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“The story that I have to tell is marked all the way through
by a persistent tension between those who assert that the
best decisions are based on quantification and numbers, de-
termined by the patterns of the past, and those who base
their decisions on more subjective degrees of belief about
the uncertain future. This is a controversy that has never
been resolved. [...] Which matters more when facing a risk,
the facts as we see them or our subjective belief in what lies
hidden in the void of time? Is risk management [own re-
mark: and assessment] a science or an art? Can we even
tell for certain precisely where the dividing line between the
two approaches lies?”
- Against The Gods (p.6),
Peter Lewyn Bernstein
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Abstract

In decision and risk analysis problems, modelling uncertainty probabilistically
provides key insights and information for decision makers. A common challenge
is that uncertainties are typically not isolated but interlinked which introduces
complex (and often unexpected) effects on the model output. Therefore, depend-
ence needs to be taken into account and modelled appropriately if simplifying
assumptions, such as independence, are not sensible. Similar to the case of uni-
variate uncertainty, relevant historical data to quantify a (dependence) model
are often lacking or too costly to obtain. This may be true even when data
on a model’s univariate quantities, such as marginal probabilities, are available.
Then, specifying dependence between the uncertain variables through expert
judgement is the only sensible option. A structured and formal process to the
elicitation is essential for ensuring methodological robustness.
This thesis consists of three published works and two papers which are to be pub-
lished (one under review and one working paper). Two of these works provide
comprehensive overviews from different perspectives about the research on de-
pendence elicitation processes. Based on these reviews, novel risk assessment
and expert judgement methods are proposed - (1) allowing experts to structure
and share their knowledge and beliefs about dependence relationships prior to
a quantitative assessment and (2) ensuring experts’ (detailed) quantitative as-
sessments are feasible while their elicitation is intuitive. The original research
presented in this thesis is applied in case-studies with experts in real risk model-
ling contexts for the UK Higher Education sector, terrorism risk and future risk
of antibacterial multi-drug resistance.

Keywords: dependence elicitation, dependence modelling, uncer-
tainty analysis, structured expert judgement, decision analysis,
risk analysis
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Chapter 1

Introduction

In decision making under uncertainty it is vital that dependencies between un-
certain variables are appropriately modelled, as otherwise the model may not
be fit for purpose. Dependent uncertainties may arise either directly because
variables in the model are correlated, or indirectly when an uncertainty analysis
of model parameters is carried out to explore model robustness. Both cases
exhibit complex interrelations and dependencies which need to be considered if
assumptions, such as independence, are not justifiable.
However, it is often not straightforward to either model or quantify dependence.
In particular whenever no relevant historical data are available, the only sensible
way to achieve uncertainty quantification is through eliciting expert judgements.
When performed rigorously, the elicited quantities, often aggregated from mul-
tiple experts, offer reliable information for model quantification.
A challenge for anyone wanting to elicit dependence assessments from experts
is the lack of research on structured expert judgement processes and elicitation
methods for multivariate uncertainties. This thesis consists of three published
works and two papers that are to be published (one under review and one work-
ing paper) which aim to address some of the main research gaps of dependence
elicitation. Therefore, the original research of this thesis proposes procedures for
some of the main elements of a structured expert judgement process for depend-
ence - (1) the structuring and evocation of experts’ knowledge and beliefs about
dependence relationships together with (2) the flexible and feasible elicitation
of detailed (quantitative) dependence assessments, in particular for quantifying
models that include tail dependence. We apply both new methods in case-studies
for validation purposes. The need for the original research in these particular
areas has been identified by two extensive literature reviews which for themselves
have made an original and publishable contribution to the dependence elicita-
tion literature given that such comprehensive overviews of this area, including
the link between dependence modelling and assessment as well as including the
detailed elements of dependence elicitation processes, had been non-existent so
far.

1.1 Dependence between multivariate uncertainties

In this thesis we consider expert judgement methods for various types of depend-
ence models, justifying particular modelling choices in applications and case-
studies based on a proposed taxonomy as well as model conveniences. There-
fore, we discuss dependence modelling in this introduction more generally while
addressing assessment for specific models later on.
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CHAPTER 1. INTRODUCTION

Typically, the variables of interest in dependence elicitation (i.e. the elicited
quantities) serve as inputs to some multivariate model. The form in which the
information is elicited, e.g. through a conditional probability or a correlation
coefficient, is chosen by an analyst who manages the elicitation process. Together
with the definition of the underlying scenarios (the rationale) that determine(s)
a specific assessment, the value and mathematical interpretation of the elicited
quantity constitutes the knowledge (and type of information) we want to capture
from experts.
In decision and risk analysis, a mathematical representation of dependence is a
collection of random variables describing measurable risk characteristics [269],
such as the number of lives lost, monetary losses and so forth. Formally, these
random variables are denoted by Xi ∈ R for some i ∈ N. For dependence, we are
interested in the distribution of the random vector X = X1, X2, . . . , Xn ∈ Rn de-
scribed by the joint probability distribution P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn).
Assuming probabilistic independence greatly simplifies the modelling process as
we simply use the product of the marginal distributions to determine the mul-
tivariate distribution. However, whenever this assumption is not sensible, it
follows that:

P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) 6=
n∏
i=1

P (Xi ≤ xi)

In this case, we need a dependence model that approximates the unknown distri-
bution by capturing the most important features of the dependence relationship.
For instance in the later case-study applications, we are often concerned that the
(in-)dependence structure in the central part of a model might not be repres-
entative of the structure in the tails. Therefore, we include tail dependence, i.e.
the strength of association in the tails of the joint distribution, if applicable.
Neglecting this aspect of a random variables can lead to distorted model out-
put and hence poor decision making. For example, [263] discuss common (false)
modelling assumptions in financial mathematics and their impact by reflecting
on the famous Wired article about “the formula that killed Wall Street”.

1.2 Structured Expert Judgement

In research that aims at contributing on a practical as well as technical level to
the area of expert judgement for decision and risk analysis, the two terms that
are mentioned most frequently should be outlined at the beginning. Therefore,
in the following the concepts of an expert and elicitation are briefly discussed
and explained.

1.2.1 Who is an expert?

While a complete discussion about the definition of expertise together with ex-
perts and what distinguishes them from other professionals is given elsewhere
(see, e.g. [50, 155, 85]), briefly and for purposes here an expert is (first of all)
someone who is likely to make the best estimates of a target quantity (e.g. a
model input).
Thus, a desirable feature of an expert might be a vast amount of domain know-
ledge (substantive expertise). However, we need to more precise when it comes
to substantive expertise given that such knowledge is not only about facts (and
rules) but also how to adapt this knowledge to new situations [50]. Therefore,
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[50] links this ability of adapting experiences also to verification through feed-
back when solving new problems. This includes knowledge and experience on
acquiring relevant data within new problem situations. In this regard, we note
that experts typically have access to data as well as access to mathematical
modelling tools whereas an expert could also “go back” and use a model and his
experience in the interpretation of the data.
Substantive expertise is often mentioned together with normative expertise. The
latter refers to formal methods to express domain knowledge [85]. When eliciting
a dependence parameter (such as a conditional probability or correlation coef-
ficient) from an expert, an understanding of these concepts is highly desirable.
As we will re-address for instance in Chapter 4 of this thesis, the extent to which
experts in a particular domain are expected to have normative expertise is likely
to influence some main decisions of an expert judgement protocol, such as the
form in which dependence is elicited. An example (that we will refer to later)
is from weather forecasting where experts obtain very frequent data on specific
correlation coefficients.
Nevertheless, being part of a specific domain does not guarantee good normative
expertise and while the choice of experts through substantive expertise might be
identified by considering (quantity and quality of) relevant publications, identi-
fying normative expertise is more challenging [50]. For marginal probabilities, we
do so to some extent through the Classical model for expert judgement [330, 79]
(as experts might be excluded when aggregating results), even though this is still
different to the earlier (first) identification of suitable experts. For dependence
(as we will see), both, identification as well as aggregation, are less well explored.

1.2.2 What is elicitation?

Elicitation refers to a procedure that supports the expert to state his or her be-
lief truthfully. For instance, [165] define it as “the process of formulating one’s
knowledge about uncertain quantities in the form of a (joint) probability dis-
tribution for those quantities”. They refine this definition by stating that “an
elicitation is done well if the distribution that is derived accurately represents
the expert’s knowledge, regardless of how good that knowledge is”. Thus, a suc-
cessful elicitation might be defined as the process that assists an expert in the
rational and thoughtful evaluation of knowledge in order to eradicate personal
bias, irrationality and superstition [306]. Going even further, it may be accepted
that elicitation constitutes a misnomer as this would imply the crude idea that
information for a judgement or an estimation is readily available to be “read off”
an expert’s mind, indicating that the expert would simply look up the inform-
ation within a mental “storage bin”, which seems rather controversial as shown
by the Information Processing Theory which is further discussed in section 1.4
in the context of descriptive decision analysis research. Common guiding prin-
ciples may therefore be often based on further properties of an elicitation, such
as reproducibility, accountability, empirical control, neutrality and fairness which
are all discussed in more detail in [79].

