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SUMMARY

The thesis deals with systems consisting of marine cables and subsea unit:
Such systems have wide applications in offshore subsea operations.

After a general introduction, the thesis sets out to analyse both the stati
and dynamic behaviours of the system under various environmental and operatione
conditions. It endeavours to pursue a fundamental approach in order to reveal th
basic characteristics of the system, in addition to developing numerical algorithms fo
predicting performance. The analysis of behaviour of marine cables consists of th

following parts:

o Statics A semi-analytic approach is developed to predict the equilibriur

configurations of marine cables.

e One-dimensional dynamics Using a coordinate transformation, the metho

can predict the unsteady dynamic behaviour of systems where the length «

cable varies.

e Two-dimensional dynamics ~ The methodology adopted in the one-dimension

analysis is extended to a more general case.

e Three-dimensional dynamics An alternative approach based upon a lumpe




mass model is developed. Mathematical analysis reveals many interesting char-

acteristics of the model.

By applying modern control theory, a novel heave compensation mechanism
is developed for marine systems of cables and subsea units. This mechanism involves
an actively controlled winch system. A framework of optimal stochastic control is
outlined for integrating all the elements of surface supported subsea operations.

The thesis presents a variety of numerical examples in domenstrating the
validity of the approaches adopted, along with discussions. Further developments are

also recommended.
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Chapter 1

INTRODUCTION

Roll on, thou deep and dark blue ocean - roll!
Ten thousand fleets sweep over thee in vain:
Man marks the earth with ruin — his control
Stops with the shore.

Lord Byron: Childe Harold’s Pilgrimage

1.1 GENERAL REMARKS

Had Lord Byron lived today, he would surely have penned some different
lines in place of this pessimistic sigh. The sea has never ceased to be either an
inspiration source of poets, or a frontier of temptation for human beings on this
rather watery planet. Having mapped the water surface and excluded all possibility
of any ‘Treasure Island’, men delve into the water deeper and deeper beneath its
surface.

Though occasionally, man dives into the deep sea out of inherent heroism

or adventure, the true reason for mankind’s massive march into the subsea world



has never failed to be economic. Even in ancient times people dwelling near the
shore knew how to earn a living by deriving salt from the ocean. As mankind
consumes inland natural resources at an ever increasing rate and new kinds of
technology are constantly developing at high speed, it has become obvious that
the present industrial growth cannot be met by land-based resources alone. and
we both have to and are able to turn to the sea as a possible source of additional
materials. Although for the time being exploitation has been confined principally
to continental shelf areas where water depth is low, there is little doubt that when

needed in the future, it will be moved into the deep sea region.

1.2 BACKGROUND: SUBSEA NATURAL RESOURCES

Subsea natural resources include oil and gas, which of course top the re-

source list in terms of value for the moment, and consolidated mineral deposits.

1.2.1 Oil and Gas

Oil and gas, which exist beneath the sea bed, can be cxtracted through
boreholes. The history of marine drilling for oil goes back to 1938 when the Creole
field was discoved in the Gulf of Mexico, but it was from the mid-1950s that offshore
exploitation got its real impetus, spreading to the waters off Mexico. Brazil and
Brunei. In the 1960s. the more challenging North Sea became the major battlefield

between modern technology and the harsh sea. Today the oil industry has expanded

to offshore waters all over the world.
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Figure 1.1: Growth of onshore and total oil production (from Patel, 1989)

production. Bearing in mind that most drilling so far has been restricted principally

to near shore waters, this contribution could turn out to be even greater in the

future.

1.2.2 Mineral Deposits

The subsea consolidated minerals include coal, iron ore. nickel, copper, tin,
sand and gravel. As the land reserves of these materials become limited. it is quite
natural for industry to move offshore to secure its need. For example, sand and
gravel are extensively used in construction work. Table 1.1 shows the estimated
land and marine resources and the estimated demand. Apparently. exploitation of

marine resources is in this case essential if demand 1s to be met.



marine resources is in this case essential if demand i1s to be met.

Table 1.1 Comparison Between (apparent) Marine Sand and Gravel
Deposits and (apparent) Land-Based Sand and Gravel Deposits

Variable U.S. World
Annual demand (1970) 1.02 745
Cumulative demand to 2000 76.70 535.00
Apparent land resources 67.00 333.00
Apparent marine resources 1690.00 31000.00

Source. Cruickshank and Hess (1976)

Note. The units represent gross market values in billions of
1972 dollars. They do not indicate economic reserves; instead.
they are used for comparative purposes.

The main classes of minerals on and beneath the ocean floor occur in variou

forms, from nodules and encrustations to soft-layered deposits, and are as follows.

1. Manganese nodules.  These dark, potato-sized lumps which contain coppel
nickel, cobalt and other important metals have been identified as a potentiall

large resource.

2. Cobalt crusts. This mineral is potentially more valuable. However, th

prospect of exploitation is limited in the shorter term.

3. Polymetallic sulphide accumulations. ~ These contain iron, copper. zinc an
manganese in various chemical forms. Exploitation and surveying will brin

more reserves to light.

4. Phosphorites.  These are minerals of calcium phosphate that can be forme
from decaying organisms on the sea floor. Fluorine and uranium deposits ar

often associated with phosphorites. and are potentially important by-product:



1.2.3 Miscellaneous
Other major types of subsea resource are:

1. Renewable energy from the thermal gradients between the surface and deeper
layers of the ocean in tropic and sub-tropic areas. The process to extract the

energy is known as ocean thermal energy conversion (OTEC).

2. In the future, underwater currents such as the Gulf stream and Kuroshio may

also become a source of energy, extracted using an equivalent of windmills.

3. An ever-increasing world population requires the sea to play a major role in
providing food resources. One example is mariculture. Though for the time
being most fish farms involve conventional floating cages, concepts have been

proposed to submerge the cages in deep water.

1.3 SCOPE OF THE THESIS: TETHERED SUBSEA UNTI']

Tempted by such a huge resource and potential for economic gain, the de-
velopment of materials, structures and equipment for use in the harsh environment
of the oceans has been expanded rapidly in the past few decades. Among the var-
ious technical achievements, tethered subsea units have played an important role

and are widely used in practice to fulfill certain tasks such as:



. Mapping the Exclusive Economic Zones
Before the deep sea and the sea bed can be utilized, it will be necessary to have
a comprehensive and accurate picture of the physical, chemical and geological

characteristics of the environment.

. Pipeline Surveying
This includes inspection to identify whether the pipeline is damaged or not
and to locate any stresses which might cause it to fail. Also before laying the

pipeline, 1t is necessary to survey the seabed to determine a suitable route.

. Offshore Platform Inspection, Repair and Maintenance
To assess the safety of older platforms and maintain standards in order to com-
ply with governmental regulations, it is imperative to inspect the submerged

parts of platforms frequently.

. Seabed Object Detection and Classification

There is growing effort to detect, classify and recover items from the seabed
in deep water. Such items may include crash debris and shipwrecked articles.
The skills involved in performing such tasks also have military applications

such as mine detection.

. Subsea Construction and Destruction
As production moves into deeper water where divers can no longer reach, teth-
ered subsea units have to play a more important role in constructing seabed

structures. A similar task is the decommissioning of abandoned subsea installa-



tions which have ceased operating, as awareness of environmental conservatio:

Increases.

6. Deep Sea Rescue

This task includes rescuing divers in detached diving vessels, or crews in th

case of submarine accidents.

7. Environmental Monitoring
Tethered subsea units are used to monitor the marine environment. Specie
attention is paid to over-enrichment or depletion of oxygen in coastal waters
the physical modification of sea bed habitats, pollution damage to fish an

shellfish, and coastal erosion.

There 1s no question that as exploitation and production moves into deepe
water, we will observe a continued increase in tethered subsea unit intervention.

However, frequent accidents during operations resulting in the loss of th
subsea units and an inability to carry out designated tasks accurately indicate
demand for better understanding of the whole system. Daunting and comple

problems are still to be solved. These problems can be categorised as follows:

1. Surface Support
Though the use of submersible support vessels has been suggested, most sut
sea interventions are controlled from conventional surface vessels. As it i
often required that the surface support vessel should remain sensibly statior

ary, various techniques have been applied in holding such vessels against th



forces of environment. Since the first dynamically positioned ship, The Glo-
mar Challenger, around 1970, numerous dynamically positioned vessels have
been constructed. The idea of dynamical positioning is to match the mean
loadings imposed by the environment with counter forces exerted by the on-
board thrusters. However, efforts are still needed as the methods available
to estimate these mean hydrodynamic loadings are not entirely satisfactory,

especially with regard to high order wave forces.

. Marine Cable Statics and Dynamics

The importance of the cable is manifested by the fact that it is the sole link
between the surface support vessel and the subsea unit. Any failure occurring
to it, such as breakage due to excessive tension in the cable, almost inevitably
means the loss of the subsea unit. Furthermore, as the subsea unit is linked
to the cable, its performance can be significantly influenced by the presence of

the cable.

. Subsea Unit Design

The design of the subsea unit is still a formidable task because of its complex
dynamic behaviour in interaction with the surrounding fluild medium. The
external shape of the unit is an important factor which principally determines
the hydrodynamic characteristics and, therefore, has great effect upon the cru-

cial operational abilities of the subsea unit such as stability, manoeuvrability

and speed.



4. Control and Communication
Control and communication are indispensable in subsea intervention. The
manoeuvring of the subsea unit in deep water is entirely dependent upon the
control of the thruster forces. Communication between the tethered subsea
unit and the surface supporting vessel is another crucial factor which becomes
both more necessary and more difficult as the operational depth of the subsea
unit increases. Due to signal attenuation over the transmission line and the
requirements for higher speed data transmission and multiple video systems,
the linking cable grows to excessive diameter and weight. As a result, novel

methods of communication need to be developed.

5. Relevant Problems
There are some problems arising from the integration of the different parts
described above into a coherent operational system. For example, the deploy-
ment of a subsea unit requires a handling system through which the supporting
vessel introduces disturbances to the cable, sometimes resulting in snap load-
ings. Such snap loadings can greatly increase the amount of cable tension and
therefore can be detrimental. Hence, it is necessary to introduce a motion
compensation mechanism which will reduce the dynamic vessel disturbance
to the cable in a given sea state and extend the range of sea states in which

operations can continue.
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Other relevant problems include the interaction between the subsea unit and
the vessel when the subsea unit is heavy enough to influence the vessel dy-

namics.

1.4 THE PRESENT INVESTIGATION

Needless to say, this thesis can not cover all the problems identified in the
previous section arising from subsea intervention using tethered subsea units. We

confine ourselves to the following two areas:

e Behaviour of marine cables (including cable-unit systems).

e Heave compensation.
The selection of these two topics is based upon the following considerations:

1. The fact that a cable links the subsea unit to the support vessel is the essential
feature of the subsea operation. This justifies the selection of the marine
cable as an appropriate starting point for the whole theoretical conquest of

operations involving tethered subsea units deployed from a floating vessel.

2. Once we have a firm grasp of the behaviour of marine cables, the next step for-
ward 1s naturally to consider the integration of the cable-unit system with the
floating vessel and the auxiliary handling systems, assuming that the available
theories on the mechanics of offshore floating vessels can adequately describe

their motion. It is at this stage that we begin to consider the heave compen-

sation.
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The selection of research areas dictates the structure of the present investi-
gation. Following the conventional rule, we shall first proceed to deal with simpler
problems, and gradually move to more general and difficult areas. This idea and the

structure of the present investigation is illustrated in Figure 1.2.

1.5 A BRIEF REMARK ON THE CHOSEN TOPICS

Research on cables in the air is almost as old as our civilisation, first at-
tracting attention because of their use in stringed musical instruments. Pythagoras
in the 6th century B.C. and Aristotle in 3rd century B.C. knew quantitatively the re-
lation between frequency, tension and length of a taut chord. Since the Renaissance,
cable research work bears the names of great mathematicians and scientists such as
Leonardo da Vinci, Galileo, the Bernoullis, Leibnitz and Euler. In the early 18th
century, the vibration of taut cables attracted much interest from many great mathe-
maticians. ‘To the mathematicians’, wrote Lord Rayleigh, ‘they must always possess
a peculiar interest as the battlefield on which were fought out the controversies of
D’Alembert, Euler, Bernoulli and Lagrange, relating to the nature of the solution of
partial differential equations.” (Lord Rayleigh, 1945).

In our modern time, cables and cable networks in the air medium still remain
a research topic, especially in the fields of civil engineering and architecture (Otto,
1967; Argyris et al, 1974; Buchholdt, 1985).

By comparison, research on marine cables started much later. = Probably
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the first event to attract the attention of leading scientists to this problem was the
failure of the laying of the first trans-Atlantic cable in 1857 when amongst others
Lord Kelvin and G. B. Airy considered its analysis (Lord Kelvin, 1857; Airy, 1858:
Gravatt, 1858; Woolhouse, 1860).

However, it was only several decades ago that the previously sporadic re-
search into marine cables moved into a new phase of progressive and systematic
research as the increasing subsea activities involved in offshore oil and gas exploita-
tion required a good understanding of their statics and dynamics. The main research

areas concerned can be conveniently separated into the following groups:

1. Effects of the surrounding fluid medium
The difference between a cable in air and one in water lies in the fact that
for the former, the effects of the surrounding fluid medium are often negligible
whilst for the latter this is not so. This indicates that a good understanding
of the effects imposed by the surrounding fluid medium, namely water, upon
the cable and the subsea unit is a prerequisite to the analysis of the cable.
This partially explains the reason why research on marine cables could only

be sporadic before the advent of modern hydrodynamics theory in this century.

Although we are now much better equipped with the theory of hydrodynam-
ics, to fully understand, and therefore to predict the hydrodynamic effects on
marine cables remains as daunting as ever. The complex phenomenon of fluid
passing around a cable involves a laminar boundary, flow separation, vortex

shedding, turbulence and other factors. A complete theoretical method is en-



13

tirely untenable, at least for the time being. This untidy state forces us to rely

upon empirical formulae.

. Statics

Though there can be hardly a marine cable system which remains static in
the ever changing environment of the sea, a static analysis can nevertheless
be a fair approximation to many practical problems, especially when only a
quick estimation is required. Needless to say, the static problem is normally
far casier than the corresponding dynamic one in terms of both theoretical

analysis and numerical computation.

. Dynamics

Due to environmental disturbances, such as water surface waves and current,
systems of cables are continuously subject to dynamic loading. Traditionally,
the dynamic behaviour of a marine cable was not regarded as an important
aspect of its practical design and operation, dynamic loading being covered
by a safety factor based upon the static analysis. However, in the last decade
or so the dynamic behaviour has gained increasing interest for the following

reasons:

o It is desired to reduce the frequency of cable breakages.

o New types of system with new materials are being proposed. These sys-
tems are expected to exhibit dynamic behaviour which is different from

that found in traditional systems.
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e With increasing awareness of risk the demand for reliability assessment is

Increasing.

e Development of the computer and advanced computation methods has

brought the cost of dynamic analysis down to a moderate level.

As for theoretical work on heave compensation, this remains almost un-
touched with a heavy emphasis on empirical design. Heave compensation is however

useful if the subsea intervention requires either or both of the following:
1. Decoupling of the subsea unit from the supporting vessel’s heave motion.

2. Reduction of the tension in the cable.

1.6 AIMS OF THE THESIS

The present thesis aims to take on the following tasks:

1. To assess the state of research in the fields of marine cable analysis and heave
compensation in order to identify areas to which the present endeavour should

be directed.

2. To establish the governing equations for a three dimensional marine cable, and
to conduct a general mathematical analysis in order to explore the fundamental

characteristics of the equations.

3. To develop numerical solutions of the governing equations to predict static and

dynamic behaviour of marine cables.
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4. Based upon the accomplishment of the three tasks above, to develop a feasible
active control mechanism, which can effectively compensate the heave motion,

by using modern control theory.

9. To seek as much available experimental information as possible to verify the

methods developed.

6. To summarise and recommend future developments.

1.7 AN OUTLINE OF THE THESIS

The thesis can be seen as a nine-piece jigsaw assembled logically to meet
the aims defined in the previous section and to reflect the structure depicted in
Figure 1.2. The nine parts are the present chapter which defines the problem and
route to solution, Chapters 2 to 6 which form the core of the thesis, Chapters 7
and 8, and an appendix which contains the derivation of the governing equations
for marine cable dynamics as a foundation of both static and dynamic analyses.

Chapters 2 to 6 form the central part of the thesis. Each of these contains
basically three parts. The first part states the problem, carries out a review on rele-
vant past work and defines the strategy. The second part is the core of the chapter.
It sets out to develop a theoretical approach to solve the problem stated. The final
part presents numerical examples along with discussions. Further modifications are

also suggested in this part.

In Chapter 2, a method to solve static marine cable problems is developed.
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This method avoids solving a large number of simultaneous algebraic equations by
exploiting the analytical properties of the governing equation, resulting in a robust
approach which needs solve no more than three simultaneous equations. In addition,
it can handle different types of boundary conditions easily.

In Chapter 3, one-dimensional dynamic behaviour of marine cables is inves-
tigated by invoking the finite difference method. By introducing a coordinate trans-
formation, unsteady dynamics where the length of cable is varying and the steady
dynamics where the length is fixed can be solved in a uniform manner.

In Chapter 4, the method developed in Chapter 3 is extended to the two-
dimensional case. Analysis is provided to show the relation between the previous
model and the two-dimensional one, hence indicating which model should be employed
in any given circumstance.

In Chapter 5, the steady dynamics of marine cables is analysed in three
dimensions using a lumped-mass model. A great deal of theoretical analysis is carried
out to reveal the basic characteristics of the model. The numerical solution is based
upon the finite difference approximation and the Fourier stability method is employed
to analyse the stability of the numerical scheme developed.

In Chapter 6, a theoretical approach for heave compensation is developed.
After properly modelling each element of the system, which includes the cable, the
winch and the motion of the vessel due to waves, modern control theory is then
applied to design a feedback control system.

In Chapter 7, the contributions of the thesis are summarised, and further



developments are recommended. The thesis is concluded in chapter Chapter 8.
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Chapter 2

THREE DIMENSIONAL

STATICS

But his little daughter whispered
As she took his icy hand

‘Isn’t God upon the ocean

Just the same as on the land?’

James T. Fields: The ballad of the Tempest

2.1 GENERAL REMARKS

Neglecting dynamic excitation due to wave action on a moored structure or
support vessel and variation of underwater current in the time domain, the cable
system can be treated as a static one under the action of steady underwater current

and /or steady thruster forces acting on the subsea unit.

In addition to its tensile properties, tether cable often serves to contain items

necessary for subsea operations such as power conductors, instrumentation lines and
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lines and fibre optics. As a result, the diameter of the cable is increased such that
the hydrodynamic drag effect of the underwater current can not be ignored and the
cable can no longer be treated as a catenary in air. In fact the static performance
of a marine cable is severely limited by drag, especially so when it works in deep
water or under strong current.

There are four different types of marine cable system which can be tackled

by a static theory. They are shown in Figure 2.1:

1. Submerged Cable System
The cable is fixed at both ends to stationary structures. It is necessary to
evaluate the variation in cable tension along its length and the configuration
of the cable. This system also has aeronautical applications for glider cables
and in-flight refuelling lines where the drag force can not be neglected due to

the high speed.

2. Towing Cable System
The upper end is joined to an advancing ship on the ocean surface. The lower
end is connected to a subsea unit. The unit itself may have its own propulsion
system. In this case it is necessary to know the location of the subsea unit.
This is of practical importance for subsea operations as it can show whether

certain locations can be reached or not.

3. Mooring Cable System

The upper end of the cable is connected to a floating vessel or a buoy on the
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surface, while the lower end is fixed upon the sea floor by an anchor. Tension
in the cable and position of the moored body are the primary concerns in this

case.

4. Footprint Problem
For reasons such as underwater inspection and maintenance, a tethered subsea
unit is often required to crawl over an area of the sea bed by means of thruster
force. The so-called footprint of the unit is defined as the outer boundary of
the operational area of the unit on the ocean floor under given operational

conditions.
The importance of the static analysis of marine cables is three-fold:

1. Many questions of practical importance can be answered without a full dynamic

analysis which is undoubtedly more expensive.

2. When dynamic analysis is needed, it is often linearized as a perturbation problem
around the static solution. In this case, the static analysis becomes a prerequisite

to the dynamic analysis.

3. Static modelling and theoretical prediction provides a cheap and quick technique
through which the interaction between the various parameters can be understood

and a better design achieved. It is especially useful for the preliminary design.

A number of different approaches have been adopted to solve the static prob-

lem under various assumptions and simplifications (Eames, 1968; Ferriss, 1979; Every,
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1982; Sayer, 1989; Macgregor, 1990). Most assumptions are made regarding the fol-

lowing aspects:

1. Dimension
Quite a few practical problems can be modelled as two-dimensional problems

which, needless to say, are easier than three-dimensional ones.

2. Elasticity
A lot of static problems involve little elastic deformation which provides a sound
basis for the treatment of the cable as an inelastic one. The governing equations

for an inelastic cable are slightly simpler than those for an elastic cable.

3. Nature of the drag
The drag caused by the current passing around the cable is still an unsolved
problem. Hence, it is an area open to different manipulations with no one

having more theoretical justifications than others.

The cable analysis is basically a two point boundary value problem where
some or all of the boundary values are known at either end of the cable. Dependent
upon the types of practical problem, boundary conditions of different kinds are im-
posed. A common flaw lying in most available methods is the inability to handle
the different types of boundary conditions in a uniform manner. For example, the
method by Macgregor (1990) can only solve the towing cable system described above
readily and effectively. Another feature of the existing research is that while most au-

thors have experimented with different numerical techniques in solving the governing
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equations, they have failed to explore the analytic properties, rendering the numerical
solutions both less efficient and less accurate.

In comparison with the numerous applications of cables in marine operations
the theoretical research work is hardly proportional, and the experimental research
work is even less so. Little work has been done specifically on the equilibrium config-
uration of marine cables, especially in the three-dimensional case. As a result, it is
difficult to verify and confirm theoretical results against experimental ones.

In this chapter a rather general semi-analytical method has been developed.
The basic idea is to consider a three-dimensional cable under a given distribution
of many point loads. A compact exact solution is derived as a function of three
parameters only which can be solved numerically by implementing different kinds of
boundary condition. The real marine cable, where the drag load can not be given

beforehand, is solved by using an iterative procedure.

2.2 MATHEMATICAL MODELLING

2.2.1 Fundamental Assumptions

The modelling is based upon the following assumptions:

1. Zero torsional stiffness. Though kinking and twisting may occur in practice,

torsion can be ignored for most situations.

