
University of Strathclyde

Department of Mathematics and Statistics

STOCHASTIC DIFFERENTIAL EQUATIONS WITH

SWITCHING AND NUMERICAL SIMULATION FOR

GENE REGULATION NETWORKS

by

Somkid Intep

A thesis presented in fulfilment of the requirements

for the degree of Doctor of Philosophy

2010



Declaration

This thesis is the result of the authors original research. It has been composed by

the author and has not been previously submitted for examination which has led

to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50.

Due acknowledgement must always be made of the use of any material contained

in, or derived from, this thesis.

Signed:

Date:



Acknowledgements

First of all, I would like to thank my supervisor, Professor Desmond J. Higham,

very much. He always encouraged and supported me in everything since the first

day I came to this department until this final thesis was submitted. It was very

happy and enjoyable to work with him.

I would also like to thank my second supervisor, Professor Xuerong Mao, who

gave insights on our analysis when we needed it.

This thesis would not have been possible if I had not been funded by Thailand’s

Commission on Higher Education, so I am very grateful to them.

Next, I would like to thank all of my fellows who are already titled ‘Dr’ and

who are going to defend for it. I would also like to thank the ex-PhD student who

is now titled with ‘Dr’, Dr Richard A. Rankin. He was very kind to help me with

the small things, from latex to the language.

Finally, I would like to thank my family who supported me through everything.

I would also like to thank my wife who came here with me since the beginning and

shared happiness and sadness with me for more than three years.

i



Abstract

We analyse a hierarchy of three regimes for modelling gene regulation where the

tools of stochastic calculus can be used to analyse first and second moments for

all time. A technical issue to be addressed is that the state space for the discrete-

valued switch is infinite. We show that the infinite ‘switch plus diffusion’ regime

preserves the mean and variance, whereas the ‘switch plus ODE’ model uniformly

underestimates the variance in the protein level.

We then compare three stochastic models in gene regulation; zero, one, and two-

switch models. The steady state variance for the three models can either increase

or decrease when switches are incorporated, depending on the rate constants and

initial conditions. We find that one or two switches are always noisier than none.

However, moving from one to two switches may either increase or decrease the

noise strength. Although the underlying chemical kinetics appears to be second

order in the two-switch model, we show that the hybrid diffusion model matches

the moments of underlying Markov jump model for all time while the hybrid ODE

model underestimates the variances. We also consider the case where the gene

activity in the two-switch model is controlled by a pair of independent switches in

AND and OR modes, and find that the OR mode may be more or less noisy than

the AND mode depending on the model parameters.

After that, we analyse an autoregulation gene network in which a protein can

ii



enhance its own transcription rate. We show that the moments of mRNA and

protein increase monotonically with the feedback rate, and find that, at the sta-

ble steady state, increasing the feedback rate increases the variances and noise

strengths of both mRNA and protein monotonically.
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2.2 Itô’s Formula and Generalised Itô’s Formula . . . . . . . . . . . . . 5

2.3 Existence and Uniqueness of Solution for

SDEs and Switch-SDEs . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Numerical Solutions and Convergences . . . . . . . . . . . . . . . . 10

3 Biochemical Modelling 14

3.1 Modelling Genetic Networks . . . . . . . . . . . . . . . . . . . . . . 15

3.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Noise Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Switching and Diffusion Models for Gene Regulation Networks 24

4.1 Theory and Simulation for Infinite State

Space Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Examples of Finite and Infinite Markov Chains . . . . . . . 25

4.1.2 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iv



4.1.3 Existence and Uniqueness . . . . . . . . . . . . . . . . . . . 28

4.1.4 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Hybrid Diffusion Moments . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Hybrid ODE Moments . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 A Related Active/Inactive Gene Model . . . . . . . . . . . . . . . . 41

4.5 Tests With a Second Order Reaction . . . . . . . . . . . . . . . . . 44

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Zero, One and Two-switch Models of Gene Regulation 49

5.1 Gene Regulation Model . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 AND Mode: Moments for Two Switches . . . . . . . . . . . . . . . 53

5.3 Comparing Noise Strengths . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 One-Switch versus Zero-Switch . . . . . . . . . . . . . . . . 58

5.3.2 Two-Switch versus Zero-Switch . . . . . . . . . . . . . . . . 62

5.3.3 One-Switch versus Two-Switch . . . . . . . . . . . . . . . . 63

5.4 Hybrid Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.1 Hybrid Diffusion Moments . . . . . . . . . . . . . . . . . . . 67

5.4.2 Hybrid ODE Moments . . . . . . . . . . . . . . . . . . . . . 70

5.5 OR Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5.1 Moments for OR Mode . . . . . . . . . . . . . . . . . . . . . 73

5.5.2 Mean, Variance, and Noise Strength:

AND Mode versus OR Mode . . . . . . . . . . . . . . . . . . 75

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Autoregulation Models for Gene Regulation Networks 81

6.1 Feedback Gene Regulation Model . . . . . . . . . . . . . . . . . . . 82

6.2 Feedback Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

v



6.3 Analytical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 Feedback Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.5 Steady State Variances and Noise Strengths with Feedback . . . . . 97

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Conclusions and Further Work 101

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

vi



Chapter 1

Introduction

Recently, switching stochastic differential equations (SDEs) are more and more

popular to model many phenomena. In mathematical finance, for example, SDEs

with switches are used to model the evolution of asset prices and interest rates

in financial markets [21, 56]. This is because the values can change abruptly if,

for example, the markets change from confident to nervous. In a gene regulation

network, a gene, roughly speaking, can switch between an active state and inactive

state [31, 43]. This causes mRNA to be transcribed if the gene is active, otherwise

new mRNA is not produced. From this point of view, a switching SDE is reasonable

to describe the evolution of the system.

It is popular to summarise the level of fluctuation observed in a system in term

of the noise strength or Fano factor. For instance, the mRNA or protein noise

strengths may be of interest in gene expression, see more details in section 3.3.

This thesis considers SDEs with switches along with their numerical simulation

for gene regulation networks. We judge our models by their ability to reproduce

the noise strength of the Chemical Master Equation (CME), under the assumption

that the CME gives the most accurate solutions.

1



Chapter 1 2

SDEs with a Markovian switch taking values in a finite state space have been

already explored [37]. However, it is necessary to extend this theory to the case

where the switch has an infinite state space. Consequently, hybrid models that

use an infinite switch are considered in this thesis.

Increasing complexity of gene activity, and a protein feedback loop affecting its

own transcription rate are the other issues we consider.

1.1 Overview

We designed this thesis as a self-contained study, so the first two chapters provide

with some necessary ideas for the analysis in the main chapters.

Chapter 2 introduces some useful theorems and lemmas for SDEs and switch-

SDEs, including existence and uniqueness of solutions, numerical simulation, and

convergence.

In Chapter 3, we familiarise the reader with the general idea of how to model

gene regulation. We give an example of how to form mathematical frameworks

arising from chemical reactions. The noise strength is briefly discussed here.

Chapter 4 through 6 are the main body of research. In Chapter 4, we estab-

lish the existence and uniqueness, and consider numerical solution for SDEs with

switches taking values in an infinite state space. Hybrid models are produced and

judged via their noise strengths. This chapter is based on the paper [29].

Chapter 5 introduces a more complex type of gene activity in gene regulation,

which could be regarded as a second order reaction network. We consider this

complex gene activity into two senses: AND and OR operation modes. Most of

the material in this chapter appeared in the paper [28].

In Chapter 6, the last of our research chapters, we look at the effect of increasing
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the protein feedback rate when the protein affects its own transcription rate.

In the final chapter, we summarise our findings and leave some interesting open

question for further research in this area.



Chapter 2

Stochastic Differential Equations

and Related Topics

Nowadays stochastic differential equations (SDEs) are widely used to model many

phenomena of science, economics, and engineering. This includes an interesting

area, biochemical systems, which involves stochasticity. Recently, many authors

have tried to understand and predict the behaviour of a biological systems such as

gene expression [25, 31, 44, 47, 49, 51]. Some modelled the system by SDEs [51],

and others modelled by SDEs with switches [25, 31]. In this thesis we will study

SDEs with switches as our main aim. More precisely, we will develop and analyse

approximate switching hybrid models and consider numerical simulation issues.

Here we assume that the reader is familiar with stochastic differential equations.

For the reader who needs more details we refer to [32, 36, 42]. In the next sections,

we define the notation used in this thesis, and state useful theorems and lemmas.
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2.1 Notation

Let

• E[·] denote expectation of ·.

• P(·) denote probability of ·.

• Lp([a, b]; Rn) denote a family of R
n-valued Ft-adapted processes {f(t)}a≤t≤b

such that
∫ b

a
|f(t)|pdt <∞ all most surely (a.s.).

• Lp
Ft

(Ω; Rn) denote a family of R
n-valued Ft-measurable random variables ξ

such that E[|ξ|p] <∞.

• Mp([a, b]; Rn) denote a family of processes {f(t)}a≤t≤b in Lp([a, b]; Rn) such

that E
∫ b

a
|f(t)|pdt <∞.

• C2,1(D×R+; R) denote the family of all real-valued functions V (x, t) defined

on D × R+ which are continuously twice differentiable in x ∈ D and once

differentiable in t ∈ R+.

• [[a, b]] denote a stochastic closed interval, where a or b may be random vari-

ables.

2.2 Itô’s Formula and Generalised Itô’s Formula

In this section we will state the useful Itô’s formula.

Definition 2.2.1. [37, p 39]

An n-dimensional Itô process is an R
n-valued continuous adapted process x(t) =

(x1(t), · · · , xn(t))T on t ≥ 0 of the form

x(t) = x(0) +

∫ t

0

f(s)ds +

∫ t

0

g(s)dW (s),
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where f = (f1, · · · , fn)T ∈ L1(R+; Rn), g = (gij)n×m ∈ L2(R+; Rn×m), and

W (t) = (W1(t), · · · , Wm(t))T , t ≥ 0 is an m-dimensional Brownian motion de-

fined on a complete probability space (Ω,F , P) adapted to the filtration {Ft}t≥0.

For V ∈ C2,1(Rn × R+; R), we set

Vt =
∂V

∂t
, Vx =

(
∂V

∂x1
, . . . ,

∂V

∂xn

)
, and Vxx =

(
∂2V

∂xj∂xk

)

n×n

.

Theorem 2.2.1. (Itô’s Formula) [37, p 39]

Let x(t) be an n-dimensional Itô process on t ≥ 0 with the stochastic differential

dx(t) = f(t)dt + g(t)dW (t),

where f ∈ L1(R+; Rn) and g ∈ L2(R+; Rn×m). Let V ∈ C2,1(Rn × R+; R). Then

V (x(t), t) is a real-valued Itô process with its stochastic differential given by

dV (x(t), t) = [Vt + Vxf(t) +
1

2
trace(gT (t)Vxxg(t))]dt

+ Vxg(t)dW (t) a.s.

This theorem tells us that a function V maps the Itô process x(t) to another Itô

process V (x(t), t), while the next theorem, known as the generalised Itô formula,

will reveal that a function V̂ maps a paired process (x(t), r(t)) to a new process

V̂ (x(t), t, r(t)) where r(t) is a right-continuous Markov chain.

Let r(t), t ≥ 0, be a right-continuous Markov chain on a complete probability

space taking values in a finite state space S = {1, 2, . . . , N} with generator Γ =

(γij)N×N given by

P{r(t + ∆) = j|r(t) = i} =





γij∆ + o(∆) if i 6= j,

1 + γii∆ + o(∆) if i = j,

where ∆ > 0, and γij ≥ 0 is the transition rate from state i to j if i 6= j and

γii = −
∑

j 6=i

γij.
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Here we assume that the Markov chain r(t) is independent of the Brownian motion

W (t).

Now for V̂ ∈ C2,1(Rn × R+ × S; R), we set

V̂t(x, t, i) =
∂V̂ (x, t, i)

∂t
, V̂x(x, t, i) =

(
∂V̂ (x, t, i)

∂x1

, . . . ,
∂V̂ (x, t, i)

∂xn

)
,

and V̂xx(x, t, i) =
(

∂2 bV (x,t,i)
∂xj∂xk

)
n×n

,

and define an operator L from R
n × R+ × S to R such that

LV̂ (x, t, i) = V̂t(x, t, i) + V̂x(x, t, i)f(t)

+
1

2
trace[gT (t)V̂xx(x, t, i)g(t)] +

N∑

j=1

γijV̂ (x, t, j).

Note that in the case that the Markov chain r(t) takes values in an infinite

state space, the upper summation index N in the last term of the equation above

becomes infinity.

We are now in a position to state the generalised Itô formula.

Theorem 2.2.2. (Generalised Itô Formula) [37, 46]

If V̂ ∈ C2,1(Rn × R+ × S; R), then for any t ≥ 0

V̂ (x(t), t, r(t)) = V̂ (x(0), 0, r(0)) +

∫ t

0

LV̂ (x(s), s, r(s))ds

+

∫ t

0

V̂x(x(s), s, r(s))g(x(s), s, r(s))dW (s)

+

∫ t

0

∫

R

(
V̂ (x(s), s, i0 + h(r(s), l))− V̂ (x(s), s, r(s))

)
µ(ds, dl),

where the details of the function h and the measure µ can be found in [37].

Note that we do not state the explicit forms of the function h and the martin-

gale measure µ(ds, dl) because they are not relevant to our work. This is because

they vanish when we take expectation.
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2.3 Existence and Uniqueness of Solution for

SDEs and Switch-SDEs

We first consider an SDE of the form

dx(t) = f(x(t), t)dt + g(x(t), t)dW (t), t0 ≤ t ≤ T (2.1)

with an initial condition x(t0) = x0 ∈ L2
Ft0

(Ω; Rn), and

f : R
n × R+ → R

n and g : R
n × R+ → R

n×m.

An existence of a unique solution of the SDE (2.1) is accounted by the following

condition.

Theorem 2.3.1. [36, p 51]

Assume that f and g satisfy a Lipschitz condition; that is, there exists a positive

constant K̄ such that

|f(x, t)− f(y, t)|2 ∨ |g(x, t)− g(y, t)|2 ≤ K̄|x− y|2

for all x, y ∈ R
n and t ∈ [t0, T ]. Then there exists a unique solution x(t) to SDE

(2.1) and the solution belongs to M2([t0, T ]; Rn).

Now let us consider a Markovian switching SDE of the form

dx(t) = f(x(t), t, r(t))dt + g(x(t), t, r(t))dW (t), t0 ≤ t ≤ T (2.2)

with initial conditions x(t0) = x0 ∈ L2
Ft0

(Ω; Rn) and r(t0) = r0. Here r0 is an

S-valued Ft0-measurable random variable,

f : R
n × R+ × S→ R

n and g : R
n × R+ × S→ R

n×m,

and r(t) is a right-continuous Markov chain, as defined in section 2.2.
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Definition 2.3.1. (Solution of switch-SDEs)[37, p 88]

An R
n-valued stochastic process {x(t)}t0≤t≤T is called a solution of SDE (2.2) if it

has the following properties:

1. {x(t)}t0≤t≤T is continuous and Ft-adapted;

2. {f(x(t), t, r(t))}t0≤t≤T ∈ L1([t0, T ]; Rn) and

{g(x(t), t, r(t))}t0≤t≤T ∈ L2([t0, T ]; Rn×m);

3. For any t ∈ [t0, T ],

x(t) = x(t0) +

∫ t

t0

f(x(s), s, r(s))ds +

∫ t

t0

g(x(s), s, r(s))dW (s)

holds with probability 1.

We say that a solution {x(t)}t0≤t≤T is unique if we cannot distinguish any other

solution {x̄(t)}t0≤t≤T from {x(t)}t0≤t≤T .

The following condition is sufficient for there to exist a unique solution to the

SDE (2.2).

Theorem 2.3.2. [37, p 89]

Assume that there exist a positive constant K̄ such that

(Lipschitz condition for switch-SDE) for all x, y ∈ R
n, t ∈ [t0, T ] and i ∈ S

|f(x, t, i)− f(y, t, i)|2 ∨ |g(x, t, i)− g(y, t, i)|2 ≤ K̄|x− y|2. (2.3)

Then there exists a unique solution x(t) to switch-SDE (2.2) and, moreover,

E

(
sup

t0≤t≤T

|x(t)|2
)
≤ (1 + 3E|x0|2)e3K̄(T−t0)(T−t0+4) (2.4)

so the solution belongs to M2([t0, T ]; Rn).
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Note that the Lipschitz condition (2.3) implies automatically a linear growth

condition; that is, there exist a positive constant K such that for all (x, t, i) ∈

R
n × [t0, T ]× S,

|f(x, t, i)|2 ∨ |g(x, t, i)|2 ≤ K(1 + |x|2).