1.2.3 Dependence in the subjective probability context

Throughout this thesis we use the word dependence in a general sense (in contrast
to specific association measures) when referring to situations where there are
multiple uncertain quantities and gaining information about one would change
uncertainty assessments for some others. More formally, two unknown quant-
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ities X and Y , are independent (for experts) if their beliefs about X are not
changed when given information about Y . For higher dimensions experts regard
all quantities independent of one another if knowledge of one group of variables
does not change their belief about other variables. Dependence is simply the
absence of independence. It is a property of experts’ belief about the quantities.
This definition relates to [246] who reminds us that in a subjective probability
context one expert’s (in-)dependence assessment might not be shared with an-
other expert possessing a different state of knowledge.
A particular consideration when discussing dependence between uncertainties in
the subjective probability context is that of observability. In chapter 3, we list
observability as a desirable property of an elicited form. Depending on the nature
of joint or conditional events about which we elicit expert judgements in form of
a specific dependence parameter, this might not be guaranteed. In particular for
statistical dependence parameters (see chapter 3) and concordance probabilities,
we note that these are not observable if they cannot be interpreted in terms of
frequencies, i.e. if they are not based on populations. This is why we do not
recommend their elicitation and rather suggest the elicitation of, for example,
conditional probabilities which fulfil the desideratum of observability and are
mathematically related. Nevertheless, some researchers suggest that even when
an interpretation in terms of a population is not given, we can still elicit stat-
istical forms and concordance probabilities whereas experts then need to think
of hypothetical populations in order to make sensible dependence assessments.
See [306, 74] for a more comprehensive discussion.

1.3 Research objectives, questions and scope

The research presented in this thesis is motivated by a holistic perspective on
the overall expert judgement process and how the elements of such a process
might be affected by different dependence model choices. In line with that, the
following research objectives and questions have been developed as guidance for
the research conducted in this thesis. They determine the scope and foci of the
different parts which constitute this thesis. In other words, the following research
objectives and questions specify and define the research problem that we hope
to solve.

Research Objective 1: Propose a taxonomy for the current research on expert
judgement for dependence and identify its future agenda in decision and risk
analysis.

• Resesearch Question 1: Which dependence models are most prevalent in
the decision and risk analysis research and for which of these has expert
judgement been used to address the lack of relevant historical data? What
are the foci of these models and how can they be considered in assessment
methods?

• Resesearch Question 2: Which key elements of processes for eliciting de-
pendence from experts have partly or completely been neglected in past
and current research?

Research Objectives and Questions:
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• Resesearch Question 3: What is the status-quo of related research topics
of interest for cross-fertilisation from the elicitation of experts’ (univari-
ate) probabilities (e.g. behavioural research on cognitive fallacies) and to
what extent have these taken into account in current dependence elicitation
methods and processes?

Summarised Research Approach: Several systematic reviews of the
literature on dependence elicitation have been conducted with different foci.
Guidance is provided in each literature review on the current research gaps.

Research Objective 2: Propose methods that address the research gaps
identified.

• Resesearch Question 4: How can a method support experts in structuring
their knowledge and beliefs about dependence relationships in order to
mitigate common cognitive fallacies and enhance experts’ confidence in
their dependence assessments?

• Research Question 5: How can we support experts in making feasible de-
pendence assessments while not restricting the level of detail and flexibility
of a dependence model as desired by a decision-maker?

• Research Question 6: How can we ease experts’ cognitive burden when
making detailed dependence assessments, in particular when assessing tail
dependence?

Summarised Research Approach: Novel methods for qualitiative and quant-
itative elicitation of dependence have been developed and validated in case-study
applications.

We will re-address the research objectives and questions when concluding the
thesis and reflecting on the research findings.

1.4 Epistemological considerations and research meth-
odology

When conducting research and contributing to a particular scientific community,
we should address questions regarding the scientific rigour, validity and method-
ological robustness of our research. By considering these questions, we can shape
our research design to adequately address the above research questions through
a fitting research paradigm and methodology. A research paradigm encompasses
the underlying set of presuppositions and values of our chosen methods. The
presuppositions and values are heavily influenced by our philosophical assump-
tions whereas the main ones are about the way we think the world is (ontology),
how this influences what we think can be known about the world (epistemology)
and how we think it can be investigated (methodology and research techniques)
[148]. A methodology can be seen as the strategy (or plan of action) behind the
selection of particular methods whereas it links the use of methods to a desired
outcome and uses them to gather and analyse data related to the research ques-
tion [100]. In the following, we briefly discuss these concepts, their relationship
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and the impact of their considerations on the research presented in this thesis.
Generally, the solution to a scientific problem can be illustrated by a triangle
connecting the concepts of theory1, a (mathematical) model and the real world2

sitting on its vertices. This triangular embeds the idea that the solution to a
scientific problem is obtained through a theory, explaining a phenomenon of the
real world that is of interest, while producing a (mathematical) model which
simplifies the real world phenomenon with the aim of manipulating it, e.g. for
the purpose of prediction. The idea of triangular relationship originated with
the Vienna Circle which comprised some of the main foundational contributors
to the area of epistemology [52].
While the reader might think of various famous natural science theories and
models that are embedded in the idea of the triangle, such as from physics, it
similarly applies to the area of the research presented in this thesis. For example,
according to [166] “the scientific contribution of Operations Research/Manage-
ment Science is in the development of decision-aiding models”. This view might
be extended to similar and overlapping areas of risk and decision analysis. A
well-known theory in this regard (and one that underlies the ideas of this thesis
and will be addressed in more detail later) is the subjective expected utility the-
ory by L. J. Savage.
For theories and models in decision and risk analysis, a traditional distinction
between normative, descriptive and prescriptive research and approaches exists
[37].
Normative research concerns ideal reasoning, judgement and decision-making un-
der uncertainty. Theories, such as formal logic, probability theory and decision
theory, provide rules for rational inferences and decision processes that are reas-
onable and consistent [365]. Irrationality is the systematic deviation from these
rules. For a more detailed discussion and debate on the concept of rational-
ity, see [379, 378]. More specifically, following these rules allows for choosing
and maximising the optimal alternative among those available. Hence, by act-
ing rationally, a decision-maker chooses the optimal combination of probability
and utility. In this regard, expected utility theory [404, 405] together with its
subjective version [357] provides the most established axioms for rational choice
(whereas the axioms concern preference relations). The difference between both
theories lies in the operational definition of uncertainty which is introduced in
more detail in the next chapter. The evaluation of normative approaches is done
through their theoretical adequacy [404, 405].
The descriptive research tradition stems from a psychological motivation and
aims at exploring how people actually make decisions rather than ought to make
them as emphasised in normative approaches. A central concept is bounded
rationality together with the principle of satisficing (satisfy and suffice)[367].
Instead of choosing an optimal solution, a decision-maker chooses an adequate
solution-based on a satisfactory perception of the decision’s important aspects.
Hence, it is argued that this is a more realistic approach to decision-making in
practice by taking into account the limitation of human information processing.
A prominent model for human thinking and learning is Information Processing
Theory in which the human mind not solely responds to stimuli, but rather
manipulates the incoming information by i.a. selectively perceiving, encoding,

1In the general sense, a set of propositions starting from premises and/or axioms and arriving
at rigorous solutions.

