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Abstract

Almost every programming language’s syntax includes a notion of binder and corresponding

bound occurrences, along with the accompanying notions of α-equivalence, capture-avoiding

substitution, typing contexts, runtime environments, and so on.

In the past, implementing and reasoning about programming languages required careful

handling to maintain the correct behaviour of bound variables. Modern programming languages

include features that enable constraints like scope safety to be expressed in types. Nevertheless,

the programmer is still forced to write the same boilerplate over again for each new implemen-

tation of a scope safe operation (e.g., renaming, substitution, desugaring, printing, etc.), and

then again for correctness proofs.

In a case study focusing on the simply typed lambda calculus, we analyse these well scoped

traversals and observe that they all share the same structure. This enables us to formulate them

as instances of a more general program whose properties can be established generically. Alas,

the programmer is still forced to duplicate this effort for every new language they implement.

This leads us to defining an expressive universe of syntaxes with binding and to demonstrate

how to implement scope safe traversals once and for all by generic programming and how

to derive properties of these traversals by generic proving. Our universe description, generic

traversals and proofs, and our examples have all been formalised in Agda.
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Chapter 1

Introduction

In modern typed programming languages, programmers writing embedded Domain Specific Lan-

guages (DSLs) (Hudak [1996]) and researchers formalising them can now get help from the host

language’s type system to make illegal states unrepresentable. Their language’s deep embeddings as

inductive types can enforce strong invariants, their programs can be proven to be invariant-respecting,

and they can even prove theorems about these programs.

1.1 A Motivating Example

The representation of variables and binders gives us a prototypical example of the benefits an

astute type-based design can bring. Let us quickly survey different representations of the untyped

λ-calculus, informally given by the following grammar:

t, u, . . . ::= x | λx. t | t u

Naïve Representation

Closely following the informal specification leads us to a naïve solution: introduce an inductive

type to represent terms and use strings to represent variables. A variable is bound by the closest

enclosing binder that uses the same string. For example in the expression (λx.λx.x) the variable x in

the body of the expression is bound by the innermost λ-abstraction.

This means that some terms may be essentially the same despite using different names e.g. the

above expression is equivalent to (λy.λx.x). This notion of equivalence up to renaming is called
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1. Introduction

α-equivalence (Barendregt [1985]) and it is clearly going to be a bit tricky to implement: given two

terms we may need to rename all of their bound variables to decide whether they are α-equivalent.

Nameless Representation

The problem of having to rename variables to compare terms for equality can be solved by adopting

a nameless representation based on a positional system. We can for instance represent variables

as de Bruijn indices (1972): variables are modelled as natural numbers, counting the number of

enclosing binders one needs to go through before reaching the binder the variable points to. That is

to say that we represent both (λx.λx.x) and (λy.λx.x) by the term (λ.λ.0).

This solution is not perfect either: if a natural number is larger than the number of enclosing

binders, the variable is free. When substituting a term containing free variables into a term containing

binders, we need to remember to increment the natural numbers corresponding to free variables

(and only those) every time we push the substitution under a binder. This is quite error prone.

Well Scoped Representation

As we have just seen, directly manipulating a string-based representation or even one using raw de

Bruijn indices is error-prone. As a consequence, managing variable binding by making the scope

part of the typing discipline is a popular use case (Bellegarde and Hook [1994], Bird and Paterson

[1999], Altenkirch and Reus [1999]).

We will study this representation in more details in Section 4 but the key idea is that the number

of free variables is made to be part of the type of terms. This means that if the programmer has

forgotten to appropriately update a term before pushing it under a binder, they will get a static type

error.

The illegal state has been made unrepresentable thus rooting out a source of errors.

1.2 Scope of This Thesis

This thesis focuses on the representations providing users with strong built-in guarantees. It covers

the data representations, the programs acting on this data and the proofs that these programs are

well-behaved.

6



1.3. Our Contributions

Data Using Generalised Algebraic Data Types (GADTs) or the more general indexed families of

type theory (Dybjer [1994]) for representing their syntax, programmers can statically enforce some

of the invariants in their languages.

Solutions range from enforcing well scopedness to ensuring full type and scope correctness. In

short, we use types to ensure that “illegal states are unrepresentable”, where illegal states are ill

scoped or ill typed terms.

Programs The definition of scope- and type-safe representations is naturally only a start: once

the programmer has access to a good representation of the language they are interested in, they will

then want to (re)implement standard traversals manipulating terms. Renaming and substitution are

the two most typical examples of such traversals. Other common examples include an evaluator, a

printer for debugging purposes and eventually various compilation passes such as a continuation

passing style transformation or some form of inlining. Now that well-typedness and well-scopedness

are enforced statically, all of these traversals have to be implemented in a scope- and type-safe

manner.

Proofs This last problem is only faced by those that want really high assurance or whose work is

to study a language’s meta-theory: they need to prove theorems about these traversals. The most

common statements are simulation lemmas stating that two semantics transport related inputs to

related outputs, or fusion lemmas demonstrating that the sequential execution of two semantics

is equivalent to a single traversal by a third one. These proofs often involve a wealth of auxiliary

lemmas which are known to be true for all syntaxes but have to be re-proven for every new language

e.g. identity and extensionality lemmas for renaming and substitution.

Despite the large body of knowledge in how to use types to define well formed syntax (see

the related work in chapter 8), it is still necessary for the working DSL designer or formaliser to

redefine essential functions like renaming and substitution for each new syntax, and then to reprove

essential lemmas about those functions.

1.3 Our Contributions

In this thesis we address all three challenges by applying the methodology of datatype-genericity

to programming and proving with syntaxes with binding. We ultimately give a binding-aware

7



1. Introduction

syntax for well typed and scoped DSLs; we spell out a set of sufficient constraints entailing the

existence of a fold-like type-and-scope preserving traversal; and we provide proof frameworks to

either demonstrate that two traversals are in simulation or that they can be fused together into a third

one.

The first and second parts of this work focus on the simply-typed lambda calculus. We identify a

large catalogue of traversals which can be refactored into a common scope aware fold-like function.

Once this shared structure has been made visible, we can design proof frameworks allowing us to

show that some traversals are related.

The third part builds on the observation that the shape of the constraints we see both in the

definition of the generic traversal and the proof frameworks are in direct correspondence with the

language’s constructors. This pushes us to define a description language for syntaxes with binding

and to compute the constraints from such a description. We can then write generic programs for all

syntaxes with binding and state and prove generic theorems characterising these programs.

1.4 Source Material

The core of this thesis is based on the content of two fully-formalised published papers. They

correspond roughly to part one and two on the one hand (“Type-and-scope Safe Programs and Their

Proofs” Allais et al. [2017a,b]) and part three on the other (“A Type and Scope Safe Universe of

Syntaxes with Binding: Their Semantics and Proofs” Allais et al. [2018a,b]).

The study of variations on normalisation by evaluation in chapter 6 originated from the work

on a third paper “New equations for neutral terms” (Allais et al. [2013b]) which, combined with

McBride’s Kit for renaming and substitution (2005), led to the identification of a shared structure

between renaming, substitution and the model construction in normalisation by evaluation.

The first consequent application of this work is our solution to the POPLMark Reloaded

challenge (Abel et al. [2017, 2019]) for which we formalised a proof of strong normalisation for the

simply-typed lambda-calculus (and its extension with sum types, and primitive recursion for the

natural numbers). Upending common assumptions about the relative size of Agda and Coq proofs,

our submission was the shortest solution to the challenge, thus demonstrating that a good generic

library can compete with tactic scripts.

8



1.5. Source code

1.5 Source code

The content of this thesis is available online at https://github.com/gallais/thesis.

1.6 Plan

The work in this thesis brings together many strands of research so we provide introductory chapters

for the less common topics.

Introductory Materials

We use categorical terms whenever it is convenient to concisely describe some of the key properties

of our constructions. So we provide the reader with an introduction to category theory in Section 2.

A reader familiar with Pierce’s ‘Basic category theory for computer scientists’ may skip this section

except perhaps for the definition of relative monads in Section 2.4.

All of the content of this thesis has been fully formalised in Agda (the code snippets have

all been checked and typeset by Agda itself) so we provide an introduction to Agda and the

conventions we adopted in Section 3.

Our work on generic programming with syntaxes with binding is heavily influenced by prior

results on generic programming for (indexed) inductive types. We offer a primer on data-generic

programming in Section 13.

The conventions and techniques, and Agda features present in these introductory materials

are collected in the appendices (Appendices A and B respectively).

Contributions

Part I is dedicated to the study of a scope- and type-safe representation of the simply typed lambda

calculus with one sum type (the booleans) and one product type (the unit type). Starting from the

inductive family used to represent terms in the language, we study various invariant-respecting

traversals and notice that they all share the same structure. This leads us to see how they can all be

unified as instances of a single generic traversal.

9
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1. Introduction

Part II identifies the constraints under which one can relate different instances of the generic

traversal. This yields simulation and fusion lemmas for the generic traversal that can be immediately

deployed to obtain classic meta-theoretical results as direct corollaries.

Part III builds on parts I and II and data-generic programming to introduce syntax-generic

programming and proving. It provides the user with a whole universe of syntaxes with binding, their

invariant-respecting traversals, and proofs about these traversals.
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Chapter 2

Introduction to Category Theory

Although this thesis is not about category theory, some categorical notions do show up. They help us

expose the structure of the problem and the solutions we designed. Hence this (short) introduction

to category theory focused on the notions that will be of use to us. Computer scientists looking

for a more substantial introduction to category theory can refer to Pierce’s little book (1991) for

general notions and Altenkirch, Chapman and Uustalu’s papers (2010, 2014) if they are specifically

interested in relative monads.

2.1 What even is a Category?

A category is a set of morphisms closed under a well-behaved notion of composition. This is made

formal by the following definition.

Definition 1 A category C is defined by a set of objects (written Obj(C)) and a family of morphisms

(written C(A,B)) between any two such objects A and B such that:

1. For any object A, we have an identity morphism idA in C(A,A)

2. Given three objects A, B, and C, and two morphisms f in C(A,B) and g in C(B,C), we have a

unique morphism (g ◦C f) in C(A,C) corresponding to the composition of f and g.

3. Composition is associative

4. The appropriate identity morphisms are left and right neutral elements for composition

11



2. Introduction to Category Theory

Convention 1 When the reader should be able to reconstruct the information from the context, we

may write id instead of idA and (_ ◦ _) instead of (_ ◦C _) respectively.

Example 1 (Discrete category) From any type A we can create the discrete category correspond-

ing to A. Its objects are values of type A and the only morphisms it has are the identity functions

from each element to itself. It derives its name from the total lack of morphisms between distinct

objects.

Example 2 (Sets and functions) In this category called Set, objects are sets and morphisms are

total functions between them. Identities and compositions are the usual notions of identity and

composition for functions.

Example 3 (Families and index-respecting functions) Given a set I, we define SetI as the cate-

gory whose objects are families of type (I→ Set) and whose morphisms between two families P and

Q are index preserving functions i.e. functions of type (∀i→ P i→ Q i).

2.2 Functors

A functor is a morphism between two categories that is compatible with their respective notions of

composition.

Definition 2 (Functor) A functor F between two categories C and D is defined by its action on

the objects and morphisms of C. It takes objects in C to objects inD, and morphisms in C(A,B) to

morphisms inD(F A, F B) such that the structure of C is preserved. In other words:

1. F idA is equal to idFA

2. F (g ◦C f) is equal to (F g ◦D F f)

Example 4 (Reindexing) Given two sets I and J, every function f from I to J induces a functor from

the category SetJ to SetI (cf. example 3). We write (f ⊢_) for this functor (we explain this notation

in Section 3.5) and define its action on objects and morphisms as follows:

• Given an object P i.e. a predicate of type (J→ Set), we define (f ⊢ P) to be the family (λi→ P

(f i)) of type (I→ Set)

12



2.3. Monads

• Given a morphism prf from P to Q (i.e. a function of type (∀j→ P j→ Q j)), we define (f ⊢

prf) to be the morphism (λ i p→ prf (f i) p)

The constraints spelt out in the definition of a functor are trivially verified.

Programmers may be more familiar with endofunctors: functors whose domain and codomain

are the same category.

Definition 3 (Endofunctor) An endofunctor on a category C is a functor from C to C.

Example 5 (List) The inductive type associating to each type A, the type of finite lists of elements

of A is an endofunctor on the category of Sets and functions (cf. example 2).

Its action on morphism is simply to map the function over all of the lists’ element. The equality

constraints spelt out by the definition of Functor correspond to the classic identity and fusion

lemmas for the map function. We see detailed proofs for a similar result in Section 3.4 in the context

of proving programs correct in Agda.

2.3 Monads

A monad is an endofunctor whose action on objects is well-behaved under iteration. For any amount

of nesting of this action TnA, it has a canonical operation computing a value of type T A in a way

that is compatible with the functor structure.

Definition 4 (Monad) A monad is an endofunctor T on C equipped with:

1. For any object A, a function ηA of type C(A, T A) (the unit)

2. For any objects A and B, a mapping _∗ from C(A, T B) to C(T A, T B) (the Kleisli extension)

such that:

1. For any object A, ηA
∗ is equal to idTA

2. For any objects A and B and f a morphism of type C(A, T B), f ∗ ◦ ηA is equal to f

3. For any objects A, B, C and two morphisms f in C(A, T B) and g in C(B, T C), (g∗ ◦ f)∗ is equal

to (g∗ ◦ f∗)

13



2. Introduction to Category Theory

Example 6 (List) We have already seen in example 5 that the List type constructor is a functor. It

is additionally a monad. ηA takes an element an returns a singleton list, while _∗ maps its input

function on every value in the input list before flattening the result. The equality constraints are

easily verified.

We will refine the following example in the next section and revisit it in spirit throughout this

thesis as expressions-with-variables as monads is part of the very foundations of our work.

Example 7 (Arithmetic expressions with free variables) The type of abstract syntax trees of very

simple closed arithmetic expressions involving natural numbers (n stands for the embedding of a

natural number n) and addition of two expressions can be described by following grammar:

t ::= n | t + t

We can freely add variables to this little language by adding an additional constructor for values

in a type of variables I (we write i for any value of type I).

t ::= i | n | t + t

This new type is an endofunctor on the category of sets and functions: a mapping from I to J

can be seen as a variable renaming. It is, additionally, a monad: η is the var constructor itself, _∗

corresponds to parallel substitution.

2.4 Monads need not be Endofunctors

Although monads are defined as endofunctors, we can relax this constraint by studying Altenkirch,

Chapman and Uustalu’s relative monads instead (2010, 2014).

Definition 5 (Relative Monad) A monad relative to a functor V from C toD is a functor T from C

toD equipped with:

1. For any object A, a mapping ηA of typeD(V A, T A) (the unit)

2. For any objects A and B, a mapping _∗ fromD(V A, T B) toD(T A, T B) (the Kleisli extension)

such that:
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1. For any object A, ηA
∗ is equal to idTA

2. For any objects A and B and f a morphism of typeD(V A, T B), f ∗ ◦ ηA is equal to f

3. For any objects A, B, C and two morphisms f inD(V A, T B) and g inD(V B, T C), (g∗ ◦ f)∗ is

equal to (g∗ ◦ f∗)

Remark 1 These three constraints on (T , η, _∗) are exactly the same as the ones we gave for

monads, at slightly different types. This is due to our deliberate choice to give a definition based on

Kleisli triples. There is another presentation of monad based on a µA family of operators of type

C(T (T A), T A) where the generalisation to relative monads is not as straightforward.

Example 8 (Arithmetic expressions with finitely many free variables) This example is a slight

modification of example 7. Instead of allowing any type to represent the variables free in a term,

we restrict ourselves to using a natural number that represents the number of variables that are in

scope.

A variable in a tree indexed by n is now a natural number m together with a proof that it is

smaller than n. This new type is a functor between the discrete category of natural numbers1(cf.

example 1) and the category of sets and functions.

It is also a relative monad with respect to the trivial functor taking a natural number and

mapping it to the set of natural numbers that are smaller (our notion of variable). Once again

mapping is renaming, η is the var constructor itself, and _∗ corresponds to parallel substitution.

1We could pick a source category with more structure and obtain a more interesting result but this is beyond the
scope of this introduction
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Chapter 3

Introduction to Agda

The techniques and abstractions defined in this thesis are language-independent: all the results

can be replicated in any Martin Löf Type Theory (1982) equipped with inductive families (Dybjer

[1994]). In practice, all of the content of this thesis has been formalised in Agda (Norell [2009]) so

we provide a (brutal) introduction to dependently-typed programming in Agda.

Agda is a dependently typed programming language based on Martin-Löf Type Theory with

inductive families, induction-recursion (Dybjer and Setzer [1999]), copattern-matching (Abel et al.

[2013b]) and sized types (Abel [2010]).

3.1 Set and Universe Levels

Agda is both a dependently typed programming language and a proof assistant. As such, its type

system needs to be sound. A direct consequence is that the type of all types cannot itself be a type.

This is solved by using a stratified tower of universes.

Feature 1 (Universe Levels) Agda avoids Russell-style paradoxes by introducing a tower of uni-

verses Set0 (usually written Set), Set1, Set2, etc. Each Setn does not itself have type Setn but

rather Setn+1 thus preventing circularity.

In practice most of our constructions will stay at the lowest level Set (commonly called the

“type of small sets”), and we will only occasionally mention Set1. The barest of examples involving

both notions is the following definition of ID, the (large) type of the identity function on small sets,

together with id the corresponding identity function.
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ID : Set1

ID = {A : Set}→ A→ A

id : ID

id x = x

In the type ID we wrapped the Set argument using curly braces. This is our way of telling Agda

that this argument should be easy to figure out and that we do not want to have to write it explicitly

every time we call id.

Feature 2 (Implicit Arguments) Programmers can mark some of a function’s arguments as im-

plicit by wrapping them in curly braces. The values of these implicit arguments can be left out at

the function’s call sites and Agda will reconstruct them by unification (Abel and Pientka [2011]).

3.2 Data and (co)pattern matching

Sum Types Agda supports inductive families (Dybjer [1991]), a generalisation of the algebraic

data types one can find in most functional programming languages.

The plainest of sum types is the empty type ⊥, a type with no constructor. We define it together

with ⊥-elim also known as the principle of explosion: from something absurd, we can deduce

anything. The absurd pattern () is used to communicate the fact that there can be no value of type ⊥.

data ⊥ : Set where ⊥-elim : {A : Set}→⊥→ A

⊥-elim ()

Feature 3 (Syntax Highlighting) We rely on Agda’s LATEX backend to produce syntax highlighting

for all the code fragments in this thesis. The convention is as follows: keywords are highlighted in

orange, data constructors in green, record fields in pink, types and functions in blue while bound

variables are black.

The next classic example of a sum type is the type of boolean values. We define it as the datatype

with two constructors true and false. These constructors are distinct and Agda understands that fact:

an argument of type true ≡ false can be dismissed with the same absurd pattern one uses for values

of type ⊥.
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data Bool : Set where

true : Bool

false : Bool

true.false : true ≡ false→⊥

true.false ()

All definitions in Agda need to be total. In particular this means that a function is only

considered defined once Agda is convinced that all the possible input values have been covered by

the pattern-matching equations the user has written. The coverage checker performs this analysis.

Feature 4 (Coverage Checking) During typechecking the coverage checker elaborates the given

pattern-matching equations into a case tree (Cockx and Abel [2020]). It makes sure that all the

branches are either assigned a right-hand side or obviously impossible. This allows users to focus

on the cases of interest, letting the machine check the other ones.

The function if_then_else_ is defined by pattern-matching on its boolean argument. If it is true

then the second argument is returned, otherwise we get back the third one.

if_then_else_ : {A : Set}→ Bool→ A→ A→ A

if true then t else f = t

if false then t else f = f

Feature 5 (Mixfix Identifiers) We use Agda’s mixfix operator notation (Danielsson and Norell

[2011]) where underscores denote argument positions. This empowers us to define the if_then_else_

construct rather than relying on it being built in like in so many other languages. For another

example, at the type-level this time, see e.g. the notation _×_ for the type of pairs defined in

section 3.2.

Inductive Types As is customary in introductions to dependently typed programming, our first

inductive type will be the Peano-style natural numbers.They are defined as an inductive type with

two constructors: zero and successor. Our first program manipulating them is addition; it is defined

by recursion on the first argument.
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data N : Set where

zero : N

suc : N→ N

_+_ : N→ N→ N

zero + n = n

suc m + n = suc (m + n)

For recursive definitions ensuring that all definitions are total entails an additional check on top

of coverage checking: all calls to that function should be terminating.

Feature 6 (Termination Checking) Agda is equipped with a sophisticated termination checking

algorithm (Abel [1998]). For each function it attempts to produce a well-founded lexicographic

ordering of its inputs such that each recursive call is performed on smaller inputs according to this

order.

Record Types Agda also supports record types; they are defined by their list of fields. Unlike

inductive types they enjoy η-rules. That is to say that any two values of the same record type are

judgmentally equal whenever all of their fields’ values are.

We define the unit type (⊤) which has one constructor (tt) but no field. As a consequence, the

η-rule for ⊤ states that any two values of the unit type are equal to each other. This is demonstrated

by the equality proof we provide.

record ⊤ : Set where

constructor tt

_ : (t u : ⊤)→ t ≡ u

_ = λ t u→ refl

Feature 7 (Underscore as Placeholder Name) An underscore used in place of an identifier in a

binder means that the binding should be discarded. For instance (λ _ → a) defines a constant

function. Toplevel bindings can similarly be discarded which is a convenient way of writing unit

tests (in type theory programs can be run at typechecking time) without polluting the namespace.

The second classic example of a record type is the pair type _×_ which has an infix constructor

_,_ and two fields: its first (fst) and second (snd) projections. The η-rule for pairs states that any

value is equal to the pairing of its first and second projection. This is demonstrated by the equality

proof we provide.
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record _×_ (A B : Set) : Set where

constructor _,_

field fst : A; snd : B

_ : (p : A × B)→ p ≡ (fst p , snd p)

_ = λ p→ refl

Agda gives us a lot of different ways to construct a value of a record type and to project the

content of a field out of a record value. We will now consider the same function swap implemented

in many different fashion to highlight all the possibilities offered to us.

If the record declaration introduced a constructor we may use it to pattern-match on values of

that record type on the left or construct values of that record type on the right. We can always also

simply use the record keyword and list the record’s fields. The two following equivalent definitions

are demonstrating these possibilities.

swap : A × B→ B × A

swap (a , b) = record

{ fst = b

; snd = a

}

swap : A × B→ B × A

swap record { fst = a

; snd = b

} = (b , a)

From now on, we will only use the constructor _,_ rather than the more verbose definition

involving the record keyword. Instead of pattern-matching on a record, we may want to project

out the values of its fields. For each field, Agda defines a projection of the same name. They may

be used prefix or suffix in which case one needs to prefix the projection’s name with a dot. This is

demonstrated in the two following equivalent definitions.

swap : A × B→ B × A

swap p = (snd p , fst p)

swap : A × B→ B × A

swap p = (p .snd , p .fst)

Instead of using the record constructor to build a value of a record type, we may define it by

explaining what ought to happen when a user attempts to project out the value of a field. This

definition style dubbed copattern-matching focuses on the observations one may make of the value.

It was introduced by Abel, Pientka, Thibodeau, and Setzer (2013b). It can be used both in prefix
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and suffix style.

swap : A × B→ B × A

fst (swap (a , b)) = b

snd (swap (a , b)) = a

swap : A × B→ B × A

swap (a , b) .fst = b

swap (a , b) .snd = a

Finally, we may use an anonymous copattern-matching function to define the record value by

the observation one may make of it. Just like any other anonymous (co)pattern-matching function,

it is introduced by the construct (λ where) followed by a block of clauses.

swap : A × B→ B × A

swap (a , b) = λ where

.fst → b

.snd→ a

Feature 8 (Implicit Generalisation) The latest version of Agda supports ML-style implicit prenex

polymorphism and we make heavy use of it: every unbound variable should be considered implicitly

bound at the beginning of the telescope. In the above example, A and B are introduced using this

mechanism.

Record type declarations with local definitions It is sometimes handy to introduce a local

definition inside a record that can be used to compactly state the type of further fields. This

is possible by interleaving field and unindented definition blocks inside of the record definition

introduced by a where keyword.

In the following example we define a record Natural similar in spirit to Haskell’s Num typeclass

but only concerning itself with non-negative numbers. It is parameterised by a type A, its object of

discourse. We start by asking for an embedding fromN from N to A. We then introduce an auxiliary

definition BinOp describing what it means to be a binary operator on A. In a further field block we

then insist we should be given two binary operations: _+_, and _*_.

record Natural (A : Set) : Set where

constructor mkNatural

field

22



3.2. Data and (co)pattern matching

fromN : N→ A

BinOp : Set

BinOp = A→ A→ A

field

_+_ : BinOp

_*_ : BinOp

Recursive Functions Definitions taking values of an inductive type as argument are constructed

by pattern matching in a style familiar to Haskell programmers: one lists clauses assuming a

first-match semantics. If the patterns on the left hand side are covering all possible cases and the

recursive calls are structurally smaller, the function is total. All definitions have to be total in Agda.

The main difference with Haskell is that in Agda, we can perform so-called “large elimination”:

we can define a Set by pattern-matching on a piece of data. Here we use our unit and pair records to

define a tuple of size n by recursion over n: a tuple of size zero is empty whilst a (suc n) tuple is a

value paired with an n tuple.

_-Tuple_ : N→ Set→ Set

zero -Tuple A = ⊤

suc n -Tuple A = A × (n -Tuple A)

Technique 1 (Intrinsically Enforced Properties) In the definition of an n-ary tuple, the length of

the tuple is part of the type (indeed the definition proceeds by induction over this natural number).

We say that the property that the tuple has length n is enforced intrinsically. Conversely some

properties are only proven after the fact, they are called extrinsic.

The choice of whether a property should be enforced intrinsically or extrinsically is for the

programmer to make, trying to find a sweet spot for the datastructure and the task at hand. We

typically build basic hygiene intrinsically and prove more complex properties later.

Types can now depend on values, as a consequence in a definition by pattern matching each

clause has a type refined based on the patterns which appear on the left hand side. This will be

familiar to Haskell programmers used to manipulating Generalized Algebraic Data Types (GADTs).

Let us see two examples of a type being refined based on the pattern appearing in a clause.

23



3. Introduction to Agda

First, we introduce replicate which takes a natural number n and a value a of type A and returns

a tuple of As of size n by duplicating a. The return type of replicate reduces to ⊤ when the natural

number is zero and (A × (n -Tuple A)) when it is (suc n) thus making the following definition valid.

replicate : ∀ n→ A→ n -Tuple A

replicate zero a = tt

replicate (suc n) a = a , replicate n a

Second, we define map^-Tuple which takes a function and applies it to each one of the elements

in a -Tuple.

Convention 2 (Caret-based naming) We use a caret to generate a mnemonic name: map refers

to the fact that we can map a function over the content of a data structure and -Tuple clarifies that

the data structure in question is the family of n-ary tuples.

We use this convention consistently throughout this thesis, using names such as map^Rose

for the proof that we can map a function over the content of a rose tree, th^Var for the proof that

variables are thinnable, or vl^Tm for the proof that terms are var-like.

Both the type of the -Tuple argument and the -Tuple return type are refined based on the pattern

the natural number matches. In the second clause, this tells us the -Tuple argument is a pair, allowing

us to match on it with the pair constructor _,_.

map^-Tuple : ∀ n→ (A→ B)→ n -Tuple A→ n -Tuple B

map^-Tuple zero f tt = tt

map^-Tuple (suc n) f (a , as) = f a , map^-Tuple n f as

Remark 2 (Functor) In Section 3.4 we will prove that applying map^-Tuple to the identity yields

the identity and that map^-Tuple commutes with function composition. That is to say we will prove

that (n -Tuple) is an endofunctor (see definition 3) on Set.

Dependent Record Types Record types can be dependent, i.e. the type of later fields can depend

on that of former ones. We define a Tuple as a natural number (its length) together with a (length

-Tuple) of values (its content).
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record Tuple (A : Set) : Set where

constructor mkTuple

field length : N

content : length -Tuple A

In Agda, as in all functional programming languages, we can define anonymous functions by

using a λ-abstraction. Additionally, we can define anonymous (co)pattern-matching functions by

using (λ where) followed by an indented block of clauses. We use here copattern-matching, that is

to say that we define a Tuple in terms of the observations that one can make about it: we specify

its length first, and then its content. We use postfix projections (hence the dot preceding the field’s

name).

map^Tuple : (A→ B)→ Tuple A→ Tuple B

map^Tuple f as = λ where

.length → as .length

.content→ map^-Tuple (as .length) f (as .content)

Technique 2 (Lazily unfolded definitions) When record values are going to appear in types, it is

often a good idea to define them by copattern-matching: this prevents the definition from being

unfolded eagerly thus making the goal more readable during interactive development.

Strict Positivity In order to rule out definitions leading to inconsistencies, all datatype definitions

need to be strictly positive. Although a syntactic criterion originally (its precise definition is beyond

the scope of this discussion), Agda goes beyond by recording internally whether functions use their

arguments in a strictly positive manner. This allows us to define types like rose trees where the

subtrees of a node are stored in a Tuple, a function using its Set argument in a strictly positive

manner.

data Rose (A : Set) : Set where

leaf : A→ Rose A

node : Tuple (Rose A)→ Rose A
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3.3 Sized Types and Termination Checking

If we naïvely define rose trees like above then we quickly realise that we cannot re-use higher

order functions on Tuple to define recursive functions on Rose. As an example, let us consider

map^Rose. In the node case, the termination checker does not realise that the partially applied

recursive call (map^Rose f) passed to map^Tuple will only ever be used on subterms. We need to

use an unsafe TERMINATING pragma to force Agda to accept the definition.

{-# TERMINATING #-}

map^Rose : (A→ B)→ Rose A→ Rose B

map^Rose f (leaf a) = leaf (f a)

map^Rose f (node rs) = node (map^Tuple (map^Rose f) rs)

This is not at all satisfactory: we do not want to give up safety to write such a simple traversal.

The usual solution to this issue is to remove the level of indirection introduced by the call to

map^Tuple by mutually defining with map^Rose an inlined version of (map^Tuple (map^Rose f)).

In other words, we have to effectively perform supercompilation (Mendel-Gleason [2012]) by hand.

mutual

map^Rose : (A→ B)→ Rose A→ Rose B

map^Rose f (leaf a) = leaf (f a)

map^Rose f (node (mkTuple n rs)) = node (mkTuple n (map^Roses n f rs))

map^Roses : ∀ n→ (A→ B)→ n -Tuple (Rose A)→ n -Tuple (Rose B)

map^Roses zero f rs = tt

map^Roses (suc n) f (r , rs) = map^Rose f r , map^Roses n f rs

This is, of course, still unsatisfactory: we need to duplicate code every time we want to write a

traversal! By using sized types, we can have a more compositional notion of termination checking:

the size of a term is reflected in its type. No matter how many levels of indirection there are between

the location where we are peeling off a constructor and the place where the function is actually

called recursively, as long as the intermediate operations are size-preserving we know that the

recursive call will be legitimate.
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Writing down the sizes explicitly, we get the following implementation. Note that in (map^Tuple

(map^Rose j f)), j (bound in node) is smaller than i and therefore the recursive call is justified.

data Rose (A : Set) (i : Size) : Set where

leaf : A→ Rose A i

node : (j : Size< i)→ Tuple (Rose A j)→ Rose A i

map^Rose : ∀ i→ (A→ B)→ Rose A i→ Rose B i

map^Rose i f (leaf a) = leaf (f a)

map^Rose i f (node j rs) = node j (map^Tuple (map^Rose j f) rs)

In practice we make the size arguments explicit in the types but implicit in the terms. This leads

to programs that look just like our ideal implementation, with the added bonus that we have now

proven the function to be total.

data Rose (A : Set) (i : Size) : Set where

leaf : A→ Rose A i

node : {j : Size< i}→ Tuple (Rose A j)→ Rose A i

map^Rose : ∀ {i}→ (A→ B)→ Rose A i→ Rose B i

map^Rose f (leaf a) = leaf (f a)

map^Rose f (node rs) = node (map^Tuple (map^Rose f) rs)

3.4 Proving the Properties of Programs

We make explicit some of our programs’ invariants directly in their type thus guaranteeing that the

implementation respects them. The type of map^-Tuple for instance tells us that this is a length

preserving operation. We cannot possibly encode all of a function’s properties directly into its type

but we can use Agda’s type system to state and prove theorems of interest.

In Agda, programming is proving. The main distinction between a proof and a program is a

social one: we tend to call programs the objects whose computational behaviour matters to us while

the other results correspond to proofs.

We can for instance prove that mapping the identity function over a tuple amounts to not doing

anything.
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Lemma 1 (Identity lemma for map) Given a function f extensionally equal to the identity, (map

f) is itself extensionally equal to the identity.

Technique 3 (Extensional Statements) Note that we have stated the theorem not in terms of the

identity function but rather in terms of a function which behaves like it. Agda’s notion of equality is

intensional, that is to say that we cannot prove that two functions yielding the same results when

applied to the same inputs are necessarily equal. In practice this means that stating a theorem in

terms of the specific implementation of a function rather than its behaviour limits vastly our ability

to use this lemma. Additionally, we can always obtain the more specific statement as a corollary.

The proof of this statement is a program proceeding by induction on n followed by a case

analysis on the n-ary tuple. In the base case, the equality is trivial and in the second case map

computes just enough to reveal the constructor pairing (f a) together with the result obtained

recursively. We can combine the proof that (f a) is equal to a and the induction hypothesis by an

appeal to congruence for the pair constructor _,_.

map-identity :

∀ n {f : A→ A}→ (∀ a→ f a ≡ a)→

∀ as→ map^-Tuple n f as ≡ as

map-identity zero f-id tt = refl

map-identity (suc n) f-id (a , as) = cong2 _,_ (f-id a) (map-identity n f-id as)

Technique 4 (Functional Induction) Whenever we need to prove a theorem about a function’s

behaviour, it is best to proceed by functional induction. That is to say that the proof and the function

will follow the same pattern-matching strategy.

Lemma 2 (Fusion lemma for map) Provided a function f from A to B, a function g from B to C,

and a function h from A to C extensionally equal to the composition of f followed by g, mapping f

and then g over an n-ary tuple as is the same as merely mapping h.

map-fusion :

∀ n {f : A→ B} {g : B→ C} {h}→ (∀ a→ g (f a) ≡ h a)→
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∀ as→ map^-Tuple n g (map^-Tuple n f as) ≡ map^-Tuple n h as

map-fusion zero gf≈h tt = refl

map-fusion (suc n) gf≈h (a , as) = cong2 _,_ (gf≈h a) (map-fusion n gf≈h as)

Lemma 3 (Fusion Lemma for replicate) Given a function f from A to B, a value a of type A,

and a natural number n, mapping f over the n-ary tuple obtained by replicating a is the same as

replicating (f a).

map-replicate : ∀ n (f : A→ B) (a : A)→

map^-Tuple n f (replicate n a) ≡ replicate n (f a)

map-replicate zero f a = refl

map-replicate (suc n) f a = cong (f a ,_) (map-replicate n f a)

3.5 Working with Indexed Families

On top of the constructs provided by the language itself, we can define various domain specific

languages (DSL) which give us the means to express ourselves concisely. We are going to manipulate

a lot of indexed families representing scoped languages so we give ourselves a few combinators

corresponding to the typical operations we want to perform on them.

These combinators will allow us to write the types for index-preserving operations without

having to mention the indices. This will empower us to use very precise indexed types whilst having

normal looking type declarations. We have implemented a generalisation of these combinators to

n-ary relations (Allais [2019]) but this work is out of the scope of this thesis.

First, noticing that most of the time we silently thread the current scope, we lift the function

space pointwise with _⇒_.

_⇒_ : (P Q : A→ Set)→ (A→ Set)

(P⇒ Q) x = P x→ Q x

Second, the _⊢_ combinator makes explicit the adjustment made to the index by a function.

Conforming to the convention (see e.g. Martin-Löf [1982]) of mentioning only context extensions
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when presenting judgements, we write (f ⊢ P) where f is the modification and P the indexed Set it

operates on. This is the reindexing functor we saw in example 4.

_⊢_ : (A→ B)→ (B→ Set)→ (A→ Set)

(f ⊢ P) x = P (f x)

Although it may seem surprising at first to define binary infix operators as having arity three,

they are meant to be used partially applied, surrounded by ∀[_] or ∃⟨_⟩. These combinators turn an

indexed Set into a Set by quantifying over the index. The function ∀[_] universally quantifies over

an implicit value of the right type while ∃⟨_⟩, defined using a dependent record, corresponds to an

existential quantifier.

∀[_] : (A→ Set)→ Set

∀[_] P = ∀ {x}→ P x

record Σ (A : Set) (B : A→ Set) : Set where

constructor _,_

field proj1 : A

proj2 : B proj1

∃⟨_⟩ : (A→ Set)→ Set

∃⟨_⟩ P = Σ _ P

We make _⇒_ associate to the right as one would expect and give it the second highest

precedence level after _⊢_. These combinators lead to more readable type declarations. For instance,

the compact expression ∀[ suc ⊢ (P⇒ Q)⇒ R ] desugars to the more verbose type ∀ {i}→ (P (suc

i)→ Q (suc i))→ R i.

As the combinators act on the last argument of any indexed family, this inform our design: our

notions of variables, languages, etc. will be indexed by their kind first and scope second. This will

be made explicit in the definition of −Scoped in fig. 4.5.
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Chapter 4

Intrinsically Scoped and Typed Syntax

A programmer implementing an embedded language with bindings has a wealth of possibilities.

