter (SDKF) is used to estimate 

subsystem states.  
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Figure ‎5.5: Supervisory DMPC structure 

5.2.1 Nonlinear state-dependent model representation for a nonlinear 

sequential distributed system  

Consider a nonlinear process system described by the following state-space model 

 1 ( , , )K k k kx f x u                                                      (5.1)

 ( , , )k k k ky g x u                                                      (5.2)

where kx  is the process state vector, ku is the control input vector, ky is the process 

output, k  is the process noise, and k is the measurement noise. Let the system 

under control be composed of the interconnection of n local subsystems described by 

the state-dependent nonlinear discrete-time model as: 

 ( 1) ( ) ( ) ( ) ( ) ( ) ( )i ii i i ii i i i ix k A x x k B x u k k k                                (5.3)

 ( ) ( ) ( ) ( ) ( )i ii i i i iy k C x x k v k k                                           (5.4) 

where k  is discrete time, , ,i i in m r

i i ix R u R y R    for i=1,...,n; ( )ix k is the subsystem 

state vector; and ( )iy k  is the output vector for the i-th subsystem. ( )iu k  is the control 

input for subsystem i (§i). ( )i k  is a zero mean process noise, and ( )i k is a zero mean 
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measurement noise for subsystem §i. Subsystem state-dependent matrices ( )ii iA x ,

( )ii iB x and ( )ii iC x are formulated such that the LTV system is locally observable and 

controllable. State and output interactions vectors i  and iv are given by  

                     
1( ) 1( )

( ) ( ) ( ) ( ) ( )
n n

i ij j j ij j j

j j i j j i

k A x x k B x u k
   

                                      (5.5)

                   
1( )

( ) ( ) ( )
n

i ij j j

j j i

v k C x x k
 

                                                         (5.6)     

The total sequential system has the following lower triangular system matrices: 
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ˆ ˆ( ) ( ) 0 0 0

0
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r r r n nr rk kk
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C x C x xy

x

C x C x xy









 

 

      
      
      
       
      
      
            

                (5.8) 

 

5.3 Sequential Distributed Algorithms    

The sequential DMPC problem is the minimizing of the local cost function for each 

subsystem subject to the model constraints, including the interactions from previous 

subsystems, where the output and current state of a subsystem §i (i=2…n)‎and‎ the‎
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output and states for all previous subsystems, obtained via a communication network, 

are used to calculate the control input trajectory of §i. Therefore, the solution at each 

subsystem comprises a feedback and a feed forward component.   

Two sequential algorithms are proposed in this thesis. The difference between these 

algorithms is related to how the interactions between subsystems in the DMPC 

solution are considered.  

 

5.3.1 DMPC-Algorithm 1: Interactions from previous subsystems are 

considered as input disturbances 

In this algorithm, the nonlinear model for each subsystem §i is represented as in 

equations (5.3) and (5.4). Then, the DMPC optimization problem is solved for any §i , 

while considering the interactions from all previous subsystems as disturbances.  

Subsystem 1: 

In the sequential structure, the optimization of the subsystem process 1 is 

independent of the rest of the system, where the state-dependent model can be 

expressed as: 

 
1 11 1 1 11 1 1

1 11 1 1

ˆ ˆ( 1) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( )

x k A x x k B x u k

y k C x x k

  


                                    (5.9) 

Therefore, the state-dependent NMPC method presented in the previous chapter can 

be used to calculate the control input 
*

1U . Then, the control input trajectory and the 

state prediction trajectory are transmitted through a network to the next subsystem. 

Subsystem i (§i): 

For any subsystem §i, the cost function Ji is minimised subject to the dynamics of 

subsystem §i and using all of the previous control law
*( , 1| )i pU k N k  and the state 

prediction ˆ ( 1, | )i pX k N k  of the previous control agents which were received from 

the network. The system model for any subsystem §i can be represented as follows: 
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 ( 1) ( ( )) ( ) ( ( )) ( ) ( )i ii i i ii i i ix k A x k x k B x k u k w k                              (5.10)

 ( ) ( ( )) ( ) ( )i ii i i iy k C x k x k v k                                            (5.11)   

where: 

 

1 1
* * * *

1 1

ˆ ˆ ˆ( ) ( ( )) ( ) ( ( )) ( )
i i

i ij j j ij j j

j j

w k A x k x k B x k u k
 

 

                            (5.12)

 

1
* *

1

ˆ( ) ( ( )) ( )
i

i ij j j

j

v k C x k x k




                                              (5.13) 

5.3.1.1 Integral action: 

As discussed in Chapter 3, the discrete model equations (5.10) and (5.11) are 

augmented by a constant output disturbance model in order to guarantee asymptotic 

rejection of output disturbances and to achieve an offset-free performance. The states 

and the additional integrating disturbance are estimated from the plant measurement 

using a Kalman filter. The augmented state-space system for the distributed model 

can be represented as follows: 

 
1

( ) 0 ( )
( )

0 0 0

i iii i ii i i

i

i ik k kk k

x xA x B x w
u k

d dI


        
          
        

                       (5.14) 

  ( ) ( ( )) ( )
i

i ii i i

i k

x
y k C x k I v k

d

 
  

 
                                      (5.15) 

5.3.1.2 Interactions prediction calculations: 

The following procedure is employed: 

1. It is assumed that for any agent i at time k, all the previous interaction states 

vectors
*( 1, | 1)j pX k N k   are given. 

2. Calculate the interactions matrices ( / 1)ijA k l k  , ( / 1)ijB k l k  and 

( / 1)ijC k l k  (where l =‎1,…Np and‎j‎=‎1,…,‎i-1) 
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3. Use the control inputs 
*( , 1| 1)j pU k N k   to calculate ( , 1| 1)i pW k N k   

and ( , 1| 1)i pV k N k   as follows: 

         

1
*

1( )

1
*

1( )

ˆ{ ( 1, | 1)} ( 1, | 1)

{ ( 1, | 1)} ( , 1| 1)

i

i ij p j p

j i

i

ij p j p

j i

W diag A k N k X k N k

diag B k N k U k N k



 



 

    

    




                       (5.16) 

 

1
*

1( )

ˆ{ ( 1, | 1)} ( 1, | 1)
i

i ij p j p

j i

V diag C k N k X k N k


 

                           (5.17) 

where:  

The interaction prediction state
* ( 1, | 1)j pX k N k   and control inputs 

* ( , 1| 1)j pU k N k   are calculated and transmitted at time k-1 from previous agents 

and defined as follows: 

 

( 1, | 1) ( 1| 1) ( 2 | 1) ( | 1)T T T

j p j j j pX k N k x k k x k k x k N k          

( , 1| 1) ( | 1) ( 1| 1) ( 1| 1)T T T

j p i i i pU k N k u k k u k k u k N k          

( , 1| 1) ( | 1) ( 1| 1) ( 1| 1)T T T

i p i i i pW k N k w k k w k k w k N k          

 ( , 1| 1) ( | 1) ( 1| 1) ( 1| 1)T T T

i p i i i pV k N k v k k v k k v k N k            

For example, the state and output interactions prediction vectors for agent 2 can be 

calculated as follows:  

 

*

2 21 1

*

21 1

ˆ( , 1| 1) { ( 1, | 1)} ( 1, | 1)

{ ( 1, | 1)} ( , 1| 1)

p p p

p p

W k N k diag A k N k X k N k

diag B k N k U k N k

      

    
        (5.18) 