2We accept a common-sense definition of “real world” even though it is much more discussed
in the philosophical area of ontology.
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storing (in short- and long term memory) and interpreting it with the use of ex-
perience [364]. Descriptive models can be evaluated through the extent to which
they agree with observed behaviour, in other words, their empirical validity [37].
Lastly, for prescriptive methods and models, the aim is typically to address the
(broad) research question of how can we improve the quality of decisions made
in practice? Thereby, the discrepancy between normative and descriptive re-
search findings has motivated the development of prescriptive methods. Thus,
prescriptive research exploits proposals of normative theories together with em-
pirical findings of descriptive researchers in order to support people in making
better decisions, whereas better means rational and coherent as well as feasible
[37]. Broadly, prescriptive approaches propose structured procedures for mod-
elling a decision situation for i.a. increasing the understanding of the problem,
exploring different courses of action and as well ensuring a sensible choice for
a model’s input data. A central focus of prescriptive methods is therefore the
elicitation of values about consequences and judgements about uncertainties.
Evaluation is typically achieved through a method’s pragmatic values, i.e. its
ability to support people for making better decisions [37]. The original research
presented in this thesis proposes such prescriptive decision-aiding tools.
This discrepancy between normative, descriptive and prescriptive research ap-
proaches, which is also reflected in the differing backgrounds of the corresponding
researchers3 has led to the development of theories, models and methods under
several research paradigms.
A common paradigm that determines the research strategy in the natural sci-
ences is that of positivism. Briefly, in positivism, we (as researchers) aim at
confirming or contradicting a hypothesis through evaluation and observation.
Knowledge production occurs by means of a search for knowledge that is general
and valid to the formulation of hypotheses [345, 394]. This view is more common
among normative decision researchers.
It follows that in social sciences the question arises whether we can use a nat-
ural science approach to the research process while reality is regarded as a social
construct and the researchers’ subjective view on it determines the knowledge
of the object studied - typically under the paradigm of interpretivism. Hence,
social sciences seek to describe, understand, and reflect on human beings and
their actions [345, 394]. Descriptive decision-aiding research can often fit in this
paradigm.
Positivism and interpretivism are two opposing epistemological positions. How-
ever, both have as their mission the search for the truth, and their goal is to
describe, explain, and advance knowledge in a given area [113].
Before considering a suitable paradigm for prescriptive research, let us briefly
recall that, more generally, knowledge production can be understood as “the
construction of universally accepted truths in a given historical time or as a pro-
cess of learning of the subject” [410]. Thereby, [389] states that knowledge is
produced through information from two sources (1) research authors who struc-
ture knowledge and (2) users applying knowledge when solving problems (in the
real world).
For us as prescriptive researchers, the latter is particularly relevant. While on
the one hand our research outcomes should ensure scientific rigour, on the other
hand they should also be of relevance for practitioners. Scientific rigour in a

3Decision and risk analysis has particularly drawn the interest of disciplines such as math-
ematics, statistics, economics, computer science but also psychology, behavioural science and
artificial intelligence.
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research methodology is traditionally the key for its validity, for which research
methods comprise a set of steps that are recognised by the corresponding aca-
demic community for creating rigorous scientific knowledge [118]. In the natural
and social sciences, these steps are to explore, describe and explain. In pre-
scriptive research however, we might not only explore, describe, and explain a
given phenomenon, but rather we also study designing and creating artifacts
[118, 366]. Generally, such artifacts are artificial objects or solution concepts
whereas we can characterise them in terms of goals, functions, and adaptations.
They are designed to effect some change in a system, solve problems and allow for
a better performance of the system as a whole [366]. Here, these artifacts com-
prise prescriptive methods, models or algorithms, which serve a decision-aiding
purpose. This allows to meet the other main criteria for evaluating prescriptive
models, such as usefulness and pragmatic value to provide decision-makers with
suitable and relevant assistance to improve their decision-making [37]. This is an
important consideration as for instance [259] states that “the big problem with
management science models is that managers practically never use them”.
Design science is a research methodology which incorporates the idea of such
artefacts and hence lends itself strongly to be a methodology for any research
that aims to be of prescriptive nature. For a comprehensive overview of design
science, see [118]. Traditionally this methodology has been developed and pro-
posed for research in engineering where the principle of “build-test-build-test” is
a preferential research paradigm. In management science, this is known as the
management science process [419]. This is different to the natural and social sci-
ences for which the common research paradigm is (as aforementioned) based on
empirical observation. Nevertheless, this does not imply that we can ignore the
importance of empirical observation in prescriptive research. In fact, we might
see design science research as complementary to more traditional research meth-
ods as it occupies a middle ground between traditional scientific approaches and
context-specific, problem-solving approaches that seek for knowledge creation by
solving practical problems and testing novel ideas within applied contexts [118].
Validation is thus two-fold: (1) internal, from ensuring logical soundness and
coherence together with a robust grounding in relevant theory and (2) external,
by evaluating the proposed methods in the real world, e.g. through case-studies.
For the former, we therefore base all proposed novel models and methods on such
a robust grounding, while for the latter, we have chosen the research method of
case-studies. With regards to how our research questions on the original research
part in this thesis are formulated, this method complies with the idea that “case
studies are the preferred method when ‘how’ or ‘why’ questions are being in-
vestigated, the investigator has little control over events, and the focus is on a
contemporary phenomenon in a real-life context” [435]. Within the methodology
of design science research, case-studies are a main way of obtaining data for veri-
fying the robustness of new models and methods due to the breadth of ways to
gather data, e.g. through observation, interviews, or questionnaires [118]. For us,
in particular observations and interviews/feedback (after elicitations) have been
a main source of verification data. The methodological robustness of our case-
study research has been ensured by following generally accepted planning steps,
such as definition of conceptual structure, defining data gathering and analysis,
defining ways to control the study, piloting the studies, recording data, analys-
ing the data and generating research reports [435]. Note that another research
method in design science (which has not been applied in this thesis however) is
action research [118]. As such, for evaluating prescriptive decision-making mod-
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els and their pragmatic value, i.e. their ability to provide decision-makers with
appropriate aid for better decisions, is a main criterion.

1.5 Contribution of thesis

Several contributions have been made within this thesis which are either pub-
lished or currently under review for publication. The following papers (journal
articles and a book chapter) have resulted from research for this thesis:

• Chapter 3: Werner, C., Bedford, T., Cooke, R. M., Hanea, A. M. and
Morales-Nápoles, O. (2017). Expert judgement for dependence in probab-
ilistic modelling: a systematic literature review and future research direc-
tions. European Journal of Operational Research, 258(3), 801-819.

• Chapter 4: Werner, C., Hanea, A. M., Morales-Nápoles, O. (2018).
Eliciting multivariate uncertainty from experts: Considerations and ap-
proaches along the expert judgement process. In: Dias, L. C., Morton, A.,
Quigley, J. (eds.) Elicitation: The science and art of structuring judge-
ment, New York: Springer International Series in Operations Research and
Management Science, 171-210.

• Chapter 5: Werner, C., Bedford, T. and Quigley, J. (under review).
Mapping Conditional Scenarios for Knowledge Structuring in (Tail) De-
pendence Elicitation, Journal of the Operational Research Society.

Awarded Winner of the Donald Hicks Scholarship by the UK Operational
Research Society

• Chapter 6: Werner, C., Bedford, T. and Quigley, J. (2018). Sequential
Refined Partitioning for probabilistic dependence assessment, Risk Ana-
lysis, doi: 10.1111/risa.13162.

Awarded Runner-up in the INFORMS Decision Analysis Society Best Stu-
dent Paper Competition

• Chapter 7: Werner, C., Bedford, T., Colson, A. and Morton, A. (to be
submitted). Risk assessment of future antibiotic resistance - eliciting and
modelling probabilistic dependence between multivariate uncertainties of
bug-drug combinations, Working Paper.

1.6 Thesis outline

The remainder of this thesis is structured as follows. Chapter 2 (in this first part)
presents the preliminaries that underlie the research presented thereafter. This
clarifies some main definitions and the viewpoints of the author on the topic.
In Part II both, chapters 3 and 4, provide overviews of the literature on depend-
ence elicitation and modelling in decision and risk analysis. Chapter 3 reviews
several probabilistic dependence models together with common ways of eliciting
dependence information for them from experts. In this regard, a taxonomy on
how to classify dependence elicitation methods in different modelling contexts is
presented. Chapter 4 provides an overview of the main elements of structured
elicitation processes, typically used for eliciting univariate quantities, and dis-
cusses adjustments together with additional elements that are necessary in the
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case of dependence elicitation.
Part III, consisting of chapter 5, 6 and 7, presents the original research of this
thesis together with case-study applications. Chapter 5 introduces a method
for mapping conditional scenarios which allows for structuring and recording ex-
perts’ knowledge and beliefs on dependence relationships prior to a quantitative
elicitation. Chapter 6 addresses the potential feasibility issue when eliciting de-
tailed expert judgements for dependence - a topic of relevance when a decision-
maker requires a high level of detail for a dependence model. Both previous
chapters include a case-study to apply their novel methods with experts on real
questions of interest - the former for a risk assessment in the UK Higher Educa-
tion sector, the other on terrorism risk as of interest for insurance underwriters.
Chapter 7 uses various of the earlier introduced methods in an application of
future antibacterial resistance risk assessment.
Finally, Part IV concludes the thesis with the overall conclusions (chapter 8) and
the bibliography.
Figure 1.1 shows how the chapters, which are published contributions, are con-
nected and located within an overall framework of prescriptive models in risk
and decision analysis. The framework is based on the discussion of my research
design and methodology in section 1.4. The derivation of the framework and
how the chapters fit into it is discussed in detail in the concluding chapter.
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Chapter 2

Preliminaries

This chapter introduces the different interpretations of uncertainty and ways to
measure it while outlining its relation to the concept of risk and dependence. This
allows for a precise and common understanding of subjective uncertainty which
is fundamental to expert judgement elicitation as commonly used in probabilistic
modelling of risk and dependence.
We clarify some theoretical and philosophical foundations as these fundamental
concepts are often applied in an unclear manner despite their central importance
in the decision and risk analysis literature. Some developments in this regard
are non-probabilistic (alternative) interpretations of uncertainty and the confu-
sion between uncertainty and risk.