2.4 Numerical Solutions and Convergences

Generally we cannot obtain analytical solutions of SDEs with Markovian switching.

So, it is necessary to obtain a good approximate solution. In this section we will

introduce the Euler–Maruyama (EM) method. Now, consider an autonomous SDE

with Markovian switching of the form

dx(t) = f(x(t), r(t))dt + g(x(t), r(t))dW (t), 0 ≤ t ≤ T, (2.5)

with initial conditions x(0) = x0 ∈ R
n and r(0) = r0 ∈ S, where

f : R
n × S→ R

n and g : R
n × S→ R

n×m.

Here we assume that f and g satisfy the condition (2.3) so that the SDE (2.5) has

a unique solution. Note that x0 and r0 are now non-random.

To establish the EM approximate solution of (2.5), we will show first how to

simulate the Markov chain r(t). Given a fixed stepsize ∆ > 0, let r∆
k = r(k∆) for

k ≥ 0. We then have a discrete-time Markov chain {r∆
k , k = 0, 1, 2, · · · } with the

one-step transition probability matrix [2, 37]

P (∆) = (Pij(∆))
N×N

= e∆Γ,

where the generator Γ is defined in section 2.2. We note that
∑N

j=1 Pij(∆) = 1 for

all i ∈ S. We now can construct the discrete-time Markov chain {r∆
k } as follows,

see, for example, [37]:
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1. Compute the one-step transition probability matrix

P (∆) = (Pij(∆))
N×N

= e∆Γ,

and set r∆
0 = r0 ∈ S.

2. Generate an independent uniform (0,1) random number ξ1 and find the small-

est integer r∆
1 := r1 ∈ S such that

ξ1 <

r1∑

j=1

Pr0,j(∆).

3. Generate an independent uniform (0,1) random number ξ2 and find the small-

est integer r∆
2 := r2 ∈ S such that

ξ2 <

r2∑

j=1

Pr1,j(∆).

4. Repeating this procedure we can obtain a path from the discrete-time Markov

chain {r∆
k , k = 0, 1, 2, · · · }.

We are now in a position to define the EM approximate solution of (2.5).

A natural EM method for simulating the switching SDE (2.5) takes the form

Xk+1 = Xk + f(Xk, r
∆
k )∆ + g(Xk, r

∆
k )∆Wk. (2.6)

Here, ∆ > 0 is a fixed stepsize, Xk is the approximation to X(tk), with tk = k∆,

r∆
k = r(k∆), ∆Wk = W (tk+1)−W (tk) and the initial conditions for the iteration

are X0 = X(0) = x0 and r∆
0 = r0.

For the purpose of analysis, it is convenient to work with a continuous time

approximation, X(t), that is defined as

X(t) = X0 +

∫ t

0

f(X̄(s), r̄(s))ds +

∫ t

0

g(X̄(s), r̄(s))dW (s), (2.7)
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where the ‘step processes’ X̄(t) and r̄(t) take the form

X̄(t) = Xk, r̄(t) = r∆
k for t ∈ [tk, tk+1).

Note that X(tk) = X̄(tk) = Xk, so that X(t) and X̄(t) coincide with the discrete

numerical solution at the gridpoints tk.

The following general moment bounds hold for both the exact and numerical

solutions.

Lemma 2.4.1. [37, p 113]

Assume that f and g satisfy a linear growth condition; that is, there exists a

constant K > 0 such that

|f(x, i)| ∨ |g(x, i)| ≤ K(1 + |x|) ∀(x, i) ∈ R
n × S. (2.8)

Then for any p ≥ 2 there is a constant H, which is dependent on only p, T, K, x0

but independent of ∆, such that the exact solution x(t) in (2.5) and the EM ap-

proximate solution X(t) in (2.7) have the property that

E

[
sup

0≤t≤T

|x(t)|p
]
∨ E

[
sup

0≤t≤T

|X(t)|p
]
≤ H.

Now there is a question arising is of how close is an approximate solution to

a true solution and how to measure their difference. Here we introduce two error

measures: strong and weak convergence.

Definition 2.4.1. Strong Convergence [22]

A numerical method is said to have strong order of convergence equal to γ if

there exists a constant C, independent of ∆, such that

E|x(tk)−Xk| ≤ C∆γ (2.9)

for any fixed tk = k∆ ∈ [0, T ] and ∆ sufficiently small.
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If a numerical method has a strong order of convergence γ in (2.9), this means

that if we decrease the time-step size ∆ by a factor of 2, say, then the strong error

between the true and approximate solutions will decrease by at least a factor of

2γ .

In the case that the true solution is not known, we then use a numerical solution

with a very small time-step size ∆ instead.

Definition 2.4.2. Weak Convergence [22]

A numerical method is said to have weak order of convergence equal to γ if

there exists a constant C, independent of ∆, such that for all functions p in some

class

|E[p(x(tk))]− E[p(Xk)]| ≤ C∆γ (2.10)

for any fixed tk = k∆ ∈ [0, T ] and ∆ sufficiently small.

Typically, the functions p in (2.10) are required to satisfy smoothness and

polynomial growth conditions. The simplest choice for p is the identity function.

In the next theorem, we will bound the strong error of the EM approximate

solution X(t), in (2.7), under the global Lipschitz condition.

Theorem 2.4.1. Strong Convergence: Global Lipschitz Condition [37,

p 115]

Assume that f and g satisfy the global Lipschitz condition; that is, there exists a

constant K̄ > 0 such that

|f(x, i)− f(y, i)| ∨ |g(x, i)− g(y, i)| ≤ K̄|x− y| (2.11)

for all x, y ∈ R
n and i ∈ S. Then, as ∆→ 0,

E

[
sup

0≤t≤T

|X(t)− x(t)|2
]
≤ C∆ + o(∆), (2.12)

where C is a positive constant independent of ∆.
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Biochemical Modelling

In this chapter we familiarise the reader with the general idea of how to model gene

regulation. In general, living biological systems are very complex. For example,

protein synthesis involves lots of complex processes which combine together to

perform transcription and translation. However, we can ignore the details of such

processes if we are only interested in the control and downstream effects [55].

Therefore, we may model the process as follows: a gene (DNA) transcribes an

mRNA, then the mRNA is translated to a protein, and the mRNA and protein

can decay. This could be written in chemical reaction notation as [49]

D̂
uM→ D̂ + M, (3.1)

M
uP→ M + P , (3.2)

M
dM→ ∅, (3.3)

P
dP→ ∅, (3.4)

where D̂ denotes the amount of gene, and M and P denote the amount of mRNA

and protein, respectively. The symbol ∅ denotes the degradation of species. We

will now explain the meaning of the chemical reaction notation used above, which

we use quite often in this thesis. Reaction (3.1) says that a gene can create a

14
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molecule of mRNA with transcription rate uM , without destroying itself. Reaction

(3.2) says that a molecule of mRNA can create a protein with synthesis rate uP ,

without destroying itself. In (3.3) and (3.4) a molecule of mRNA, or protein, can

degrade with reaction rate constant dM or dP , respectively. The equations (3.1)

and (3.2) represent “catalytic production from a source” of mRNA and protein or

“birth” of new mRNA and protein, and the equations (3.3) and (3.4) are known

as “degradation” or “death”.

In the next section we discuss a general framework in which chemical reaction

systems can be converted into mathematical models.

3.1 Modelling Genetic Networks

Gene regulation is typically modelled using the language of chemical kinetics. At

one extreme, discrete-valued stochastic models can be adopted, giving rise to a

Chemical Master Equation (CME), from which sample paths can be simulated

via the Stochastic Simulation Algorithm (SSA) which is also known as Gillespie’s

algorithm [14, 15, 55]. At the other extreme, continuous-valued deterministic mod-

elling leads to a set of ordinary differential equations (ODEs) that are sometimes

said to arise through the law of mass action [9].

The ODE framework is typically (a) more amenable to analysis [1, 27], (b)

cheaper to simulate with [51, 52] and (c) better suited to the important inverse

problem of estimating rate constants and comparing models based on sparsely

observed data [53]. However, in the case where small numbers of molecules are

present, the modelling assumptions that give rise to the mass action ODE are not

valid [14, 15, 33] and the discrete/stochastic effects captured by the CME should

not be ignored. For example, the stochastic version of a bi-stable ODE model can



Chapter 3 16

account for switching between “almost stable” states [50, 54].

Although progress is being made on solving the CME [35] and on optimising

Gillespie’s direct simulation method [12, 20], the fully discrete CME setting re-

mains computationally infeasible for most realistic systems. Tau-leaping [8, 19]

was introduced in an attempt to speed up stochastic simulation without resorting

to a fully deterministic model. This tau-leaping approach can also be used as

a means to derive an intermediate stochastic differential equation (SDE) model,

known as the Chemical Langevin Equation (CLE) [18]. In the more general con-

text of population dynamics this type of diffusion limit has also been defined as

an approximation to a Markov jump process [33, 45].

We next give the reader more details of the mathematical approaches. Suppose

we have a well-stirred system which is in thermal equilibrium, and that the volume

of the system is fixed. In the system, N chemical species {S1, . . . , SN} of a process

can interact through M chemical reactions or chemical channels {R1, . . . , RM}.

Let X(0) = x0 be the initial state, and P (x, t) denote the probability that X(t) =

x at time t, where X(t) = (X1(t), . . . , XN(t))T is a state vector such that Xi(t)

records the number of molecules of species Si at time t. Then the CME takes the

form

d

dt
P (x, t) =

M∑

j=1

[aj(x− νj)P (x− νj, t)− aj(x)P (x, t)] ,

where νj is the stoichiometric or state-change vector when reaction jth takes place

such that state vector X(t) is changed to X(t)+ν j, and aj(X(t)) is the propensity

function such that, in the next infinitesimal time interval [t, t+dt), the probability

that the jth reaction will occur is aj(X(t))dt. For further details the reader may

refer to [16, 39]. We can construct the propensity function as follows. If Rj is the

monomolecular reaction Sm

cj→ products, we have aj(X(t)) = cjXm(t). If Rj is the

bimolecular reaction Sm + Sn

cj→ products, we have aj(X(t)) = cjXm(t)Xn(t) if
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m 6= n, or aj(X(t)) = cj
1
2
Xm(t) (Xm(t)− 1) if m = n. These propensity functions

were derived by Gillespie [14, 15] using first principle modelling arguments.

To avoid computing P (x, t) directly, the SSA, which was introduced by Gille-

spie [14], computes numerical realisations of the state vector X(t). The trajecto-

ries or realisations of X(t) can be simply simulated as in the following algorithm

[14, 15, 23]. Suppose that an initial state X(0) is given.

1. Compute {ak(X(t))}Mk=1 and a0(X(t)) :=
∑M

k=1 ak(X(t)).

2. Generate two independent uniform (0, 1) random numbers, ξ1 and ξ2.

3. Find the smallest integer j satisfying ξ1a0(X(t)) <
∑j

k=1 ak(X(t)).

4. Set τ = ln(1/ξ2)/a0(X(t)).

5. Update the state and time: X(t + τ) = X(t) + ν j and t = t + τ .

6. Record (X(t), t) as desired. Return to step 1, or else end the simulation.

SSA still has similar problems to the CME if there are too many molecule

species present in the system, it is slow and expensive. To speed up the SSA, tau-

leaping [8, 19] was introduced. After further modelling assumptions are imposed,

this leads to the CLE [18] which has the following form

dY (t) =

M∑

j=1

νjaj(Y (t))dt +

M∑

j=1

νj

√
aj(Y (t))dWj(t), (3.5)

where Wj(t) are independent scalar Brownian motions, and Y (t) is the state vector

that records the amount of each species present. We note that Y (t) is now a real-

valued random variable. It is known that, in general, Langevin equations of this

type introduce technical difficulties due to solution components becoming negative

[24, 48]. Throughout this thesis, we assume that solutions with bounded first and
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second moments exists—more precisely, we implicitly derive results that are valid

up to an appropriate stopping time.

If we remove the diffusion term of the CLE (3.5), we have the set of ODEs

called the Reaction Rate Equation (RRE)

dy(t)

dt
=

M∑

j=1

νjaj(y(t)). (3.6)

Here we use the lower case symbol y(t) in order to distinguish the RRE from the

CLE. We also note that y(t) is now a real-valued deterministic variable.

We are now in a position to illustrate how to model a chemical system through

a concrete example.

3.2 An Example

The Michaelis–Menten enzyme system [40, 55] is represented by the chemical re-

actions:

E + S
c1→ ES, (3.7)

ES
c2→ E + S, (3.8)

ES
c3→ E + P . (3.9)

Overall, an enzyme E converts a substrate S to a product P . Here the ci are

reaction rate constants. For this example, X(t) is a state vector that records

the number of molecules of enzyme, substrate, complex, and product. In (3.7),

an enzyme E combines with a substrate S to form a enzyme-substrate complex

ES with reaction rate constant c1. When this reaction takes place, we lose one

molecule of enzyme and one molecule of substrate, and get one molecule of com-

plex, but it does not change the number of molecules of product P . So, we have
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the stoichiometric vector

ν1 =




−1

−1

1

0




,

and propensity function a1(X) = c1X1X2 for this reaction. Similarly, in (3.8), a

complex may dissociate back to an enzyme and a substrate. When this reaction

takes place, we lose a molecule of complex but gain a molecule of enzyme and

a molecule of substrate (again it does not change the number of molecules of

product). In (3.9), a complex may release a free enzyme and create a new product.

Therefore, the stoichiometric and propensity functions associated with these two

reactions are

ν2 =




1

1

−1

0




, and ν3 =




1

0

−1

1




,

and a2(X) = c2X3 and a3(X) = c3X3. If we plug these stoichiometrics and

propensity functions into (3.5) and (3.6), we have the CLE

dX1 = (−c1X1X2 + (c2 + c3)X3)dt−
√

c1X1X2dW1 +
√

c2X3dW2

+
√

c3X3dW3,

dX2 = (−c1X1X2 + c2X3)dt−
√

c1X1X2dW1 +
√

c2X3dW2,

dX3 = (c1X1X2 − (c2 + c3)X3)dt +
√

c1X1X2dW1 −
√

c2X3dW2

−
√

c3X3dW3,

dX4 = c3X3dt +
√

c3X3dW3,
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and the RRE

dX1

dt
= −c1X1X2 + (c2 + c3)X3,

dX2

dt
= −c1X1X2 + c2X3,

dX3

dt
= c1X1X2 − (c2 + c3)X3,

dX4

dt
= c3X3,

to model the Michaelis–Menten enzyme system.

3.3 Noise Strength

Gene expression is a fundamental biological process that attracts a great deal of

attention from both experimental and theoretical scientists. Because some im-

portant components are present at very low copy numbers, mathematical mod-

els typically involve discrete-valued state variables and have a stochastic nature

[30, 43, 44, 47, 49].

The noise strength or Fano factor is often used to summarise the level of

fluctuations observed in a system; for a random variable X, this is simply the

ratio of variance to mean [44, 49]:

ns[X] :=
var[X]

E[X]
. (3.10)

Typically, the steady state noise strength in the mRNA or protein level may be

of interest. Experimental or computer simulation-based measurements can then

be recorded for different parameter regimes in order to understand which sources

contribute to enhancing and suppressing intrinsic noise [44, 47, 49].

Raser and O’Shea [44] considered a gene regulation involving inactive and active

DNA in eukaryotics. There, the DNA can only produce an mRNA when it is active.
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They examined noise strength for three different regimes by varying the kinetic

reaction rate constants at steady state and comparing with a real experimental

data, and found that two promoters can give the same mean with different noise

strength. A promoter undergoing high activation rates but low transcription will

result in small noise strength, while a promoter undergoing low activation rates

but high transcription can produce large noise strength.

In 2001 Thattai and Oudenaarden [49] considered a simpler gene expression

model in prokaryotes that covers the essential processes of transcription, transla-

tion, and degradation represented by the reactions (3.1)–(3.4).

In 2005 Gadgil et al. [11] used the master equation for a system of first-order

chemical reactions to obtain a closed system of ODEs that describe the evolution

of the first and second moments and correlations. This result allows us to analyse

the fluctuation noise strength for all time. For the CLE formulation, we may

analyse the noise strength for all time of the first-order reaction network using the

Itô lemma.

We now re-visit the reactions (3.1)–(3.4). In this model, the amount of gene

stays fixed, so D̂ remains constant. We may therefore take the state vector for the

amount of mRNA and protein to be




X1

X2


 .