However, should they want to be able to inspect the terms produced by their users in order to

optimise or even compile them, they will have to work with a deep embedding.

4.1 A Primer on Scope And Type Safe Terms

Scope safe terms follow the discipline that every variable is either bound by some binder or is

explicitly accounted for in a context. Bellegarde and Hook (1994), Bird and Patterson (1999), and

Altenkirch and Reus (1999) introduced the classic presentation of scope safety using inductive

families (Dybjer [1994]) instead of inductive types to represent abstract syntax. Indeed, using

a family indexed by a Set, we can track scoping information at the type level. The empty Set

represents the empty scope. The functor 1 + (_) extends the running scope with an extra variable.

An inductive type is the fixpoint of an endofunctor on Set (cf. definition 3). Similarly, an

inductive family is the fixpoint of an endofunctor on (Set → Set). Using inductive families to

enforce scope safety, we get the following definition of the untyped λ-calculus: T (F) = λX ∈

Set. X + (F(X) × F(X)) + F(1 + X). This endofunctor offers a choice of three constructors. The

first one corresponds to the variable case; it packages an inhabitant of X, the index Set. The second

corresponds to an application node; both the function and its argument live in the same scope as

the overall expression. The third corresponds to a λ-abstraction; it extends the current scope with a

fresh variable. The language is obtained as the least fixpoint of T :

Since ‘UTLC’ is an endofunction on Set, it makes sense to ask whether it is also a functor and
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UTLC = µF ∈ SetSet.λX∈Set. X + (F(X) × F(X)) + F(1 + X)

Figure 4.1: Well-Scoped Untyped Lambda Calculus as the Fixpoint of a Functor

a monad. Indeed it is, as Altenkirch and Reus have shown. The functorial action corresponds to

renaming, the monadic ‘return : A→ UTLC A’ corresponds to the use of variables, and the monadic

‘bind : UTLC A→ (A→ UTLC B)→ UTLC B’ corresponds to substitution. The functor and monad

laws correspond to well known properties from the equational theories of renaming and substitution.

We will revisit these properties below in chapter 10.

There is no reason to restrict this technique to fixpoints of endofunctors on SetSet. The more

general case of fixpoints of (strictly positive) endofunctors on SetJ can be endowed with similar

operations by using Altenkirch, Chapman and Uustalu’s relative monads (2010, 2014).

We pick as our J the category whose objects are inhabitants of (List I) (I is a parameter of the

construction) and whose morphisms are thinnings (see section 5.3). This (List I) is intended to

represent the list of the sort (/ kind / types depending on the application) of the de Bruijn variables

in scope. We can recover an untyped approach by picking I to be the unit type. Given this typed

setting, our functors take an extra I argument corresponding to the type of the expression being built.

This is summed up by the large type (I −Scoped) defined in fig. 4.5.

4.2 The Calculus and Its Embedding

We work with a deeply embedded simply typed λ-calculus (STλC). It has Unit and Bool as base

types and serves as a minimal example of a system with a record type equipped with an η-rule and a

sum type. We describe the types both as a grammar and the corresponding inductive type in Agda

in fig. 4.2.

⟨Type⟩ ::= Unit | Bool

| ⟨Type⟩ → ⟨Type⟩

data Type : Set where
‘Unit ‘Bool : Type
_‘→_ : (σ τ : Type)→ Type

Figure 4.2: Types used in our Running Example
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Convention 3 (Object and Meta Syntaxes) When we represent object syntax in the meta language

(Agda here) we use backquotes to make explicit the fact that we are manipulating quoted objects.

The language’s constructs are laid out in fig. 4.3. They naturally include the basic constructs of

any λ-calculus: variables, application and λ-abstraction. We then have a constructor for values of

the unit type but no eliminator (a term of unit type carries no information). Finally, we have two

constructors for boolean values and the expected if-then-else eliminator.

⟨Term⟩ ::= x | ⟨Term⟩ ⟨Term⟩ | λx. ⟨Term⟩
| ()
| true | false | if ⟨Term⟩ then ⟨Term⟩ else ⟨Term⟩

Figure 4.3: Grammar of our Language

This syntax is given a static semantics by the type system for the simply typed lambda calculus

described in fig. 4.4. Variables have the type they are assigned by the typing context; an application

node only makes sense if the function has an arrow type and the argument’s type matches the

function’s domain; similarly an if _ then _ else _ construct demands that the condition branched

over has type Bool and that both branches have the same type.

x : σ ∈ Γ

x : σ
var

f : σ→ τ t : σ

f t : τ
app

x : σ ⊢ b : τ

λx. b : σ→ τ
lam

() : Unit
unit

true : Bool
true

false : Bool
f alse

b : Bool l : σ r : σ

if b then l else r : σ
i f te

Figure 4.4: Typing Rules for our Language

Convention 4 (Assume an Ambient Context) Following Martin-Löf (1982) we adopt the conven-

tion that all of our typing rules are defined in an ambient context Γ and only mention the adjustments

made to it. Crucially, we can see that the only rule which modifies the context is the introduction

rule for lambda abstractions: in the premise, (x : σ ⊢) indicates that the ambient context is extended

with a new bound variable x of type σ.
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Well Scoped and Typed by Construction

We decide to represent this language in our host language not as terms in a raw syntax together with

typing derivations ruling out badly behaved expressions but rather as a syntax which is intrinsically

well scoped and typed by construction.

The first hurdle in our way is the representation of contexts, the notion of scope they induce

and the concept of variables in a given scope. This matter has been studied at length and multiple

competing solutions have been offered (Aydemir et al. [2005a]). We opt for well scoped and typed

de Bruijn indices.

To talk about the variables in scope and their type, we need contexts. We choose to represent

them as lists of types; [] denotes the empty list and (σ :: Γ) the list Γ extended with a fresh variable

of type σ. Because we are going to work with a lot of well typed and well scoped families, we

define (I −Scoped) as the set of type and scope indexed families where the argument I plays the

role of the set of valid types.

_−Scoped : Set→ Set1
I −Scoped = I→ List I→ Set

Figure 4.5: Typed and Scoped Definitions

Our first example of a type and scope indexed family is Var, the type of Variables. A variable is

a position in a typing context, represented as a typed de Bruijn (1972) index. This amounts to an

inductive definition of context membership. We use the combinators defined in section 3.5 to show

only local changes to the context.

data Var : I −Scoped where
z : ∀[ (σ ::_) ⊢ Var σ ]
s : ∀[ Var σ⇒ (τ ::_) ⊢ Var σ ]

z : ∀ {σ Γ} → Var σ (σ :: Γ)
s : ∀ {σ τ Γ} → Var σ Γ→ Var σ (τ :: Γ)

Figure 4.6: Well Scoped and Typed de Bruijn indices

The z (for zero) constructor refers to the nearest binder in a non-empty scope. The s (for

successor) constructor lifts an existing variable in a given scope to the extended scope where an

extra variable has been bound. The constructors’ types respectively normalise to the fully expanded
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types displayed on their right.

The syntax for this calculus, shown in fig. 4.7, guarantees that terms are scope- and type-safe by

construction. This presentation due to Altenkirch and Reus (1999) relies heavily on Dybjer’s (1991)

inductive families. Rather than having untyped pre-terms and a typing relation assigning a type to

them, the typing rules are here enforced in the syntax. Notice that the only use of _⊢_ to extend the

context is for the body of a ‘lam.

data Term : Type −Scoped where

‘var : ∀[ Var σ
---------
⇒ Term σ ]

‘app : ∀[ Term (σ ‘→ τ)⇒ Term σ

----------------------
⇒ Term τ ]

‘lam : ∀[ (σ ::_) ⊢ Term τ

---------------
⇒ Term (σ ‘→ τ) ]

‘one : ∀[
---------
Term ‘Unit ]

‘tt : ∀[
---------
Term ‘Bool ]

‘ff : ∀[
---------
Term ‘Bool ]

‘ifte : ∀[ Term ‘Bool⇒ Term σ⇒ Term σ

----------------------------
⇒ Term σ ]

Figure 4.7: Well Scoped and Typed Calculus

Convention 5 (Using Comments to Mimick Natural Deduction Rules) In the definition of the

calculus’ syntax we use comment lines to mimic inference rules in natural deduction. This definition
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style is already present in Pollack’s PhD thesis (1994).

In fig. 4.8, we provide two examples: (λx. x) and (λb. if b then false else true). In this

representation writing a term amounts to typechecking it so these examples are proofs that the

identity function can be checked at any type σ and that negation is indeed a function from Bool to

Bool.

id : ∀[ Term (σ ‘→ σ) ]
id = ‘lam (‘var z)

not : ∀[ Term (‘Bool ‘→ ‘Bool) ]
not = ‘lam (‘ifte (‘var z) ‘ff ‘tt)

Figure 4.8: Identity and Negation as Well Scoped and Typed Terms
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Chapter 5

Refactoring Common Traversals

Once they have a good representation for their language, DSL writers will have to (re)implement a

great number of traversals doing such mundane things as renaming, substitution, or partial evaluation.

Should they want to get help from the typechecker in order to fend off common bugs, they will have

opted for inductive families (Dybjer [1991]) to enforce precise invariants. But the traversals now

have to be invariant preserving too!

5.1 A Generic Notion of Environment

Renamings and substitutions have in common that they map variables to something: other variables

in one case, terms in the other. We can abstract over these differences and provide users with a

generic notion of environment that may be used in both cases.

Assuming that we are given an (I-Scoped) family V corresponding to a notion of values

variables should be mapped to, we call V-(evaluation) environment this generalisation of both

renamings and substitutions. We leave outV when it can easily be inferred from the context.

Formally, this translates toV-environments being the pointwise lifting of the relationV between

contexts and types to a relation between two contexts. Rather than using a datatype to represent such

a lifting, we choose to use a function space. This decision is based on Jeffrey’s observation (2011)

that one can obtain associativity of append for free by using difference lists. In our case the interplay

between various combinators (e.g. identity and select) defined later on is vastly simplified by this

rather simple decision.
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record _−Env (Γ : List I) (V : I −Scoped) (∆ : List I) : Set where
constructor pack
field lookup : Var i Γ→V i ∆

Figure 5.1: Generic Notion of Environment

We write ((Γ −Env)V ∆) for an environment that associates a valueV well scoped and typed

in ∆ to every entry in Γ. These environments naturally behave like the contexts they are indexed by:

there is a trivial environment for the empty context and one can easily extend an existing one by

providing an appropriate value. The packaging of the function representing to the environment in a

record allows for two things: it helps the typechecker by stating explicitly which type family the

values correspond to and it empowers us to define environments by copattern-matching (Abel et al.

[2013a]) thus defining environments by their use cases.

The definition of the empty environment uses an absurd match (()): given the definition of Var

in fig. 4.6, it should be pretty clear that there can never be a value of type (Var σ []).

ε : ([] −Env)V ∆
lookup ε ()

Figure 5.2: Empty Environment

The environment extension definition proceeds by pattern-matching on the variable: if it z then

we return the newly added value, otherwise we are referring to a value in the original environment

and can simply look it up.

_•_ : (Γ −Env)V ∆→V σ ∆→ ((σ :: Γ) −Env)V ∆
lookup (ρ • v) z = v
lookup (ρ • v) (s k) = lookup ρ k

Figure 5.3: Environment Extension

We also include the definition of _<$>_, which lifts in a pointwise manner a function acting on

values into a function acting on environment of such values.

Now that we have a generic notion of environment, we can focus on refactoring various traversals

40



5.2. McBride’s Kit

_<$>_ : (∀ {i}→V i ∆→W i Θ)→ (Γ −Env)V ∆→ (Γ −Env)W Θ
lookup (f <$> ρ) k = f (lookup ρ k)

Figure 5.4: Environment Mapping

as instances of a more general one.

5.2 McBride’s Kit

McBride observed the similarity between the types and implementations of renaming and substitu-

tion for a well scoped language in his thesis (1999) and then for the simply typed λ-calculus (STλC)

in an unpublished manuscript (2005). This work building on Goguen and McKinna’s candidates for

substitution (1997) and leading to the collaboration with Benton, Hur, and Kennedy (2012) teaches

us how to refactor both traversals into a single more general function.

We highlight these similarities for a scope- and type- preserving implementation of renaming

and substitution in fig. 5.5, focusing only on ‘var, ‘app, and ‘lam for the moment as they allow us to

make all of the needed observations. There are three differences between the two functions.

1. in the variable case, after renaming a variable we must wrap it in a ‘var constructor whereas a

substitution directly produces a term;

2. when weakening a renaming to push it under a λ we need only post-compose the renaming

with the De Bruijn variable successor constructor s (which is essentially weakening for

variables) whereas for a substitution we need a weakening operation for terms. It can be given

by renaming via the successor constructor (ren (pack s));

3. also in the λ case, when pushing a renaming or a substitution under a binder we must extend

it to ensure that the variable bound by the λ is mapped to itself. For renaming this involves

its extension by the zeroth variable z whereas for substitutions we must extend by the zeroth

variable seen as a term (‘var z).

Having spotted the small differences between renaming and substitution, it is now possible to

extract the essence of the the two traversals. McBride defines a notion of “Kit” covering these
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ren : (Γ −Env) Var ∆→ Tm σ Γ→ Tm σ ∆

ren ρ (‘var v) = ‘var (lookup ρ v)
ren ρ (‘app f t) = ‘app (ren ρ f) (ren ρ t)
ren ρ (‘lam b) = ‘lam (ren ρ′ b)

where ρ′ = (s <$> ρ) • z

sub : (Γ −Env) Tm ∆→ Tm σ Γ→ Tm σ ∆

sub ρ (‘var v) = lookup ρ v
sub ρ (‘app f t) = ‘app (sub ρ f) (sub ρ t)
sub ρ (‘lam b) = ‘lam (sub ρ′ b)

where ρ′ = (ren (pack s) <$> ρ) • ‘var z

Figure 5.5: Renaming and Substitution for the STλC

differences. Rather than considering Var and Tm in isolation as different types of environment

values, he considers ♦, an arbitrary (Type −Scoped) and designs three constraints:

1. One should be able to turn any environment value into a term of the same type and defined in

the same scope (var);

2. One should be able to craft a fresh environment value associated to the zeroth variable of a

scope (zro);

3. One should be able to embed environment values defined in a given scope into ones in a scope

extended with a fresh variable (wkn).

record Kit (♦ : Type −Scoped) : Set where
field var : ∀[ ♦ σ⇒ Tm σ ]

zro : ∀[ (σ ::_) ⊢ ♦ σ ]
wkn : ∀[ ♦ τ⇒ (σ ::_) ⊢ ♦ τ ]

Figure 5.6: Kit as a set of constraints on ♦

Whenever these constraints are met we can define a type and scope preserving traversal which

is based on an environment of ♦-values. This is the fundamental lemma of Kits stated and proved in

fig. 5.7.

Convention 6 (Programs as lemmas) It may seem strange for us to call a program manipulating

abstract syntax trees a “fundamental lemma”. From the Curry-Howard correspondence’s point of

view, types are statements and programs are proofs so the notions may be used interchangeably.

We insist on calling this program (and other ones in this thesis) a “fundamental lemma” because

it does embody the essence of the abstraction we have just introduced.
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kit : Kit ♦→ (Γ −Env) ♦ ∆→ Tm σ Γ→ Tm σ ∆

kit K ρ (‘var v) = K .var (lookup ρ v)
kit K ρ (‘app f t) = ‘app (kit K ρ f) (kit K ρ t)
kit K ρ (‘lam b) = ‘lam (kit K ρ′ b)

where ρ′ = (K .wkn <$> ρ) • K .zro

Figure 5.7: Fundamental lemma of Kit

Thankfully, we can indeed recover renaming and substitution as two instances of the fundamental

lemma of Kits. We start with the Kit for renaming and ren defined this time as a corollary of kit

ren^Kit : Kit Var
ren^Kit .var = ‘var
ren^Kit .zro = z
ren^Kit .wkn = s

ren : (Γ −Env) Var ∆→ Tm σ Γ→ Tm σ ∆

ren = kit ren^Kit

Figure 5.8: Kit for Renaming, Renaming as a Corollary of kit

Just like we needed ren to define sub, once we have recovered ren we can define the Kit for

substitution.

sub^Kit : Kit Tm
sub^Kit .var = id
sub^Kit .zro = ‘var z
sub^Kit .wkn = ren (pack s)

sub : (Γ −Env) Tm ∆→ Tm σ Γ→ Tm σ ∆

sub = kit sub^Kit

Figure 5.9: Kit for Substitution, Substitution as a Corollary of kit

5.3 Opportunities for Further Generalizations

After noticing that renaming and substitution fit the pattern, it is natural to wonder about other

traversals. The observations made here will set the agenda for the next stage of the development in

Section 5.4.

The evaluation function used in normalization by evaluation (cf. Catarina Coquand’s (2002)

work for instance), although not fitting exactly in the Kit-based approach, relies on the same general
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structure. The variable case is nothing more than a lookup in the environment; the application case

is defined by combining the results of two structural calls; and the lambda case corresponds to the

evaluation of the lambda’s body in an extended context provided that we can get a value for the

newly bound variable. Ignoring for now the definitions of APP and LAM, we can see the similarities

in fig. 5.10.

nbe : (Γ −Env) Model ∆→ Tm σ Γ→ Model σ ∆
nbe ρ (‘var v) = lookup ρ v
nbe ρ (‘app f t) = APP (nbe ρ f) (nbe ρ t)
nbe ρ (‘lam t) = LAM (λ re v→ nbe ((th^Model re <$> ρ) • v) t)

Figure 5.10: Normalisation by Evaluation for the STλC

Building on this observation, we are going to generalise the “Kit” approach from mere syntactic

transformations to full blown semantics producing values in a given model. This generalisation will

bring operations like normalisation by evaluation (chapter 6) but also printing with a name supply

(section 5.6), or various continuation passing style translations (chapter 7) into our framework.

In normalisation by evaluation, the notion of arbitrary extensions of the context at hand plays a

crucial role in the definition of said model. Indeed, computing with open terms implies that model

values may be used in a scope that is not the one they came from: evaluation happily goes under

binders and brings the evaluation environment along. These extensions explain the changes made to

the scope between the time a value was constructed and the time it was used. Provided that values

can be transported along such extensions, they give us a way to get the values at the scope we need

from the ones at the scope we had.

This idea of arbitrary extensions of the context at hand will be crucial to the definition of our

generic notion of semantics (section 5.4). To make it formal, we need to study a well known instance

of the generic notion of environments introduced in Section 5.1: the category of thinnings.

Thinnings: A Special Case of Environments

A key instance of environments playing a predominant role in this paper is the notion of thinning.

The reader may be accustomed to the more restrictive notion of renamings as described variously as

Order Preserving Embeddings (Chapman [2009]), thinnings (which we use), context inclusions, or
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just weakenings (Altenkirch et al. [1995]). A thinning (Thinning Γ ∆) is an environment pairing

each variable of type σ in Γ to one of the same type in ∆.

Thinning : List I→ List I→ Set
Thinning Γ ∆ = (Γ −Env) Var ∆

Figure 5.11: Definition of Thinnings

Writing non-injective or non-order preserving renamings would take perverse effort given that

we only implement generic interpretations. In practice, although the type of thinnings is more

generous, we only introduce weakenings (skipping variables at the beginning of the context) that

become thinnings (skipping variables at arbitrary points in the context) when we push them under

binders.

The extra flexibility will not get in our way, and permits a representation as a function space

which grants us monoid laws “for free” as per Jeffrey’s observation (2011).

The Category of Thinnings

These simple observations allow us to prove that thinnings form a category (cf. definition 1): objects

are scopes and morphisms between them are thinnings; the identity thinning is essentially the

identity function on variables; and composition is given by select in the special case where it is fed

two thinnings. Both are defined in fig. 5.12.

Jeffrey’s observation mentioned above gives us that composition is associative and that the

identity thinning acts as a neutral element for it. We can provide the user with additional useful

combinators such as the ones Altenkirch, Hofmann and Streicher’s “Category of Weakening” (1995)

is based on such as extend defined in fig. 5.12.

identity : Thinning Γ Γ
lookup identity k = k

extend : Thinning Γ (σ :: Γ)
lookup extend v = s v

select : Thinning Γ ∆→ (∆ −Env)V Θ→ (Γ −Env)V Θ
lookup (select ren ρ) k = lookup ρ (lookup ren k)

Figure 5.12: Examples of Thinning Combinators
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The □ comonad

The □ combinator turns any (List I)-indexed Set into one that can absorb thinnings. This is

accomplished by abstracting over all possible thinnings from the current scope, akin to an S4-style

necessity modality. The axioms of S4 modal logic incite us to observe that □ is not only a functor,

as witnessed by map^□, but also a comonad: extract applies the identity Thinning to its argument,

and duplicate is obtained by composing the two Thinnings we are given (select defined in fig. 5.12

corresponds to transitivity in the special case where V is Var). The expected laws hold trivially

thanks to Jeffrey’s trick mentioned above.

□ : (List I→ Set)→ (List I→ Set)
(□ T) Γ = ∀[ Thinning Γ⇒ T ]

map^□ : ∀[ S⇒ T ]→ ∀[ □ S⇒ □ T ]
map^□ f v th = f (v th)

extract : ∀[ □ T⇒ T ]
extract t = t identity

duplicate : ∀[ □ T⇒ □ (□ T) ]
duplicate t ρ σ = t (select ρ σ)

Figure 5.13: The □ Functor is a Comonad

The notion of Thinnable is the property of being stable under thinnings; in other words

Thinnables are the coalgebras of □. It is a crucial property for values to have if one wants to

be able to push them under binders. From the comonadic structure we get that the □ combinator

freely turns any (List I)-indexed Set into a Thinnable one.

Thinnable : (List I→ Set)→ Set
Thinnable T = ∀[ T⇒ □ T ]

th^□ : Thinnable (□ T)
th^□ = duplicate

Figure 5.14: Thinning Principle and the Cofree Thinnable □

Constant families are trivially Thinnable. In the case of variables, thinning merely corresponds

to applying the renaming function in order to obtain a new variable. The environments’ case is

also quite simple: being a pointwise lifting of a relationV between contexts and types, they enjoy

thinning ifV does.

Now that we are equipped with the notion of inclusion, we have all the pieces necessary to

describe the Kripke structure of our models of the simply typed λ-calculus.
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th^const : Thinnable {I} (const A)
th^const a _ = a

th^Var : Thinnable (Var i)
th^Var v ρ = lookup ρ v

th^Env : (∀ {i}→ Thinnable (V i))→ Thinnable ((Γ −Env)V)
lookup (th^Env th^V ρ ren) k = th^V (lookup ρ k) ren

Figure 5.15: Thinnable Instances for Variables and Environments

5.4 Semantics and Their Generic Evaluators

The upcoming sections demonstrate that renaming, substitution, and printing with names all share

the same structure. We start by abstracting away a notion of Semantics encompassing all these con-

structions. This approach will make it possible for us to implement a generic traversal parametrised

by such a Semantics once and for all and to focus on the interesting model constructions instead of

repeating the same pattern over and over again.

Broadly speaking, a semantics turns our deeply embedded abstract syntax trees into the shallow

embedding of the corresponding parametrised higher order abstract syntax term (Chlipala [2008b]).

We get a choice of useful scope- and type- safe traversals by using different ‘host languages’ for this

shallow embedding.

In more concrete terms, the semantics of a term is a mapping from the meaning of its variables

to the meaning of the overall term itself. In practice, our semantics is parametrised by two (Type

−Scoped) type familiesV and C used to assign meanings to variables and terms respectively. That

is to say: realisation of a semantics will produce a computation in C for every term whose variables

are assigned values in V. Just as an environment interprets variables in a model, a computation

gives a meaning to terms into a model. We can define −Comp to make this parallel explicit.

_−Comp : List Type→ Type −Scoped→ List Type→ Set
(Γ −Comp) C ∆ = ∀ {σ}→ Term σ Γ→ C σ ∆

Figure 5.16: Generic Notion of Computation

An appropriate notion of semantics for the calculus is one that will map environments to

computations. In other words, a set of constraints on V and C guaranteeing the existence of a
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function of type ((Γ −Env)V ∆→ (Γ −Comp) C ∆). In cases such as substitution or normalisation

by evaluation,V and C will happen to coincide but keeping these two relations distinct is precisely

what makes it possible to go beyond these and also model renaming or printing with names.

Concretely, we define Semantics as a record packing the properties these families need to

satisfy for the evaluation function semantics to exist.

record Semantics (V C : Type −Scoped) : Set where

semantics : (Γ −Env)V ∆→ (Γ −Comp) C ∆

In the following paragraphs, we interleave the definition of the record of constraints Semantics

and the evaluation function semantics (the fields of the record appear in pink). In practice the

definitions do not need to be mutual.

The structure of the model is quite constrained: each constructor in the language needs a

semantic counterpart. We start with the two most interesting cases: var and lam.

In the variable case, the semantics function looks up the meaning of the variable at hand in the

evaluation environment. It gets back a valueV but needs to return a computation C instead. This

gives us our first constraint: we should be able to embed values into computations.

var : ∀[V σ⇒ C σ ]

semantics ρ (‘var v) = var (lookup ρ v)

The semantic λ-abstraction is notable for two reasons. First, following Mitchell and Moggi (1991),

its □-structure allowing arbitrary extensions of the context is typical of models à la Kripke one can

find in normalisation by evaluation (Berger and Schwichtenberg [1991], Berger [1993], Coquand

and Dybjer [1997], Coquand [2002]). Second, instead of being a function in the host language

taking computations to computations, it takes values to computations. This is concisely expressed

by the type (□ (V σ⇒ C τ)).

lam : ∀[ □ (V σ⇒ C τ)⇒ C (σ ‘→ τ) ]

This constraint matches precisely the fact that the body of a λ-abstraction exposes one extra free

variable, prompting us to extend the environment with a value for it. We face one last hurdle: the

value handed to us lives in the extended scope while the ones in the evaluation environment live in

the original one. Luckily we were also handed a thinning from the original scope to the extended

one. This incites us to add a constraint stating that all values should be thinnable.
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th^V : Thinnable (V σ)

Using both lam and th^V together with th^Env (defined in fig. 5.15) and _•_ (defined in fig. 5.3),

we are able to give a semantics to a λ-abstraction by evaluating its body in a thinned and extended

evaluation environment.

semantics ρ (‘lam t) = lam (λ re u→ semantics (th^Env th^V ρ re • u) t)

The remaining fields’ types are a direct translation of the types of the constructor they correspond

to: substructures have simply been replaced with computations thus making these operators ideal

to combine induction hypotheses. For instance, the semantical counterpart of application is an

operation that takes a representation of a function and a representation of an argument and produces

a representation of the result. The evaluation function can simply use this field to combine the result

of two recursive calls.

app : ∀[ C (σ ‘→ τ)⇒ C σ⇒ C τ ]

semantics ρ (‘app t u) = app (semantics ρ t) (semantics ρ u)

The same goes for the constructor ‘one of values of the unit type.

one : ∀[ C ‘Unit ]

semantics ρ ‘one = one

Or the constructors true and false for boolean values

tt : ∀[ C ‘Bool ]

ff : ∀[ C ‘Bool ]

semantics ρ ‘tt = tt

semantics ρ ‘ff = ff

Or the ‘if-then-else’ eliminator for booleans.

ifte : ∀[ C ‘Bool⇒ C σ⇒ C σ⇒ C σ ]

semantics ρ (‘ifte b l r) = ifte (semantics ρ b) (semantics ρ l) (semantics ρ r)

This concludes the definition of the Semantics record together with its semantics eliminator.

Putting everything together we get the following definitions.
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record Semantics (V C : Type −Scoped) : Set where
field

th^V : Thinnable (V σ)
var : ∀[V σ⇒ C σ ]
lam : ∀[ □ (V σ⇒ C τ)⇒ C (σ ‘→ τ) ]
app : ∀[ C (σ ‘→ τ)⇒ C σ⇒ C τ ]
one : ∀[ C ‘Unit ]
tt : ∀[ C ‘Bool ]
ff : ∀[ C ‘Bool ]
ifte : ∀[ C ‘Bool⇒ C σ⇒ C σ⇒ C σ ]

module _ (S : SemanticsV C) where
open Semantics S
semantics : (Γ −Env)V ∆→ (Γ −Comp) C ∆
semantics ρ (‘var v) = var (lookup ρ v)
semantics ρ (‘app t u) = app (semantics ρ t) (semantics ρ u)
semantics ρ (‘lam t) = lam (λ re u→ semantics (th^Env th^V ρ re • u) t)
semantics ρ ‘one = one
semantics ρ ‘tt = tt
semantics ρ ‘ff = ff
semantics ρ (‘ifte b l r) = ifte (semantics ρ b) (semantics ρ l) (semantics ρ r)

Figure 5.17: Semantics together with their fundamental lemma

The type we chose for lam makes the Semantics notion powerful enough that even logical

predicates are instances of it. And we will indeed exploit this power when defining normalisation by

evaluation as a semantics (cf. chapter 6): the model construction is, after all, nothing but a logical

predicate. As a consequence it seems rather natural to call semantics “the fundamental lemma of

Semantics” because it essentially is the computational content that such a proof would implicitly

carry.

But before demonstrating that we can encompass new traversals, it is important to verify that

we can still capture the same traversals as McBride’s Kit.

5.5 Syntax Is the Identity Semantics

As we have explained earlier, this work has been directly influenced by McBride’s (2005) manuscript.

It seems appropriate to start our exploration of Semantics with the two operations he implements
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as a single traversal. We call these operations syntactic because the computations in the model are

actual terms. We say that “syntax is the identity semantics” because almost all term constructors

are kept as their own semantic counterpart. As observed by McBride, it is enough to provide three

operations describing the properties of the values in the environment to get a full-blown Semantics.

This fact is witnessed by our simple Syntactic record type together with the fundamental lemma of

Syntactic we call syntactic, a function producing a Semantics from a Syntactic.

record Syntactic (T : Type −Scoped) : Set where
field zro : ∀[ (σ ::_) ⊢ T σ ]

th^T : Thinnable (T σ)
var : ∀[ T σ⇒ Term σ ]

module _ (S : Syntactic T ) where

open Syntactic S

syntactic : Semantics T Term
Semantics.th^V syntactic = th^T
Semantics.var syntactic = var
Semantics.lam syntactic = λ b→ ‘lam (b extend zro)
Semantics.app syntactic = ‘app
Semantics.one syntactic = ‘one
Semantics.tt syntactic = ‘tt
Semantics.ff syntactic = ‘ff
Semantics.ifte syntactic = ‘ifte

Figure 5.18: Every Syntactic gives rise to a Semantics

The shape of lam or one should not trick the reader into thinking that this definition performs

some sort of η-expansion: the fundamental lemma indeed only ever uses one of these when the

evaluated term’s head constructor is already respectively a ‘lam or a ‘one. It is therefore absolutely

possible to define renaming or substitution using this approach. We can now port McBride’s

definitions to our framework.

Remark 3 Note that even though we are re-casting the following operations in categorical terms,

we will so far only provide the computational parts of the definitions. Proving that the expected

laws hold will be possible once we have introduced our proof framework in chapter 10.
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Renaming i.e. Functor structure

Our first example of a Syntactic operation works with variables as environment values. We have

already defined thinning earlier (see section 5.3) and we can turn a variable into a term by using the

‘var constructor. As demonstrated in fig. 5.19, the type of semantics specialised to this semantics is

then precisely the proof that terms are thinnable.

Syn^Ren : Syntactic Var
Syn^Ren .zro = z
Syn^Ren .th^T = th^Var
Syn^Ren .var = ‘var

Renaming : Semantics Var Term
Renaming = syntactic Syn^Ren

th^Term : Thinnable (Term σ)
th^Term t ρ = semantics Renaming ρ t

Figure 5.19: Thinning as a Syntactic instance

Term is a functor between the category of thinnings (cf. section 5.3) and the category of indexed

sets and functions (cf. example 3). The type constructor gives us the action on objects and renaming,

by turning any (Thinning Γ ∆) into a function from (Term σ Γ) to (Term σ ∆), gives its action on

morphisms.

Simultaneous Substitution i.e. Monad Structure

Our second example of a semantics is another spin on the syntactic model: environment values are

now terms. We get thinning for terms from the previous example. Again, specialising the type of

semantics reveals that it delivers precisely the simultaneous substitution.

Syn^Sub : Syntactic Term
Syn^Sub .zro = ‘var z
Syn^Sub .th^T = th^Term
Syn^Sub .var = id

Substitution : Semantics Term Term
Substitution = syntactic Syn^Sub

sub : (Γ −Env) Term ∆→ Term σ Γ→ Term σ ∆

sub ρ t = semantics Substitution ρ t

Figure 5.20: Parallel Substitution as a Syntactic instance

This gives us the Kleisli extension construction necessary to prove that Term is a relative monad

with respect to the Var functor. The unit is trivially the ‘var constructor.
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5.6 Printing with Names

As a warm-up exercise, let us a look at a relatively simple semantics. Before considering the various

model constructions involved in defining normalisation functions deciding different equational

theories, we will look at what an actual semantics looks like by considering printing with names.

A user-facing project would naturally avoid directly building a String and rather construct an

inhabitant of a more sophisticated datatype in order to generate a prettier output (Hughes [1995],

Wadler [2003], Bernardy [2017]). But we stick to the simpler setup as pretty printing is not our

focus here.

Our goal is to generate a string representation of the input term. As such, it should not be

surprising that the object language (i.e. the type- and scope- families for values and computation)

will not do anything involved with their type index. However this example is still interesting for two

reasons.

Firstly, the distinction between values and computations is once more instrumental: we get to

give the procedure a precise type guiding our implementation. The environment carries names for

the variables currently in scope while the computations thread a name-supply to be used to generate

fresh names for bound variables. If the values in the environment had to be computations too, we

would not root out some faulty implementations e.g a program picking a new name each time the

same variable is mentioned.

Secondly, the fact that the model’s computation type is a monad and that this poses no problem

whatsoever in this framework means it is appropriate for handling languages with effects (Moggi

[1991b]), or effectful semantics e.g. logging the various function calls.

The full definition of the printer follows.

In the implementation, we define Name and Printer using a Wrapper with a type and a context as

phantom types in order to help Agda’s inference propagate the appropriate constraints. The wrapper

Wrap does not depend on the scope Γ so it is automatically a Thinnable functor, as witnessed by the

(used but not shown) definitions map^Wrap (functoriality) and th^Wrap (thinnability). We also call

Fresh the State monad threading the name supply which is essentially a stream of distinct strings.

The monad Fresh allows us to generate fresh names for newly bound variables. This is

demonstrated by the function fresh defined in fig. 5.22.

We define the printing semantics by collecting intermediate definitions in a record. For this
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record Wrap A (σ : I) (Γ : List I) : Set where
constructor MkW; field getW : A

Name : I −Scoped
Name = Wrap String

Fresh : Set→ Set
Fresh = State (Stream String∞)

Printer : I −Scoped
Printer = Wrap (Fresh String)

Figure 5.21: Names and Printer for the Printing Semantics

fresh : ∀ σ→ Fresh (Name σ (σ :: Γ))
fresh σ = do

names← get
put (tail names)
return (MkW (head names))

Figure 5.22: Fresh Name Generation

semantics’ notion of values, the scope and type indices are phantom types. As a consequence

thinning for Names (the field th^V) is trivial: we reuse th^Wrap, a function that simply returns

the same name with changed phantom indices. We are now going to look in details at the more

interesting cases.

Printing : Semantics Name Printer
Printing = record { th^V = th^Wrap; var = var; app = app; lam = lam

; one = one; tt = tt; ff = ff; ifte = ifte }

Figure 5.23: Printing as a semantics

The variable case (var) is interesting: after looking up a variable’s Name in the environment,

we use return to produce the trivial Printer constantly returning that name.

var : ∀[ Name σ⇒ Printer σ ]

var = map^Wrap return

As often, the case for λ-abstraction (lam) is the most interesting one. We first use fresh defined

in fig. 5.22 to generate a Name, x, for the newly bound variable, then run the printer for the body,

mb, in the environment extended with that fresh name and finally build a string combining the name

54



5.6. Printing with Names

and the body together.

lam : ∀[ □ (Name σ⇒ Printer τ)⇒ Printer (σ ‘→ τ) ]

lam {σ} mb = MkW do

x← fresh σ

b← getW (mb extend x)

return ("λ" ++ getW x ++ ". " ++ b)

We then have a collection of base cases for the data constructors of type ‘Unit and ‘Bool. These

give rise to constant printers.

one : ∀[ Printer ‘Unit ]

one = MkW (return "()")

tt : ∀[ Printer ‘Bool ]

tt = MkW (return "true")

ff : ∀[ Printer ‘Bool ]

ff = MkW (return "false")

Finally we have purely structural cases: we run the printers for each of the subparts and put the

results together, throwing in some extra parentheses to guarantee that the result is unambiguous.

app : ∀[ Printer (σ ‘→ τ)⇒ Printer σ⇒ Printer τ ]

app mf mt = MkW do

f← getW mf

t← getW mt

return (f ++ parens t)

ifte : ∀[ Printer ‘Bool⇒ Printer σ⇒ Printer σ⇒ Printer σ ]

ifte mb ml mr = MkW do

b← getW mb

l← getW ml

r← getW mr

return (unwords ("if" :: parens b :: "then" :: parens l

:: "else" :: parens r :: []) )

55



5. Refactoring Common Traversals

The fundamental lemma of Semantics will deliver a printer which needs to be run on a Stream

of distinct Strings. Our definition of names (not shown here) simply cycles through the letters

of the alphabet and guarantees uniqueness by appending a natural number incremented each time

we are back at the beginning of the cycle. This crude name generation strategy would naturally

be replaced with a more sophisticated one in a user-facing language: we could e.g. use naming

hints for user-introduced binders and type-based schemes otherwise ( f or g for functions, i or j for

integers, etc.).