2.1 Chapter introduction

The terms uncertainty and risk appear in various research areas and as such,
numerous approaches to define, elicit and model it are proposed. This chapter
presents the views of the author on these concepts which outlines the underlying
principles of the research presented in the following chapters.
The definition of dependence as we use it here (see Part I, Introduction) relates
directly to the scope of this thesis. The word dependence is used in many ways
within decision and risk analysis, Operational Research (OR), Management Sci-
ence and related fields, and it is worth clarifying how its use here differs from its
meaning in other contexts. The underlying framework adopted is that of sub-
jective probability which plays a key role within expected utility maximisation
for decision making. Dependence then, refers to the way we model and assess the
probability dependence structure required for such decision support processes.
We do not consider non-probabilistic representations of uncertainty, nor do we
consider approaches to represent dependence between criteria used to model the
preferences of the decision maker as discussed widely in the multi-criteria de-
cision analysis (MCDA) literature.
The foundations of subjective probability are drawn from a wide literature, in
which [357] provides one of the most sophisticated accounts. In this account,
probabilities can be assessed through preferences over lotteries, and there are
implied consistency rules for preferences which can be empirically validated. It
is well known that there is a distinction between normative and empirical val-
idation, so the degree to which researchers choose to be led by normative or
empirical consistency has led to many different approaches. For instance, [121]
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provide a theoretical framework which attempts to tie these strands together in
the context of possibility theory, and the implications of this are discussed in
detail by [81]. The modelling of dependence between attributes in MCDA is the
subject of a wide literature, and as discussed above, is outside the scope of this
thesis. In the following, subjective probabilities are set in context to other ap-
proaches and their measurement together with some implications are discussed.
The structure of this chapter is as follows. The next section 2.2 discussed the
topic of uncertainty in more detail together with its types (2.2.1), measurements
(2.2.2), interpretations (2.2.3) and operationalisation (2.2.4). Section 2.3 out-
lines the different views and definitions on risk. In 2.3.1, ways to define risk
qualitatively are presented, before its quantitative definition (2.3.2) together
with alternative definitions and misconceptions (2.3.3) is discussed.

2.2 Uncertainty

When discussing approaches to measure uncertainty, we should first clarify its
different interpretations, which have been put forward throughout history, to-
gether with ways for establishing a categorisation according to its various forms.
Before we do that however, we briefly note that in this thesis our starting point
is to consider uncertainty as a lack of certainty rather than ambiguity. While
[84] discuss this in more detail, it holds that the latter is removed by linguistic
convention. As aforementioned, some non-probabilistic models of uncertainty
often include ambiguity as a form of uncertainty which might lead to some fun-
damental distortions in its measurement (see [81]).
In order to approach a definition of uncertainty and its various interpreta-
tions, cognitive sciences offers a common distinction for probability judgement
strategies and reasoning under uncertainty - the idea of reasoning from the out-
side versus the inside [248]. To illustrate this, [248] use an illustrative, stylised
example about four brothers, Harpo, Zeppo, Chico and Groucho1, setting bets
on a horse race outcome.
The four brothers have a different approach to place their bets, Harpo and Zeppo
reason in terms of similar events (outside) whereas Chico and Groucho use sens-
ible degrees of belief focusing on the unique case at hand (inside). Despite the
great simplification of this example, it indicates that uncertainty is what can be
reduced by valid information or evidence that predominantly comes from obser-
vations or physical knowledge. An example for the former is the initial phase of
some random process (similar to a classical card game). In this regard, the type
of information indicates the interpretation of uncertainty. For [423] “uncertainty
[...] is a function of the information that is available” and for [84] uncertainty
can be reduced by observation.

2.2.1 Different forms of uncertainties

Identifying different forms of uncertainty follows already from thinking about
and defining the concept of uncertainty itself as shown in the previous example.
As discussed later, in risk analysis generally a distinction between those types is
more a practical than theoretical necessity, e.g. the common understanding of

1If these names sound familiar to the reader, this might be due to their appearance in the
family comedy The Marx Brothers, a fact pointed out to me by John Quigley as it was omitted
in the original source.
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probability concerning long-run repetition of events is insufficient for the kind of
uncertain quantity for which typically expert opinion is wanted.
According to [423], the question of whether or not “such distinctions between
different types of uncertainty have a solid foundational basis” should be negated
therefore as he sees it as “fundamentally flawed”, while he confirms that such a
distinction has useful consequences for modelling and analysing complex systems.
This can be seen as a reasonable approach to this discussion as at a certain level
of detail (at least from a philosophical point of view) some of the following
distinctions can be quite tantalizing.

Epistemic and aleatory uncertainty

The main distinction of uncertainty is made between epistemic, relating to im-
perfect states of knowledge or belief, and aleatory uncertainty, induced by ran-
domness [306], i.e. regarding frequencies or proportions caused by stochastic
process in the world [180]. The former originates from the Greek word episteme,
meaning “pertaining to knowledge”. Aleatory on the other hand comes from
the Latin word for dice (alea) thus indicating its relation to randomness. Hence
considering the idea that through learning we can acquire more knowledge about
a state of uncertainty, this distinction is also often called reducible and irredu-
cible respectively, even though in the common literature it is not limited to these
classifications [196]. While the earlier example was quite simplified and therefore
the distinction between epistemic and aleatory for each approach to reason un-
der uncertainty seems straightforward, this is much more complex in real-world
applications. This is also why some authors do not agree with this differenti-
ation at all. For example, [431] stresses the point that “there is only one kind of
uncertainty stemming from the lack of our knowledge concerning the truth of a
proposition”. Similarly, [423] introduces a coin tossing example with a fair coin
and concludes that only a lack of knowledge bears uncertainty as in principle
all necessary information about relevant physical laws could be known, reducing
uncertainty completely. This position might not be without reason as from the
18th century classical determinism’s perspective likewise epistemic uncertainty
was the only acknowledged classification and only with an advance in physical
sciences, such as the emergence of quantum mechanics, a more intrinsic nature
of uncertainty was more and more accepted [428]. However, that this discussion
cannot simply be reduced to the non-acceptance of the limit of knowledge is for
instance shown by Heisenberg’s (1901-1976) uncertainty principle, saying that
it cannot be known both, not the position nor velocity of a particle, but this is
still epistemic [308].
While this theoretical discussion remains open for different viewpoints, the prac-
tical usefulness of the distinction is commonly appreciated. Problems in which
this becomes clear are when approaching a solution by breaking a complex prob-
lem down, whereas not rarely an effective way to do this is by decomposing
necessary inputs, such as probabilities or utilities. [196] summarizes the useful-
ness of decomposing for epistemic and aleatory uncertainty by claiming: “When
a distinction between stochastic and subjective uncertainty is not maintained,
the deleterious events associated with a system, the likelihood of such events,
and the confidence with which both likelihood and consequence can be estim-
ated become commingled in such a way that makes it difficult to draw useful
insights”. Further, [84] list three explicit aims for making such a distinction, (1)
making modelling choices clear, (2) providing the basis on which quantification
takes place and (3) demonstrating the decision-maker the degree to which learn-
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ing and reducing uncertainty (epistemic) can make a difference in the model
output. Stating this usefulness and reaffirming that from a normative viewpoint
both interpretations of uncertainty can be regarded as valid, the rest of this sec-
tion will introduce other forms of uncertainty before showing how the notions
of epistemic and aleatory uncertainty for a measurement and hence assessment
approach can be used.