 
*

2 21 1
ˆ( , | 1) { ( 1, | 1)} ( 1, | 1)p p pV k N k diag C k N k X k N k                 (5.19) 

or in matrix form: 
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*

2 21 1

*

2 21 1

*

2 21 1

21

21

21

ˆ ( | 1) ( 1) 0 0 0 ˆ ( 1 | 1)

ˆ ( 1 | 1) 0 ( 2) 0 0 ˆ ( 2 | 1)

0 0 0

ˆ ( 1 | 1) 0 0 0 ( ) ˆ ( | 1)

( 1) 0 0 0

0 ( 2) 0 0

0 0 0

0 0 0 ( )

p p p

p

w k k A k x k k

w k k A k x k k

w k N k A k N x k N k

B k

B k

B k N

   

    


     








    
    
    
    
    
      








*

1

*

1

*

1

( | 1)

( 1 | 1)

( 1 | 1)
p

u k k

u k k

u k N k



 

  

 
 
 
 
  
   

 

*

2 21 1

*

2 21 1

*

2 21 1

( ) ( 1) 0 0 0 ˆ ( 1 | 1)

( 1) 0 ( 2) 0 0 ˆ ( 2 | 1)

0 0 0

( 1) 0 0 0 ( ) ˆ ( | 1)p p p

v k C k x k k

v k C k x k k

v k N C k N x k N k

  

   


    

    
    
    
    
    
      

 

 

5.3.1.3 State and output prediction calculation:  

Based on the system model in equations (5.10) and (5.11), ˆ ( )ix k  and ( , 1| )i pU k N k , 

the future values of the plant states over the prediction horizon Np can be represented 

in a compact form as follows:                                                                                                                                       

 

ˆ ˆ ˆ ˆ ˆˆ( 1, | ) ( ) ( , 1| ) ( , 1| 1)i p i i i ii i p i i pX k N k N x k L B U k N k L W k N k        (5.20) 

where: 

 

 

11
1

1 11
1 1

0 0

0 0
ˆ ˆ, ,

p pp

p

k

k
kk
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i i

k N k Nk N
k k Nk

I

I
N L

I

I





 




    
  

  
  
   
  
  
     
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( ) 0 0

0 ( 1) 0

0 0 ( 1)

ˆ ( | 1)

ˆ ( 1| 1)
ˆ ( , 1| 1)

ˆ ( 1| 1)

( ) ( 1)..... ( )

ii

ii

ii

ii p

i

i

i p

i p

k

j ii ii ii

B k

B k
B

B k N

w k k

w k k
W k N k

w k N k

A k A k A j

 
 


 
 
 

   

 
 

 
   
 
 

    

 

 

An iterative solution is required to calculate the state prediction ˆ ( 1, | )i pX k N k  and 

the associated matrices, ( / ))iiA k l k , ( / ))iiB k l k  and ( / ))iiC k l k , for l=1,...,Np . 

The output prediction ˆ ( 1, | )i pY k N k can be calculated using the states prediction as 

follows: 

 

ˆ ˆ( 1 | ) ( 1) 0 0 0 ( 1 | )

ˆ ˆ( 2 | ) 0 ( 2) 0 0 ( 2 | )

0 0 0

ˆ ˆ( | ) 0 0 0 ( ) ( | )

ˆ ( 1 | 1)

ˆ ( 1 | 1)

ˆ ( 1 | 1)

i ii i

i ii i

i p ii p i p

i

i p

i p

y k k C k x k k

y k k C k x k k

y k N k C k N x k N k

v k k

v k N k

v k N k

  

  


  

 


  

  

     
     
     
     
     
     

 
 
 
 
 
 

            (5.21) 

 

Using equations (5.20) and (5.21), the output prediction can be expressed as follows: 

ˆ ˆ ˆ ˆˆˆ( 1, | ) ( ) ( , 1| ) ( , 1| 1)

ˆ ( , 1| 1)

i p i i i i p i i p

i i p

Y k N k x k U k N k W k N k

T V k N k

       

  
      (5.22)

where: 
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ˆ ˆ ˆ ˆ ˆˆ, ,i ii i i ii i ii i iiC N C L B C L      , 

( 1) 0 0 0

0 ( 2) 0 0
ˆ

0 0 0

0 0 0 ( )

ii

ii

ii

ii p

C k

C k
C

C k N

 
 


 
 
 

  

, 

( 1)

0

0

0 0 0

p

nyi

N nyinyi

i

nyi nyi nyi nyi

I
T

I



 
 
 
 
 
  

 

5.3.1.4 Cost function minimization: 

The DMPC problem is that each agent minimizes the local cost function as follows:

2 2

1

1
ˆ|| ( | ) ( | ) || || ( | ) ( 1| ) ||

2

p

i i

N

d

i i i Q i i S

j

J y k j k y k j k u k j k u k j k


               (5.23) 

subject to inequality constraints of the form: 

 c k cA U B                                                           (5.24) 

The output of a process can be limited by introducing upper and lower output 

constraints maxy and miny . Then, the output inequality constraints can be expressed 

using equation (5.22) as follows: 

 
ˆ

ˆcA
 

  
  

                                                         (5.25) 

 
min

max

ˆ ˆ ˆ ˆˆ ( ) ( 1) ( 1)

ˆ ˆ ˆ ˆˆ ( ) ( 1) ( 1)

i i i i i

c

i i i i i

y x k W k T V k
B

y x k W k T V k

     
  

       

                          (5.26) 

where Np  is the maximum output horizon, and Qi and Si are the weighting on the 

tracking  error and the control increments respectively. The cost function to be 
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minimised for any subsystem §i can be formulated in quadratic programming 

problem as follows: 

 
1

2

T T

i i i i imin J U H U G U                                             (5.27)

where:  

 ˆ ˆ( )T

i i i i sH Q H                                                    (5.28) 

ˆ ˆ ˆˆ ˆ[ ( 1, | ) ( ) ( , 1| 1)

ˆ ( , 1| 1) ]

T d

i i i i p i i i i p

i i p

G Q Y k N k x k W k N k

T V k N k

      

  
                    (5.29)    
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. 2

i i i

i i i i

i s

i i i

i i i

Q S S

Q S S S

Q H

S S S

Q S S

   
   

 
   
    
   

    
      

 

 

The implementation algorithm can be summarised as follows: 

Step 1: At sampling time k=1 and given the initial control input (0)iu  and initial 

states (0)ix , each agent estimates the current state vector ˆ ( )ix k  using a nonlinear 

state-dependent Kalman filter (SDKF). Then, each agent sends their input output 

measurements to all subsequent SDKF filters through a one directional 

communication channel. 

Step 2: For any subsystem §i except subsystem 1 which is independent from other 

subsystems, calculate the interaction prediction using equations (5.16) and (5.17) . It 

is calculated using all of the previous control law
*( , 1| )i pU k N k  and the state 

prediction ˆ ( 1, | )i pX k N k  of the previous subsystems which were received from 

network. 
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Step 3: Each agent calculates iteratively the state prediction ˆ ( 1, | )i pX k N k  using 

equation (5.20) and announces it to all subsequent agents through a one directional 

communication network. 

Step 4: All agents solve their optimal problem simultaneously to obtain their solution

*( , | ) ( 1,...., )i pU k N h i n using equation(5.27), where the interactions predictions 

are considered as disturbance.  

Step 6: Each agent checks if its terminal iteration condition is satisfied, which is the 

difference between the control vectors:    i iU new U old    . If all terminal 

conditions are satisfied, then end iteration and go to step 7; otherwise, take the latest 

solution to step 3.  