2. Zero bending stiffness. The cable is assumed to be completely flexible. There-

fore, the cable sustains no internal force other than tension.
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3. The tension is non-negative.
4. The cable is uniform.

5. Hydrodynamic loading acting on an element of the cable depends only upon
the dimensions of that element, the angle of that element to the current and
the current speed, and is not affected by neighbouring elements. The loading
can be resolved into two components of normal and tangential forces which are
dependent upon the normal component and the tangential component of the

current velocity respectively.

2.2.2 Coordinate System and Discretisation

We define a Cartesian coordinate system (z, y, z), as shown in Figure 2.2. Let
s and p be the unstrained and the strained arc lengths along the cable, respectively.
Maintaining generality, it is possible to let one end of the cable stay at the origin of

the coordinate system.

Conceptually, a continuous marine cable can be discretised into many small
segments each under one point load which as a whole represent the distributed drag
force along the cable. The end points of the segments and the point loads are num-

bered by index ¢ which runs from 0 at one end to N at the other.



2.2.3 Equilibrium Equation

The statement of equilibrium at a point P between the coordinates p, and

Pn41 on the strained cable profile gives:

dz no
Td_p = —Vx—ng (2.1)

dy n
-2 — — t 9 9
dp Vi ;Fy (2.2)

dz .. W

T—=-V,— F'— — )
o ; 2T T S (2.3)

where T is the cable tension. V,,V, and V, are the three components of the force
acting on the end s = 0. F!, F; and F! are the external force components acting on
the :-th cable segment. L is the unstrained length of the whole cable and 1’ is its
weight in the fluid.

In addition to the force equilibrium, the cable must satisfy the compatibility

relation and the constitutive relation. They are:

¢ Compatibility relation:

de , . dy., ,dz,
V(DY) =1 2.4
(dp) dp) (dp) (24)

e Constitutive relation: which is a mathematical expression of Hooke’s law

QW)
ot

T:EA(Z—i’-) (2.

where E is Young's modulus. A is the cross-sectional area of the cable in the

unstrained profile.



26

2.2.4 Boundary Conditions

The mathematical formulation of the problem is completed by the addition
of the boundary conditions. Corresponding to the four types of marine cable system.

there are four sets of boundary conditions:
1. Both ends of the cable are fixed at known points, i.e.,
£(0) = y(0) = 2(0) = 0 (2.6)

and
z(L) = z,y(L) = yr,2(L) = zL (2.7)

where coordinates z,y; and 2 are given.

2. One end is fixed, the other subjected to known force components, i.e.,

2(0) = y(0) = 2(0) = 0 (2.8)
and

Td_x s=L — T:c (2 9)

dp

dy
T\ =T, 2.10
dp L y ( )
T@|S=L =T, (2.11)

dp

where T, T, and T, are given.

3. Mooring Cable. The boundary conditions are a combination of the two above.

1.C.,

+(0) = y(0) = =(0) =0 (2.12)



and
dx
T=|,o1 = 2.
ap =t T, (2.13)
d
Td—Z = =T, (2.14)
z(L) = 2t (2.15)

4. Footprint. In this case, setting the boundary condition becomes a maximiza-
tion problem with equality and inequality constraints. It could be defined as

the following:

z(0) = y(0) = 2(0) =0 (2.16)

and
Maz|(¢(L) - 2(0))* + (y(L) = 4(0))’] (2.17)
under the constraints:
0< L < Lna
0< Tp < Times
0< Ty, <Tymas

0< T, <Tomas

Z(L) = ZI

(L) — 2(0) = cycos(V)

'In general T; and Ty, being dependent upon the tension T, can not be given beforehand. An iterative

scheme is usually required.
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y(L) — y(0) = ¢, sin(¥)

for all the 9 in the range [0,27]. The parameters of the operational conditions

Loz Temazy Tymazs Tomaz are all given, and ¢, is arbitrary.

2.3 PARAMETRIC ANALYTIC SOLUTION

We are now in a position to derive the parametric solution that describes the
strained cable profile.

By invoking the following relations:

dz _ dzdp
= 2.1

ds dp ds (2.18)
dy _dydp

2.19
ds dp ds (2.19)
dz dzdp
—_— = — 2.20
ds dpds (2:20)

and noting that %f is given as a function of the tension T through Eq. ( 2.5), we have:

dzr 1 ... T
- _ S 2.21
” T(vx+tz_ Fi)( gz + 1) (221
dy _ ;
75 = V + E F (— +1) (2.22)
dz W T
L —g)(— 2.23
S E o+ 223

where T is given as the following by squaring Eqs.( 2.1), ( 2.2) and ( 2.3) and substi-

tuting them into the compatibility relation:

T = J(thiF;)H(Vy+2n:F;)2+(VZ+anF;+%s)2 (2.24)

1=0 1=0 i=0
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Integrating these equations over the interval [$ns Sns1] glves:

Z(Sn+1) = 2(55) +/ " ——d.s = z(8,) + Az(sy) (2.25)
Y(Sn41) = y(sn) +/ —ds = y(sn) + Dy(sn) (2.26)
lsnrn) = 2(sa) + [ Gds = 2(5,) + Aa(s,) (2.27)
where
A z(s,) = /+ Z—:ds (2.28)
Ay(s,) = /s:"“ %ds (2.29)
A z(s,) = /S:"“ %ds (2.30)

After some mathematical manipulation, the integrations result in the following;:

Vet Yo B
Nz(s,) = EZJ:A L (Sn41 — Sn) +

L(V +Zz =0 :c)
|14

sinh~1 —(V. + XL oF2 3n+1) _

\/(V:c + o FE)? (V + Yo F3)?
—(Va + Tio Fi + Tsa) ]

V(e + Zio F2)? +(V + Tio Fy)?

V LV+ 1= y
Ay(sn) _ +ZzO y n+1_3)+ (y I/‘Z/: 0 )[

EA
sinh'l (V + 2 1=0 Ft 3n+1) _
Ve + T Fi? + (Vs + Xl FyY
_(‘/2 + Zi:O z TSTL) ]
Ve + Tio B2 + (Vo + Do Fy)?
L no W
Az(sy) = m[m + Z F' + fsn)2 - (2.33)
U' L
‘ +ZF + — I Sn+1)2]+ ﬁ.‘

[ (2.31)

sinh™!

(2.32)

sinh™!
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n ) n ) n . 11/,
Rs L+ (Vy+ L F + (Ve t L Fid Ss0)?
1=0 =0 i=0

L

\ Vet D F+(Vu+ D Fi2+(V,+ Y Fi + Ksmq)"’]
1=0 1=0 1=0

These analytical solutions are given as functions of three unknown param-
eters, i.e., V;,V, and V,. The remaining part of this section is concerned with the
solution of them. In doing so, we shall confine ourselves to the submerged cable, the
towing cable and the mooring cable. To seek direct solution of the footprint problem
would not be easy. It can, however, be achieved through solving the less difficult

towing cable problem iteratively (Sayer et al, 1989).

2.3.1 Submerged Cable

By using Egs. ( 2.25), ( 2.26) and ( 2.27) repeatedly, we have:

N-1
> Az(s;)) = z(L) — =(0) (2.34)

=0

-1

Z Ay(si) = y(L) - y(0) (2.35)

=0
-1

Z Az(s;) = z(L) — z(0) (2.36)

+=0

The solution of this nonlinear algebraic equation system gives the answer for the three

unknowns.

Once V,,V, and V, are known, the coordinates of any points between s, and

Sn41 on the strained cable profile are given by:

z(s) = z(0) + >_ Dz(si) + T s (2.37)



y(s) = y(0) + "2‘: Ay(s;) + ) gy—ds

l=0 Sn dS
n—1 s dZ

2(s) = 2(0) + > Az(s) + gds
1=0 Sn

and the tension is given by Eq. ( 2.24).

2.3.2 Towing Cable

31

(2.38)

(2.39)

This is an easier situation. The unknowns V.,V and V, can be calculated

directly by the following relations:
N .
V, =-T, — Z F;
—~
N .
Vy=-T, — E F;
1=0
N .
V,=-T, - Z F-Ww
1=0

2.3.3 Mooring Cable

In this case, two force components can be found readily from:
N .
Ve =-T, — Z F;
1=0

N .
V,=-T, — ZFJ
1=0

and the third one V, is solved from

N-1
Z Nz(s;) = z(L) — 2(0)

(2.40)

(2.41)

(2.42)
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2.4 DRAG FORCE

In this section the hydrodynamic drag force acting on one segment is de-
tailed.

Let U = {U,.U,,U,} represent the averaged current velocity vector at
the i-th cable segment which has two end points with coordinates (r;.y;.z;) and
(zi-1,Yi-1,2i-1). The normal drag component Fy and the tangential drag compo-
nent F, are given by:

1
F, = ngle|UT|UT (2.47)

where C'y and C, are the normal and the tangential drag coefficients respectively.

d is the diameter of the cable and p is the density of the fluid. I, U,, Uy are given

by:

| = \/(:1:, —ri)?+ (Y —yic)? + (5 — zia)?

U‘r — {Un:, U‘ry’ Urz}

= {%[Ur(x,- — zi1)? 4 Uy(2i — zica)(yi — Yim1) + Unl@i = 2i20)(zi = =i

1

1—2[("}(1‘; —zio))yi — yic1) + Uy(yi — yi-1)? + Uz(yi — yic1)(50 — zic1))s
1 - 2
ﬁ[U:r(‘ri - -’1'3'-1)(3.' - 3:‘-1) + Uy(yi - yi—l)(zi - 3:’-1) + L :(Zi - Z-1) }}



33

2.5 NUMERICAL ITERATION

To calculate the cable profile by using Egs. ( 2.37), ( 2.38) and ( 2.39),
F:, F; and F! (1 =0,1,2, ..., N) must be known. These drag forces, however, depend
upon the cable profile, and they can not be known beforehand. In fact they are one
part of the solution themselves. As a result, an iterative scheme must be used to
solve the problem, as shown in Figure 2.3.

Inside this global iteration, there exists another smaller iterative loop to
solve the nonlinear algebraic equation system of Eqs. ( 2.34), ( 2.35) and ( 2.36)
or Eq. ( 2.45), if the submerged cable problem or mooring cable problem is to be
solved. The Newton-Raphson method is used here to seek the solution by solving
a succession of linear equation systems.

As i1s always true for a nonlinear problem involving an iterative solution pro-
cedure, the initial estimation plays an important role. A bad starting estimate can
either deteriorate the overall efficiency or make the procedure totally unworkable.
In the present study the initial approximation is based upon the zero hydrodynamic
load situation. This is good for the cases where the cable experiences a light drag
force in comparison with its own weight in the fluid. When the drag force becomes
dominant, however, more iterations are needed to increase the current speed step
by step until the prescribed value. The results of the previous iteration serve as the

starting estimate of the present iteration.



2.6 NUMERICAL EXAMPLES

The above analysis forms a suite of programs which predicts the equilibrium
profile of a marine cable. In this section we present some results to demonstrate the
validity of the method.

Figure 2.4 shows an elastic steel catenary configuration in air predicted by
the present method. It is suspended between two rigid supports which are not at the
same level. Shown on the same figure is the exact analytic solution (Irvine, 1981).
They agree with each other very well.

Figure 2.5 shows the change in configuration of a hanging cable in air under
the action of a point load.

Figures 2.6 and 2.7 show theoretical predictions of marine cables in ocean
current against the results of experimental measurements. In Figure 2.6 the cable is
350m long and in Figure 2.7 it is 300m long. Both have a diameter of 0.032m, Young’s
modulus of 2x 10! N/m?, and the same weight distribution in water of 2.25N/m. The
results correspond to a current speed of 0.514m/sec for both cases. The agreement
between the theoretical results and the experimental ones is good. Also shown on
the two figures is the effect of the ocean current through illustration of the different
cable configurations at different current speeds. It is clear that the current plays a
significant role.

Figure 2.8 shows the results for a three-dimensional submerged cable. A

verification of the results is not possible since no report on three-dimensional experi-



mental work is available.

2.7 CONCLUDING REMARKS

1. The approach developed in this chapter is of practical importance, with the
capacity to answer a variety of questions arising from subsea interventions in-
volving cable systems. In addition to this, the semi-analytic method, within the

limitations of all assumptions made, is highly accurate and efficient.
2. Further efforts can be focussed on the following aspects:

e Solution algorithm for the nonlinear equations
The Newton-Raphson iteration, which only guarantees local convergence,
depends upon a good initial guess of the solution. However, a sufficiently
good estimation may not always be available. New algorithms which can
globally track the solution, such as continuation techniques, should be in-

troduced (Allgower and Georg, 1990).
e Non-uniform cables
The present method can be extended into non-uniform marine cables con-

sisting of a series of uniform sections.

e Static marine cable network
The present method has the potential to solve problems involving marine

cable networks, such as the trawling of fishing nets.



36

A
P

waTqoad
qutadjoog

21qe?
3utaoou

1°7 @an314

21qe°
3uimo]

\\!

91qeD
pa3xawqns




37

Figure
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Figure 2.3
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Chapter 3

ONE DIMENSIONAL

DYNAMICS

He goes a great voyage that goes to the bottom of the sea.

Thomas Fuller: Gnomologia

3.1 GENERAL REMARKS

The processes involved in the launch, operation, and recovery of a tethered

subsea unit consist of four rather distinct stages:

1. Passage through the air gap. During this stage, the pendulum motion of the
subsea unit in air, which is often excited by the motion of the vessel, may cause
difficulties in control. Generally, the gap between handling systems on deck,
such as cranes or A-frames, and the water surface is very small. Nevertheless

carc must be taken to prevent possible collision with other structures nearby.
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2. Transition through the splash zone. This is often a crucial phase of the process
involving very complicated hydrodynamic phenomena (Dutta, 1986; Greenhow
et al, 1987; Oritsland et al, 1989). Deploying massive units with little buoy-
ancy or surface area is relatively easy since they sink through this zone quickly.
Neutrally buoyant systems present a more difficult problem: as soon as they are
submerged there is no sinking force on the units. This may cause wave impact
loading on the subsea unit and/or snap loading in the cable . However, due
to the exponential decay of the wave forces on the subsea unit as it is being

lowered, the depth of this zone is much less than the total length of the cable.

3. Lowering to the working depth, or lifting from the working depth to the splash
zone. This stage covers most of the time of the deployment and retrieval phase,
especially in deep waters. During this phase, resonance may be encountered due

to the change in natural frequency of the system.
4. Operation at a certain depth to fulfil the designated tasks.

The handling system of a tethered subsea unit is subjected to the motions
of the support vessel resulting from the environmental forces. Among them the most
critical one is the heave motion. If a subsea unit is deployed in a weak current, or is
constrained by taut vertical guide lines, the whole system can then be approximated
as a one-dimensional problem.

Among the many design considerations, one of the major ones centres on

the system’s heave motion as the vertical oscillation can be amplified significantly
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at the bottom end of the cable. The subsequent large amplitude heave motion will
severely influence the design and operational requirements and cause unacceptable
tension force in the cable which could result in the loss of subsea units.

A number of papers have been published addressing this topic, using differ-
ent techniques and producing encouraging results (Chung, 1983; Sparks et al, 1983;
Dutta, 1986; Niedzwecki et al, 1988; Schellin et al, 1989; Macgregor, 1990). How-
ever, a common flaw of these papers lies in the assumption that the top end of the
cable is suspended on the floating vessel, therefore the unsteady dynamics during the
deployment and retrieval phase assoc}ated with Stage 3 can only be tackled with a
quasi-steady approach, i.e., performing a dynamic analysis at one fixed length and
repeating it for several different lengths of the cable.

The interesting subject of oscillation of a subsea unit involving a time-varying
length of cable has not yet been fully investigated. Relevant research on strings or
shafts or beams in air has been reported occasionally by several authors (Schaffers,
1961; Kotera, 1978; Zajaczkowski and Yamada, 1980; Tagata, 1983). The various

functions which have been used for the time-varying length L(t) are as follows:

1. Linear function

L(t) = Lo + vt

where Ly is the initial length. v is the constant speed; when v > 0, the length

increases with time, and when v < 0, the length decreases.



2. Quadratic function

L(t) = Lo+ vt + %at2
where a 1s the acceleration.

3. Periodic function

L(t) = Ly + psin{wt)
where p 1s the amplitude, and w is the frequency.

Due to the time-dependent length, the rather classic oscillation problem
cannot be solved easily. Variable transformation is often used to fix the changing
domain by a suitable choice of new space coordinate, leading to a fixed domain
problem at the expense of complicating the original governing equations (Crank,
1984).

In this chapter a general approach is presented to treat the dynamics of the
unsteady phase when the cable is being paid out or hauled in via a handling system
on deck. The steady dynamic case where the cable is fixed to the vessel at its top
is only a special case incorporated in this general model. The approach is based on
the continuous system rather than the various spring-lumped-mass approximations.
The hydrodynamic added mass and damping are dealt with in accordance with the
common practice. Available experimental data are then compared with numerical
results in order to validate the developed program. The various results calculated

are of dircct design or operational concern.
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3.2 MATHEMATICAL FORMULATION

3.2.1 Governing Equation

The governing equation can be derived by balancing different forces acting
on a cable element under some general assumptions (Appendix). The resulting

governing equation can be expressed as

0 ,  Ou ou 7 Ou , Ou

Ea(AE =(m+my)—== + -pdC,| —| 5 — wy (3.1)

where u i1s the displacement of the cable element, A the cross-section area, E the
Young’s modulus of elasticity, C, the tangential viscous damping coefficient of the
cable, m the mass distribution, m, the hydrodynamic added mass per unit length, d
the diameter of the cable, and w, its weight in water per unit length. The coordinate

system is defined in Figure 3.1.

3.2.2 Boundary Conditions
Two boundary conditions are to be satisfied:

1. At z = 0, where the cable is attached to the handling system on deck, the

boundary condition 1s

w(0.1) = vt + R(t) (3.2)

where ¢ is the speed of paying out or hauling in, and R(t) is the heave motion

due to the wave excitation on the support vessel.
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2. At z = Ly + vt, the lower end of the cable where a subsea unit is attached, the

boundary condition is:

du Pu
EAZ— + (M, + M) 55 +

pspcD|Q‘i|gt—“—w2—o (3.3)

where M, is the mass of the subsea unit, M, its added mass, Cp the viscous
damping coeflicient, Sp the projected area of the subsea unit, and w; its weight

in water. Lg here is the initial length of the cable.

3.2.3 Initial Conditions

Initial conditions must be specified for both u and Ju/dt, however, they are
not very important since we are interested in long term motions rather than the initial

transient ones which die out quickly due to the damping in the system.

3.2.4 Variable Transformation and Important Relations

Eq. ( 3.1 ), together with the boundary conditions Eqs. ( 3.2 ) and ( 3.3 ),
defines a moving boundary problem. It is inconvenient to seek a numerical solution
on a time-variant computation domain. To cope with the difficulty, a set of variable
transformations is developed here to fix the computation domain in the transformed
space.

The transformation is given by:

T = ¢ (3.4)
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z

L0+’Ut

y:

It is evident that the lower end of the cable which is moving in the physical
space is fixed on y = 1 in the transformed domain.
The following relations of the first and second derivatives can be derived

through application of the chain-rule:

g 0 vy O
8t =~ 8T Lo+vTdy
o 1 8
8z Ly +vT 3—y
9 0 0%y O
3¢ ~ OT% ' (Lo+uT)dy
vy O? viy? 9?
" To 0T 090T | (Lo + oT) 0y
52 1 5

022 (Lo + vT)? Oy?
3.2.5 Transformed Governing Equation and Boundary Conditions

Using the transformations and the derivative relations, the governing equa-

tion Eq. ( 3.1) transforms to

oU o*U o*U oU oU 3

where

viy? EA
(Lo + 'UT)2 (Lo + UT)2

4 = (m+4+m,)

B = m+m,

vy
LO + vT

C = =2(m+m,)



2(m + m,)

’U2y

(Lo + vT)?
npdC.vy OU vy OU

2(L0+UT) aT Lo+oT oy 7

vy OU
d
”ClaT ToroTay "
oU vy OU
vgpdCTIaT Lo+ vT 8y Tol-w

The new boundary conditions are:

1. Aty=0

2. Aty=1

0*U

AI
Oy?

where

AI

BI

Cl

DI

FI

Gl

+ B’

U(0,T) = R(T)

U U oU _oU
' 12 L ==L '— 0
ar: T TP T ar T

2

v
(M, +Ma)m

M3+Ma

—2(M, + M,)

v

Ly +oT
v? EFA

2(M, + Ma)(Lo + vT)? + Lo +vT
vpSpCp ,0U v OU

2(L0 I vT)IBT “Toxoroy

v oU
pSPCDIaT Lo +vT 8y o

. aU
_pSPCD| l + vf = wy

OT Lo+ vT Oy
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(3.6)

(3.7)
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3.2.6 Finite Difference Discretisation

The finite difference method is used here for the numerical solution. With
reference to the even mesh in the computational domain of Figure 3.2, and de-
noting Ay and AT as the horizontal and vertical intervals respectively, suitable

approximations at node (¢,j + 1) are:

ou J+1 1 Jj+1 J+1
(G 2Ay(rfm—v 1) +0(Ay)

U .
(Z_T)gﬂ = A SGUM U - 4UY) + O(AT?)

AUNTS 1 +1 +1 +1
(83/ K= Z?(Uijﬂ + U = 2U0777) + O(Ay?)

2 .
(ZTU; = o QU7 + 4077 = 5U7 - UI™?) + O(AT?)
O:U 1 .

(6y6T)J+1 = m(:‘(fﬁf Ul —4Ul, - 3U — Ul +4UL))

+O0(AT?, Ay?)

The boundary condition of Dirichlet type at y = 0 can be readily utilized
whilst the boundary condition at y = 1 is discretised using similar approximations
to the one given above.