Parameter and model uncertainty

Two other types of uncertainty that are usually considered together are para-
meter and model uncertainty. A simplified modelling process can be viewed as
three step approach, whereas after identifying important variables to be included
and classifying how these variables interact in terms of a suitable structure, in
the final step, necessary parameters are to be assessed [253]. Then a statistical
model can be regarded as representing data in terms of variables’ probability
distributions with aleatory and parameters with epistemic uncertainty [306].
Parameter uncertainty is inherently epistemic as parameters are concerned with
populations rather than samples and given that, whenever expert opinion is used,
the whole population is simply not known, otherwise all the necessary data to
make inferences would already been given [306]. Parameter uncertainty can be
defined as the “uncertainty about the true value of a parameter in a mathem-
atical model” [84]. Usually expert judgement is concerned with eliciting some
unknown value in order to make inferences about a parameter, however the direct
assessment of model parameters should be avoided as they are often fictional, not
directly observable, and therefore not have a simple and intuitive interpretation
(e.g. [431]). Further, viewing the elicitation of parameters critically, leads us to
the reasoning that parameters can be described as “artefacts of a model” [423], so
that [84] question the real-world interpretation of a parameter, hence also ques-
tioning how meaningful the notion of a true value from the above definition is?
As an expert’s subjective uncertainty, expressed in a personal probability, is only
meaningful when representing uncertainty about the truth of some meaningful
proposition, a meaning can only be given to parameter uncertainty if represent-
ing an observer’s uncertainty about model predictions’ accuracy on observable
quantities [84].
Model uncertainty is in principle similar to parameter uncertainty and might be
even regarded as a special case of it. A definition such as model uncertainty being
“uncertainty about the truth of the model”, again serves little given the common
understanding that “all models are false” [84]. A meaning for model uncertainty
must come hence from taking a different perspective due to the fact that good
modelling practice requires a model no more refined than needed for the specific
application [253] and usually accurate predictive quality serves this purpose [84].
One such a perspective is, as aforementioned, that model uncertainty is a special
case of parameter uncertainty. This is the case whenever there are several models
with uncertainty about which one fits best one’s needs, e.g. has the most accur-
ate predictive quality. Then, a single “supermodel” could integrate all models
and a discrete parameter could indicate, which model to use, i.e. assessments of
probability distributions for model parameters can be made upon the condition
of the model being suitable [84, 423]. Another perspective comes from [253]
replacing the term model uncertainty with structural uncertainty implying also
a clear practical distinction of parameter and model uncertainty as herewith in
the simplified three step modelling process those two uncertainty types can only
occur in different steps, neglecting iterative amending and refining. A final per-

16 Eliciting dependence for probabilistic uncertainty modelling



CHAPTER 2. PRELIMINARIES

spective states that model uncertainty is “unequivocally epistemic” [308]. They
([308]) derive this position with an example about a modelled real-world pro-
cess, a risk assessment of atmospheric dispersion for a chemical installation with
a residual variability, which is surely stochastic as considered part of the natural
process, therefore assumed to be aleatory. However, with further refinement,
more conditions and details could be added, reducing or eliminating variation,
thus implying that the removed component was epistemic. This discussion leads
back to the earlier question whether any uncertainty is aleatory? Apart from the
aforementioned theoretical discussion, it can be seen that for grasping modelling
uncertainty, the distinction of aleatory and epistemic is fundamental and reflects
mainly the first and third reason from the three given by [84] about why this
distinction is useful.

2.2.2 Measuring uncertainty

After having clarified the main types of uncertainty, this section considers tech-
nical practicalities when eliciting an uncertain quantity from an expert - its
(mathematical) language. Herewith, two common and closely related measures
are probability and expectation. The origin of both concepts is the systematic
analysis of uncertainty that can be traced back at least to Paccioli (1445-1517)
and a riddle, known as game of balla or problem of points. Roughly it constitutes
the situation when stakes in an unfinished game have to be divided, a similar idea
that was behind Cardano’s (1501-1576) theory of gambling and the mail corres-
pondence of Pascal (1623-1662), Fermat (1601-1665) and De Méré (1607-1684)
(actually Gombaud) [39]. Before talking about probability and expectation as
ways to measure uncertainty, it shall be noted that for a full mathematical lan-
guage or representation, three components must be given, (1) axioms that give a
specification for the formal properties of uncertainty, (2) interpretations that es-
tablish the link between the axiomatic definitions and observable phenomena and
(3) measurement procedures that offer practical ways to interpret the axiomatic
structure [84].

Probability

According to [423], “probability is the mathematical language of uncertainty”
and it is often emphasized in glowing terms, such as by Butler (1692-1752), Eng-
lish bishop and philosopher, who stated that “probability is the very guide to
life” [428]. And indeed, even though in the general literature on expert judge-
ment, various numerical expressions for use in elicitations are mentioned, i.e.
to make statements about an uncertainty, e.g. relative and natural frequencies
as well as percentages of chance or direct probabilities [306], in fact all those
numerical expressions should give the same result for an assessment: a probabil-
ity as a normalised measure. Though, at this point it should be mentioned that
psychological research indicates that the formulation makes a difference, but this
is not of concern in this chapter.
Loosely, states of knowledge can be indicated by probability distributions, so e.g.
no knowledge can be shown with a uniform distribution whereas a distribution
with a certain peak and range gives the most likely value together with its ex-
tremes. Formally, a probability is a positive normalised measure of uncertainty
following certain mathematical properties. In common notation, P (A) denotes
the probability that event A occurs, whereas it can take any value on the inter-
val ranging from 0 to 1. P (A) = 1 implies that event A occurs with certainty
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and thus P (A) = 0 signifies the impossibility of event A’s realisation. A way
to introduce probability is known in the respective literature as set theory, in
which a σ-field is the collection of events which a probability can be assigned to.
Then, Ω represents the non-empty set, a collection of all the possible outcomes
or possible worlds, which need to be distinct and definite. On the other hand,
∅ denotes a null or empty set. A set A ∈ Ω is called an event and if all elements
of set A are part of a set B, then A is said to be a subset of B, i.e. A ⊆ B if and
only if ∀ω ∈ Ω : (ω ∈ A =⇒ ω ∈ B). Following this, a subset is called a proper
subset A ⊂ B if it not constitutes the whole set, i.e. there is an element ω ∈ Ω
being an element of B but not A. Further to these definitions, set theory allows
operations for understanding the relation of different events. The most common
ones herewith are union, intersection, complement and difference.

Formal properties and Kolmogorov’s axioms While the earlier brief
excursus into historical developments showed that the systematic analysis of
uncertainty started at least around the 17th century, it was as late as the begin-
ning of the twentieth century that formal properties of probability were outlined.
Some prominent ideas brought forward were Keynes’ partial ordering on a set
of propositions [84], whose explicit aim it was to formalize the theory of prob-
ability by introducing it as logical relation [181], and conditional probability
(e.g. [329]), i.e. relativised to an indicated set of outcomes as whenever a situ-
ation is modelled probabilistically, the set is delimited to outcomes one is ready
to tolerate. For example, with a throw of a dice one might exclude the pos-
sibility of it landing on an edge by defining the outcome set as {1, 2, 3, 4, 5, 6}
[183]. Particularly followers of a subjective interpretation make the argument
that an individual’s probability is always based on prior knowledge and/or belief.
From today’s perspective, it is agreed that the Soviet mathematician, Kolmogorov
(1903-1987) [235] succeeded in laying the formal foundation of probability when
introducing the first axiomatic structure based on measure theory, where prob-
ability is axiomatised as a normalised measure [18]. It is commonly accepted for
being simple, intuitive and suitable in many applications [84]. The axioms are:

• Non-negativity: P (A) ≥ 0, for all A ∈ F where F is the event space and
P the probability function;

• Normalisation: P (Ω) = 1 where Ω is the sample space;

• Finite additivity: (A∪B) = P (A)+P (B), for A,B, ∈ F such that A∩B =
∅

The third axiom can be applied similarly to an infinite sequence of mutually
exclusive events, thus stating:

P (∪∞i=1Ai) =
∞∑
i=1

P (Ai)

Then, {Ω,F , P} is called the probability space. Consequences of the above axioms
are the deduction of some common calculation rules for probabilities, such as the
probability of the empty set, monotonicity, probabilities being bounded between
0 and 1, or as well the sum rule of probabilities.
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Expectation

Another measurement of uncertainty is mathematical expectation, also known
as mean, expected value or first moment. Consequentially, the nth moment
of a random variable X is the expectation to its nth power, i.e. E(Xn). In
addition to the aforementioned contributors of measuring uncertainty, usually
Van Huygens (1629-1695) is credited for having developed an axiomatic structure
of what then became the theorems of expectation rather than probability [417].
Similar to above, the axioms of mathematical expectation are outlined as a
formal foundation, whereas E(X) denotes expected value of the random value
X.