Step 7: Each agent takes the first element of the control input as the controller output   

*( ) [1 0] ( ) ( 1,...., )i iu k U k i n  and applies it to the actuator. 

Step 8: Let k=k+1, and go to step 2.   

    

5.3.2 DMPC-Algorithm 2: Interactions from previous subsystems are 

formulated in the current subsystem state-space model 

In this algorithm, instead of separating the interaction terms from each subsystem 

model and considering them as disturbances, as in algorithm 1, the interaction terms 

from previous subsystems are formulated as functions of their state variables. Then, 

the state-dependent model for each subsystem §i is represented as a function of its 

current state, the interaction states of previous subsystems, and control inputs of 

previous subsystems.  In general, there are an infinite number of such re-

arrangements. However, the state-dependent matrices of the subsystem model iiA , 

iiB  and iiC  should be formulated such that the resulting LTV system is locally 

observable and controllable. Therefore, for any subsystem §i, the model can be 

represented as follows:  
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* * * * * *

1 1 1 1 1 1( 1) ( , ) ( ) ( , ) ( )i ii i i i ii i i ix k A x x u u x k B x x u u u k                 (5.30)

 
* * * * *

1 2 1 2 1( ) ( , ( ), , ) ( )i ii i i iy k C x x x k u u u x k                                (5.31) 

where ( )ix k  is the subsystem §i current state, and 
* *

1 1ix x  and 
* *

1 1iu u  are 

respectively the states and the control inputs of the previous subsystems, which were 

estimated and calculated at a previous time step and transmitted through the network. 

For example, the state-dependent model of subsystem 2 can be represented as 

follows: 

Algorithm 1: 

 
2 22 2 2 22 2 2

21 1 1 21 1 1

( 1) ( ( )) ( ) ( ( )) ( )

( ( 1)) ( 1) ( ( 1)) ( 1)

x k A x k x k B x k u k

A x k x k B x k u k

  

     
                   (5.32)

 2 22 2 2 21 1 1( ) ( ( )) ( ) ( ( 1)) ( 1)y k C x k x k C x k x k                                (5.33)

Algorithm 2:          

 
2 22 1 2 1 2

22 1 2 1 2

( 1) ( ( 1), ( ), ( 1)) ( )

( ( 1), ( ), ( 1)) ( )

x k A x k x k u k x k

B x k x k u k u k

   

  
                                 (5.34)

 
2 22 1 2 2( ) ( ( 1), ( )) ( )y k C x k x k x k                                                           (5.35)                                                                                           

The above example shows that the state-dependent model for subsystem 2 in 

algorithm 2 is of the same dimension and form as the case where there is no 

interaction. The effect of the subsystem 1 is included inside the state-dependent 

matrices
22A , 22B and 

22C . Therefore, in algorithm 2, the NMPC control design 

algorithm for the centralized control structure presented in Chapter 3 can be used to 

solve the distributed NMPC for any subsystem §i. 

In this algorithm, the nonlinear dynamic model for each subsystem §i plus all the 

interactions from previous subsystems are included in the control system of the i-th 

unit.‎This‎allows‎all‎previous‎subsystem‎control‎units‎ to‎send‎“Feed-forward”‎ their‎

states to the i-th unit at discrete time instants to provide it with the evolution of the 
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interaction states. Then, a local nonlinear state-dependent Kalman filter (SDKF) is 

used to estimate the local subsystem states.  

This algorithm has the advantage of less communication burden because only the 

state estimates and control input are transmitted through the network, whereas in 

algorithm I, the state prediction and control input trajectories are transmitted.   

The implementation algorithm can be summarised as follows: 

Step 1: At sampling time k=1 and given the initial control input (0)iu  and initial 

states (0)ix , each agent estimates the current state vector ˆ ( )ix k  using a nonlinear 

state-dependent Kalman filter and announces it to all subsequent agents through a 

one directional communication network. 

Step 2: Each agent calculates iteratively the state prediction ˆ ( 1, | )i pX k N k . 

Step 3: All agents solve their optimal problem simultaneously to obtain their solution

*( , | ) ( 1,...., )i pU k N h i n .  

Step 4: Each agent checks if its terminal iteration condition is satisfied, which is the 

difference between the control vectors:    i iU new U old    . If all terminal 

conditions are satisfied, then end iteration and go to step 6; otherwise, take the latest 

solution to step 2.  

Step 5: Each agent takes the first element of the control input as the controller output   

*( ) [1 0] ( ) ( 1,...., )i iu k U k i n  and applies it to the actuator. 

Step 6: Let k=k+1, and go to step 2. 
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5.4 Sequential Distributed Nonlinear State Estimation 

Most of the DMPC schemes mentioned in literature depend on the assumption of 

availability of the measurement of complete states (Christofides et al., 2013). 

However, in a large-scale control system it is possible that measurements of all states 

are not available. The conventional centralized Kalman filter observer can be used to 

estimate states of all distributed controllers. However, the computational effort 

required to implement this estimator for large-scale systems can be unreasonable for 

many online applications. Therefore, it is important to study distributed state 

estimation schemes for a large scale-system in order to integrate them with DMPC 

control algorithms to achieve the desired level of performance and robustness.  

In (Mutambara, 1998) the concept of scalable decentralized estimation is introduced. 

The basic ideas are found in (Rao and Durrant-Whyte, 1991; Rao et al., 1993). In a 

distributed Kalman filter, as shown in Figure ‎5.6, the whole system is decomposed 

into dimensional subsystems and the estimation algorithm is replaced with a low 

order Kalman filter implemented at each of these subsystems. Each local filter shares 

information with other filters through a network and computes a local state estimate. 

Compared with a traditional centralized estimation scheme, several advantages 

emerge such as scalability, low communication load, fast implementation and more 

robustness to sensor failures. Several decentralized and distributed estimation 

schemes for large-scale systems have been proposed (Vadigepalli and Doyle Iii, 

2003; Olfati-Saber, 2007; Menighed et al., 2009; Roshany-Yamchi et al., 2011) to 

make the estimation problem computationally efficient. 

 

Figure ‎5.6: Distributed system (Roshany-Yamchi et al., 2011) 
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Despite the need for nonlinear distributed estimation in numerous practical situations, 

most studies in the field of distributed estimation have only focussed on linear 

dynamic systems (Simonetto et al., 2010). A distributed extended Kalman filter 

(EKF) was proposed in Di Rocco and Pascucci (2007). The performance of this EKF 

might be degraded when nonlinearity is severe or discontinuous.  

This chapter proposes fully distributed state estimation algorithms for large-scale 

power plant system, where the previous work on the state-dependent Riccati equation 

(SDRE) for nonlinear estimation is extended to the distributed case. Two sequential 

nonlinear state estimation algorithms are proposed in this thesis.  

5.4.1 Algorithm I: sharing measurements  

Let the system under control be composed of the interconnection of i local 

subsystems described by the state-dependent nonlinear discrete-time model as given 

in equations (5.3) and (5.4). The state-dependent coefficient (SDC) matrices ˆ( )ii iA x ,

ˆ( )ii iB x and ˆ( )ii iC x  should be formulated such that the resulting LTV system is 

observable for all x.  