As a result of the discretisation and linearization, a linear algebraic simul-
taneous equation system is derived for the (N — 1) unknown variables at (5 + 1)

time level:
pIU + P U 4 MU =t 1<i< N (3.8)
with

U =R+ 1) A T] (3.9)



and
P GFUL + iUt + SFUS = ! (3.10)
where
. Ait 30+ D!
p{-{-l — 1 + 1 + l
Ay  4AyAT 2Ay
g _ 247 2BITSET
T Ay TAT? ToAT

J+1 J+1 J+1
j+1 _ Ai 3C1 Dl

T Ay AAYAT 20y
J+1 J+1 BzJH J j-1 7=2
€; = _Gi AT2( 5U +4U U,' )
it - . .
_W(Ui]+ll — 44U}, - UiS! +4U7L)
FJ+1 .
2 AT(UJ —av)
o1 _ 24770 2BUT 0 oCWM 3DV N )
PN© = Ay TTATT TiAyAT T 2Ay T 2AT
g4 —BAWHL  3Citl apuH
IV T TAyE T AYAT T Ay
e 4 A+ N 3¢+ N D'+l
~No= Ay?  4AyAT 2Ay
1 At
SN - Ayg
gt _ _gun B e 5U3 +4U — U2
ey = AT? ——; (=5Ux + N
Clj+1 . . - ) ) .
—m—f(w;v VUL, —4UL = 12U% — 4UR_, + 16U )
Flj+l - .
“3A T(va - 4U%)

The solution is marching forward in the time domain. It is stable due to

the implicit scheme used here.
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3.3 NUMERICAL EXAMPLES & DISCUSSION

As for any theoretical method, it is essential to compare the theoretical results
obtained with experimental ones in order to establish the credibility of the mathemat-
ical model and enhance confidence in the results which the model produces. A series of
numerical simulations has been completed, and the results have been compared with
the experimental data available. Due to the fact that little experimental work has
been reported on the unsteady deployment or retrieval phase involving time-varying

length, only the steady cases are verified against published experimental data.

3.3.1 Example One

The particulars of the cable are as follows:

construction: 3 strand prestretched polyester rope
diameter: 0.003m
length: 4.573m
Young’s modulus: 3.38x10°N/m?
mass distribution: 8.067x10"3kg/m

The particulars of the subsea unit are given by:

construction: wooden sphere
diameter: 0.2032m
mass: 4.722kg

The experiment was carried out with the cable/subsea unit system being
suspended in air. The top end of suspension of the cable was subjected to forced
sinusoidal motion along a vertical line with amplitude equal to 50mm (Dutta, 1986).

Both the experimental results and the theoretical prediction of the present



33

method are presented in Figure 3.3 in the form of maximum tension in the cable
versus excitation frequency. Also shown in the same figure is the theoretical result
based upon a lump-mass-and-spring model by D. Dutta (Dutta, 1986)

The theoretical results agree remarkably well with the experimental data.

3.3.2 Example Two

The particulars of the cable are as follows:

construction: 8-plait standard polyester rope
diameter: 0.002m
length: 4.573m
Young’s modulus: 2.445x10°N/m?
mass distribution: 4.155x10"3kg/m
The subsea unit is the same as that in the last example.
Again the experiment was performed in air. The top end was subject to
a larger sinusoidal excitation of 100mm amplitude. The theoretical simulation was
carried out using the experimental set-up as input data. Both results are shown in
Figure 3.4. Compared with Example One, the agreement here between the theoretical
results and the experiment ones is less satisfactory. This is due to the larger excitation
amplitude. As a result, the cable behaviour may no longer be linear elastic. Polyester
rope often exhibits appreciable hysteresis loops during the loading/unloading process,
and the stiffness increases with increasing loading.
At the higher frequency region, the agreement becomes even poorer, as ex-

pected. At this region, cable snatching occurs which results in an impact load in

the cable following initiation of slack in the cable, which the present model can not



handle.

3.3.3 Example Three

Both the experiments in Example One and Example Two were performed in
frequency regions away from the respective natural frequencies. Further effort is made
here to demonstrate that the present method is also capable of predicting resonance.

The tests were performed in air on nylon rope in a similar manner (Goeller

and Laura, 1971). The main particulars of the cable are as follows:

diameter: 0.00635m
length: 22.25m
Young’s modulus: 2.67x108N/m?
mass distribution: 3.23x1072kg/m

The main particulars of the subsea unit are given by:

construction: solid aluminium sphere
diameter 0.2032m
mass: 12.65kg
added mass in water: 2.3kg
weight in water 83.68N
The results are presented in Figure 3.5 by plotting the nondimensionalized
tension (Tmaz — Tytatic)/ K To versus the nondimensionalized frequency w/wpc, Where

K is the spring constant, 7 is the amplitude of the sinusoidal excitation at the top

end of the cable, w,, is a measured frequency. These are given by:

K = 380N/m
g = 0.0254m

wpe = L.1Hz
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The comparison again shows a good agreement between the theoretical pre-
dictions and the experimental results. Even at the resonant frequency they still agree
with each other remarkably well. It was observed in both the test and the theoretical
simulation that the elongation of the cable was relatively small, even at the resonance.

As a result, the cable behaved almost linearly throughout the frequency interval.

3.3.4 Example Four

No hydrodynamic damping is present in the foregoing three examples. The
system would behave differently in water because of the presence of viscous damping.
This subsection examines its effects.

The same experimental set-up as the one in Example Three is employed here,
except this time the experiment was performed in water instead of in air (Goeller and
Laura, 1971). The input to the theoretical simulation is adapted accordingly. The
results are given in Figures 3.6 and 3.7 for two different excitation amplitudes. In
Figure 3.6, o = 0.0254m, whilst in Figure 3.7, o = 0.0508m.

After comparison of Figures 3.5, 3.6 and 3.7, the following features were

observed:

1. Good agreement has been achieved. Throughout the simulation, both Cp and

C; are assumed to be constant, which appears to be reasonable.

2. Water has a significant effect in reducing the dimensionless tension ratio, espe-
cially in the vicinity of resonance. Also due to the presence of the external fluid

medium the w,, has shifted from 1.1Hz to 0.72Hz.
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3. In the present nonlinear model, damping introduces an amplitude dependent

loading on the system. As a result, the nondimensional tension ratio shall

be dependent upon the excitation amplitude, which is clearly demonstrated in

Figures 3.6 and 3.7. This would not happen if the model were linear.

3.3.5 Example Five

The unsteady dynamics is examined in this example. During the deployment

or retrieval phase, key influential factors may include the following:

1. Heave motion at the top

2. Deploying or retrieving speed and acceleration

3. Weight and shape of the subsea unit

4. Elasticity of the cable.

A number of theoretical simulations in the time domain have been carried

out on a system during its launching process. The particulars of the cable and the

subsea unit are

initial length:

Young’s modulus:
diameter of the cable :
cable mass distribution:
mass of subsea unit:
added mass:

50m

9.05 x 10°N/m?
0.047m

7.2 kg/m

5000 kg

8000 kg

The initial length is assumed to be 50m so as to exclude any wave forces on

the subsea unit. There are four different speeds and four different frequencies given

by:
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v =05m/s v, =1.0m/s
v3=20m/s v4=30m/s

and

wy = 0.4189 rad/s wy; = 0.628 rad/s
w3 = 0.8380 rad/s w4 = 1.260 rad/s

The different combinations give a total of 16 different situations. The time domain
simulation results are given in Figure 3.8 through to Figure 3.23. In each figure the
lower time record is the vessel heave motion, whilst the upper one gives the motion
of the subsea unit. The motions due to the static elongation and the steady lowering
are excluded.

The following features have been observed:

1. Deploying speed has a significant effect on the subsea unit motion. The higher

the speed, the less the motion, especially through the resonance region.

2. Higher deploying speed means a greater drag force on both the subsea unit and
the cable per unit length. Furthermore, as the cable is becoming longer, the
total drag force on the cable becomes greater. As a result, the cable experiences
an appreciable degree of compression, especially when the deploying speed is
high and the cable is long, as shown in Figures 3.20 through 3.23. Of course,

this compression is smaller than the static elongation; otherwise, the cable would

become slack.
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3. A quasi-steady approach, which is not capable of taking the speed of deployment
or retrieval into account, would predict a critical length of the cable at which the
system experiences the largest heave response for a given situation. However,
the results here show the critical length not fixed but a function of the speed
for a given system under given conditions. The higher the speed, the longer the

critical length.

4. The excitation frequency also has an apparent effect on the response of the
subsea unit. This effect will be dependent upon the relationship between the
excitation frequency and the natural frequency of the system which is constantly

changing in the course of deployment or retrieval.

5. For a rough estimation of the cable length L at which resonance occurs, the

following model can be used

[ EA
WM+ M,)

where w is the excitaion frequency. This estimation is valid when the deployment

speed is low.

In the last figure of this chapter, Figure 3.24, the impulsive motion of the
subsea unit when the deployment is suddenly suspended is shown. The system goes
through a transient phase of large amplitude motion. Beyond that, a steady motion

builts up.
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3.4 CONCLUDING REMARKS

1. An excellent agreement has been achieved between the available experimental

data and the theoretical predictions based upon the present method.
2. For the unsteady dynamics, the present method produces convincing results.

3. The suite of computer programs provides an effective tool for investigating the
degree of influence of the various factors in cable/subsea unit systems. The
theoretical research here has direct application to the enhancement of safety
and effectiveness of subsea operations, and in assisting the design of efficient

handling systems.

4. Although this study focuses on the analysis of cable/subsea unit systems, the
methodology presented here may be applied to other deep water systems such

as long vertical deep-sea drill pipes held at their tops at ships’ moonpools.
5. Further effort can be made to address the following aspects:

e Nonlinearity of the cable material
Throughout the present chapter, a linear relation between the tension T

and the strain ¢ is assumed:
T = FAc

To take the nonlinearity of the cable material into account, a more general

constitutive relation should be utilized such as

T =1T(e)
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or

T:T(s,%

General form of the time-varying length function L(t)

It 1s envisaged that the acceleration of deployment might be a factor of
importance. The extension from the present linear function to a quadratic
form should not pose great difficulty; indeed, the present methodology

allows an arbitrary form of L(t).

Stochastic analysis
Stochastic analysis can be performed by using a random input R(t). The
output of the subsea unit motion, which is random in nature, can then be

processed to give stochastic descriptions of the motion.
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Chapter 4

TWO DIMENSIONAL

DYNAMICS

Two are better than one.

FEcclesiastes

4.1 GENERAL REMARKS

In certain cases, as for example in the presence of a strong horizontally
unidirectional underwater current, the assumption of a one-dimensional configuration
of the cable/subsea unit system is clearly no longer tenable. We consider therefore
in this chapter the case where the system lies not in a vertical line, but in a vertical
plane, i.e., a two-dimensional model.

In addition to the underwater current, there are other factors which can

swing the system out of a vertical line position such as motion at the top end of the




83

cable, pendulous motion, and an asymmetric shape of subsea unit.
In recent years, a substantial amount of research has been conducted in

pursuing numerical solutions of the two-dimensional cable dynamics. The prevalent

methods include:

1. Finite Difference Method (Ablow and Schechter, 1983; Howell, 1991; Burgess,
1991).  The nonlinear hyperbolic equations, which govern the motions of the
cable, are approximated by finite differences. This general method allows great
flexibility such as the inclusion of bending stiffness. However, it may require a

great deal of processing time.

2. Spectral Method (Burgess, 1985; Triantafyllou et al, 1986; Hover et al, 1990).
This method takes advantage of the smoothness of the cable, assuming the
solution to be a sum of a series of basic models. It may provide good results

with a significant reduction in processing time over the finite difference method.

3. Lump Mass Method (Larsen and Fylling, 1982; van den Boom, 1985; Dutta,
1986; Wang, 1988; Ahmadi-Kashani, 1989; Macgregor, 1990).  The governing
equations become ordinary differential equations after lumping the distributed
mass of the cable. Numerical integration is then performed. The method is
widely applied because of its simplicity and versatility. However, it is less elegant

mathematically.

4. Analytical Method (DeLaurier, 1970; Kennedy and Strahan, 1981; Triantaffyl-

lou, 1982; Triantaffyllou and Bliek, 1983; Benedettini and Rega, 1987; Perkins,



84

1991).  Due to the nonlinear and coupled nature of the governing equations,
analytical solutions are only available in simplified cases such as small sagged

cables.

Along with this variety of techniques there are a variety of different assump-
tions made in the formulation of the problem. This means that most methods have
their own inherent weaknesses.

The main purpose of this chapter is to generalize the methodology in the

previous chapter into a more general situation, i.e., the two-dimensional case.

4.2 EQUATIONS OF MOTION

To establish the equations of motion, we use a Cartesian coordinate system
as shown in Figure 4.1. We assume that the cable is flexible and the motion is planar.

Therefore the governing equation of motion can be written as (Appendix):

O%r

2 g(m —pA)j +

(m+ m,)
1
+§PCDNdV1 +¢e[Vy — Un|(VN — Up)

+ 2O, VT T e[V, — Ur|(V, ~ U,)

+ﬁ( T @)
0s'1+¢€0s

(4.1)

where r is the vector from the origin to a point on the cable. m and m, are the mass
and added-mass per unit length of the cable. A is the cross section area of the cable.
p is the density of the fluid medium. Cpy and Cp, are the normal and tangential

drag coefficients respectively. i and j are the unit vectors along the z and y axes.



85
Letting
r=(p+s)j+aqi
and using Hooke’s law

T:EAE:EAQ%—U e >0
S

we have the following two components of Eq. ( 4.1):

d*p (&2 0*p
(m"*'map)w_EA{l_ [(1+%§ 2+(g§)2]3/2}632
(1+2)% 0%q
“ Py Er s (pras — (42
62q (1 + opy2 62q
WDl _pafl - o
(m+m Q)at2 {1 [(1+%§ 2+(%)2]3/2}052

(1+3)5 &
—EA 9s  Os =F 4.3
T+ )24 (2ypraost (4:3)

where p and ¢ are the vertical and transverse displacements of a point of the cable.

F, and F} are given by:

F, = g(m-pA)+
%pCDNd\/l—Jr_awN — Un|(VN—Un)-j+
ngDTdMWT —U(V,-U,)-j

by = %PCDNdMIVN —Un[(Vy=TUp) i+

ZpCprdVTF eV, = U |(V, = U,) i
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4.3 PROBLEM CHARACTERISTICS

Before pursuing a numerical solution, some basic characteristics of the prob-
lem are examined here in this section.

For most underwater operations involving cables and subsea units, the sur-
face supporting vessel is kept at a designated working place. The wave action gives
rise to motions of the boom tip which can be theoretically two-dimensional, for
example when the handling system aboard is at the stern region while the vessel is
in heading sea situation. The cable and the subsea unit is swung out of the ver-
tical line by the underwater current yet remains in the same plane formed by the
boom tip motions. This idealised case also includes some other seemingly different
situations such as when the supporting vessel is sailing along a straight line.

Intuitively, one might expect that the transverse motion of the boom tip is
of secondary importance to the vertical motion (heave motion) from the perspective
of their effects on tension in the cable. The following part of this section aims to
prove that this conjecture is only true in a special situation.

The tension T is given by:

) = EA[\/(1+—8£)2+(@)2—1] (4.4)

7= a2 -1
S

0 0s Os

We write the displacements and the tension as sums of their stationary

components and the dynamic perturbations:

p = potepitep+--
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T = T0+6T1+62T2+"°

where e is a parameter of small quantity which is less than unity.

Substituting Eq. ( 4.5) into Eq. ( 4.4) and equating like powers of e

Y

have
0
T, = EA(\/(1+ﬂ)2+<%‘§9)2—1)
r, - pallt3 ) a7 Ty

\/(1+
1, - pagl0t 33)2 ( 21[( >2+2(1+ >ﬂ+2d3—9—+< 1)?]
2[(1 + (30)2]\/(1 + 920)2 + ()2
- [(1+ ) 200 091)2 |
2[(1+ g2)2 + (52) 21\/ 1+a.., +(50)?

This indicates:
1. The stationary tension is a function of stationary displacements only.
2. There is a coupling between the vertical and horizontal motions.
3. Displacements of lower order affect all the tensions of equal or higher order.

Now consider a special case where the system has no stationary transverse

deflection, i.e.,

80

33=0

In this case, the tensions Tp, T; and T, can be simplified as (Zajac, 1957):

6po

= A—
To E 0s
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apl
Ty, = _
! EA Os
91 \2
T, = EA[8p2 9s )

ds  2(1+ %—:ﬁ)]

It can be seen that the leading term of the dynamic tension T is only re-
lated to the vertical motion whilst the leading dynamic transverse displacement ¢,
affects tension of higher order. This provides a theoretical foundation for the one-
dimensional dynamics approximation to a cable/subsea unit system deployed in a
no-current or weak-current environment, even though the boom tip is subjected to
horizontal motion as well as heave motion.

This conclusion can be further justified from a motion viewpoint. Intuitively
one may expect the hydrodynamic damping to cause the transverse motion to die out
as it travels downwards. This proves to be true. To make the theoretical analysis

tractable, we make the following assumptions:

1. The hydrodynamic force is linearly dependent upon the relative velocities. Since

there is no underwater current, the relative velocities are the cable’s vibrating

velocities themselves.

2. There is no wave reflection from the bottom end.

Under the first assumption, the transverse component of Eq. ( 4.1) can be

written as:
0%q 1 dq 1 9q9q + @(1 + @) @}
(m+maq)%+cn/ +e€ ot (L+er otos ot 0s’" 0s
1 0q0q Op., 0p,0¢ 90 T 9qy_, 16
tereanas T o T 5s)as ~ as Treds (o)
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where ¢; and ¢, represent the linearised drag coefficients.
Substituting Eq. ( 4.5) into the above one, and noticing the following
relations:
go=20

l+ex1

we have the governing equation for the leading term of the transverse motion ¢;:

d%*q Jq 0q -
(m+m Mﬁ+r§——m35—o (4.7)
Further assume:
0
Eq. ( 4.7) then is reduced to:
62 3q1 ath

~0 (4.8)

(m+ma) 5 + e ~Toga

For forced vibration, the solution of this equation can be written as:
q1 = Re[gqi(s)exp(vV —1wt)) (4.9)

where Re(®) means the real part of any complex expression ®.

Substituting Eq. ( 4.9) into Eq. ( 4.8) it follows that

2_

d“q _
TOF + [w2(m + maq) vV —1wc1]q1 =0

For an out-going wave — the second assumption — g;(s) 1s given by

_ . wi(m 4+ my,) — vV—1lwe
Qi(s) = QIfl'p(_\J A f}o s) (4.10)
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where ¢; is a constant which can be determined by implementing a boundary con-
dition.
Eq. ( 4.10) shows that |g;(s)|, which represents the amplitude of the trans-

verse motion, decreases exponentially as s increases.

If ¢; = 0, corresponding to the case where there is no hydrodynamic damp-

01 = Reliieaplv =Tt — s/, | —"—)]

In this case, the transverse wave travels with a constant profile and at a speed of

T
m+magq '

ing, we have:

44 FORMULATION AND NUMERICAL DISCRETISA-

TION

4.4.1 Boundary Conditions
At the cable’s top end:
p(0,t) = R(t)+ovt
q(0,1) = 0O()

where v is the speed of paying out or hauling in. R(t) and O(t) are the two com-
ponents of the boom tip motion.

At cable’s bottom end:

52 ol —10r
(M, + M) o= = 5| 5

ez = EA——I—B;I.—_'—b‘*‘wZJ‘*"

83'
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1 or, .. Or
~pCpSplU - Z|(U -
A I

Under the assumption that the hydrodynamic forces on the subsea unit
can be decomposed into two components along the axes, each as a function of the
relative velocity and the acceleration in that direction, just as it was done with the
hydrodynamic drag force on the cable, the above vector equation can be resolved

into the following two components:

9p\2
—-pchs U, — gfwy—%):o (4.11)
(M, + M) 22 +EA\/( o)+ ()~ 10g
o V+ 3+ (5 O
50C0.SulU — 2|V, ~ ) = 0 (4.12)

where M, is the mass of the subsea unit, w, is its weight in water. (1,,,M,,),
(Cpy, Cp.) and (S,,S;) are respectively added masses, drag coefficients and pro-

jected areas of the subsea unit along the directions of the two axes.

4.4.2 Initial Conditions

Initial conditions need to be assigned to p(s,0), ¢(s, O) £(s.0) and J"f(\ 0).
however, because there is viscous damping and we are concerned with the long term
motions, they are not very important. In the following computation, in its initial
state the cable/subsca unit system is assumed to be in a vertical position hanging

from the boom tip.
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4.4.3 Variable Transformation

The transformation is given by:

T = ¢t

. S
4y = L0+Ut
P = p—wt
Q = ¢

A set of relations between the derivatives in the old and new space-time

domains, similar to that in the previous chapter, can be derived.

4.4.4 Transformed Equations of Motion and Boundary Conditions

In the new space-time domain (y,T'), the equations of motion become:

0*P 0*P 0*P oP 9*Q
z - - =H 4.13
A18T2+B18T8 +C‘a2+Dla TG = (4:13)
and
9%Q 9% Q) 9*Q oQ 0P
bl —— =H 4.14
Argrs T Prgray t O T Py T g T (444
where
Al = m+4mg,
4, = m+4my,
2vy
B = —L0+vt(m+map)
2vy
B, = _L0+l (m—}—maq)



c. v2y?
VT (Lo +vt)2 (m +map) —
FA a (Lo + vt)(%)2
(Lo + v\ (Lot o+ R+ (277
v2y? EA
C, = —2 Yot
2 (Lo + vt)2 (m +m q) (Lo + 'Ut)2
202y
D, = ————
! (Lo + vt)? (m + ma,)
202y
D, = ——
: (Lo + vt)? (m + mag)
G - g.—__BA (Lo+vt+3”)3—‘2
1 — 2 LO + ot [(LO + vt + )2 + ( )2]3/2
H, = F
EA (Lo + vt + &5)? 52
H2 = Fq — Jdy Q

Lo+ vt [(Lo + vt + 9£)2 + (52)2]3/2 9y?
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The associated new boundary conditions at the cable’s top end, where y = 0,

are:

P(0,T) = R(T)

Q0,T) = O(T)

and at the bottom, where y = 1, they are given by:

2 _ 0P 0*P . OP dP
oP Bla +Ci—=—= + D1 — + Gi1—=

Ay —

6T2 0T dy Oy? Oy oT
and
0%*Q 0%Q 9*Q 0Q 0Q 5
A2_87“7+326T8 +025—7+D26 +G28T H,
where

Al = M3+Map

(4.15)

(4.16)

(4.17)

(4.18)



94

A2 = Ma + Maq
= 2v
B, = -

' Lo+vt(M"+M“”)
= 2v
B, = -

2 L0+’Ut( 8+Maq)
C LY

v (Lo + vt)2( M)
G = —U

27 (Lo+wt)? (M + May)
- 202 EA
Dy = 77— Ms Ma

! (L0+vt)2( + ”)+L0+vt

_ vpCp, S, U _v_BP_ v BPI
2(L0 + 'Ut) v (9T Lo + vt By

= 2v? EA
Dy = ————(M,+M,

2 (L0+vt)2( + Meg) + Lo+ vt

_ vpCD:sz IU _ aQ _ v aQ'
2(Lo+vt) * 8T Lo+ vt dy

- 1 JP v OP
Gy = =pCp,S,|U, —v— —

1= 3PS —v - B = e |
~ 1 o0Q v 0Q
G, = -— — —

2 3PCpeSelUs = o Lo + vt Oy |

9P
Hl = wg—EA[I— L0+Ut+3y ]
V(Lo +vt+ 32 4 (522
OP v 6PU
—6T—Lo+vt6y| y

1
+§PCDySy|Uy -V

2Q
1_12 - EA 9y
V(Lo + vt + 3E)2 + (52)?
3Q_ v 8Q|U
oT L0+'Ut ay ‘

1
+§pCDySlez —

4.4.5 Finite Difference Discretisation

The differential equations Eqs. ( 4.13) and ( 4.14), together with the bound-
ary conditions Eqs. ( 4.15), ( 4.16), ( 4.17) and ( 4.18), are approximated using

finite differences. The procedure of the discretisation is very much similar to the one
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described in the previous chapter.