The stoichiometric vectors [23, 55] for the four reactions are

ν1 =




1

0


 , ν2 =




0

1


 , ν3 =



−1

0


 , ν4 =




0

−1


 ,

with corresponding propensity functions

a1(X) = uMD̂, a2(X) = uPX1, a3(X) = dMX1, a4(X) = dPX2.
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Because D̂ is fixed, we will re-name uMD̂ as uM . This gives the CLE

d




M

P


 =




uM − dMM

uPM − dPP


 dt

+



√

uM 0 −
√

dMM 0

0
√

uPM 0 −
√

dPP







dW1

dW2

dW3

dW4




. (3.11)

We are now in a position to study the means and variances of mRNA and

protein. We interpret the system (3.1)–(3.4) as a Markov process defined by the

CME, letting M(t) and P (t) denote the stochastic processes that specify the levels

of mRNA and protein, respectively. The system fits into the framework of a first-

order reaction network. Therefore we may use the general result of [11] to obtain

a closed system of ODEs

d

dt
E[M ] = −dME[M ] + uM , (3.12)

d

dt
E[P ] = uP E[M ]− dP E[P ], (3.13)

d

dt
E[P 2] = uP E[M ] + dP E[P ] + 2uP E[MP ]− 2dP E[P 2], (3.14)

d

dt
E[M2] = uM + (2uM + dM)E[M ] − 2dME[M2], (3.15)

d

dt
E[MP ] = uP E[M2] + uME[P ]− (dM + dP )E[MP ]. (3.16)

By solving this linear ODE, we have the mean and variance of the mRNA and

protein for all time, from which we can compute their noise strength.

In the CLE formulation, applying the Itô formula Theorem 2.2.1 to the equation
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(3.11), we find that

d




M2

P 2

MP




=




uM + (2uM + dM)M − 2dMM2

uP M + dPP − 2dPP 2 + 2uPMP

uMP + uP M2 − (dM + dP )MP




dt

+




2
√

uMM 0 −2M
√

dMM 0

0 2P
√

uP M 0 −2P
√

dPP

√
uMP M

√
uPM −P

√
dMM −M

√
dP P







dW1

dW2

dW3

dW4




.

(3.17)

Taking the expectation in (3.11) and (3.17), we arrive at the same ODEs (3.12)–

(3.16). This shows that the CME and CLE versions produce the same first and

second moments and correlations. Gillespie [17] showed that this property holds for

all scalar first order networks, and this was generalised to any first order network

in [25]. We note that third and higher order moments do not match, in general

[17].

In later chapters, we produce approximate models, namely hybrid models, for

the sake of computational efficiency, and we will judge them by their ability to

reproduce the noise strength of the CME.
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Switching and Diffusion Models

for Gene Regulation Networks

In this chapter we are going to produce approximate models for the chemical

reactions (3.1)–(3.4). For the CME, these reactions have the ODE, (3.12)–(3.16),

that describes the evolution of the first and second moments and correlations, as

discussed in section 3.3.

It is intuitively appealing, and potentially extremely beneficial, to mix together

the CME, RRE, and CLE regimes so that different species, different reactions, or

different time periods are treated by simulation methods that are as cheap as pos-

sible while preserving the overall accuracy [7, 10]. An interesting example that ap-

plies specifically to a simple gene regulation setting was proposed by Paszek [43].

Here, a hybrid model was put forward that uses the CME regime for low copy

number species and the ODE framework for relatively abundant species. In this

chapter, which follows from a simpler context in [25], we exploit the fact that the

hybrid model may be regarded as a system of ODEs driven by an independent

Markovian switch. The switch has an infinite state space, but we show that ex-

24
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istence and uniqueness, and numerical simulation theories, carry through. This

viewpoint makes it possible to analyse the first and second moments of the model

using the tools of stochastic calculus, and to consider an alternative where the

ODE is replaced by a diffusion approximation.

4.1 Theory and Simulation for Infinite State

Space Switch

4.1.1 Examples of Finite and Infinite Markov Chains

In this subsection we will give examples to distinguish between Markov chains with

finite state space and infinite state space.

Example 4.1. (Telephone Exchange) [41]

Consider a telephone exchange system that can connect phone calls. In this

system, the maximum number of calls that can be connected at once is m, and

new additional calls are lost when the exchange is full. In this setting, if we let

x(t) denote the number of connected calls at time t, then x(t) represents a Markov

chain because the number of connected calls for the next infinitesimal time x(t+dt)

depends only on the current x(t). We also see that the Markov chain takes values

in a finite state space S = {0, 1, 2, . . . , m}. It is clear that x(t) = 0 represents that

there are no calls at time t, and x(t) = m represents the exchange is full with m

calls at time t.

Example 4.2. (Immigration-Death Process) [55]

In an immigration-death process, individuals arrive into the population with

constant rate λ, and each individual can die independently with constant rate
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µ. Therefore, when an immigration event occurs, the population of individuals

increases by one. On the other hand, the population decreases by one when a

death event occurs. Let X(t) denote the population of individuals at time t, then

the transition equations are

P(X(t + dt) = s + 1 | X(t) = s) = λdt,

P(X(t + dt) = s− 1 | X(t) = s) = µsdt,

P(X(t + dt) = s | X(t) = s) = 1− (λ− µs)dt,

and P(X(t + dt) = y | X(t) = s) = 0, ∀y /∈ {s− 1, s, s + 1}.

These equations clearly define a Markov process with infinite state space Ŝ =

{0, 1, 2, . . .}. In the context of chemical kinetics, this model arises from the system

∅ λ→ X,

X
µ→ ∅.

We can see from the example 4.1 that the Markov chain x(t) has a value in the

finite state space S = {0, 1, 2, . . . , m} no matter how much time is allowed. On

the other hand, the Markov chain X(t) in the example 4.2 can take an arbitrarily

large value if we give time to the process long enough.

4.1.2 Set-up

Stochastic differential equations driven by switches are becoming more common

as models in science and engineering. A switch typically takes a finite number

of possible values, but in this work we need to consider a countably infinite state

space, enumerated by the non-negative integers. This is because if we model the

number of molecules of mRNA through the reactions (3.1) and (3.3) as a Markov

process r̂(t), we see that the number of r̂(t) can potentially increase up to infinity
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since the number of genes D̂ is fixed, and always available to produce mRNA

in the system. This requires us to extend the theory for existence, uniqueness,

and numerical simulation that can be found, for example, in [37], from finite to

countably infinite state spaces. We begin by setting up our notation and problem

formulation.

Let r̂(t) be again a Markov chain on a complete probability space but taking

values in an infinite state space Ŝ = {0, 1, 2, . . .} with generator Γ̂ = (γij)i,j∈bS
given

by

lim
∆→0

P {r̂(t + ∆) = j | r̂(t) = i} − 1

∆
= γii, if i = j, and

lim
∆→0

P {r̂(t + ∆) = j | r̂(t) = i}
∆

= γij, if i 6= j,

where γij ≥ 0 is the transition rate from state i to j if i 6= j and

γii = −
∑

j 6=i

γij.

We assume that the transition rate γij satisfies the following condition:

max
i∈bS

|γii| <∞.

Now, consider an autonomous SDE with Markovian switch of the form

dx(t) = f(x(t), r̂(t))dt + g(x(t), r̂(t))dW (t), 0 ≤ t ≤ T, (4.1)

with initial conditions x(0) = x0 ∈ Lp
Ft

(Ω; Rn) and r̂(0) = r̂0, where r̂0 is an

Ŝ-valued, F0-measurable random variable and

f : R
n × Ŝ→ R

n and g : R
n × Ŝ→ R

n×m.

Here W (t) is an m-dimensional Brownian motion that is independent of the

Markov chain.
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4.1.3 Existence and Uniqueness

We begin with an existence, uniqueness, and moment bound result based on the

finite state treatment in [37] that was summarised in Chapter 3. We make the

traditional global Lipschitz assumptions on the coefficients. For the case where

the diffusion coefficients arise through the chemical Langevin regime, these re-

sults apply only up to a stopping time—so that excursions taking population sizes

close to zero can be avoided. Deriving more general results that apply directly to

nonglobally Lipschitz problems is currently an active area of research [26, 38].

To keep the analysis compact, without loss of any generality, we set the initial

conditions x0 and r̂0 be non-random; that is x0 ∈ R
n and r̂0 ∈ Ŝ.

Theorem 4.1.1. Assume that f and g satisfy a global Lipschitz condition; that

is, there exists a positive constant K such that

|f(x, i)− f(y, i)| ∨ |g(x, i)− g(y, i)| ≤ K|x− y| (4.2)

for all x, y ∈ R
n and i ∈ Ŝ.

Then there exists a unique solution x(t) to (4.1), and, moreover,

E

(
sup

0≤t≤T

|x(t)|2
)
≤ (1 + 3E|x0|2)e3KT (T+4), (4.3)

so the solution belongs to M2([0, T ]; Rn).

Proof. Since almost every sample path of r̂(·) is a step function, there is a sequence

{τk}k≥0 of stopping times such that t0 = τ0 < τ1 < τ2 < · · · < τk < · · · and

r̂(t) = r̂(τk) for t ∈ [τk, τk+1).

First, we consider (4.1) on the interval t ∈ [[τ0, τ1]]; that is,

dx(t) = f(x(t), r̂0)dt + g(x(t), r̂0)dW (t), (4.4)

with initial conditions x(t0) = x0 and r̂(t0) = r̂0. Now, (4.4) is an SDE without

Markovian switch. So, by Theorem 2.3.1, (4.1) has a unique solution which belongs
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to M2([[τ0, τ1]]; R
n). In particular, x(τ1) ∈ L2

Fτ1
(Ω; Rn). After that, we consider

(4.1) on the interval t ∈ [[τ1, τ2]] which becomes

dx(t) = f(x(t), r̂(τ1))dt + g(x(t), r̂(τ1))dW (t), (4.5)

with initial conditions x(τ1) and r̂(τ1). Again by Theorem 2.3.1, (4.1) has a unique

solution which belongs to M2([[τ1, τ2]]; R
n). By repeating this procedure we can

see that (4.1) has a unique solution x(t) on [0, T ]. Finally, the bound (4.3) follows

by arguing in the same way as [37, Lemma 3.1].

4.1.4 Numerical Simulation

Like in section 2.4, the natural Euler–Maruyama method for simulating the switch-

ing SDE (4.1) takes the form

Xk+1 = Xk + f(Xk, r̂
∆
k )∆ + g(Xk, r̂

∆
k )∆Wk.

Here again, ∆ > 0 is a fixed stepsize, Xk is the approximation to X(tk), with

tk = k∆, r̂∆
k = r̂(k∆), ∆Wk = W (tk+1)−W (tk), and the initial conditions for the

iteration are X0 = x0 and r̂∆
0 = r̂0. Keep in mind that in this chapter we focus

on the Markovian switch that arises from the simple chemical reactions (3.1) and

(3.3). So, the switch has an infinite state space; see section 4.2 for details of how

to define and simulate the switch. Therefore, we do not need to worry about how

to simulate r̂(t) in general case.

Let X(t) be a continuous time approximation that is defined as

X(t) = X0 +

∫ t

0

f(X̄(s), r̄(s))ds +

∫ t

0

g(X̄(s), r̄(s))dW (s), (4.6)

where the “step processes” X̄(t) and r̄(t) take the form

X̄(t) = Xk, r̄(t) = r̂∆
k for t ∈ [tk, tk+1).
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The following general moment bounds hold for both the exact and numerical

solutions.

Lemma 4.1.1. Assume that f and g satisfy a linear growth condition; that is,

there exists a constant K̄ > 0 such that

|f(x, i)| ∨ |g(x, i)| ≤ K̄(1 + |x|) ∀(x, i) ∈ R
n × Ŝ. (4.7)

Then for any p ≥ 2 there is a constant H, which is dependent on only p, T, K̄, x0

but independent of ∆, such that the exact solution x(t) in (4.1) and the Euler–

Maruyama approximate solution X(t) in (4.6) have the property that

E

[
sup

0≤t≤T

|x(t)|p
]
∨ E

[
sup

0≤t≤T

|X(t)|p
]
≤ H.

Proof. To prove this lemma, we can follow the proof in [37, Lemma 4.1].

This result then allows us to establish a strong convergence result for the nu-

merical method.

Theorem 4.1.2. Assume that f and g satisfy the global Lipschitz condition (4.2).

Then,

E

[
sup

0≤t≤T

|X(t)− x(t)|2
]
≤ C∆, (4.8)

where C is a positive constant independent of ∆.

Proof. It is easy to see that the global Lipschitz condition (4.2) implies the linear

growth condition (4.7), so that Lemma 4.1.1 applies. Following the proof in [37,

Theorem 4.1] and using Lemma 4.1.1, the required assertion follows.

4.2 Hybrid Diffusion Moments

Now we look at a hybrid model based on (3.1)–(3.4), where the number of mRNA

molecules is modelled as a Markov process, as in section 3.3, but the evolution
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of the protein level in (3.2) and (3.4) is modelled with the CLE regime. We are

motivated by the assumption that the protein is typically more abundant than

the mRNA—Paszek [43] adopted this approach but used an ODE in the protein

regime, as discussed in section 4.3. This gives rise to an Itô SDE, driven by an

independent switch, of the form

dP ?(t) = (uP r̂(t)− dPP ?(t))dt +
√

uP r̂(t)dW1(t)−
√

dPP ?(t)dW2(t). (4.9)

Here, r̂(t) denotes the number of mRNA molecules present at time t, when re-

actions (3.1) and (3.3) are interpreted through the CME, and P ?(t) denotes the

number of protein molecules present at time t, when reactions (3.2) and (3.4) are

interpreted through the CLE. We use P ?(t) to distinguish this process from the

protein level P (t) arising from the full CME regime, as discussed in section 3.3;

this emphasises that P (t) and P ?(t) are different stochastic processes; in particular

P (t) is discrete valued and P ?(t) is continuous valued. In (4.9), W1(t) and W2(t)

are mutually independent Brownian motions that are also independent of r̂(t).

The switch r̂(t), as mentioned in subsection 4.1.2, can take values in the set

of non-negative integers {0, 1, 2, . . .}, with no upper limit. We let γij denote the

transition rate for the switch from state i to j so that, for i 6= j,

lim
∆→0

P {r̂(t + ∆) = j | r̂(t) = i}
∆

= γij, (4.10)

and γii := −∑j 6=i γij is such that

lim
∆→0

P {r̂(t + ∆) = i | r̂(t) = i} − 1

∆
= γii. (4.11)

For this switch, the only possible change of state is an increase or a decrease by

one. The chance of decay is proportional to the current number of molecules, and

new molecules are being produced at a rate that is independent of the state. We

therefore find that

γi,i−1 = idM , γi,i+1 = uM , γi,i = −idM − uM , (4.12)



Chapter 4 32

and all other transition rates are zero.

Suppose that an initial state r̂(0) and a fixed time-step size ∆ are given, a path

from the Markovian switch r̂(t) can be simulated as follows:

1. Compute: Up := uM∆ and Down := r̂(t)dM∆.

2. Generate an independent uniform (0, 1) random number ξ.

3. Update state:

(a) If ξ ≤ Up, then r̂(t + ∆) = r̂(t) + 1.

(b) If Up < ξ ≤ Up + Down, then r̂(t + ∆) = r̂(t)− 1.

(c) If ξ > Up + Down, then r̂(t + ∆) = r̂(t).

4. Update time: t = t + ∆.

5. Record (r̂(t), t) as desired. Return to step 1, or else end the simulation.

Now, let L denote the infinitesimal generator of a Markov process [13, 57].

Then

Lr̂(t) = lim
∆→0

1

∆
E [r̂(t + ∆)− r̂(t) | r̂(t) = r]

= lim
∆→0

1

∆

[∑

j

jP(r̂(t + ∆) = j | r̂(t) = r)− r

]

= lim
∆→0

1

∆

[∑

j 6=r

j(γrj∆ + o(∆)) + r(1 + γrr∆ + o(∆))− r

]

= lim
∆→0

1

∆

[
∞∑

j=0

jγrj∆ + o(∆)

]

=

∞∑

j=0

jγrj. (4.13)
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Therefore, by Dynkin’s formula [57, Theorem 2.7], using (4.12) and (4.13), we have

dr̂(t) = (Lr̂(t))dt + d(mart.)

=

(
∞∑

j=0

jγrj

)
dt + d(mart.)

= ((r − 1)γr,r−1 + rγrr + (r + 1)γr,r+1)dt + d(mart.)