This sequential algorithm requires every subsystem node to send its measurements to 

all subsequent subsystem nodes in one direction communication and once at each 

time step. Let ( )iY k and ( )iU k denote the output and input information available at 

subsystem node i at time k. For example, node 1 has access to only 1 1( ) ( )Y k y k , 

1 1( ) ( )U k u k , whereas node 2 has access to  2 1 2( ) ( 1), ( )Y k y k y k  , 

 2 1 2( ) ( 1), ( )U k u k u k  . For any node i >1, the available information are 

 1 2( ) ( 1), ( 1), , ( )i iY k y k y k y k   and  1 2( ) ( 1), ( 1), , ( )i iU k u k u k u k   . In 

the sequential structure, the subsystem process 1 is independent of the rest of the 

system and there is no interaction affecting this subsystem. The states of subsystem 1 

are first estimated using a SDRE Kalman filter: 

  1 11 1 11 1 1 1 11 1
ˆ ( 1) ( ) ( ) ( ) ( )fx k A x k B u k K y k C x k                             (5.36) 
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Therefore, the SDRE estimation method described in Chapter 4 can be used to 

estimate the subsystem 1 states.  

For subsystem 2, the Kalman filter may be designed by formulating the model as 

follows:   

* * *
1 1 111 1 11 1 1

* *
2 2 221 1 22 2 21 1 22 2 21

*
1 1 111 1

*
2 2 221 1 22 2

ˆ ˆ( ) 0 ( ) 0 ( 1)

ˆ ˆ ˆ ˆ( ) ( ( )) ( ) ( ) ( )

ˆ( ) 0

ˆ ˆ( ) ( )

k k kk k

k k kk

x xA x B x u k

x xA x A x k B x B x u k

y xC x

y xC x C x











          
            

          

      
       

      

(5.37)                               

The Kalman filter designed using this model has the following structure: 

 

* * *
1 111 1 11 1 1

* *
2 221 1 22 2 21 1 22 2 21

*
1 111 1

2 *
2 221 1 22 2

ˆ ˆˆ ˆ( ) 0 ( ) 0 ( 1)

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ( 1) ˆ( ) 0

ˆ( ) ˆ ˆ( ) ( )

k kk k

f

kk

x xA x B x u k

x xA x A x B x B x u k

y k xC x
K

y k xC x C x



        
         

        

       
      

      

       (5.38) 

where 2 ( )u k  is the closed-loop control signal obtained from the MPC controller for 

subsystem 2, and 
*

1 ( 1)u k  is from the optimization of the first system and received  

from subsystem 1 through the network. Equation (5.38) can be written in simplified 

vector form as follows: 

 
* *

2 2 1 2 2 2 1 2 2 2 2 2 2
ˆˆ ˆ ˆ( 1) ( , ) ( ) ( , ) ( ) [ ( ) ( )]fX k A x x X k B x x U k K Y k C X k             (5.39) 

Therefore, the standard SDRE Kalman filter can be used to estimate the subsystem 2 

states.  

For any subsystem §i the model can be represented as follows: 
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             (5.40) 
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               (5.41) 

The Kalman filter can be designed using the following structure: 
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This can be written in simplified form as in the following equation, and then the 

standard SDRE Kalman filter can be used to estimate the states for any subsystem i:      

              

* *

1 1

*

1

ˆ ˆ( 1) ( , , ) ( ) ( , ) ( )

ˆ ˆ[ ( ) ( , ) ( )]

i i i i i i i

f

i i i i i

X k A x x X k B x x U k

K Y k C x x X k

  

 
                             (5.43) 

 

5.4.2 Algorithm II: sharing states and control inputs  

In this algorithm, the state-dependent model for each subsystem §i is represented as 

in equations (5.30) and (5.31), where the current state, the interaction states of 

previous subsystems, and control inputs of previous subsystems are all included in 

the model. Therefore, this sequential algorithm requires every subsystem node to 

send its state estimates and control input to all subsequent subsystem nodes in one 

direction communication and once at each time step. The advantage of this 

estimation algorithm compared to algorithm I is that it has less of a computation 

burden. This is because in algorithm I each subsystem model should include all 

models of previous subsystems.  Another advantage, if this algorithm is used with 

distributed control algorithm II, is that no additional information is required to 

communicate through the network.    

Let ( )iX k and ( )iU k denote the states and input information available at subsystem 

node i at time k. For example, for any node i >1, the available information is

 1 1( ) ( 1), ( 1), ( )i i iX k x k x k x k    ,  1 1( ) ( 1), ( 1), ( )i i iU k u k u k u k   . 

Figure ‎5.7 shows the sequential interconnections and exchange of estimation of 

information.  

 

Figure ‎5.7: Sequential exchange of estimation information 
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Using the model equation given in equations (5.30) and (5.31), the SDRE Kalman 

filter described in Chapter 4 can be applied for any subsystem §i using the following 

structure: 

 

* * * * * *

1 1 1 1 1 1

* * *

1 1 1

ˆ ( 1) ( , ) ( ) ( , ) ( )

( ) ( , ) ( )

i ii i i i ii i i i

f

i i ii i i i

x k A x x u u x k B x x u u u k

K y k C x x u u x k

 



  

   

            (5.44) 

 

5.5 Combined Cycle Power Plant Distributed Models 

The power plant nonlinear model described in Chapter 4 section ‎4.6.2.1 was 

partitioned or decomposed according to the physical plant structure into three 

subsystems: Drum-boiler with supplementary firing furnace, Boiler superheater and 

steam turbine with electric generator. Figure ‎5.8 illustrates a schematic structure for 

the power plant system including interactions. 

 

Figure ‎5.8: Boiler turbine system structure 

5.5.1 Subsystems models 

The dynamic models of boiler, superheater and steam turbine given in Chapter 4 

equations (4.48) , (4.52) and (4.55) are used in the simulation of DMPC-algorithm 2. 

However, for DMPC-algorithm 1, in order to separate the interactions to consider 

them as disturbances, these equations are modified as follows: 
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5.5.1.1  Subsystem 1: Boiler model  

The boiler subsystem 1 model is independent from the rest of the system. Therefore, 

the SDC models given in equation (4.47) for continuous model and in equation (4.48) 

for discrete model are used in SDDRE filter and DMPC respectively. 

5.5.1.2 Subsystem 2: Superheater model 

To simulate DMPC-algorithm 1, the superheater nonlinear dynamic model given in 

Chapter 4, equation (4.52), is decomposed into two terms: the SDC matrix 22 2
ˆ( )A x , 

and the SDC interaction matrix 21 1̂( )A x . Therefore, the superheater SDC discrete 

model including the PI controller can be expressed as follows:    

 
2 22 2 2 22 2 2 21 1 1

2 22 2 2

ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( )
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                     (5.45) 
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where 1m , 2m and 3m  are the interaction terms from subsystem 1, related to the 

energy supplied from the boiler and boiler drum pressure, and defined  using the 

following equations:  

The steam mass flow from the drum to the superheater vw can be formulated as a 

function of pressure drum pressure states 1(5)x : 

 1
1

1

(5)
(5)

(5)

s v
v

v

s

p

x
w x

x f


 


                                              (5.46) 

The energy Qgs is formulated as a function of subsystem 1’ states as follows: 
 
     

 10.7( ) (2)gsQ Fd Td x                                                (5.47) 
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All coefficients in the previous equations are given in Chapter 2 and Chapter 4. 
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5.5.1.3 Subsystem 3: Steam turbine model 

The steam turbine and generator nonlinear dynamic model given in Chapter 3, 

equation is decomposed into two terms: the SDC matrix 33 3
ˆ( )A x , and the SDC 

interaction matrix 32 2
ˆ( )A x . Therefore, the SDC discrete model including the PI 

controller is expressed as follows:   

 
3 33 3 3 33 3 3 32 2 2

33 33 3 3

ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( )
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All coefficients of matrices 33 3
ˆ( )A x , 33 3

ˆ( )B x and 33 3
ˆ( )C x  are the same as in 

equation(4.55), except coefficient 31s  which includes the interactions from subsystem 

2 and is rewritten as follows: 
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As discussed in Chapter 3 the choice of SDC matrices is not unique. In order to 

ensure a solution to control and estimation problems the selection of pairs 

( ( ) , ( ))ii i ii iA x B x  and ( ( ) , ( ))ii i ii iA x C x should be controllable and observable in the 

linear sense for all x.  