4.5 NUMERICAL EXAMPLES & DISCUSSION

In this section, results of a series of numerical examples are presented. Avail-
able experimental data are used to check the mathematical model. In the first three
examples given below, steady dynamics is examined, whilst the unsteady dynamics

is investigated in the rest of the examples.

4.5.1 Example One

The particulars of the cable and the subsea unit are the same as the ones
described in Example One of the previous chapter. In the present case, however, the
top end of the cable is subjected to forced horizontal or circular motions, hence the
whole system moved in a two-dimensional space.

In Figure 4.2 the top end of the cable is forced to move sinusoidally along
a horizontal line with amplitude equal to 0.15m. The whole system oscillates in air,
therefore no external force needs to be considered. The theoretical predictions agree
very well with the experimental results except at resonance.

In Figure 4.3, hydrodynamic drag force has been taken into account as the
system is oscillating in water. As a whole, the agreement is quite good.

Figures 4.4 and 4.5 show results for the system in air and in water respec-
tively. In both cases, the top end is subjected to circular motions with different

amplitudes at different frequencies. It can be seen that in the frequency range con-
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sidered the agreement between the theoretical results and the experimental results
is extremely good for all the amplitudes when the system is forced to move in air.
However, when the system moves in water, cable slack appears when the excitation
amplitude 1s large and/or the excitation frequency is high. This explains the dis-
crepancy between the theoretical results and the experimental results observed in
Figure 4.5. Though the results of the present method become invalid when slack
appears, the method can be used to predict when and where cable slack occurs.
For example, at a frequency of 2.5 rad/sec for the 0.15m amplitude curve, there is
a sharp increase in tension observed in the experiment. Corresponding to this, tle
theoretical method predicted the existence of negative tension in the cable, although

the maximum tension still remained positive.

4.5.2 Example Two

The particulars of the cable and the subsea unit are the same as the ones
given in Example Two of the previous chapter. Calculations were carried out for
the system in air and in water respectively. The top end of the cable was subjected
to circular motion with an amplitude equal to 0.lm. Again due to cable slack,
poor agreement between the theoretical predictions and the experimental results
has been observed in the high frequency region when the system is oscillating 1n
water, as shown in Figure 4.6. When slack appears, the tension in the cable should

increase sharply due to the impact load, as indicated by the experimental results.
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4.5.3 Example Three

This example shows the effects of an underwater current on the steady

dynamics of a tethered subsea unit system.

The particulars of the cable are:

diameter: 0.02m
length: 300m
Young’s modulus: 4x10°N/m?
mass distribution: 5.2 kg/m

The main particulars of the subsea unit are given by:

mass: 1900kg
added mass in water: 1600kg
weight in water 15000V

Figure 4.7 shows the mean position of the subsea unit as a function of the
strength of the underwater current. As the current is increased, so is the horizontal
distance between the subsea unit and the initial vertical line. In addition to this,
the mean vertical position of the subsea unit also changes as the current varies.

Figures 4.8 and 4.9 show the changes in the two amplitudes of the vertical

motion and horizontal motion respectively.

4.5.4 Example Four

From this example onwards, a variety of results relating to the unsteady
dynamics are presented.

The particulars of the cable are:



diameter: 0.047m
initial length: 200m
Young’s modulus:  9.05x 10°N/m?
mass distribution: 5.2kg/m

The subsea unit remains the same as the one in the previous example.

In Figures 4.10 and 4.11 the subsea unit sway motions are simulated when
it is being lowered to a greater depth at two different speeds. The top end in
both cases is subjected to sinusoidal horizontal motion with amplitude equal to Sm.
Generally speaking, the longer the cable is, the smaller the sway motion. High
launching speed means less time for the building up of larger amplitude motion
when the cable is short, therefore, it helps to reduce the sway motion. This is true

for the two cases presented here.

4.5.5 Example Five

In this example, the subsea unit response is examined as it is passing
through the resonant region.
The system is the same as the one in Example Three of this chapter, with

initial cable length of 200m. At the top end the condition is set by

P(0,t) = sint

Q(0,t) = 1—cost

Figures 4.12 to 4.19 show the simulated motions of the subsea unit as it 1s

being lowered down at different speeds. The vertical motion presented here 1s the
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dynamic part of the subsea unit motion which is given by

Lo + vt 1
Wy — s——g(m — pA)(Lo + vt)?

PQ,T) - EA 2EA

In general, high launching speed will help to reduce the motion of the subsea
unit since the higher the speed, the shorter the duration of the subsea unit in the
resonant zone. On the other hand, the tangential friction force on the cable and the
vertical drag force on the subsea unit both increase as a consequence of the increase
in launching speed. Both forces tend to compress the cable, which is clearly indicated
in Figures 4.12, 4.14, 4.16 and 18.

In the last two figures of this chapter, namely Figures 4.20 and 4.21, the
effect of current on the unsteady dynamics is examined when the system is deployed
in a weak horizontal current. It can be seen that the effect of the current is mainly
upon the horizontal motion. As the cable becomes longer and longer, the subsea unit
deviates further and further from the vertical line which passes through the mean

position of the top end.

4.6 CONCLUDING REMARKS

1. The perturbation analysis shows in which circumstances a two-dimensional math-

ematical model must be used to examine the dynamics of a cable system.

2. The methodology adopted in the previous chapter has been extended to the

two-dimensional case.
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3. The various examples given either show a good agreement between the theo-

retical results and the experimental results, or indicate a convincing trend.

4. Further efforts to be recommended include checking the experimental data in

Figures 4.2 and 4.3 through repetition of the experiments.
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Chapter 5

THREE DIMENSIONAL

DYNAMICS

All good things are three.

A German proverb

5.1 GENERAL REMARKS

The marine environment continuously disturbs cable systems through the
action of surface water waves, currents, subsurface turbulence, internal water waves,
and other external disturbances such as the motions of the supporting vessel and
subsystem. For that reason most marine cable systems must be operating three-
dimensionally. Strictly speaking, one or two-dimensional cases are rare in practice.
It is therefore decided to make further effort to simulate their dynamic response in a

three-dimensional space domain.
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In the previous two chapters, the cable was treated as a continuous system in
the modelling, and only converted into discrete elements when the numerical solution
of the partial differential governing equations was pursued. In this chapter, the cable
will be discretised at the very beginning of modelling and replaced by jointed elements
of finite lengths. This method is often termed the lump-mass-and-spring method. The
resulting governing equations lead to a set of ordinary differential equations derived
directly from Newton’s law of motion or indirectly from Hamilton’s principle.

The three-dimensional marine cable has not been tackled extensively yet.
However, the basic concept that a cable may be represented as a series of finite
inextensible or extensible elements joined at nodes has been widely adopted by many
authors mainly for one- or two-dimensional dynamic analysis ( Walton and Polacheck,
1960; Polachek et al, 1963; Dominguez and Smith, 1972; Winget and Huston, 1976;
Wang, 1977; Nakajima, et al, 1982; van den Boom, 1985; Dutta, 1986; Nomoto and
Hattori, 1986; Wang, 1988; Macgregor, 1990). The elements need not necessarily
be straight. One way to improve accuracy is using curved elements with additional
conditions to enforce the geometric continuity across the nodes (Ma et al, 1979; Lo
and Leonard, 1982).

The lump-mass-and-spring method has the following advantages when com-
pared with other methods such as the method of characteristics (Nath and Felix,
1970; Patton, 1972) and the method of perturbation expansion (Carrier, 1945 and

1949):

1. Straightforwardness
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The modelling and mathematical formulation has clear physical interpretation.

To understand it one need not wade through the esoteric mathematical morass.

2. Economy

A moderate amount of computation time is needed.

3. Versatility
Simple as it is, the method can solve many different types of problems including

those of nonlinearity, unsteady state, nonuniform cable and oscillatory current.

However, while most investigators are satisfied with the success of the method,

further theoretical work awaits to be done:

1. The hyperbolic wave equation and the ordinary differential equation are funda-
mentally different. A rigorous analysis is needed to prove that, in the limit, the
resulting ordinary differential equations pass over into the continuous partial

differential governing equations for the motion of a submerged cable.

2. There does not exist mathematical analysis on stability and convergence in most

numerical investigations.

In this chapter, we are only concerned with the steady dynamics of a cable

system where the length of cable is fixed.
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52 MATHEMATICAL FORMULATION

The problem is formulated here in a general manner allowing the following:

1. Three-dimensional motion.

2. Large displacements. No linearization is made based upon the small amplitude

motion assumption.

3. Inclusion of forces due to the weight of the cable, buoyancy, drag and virtual

inertia of the fluid.

4. Non-uniform cables. The approach shall have the capacity to include any sub-

systems, such as hanging weights on the cable.
5. Easy implementation of a variety of boundary conditions.

However, slack cable is excluded from this chapter.

5.2.1 Governing Equations

Figure 5.1 shows how a typical configuration of the system with the cable
attached to a floating support vessel at one end and to a subsea unit at the other is
replaced by a discretised model consisting of many point masses and massless elastic
segments. All forces along the cable are assumed to be concentrated at the mass points

which are numbered by i running from 0 at the subsea unit to IV at the attachment

to the support vessel.
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The effect of added mass is assumed to be independent of the component
of the motion parallel to the segment line. Thus only when an element of the cable
has transverse acceleration, does it possess additional mass, whilst if it is accelerated
longitudinally no hydrodynamic reaction due to inertia occurs.

By invoking Newton’s law of motion for the i-th node on the line, we have

1 1
m;a; + ‘2‘e;+%aiN|;+% + 58,-_%a;N|£_% =F,; (5.1)

where the mass m; represents the mass of one cable segment. a; is its acceleration.
€41 and €;_1 are the added masses of the entrained fluid between the nodes 1,7 + 1

and 7 — 1,7 respectively. a;n|; +1 and a;y|;,_1 are the components of the vector a;

on the normal directions of the two segments. The force vector F; includes tension
forces in the two segments, drag force, gravitational force and buoyant force. Any
other external forces, if they are present, can be included in this term as well.

Let ¢ and 0 represents the two rotational angles defined in Figure 5.2, and
z;, y; and z; three coordinates of the i-th node in a Cartesian coordinate system.

In expanded form, the equation of motion can be written as (the dots indicating

differentiation with respect to time):

A11 A12 A13 (ii F:z:i
An Az Ass gi | = | F (3:2)
A31 A32 A33 Z, in

where

1 _ : 2
Ay = m + -2—[ei+%(1 — szn20i+%6032¢;+%) + 6,'_%(1 - SmQ()‘._%cos d)"%)]
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1
_ 120 2 2 ,
Ay = m;+ 2[61_}_%(1 cos 9i+%cos ¢i+%) +ei_%(1 —60326i‘%CO32O,-_%)]
1 2 2
Az = m;+ —2-(ei+%cos ¢i+% T €;_1cos ¢i—%)
A, = An =
1 » 0 9 . 9
—5(6i+%3m i+1€080; 1 cos ¢i+% +ei_%szn9i_%0039i_%cos ¢i_%)
Az = Az =
1

_§(ei+%sin9i+%sin¢i+%cos¢i+% + ei_%sinGi_%sin¢i_%cos¢,~_%)

Ay = Az =
1

_§(ei+%0039i+%3in¢i+%cos¢i+% + ei_%cosei_%sin@_%cosq&i_%)

Ciyl = pki+%li+%ai+%

Q—l)

2

1
m; = 5(/~‘i+%li+%+/‘i—

1
2

i+1 ;-1
FD.‘L‘2 + FD.’L‘2)

Ve

1 1

F,, = T-+%sm9i+%cos¢i+% —T~_%szn€i_%cos¢i_%+

1

N = O

_ i+3 i-1
F, = T ycosb,1cosd;, 1 — T;_ycosf,;_1cos;_1 + (Fp,” + Fp,*)

. , 1, i+l i~
in — T.+%32nq§i+% —-Ti_%smqﬁi_% =+ §(FDt2 +FD22)

1

1
+§Pg(lz‘+%ai+% + li—%ai—%) — g

In these equations T}, ! and T;_1 stand for the tension forces in the cable

1
2

segments which lie on either sides of the i:-th node. Likewise, k. 1 and k,-_%- li+§

and [, _ 1, 0442 and o;_ 1y Hiyl and gy, _ 1, are respectively the added mass coefficients,

lengths, cross section areas and cable densities of the two segments. p is the density

of fluid, and g is the acceleration due to gravity.
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The tensions are determined by the elastic properties of the cable and its

deformation. By utilizing Hooke’s law, the tensions T, and T, 1 are given by:
1 A

E( \/($i+1 —z;)? + (yi+1 - yi)2 + (zig1 — 2:)?

i+
(; —2im1)? + (¥ — Yim1)? + (2 — 2i21)?
Ti_%:m’_%E(\/ T 1 ) -1) (5.4)

-3

where FE is Young’s modulus.
The hydrodynamic drag on the i-th node has been expressed as one-half
of each drag acting on the two segments lying on either side of that node, 1.e.,
i+l i+l il 4l i—1 P RS Y |
FD 2 = {Fsz N FDy2 N FD22 } and FD 2 = {Fsz y FDy2 y FD22 } The drag on eaCh
segment is assumed to be resolved into two components, namely, the normal one

1
and tangential one, each as a function of the relative velocity in that direction. F D+ :

is given by
Ftt = Lot d (V.= UV - U)
D - 2p N 1+§ 1+§ c N ¢ N
T

—5pCr iy 1 dig 3| (Ve = U)l(Ve = U)r

i+1 i+l . . .
where C’,\T"‘ and C'T+2 are the normal and the tangential drag coefficients. di+% 1s
the diameter of the segment. U = {U,,U,, U.} is the underwater current which may

vary in both direction and magnitude in the space domain and the time domain.
Vc — {‘/cxa‘/cya ch}

1. N N .
= {_($i+1 + $i), —(yi+1 + yi), —(2i+1 + 3,‘)}

2 2 2
(V.- U)y = PV
(V.-U), = QV
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1— sin20i+%cos2¢i+% —si719i+%c059i+%0032¢i+% —sz'n.9i+%sinopr%coso,*%
P = —sin9i+%c039i+%cos2¢i+% 1-— co.s29i+%cos2¢i+% —c039i+%smoi+%cosoi+%
_ —sin9i+%sin¢i+%cos¢i+% —c039i+%sin¢i+%cos¢i+% c032<p‘i+%
Q =1-P
V;:x - Ux
vV = ch - Uy
I ‘/cz - Uz |

where I 1s the unit matrix.

A similar form may be derived for the drag Fg%.

5.2.2 Boundary Conditions

Boundary conditions must be given at both ends of the cable. Different
types of boundary conditions may occur depending on the types of physical condi-
tions at the two ends. The simplest case is that both ends are fixed. Here we are
addressing one particular situation which is widely employed in offshore engineering
where one end of the cable is attached to a surface supporting vessel and the other
15 connected to a powered or unpowered subsea unit.

Assuming the dynamic load on the vessel through the cable is negligible
compared with other loads on the vessel such as the wave force, we can decouple
the vessel’s motion from the motion of the cable system. In this case the upper end

conditions for the cable are:



121

yn(t) = y(1)

Zl\;(t) = E(t)

where Z(t), y(t) and z(t) are the vessel’s motions which are known functions of time.

At the lower end, boundary conditions can be specified by invoking New-

ton’s law of motion. These are:

where

an

a9

ass

a2

a3

a3

Mo

_ 1T - _ .
ajr diz a3 To Fxo
az Qa2 A3 Yo | = | Fyo (5.6)
az; azz as3 I 29 i Fy

1 :

My 4+ mg+ My, + ;6%(1 — 327129%cos2¢%)
1 2 2

Mo+ mo + M,y + 36%(1 — cos 9%003 qﬁ%)
1 2

My + mo + M,. + 5¢1¢08 ¢%

a _—16137:7191C03910032¢1

A= 795 2 2 2

a :—1618i71015i71¢1C05¢)1

3 272 2 2 2

1 .
azy = —ge%cose%smcé%cosqb%

Pl

—

1
T;sz’n@lcosqb% + 5F2$ + D,
2 2

L

11
T%cose%cosqb% + §F5y + D,

L

g 2

1 1 ,
Lsingy + SFp. + pg(5lyoy +T0) — (Mo + mo)g + D-:

where My and 1, are the mass and the volume of the subsea unit. M,p. M,, and
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M,, are its added masses. D, D, and D, are the components of the hydrodynamic

drag on it. They are given by:

1 X )

-Dx = _SPCVDJ:SJ:I-TO - Ux|($0 - U.’L‘)
1 ) .

Dy = —5pCpySyldo = Uyl(do — Uy)
1 ) )

Dz = _§pCDzSz|$O - UzI(ZO - Uz)

where Cp,, Cp, and Cp, are the drag coefficients of the subsea unit in the three

different directions. S;, S, and S, are the projected areas accordingly.

5.2.3 Initial Conditions

To complete the formulation, a set of initial conditions must be specified for
each node on the line. This includes both the initial positions and initial velocities,
as required by the second order ordinary differential equations:

2:(0) = 2a? (5.7)

yi(0) = ¥}

21(0) = Z?

atnd
ti(0) = ) (5.8)
5:(0) = 9}
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forall:=0,1,2,..., N. All the right hand sides of these equations are given before-

hand.

53 PROBLEM CHARACTERISTICS

Though strictly speaking there is no such thing as a truly continuous sys-
tem, the motion of cable is generally considered as a feature of a continuous system
because the ultimate discontinuity due to the atomic structure is not obvious and
the typical spacing involved is much less than the typical length of the motion. In
the Appendix, a detailed analysis on cable dynamics i1s given assuming the cable is
a continuous system. In this section, we shall investigate the relation between the
formulation assuming the cable as a continuous system and the discrete formulation

described in the previous section.

5.3.1 Governing Equations

Neglecting the effect of the added mass and assuming the lumped masses
are initially equally spaced with a distance [ between them, we can rewrite Eq.

(5.2) in the following form

. Tiy1 — T4 r; —T;—1 =
=T 11— T _1————= (59
"= L ey ey T )
. Yi+1 — Ui Yi — Yi-1 T =~
i=Tga——————-T_ 17— + Ly (5.10)
T I T ey) T TR +ey)
mz; = T; AT A Rt T + F,; (5.11)

T(14eyy) I 4eny)
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where F;, Fyi and F,; represent the components of fluid drag forces. gravitational
force and buoyant force.

To reduce this discrete description into a continuous approximation, we

start with Taylor’s theorem:

Oz P 0% PP 95z -
Tig1 — Ty = lglﬁ% + W'B?IHL% + Wﬁ'ﬁ% + O(1l") (5.12)
Or P 3z P 9%z

T, — Ty = l@sl 14 = 3192 §s3 |z__ + 5191 ggs li-4 + O(1") (5.13)

Similar expressions can be written for y;11 — vi, ¥i — yi—1, zig1 — 2 and 2 — 5,4,
Let ¢ stand for any variable, we also have

a(’o l3 83 l5 85
Piry ~Piny Tl F g, 3l T 5121 05

| + O(1") (5.14)
Employing these relations, and taking the limit as [ — 0 after having

divided both sides of Egs. ( 5.9), ( 5.10) and ( 5.11) by I, we arrive at
0% o, T Oz

hoE T a'igeas)t

0%y o, T Oy, -
ZJ . = Y4 F
P EASE WA
0%z g T Oz _
s - 2z Y4 F
“aﬁ Os 1+583)+ ‘

m

where = % as | — 0, is the density distribution of the cable.
These equations are exactly the governing equations for cable dynamics

when the cable is treated as a continuous system (Appendix).

5.3.2 Effects of the Discretisation

We have proved that in the limit the ordinary differential equations pass

over into the continuous partial differential governing equations for the motion of a
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cable. However, in implementing the lump-mass-and-spring method. the spacings

between the masses must be always of finite lengths. The influence of discretisation

is still to be examined.

Substituting Eqs. ( 5.12), ( 5.13) and ( 5.14) into ( 5.9). ( 5.10) and ( 3.11),

and neglecting terms of order greater than O(/?), we have

m O0%x

1o

m 0%z

101

:Eg(

0

0
=5§(

0
_g(

r o
14¢e0s

r oy
1+4+¢€0s

r o
1+¢e0s

)

)

+

290 T O«
5495\ 142057
? & T Ox
ﬂés—B 1+6_8:
1290, T &%
545\ 11¢ 05"
120> T Oy

ﬂ@ 1+€_8_8

20 T &3z
549s'1 1 ¢ 05
2 93 T Oz
24953\ 1+ ds

)+ F

)+ F

+ F,

y

-

The terms proportional to [ in the above equation can be regarded as the primary

influences on the cable dynamics due to the discrete modelling. To show their

effects, we drop out F,, F, and F, (the marine cable is moved into air), and assume

This yields the following equations

m 821'

IT o2

62 T

12 9t

0s? + 12 9s?
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m 0%y 0%y I* dYy

Tor aT+1_>a¢, (5.15)
mdz 9z PP
IToZ — 852 12050

These are not the ideal wave equations for waves along the cable as they
would be if the cable were modelled as a continuum. Nevertheless. we know that
waves still can be transmitted; indeed, it is not difficult to show that the following

sinusoidal waves are solutions to Eq. ( 5.15):
z = zoexp[V—1(wt — ks)]
y = yoezp[v/—1(wt — ks)]
z = zpexp[V—1(wt — ks)]
provided the following relation holds

w = \/17 f— —k? (5.16)

The wave velocity is then given by

\/ ﬁ— k2 (5.17)

Eqgs. ( 5.16) and ( 5.17) indicate:

1. The dependence of wave velocity ¢ on wave number k shows that the wave 1s
no longer non-dispersive as would exist in a continuous medium.