In order to kick-start the evaluation, we still need to provide Names for each one of the free

variables in scope. We will see in section 15.2 how to build an initial environment to print open

terms using more advanced tools. Here we are satisfied with a simple print function for closed terms.

print : ∀ σ→ Term σ []→ String
print σ t = proj1 (getW printer names) where

printer : Printer σ []
printer = semantics Printing ε t

Figure 5.24: Printer

We can observe print’s behaviour by writing a test (cf. feature 7); we state it as a propositional

equality and prove it using refl, forcing the typechecker to check that both expressions indeed

compute to the same normal form.

Example 9 (Printing a Term) Here we display the identity function.

_ : print (σ ‘→ σ) (‘lam (‘var z)) ≡ "λa. a"

_ = refl
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Chapter 6

Variations on Normalisation by

Evaluation

Normalisation by Evaluation (NBE) is a technique leveraging the computational power of a host

language in order to normalise expressions of a deeply embedded one (Berger and Schwichtenberg

[1991], Berger [1993], Coquand and Dybjer [1997], Coquand [2002]). A classic evaluation function

manipulates a term in a purely syntactic manner, firing redexes one after the other until none is left.

In comparison, normalisation by evaluation is a semantic technique that translates a term into a

program in the host language, relying on the host language’s evaluation machinery to produce a

value. The challenging aspect of this technique is twofold. First, we need to pick a translation that

retains enough information that we may extract a normal form from the returned value. Second, we

need to make sure that our leveraging of the host language’s evaluation machinery does decide the

equational theory we are interested in. In this chapter, we will consider different equational theories

and as a consequence different translations.

Interface of a NBE Procedure

The normalisation by evaluation process is based on a model construction inspired by the logical

predicates of normalisation proofs. It is essentially the computational part of such proofs.

Such a construction starts by describing a family of types Model by induction on its Type index.

Two procedures are then defined: the first (eval) constructs an element of (Model σ Γ) provided

a well typed term of the corresponding (Term σ Γ) type whilst the second (reify) extracts, in a
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type-directed manner, normal forms (Nf σ Γ) from elements of the model (Model σ Γ). NBE

composes the two procedures.

The definition of this eval function is a natural candidate for our Semantics framework. We

introduce in fig. 6.1 an abstract interface for NBE formalising this observation. We will see in this

chapter that the various variations on normalisation by evaluation that we will consider can all be

described as instances of this NBE interface.

The NBE interface is parametrised by two (Type −Scoped) families: the notion of model values

(Model) and normal forms (Nf) specific to this procedure. The interface packages a Semantics

working on the Model, an embedding of variables into model values and a reification function from

model values to normal forms.

record NBE (Model : Type −Scoped) (Nf : Type −Scoped) : Set1 where
field Sem : Semantics Model Model

embed : ∀[ Var σ⇒ Model σ ]
reify : ∀[ Model σ⇒ Nf σ ]

Figure 6.1: NBE interface

From each NBE instance we can derive a normalisation function turning terms into normal

forms. The embed constraint guarantees that we can manufacture an environment of placeholder

values in which to run our Semantics to obtain an eval function. Composing this evaluation function

with the reification procedure yields the normalisation procedure.

eval : ∀[ Term σ⇒ Model σ ]
eval = semantics Sem (pack embed)

nbe : ∀[ Term σ⇒ Nf σ ]
nbe = reify ◦ eval

Figure 6.2: Evaluation and normalisation functions derived from NBE

During the course of this chapter, we will consider the action of nbe over the following term

(λb. λu. (λx. x) (if b then () else u)) of type (Bool→ Unit→ Unit). In fig. 6.3 we can see how

this test is implemented in our formalisation.

As we have explained earlier, NBE is always defined for a given equational theory. We start by

recalling the various rules a theory may satisfy.
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test : Nf (‘Bool ‘→ ‘Unit ‘→ ‘Unit) []
test = nbe (‘lam (‘lam (‘app (‘lam (‘var z))

(‘ifte (‘var (s z)) ‘one (‘var z)))))

Figure 6.3: Running example

Reduction Rules

We characterise an equational theory by a set of reduction rules. The equational theory is obtained

by taking the congruence closure of these reduction rules under all term constructors except for

λ-abstraction. Indeed, we will consider systems with and without reductions under λ-abstractions

and can only make this distinction if using the congruence rule for λ (usually called ξ) is made

explicit.

Computation rules Our first set of rules describes the kind of computations we may expect.

The β rule states that functions applied to their argument may fire. It is the main driver for actual

computation, but the presence of an inductive data type and its eliminator means we have further

redexes: the ι rules specify that if-then-else conditionals applied to concrete booleans may return

the appropriate branch.

(λx. t) u{ t[u/x]
β

if true then l else r{ l
ι1

if false then l else r{ r
ι2

Figure 6.4: Computation rules: β and ι reductions

Canonicity rules The η-rules say that for some types, terms have a canonical form: functions will

all be λ-headed whilst records will collect their fields -- here this makes all elements of the unit type

equal to one.

Congruence rule Congruence rules are necessary if we do not want to be limited to only comput-

ing whenever the root of the term happens to already be a reducible expression. By deciding which

ones are included, we can however control the evaluation strategy of our calculus. We will study the
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Γ ⊢ t : σ→ τ

t{ λx. t x
η1

Γ ⊢ t : Unit

t{ ()
η2

Figure 6.5: Canonicity rules: η rules for function and unit types

impact of the ξ-rule that lets us reduce under λ-abstractions --- the distinction between weak-head

normalisation and strong normalisation.

t { u

λx.t { λx.u
ξ

Figure 6.6: Congruence rule: ξ for strong normalisation

Now that we have recalled all these rules, we can talk precisely about the sort of equational

theory decided by the model construction we choose to perform. The last piece of the puzzle we

will need before writing our first evaluator is a notion of normal form.

Normal and Neutral Forms

The inductive family of normal forms characterises irreducible terms for a given set of reduction

rules. It is mutually defined with the family of neutral terms that characterises stuck computations

i.e. a variable with a spine of eliminators (here applications or if-then-else conditionals).

We parametrise these mutually defined inductive families Ne and Nf by a predicate NoEta

constraining the types at which one may embed a neutral as a normal form. This constraint shows

up in the type of ‘neu; it makes it possible to control whether the NBE should η-expands all terms

at certain types by prohibiting the existence of neutral terms at said type.

Once more, the expected notions of thinning th^Ne and th^Nf are induced as Ne and Nf are

syntaxes. We omit their purely structural implementation here and wish we could do so in source

code, too: our constructions so far have been syntax-directed and could surely be leveraged by a

generic account of syntaxes with binding. We will tackle this problem in part III.

We start with a standard strong evaluator i.e. an evaluator implementing strong normalisation

in the sense that it goes under λ-abstractions. This kind of evaluator is used for instance in Coq

(Grégoire and Leroy [2002], Boespflug et al. [2011]) although the focus there is different: the host
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mutual

data Ne : Type −Scoped where
‘var : ∀[ Var σ⇒ Ne σ ]
‘app : ∀[ Ne (σ ‘→ τ)⇒ Nf σ⇒ Ne τ ]
‘ifte : ∀[ Ne ‘Bool⇒ Nf σ⇒ Nf σ⇒ Ne σ ]

data Nf : Type −Scoped where
‘neu : NoEta σ→ ∀[ Ne σ⇒ Nf σ ]
‘one : ∀[ Nf ‘Unit ]
‘tt ‘ff : ∀[ Nf ‘Bool ]
‘lam : ∀[ (σ ::_) ⊢ Nf τ⇒ Nf (σ ‘→ τ) ]

Figure 6.7: Neutral and Normal Forms, parametrised by a NoEta predicate

language (OCaml) is not total, evaluation is untyped, and unsafe features are used to maximise the

evaluator’s performance.

6.1 Normalisation by Evaluation for βιξ

As mentioned above, actual proof systems such as Coq rely on evaluation strategies that avoid

applying η-rules: unsurprisingly, it is a rather bad idea to η-expand proof terms which are already

large when typechecking complex developments.

In these systems, the η-rule is never deployed except when comparing a neutral and a constructor-

headed term for equality. Instead of declaring them distinct, the algorithm does one step of

η-expansion on the neutral term and compares their subterms structurally. The conversion test fails

only when confronted with neutral terms with distinct head variables or normal forms with different

head constructors. This leads us to using a predicate NoEta which holds for all types thus allowing

us to embed all neutrals into normal forms.

NoEta^βιξ : Type→ Set

NoEta^βιξ _ = ⊤

Now that this is established, we can focus on the model construction. As noted in the definition

of the NBE interface (cf. fig. 6.1), the Semantics underlying normalisation by evaluation will use

the same type family for environment values and the computations in the model.
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Model Construction

This equational theory can be decided with what happens to be the most straightforward model

construction described in fig. 6.8: in our Model everything is either a (non expanded) stuck

computation (i.e. a neutral term Ne) or a Value arising from a constructor-headed term and whose

computational behaviour is described by an Agda value of the appropriate type. Values of the ‘Unit

type are modelled by the Agda’s unit type, values of the ‘Bool type are Agda booleans and values

of functions from σ to τ are modelled by Kripke function spaces from the type of elements of the

Model at type σ and ones at type τ. It is important to note that the functional values have the Model

as both domain and codomain: there is no reason to exclude the fact that either the argument or the

body may or may not be stuck.

mutual

Model : Type −Scoped
Model σ Γ = Ne σ Γ ⊎ Value σ Γ

Value : Type −Scoped
Value ‘Unit = const ⊤
Value ‘Bool = const Bool
Value (σ ‘→ τ) = □ (Model σ⇒ Model τ)

Figure 6.8: Model Definition for βιξ

We can observe that we have only used families constant in their scope index, neutral forms or

□-closed families. All of these are Thinnable hence Value and Model also are. We give these proofs

in fig. 6.9.

th^Value : ∀ σ→ Thinnable (Value σ)
th^Value ‘Unit = th^const
th^Value ‘Bool = th^const
th^Value (σ ‘→ τ) = th^□

th^Model : ∀ σ→ Thinnable (Model σ)
th^Model σ (inj1 neu) ρ = inj1 (th^Ne neu ρ)
th^Model σ (inj2 val) ρ = inj2 (th^Value σ val ρ)

Figure 6.9: The Model is Thinnable
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Reify and Reflect

During the definition of our Semantics acting on elements of type Model, we are inevitably going

to be faced with a situation where we are eliminating what happens to be a stuck computation (e.g.

applying a stuck function to its argument, or branching over a stuck boolean). In this case we should

return a stuck computation. By definition that means we ought to be able to take the eliminator’s

semantic arguments and turn them into syntactic objects i.e. to reify them. For reasons that will

become obvious in the definition of reify in fig. 6.11, we will first need to define reflect, the function

that reflects neutral terms as model values.

By definition we can trivially embed neutral terms into the model using the first injection into

the disjoint sum type. From reflect we can derive var0, the semantic version of the first variable in

scope that we will use to reify the body of a λ-abstraction.

reflect : ∀[ Ne σ⇒ Model σ ]
reflect = inj1

var0 : ∀[ (σ ::_) ⊢ Model σ ]
var0 = reflect (‘var z)

Figure 6.10: Reflect and Fresh Semantic Variables

Reification is quite straightforward too as demonstrated in fig. 6.11. A Model value is either

a neutral term that can be trivially turned into a normal form or a Value. Reification of Values

proceeds by induction on their type. Unit values are turned into ‘one, the trivial syntactic object of

type ‘Unit. Semantic booleans are reified as their syntactic counterpart. Finally semantic functions

give rise to lambdas. In the context thus extended we may craft var0, the semantic counterpart of

the fresh variable, and apply the semantic function to it before reifying the resulting semantic body

to one in normal form.

A Semantics Targeting our Model

Now that we have defined the Model we are interested in and that we have proved that we can

both embed stuck computations into it and obtain normal forms from it, it is time to define a

Semantics targeting it. We will study the most striking semantic combinators one by one and then

put everything together.
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mutual

reify : ∀ σ→ ∀[ Model σ⇒ Nf σ ]
reify σ (inj1 neu) = ‘neu _ neu
reify σ (inj2 val) = reify^Value σ val

reify^Value : ∀ σ→ ∀[ Value σ⇒ Nf σ ]
reify^Value ‘Unit _ = ‘one
reify^Value ‘Bool b = if b then ‘tt else ‘ff
reify^Value (σ ‘→ τ) f = ‘lam (reify τ (f extend var0))

Figure 6.11: Reify

Semantic application is perhaps the most interesting of the combinators needed to define our

value of type (Semantics Model Model). It follows the case distinction we mentioned earlier: in

case the function is a stuck term, we grow its spine by reifying its argument; otherwise we have an

Agda function ready to be applied. We use the extract operation of the □ comonad (cf. fig. 5.13) to

say that we are using the function in the ambient context, not an extended one.

APP : ∀[ Model (σ ‘→ τ)⇒ Model σ⇒ Model τ ]
APP (inj1 f) t = inj1 (‘app f (reify σ t))
APP (inj2 f) t = extract f t

Figure 6.12: Semantical Counterpart of ‘app

When defining the semantical counterpart of ‘ifte, we follow a similar case distinction. The

value case is straightforward: depending on the boolean value we pick either the left or the right

branch which are precisely of the right type already. If the boolean evaluates to a stuck term, we

follow the same strategy we used for semantic application: we reify the two branches and assemble

a neutral term.

IFTE : ∀[ Model ‘Bool⇒ Model σ⇒ Model σ⇒ Model σ ]
IFTE (inj1 b) l r = inj1 (‘ifte b (reify σ l) (reify σ r))
IFTE (inj2 b) l r = if b then l else r

Figure 6.13: Semantical Counterpart of ‘ifte
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Finally, we have all the necessary components to show that evaluating a term in our Model is a

perfectly valid Semantics (we call the corresponding Semantics record Eval but leave it out here).

As showcased earlier, normalisation is obtained as a direct corollary of NBE by the composition of

reification and evaluation in an environment of placeholder values.

nbe : NBE Model Nf

nbe = record

{ Sem = Eval

; embed = reflect ◦ ‘var

; reify = reify _

}

Now that we have our definition of NBE for the βιξ rules, we can run the test defined in

fig. 6.3 and, obtaining (λb. λu. if b then () else u), observe that we have indeed reduced all of the

βι redexes, even if they were hidden under a λ-abstraction. Note however that we still have a stuck

if-then-else conditional even though the return type is a record type with only one inhabitant: we

are not performing η-expansion so we cannot expect this type of knowledge to be internalised!

_ : test nbe ≡ ‘lam (‘lam (‘neu _ (‘ifte (‘var (s z)) ‘one (‘neu _ (‘var z)))))
_ = refl

Figure 6.14: Running example: the βιξ case

6.2 Normalisation by Evaluation for βιξη

As we have just seen, we can leverage the host language’s evaluation machinery to write a normaliser

for our own embedded language. We opted for a normalisation procedure deciding the equational

theory corresponding to βιξ rules. We can develop more ambitious model constructions that will

extend the supported equational theory. In this section we will focus on η-rules but it is possible

to go even beyond and build models that decide equational theories incorporating for instance

various functor and fusion laws. The interested reader can direct its attention to our previous work

formalising such a construction (2013a).
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In order to decide βιξη rules, we are going to build the Model by induction on its type argument.

This time we do not need to distinguish neutral terms from terms that compute: each type may or

may not have neutral forms depending on whether it has a set of accompanying η-rules. Functions

(respectively inhabitants of ‘Unit) in the source language will be represented as function spaces

(respectively values of type ⊤) no matter whether they are stuck or not. Evaluating a ‘Bool may

however yield a stuck term so we cannot expect the model to give us anything more than an open

term in normal form. Note that there are advanced constructions adding η-rules for sum types

(Ghani [1995], Altenkirch and Uustalu [2004], Lindley [2007]) but they are unwieldy and thus

outside the scope of this thesis. This gives us the following definition of NoEta.

data NoEta^βιξη : Type→ Set where

‘Bool : NoEta^βιξη ‘Bool

The model construction then follows the established pattern pioneered by Berger (1993) and

formally analysed and thoroughly explained by Catarina Coquand (2002). We work by induction

on the type and describe η-expanded values: all inhabitants of (Model ‘Unit Γ) are equal and all

elements of (Model (σ ‘→ τ) Γ) are functions in Agda.

Model : Type −Scoped
Model ‘Unit = const ⊤
Model ‘Bool = Nf ‘Bool
Model (σ ‘→ τ) = □ (Model σ⇒ Model τ)

Figure 6.15: Model for Normalisation by Evaluation

This model is defined by induction on the type in terms either of syntactic objects (Nf) or using

the □-operator which is a closure operator for thinnings. As such, it is trivial to prove that for all

type σ, (Model σ) is Thinnable.

th^Model : ∀ σ→ Thinnable (Model σ)
th^Model ‘Unit = th^const
th^Model ‘Bool = th^Nf
th^Model (σ ‘→ τ) = th^□

Figure 6.16: Values in the Model are Thinnable
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Application’s semantic counterpart is easy to define: given that V and C are equal in this

instance definition we can feed the argument directly to the function, with the identity renaming.

This corresponds to extract for the comonad □.

APP : ∀[ Model (σ ‘→ τ)⇒ Model σ⇒ Model τ ]
APP t u = extract t u

Figure 6.17: Semantic Counterpart of ‘app

Conditional branching however is more subtle: the boolean value ‘ifte branches on may be a

neutral term in which case the whole elimination form is stuck. This forces us to define reify and

reflect first. These functions, also known as quote and unquote respectively, give the interplay

between neutral terms, model values and normal forms. reflect performs a form of semantic η-

expansion: all stuck ‘Unit terms are equated and all functions are λ-headed. It allows us to define

var0, the semantic counterpart of (‘var z).

mutual

var0 : ∀[ (σ ::_) ⊢ Model σ ]
var0 = reflect _ (‘var z)

reflect : ∀ σ→ ∀[ Ne σ⇒ Model σ ]
reflect ‘Unit t = _
reflect ‘Bool t = ‘neu ‘Bool t
reflect (σ ‘→ τ) t = λ ρ u→ reflect τ (‘app (th^Ne t ρ) (reify σ u))

reify : ∀ σ→ ∀[ Model σ⇒ Nf σ ]
reify ‘Unit T = ‘one
reify ‘Bool T = T
reify (σ ‘→ τ) T = ‘lam (reify τ (T extend var0))

Figure 6.18: Reify and Reflect

We can then give the semantics of ‘ifte: if the boolean is a value, the appropriate branch is

picked; if it is stuck then the whole expression is stuck. It is then turned into a neutral form by

reifying the two branches and then reflected in the model.

We can then combine these components. The semantics of a λ-abstraction is simply the identity

function: the structure of the functional case in the definition of the model matches precisely the
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IFTE : Model ‘Bool Γ→ Model σ Γ→ Model σ Γ→ Model σ Γ
IFTE ‘tt l r = l
IFTE ‘ff l r = r
IFTE (‘neu _ T) l r = reflect σ (‘ifte T (reify σ l) (reify σ r))

Figure 6.19: Semantic Counterpart of ‘ifte

shape expected in a Semantics. Because the environment carries model values, the variable case is

trivial.

Eval : Semantics Model Model
Eval .th^V = th^Model _
Eval .var = id
Eval .lam = id
Eval .app = APP
Eval .one = _
Eval .tt = ‘tt
Eval .ff = ‘ff
Eval .ifte = IFTE

Figure 6.20: Evaluation is a Semantics

With these definitions in hand, we can instantiate the NBE interface we introduced in fig. 6.1.

This gives us access to a normaliser by kick-starting the evaluation with an environment of place-

holder values obtained by reflecting the term’s free variables and then reifying the result.

nbe : NBE Model Nf
nbe = record

{ Sem = Eval
; embed = reflect _ ◦ ‘var
; reify = reify _
}

Figure 6.21: Normalisation as Reification of an Evaluated Term

We can now observe the effect of this normaliser implementing a stronger equational theory by

running our test defined fig. 6.3 and obtaining (λb. λu. ()). In the previous section, the normaliser

yielded a term still containing a stuck if-then-else conditional that has here been replaced with the
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only normal form of the unit type.

_ : test nbe ≡ ‘lam (‘lam ‘one)
_ = refl

Figure 6.22: Running example: the βιξη case

6.3 Normalisation by Evaluation for βι

The decision to apply the η-rule lazily as we have done at the beginning of this chapter can be pushed

even further: one may forgo using the ξ-rule too and simply perform weak-head normalisation. This

drives computation only when absolutely necessary, e.g. when two terms compared for equality have

matching head constructors and one needs to inspect these constructors’ arguments to conclude.

For that purpose, we introduce an inductive family describing terms in weak-head normal forms.

Weak-Head Normal Forms

A weak-head normal form (respectively a weak-head neutral form) is a term which has been

evaluated just enough to reveal a head constructor (respectively to reach a stuck elimination). There

are no additional constraints on the subterms: a λ-headed term is in weak-head normal form no

matter the shape of its body. Similarly an application composed of a variable as the function and a

term as the argument is in weak-head neutral form no matter what the argument looks like. This

means in particular that unlike with Ne and Nf there is no mutual dependency between the definitions

of WHNE (defined first) and WHNF.

Naturally, it is possible to define the thinnings th^WHNE and th^WHNF as well as erasure

functions erase^WHNE and erase^WHNF with codomain Term. We omit their simple definitions

here.

Model Construction

The model construction is much like the previous one except that source terms are now stored in the

model too. This means that from an element of the model, one can pick either the reduced version

of the input term (i.e. a stuck term or the term’s computational content) or the original. We exploit
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data WHNE : Type −Scoped where
‘var : ∀[ Var σ⇒WHNE σ ]
‘app : ∀[ WHNE (σ ‘→ τ)⇒ Term σ⇒WHNE τ ]
‘ifte : ∀[ WHNE ‘Bool⇒ Term σ⇒ Term σ⇒WHNE σ ]

data WHNF : Type −Scoped where
‘lam : ∀[ (σ ::_) ⊢ Term τ⇒WHNF (σ ‘→ τ) ]
‘one : ∀[ WHNF ‘Unit ]
‘tt ‘ff : ∀[ WHNF ‘Bool ]
‘whne : ∀[ WHNE σ⇒WHNF σ ]

Figure 6.23: Weak-Head Normal and Neutral Forms

this ability most notably in reification where once we have obtained either a head constructor or a

head variable, no subterm needs to be evaluated.

mutual

Model : Type −Scoped
Model σ Γ = Term σ Γ × (WHNE σ Γ ⊎ Value σ Γ)

Value : Type −Scoped
Value ‘Unit = const ⊤
Value ‘Bool = const Bool
Value (σ ‘→ τ) = □ (Model σ⇒ Model τ)

Figure 6.24: Model Definition for Computing Weak-Head Normal Forms

Thinnable can be defined rather straightforwardly based on the template provided in the previous

sections: once more all the notions used in the model definition are Thinnable themselves. Reflection

and reification also follow the same recipe as in the previous section.

The application and conditional branching rules are more interesting. One important difference

with respect to the previous section is that we do not grow the spine of a stuck term using reified

versions of its arguments but rather the corresponding source term. Thus staying true to the idea that

we only head reduce enough to expose either a constructor or a variable and let the other subterms

untouched.

The semantical counterpart of ‘lam is also slightly trickier than before. Indeed, we need to

recover the source term the value corresponds to. Luckily we know it has to be λ-headed and
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APP : ∀[ Model (σ ‘→ τ)⇒ Model σ⇒ Model τ ]
APP (f , inj1 whne) (t , _) = (‘app f t , inj1 (‘app whne t))
APP (f , inj2 fun) T@(t , _) = (‘app f t , proj2 (extract fun T))

IFTE : ∀[ Model ‘Bool⇒ Model σ⇒ Model σ⇒ Model σ ]
IFTE (b , inj1 whne) (l , _) (r , _) = (‘ifte b l r , inj1 (‘ifte whne l r))
IFTE (b , inj2 v) l r = if v then l else r

Figure 6.25: Semantical Counterparts of ‘app and ‘ifte

once we have introduced a fresh variable with ‘lam, we can project out the source term of the body

evaluated using this fresh variable as a placeholder value.

LAM : ∀[ □ (Model σ⇒ Model τ)⇒ Model (σ ‘→ τ) ]
LAM b = (‘lam (proj1 (b extend var0)) , inj2 b)

Figure 6.26: Semantical Counterparts of ‘lam

We can finally put together all of these semantic counterparts to obtain a Semantics correspond-

ing to weak-head normalisation. We omit the now self-evident definition of NBE where embed is

obtained by using reflect.

We can once more run our test and observe that it simply outputs the term it was fed. Indeed our

example is λ-headed, meaning that it is already in weak-head normal form and that the normaliser

does not need to do any work.

_ : test nbe ≡ ‘lam (‘lam (‘app (‘lam (‘var z))
(‘ifte (‘var (s z)) ‘one (‘var z))))

_ = refl

Figure 6.27: Running example: the βι case
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Chapter 7

CPS Transformations

A Continuation-Passing Style (CPS) transformation is an operation turning an existing program into

one that takes an extra argument (the continuation) that is a reification of what is to be done once

the program’s computation is finished. This is a powerful technique sequentialising the process of

evaluating a term and thus a common compilation pass for functional programming languages.

In the rest of this introduction, we will write ⟦.⟧ when talking about a translation functional. It

takes a term and produces a terms that starts by binding a continuation. This continuation expects to

be passed the value resulting from that term’s evaluation.

For instance, the translation of the constant program 3 is as follows: ⟦3⟧ = λk.k(3) where k is

the usual name given to the continuation. Indeed, 3 already is a value and the only thing left to do is

to invoke the continuation with it.

A more complex expression such as g( f (3, 2), 5) would need to be decomposed into simpler

subexpressions thus clarifying the order in which it is to be evaluated. We could for instance write:

⟦g( f (3, 2), 5)⟧ = λk.⟦ f ⟧(3, 2, λv.⟦g⟧(v, 5, k)).

In the process of writing such a transformation, we have made an arbitrary choice: we have

decided to first evaluate f (3, 2) and then evaluate g with the resulting value. But this is not the

only valid transformation. When translating a function application ( f (t)) we may also decide to

evaluate the function and apply the result straight away without modifying the ambient continuation

(i.e. ⟦ f (t)⟧ = λk.⟦ f ⟧(λv f .v f (⟦t⟧, k))) or to evaluate the function, then the function’s argument and

continue by applying one to the other (i.e. ⟦ f (t)⟧ = λk.⟦ f ⟧(λv f .⟦t⟧(λvt.v f (vt, k)))).

All of these translations correspond to variants of the call-by-name and call-by-value evaluation
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strategies. In their generic account of continuation passing style transformations, Hatcliff and Danvy

(1994) decompose both call by name and call by value CPS transformations in two phases. We will

see that this effort can be refactored via our Semantics framework.

A Common Framework: Moggi’s Meta Language

The two phases introduced by Hatcliff and Danvy are as follows: the first one, embedding the source

language into Moggi’s Meta Language (1991b), picks an evaluation strategy whilst the second one

is a generic erasure from Moggi’s ML back to the original language. Looking closely at the structure

of the first pass, we can see that it is an instance of our Semantics framework.

Let us start with the definition of Moggi’s Meta Language (ML). Its types are fairly straightfor-

ward, we simply have an extra constructor #_ for computations and the arrow has been turned into a

computational arrow meaning that its codomain is always considered to be a computational type.

data CType : Set where
‘Unit : CType
‘Bool : CType
_‘→#_ : (σ τ : CType)→ CType
#_ : CType→ CType

Figure 7.1: Inductive Definition of Types for Moggi’s ML

Then comes the Meta-Language itself (cf. fig. 7.2). It incorporates Term constructors and

eliminators with slightly different types: value constructors are associated to value types whilst

eliminators (and their branches) have computational types. Two new term constructors have been

added: ‘ret and ‘bind make #_ a monad. They can be used to explicitly schedule the evaluation order

of various subterms.

As explained in Hatcliff and Danvy’s paper, the translation from Type to CType fixes the calling

convention the CPS translation will have. Both call by name (CBN) and call by value (CBV)

can be encoded. They behave the same way on base types but differ on the way they translate

function spaces. In CBN the argument of a function is a computation (i.e. it is wrapped in a #_ type

constructor) whilst it is expected to have been fully evaluated in CBV. Let us look more closely at

these two translations.
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data ML : CType −Scoped where
‘var : ∀[ Var σ⇒ ML σ ]
‘app : ∀[ ML (σ ‘→# τ)⇒ ML σ⇒ ML (# τ) ]
‘lam : ∀[ (σ ::_) ⊢ ML (# τ)⇒ ML (σ ‘→# τ) ]
‘one : ∀[ ML ‘Unit ]
‘tt ‘ff : ∀[ ML ‘Bool ]
‘ifte : ∀[ ML ‘Bool⇒ ML (# σ)⇒ ML (# σ)⇒ ML (# σ) ]
‘ret : ∀[ ML σ⇒ ML (# σ) ]
‘bind : ∀[ ML (# σ)⇒ ML (σ ‘→# τ)⇒ ML (# τ) ]

Figure 7.2: Definition of Moggi’s Meta Language

7.1 Translation into Moggi’s Meta-Language

Call by Name

We define the translation CBN of Type in a call by name style together with a shorthand for

the computational version of the translation #CBN. As explained earlier, base types are kept

identical whilst function spaces are turned into function spaces whose domains and codomains are

computational.

mutual

#CBN : Type→ CType
#CBN σ = # (CBN σ)

CBN : Type→ CType
CBN ‘Unit = ‘Unit
CBN ‘Bool = ‘Bool
CBN (σ ‘→ τ) = #CBN σ ‘→# CBN τ

Figure 7.3: Translation of Type in a Call by Name style

Once we know how to translate types, we can start thinking about the way terms are handled.

The term’s type will have to be computational as there is no guarantee that the input term is in

normal form. In a call by name strategy, variables in context are also assigned a computational type.

By definition of Semantics, our notions of environment values and computations will have to

be of type (Type −Scoped). This analysis leads us to define the generic transformation _^CBN in
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fig. 7.4.

_^CBN : CType −Scoped→ Type −Scoped
(T ^CBN) σ Γ = T (#CBN σ) (map #CBN Γ)

Figure 7.4: ·−Scoped Transformer for Call by Name

Our notion of environment values are then (Var ^CBN) whilst computations will be (ML ^CBN).

Once these design decisions are made, we can start drafting the semantical counterpart of common

combinators.

As usual, we define combinators corresponding to the two eliminators first. In these cases,

we need to evaluate the subterm the redex is potentially stuck on first. This means evaluating the

function first in an application node (which will then happily consume the thunked argument) and

the boolean in the case of boolean branching.

APP : ∀[ (ML ^CBN) (σ ‘→ τ)⇒ (ML ^CBN) σ⇒ (ML ^CBN) τ ]
APP f t = ‘bind f (‘lam (‘app (‘var z) (th^ML t extend)))

IFTE : ∀[ (ML ^CBN) ‘Bool⇒ (ML ^CBN) σ⇒ (ML ^CBN) σ⇒ (ML ^CBN) σ ]
IFTE b l r = ‘bind b (‘lam (‘ifte (‘var z) (th^ML l extend) (th^ML r extend)))

Figure 7.5: Semantical Counterparts for ‘app and ‘ifte

Values have a straightforward interpretation: they are already fully evaluated and can thus

simply be returned as trivial computations using ‘ret. This gives us everything we need to define the

embedding of STLC into Moggi’s ML in call by name style.

Call by Value

Call by value follows a similar pattern. As the name suggests, in call by value function arguments

are expected to be values already. In the definition of CBV this translates to function spaces being

turned into function spaces where only the codomain is made computational.

We can then move on to the notion of values and computations for our call by value Semantics.

All the variables in scope should refer to values hence the choice to translate Γ by mapping CBV over
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mutual

#CBV : Type→ CType
#CBV σ = # (CBV σ)

CBV : Type→ CType
CBV ‘Unit = ‘Unit
CBV ‘Bool = ‘Bool
CBV (σ ‘→ τ) = CBV σ ‘→# CBV τ

Figure 7.6: Translation of Type in a Call by Value style

it in both cases. As with the call by name translation, we need our target type to be computational:

the input terms are not guaranteed to be in normal form.

V^CBV : Type −Scoped
V^CBV σ Γ = Var (CBV σ) (map CBV Γ)

C^CBV : Type −Scoped
C^CBV σ Γ = ML (# CBV σ) (map CBV Γ)

Figure 7.7: Values and Computations for the CBN CPS Semantics

Albeit being defined at different types, the semantical counterparts of value constructors and

‘ifte are the same as in the call by name case. The interpretation of ‘app is where we can see a clear

difference: we need to evaluate the function and its argument before applying one to the other. We

pick a left-to-right evaluation order but that is arbitrary: another decision would lead to a different

but equally valid translation.

APP : ∀[ C^CBV (σ ‘→ τ)⇒ C^CBV σ⇒ C^CBV τ ]
APP f t = ‘bind f (‘lam (‘bind (th^ML t extend) (‘lam (‘app (‘var (s z)) (‘var z)))))

Figure 7.8: Semantical Counterparts for ‘app

Finally, the corresponding Semantics can be defined (code omitted here).
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7.2 Translation Back from Moggi’s Meta-Language

Once we have picked an embedding from STLC to Moggi’s ML, we can kick-start it by using an

environment of placeholder values just like we did for normalisation by evaluation. The last thing

missing to get the full CPS translation is to have the generic function elaborating terms in ML into

STLC ones.

We first need to define a translation of types in Moggi’s Meta-Language to types in the simply-

typed lambda-calculus. The translation is parametrised by r, the return type. Type constructors

common to both languages are translated to their direct counterpart and the computational type

constructor is translated as double r-negation (i.e. (· ‘→ r) ‘→ r).

mutual

#CPS[_] : Type→ CType→ Type
#CPS[ r ] σ = (CPS[ r ] σ ‘→ r) ‘→ r

CPS[_] : Type→ CType→ Type
CPS[ r ] ‘Bool = ‘Bool
CPS[ r ] ‘Unit = ‘Unit
CPS[ r ] (σ ‘→# τ) = CPS[ r ] σ ‘→ #CPS[ r ] τ
CPS[ r ] (# σ) = #CPS[ r ] σ

Figure 7.9: Translating Moggi’s ML’s Types to STLC Types

Once these translations have been defined, we give a generic elaboration function getting rid of

the additional language constructs available in Moggi’s ML. It takes any term in Moggi’s ML and

returns a term in STLC where both the type and the context have been translated using (CPS[ r ])

for an abstract parameter r.

cps : ML σ Γ→ Term (CPS[ r ] σ) (map CPS[ r ] Γ)

All the constructors which appear both in Moggi’s ML and STLC are translated in a purely

structural manner. The only two interesting cases are ‘ret and ‘bind which correspond to the # monad

in Moggi’s ML and are interpreted as return and bind for the continuation monad in STLC.

First, (‘ret t) is interpreted as the function which takes the current continuation and applies it to

its translated argument (cps t).
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cps (‘ret t) = ‘lam (‘app (‘var z) (th^Term (cps t) extend))

Then, (‘bind m f) gets translated as the function grabbing the current continuation k, and running

the translation of m with the continuation which, provided the value v obtained by running m, runs f

applied to v and k. Because the translations of m and f end up being used in extended contexts, we

need to make use of the fact Terms are thinnable.

cps (‘bind m f) = ‘lam $ ‘app m’ $ ‘lam $ ‘app (‘app f’ (‘var z)) (‘var (s z))

where m’ = th^Term (cps m) (pack s)

f’ = th^Term (cps f) (pack (s ◦ s))

By highlighting the shared structure, of the call by name and call by value translations we were

able to focus on the interesting part: the ways in which they differ. The formal treatment of the type

translations underlines the fact that in both cases the translation of a function’s domain is uniform.

This remark opens the door to alternative definitions; we could for instance consider a mixed strategy

which is strict in machine-representable types thus allowing an unboxed representation (Peyton

Jones and Launchbury [1991]) but lazy in every other type.
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Chapter 8

Discussion

8.1 Summary

We have now seen how to give an intrinsically well-scoped and well-typed presentation of a simple

calculus. We represent it as an inductive family indexed by the term’s type and the context it lives

in. Variables are represented by typed de Bruijn indices.

To make the presentation lighter, we have made heavy use of a small domain specific language

to define indexed families. This allows us to silently thread the context terms live in and only ever

explicitly talk about it when it gets extended.

We have seen a a handful of vital traversals such as thinning and substitution which, now

that they act on a well-typed and well-scoped syntax need to be guaranteed to be type and scope

preserving.

We have studied how McBride (2005) identifies the structure common to thinning and substitu-

tion, introduces a notion of Kit and refactors the two functions as instances of a more fundamental

Kit-based traversal.

After noticing that other usual programs such as the evaluation function for normalisation by

evaluation seemed to fit a similar pattern, we have generalised McBride’s Kit to obtain our notion of

Semantics. The accompanying fundamental lemma is the core of this whole part. It demonstrates

that provided a notion of values and a notion of computations abiding by the Semantics constraints,

we can write a scope-and-type preserving traversal taking an environment of values, a term and

returning a computation.
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8. Discussion

Thinning, substitution, normalisation by evaluation, printing with names, and various continua-

tion passing style translations are all instances of this fundamental lemma.