Formal properties and axioms As a normalised positive linear operator,
expectations need to satisfy the following four axioms:

• Monotonicity: if X ≥ 0, then E(X) ≥ 0;

• Constants: if c is a constant, the E(cX) = cE(X);

• Linearity: E(X + Y ) = E(X) + E(Y );

• Axiom 4: E(1) = 1

Despite the fact that expectation can be derived from coherent previsions as will
be seen later when discussing de Finetti’s principle of coherence, most arguably
the more common approach is to induce it from probability-weighted average of
all possible values of a quantity. This can be denoted by the outcome set Ω with
a countable set of values {ω1, ω2, ω3, . . . , ωk} for the finite case, in which the ex-
pected value of random variable X is then denoted by:E(X) = Σk

t=1P (ωi)X(ωi).
Accordingly for the continuous case, Ω represents a real line and ω a scalar, while
the expected value of random variable X is: E(X) =

∫∞
−∞X(ω)f(ω)dx for all

X(ω) with a defined integral as well as being absolutely convergent, whereas f(x)
constitutes the probability density on Ω following: f(x) ≥ 0,

∫∞
−∞ f(ω)dx = 1.

2.2.3 Interpreting uncertainty

The next component necessary for probability and expectation to offer a full
mathematical representation is a suitable interpretation linking formal proper-
ties with observable phenomena. The various interpretations are subject of on-
going debate and thus different perspectives are outlined to draw some practical
implications from these, to be considered throughout this thesis. In this context,
the subjective one is of main interest as it builds the foundation of subjective
measurement processes and hence the application of SEJ. Several metaphysical
desiderata have been imposed onto the different interpretations with the aim of
establishing criteria of adequacy (e.g. [355]). However, as these rather philo-
sophical approaches do not genuinely succeed in establishing an order of more
and less adequate interpretations, in the following the main views over the course
of history are put forth.

Classical

A first interpretation is often known as classical due to its early pedigree already
championed by Laplace (1749-1827). It is the oldest way to interpret probability
beginning with the analysis of games of chance, based on equally likely outcomes
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[84, 423]. Within this interpretation, the probability of an event equals the num-
ber of outcomes that encompass the event divided by the number of all possible
outcomes.
This way of quantifying a random situation is simple and intuitive, but also
quite limited, not only in terms of the situations that can be analysed, but also
restricting those games of chance itself to premises such as a perfect dice or a per-
fect coin. This means that by considering equally likely outcomes, a theoretical
assumption is made which gives this interpretation also the name of theoretical
probability. The term equally likely might become circular if seen as equally
probable, i.e. making use of the notion of probability while establishing it. This
can be overcome by the principle of indifference. While Laplace’s version is lim-
ited to finite spaces, some approaches have been made to extend the classical
interpretation to infinite cases, appealing to the principle of maximum entropy,
whereas it can be regarded as a generalization of the principle of indifference as
advocated by [205].
A rather curious example which transforms a typical situation of classical prob-
ability into an empirical one is mentioned in [428], referring to Weldon (1860-
1906), an English biometrician, who conducted the laborious manual experiment
of rowing 26, 306 rolls with 12 dice. He counted 106, 602 occurrences of 5 or 6,
1, 378 more than the expected number of 105, 224, i.e. an excess of 0, 0044 in the
probability above 1/3. In order to avoid a throwing bias those dice were rolled
down a wavy cardboard.

Frequencies

As seen above in Weldon’s simulation of rolling dice, another approach to inter-
pret probability is by doing so empirically, such as in terms of its relationship to
relative frequencies. This concept has with the classical interpretation in com-
mon that it takes an objective view and thus looks at interpreting probability
independently of an individual’s belief. Its simplest form relates to finite fre-
quencies, for which simply a finite sequence of events is considered counting all
actual outcomes in a long series of identical trials instead of possible ones as the
classical interpretation would do. Pioneering work in form of a transition from a
logical (see below) to a frequentist interpretation was mainly elaborated by Venn
(1834-1923), who concluded, while working on the probability of male and fe-
male births, that “probability is nothing but that proportion” [400, 159]. Other
prominent contributors are Von Mises (1883-1953) and Reichenbach (1891-1953),
who both considered the infinite case of frequentism that extend limitations of
the former case by identifying the limited relative frequencies of events within
an infinite reference class, i.e. a hypothetical sequence of trials. Then, a prob-
ability states the limited relative frequency of would be events if the sentence
was to be extended under identical conditions, concerning independent repeti-
tions of a random experiment ad infinitum. Therefore it is also termed aleatoric
interpretation [18]. Formally this is expressed as:

P (A) = lim
n→∞

1

n

n∑
i=1

1A(ωi)

with ωi being the outcome of an experiment i and thus 1A(ωi) giving the indicator
function.
An apparent problem with the frequentist interpretation is the non-integration
of unrepeatable events, also known as the single-case problem. Further issues
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arise when trying to claim a definite existence for a unique limit independent
of the events’ context, i.e. unaffected by whom repeats the experiment at what
time [153], thus questioning the meaning of identical. Often the weak law of large
numbers is stated to claim this existence, though this might introduce circularity
as its assumptions must be defined beforehand, otherwise they themselves invoke
probability [84]. To get around this, limiting relative frequencies are relativised
to sequences as well as reference classes, a manipulation that brings its own
problems. First of all, the question of ordering the outcomes within a sequence
and then finding right reference classes, if this ever exists. [403] introduces
what he calls collectives for solving this by defining algorithmic randomness
and introducing two axioms of convergence and randomness, allowing that in
a random sequence, or collective, the probability of a specific outcome is not
altered by the selection of the sub-sequence. Given these theoretical issues, a
common opinion in the respective literature is that this interpretation serves as
evidence for probability assignments rather than making conclusive statements.
For instance [335] claims in relation to the subjective interpretation (see below)
that “the very idea of partial belief involves reference to a hypothetical or ideal
frequency”. For maintaining conclusiveness too often however, this view is for
instance attacked from representatives of the logical interpretation, such as [229]:
“to argue from the mere fact that a given event has occurred invariably in a
thousand instances under observation, without any analysis of the circumstances
accompanying the individual instances, that it is likely to occur invariably in
future instances, is a feeble inductive argument [...]”. Indeed objections could
go towards the validity of inductive statements based on empirical observations
(only) as shown next.

Logical

With the idea that probabilities can be determined a priori by considering all
possible outcomes within a space, the logical interpretation shows similarities
with classical and by introducing an empirical element with frequentist’s reason-
ing. But it differs given that probability is seen as generalization of an empirical
and epistemic relation between propositions. This generalization is a logical en-
tailment in deductive logic, i.e. if valid, the truth of the premises guarantees the
truth of the conclusion [159]. Then the central idea is capturing to which degree
of confirmation (or: validity, partial entailment) some piece of evidence E sup-
ports hypothesis H, denoted as c(H,E). Hereby only conditional probabilities
(given evidence) are considered [184].
Logicism joins the subjectivist’s view, which is of main interest for expert judge-
ment, in the family of modern epistemic interpretations (distinguished from the
classical one, i.e. not retaining the strict doctrine of determinism). Most prom-
inently this interpretation has been elaborated in the 19th century by Boole
(1815-1864) and De Morgan (1806-1871) and in the 20th century by Johnson
(1858-1931), Keynes (1883-1946), Jeffreys (1891-1989) and Carnap (1891-1970).
As main pioneer, Boole strongly advocates a normative position on probability
theory which according to him must be derived from logic, thus implying that the
logical interpretation does not describe how to actually reason under uncertainty
but how to ought to. A strong implication for the kernel of the logical position is
therefore the accent of rationality. This emphasis was expressed similarly by De
Morgan, who even came quite close towards stating a subjectivist position while
developing a normative perspective by rejecting the idea that probability can be
objective and claiming: “by degree of probability we really mean, or ought to
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mean degree of belief [...] I throw away objective probability altogether, and con-
sider the word as meaning the state of mind with respect to an assertion, [...] on
which objective knowledge does not exist” [159]. Rather than “throwing away”
objective probability in the sense of a subjectivist however, De Morgan refers
not to the actual belief of an individual but to that ought to be adopted, i.e. the
universal assessment of everyone examining the subject in question, viewing the
human mind as transcendental [159]. Johnson in [211] shares this view which
is noteworthy given that he as lecturer at the University of Cambridge at that
time was influential on later personalities such as Keynes, Ramsey and Jeffreys.
In the 20th century, most famously Keynes argues that probability theory should
be part of inconclusive, i.e. inductive logic, stating: “the Theory of Probability
is concerned with that part [of knowledge] which we obtain by argument [rather
than directly]”. Therefore, Keynes rejects the frequentist position by stressing
the important connection of induction and probability, similar to Bayes (1701-
1761), and therefore introduces the concept of weighted arguments as a core
ingredient of his theory, referring to the idea that favourable evidence increases
weight, consequently affecting a probability: “the question comes to this - if two
probabilities are equal in degree, ought we, in choosing our course of action,
to prefer that one which is based on a greater body of knowledge?”. Accord-
ing to [91] this introduces the difficulty of probabilities for probabilities, which
might be problematic but is not further discussed here. In agreement with his
predecessors it is clear for Keynes that given the same amount of knowledge,
the logical relation demonstrating probability is the same for everyone [159],
being “objectively fixed, [...] independent of our opinion”. It might be question-
able first of all whether ever several individuals can be said to have the same
amount of information due to an individual’s mental processing of information
and secondly, it induces non-measurable probabilities. Thus, as a main critic
of Keynes, Ramsey in [333] rejected the idea that “a probability may [...] be
unknown to us through lack of skill in arguing from given evidence”. This sub-
jectivist view that an unknown probability does not make sense, a point also
stressed by de Finetti in various occasions, is underpinned by Ramsey’s belief
of a psychological foundation of probability [385]. A position that is further
explored in the next section.