2T

2. If kI < 1, that is, if the discretisation is fine enough or the wave length <% 1s

long enough in comparison to [, we have

[IT f
c=\— =\
m I
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In this case, the discretisation has little effect.

. The maximum frequency defined by Eq. ( 5.16) is

Wmaz = W(k = ﬁ) = g
[ V im

If the excitation frequency w > wp,,,, there is no real solution of & from Eq.

( 5.16); this suggests that k shall become complex.

Putting
k=k,+vV—-1k;

and substituting it into Eq. ( 5.16), we have

= w\/ T
3ml
\L\/_T__S

If k; adopts the minus sign, the displacements become

[
1
]\’,’ = -
il

z = xoeap(—|k;|s)exp[vV —1(wt — k,s)]

y = yoexp(—|k;|s)exp[vV—1L(wt — k,s)]

z = zoeap(—|k;|s)exp[V—1(wt — k,s)]
This result indicates that the lump-mass-and-spring system cxhibits a high-
frequency cut-off. Waves of frequencies higher than wy, . will decrease expo-

nentially as they are travelling along the lump-mass-and-spring cable. The

higher the frequency, the more quickly the wave dies out.
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On the other hand, if k; assumes the plus sign, the waves theoretically become
explosive. However, the existence of damping will prevent them from diverging

into infinity, resulting in stable oscillations.

The former case reflects a genuine physical phenomenon; the latter one is purely
mathematic but nevertheless has an implication on numerical aspect. It indi-

cates the possibility of existence of parasitical motions at high frequencies.

The above analysis on effects of the discretisation is based upon the two key
assumptions, namely, ¢ < 1 and %% = 0 , which can be viewed as linearizations.
Interesting nonlinear analysis can be obtained by inclusion of nonlinéar terms. For
example, by retaining the nonlinear terms we have in the place of Eq. ( 5.15) the

following equations:

mo*z 0%t I? 9z 10T Oz N _li(_(?iz@_ +302T 0%z +40T 83:0)]
IT 0t2 0s? 120s4 T 0s 0s 24" 0s3 0s 0s? 0s? 0s 0s3
m82y BZy r 3“y l Q_j_-'._a_y+_l2_ ﬂ@+3ﬂa_2_+4?zi)]
IT ot2 0s? 120s* T '0s 0s 24" 0s3 0s 0s? Os? 0s 0s3

m oz 0%z I 9z 1.0T 0z I? (BSTaz +337;T_Qi_ +43_T_83_)]
Tor 957 12858 =~ T'0s9s 24\ 05305  “0s2 0952 | * 35 953

The terms on the right side can be regarded as the contribution of nonlinear
effects. As long as [ is small , the first terms on the right side will be the dominant
ones. This provides the ground to discard all the second terms on the right side. By

substituting the following relation into the above equation

_BZ_EA@ EAZ::Z?’2+ 9s 9 2+%—g—_
88 83 (a)2+(_§1) +(z
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we have
mdPr Pr Pz (F)5E+ 32%33 YRGS (59
2 2 1 :
IT 8t2  0st 12 0s 5\/( 92y2 1 (Guy2 4 (222

Similar equations can be derived for the other two components.

Now consider a special case where % %ﬁ- = 0 and _u #0,% +#£0, Eq.
( 5.18) yields:
&z T1.9*z 1,0z ,0% 12 'z

— e | cr— 2 —

ot? m [83 ( ) 9s? 12 Os* (5.19)
This equation i1s very similar to the celebrated Boussinesq equation. We

assume that in a region of the space-time domain, the variational functions T and

¢ vary slightly and therefore can be treated as constants. By means of a change of

variables and a scaling transformation

s = e(s—ct)
t = €t
, Oz
= —
0s’
Ti
c = {/—
m

where e € 1, Eq. ( 5.19) is simplified to

5 m Oz’ 4 l$,28:v’ 2 &z’

= 4 = 5.20
Ti 8t Os’ * 12 0s” 0 ( )

This is the Modified Korteweg-de Vries equation (MKdV). The relation between

the KdV equation and the MKdV equation can be found in Miura (1968).
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The KdV equation was first derived in 1895 in connection with long water

waves in shallow channels. Eq. ( 5.19) suggests that the transverse wave can travel
along the lumped mass cable in the same way as the solitary wave in shallow water.
first recorded in 1834 by the Scottish scientist and engineer John Scott Russell six

miles from the centre of Edingburgh (Russell, 1840; Whitham, 1974; Dodd et al,

1982; Taniuti and Nishihara, 1983).

5.4 FINITE-DIFFERENCE SOLUTION IN TIME DOMAIN

The basic idea 1s to divide the continuous time into a set of discrete steps
t=3A0t; = 0,1,2,...). Assuming everything is known before and at a time
step t = j A t, the question is how to find out the unknowns at the next time
stept = (j + 1) At via the governing equations complemented by the boundary
conditions.

By invoking the following finite-difference equivalents:

i = ‘AI?(:I:{“Jr:cf‘l_gxg)
i = RE )
# = A_lti(z'jﬂ+3g—l—2:f)
o= (e -
o= Zl—t(yf—yf_l)

N R i

J

E(%‘ -7
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and linearizing Eqs. ( 5.3 ) and ( 5.4 ) as

j+1 ;
TH”% 2 Tz+% . .
(0,+1E + Dl oiE +1) = (21— 2V (@i — 21) +
‘T2 i+3

(yi+1 - yi)j+l(yi+1 - yi)j +

(ziv1 = 2 (ziga — =)
T+ Ti |
(a- 12E + 1)l?+%(a. jE +1) = (&~ xi—l)Hl(l’i - 1’z’—1)j +
=5 =1

(yi — yic1 )My — yic1 )’ +
(z: — 2o PPNz — 2y Y

we can now approximate the governing equation ( 5.2 ) at the time step t = j At

by the following finite difference equation:

SRS
Ti-1
Yi-1
Zi-1
- S S
T; T fiz T
1 A
v | TBC g = 1 fu| "ag || T
i <i fi <i

Tig1

Yi+1

<i41
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5 17
x;
2 Ui_%E
ApAlvu | tB (5.21)
Z;
where
A = lAmnig’)XS
B = IanI%XQ
C = ICmRI%XQ
with
B, = 3in9,~_%cos¢i_%
B,y = cosGi_%cosqbi_%
B31 = S?:?’Lgbi_%
By, = —szn9i+%cos¢i+%
By, = —cos@i+%cosq§i+%

By, = —sing; 1
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and
Cn = —Ui—%E(ZCi —zi-1)/q1; Cy= 0
Ci2 = _Uz‘—gE(yi —Yic1)/q1; Cop= 0
Cis= =0, 1E(zi—z1)/q; Cp= 0
Ciy= —Cyy; Coy = .—0i+%E(I,-+1 — 2;)/q2
Cis = —Cig; Cos = =01 E(yip1 — vi) /a2
Cie = —Cis; Cos = =01 E(zip1 — 1)/
Ciz = 0 Cor = —Cyy
Cizs = 0; Cs = —Cys
Cr = 0; Coo = —Cog
T. 1
= l?_%(a.l:‘E +1)
=3
= lf+%(a-T:%E 1
tT g
and

1 i+ 1 1
fie = §(FDZQ+FD1~2)
1 1‘+l _%
fy = §(FDy2+FDy)

g._1)—mg

10,_1
2 ‘72

fie = %(FE«% +Fpi)+ %Pg(li+;0i+; +1;_

The boundary condition Eq. ( 5.6 ) can be approximated in a similar
manner. As a result, there are 3 x N algebraic equations for the 3>< N unknowns,
namely .z'",-"“, yj+1 and ~‘f+1(i = 1.2,..., N). The tension is calculated through Eq.

. i Z;

(5.3) or Eq. ( 5.4 ) once the solution of the 3 x N unknowns is obtained.
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5.5 STABILITY OF THE NUMERICAL SCHEME

The presence of round-off errors or any other computational errors may
lead to numerical instability. In this section the stability of the finite difference
equation Eq. ( 5.21 ) is investigated.

A useful method of finding a stability criterion is to examine the propa-
gating effect of a small disturbance (Lax and Richtmyer, 1956; Ames, 1969). The
criterion for stability is the condition which guarantees that this small disturbance
will not become unbounded with successive time steps. Here to simplify the investi-
gation of the stability, all the terms involving virtual inertia and drag are omitted.

We introduce the following disturbances to the variables .y and = at dif-

ferent positions and on different time steps:

= It 4 salt]
AR VA A
~1]_4.11 _ ]+1+6Z]+1
~,g+1 _ $g+l 5$]+1
gttt =yt 4oy

5g+1 _ Zg’+1+6:lj+l
i = el
i = i+ el
H o= N el



g = yl+6y!
# o= 2462
#F71 = g 46

Substituting in Eq. ( 5.21 ) we have

At?
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R
r q7+1
Ty
Yi-1
Zia
- - J_l
z; z;
A ~
Z; Z;
Tip
it
i Zi+1 ]
SERE
z;
2 7yt 5.22
Z;
L

Subtracting Eq. ( 5.21 ) from the above one and linearizing the resulting

equation to the first order, we have the governing equation for the propagation of the



small disturbance:

SR AR
6&3,‘
1
aet|
52,'
A
At?

+ BC

6z
0yi_1
021

5.’17,'

(52,‘
611

0Yit1

6zit1

+A—t2A

1+

+ (BSC + C6B)

(52,‘

T

Yi-1

Yi

2

Litl

Yir1

Zit1

97+1

A solution of the above equations can be obtained in the form:

Assuming

Jj+1

P:L‘
7+1

Fy

41
I

§zd =

1

62 =

4

Syl =

Yt
I‘_,Jce‘/_'ﬁ
[V eV-1i8
y

Fg eV -1ib

— )2
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(5.23)

(5.24)

(5.25)
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and substituting Eqs. ( 5.24 ) and ( 5.25 ) into Eq. ( 5.23 ), we have a system of

. . '_1 . y . . .
linear homogeneous equations for I'’~!, I'J=" and I')~!. For non-trivial solution, the

determinant of the coefficients must be identically zero, which gives the characteristic

equation for the amplification factor .

To facilitate the following analysis, we assume:
T —Ti1 < 2 — Zi—1
Tiy1 — T K 241 — 2
Yi —¥i-1 < & — zi
Yit1 — Ui K 2Zig1 — %

Also we assume that within a small region of the space-time domain, variational

functions vary slightly, hence they can be denoted by

n

I
3

|
W=

T

N|=

T
[ S
Il
...q
|
N
I
Q

Under these assumptions, §B = §C = 0, the characteristic equation can be

written as

(A+BCDAtH)A? —2AX+A|=0 (5.26)



0

0

ezp(v/—1p)

0
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0

0

exp(v/—1p)

Multiplying the elements of the determinant, we obtain the following solu-

where ]
m 0
A=10 m
0 0
C =
00 O
ezp(—v/~18)
0
0
1
D= 0
0
ezp(v/-18)
0
0
tions to A:

/\1:/\2:A3=/\4:1
C1dy/[dsnfE AL

A5,6 -

1+ 4sin2§‘l’—f- A t?

It is not difficult to show that all |\;| < 1, for i = 1,2,...,6. Consequently

the finite difference approximation Eq. ( 5.21) is unconditionally stable.
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Though, generally speaking, stability is not drastically changed by bound-
ary conditions, they do have influences. A more rigid analysis should take the

boundary conditions into account, as well as the drag and the inertia effects. in

addition to discarding all the assumptions made here.

56 COMPUTATIONAL ASPECTS

5.6.1 Procedure

The computational procedure is illustrated by Figure 5.3. It is recom-
mended to start from a static equilibrium position of the cable in order to avoid
transient behaviour. For the same reason, care needs to be taken for the upper end

boundary conditions to avoid any impulsive loading to the system.

5.6.2 Geometrical Discretisation

The number of massless segments should be sufficient in order to describe
the position of the cable satisfactorily and to achieve numerical convergence. Also.
it should be fine enough to let genuine high frequency waves pass through and to

prevent the occurrence of parasitic motions.

5.7 NUMERICAL EXAMPLES

Numerical simulations have been carried out to demonstrate the validity

of the method and to investigate the effect of various factors on the motions of a
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subsea unit such as the excitation frequency and the underwater current strength.

The particulars of a factual system of cable and subsea unit used in the

following numerical investigations are:

diameter: 0.047m
length: 300m
Young’s modulus: 9x109N/m?
mass distribution: 5.4 kg/m
Cny and C, 1.2 and 0.01
mass of subsea unit 3000 kg
Moz, Moy, My, 3000 kg
CD:L'a CYDya C'Dz 1.5
Sz, Sy, 5, 0.5 square metres
Vo 0.354 cubic metres

5.7.1 Convergence

Figure 5.4 shows the numerical convergence as the number of massless
segments increases. In this case, the top end of the cable is subjected to the following

forced motions:

z(t) = sn(0.314¢)
y(t) = sin(0.314t)

z(t) = sin(0.314t)

The calculation starts from a stationary unstrained cable configuration which lies
on the z-axis. It can be seen that 20 segments are more than adequate to guarantee
convergence.

An adequate number of the segments is not primarily dependent upon the

length of cable under consideration. It is more dependent upon the transverse wave
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length in the cable. In the following example, the same system of cable and subsea

unit is subjected to excitations of higher frequency at its top end:

81
VN
N
g
I

stn(1.256t)
y(t) = sin(1.256t)
Z(t) = sin(1.256t)
The transverse wave length decreases. Consequently, at least 40 segments are needed

to achieve the numerical convergence, as shown in Figure 5.5.

Other distinct features observed include:
1. As expected, the periods of the subsea unit motions are equal to the periods

of the forced motions.

2. There is a transient vertical vibration due to the impulsive action of the grav-
itational force upon the system. This motion dies out quickly in a time of

several periods.

3. Due to the viscous drag of the fluid medium, the transverse motion of the
subsea unit is reduced in comparison with the transverse motion at the top

end.

5.7.2 Effect of the Current

Figure 5.6 shows the results for the same system under the action of un-

derwater current. In this case the top end excitations are:

(t) = sin(0.314t)
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<2

~—
[

"
I

s1n(0.314¢)

5(t) = sin(0.314)

and a uniform current acts in the direction of the z-axis at a speed of 0.5m/s.

The effect of the current is clearly demonstrated here. It offsets the subsea
unit away from 1ts initial position to a new mean position, and attenuates the ampli-
tude of transverse oscillation around this new mean position. Also the mean vertical
position of the subsea unit has been raised slightly though the current has little effect

on its vertical amplitude.

5.7.3 Effect of the Excitation Frequency

The conditions for Figure 5.7 are the same as the ones for the last example
except that the forced vibration frequency has been increased to 0.628 rad/s. The
transverse motion of the subsea unit has further attenuated though its mean position
has hardly changed. This is as expected since the mean position is mainly deter-
mined by static parameters such as the strength of the time-invariant current and the

gravitational forces. It is weakly related to dynamic parameters such as periods.

5.7.4 Loop Turn

The suite of programs is used to examine a loop turn manoeuvre. In still
water the system starts moving from a static unstrained position with a towpoint
speed of 4 m/s. The towpoint runs straight for 800 meters before tangentially turning

through a circle of diameter 300 metres. After this 360 degree turn. it continues along
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the straight line. The results are given in Figure 5.8.

Figure 5.9 shows the same loop turn manoeuvre except in this case the tow-
point speed is 2 m/s. The effect of the speed is self evident.

Figure 5.10 shows the same system under the same manoeuvre in air (aero-
dynamic drag force is not considered). Unlike the previous cases where the drag force
plays a significant role, the unit swings transversely once it enters into the circle. Also
due to the lack of damping, the initial vibration, caused by the impulsive action of

the gravitational force upon the system, persists.

5.8 CONCLUDING REMARKS

In this chapter, a mathematical analysis has been provided regarding various
aspects of the lump-mass-and-spring method. The numerical approach results in
a highly comprehensive and efficient method for analysing three-dimensional cable

dynamics.
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Chapter 6

HEAVE COMPENSATION

Once more upon the waters! yet once more!
And the waves bound beneath me as a steed
That knows his rider. Welcome to their roar!
Swift be their guidance, wheresoe’er it lead!

In K. Clark’s Civilization

6.1 GENERAL REMARKS

6.1.1 Statement of the Problem

One of the key problems associated with subsea operation involving tethered
subsea units is the motions of support vessels on the ocean surface which can be
transmitted to the subsea unit through the cable and increase the tension. In gen-

eral, environmentally induced responses of a support vessel can be divided into three

frequency ranges:
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1. Static offsets which include responses to steady current forces, mean wind forces

and mean wave drift forces.

2. Low frequency motions which include motions due to wind, ocean current and

the second order wave forces.
3. Wave frequency motions due to the first order wave forces.

The first two kinds of motions can be effectively counteracted by auxiliary
vessel positioning systems such as mooring systems (Luo, 1990; Inoue, 1991) and
dynamic positioning systems (Grimble et al, 1980; Fung et al, 1982; Lee et al, 1989).
It is the third one that poses the most formidable challenges to the subsea intervention
operations. The safety and performance of these operations are severely limited by
the wave frequency vessel motions, and as a result, operations are often suspended
during heavy weather. Curtailment of operation can be very costly, and possibly
intolerable, as in the cases of military and rescue operations.

Also, there are some delicate subsea operations which require the ability to
decouple the surface support vessel motions from the vessel-lowered tethered instru-
ments. For example, the vertical ocean profiling of ocean parameters such as temper-
ature and salinity can be seriously affected by the nonuniform drop rate caused by
vessel motions (Kidera, 1983; Kidera and Mack, 1983).

The points at which the cable is normally attached to the vessel, namely
the boom tip or the tip of an A-frame, have three translational motion components.

Among these heave motion is likely the most hazardous. It is against this background
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that the concept of heave compensation has been proposed.

6.1.2 Aim

The aim of heave compensation is to develop such a system that the tethered
subsea unit working under the sea surface does not experience any heave motion
transmitted through the umbilical cable, or that motion is attenuated as much as
possible.

Though autonomous subsea unit systems have been proposed (Rodseth and
Hallset, 1991), where no disturbances are transmitted through the removal of the

umbilical link, they are not of our concern in this chapter.

6.1.3 Problem Characteristics

In this chapter we consider heave compensation, and assume that the problem
can be regarded as one-dimensional. Neither lateral forces nor lateral motions are
included in the analysis.

With reference to Figure 6.1, we denote the system of cable/subsea unit by S
which is under the excitation of the input I(t) producing the output O(t). The input
I is defined as the motion of a fixed point on the cable somewhere near the boom
tip, whilst the output O represents the motion of the subsea unit. In a mathematical

notation, we have

O(t) = S[1(t)]
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A measure d{-} is defined on every I(t) and O(t) !. Under this measure

intuitively we have
1. d{O(t)} = 0 if and only if d{I(#)} = 0.

2. d{0y(t)} > d{O1(¢)} if and only if d{L,(¢)} > d{I;(¢)}, where O,(t) = S[L(t))
and O,(t) = S[[1(¢)]

3. d{O(t)} is continuously dependent upon d{I(t)}

From the theory of function analysis, it is evident that the necessary and

sufficient condition of reducing output O(t) is to reduce the input I(t), in the sense

defined by the measure d{-}.

The implication of this argument is that whatever heave compensation
system 1s to be employed, either the boom tip heave motion has to be suppressed,
or a continuous displacement has to be produced which opposes the boom tip heave
motion. As a result, there must be a fixed point on the cable somewhere near its

top end which is almost always in a horizontal plane.

6.1.4 Approaches

Various ideas relating to heave compensation can be conveniently divided

into two groups:

1. Support vessel’s stabilising systems (Figure 6.2)

'A general definition of the measure may be difficult to find. However, it can be df:ﬁned if we are
considering a specific subset. For example, in case that all /(t) and O(t) are sinusoidal functions of the same
frequency, the measure can be defined as the amplitude.



The basic idea in this kind of system is to introduce some actively or pas-

sively controlled appendages or mechanisms which offer stabilising effects to

the whole vessel or that part of it where the subsea unit is handled.

Such systems, for example, include bilge keels, fins, tank systems. moving
weight systems, and submerged adjustable stabilising pontoons fitted to verti-

cal columns sliding into trunks in the hull of the support vessel (Rawson and

Tupper, 1986).

It is reported that with such systems, the vessel’s heave motion can be reduced
by 50%. In addition to providing a stable deck space for operation, this kind of
system significantly improves the working conditions for personnel and reduces
fatigue in the cable system. However, it does have drawbacks such as high cost
and loss of efficiency in certain operational conditions. Such special purpose

vessels are not always commercially viable.

. Onboard mechanical system (Figure 6.3)

There are several types of onboard system:

e boom bobber system
This system drives up and down the boom in such a way that the boom tip
stays approximately in a horizontal plane. Surely this is not an €CoIomic
system. In addition to the limitation imposed by the range of travel of
the boom, it needs a great amount of power supply to drive up and down

such a heavy structure.
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o ram tensioner (Kozik et al, 1976; Woodall-Mason and Tilbe. 1978)
Usually this is a passive compensator acting as a soft spring with a nat-
ural period significantly longer than the period of the boom tip motion.
Though it is a reliable system, being able theoretically to maintain con-
stant cable tension, and is widely used in industry, its performance be-
comes poorer when the period of the boom tip motion increases. Also this

system often requires an unacceptably large number of gas accumulators.

e moonpool (Kuo, 1978; Lee 1982; Day, 1987)
This system involves a vertical well in the support vessel and an enclosed
space above the well with a pontoon floating on the water surface within
the well. The handling system of the subsea unit is mounted on the

pontoon whose heave motion is greatly reduced by the design of the well.

e winch system

This system compensates the heave motion by means of an automatic
winch control system. The winch pays out or hauls in the cable in such
a way that a fixed point on the cable near its top end remains approx-
imately in a horizontal plane. In order to create such a compensator. a
fast responding drive system for the winch is required.

The advantages of this system are its relatively small size, its compact
structure and easy handling system. However, fatigue and reliability may

cause problems in practical designs.
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The inventory can be drawn up from a different point of view, that is.
whether the device is actively controlled or passively actuated. An actively con-
trolled system requires a measurement system and an extra energy supply. On the
other hand, a passively controlled system operates without using any external en-
ergy supply. Instead it uses the potential energy generated by the current system
response to control the system’s subsequent response. It is easy to see that such a
control action is limited depending as it does on the momentary potential energy of
the system. Nevertheless, passive systems have the advantages of being reliable and
can generally adequately compensate the heave motion at high frequencies where
the potential energy is higher. Although, generally speaking, the active system costs
more than the passive one, this economical disadvantage can be far outweighed by
the advantages involved in its use: greater effectiveness, efficiency and flexibility.