8.2 Related Work

This part of the work focuses on programming and not (yet!) on proving, apart from the basic

well-formedness properties we can easily enforce in the type: terms are well-scoped, well-typed

and when we claim to write a normaliser we do guarantee that the output is a normal form. All of

this can be fully replicated in Haskell. The subtleties of working with dependent types in Haskell

(Lindley and McBride [2014]) are outside the scope of this thesis.

If the tagless and typeful normalisation by evaluation procedure derived in Haskell from our

Semantics framework is to the best of our knowledge the first of its kind, Danvy, Keller and Puech

have achieved a similar goal in OCaml (2013). But their formalisation uses parametric higher order

abstract syntax (Chlipala [2008b]) freeing them from having to deal with variable binding, contexts

and use models à la Kripke at the cost of using a large encoding. However we find scope safety

enforced at the type level to be a helpful guide when formalising complex type theories. It helps us

root out bugs related to fresh name generation, name capture or conversion from de Bruijn levels to

de Bruijn indices.

This construction really shines in a simply typed setting but it is not limited to it: we have suc-

cessfully used an analogue of our Semantics framework to enforce scope safety when implementing

the expected traversals (renaming, substitution, untyped normalisation by evaluation and printing

with names) for the untyped λ-calculus (for which the notion of type safety does not make sense) or

Martin-Löf type theory. Apart from NBE (which relies on a non strictly-positive datatype), all of

these traversals are total.

This work is at the intersection of two traditions: the formal treatment of programming lan-

guages and the implementation of embedded Domain Specific Languages (eDSL, Hudak [1996])

both require the designer to deal with name binding and the associated notions of renaming and

substitution but also partial evaluation (Danvy [1999]), or even printing when emitting code or

displaying information back to the user (Wiedijk [2012]). The mechanisation of a calculus in a meta

language can use either a shallow or a deep embedding (Svenningsson and Axelsson [2013], Gill

[2014]).
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The well-scoped and well typed final encoding described by Carette, Kiselyov, and Shan (2009)

allows the mechanisation of a calculus in Haskell or OCaml by representing terms as expressions

built up from the combinators provided by a “Symantics”. The correctness of the encoding relies

on parametricity (Reynolds [1983]) and although there exists an ongoing effort to internalise

parametricity (Bernardy and Moulin [2013]) in Martin-Löf Type Theory, this puts a formalisation

effort out of the reach of all the current interactive theorem provers.

Because of the strong restrictions on the structure our models may have, we cannot represent all

the interesting traversals imaginable. Chapman and Abel’s work on normalisation by evaluation

(2009, 2014) which decouples the description of the big-step algorithm and its termination proof is

for instance out of reach for our system. Indeed, in their development the application combinator

may restart the computation by calling the evaluator recursively whereas the app constraint we

impose means that we may only combine induction hypotheses.

McBride’s original unpublished work (2005) implemented in Epigram (McBride and McKinna

[2004b]) was inspired by Goguen and McKinna’s Candidates for Substitution (1997). It focuses on

renaming and substitution for the simply typed λ-calculus and was later extended to a formalisation

of System F (Girard [1972]) in Coq (Coq Development Team [2017]) by Benton, Hur, Kennedy

and McBride (2012). Benton et al. both implement a denotational semantics for their language

and prove the properties of their traversals. However both of these things are done in an ad-hoc

manner: the meaning function associated to their denotational semantics is not defined in terms of

the generic traversal and the proofs are manually discharged one by one.

8.3 Further Work

There are three main avenues for future work and we will tackle all of these later on in this thesis.

We could focus on the study of instances of Semantics, the generalisation of Semantics to a

whole class of syntaxes with binding rather than just our simple STLC, or proving properties of the

traversals that are instances of Semantics.

Other instances

The vast array of traversals captured by this framework from meta-theoretical results (stability

under thinning and substitution) to programming tools (printing with names) and compilation passes
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(partial evaluation and continuation passing style translations) suggests that this method is widely

applicable. The quest of ever more traversals to refactor as instances of the fundamental lemma of

Semantics is a natural candidate for further work.

We will see later on that once we start considering other languages including variants with fewer

invariants baked in, we can find new candidates. The fact that erasure from a language with strong

invariants to an untyped one falls into this category may not be too surprising. The fact that the

other direction, that is type checking of raw terms or even elaboration of such raw terms to a typed

core language also corresponds to a notion of Semantics is perhaps more intriguing.

A Generic Notion of Semantics

If we look closely at the set of constraints a Semantics imposes on the notions of values and

computations, we can see that it matches tightly the structure of our language:

• Each base constructor needs to be associated to a computation of the same type;

• Each eliminator needs to be interpreted as a function combining the interpretation of its

subterms into the interpretation of the whole;

• The lambda case is a bit special: it uses a Kripke function space from values to computation

as its interpretation

We can apply this recipe mechanically to enrich our language with e.g. product and sum types,

their constructor and eliminators. This suggests that we ought to be able to give a datatype-generic

description of syntaxes with binding and the appropriate notion of Semantics for each syntax. We

will make this intuition precise in part III.

Properties of Semantics

Finally, because we know e.g. that we can prove generic theorems for all the programs defined

using fold (Malcolm [1990]), the fact that all of these traversals are instances of a common fold-like

function suggests that we ought to be able to prove general theorems about its computational

behaviour and obtain interesting results for each instance as corollaries. This is the topic we will

focus on for now.
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Chapter 9

The Simulation Relation

Thanks to Semantics, we have already saved work by not reiterating the same traversals. Moreover,

this disciplined approach to building models and defining the associated evaluation functions can

help us refactor the proofs of some of these semantics’ properties. Instead of using proof scripts

as Benton et al. (2012) do, we describe abstractly the constraints the logical relations (Reynolds

[1983]) defined on computations (and environment values) have to respect to ensure that evaluating

a term in related environments produces related outputs. This gives us a generic framework to state

and prove, in one go, properties about all of these semantics.

Our first example of such a framework will stay simple on purpose. However it is no mere

bureaucracy: the result proven here will actually be useful in the next section when considering

more complex properties.

This first example is describing the relational interpretation of the terms. It should give the

reader a good introduction to the setup before we take on more complexity. The types involved

might look a bit scarily abstract but the idea is rather simple: we have a Simulation between two

Semantics when evaluating a term in related environments yields related values. The bulk of the

work is to make this intuition formal.

9.1 Relations and Environment Relation Transformer

In our exploration of generic proofs about the behaviour of various Semantics, we are going to

need to manipulate relations between distinct notions of values or computations. In this section, we

introduce the notion of relation we are going to use as well as these two key relation transformers.
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In Section 5.1 we introduced a generic notion of well typed and scoped environment as a

function from variables to values. Its formal definition is given in Figure 5.1 as a record type. This

record wrapper helps Agda’s type inference reconstruct the type family of values whenever it is

passed an environment.

For the same reason, we will use a record wrapper for the concrete implementation of our notion

of relation over (I −Scoped) families. A Relation between two such families T and U is a function

which to any σ and Γ associates a relation between (T σ Γ) and (U σ Γ). Our first example of such a

relation is EqR the equality relation between an (I−Scoped) family T and itself.

record Rel (T U : I −Scoped) : Set1 where
constructor mkRel
field rel : ∀ σ→ ∀[ T σ⇒ U σ⇒ const Set ]

EqR : Rel T T
rel EqR i = _≡_

Figure 9.1: Relation Between I−Scoped Families and Equality Example

Once we know what relations are, we are going to have to lift relations on values and computa-

tions to relations on environments or Kripke function spaces. These relation transformers will be

instances of what Kawahara calls ‘relators’. This is what the rest of this section focuses on.

Environment relator Provided a relation VR for notions of values VA and VB, by pointwise

lifting we can define a relation (AllVR Γ) on Γ-environments of valuesVA andVB respectively.

We once more use a record wrapper simply to facilitate Agda’s job when reconstructing implicit

arguments.

record All (VR : RelVA VB) (Γ : List I)
(ρA : (Γ −Env)VA ∆) (ρB : (Γ −Env)VB ∆) : Set where

constructor packR

field lookupR : ∀ k→ relVR σ (lookup ρA k) (lookup ρB k)

Figure 9.2: Relating Γ-Environments in a Pointwise Manner

The first example of two environment being related is reflR that, to any environment ρ associates

a trivial proof of the statement (All EqR Γ ρ ρ).

The combinators we introduced in Figure 5.4 to build environments (ε, _•_, etc.) have natural

relational counterparts.
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reflR : All EqR Γ ρ ρ

lookupR reflR k = refl

Figure 9.3: Pointwise Lifting of refl

Convention 7 (Relational counterparts) We systematically reuse the same names for a construc-

tor or a combinator and its relational counterpart. We simply append an R suffix to the relational

version.

.

Once we have all of these definitions, we can spell out what it means to simulate a semantics

with another.

9.2 Simulation Constraints

Given two Semantics SA and SB in simulation with respect to relationsVR for values and CR for

computations, we have that for any term t and environments ρA and ρB, if the two environments are

VR-related in a pointwise manner then the semantics associated to t by SA using ρA is CR-related to

the one associated to t by SB using ρB.

The evidence that we have a Simulation between two Semantics (SA and SB) is packaged in a

record indexed by the semantics as well as the two relations (VR and CR) mentioned earlier. We

start by making formal this idea of related evaluations by introducing R, a specialisation of CR:

R : ∀ σ→ (Γ −Env)VA ∆→ (Γ −Env)VB ∆→ Term σ Γ→ Set

R σ ρA ρB t = rel CR σ (semantics SA ρA t) (semantics SB ρB t)

We can now spell out what the simulation constraints are. Following the same presentation we

used for Semantics (cf. section 5.4), we will study the constraints field by field and accompany

them with comments as well as showing the use we make of these constraints in the proof of the

fundamental lemma of Simulation.

We start by giving the two types at hand: the Simulation record parameterised by the two

semantics and corresponding relations and the statement of simulation, the fundamental lemma

89



9. The Simulation Relation

of simulations taking proofs that evaluation environments are related and returning proofs that the

respective evaluation functions yield related results.

record Simulation (SA : SemanticsVA CA) (SB : SemanticsVB CB)

(VR : RelVA VB) (CR : Rel CA CB) : Set where

simulation : AllVR Γ ρA ρB → ∀ t→ R σ ρA ρB t

The set of simulation constraints is in one-to-one correspondence with that of semantical

constructs. We start with the relational counterpart of ‘var and var. Provided that ρA and ρB carry

values related by VR, the result of evaluating the variable v in each respectively should yield

computations related by CR. That is to say that the respective var turn related values into related

computations.

varR : AllVR Γ ρA ρB → (v : Var σ Γ)→ R σ ρA ρB (‘var v)

simulation ρR (‘var v) = varR ρR v

Value constructors in the language follow a similar pattern: provided that the evaluation

environments are related, we expect the computations to be related too.

oneR : AllVR Γ ρA ρB → R ‘Unit ρA ρB ‘one

ttR : AllVR Γ ρA ρB → R ‘Bool ρA ρB ‘tt

ffR : AllVR Γ ρA ρB → R ‘Bool ρA ρB ‘ff

simulation ρR ‘one = oneR ρR

simulation ρR ‘tt = ttR ρR

simulation ρR ‘ff = ffR ρR

Then come the structural cases: for language constructs like ‘app and ‘ifte whose subterms

live in the same context as the overall term, the constraints are purely structural. Provided that the

evaluation environments are related, and that the evaluation of the subterms in each environment

respectively are related then the evaluations of the overall terms should also yield related results.

appR : AllVR Γ ρA ρB →

∀ f t→ R (σ ‘→ τ) ρA ρB f→ R σ ρA ρB t→

R τ ρA ρB (‘app f t)

ifteR : AllVR Γ ρA ρB →

∀ b l r→ R ‘Bool ρA ρB b→ R σ ρA ρB l→ R σ ρA ρB r→

R σ ρA ρB (‘ifte b l r)
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simulation ρR (‘app f t) = appR ρR f t (simulation ρR f) (simulation ρR t)

simulation ρR (‘ifte b l r) =

ifteR ρR b l r (simulation ρR b) (simulation ρR l) (simulation ρR r)

Finally, we reach the most interesting case. The semantics attached to the body of a ‘lam is

expressed in terms of a Kripke function space. As a consequence, the relational semantics will

need a relational notion of Kripke function space (KripkeR) to spell out the appropriate simulation

constraint. This relational Kripke function space states that in any thinning of the evaluation context

and provided two related inputs, the evaluation of the body in each thinned environment extended

with the appropriate value should yield related computations.

Note that this is a definition local to the Simulation record declaration hence its ability to

mention all of the record’s parameters (cf. section 3.2 for the description of definitions local to a

record type declaration).

KripkeR : ∀ {Γ ∆} σ τ→ (Γ −Env)VA ∆→ (Γ −Env)VB ∆→

Term τ (σ :: Γ)→ Set
KripkeR {Γ} {∆} σ τ ρA ρB b =
∀ {Θ} (ρ : Thinning ∆ Θ) {uA uB}→VR .rel σ uA uB →

R τ (th^Env SA.th^V ρA ρ • uA) (th^Env SB.th^V ρB ρ • uB) b

Figure 9.4: Relational Kripke Function Spaces: From Related Inputs to Related Outputs

This allows us to describe the constraint for ‘lam: provided related environments of values, if

we have a relational Kripke function space for the body of the ‘lam then both evaluations should

yield related results. Together with a constraint guaranteeing that value-relatedness is stable under

thinnings, this is enough to discharge the λ case and thus conclude the proof.

lamR : AllVR Γ ρA ρB → ∀ b→ KripkeR σ τ ρA ρB b→ R (σ ‘→ τ) ρA ρB (‘lam b)

th^VR : (ρ : Thinning ∆ Θ)→VR .rel σ vA vB →VR .rel σ (SA.th^V vA ρ) (SB.th^V vB ρ)

simulation ρR (‘lam b) = lamR ρR b $ λ ren vR →

simulation ((th^VR ren <$>R ρR) •R vR) b

Now that we have our set of constraints together with a proof that they entail the theorem we

expected to hold, we can start looking for interesting instances of a Simulation.
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9.3 Syntactic Traversals are Extensional

A first corollary of the fundamental lemma of simulations is the fact that semantics arising from a

Syntactic (cf. fig. 5.18) definition are extensional. We can demonstrate this by proving that every

syntactic semantics is in simulation with itself. That is to say that the evaluation function yields

propositionally equal values provided extensionally equal environments of values.

Under the assumption that Syn is a Syntactic instance, we can define the corresponding Se-

mantics S by setting S = syntactic Syn. Using EqR the Rel defined as the pointwise lifting of

propositional equality, we can make our earlier claim formal and prove it. All the constraints are

discharged either by reflexivity or by using congruence to combine various hypotheses.

Syn-ext : Simulation S S EqR EqR

Syn-ext .th^VR = λ ρ eq→ cong (λ t→ th^T t ρ) eq
Syn-ext .varR = λ ρR v→ cong var (lookupR ρR v)
Syn-ext .lamR = λ ρR b bR → cong ‘lam (bR extend refl)
Syn-ext .appR = λ ρR f t→ cong2 ‘app
Syn-ext .ifteR = λ ρR b l r→ cong3 ‘ifte
Syn-ext .oneR = λ ρR → refl
Syn-ext .ttR = λ ρR → refl
Syn-ext .ffR = λ ρR → refl

Figure 9.5: Syntactic Traversals are in Simulation with Themselves

Because the Simulation statement is not necessarily extremely illuminating, we spell out the

type of the corollary to clarify what we just proved: whenever two environments agree on each

variable, evaluating a term with either of them produces equal results.

syn-ext : All EqR Γ ρl ρr → (t : Term σ Γ)→ semantics S ρl t ≡ semantics S ρr t
syn-ext = simulation Syn-ext

Figure 9.6: Syntactic Traversals are Extensional

This may look like a trivial result however we have found multiple use cases for it during the

development of our solution to the POPLMark Reloaded challenge (2019): when proceeding by

equational reasoning, it is often the case that we can make progress on each side of the equation

only to meet in the middle with the same traversals using two environments manufactured in slightly
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different ways but ultimately equal. This lemma allows us to bridge that last gap.

More generally when working with higher-order functions in intensional type theory, it is

extremely useful to know that from extensionally equal inputs we can guarantee that we will obtain

intensionally equal outputs.

9.4 Renaming is a Substitution

Similarly, it is sometimes the case that after a bit of rewriting we end up with an equality between

one renaming and one substitution. But it turns out that as long as the substitution is only made up

of variables, it is indeed equal to the corresponding renaming. We can make this idea formal by

introducing the VarTermR relation stating that a variable and a term are morally equal like so:

VarTermR : Rel Var Term
rel VarTermR σ v t = ‘var v ≡ t

Figure 9.7: Characterising Equal Variables and Terms

We can then state our result: we can prove a simulation lemma between Renaming and

Substitution where values (i.e. variables in the cases of renaming and terms in terms of substitution)

are related by VarTermR and computations (i.e. terms) are related by EqR. Once again we proceed

by reflexivity and congruence.

RenSub^Sim : Simulation Renaming Substitution VarTermR EqR

RenSub^Sim .th^VR = λ ρ→ cong (λ t→ th^Term t ρ)
RenSub^Sim .varR = λ ρR v→ lookupR ρR v
RenSub^Sim .lamR = λ ρR b bR → cong ‘lam (bR extend refl)
RenSub^Sim .appR = λ ρR f t→ cong2 ‘app
RenSub^Sim .ifteR = λ ρR b l r→ cong3 ‘ifte
RenSub^Sim .oneR = λ ρR → refl
RenSub^Sim .ttR = λ ρR → refl
RenSub^Sim .ffR = λ ρR → refl

Figure 9.8: Renaming is in Simulation with Substitution

Rather than showing one more time the type of the corollary, we show a specialized version

where we pick the substitution to be precisely the thinning used on which we have mapped the ‘var
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constructor.

ren-as-sub : (t : Term σ Γ) (ρ : Thinning Γ ∆)→ th^Term t ρ ≡ sub (‘var <$> ρ) t
ren-as-sub t ρ = simulation RenSub^Sim (packR (λ v→ refl)) t

Figure 9.9: Renaming as a Substitution

9.5 The PER for βιξη-Values is Closed under Evaluation

Now that we are a bit more used to the simulation framework and simulation lemmas, we can look at

a more complex example: the simulation lemma relating normalisation by evaluation’s eval function

to itself.

This may seem bureaucratic but it is crucial: the model definition uses the host language’s

function space which contains more functions than just the ones obtained by evaluating a simply-

typed λ-term. Some properties that may not be provable for arbitrary Agda programs can be proven

to hold for the ones obtained by evaluation. In particular, functional extensionality is not provable

in intensional type theory but we can absolutely prove that the programs we obtain by evaluating

terms with a function type take extensionally equal inputs to extensionally equal outputs.

This strong property will in particular imply that evaluation in environment consisting of

extensionally equal values will yield intensionally equal normal forms as shown in fig. 9.15.

This notion of extensional equality for values in the model is formalised by defining a Partial

Equivalence Relation (PER) (Mitchell [1996]) which is to say a relation which is symmetric and

transitive but may not be reflexive for all elements in its domain. The elements equal to themselves

will be guaranteed to be well behaved. We will show that given an environment of values PER-related

to themselves, the evaluation of a λ-term produces a computation equal to itself too.

We start by defining the PER for the model. It is constructed by induction on the type and

ensures that terms which behave the same extensionally are declared equal. Values at base types are

concrete data: either trivial for values of type ‘Unit or normal forms for values of type ‘Bool. They

are considered equal when they are effectively syntactically the same, i.e. propositionally equal.

Functions on the other hand are declared equal whenever equal inputs map to equal outputs.
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PER : Rel Model Model
rel PER ‘Unit t u = t ≡ u
rel PER ‘Bool t u = t ≡ u
rel PER (σ ‘→ τ) f g = ∀ {∆} (ρ : Thinning _ ∆) {t u}→

rel PER σ t u→ rel PER τ (f ρ t) (g ρ u)

Figure 9.10: Partial Equivalence Relation for Model Values

On top of being a PER (i.e. symmetric and transitive), we can prove by a simple case analysis

on the type that this relation is also stable under thinning for Model values defined in fig. 6.16.

th^PER : ∀ σ {T U}→ rel PER σ T U→ (ρ : Thinning Γ ∆)→
rel PER σ (th^Model σ T ρ) (th^Model σ U ρ)

th^PER ‘Unit _ ρ = refl
th^PER ‘Bool bR ρ = cong (λ t→ th^Nf t ρ) bR

th^PER (σ ‘→ τ) fR ρ = λ σ→ fR (select ρ σ)

Figure 9.11: Stability of the PER under Thinning

The interplay of reflect and reify with this notion of equality has to be described in one go

because of their mutual definition. It confirms that PER is an appropriate notion of semantic equality:

PER-related values are reified to propositionally equal normal forms whilst propositionally equal

neutral terms are reflected to PER-related values.

mutual

reflectR : ∀ σ {t u : Ne σ Γ}→ t ≡ u→ rel PER σ (reflect σ t) (reflect σ u)
reflectR ‘Unit _ = refl
reflectR ‘Bool t = cong (‘neu ‘Bool) t
reflectR (σ ‘→ τ) f = λ ρ t→ reflectR τ (cong2 ‘app (cong _ f) (reifyR σ t))

reifyR : ∀ σ {v w : Model σ Γ}→ rel PER σ v w→ reify σ v ≡ reify σ w
reifyR ‘Unit _ = refl
reifyR ‘Bool bR = bR

reifyR (σ ‘→ τ) fR = cong ‘lam (reifyR τ (fR extend (reflectR σ refl)))

Figure 9.12: Relational Versions of Reify and Reflect

Just like in the definition of the evaluation function, conditional branching is the interesting
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case. Provided a pair of boolean values (i.e. normal forms of type ‘Bool) which are PER-equal (i.e.

syntactically equal) and two pairs of PER-equal σ-values corresponding respectively to the left and

right branches of the two if-then-elses, we can prove that the two semantical if-then-else produce

PER-equal values. Because of the equality constraint on the booleans, Agda allows us to only write

the three cases we are interested in: all the other ones are trivially impossible.

In case the booleans are either ‘tt or ‘ff, we can immediately conclude by invoking one of the

hypotheses. Otherwise we remember from fig. 6.19 that the evaluation function produces a value by

reflecting the neutral term obtained after reifying both branches. We can play the same game but at

the relational level this time and we obtain precisely the proof we wanted.

IFTER : (B C : Model ‘Bool Γ)→ rel PER ‘Bool B C→
rel PER σ L S→ rel PER σ R T→ rel PER σ (IFTE B L R) (IFTE C S T)

IFTER ‘tt ‘tt _ lR rR = lR

IFTER ‘ff ‘ff _ lR rR = rR

IFTER (‘neu a t) (‘neu b u) bR lR rR =
reflectR σ (cong3 ‘ifte (‘neu-injective bR) (reifyR σ lR) (reifyR σ rR))

Figure 9.13: Relational If-Then-Else

This provides us with all the pieces necessary to prove our simulation lemma. The relational

counterpart of ‘lam is trivial as the induction hypothesis corresponds precisely to the PER-notion of

equality on functions. Similarly the case for ‘app is easily discharged: the PER-notion of equality

for functions is precisely the strong induction hypothesis we need to be able to make use of the

assumption that the respective function’s arguments are PER-equal.

Eval^Sim : Simulation Eval Eval PER PER
Eval^Sim .th^VR = λ ρ EQ→ th^PER _ EQ ρ

Eval^Sim .varR = λ ρR v→ lookupR ρR v
Eval^Sim .lamR = λ ρR b bR → bR

Eval^Sim .appR = λ ρR f t fR tR → fR identity tR

Eval^Sim .ifteR = λ ρR b l r→ IFTER _ _
Eval^Sim .oneR = λ ρR → refl
Eval^Sim .ttR = λ ρR → refl
Eval^Sim .ffR = λ ρR → refl

Figure 9.14: Normalisation by Evaluation is in PER-Simulation with Itself
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As a corollary, we can deduce that evaluating a term in two environments related pointwise by

PER yields two semantic objects themselves related by PER. Which, once reified, give us two equal

terms.

normR : All PER Γ ρl ρr → ∀ t→ reify σ (eval ρl t) ≡ reify σ (eval ρr t)
normR ρR t = reifyR σ (simulation Eval^Sim ρR t)

Figure 9.15: Normalisation in PER-related Environments Yields Equal Normal Forms

We can now move on to the more complex example of a proof framework built generically over

our notion of Semantics.
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The Fusion Relation

When studying the meta-theory of a calculus, one systematically needs to prove fusion lemmas for

various semantics. For instance, Benton et al. (2012) prove six such lemmas relating renaming,

substitution and a typeful semantics embedding their calculus into Coq. This observation naturally

lead us to defining a fusion framework describing how to relate three semantics: the pair we sequence

and their sequential composition. The fundamental lemma we prove can then be instantiated six

times to derive the corresponding corollaries.

10.1 Fusion Constraints

The evidence that SA, SB and SAB are such that SA followed by SB is equivalent to SAB (e.g.

Substitution followed by Renaming can be reduced to Substitution) is packed in a record Fusion

indexed by the three semantics but also three relations. The first one (ER) characterises the triples

of environments (one for each one of the semantics) which are compatible. The second one (VR)

states what it means for two environment values of SB and SAB respectively to be related. The last

one (CR) relates computations obtained as results of running SB and SAB respectively. As always,

provided that these constraints are satisfied we should be able to prove fusion the fundamental

lemma of Fusion stating that given related environments we will get related outputs. We will

interleave the definition of the record’s fields together with the proof of fusion. Our first goal will

be to define this notion of relatedness formally.
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record Fusion

(SA : SemanticsVA CA) (SB : SemanticsVB CB) (SAB : SemanticsVAB CAB)

(ER : ∀ {Γ ∆ Θ}→ (Γ −Env)VA ∆→ (∆ −Env)VB Θ→ (Γ −Env)VAB Θ→ Set)

(VR : RelVB VAB) (CR : Rel CB CAB) : Set where

fusion : ER ρA ρB ρAB → ∀ t→ R σ ρA ρB ρAB t

As before, most of the fields of this record describe what structure these relations need to have.

However, we start with something slightly different: given that we are planing to run the Semantics

SB after having run SA, we need a way to extract a term from a computation returned by SA. Hence

our first field reifyA. Typical examples include the identity function (whenever the first semantics is

a Syntactic one, cf. section 10.2) or one of the reify functions followed by an erasure from Nf to

Term (whenever the first semantics corresponds to normalisation by evaluation)

reifyA : ∀[ CA σ⇒ Term σ ]

Once we have this key component we can introduce the relation R which will make the type of

the combinators defined later on clearer. R relates at a given type a term and three environments

by stating that the computation one gets by sequentially evaluating the term in the first and then

the second environment is related to the one obtained by directly evaluating the term in the third

environment. Note the use of reifyA to recover a Term from a computation in CA before using the

second evaluation function semantics SB.

R : ∀ σ→ (Γ −Env)VA ∆→ (∆ −Env)VB Θ→ (Γ −Env)VAB Θ→

Term σ Γ→ Set

R σ ρA ρB ρAB t = let vA = semantics SA ρA t

vB = semantics SB ρB (reifyA vA)

vAB = semantics SAB ρAB t

in rel CR σ vB vAB

As with the previous section, only a handful of the relational counterpart to the term constructors

and their associated semantic counterpart are out of the ordinary. We will start with the ‘var case. It

states that fusion indeed happens when evaluating a variable using related environments.

varR : ER ρA ρB ρAB → (v : Var σ Γ)→ R σ ρA ρB ρAB (‘var v)
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fusion ρR (‘var v) = varR ρR v

Just like for the simulation relation, the relational counterpart of value constructors in the

language state that provided that the evaluation environment are related, we expect the computations

to be related too.

oneR : ER ρA ρB ρAB → R ‘Unit ρA ρB ρAB ‘one

ttR : ER ρA ρB ρAB → R ‘Bool ρA ρB ρAB ‘tt

ffR : ER ρA ρB ρAB → R ‘Bool ρA ρB ρAB ‘ff

fusion ρR ‘one = oneR ρR

fusion ρR ‘tt = ttR ρR

fusion ρR ‘ff = ffR ρR

Similarly, we have purely structural constraints for term constructs which have purely structural

semantic counterparts. For ‘app and ‘ifte, provided that the evaluation environments are related and

that the evaluation of the subterms in each environment respectively are related then the evaluations

of the overall terms should also yield related results.

appR : ER ρA ρB ρAB →

∀ f t→ R (σ ‘→ τ) ρA ρB ρAB f→ R σ ρA ρB ρAB t→

R τ ρA ρB ρAB (‘app f t)

ifteR : ER ρA ρB ρAB →

∀ b l r→ R ‘Bool ρA ρB ρAB b→ R σ ρA ρB ρAB l→ R σ ρA ρB ρAB r→

R σ ρA ρB ρAB (‘ifte b l r)

fusion ρR (‘app f t) = appR ρR f t (fusion ρR f) (fusion ρR t)

fusion ρR (‘ifte b l r) = ifteR ρR b l r (fusion ρR b) (fusion ρR l) (fusion ρR r)

Finally, the ‘lam-case is as always the most complex of all. The constraint we pick puts some

strong restrictions on the way the λ-abstraction’s body may be used by SA: we assume it is evaluated

in an environment thinned by one variable and extended using var0A, a placeholder value which

is another parameter of this record. It is quite natural to have these restrictions: given that reifyA

quotes the result back, we are expecting this type of evaluation in an extended context (i.e. under

one lambda). And it turns out that this is indeed enough for all of our examples. The evaluation

environments used by the semantics SB and SAB on the other hand can be arbitrarily thinned before

being extended with related values to be substituted for the variable bound by the ‘lam.

var0A : ∀[ (σ ::_) ⊢ VA σ ]
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lamR : ER ρA ρB ρAB → ∀ b→

(∀ {Ω} (ρ : Thinning Θ Ω) {vB vAB}→ relVR σ vB vAB →

let σA = th^Env SA.th^V ρA extend • var0A

σB = th^Env SB.th^V ρB ρ • vB

σAB = th^Env SAB.th^V ρAB ρ • vAB

in R τ σA σB σAB b)→

R (σ ‘→ τ) ρA ρB ρAB (‘lam b)

This last observation reveals the need for additional combinators stating that the environment-

manipulating operations we have used respect the notion of relatedness at hand. We introduce two

constraints dealing with the relations talking about evaluation environments. _•R_ tells us how to

extend related environments: one should be able to push related values onto the environments for

SB and SAB whilst merely extending the one for SA with the token value var0A. th^ER guarantees

that it is always possible to thin the environments for SB and SAB in a ER preserving manner.

_•R_ : ER ρA ρB ρAB → relVR σ vB vAB →

ER (th^Env SA.th^V ρA extend • var0A) (ρB • vB) (ρAB • vAB)

th^ER : ER ρA ρB ρAB → (ρ : Thinning Θ Ω)→

ER ρA (th^Env SB.th^V ρB ρ) (th^Env SAB.th^V ρAB ρ)

Using these last constraint, we can finally write the case of the fusion proof dealing with

λ-abstraction.

fusion ρR (‘lam b) = lamR ρR b $ λ ren vR → fusion (th^ER ρR ren •R vR) b

As with simulation, we measure the usefulness of this framework not only by our ability to

prove its fundamental lemma but also to then obtain useful corollaries. We will start with the special

case of syntactic semantics.

10.2 The Special Case of Syntactic Semantics

The translation from Syntactic to Semantics uses a lot of constructors as their own semantic

counterpart, it is hence possible to generate evidence of Syntactic triplets being fusible with

much fewer assumptions. We isolate them and prove the result generically to avoid repetition. A
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10.2. The Special Case of Syntactic Semantics

SynFusion record packs the evidence for Syntactic semantics SynA, SynB and SynAB. It is indexed

by these three Syntactics as well as two relations (T R and ER) corresponding to the VR and ER

ones of the Fusion framework; CR will always be EqR as we are talking about terms.

record SynFusion

(SynA : Syntactic T A) (SynB : Syntactic T B) (SynAB : Syntactic T AB)

(ER : ∀ {Γ ∆ Θ}→ (Γ −Env) T A ∆→ (∆ −Env) T B Θ→ (Γ −Env) T AB Θ→ Set)

(T R : Rel T B T AB) : Set where

The first two constraints _•R_ and th^ER are directly taken from the Fusion specification:

we still need to be able to extend existing related environment with related values, and to thin

environments in a relatedness-preserving manner.

_•R_ : ER ρA ρB ρAB → rel T R σ tB tAB →

ER (th^Env SynA.th^T ρA extend • SynA.zro) (ρB • tB) (ρAB • tAB)

th^ER : ER ρA ρB ρAB → (ρ : Thinning Θ Ω)→

ER ρA (th^Env SynB.th^T ρB ρ) (th^Env SynAB.th^T ρAB ρ)

We once again define R, a specialised version of its Fusion counterpart stating that the results

of the two evaluations are propositionally equal.

R : ∀ σ→ (Γ −Env) T A ∆→ (∆ −Env) T B Θ→ (Γ −Env) T AB Θ→

Term σ Γ→ Set

R σ ρA ρB ρAB t = evalB ρB (evalA ρA t) ≡ evalAB ρAB t

Once we have R, we can concisely write down the constraint varR which is also already present

in the definition of Fusion.

varR : ER ρA ρB ρAB → (v : Var σ Γ)→ R σ ρA ρB ρAB (‘var v)

Finally, we have a fourth constraint (zroR) saying that SynB and SynAB’s respective zros are

producing related values. This will provide us with just the right pair of related values to use in

Fusion’s lamR.

zroR : rel T R σ {σ :: Γ} SynB.zro SynAB.zro
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10. The Fusion Relation

module Fundamental (F : SynFusion SynA SynB SynAB ER T R) where

open SynFusion F

lemma : Fusion (fromSyn SynA) (fromSyn SynB) (fromSyn SynAB) ER T R EqR

lemma .Fusion.reifyA = id
lemma .Fusion.var0A = SynA.zro
lemma .Fusion._•R_ = _•R_
lemma .Fusion.th^ER = th^ER

lemma .Fusion.varR = varR

lemma .Fusion.oneR = λ ρR → refl
lemma .Fusion.ttR = λ ρR → refl
lemma .Fusion.ffR = λ ρR → refl
lemma .Fusion.appR = λ ρR f t→ cong2 ‘app
lemma .Fusion.ifteR = λ ρR b l r→ cong3 ‘ifte
lemma .Fusion.lamR = λ ρR b bR → cong ‘lam (bR extend zroR)

Figure 10.1: Fundamental Lemma of Syntactic Fusions

Everything else is a direct consequence of the fact we are only considering syntactic semantics.

Given a SynFusion relating three Syntactic semantics, we get a Fusion relating the corresponding

Semantics where CR is EqR, the pointwise lifting of propositional equality. The proof relies on the

way the translation from Syntactic to Semantics is formulated in section 5.5.

We are now ready to give our first examples of Fusions. They are the first results one typically

needs to prove when studying the meta-theory of a language.

10.3 Interactions of Renaming and Substitution

Renaming and Substitution can interact in four ways: all but one of these combinations is equivalent

to a single substitution (the sequential execution of two renamings is equivalent to a single renaming).

These four lemmas are usually proven in painful separation. Here we discharge them by rapid

successive instantiation of our framework, using the earlier results to satisfy the later constraints.

We only present the first instance in full details and then only spell out the SynFusion type signature

which makes explicit the relations used to constraint the input environments.

First, we have the fusion of two sequential renaming traversals into a single renaming. Envi-

ronments are related as follows: the composition of the two environments used in the sequential
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traversals should be pointwise equal to the third one. The composition operator select is defined in

fig. 5.12.

RenRen : SynFusion Syn^Ren Syn^Ren Syn^Ren
(λ ρA ρB → All EqR _ (select ρA ρB)) EqR

RenRen ._•R_ = λ ρR tR → packR λ where
z → tR

(s v)→ lookupR ρR v
RenRen .th^ER = λ ρR ρ→ cong (λ v→ th^Var v ρ) <$>R ρR

RenRen .varR = λ ρR v→ cong ‘var (lookupR ρR v)
RenRen .zroR = refl

Figure 10.2: Syntactic Fusion of Two Renamings

Using the fundamental lemma of syntactic fusions, we get a proper Fusion record on which we

can then use the fundamental lemma of fusions to get the renaming fusion law we expect.

renren : (t : Term σ Γ)→ ren ρ2 (ren ρ1 t) ≡ ren (select ρ1 ρ2) t
renren = let fus = Syntactic.Fundamental.lemma RenRen

in Fusion.fusion fus reflR

Figure 10.3: Corollary: Renaming Fusion Law

A similar proof gives us the fact that a renaming followed by a substitution is equivalent to a

substitution. Environments are once more related by composition.

RenSub : SynFusion Syn^Ren Syn^Sub Syn^Sub
(λ ρA ρB → All EqR _ (select ρA ρB)) EqR

rensub : (t : Term σ Γ)→ sub ρ2 (ren ρ1 t) ≡ sub (select ρ1 ρ2) t
rensub = let fus = Syntactic.Fundamental.lemma RenSub

in Fusion.fusion fus reflR

Figure 10.4: Renaming - Substitution Fusion Law

For the proof that a substitution followed by a renaming is equivalent to a substitution, we

need to relate the environments in a different manner: composition now amounts to applying the

renaming to every single term in the substitution. We also depart from the use of EqR as the relation
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for values: indeed we now compare variables and terms. The relation VarTermR defined in fig. 9.7

relates variables and terms by wrapping the variable in a ‘var constructor and demanding it is equal

to the term.