Subjective

While sharing the conviction that probability is epistemic, the subjective inter-
pretation disagrees that it is determined by a given body of evidence [159]. In
other words, degrees of belief constitute an individual’s actual degrees of be-
lief rather than some objective or normative requirement in a transcendental
sense as seen in the logical position. This interpretation goes thereby beyond
the previous views as, being a property of a decision-maker, it can make use of
probabilistic properties of physical situations or as well include evidence from
past observations, but still evaluate relevance of information or assess single-case
probabilities by resemblance. However, this position is not completely uncon-
strained as an individual still has to meet a single rationality requirement known
as coherence, further outlined below.
Pioneering work in this interpretation was advanced by Donkin (1814-1869),
Borel (1871-1956), Ramsey (1903-1930), De Finetti (1906-1985) and later Savage
(1917-1971). Among these, Donkin might be debatable as his view on “quantities
of belief” is very close to the logicist position of De Morgan outlined earlier. Due
to his work on belief conditioning however, stating that proportionality among
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probabilities assigned to options must preserve even if changing one probability
of a hypothesis given new information, he shows a subjectivist mind-set [159].
More clearly does Borel pave the way for a subjective interpretation, defending
the idea that the probability assigned to an event by two individuals with the
same information can indeed be different. For him probability judgements are
necessarily relative to a “body of knowledge”, which is “necessarily included in
a determinate human mind, but not such that the same abstract knowledge con-
stitutes the same body of knowledge in two distinct minds”. Further, Borel’s
epistemic account has strong affinity with the later work of Ramsey and de
Finetti as he (Borel) appeals to betting as a method that “permits us in the ma-
jority of cases a numerical evaluation of probabilities”. Similarly, Ramsey holds
the position that probability as degree of belief and herewith probability theory
as logic of partial belief has “no precise meaning unless we specify more exactly
how it is to be measured” [385]. While an operative definition that specifies
how degrees of belief can be measured will be discussed in more detail later, it
should be noted that betting is one method to do so. In Ramsey’s words, it
is “the oldest established way of measuring a person’s belief to propose a bet,
and see what the lowest odds are which he will accept” [385]. Ramsey already
knew about several drawbacks of betting methods, such as diminishing marginal
utility of money, a certain arbitrariness due to an individual’s “eagerness or re-
luctance to bet” and the issue that “the proposal of a bet may inevitably alter
[an individual’s] state of opinion”, which is why he then refines and formalizes
his approach. To do so, in Truth and Probability, degrees of belief are defined
in terms of more general personal preferences, based on expectation and relative
to a set of alternatives, obeying a set of axioms and yielding an expected utility
representation. By satisfying the laws of probability, consistency similar to de
Finetti’s idea of coherence is assured, the only condition for rationality on de-
grees of beliefs [159].
Independently, de Finetti developed a theory with analogous conclusions, which
prepared the ground of a “grown-up” subjectivism. A main point of his contri-
bution was de Finetti’s notion of exchangeability in his Representation Theorem.
In this context, for one of his illustrations regarding drawing from an urn with
unknown composition, he concludes therefore:

“what is unknown here is the composition of the urn, not the
probability: this latter is always known and depends on the subject-
ive opinion on the composition, an opinion which changes as new
draws are made and the observed frequency is taken into account”

In a more philosophical perspective, he sees the Representation Theorem as an
answer to Hume’s sceptical empiricism by justifying “why we are also intuitively
inclined to expect that frequency observed in the future will be close to frequency
observed in the past” [385]. It relates to the point that for de Finetti, the notion
of an objective or true probability “out there to be found” is thus meaning-
less as he made clear with his famous sentence: “Probability does not exist”.
For him, the main problem with this objective probability is that it confuses
defining and evaluating probability, so that looking for a correct objective prob-
ability, constraints these interpretations unnaturally. For his subjective view,
de Finetti knew that in practice probability assessments are to be influenced by
several factors, such as an assessor’s competence, optimism, pessimism and alike,
so that the topic about how to attain good probability assessment emerged in
particular in cooperation with Savage [356]. The latter refined the subjectiv-
ists’ approach by synthesising Ramsey’s and de Finetti’s work and adding Von
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Neumann’s (1903-1957) and Morgenstern’s (1902-1977) expected utility theory.
Before regarding a respective measurement procedure for our purpose, two other
ways to conceptualize probability are briefly sketched for completeness.

Propensity and best system

Two further, however less common, ways of interpretation are the propensity
and best system interpretations. While their discussion is out of the scope of
the research presented later, the interested reader is referred to [329].

2.2.4 Operationalising subjective probabilities

After having looked at ways to interpret probability and contrast subjectivism
with other views, a practical focus on the axiomatic structure is adopted by
outlining the operationalisation of degrees of beliefs. For this, it is first of all
necessary to consider what is measured and how it is done. [258] makes clear
that “there are no absolutes in the world of measurement”, meaning that “all
measurement is based on a comparison with a standard”. [81] outlines that
this standard ought to have an operational definition, i.e. a rule indicating how
mathematical notions are to be interpreted. Besides its general imperative, this
might be even more critical for subjective uncertainty given the need to define
in empirically observable terms what a respective measurement represents. This
concerns the question and respectively the type of quantity to be elicited, how
those might be interpreted by an expert and the meaning an analyst gives to
them.
In the remainder of this section therefore, the betting approach of de Finetti is
described, building onto the earlier discussed foundational ideas of Ramsey and
de Finetti, though the focus here is on the technical elaboration. Following this,
Savage’s rational preference is presented as a way to offer a refined theory and
axiomatic structure of subjective probability by synthesizing Ramsey’s consist-
ency and de Finetti’s coherence with expected utility theory.
It should be mentioned that those are not the only approaches to operationalise
degrees of belief. However, according to [81], Savage’s way “is the best from a
philosophical viewpoint” by fulfilling the criteria of using observable phenomena
in terms of betting and more general choice behaviour based on rational pref-
erence, doing so by integrating operational definitions for both, probability and
expectation.

De Finetti: Betting odds, coherent previsions and the Dutch Book
Theorem

As aforementioned, betting odds are a suitable starting point for operational-
ising degrees of belief by inducing coherence through probability axioms, the
only demand for rationality, proven e.g. via the notion of a Dutch Book. Here,
de Finetti already outlines potential issues of using monetary amounts in bet-
ting (similar to Ramsey’s concerns presented earlier) and comments that despite
avoiding those by considering sufficiently small stakes, he admits that using ex-
pected utility “could be better”. For an introduction to the original ideas, see
[107].
In a betting situation (with an illustration from [313]), let Φ be the indicator
event that a certain event occurs, e.g. in sport betting that a certain team wins,
in which case Φ is true and takes value of 1, otherwise 0. The bet itself can
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be seen to be worth a stake S if Φ is true (1) and nothing if false (0). The
bookmaker then sells the bet at price πΦS in units of the stake. When betting
in favour of Φ, the odds are denoted as πΦS : (1−πΦS) and the action of betting
itself is represented by aΦ,S . Considering someone willing to buy this bet, a net
gain of (1−πΦ)S, i.e. the stake less the respective price, is obtained with Φ = 1.
Otherwise, whenever Φ = 0, net gain is −πΦS, i.e. a loss. For selling this bet,
(plus/minus) signs are reversed. Once the odds are finalised, a seller of a bet is
assumed to be indifferent on selling or buying, known as having fair odds. More
formally, fair odds are denoted through indifference by aΦ,S ∼ aΦ,−S , whereas
in contrast, � designates a situation with preference, e.g. aΦ,S � aΦ,−S signifies
that odds in favour of Φ are considered by a bookmaker.
Based on such a betting situation with fair odds, requirements for an individual’s
degrees of belief to be coherent can be derived. The argument is then that a de-
gree of belief has to satisfy the axioms of probability as otherwise it is susceptible
to a Dutch Book, meaning that it can be exploited. A Dutch Book is possible, if
irrespective of Φ, the gain was strictly positive, meaning the seller of a bet would
be a sure loser through incoherence [313]. In this case the seller of a bet with
respective degrees of belief about some event is worse off, e.g. economically, irre-
spective of the state of the world. [428] outlines a parallel when thinking about
coherence in subjective probability and the principle of no risk-free profit, i.e.
no arbitrage, in the activity of trading.
In order to avoid a Dutch Book by following probability axioms, two structural
assumptions need to be in place. The first is that the odds are fair, leaving aside
concerns about its unique existence. This guarantees that a bookmaker’s know-
ledge about the uncertainties is implies the odds rather than the aim to make a
profit. The second assumption is that there is no limit on the number of bets that
can be bought or sold as long as this number is finite. In de Finetti’s words this
is in place to “purify” the notion of probability from factors related to utility and
it implies that the next monetary unit is valued as the former [183, 313]. Given
those assumptions, a degree of belief can be “plugged” into formal probability
calculus, represented e.g. by Kolmogorov’s axioms, even though other axioms,
such as for expectations, can also be used. For the corresponding proofs, see
[313].