It is envisaged at this stage that the future of heave compensation lies in
a combination of the passive spring-like compensator and the actively controlled
winch system. The passive component compensates a part of the heave motion and
boosts the system’s reliability while the active system removes the residual effect of

the heave motion.

6.1.5 Concerns of the Chapter

In this chapter we are concerned with an actively controlled winch sys-
tem for heave compensation during the operation process. The selection of this

particular strategy is a natural outcome of the review carried out in the previous
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subsection.

There are two different types of design philosophy involved in active winch

heave compensation systems.

1. Feedforward System

The idea of this system is illustrated in Figure 6.4. In this case, a sensor
is mounted on the boom tip to measure its heave motion. The signal of the
measurement is then fed into a controller and the winch is actuated accordingly.
In so doing, the dynamics of the cable needs not be considered, thus the
design of the system can be greatly simplified and becomes applicable to many

situations in spite of diversity in cable/subsea unit systems.

2. Feedback System

The idea of this system is illustrated in Figure 6.5. In this case, a sensor
for measurement is mounted directly on the subsea unit, and based upon this
signal the winch on deck is made to pay out or haul in the cable. Needless to
say, in this case, a sensible design of the controller requires an understanding

of the cable dynamics.

The following considerations allow us, in the remainder of this chapter, to

confine ourselves to the second approach:

1. It is believed that the measurement of the state of the subsea unit can be more

easily and more accurately achieved than the measurement of the position of
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the boom tip.

2. The feedback system is more suitable in the presence of uncertainties in the

applied boom tip motions and the system parameters.

3. The cable dynamics no longer imposes any formidable difficulties.

6.2 MODELLING AND DESIGN OF A REGULATOR

In this section, the automatic control theory is applied to control the action
of the onboard winch. It is intended to develop a practically useful control mecha-

nism with consideration given to the time-delay effect on the system performance.

6.2.1 An Explanation of the Problem

An active winch compensation system consists of hydraulic, mechanical,
structural and electronic components. Nevertheless the system can be theoretically
dissected into three basic components: cable, winch and controller. The dynamics
of the first two components should be well investigated before the controller can be

properly designed.

1. Modelling of the cable dynamics

In the Appendix, rigorous mathematical formulation has shown that a second
order non-linear hyperbolic equation will accurately model the cable dynamics.

However this mathematical description is not in a form that can be casily used
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for control system design. Assumptions are therefore made to simplify the

model.

. Modelling of the winch

The winch plays a crucial role in the whole system. Whether it is possible to
prevent transmission of the heave motion of the boom tip to the subsea unit
depends on whether the winch can react as quickly as required. The winch can
usually be modelled by an ordinary differential equation. The higher the order
of the differential equation, the more accurate the model. The model normally
contains parameters to be determined. For a specific hydraulic winch one
has to rely on experimental information. The parameters can be determined
either directly via the experiments or by system identification methods using

experimental information.

. Design of the controller

Among the classic control techniques, the proportional integral differential
(PID) controller finds wide application in process control systems. However,
finding an optimal adjustment of the controller is often a troublesome task.
Furthermore, the determination of the proportional gain, the integral gain and
the differential gain is only dependent upon the input-output behaviour of the
open-loop system. It can not take the internal structure of the system into
account. On the basis of these considerations. the modern control theory is

employed, namely, the state space method (Takahashi et al, 1970; Leipholz
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and Abdel-Rohman, 1986; Borrie, 1986; Friedland, 1987: Furuta et al. 1988).

6.2.2 Modelling of the winch

The winch is a device for generating the control action under a power
supply. A simple model for this device is depicted in Figure 6.6 (James et al. 1963).

The governing equation for this simple closed-loop mechanical system can
be given by:

u+ Ku = Kug (6.1)

where u represents the output of the winch under the excitation of the input wup.
The dot indicates differentiation with respect to time.

It should be pointed out that this model has certain limitations. First of
all, it does not exhibit the inertia effect which exists in any real servomechanism.
Secondly, it assumes a linear relationship between the input and the output defined
through the governing equation.

The behaviour of this model can be illustrated by subjecting it to the

following two different types of inputs:
1. A step function (transient behaviour)
In this case, ug is given by:

0 t<tg
Ug =

uy t >t
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The solution then is
0 t <ty
ur{l — exp[—LK(t —t5)]} t > tg
As shown in Figure 6.7, the output approaches the input. The larger the value

of K, the more quickly will the output approach the input.
2. A sinusoidal input (steady behaviour)
In this case,
up = ursin(wt)
The output is given by

u .
d sin(wt — tan™! w)

It 1s immediately evident, as shown in Figure 6.8, that if i’ is large enough,

u =

the output will be essentially equal to the input both in magnitude and in

phase.

The physical implication of requiring a large value of I demands an ability
to deliver an unlimited power supply at a high rate. However, in reality cvery control
component exhibits the effect of saturation. For example, the range of signal (air
pressure, electric current, cte.) used to operate a valve is bounded, as well as the
valve stroke itself. The saturation sets a limit to I, and beyond this limit the

relation between the output and the input becomes nonlinear.
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6.2.3 Modelling of the cable

A simple second order linear model is proposed for the system of cable and

subsea unit, given by

at + bz + = = x, (6.2)

where z is the motion of the subsea unit, and z, is the motion of the boom tip.

The two coefficients a and b shall reflect the state of the system. They are
determined by the system identification method, as illustrated in Figure 6.9. For
a given cable and subsea unit, we first simulate, in the time domain, the subsea
unit response to a given stochastic input of the boom tip motion using the method
described in Chapter 3. The task of system identification is then performed to find
the two coefficients a and b which provide the best fit for the response.

The iterative scheme of the system identification for determining a and b is

a
described as follows. Letting stand for the kth approximation of a and b, and

b
k
the (k + 1)th approximation be

k+1 k k

Aa
then the is given by

Ab
k

= (X{Xi) " Xyex
Ab



where

The subsea unit motion at time equal to t; is represented by =(#;),7 = 1,2,---

and is obtained by invoking the method described in Chapter 3, whilst +*(¢;),?

€L =

2(tr) — a*(tr)

-
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, L

1,2,--., L are the results found by solving Eq. ( 6.2) where a and b are set at

their kth approximations. The elements in the matrix X, are given by solving the

following auxiliary ordinary differential equations:

T1a

T9oq

L1

Tap

L2a

1 1 b
—2(.1'1 +bag — 2p) — —T1g — —T2q
a a a

L2b
1 1 b

— X'y — —U1p — —T
a a a



subject to initial conditions:
xla(())
224(0)

:Blb(O)

z25(0)
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A better model can be achieved by introducing nonlinear terms. For ex-

ample, instead of Eq. ( 6.2), we propose

az + bz|t| + = = x (6.3)

However, such a nonlinear model would cause considerable difficulties in the con-

troller design. Hence, we confine ourselves throughout this chapter within the

bounds of linearity.

For a detailed description of system identification, see Kalaba and Spingarn

(1982).

6.2.4 Optimal control: the design of the control law

The open-loop consisting of the winch, cable/subsea unit is governed by

at +br+ =120+ u (6.4)

u+ KNu= Kug (6.5)
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In a state-space form, the governing equations become

x 0 1 0 z 0 0
d .
] = ~1 _g 1 s |+ 0 |u+ L1 o (6.6)
U 0 0 I u K 0
or in a short form - o

where

u K 0
- -
0 1 0
A=) _1 _b 1
0 0 —-I

Since the objective in heave compensation is to strive for a zero steady
state response, i1t becomes obvious that what we are concerned with is a regulator

problem. In this case the performance index J of the optimal regulator control is

defined by
J = /OCO[XTQX + uoRug|dt (6.8)
and the optimal control is obtained from
uy = Gx (6.9)
with the optimal gain in steady state given by

G=-R'B'M (6.10)
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where M is the solution of the following Riccati matrix equation (Roberts. 1971;

Denman, 1976; Balzer, 1980; Anderson, 1978; Friedland, 1987)

MA + ATM - MBR'B'TM +Q =0

6.2.5 Account of the time delay

The control of the heave compensation system starts with measuring the
subsea unit’s response and then transmitting the signal into the winch. It ends up by
actuating the winch according to the control law. This process involves a time delay
between the instant of the measurement and that of applying the control action. In
this subsection, we shall examine the effect of the time-delay (Hammarstrom and
Gros, 1980; Leipholz and Abdel-Rohman, 1986).

We assume that most time delay in the system may be attributed to the

winch. In this case, the equations of the dynamic behaviour of the system are:
az(t) + bz(t) + z(t) = xo(t) + u(t) (6.11)
u(t) + Ku(t) = Kuo(t — 1) (6.12)

where 7 equals the delay.

By using Taylor’s theorem, we have
T2 .
uo(t) = up(t — 7) + 7ho(t — 7) + Euo(t )

This series is truncated to the second order, resulting in the following second order

differential equation in terms of ug(t — 7)

up(t —7) = 2—uo(t) - %ua(t —7)— %ﬁo(t —7) (6.13)

7—2
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Combining Eqgs. ( 6.11), ( 6.12) and ( 6.13), we have the following system

of equations in the state space form:

W - -
z 0 0 z 0 0
T % 0 T 0 1
d
dt u -K K u 0 |ut| 0 | %o
uo(t — 7) 0 0 uo(t — 7) 0 0
to(t — 7) 0o - lo(t — 7) 2 0
(6.14)
or in a short form
X, = AXx. + B.ug + C.zo (6.15)

This equation is in the same form as Eq. ( 6.7), hence the same strategies
can be used to design an optimal controller. In order to assess the effect of the time

delay, the following indices are defined

t

Jd:/ hdt (6.16)
0
t

J, = / 32t (6.17)
0

J.=)Y G} (6.18)

in which J; involves the displacement of the subsea unit, J, involves its velocity

and J, involves the control energy required. G; are all elements of G defined by Eq.

( 6.10).
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6.2.6 Numerical examples

An attempt to select factual cable/subsea unit parameters was made. The

data chosen are:
cable length: 900m

cable diameter: 0.047m
Young’s modulus: 9.09E9 N /m?
cable weight in water: 54 N/m
cable mass distribution: 7.2 kg/m
tangential drag coefficient: 0.025
subsea unit weight in water: 50000 N
subsea unit projected area: 1 m?
subsea unit effective mass: 125000 kg
drag coeflicient of subsea unit: 1
In Figure 6.10, an artificial random time series is generated to represent
the boom tip motion. The response of the subsea unit is then simulated and the
result is given in Figure 6.11. Using the system identification method described in
Section 6.2.3, we have the simple model defined by Eq. ( 6.2) with a = 7.339769
and b = 0.1906759. The response of the subsea unit is then reconstructed using the
simple model, which gives the result in Figure 6.12.
A reasonably good agreement has been achieved between the results in Fig-
ures 6.11 and 6.12. It has been noticed that the values of a and b are scattered in a
narrow band if the number of the points used in the least-squares estimation varies.
In Figure 6.13, a better result is achieved by using the model defined by Eq. ( 6.3).
Having constructed a simple model for the cable/subsea unit system, we are
now able to proceed with the design of the controller, as described in Section 6.2.4.

The results are presented in Figure 6.14 to Figure 6.16. One observes a large reduction

in the response of the subsea unit when the active control is introduced. As one would
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expect, the output of the winch acts to oppose the boom tip motion. This conclusion
was reached in Section 6.1.3.

The time-delay effect is depicted in Figures 6.17, 6.18 and 6.19. In F igure
6.17, the controlled and the uncontrolled responses are presented for the previous
system, the only difference being that in this case a time-delay of 0.2s has been
introduced. It can be seen that the controlled response can still be kept small. How-
ever, there is a significant increase in the control energy required which is manifested
through the increase in magnitude of the gain. Indeed this may be observed in Figures
6.18 and 6.19 where the displacement index and the velocity index defined by Egs.
( 6.16) and ( 6.17) respectively are plotted against the control energy index defined
by Eq. ( 6.18). It is obvious that in order to achieve the same control effect, more

control energy is required if the time-delay is present.

6.3 STOCHASTIC CONTROL: AN OVERALL APPROACH

It has been shown in the previous section that the heave compensation as a
regulator problem is not dependent upon the characteristics of the boom tip motion.
However, if the boom tip motion is known a priori and formulated into the state

equations, presumably a better result can be obtained.

The stochastic control theory is applied here due to the fact that the boom
tip motion is random in nature. In order to design a suitable optimal control law, it

is necessary to be able to generate the boom tip motion by feeding an appropriate
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filter with white noise. This demands the modelling of environmental factors such
as sea wave and vessel dynamics, in addition to the modelling of the winch and the
cable/subsea unit system described in the previous section. Once the filter is designed,
finding an optimal stochastic control law becomes a straightforward problem (Athans,
1972; Friedland, 1987). A block diagram is shown in Figure 6.20 to illustrate the

design procedure and the structure of the control system.

6.3.1 Modelling of sea waves

In this subsection, the stochastic wave elevation is approximated in such
a way that the error between the wave spectrum and the approximated spectrum

defined by the filter fed with white noise is minimized:
S, ~ S = |H(V—1w)[*S¥ (6.19)

where S, is the wave spectrum. S? is a rational approximation. H is the transfer

function of the filter. S* is the power spectral density of white noise:
S, =1

As an example, we use the Bretchneider wave spectrum

1.25 2 wfn Wm 4
S, = THI/3 s exp[—1.25(—w—) ] (6.20)

where H,3 is the significant wave height, and wy, is the modal frequency.
A rational approximation to this spectrum is given by (Triantaffyllou et al,
1983)
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where

1.25
So =~ H?%, - 1.8861

4w,,

wo = 0.9538w,,

As the result, we have the following expression for the transfer function

(5)°

H(s) = /S 1 +14142 + (2)7F (6.22)

The state space representation of the transfer function given in Eq. ( 6.22)
can be expressed as

x=A,x,+B, - w
n = CXx, (6.23)

where 7 i1s the sea wave elevation, X, represents the state variables of the model, and

w is the white noise of unit power spectral density.

0 1 0 0 0 0
—w?2 —1414wp 0 w? 0 0
0 0 0 1 0 0
A, =
0 0 —w?2 —1.4l4wy O wg
0 0 0 0 0 1
0 0 0 0 —w? —1.414wo
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. -

C;=1VS, 00000

6.3.2 Modelling of vessel dynamics

It 1s desirable to have an accurate vessel model capable of providing theo-
retical prediction of the boom tip motion. However this is not an easy task. In the
linear ship motion theory, the dynamics of the floating body consists of the solution

of the following equation
(M+0©)g+Bgq+Cq=F (6.24)

where q is the vector of generalized coordinates describing the ship’s position.
M 1s the generalized mass matrix.
© is the added mass matrix due to the hydrodynamic forces.
B is the damping matrix due to the hydrodynamic forces.
C is the restoring matrix due to the hydrostatic effects.

F is the generalized wave excitation forces.
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The ship dynamics can also been seen as a transfer function in the frequency

domain. It takes a great deal of data and calculations to obtain the transfer function

of our concern, namely the relation between the wave motion and the vertical motion

of the boom tip, through solution of Eq. ( 6.24). In order to simplify the whole

procedure, it is assumed that the relation can be approximated by a second order
filter governed by

Zo + 26w, To + wizo = K,w? (6.25)

where x¢ is the vertical coordinate of the boom tip. &,,w,, and I, are all parameters
to be either determined empirically or derived from a sea-keeping program. The
system identification method can be used here to determine the parameters.

In the state space form, Eq. ( 6.25) becomes
Xy = Apxp + By - 1

Tog = Cbxb (626)

where
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6.3.3 Modelling of the cable/subsea unit and the winch
The equations are rewritten here:
Xm = AnXm + By - uo + B, 2o

r=C,X, (6.27)

where z 1s the vertical coordinate of the subsea unit,

[ ]
0 1 0
A,=1|_1 _& 1
0 0 —-I
0 0

_Kﬂ _Oj

Cm:[l 0 0}

6.3.4 Stochastic optimal control design
Eqgs. ( 6.23), ( 6.26) and ( 6.27) can be combined to yield one single system
given by

).(IAX-}—Bl'Uo-{—B-z'lU

QW)
V8]
o

r=Cx (0.
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An objective function has to be specified in order to find an optimal control

law. In the presence of random variables, the objective function is considered as a

function of the average response and the control energy. Using a quadratic objective
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function, we have
J = E{ /0 (xTQx + uRu]dt) (6.29)

where Q and R are non negative weighing matrices.

The optimal control law is given by
uo = —R™IBTMx (6.30)

where M 1is the solution of Riccati matrix equation.

The effectiveness of control i1s to be measured in terms of the mean square
controlled response. To calculate the variances and covariances of the state vari-
ables, thereby to check the controlled mean square response, we need to solve the

Lyapunov matrix equation:
AP +PAT +B,BI =0 (6.31)

where

E{zz:} .. E{ziz11}

P =E{xxT} =

E{-’E11$1} E{il‘ll.'lfll}

A uncontrolled
Ay =

A_BIR‘IBfM controlled
6.3.5 Optimization

In the previous sections, emphasis was put on finding the optimal control

law once the values of the parameters were given. However, one should realisc that
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to design an optimal system of heave compensation, optimization of the svstem
parameters should also be considered.

When all the parameters in the Eqs. ( 6.28) and ( 6.29) have been specified.
the optimal control law can be found through the algorithms presented in last

section. Substituting Eq. ( 6.30) into Eq. ( 6.28), we obtain
).( = on + BQ W

r=Cx (6.32)

Since this equation’s coefficients are time invariant, the Fourier transfor-

mation results in the following matrix equation
(V—1wl — Ap)X(V—-1w) = By (V-1w)

where

+ o0

X(V—-1w) = F{x(t)} = / x(t)e~ V=1 dt

-0

W(VTw) = Flult)) = [ T ()T

o0

The relation between the input and the output in the frequency domain 1s
X(V=1w) = H(V=1w) - W(V~1w)
where the transfer function H is given by
H(V=1w) = C(V—-1wl — Ap)"'B; (6.33)

The power spectral density function of the random subsea unit responsc 13

then given as

S! = H(—V=1u)SYH(V-1x)



= |H(V-1w)’ (6.34)

The standard deviation of the subsea unit response is given by

+o00
o= \//_Oo |H(vV/—1w)|2dw (6.35)

In a real situation, parameters of the sea wave and the vessel are given
beforehand. They can hardly be changed. To a certain extent. however. we can op-
timize the parameters of the winch or the cable in order to achieve better operation

performances.

An optimal value of the parameter in question can be deduced by an opti-

mization process consisting of the following steps:

1. Assume values for the parameter and design the optimal control law.

2. Evaluate the control energy consumed.
3. Calculate the standard deviation of the subsea unit response.

4. Find the optimal value of the parameter by plotting the control energy against

the value of the parameter for a prescribed standard deviation.

It is clear that the deduced parameters are optimal in the sense that the
least energy is required to meet certain criterion set beforehand for the subsea unit
response. When minimising the energy consumption is not the only objective of the

design, this optimization process ccases to be valid.

At this stage we can not calculate the real control energy consumption.

However an index of the control energy for relative comparison may be eiven as. for
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example,

energy index = [ G?

6.3.6 Numerical examples
The values of the parameters selected are as follows:

1. environmental parameters: significant wave height Hy;s = 10ft = 3.048m,

modal frequency wy,, = 0.785rad/s. These values correspond to sea state 5.

(Wind speed is about 20 knots)
2. ship dynamics parameters: w, = 0.393rad/s, ¢, = 0.6, K, = 0.5
3. winch parameter: K = 1.

4. cable/subsea unit parameters: a = 0.8959,b = 0.1658

The subsea unit is assumed to have been at rest before the application of
the wave. Under these conditions, the controlled and the uncontrolled responses of
the subsea unit are determined. It is also assumed that continuous measurements are
supplied to a Kalman filter which subsequently processes the signals and estimates
state variables.

Figure 6.21 shows the rational approximation of the wave spectrum. Further
improvement is needed here.

Figure 6.22 presents a realisation of the wave elevation.

Figure 6.23 shows the uncontrolled response of the subsea unit. The standard

deviation, o, is 0.255m.
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Figure 6.24 shows the controlled response where o equals 2.96 x 10~*m. The
control effect is evident.

Figure 6.25 gives the optimization result for the winch parameter K.. It has
been stated that K is the parameter describing how quickly the output of the winch
can approach the input to it. The larger the value of K, the more quickly the winch
acts. Apparently a quicker winch is more desirable than a sluggish one, although it
will cost more. The result here indicates that under a given situation and a prescribed
standard deviation of subsea unit response, there exists a critical value of K.. Any K
which is greater than this critical value will not further improve the system in terms
of reducing the control energy, while if K is less than this value the control energy

will increase significantly.

6.4 DISCUSSION

The foregoing part of this chapter outlines the basic loop of an active control
of the tethered subsea unit system which has as its purpose heave compensation.
Numerical examples have shown the great potential of the proposed idea. In this

section, relevant topics arising from previous sections are discussed.

1. Measurement. This chapter assumes continuous accurate measurements, from
sensors mounted on the subsea unit, of its position and its velocity. The ques-
tions of what types of sensors to choose, which principles to be adopted as a

basis for measurement, and how to transmit the signals, are beyond the scope
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of this thesis. It is believed that these practical problems can be solved in one

way or another.

The other information on the state of the system can be either measured directly
or estimated by an optimal observer. The design of this observer should be

straightforward.

. The system identification method allows the determination of a and b provided
that the particulars of cable and subsea unit are given. The reverse problem
demands the ability to specify all particulars of the cable/subsea unit system
once a and b are prescribed. The solution of this reverse problem will pave the

way towards the optimisation of the cable/subsea unit system.

. The paying out or reeling in of cable by the active winch will change the state
of the cable/subsea unit system to some extent. The effect of this time-varying

state can be neglected if the cable is relatively long.

. This negligence ceases to be justifiable when we are considering the deployment
or retrieval phase where in addition to the zero-mean paying out or reeling in
there is a non-zero-mean change in the cable length. In this case, the system
becomes a time-varying one, and the design of control system must be adapted

accordingly.
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6.5 CONCLUDING REMARKS

1. Based upon the work described above, it may be concluded that the active
winch system appears to be a very promising solution to the problem of heave

compensation.

2. Nevertheless, further work needs to be done before a comprehensive evaluation

can be drawn up. This includes:
e More accurate modelling of the winch. For this purpose, a second order
ordinary differential equation should be considered.
e A better rational approximation of the wave spectrum.

e Feasibility studies of the active heave compensation. The feasibility shall
be measured in terms of the magnitudes of the speed, acceleration and

torque of the winch which generates the control action.
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Chapter 7

DISCUSSION

A poem is never finished; it is only abandoned.