SubRen : SynFusion Syn^Sub Syn^Ren Syn^Sub
(λ ρA ρB → All EqR _ (ren ρB <$> ρA)) VarTermR

subren : (t : Term σ Γ)→ ren ρ2 (sub ρ1 t) ≡ sub (ren ρ2 <$> ρ1) t
subren = let fus = Syntactic.Fundamental.lemma SubRen

in Fusion.fusion fus reflR

Figure 10.5: Substitution - Renaming Fusion Law

Finally, the fusion of two sequential substitutions into a single one uses a similar notion of

composition. Here the second substitution is applied to each term of the first and we expect the

result to be pointwise equal to the third. Values are once more considered related whenever they are

propositionally equal.

SubSub : SynFusion Syn^Sub Syn^Sub Syn^Sub
(λ ρA ρB → All EqR _ (sub ρB <$> ρA)) EqR

subsub : (t : Term σ Γ)→ sub ρ1 (sub ρ2 t) ≡ sub (sub ρ1 <$> ρ2) t
subsub = let fus = Syntactic.Fundamental.lemma SubSub

in Fusion.fusion fus reflR

Figure 10.6: Substitution Fusion Law

As we are going to see in the following section, we are not limited to Syntactic statements.

10.4 Other Examples of Fusions

The most simple example of fusion of two Semantics involving a non Syntactic one is probably the

proof that Renaming followed by normalization by evaluation’s Eval is equivalent to Eval with an

adjusted environment.
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Fusion of Renaming Followed by Evaluation

As is now customary, we start with an auxiliary definition which will make our type signatures a

lot lighter. It is a specialised version of the relation R introduced when spelling out the Fusion

constraints. Here the relation is PER and the three environments carry respectively Var (i.e. it is a

Thinning) for the first one, and Model values for the two other ones.

R : ∀ {Γ ∆ Θ} σ (ρA : Thinning Γ ∆) (ρB : (∆ −Env) Model Θ)

(ρAB : (Γ −Env) Model Θ)→ Term σ Γ→ Set

R σ ρA ρB ρAB t = rel PER σ (eval ρB (th^Term t ρA)) (eval ρAB t)

We start with the most straightforward of the non-trivial cases: the relational counterpart of

‘app. The KripkeR structure of the induction hypothesis for the function has precisely the strength

we need to make use of the hypothesis for its argument.

APPR : ∀ f t→ R (σ ‘→ τ) ρA ρB ρAB f→ R σ ρA ρB ρAB t→
R τ ρA ρB ρAB (‘app f t)

APPR f t fR tR = fR identity tR

Figure 10.7: Relational Application

The relational counterpart of ‘ifte is reminiscent of the one we used when proving that normali-

sation by evaluation is in simulation with itself in fig. 9.13: we have two arbitrary boolean values

resulting from the evaluation of b in two distinct manners but we know them to be the same thanks

to them being PER-related. The canonical cases are trivially solved by using one of the assumptions

whilst the neutral case can be proven to hold thanks to the relational versions of reify and reflect.

IFTER : ∀ b l r→ R ‘Bool ρA ρB ρAB b→ R σ ρA ρB ρAB l→ R σ ρA ρB ρAB r→
R σ ρA ρB ρAB (‘ifte b l r)

IFTER b l r bR lR rR with eval ρB (th^Term b ρA) | eval ρAB b
... | ‘tt | ‘tt = lR

... | ‘ff | ‘ff = rR

... | ‘neu _ b1 | ‘neu _ b2 =
reflectR σ $ cong3 ‘ifte (‘neu-injective bR) (reifyR σ lR) (reifyR σ rR)

Figure 10.8: Relational If-Then-Else
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The rest of the constraints can be discharged fairly easily; either by using a constructor, combin-

ing some of the provided hypotheses or using general results such as the stability of PER-relatedness

under thinning of the Model values.

RenEval : Fusion Renaming Eval Eval
(λ ρA ρB → All PER _ (select ρA ρB)) PER PER

RenEval .reifyA = id
RenEval .var0A = z
RenEval ._•R_ = λ ρR vR → vR ::R lookupR ρR

RenEval .th^ER = λ ρR ρ→ (λ v→ th^PER _ v ρ) <$>R ρR

RenEval .varR = λ ρR → lookupR ρR

RenEval .oneR = λ ρR → refl
RenEval .ttR = λ ρR → refl
RenEval .ffR = λ ρR → refl
RenEval .appR = λ ρR → APPR

RenEval .ifteR = λ ρR → IFTER

RenEval .lamR = λ ρR b bR → bR

Figure 10.9: Renaming Followed by Evaluation is an Evaluation

By the fundamental lemma of Fusion, we get the result we are looking for: a renaming followed

by an evaluation is equivalent to an evaluation in a touched up environment.

reneval : (th : Thinning Γ ∆) (ρ : (∆ −Env) Model Θ)→ All PER ∆ ρ ρ→
∀ t→ rel PER σ (eval ρ (th^Term t th)) (eval (select th ρ) t)

reneval th ρ ρR t = fusion RenEval (selectR th ρR) t

Figure 10.10: Corollary: Fusion Principle for Renaming followed by Evaluation

This gives us the tools to prove the substitution lemma for evaluation.

Substitution Lemma for Evaluation

Given any semantics, the substitution lemma (see for instance Mitchell and Moggi [1991]) states

that evaluating a term after performing a substitution is equivalent to evaluating the term with

an environment obtained by evaluating each term in the substitution. Formally (t is a term, γ a

substitution, ρ an evaluation environment, _[_] denotes substitution, and ⟦_⟧_ evaluation):

⟦ t [γ] ⟧ ρ ≡ ⟦ t ⟧ (⟦ γ ⟧ ρ)
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This is a key lemma in the study of a language’s meta-theory and it fits our Fusion framework

perfectly. We start by describing the constraints imposed on the environments. They may seem quite

restrictive but they are actually similar to the Uniformity condition described by C. Coquand (2002)

in her detailed account of NBE for a STλC with explicit substitution and help root out exotic term.

First we expect the two evaluation environments to only contain Model values which are PER-

related to themselves. Second, we demand that the evaluation of the substitution in a thinned

version of the first evaluation environment is PER-related in a pointwise manner to the similarly

thinned second evaluation environment. This constraint amounts to a weak commutation lemma

between evaluation and thinning; a stronger version would be to demand that thinning of the result

is equivalent to evaluation in a thinned environment.

SubR : (Γ −Env) Term ∆→ (∆ −Env) Model Θ→ (Γ −Env) Model Θ→ Set
SubR ρA ρB ρAB = All PER ∆ ρB ρB × All PER Γ ρAB ρAB ×

(∀ {Ω} (ρ : Thinning Θ Ω)→
All PER Γ (eval (th^Env (th^Model _) ρB ρ) <$> ρA)

(th^Env (th^Model _) ρAB ρ))

Figure 10.11: Constraints on Triples of Environments for the Substitution Lemma

We can then state and prove the substitution lemma using SubR as the constraint on environments

and PER as the relation for both values and computations.

SubEval : Fusion Substitution Eval Eval SubR PER PER

Figure 10.12: Substitution Followed by Evaluation is an Evaluation

The proof is similar to that of fusion of renaming with evaluation in section 10.4: we start

by defining a notation R to lighten the types, then combinators APPR and IFTER. The cases for

th^ER, _•R_, and varR are a bit more tedious: they rely crucially on the fact that we can prove a

fusion principle and an identity lemma for th^Model as well as an appeal to reneval (fig. 10.10)

and multiple uses of Eval^Sim (fig. 9.14). Because the technical details do not give any additional

hindsight, we do not include the proof here.

109





Chapter 11

Discussion

11.1 Summary

We have demonstrated that we can exploit the shared structure highlighted by the introduction of

Semantics to further alleviate the implementer’s pain by tackling the properties of these Semantics

in a similarly abstract approach.

We characterised, using a first logical relation, the traversals which were producing related

outputs provided they were fed related inputs. We then provided useful instances of this schema thus

proving that syntactic traversals are extensional, that renaming is a special case of substitution or

even that normalisation by evaluation produces equal normal forms provided PER-related evaluation

environments.

A more involved second logical relation gave us a general description of fusion of traversals

where we study triples of semantics such that composing the two first ones would yield an instance of

the third one. We then saw that the four lemmas about the possible interactions of pairs of renamings

and/or substitutions are all instances of this general framework and can be proven sequentially, the

later results relying on the former ones. We then went on to proving the substitution lemma for

Normalisation by Evaluation.

11.2 Related Work

Benton, Hur, Kennedy and McBride’s joint work (2012) was not limited to defining traversals. They

proved fusion lemmas describing the interactions of renaming and substitution using tactics rather
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than defining a generic proof framework like we do. They have also proven the evaluation function

of their denotational semantics correct; however they chose to use propositional equality and to

assume function extensionality rather than resorting to the traditional Partial Equivalence Relation

approach we use.

Through the careful study of the recursion operator associated to each strictly positive datatype,

Malcolm defined proof principles (1990) which can be also used as optimisation principles, just like

our fusion principles. Other optimisations such as deforestation (Wadler [1990b]) or transformation

to an equivalent but tail-recursive program (Tomé Cortiñas and Swierstra [2018]) have seen a generic

treatment.

11.3 Further work

We have now fulfilled one of the three goals we highlighted in chapter 8. The question of finding

more instances of Semantics and of defining a generic notion of Semantics for all syntaxes with

binding is still open. Analogous questions for the proof frameworks arise naturally.

Other Instances

We have only seen a handful of instances of both the Simulation lemma and the Fusion one. They

already give us important lemmas when studying the meta-theory of a language. However there are

potential opportunities for more instances to be defined.

We would like to know whether the idempotence of normalisation by evaluation can be proven

as a corollary of a fusion lemma for evaluation. This would give us a nice example of a case where

the reifyA is not the identity and actually does some important work.

Another important question is whether it is always possible to fuse a preliminary syntactic

traversal followed by a semantics S into a single pass of S.

Other Proof Frameworks

After implementing Simulation and Fusion, we can wonder whether there are any other proof

schemas we can make formal.

As we have explained in chapter 9, Simulation gives the relational interpretation of evaluation.

Defining a similar framework dealing with a single semantics would give us the predicate interpreta-
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tion of evaluation. This would give a generalisation of the fundamental lemma of logical predicates

which, once specialised to substitution, would be exactly the traditional definition one would expect.

Another possible candidate is an Identity framework which would, provided that some constraints

hold of the values in the environment, an evaluation is the identity. So far we have only related pairs

of evaluation results but to prove an identity lemma we would need to relate the evaluation of a term

to the original term itself. Although seemingly devoid of interest, identity lemmas are useful in

practice both when proving or when optimising away useless traversals.

We actually faced these two challenges when working on the POPLMark Reloaded challenge

(Abel et al. [2019]). We defined the proper generalisation of the fundamental lemma of logical

predicates but could only give ad-hoc identity lemmas for renaming (and thus substitution because

they are in simulation).

Generic Proof Frameworks

In the next part, we are going to define a universe of syntaxes with binding and a generic notion

of semantics over these syntaxes. We naturally want to be able to also prove generic results about

these generic traversals. We are going to have to need to generalise the proof frameworks to make

them syntax generic.
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Part III

A Universe of Well Kinded-and-Scoped

Syntaxes with Binding, their Programs

and their Proofs
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Chapter 12

A Plea For a Universe of Syntaxes with

Binding

Now that we have a way to structure our traversals and proofs about them, we can tackle a practical

example. Let us look at the formalisation of an apparently straightforward program transformation:

the inlining of let-bound variables by substitution and the proof of a simple correctness lemma.

In this exercise we have two languages: the source (S), which has let-bindings, and the target

(T), which only differs in that it does not. We want to write a function elaborating source terms into

target ones and then prove that each reduction step on the source term can be simulated by zero or

more reduction steps on its elaboration.

Breaking the task down, we need to start by defining the two languages. We already know how

to do this from chapter 4. In a textbook such as Pierce’s (2002) we would simply start by defining T

and then state that S is T extended with let bindings.

<T> ::= x | <T><T> | λx.<T>

<S> ::= · · · | let x = <S> in <S>

When formalising this definition however we need to write down the same constructor types

twice for ‘var, ‘lam, and ‘app as demonstrated in fig. 12.1.

Ignoring for now the Semantics framework, we jump straight to defining the program transfor-

mation we are interested in. Given an environment of target terms, it will elaborate a source term

into a target one.
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data S : Type −Scoped where
‘var : ∀[ Var σ⇒ S σ ]
‘lam : ∀[ (σ ::_) ⊢ S τ⇒ S (σ ‘→ τ) ]
‘app : ∀[ S (σ ‘→ τ)⇒ S σ⇒ S τ ]
‘let : ∀[ S σ⇒ (σ ::_) ⊢ S τ⇒ S τ ]

data T : Type −Scoped where
‘var : ∀[ Var σ⇒ T σ ]
‘lam : ∀[ (σ ::_) ⊢ T τ⇒ T (σ ‘→ τ) ]
‘app : ∀[ T (σ ‘→ τ)⇒ T σ⇒ T τ ]

Figure 12.1: Source and Target Languages

Informally, we could state that it proceeds by a simple case distinction. On the one hand all

the constructors that exist in both languages should be mapped to their immediate counterpart and

their subterms recursively simplified. And on the other a let-binding should be elaborated away by

elaborating the let-bound expression first, putting the result into the evaluation environment and

returning the result of elaborating the body in the thus extended environment.

In practice however things are more complex. We notice immediately that we need to prove T

to be Thinnable first so that we may push the environment of inlined terms under binders. And even

though our informal description highlighted that all cases but one are purely structural, we still need

to painstakingly go through them one by one.

unlet : (Γ −Env) T ∆→ S σ Γ→ T σ ∆
unlet ρ (‘var v) = lookup ρ v
unlet ρ (‘lam b) = ‘lam (unlet (th^Env th^T ρ extend • ‘var z) b)
unlet ρ (‘app f t) = ‘app (unlet ρ f) (unlet ρ t)
unlet ρ (‘let e t) = unlet (ρ • unlet ρ e) t

Figure 12.2: Let-Inlining Traversal

We now want to state our correctness lemma: each reduction step on a source term can be

simulated by zero or more reduction steps on its elaboration. We need to define an operational

semantics for each language. We only show the one for S in fig. 12.3: the one for T is exactly the

same minus the ‘let-related rules. We immediately notice that to write down the type of β we need

to define substitution (and thus renaming) for each of the languages.

In the course of simply stating our problem, we have already had to define two eerily similar

languages, spell out all the purely structural cases when defining the transformation we are interested

in and implement four auxiliary traversals which are essentially the same.
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data _⊢_∋_{S_ : ∀ Γ σ→ S σ Γ→ S σ Γ→ Set where
-- computation
β : ∀ (b : S τ (σ :: Γ)) u→ Γ ⊢ τ ∋ ‘app (‘lam b) u{S b ⟨ u /0⟩^S
ζ : ∀ e (t : S τ (σ :: Γ))→ Γ ⊢ τ ∋ ‘let e t{S t ⟨ e /0⟩^S
-- structural

‘lam : (σ :: Γ) ⊢ τ ∋ b{S c→ Γ ⊢ σ ‘→ τ ∋ ‘lam b{S ‘lam c
‘appl : Γ ⊢ σ ‘→ τ ∋ f{S g→ ∀ t→ Γ ⊢ τ ∋ ‘app f t{S ‘app g t
‘appr : ∀ f→ Γ ⊢ σ ∋ t{S u→ Γ ⊢ τ ∋ ‘app f t{S ‘app f u
‘letl : Γ ⊢ σ ∋ d{S e→ ∀ t→ Γ ⊢ τ ∋ ‘let d t{S ‘let e t
‘letr : ∀ e→ (σ :: Γ) ⊢ τ ∋ t{S u→ Γ ⊢ τ ∋ ‘let e t{S ‘let e u

Figure 12.3: Operational Semantics for the Source Language

In the course of proving the correctness lemma (which we abstain from doing here), we discover

that we need to prove eight lemmas about the interactions of renaming, substitution, and let-inlining.

They are all remarkably similar, but must be stated and proved separately (e.g, as in Benton et al.

[2012]).

Even after doing all of this work, we have only a result for a single pair of source and target

languages. If we were to change our languages S or T, we would have to repeat the same work all

over again or at least do a lot of cutting, pasting, and editing. And if we add more constructs to both

languages, we will have to extend our transformation with more and more code that essentially does

nothing of interest.

This state of things is not inevitable. After having implemented numerous semantics in part I,

we have gained an important insight: the structure of the constraints telling us how to define a

Semantics is tightly coupled to the definition of the language. So much so that we should in fact be

able to derive them directly from the definition of the language.

This is what we set out to do in this part and in particular in section 16.4 where we define a

generic notion of let-binding to extend any language with together with the corresponding generic

let-inlining transformation.
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Chapter 13

A Primer on Universes of Data Types

To achieve a syntax-generic presentation of the work presented in Parts I and II, we need to find a

language to talk about syntaxes in general. The solution we adopt is inspired by previous work on

data-generic constructions.

There is a long tradition of data-generic developments in dependently typed languages because,

as Altenkirch and McBride remark, “generic programming is just programming” within dependent

types (2002). This style of programming is typified by Benke, Dybjer and Jansson’s universes for

generic programs and proofs (2003) or Chapman, Dagand, McBride and Morris’ (CDMM, 2010)

universe of data types. This last work is inspired by Dybjer and Setzer’s finite axiomatisation of

Inductive-Recursive definitions (1999).

All of these proceed by an explicit definition of syntactic codes for data types that are given

a semantics as objects in the host language. Users can perform induction on these codes to write

generic programs tackling all of the data types one can obtain this way. In this chapter we recall

the main aspects of this construction we are interested in to build up our generic representation of

syntaxes with binding.

13.1 Datatypes as Fixpoints of Strictly Positive Functors

The first component of the definition of CDMM’s universe is an inductive type of Descriptions of

strictly positive functors and their fixpoints.
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Descriptions and Their Meaning as Functors

Our type of descriptions represents functors from SetJ to SetI . These functors correspond to I-

indexed containers of J-indexed payloads. Keeping these index types distinct prevents mistaking

one for the other when constructing the interpretation of descriptions. Later of course we can use

these containers as the nodes of recursive datastructures by interpreting some payloads sorts as

requests for subnodes (Altenkirch et al. [2015]) i.e. we will identify I and J when the time comes to

build a fixpoint.

We will interleave the definition of the type of descriptions and the recursive function ⟦_⟧

assigning a meaning to them provided it is handed the meaning to attach to the substructures.

Interpretation of descriptions gives rise to right-nested tuples terminated by equality constraints.

data Desc (I J : Set) : Set1 where ⟦_⟧ : Desc I J→ (J→ Set)→ (I→ Set)

First, ‘σ stores data. This can be used to either attach a payload to a node in which case the

rest of the description will be constant in the value stored, or offer a choice of possible descriptions

computed from the stored value. It is interpreted as a Σ type in the host language.

‘σ : (A : Set)→ (A→ Desc I J)→

Desc I J

⟦ ‘σ A d ⟧ X i = Σ A (λ a→ ⟦ d a ⟧ X i)

Then ‘X attaches a recursive substructure indexed by J. Its interpretation is unsurprisingly a

simple call to the argument giving a meaning to substructures.

‘X : J→ Desc I J→ Desc I J ⟦ ‘X j d ⟧ X i = X j × ⟦ d ⟧ X i

Finally, ‘■ to stop with a particular index value. Its interpretation makes sure that the index we

demanded corresponds to the one we were handed.

‘■ : I→ Desc I J ⟦ ‘■ j ⟧ X i = i ≡ j

Note that our universe definition precludes higher-order branching by choice: we are interested

in terms and these are first-order objects.

Collecting all of these constructors, and their interpretations we get the two following definition.

These constructors give the programmer the ability to build up the data types they are used

to. We present below two descriptions of common datatypes side-by-side with their high level
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data Desc (I J : Set) : Set1 where
‘σ : (A : Set)→ (A→ Desc I J)→

Desc I J
‘X : J→ Desc I J→ Desc I J
‘■ : I→ Desc I J

⟦_⟧ : Desc I J→ (J→ Set)→ (I→ Set)
⟦ ‘σ A d ⟧ X i = Σ A (λ a→ ⟦ d a ⟧ X i)
⟦ ‘X j d ⟧ X i = X j × ⟦ d ⟧ X i
⟦ ‘■ j ⟧ X i = i ≡ j

Figure 13.1: Descriptions and their interpretation as functors

syntax in Agda. These definition using a high level syntax can be automatically elaborated into

their corresponding descriptions as demonstrated by Dagand and McBride (2012). This is however

outside the scope of this thesis.

List For instance, the functor corresponding to lists of elements in A stores a Boolean which

stands for whether the current node is the empty list or not. Depending on its value, the rest of the

description is either the “stop” token or a pair of an element in A and a recursive substructure i.e.

the tail of the list. The List type is unindexed, we represent the lack of an index with the unit type ⊤.

listD : Set→ Desc ⊤ ⊤
listD A = ‘σ Bool $ λ isNil→

if isNil then ‘■ tt
else ‘σ A (λ _→ ‘X tt (‘■ tt))

data List (A : Set) : Set where
-- choice of two constructors
[] : List A
_::_ : A→ List A→ List A

Figure 13.2: The Description of the base functor for List A

Vec Indices can be used to enforce invariants. For example, the type (Vec A n) of length-indexed

lists. It has the same structure as the definition of listD. We start with a Boolean distinguishing the

two constructors: either the empty list (in which case the branch’s index is enforced to be 0) or a

non-empty one in which case we store a natural number n, the head of type A and a tail of size n

(and the branch’s index is enforced to be (suc n).

Datatypes as Least Fixpoints

All the functors obtained as meanings of Descriptions are strictly positive. So we can build the least

fixpoint of the ones that are endofunctors i.e. the ones for which I equals J. This fixpoint is called µ

and we provide its definition in fig. 13.4.
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vecD : Set→ Desc N N
vecD A = ‘σ Bool $ λ isNil→

if isNil then ‘■ 0
else ‘σ N (λ n→ ‘σ A (λ _→

‘X n (‘■ (suc n))))

data Vec (A : Set) : N→ Set where
-- choice of two constructors
[] : Vec A 0
_::_ : ∀ {n}→ A→

Vec A n→ Vec A (suc n)

Figure 13.3: The Description of the base functor for Vec A n

data µ (d : Desc I I) : Size→ I→ Set where
‘con : ⟦ d ⟧ (µ d s) i→ µ d (↑ s) i

Figure 13.4: Least Fixpoint of an Endofunctor

Equipped with this fixpoint operator, we can go back to our examples redefining lists and vectors

as instances of this framework. We can see in Figure 13.5 that we can recover the types we are used

to thanks to this least fixpoint (we only show the list example). Pattern synonyms let us hide away

the encoding: users can use them to pattern-match on lists and Agda conveniently resugars them

when displaying a goal.

pattern _::’_ x xs = (false , x , xs , refl)
pattern _::_ x xs = ‘con (x ::’ xs)

List : Set→ Set
List A = µ (listD A)∞ tt

pattern []’ = (true , refl)
pattern [] = ‘con []’

example : List (List Bool)
example = (false :: []) :: (true :: []) :: []

Figure 13.5: List Type, Patterns and Example

Convention 8 (Patterns for Layers and Datatypes) Whenever we work with a specific example

in a universe of datatypes or syntaxes, we introduce a set of patterns that work on a single ⟦_⟧-

defined layer (the primed version of the pattern) and one that works on full µ-defined values (the

classic version of the pattern). In most cases users will only use the classic version of the pattern to

write their programs. But when using generic fold-like function (see the next section) they may be

faced with a single layer.
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Now that we have the ability to represent the data we are interested it, we are only missing the

ability to write programs manipulating it.

13.2 Generic Programming over Datatypes

The payoff for encoding our datatypes as descriptions is that we can define generic programs for

whole classes of data types. The decoding function ⟦_⟧ acted on the objects of SetJ , and we will

now define the function fmap by recursion over a code d. It describes the action of the functor

corresponding to d over morphisms in SetJ . This is the first example of generic programming over

all the functors one can obtain as the meaning of a description.

fmap : (d : Desc I J)→ ∀[ X⇒ Y ]→ ∀[ ⟦ d ⟧ X⇒ ⟦ d ⟧ Y ]
fmap (‘σ A d) f (a , v) = (a , fmap (d a) f v)
fmap (‘X j d) f (r , v) = (f r , fmap d f v)
fmap (‘■ i) f t = t

Figure 13.6: Action on Morphisms of the Functor corresponding to a Description

Once we take the fixpoint of such functors, we expect to be able to define an iterator. It is given

by the definition of fold d, our second generic program over datatypes. In fig. 13.4, we skipped over

the Size (Abel [2010]) index added to the inductive definition of µ. It plays a crucial role in getting

the termination checker to see that fold is a total function, just like sizes played a crucial role in

proving that map^Rose was total in section 3.3.

fold : (d : Desc I I)→ ∀[ ⟦ d ⟧ X⇒ X ]→ ∀[ µ d s⇒ X ]
fold d alg (‘con t) = alg (fmap d (fold d alg) t)

Figure 13.7: Eliminator for the Least Fixpoint

Finally, fig. 13.8 demonstrates that we can get our hands on the types’ eliminators we are used

to by instantiating the generic fold we have just defined. Note that we are here using the primed

versions of the patterns: the algebra of a fold takes as argument a single layer of data where the

substructures have already been replaced with inductive hypotheses.
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foldr : (A→ B→ B)→ B→ List A→ B
foldr c n = fold (listD _) $ λ where

[]’ → n
(hd ::’ rec)→ c hd rec

Figure 13.8: The Eliminator for List

We can readily use this eliminator to define e.g. append, and then flatten for lists and check that

it behaves as we expect by running it on the example introduced in fig. 13.5.

_++_ : List A→ List A→ List A
xs ++ ys = foldr _::_ ys xs

flatten : List (List A)→ List A
flatten = foldr _++_ []

_ : flatten example ≡ false :: true :: []
_ = refl

Figure 13.9: Applications

The CDMM approach therefore allows us to generically define iteration principles for all data

types that can be described. These are exactly the features we desire for a universe of syntaxes with

binding, so in the next section we are going to see whether we could use CDMM’s approach to

represent abstract syntax trees equipped with a notion of binding.

13.3 A Free Monad Construction

The natural candidate to represent trees with binding and thus variables is to take not the least

fixpoint of a strictly positive functor but rather the corresponding free monad. It can be easily

defined by reusing the interpretation function, adding a special case corresponding to the notion of

variable we may want to use.

The pure constructor already gives us a unit for the free monad, all we have left to do is to

define the Kleisli extension of a morphism. The definition goes by analysis over the term in the free

monad. The pure case is trivial and, once again, the node case essentially amounts to using fmap to

recursively call kleisli on all of the subterms of a node.
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13.3. A Free Monad Construction

data Free (d : Desc I I) : Size→ (I→ Set)→ (I→ Set) where
pure : ∀[ X ⇒ Free d (↑ s) X ]
node : ∀[ ⟦ d ⟧ (Free d s X)⇒ Free d (↑ s) X ]

Figure 13.10: Free Indexed Monad of a Description

kleisli : ∀ d→ ∀[ X⇒ Free d∞ Y ]→ ∀[ Free d s X⇒ Free d∞ Y ]
kleisli d f (pure x) = f x
kleisli d f (node t) = node (fmap d (kleisli d f) t)

Figure 13.11: Kleisli extension of a morphism with respect to Free d

This gives us a notion of trees with variables in them and a substitution operation replacing

these variables with entire subtrees. The functor underlying any well scoped and sorted syntax can

be coded as some Desc (I × List I) (I × List I), with the free monad construction from CDMM

uniformly adding the variable case. Whilst a good start, Desc treats its index types as unstructured,

so this construction is blind to what makes the List I index a scope. The resulting ‘bind’ operator

demands a function which maps variables in any sort and scope to terms in any sort and scope.

However, the behaviour we need is to preserve sort while mapping between specific source and

target scopes which may differ. We need to account for the fact that scopes change only by extension,

and hence that our specifically scoped operations can be pushed under binders by weakening.

We will see in the next chapter how to modify CDMM’s universe construction to account for

variable binding and finally obtain a scope-aware universe.
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Chapter 14

A Universe of Scope Safe and Well

Kinded Syntaxes

Our universe of scope safe and well kinded syntaxes follows the same principle as CDMM’s universe

of datatypes, except that we are not building endofunctors on SetI any more but rather on I −Scoped

(defined in fig. 4.5).

We now think of the index type I as the sorts used to distinguish terms in our embedded language.

The ‘σ and ‘■ constructors are as in the CDMM Desc type, and are used to represent data and index

constraints respectively.

14.1 Descriptions and Their Meaning as Functors

Following our approach in the previous chapter, we are going to interleave the definition of the

indexed datatype of descriptions and the meaning function ⟦_⟧ associated to it. They are essentially

identical to their counterparts defining a universe of datatype in chapter 13 except for two aspects.

First, the constructor marking the presence of a recursive substructure will take an extra (List I)

argument specifying the sorts of the newly bound variables that will be present in the subterm.

Second, the type of the meaning function is more complex. It does not translate descriptions into

an endofunctor on (I −Scoped); it is more general than that. The function takes an X of type List I

→ I −Scoped to interpret demand for recursive substructures. This first list argument corresponds

to the newly bound variables that will be present in the subterm and having it as a separate argument
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14. A Universe of Scope Safe andWell Kinded Syntaxes

will play a crucial role when defining the description’s semantics as a binding structure in figs. 14.1

and 14.3.

Without further ado, let us look at the definition. The declaration of both the universe of

descriptions and the meaning function associated to them first.

data Desc (I : Set) : Set1 where

⟦_⟧ : Desc I→ (List I→ I −Scoped)→ I −Scoped

The ‘σ is exactly identical to that of the universe of data. It also serves the same purpose: either

provide the ability to store a payload, or a tag upon which the shape of the rest of the description

will depend.

‘σ : (A : Set)→ (A→ Desc I)→ Desc I

⟦ ‘σ A d ⟧ X i Γ = Σ A (λ a→ ⟦ d a ⟧ X i Γ)

The case of interest is the one for recursive substructures. As explained above, it packs an extra

argument specifying the number and sorts of the newly bound variables. For a λ-abstraction, this

list would be a singleton, meaning that a single extra variable is in scope in the body of the lambda;

for both of the arguments of an application node the list would be empty.

‘X : List I→ I→ Desc I→ Desc I

⟦ ‘X ∆ j d ⟧ X i Γ = X ∆ j Γ × ⟦ d ⟧ X i Γ

Finally, the stop case is identical to that of the universe of data. And its role is the same: to

enforce that the branch selected by the user has the sort that was demanded.

‘■ : I→ Desc I

⟦ ‘■ j ⟧ X i Γ = i ≡ j

The astute reader may have noticed that ⟦_⟧ is uniform in X and Γ; however refactoring ⟦_⟧ to

use the partially applied X _ _Γ following this observation would lead to a definition harder to use

with the combinators for indexed sets described in section 3.5 which make our types much more

readable.
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A Syntactic Meaning: De Bruijn Scopes

If we pre-compose (using _⊢_ defined in section 3.5) the meaning function ⟦_⟧ with a notion of

‘de Bruijn scopes’ (denoted Scope here) that turns any (I −Scoped) family into a function of type

(List I→ I −Scoped) by appending the two List indices, we recover a meaning function producing

an endofunctor on I −Scoped. It corresponds to the syntactic interpretation of the description we

expect when building terms: the newly bound variables are simply used to extend the ambient

context.

Scope : I −Scoped→ List I→ I −Scoped
Scope T ∆ i = (∆ ++_) ⊢ T i

Figure 14.1: De Bruijn Scopes

So far we have only shown the action of the functor on objects; its action on morphisms is given

by a function fmap defined by induction over the description just like in Section 13. We give fmap

the most general type we can, the action of functors is then a specialized version of it.

fmap : (d : Desc I)→ (∀ Θ i→ X Θ i Γ→ Y Θ i ∆)→ ⟦ d ⟧ X i Γ→ ⟦ d ⟧ Y i ∆
fmap (‘σ A d) f (a , t) = a , fmap (d a) f t
fmap (‘X ∆ j d) f (x , t) = f ∆ j x , fmap d f t
fmap (‘■ i) f eq = eq

Figure 14.2: Action of Syntax Functors on Morphism

14.2 Terms as Free Relative Monads

The endofunctors thus defined are strictly positive and we can take their fixpoints. As we want to

define the terms of a language with variables, instead of considering the initial algebra, this time

we opt for the free relative monad (Altenkirch et al. [2010, 2014]) with respect to the functor Var.

The ‘var constructor corresponds to return, and we will define bind (also known as the parallel

substitution sub) in the next section. We have once more a Size index to get all the benefits of type

based termination checking when defining traversals over terms.
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data Tm (d : Desc I) : Size→ I −Scoped where
‘var : ∀[ Var i ⇒ Tm d (↑ s) i ]
‘con : ∀[ ⟦ d ⟧ (Scope (Tm d s)) i⇒ Tm d (↑ s) i ]

Figure 14.3: Term Trees: The Free Var-Relative Monads on Descriptions

Because we often use closed terms of size∞ (that is to say fully-defined) in concrete examples,

we name this notion.

TM : Desc I→ I→ Set
TM d i = Tm d∞ i []

Figure 14.4: Type of Closed Terms

Three Small Examples of Syntaxes With Binding

Rather than immediately coming back to our original example which has quite a few constructors,

we are going to give codes for 3 variations on the λ-calculus to show the whole spectrum of

syntaxes: untyped, well sorted, and well typed by construction. In each example, we will display

the description side by side with the high level inductive family declaration it encodes. We start

with the simplest example to lay down the foundations: the well scoped untyped λ-calculus. We

then introduce a well scoped and well sorted but not well typed bidirectional language. We finally

consider the code for the intrinsically typed STλC. In all examples, the variable case will be added

by the free monad construction so we only have to describe the other constructors.

Untyped languages are, as Harper would say, uni-typed syntaxes and can thus be modelled using

descriptions whose kind parameter is the unit type (⊤). We take the disjoint sum of the respective

descriptions for the application and λ-abstraction constructors by using the classic construction in

type theory we have already deployed once for lists and once for vectors: a dependent pair of a Bool

picking one of the two branches and a second component whose type is either that of application or

λ-abstraction depending on that boolean.

Application has two substructures (‘X) which do not bind any extra argument and λ-abstraction

has exactly one substructure with precisely one extra bound variable. Both constructors’ descriptions
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end with (‘■ tt), the only inhabitant of the trivial sort.

UTLC : Desc ⊤
-- var will be freely adjoined
UTLC = ‘σ Bool $ λ isApp→ if isApp

then ‘X [] tt (‘X [] tt (‘■ tt))
else ‘X (tt :: []) tt (‘■ tt)

data UTLC : ⊤ −Scoped where
‘var : ∀[ Var _⇒ UTLC _ ]
-- choice of two constructors:
‘app : ∀[ UTLC _⇒ UTLC _⇒ UTLC _ ]
‘lam : ∀[ (tt ::_) ⊢ UTLC _⇒ UTLC _ ]

Figure 14.5: Description of The Untyped Lambda Calculus

Bidirectional STLC Our second example is a bidirectional (Pierce and Turner [2000]) language

hence the introduction of a notion of Mode. Each term is either part of the Synth (the terms whose

type can be synthesised) or Check (the terms whose type can be checked) fraction of the language.

This language has four constructors which we list in the ad-hoc ‘Bidi type of constructor tags, its

decoding Bidi is defined by a pattern-matching λ-expression in Agda. Application and λ-abstraction

behave as expected, with the important observation that λ-abstraction binds a Synthesisable term.

The two remaining constructors correspond to changes of direction: one can freely Embbed

inferrable terms as checkable ones whereas we require a type annotation when forming a Cut.

data Mode : Set where
Check Synth : Mode

data ‘Bidi : Set where
App Lam Emb : ‘Bidi
Cut : Type→ ‘Bidi

Bidi : Desc Mode
Bidi = ‘σ ‘Bidi $ λ where
-- var will be freely adjoined
App → ‘X [] Synth (‘X [] Check

(‘■ Synth))
Lam → ‘X (Synth :: []) Check

(‘■ Check)
(Cut σ)→ ‘X [] Check (‘■ Synth)
Emb → ‘X [] Synth (‘■ Check)

data Bidi : Mode −Scoped where
‘var : ∀[ Var m⇒ Bidi m ]
-- choice of four constructors:
‘app : ∀[ Bidi Synth⇒ Bidi Check⇒

Bidi Synth ]
‘lam : ∀[ (Synth ::_) ⊢ Bidi Check⇒

Bidi Check ]
‘cut : Type→ ∀[ Bidi Check⇒ Bidi Synth ]
‘emb : ∀[ Bidi Synth⇒ Bidi Check ]

Figure 14.6: Description for the bidirectional STLC
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Convention 9 (Embed and Cut) When working with a bidirectional syntax, we systematically

call the change of direction from a synthesisable to a checkable term an embedding as no extra

information is tacked onto the term.

In the other direction we use terminology from proof theory because we recognise the con-

nection between cut-elimination and βι reductions. Putting a constructor-headed checkable in a

synthesisable position is the first step to creating a redex. Hence the analogy.

Intrinsically typed STLC In the typed case, we are back to two constructors: the terms are fully

annotated and therefore it is not necessary to distinguish between Modes anymore. We need our

tags to carry extra information about the types involved so we use once more and ad-hoc datatype

‘STLC, and define its decoding STLC by a pattern-matching λ-expression.