= ((r − 1)(dMr) + r(−dMr − uM) + (r + 1)(uM))dt + d(mart.)

= (uM − dMr)dt + d(mart.), (4.14)

where “mart.” denotes a martingale whose precise form is not relevant to our

analysis and it vanishes when we take expectation up to an appropriate stopping

time.

To obtain the second moment E[P ?2] and correlation E[P ?r̂], we need to apply

the generalised Itô formula Theorem 2.2.2 to the Itô SDE (4.9), which has the drift

coefficient f(t) = uP r̂(t)− dP P ?(t) and diffusion coefficient

g(t) =

[ √
uP r̂(t) −

√
dPP ?(t)

]
. First, let V̂ (P ?, t, r̂) = P ?r̂. We then have

V̂t(P
?, t, r̂) = 0, V̂P ?(P ?, t, r̂) = r̂, and V̂P ?P ?(P ?, t, r̂) = 0.

So, by using the operator L in section 2.2,

LV̂ (P ?, t, r̂) = V̂t(P
?, t, r̂) + V̂P ?(P ?, t, r̂)f(t)

+
1

2
trace[gT (t)V̂P ?P ?(P ?, t, r̂)g(t)] +

∞∑

j=0

γijV̂ (P ?, t, j)

= r̂(uP r̂ − dPP ?)

+ γbr,br−1(P
?(r̂ − 1)) + γbr,br(P

?r̂) + γbr,br+1(P
?(r̂ + 1))

= (uP r̂2 − dPP ?r̂)

+ dM r̂P ?(r̂ − 1) + (−dM r̂ − uM)(P ?r̂) + uMP ?(r̂ + 1)

= uP r̂2 + uMP ? − (dM + dP )P ?r̂.
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Now applying the generalised Itô formula Theorem 2.2.2, we have

dV̂ (P ?, t, r̂) = LV̂ (P ?, t, r̂)dt + d(mart.).

Therefore,

d(P ?r̂) = (uP r̂2 + uMP ? − (dM + dP )P ?r̂)dt + d(mart.) (4.15)

Now let V̂ (P ?, t, r̂) = P ?2. We then have

V̂t(P
?, t, r̂) = 0, V̂P ?(P ?, t, r̂) = 2P ?, and V̂P ?P ?(P ?, t, r̂) = 2.

So,

LV̂ (P ?, t, r̂) = 2P ?(uP r̂ − dPP ?)

+
1

2
trace






√

uP r̂

−
√

dP P ?


 (2)

[
√

uP r̂ −
√

dPP ?

]



+

∞∑

j=0

γbr,jV̂ (P ?, t, j)

= 2P ?(uP r̂ − dPP ?) + (uP r̂ + dP P ?) +
∞∑

j=0

γbr,jP
?2.

Since
∑∞

j=0 γbr,jP
?2 = P ?2∑∞

j=0 γbr,j = P ?2(0) = 0, so

LV̂ (P ?, t, r̂) = 2uPP ?r̂ − 2dPP ?2 + uP r̂ + dPP ?.

Applying the generalised Itô formula, we have

d(P ?2) = (2uPP ?r̂ − 2dP P ?2 + uP r̂ + dPP ?)dt + d(mart.). (4.16)

Thus,

d

dt
E[P ?(t)] = uP E[r̂(t)]− dP E[P ?(t)],

d

dt
E[P ?2(t)] = 2uP E[P ?(t)r̂(t)]− 2dP E[P ?2(t)] + uP E[r̂(t)] + dP E[P ?(t)],

d

dt
E[P ?(t)r̂(t)] = uP E[r̂2(t)] + uME[P ?(t)]− (dM + dP )E[P ?(t)r̂(t)].

Since the switch r̂(t) is identical to M(t) from the full CME, we see from (3.13),

(3.14), and (3.16) that this hybrid regime exactly reproduces the first two moments.
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4.3 Hybrid ODE Moments

Here we consider the case where, as in section 4.2, the number of mRNA molecules

is modelled as a Markov process, but now the evolution of the protein level is

modelled with the law of mass action. This regime was introduced and studied by

Paszek [43]. We have an ODE, driven by an independent switch, of the form

dP̂ (t) = (uP r̂(t)− dP P̂ (t))dt, (4.17)

where, as in section 4.2, r̂(t) denotes the number of mRNA molecules when (3.1)

and (3.3) are modelled through the CME. We use P̂ (t) to denote the continuous-

valued stochastic process that represents the protein level.

Instead of (4.15) and (4.16), we now have

d(P̂ r̂) = (uP r̂2 + uM P̂ − (dM + dP )P̂ r̂)dt + d(mart.)

and

d(P̂ 2) = (2uP P̂ r̂ − 2dP P̂ 2)dt + d(mart.).

In integral form, we have

P̂ (t) = P̂ (0) +

∫ t

0

(
uP r̂(s)− dP P̂ (s)

)
ds,

P̂ (t)r̂(t) = P̂ (0)r̂(0) +

∫ t

0

(
uP r̂(s)2 + uM P̂ (s)− (dM + dP )P̂ (s)r̂(s)

)
ds

+

∫ t

0

(mart.)ds,

and P̂ (t)2 = P̂ (0)2 +

∫ t

0

(
2uP P̂ (s)r̂(s)− 2dP P̂ (s)2

)
ds +

∫ t

0

(mart.)ds.

Since we consider implicitly up to an appropriate stopping time, then all com-

ponents are finite, and the expectation exists. Taking the expectation, and then
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differentiating, we have

d

dt
E[P̂ (t)] = uP E[r̂(t)]− dP E[P̂ (t)], (4.18)

d

dt
E[P̂ 2(t)] = 2uP E[P̂ (t)r̂(t)]− 2dP E[P̂ 2(t)], (4.19)

d

dt
E[P̂ (t)r̂(t)] = uP E[r̂(t)2] + uME[P̂ (t)]− (dM + dP )E[P̂ (t)r̂(t)]. (4.20)

Comparing these ODEs to (3.13), (3.14), and (3.16), and recalling that r̂(t) is

identical to M(t), we see that this hybrid model matches the means and correlation

of the full CME but does not reproduce the correct second moment.

We next analyse the discrepancy between the second moments in the CME and

hybrid switch plus ODE models. First, we show that the error is always one-sided.

Theorem 4.3.1. For the system (3.1)–(3.4), the variances for the protein aris-

ing from the CME and the hybrid model (4.17), var[P (t)] and var[P̂ (t)], satisfy

var[P̂ (t)] ≤ var[P (t)] for all time, independently of the rate constants and initial

conditions.

Proof. Letting y(t) := var[P (t)] − var[P̂ (t)], because the means match we have

y(t) = E[P 2(t)]− E[P̂ 2(t)]. We then see from (3.14) and (4.19) that

dy(t)

dt
= uP E[M(t)] + dP E[P (t)]− 2dPy(t). (4.21)

Now, by construction, the CME does not allow molecules to become negative, so

h(t) := uP E[M(t)] + dP E[P (t)] ≥ 0. Using an integrating factor in (4.21) we find

that

y(t) = e−2dP t

∫ t

0

e2dP sh(s)ds,

and the result follows.

To obtain a precise expression for the error in the variance, we may first solve

for E[M(t)] in (3.12) and then for E[P (t)] in (3.13). Substituting in (4.21) then
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gives

var[P (t)]− var[P̂ (t)] =
uMuP

dMdP

(
1− e−dP t

)

+

(
E[M(0)]− uM

dM

)
uP

dP − dM

(
e−dM t − e−dP t

)

+ E[P (0)]
(
e−dP t − e−2dP t

)
, (4.22)

when dM 6= dP , and

var[P (t)]− var[P̂ (t)] =
uMuP

dMdP

(
1− e−dP t

)

+

(
E[M(0)]− uM

dM

)
uP te−dP t

+ E[P (0)]
(
e−dP t − e−2dP t

)
, (4.23)

when dM = dP .

We note from (4.22) and (4.23) that limt→∞ var[P (t)]− var[P̂ (t)] =

uMuP/(dMdP ), in agreement with the steady state analysis in [43].

To interpret the expressions (4.22) and (4.23) further, we focus on the case

where the initial conditions satisfy

E[M(0)] = uM/dM and E[P (0)] > uMuP/(dMdP ).

The error in the variance then simplifies to

var[P (t)]− var[P̂ (t)] =
uMuP

dMdP

(
1− e−dP t

)
+ E[P (0)]

(
e−dP t − e−2dP t

)
.

This expression has a unique maximum at time

t? :=
1

dP

log

(
2dMdP E[P (0)]

dMdP E[P (0)]− uMuP

)
,

and the ratio of the maximum transient error to the steady state error is given by

var[P (t?)]− var[P̂ (t?)]

limt→∞ var[P (t)]− var[P̂ (t)]
=

1

2
+

dMdP E[P (0)]

4uMuP

+
uMuP

4dMdP E[P (0)]
. (4.24)
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Figure 4.1: Modelling error in the protein variance for the switch plus ODE hy-

brid (4.17), using rate constants from [47].
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Figure 4.2: Modelling error in the protein variance for the switch plus ODE hy-

brid (4.17), using rate constants from [44].
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Figure 4.3: Weak convergence in the switch plus CLE framework using rate con-

stants from [47]. Vertical axis measures the error |E
[
P ?(T )2

]
− E

[
P̂ ?(T )2

]
|, for

T = 5, where P ?(t) in (4.9) denotes the protein level and P̂ ?(t) is the numeri-

cal approximation with the method described in the section 4.1. The quantity

E
[
P̂ ?(T )2

]
is evaluated via Monte Carlo, and 95% confidence intervals are shown

as vertical lines.
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We see from (4.24) that the transient error in the variance can exceed the steady

state error when E[P (0)] is large. In Figure 4.1, using biologically valid rate

constants from [47], which are uM = 0.3, uP = 0.1734, dM = 0.0115, and dP =

6.42×10−5, we show how the error in the variance evolves when E[M(0)] = uM/dM

and E[P (0)] = 4uMuP/(dMdP ). Here the right-hand side of (4.24) is 25/16 ≈ 3/2,

and we see that the maximum temporal error is about 50% above the steady state

value. We also show the case where E[M(0)] = 2 and E[P (0)] = 4, for which it can

be shown that the steady state value is an upper bound for the error. Figure 4.2

shows similar behaviour for rate constants appearing in [44], which are uM = 10,

uP = 10, dM = 5, and dP = 0.1.
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Figure 4.4: As for Figure 4.3 except that the strong error E
[(

P ?(T )2− P̂ ?(T )2
)2]

is measured. Sample means are shown for 104 paths, and 95% confidence intervals

are negligible.

We conclude this section with the results of some numerical experiments to
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demonstrate numerically that an Euler–Maruyama based method can successfully

integrate the “switch plus CLE” model. For the same parameters as Figure 4.1,

we show in Figure 4.3 the absolute error in the sample mean for P ?(T )2, at T = 5,

arising from the numerical method outlined in the subsection 4.1.4, for ∆t = 2−4,

2−5, 2−6, and 2−7. The time interval [0, 5] is different from that in Figure 4.1

because we are now interested in finite-time convergence of a numerical method

and wish to observe asymptotic, small-stepsize behaviour. We used 107 sample

paths, and all 95% confidence intervals, shown as vertical lines, were less than

0.055. The errors are plotted on a log-log scale, and we see that the results are

consistent with a weak order of 1. A least squares fit gave an error behaviour of

∝ ∆t1.1 with residual of 0.08. Similarly, we show in Figure 4.4 the second moment

of the error in P ?(T )2 for ∆t = 32× 2−10, 16× 2−10, 8× 2−10, and 4× 2−10. Here,

we used 104 sample paths, and all 95% confidence intervals, shown as vertical lines,

were less than 0.04. The errors are plotted on a log-log scale, and we see that the

results are consistent with a strong order of 1
2
, that is, mean-square of order 1.

A least squares fit gave a mean-square error behaviour of ∝ ∆t1.3 with residual

of 0.03.

4.4 A Related Active/Inactive Gene Model

Raser and O’Shea [44] extended the system (3.1)–(3.4) to the case where genes

may alternate between an inactive state, where no mRNA is produced, and an

active state. If there are m genes in total, and we let D?
i denote the active state



Chapter 4 42

of the ith gene, this system may be written as

Di
uC→ D?

i ,

Di
dC← D?

i ,

D?
i

uM→ D?
i + M,





1 ≤ i ≤ m, (4.25)

and

M
uP→ M + P, (4.26)

M
dM→ ∅, (4.27)

P
dP→ ∅. (4.28)

Here, the initial condition for the ith gene must be either Di(0) = 0 and D?
i (0) = 1

(active) or Di(0) = 1 and D?
i (0) = 0 (inactive), and Di(t)+D?

i (t) ≡ 1 for all time.

Paszek [43] considered a hybrid model with the number of active genes forming

a discrete-valued stochastic process in the CME regime, and with the levels of

mRNA and protein taking real values. He chose mass action ODEs for the reactions

involving mRNA and protein, and, as for the simpler system (3.1)–(3.4), found that

this switch plus ODE hybrid gave a steady state variance that does not match the

underlying CME. Khanin and Higham [31] showed that a hybrid switch plus

diffusion model, where reactions involving mRNA and protein are treated with

the CLE approach, reproduces the exact first and second moments for all time.

Although the active/inactive model is in a sense more complex than the model in

Chapter 3, we emphasise that the number of active genes forms a switch with a

finite state space, and hence it is possible to appeal to standard work such as [37]

for existence, uniqueness, and simulation theory, and stochastic calculus tools. Our

main aim here is to point out that the uniform underestimation of the variance

that we established in Theorem 4.3.1 also applies in this case.

Following [31], if we let M̃(t) and P̃ (t) denote the mRNA and protein levels aris-

ing from the switch plus ODE model, then E[M(t)] = E[M̃ (t)], E[P (t)] = E[P̃ (t)],
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and E[P (t)M(t)] = E[P̃ (t)M̃(t)], and the discrepancy in the second moments

y(t) :=




E[M2(t)]− E[M̃2(t)]

E[P 2(t)]− E[P̃ 2(t)]




satisfies

d

dt
y(t) = −Ay(t) + g(t),

where

A =




dM 0

0 dP


 and g(t) =




uME[r(t)] + dME[M(t)]

uP E[M(t)] + dP E[P (t)]


 .

Here r(t) is a Markovian switch taking values in a finite state space {0, 1, 2, · · · , m}.

It follows that

y(t) = e−At

∫ t

0

eAsg(s)ds.

Since g(t) ≥ 0 for all t ≥ 0, we conclude that this hybrid model underestimates

the true mRNA and protein variances for all time.

We also note that when the reversible reactions Di → D?
i and D?

i → Di in (4.25)

are fast compared with the other reactions in the system, that is, both uC � 1 and

dC � 1, with all other rate constants of O(1), then we may introduce a slow-fast

decoupling along the lines of [7]. Here, we replace D?
i (t) by its steady state in the

Di-D
?
i subsystem, which effectively reduces (4.25)–(4.28) to the fixed-gene system

(3.1)–(3.4) with the amount of gene equal to D̂ = D?(0)uC/(uC +dC). Paszek [43]

refers to this as a thermodynamic limit for the full model. Analysis along the

lines of that developed above can be used to show that this type of modelling

approximation does not have a one-sided effect on the variance; the reduced model

may produce a larger or smaller variance depending on the parameter regimes, and

the error may change sign over time.
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4.5 Tests With a Second Order Reaction

The results in the previous three sections rely on the first order nature of the

reactions. In this section we give some brief numerical evidence that the ideas are

relevant more generally when the first two moments do not form a closed system

of ODEs. To do this, we add a protein dimerization stage to the simple gene

regulation models.

For the Thattai–van Oudenaarden model (3.1)–(3.4), we add the three reactions

P + P
uP2→ P2, (4.29)

P2
u−P2→ P + P, (4.30)

P2
dP2→ ∅. (4.31)

Here, in (4.29) two protein molecules combine to form a dimer, P2, and in (4.30)

the process is reversed. In (4.31) the dimer decays. We note that it has been

argued that a difference between the monomer and dimer decay rates can explain

the phenomenon of “cooperative stability,” which makes a larger spread of protein

levels available in vivo [5]. We chose rate constants uM = 0.3, uP = 0.17, dM =

0.012 from [47], dP = 0.0007, uP2 = 0.025, u−P2 = 0.5 from [6], and dP2 = 0.00023

from [5]. Initial conditions were set to D(0) = 4, M(0) = 2, P (0) = 4, and

P2(0) = 4, and we record the levels at time T = 20.