The gas turbine model used in this study is a linear model. Therefore, the gas turbine 

can be controlled separately using a supervisory linear MPC, as shown in Figure ‎5.9.  

The gas turbine control scheme is discussed in Chapter 1. Outputs of gas turbine Gh  

and Gw  are considered as input variables to the boiler. It is assumed here that the 

values of these outputs are transmitted from the linear MPC controller to the boiler 

DMPC1 controller through the network.    

 

Figure ‎5.9: Gas turbine supervisory linear MPC 

5.6 Simulation Results 

5.6.1 Distributed nonlinear state estimation  

The nonlinear distributed estimator algorithms described in section ‎5.4 are 

implemented in MATLAB/SIMULINK S-functions and applied to the CCPP 

distributed model described in section ‎5.5. These distributed algorithms are 

compared with the nonlinear centralized estimator described in Chapter 3 using the 

same tuning parameters and noise to make the comparative study as credible as 
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affect the performance and convergence are assumed to be diagonal. Qw and Rw 

matrices depend on the plant model and sensor accuracy respectively. The initial 

state covariance matrix  represents‎variances‎or‎mean‎squared‎errors‎of‎the‎states’‎

initial conditions. Initial conditions of states used for the simulation are given in 

Chapter 4. In this simulation, it is assumed that the distributed filters communicate 

only once within a sampling interval and the communication channel introduces a 

delay of a single sampling time interval. This delay is simulated using the Memory 

SIMULINK block as shown in Figure C1 and Figure C2 in the appendices.  

The evolution of the real states and their estimates obtained by different estimators 

for the selected states are presented in Figure ‎5.10. Since the true states are difficult 

to observe because the filters provide almost the exact values, absolute estimation 

error of the estimated states are computed and shown in Figure ‎5.11. For comparison 

and performance analyses, the Root Mean Squared Errors (RMSEs) of the estimated 

states using the different algorithms are computed and listed in Table 5.1. In this 

study, convergence of the nonlinear SDRE filters is verified through simulation, as 

shown in Figure ‎5.10. The simulation results demonstrate clearly that the 

performance of the proposed distributed estimation algorithms 1 and 2 are very close 

to the centralized estimation algorithm.  

The computation load of the proposed Kalman filter algorithms is investigated using 

the MATLAB profile function. All computations are performed in MATLAB 

R2010a on a 2.93 GHz intel core Duo computer with 2 Gbyte RAM running 

Windows Xp SP3. The computation time required for each method for a 90 sec 

simulation time is shown in Figure ‎5.12. This figure clearly shows that distributed 

algorithm 2 is significantly faster than algorithm 1 and the centralized algorithm. 

This is because in algorithm 1 each subsystem model should include all models of 

previous subsystems. Consequently, subsystem 3 of algorithm 1 has the same 

computation burden as the centralized algorithm. However, distributed algorithm 1 

can be used in a large-scale distributed system, which in turn has the advantage of 

more flexibility in case of any subsystem failure compared to the centralized 

algorithm. 

0P



148 

 

Figure ‎5.10: Nonlinear states and their estimation 

 

Figure ‎5.11: Absolute estimation error of nonlinear states 
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Table 5.1: RMSE of the different estimation methods 

                                 Distributed algorithm 1               Distributed algorithm 2               Centralized 

 

X1 (Mpa) 0.0278530 0.0278022  0.0252811 

1009.6161 X2 (J/m
3
) 1106.56571 1105.90222 

X3 (kg/m
3
) 0.0027167 0.0027112 0.0026667 

X4 (m
3
) 0.0039894 0.0039896 0.0041820 

X5 (Mpa) 0.0027659 0.0027576 0.0026114 

X6 (
o
K) 0.2073501 0.2057503 0.1822900 

X7 (kg/m
3
) 0.0079011 0.0085511 0.0080042 

X8  (
o
K) 0.1828023 0.1827500 0.1852700 

X9 (J/m
3
) 25964.776 26882.123 26320.276 

X10 (Pu.Watt) 0.0043938 0.0043971 0.0043941 

X11(kg/m
3
) 0.0028633 0.0028591 0.0028640 

0.0075910 X12 (Kg/s) 0.0075909 0.0075973 

X13 (J/m
3
) 8423.9063 8410.1064 8425.6050 

0.0043941 X14 (pu.Hz) 0.0043938 0.0043971 

 

 

 

 
 

 

 

Figure ‎5.12: Comparison of execution time for all filters 
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5.6.2 Sequential distributed nonlinear model predictive control 

The distributed control strategy described in Figure ‎5.5 is implemented in S-function 

MATLAB/SIMULINK environment, as shown in Figure C1 and Figure C2 in 

Appendix C. Numerical simulations are carried out to evaluate the performance of 

the proposed two nonlinear DMPC algorithms when compared with the centralized 

nonlinear MPC presented in Chapter 4. In this control strategy, DMPC’s‎are‎used‎to‎

provide the optimal set-point for PIDs to improve the tracking and disturbance 

rejection while satisfying output constraints. PIDs are mainly used to regulate and 

stabilize the system. The state-dependent distributed Kalman filter algorithm 1 and 

algorithm 2 are used to estimate the system states for DMPC algorithm 1 and 

algorithm 2 respectively.  

All simulation studies apply the same nonlinear DMPC tuning parameters which are 

determined by trial and error to achieve suitable performance. The best values for the 

PID gains are found using the multivariable PID tuning methods, as described in 

Chapter 2. The controller has been configured by choosing the weights on tracking 

error Q= [45, 0.01, 0.5] and weights on control increments S= [43, 10, 50]. The 

prediction horizon for the optimization problem is Np= 10, with a time step of T=0.02 

sec. The optimization problems of each MPC scheme are solved using the MATLAB 

Quadprog function provided by the optimization toolbox. Regarding the termination 

criteria for solving the NMPC problem and the maximum number of iterations, the 

values used by all simulations are 0.005 and 45, respectively. 

In this simulation, it is assumed that the control agents are synchronous and the 

communication channel introduces a delay of a single sampling time interval. 

Simulation results comparing the tracking performance of the two proposed 

nonlinear DMPC algorithms with the centralized nonlinear MPC controllers is shown 

in Figure ‎5.13 and Figure ‎5.14. The results show that the performance of the 

proposed DMPC algorithms is very close to the centralized NMPC. 