Application has two substructures none of which bind extra variables. The first has a function

type and the second the type of its domain. The overall type of the branch is enforced to be that of

the function’s codomain by the ‘■ constructor.

λ-abstraction has exactly one substructure of type τ with a newly bound variable of type σ. The

overall type of the branch is once more enforced by ‘■: it is (σ ‘→ τ).

data ‘STLC : Set where
App Lam : Type→ Type→ ‘STLC

STLC : Desc Type
-- var will be freely adjoined
STLC = ‘σ ‘STLC $ λ where

(App σ τ)→ ‘X [] (σ ‘→ τ)
(‘X [] σ (‘■ τ))

(Lam σ τ)→ ‘X (σ :: []) τ (‘■ (σ ‘→ τ))

data STLC : Type −Scoped where
‘var : ∀[ Var σ⇒ STLC σ ]
-- choice of two constructors:
‘app : ∀[ STLC (σ ‘→ τ)⇒

STLC σ⇒ STLC τ ]
‘lam : ∀[ (σ ::_) ⊢ STLC τ⇒ STLC (σ ‘→ τ) ]

Figure 14.7: Description of the Simply Typed Lambda Calculus

For convenience we use Agda’s pattern synonyms corresponding to the original constructors

in section 4.2: ‘app for application and ‘lam for λ-abstraction. These synonyms can be used when

pattern-matching on a term and Agda resugars them when displaying a goal. This means that the

end user can seamlessly work with encoded terms without dealing with the gnarly details of the

encoding. These pattern definitions can omit some arguments by using “_”, in which case they
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will be filled in by unification just like any other implicit argument: there is no extra cost to using

an encoding! The only downside is that the language currently does not allow the user to specify

type annotations for pattern synonyms. We only include examples of pattern synonyms for the two

extreme examples, the definition for Bidi are similar.

pattern ‘app f t = ‘con (true , f , t , refl)
pattern ‘lam b = ‘con (false , b , refl)
pattern ‘app f t = ‘con (App _ _ , f , t , refl)
pattern ‘lam b = ‘con (Lam _ _ , b , refl)

Figure 14.8: Respective Pattern Synonyms for UTLC and STLC

As a usage example of these pattern synonyms, we define the identity function in all three

languages in Figure 14.9, using the same caret-based naming convention we introduced earlier. The

code is virtually the same except for Bidi which explicitly records the change of direction from

Check to Synth.

id^U : TM UTLC tt
id^U = ‘lam (‘var z)

id^B : TM Bidi Check
id^B = ‘lam (‘emb (‘var z))

id^S : TM STLC (σ ‘→ σ)
id^S = ‘lam (‘var z)

Figure 14.9: Identity function in all three languages

Porting our Earlier Running Example

To contrast and compare the two approaches, let us write down side by side the original definition

of the intrinsically typed STLC we introduced in fig. 4.7 and its encoding as a description.

We are going to take this definition apart, considering the different classes of constructors

that it introduces and how to adequately represent them using our universe of description. Our

representation will once more rely on a type ‘Term of tags listing the available term constructors

together with a description Term using a dependent pair to offer users the ability to pick the

constructor of their choosing. That is to say that we are considering the following three definitions.
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data Term : Type −Scoped where data ‘Term : Set where

Term : Desc Type

Term = ‘σ ‘Term $ λ where

The most basic of constructors are the one with no subterms. The tag associated to them is a

simple constructor and their decoding just uses the stop description constructor (‘■) to enforce that

their return type matches the one specified in the original definition.

‘one : ∀[ Term ‘Unit ]

‘tt : ∀[ Term ‘Bool ]

‘ff : ∀[ Term ‘Bool ]

One TT FF : ‘Term

One→ ‘■ ‘Unit

TT → ‘■ ‘Bool

FF → ‘■ ‘Bool

Next we have the constructors that have subterms in which no extra variable is bound. Their

encoding will use the constructor for recursive substructures and apply it to the empty list to reflect

that fact. Additionally, both ‘app and ‘ifte store some additional information: the type of the subterms

at hand. We will push this information into the tags just like we did in the previous section. We once

more use the stop constructor to enforce that the constructors’ respective return types are faithfully

reproduced.

‘app : ∀[ Term (σ ‘→ τ)

⇒ Term σ

⇒ Term τ ]

‘ifte : ∀[ Term ‘Bool

⇒ Term σ⇒ Term σ

⇒ Term σ ]

App : Type→ Type→ ‘Term

Ifte : Type→ ‘Term

(App σ τ)→ ‘X [] (σ ‘→ τ) (‘X [] σ (‘■ τ))

(Ifte σ) → ‘X [] ‘Bool (‘X [] σ (‘X [] σ (‘■ σ)))

Finally, we have the λ-abstraction constructor. Its body is defined in a context extended with

exactly one newly bound variable whose type is the domain of the overall term’s function type. This

is modelled by applying the constructor for recursive substructure to a singleton list.
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‘lam : ∀[ (σ ::_) ⊢ Term τ

⇒ Term (σ ‘→ τ) ]

Lam : Type→ Type→ ‘Term

(Lam σ τ)→ ‘X (σ :: []) τ (‘■ (σ ‘→ τ))

This concludes the translation. It clearly is a very mechanical process and thus could be auto-

mated using reflection (van der Walt and Swierstra [2012], Christiansen [2016]). Such automation

is however outside the scope of this thesis.

14.3 Common Combinators and Their Properties

In order to avoid repeatedly re-encoding the same logic, we introduce generic combinators demon-

strating that descriptions are closed under sums and products.

Closure under Sums

As we wrote, the construction used in fig. 14.5 to define the syntax for the untyped λ-calculus is

classic. It is actually the third time (the first and second times being the definition of listD and vecD

in figs. 13.2 and 13.3) that we use a Bool to distinguish between two constructors. We define once

and for all the disjoint union of two descriptions thanks to the _‘+_ combinator in fig. 14.10.

_‘+_ : Desc I→ Desc I→ Desc I
d ‘+ e = ‘σ Bool $ λ isLeft→

if isLeft then d else e

Figure 14.10: Descriptions are Closed Under Disjoint Sums

It comes together with an appropriate eliminator case defined in fig. 14.11 which, given two

continuations, picks the one corresponding to the chosen branch.

case : (⟦ d ⟧ X i Γ→ A)→ (⟦ e ⟧ X i Γ→ A)→
(⟦ d ‘+ e ⟧ X i Γ→ A)

case l r (true , t) = l t
case l r (false , t) = r t

Figure 14.11: Eliminator for _‘+_

137



14. A Universe of Scope Safe andWell Kinded Syntaxes

A concrete use case for the disjoint union combinator and its eliminator will be given in

section 16.4 where we explain how to seamlessly enrich any existing syntax with let-bindings and

how to use the Semantics framework to elaborate them away.

Closure under Product

In our paper (Allais et al. [2018a]), we claimed that the universe was not closed under product

because two arbitrary right-nested products can disagree on the sort of the term they are constructing.

Andreas Nuyts however corrected us in private communications: given that ‘σ can store arbitrary

data, we can in particular use it to store a proof that two sorts are equal. This enables to define a

product that allows the pairing of exactly the terms that do agree.

The definition goes in two steps. First we define a restriction operator _%_ which, given a

description and a sort, produces the restriction of this description to only building terms of that sort.

_‘%_ : Desc I→ I→ Desc I
‘σ A d ‘% v = ‘σ A (λ a→ d a ‘% v)
‘X ∆ j d ‘% v = ‘X ∆ j (d ‘% v)
‘■ i ‘% v = ‘σ (i ≡ v) (λ _→ ‘■ i)

Figure 14.12: Restriction of a description to a specific sort

It proceeds by induction on the input description and is purely structural in all the cases except

for the ‘■ one. In this last case, we insist that the sort being returned happens to be equal to the one

we are restricting the description by.

We can now define the product proper: we take two descriptions and proceed by induction on

the first. All the cases are once again purely structural except for the ‘■ one where we get our hands

on the sort of the term the first description builds and use it to restrict the second one description.

_‘*_ : Desc I→ Desc I→ Desc I
‘σ A d ‘* e = ‘σ A (λ a→ d a ‘* e)
‘X ∆ j d ‘* e = ‘X ∆ j (d ‘* e)
‘■ i ‘* e = e ‘% i

Figure 14.13: Product of descriptions
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For these definitions to be effective, we need to be able to build such pairs and take them apart.

We give the type but leave out the slightly technical implementation of curry and uncurry, and invite

the interested reader to try to re-implement themselves or look at the accompanying code.

curry : {d e : Desc I} {A : Set}→
(⟦ d ‘* e ⟧ X i Γ→ A)→
(⟦ d ⟧ X i Γ→ ⟦ e ⟧ X i Γ→ A)

uncurry : {d e : Desc I} {A : Set}→
(⟦ d ⟧ X i Γ→ ⟦ e ⟧ X i Γ→ A)→
(⟦ d ‘* e ⟧ X i Γ→ A)

Figure 14.14: Building and taking pairs apart

Now that we are equipped with descriptions and well scoped and sorted terms as their free

relative monads, we are going to study the generic programs traversing them.
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Chapter 15

Generic Scope Safe and Well Kinded

Programs for Syntaxes

The constraints forming what we called a Semantics in section 5.4 have a shape determined by

the specific language at hand: the simply typed λ-calculus. These constraints could be divided

in two groups: that arising from our need to push environment values under binders and those in

one-to-one correspondence with constructors of the language.

By carefully studying the way in which the language-specific constraints are built, we ought to

be able to define a language-agnostic notion of Semantics valid for all of the syntaxes with binding

our universe of descriptions can accommodate.

Dissecting the Components of A Semantics

Recall that the language we used as our running example was the simply-typed λ-calculus with a

unit and boolean type. The language constructs with the simplest associated Semantics constraints

were the constructors for constants in the language. We recall both the type of the constructors and

that of their semantical counterparts below.
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‘one : ∀[ Term ‘Unit ]

‘tt : ∀[ Term ‘Bool ]

‘ff : ∀[ Term ‘Bool ]

one : ∀[ C ‘Unit ]

tt : ∀[ C ‘Bool ]

ff : ∀[ C ‘Bool ]

From this observation, we can derive our first observation: constants in the language are

interpreted as constants in the model. Their type is the same except that Term has been replaced by

the notion of computation C the model at hand is using. Next come the language constructs that do

have subterms but are not binding any additional variables. We have two such examples: application

and boolean conditionals. We recall their types as well as that of their semantical counterparts

below.

‘app : ∀[ Term (σ ‘→ τ)

⇒ Term σ

⇒ Term τ ]

‘ifte : ∀[ Term ‘Bool

⇒ Term σ⇒ Term σ

⇒ Term σ ]

app : ∀[ C (σ ‘→ τ)⇒ C σ⇒ C τ ]

ifte : ∀[ C ‘Bool⇒ C σ⇒ C σ⇒ C σ ]

These type tell us that the counterparts for recursive substructures living in the same ambient

environment as the overall term should be computations of the appropriate type. Finally comes the

constraint attached to the λ-abstraction, showing what the semantical counterpart to a binder should

be.

‘lam : ∀[ (σ ::_) ⊢ Term τ

⇒ Term (σ ‘→ τ) ]

lam : ∀[ □ (V σ⇒ C τ)⇒ C (σ ‘→ τ) ]

These types tell us that the semantical counterpart for inductive substructures with newly

bound variables are Kripke function spaces whose domain ensures a model-specific valueV of the

appropriate type is provided for each newly bound variable and whose codomain is a computation.
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This tight coupling between the definition of the calculus and the structure of the Semantics

constraints tells us we will be able to define a generic version of this notion. The fact that these

constraints have the same shape as their associated constructor suggests we ought to be able to reuse

our interpretation function ⟦_⟧ to compute them.

Defining a Generic Notion of Semantics

Based on these observations, we can define a generic notion of semantics for all syntax descriptions.

Any pair of (I−Scoped) familiesV and C satisfying the Semantics constraints will once more give

rise to an evaluation function. We introduce a notion of computation _−Comp analogous to that

defined in fig. 5.16. Just as an environment interprets variables in a model, a computation gives a

meaning to terms into a model.

_−Comp : List I→ I −Scoped→ List I→ Set
(Γ −Comp) C ∆ = ∀ {s σ}→ Tm d s σ Γ→ C σ ∆

Figure 15.1: _−Comp: Associating Computations to Terms

We expect the fundamental lemma of Semantics to be a program turning an environment

mapping free variables to values into a mapping from terms to computations.

semantics : (Γ −Env)V ∆→ (Γ −Comp) C ∆

Now that the goal is clear, let us spell out the Semantics constraints. As always, they are packed

in a record parametrised over the description in question and the two (I−Scoped) familiesV and C

used to interpret values and computations respectively.

record Semantics (d : Desc I) (V C : I −Scoped) : Set where

These two families have to abide by three constraints. First, values should be thinnable so that

we may push the evaluation environment under binders.

th^V : Thinnable (V σ)

Second, values should embed into computations for us to be able to return the value associated

to a variable in the environment as the result of its evaluation.
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var : ∀[V σ⇒ C σ ]

Third, we have a constraint similar to the one needed to define fold in chapter 13 (fig. 13.4).

We should have an algebra taking a term whose substructures have already been evaluated and

returning a computation for the overall term. We will need a notion (KripkeV C) describing how

the substructures have been evaluated. We will look at this definition shortly; the important thing to

have in mind is that it should behave sensibly both for substructures with and without newly bound

variables.

alg : ∀[ ⟦ d ⟧ (KripkeV C) σ⇒ C σ ]

To make formal this idea of “hav[ing] already been evaluated” we crucially use the fact that

the meaning of a description is defined in terms of a function interpreting substructures which has

the type (List I→ I−Scoped), i.e. that gets access to the current scope but also the exact list of the

newly bound variables’ kinds.

We define Kripke by case analysis on the number of newly bound variables. It is essentially

a subcomputation waiting for a value associated to each one of the fresh variables. If it’s 0 we

expect the substructure to be a computation corresponding to the result of the evaluation function’s

recursive call; but if there are newly bound variables then we expect to have a function space. In any

context extension, it will take an environment of values for the newly bound variables and produce a

computation corresponding to the evaluation of the body of the binder.

Kripke : (V C : I −Scoped)→ (List I→ I −Scoped)

KripkeV C [] j = C j

KripkeV C ∆ j = □ ((∆ −Env)V⇒ C j)

It is worth noting that we could do away with the special case for subterms with no newly bound

variables and give a uniform definition of Kripke. Indeed when evaluating a term we can always

absorb thinnings by mapping them over the environment of values thanks to th^V. However this

special case is truer to the observations we made earlier and gives users a definition that is easier to

use.

We can now recall the type of the fundamental lemma (called semantics) which takes a

semantics and returns a function from environments to computations. It is defined mutually with
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a function body turning syntactic binders into semantics binders: to each de Bruijn Scope (i.e.

a substructure in a potentially extended context) it associates a Kripke (i.e. a subcomputation

expecting a value for each newly bound variable).

semantics : (Γ −Env)V ∆→ (Γ −Comp) C ∆

body : (Γ −Env)V ∆→ ∀ Θ σ→
Scope (Tm d s) Θ σ Γ→ KripkeV C Θ σ ∆

Figure 15.2: Statement of the Fundamental Lemma of Semantics

The proof of semantics is straightforward now that we have clearly identified the problem’s

structure and the constraints we need to enforce. If the term considered is a variable, we lookup the

associated value in the evaluation environment and turn it into a computation using var. If it is a non

variable constructor then we call fmap to evaluate the substructures using body and then call the

algebra to combine these results.

semantics ρ (‘var k) = var (lookup ρ k)
semantics ρ (‘con t) = alg (fmap d (body ρ) t)

Figure 15.3: Proof of the Fundamental Lemma of Semantics (semantics)

The auxiliary lemma body distinguishes two cases. If no new variable has been bound in the

recursive substructure, it is a matter of calling semantics recursively. Otherwise we are provided

with a Thinning, some additional values and evaluate the substructure in the thinned and extended

evaluation environment thanks to a auxiliary function _++^Env_ that given two environments (Γ

−Env)V Θ and (∆ −Env)V Θ produces an environment ((Γ ++ ∆) −Env)V Θ).

body ρ [] i t = semantics ρ t
body ρ (_ :: _) i t = λ σ vs→ semantics (vs ++^Env th^Env th^V ρ σ) t

Figure 15.4: Proof of the Fundamental Lemma of Semantics (body)

Given that fmap introduces one level of indirection between the recursive calls and the subterms

they are acting upon, the fact that our terms are indexed by a Size is once more crucial in getting
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the termination checker to see that our proof is indeed well founded.

Because most of our examples involve closed terms (for which we have introduced a special

notation in fig. 14.4), we immediately introduce closed, a corollary of the fundamental lemma of

semantics for the special cases of closed terms in Figure 15.5. Given a Semantics with value type

V and computation type C, we can evaluate a closed term of type σ and obtain a computation of

type (C σ []) by kick-starting the evaluation with an empty environment.

closed : TM d σ→ C σ []
closed = semantics ε

Figure 15.5: Special Case: Fundamental Lemma of Semantics for Closed Terms

15.1 Our First Generic Programs: Renaming and Substitution

Similarly to section 5.5 renaming and substitutions can be defined generically for all syntax descrip-

tions.

Renaming is a semantics with Var as values and Tm as computations. The first two constraints

on Var described earlier are trivially satisfied, we reuse the proof th^Var introduced in fig. 5.15.

Observing that renaming strictly respects the structure of the term it goes through, it makes sense

for the algebra to be implemented using fmap. When dealing with the body of a binder, we

‘reify’ the Kripke function by evaluating it in an extended context and feeding it placeholder values

corresponding to the extra variables introduced by that context. This is reminiscent both of what we

did in section 5.5 and the definition of reification in the setting of normalisation by evaluation (see

e.g. Coquand’s work 2002). Reification can be defined generically for var-like values (vl^Var is the

proof that variables are var-like); we will make this formal in fig. 15.9.

Ren : Semantics d Var (Tm d∞)
Ren .th^V = th^Var
Ren .var = ‘var
Ren .alg = ‘con ◦ fmap d (reify vl^Var)

Figure 15.6: Renaming: A Generic Semantics for Syntaxes with Binding
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From this instance, we can derive the proof that all terms are Thinnable as a corollary of the

fundamental lemma of Semantics.

th^Tm : Thinnable (Tm d∞ σ)
th^Tm t ρ = Semantics.semantics Ren ρ t

Figure 15.7: Corollary: Generic Thinning

Substitution is defined in a similar manner with Tm as both values and computations. Of the two

constraints applying to terms as values, the first one corresponds to renaming and the second one is

trivial. The algebra is once more defined by using fmap and reifying the bodies of binders. We can,

once more, obtain parallel substitution as a corollary of the fundamental lemma of Semantics.

Sub : Semantics d (Tm d∞) (Tm d∞)
Sub .th^V = th^Tm
Sub .var = id
Sub .alg = ‘con ◦ fmap d (reify vl^Tm)

sub : (Γ −Env) (Tm d∞) ∆→
Tm d∞ σ Γ→ Tm d∞ σ ∆

sub ρ t = Semantics.semantics Sub ρ t

Figure 15.8: Generic Parallel Substitution for All Syntaxes with Binding

The reification process mentioned in the definition of renaming and substitution can be im-

plemented generically for the Semantics families satisfying a set of conditions. We introduce

in fig. 15.9 the VarLike set of constraints to characterise these families. It captures values that

are thinnable and such that we can craft placeholder values in non-empty contexts. It is almost

immediate that both Var and Tm are VarLike (with proofs vl^Var and vl^Tm, respectively).

Given a proof that V is VarLike, we can manufacture several useful V-environments. We

provide users with base of type (Γ −Env)V Γ, freshr of type (Γ −Env)V (∆ ++ Γ) and freshl of

type (Γ −Env)V (Γ ++ ∆) by combining the use of placeholder values and thinnings. In the Var

case these very general definitions respectively specialise to the identity renaming for a context Γ
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record VarLike (V : I −Scoped) : Set where
field th^V : Thinnable (V σ)

new : ∀[ (σ ::_) ⊢ V σ ]

Figure 15.9: VarLike: Thinnable and with placeholder values

and the injection of Γ fresh variables to the right or the left of an ambient context ∆. Similarly, in

the Tm case, we can show (base vl^Tm) extensionally equal to the identity environment id^Tm

given by lookup id^Tm = ‘var, which associates each variable to itself (seen as a term).

Using these definitions, we can then implement reify as in Figure 15.10 turning Kripke function

spaces fromV to C into Scopes of C computations.

reify : VarLikeV→ ∀ ∆ i→ KripkeV C ∆ i Γ→ Scope C ∆ i Γ
reify vl^V [] i b = b
reify vl^V ∆@(_ :: _) i b = b (freshr vl^Var ∆) (freshl vl^V _)

Figure 15.10: Generic Reification thanks to VarLike Values

We can now showcase other usages by providing a catalogue of generic programs for syntaxes

with binding.

15.2 Printing with Names

Coming back to our work on (rudimentary) printing with names in section 5.6, we can now give a

generic account of it. This is a particularly interesting example because it demonstrates that we may

sometimes want to give Desc a different semantics to accommodate a specific use-case: we do not

want our users to deal explicitly with name generation, explicit variable binding, etc.

Unlike renaming or substitution, this generic program will require user guidance: there is no

way for us to guess how an encoded term should be printed. We can however take care of the name

generation, deal with variable binding, and implement the traversal generically. We are going to

reuse some of the components defined in section 5.6: we can rely on the same state monad (Fresh)

for name generation, the same fresh function and the same notions of Name and Printer for the

semantics’ values and computations. We want our printer to have type:
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print : Display d→ Tm d i σ Γ→ String

where Display explains how to print one ‘layer’ of term provided that we are handed the Pieces

corresponding to the printed subterm and names for the bound variables.

Display : Desc I→ Set

Display d = ∀ {i Γ}→ ⟦ d ⟧ Pieces i Γ→ String

Reusing the notion of Name introduced in Section 5.6, we can make Pieces formal. The structure

of Semantics would suggest giving our users an interface where sub-structures are interpreted as

Kripke function spaces expecting fresh names for the fresh variables and returning a printer i.e. a

monadic computation returning a String. However we can do better: we can preemptively generate

a set of fresh names for the newly bound variables and hand them to the user together with the result

of printing the body with these names. As usual we have a special case for the substructures without

any newly bound variable. Note that the specific target context of the environment of Names is

only picked for convenience as Name ignores the scope: (∆ ++ Γ) is what freshl gives us. In other

words: Pieces states that a subterm has already been printed if we have a string representation

of it together with an environment of Names we have attached to the newly bound variables this

structure contains.

Pieces : List I→ I −Scoped

Pieces [] i Γ = String

Pieces ∆ i Γ = (∆ −Env) Name (∆ ++ Γ) × String

The key observation that will help us define a generic printer is that Fresh composed with Name

is VarLike. Indeed, as the composition of a functor and a trivially thinnable Wrapper, Fresh is

Thinnable, and fresh (defined in Figure 5.22) is the proof that we can generate placeholder values

thanks to the name supply.

vl^FreshName : VarLike (λ (σ : I)→ Fresh ◦ (Name σ))

vl^FreshName = record

{ th^V = th^Functor functor^Fresh th^Wrap

; new = fresh _

}
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This VarLike instance empowers us to reify in an effectful manner a Kripke function space

taking Names and returning a Printer to a set of Pieces.

reify^Pieces : ∀ ∆ i→ Kripke Name Printer ∆ i Γ→ Fresh (Pieces ∆ i Γ)

In case there are no newly bound variables, the Kripke function space collapses to a mere Printer

which is precisely the wrapped version of the type we expect.

reify^Pieces [] i p = getW p

Otherwise we proceed in a manner reminiscent of the pure reification function defined in

Figure 15.10. We start by generating an environment of names for the newly bound variables by

using the fact that Fresh composed with Name is VarLike together with the fact that environments

are Traversable (McBride and Paterson [2008]), and thus admit the standard Haskell-like mapA

and sequenceA traversals. We then run the Kripke function on these names to obtain the string

representation of the subterm. We finally return the names we used together with this string.

reify^Pieces ∆@(_ :: _) i f = do

ρ← sequenceA (freshl vl^FreshName _)

b← getW (f (freshr vl^Var ∆) ρ)

return (ρ , b)

We can put all of these pieces together to obtain the Printing semantics presented in Figure 15.11.

The first two constraints can be trivially discharged. When defining the algebra we start by reifying

the subterms, then use the fact that one “layer” of term of our syntaxes with binding is always

traversable to combine all of these results into a value we can apply our display function to.

Printing : Display d→ Semantics d Name Printer
Printing dis .th^V = th^Wrap
Printing dis .var = map^Wrap return
Printing dis .alg = λ v→ MkW $ dis <$> mapA d reify^Pieces v

Figure 15.11: Printing with Names as a Semantics

This allows us to write a printer for open terms as demonstrated in Figure 15.12. We start by

using base (defined in Section 15.1) to generate an environment of Names for the free variables,
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then use our semantics to get a printer which we can run using a stream names of distinct strings as

our name supply.

print : Display d→ Tm d i σ Γ→ String
print dis t = proj1 (printer names) where

printer : Fresh String
printer = do

init← sequenceA (base vl^FreshName)
getW (Semantics.semantics (Printing dis) init t)

Figure 15.12: Generic Printer for Open Terms

Untyped λ-calculus Defining a printer for the untyped λ-calculus is now very easy: we define

a Display by case analysis. In the application case, we combine the string representation of the

function, wrap its argument’s representation between parentheses and concatenate the two together.

In the lambda abstraction case, we are handed the name the bound variable was assigned together

with the body’s representation; it is once more a matter of putting the Pieces together.

printUTLC : Display UTLC

printUTLC = λ where

(‘app’ f t) → f ++ " (" ++ t ++ ")"

(‘lam’ (x , b))→ "λ" ++ getW (lookup x z) ++ ". " ++ b

As always, these functions are readily executable and we can check their behaviour by writing

tests. First, we print the identity function defined in Figure 14.9 in an empty context and verify

that we do obtain the string "λa. a". Next, we print an open term in a context of size two and can

immediately observe that names are generated for the free variables first, and then the expression

itself is printed.

_ : print printUTLC id^U ≡ "λa. a"

_ = refl

_ : let tm : Tm UTLC _ _ (_ :: _ :: [])

tm = ‘app (‘var z) (‘lam (‘var (s (s z))))

in print printUTLC tm ≡ "b (λc. a)"

_ = refl
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15.3 (Unsafe) Normalisation by Evaluation

A key type of traversal we have not studied yet is a language’s evaluator. Our universe of syntaxes

with binding does not impose any typing discipline on the user-defined languages and as such cannot

guarantee their totality. This is embodied by one of our running examples: the untyped λ-calculus.

As a consequence there is no hope for a safe generic framework to define normalisation functions.

The clear connection between the Kripke functional space characteristic of our semantics and

the one that shows up in normalisation by evaluation suggests we ought to manage to give an unsafe

generic framework for normalisation by evaluation. By temporarily disabling Agda’s positivity

checker, we can define a generic reflexive domain Dm (cf. fig. 15.13) in which to interpret our

syntaxes. It has three constructors corresponding respectively to a free variable, a constructor’s

counterpart where scopes have become Kripke functional spaces on Dm and an error token because

the evaluation of untyped programs may go wrong (a user may for instance try to add a function

and a number).

{-# NO_POSITIVITY_CHECK #-}
data Dm (d : Desc I) : Size→ I −Scoped where

V : ∀[ Var σ⇒ Dm d s σ ]
C : ∀[ ⟦ d ⟧ (Kripke (Dm d s) (Dm d s)) σ⇒ Dm d (↑ s) σ ]
⊥ : ∀[ Dm d (↑ s) σ ]

Figure 15.13: Generic Reflexive Domain

This datatype definition is utterly unsafe. The more conservative user will happily restrict

themselves to particular syntaxes where the typed settings allows for domain to be defined as a

logical predicate or opt instead for a step-indexed approach. We did develop a step-indexed model

construction but it was unusable: we could not get Agda to normalise even the simplest of terms.

But this domain does make it possible to define a generic nbe semantics which, given a term,

produces a value in the reflexive domain. Thanks to the fact we have picked a universe of finitary

syntaxes, we can traverse (McBride and Paterson [2008], Gibbons and d. S. Oliveira [2009]) the

functor to define a (potentially failing) reification function turning elements of the reflexive domain

into terms. By composing them, we obtain the normalisation function which gives its name to

normalisation by evaluation.
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The user still has to explicitly pass an interpretation of the various constructors because there is

no way for us to know what the binders are supposed to represent: they may stand for λ-abstractions,

Σ-types, fixpoints, or anything else.

reify^Dm : ∀[ Dm d s σ⇒ Maybe ◦ Tm d∞ σ ]
nbe : Alg d (Dm d∞) (Dm d∞)→ Semantics d (Dm d∞) (Dm d∞)

norm : Alg d (Dm d∞) (Dm d∞)→ ∀[ Tm d∞ σ⇒ Maybe ◦ Tm d∞ σ ]
norm alg = reify^Dm ◦ Semantics.semantics (nbe alg) (base vl^Dm)

Figure 15.14: Generic Normalisation by Evaluation Framework

Example: Evaluator for the Untyped Lambda-Calculus

Using this setup, we can write a normaliser for the untyped λ-calculus by providing an algebra. The

key observation that allows us to implement this algebra is that we can turn a Kripke function, f,

mapping values of type σ to computations of type τ into an Agda function from values of type σ to

computations of type τ. This is witnessed by the application function (_$$_) defined in Figure 15.15:

we first use extract (defined in Figure 5.14) to obtain a function taking environments of values to

computations. We then use the combinators defined in Figure 5.4 to manufacture the singleton

environment (ε • t) containing the value t of type σ.

_$$_ : ∀[ KripkeV C (σ :: []) τ⇒ (V σ⇒ C τ) ]
f $$ t = extract f (ε • t)

Figure 15.15: Applying a Kripke Function to an argument

We now define two patterns for semantical values: one for application and the other for lambda

abstraction. This should make the case of interest of our algebra (a function applied to an argument)

fairly readable.

We finally define the algebra by case analysis: if the node at hand is an application and its first

component evaluates to a lambda, we can apply the function to its argument using _$$_. Otherwise

we have either a stuck application or a lambda, in other words we already have a value and can

simply return it using C.
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pattern LAM f = C (false , f , refl)
pattern APP’ f t = (true , f , t , refl)

Figure 15.16: Pattern synonyms for UTLC-specific Dm values

norm^LC : ∀[ Tm UTLC∞ tt⇒ Maybe ◦ Tm UTLC∞ tt ]
norm^LC = norm $ λ where

(APP’ (LAM f) t)→ f $$ t -- redex
t → C t -- value

Figure 15.17: Normalisation by Evaluation for the Untyped λ-Calculus

We have not used the⊥ constructor so if the evaluation terminates (by disabling totality checking

we have lost all guarantees of the sort) we know we will get a term in normal form. See for instance

in Figure 15.18 the evaluation of an untyped yet normalising term: (λx. x) ((λx. x) (λx. x)) normalises

to (λx. x).

_ : norm^LC (‘app id^U (‘app id^U id^U)) ≡ just id^U
_ = refl

Figure 15.18: Example of a normalising untyped term
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Chapter 16

Compiler Passes as Semantics

In the previous chapter we have seen various generic semantics one may be interested in when

working on a deeply embedded language: renaming, substitution, printing with names or evaluation.

All of these fit neatly in the Semantics framework.

Now we wish to focus on the kind of traversals one may find in a compiler pipeline such as

a scopechecker, an elaboration function from an untyped surface syntax to an intrinsically typed

syntax, or an optimisation pass inlining definitions used at most once.

All of the examples but the scopechecker are instances of Semantics. Some, like the scoping

(section 16.1), desugaring (section 16.4), and inlining (section 16.5) passes will be fully generic while

others like the typechecking (section 16.2) and elaboration (section 16.3) passes will correspond to

a specific language and its particular type system.

16.1 Writing a Generic Scope Checker

Converting terms in the internal syntax to strings which can in turn be displayed in a terminal or

an editor window is only part of a compiler’s interaction loop. The other direction takes strings

as inputs and attempts to produce terms in the internal syntax. The first step is to parse the input

strings into structured data, the second is to perform scope checking, and the third step consists of

type checking.

Parsing is currently out of scope for our library; users can write safe ad-hoc parsers for their

object language by either using a library of total parser combinators (Danielsson [2010], Allais

[2018]) or invoking a parser generator oracle whose target is a total language (Stump [2016]). As
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we will see shortly, we can write a generic scope checker transforming terms in a raw syntax where

variables are represented as strings into a well scoped syntax. We will come back to typechecking

with a concrete example in section 16.2 and then discuss related future work in the conclusion.

Our scope checker will be a function taking two explicit arguments: a name for each variable in

scope Γ and a raw term for a syntax description d. It will either fail (the Monad Fail granting us

the ability to fail is made explicit in Figure 16.3) or return a well scoped and sorted term for that

description.

toTm : Names Γ→ Raw d i σ→ Fail (Tm d i σ Γ)

Scope We can obtain Names, the datastructure associating to each variable in scope its raw name

as a string by reusing the standard library’s All. The inductive family All is a predicate transformer

making sure a predicate holds of all the element of a list. It is defined in a style common in Agda:

because All’s constructors are in one to one correspondence with that of its index type (List A), the

same name are reused: [] is the name of the proof that P trivially holds of all the elements in the

empty list []; similarly _::_ is the proof that provided that P holds of the element a on the one hand

and of the elements of the list as on the other then it holds of all the elements of the list (a :: as).

data All (P : A→ Set) : List A→ Set where
[] : All P []
_::_ : P a→ All P as→ All P (a :: as)

Names : List I→ Set
Names = All (const String)

Figure 16.1: Associating a raw string to each variable in scope

Raw terms The definition of WithNames is analogous to Pieces in the previous section: we

expect Names for the newly bound variables. Terms in the raw syntax then leverage these definitions.

They are either a variables or another “layer” of raw terms. Variables ’var carry a String and

potentially some extra information E (typically a position in a file). The other constructor ’con

carries a layer of raw terms where subterms are raw terms equipped with names for any newly

bound variables.

Error Handling Various things can go wrong during scope checking: evidently a name can be

out of scope but it is also possible that it may be associated to a variable of the wrong sort. We
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WithNames : (I→ Set)→ List I→ I −Scoped
WithNames T [] j Γ = T j
WithNames T ∆ j Γ = Names ∆ × T j

data Raw (d : Desc I) : Size→ I→ Set where
‘var : E→ String→ Raw d (↑ i) σ
‘con : ⟦ d ⟧ (WithNames (Raw d i)) σ []→ Raw d (↑ i) σ

Figure 16.2: Names and Raw Terms

define an enumerating type covering these two cases. The scope checker will return a computation

in the Monad Fail thus allowing us to fail and return an error, the string that caused the failure and

the extra data of type E that accompanied it.

data Error : Set where
OutOfScope : Error
WrongSort : (σ τ : I)→ σ . τ→ Error

Fail : Set→ Set
Fail A = (Error × E × String) ⊎ A

fail : Error→ E→ String→ Fail A
fail err e str = inj1 (err , e , str)

Figure 16.3: Error Type and Scope Checking Monad

Equipped with these notions, we can write down the type of toVar which tackles the core of

the problem: variable resolution. The function takes a string and a sort as well the names and sorts

of the variables in the ambient scope. Provided that we have a function _ ?
=I_ to decide equality on

sorts, we can check whether the string corresponds to an existing variable and whether that binding

is of the right sort. Thus we either fail or return a well scoped and well sorted Var.

If the ambient scope is empty then we can only fail with an OutOfScope error. Alternatively, if

the variable’s name corresponds to that of the first one in scope we check that the sorts match up

and either return z or fail with a WrongSort error. Otherwise we look for the variable further down

the scope and use s to lift the result to the full scope.

Scope checking an entire term then amounts to lifting this action on variables to an action

on terms. The error Monad Fail is by definition an Applicative and by design our terms are

Traversable (Bird and Paterson [1999], Gibbons and d. S. Oliveira [2009]). The action on term is
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toVar : E→ String→ ∀ σ Γ→ Names Γ→ Fail (Var σ Γ)
toVar e x σ [] [] = fail OutOfScope e x
toVar e x σ (τ :: Γ) (y :: scp) with x ?

= y | σ ?
=I τ

... | yes _ | yes refl = pure z

... | yes _ | no ¬eq = fail (WrongSort σ τ ¬eq) e x

... | no ¬p | _ = s <$> toVar e x σ Γ scp

Figure 16.4: Variable Resolution

defined mutually with the action on scopes. As we can see in the second equation for toScope,

thanks to the definition of WithNames, concrete names arrive just in time to check the subterm with

newly bound variables.

toTm : Names Γ→ Raw d i σ→ Fail (Tm d i σ Γ)
toScope : Names Γ→ ∀ ∆ σ→WithNames (Raw d i) ∆ σ []→ Fail (Scope (Tm d i) ∆ σ Γ)

toTm scp (‘var e v) = ‘var <$> toVar e v _ _ scp
toTm scp (‘con b) = ‘con <$> mapA d (toScope scp) b

toScope scp [] σ b = toTm scp b
toScope scp ∆@(_ :: _) σ (bnd , b) = toTm (bnd ++ scp) b

Figure 16.5: Generic Scope Checking for Terms and Scopes

16.2 An Algebraic Approach to Typechecking

Following Atkey (2015), we can consider type checking and type synthesis as a possible semantics

for a bidirectional (Pierce and Turner [2000]) language. We reuse the syntax introduced in Sec-

tion 14.2; it gives us a simply typed bidirectional calculus as a two-moded language using a notion

of Mode to distinguish between terms for which we will be able to Synthesise the type and the

ones for which we will have to Check a type candidate. We can write Type-, the type-level function

computing from a Mode the associated type synthesis or checking behaviour we expect.