For the systems given by (3.1)–(3.4) and (4.29)–(4.31), we compared the CME

(via Gillespie’s algorithm) with the full CLE, switch plus diffusion, and switch

plus ODE regimes using an Euler method with a stepsize of 0.004. (Comparable

results were obtained with a larger stepsize.) Table 4.1 summarises the results.

Expected values are estimated with Monte Carlo simulation over 105 paths,

and approximate 95% confidence intervals are given for each sample mean. In

addition to moments and variances for the protein and dimer, we also show their
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noise strength, ns[P ] and ns[P2], respectively, defined as the ratio of variance to

mean.

We see from Table 4.1 that the CME, CLE, and switch plus diffusion regimes

give comparable results for moments and noise strengths, whereas the switch plus

ODE regime significantly underestimates the variance and noise strength for the

protein and dimer.

Table 4.2 shows the results of an analogous experiment where the Raser and

O’Shea system (4.25)–(4.28) was augmented with the dimerization reactions

(4.29)–(4.31). We used uC = 0.1 and dC = 0.1 from [44], uM = 0.3, uP = 0.17,

dM = 0.012 from [47], dP = 0.0007, uP2 = 0.025, u−P2 = 0.5 from [6], and

dP2 = 0.00023 from [5]. We see that the conclusions from Table 4.1 continue to

hold.

4.6 Summary

The diffusion approximation to a Markov jump process is useful both analytically

and computationally. In this chapter we have shown that the existence and unique-

ness, and numerical simulation theories for solutions of the hybrid models driven

by the independent Markovian switch, in which has the infinite state space, can

be established. We also found that

• The switch plus ODE model uniformly underestimates the true protein vari-

ance, for all time.

• The steady state error in the protein variance for the switch plus ODE model

may significantly underestimate the error in the transient.

• Replacing the switch plus ODE model with a switch plus diffusion model

recovers the correct means and variances, for all time.
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Table 4.1: Ninety-five percent confidence intervals for Monte Carlo sample mean

approximations to the first and second moments, variance and noise strength in

the CME, CLE, switch plus diffusion, and switch plus ODE formulations for (3.1)–

(3.4) and (4.29)–(4.31). Average number of switches per path was 27.

CME CLE CLE switch ODE switch

E[P ] [26.23, 26.30] [26.22, 26.28] [26.22, 26.29] [26.54, 26.57]

E[P 2] [717.87, 721.55] [717.28, 720.97] [717.31, 721.00] [712.22, 714.11]

E[P2] [14.58, 14.63] [14.56, 14.62] [14.55, 14.61] [14.42, 14.46]

E[P 2
2 ] [231.85, 233.59] [231.20, 232.89] [231.19, 232.91] [217.79, 218.98]

var[P ] [29.60, 30.13] [29.84, 30.39] [29.68, 30.22] [7.97, 8.11]

ns[P ] [1.125, 1.149] [1.136, 1.159] [1.129, 1.152] [0.300, 0.305]

var[P2] [19.28, 19.63] [19.06, 19.40] [19.30, 19.66] [9.80, 9.98]

ns[P2] [1.317, 1.347] [1.304, 1.332] [1.321, 1.351] [0.678, 0.692]
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Table 4.2: Ninety-five percent confidence intervals for Monte Carlo sample mean

approximations to the first and second moments, variance and noise strength in the

CME, CLE, switch plus diffusion, and switch plus ODE formulations for (4.25)–

(4.28) and (4.29)–(4.31). Average number of switches per path was 8.

CME CLE CLE switch ODE switch

E[P ] [19.65, 19.71] [19.67, 19.74] [19.64, 19.70] [20.04, 20.06]

E[P 2] [411.30, 413.91] [412.53, 415.14] [411.15, 413.75] [405.42, 406.41]

E[P2] [8.47, 8.51] [8.47, 8.52] [8.46, 8.50] [8.31, 8.33]

E[P 2
2 ] [83.95, 84.81] [84.14, 84.99] [83.62, 84.47] [71.54, 71.88]

var[P ] [25.10, 25.56] [25.36, 25.82] [25.20, 25.66] [3.98, 4.05]

ns[P ] [1.273, 1.301] [1.285, 1.312] [1.279, 1.306] [0.198, 0.202]

var[P2] [12.16, 12.40] [12.25, 12.49] [12.04, 12.28] [2.52, 2.56]

ns[P2] [1.428, 1.464] [1.438, 1.474] [1.417, 1.452] [0.302, 0.308]
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In addition, we have briefly shown that the hybrid switch plus ODE model,

but the switch has the finite state space, arising through the active/inactive model

(4.25)–(4.28) underestimates the variances in both mRNA and protein for all time.

We further did numerically experiments when the model (3.1)–(3.4) was com-

bined with the protein dimerization stage (4.29)–(4.31), and found that, at the

final time T = 20, the switch plus ODE model significantly underestimates the

protein and dimer variances and noise strengths.



Chapter 5

Zero, One and Two-switch

Models of Gene Regulation

In this chapter we are concerned with the way that intrinsic noise depends on the

choice of mathematical model. We look at this issue in two senses.

First, we consider a hierarchy of three continuous-time discrete-space gene reg-

ulation models of increasing complexity, where either zero, one or two switches

affect the activity of the transcription process. In this case we are able to derive

explicit expressions for the first and second moments of the mRNA and protein

at steady state and make clear statements about whether switches increase or de-

crease the noise strength. Second, we look at a simple case of a hybrid version

of the two-switch model based on the type of multi-scale approximation that is

commonly used to make simulations more tractable. This leads to a stochastic

differential equation driven by a Markov chain, and we show that a generalised

version of Itô’s lemma can be used to analyse first and second moments.

49
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5.1 Gene Regulation Model

Figure 5.1 illustrates a simple schematic of the process by which mRNA is created

through transcription and protein is then created through translation. In this set-

ting, as used, for example, in [49], an underlying gene is assumed to be creating

mRNA at a constant rate, as mainly discussed in Chapter 4. In the language of

chemical kinetics, this gives a first order reaction network [11] that can be in inter-

preted as a Markov jump process, where ∅ → mRNA represents production from

a source, mRNA → Protein represents catalytic production, and mRNA → ∅

and Protein → ∅ represent degradation. This diagram can be written as the

reaction network (3.1)–(3.4), which also discussed in Chapter 4.

In Figure 5.2, we follow [44] by supposing that the gene is not always available

to create mRNA, but rather switches between an active state and an inactive

state. The switch operates independently of the mRNA and protein levels, and we

may regard Active ↔ Inactive as reversible isometric reactions. This diagram

represents the system discussed in section 4.4 with m = 1.

The biological mechanisms through which a gene is activated and deactivated

are, of course, extremely complicated, and Figure 5.2 presents a very simplified

view. Quoting from the Wikipedia website (June 2010)

http://en.wikipedia.org/wiki/Transcription factor:

“In the field of molecular biology, a transcription factor (sometimes

called a sequence-specific DNA binding factor) is a protein that binds

to specific DNA sequences and thereby controls the transfer (or tran-

scription) of genetic information from DNA to RNA. Transcription

factors perform this function alone or with other proteins in a com-

plex, by promoting (as an activator), or blocking (as a repressor) the
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recruitment of RNA polymerase (the enzyme which performs the tran-

scription of genetic information from DNA to RNA) to specific genes.”

and

“Transcription factors may be activated (or deactivated) through their

signal-sensing domain by a number of mechanisms. . . ”

This motivates the diagram in Figure 5.3, where gene activity is controlled by a

pair of independent switches in AND mode. We may imagine that the gene is ac-

tive only when a transcription factor (TF) is bound and this TF has become active.

Either unbinding or deactivation of the TF will cause the rate at which the gene

produces mRNA to drop to zero. Although we will use the bound/unbound ac-

tive/inactive terminology throughout this work, we mention that the model could

be motivated from other mechanisms, for example [4, Figure 2] describe a circum-

stance where two separate “activators” must operate in tandem for transcription

to occur.

The AND operation in Figure 5.3 could be regarded as a second order (or bi-

molecular reaction)—the rate at which mRNA is produced depends on the prod-

uct of two {0, 1} valued species. Generally, second order reaction networks are

not amenable to analysis; for example closed form ordinary differential equations

cannot be derived for their moments. However, we will show in this chapter that

the special structure of this network allows analysis to be performed, both in the

discrete-space Markov jump setting, and in the case where a hybrid stochastic

differential equation is used.

To simplify the language, we will say that Figures 5.1, 5.2 and 5.3 represent

the zero, one and two-switch models, respectively.
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5.2 AND Mode: Moments for Two Switches

Moment analysis for the zero-switch model has already been studied in section 3.3

and Chapter 4, and for the one-switch models has also appeared in the literature

[31]. In this section, we focus on the new two-switch model. Interpreting Figure 5.3

as a discrete-space, continuous-time Markov jump process, we may introduce scalar

processes A(t) and B(t) to record the activation and binding of the TF: at time t,

• A(t) = 1 if the TF is active and A(t) = 0 if the TF is inactive,

• B(t) = 1 if the TF is bound and B(t) = 0 if the TF is unbound.

Given the rate constants uA, dA, uB, dB, we may characterise these processes by

P(A(t + ∆) = 1 | A(t) = 0) = uA∆ + o(∆),

P(A(t + ∆) = 0 | A(t) = 1) = dA∆ + o(∆),

P(B(t + ∆) = 1 | B(t) = 0) = uB∆ + o(∆),

P(B(t + ∆) = 0 | B(t) = 1) = dB∆ + o(∆).

Now let M⊕(t) denote the level of mRNA for the two-switch model at time t.

Since mRNA is produced with rate constant uM only when the TF is bound and

active, we have

P
(
M⊕(t + ∆) = M⊕(t) + 1 | A(t), B(t)

)
= uMA(t)B(t)∆ + o(∆).

This takes the form of a second order reaction—the rate of production of the

species M⊕(t) depends on the product of the levels of “species” A(t) and B(t). In

general, second order systems are not amenable to analysis [17, Section 2.7.B], but

we will show in this section that the special form of this system can be exploited.

To do this, we introduce artificial species Yi(t) for i = 1, 2, 3, 4, each of which takes

values in {0, 1}. These are defined according to
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• Y1(t) = 1 ⇐⇒ A(t) = 0 and B(t) = 0,

• Y2(t) = 1 ⇐⇒ A(t) = 0 and B(t) = 1,

• Y3(t) = 1 ⇐⇒ A(t) = 1 and B(t) = 0, and

• Y4(t) = 1 ⇐⇒ A(t) = 1 and B(t) = 1.

We note that
∑4

i=1 Yi(t) = 1 for all time t. Letting P⊕ denote the protein level at

time t, we may write the overall system in the form

Y1
uB→ Y2 (5.1)

Y1
dB← Y2 (5.2)

Y1
uA→ Y3 (5.3)

Y1
dA← Y3 (5.4)

Y2
uA→ Y4 (5.5)

Y2
dA← Y4 (5.6)

Y3
uB→ Y4 (5.7)

Y3
dB← Y4 (5.8)

Y4
uM→ Y4 + M (5.9)

M
uP→ M + P (5.10)

M
dM→ ∅ (5.11)

P
dP→ ∅. (5.12)

This system now has the form of first-order reaction network. In the terminology

of [11], reactions (5.1)–(5.8) are of conversion type, (5.9) and (5.10) are of catalytic

production type, and (5.11) and (5.12) are of degradation type. So, we may use the

general results in [11] to obtain a closed system of ODEs that express the evolution
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of the first and second moments and correlations. In the notation of [11], we have

Ks = 0 ∈ R
6×6,

Kd =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 dM 0

0 0 0 0 0 dP




, Kcat =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 uM 0 0

0 0 0 0 uP 0




,

Kcon =




−(uA + uB) dB dA 0 0 0

uB −(uA + dB) 0 dA 0 0

uA 0 −(uB + dA) dB 0 0

0 uA uB −(dA + dB) 0 0

0 0 0 0 0 0

0 0 0 0 0 0




,

K =




−(uA + uB) dB dA 0 0 0

uB −(uA + dB) 0 dA 0 0

uA 0 −(uB + dA) dB 0 0

0 uA uB −(dA + dB) 0 0

0 0 0 uM −dM 0

0 0 0 0 uP −dP




,
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and

Γ(t) =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 uME[Y4(t)] 0 0

0 0 0 0 uP E[M⊕(t)] 0




.

For convenience we will drop the time dependent t. Because
∑4

i=1 Yi(t) = 1,

Yi(t)
2 = Yi(t) and Yi(t)Yj(t) = 0 for i 6= j, we can eliminate some redundancy in

order to obtain ODEs for the means

d

dt
E[Y2] = uB − (uA + uB + dB)E[Y2]− uBE[Y3]− (uB − dA)E[Y4],(5.13)

d

dt
E[Y3] = uA − uAE[Y2]− (uA + uB + dA)E[Y3]− (uA − dB)E[Y4], (5.14)

d

dt
E[Y4] = uAE[Y2] + uBE[Y3]− (dA + dB)E[Y4], (5.15)

d

dt
E[M⊕] = uME[Y4]− dME[M⊕], (5.16)

d

dt
E[P⊕] = uP E[M⊕]− dP E[P⊕], (5.17)
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correlations

d

dt
E[Y2M

⊕] = uBE[M⊕]− (uA + uB + dB + dM)E[Y2M
⊕]

− uBE[Y3M
⊕]− (uB − dA)E[Y4M

⊕], (5.18)

d

dt
E[Y2P

⊕] = uBE[P⊕] + uP E[Y2M
⊕]− (uA + uB + dB + dP )E[Y2P

⊕]

− uBE[Y3P
⊕]− (uB − dA)E[Y4P

⊕], (5.19)

d

dt
E[Y3M

⊕] = uAE[M⊕]− uAE[Y2M
⊕]− (uA + uB + dA + dM)E[Y3M

⊕]

− (uA − dB)E[Y4M
⊕], (5.20)

d

dt
E[Y3P

⊕] = uAE[P⊕]− uAE[Y2P
⊕] + uP E[Y3M

⊕]

− (uA + uB + dA + dP )E[Y3P
⊕]− (uA − dB)E[Y4P

⊕], (5.21)

d

dt
E[Y4M

⊕] = uAE[Y2M
⊕] + uBE[Y3M

⊕] + uME[Y4]

− (dA + dB + dM)E[Y4M
⊕], (5.22)

d

dt
E[Y4P

⊕] = uAE[Y2P
⊕] + uBE[Y3P

⊕] + uP E[Y4M
⊕]

− (dA + dB + dP )E[Y4P
⊕], (5.23)

d

dt
E[M⊕P⊕] = uME[Y4P

⊕] + uP E[M⊕2
]− (dM + dP )E[M⊕P⊕], (5.24)

and second moments

d

dt
E[M⊕2

] = uME[Y4] + dME[M⊕] + 2uME[Y4M
⊕]− 2dME[M⊕2

], (5.25)

d

dt
E[P⊕2

] = uP E[M⊕] + dP E[P⊕] + 2uP E[M⊕P⊕]− 2dP E[P⊕2
]. (5.26)

We are now in a position to compare the noise strengths of the three models.