To maintain a high level of system safety, output constraints are introduced in this 

simulation. The introduced minimum and maximum output constraints are Ymin= 

[3.0MPa,715.8oK,0.78Pu-watt] and Ymax=[6.0MPa,718oK,0.82Pu-w] respectively.  
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Figure ‎5.13: Output responses to set point changes 

 

 

 

Figure ‎5.14: Control variables response to set point changes 
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Figure ‎5.15 shows the steam turbine output power response to set point changes in 

boiler superheated temperature. The superheated temperature response to boiler 

pressure set point changes is shown in Figure ‎5.16. These figures compare the 

performance of constrained centralized NMPC and DMPC algorithms with 

unconstrained centralized NMPC. From these figures it can be clearly observed that 

the imposed output constraints are satisfied using the proposed constrained DMPC 

algorithms. These figures also show how the controlled set points and the 

manipulated variables are changed in order to fulfil the imposed constraints.  Figure 

5.16, also shows that there is 50s reduction in settling time of the drum pressure 

compared to the result using PI controller alone as listed in Table 2.7.  

Figure ‎5.17 and Figure ‎5.18 depict the closed-loop performance of the centralized 

NMPC and DMPC algorithms when process and output noises are added to the 

system. The process noise and sensor noise are   and  

respectively. The simulation results show the good robustness performance to noises, 

and also show that the DMPC algorithms perform very similar to a centralized 

NMPC. 

In order to check the robustness of the proposed DMPC controllers with respect to 

plant model variation, a simulation test is performed where the superheater heat 

transfer coefficient is changed from  to  at 180sec and 

the specific heat of the steam turbine steam is changed from 2005 to 2505  

at 150sec. The result of this simulation is shown in Figure ‎5.19, which demonstrates 

the‎DMPC‎controllers’‎robustness‎to‎a‎change‎in‎plant‎parameters. 

Figure ‎5.20 shows the boiler pressure and superheated temperature response to 

output step disturbance of 0.1 MPa on boiler pressure at 150sec. As shown in this 

figure, the disturbance can be eliminated efficiently through the proposed DMPC 

algorithms. 

 

 

(0,0.001)N (0,0.01)N

44.37 10
46.37 10 ( / )oJ kg K

( / )oJ kg K



153 

 

 

Figure ‎5.15: Output constraints on steam turbine electrical power 

 

          Figure ‎5.16: Output constraints on boiler superheated 
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Figure ‎5.17: Output response to boiler set point change with state and output noises 

 

 

 

Figure ‎5.18: Control variables response to boiler set point change with noises 
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Figure ‎5.19: Outputs and manipulated variables response to model parameters 

changes at 180sec and 150sec respectively 

 

Figure ‎5.20: Boiler pressure and superheated temperature response to output 

disturbance on boiler pressure at 150sec 
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The computation loads of the centralized NMPC and the proposed DMPC algorithms 

are investigated using the MATLAB profile function. The total computation time 

required to calculate the optimal control input for each method for 100 sec simulation 

time is shown in  

Figure ‎5.21. It can be seen that the time consumed by the proposed DMPC 

algorithms is rather less than that of the centralized NMPC, which clearly 

demonstrates the advantage of the distributed NMPC over the centralized NMPC.  

The performance of the proposed DMPC strategies are compared with the centralized 

NMPC based on the root mean squared error (RMSEs) of the outputs (deviations 

from centralized NMPC algorithm results). The results listed in Table 5.2 show that 

the DMPC algorithms and the centralized performances match very closely. 

In this study, the closed-loop stability of the nonlinear DMPC is guaranteed by a 

suitable tuning of the design parameters, such as prediction horizon and weighting 

matrices. However, for some processes, adding a terminal weight on the cost 

function may be required to ensure closed-loop stability. 

 

Table 5.2: RMSE of the proposed DMPC methods 

 

 

Distributed algorithm 1 

 

Distributed algorithm 2 

 

Ps   
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o
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     Pe   

(Pu-watt) 

  

8.0147e-8 

 

0.008692 
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Figure ‎5.21: Comparison of the total CPU execution time using all control algorithms 
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6. Conclusions  

6.1 Thesis Summary 

 

The solution of NMPC optimization problem involves solving nonlinear differential 

equations and a nonlinear dynamic optimization problem online which is generally 

non-convex and requires a high computation demand. This on-line computation 

effort is one of the main obstacles to NMPC applications.  The NMPC approach 

based on state-dependent model has been demonstrated for many applications.  In 

this strategy, the non-linearity is handled by converting the nonlinear system 

equations into LTV state-dependent state-space representation that requires the 

solution of a simpler optimization problem.  Typically, MPC is studied within a 

centralized control framework in which all the control inputs are calculated in a 

single MPC problem. Centralized control strategy for large scale system is often 

considered impractical and unrealistic due to high on-line computation demand and 

low reliability. Distributed MPC (DMPC) is a feasible alternative to overcome the 

increasing computational complexity of centralized MPC. 

Motivated by the lack of methodologies on nonlinear DMPC of nonlinear large- 

scale systems using state-dependent models, this thesis, focused on the development 

of distributed control and estimation techniques for large-scale systems by using the 

state-dependent NMPC technique in order to reduce the complexity of the on-line 

optimization problem.   

In this chapter the main results and conclusions are presented. Then some ideas for 

future work are presented. 

6.2  Main Conclusions 

Firstly, in chapter 2, nonlinear model of combined cycle power plant (CCPP) based 

on first principles was developed and implemented in the MATLAB\SIMULINK S-

function environment.  A new boiler model simulator that can capture the shrink and 
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swell phenomenon was developed.  Decentralized PID controllers were designed to 

control the CCPP subsystems at the regulatory level.  PID controllers were tuned 

using IMC and Relay feedback tuning methods. Good model accuracy and control 

performance have been achieved, as confirmed by simulation. 

Secondly, using the CCPP model developed in chapter 2, a supervisory linear MPC 

controller was presented in chapter 3 to improve the control performance of CCPP by 

providing the optimal set-points for the PID regulatory level. In this controller, 

output constraints are included in solving the optimization problem to provide safety 

limitations and satisfy environmental regulations. Simulation results showed that the 

supervisory MPC has better performance than classical PID control schemes and 

allows handling of constraints. 

Thirdly, a supervisory NMPC algorithm based on LTV state-dependent approach 

was developed in chapter 4 to control the industrial power plant system. This control 

algorithm uses a state-dependent nonlinear model in order to reduce the complexity 

of the on-line optimization problem. The non-linear power plant model was 

represented in controllable and observable SDC state-space equations in order to be 

used in NMPC control design and Kalman filter estimator. The proposed NMPC 

algorithm is an extension of the linear MPC algorithm presented in chapter 3 and has 

the advantage of including constraints.  A nonlinear Kalman filter state estimator 

based on state-dependent differential Riccati equation was used to estimate the 

system states.  

Fourthly, chapter 5 presented two novel sequential supervisory nonlinear DMPC 

algorithms for large-scale processes that can handle constraints. These algorithms are 

based on the state-dependent NMPC method discussed in Chapter 4, which uses a 

state-dependent nonlinear model in order to solve the complexity of the nonlinear 

programming (NLP) problem. The difference between these algorithms is related to 

how the interactions between subsystems in the DMPC solution are considered. In 

this sequential distributed framework, local MPCs solve a convex optimization 

problem and exchange information via one directional communication channel at 

each sampling time to achieve the global control objectives of the system. 
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Comparison between the centralized NMPC, as discussed in chapter 4 and the new 

DMPC schemes was performed using the large-scale power plant model. Numerical 

simulation results showed that the performance of the proposed DMPC algorithms 

was close to the centralized NMPC but computationally much more efficient. 

Simulation results showed also that DMPC algorithm 2 has the advantage of less 

communication burden compared to DMPC algorithm 1, as well as the ability to 

select a different prediction horizon for each agent. 