Our goal in this section is to construct of a Semantics whose associated evaluator will correspond

to a function implementing this specification. In other words, we want to define a semantics

Typecheck such that we can obtain the following type- function as a corrolary.
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Type- : Mode→ Set
Type- Check = Type→ Maybe ⊤
Type- Synth = Maybe Type

Figure 16.6: Type- Synthesis / Checking Specification

type- : ∀ mode→ TM Bidi mode→ Type- mode

type- p = Semantics.closed Typecheck

We will first have to decide what the appropriate notions of values and computations for this

semantics should be.

Values and Computations for Type Checking

The values stored in the environment of the typechecking function will attach Type information to

bound variables whose Mode is Synth, guaranteeing no variable ever uses the Check mode. Hence

the definition of Var- in fig. 16.7.

data Var- : Mode→ Set where
‘var : Type→ Var- Synth

Figure 16.7: Var- Relation indexed by Mode

In contrast, the generated computations will, depending on the mode, either take a type candidate

and Check it is valid or Synth a type for their argument. This is the logic represented by the Type-

relation defined in fig. 16.6. These computations are always potentially failing as terms may not

be well typed. As a consequence we use the Maybe monad. In an actual compiler pipeline we

would naturally use a different error monad and generate helpful error messages pointing out where

the type error occurred. The interested reader can see a fine-grained analysis of type errors in the

extended example of a typechecker in McBride and McKinna [2004a].

Handling Type Constraints

A change of direction from synthesising to checking will require being able to check that the type

that was synthesised and the type that was required agree. So we introduce the function _=?_ that
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checks two types for equality. Similarly we will sometimes be handed a type that we expect to be a

function type. We will have to check that it is and so we introduce isArrow, a function making sure

that our candidate’s head constructor is indeed an arrow, and returning the domain and codomain.

_=?_ : (σ τ : Type)→ Maybe ⊤

α =? α = just tt

(σ ‘→ τ) =? (ϕ ‘→ ψ) = (σ =? ϕ) » (τ =? ψ)

_ =? _ = nothing

isArrow : Type→ Maybe (Type × Type)

isArrow (σ ‘→ τ) = just (σ , τ)

isArrow _ = nothing

Typechecking as a Semantics

We can now define typechecking as a Semantics. We describe the algorithm constructor by

constructor; in the Semantics definition (omitted here) the algebra will simply perform a dispatch

and pick the relevant auxiliary lemma. Note that in the following code, _<$_ is, following classic

Haskell notations, the function which takes an A and a Maybe B and returns a Maybe A which has

the same structure as its second argument.

Application When facing an application: synthesise the type of the function, make sure it is an

arrow type, check the argument at the domain’s type and return the codomain.

app : Type- Synth→ Type- Check→ Type- Synth

app f t = do

arr ← f

(σ , τ)← isArrow arr

τ <$ t σ

λ-abstraction For a λ-abstraction: check that the input type arr is an arrow type and check the

body b at the codomain type in the extended environment (using bind) where the newly bound

variable is of mode Synth and has the domain’s type.
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lam : Kripke (const ◦ Var-) (const ◦ Type-) (Synth :: []) Check Γ→ Type- Check

lam b arr = do

(σ , τ)← isArrow arr

b (bind Synth) (ε • ‘var σ) τ

Embedding of Synth into Check The change of direction from Synthesisable to Checkable is

successful when the synthesised type is equal to the expected one.

emb : Type- Synth→ Type- Check

emb t σ = do

τ← t

σ =? τ

Cut: A Check in an Synth position So far, our bidirectional syntax only permits the construction

of STLC terms in canonical form (Pfenning [2004], Dunfield and Pfenning [2004]). In order to

construct non-normal (redex) terms, whose semantics is given logically by the ‘cut’ rule, we need to

reverse direction. Our final semantic operation, cut, always comes with a type candidate against

which to check the term and to be returned in case of success.

cut : Type→ Type- Check→ Type- Synth

cut σ t = σ <$ t σ

We have defined a bidirectional typechecker for this simple language by leveraging the Semantics

framework and can now obtain the type- function we motivated this work with. Defining β to be (α

‘→ α), we can synthesise the type of the expression (λx. x : β→ β) (λx. x).

_ : let β = α ‘→ α in type- Synth (‘app (‘cut (β ‘→ β) id^B) id^B) ≡ just β
_ = refl

Figure 16.8: Example of Type- Synthesis

The output of this function is not very informative. As we will see shortly, there is nothing

stopping us from moving away from a simple computation returning a (Maybe Type) to an evidence-

producing function elaborating a term in Bidi to a well scoped and typed term in STLC.
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16.3 An Algebraic Approach to Elaboration

Instead of generating a type or checking that a candidate will do, we can use our language of

Descriptions to define not only an untyped source language but also an intrinsically typed internal

language. During typechecking we simultaneously generate an expression’s type and a well scoped

and well typed term of that type. We use STLC (defined in Section 14.2) as our internal language.

Let us start with a simple example reusing the different definitions of the identity function we

introduced in fig. 14.9 (id^B for the identity in our little bidirectional language and id^S for the well

scoped and typed one in STLC). We want a function that typechecks id^B against the candidate (α

‘→ α), succeeds and returns the fully annotated id^S.

_ : type- Check id^B (α ‘→ α) ≡ just id^S
_ = refl

Figure 16.9: Example Use of our Elaborator

Before we can jump right in, we need to set the stage: a Semantics for a Bidi term will involve

(Mode −Scoped) notions of values and computations but an STLC term is (Type −Scoped). We first

introduce a Typing associating types to each of the modes in scope, together with an erasure function

⌞_⌟ extracting the context of types implicitly defined by such a Typing. We will systematically

distinguish contexts of modes (typically named ms) and their associated typings (typically named

Γ). Note that we assume that our contexts of modes only contain Synth variables; but we cannot

enforce it here: our framework forces us to have the same sorts for terms and variables. Relaxing

this constraint is an interesting avenue for further work. In the meantime, we work within these

parameters and only enforce this constraint when defining our Semantics thus making it impossible

to evaluate invalid terms.

Typing : List Mode→ Set
Typing = All (const Type)

⌞_⌟ : Typing ms→ List Type
⌞ [] ⌟ = []
⌞ σ :: Γ ⌟ = σ :: ⌞ Γ ⌟

Figure 16.10: Typing: From Contexts of Modes to Contexts of Types

We can then explain what it means for an elaboration process of type σ in a context of modes
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ms to produce a term of the (Type −Scoped) family T: for any typing Γ of this context of modes,

we should get a value of type (T σ ⌞ Γ ⌟).

Elab : Type −Scoped→ Type→ (ms : List Mode)→ Typing ms→ Set
Elab T σ _ Γ = T σ ⌞ Γ ⌟

Figure 16.11: Elaboration of a Scoped Family

Our first example of an elaboration process is our notion of environment values. To each variable

in scope of mode Synth we associate an elaboration function targeting Var. In other words: our

values are all in scope i.e. provided any typing of the scope of modes, we can assuredly return a

type together with a variable of that type. Note that here we do enforce that variables only have a

meaning if they have been rightly marked as Synthesisable.

data Var- : Mode −Scoped where
‘var : (infer : ∀ Γ→ Σ[ σ ∈ Type ] Elab Var σ ms Γ)→ Var- Synth ms

Figure 16.12: Values as Elaboration Functions for Variables

We can for instance prove that we have such an inference function for a newly bound variable

of mode Synth: given that the context has been extended with a variable of mode Synth, the Typing

must also have been extended with a type σ. We can return that type paired with the variable z.

var0 : Var- Synth (Synth :: ms)
var0 = ‘var λ where (σ :: _)→ (σ , z)

Figure 16.13: Synthesis Function for the 0-th Variable

The computations are a bit more tricky. On the one hand, if we are in checking mode then we

expect that for any typing of the scope of modes and any type candidate we can Maybe return a

term at that type in the induced context. On the other hand, in the inference mode we expect that

given any typing of the scope, we can Maybe return a type together with a term at that type in the

induced context.

Because we are now writing a typechecker which returns evidence of its claims, we need more

informative variants of the equality and isArrow checks. In the equality checking case we want to
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Elab- : Mode −Scoped
Elab- Check ms = ∀ Γ→ (σ : Type)→ Maybe (Elab (Tm STLC∞) σ ms Γ)
Elab- Infer ms = ∀ Γ→ Maybe (Σ[ σ ∈ Type ] Elab (Tm STLC∞) σ ms Γ)

Figure 16.14: Computations as Mode-indexed Elaboration Functions

get a proof of propositional equality but we only care about the successful path and will happily

return nothing when failing. Agda’s support for (dependent!) do-notation makes writing the check

really easy.

_=?_ : (σ τ : Type)→ Maybe (σ ≡ τ)
α =? α = just refl
(σ ‘→ τ) =? (ϕ ‘→ ψ) = do

refl← σ =? ϕ

refl← τ =? ψ

return refl
_ =? _ = nothing

Figure 16.15: Informative Equality Check

For the arrow type, we introduce a family Arrow constraining the shape of its index to be an

arrow type and redefine isArrow as a view targeting this inductive family (Wadler [1987], McBride

and McKinna [2004a]). We deliberately overload the constructor of the isArrow family by calling it

_‘→_. This means that the proof that a given type has the shape (σ ‘→ τ) is literally written (σ ‘→

τ). This allows us to specify in the type whether we want to work with the full set of values in Type

or only the subset corresponding to function types and to then proceed to write the same programs a

Haskell programmers would, with the added confidence that ours are guaranteed to be total.

data Arrow : Type→ Set where
_‘→_ : ∀ σ τ→ Arrow (σ ‘→ τ)

isArrow : ∀ σ→ Maybe (Arrow σ)
isArrow (σ ‘→ τ) = just (σ ‘→ τ)
isArrow _ = nothing

Figure 16.16: Arrow View

We now have all the basic pieces and can start writing elaboration code. We will use lowercase

letter for terms in Bidi and uppercase ones for their elaborated counterparts in STLC. We once
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more start by dealing with each constructor in isolation before putting everything together to get a

Semantics. These steps are very similar to the ones in the previous section.

Application In the application case, we start by elaborating the function and we get its type

together with its internal representation. We then check that the inferred type is indeed an Arrow and

elaborate the argument using the corresponding domain. We conclude by returning the codomain

together with the internal function applied to the internal argument.

app : ∀[ Elab- Synth⇒ Elab- Check⇒ Elab- Synth ]

app f t Γ = do

(arr , F) ← f Γ

(σ ‘→ τ)← isArrow arr

T ← t Γ σ

return (τ , ‘app F T)

λ-abstraction For the λ-abstraction case, we start by checking that the type candidate arr is an

Arrow. We can then elaborate the body b of the lambda in a context of modes extended with one

Synth variable, and the corresponding Typing extended with the function’s domain. From this we

get an internal term B corresponding to the body of the λ-abstraction and conclude by returning it

wrapped in a ‘lam constructor.

lam : ∀[ Kripke Var- Elab- (Synth :: []) Check⇒ Elab- Check ]

lam b Γ arr = do

(σ ‘→ τ)← isArrow arr

B ← b (bind Synth) (ε • var0) (σ :: Γ) τ

return (‘lam B)

Cut: A Check in an Synth position For cut, we start by elaborating the term with the type

annotation provided and return them paired together.

cut : Type→ ∀[ Elab- Check⇒ Elab- Synth ]

cut σ t Γ = (σ ,_) <$> t Γ σ

165



16. Compiler Passes as Semantics

Embedding of Synth into Check For the change of direction Emb we not only want to check

that the inferred type and the type candidate are equal: we need to cast the internal term labelled

with the inferred type to match the type candidate. Luckily, Agda’s dependent do-notation make our

job easy once again: when we make the pattern refl explicit, the equality holds in the rest of the

block.

emb : ∀[ Elab- Synth⇒ Elab- Check ]

emb t Γ σ = do

(τ , T)← t Γ

refl ← σ =? τ

return T

We have almost everything we need to define elaboration as a semantics. Discharging the th^V

constraint is a bit laborious and the proof doesn’t yield any additional insight so we leave it out

here. The semantical counterpart of variables (var) is fairly straightforward: provided a Typing, we

run the inference and touch it up to return a term rather than a mere variable. Finally we define the

algebra (alg) by pattern-matching on the constructor and using our previous combinators.

Elaborate : Semantics Bidi Var- Elab-
Elaborate .th^V = th^Var-
Elaborate .var = λ where (‘var infer) Γ→ let (σ , v) = infer Γ in

just (σ , ‘var v)
Elaborate .alg = λ where

(‘app’ f t) → app f t
(‘lam’ b) → lam b
(‘emb’ t) → emb t
(‘cut’ σ t)→ cut σ t

Figure 16.17: Elaborate, the elaboration semantics

We can once more define a specialised version of the traversal induced by this Semantics

for closed terms: not only can we give a (trivial) initial environment (using the closed corollary

defined in Figure 15.5) but we can also give a (trivial) initial Typing. This leads to the definitions in

Figure 16.18.

Revisiting the example introduced in Section 16.2, we can check that elaborating the expression

(λx. x : β→ β) (λx. x) yields the type β together with the term (λx. x) (λx. x) in internal syntax.
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Type- : Mode→ Set
Type- Check = ∀ σ→ Maybe (TM STLC σ)
Type- Synth = Maybe (∃ λ σ→ TM STLC σ)

type- : ∀ p→ TM Bidi p→ Type- p
type- Check t = closed Elaborate t []
type- Synth t = closed Elaborate t []

Figure 16.18: Evidence-producing Type (Checking / Synthesis) Function

Type annotations have disappeared in the internal syntax as all the type invariants are enforced

intrinsically.

_ : let β = α ‘→ α in
type- Synth ( B.‘app (B.‘cut (β ‘→ β) id^B) id^B)
≡ just (β , S.‘app id^S id^S)

_ = refl

16.4 Sugar and Desugaring as a Semantics

One of the advantages of having a universe of programming language descriptions is the ability to

concisely define an extension of an existing language by using Description transformers grafting

extra constructors à la W. Swiestra (2008). This is made extremely simple by the disjoint sum

combinator _‘+_ which we defined in Figure 14.10. An example of such an extension is the addition

of let-bindings to an existing language.

Let bindings allow the user to avoid repeating themselves by naming sub-expressions and then

using these names to refer to the associated terms. Preprocessors adding these types of mechanisms

to existing languages (from C to CSS) are rather popular. In Figure 16.19, we introduce a description

Let which can be used to extend any language description d to a language with let-bindings (d ‘+

Let).

This description states that a let-binding node stores a pair of types σ and τ and two subterms.

First comes the let-bound expression of type σ and second comes the body of the let which has type

τ in a context extended with a fresh variable of type σ. This defines a term of type τ.
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Let : Desc I
Let = ‘σ (I × I) $ λ (σ , τ)→

‘X [] σ (‘X (σ :: []) τ (‘■ τ))

pattern ‘let’_‘in’_ e t = (_ , e , t , refl)
pattern ‘let_‘in_ e t = ‘con (‘let’ e ‘in’ t)

Figure 16.19: Description of a single let binding, associated pattern synonyms

In a dependently typed language, a type may depend on a value which in the presence of

let bindings may be a variable standing for an expression. The user naturally does not want it

to make any difference whether they used a variable referring to a let-bound expression or the

expression itself. Various typechecking strategies can accommodate this expectation: in Coq (Coq

Development Team [2017]) let bindings are primitive constructs of the language and have their

own typing and reduction rules whereas in Agda they are elaborated away to the core language by

inlining.

This latter approach to extending a language d with let bindings by inlining them before

typechecking can be implemented generically as a semantics over (d ‘+ Let). For this semantics,

values in the environment and computations are both let-free terms. The algebra of the semantics

can be defined by parts thanks to case, the eliminator for _‘+_ defined in Figure 14.10: the

old constructors are kept the same by interpreting them using the generic substitution algebra

(Substitution); whilst the let-binder precisely provides the extra value to be added to the environment.

UnLet : Semantics (d ‘+ Let) (Tm d∞) (Tm d∞)
Semantics.th^V UnLet = th^Tm
Semantics.var UnLet = id
Semantics.alg UnLet = case (Semantics.alg Sub) $ λ where

(‘let’ e ‘in’ t)→ extract t (ε • e)

Figure 16.20: Desugaring as a Semantics

The process of removing let binders is then kickstarted with the placeholder environment

id^Tm = pack ‘var of type (Γ −Env) (Tm d∞) Γ.

In less than 10 lines of code we have defined a generic extension of syntaxes with binding

together with a semantics which corresponds to an elaborator translating away this new construct.

In chapter 7 we had focused on STLC only and showed that it is similarly possible to implement a

Continuation Passing Style transformation as the composition of two semantics à la Hatcliff and

168



16.5. Reference Counting and Inlining as a Semantics

unlet : ∀[ Tm (d ‘+ Let)∞ σ⇒ Tm d∞ σ ]
unlet = Semantics.semantics UnLet id^Tm

Figure 16.21: Specialising semantics with an environment of placeholder values

Danvy (1994). The first semantics embeds STLC into Moggi’s Meta-Language (1991a) and thus

fixes an evaluation order. The second one translates Moggi’s ML back into STLC in terms of explicit

continuations with a fixed return type.

We have demonstrated how easily one can define extensions and combine them on top of a

base language without having to reimplement common traversals for each one of the intermediate

representations. Moreover, it is possible to define generic transformations elaborating these added

features in terms of lower-level ones. This suggests that this setup could be a good candidate to

implement generic compilation passes and could deal with a framework using a wealth of slightly

different intermediate languages à la Nanopass (Keep and Dybvig [2013]).

16.5 Reference Counting and Inlining as a Semantics

Although useful in its own right, desugaring all let bindings can lead to an exponential blow-

up in code size. Compiler passes typically try to maintain sharing by only inlining let-bound

expressions which appear at most one time. Unused expressions are eliminated as dead code whilst

expressions used exactly one time can be inlined: this transformation is size preserving and opens

up opportunities for additional optimisations.

As we will see shortly, we can implement reference counting and size respecting let-inlining as

a generic transformation over all syntaxes with binding equipped with let binders. This two-pass

simple transformation takes linear time which may seem surprising given the results due to Appel

and Jim (1997). Our optimisation only inlines let-bound variables whereas theirs also encompasses

the reduction of static β-redexes of (potentially) recursive function. While we can easily count how

often a variable is used in the body of a let binder, the interaction between inlining and β-reduction

in theirs creates cascading simplification opportunities thus making the problem much harder.

But first, we need to look at an example demonstrating that this is a slightly subtle matter.

Assuming that expensive takes a long time to evaluate, inlining all of the lets in the first expression
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is a really good idea whilst we only want to inline the one binding y in the second one to avoid

duplicating work. That is to say that the contribution of the expression bound to y in the overall

count depends directly on whether y itself appears free in the body of the let which binds it.

_ = let x = expensive in
let y = (x , x) in
x

_ = let x = expensive in
let y = (x , x) in
y

Our transformation will consist of two passes: the first one will annotate the tree with accurate

count information precisely recording whether let-bound variables are used zero, one, or many

times. The second one will inline precisely the let-binders whose variable is used at most once.

During the counting phase we need to be particularly careful not to overestimate the contribution

of a let-bound expression. If the let-bound variable is not used then we can naturally safely ignore

the associated count. But if it used many times then we know we will not inline this let-binding

and the count should therefore only contribute once to the running total. We define the control

combinator in Figure 16.26 precisely to explicitly handle this subtle case.

The first step is to introduce the Counter additive monoid (cf. Figure 16.22). Addition will

allow us to combine counts coming from different subterms: if any of the two counters is zero then

we return the other, otherwise we know we have many occurrences.

data Counter : Set where
zero : Counter
one : Counter
many : Counter

_+_ : Counter→ Counter→ Counter
zero + n = n
m + zero = m
_ + _ = many

Figure 16.22: The (Counter, zero, _+_) additive monoid

The syntax extension CLet defined in Figure 16.23 is a variation on the Let syntax extension of

Section 16.4, attaching a Counter to each Let node. The annotation process can then be described

as a function computing a (d ‘+ CLet) term from a (d ‘+ Let) one.

We keep a tally of the usage information for the variables in scope. This allows us to know

which Counter to attach to each Let node. Following the same strategy as in Section 16.1, we use

the standard library’s All to represent this mapping. We say that a scoped value has been Counted if

it is paired with a Count.
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CLet : Desc I
CLet = ‘σ Counter $ λ _→ Let

Figure 16.23: Counted Lets

Count : List I→ Set
Count = All (const Counter)

Counted : I −Scoped→ I −Scoped
Counted T i Γ = T i Γ × Count Γ

Figure 16.24: Counting i.e. Associating a Counter to each Var in scope.

The two most basic counts are described in Figure 16.25: the empty one is zero everywhere and

the one corresponding to a single use of a single variable v which is zero everywhere except for v

where it’s one.

zeros : ∀[ Count ]
zeros {[]} = []
zeros {σ :: Γ} = zero :: zeros

fromVar : ∀[ Var σ⇒ Count ]
fromVar z = one :: zeros
fromVar (s v) = zero :: fromVar v

Figure 16.25: Zero Count and Count of One for a Specific Variable

When we collect usage information from different subterms, we need to put the various counts

together. The combinators in Figure 16.26 allow us to easily do so: merge adds up two counts in

a pointwise manner while control uses one Counter to decide whether to erase an existing Count.

This is particularly convenient when computing the contribution of a let-bound expression to the

total tally: the contribution of the let-bound expression will only matter if the corresponding variable

is actually used.

merge : ∀[ Count⇒ Count⇒ Count ]
merge [] [] = []
merge (m :: cs) (n :: ds) =

(m + n) :: merge cs ds

control : Counter→ ∀[ Count⇒ Count ]
control zero cs = zeros
control one cs = cs -- inlined
control many cs = cs -- not inlined

Figure 16.26: Combinators to Compute Counts

We can now focus on the core of the annotation phase. We define a Semantics whose values

are variables themselves and whose computations are the pairing of a term in (d ‘+ CLet) together
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with a Count. The variable case is trivial: provided a variable v, we return (‘var v) together with the

count (fromVar v).

The non-let case is purely structural: we reify the Kripke function space and obtain a scope

together with the corresponding Count. We unceremoniously drop the Counters associated to the

variables bound in this subterm and return the scope together with the tally for the ambient context.

reify^Count : ∀ ∆ σ→ Kripke Var (Counted (Tm (d ‘+ CLet)∞)) ∆ σ Γ→
Counted (Scope (Tm (d ‘+ CLet)∞) ∆) σ Γ

reify^Count ∆ σ kr = let (scp , c) = reify vl^Var ∆ σ kr in scp , drop ∆ c

Figure 16.27: Purely Structural Case

The Let-to-CLet case in Figure 16.28 is the most interesting one. We start by reifying the body

of the let binder which gives us a tally cx for the bound variable and ct for the body’s contribution to

the ambient environment’s Count. We annotate the node with cx and use it as a control to decide

whether we are going to merge any of the let-bound’s expression contribution ce to form the overall

tally.

clet : ⟦ Let ⟧ (Kripke Var (Counted (Tm (d ‘+ CLet)∞))) σ Γ→
Counted (⟦ CLet ⟧ (Scope (Tm (d ‘+ CLet)∞))) σ Γ

clet (στ , (e , ce) , body , eq) = case body extend (ε • z) of λ where
(t , cx :: ct)→ (cx , στ , e , t , eq) , merge (control cx ce) ct

Figure 16.28: Annotating Let Binders

Putting all of these things together we obtain the Semantics Annotate. We promptly specialise

it using an environment of placeholder values to obtain the traversal annotate elaborating raw

let-binders into counted ones.

annotate : ∀[ Tm (d ‘+ Let)∞ σ⇒ Tm (d ‘+ CLet)∞ σ ]
annotate t = let (t’ , _) = Semantics.semantics Annotate identity t in t’

Figure 16.29: Specialising semantics to obtain an annotation function

Using techniques similar to the ones described in Section 16.4, we can write an Inline semantics

working on (d ‘+ CLet) terms and producing (d ‘+ Let) ones. We make sure to preserve all the
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let-binders annotated with many and to inline all the other ones. By composing Annotate with

Inline we obtain a size-preserving generic optimisation pass.
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Chapter 17

Other Programs

All the programs operating on syntax we have seen so far have been instances of our notion of

Semantics. This shows that our framework covers a lot of useful cases.

An interesting question raised by this observation is whether there are any interesting traversals

that are not captured by this setting. At least two types of programs are clearly not instances of

Semantics: those that do not assign a meaning to a term in terms of the meaning of its direct

subterms, and those whose return type depends on the input term.

In this chapter we study two such programs. We also demonstrate that although they may not fit

the exact pattern we have managed to abstract, it is still sometimes possible to take advantage of our

data-generic setting and to implement them once and for all syntaxes with binding.

17.1 Big Step Evaluators

Chapman’s thesis (2009) provides us with a good example of a function that does not assign a

meaning to a term by only relying on the meaning of its direct subterms: a big step evaluator.

Setting aside the issue of proving such a function terminating, a big step evaluator computes

the normal form of a term by first recursively computing the normal forms of its subterms and then

either succeeding or, having uncovered a new redex, firing it and then normalising the reduct. This

is embodied by the case for application (cf. fig. 17.1).

In contrast, the Semantics constraints enforce that the meaning of each term constructor is

directly expressed in terms of the meaning of its arguments. There is no way to “restart” the

evaluator once the redex has been fired. This means we will not be able to make it an instance of our
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f ⇓ λx.b t ⇓ v b[x 7→ v] ⇓ n f

f t ⇓ n f

Figure 17.1: Big step evaluation of an application

framework and, consequently, we will not be able to use the tools introduced in the next chapters to

reason generically over such functions.

17.2 Generic Decidable Equality for Terms

A program deciding whether two terms are equal is clearly another good example of a function

that cannot be written as an instance of our notion of Semantics. In type theory we can do better

than an uninformative boolean function claiming that two terms are equal: we can implement a

decision procedure for propositional equality (Löh and Magalhães [2011]) which either returns a

proof that its two inputs are equal or a proof that they cannot possibly be. Such a decidability proof

necessarily mentions its inputs in the type of its output while our framework does not allow these

type of dependencies.

This kind of boilerplate function is however something users really do not want to write

themselves. Haskell programmers for instance are used to receiving help from the ‘deriving’

mechanism (Hinze and Peyton Jones [2000], Magalhães et al. [2010]) to automatically generate

common traversals for every inductive type they define.

Recalling that generic programming is normal programming over a universe in a dependently

typed language (Altenkirch and McBride [2002]), we ought to be able to deliver similar functionali-

ties for syntaxes with binding. The techniques used in this concrete example are general enough

that they also apply to the definition of an ordering test, a Show instance, etc.

The notion of decidability can be neatly formalised by an inductive family with two constructors:

a Set P is decidable if we can either say yes and return a proof of P or no and provide a proof of

the negation of P (here, a proof that P implies the empty type ⊥).

To get acquainted with these new notions we can start by proving that equality of variables is

decidable.
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data ⊥ : Set where data Dec (P : Set) : Set where
yes : P → Dec P
no : (P→⊥)→ Dec P

Figure 17.2: Empty Type and Decidability as an Inductive Family

Deciding Variable Equality

The type of the decision procedure for equality of variables is as follows: given any two variables

(of the same type, in the same context), the set of equality proofs between them is Decidable.

eq^Var : (v w : Var σ Γ)→ Dec (v ≡ w)

We can easily dismiss two trivial cases: if the two variables have distinct head constructors then

they cannot possibly be equal. Agda allows us to dismiss the impossible premise of the function

stored in the no constructor by using an absurd pattern ().

eq^Var z (s w) = no (λ ())

eq^Var (s v) z = no (λ ())

Otherwise if the two head constructors agree we can be in one of two situations. If they are both

z then we can conclude that the two variables are indeed equal to each other.

eq^Var z z = yes refl

Finally if the two variables are (s v) and (s w) respectively then we need to check recursively

whether v is equal to w. If it is the case we can conclude by invoking the congruence rule for s.

If v and w are not equal then a proof that (s v) and (s w) are will lead to a direct contradiction by

injectivity of the constructor s.

eq^Var (s v) (s w) with eq^Var v w

... | yes p = yes (cong s p)

... | no ¬p = no λ where refl→ ¬p refl
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Deciding Term Equality

The constructor ‘σ for descriptions gives us the ability to store values of any Set in terms. For some

of these Sets (e.g. (N→ N)), equality is not decidable. As a consequence our decision procedure

will be conditioned to the satisfaction of a certain set of Constraints which we can compute from

the Desc itself, as show in Figure 17.3. We demand that we are able to decide equality for all of the

Sets mentioned in a description.

Constraints : Desc I→ Set
Constraints (‘σ A d) = ((a b : A)→ Dec (a ≡ b)) × (∀ a→ Constraints (d a))
Constraints (‘X _ _ d) = Constraints d
Constraints (‘■ _) = ⊤

Figure 17.3: Constraints Necessary for Decidable Equality

Remembering that our descriptions are given a semantics as a big right-nested product terminated

by an equality constraint, we realise that proving decidable equality will entail proving equality

between proofs of equality. We are happy to assume Streicher’s axiom K (Hofmann and Streicher

[1994]) to easily dismiss this case. A more conservative approach would be to demand that equality

is decidable on the index type I and to then use the classic Hedberg construction (1998) to recover

uniqueness of identity proofs for I.

Assuming that the constraints computed by (Constraints d) are satisfied, we define the decision

procedure for equality of terms together with its equivalent for bodies. The function eq^Tm is a

straightforward case analysis dismissing trivially impossible cases where terms have distinct head

constructors (‘var vs. ‘con) and using either eq^Var or eq^⟦⟧ otherwise. The latter is defined by

induction over e. The somewhat verbose definitions are not enlightening so we leave them out here.

eq^Tm : (t u : Tm d i σ Γ)→ Dec (t ≡ u)
eq^⟦⟧ : ∀ e→ Constraints e→ (b c : ⟦ e ⟧ (Scope (Tm d i)) σ Γ)→ Dec (b ≡ c)

Figure 17.4: Type of Decidable Equality for Terms and Bodies

We now have an informative decision procedure for equality between terms provided that the

syntax they belong to satisfies a set of constraints. Other generic functions and decision procedures
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can be defined following the same approach: implement a similar function for variables first,

compute a set of constraints, and demonstrate that they are sufficient to handle any input term.
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Chapter 18

Building Generic Proofs about Generic

Programs

We have already shown in chapters 9 and 10 that, for the simply typed λ-calculus, introducing an

abstract notion of Semantics not only reveals the shared structure of common traversals, it also

allows us to give abstract proof frameworks for simulation or fusion lemmas. These ideas naturally

extend to our generic presentation of semantics for all syntaxes.

18.1 Additional Relation Transformers

During our exploration of generic proofs about the behaviour of Semantics for a concrete object

language, we have introduced a notion Rel of relations as well as a relation transformer for

environments (cf. section 9.1). Working on a universe of syntaxes, we are going to need to define

additional relators.

Kripke relator The Kripke relator is a generalisation of the ad-hoc definition introduced in fig. 9.4.

We assume that we have two types of values VA and VB as well as a relation VR for pairs of

such values, and two types of computations CA and CB whose notion of relatedness is given by

CR. We can define KripkeR relating Kripke functions of type (KripkeVA CA) and (KripkeVB CB)

respectively by stating that they send related inputs to related outputs. In this definition we use the

relation transformer for environment called All and introduced in fig. 9.2.
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KripkeR : ∀ ∆ i→ ∀[ KripkeVA CA ∆ i⇒ KripkeVB CB ∆ i⇒ const Set ]
KripkeR [] σ kA kB = rel CR σ kA kB

KripkeR ∆@(_ :: _) σ kA kB = ∀ {Θ} (ρ : Thinning _ Θ) {vsA vsB}→
AllVR ∆ vsA vsB → rel CR σ (kA ρ vsA) (kB ρ vsB)

Figure 18.1: Relational Kripke Function Spaces: From Related Inputs to Related Outputs

Desc relator The relator (⟦ d ⟧R) is a relation transformer which characterises structurally equal

layers such that their substructures are themselves related by the relation it is passed as an argu-

ment. It inherits a lot of its relational arguments’ properties: whenever R is reflexive (respectively

symmetric or transitive) so is (⟦ d ⟧R R).

It is defined by induction on the description and case analysis on the two layers which are meant

to be equal:

• In the stop token case (‘■ i), the two layers are two proofs that the branches’ respective indices

match the specified one. We consider these two proofs to be trivially equal (i.e. the constraint

generated is the unit type). This would not hold true in Homotopy Type Theory (Univalent

Foundations Program [2013]) but if we were to generalise the work to that setting, we could

either explicitly restrict our setup to language whose indices are equipped with a decidable

equality or insist on studying the ways in which these proofs can be equal.

• When facing a recursive position (‘X ∆ j d), we demand that the two substructures are related

by R ∆ j and that the rest of the layers are related by (⟦ d ⟧R R)

• Two nodes of type (‘σ A d) will be related if they both carry the same payload a of type A and

if the rest of the layers are related by (⟦ d a ⟧R R)

⟦_⟧R : (d : Desc I)→ (∀ ∆ σ→ ∀[ X ∆ σ⇒ Y ∆ σ⇒ const Set ])
→ ∀[ ⟦ d ⟧ X σ⇒ ⟦ d ⟧ Y σ⇒ const Set ]

⟦ ‘■ j ⟧R R x y = ⊤
⟦ ‘X ∆ j d ⟧R R (r , x) (r’ , y) = R ∆ j r r’ × ⟦ d ⟧R R x y
⟦ ‘σ A d ⟧R R (a , x) (a’ , y) = Σ (a’ ≡ a) (λ where refl→ ⟦ d a ⟧R R x y)

Figure 18.2: Relator: Characterising Structurally Equal Values with Related Substructures
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If we were to take a fixpoint of ⟦_⟧R, we could obtain a structural notion of equality for terms

which we could prove equivalent to propositional equality. Although interesting in its own right,

this section will focus on more advanced use-cases.

18.2 Simulation Lemma

A constraint mentioning all of these relation transformers appears naturally when we want to say

that a semantics can simulate another one. For instance, renaming is simulated by substitution:

we simply have to restrict ourselves to environments mapping variables to terms which happen

to be variables. More generally, given a semantics SA with valuesVA and computations CA and

a semantics SB with valuesVB and computations CB, we want to establish the constraints under

which these two semantics yield related computations provided they were called with environments

of related values. That is to say we want to prove the following generic result:

sim : AllVR Γ ρA ρB → (t : Tm d s σ Γ)→

rel CR σ (SA.semantics ρA t) (SB.semantics ρB t)

These constraints are packaged in a record type called Simulation and parametrised over

the semantics as well as the notion of relatedness used for values (given by a relation VR) and

computations (given by a relation CR).

record Simulation (d : Desc I)

(SA : Semantics dVA CA) (SB : Semantics dVB CB)

(VR : RelVA VB) (CR : Rel CA CB) : Set where

The two first constraints are self-explanatory: the operations th^V and var defined by each

semantics should be compatible with the notions of relatedness used for values and computations.

thR : (ρ : Thinning Γ ∆)→ relVR σ vA vB → relVR σ (SA.th^V vA ρ) (SB.th^V vB ρ)

varR : relVR σ vA vB → rel CR σ (SA.var vA) (SB.var vB)

The third constraint is similarly simple: the algebras (alg) should take related recursively

evaluated subterms of respective types ⟦ d ⟧ (KripkeVA CA) and ⟦ d ⟧ (KripkeVB CB) to related

computations. The difficulty is in defining an appropriate notion of relatedness bodyR for these

recursively evaluated subterms.
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algR : (b : ⟦ d ⟧ (Scope (Tm d s)) σ Γ)→ AllVR Γ ρA ρB →

let vA = fmap d (SA.body ρA) b

vB = fmap d (SB.body ρB) b

in bodyR vA vB → rel CR σ (SA.alg vA) (SB.alg vB)

We can combine ⟦_⟧R and KripkeR to express the idea that two recursively evaluated subterms

are related whenever they have an equal shape (which means their Kripke functions can be grouped

in pairs) and that all the pairs of Kripke function spaces take related inputs to related outputs.

bodyR : ⟦ d ⟧ (KripkeVA CA) σ ∆→ ⟦ d ⟧ (KripkeVB CB) σ ∆→ Set

bodyR vA vB = ⟦ d ⟧R (KripkeR VR CR) vA vB

The fundamental lemma of simulations is a generic theorem showing that for each pair of

Semantics respecting the Simulation constraint, we get related computations given environments of

related input values. In Figure 18.3, this theorem is once more mutually proven with a statement

about Scopes, and Sizes play a crucial role in ensuring that the function is indeed total.

sim : AllVR Γ ρA ρB → (t : Tm d s σ Γ)→
rel CR σ (SA.semantics ρA t) (SB.semantics ρB t)

body : AllVR Γ ρA ρB → ∀ ∆ j→ (t : Scope (Tm d s) ∆ j Γ)→
KripkeR VR CR ∆ j (SA.body ρA ∆ j t) (SB.body ρB ∆ j t)

sim ρR (‘var k) = varR (lookupR ρR k)
sim ρR (‘con t) = algR t ρR (liftR d (body ρR) t)

body ρR [] i t = sim ρR t
body ρR (_ :: _) i t = λ σ vsR → sim (vsR ++^EnvR (thR σ <$>R ρR)) t

Figure 18.3: Fundamental Lemma of Simulations

Instantiating this generic simulation lemma, we can for instance prove that renaming is a special

case of substitution, or that renaming and substitution are extensional i.e. that given environments

equal in a pointwise manner they produce syntactically equal terms. Of course these results are

not new but having them generically over all syntaxes with binding is convenient. We experienced

this first hand when tackling the POPLMark Reloaded challenge (2017) where rensub (defined in

Figure 18.4) was actually needed.
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RenSub : Simulation d Ren Sub VarTmR EqR

rensub : (ρ : Thinning Γ ∆) (t : Tm d∞ σ Γ)→ ren ρ t ≡ sub (‘var <$> ρ) t
rensub ρ = Simulation.sim RenSub (packR λ _→ refl)

Figure 18.4: Renaming as a Substitution via Simulation

When studying specific languages, new opportunities to deploy the fundamental lemma of

simulations arise. Our solution to the POPLMark Reloaded challenge for instance describes the

fact that (sub ρ t) reduces to (sub ρ’ t) whenever for all v, ρ(v) reduces to ρ’(v) as a Simulation.