Chapter 5 58

5.3 Comparing Noise Strengths

5.3.1 One-Switch versus Zero-Switch

The one-switch model in Figure 5.2 may be interpreted as the first order reaction

system (4.25)–(4.28), with m = 1. A closed, stable linear system of ODEs describ-

ing the evolution of the first and second moments and correlations can be found

in [31]. As used in section 4.4, using M̃(t) and P̃ (t) to denote the mRNA and

protein levels for the one-switch model, in order avoid confusion with M⊕(t) and

P⊕(t) from the two-switch model, we find that the steady state moments have the

form

lim
t→∞

E[M̃(t)] =
uCuM

dM(uC + dC)
, (5.27)

lim
t→∞

E[P̃ (t)] =
uP uCuM

dP dM(uC + dC)
, (5.28)

lim
t→∞

E[M̃ (t)2] =
uMuC

dM(uC + dC)
+

u2
MuC

dM(uC + dC)(uC + dC + dM)

+
u2

Mu2
C

d2
M(uC + dC)(uC + dC + dM)

, (5.29)

lim
t→∞

E[P̃ (t)2] =
u2

Pu2
MuC(dM + uC)(dM + uC + dC + dP )

(uC + dC)(uC + dC + dM)(uC + dC + dP )(dM + dP )d2
MdP

+
u2

Pu2
Mu2

C

(uC + dC)(uC + dC + dP )(dM + dP )dMd2
P

+
uPuMuC(dM + dP + uP )

(uC + dC)(dM + dP )dMdP

, (5.30)

lim
t→∞

E[M̃ (t)P̃ (t)] =
u2

Mu2
CuP

(uC + dC)(uC + dC + dP )(dM + dP )dMdP

+
u2

MuPuC(uC + dM)(uC + dC + dP + dM)

(uC + dC)(uC + dC + dM)(uC + dC + dP )(dM + dP )d2
M

+
uP uMuC

(uC + dC)(dM + dP )dM

. (5.31)

Recall that the zero-switch case in Figure 5.1 can be written as the reaction

network (3.1)–(3.4), with D̂(t) ≡ 1 for all time. A linear ODE system for the first

and second moments of this model was given in section 3.3. We then find the
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steady state values

lim
t→∞

E[M(t)] =
uM

dM

, (5.32)

lim
t→∞

E[P (t)] =
uPuM

dPdM

, (5.33)

lim
t→∞

E[M(t)2] =
uM

dM

+
u2

M

d2
M

, (5.34)

lim
t→∞

E[P (t)2] =
u2

Pu2
M

d2
Pd2

M

+
uPuM(uP + dM + dP )

(dM + dP )dMdP

, (5.35)

lim
t→∞

E[M(t)P (t)] =
uPuM

dM(dM + dP )
+

uPu2
M

dPd2
M

. (5.36)

Comparing the steady state mRNA and protein variances from the two models,

we find that

var[M̃ ]− var[M ] =
uMuC(d2

M + uMuC + dMuC + dMdC + dMuM)

d2
M(uC + dC)(uC + dC + dM)

− u2
Mu2

C

d2
M(uC + dC)2

− uM

dM

and

var[P̃ ]− var[P ] =
uP uMuC(dM + dP + uP )

dMdP (uC + dC)(dM + dP )

+
u2

P u2
Mu2

C

dMd2
P (uC + dC)(uC + dC + dP )(dM + dP )

+
u2

P u2
MuC(uC + dM)(dM + uC + dC + dP )

d2
MdP (uC + dC)(uC + dC + dM)(uC + dC + dP )(dM + dP )

− u2
Pu2

Mu2
C

d2
P d2

M(uC + dC)2

− uP uM(dM + dP + uP )

dMdP (dM + dP )
.

Now recalling the definition of noise strength in (3.10), some further manipu-

lation of (5.27)–(5.35) shows that

ns[M̃ ]− ns[M ] =
uMdC

(uC + dC)(uC + dC + dM)
, (5.37)

ns[P̃ ]− ns[P ] =
uPuMdC(uC + dC + dM + dP )

(uC + dC)(dP + dM)(uC + dC + dP )(uC + dC + dM)
.(5.38)
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It is clear that the right hand sides in (5.37) and (5.38) are always positive.

Hence, at steady state, adding a switch always increases the noise strength of both

mRNA and protein, for any choice of rate constants. This happens despite the fact

that the variances may increase or decrease. For example, using rate constants

uC = 0.1, dC = 0.01, uM = 0.3, dM = 0.01, uP = 0.3 and dP = 0.001, we find

var[M̃ ]− var[M ] = 3.47,

var[P̃ ]− var[P ] = 3.22× 104,

ns[M̃ ]− ns[M ] = 0.2273,

ns[P̃ ]− ns[P ] = 6.7568,

whereas changing to dC = 0.2 gives

var[M̃ ]− var[M ] = −13.55,

var[P̃ ]− var[P ] = −1.15× 105,

ns[M̃ ]− ns[M ] = 0.6452,

ns[P̃ ]− ns[P ] = 18.1799.

Figure 5.4 illustrates that the conclusion above concerning the relative noise

strengths does not generalise to all t. Here, we chose rate constants uM = 0.3, dM =

0.012, uP = 0.17 from [47], dP = 0.0007 from [6], uC = 0.1 and dC = 0.9. Determin-

istic initial conditions were used, with D?(0) = 1, M(0) = 20 and P (0) = 40. We

see that the time-dependent differences ns[M̃(t)]−ns[M(t)] and ns[P̃ (t)]−ns[P (t)]

can change sign before settling down to a positive value. Figure 5.5 repeats this

experiment using rate constants uC = 0.1, dC = 0.1, uM = 10, dM = 5, uP = 10,

and dP = 0.1 from [44] with the same initial conditions as in Figure 5.4. For these

rate constants and initial conditions, the difference between noise strengths for

mRNA and protein remains positive for all time.
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Figure 5.4: Difference in noise strengths between the one and zero-switch models.

Upper: mRNA, ns[M̃(t)] − ns[M(t)]. Lower: protein, ns[P̃ (t)] − ns[P (t)]. The

moments were computed by solving the relevant ODEs. Horizontal lines show

steady state values from (5.37) and (5.38). Rate constants are taken from [47] and

[6].
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Figure 5.5: As for Figure 5.4 with rate constants taken from [44].

5.3.2 Two-Switch versus Zero-Switch

Equations (5.13)–(5.26) give a stable, linear ODE system for the moments of the

two-switch model (5.1)–(5.12). Solving for the steady state and comparing with

the result for the zero-switch model (3.1)–(3.4), we find that the difference between

mRNA noise strengths is

ns[M⊕]− ns[M ] =

3dAdBuM (uAdM + dMuB + uAuB) + 2u2

A
uMdB(dM + dA)

(uA + dA + dM )(uA + dA)(uB + dB)(uB + dM + dB)(uB + uA + dA + dB + dM )

+
2dAdBuM (uBdA + uAdB) + 2u2

B
dAuM (dB + dM )

(uA + dA + dM )(uA + dA)(uB + dB)(uB + dM + dB)(uB + uA + dA + dB + dM )

+
dAuMdM (dM + dA)

(uB + uA + dA + dB + dM )(uB + dM + dB)(uA + dA)(uA + dA + dM )

+
uM (u2

B
dA + d2

B
dM )

(uB + uA + dA + dB + dM )(uB + dM + dB)(uB + dB)(uA + dA + dM )

+
uMd2

B
(u2

A
+ d2

A
) + uAuMdB(d2

A
+ d2

M
)

(uA + dA + dM )(uA + dA)(uB + dB)(uB + dM + dB)(uB + uA + dA + dB + dM )

+
uAuBuMdM (dA + dB) + uBdAuM (d2

B
+ u2

B
) + u2

A
uMdB(uB + uA)

(uA + dA + dM )(uA + dA)(uB + dB)(uB + dM + dB)(uB + uA + dA + dB + dM )
,
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which is clearly positive. The corresponding difference for the protein levels,

ns[P⊕]− ns[P ], is too complicated to display, but is also positive for all parameter

values.

To illustrate the results, in Figure 5.6, using the same rate constants and ini-

tial conditions as Figure 5.4, except uA = 0.1, dA = 0.3, uB = 0.3, dB = 0.1 and

Y4(0) = 1, we show the difference between noise strengths for mRNA and protein.

The values at steady state are 0.524 and 7.215 for mRNA and protein, respectively,

but we see that the difference between noise strengths changes sign over time. Fig-

ure 5.7 shows an example where the difference between noise strengths is positive

for all time. Here, the difference at steady state is 1.425 and 43.294 for mRNA

and protein, respectively. In this case we used the same rate constants and initial

conditions as Figure 5.5 together with uA = 0.1, dA = 0.1, uB = 0.1, dB = 0.1 and

the deterministic initial condition Y4(0) = 1.

In summary, like the one-switch model, the two-switch model always gives

greater noise strengths at steady state than the zero-switch model, but not gener-

ally for all time.

5.3.3 One-Switch versus Two-Switch

Using the results from the previous subsections, we can characterise the difference

in noise strengths of mRNA and protein between the two-switch model (5.1)–

(5.12) and one-switch model (4.25)–(4.28), with m = 1. The expressions are too

complicated to display, but a key fact is that they contain both negative and

positive terms, and their overall sign depends on the model parameters.

To illustrate this, in Figure 5.8 we use the same rate constants and initial

conditions as Figure 5.6, with uC = uA and dC = dA. We see that the differences

ns[M̃(t)]−ns[M⊕(t)] and ns[P̃ (t)]−ns[P⊕(t)] are negative for all time. The steady
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Figure 5.6: As for Figure 5.4, but with the differences between two and zero

switches, ns[M⊕(t)]− ns[M(t)] and ns[P⊕(t)]− ns[P (t)].
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Figure 5.7: As for Figure 5.6 with different parameters and initial conditions.
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state differences are −0.022 and −0.314 for mRNA and protein, respectively. On

the other hand, Figure 5.9 shows a case where the differences are positive for all

time. Here we used the same rate constants and initial conditions as in Figure

5.7 together with uC = uA and dC = dA. In this case, the steady state values

are 0.463 and 9.985 for mRNA and protein, respectively. Figure 5.10 shows that

the differences in both mRNA and protein can change sign. Here we used the

same rate constants and initial conditions as in Figure 5.9, except uC = uAuB

and dC = uAdB + dAuB + dAdB. The differences at steady state are −0.064 and

−63.833 for mRNA and protein, respectively.
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Figure 5.8: Difference in noise strengths between the two and one-switch models.

5.4 Hybrid Moments

As we already showed in Chapter 4, the hybrid SDE setting for the zero, and one-

switch models is better at recovering the moments of the underlying exact model
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Figure 5.9: As for Figure 5.8 with different parameters.
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Figure 5.10: As for Figure 5.8 with different parameters.
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than the hybrid ODE setting. Our aim in this section is therefore to study hybrid

versions of the new two-switch model (5.1)–(5.12). We will show that, as in the

Markov jump setting, although it appears to be a second order reaction network,

moments of the hybrid SDE model can be analysed.

5.4.1 Hybrid Diffusion Moments

In order to describe the two-switch model as a hybrid SDE, we let r(t) be a Markov

switch with state space S = {1, 2, 3, 4} and let γij denote the transition rate for

the switch from state i to j. Hence, for i 6= j,

P(r(t + ∆) = j | r(t) = i) := γij∆ + o(∆),

and γii = −∑j 6=i γij is such that

P(r(t + ∆) = i | r(t) = i) := 1 + γii∆ + o(∆).

Here,

• state 1 corresponds to A(t) = 0 and B(t) = 0,

• state 2 corresponds to A(t) = 0 and B(t) = 1,

• state 3 corresponds to A(t) = 1 and B(t) = 0,

• state 4 corresponds to A(t) = 1 and B(t) = 1.

For this switch, we move from state 1 to 2 when the TF binds, so we have

γ12 = uB.

Similarly, we move from state 1 to 3 when the TF activates, so that

γ13 = uA.
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j

state 1 2 3 4

1 −(uA + uB) uB uA 0

i 2 dB −(uA + dB) 0 uA

3 dA 0 −(dA + uB) uB

4 0 dA dB −(dA + dB)

Table 5.1: Transition rates γij for switch r(t).

Continuing this manner, we obtain the transition rates in Table 5.1.

Now, let g(r(t)) be any function such that

g(r(t)) =





1 when r(t) = 4,

0 otherwise.

We may then express the two-switch model as

∅ uMg(r(t))→ M (5.39)

M
uP→ M + P (5.40)

M
dM→ ∅ (5.41)

P
dP→ ∅. (5.42)

Now we look at a hybrid model based on (5.39)–(5.42) where the effect of the

TF is modelled as a Markov jump process r(t), and the evolutions of the mRNA

and protein levels are modelled with the CLE regime. This gives rise to Itô SDEs

driven by an independent switch, of the form

dM †(t) = (uMg(r)− dMM †)dt +
√

uMg(r)dW1 −
√

dMM †dW2, (5.43)

dP †(t) = (uPM † − dPP †)dt +
√

uPM †dW3 −
√

dPP †dW4. (5.44)
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We use M †(t) and P †(t) to distinguish this process from the mRNA and protein

levels, M⊕(t) and P⊕(t), arising from the full CME regime, while Wi, i = 1, 2, 3, 4,

are mutually independent Brownian motions that are also independent of r(t).

Taking expectations, we find immediately that

d

dt
E[M †(t)] = uME[g(r(t))]− dME[M †(t)], (5.45)

d

dt
E[P †(t)] = uP E[M †(t)]− dP E[P †(t)]. (5.46)

Since g(r(t)) ≡ Y4(t), comparing (5.45) and (5.46) with (5.16) and (5.17), we see

that this hybrid diffusion regime gives the same first moments as the full Markov

jump model.

Applying the generalised Itô formula Theorem 2.2.2 in (5.43) and (5.44), we

find

d(M †2) =
(
2M †(uMg(r)− dMM †) + (uMg(r) + dMM †)

)
dt + d(mart.),

d(M †P †) =
(
P †(uMg(r)− dMM †) + M †(uPM † − dP P †)

)
dt + d(mart.),

d(P †2) =
(
2P †(uPM † − dPP †) + (uPM † + dPP †)

)
dt + d(mart.),

d(M †g(r)) =
(
g(r)(uMg(r)− dMM †) + M †γr,4

)
dt + d(mart.),

d(P †g(r)) =
(
g(r)(uPM † − dPP †) + P †γr,4

)
dt + d(mart.),

where “mart.” denotes a martingale. Therefore,

d

dt
E[M †2] = 2uME[M †g(r)]− 2dME[M †2] + uME[g(r)] + dME[M †],(5.47)

d

dt
E[M †P †] = uME[P †g(r)]− (dM + dP )E[M †P †] + uP E[M †2], (5.48)

d

dt
E[P †2] = 2uP E[M †P †]− 2dP E[P †2] + uP E[M †] + dP E[P †], (5.49)

d

dt
E[M †g(r)] = uME[g(r)]− dME[M †g(r)] + E[M †γr,4], (5.50)

d

dt
E[P †g(r)] = uP E[M †g(r)]− dP E[P †g(r)] + E[P †γr,4]. (5.51)

(Note that the expectation of the martingale is zero.)
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Now, considering the case where r(t) = 4, we have that γr,4 = −(dA +dB), Y2 =

Y3 = 0, Y4 = g(r) = 1, therefore

d

dt
E[M †g] = uM − dME[M †]− (dA + dB)E[M †],

d

dt
E[Y4M

⊕] = uM − (dA + dB + dM)E[M⊕],

and

d

dt
E[P †g] = uP E[M †]− dP E[P †]− (dA + dB)E[P †],

d

dt
E[Y4P

⊕] = uP E[M⊕]− (dA + dB + dP )E[P⊕].

So, letting r(t) = 4, E[Y4M
⊕] satisfies the same ODE as E[M †g] and E[Y4P

⊕]

satisfies the same ODE as E[P †g]. In a similar manner, letting r(t) = 1, 2, 3,

also gives a perfect match. We conclude that E[Y4M
⊕] = E[M †g] and E[Y4P

⊕] =

E[P †g] for all time. By comparing (5.47)–(5.51) and (5.18)–(5.26) we then conclude

that the hybrid diffusion regime preserves the second moments and correlations of

the full Markov jump model.

5.4.2 Hybrid ODE Moments

In this subsection we consider the case where, as in subsection 5.4.1, the bind-

ing/unbinding and activation/deactivation of the TF is modelled as a Markov

jump process r(t), but now the evolutions of the mRNA and protein levels are

modelled with a simple ODE arising from the law of mass action. In this case, we

have two ODEs driven by an independent switch, of the form

dM ‡(t) = (uMg(r(t))− dMM ‡(t))dt,

dP ‡(t) = (uPM ‡(t)− dP P ‡(t))dt.

We use M ‡(t) and P ‡(t) to denote the continuous-valued stochastic process that

represent the mRNA and protein levels in this regime.
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Applying the generalised Itô formula Theorem 2.2.2, we find

d(M ‡2) =
(
2M ‡(uMg(r)− dMM ‡)

)
dt + d(mart.),

d(M ‡P ‡) =
(
P ‡(uMg(r)− dMM ‡) + M ‡(uPM ‡ − dPP ‡)

)
dt + d(mart.),

d(P ‡2) =
(
2P ‡(uPM ‡ − dPP ‡)

)
dt + d(mart.),

d(M ‡g(r)) =
(
g(r)(uMg(r)− dMM ‡) + M ‡γr,4

)
dt + d(mart.),

d(P ‡g(r)) =
(
g(r)(uPM ‡ − dPP ‡) + P ‡γr,4

)
dt + d(mart.).