Paul Valéry

7.1 GENERAL REMARKS

From the beginning of this thesis, attention has been brought to focus upon
the specific systems consisting of cables and subsea units which have wide applications
in subsea intervention operations. Research work has then been carried out in this
area, beginning with an assessment of the state of previous relevant work. This
assessment has revealed an inadequate theoretical understanding towards the system
on various aspects such as the unsteady dynamics and heave compensation.

It has been the aim of this thesis to improve our knowledge and provide

some useful tools by which various aspects of the tethered-subsea-unit systems can

be examined.
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7.2 CONTRIBUTIONS OF THE THESIS

In the following areas lie the main contributions of this thesis:

7.2.1 Statics

The contribution in this area is of a technical rather than fundamental nature.
The semi-analytic method developed in Chapter 2 has several advantages over others.
In addition to its convenience in handling different types of boundary conditions, it
uses less computational time and is highly accurate.

In the past, before the invention of the computer, researchers would try ev-
ery mathematical tool available to find closed solutions to their problems. Since
the computer entered daily research life, less and less attention has been paid to-
wards analytical methods, numerical methods being adopted immediately after the
establishment of governing equations. Just as school pupils indulging in the use of
calculators find themselves poorer and poorer in the basics of arithmetic, this trend
may prove detrimental to the advancement of research. A lot of successful examples
have shown that a little more analytical consideration can make both the numerical

computation easier and more effective, and the approach more beautiful.

7.2.2 Dynamics

The contribution in this area lies in the following aspects:

1. A Fresh start

A general method, which has the capacity to handle both the steady and the
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unsteady dynamics of a cable/subsea unit system, has been developed. This

method gives an excellent quantitative understanding of the behaviour of the

system. The method can be readily extended into three-dimensional space.

2. Rigorous analysis
A rigorous analysis has been conducted to reveal fundamental characteristics of
both the system and the mathematical models. Such analysis both enhances

our understanding and is helpful in computation.

3. Package of software
The suite of programs developed in the course of this thesis can be applied readily
to various practical problems either to help in design or to supply information

for operations.

7.2.3 Heave Compensation

The contribution of this thesis in this area lies in the novel idea of active
heave compensation which can be put into practice in the near future. The research

carried out in this thesis indicates the effectiveness of the method proposed.
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7.3 RECOMMENDATIONS FOR FURTHER STUDIES

In addition to the refinement work suggested at the end of each chapter, the

following topics are recommended for further studies:

1. As the current methods of estimating the hydrodynamic loadings upon both
the cable and the subsea unit are mainly empirical and experimental, more

theoretical research work should be directed towards this.

2. Naturally, further work can be done to extend the methodology presented in

Chapters 3 and 4 into a three-dimensional case.

3. The problems of marine cable slack and the subsequent snap loading still remain
unsolved. A possible approximation to this, which can be implemented into the
present framework without significant alteration of the programs, is to propose
a more general modulus = in the place of the Young’s modulus E by defining

E tension > 0

(1]

10~20 tension <0
4. In this thesis the main control parameter of the active heave compensation is
the position of the subsea unit. The tension in the cable is not considered
since we assume that high tension will be prevented by a passive compensator.
Further work is needed to both investigate a passive compensator and integrate

the passive one with the active one proposed here.

5. Work can be continued to extend the present methodology of heave compensa-

tion into the unsteady situation where the cable is being paid out or hauled 1n
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at a constant speed.

6. Finally, endless effort can be made to refine the various numerical algorithms

used in this thesis.
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Chapter 8

CONCLUSIONS

Last scene of all,

That ends this strange eventful history,

Is second childishness and mere oblivion,

Sans teeth, sans eyes, sans taste, sans everything.

W. Shakespeare: As you like it

Based upon the investigations described in this thesis, the following conclu-

sions can be drawn:

1. A highly accurate and efficient method has been developed which can be used
to predict three-dimensional static configurations of marine cables. The method

is based upon a semi-analytic solution of the governing equation.

2. A novel numerical approach has been developed which can be used to predict
one-dimensional dynamic behaviour of systems of cables and subsea units. This

method can handle the unsteady dynamics, where the length of cable varies, and
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steady dynamics, where the length is fixed, in a uniform manner by introducing

a coordinate transformation.

. This idea of coordinate transformation has been further extended into more

general two-dimensional cases. Theoretical analysis has revealed the relation

between the one-dimensional and two-dimensional approximations.

. In the three-dimensional case, dynamic behaviour of cable/subsea unit systems
has been studied by a lumped-mass model. The proposed numerical integration
scheme is unconditionally stable. Theoretical analysis has shown that the model

exhibits high-frequency cut-oft.

. By applying modern control theories, an actively controlled heave compensation

mechanism has been developed.
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NOMENCLATURE

1. GENERAL CONVENTIONS

¢ Bold face letters represent either vectors or matrices.

e SI units are implicit.

2. LIST OF MAIN SYMBOLS

A

B
CpzsCpy,Cp:
Cn,CpN
C:,Cp-

d

D

.

Gty it

- cross sectional area of the cable

buoyant force on an infinitesimal cable length
drag coefficients of the subsea unit
- normal drag coefficient of the cable

tangential drag coefficient of the cable

diameter of the cable

drag force on an infinitesimal cable length
a parameter of small quantity

added masses of the cable

[
_t
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E - Young’s modulus

E{} - mean

F;:, FJ', F 21 - drag force components on a cable segment
Fn, F; - normal and tangential drag components

g - gravitational acceleration

G - gain matrix

H - transfer function

Hys - significant wave height

1 - index

i,j,k - unit vectors along the axes of a Cartesian coordinate system
I - moment of inertia

I - unit matrix

- inertia force on an infinitesimal cable length

J - index

J - control index

k - wave number

K, K, - winch parameter

l,l,-+%, -1 - lengths of cable segments

L - length of the cable

Lo - initial length of cable

m - mass distribution of the cable

Map, Mg - added masses distribution due to the longitudinal and trans-

verse motion of the cable



Maz, May, Maz

M

MOaMs

My, Map, Mg

Maxa May, Maz

O(t)

R(t)

ro
(2]
=1

added masses distribution of the cable

bending moment

mass of the subsea unit
added masses of the subsea unit
added masses of the subsea unit

horizontal component of the boom tip motion
arch length along the strained cable

vertical displacement of the cable

horizontal displacement of the cable

vertical component of the boom tip motion
position vector of the cable

arch length of the unstrained cable
projected area of the subsea unit

projected areas of the subsea unit

wave spectrum

rational approximation of the wave spectrum
time

tension in the cable

time

static tension in the cable

first order dynamic tension in the cable

second order dynamic tension in the cable



V, V.

wq
Wo

w

tension in the cable

force components in a Cartesian coordinate system
transform matrix

vertical displacement of the cable

output of the winch

input of the winch

components of the current velocity

underwater current velocity vector

current velocity at cable’s normal direction
current velocity at cable’s longitudinal direction
deployment speed of the cable

volume of the subsea unit

normal velocity of the cable
force components at one end of the cable

velocity components of the cable in the natural coordinate
system

velocity of the cable
longitudinal velocity of the cable

white noise

weight distribution of the cable in water
subsea unit’s weight in water

cable’s weight in water

gravity force on an infinitesimal cable length

state vector

(8™

v 2]



z,Y,%

TL,YL,?L

€o

0,0..1,0. 1
2

i+%’ 71—

Ni.}.-;-’/l'i..%

[
[

Cartesian coordinate system

coordinates

natural coordinate system

wave number
strain
static strain of the cable

rotation angle of the cable

engenvalue

amplification factor

mass (mass+added mass) distribution of the cable
added mass coeflicients of the cable

density of the fluid medium

standard deviation

cross sectional areas of the cable

shear force

rotation angle of the cable
frequency
modal frequency

time increment

space increment
transposition of a matrix

inversion of a matrix
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APPENDIX:
INTRODUCTION TO
EQUATIONS OF MARINE

CABLE DYNAMICS

Introduction is seldom of any efficacy except in the happy cases
where it is almost superfluous.

E. Gibbon

12.1 GENERAL REMARKS

The purpose of this appendix is to provide a general mathematical formu-
lation for marine cable dynamics.

The term ‘general’ refers to the following properties:

1. analysis conducted in three dimensions,
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2. hydrodynamic forces included without any restrictions to the nature of the

underwater current,

3. nonlinear stress-strain relation allowed.
However, some idealizations have been made. These include:

1. no bending stiffness and torsional stiffness,
2. the tension is strictly positive.

The mathematical modelling is based upon a distributed system. By equat-
ing the rate of change of momentum of an infinitesimal element of the cable to all
the forces acting upon it, the equation of motion is derived in a vector form. This
vector equation is then resolved in a Cartesian coordinate system and a natural co-

ordinate system, followed by a rigid analysis in each coordinate system. For relevant

references, see Cristescu (1967), Patton (1972) and Triantafyllou et al (1986).

12.2 FORCES ON A CABLE ELEMENT

Consider a strained cable element of an infinitesimal length ds’ located at a
point r = {z,y, 2z} in a Cartesian coordinate system, as shown in Figure A.1, where
s is a curvilinear coordinate along the strained cable from an arbitrary coordinate

origin. The forces acting upon this element arise from:

o Weight The force due to the gravity is given by:

W = —gmlds'k
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where g is the gravity acceleration and m’ the mass per unit length of the

strained cable.
e Buoyancy The buoyant force is given by:
B = pgA'ds’k
where A’ is the cross sectional area of the strained cable. !

o Hydrodynamic drag force Under the assumption of decomposition the drag

force is given by:
1 '
D = EPCDNdllUN — VNI(UN — VN)dS -+
ngD,J U, - V,|(U, - V,)ds’

where U is the current vector and

or
Vz—a——t-

e Hydrodynamic inertia force The inertia force due to the added mass effect of

the fluid media is given by:

I= m’(a—U — -B—Y)ds

where m, is the added mass per unit length of the strained cable.

o Tension The tension force at one end of the element is T(s') whilst at the
other end the tension is T(s' +ds'). In extensible, perfectly flexible cables, the

tension in every point is always directed along the tangent to the cable.

'For a more accurate formulation, this term should be corrected for the lack of pressure at t:n;7§l)1d~ of
the infinitesimal element. This leads to a concept of effective tension. For details, see Pedersen (
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12.3 EQUATION OF MOTION

By applying Newton’s law of motion, we have:

’ 1621' ' r
mdsw = —gmdsk+ pgAdsk+

1 '
EPCDNdIlUN - VNI(UN - VN)dS +

T I}
-2—pCDTd’ U, = V,|(U, = V,)ds' +

[ aU av [ 1 [ ’
ma(—a—t -—_ E)ds + T(S + dS ) — T(S ) (121)

Taking the limit as ds’ — 0 and noticing the following relations of conser-

vation between the strained and the unstrained cables: 2

mds = m-ds
m.ds = my,-ds
Ads = A-ds

where s is an initial coordinate of the unstrained cable, Eq. ( 12.1) yields:

62
(m+mo) gz = —g(m—pA)k+

%pcDNdf1'+ e|Ux — Val(Uy — Vn) +

ngDTd\/l + 6|U7— - VTl(UT - V‘r) +
ou 9, T Or (12.2)

Ma ot + 0s'1+¢€0s
Strictly speaking, the volume conservation is not true for most materials. The ratio of an mﬁmtesn.mal
element of volume in the strained state to the corresponding infinitesimal element of volume in the Qnstfun]ct'i
state is often written as 1 + A, where A is the cubical dilatation. When a cable is stret@hed longltudu;al \2
A % (1 — 2v)e, when ¢ is small. For most materials v is about } or {, not 7 as ICQuu‘ed by tht; ;rlo ume
conservation. However, this conservation assumption only introduces very small errors into the following

formulation.
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where ¢ 1is given by:

/

ds or

€= " 1=l51-1 (12.3)

To this equation must be added a constitutive relation for the cable consid-
ered. The constitutive relation is dependent upon the type of material of the cable.

Throughout this appendix, the relation is assumed to be of the form

T =T(e) (12.4)

where the function T is usually a monotonically increasing function of «.
This assumption is better than Hooke’s law in the sense that it allows
nonlinear relations between the strain and the stress. Nevertheless, it still has the

following restrictions:
1. The cable must not have a variable cross section area.

2. Plastic stretch resulting from the maximum stress exceeding the ultimate ten-

sile strength of the material can not be taken into account.

3. The mechanical properties of the cable material must be independent of the

rate of the dynamic loading,.
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12.4 ANALYSIS IN A CARTESIAN COORDINATE SYS-

TEM

12.4.1 Cable Equations

In a Cartesian coordinate system, Eq. ( 12.2) can be resolved into the

following three components:

where

(m+me) g ~5sTveos) T = O
oy 0, T Oy

(m + may) 5 Y a(mg) -F, =0 (12.5)
#z 0, T 0z

(m+maz)at2 —a(-l—_*_—s--a—s)—Fz = 0

1 .
ngDNd\/l + 6|UN — VN|(UN - VN) -1+

) BUI
%pCD'rdV 1+ 6|U‘r - Vq—l(UT — V‘r) -1+ m“—a—t—
1 :
'2‘PCDNdV 1+¢|Uny — Vn|(Un = Vi) i+
i — . au,
EPCD‘rd 1 + 5|U'r - VT|(UT - V‘r) | + may—at—
1
—pCDNd\/I +¢|Un — Vn|(Un — Vi) k- g(m — pA) +

oU,
—pCDTd\/l—i-eIU ~V,|[(U, - V) - k+ma— (12.6)

\/<—)2 Wy p (Sp -1
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12.4.2 Characteristics

Expanding Eq. ( 12.5) and taking into account the constitutive relation.

Eq. ( 12.4), we have

T 0% 0’z  0z(1+e)T. —T e

1+553_2—u$0t2+63 (1+4¢)2 63_FT’ =0 (12.7)
T &y &%y 0Oy(1+e)T.—Toe
T1e0s2 Mo T8 (e s v =0 (12.8)

T 9% 2z  02(14+¢)T. —T 3¢

T1eos2 Mo tas (+ep o5 7 =0 (12.9)
where
P = M+ My,
By = M+ Mgy
Bz = m + Mg,
dT
Ts = —(E
0 _ 1 oedn 0y 0:0 1210
0s 14¢6'0s9s2  0s0s? 0s0s?

In order to analyse the system of Egs. ( 12.7), ( 12.8) and ( 12.9), it
is reduced into a equivalent first order quasi-linear system of partial differential

equations

oY L, 9Y 12.11)
hulinll Z_41+B=0 (12.
5 +Aas +



where

Ji
J4

J7

J2
Js

Js

J3
J

Jo

238



239

—z; — ,
—Yt—Ys
—2 — 2,
0
B = 0
0
E
Kz
Fy
Ky
F;
Hz ]
7 —(1+€)T€—T:c2— T
1 (1+ep ° pe(l+e)
(14+e)T.-T
T2 (14+¢)3 Tolls
(14e)T. - T
& (1+¢)3 ToZs
— (1 + €)T€ —T
T (1+¢)3 TaYs
(1+e)T.-T , T
J5 o 3 Ys — —F7
(1+¢) py(1+€)
(1+e)T, -T
Je (1+¢) YsZs
—_ (1 + S)Ts -T
J7 - T +e) T2,
(14+e)T.-T
Je (1+¢)? s%s
7. = (14+e)T.—T , T
o _

I+eP ° m(l+e)

The system defined by Eq. ( 12.11) has nine equations for the nine un-
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knowns LTyYy,2,T4yYsy25y Tty Yt and Z¢. The notations T,,Z;, - stand for 3r 9oz
8‘ﬂ 3“. A

etc.

To simplify the analysis in what follows, it is assumed

Pz = Hy = fhz =}

The nine eigenvalues of Eq. ( 12.11) can be obtained through solving the

following equation

0 0 0 Ji Jo Jz =x 0 0

o o 0 Jy J5 J 0 —-x 0

0 0 0 Jo Jg Jo 0 0 =X

It is evident that the first three eigenvalues are
M=X=A=1
The rest are governed by the following polynomial of order six
X+ (J1 + Js + Jo)A + (JsJo — Jods + JuJs — JoJu+ JiJo = Ja )X

+(J1J5J9 + J3J4J8 + J2J6J7 - J3.]5J7 - J]JGJS - J2J4J9) =0
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which gives

p
'Y
5

I

+ /L
u

[T
y - A = :t 71~
> (1+¢e)u

It follows that Eq. ( 12.11) is hyperbolic since all the eigenvalues are real.

>
(=2
-3

I

Not all the eigenvalues have physical representation. Indeed the reduction can
introduce redundant eigenvalues into the system.

Physically, the cable can propagate both longitudinal tensile waves and
transverse flexural waves. The eigenvalues represent the velocities of waves travel-
ling in the cable. It can be seen that the tensile wave velocity, represented by A,
and the transverse wave velocities, represented by Ag7 and Agg, are functions of the
state of the cable which changes in both the space and time domains.

Since for practical marine cables, ¢ < 1

2
\h+e=1+%—%+~~%1

/T
6,7 = Ago = T4/ —
7

In Chapter 4, for the transverse waves of a two dimensional case, we have

we have

obtained the same result through perturbation analysis.

12.4.3 Ordinary Differential equations

The characteristic lines are defined by

ds
2=\ i=1,2,--+,9
(dt)' t
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It can be seen that with the exception of the first three, all the other

characteristic lines are generally curved lines, whose slopes depend on the state of

the cable.

It is well known that, according to the theory of hyperbolic equation, the
original set of partial differential equations can be transformed into a set of ordinary

differential equations along the characteristic lines.
The first three can be easily found. All are defined along the characteristic

line % = 1, and given by

dz —(z;+z,)dt = 0
dy - (yt + ya)dt =0

dz—(zs+2,)dt = 0

To find the rest of the ordinary differential equations, we multiply Eq.
(12.7) by z,, Eq. ( 12.8) by y,, Eq. ( 12.9) by 2, and add them together. This

operation results in

0z, O ,
63 2 att) +ys(T€%yj - #%tL

(T,

42y(T, 2 — p82) —2,Fr —y,Fy—2F =0 (1212)

€ J3s

On the other hand, from the following relations

Oz oz,
_ % dt

dz, = Fodst+
dz, = Oz¢ 4 4 9Tty

0s ot



we have

0z, Oz, 1 ds
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2 _— —— —
i (12.13)
Similarly we have
ays ayt 1 ds
(dt 2% " o = 2 (e — dye) (12.14)
3z, 0z 1 ds
)2 - 5 = (5% — dz) (12.15)

Thus from Eqs. ( 12.12) and ( 12.13), ( 12.14), ( 12.15), it is clear that

along the characteristic line defined by % = |/T./u, we have

/Te
T4 Fda:, — dz;) +y,(\/§d:c, — dy;)

dt
+z,(\/%:da:, —dz) —71-(:1:..,FI + ysFy + 2,F,) =0

and along characteristic line defined by % = —y/T./u, we have

T.
Z,( ;dw, +dzy) +y,(y/Zdz, + dy,)

dt
+Z,(\/-T;;_‘d$, + dzt) +';(xst: + ysFy + Zan) = 0

Further, substituting Eq. ( 12.12) into Eq. ( 12.7), we have

T Oz 3:ct
d —_ F + 3F +23F+
1+¢€ Os "at (1+ )2[$ Y
T Oz, _ 0z T dy, Oy T 0z _ Ouy p _ g (12.16)
x"(1+e Os ) (1+€ Os _Nat)+z’(1+e Js #0t)]

Thus along % = \/T/[u(l + ¢)], we have from Eq. ( 12.16)

T dt T,

1
z, —d F = xF+y,F+~sF)
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T
p(1+e)

Along % = —\/T/[u(l + ¢€)], we have

z,( dr, — dz;) + y,(

(1 + ) dyt) + Z,( dz, dzt ] =0

T dt T,
dr, —d ——F s B
p(1+¢) * Tt (1+ )2[ (zsFz + 4, F, + 2,F,)
( T dz, + dz;) ( dys + dy;) d
Ty P x — Ys K] T <3 s =
p(l+¢) v p(l+e) Y Ye) — 2 u(l+e) 23 +dz)] =0

Similarly, after substituting Eq. ( 12.12) into Eq. ( 12.8), we have the

following two ordinary differential equations

T dt
rep s F 12
(1te) Y Y (1+6)2[ (z,F; + y, Fy + 2,F,)+
d 3_d 8 d 8 —d s d 6—d =
o 1+ z ) + Y, (1+e) Yy Ye) + 24( z 7)) =0
d dys - dyt - ﬂF L [ (IL‘ F + ysF + st )
p(l+e) T+
8 d s d — Ys d 8 d — 4 dZ, +d2 = 0
z ( ﬂ(l +€) zs+ xt) y ( l‘(l +€) y + yt) 4 ( E) t)]

These two equations are defined respectively along the two characteristic lines given

by
ds T

@ _ 4
dt p(l+¢€)

12.4.4 Propagation of Discontinuities

From the physical point of view, the characteristic lines represent wave

fronts which define boundaries between the disturbed state and the undisturbed
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state. In the undisturbed state any derivatives vanish whilst in the disturbed state
they do not in general vanish. Therefore there exist discontinuities across the wave
fronts (Jeffrey and Taniuti, 1964).

Some in-depth understanding may be obtained through examining these
discontinuities. For this purpose we assume that the second order derivatives of
displacements have jumps in crossing the wave fronts, while the first order and
zero order derivatives remain continuous. A wave satisfying this criteria is called a
smooth wave which excludes the shock wave whose fronts are travelling discontinuity
boundaries even for the first order derivatives.

In what follows, the discussion will be confined to the neighbourhood of

the wave fronts defined by the characteristic lines

ds
— )i = A ‘=4, gt
(dt) Ai 1 5 9

Applying Eqgs. ( 12.13), ( 12.14) and ( 12.15) to either side of any wave
front and remembering that first order derivatives of displacements are continuous

in crossing the front, we have

(o %y (%t =0 (1217)
@2y - (T =0 (1219
(@ Fey - (S =0 (12.19)

where (¥) denotes the jump of ¥ in crossing any wave front.