Finally, chapter 5 has also presented two sequential distributed nonlinear Kalman 

filter estimation algorithms which are based on the state-dependent differential 

Riccati equation (SDDRE) estimation method. These estimation algorithms were 

used to estimate the system states of the DMPC algorithms. The simulation results 

showed that the performance of the proposed distributed estimation algorithms 1 and 

2 are very close to the centralized filter. Simulation results showed also that 

estimation algorithm 2 needs less computation effort than algorithm 1 and the 

centralized filter.   

 

6.3 Future work 

The following directions for the future research will be considered: 

1- Writing the nonlinear system as SDC coefficient has an infinite choice of 

matrices A(x), B(x) and C(x). Parameterization of the nonlinear dynamics 

lead to different control laws, and hence, different performances. The 

problem of selecting of the optimal representation for SDRE technique is 

complex and depends strongly on the particular system being investigated. 

Therefore, future research is needed to propose an optimal parameterization. 

2- Although state-dependent control methods for non-linear systems have 

demonstrated their effectiveness in different applications, the guarantee of 

closed loop stability is still a difficult issue. Therefore, stability analysis of 

presented state-dependent DMPC algorithms needs to be investigated. 
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3- Simulations demonstrate that DMPC algorithms have some degree of 

robustness to disturbances and to modelling errors due to plant parameter 

variations. Nevertheless, it is important to extend the proposed algorithms in 

order to deal explicitly with model errors.  

4- In order to improve the CCPP model dynamics, the complete CCPP model 

presented in Chapter 2 should be used in the state-dependent DMPC analysis 

instead of using the reduced CCPP model.  

5- The DMPC control design presented in this thesis can be used in CCPP start-

up control mode to achieve better start time and reduced equipment stress. 

6- Experimental tests needs to be performed to evaluate the performance of the 

proposed algorithms. 
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APPENDICES  

Appendix A: CCPP Model Equations 

A.1 Boiler Model  

A.1.1 Furnace Model 

The furnace model is described by 13 algebraic equations and 2 differential 

equations as follows: 

Algebraic equations: 
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                                                 (A.12)

                                        (A.13) 

Differential equations: 

 

              (A.14)

                                       (A.15) 

The parameters and inputs, which are necessary for the definition and formulation of 

the SIMULINK model, as well as the control models, of the furnace are listed in 

Table A.1 and A.2 respectively: 

Table A.1: Parameters of Furnace model: 

Symbol  Description Values 

Kf Chimney flow coefficient (m.s) 0.001 

K Attenuation coefficient 0.18 

kgs Experimental heat transfer coefficient to Superheater (J/kgK) 3532 

Cgs Combustion gas specific heat capacity (J.s/(kg.K)) 1045 

krs Experimental heat transfer coefficient to the Reheter (J/kgK)  

Vf Combustion chamber volume (m
3
) 2000 

Cf Fuel caloric value (J/kg)  

Rs Stoichiometric air/fuel ratio 3.5 

 Content of fresh air in exhaust gas turbine 0.1 

kes Experimental heat transfer coefficient to Economizer (J/kgK) 247.549 
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Table A.2: Inputs to Furnace model: 

Symbol Description Values 

wf Fuel flow to the furnace (kg/s) 14.083 

wA Air flow to the furnace (kg/s) 64.093 

hG Enthalpy of exhaust gas from the gas turbine (J/kg)  

wG Exhaust gas flow from the gas turbine (kg/s) 23.168 

 Tilt angle coefficient  (0< <1) 0.88041 

Tst Temperature of Superheater metal tubes  (
o
K) 737.06 

Trh Temperature of Reheater metal tubes  (
o
K) 743.66 

Tet Temperature of Economizer metal tubes  (
o
K) 412 

hA Inlet air enthalpy (J/kg)  

 

 

A.1.2  Superheater and attemperator model 

The following equations are used to simulate the superheater and attemperator model. 

Algebraic equations: 

                                                           (A.16)

                                                  (A.17)

                                                        (A.18)

                                         (A.19)

                                                 (A.20)

                                                 (A.21) 

Differential equations: 

56.9 10

 

52.5 10

1s
s

s

x
h




s ref

s ref

ps

h h
T T

c


 

s s s sP R T

60.0892 2.2464 10f sh P   

 V s V

v

s

P P
w

f




 0.8

s s v st sQ K w T T 



176 

                                                  (A.22)

                                              (A.23)

                                (A.24) 

Parameters and inputs of superheater and attemperator model are listed in Table A.3 

and A.4 respectively. 

Table A.3: Parameters of Superheater and attemperator model: 

Symbol  Description Values 

fs Superheater friction coefficient   2615 

Ks Experimental heat transfer coefficient [J/(kg. K)]   

Vs Superheater volume (m
3
) 8.462 

Ms Superheater mass (kg)  

Cst Heat capacitance of Superheater tubes [J/(kg. K)] 481.4 

Cp-ref Ideal gas reference specific heat [J/(kg. K)] 2330 

Tref Ideal gas reference temperature (K) 723.15 

href Ideal gas reference specific enthalpy (J/kg)  

 

Table A.4: Inputs to Superheater and attemperator model: 

Symbol  Description Values 

wa Attemporation water flow (kg/s) 0 

ws Steam flow from the Superheater (kg/s) 12 

PV Steam drum pressure (Pa)  

 
Density of saturated steam from the drum (kg/m

3
) 22.763 

Qgs Heat flow from the furnace (J/s)  

hV Specific enthalpy of saturated steam from the drum (J/kg)  

ha Specific enthalpy of Attemporation water (J/kg)  

 

 

A.1.3  Economizer model 

The economizer heat exchanger model is described by the following equations: 
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 Algebraic equations: 

                                                          (A.25) 

Approximation from steam tables: 

 

        (A.26) 

                                                (A.27) 

Differential equations: 

                                                 (A.28)

                                              (A.29)

                                         (A.30) 

Parameters and inputs of economizer model are listed in Table A.5 and A.6 

respectively. 

Table A.5: Parameters of Economizer model: 

Symbol  Description Values 

Ke Experimental heat transfer coefficient [J/(kg. K)]   

Ve Economizer volume (m
3
) 3 

Me Economizer mass (kg) 7000 

Ce Heat capacitance of Economizer tubes [J/(kg. K)] 481 
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Table A.6: Inputs to Economizer model: 

Symbol  Description Values 

Pei Inlet water pressure (Pa)  

wei Inlet feed water flow (kg/s) 12.5 

weo Outlet water flow (kg/s) 12 

Qes Heat absorbed by the economizer (J/s)  

 

 

A.1.4  Reheater model 

The Reheater heat exchanger model is described by the following equations: 

 Algebraic equations: 

                                                         (A.31)

                                                  (A.32)

                                                       (A.33)

                                               (A.34)                                              

Differential equations: 

                                                (A.35)

                                             (A.36)

                                       (A.37)

                                                (A.38) 

Parameters and inputs of Reheater model are listed in Table A.7 and A.8 respectively. 
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Table A.7: Parameters to the Reheater model: 

Symbol  Description Values 

Krh Experimental heat transfer coefficient [J/(kg. K)]   

Vrh Reheater volume (m
3
) 10 

Mr Reheater mass (kg) 7000 

Crh Heat capacitance of Reheater tubes [J/(kg. K)] 481 

Cp-ref Ideal gas reference specific heat [J/(kg. K)] 2200 

Tref Ideal gas reference temperature (K) 723.16 

href Ideal gas reference specific enthalpy (J/kg)  