Therefore,

d

dt
E[M ‡] = uME[g(r))]− dME[M ‡], (5.52)

d

dt
E[P ‡] = uP E[M ‡]− dP E[P ‡], (5.53)

d

dt
E[M ‡2] = 2uME[M ‡g(r)]− 2dME[M ‡2], (5.54)

d

dt
E[M ‡P ‡] = uME[P ‡g(r)]− (dM + dP )E[M ‡P ‡] + uP E[M ‡2], (5.55)

d

dt
E[P ‡2] = 2uP E[M ‡P ‡]− 2dP E[P ‡2], (5.56)

d

dt
E[M ‡g(r)] = uME[g(r)]− dME[M ‡g(r)] + E[M ‡γr,4], (5.57)

d

dt
E[P ‡g(r)] = uP E[M ‡g(r)]− dP E[P ‡g(r)] + E[P ‡γr,4]. (5.58)

Comparing (5.16) and (5.17) with (5.52) and (5.53), we see that the hybrid ODE

system preserves the first moments. Also, repeating the arguments from subsec-

tion 5.4.1, we can show that E[M ‡g(r)] matches E[Y4M
⊕], and E[P ‡g(r)] matches

E[Y4P
⊕]. If we then compare (5.25) and (5.54), we see that E[M ‡2(t)] < E[M⊕2

(t)]

for all t > 0. Then from (5.24) and (5.55) we see that E[M ‡(t)P ‡(t)] <

E[M⊕(t)P⊕(t)], whence (5.26) and (5.56) allow us to conclude that E[P ‡2(t)] <

E[P⊕2
(t)].

In summary, for any set of non-zero rate constants, the hybrid ODE model

underestimates the second moments of the mRNA and protein and the mRNA-

protein correlation, for all time.
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5.5 OR Mode

In this section we consider the case where the gene activity in the two-switch model

is controlled by a pair of independent switches in OR mode, instead of the AND

mode considered previously in this chapter. This could be regarded as a model

for the case where two different TFs, say TFa and TFb, are present, in which the

gene can transcribe when either TFa or TFb is bound to the gene.

We now define, respectively, scalar processes A�(t) and B�(t) to record the

binding of the TFa and TFb: at time t

• A�(t) = 1 if TFa is bound and A�(t) = 0 if TFa is unbound,

• B�(t) = 1 if TFb is bound and B�(t) = 0 if TFb is unbound,

in which we may characterise these processes by

P(A�(t + ∆) = 1 | A�(t) = 0) = uA∆ + o(∆),

P(A�(t + ∆) = 0 | A�(t) = 1) = dA∆ + o(∆),

P(B�(t + ∆) = 1 | B�(t) = 0) = uB∆ + o(∆),

P(B�(t + ∆) = 0 | B�(t) = 1) = dB∆ + o(∆).

We also define artificial species Y �
i(t), for i = 1, 2, 3, 4, the same way as for the

AND mode in section 5.2:

• Y �
1(t) = 1 ⇐⇒ A�(t) = 0 and B�(t) = 0,

• Y �
2(t) = 1 ⇐⇒ A�(t) = 0 and B�(t) = 1,

• Y �
3(t) = 1 ⇐⇒ A�(t) = 1 and B�(t) = 0, and

• Y �
4(t) = 1 ⇐⇒ A�(t) = 1 and B�(t) = 1.
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Recall that the reaction (5.9) is a catalytic reaction, in which the mRNA is

catalysed at a rate proportional to the level of Y4(t) with rate constant uM . It will

now be more convenient to interpret this as catalytic production from a source

with the rate uMY4(t)

φ
uM Y4−→ M. (5.59)

5.5.1 Moments for OR Mode

In OR mode, the gene can transcribe mRNA in the three following ways: when

TFa is bound but TFb is unbound, or TFa is unbound but TFb is bound, or both

TFa and TFb are bound. Therefore the three following reactions, say reactions

ja, jb, and jc, summarise the way that mRNA is produced

Y �
2

uM→ Y �
2 + M,

Y �
3

uM→ Y �
3 + M,

Y �
4

uM→ Y �
4 + M.

Replacing the reaction (5.9) in the AND mode with these three reactions, we have

the overall system for the OR mode.

Now we introduce catalytic production from a source

φ
uM (Y �

2+Y �
3+Y �

4)−→ M, (5.60)

and call this reaction reaction jt. Because the reactions ja, jb, and jc are indepen-
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dent, we find that in the next infinitesimal time interval [t, t + dt)

P(reaction ja or jb or jc happens) = P(reaction ja happens)

+ P(reaction jb happens)

+ P(reaction jc happens) + o(dt)

= uMY2dt + uMY3dt + uMY4dt + o(dt)

= P(reaction jt happens) + o(dt).

Thus, in OR mode, we can use the reaction (5.60) instead of those three reactions,

ja, jb, and jc. It follows that the reaction (5.60) is more complicated than the

reaction (5.59). Intuitively, the means of mRNA and protein for the OR mode

should be larger than those of the AND mode. Do the variances and noise strengths

have the same property? To investigate this, we first have to obtain the moments

of the OR mode. Using the same trick as in section 5.2, we find that the moments

of the OR mode satisfy the same ODEs (5.13)–(5.26) except

d

dt
E[M�] = uM(E[Y �

2] + E[Y �
3] + E[Y �

4])− dME[M�],

d

dt
E[Y �

2M
�] = uME[Y �

2] + uBE[M�]− (uA + uB + dB + dM)E[Y �
2M

�]

− uBE[Y �
3M

�]− (uB − dA)E[Y �
4M

�],

d

dt
E[Y �

3M
�] = uME[Y �

3] + uAE[M�]− uAE[Y �
2M

�]− (uA − dB)E[Y �
4M

�]

− (uA + uB + dA + dM)E[Y �
3M

�],

d

dt
E[M�P �] = uM(E[Y �

2P
�] + E[Y �

3P
�] + E[Y �

4P
�]) + uP E[M�2]

− (dM + dP )E[M�P �],

d

dt
E[M�2] = uM(E[Y �

2] + E[Y �
3] + E[Y �

4]) + dME[M�]− 2dME[M�2]

+ 2uM(E[Y �
2M

�] + E[Y �
3M

�] + E[Y �
4M

�]).

We have used the superscript � to indicate the species for the OR mode.
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5.5.2 Mean, Variance, and Noise Strength:

AND Mode versus OR Mode

From the previous subsection we know that the OR mode has the same ODEs for

E[Y2], E[Y3], and E[Y4] as the AND mode, and the ODE involves only E[Y2], E[Y3],

and E[Y4]. Therefore, the means E[Yi], i = 1, 2, 3, 4, of AND mode are identical

to E[Y �
i] of OR mode for all time. This is also obvious from first principles—the

switches operate independently and their states do not depend on the mode. We

now consider

d

dt
(E[M⊕]− E[M�]) = −uM(E[Y �

2] + E[Y �
3]) + uM(E[Y4]− E[Y �

4])

− dM(E[M⊕]− E[M�]),

which becomes

E[M⊕(t)]− E[M�(t)] = e−dM t

∫ t

0

h(s)edM sds,

where h(t) := −uM(E[Y �
2] + E[Y �

3]) ≤ 0 for all t ≥ 0. Therefore, the OR mode

has a larger mean of mRNA than the AND mode for all time. This leads to the

conclusion that the OR mode has also a larger mean of protein than the AND

mode for all time as follows:

d

dt
(E[P⊕]− E[P �]) = uP (E[M⊕]− E[M�])− dP (E[P⊕]− E[P �]),

so

E[P⊕(t)]− E[P �(t)] = e−dP t

∫ t

0

uP (E[M⊕]− E[M�])edP sds ≤ 0.

Next we investigate the variance and noise strength for the two modes at steady

state. Unfortunately the expressions, in terms of the relative rates of transcription,

translation and degradation, of the differences of variances in mRNA and protein

between OR mode and AND mode have too many terms to display, but there
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are very many more positive terms than negative terms. We experimented by

numerically varying the rate constants, and found that the variance differences

were all positive. Therefore, we expect that, at steady state, the variances in

mRNA and protein of OR mode are typically larger than those of AND mode.

On the other hand, the differences of noise strengths have lots of negative terms

while only few positive terms are present at steady state. We also tried numerically

changing the rates, and found unsurprisingly that the differences of noise strengths

could change their sign depending on the model parameters. Therefore the OR

mode may create more or less noise strength than the AND mode, depending on

the rate constants.

Figures 5.11–5.12, and 5.13–5.14, in which the rate constants and initial con-

ditions match those in Figure 5.6, and 5.7, respectively, support the claim. Using

the same rate constants as in Figure 5.14 except dA = 100, Figure 5.15 shows that

the steady state noise strength differences are not always negative while the steady

state variance differences remain positive as shown in Figure 5.16.

5.6 Summary

Some surprisingly simple stochastic models based on Markov jump processes have

been successful at describing the level of intrinsic noise in gene regulation activities

inside the cell. These models allow the important, and measurable, noise strength

to be characterised in terms of the relative rates of transcription, translation and

degradation.

In this chapter, we introduced a more general model that attempts to account

more accurately for the indirect control exerted by a transcription factor. This new

model does not fit naturally into the framework of first order reaction networks,



Chapter 5 77

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

Difference in variance for mRNA
Difference at steady state for mRNA

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6
x 104

time (sec)

Difference in variance for protein
Difference at steady state for protein

Figure 5.11: Difference in variances between the OR and AND modes, var[M �(t)]−

var[M⊕(t)] and var[P �(t)]− var[P⊕(t)].

but we showed that its noise strength is amenable to analysis.

Regarding this model as the two-switch successor to previously studied one-

switch and zero-switch versions, we were able to show the intuitively reasonable

results that, given a set of rate constants,

• the one and two-switch models always have greater steady state mRNA and

protein noise strengths than the underlying zero-switch model, although the

variances may be smaller.

So incorporating transcription factor effects in this way leads to a prediction of

larger intrinsic noise. However, somewhat less intuitively,

• before equilibrium is reached, the noise strengths of the one and two-switch

models may be less than that of the zero-switch model,
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Figure 5.12: Difference in noise strengths between the OR and AND modes,

ns[M�(t)]− ns[M⊕(t)] and ns[P �(t)]− ns[P⊕(t)].
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Figure 5.13: As for Figure 5.11 with different parameters.
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Figure 5.14: As for Figure 5.12 with different parameters.
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Figure 5.15: As for Figure 5.14 except dA = 100.
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Figure 5.16: As for Figure 5.15 except that the variance errors are measured.

• the two-switch model may be more or less noisy than the one-switch model,

depending on the rate constants.

Also,

• according our numerical experiments, depending on the model parameters

the OR mode may be more or less noisy than the AND mode.

We also analysed hybrid SDE and ODE approximations to the two-switch

model and showed that it is necessary to retain the diffusion term in order to

avoid underestimating the mRNA and protein variances and correlation.
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Autoregulation Models for Gene

Regulation Networks

In gene regulation, stochastic process using a switch for gene activation and in-

activation have been widely studied [31, 43, 44]. The analysis of such stochastic

processes is more complex when the state of active/inactive gene is affected by

the corresponding protein level [3, 34]. It has been shown that negative feedback

of protein reduces protein noise level [34]. There was the same conclusion in [49]

when a gene activity is assumed be always active.

In this chapter, which continues the work in Chapter 4, we investigate the effect

of protein feedback that enhances its own production. In this case we are able to

derive explicit expressions for the first moment of the mRNA and protein for all

time. At steady state, we also have explicit expressions for the first and second

moments of the mRNA and protein and make the clear statement that positive

protein feedback increases the variances and noise strengths of both mRNA and

protein.

81
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6.1 Feedback Gene Regulation Model

Figure 6.1 illustrates a schematic of the process that extends the process described

in Figure 5.1 by adding a protein feedback loop, enhancing the transcription pro-

cess.

PSfrag replacements

uM

dM

α

uP

dP

∅∅

∅ mRNA Protein

Figure 6.1: Feedback gene regulation diagram.

Here, we assume that an mRNA is produced in two ways; first production from

a source with rate constant uM , and second catalytic production proportional to

the level of protein P (t) with rate constant α. The mRNA can translate a protein

with rate constant uP , and the mRNA and protein can decay with rate constants

dM and dP respectively.

To simplify the language, we will say that Figure 6.1 represents the feedback

model.
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6.2 Feedback Moments

We now interpret the feedback model as a Gillespie/population dynamics/Markov

jump process, where both species are discrete. This could be written

∅ → M, with rate constant uM , (6.1)

∅ → M, with rate constant uMα, (6.2)

M → ∅, with rate constant dM , (6.3)

∅ → P, with rate constant uP , (6.4)

P → ∅, with rate constant dP . (6.5)

Here

• (6.1) is production from a source (constant rate),

• (6.2) is catalytic production (rate proportional to level of P (t)),

• (6.3) is decay (rate proportional to level of M(t)),

• (6.4) is catalytic production (rate proportional to level of M(t)),

• (6.5) is decay (rate proportional to level of P (t)).

Letting the state vector X(t) ∈ R
2 be




M⊗(t)

P⊗(t)


 ,

the stoichiometric vectors are

ν1 =




1

0


 , ν2 =




1

0


 , ν3 =



−1

0


 , ν4 =




0

1


 , ν5 =




0

−1


 ,
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with corresponding propensity functions

a1(X) = uM ,

a2(X) = uMαX2(t),

a3(X) = dMX1(t),

a4(X) = uPX1(t),

a5(X) = dPX2(t).

Here we have used the superscript ⊗ to denote the species for the feedback model.

We can see that the reactions (6.1)-(6.5) fit into the framework of a first-order

reaction network. Using the general result of [11], we obtain a closed system of

ODEs that describe the evolution of the first and second moments and correlations.

In their notation, we find

Ks =




uM 0

0 0


 , Kd =




dM 0

0 dP


 , Kcat =




0 uMα

uP 0


 , Kcon =




0 0

0 0


 .

We also have

K =



−dM uMα

uP −dP


 , and Γ(t) =




uME[M⊗(t)] uM(1 + α)E[P⊗(t)]

uP E[M⊗(t)] 0


 .
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These lead to

d

dt
E[M⊗(t)] = −dME[M⊗(t)] + uMαE[P⊗(t)] + uM , (6.6)

d

dt
E[P⊗(t)] = uP E[M⊗(t)]− dP E[P⊗(t)], (6.7)

d

dt
E[M⊗(t)2] = (2uM + dM)E[M⊗(t)] + uMαE[P⊗(t)]− 2dME[M⊗(t)2]

+ 2uMαE[M⊗(t)P⊗(t)] + uM , (6.8)

d

dt
E[P⊗(t)2] = uP E[M⊗(t)] + dP E[P⊗(t)] + 2uP E[M⊗(t)P⊗(t)]

− 2dP E[P⊗(t)2], (6.9)

d

dt
E[M⊗(t)P⊗(t)] = uME[P⊗(t)] + uP E[M⊗(t)2]− (dM + dP )E[M⊗P⊗]

+ uMαE[P⊗2
]. (6.10)

Letting

z(t) :=




E[M⊗(t)]

E[P⊗(t)]

E[M⊗(t)2]

E[P⊗(t)2]

E[M⊗(t)P⊗(t)]




,

we find that

dz(t)

dt
= Nz(t) + B,

where

N =




−dM uMα 0 0 0

uP −dP 0 0 0

2uM + dM uMα −2dM 0 2uMα

uP dP 0 −2dP 2uP

0 uM uP uMα −(dM + dP )




and B =




uM

0

uM

0

0




.
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6.3 Analytical Solutions

For convenience, we let D and D2 be the operator notations such that D ≡ d
dt

and

D2 ≡ d2

dt2
. Then from (6.6) and (6.7), we have

(D + dM)z1 − uMαz2 = uM , (6.11)

uPz1 − (D + dP )z2 = 0. (6.12)

Multiplying both sides of (6.11) by uP , we have

uP (D + dM)z1 − uMuPαz2 = uMuP . (6.13)

Operating on both sides of (6.12) with D + dM and then subtracting from (6.13),

we find
(
D2 + (dM + dP )D + (dMdP − uMuPα)

)
z2 = uMuP . (6.14)

It follows that

z2 = c1e
−

(dM+dP )−

√
(dM−dP )2+4uM uP α

2
t + c2e

−
(dM +dP )+

√
(dM−dP )2+4uM uP α

2
t

+
uMuP

dMdP − uMuPα
, if uMuPα 6= dMdP , (6.15)

where c1 and c2 are arbitrary constants, is a general solution of (6.14). Substituting

(6.15) into (6.12), we have

z1 = c1e
−

(dM+dP )−

√
(dM−dP )2+4uM uP α

2
t

[
(dP − dM) +

√
(dM − dP )2 + 4uMuPα

2uP

]

+c2e
−

(dM +dP )+

√
(dM−dP )2+4uM uP α

2
t

[
(dP − dM)−

√
(dM − dP )2 + 4uMuPα

2uP

]

+
uMdP

dMdP − uMuPα
, if uMuPα 6= dMdP .