Also applying the governing equations ( 12.7), ( 12.8), ( 12.9) and the

. . 917
compatibility relation ( 12.10) to either side of any front, and taking Eqs. (12.17).
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( 12.18) and ( 12.19) into account, we obtain

T $.q,,02, 1 T. —
T T

T 2,0 (14T ~T 0
- W) + 4, Gror (5 =0
T T, — 3
s UG + 2 T%):o

axs ay, 02,

Tl g ) T Us{5) T 25 )—(1+6)( ) 0

It 1s evident that in crossing the characteristic lines defined by

do_, [T
@~ \uite (12.20)
we have
O¢
(7)) = 0 (12.21)
z, ,0z, Ys aya z, 0z,
= .2
1+6<8s) 1+6(33> 1+6(6s) 0 (12.22)

and in crossing the wave fronts defined by

ds T,
as _ o |1 12.23
— :I:\/: (12.23)

we have
oz,, =z, ,0¢
( Os ) = 1+ 5<6s)
Oys, _ Ys ,0¢ (12.24)
( Os ) = 1+ €<33)
0z, 25 Qg

The physical meaning lying in Egs. ( 12.20), (12.21) and ( 12.22) is that the

transverse wave fronts affect the shape of the cable but do not affect the distribution
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of the strain. On the other hand, from Eqgs. ( 12.23) and ( 12.24), it follows that

the longitudinal wave fronts affect the distribution of the strain in the cable but do

not change its shape.

This conclusion only applies to the neighbourhood of the wave fronts. In

the disturbed region, the longitudinal waves and the transverse waves interact with

each other, and the propagation of a single type of wave is generally impossible.

12.4.5 Linearisation

The system defined by Eq. ( 12.5) is a non-linear one. The non-linearities

arise as a consequence of the following system properties:
1. Material behaviour
2. Geometry

3. External forces

To linearise the system, we first assume that the cable material obeys
Hooke’s law, that is,

T = EAe

Secondly, we assume the cable’s motions can be decomposed into sums of
small dynamic deviations and static equilibrium displacements. This is interpreted

mathematically by

T = ITo+er
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Y = Yo+ey
2 = zotezn
€ = €9+ eg

Fz = Fx0+er1
F, = Fy+ecF,
Fz = F20+6le

where e < 1.

Substituting these relations into Eq. ( 12.5), subtracting the static equation

from the dynamic one, and neglecting the terms of second or higher orders of e, we

have:
62.’1:1 0 €1 0z €0 Ot
T1_pa9 —F,=0 12.25
(m + Ma) ot? Bs[(l + €9)? Os + 1+ ¢y Os ) ! ( )
Oty d Yo g0 Oy
Z 9 _ - —F,,=0 12.26
(m +may) 5 EAas[(1 Tea 0s TTteg0sl o (12.26)
62 62'0 €o 621
9 F, =0 12.27
(m+mm)6t2 — FEA [(1+50)233+1+603 | — Fa ( )

1 0z¢0r; 4 Oyo Oy; = 02007

) (12.28)
14¢e9 Os Os Js Os 0s 0s

&1 =

where

o= /(G2 By + (G2 -1

This set of equations is linear for the dynamic motions around the three

dimensional static configuration.
One interesting feature of the linearised system is that if a cable has a

two dimensional static configuration, the dynamics can be decoupled into a two-
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dimensional in-plane motion and a one-dimensional out-of-plane motion. This con-

clusion can be demonstrated as follows.

Without losing generality, we can assume in this particular case

620
2 "
It follows from Eq. ( 12.27) that we have
8221 6 €o 821
(m + maz)_at2 — EAE('—I ¥ e 5‘3—) — le =0

This indicates that the motion in this direction is completely independent
of the motions in the other two directions, and that the reverse is also true, provided
that there is not an interaction of the external forces.

In an even more extreme case, where the static configuration is a straight
line, the three components of the motion become totally independent of each other,
and each can be treated as an one-dimensional problem. This happens in cases such
as a taut string, a hanging cable, etc.

The linearisation and decoupling greatly reduces the mathematical com-
plexity of the original non-linear governing equations. However, general analytical
solutions are still not accessible. The prominent difficulty involved is due to the van-
able coefficients in the linearised equations which are dependent upon the static statc
of the cable under consideration. Further geometric or constitutive simplifications
must be made in order to pursue analytic solutions. Such special solutions under

particular situations can be found in Irvine (1981) and Triantafyllou et al(1986).
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So far, limited discussion has taken place regarding the external forces.
Any linearisation would not be complete without linearising these terms. However.
this proves to be a formidable task. The fluid drag force is one of the fundamental
topics in fluid mechanics, involving tremendous complexities such as separation.
turbulence, stability and fluid-surface interaction. It is no wonder to find that the
current treatments of drag forces on cable are all semi-empirical.

We start with the acceptance of Eq. ( 12.6) as a valid account of the drag
forces without questioning to what extent the expression reflects the mechanism of
the fluid drag force. The following is concerned with its linearisation.

We assume that the tangential drag force is small in comparison to the
normal one. This allows it to be dropped from the equations. Upon expansion, we

have:

Uy—Vy=

{U 8t (1:3)2 [(Ur - %af g_: + (Uy ) +(U. - )a_, gi}H'
{U, - at (1+e)2 [(Uz — 31: gf + (U, - ) + (U, ) ] ARy

(U, - & — Fsl(U. - 2)% + (U, - D% +(U. - EIE)k

Substituting z, y and z in the equation above with the sums of static
components and dynamic components, and neglecting the effect of elastic strain on

the drag force, we ultimately arrive at

Fio = £Cpndas\fa+a}+al

p
Fo = ECDNday\ﬁzg +aZ + a?



where

Fo = LCondan/a 1 a+a? - g(m — pa)

Fy = £ o Cpnd(a xax\b/aj_‘:”zz :;b t+b:v/al + a2 + a?)

Fp = £Cond(a %be ajj_ :2122” +b,0/a2 + a2 + a?)

Fn = pCDNd( azbs ajiyjz :::Z:b +b:\/aZ + a2 + a?)
_— 3:1:0 (U LU %yo Bzo)
U, + ayO(U a‘”“ +U %y" Uz%)
U, + a”"(U a"’" +U %y" +U, %‘:")
axl(U Uy%y" +U, aazs" = % +
fogingd g% g2 0
T PR
le(U 0:1:0 N Uy%yo U, a;so B %—?
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It can be seen that F};, F,; and F, are all linear functions of the dy-

namic displacements z,, y; and z;. Further, the drag forces permit a decoupling of

independent in-plane motion and out-of-plane motion if

1. the static configuration is two dimensional,

2. the current component perpendicular to the plane vanishes.
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12.4.6 Effects of Bending Stiffness

Throughout this thesis, the cable is assumed to be perfectly flexible, that is.
the cable can not sustain any forces other than the tension. However, our experience
tells us that real cables, especially metal ones, when curved tend to straighten out
even when unstretched. There must exist some return forces which are dependent
upon the cable curvature, that is to say, bending stiffness exists.

This section does not set out to make a full account of the effect of bending
stiffness on cable dynamics. A simple two dimensional case is examined to illustrate
the consequences of incorporating the bending stiffness into the governing equation.
For a more comprehensive three dimensional formulation of the governing equation,
see Love (1927), Ertas and Kozik (1987), Kokarakis and Bernitsas (1987).

Consider a two dimensional cable element under the combined action of
tension, bending moment, shear force and external force, as shown in Figure A.2 .

From Newton'’s law, the equations of motion are

Pz 9 T 0z, 0 T % p_g 12.29
(mtme) o = 55 (T4eds) 85\ T4 ¢ ds’ (12:29)

0% 0, 6T Oy, 0, 7 Oz

- v _ il — —)—F, =0 12.30
(m+m°y)6t2 0s'1+¢€0s + 55 1+¢€0s y ( )

Neglecting the rotary inertia effect, we have the following relation between

the bending moment M and the shear force 7

—aaésl—::’r(l‘*'é')
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The bending moment is related to curvature by the following equation

__BI 6:0y  dyons
(1495 852~ 35 352

We now proceed with simplifications under the following special conditions

l14ex1

oT
i

Jdy Oz

The physical meaning of these conditions is that we are considering a horizontally
placed small sagged cable subject to constant tension. In this particular case, the

lateral motion becomes
— —-T—+ElI——-F,=0 (12.31)

For the homogeneous solution (F, = 0), assuming the cable can still support

the wave motion

y = yoezp[vV—1(wt — ks)]

we have

+ =k
7

w==k

T EI
T

This indicates a feature of dispersion. As a result, a non-sinusoidal distur-

bance can not be propagated without change of its shape. Also the presence of the

bending stiffness stiffens the system. This is manifested through an increase in the

frequency for a specific wave number.
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12.5 ANALYSIS IN A NATURAL COORDINATE SYS-

TEM

12.5.1 Cable Equations

Sometimes it is desirable to analyse cable dynamics in a natural coordinate

system which is aligned normally and tangentially to the cable, for example, when

the hydrodynamic forces are decomposed into normal and tangential components.

Let Tr be a transform matrix which transforms a vector from the Cartesian

coordinate system {z,vy,z} to the natural coordinate system {z',y’,2z'}, as shown

in Figure A.3. Tr is given by

singcosf singsind —cos¢

siné —cosb 0

cospcosf cosgpsind sing
i

where ¢ and 0 are two rotation angles defined in the figure.

Since T¥ is orthogonal, we have

Tr' =T =

sinf  singcosd cospcosb
—cosf singsind cospsinb

0 —cos¢ sing

(12.32)

(12.33)

The following part of this section shows how the cable equations in the

Cartesian coordinate system can be tr

ordinate system.

ansformed into equations in the natural co-
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. . 1 8 . . .
Firstly, consider the term 132 5. » Which is a unit vector tangent to the cable.

In the natural coordinate system it must be equal to [0 0 1)7, ;

, le.,
0
1 Or
(1 + sa) - |0
1
-
or - -
oz
Bs 0
1 oy | = Ty™! 0
14+ | as
Oz
| 35 ] 1
which gives the following relations:
. - ]
%‘f cospcost
%’8‘ =(1+¢) cos¢psind (12.34)
3z :
| 5 | _ sing d

Secondly, let F:, F, and F, be forces per unit length acting upon the

cable along the three axes of the natural coordinate system. We have

F; Fy
F, | = Tr™! F, (12.35)
F, F,

L7 A

Finally, let Vs, Vs and V,; be the velocity components of the cable along the

three axes respectively. Their relation to the velocity components in the Cartesian



coordinate system is given by

Taking derivatives of both sides with respect to ¢, we have

&z
ot

8%y
at

2z
ot

-

0 o1
EriC

V.

Vy:

v,

-

A

JR—

at

oV,
—N
ot

v,

+ Tr!

o Vo w2 || &(Teostcost)
—(% ™) py Vy + T uyla—:‘t‘i = %(Tcos¢sin9)
po Vi peZt || &(Tsing)
where
B! =Tt mgy
By =m+myy
Pyt =M Mgy
Multiplying both sides by Tr produces the equation
l‘x’a—:fi - — Pt Vyr - - 2 (Tcos¢cosb)
/lyr%,fi + Tr-%(Tr"l) pyVy | = Tr -aa—s(TcosquinO)
55 we Ve | 5(Tsind)

—e
| ot ]

-

-

+ Tx~!
F.
+| Ey,
F.
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(12.36)

(12.37)

Substituting Eqgs. ( 12.34), ( 12.35) and ( 12.37) into Eq. ( 12.5), we have

F,

F,

F,
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After some mathematical manipulation, the two terms in the equation

above can be simplified to

-
Tcos¢pcosh
0
Trg Tcos¢sinb
Tsing
and )
0
0 _
Tro (Tr™) = | sing2
| cos gf

r -

- o8
Tcosps:
T

Taa
aT
L ds ]
-
, - L)
sing cosd
_9¢
0 ot
9
at 0

Substituting these expressions into Eq. ( 12.38), we obtain the following

equations of motion in the natural coordinate system,

oV, 00 00 00
[T 5t 'V, szn¢ ,uz:Vfcosqb— = —TcosqSE + F
v, 06 3¢ 6¢
By at :V:szn¢—-—uz Y B 35 + F,
ov, 0¢ or
! ' ! - = F
By V. cosqS + sy Vy V' 5 B3 +

Since the natural coordinate system, which is fixed on the cable, changes

both in time and space, there is no apparent relationship such as Eq. ( 12.3) to

define the strain by displacements. Geometrical relations need to be explored in

order to provide more equations to enclose the system.



Taking the space derivative of both sides of Eq. ( 12.36)

-

0 -1
=5, (Tr™)

Pl

9
ot

h r T

av,
-z
Os
v,
3
s

+ Tr!

av ,
—z

258

, We obtain,

(12.39)

Os ]

p

(1 + €)cosdcosb
(14 €)cosdsinb

(14 ¢)sing

9

Thus Eq. ( 12.39) becomes the following after multiplication of both sides

by Tr,

av,
—
s
v,
N
Js

av,
z
s

A -

The two terms on the right side can be simplified to obtain,

(1 + €)cospcosb

(1 + €)cospsind

(1+¢)sing

i T
(1 + €)cospcosb
0
Tl'b'; (1 4+ €)cosgsind
(1+¢)sing
and -
0
Tf_a‘ Tr™') = sing2
03 Js
cos g—g

0 im-1
= Tro~(Tr™")

—(1 4 ¢€)cosp 2
—(1+¢)2
e
Bt
—sing —cosd 5y
a
0 —5
)
3% 0

(12.40)

1
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Substituting the above into Eq. ( 12.40), we have,

oV

5 = —(1+ e)cosqS + V:sznqS— +V, cos¢—-
ov 06 0

6: = —(1+ 5) -V, szndJ + V, Of
ov,  0e 06 3¢

% = at—V co.sqS——V V' B

In summary, there are seven equations governing the cable dynamics in a

natural coordinate system for the seven unknowns ¢,4,6,V,/,V,,,V,, and T. They

) ;p )

are as follows:

T, 6;2”' :Vrsimﬁ% - ,uz:Vrcosqﬁ@ + Tcosd>?—6 -F, =0
v, 00 ¢ ¢
By 0t 'V szn¢— p Vy 5t + T(T); —-F, =0
ov, o OT _
Ny 'V:cosqﬁ +,uyV:at—-a—s— =0
3;/ ¢— — V/sde— -V, cos¢ = 0 (12.41)
oV, 06 3¢> _
B (1+8) +V:szn¢——V'as =0
ov, 36 6¢>
ds ot veosd g + Vg = 0
T-T(k) =0

12.5.2 Characteristics

In this section, basic properties associated with the system of nonlinear

partial differential equations, Eq. ( 12.41), are examined. For brevity of notation,

all primes are omitted.



where

0

0

0

We can rewrite Eq. ( 12.41) in the following form:

A%— + B% +C=0
]
€
¢
6
Y =
V.
Vy
Ve 4
1y Vy pzVecosd [
—p:Vz pzVesing 0
0 —p,Vysing — p,V,cosgp 0
0 0 0
1+e¢ 0 0
0 (1+ €)cosé 0
-T7. O 0 0
0 T 0 0
0 0 Tcos¢ 0
0o Vv Vzcos¢ 1
0 -V, Vysing 0
0 0 —(Vysing+ V,cos¢) 0O
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Eq. ( 12.42) can be further transformed into a standard quasi-linear form:

oY Y
5t A‘IB%—S +A7!IC=0 (12.43)

To find the inversion of the matrix A, it is partitioned into the following

form:

A=
F O

where D, E and F are all 3 x 3 matrices:

0 u,V pzVicosd

D=1y —u,V, pVosing

0 0 —pyVysing — p,V,cos¢ j

b
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-
-1 0 0

F=1| ¢ l1+¢ 0

0 0 (14 ¢)cos¢ |

Denoting

A-l = An Ay

A21 A22

where Aq,A13,Ay and A, are all 3 x 3 matrices, we have

D E A, A I 0

F O Ay Ay 01

This is equivalent to the following:

DA +EA; =1
DA;+EA;; = 0
FA]] = 0

FA12 — I
From this set of matrix equations, it is easy to derive the following results:

A11=0

1
0 0 (1+¢)cosd )




1

27

An = | ¢

0

0

Ap = 0

0

Hence A~ is given by:
[

0 0 O

0 0 O

0 0 O

Al =

1

™ 0 O

0o + o0

by
1
00 X

0 -Vy
-V,
0 The
0 0
A7'B =
_I ByVyVe
Bz (14&)uz
T _ I‘zvz
0 By (14¢€)py
0 0

-
0 O
1
By 0
0 L
Bz R
(1+e)u, (1+€)u,
Ezvz _ E;Vztané
(1+€)uy (1+€)uy
0 pyVysing+u,V,cosd
(14¢)pzcose |
1
-1 0 0
1
0 L 0
1
0 0 (14¢)cosd
(14+€)u. (1+€)p.
0 EZVI _EIV,tanQ
(14€)uy (1+€)uy
uyVysing+pu.V.cosp
0 0 * ?l+s)u,coa¢ ]
-
~Vycosép -1 0 0
Vzcosd 1
14¢ 0 1+ 0
Vysing+Vzcosd 1
— y(l-}-e)coad: 0 0 (14¢)cosd
W — -l
J1 0 (14€)u: (1+e)us
p:Vs _ugVjtang
J2 0 (1+€)uy (1+e€)uy
n 1% 3in¢+u:vx(‘03¢
J3 0 0 T euscosd
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where
5 = Pz Ve(Vysing + V,cosp) — p,V,V,sind
(1+e)p,
J, = peVe(Vysing + V,cosd)tand + p,V,Vysing
(1+¢€)u,
I, = Tcos¢p  (pyVysing + p.V,cosé)(V,sing + V,cos¢)
TR (14 e)pzcosd
1
0
0
0
A7'C =
_E
Bz
_E
By
_E
5 bz |
The eigenvalues of the system can be obtained by solving the following
equation:

IA—IB _ X[I =0 (1244)



by Vy Ve

(1+€)pu-

I-‘zV2

0 T Bzl

py  (1+e)py

0 0

—V.cos¢

Vzcosg
14¢

__Vysing+V;cosé
(1+4¢)cos¢d

-1 0

0 1

-x 0 0

0

0

1
(1+¢)cosd

__BsVs
(1+e)u;

_ pzVitang
(1+€)uy

pyVysing+u,Vicosd -
(1+€)uzcosd
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Taking the Laplace expansion of the first column, the determinant becomes:

By Vl! V:
(14¢)p-

T Bz V2

Ltz _z

ny  (14e)py

0

& |3

Vzcosé
14¢

_ VysingtVicosdp

(1+4¢€)cosd

—V,cos¢

Vzcosé
1+4¢

Vysing+Vzcosp

(14¢)cosd

J2

J3

0 T
A0 0
!!V!!
-A - (1‘:"5)#1

&ZVI
0 (1+€)ny —A

0 0
-1 0
U
A0 0
0 pzVe
(14e)uy
0 0

0

1
(1+¢)cosd

__BaVy
(14€)u:z

__pzVitand
(14€)uy

pyVysing+u:Vicosp A
(14+€)puzcosd

0

1
(14¢)cosd

Bz Vitand
(1+€)uy

pyVysindtp Vicosd 4

(1+¢)uscosd
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Further expanding the determinant, we have,

Mo 2, :
( A2 — E) 0 —Y’Ls(iﬁ:;ﬁw —A 0 m _,
2
“l;; B (1_‘:?‘;: 72 (_1% —A - (1‘;:)0;::
: % 0 RSt -

Thus the first two eigenvalues are given by,

T.
A2 = £y [—
Mz

Continuing the process of Laplace expansion, we obtain the following two

quadratic equations which allow us to determine the rest of the eigenvalues:

1 T ,U;;V2 I—Lz‘/z ‘/z
— - e - A -A) =0
L+e py (1+5)ﬂy] [(1+5)l‘y ](1+€ )
_[uyVysimﬁ + p.Vicosp /\][V;sinqﬁ + Vcos¢ A - Js _ 0
(14 €)pcosd (1+€)cos¢ (1+€)cosé
Consequently, the other four eigenvalues are given by
4T
= 1-— 2
Ao 2(1+5)( ,u 1+ )] (1+6)
V(l — £2) + tangV, (1 -
As6 = i
’ 2(14¢)
1 [Vz(l — £2) +tangV,(1 - #,)]2 N 4T
2 1+¢ (14 ¢€)ps

A total of six real eigenvalues is obtained, so the system of Eq. (12.42) 1s

hyperbolic.

If p, = py, then

A3 = Asge



Moreover, if p, = Ky = 1, = u, we have

Al,2 = 4 E
Q
T
A = 4+
> (1+¢€)pu

>

(¥,

k-
I

[T
- (1+e)u

12.5.3 Ordinary Differential Equations

In this section we assume

Bz = [y = 1z =
The results are given as follows:

1. Along the characteristic line defined by

ds T,

dt \u
which represents the travelling-down tensile wave, we have

[ 1
— zwide: + V,d¢ + Vocospdf + dV, — ;det =0
7/

2. Along the characteristic line defined by

ds T,

dt Vo
which represents the travelling-up tensile wave, we have

1
Ede + V,d¢ + Vzcospdf + dV; — ;det =0
v 7
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(12.45)

(12.46)
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3. Along the characteristic line defined by

ds _ T
dt  \(1+4¢e)p

which represents the travelling-down transverse wave in the y — z plane, we

have

T(1+e¢ :
—(—H—z —V,)d¢ + Vysingdf + dV,, — %Fydt =0 (12.47)

4. Along the characteristic line defined by

ds _ T
dt (1+¢e)u

which represents the travelling-up transverse wave in the y —z plane, we have

1
_(JFAte) +V,)dé + V,singdf + dV, — —F,dt =0 (12.48)
7 H

5. Along the characteristic line defined by

ds _ T
d  V(Q+eu

which represents the travelling-down transverse wave in the z — z plane, we

have

1
( ————T(l + 6)cos¢ — Vysing — V,cosp)dl + dVr — ;Frdt =0 (12.49)
p

6. Along the characteristic line defined by

ds T
dt~ V(A +ew

which represents the travelling-up transverse wave in the  — - plane, we have

1
—( ————T(1 t 8)c03¢ + Vysin¢ + V,cos¢)dd + dVvz — ;Frdt =0 (12.50)
v
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As a consequence of their the dependence upon the state of the tension and
strain of the cable, the characteristic lines of the transverse waves diverge
in the space-time domain in contrast to the fixed parallel characteristic lines
of the longitudinal tensile waves. This indeed casts disadvantages upon the
natural numerical method of characteristics. Nevertheless, numerical methods
of characteristics for this type of hyperbolic system are still available (Courant
et al, 1952; Hartree, 1958; Jeffrey and Taniuti, 1964; Ames, 1969; Patton,

1972).



p B T (s+ds)

Figure A.1. Coordinate system and

forces on a cable element
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Figure A.Z.
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Figure A.0.
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