 

 

Table A.8: Inputs to the Reheater model 

Symbol  Description Values 

wri Flow of steam at the inlet to the reheater (kg/s) 10.459 

hri Specific enthalpy of inlet steam (J/kg)  

Qrs Heat flow from the furnace (W)  

 

 

 

A.2  Gas turbine Model  

A.2.1 Compressor 

The Compressor model is described by the following algebraic equations: 

                                               (A.39)

                                (A.40)

                                                        (A.41)

                                                    (A.42) 
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                                                     (A.43)

                                              (A.44)

                                                        (A.45) 

Parameters and inputs of gas turbine compressor model are listed in Table A.9 and 

A.10 respectively 

 

  Table A.9: Parameters of gas turbine Compressor model: 

Symbol  Description Values 

 
Ratio of specific heats for air (Cp/Cv)  1.4 

 
Polytrophic efficiency of compressor 0.9 

A0 Exit flow area (m
2
) 0.01 

Rair Ideal gas constant for air [J/(kg 
o
K)] 287 

Cpair Specific heat at constant pressure for air [J/(kg 
o
K)] 1005 

 Transmission efficiency  0.99 

   

Table A.10: Inputs to gas turbine Compressor model: 

Symbol  Description Values 

Wa Inlet air flow (Kg/s) 46.137 

(rhoi) 
Inlet air density (Kg/m

3
) 1.21 

Pcin Inlet air pressure (Pa)  

Tcin Inlet air temperature (
o
K) 288 

 

 

A.2.2  Combustion chamber 

The combustion chamber model is described by the following algebraic equations: 
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                                                  (A.46)

                 (A.47)

                         (A.48)

                                                     (A.49)

                                             (A.50)

                                (A.51)

                                (A.52) 

Parameters and inputs of gas turbine combustion chamber model are listed in Table 

A.11 and A.12 respectively 

 

   Table A.11: Parameters of gas turbine combustion chamber model: 

Symbol  Description Values 

cpg Specific heats at constant pressure for outlet gas [J/(kg 
o
K)] 1144 

cpa Specific heats at constant pressure for air [J/(kg 
o
K)] 1005 

cps Specific heats at constant pressure for steam  [J/(kg 
o
K)] 2160 

25h  
Fuel enthalpy of combustion at reference temperature J/kg 74.0 10   

K1 Combustion chamber pressure drop empirical coefficient 1 

K2 Combustion chamber pressure drop empirical coefficient 0.9345 

Rcg Ideal gas constant for combustion gases [J/(kg 
o
K)] 287 

Am Combustion chamber cross sectional area (m
2
) 1 

href Reference combustion gas enthalpy [J/(kg 
o
K)] 61.2041 10  

Tref Reference combustion gas enthalpy (
o
K) 1000 

 

     

 

 

G a f isw w w w  

25

1 1
( 298) ( 298)Tin a pa cout is ps is f

G pg

T w c T w c T w h
w c

       

2

1 2 1
2

cgTin G
cout cout

cout m cout

RT w
p P k k T

T A P

     
               

Tin coutP P p 

( )Tin ref pg Tin refh h c T T  

2

23.333 94.333 100is is
cnox

f f

w w
g

w w

   
        

   

2

38.1959 25.4874 8is is
cco

f f

w w
g

w w

   
        

   



182 

Table A.12: Inputs to gas turbine combustion chamber model: 

Symbol  Description Values 

Pcout Outlet air pressure (Pa) 61.0033 10  

Tcout Outlet air temperature (
o
K) 598.8 

wa Air flow to combustor from compressor (kg/s) 46.137 

wf Fuel flow to combustor (kg/s) 1.8484 

wis Injected steam flow to combustor (kg/s) 0.18566 

Tis Temperature of injected steam (
o
K) 601.69 

 

 

A.2.3  The turbine 

The following algebraic equations are used to build the turbine model: 
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Parameters and inputs of turbine model are listed in Table A.13 and A.14 

respectively. 

Table A.13: Parameters of turbine model: 

Symbol  Description Values 

cg  
Ratio of specific heats for combustion gases  1.333 

T  
Polytrophic efficiency of Turbine 0.9 

AT0  Turbine exit flow area (m
2
) 0.14 

Rcg Ideal gas constant for combustion gases [J/(kg 
o
K)] 287 

Cpg Specific heat at constant pressure for air [J/(kg 
o
K)] 1144 

rT0 Nominal outlet/inlet pressure ratio for turbine 0.1 

 

Table A.14: Inputs to turbine model: 

Symbol  Description Values 

gw  
Inlet gas flow from combustor (kg/sec) 46.939 

TinT  
Inlet gas temperature (

o
K) 1892 

TinP  
Inlet gas pressure (Pa) 61.0027 10  

cP  
Compressor power consumption (W) 71.4547 10  

Tinh  
Inlet gas enthalpy (J/kg) 61.1804 10  

 

A.3  Steam turbine Model  

 

The same set of equations is used to model HP and LP sections. In IP section, the 

storage dynamics equations are not applied, because they are modeled in the 

Reheater. Turbines equations are described by the similar algebraic equations as in 

the turbine module of the gas turbine: 

 

Algebraic equations: 
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 ouP w h                                                         (A.73)

  ou o p ou oh h c T T                                                  (A.74) 

Differential equations:   
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The equations (A.64), (A.65), (A.66), (A.75), (A.76) and (A.77) are not applied to IP 

section. Parameters and inputs of steam turbine model are listed in Table A.15 and 

A.16 respectively. 
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Table A.15: Parameters of Hp turbine model: 

Symbol  Description Values 

s  
Hp section mass flow time constant (sec) 1 

  
Polytrophic efficiency of Turbine 0.8 

AT0  Turbine exit flow area (m
2
) 0.0032 

Cpg Specific heat at constant pressure for high pressure steam [J/(kg 
o
K)] 2430 

rT0 Nominal outlet/inlet pressure ratio for turbine 0.33 

V Hp section steam storage volume (m
3
) 5.664 

 

 

Table A.16: Inputs to Hp turbine model: 

Symbol  Description Values 

inw  
Inlet steam flow from boiler (kg/sec) 12 

TinT  
Inlet steam temperature (

o
K) 717.72 

TinP  
Inlet steam pressure (Pa) 64.5251 10  

in  
Inlet steam flow density (kg/m

3
) 13.662 

Tinh  
Inlet steam enthalpy (J/kg) 63.3117 10  
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Appendix B: MATLAB block diagrams of CCPP Model 

B1.1  CCPP Model 

 

Figure B1: Block diagram of CCPP system  

B1.2  Boiler System 

 
Figure B2: Block diagram of Boiler system  
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B1.3  Boiler model 

 
Figure B3: Block diagram of boiler model  

B1.4  Gas Turbine System 

 
Figure B4: Block diagram of gas turbine system  
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B1.5  Gas Turbine model 

 
Figure B5: Block diagram of gas turbine model  

B1.6  Steam Turbine System 

 
Figure B6: Block diagram of steam turbine system  
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B1.7  Steam Turbine Model 

 

Figure B7: Block diagram of steam turbine model  
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Appendix C: MATLAB block diagrams of DMPC Algorithms 

C1.1   Algorithm 1 

 

 

 

 

 

 

 

 

 
Figure C1: Algorithm 1 MATLAB block diagram 
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C1.2  Algorithm 2 

 

 

 

 

Figure C2: Algorithm 2 MATLAB block diagram 