We are now considering the case where α < dMdP /uMuP , so

0 < (dM − dP )2 + 4uMuPα < (dM − dP )2 + 4dMdP

= (dM + dP )2.
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Therefore

(dM + dP )±
√

(dM − dP )2 + 4uMuPα > 0.

This leads to

E[M⊗(t)] = z1 →
uMdP

dMdP − uMuPα
,

and E[P⊗(t)] = z2 →
uMuP

dMdP − uMuPα
, as t→∞.

If α > dMdP/uMuP , we then can show that

(dM − dP )2 + 4uMuP α > (dM + dP )2.

Therefore

(dP + dM)−
√

(dM − dP )2 + 4uMuPα < 0,

and (dP − dM) +
√

(dM − dP )2 + 4uMuPα > 0.

This leads to

E[M⊗(t)] = z1 → ∞,

and E[P⊗(t)] = z2 → ∞, as t→∞.

If α = dMdP/uMuP , by (6.14), we have

(D2 + (dM + dP )D)z2 = uMuP . (6.16)

Thus

z2 = c3 + c4e
−(dM +dP )t +

uMuP

dM + dP

t (6.17)

is a general solution of (6.16). Substituting (6.17) into (6.12), we find that

z1 = −c4dM

uP

e−(dM+dP )t +
uMdP

dM + dP

t +
c3dP

uP

+
uM

dM + dP

. (6.18)
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Therefore, in this case,

E[M⊗(t)] = z1 → ∞,

and E[P⊗(t)] = z2 → ∞, as t→∞.

In summary, we have shown that the first moments of mRNA and protein of

the feedback model are stable if and only if the protein feedback rate, α, is less

than dMdP/uMuP .

6.4 Feedback Effect

In this section we consider the effect of increasing the feedback rate. Let 0 ≤ α1 <

α2, and let M⊗
αi

and P⊗
αi

denote the number of mRNA and protein molecules at

time t for the feedback model (6.6)-(6.10) with α = αi. We then let

y(t) :=




E[M⊗
α2

(t)]− E[M⊗
α1

(t)]

E[P⊗
α2

(t)]− E[P⊗
α1

(t)

E[M⊗
α2

(t)2]− E[M⊗
α1

(t)2]

E[P⊗
α2

(t)2]− E[M⊗
α1

(t)2]

E[M⊗
α2

(t)P⊗
α2

(t)]− E[M⊗
α1

(t)P⊗
α1

(t)]




, with y(0) = 0.

We have

dy1

dt
= −dMy1 + α1uMy2 + uM(α2 − α1)E[P⊗

α2
], (6.19)

dy2

dt
= uPy1 − dP y2, (6.20)

dy3

dt
= (2uM + dM)y1 + uMα1y2 − 2dMy3 + 2uMα1y5

+uM(α2 − α1)E[P⊗
α2

] + 2uM(α2 − α1)E[Mα2P
⊗
α2

], (6.21)

dy4

dt
= uPy1 + dPy2 + 2uPy5 − 2dPy4, (6.22)

dy5

dt
= uMy2 + uPy3 − (dM + dP )y5 + uMα1y4

+uM(α2 − α1)E[(P⊗
α2

)2]. (6.23)



Chapter 6 89

Now, consider the first two equations (6.19) and (6.20). These involve only y1

and y2. We will show that both components remain nonnegative for all time. Here

we suppose that the initial moments for the feedback α1 and α2 are the same, so

y(0) = 0, and also note that E[M⊗
αi

(0)] > 0 and E[P⊗
αi

(0)] > 0. From (6.19), we

see that y1(t) has a positive derivative at t = 0, so for a small time interval (0, ∆t],

y1(t) > 0 ∀t ∈ (0, ∆t]. (6.24)

Consequently, from (6.20),

y2(t) = e−dP t

∫ t

0

uPy1(s)e
dP sds > 0 ∀t ∈ (0, ∆t]. (6.25)

Now, for any t, suppose the solution is such that y1(t) = 0 and y2(t) > 0. Then

from (6.19), we see that y1(t) has a positive derivative, so the solution returns to

the first quadrant. Similarly, if y2(t) = 0 and y1(t) > 0 then from (6.20) we see that

the solution also returns to the first quadrant. Finally, if y1(t) = y2(t) = 0, then

both derivatives are nonnegative, so neither component can decrease. Together

with (6.24) and (6.25), this allows us to conclude that the solution y1(t) and y2(t)

remains nonnegative for all time.

We may then rewrite (6.21)–(6.23) as

d

dt




y3

y4

y5




=




−2dM 0 2uMα1

0 −2dP 2uP

uP uMα1 −(dM + dP )







y3

y4

y5




+ h(t),

where

h(t) :=




(2uM + dM )y1 + uMα1y2 + uM (α2 − α1)E[P⊗
α2

] + 2uM(α2 − α1)E[M⊗
α2

P⊗
α2

]

uP y1 + dP y2

uMy2 + uM (α2 − α1)E[(P⊗
α2

)2]




is nonnegative. The arguments used above for y1(t) and y2(t) may now be applied

to y3(t), y4(t) and y5(t) and we conclude that all solution components remain

nonnegative.
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In summary, we have shown that the first and second moments and correlations

of mRNA and protein increase monotonically in α. In other words, for any choice

of model parameters, increasing the protein feedback rate cannot decrease the

moments of mRNA or protein.

Now, let us consider differences of variances of mRNA and protein between the

feedback rates α1 and α2 where 0 ≤ α1 < α2. We let

v :=




var[M⊗
α2

]− var[M⊗
α1

]

var[P⊗
α2

]− var[P⊗
α1

]


 .

Then

dv1

dt
=

d

dt
var[M⊗

α2
]− d

dt
var[M⊗

α1
]

=
d

dt

(
E[(M⊗

α2
)2]− (E[M⊗

α2
])2
)
− d

dt

(
E[M⊗

α1
]− (E[M⊗

α1
])2
)

= dMy1 + uM(α2E[P⊗
α2

]− α1E[P⊗
α1

])− 2dMv1

+2uM(α2E[M⊗
α2

P⊗
α2

]− α1E[M⊗
α1

P⊗
α1

])

−2uM(α2E[M⊗
α2

]E[P⊗
α2

]− α1E[M⊗
α1

]E[P⊗
α1

]).

So,

v1 = e−2dM t

∫ t

0

h4(s)e
2dM sds,

where

h4(t) := uM(α2E[P⊗
α2

]− α1E[P⊗
α1

]) + 2uM(α2E[M⊗
α2

P⊗
α2

]− α1E[M⊗
α1

P⊗
α1

])

−2uM(α2E[M⊗
α2

]E[P⊗
α2

]− α1E[M⊗
α1

]E[P⊗
α1

]) + dMy1.

Hence v1 can be either positive or negative because h4 contains both positive and

negative terms.
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Next, we consider

dv2

dt
=

d

dt
var[P⊗

α2
]− d

dt
var[P⊗

α1
]

=
d

dt

(
E[(P⊗

α2
)2]− (E[P⊗

α2
])2
)
− d

dt

(
E[P⊗

α1
]− (E[P⊗

α1
])2
)

= uPy1 + dPy2 + 2uPy5 − 2dPv2 − 2uP (E[M⊗
α2

]E[P⊗
α2

]− E[M⊗
α1

]E[P⊗
α1

]).

Therefore

v2 = e−2dP t

∫ t

0

h5(s)e
2dP sds,

where h5(t) := uPy1 + dPy2 + 2uPy5 − 2uP (E[M⊗
α2

]E[P⊗
α2

]− E[M⊗
α1

]E[P⊗
α1

]). Hence

v2 can also be either positive or negative because h5 contains both positive and

negative terms.

Thus, we cannot show explicitly that for all sets of parameter values the mRNA

and protein variances increase with the feedback rate. However, we observed such

monotonicity in all our simulations that used biologically realistic parameters; see,

for example, Figures 6.2–6.5.

Figures 6.2 and 6.3 show the differences of variances in mRNA and protein,

respectively, for various feedback rates by using an ODE solver on (6.6)-(6.10).

Initial conditions and rate constants were as follows: M⊗(0) = 2, P⊗(0) = 4 and

uM = 0.3, dM = 0.012, uP = 0.17 from [47] and dP = 0.0007 from [6]. We set

the feedback rates as αi = idMdP /5uMuP for i = 0, 1, 2, 3, 4. The horizontal

lines are steady state values computed from (6.30) and (6.31). We see that the

variances increase monotonically in α. Similarly, Figures 6.4 and 6.5 show the

differences of the variances in mRNA and protein with rate constants taken from

[44]: uM = 10, dM = 5, uP = 10, and dP = 0.1.

Figures 6.6 and 6.7 show the differences of noise strengths in mRNA and pro-

tein, respectively, for the same feedback rates, initial conditions, and rate constants

as in Figure 6.2. We see that the noise strengths of the bigger feedback rate models
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Figure 6.2: Differences of variances in mRNA for the feedback model. Using

feedback rates αi = idMdP/5uMuP for i = 0, 1, 2, 3, 4.
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Figure 6.3: Differences of variances in protein for the feedback model. Using

feedback rates αi = idMdP/5uMuP for i = 0, 1, 2, 3, 4.
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Figure 6.4: The same as Figure 6.2 with different rate constants.
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Figure 6.5: The same as Figure 6.3 with different rate constants.

are always larger than those with the smaller feedback rates for all time, whereas

the horizontal lines are steady state values computed from (6.32) and (6.33). Fig-

ures 6.8 and 6.9, for which the rate constants used were the same as in Figure 6.4,

show similar behaviour.

Note that,

• Using the default of relative and absolute error tolerances, ‘RelTol’ and ‘Ab-

sTol’, of the ODE solver ode15s gave qualitatively incorrect results. This

was fixed by setting more stringent RelTol and AbsTol values.
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Figure 6.6: Differences of noise strengths in mRNA for the feedback model. Using

feedback rates αi = idMdP/5uMuP for i = 0, 1, 2, 3, 4.
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Figure 6.7: Differences of noise strengths in protein for the feedback model. Using

feedback rates αi = idMdP/5uMuP for i = 0, 1, 2, 3, 4.
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Figure 6.8: The same as Figure 6.6 with different rate constants.
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Figure 6.9: The same as Figure 6.7 with different rate constants.

6.5 Steady State Variances and Noise Strengths

with Feedback

In this section we compare the variances and noise strengths of mRNA and protein

at steady state. To find when the system is stable at steady state, we let w(t) =

z(t) + N−1B, where w, N and B were defined in section 6.2, so

dw(t)

dt
= Nw(t).

We then find that the system has eigenvalues:

−(dM + dP ),

−(dM + dP )±
√

(dM − dP )2 + 4uMuP α,

−(dM+dP )±
√

(dM−dP )2+4uMuP α

2
.
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The system has a stable equilibrium if and only if all eigenvalues are negative,

giving

−(dM + dP ) +
√

(dM − dP )2 + 4uMuPα < 0.

This leads to the following condition for a linearly stable equilibrium,

0 ≤ α <
dMdP

uMuP

.

For the feedback model with 0 ≤ α < dMdP /uMuP , we find that the steady

state moments have the form

E[M s] =
dPuM

dMdP − uPuMα
, (6.26)

E[P s] =
uPuM

dMdP − uPuMα
, (6.27)

E[(M s)2] =
uMdMdP (dMdP − uPuMα) + u2

MdP (uPα2uM + dMdP )

(dM + dP )(dMdP − uPuMα)2

+
uMd3

P (uM + dM)

(dM + dP )(dMdP − uP uMα)2
, (6.28)

E[(P s)2] =
uMuPdP (dMdP − uPuMα) + u2

Mu2
P (dM + dP )

(dM + dP )(dMdP − uPuMα)2

+
uMdMuPdP (dM + uP )

(dM + dP )(dMdP − uP uMα)2
. (6.29)

We have used the superscript s to denote the level of species at steady state for

the feedback model.

We are now in a position to consider differences of variances and noise strengths

in mRNA and protein at steady state. Let 0 ≤ α1 < α2 < dMdP/uMuP , and let

M s
αi

and P s
αi

denote the number of mRNA and protein molecules at steady state



Chapter 6 99

for the feedback model (6.6)-(6.10) with α = αi, we find that

var[M s
α2

]− var[M s
α1

]

=
u2

MdPuPdM(α2 − α1)

(dMdP − uPuMα2)(dMdP − uPuMα1)(dM + dP )

+
u2

Md2
P uPdM(α2 − α1)(dP + α2uM)

(dMdP − uPuMα1)(dM + dP )(dMdP − uPuMα2)2

+
u2

Md2
P uPdM(α2 − α1)(dP + α1uM)

(dMdP − uPuMα2)(dM + dP )(dMdP − uPuMα1)2
, (6.30)

var[P s
α2

]− var[P s
α1

]

=
u2

Mu2
P dPdM(α2 − α1)(dM + uP )(2dMdP − uPuMα1 − uPuMα2)

(dM + dP )(dMdP − uPuMα1)2(dMdP − uPuMα2)2

+
u2

Mu2
PdP (α2 − α1)

(dMdP − uPuMα2)(dMdP − uPuMα1)(dM + dP )
(6.31)

and

ns[M s
α2

]− ns[M s
α1

]

=
uMuP (α2 − α1)(α1uM(dMdP − uPuMα2) + d2

PdM + α2uMdMdP )

(dM + dP )(dMdP − uPuMα1)(dMdP − uPuMα2)
,(6.32)

ns[P s
α2

]− ns[P s
α1

]

=
dPuMuP dM(α2 − α1)(dM + uP )

(dM + dP )(dMdP − uPuMα1)(dMdP − uPuMα2)
. (6.33)

Since 0 ≤ α1 < α2 < dMdP /uMuP , at steady state we can see from (6.30)-(6.33)

that both differences of variances and noise strengths increase monotonically in α in

the interval [0, β) where β = dMdP/uMuP . Thus, at stable steady state, increasing

the protein feedback rate causes the variances and noise strengths of both mRNA

and protein to increase monotonically in α.

6.6 Summary

In this chapter we studied a feedback model in which protein enhances its own

production, and indicated
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• all moments increase monotonically in the feedback rate, independent of rate

constants and initial conditions,

• the ranges of the protein feedback rate to guarantee the system has a stable

equilibrium.

In this range of the feedback rate,

• the steady state first and second moments can be established,

• variances and noise strengths increase monotonically in the feedback rate at

steady state for any choice of model parameters.



Chapter 7

Conclusions and Further Work

7.1 Conclusions

In this thesis we have conducted research on gene regulation networks using mod-

elling and numerical simulation. We focused on comparing the noise strength be-

tween the true solutions arising from CME models and the approximate solutions

arising from hybrid models to decide whether a model is good.

In Chapter 4, we established existence and uniqueness, and numerical simula-

tion theories for solutions of the hybrid models driven by an independent Marko-

vian switch with infinite state space. We also showed that simple multi-scale

diffusion models in gene regulation have advantages over their ODE counterparts.

In Chapter 5, we introduced a more general model where gene activity is con-

trolled by a transcription factor. We focussed on this control in two senses; AND

and OR modes. In AND mode, even though this model is a second order reac-

tion network, noise strength is amenable to analysis. We found that steady state

mRNA and protein noise strengths of the one and two-switch models are greater

than those of the zero-switch model, while the two-switch model may be more or

101
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less noisy than the one-switch model, depending on the choice of the model param-

eters. We further showed that the hybrid SDE approximation is better than the

hybrid ODE approximation in order to recover the mRNA and protein variances

and correlation. In addition, we showed that the OR mode may be more or less

noisy than the AND mode, depending on the rate constants.

In the final chapter of research, we examined the variance and noise strength of

gene regulation when protein feedback is allowed. Not surprisingly, increasing the

feedback rate causes the first and second moments and correlations to increase.

We also showed that, in the stable range of protein feedback rate, the steady state

variances and noise strengths of mRNA and protein increase monotonically in the

feedback rate.

7.2 Further Work

There are many interesting open questions in this area, including:

• How general is the phenomenon shown in this thesis that replacing a Langevin

component with the reaction rate ODE causes the overall variance to be un-

derestimated?

• Is there a general existence/uniqueness/numerical convergence theory for

diffusion coefficients that involve the square root function?

• Is it possible to develop a theory for infinite state-dependent Markov switches,

which arise, for example, when the transcription rate is affected by a protein

as discussed in the previous chapter?
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