The main theorem (strong normalisation of STLC via a logical relation) is itself an instance of (the

unary version of) the simulation lemma.

The Simulation proof framework is the simplest example of the abstract proof frameworks

introduced in ACMM (2017a). We also explain how a similar framework can be defined for fusion

lemmas and deploy it for the renaming-substitution interactions but also their respective interactions

with normalisation by evaluation. Now that we are familiarised with the techniques at hand, we can

tackle this more complex example for all syntaxes definable in our framework.

18.3 Fusion Lemma

There are abundant result that can be reformulated as the ability to fuse two traversals obtained as

Semantics into one. When claiming that Tm is a Functor, we have to prove that two successive

renamings can be fused into a single renaming where the Thinnings have been composed. Similarly,

demonstrating that Tm is a relative Monad (Altenkirch et al. [2014]) implies proving that two

consecutive substitutions can be merged into a single one whose environment is the first one, where

the second one has been applied in a pointwise manner. The Substitution Lemma central to most

model constructions (see for instance Mitchell and Moggi [1991]) states that a syntactic substitution

followed by the evaluation of the resulting term into the model is equivalent to the evaluation of the

original term with an environment corresponding to the evaluated substitution.

A direct application of these results is our entry to the POPLMark Reloaded challenge (2017).

By using a Desc-based representation of intrinsically well typed and well scoped terms we directly

inherit not only renaming and substitution but also all four fusion lemmas as corollaries of our
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generic results. This allows us to remove the usual boilerplate and go straight to the point. As all of

these statements have precisely the same structure, we can once more devise a framework which

will, provided that its constraints are satisfied, prove a generic fusion lemma.

Our fundamental lemma of Fusion states that from a triple of related environments (the exact

meaning of “related” will be defined in the next section), one gets a pair of related computations

(again the meaning of “related” will be made formal soon):

fusion : ER Γ ∆ ρA ρB ρAB → (t : Tm d s σ Γ)→ R σ ρA ρB ρAB t

Fusion is more involved than simulation so we will step through each one of the constraints

individually, trying to give the reader an intuition for why they are shaped the way they are.

The Fusion Constraints

The notion of fusion is defined for a triple of Semantics; each Si being defined for values inVi

and computations in Ci. The fundamental lemma associated to such a set of constraints will state

that running SB after SA is equivalent to running SAB only.

The definition of fusion is parametrised by three relations: ER relates triples of environments

of values in (Γ −Env)VA ∆, (∆ −Env)VB Θ and (Γ −Env)VAB Θ respectively;VR relates pairs

of values VB and VAB; and CR, our notion of equivalence for evaluation results, relates pairs of

computation in CB and CAB.

record Fusion (d : Desc I) (SA : Semantics dVA CA) (SB : Semantics dVB CB)

(SAB : Semantics dVAB CAB)

(ER : ∀ Γ ∆ {Θ}→ (Γ −Env)VA ∆→ (∆ −Env)VB Θ→ (Γ −Env)VAB Θ→ Set)

(VR : RelVB VAB) (CR : Rel CB CAB) : Set where

The first obstacle we face is the formal definition of “running SB after SA”: for this statement to

make sense, the result of running SA ought to be a term. Or rather, we ought to be able to extract a

term from a CA. Hence the first constraint: the existence of a reifyA function, which we supply as a

field of the record Fusion. When dealing with syntactic semantics such as renaming or substitution

this function will be the identity. Nothing prevents proofs, such as the idempotence of NbE, which

use a bona fide reification function that extracts terms from model values.

reifyA : ∀ σ→ ∀[ CA σ⇒ Tm d∞ σ ]
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Then, we have to think about what happens when going under a binder: SA will produce a

Kripke function space where a syntactic value is required. Provided that VA is VarLike, we can

make use of reify (defined in fig. 15.10) to get a Scope back which will be more amenable to

running the semantics SB. Hence the second constraint.

vl^VA : VarLikeVA

We can combine these two functions to define the reification procedure we will use in practice

when facing Kripke function spaces: quoteA which takes such a function and returns a term by first

feeding placeholder values to the Kripke function space and getting a CA back and then reifying it

thanks to reifyA.

quoteA : ∀ ∆ i→ KripkeVA CA ∆ i Γ→ Tm d∞ i (∆ ++ Γ)

quoteA ∆ i k = reifyA i (reify vl^VA ∆ i k)

Still thinking about going under binders: if three evaluation environments ρA of type (Γ −Env)

VA ∆, ρB in (∆ −Env) VB Θ, and ρAB in (Γ −Env) VAB Θ are related by ER and we are given a

thinning ρ from Θ to Ω then ρA, the thinnedVB and the thinned ρAB should still be related.

th^ER : ER Γ ∆ ρA ρB ρAB → (ρ : Thinning Θ Ω)→

ER Γ ∆ ρA (th^Env SB.th^V ρB ρ) (th^Env SAB.th^V ρAB ρ)

Remembering that _++^Env_ is used in the definition of body (cf. fig. 15.4) to combine two

disjoint environments (Γ −Env)V Θ and (∆ −Env)V Θ into one of type ((Γ ++ ∆) −Env)V Θ),

we mechanically need a constraint stating that _++^Env_ is compatible with ER. We demand as an

extra precondition that the values ρB and ρAB are extended with are related in a pointwise manner

according to VR. Lastly, for all the types to match up, ρA has to be extended with placeholder

variables which we can do thanks to the VarLike constraint vl^VA.

_++^EnvR_ : ER Γ ∆ ρA ρB ρAB → AllVR Θ vsB vsAB →

let id++^EnvρA = freshl vl^VA ∆ ++^Env th^Env SA.th^V ρA (freshr vl^Var Θ)

in ER (Θ ++ Γ) (Θ ++ ∆) id++^EnvρA (vsB ++^Env ρB) (vsAB ++^Env ρAB)

We finally arrive at the constraints focusing on the semantical counterparts of the terms’ construc-

tors. In order to have readable types we introduce an auxiliary definition R. Just like in chapter 10,
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it relates at a given type a term and three environments by stating that sequentially evaluating the

term in the first and then the second environment on the one hand and directly evaluating the term

in the third environment on the other yields related computations.

R : ∀ σ→ (Γ −Env)VA ∆→ (∆ −Env)VB Θ→ (Γ −Env)VAB Θ→

Tm d s σ Γ→ Set

R σ ρA ρB ρAB t = rel CR σ (evalB ρB (reifyA σ (evalA ρA t))) (evalAB ρAB t)

As one would expect, the varR constraint states that from related environments the two evaluation

processes described by R yield related outputs.

varR : ER Γ ∆ ρA ρB ρAB → ∀ v→ R σ ρA ρB ρAB (‘var v)

The case of the algebra follows a similar idea albeit being more complex. It states that we should

be able to prove that a ‘con-headed term’s evaluations are related according to R provided that the

evaluation of the constructor’s body one way or the other yields structurally similar results (hence

the use of the (⟦ d ⟧R) relation transformer defined in section 18.1) where the relational Kripke

function space relates the semantical objects one can find in place of the subterms.

algR : ER Γ ∆ ρA ρB ρAB → (b : ⟦ d ⟧ (Scope (Tm d s)) σ Γ)→

let bA : ⟦ d ⟧ (KripkeVA CA) _ _

bA = fmap d (SA.body ρA) b

bB = fmap d (λ ∆ i→ SB.body ρB ∆ i ◦ quoteA ∆ i) bA

bAB = fmap d (SAB.body ρAB) b

in ⟦ d ⟧R (KripkeR VR CR) bB bAB → R σ ρA ρB ρAB (‘con b)

Fundamental Lemma of Fusion

This set of constraints is enough to prove a fundamental lemma of Fusion stating that from a triple

of related environments, one gets a pair of related computations: the composition of SA and SB on

one hand and SAB on the other.

This lemma is once again proven mutually with its counterpart for Semantics’ body’s action on

Scopes: given related environments and a scope, the evaluation of the recursive positions using SA

followed by their reification and their evaluation in SB should yield a piece of data structurally equal
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fusion : ER Γ ∆ ρA ρB ρAB → (t : Tm d s σ Γ)→ R σ ρA ρB ρAB t

Figure 18.5: Statement of the Fundamental Lemma of Fusion

to the one obtained by using SAB instead where the values replacing the recursive substructures are

KripkeR-related.

body : ER Γ ∆ ρA ρB ρAB → ∀ ∆ σ→ (b : Scope (Tm d s) ∆ σ Γ)→
let vB = SB.body ρB ∆ σ (quoteA ∆ σ (SA.body ρA ∆ σ b))

vAB = SAB.body ρAB ∆ σ b
in KripkeR VR CR ∆ σ vB vAB

Figure 18.6: Statement of the Fundamental Lemma of Fusion for Bodies

The proofs involve two functions we have not mentioned before: liftR maps a proof that a

property holds for any recursive substructure over the arguments of said constructor to obtain a ⟦ d

⟧R object. The proof we obtain does not exactly match the premise in algR; we need to adjust it by

rewriting an fmap-fusion equality called fmap2.

fusion ρR (‘var v) = varR ρR v
fusion ρR (‘con t) = algR ρR t (rew (liftR d (body ρR) t)) where

eq = fmap2 d (SA.body _) (λ ∆ i t→ SB.body _ ∆ i (quoteA ∆ i t)) t
rew = subst (λ v→ ⟦ d ⟧R (KripkeR VR CR) v _) (sym eq)

body ρR [] i b = fusion ρR b
body ρR (σ :: ∆) i b = λ ρ vsR → fusion (th^ER ρR ρ ++^EnvR vsR) b

Figure 18.7: Proof of the Fundamental Lemma of Fusion

Applications

A direct consequence of this result is the four lemmas collectively stating that any pair of renamings

and / or substitutions can be fused together to produce either a renaming (in the renaming-renaming

interaction case) or a substitution (in all the other cases).

189



18. Building Generic Proofs about Generic Programs

One such example is the fusion of substitution followed by renaming into a single substitution

where the renaming has been applied to the environment.

subren : (t : Tm d i σ Γ) (ρ1 : (Γ −Env) (Tm d∞) ∆) (ρ2 : Thinning ∆ Θ)→
ren ρ2 (sub ρ1 t) ≡ sub (ren ρ2 <$> ρ1) t

Figure 18.8: Generic Substitution-Renaming Fusion Principle

All four lemmas are proved in rapid succession by instantiating the Fusion framework four

times, using the first results to discharge constraints in the later ones. The last such result is the

generic fusion result for substitution with itself.

sub2 : (t : Tm d i σ Γ) (ρ1 : (Γ −Env) (Tm d∞) ∆) (ρ2 : (∆ −Env) (Tm d∞) Θ)→
sub ρ2 (sub ρ1 t) ≡ sub (sub ρ2 <$> ρ1) t

Figure 18.9: Generic Substitution-Substitution Fusion Principle

Variations on these results

Another corollary of the fundamental lemma of fusion is the observation that Kaiser, Schäfer, and

Stark (2018) make: assuming functional extensionality, all of our kind-and-scope safe traversals

are compatible with variable renaming. We reproduced this result generically for all syntaxes

(see accompanying code). The need for functional extensionality arises in the proof when dealing

with subterms which have extra bound variables. These terms are interpreted as Kripke functional

spaces in the host language and we can only prove that they take equal inputs to equal outputs. An

intensional notion of equality will simply not do here. As a consequence, we refrain from using the

generic result in practice when an axiom-free alternative is provable.

Kaiser, Schäfer and Stark’s observation naturally raises the question of whether the same

semantics are also stable under substitution. Our semantics implementing printing with names is a

clear counter-example: a fresh name is generated each time we go under a binder, meaning that the

same term will be printed differently depending on whether it is located under one or two binders.

Consequently, printing u and substituting the result for t during the printing of (λx.t)(λx.λy.t) will
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lead to a different result than printing the term (λx.u)(λx.λy.u) where the substitution has already

been performed.
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Chapter 19

Conclusion

19.1 Summary

In the first half of this thesis, we have expanded on the work published in Allais et al. [2017a].

Starting from McBride’s Kit (2005) making explicit the common structure of renaming and substi-

tution, we observed that normalisation by evaluation had a similar shape. This led us to defining

a notion of type-and-scope preserving Semantics where, crucially, λ-abstraction is interpreted

as a Kripke function space. This pattern was general enough to encompass not only renaming,

substitution and normalisation by evaluation but also printing with names, continuation passing

style transformations and as we have seen later on even let-inlining, typechecking and elaboration

to a typed core language.

Once this shared structure was highlighted, we took advantage of it and designed proof frame-

works to prove simulation lemmas and fusion principles for the traversals defined as instances of

Semantics. These allowed us to prove, among other things, that syntactic traversals are extensional,

that multiple renamings and substitutions can be fused in a single pass and that the substitution

lemma holds for NBE’s evaluation. Almost systematically, previous results where used to discharge

the goals arising in the later proofs.

In the second half, we have built on the work published in Allais et al. [2018a]. By extending

Chapman, Dagand, McBride, and Morris’ universe of datatype descriptions (2010) to support a

notion of binding, we have given a generic presentation of syntaxes with binding. We then defined

a generic notion of type-and-scope preserving Semantics for these syntaxes with binding. It
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captures a large class of scope-and-type safe generic programs: from renaming and substitution, to

normalisation by evaluation, the desugaring of new constructors added by a language transformer,

printing with names or typechecking.

We have seen how to construct generic proofs about these generic programs. We first introduced

a simulation relation showing what it means for two semantics to yield related outputs whenever they

are fed related inputs. We then built on our experience to tackle a more involved case: identifying a

set of constraints guaranteeing that two semantics run consecutively can be subsumed by a single

pass of a third one.

We have put all of these results into practice by using them to solve the POPLMark Reloaded

challenge which consists in formalising strong normalisation for the simply typed λ-calculus via

a logical-relation argument. This also gave us the opportunity to try our framework on larger

languages by tackling the challenge’s extensions to sum types and Gödel’s System T. Compared

to the Coq solution contributed by our co-authors, we could not rely on tactics and had to write

all proof terms by hand. However the expressiveness of dependently-typed pattern-matching, the

power of size-based termination checking and the consequent library we could rely on thanks to the

work presented in this thesis meant that our proofs were just as short as the tactics-based ones.

19.2 Related Work

Variable Binding

The representation of variable binding in formal systems has been a hot topic for decades. Part of

the purpose of the first POPLMark challenge (2005b) was to explore and compare various methods.

Having based our work on a de Bruijn encoding of variables, and thus a canonical treatment of

α-equivalence classes, our work has no direct comparison with permutation-based treatments such

as those of Pitts’ and Gabbay’s nominal syntax (2001).

Our generic universe of syntax is based on scoped and typed de Bruijn indices (1972) but it is

not a necessity. It is for instance possible to give an interpretation of Descriptions corresponding

to Chlipala’s Parametric Higher-Order Abstract Syntax (2008a) and we would be interested to see

what the appropriate notion of Semantics is for this representation.
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Alternative Binding Structures

The binding structure we present here is based on a flat, lexical scoping strategy. There are other

strategies and it would be interesting to see whether our approach could be reused in these cases.

Groups of binders

Weirich, Yorgey, and Sheard’s work (2011) encompasses a large array of patterns (n-ary, nested,

recursive, and telescopic) and can inform our design. They do not enforce scoping invariants

internally which forces them to introduce separate constructors for a simple binder, a recursive

one, or a telescopic pattern. They recover guarantees by giving their syntaxes a nominal semantics

thus bolting down the precise meaning of each combinator and then proving that users may only

generate well formed terms. We discuss below these various kind of binders and how they relate to

our framework.

N-ary binders bring multiple variables into scope in one fell swoop, for instance an n-ary λ-

abstraction (λ x1, · · ·, xn → b). Our setting readily supports n-ary binders as the ‘X constructor

indeed takes a list of sorts that are bound in the subterm.

Nested binders bring multiple variables into scope where latter binders may have an associated

subterm that can refer to earlier binders, for instance a let-binding operator (let x1 = e1, · · ·, xn = en

in b) where each ei can refer to any of the x j for j < i. We can easily model these by using the ‘σ

constructor to store a list of sorts and then compute the rest of the description by induction over it.

Recursive binders bring multiple variables into scope where each binder may have an associated

subterm that can refer to any of the binders, for instance a mutually recursive let-binding operator

(let x1 = e1, · · ·, xn = en in b) where each ei can refer to any of the x j. These binders are not special

either: syntactically they are simply nested n-ary binders, and their recursive nature only becomes

apparent in the user-provided interpretation of the constructors.

Telescopes Last but not least, telescopes bring multiple variables into scope where the sort of

latter variables can depend on earlier ones, for instance dependent lambda abstractions. These

are much harder to handle because they equip contexts with their own internal binding structure.
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Chapman, Kireev, Nester, and Wadler’s work on an intrinsic formulation of System F (2019) offers a

worked out example of such a system. Extracting a general framework from their specific approach

would be a really valuable contribution but we expect it to be quite challenging.

Binding in imperative languages

Bach Poulsen, Rouvoet, Tolmach, Krebbers and Visser (2018) introduce notions of scope graphs

and frames to scale the techniques typical of well scoped and typed deep embeddings to imperative

languages. They showcase the core ideas of their work using STLC extended with references and

then demonstrate that they can already handle a large subset of Middleweight Java.

We have demonstrated that our framework could be used to define effectful semantics by

choosing an appropriate monad stack (Moggi [1991a]). This suggests we should be able to model

STLC+Ref. It is however clear that the scoping structures handled by scope graphs and frames are,

in their full generality, out of reach for our framework. In contrast, our work shines by its generality:

we define an entire universe of syntaxes and provide users with traversals and lemmas implemented

once and for all.

Pattern-matching binders

Many other opportunities to enrich the notion of binder in our library are highlighted by Ch-

eney (2005). Our framework has nothing to say about global scoping or namespaces but could be

extended to handle pattern bindings.

Currently, our terms are always relative monads with respect to the built-in Var functor of scoped

de Bruijn variables. Its type is (I→ List I→ Set) which forces term sorts and scope sorts to be

identical. By decoupling the sorts of terms and context entries, and letting users define their own

notion of variable, we could handle pattern binders by declaring for instance that each pattern binder

is pushing a list of term sorts in the context (the variables bound by the pattern) and defining a type

family of ‘nested’ de Bruijn indices of type (I→ List (List I)→ Set) that selects a pattern binder

first, and then a specific variable bound by that pattern.

We do not expect such an extension to represent a lot of work.
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Substructural logics

The ability to constrain the ways in which variables may be duplicated, used, or discarded is a

natural extension of our work. Wood and Atkey already offer a very convincing generalisation of

our framework describing substructural type systems (2022).

The key idea that makes their approach work is that renamings and substitutions have an

associated matrix describing their respective action on the quantities associated to the variables in

scope.

Semantics of Syntaxes with Binding

An early foundational study of a general semantic framework for signatures with binding, algebras

for such signatures, and initiality of the term algebra, giving rise to a categorical ‘program’ for

substitution and proofs of its properties, was given by Fiore, Plotkin and Turi (1999). They worked

in the category of presheaves over renamings, (a skeleton of) the category of finite sets. The presheaf

condition corresponds to our notion of being Thinnable. Exhibiting algebras based on both de

Bruijn level and index encodings, their approach isolates the usual (abstract) arithmetic required of

such encodings.

By contrast, we are working in an implemented type theory where the encoding can be under-

stood as its own foundation without appeal to an external mathematical semantics. We are able to

go further in developing machine-checked such implementations and proofs, themselves generic

with respect to an abstract syntax Desc of syntaxes-with-binding. Moreover, the usual source of

implementation anxiety, namely concrete arithmetic on de Bruijn indices, has been successfully

encapsulated via the □ coalgebra structure. It is perhaps noteworthy that our type-theoretic construc-

tions, by contrast with their categorical ones, appear to make fewer commitments as to functoriality,

thinnability, etc. in our specification of semantics, with such properties typically being provable as

a further instance of our framework.

Meta-Theory Automation via Tactics and Code Generation

The tediousness of repeatedly proving similar statements has unsurprisingly led to various attempts

at automating the pain away via either code generation or the definition of tactics. These solutions

can be seen as untrusted oracles driving the interactive theorem prover.
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Polonowski’s DBGen (2013) takes as input a raw syntax with comments annotating binding

sites. It generates a module defining lifting, and substitution as well as a raw syntax using names

and a validation function transforming named terms into de Bruijn ones; we refrain from calling it a

scopechecker as terms are not statically proven to be well scoped.

Kaiser, Schäfer, and Stark (2018) build on our previous paper to draft possible theoretical

foundations for Autosubst, a so-far untrusted set of tactics. The paper is based on a specific syntax:

well scoped call-by-value System F. In contrast, our effort has been here to carve out a precise

universe of syntaxes with binding and give a systematic account of these syntaxes’ semantics and

proofs.

Keuchel, Weirich, and Schrijvers’ Needle (2016) is a code generator written in Haskell producing

syntax-specific Coq modules implementing common traversals and lemmas about them.

All of theses approaches, although relying on an untrusted generator and not encompassing as

many traversals as we are, have the advantage of letting users declare their own datatype of syntax

instead of working in an encoding. We expect a thin layer of meta-programming on top of our

library should allow for similar ergonomics.

Universes of Syntaxes with Binding

Keeping in mind Altenkirch and McBride’s observation that generic programming is everyday

programming in dependently-typed languages (2002), we can naturally expect generic, provably

sound, treatments of these notions in tools such as Agda or Coq.

Keuchel (2011) together with Jeuring (2012) define a universe of syntaxes with binding with a

rich notion of binding patterns closed under products but also sums as long as the disjoint patterns

bind the same variables. They give their universe two distinct semantics: a first one based on well

scoped de Bruijn indices and a second one based on Parametric Higher-Order Abstract Syntax

(PHOAS) (Chlipala [2008a]) together with a generic conversion function from the de Bruijn syntax

to the PHOAS one. Following McBride (2005), they implement both renaming and substitution in

one fell swoop. They leave other opportunities for generic programming and proving to future work.

Keuchel, Weirich, and Schrijvers’ Knot (2016) implements as a set of generic programs the

traversals and lemmas generated in specialised forms by their Needle program. They see Needle as

a pragmatic choice: working directly with the free monadic terms over finitary containers would be
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too cumbersome. In our experience solving the POPLMark Reloaded challenge, Agda’s pattern

synonyms make working with an encoded definition almost seamless.

The GMeta generic framework (2012) provides a universe of syntaxes and offers various binding

conventions (locally nameless (Charguéraud [2012]) or de Bruijn indices). It also generically

implements common traversals (e.g. computing the sets of free variables, shifting de Bruijn indices

or substituting terms for parameters) as well as common predicates (e.g. being a closed term) and

provides generic lemmas proving that they are well behaved. It does not offer a generic framework

for defining new well scoped-and-typed semantics and proving their properties.

Érdi (2018) defines a universe inspired by a first draft of this paper and gives three different

interpretations (raw, scoped and typed syntax) related via erasure. He provides scope- and type-

preserving renaming and substitution as well as various generic proofs that they are well behaved

but offers neither a generic notion of semantics, nor generic proof frameworks.

Copello (2017) works with named binders and defines nominal techniques (e.g. name swapping)

and ultimately α-equivalence over a universe of regular trees with binders inspired by Morris’ (2006).

This work focuses on variable binding and putting the tools to the test by deriving classic meta-

theoretical results e.g. the Church-Rosser theorem, or subject reduction for a the simply-typed

lambda calculus. They do not consider what semantics these syntactic constructs could be given.

Fusion of Successive Traversals

The careful characterisation of the successive recursive traversals which can be fused together into

a single pass in a semantics-preserving way is not new. This transformation is a much needed

optimisation principle in a high-level functional language.

Through the careful study of the recursion operator associated to each strictly positive datatype,

Malcolm (1990) defined optimising fusion proof principles. Other optimisations such as defor-

estation (Wadler [1990a]) or the compilation of a recursive definition into an equivalent abstract

machine-based tail-recursive program (Cortiñas and Swierstra [2018]) rely on similar generic proofs

that these transformations are meaning-preserving.
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19.3 Limitations of the Current Framework

Although quite versatile already our current framework has some limitations which suggest avenues

for future work. We list these limitations from easiest to hardest to resolve. Remember that each

modification to the universe of syntaxes needs to be given an appropriate semantics.

Inefficient Environment Weakening Our fundamental lemma of semantics systematically tra-

verses its environment of values whenever it needs to push it under a binder. This means that if we

need to push an environment under n successive binders, we will thin each of the values it carries n

times. Preliminary work demonstrates that it is possible to avoid these repeated traversals. The key

idea is to use an inductive notion of environments in which the thin-and-extend operation used to

go under a binder is reified as a constructor. At variable-lookup time, we merge the accumulated

thinnings and actually apply them to the original value. Intuitively, going under a binder amounts to

pushing a frame consisting of a thinning and an environment of values for the newly bound variables

onto the evaluation stack (which is essentially a type-aligned list of frames). It should be fairly easy

to prove that this traversal using a modified environment yields computations equivalent to the usual

one. We should then be able to transport all the results obtained for the more naïve semantics over

to the more efficient one.

Unrestricted Variables Our current notion of variable can be used to form a term of any kind.

We remarked in Sections 16.2 and 16.3 that in some languages we want to restrict this ability to one

kind in particular. In that case, we wanted users to only be able to use variables at the kind Infer of

our bidirectional language. For the time being we made do by restricting the environment values

our Semantics use to a subset of the kinds: terms with variables of the wrong kind will not be given

a semantics. We expect that it should be fairly easy to change the notion of descriptions so that

users can pick different sorts for terms and context entries as long as they provide a well-behaved

alternative to the type Var of scoped de Bruijn variables. The only part that will require a bit of

ingenuosity will be identifying the constraints this Var replacement should satisfy so that we can

still generate all the traversals and proofs we are interested in.

Flat Binding Structure Our current setup limits us to flat binding structures: variable and binder

share the same kinds. This prevents us from representing languages with binding patterns, for
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instance pattern-matching let-binders which can have arbitrarily nested patterns taking pairs apart.

We expect that we can tackle this issue by refining the approach suggested in the previous paragraph.

Closure under Derivation One-hole contexts play a major role in the theory of programming

languages. Just like the one-hole context of a datatype is a datatype (Abbott et al. [2005b]), we would

like our universe to be closed under derivatives so that the formalisation of e.g. evaluation contexts

could benefit directly from the existing machinery. We expect this goal to be quite challenging as it

will require incorporating an entirely separate fourth strand of research to our work which already

combines intrinsic scoping, generic programming, and denotational semantics.

Closure under Closures Jander’s work on formalising and certifying continuation passing style

transformations (Jander [2019]) highlighted the need for a notion of syntaxes with closures. Recall-

ing that our notion of Semantics is always compatible with precomposition with a renaming (Kaiser

et al. [2018]) but not necessarily precomposition with a substitution (printing is for instance not

stable under substitution), accommodating terms with suspended substitutions is a real challenge.

Preliminary experiments show that a drastic modification of the type of the fundamental lemma of

Semantics makes dealing with such closures possible. Whether the resulting traversal has good

properties that can be proven generically is still an open problem.

19.4 Future Work

The diverse influences leading to this work suggest many opportunities for future research.

Total Compilers with Typed Intermediate Representations

Some of our core examples of generic semantics correspond to compiler passes: desugaring,

elaboration to a typed core, type-directed partial evaluation, or CPS transformation. This raises the

question of how many such common compilation passes can be implemented generically.

Other semantics such as printing with names or a generic notion of raw terms together with

a generic scope checker (not shown here but available in Allais et al. [2018b]) are infrastructure

a compiler would have to rely on. Together with our library of total parser combinators (Allais

[2018]) and our declarative syntax for defining hierarchical command line interfaces (Allais [2017]),

201



19. Conclusion

this suggests we are close to being able to define an entire (toy) compiler with strong invariants

enforced in the successive intermediate representations.

To tackle modern languages with support for implicit arguments, a total account of (higher-

order) unification is needed. It would ideally be defined generically over our notion of syntax thus

allowing us to progressively extend our language as we see fit without having to revisit that part

of the compiler. We expect this to be very challenging, especially if meta-variables have explicit

binding sites in terms and so potentially need to be moved around during unification as constraints

are being discovered.

Generic Meta-Theory

If we cannot use our descriptions to define an intrinsically-typed syntax for a dependently-typed

theory, we can however give a well-scoped version and then define typing judgments. When doing

so we have a lot of freedom in how we structure them and a natural question to ask is whether we

can identify a process which will always give us judgments with good properties e.g. stability under

substitution or decidable typechecking.

We can in fact guarantee such results by carefully managing the flow of information in the

judgments and imposing that no information ever comes out of nowhere. This calls for the definition

of a universe of typing judgments and the careful analysis of its properties.

We expect this to be very challenging as such a generic treatment of type theories will require a

generic treatment of judgemental equality based on user-provided evaluation rules.

A Theory of Ornaments for Syntaxes

The research programme introduced by McBride’s unpublished paper introducing ornaments for

inductive families (2017) allows users to make explicit the fact that some inductive families are

refinements of others. Once their shared structure is known, the machine can assist the user in

transporting an existing codebase from the weakly-typed version of the datatype to its strongly

typed variant (Dagand and McBride [2014]). These ideas can be useful even in ML-style settings

(Williams et al. [2014]).

Working out a similar notion of ornaments for syntaxes would yield similar benefits but for

manipulating binding-aware families. This is particularly evident when considering the elaboration
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semantics which given a scoped term produces a scoped-and-typed term by type-checking or

type-inference.

If the proofs we developed in this thesis would still be out of reach for ML-style languages, the

programming part can be replicated using the usual Generalised Algebraic Data Types (GADTs)

based encodings (Danvy et al. [2013], Lindley and McBride [2014]) and could thus still benefit

from such ornaments being made first order.

Derivatives of Syntaxes

Our work on the POPLMark Reloaded challenge highlighted a need for a generic definition of

evaluation contexts (i.e. terms with holes), congruence closures and the systematic study of their

properties. This would build on the work of Huet (1997) and Abbott, Altenkirch, McBride and

Ghani (2005a) and would allow us to revisit previous work based on concrete instances of our

Semantics-based approach to formalising syntaxes with binding such as McLaughlin, McKinna

and Stark (2018).
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Conventions and Techniques

Convention 1 When the reader should be able to reconstruct the information from the context, we

may write id instead of idA and (_ ◦ _) instead of (_ ◦C _) respectively.

Convention 2 (Caret-based naming) We use a caret to generate a mnemonic name: map refers

to the fact that we can map a function over the content of a data structure and -Tuple clarifies that

the data structure in question is the family of n-ary tuples.

We use this convention consistently throughout this thesis, using names such as map^Rose

for the proof that we can map a function over the content of a rose tree, th^Var for the proof that

variables are thinnable, or vl^Tm for the proof that terms are var-like.

Convention 3 (Object and Meta Syntaxes) When we represent object syntax in the meta language

(Agda here) we use backquotes to make explicit the fact that we are manipulating quoted objects.

Convention 4 (Assume an Ambient Context) Following Martin-Löf (1982) we adopt the conven-

tion that all of our typing rules are defined in an ambient context Γ and only mention the adjustments

made to it. Crucially, we can see that the only rule which modifies the context is the introduction

rule for lambda abstractions: in the premise, (x : σ ⊢) indicates that the ambient context is extended

with a new bound variable x of type σ.

Convention 5 (Using Comments to Mimick Natural Deduction Rules) In the definition of the

calculus’ syntax we use comment lines to mimic inference rules in natural deduction. This definition

style is already present in Pollack’s PhD thesis (1994).
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A. Conventions and Techniques

Convention 6 (Programs as lemmas) It may seem strange for us to call a program manipulating

abstract syntax trees a “fundamental lemma”. From the Curry-Howard correspondence’s point of

view, types are statements and programs are proofs so the notions may be used interchangeably.

We insist on calling this program (and other ones in this thesis) a “fundamental lemma” because

it does embody the essence of the abstraction we have just introduced.

Convention 7 (Relational counterparts) We systematically reuse the same names for a construc-

tor or a combinator and its relational counterpart. We simply append an R suffix to the relational

version.

Convention 8 (Patterns for Layers and Datatypes) Whenever we work with a specific example

in a universe of datatypes or syntaxes, we introduce a set of patterns that work on a single ⟦_⟧-

defined layer (the primed version of the pattern) and one that works on full µ-defined values (the

classic version of the pattern). In most cases users will only use the classic version of the pattern to

write their programs. But when using generic fold-like function (see the next section) they may be

faced with a single layer.

Convention 9 (Embed and Cut) When working with a bidirectional syntax, we systematically

call the change of direction from a synthesisable to a checkable term an embedding as no extra

information is tacked onto the term.

In the other direction we use terminology from proof theory because we recognise the con-

nection between cut-elimination and βι reductions. Putting a constructor-headed checkable in a

synthesisable position is the first step to creating a redex. Hence the analogy.

Technique 1 (Intrinsically Enforced Properties) In the definition of an n-ary tuple, the length of

the tuple is part of the type (indeed the definition proceeds by induction over this natural number).

We say that the property that the tuple has length n is enforced intrinsically. Conversely some

properties are only proven after the fact, they are called extrinsic.

The choice of whether a property should be enforced intrinsically or extrinsically is for the

programmer to make, trying to find a sweet spot for the datastructure and the task at hand. We

typically build basic hygiene intrinsically and prove more complex properties later.
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Technique 2 (Lazily unfolded definitions) When record values are going to appear in types, it is

often a good idea to define them by copattern-matching: this prevents the definition from being

unfolded eagerly thus making the goal more readable during interactive development.

Technique 3 (Extensional Statements) Note that we have stated the theorem not in terms of the

identity function but rather in terms of a function which behaves like it. Agda’s notion of equality is

intensional, that is to say that we cannot prove that two functions yielding the same results when

applied to the same inputs are necessarily equal. In practice this means that stating a theorem in

terms of the specific implementation of a function rather than its behaviour limits vastly our ability

to use this lemma. Additionally, we can always obtain the more specific statement as a corollary.

Technique 4 (Functional Induction) Whenever we need to prove a theorem about a function’s

behaviour, it is best to proceed by functional induction. That is to say that the proof and the function

will follow the same pattern-matching strategy.
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Appendix B

Agda Features

Feature 1 (Universe Levels) Agda avoids Russell-style paradoxes by introducing a tower of uni-

verses Set0 (usually written Set), Set1, Set2, etc. Each Setn does not itself have type Setn but

rather Setn+1 thus preventing circularity.

Feature 2 (Implicit Arguments) Programmers can mark some of a function’s arguments as im-

plicit by wrapping them in curly braces. The values of these implicit arguments can be left out at

the function’s call sites and Agda will reconstruct them by unification (Abel and Pientka [2011]).

Feature 3 (Syntax Highlighting) We rely on Agda’s LATEX backend to produce syntax highlighting

for all the code fragments in this thesis. The convention is as follows: keywords are highlighted in

orange, data constructors in green, record fields in pink, types and functions in blue while bound

variables are black.

Feature 4 (Coverage Checking) During typechecking the coverage checker elaborates the given

pattern-matching equations into a case tree (Cockx and Abel [2020]). It makes sure that all the

branches are either assigned a right-hand side or obviously impossible. This allows users to focus

on the cases of interest, letting the machine check the other ones.

Feature 5 (Mixfix Identifiers) We use Agda’s mixfix operator notation (Danielsson and Norell

[2011]) where underscores denote argument positions. This empowers us to define the if_then_else_

construct rather than relying on it being built in like in so many other languages. For another

example, at the type-level this time, see e.g. the notation _×_ for the type of pairs defined in

section 3.2.
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B. Agda Features

Feature 6 (Termination Checking) Agda is equipped with a sophisticated termination checking

algorithm (Abel [1998]). For each function it attempts to produce a well-founded lexicographic

ordering of its inputs such that each recursive call is performed on smaller inputs according to this

order.

Feature 7 (Underscore as Placeholder Name) An underscore used in place of an identifier in a

binder means that the binding should be discarded. For instance (λ _ → a) defines a constant

function. Toplevel bindings can similarly be discarded which is a convenient way of writing unit

tests (in type theory programs can be run at typechecking time) without polluting the namespace.

Feature 8 (Implicit Generalisation) The latest version of Agda supports ML-style implicit prenex

polymorphism and we make heavy use of it: every unbound variable should be considered implicitly

bound at the beginning of the telescope. In the above example, A and B are introduced using this

mechanism.
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