Savage: Rational preference behaviour and the axiomatic develop-
ment

As mentioned previously, Savage developed, besides a more general approach
to the axiomatic structure of subjective probabilities, a system that integrates
coherence with expected utilities by interpreting degrees of belief as rational
preference, operationalised with choice behaviour [81]. For Savage, preference
can be, roughly speaking, conceptualized as choosing between acts for the sake
of those act’s consequences, which themselves depend on the state of the acting
subject [84].
Nowadays, the standard literature for rational preference is Savages The found-
ations of statistics, which has been praised the “most brilliant axiomatic theory
of utility ever developed” [147]. The fundamental idea shall be illustrated in the
following simple example from [84]. Here a subject is offered the choice between
“receiving 100 if it rains tomorrow, 0 otherwise” or “100 if the Dow-Jones goes
down tomorrow, 0 otherwise”. Supposing that 100 are preferred to 0, then, given
the subject chooses the first bet, we can conclude that the subject’s degree of
belief about the event of “rain tomorrow” is at least as likely as “the Dow-Jones
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going down”. While this is a simplified example, it can be concluded that by ob-
serving enough choices, subjective probabilities can be derived accurately. While
a complete and formal elaboration of the axiomatic structure for rational pref-
erences can be found in [357] as well as in [84], for the remainder of this section,
only main points of Savage and later general provisions of subjective probability
axioms are provided.
Generally speaking, the purpose of Savage’s theory can be summarized as (1)
defining more probable than relationships among states of the world, (2) elab-
orating these relationships to derive probabilities on the states of the world and
(3) working with von Neumann and Morgenstern’s theory to integrate expected
utility. Before this is achieved, Savage uses his first and fifth axiom to assure no
indifference among a set of states, also called transitivity, shown more formally
later. Following, a cornerstone of Savage’s system (captured in his second ax-
iom) contemplates the sure-thing principle, which resembles the von Neumann
and Morgensterns independence axiom, necessary for the fundamental notion of
conditional preference. It can be regarded as fundamental as it concerns pref-
erences between actions after some conditioning event has been observed, so it
relates to the connection of axiomatic theories and statistical practice [147].
After these initial clarifications, unique probability distributions can be derived
from preferences, achieved with (1) qualitative probabilities in form of more likely
than statements and (2) a transformation into quantitative terms by imposing
additional restrictions. For the first, the definition of a null state is needed,
simply meaning that one is indifferent if comparing two acts conditional on a
null state, i.e. the subjective probability of a null state is zero. Based on this,
Savage’s third axiom “is so couched as not only to assert that knowledge of
an event cannot establish a new preference among consequences or reverse an
old one, but also to assert that, if the event is not null, no preference among
consequences can be reduced to indifference by knowledge of an event” [357].
Similarly important for the nature of the relation of preferences, the fourth ax-
iom ensures that as long as respective utilities stay in the same relation, e.g.
U1 > U2, then the preference relation should not change. These steps so far
make it possible to define a more likely relation and thus the idea of qualitative
probabilities has been completed. For transforming those qualitative probabilit-
ies into quantitative ones, several possibilities to achieve this exist. One relates
to [107], who proposes a finite partition condition, i.e. splitting up the set of all
possible worlds into an arbitrarily large number of equivalent subsets, so that the
quantitative probability of each of these is the inverse of it. Savage though takes
a different approach in his Archimedean axiom (his sixth axiom), in which he em-
beds the finite partition condition directly in terms of preferences. While it leaves
aside the direct restriction onto the qualitative probabilities directly, it requires
splitting up the set of all possible worlds in small enough pieces so that prefer-
ences are unaffected by a change of consequences. Herewith no consequences can
be infinitely better or worse, similar to von Neumann and Morgenstern’s third
axiom, as well as the set comprising the states of the world is rich enough to
split it up into smaller pieces [147].
At this point, the axiomatic structure offers all necessary and sufficient condi-
tions for a unique probability representation, so that in the next steps, Savage
follows von Neumann and Morgenstern’s expected utility theorem to derive util-
ities and a representation of preferences.
While this representation only gave a brief insight into Savage’s theory, it is
nowadays a more general idea of axiomatic structures for subjective probabilit-
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ies to start from qualitative or comparative probability relations, which is usually
seen as criteria for coherence [147]. Herewith usually three types of subjective
likelihoods are distinguished:

• A ∼ B, events A and B are thought to occur equally likely ;

• A < B, event A is thought of to occur at least as likely as event B;

• A � B, event A is thought of to occur strictly more likely than event B

From this basic notation some general axioms can be outlined, whereas broadly
they can be split up into a group that enjoys no serious criticism and is un-
controversial, while the other group is debated thoroughly [147]. The ones that
qualify for the first distinction are:

• Asymmetry: if A � B, then not B � A;

• Non-Triviality: Ω � ∅;

• Non-Negativity: A < ∅;

• Monotonicity: if A ⊇ B, then A < B

The more challenged axioms in the respective literature are thus:

• Transitivity: if A � B and B � C, then A � C;

• Additivity: if A ∩ C = ∅, then A � B ⇐⇒ A ∪ C � B ∪ C;

• Complementary: if A � B, then not AC � BC

Despite their categorisation here however, it should be noted that axioms like
the ones above are fundamental for any theory of subjective probabilities.

2.3 Risk

[434] state that “if we were to read ten different articles or books about risk,
we should not be surprised to see risk described in ten different ways”. After
having discussed the vast topic of uncertainty in the previous section, it fol-
lows almost “naturally” to consider understanding the concept of risk together
with outlining respective measurement approaches. This will allow for making a
clear distinction between risk and uncertainty as well as introducing at the same
time the conceptual relationship between the two, which seems necessary due
to some inherent potential for confusion. Having a clear idea about the concept
of risk and how to work with it, both, qualitatively and quantitatively, will be
particularly important in later sections on the presented original research.

2.3.1 Qualitative aspects and definitions

A common misconception when discussing and defining risk concerns the differ-
ence between risk and uncertainty. While probability theory builds the found-
ation of many quantitative risk assessments and earlier, probability was intro-
duced as a way to measure uncertainty, it seems clear that uncertainty is involved
whenever we talk about risk, but as it is not the same concept. Thus, something
else needs to be present to give a first definition. A common and straightforward
qualitative definition of risk that is used here as a starting point is thus: Risk =
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Uncertainty + Damage [223]. In this first approach to conceptualise risk, some
sort of loss or adverse event happening is considered. One option to do so is
taking into account a common interpretation where risk is related to variance
in expected returns or standard deviation. In contrast, another interpretation
often seen in the psychology literature links risk to the probability or size of
potential losses [126].
Besides the confounded use of the terms uncertainty and risk, another expres-
sion often found is that of hazard. It stems from the Arabic word al zahr,
which translates into “dice”. It refers to some of the earliest (gambling) games
known to humankind, which used astragali (knuckle-bones) instead of dices [39].
Nowadays, hazard usually refers to a “source of risk” [84], meaning that risk itself
incorporates the likelihood that this source actually results in a loss or damage.
Additionally, for a second qualitative definition, the concept of a safeguard needs
to be considered as several factors, such as the awareness or acknowledgement
of a risk per se, can either increase or decrease the likelihood of the hazard to be
triggered. Together this, a second definition can be expressed as: Risk = Hazard
/ Safeguard [223]. This definition is important as it verifies the earlier given
statement that risk can never be reduced entirely, which forces us to compare
and choose between risks.
After having outlined some intuitive interpretations of qualitative nature, below
a way to quantify risk is given, which was chosen as it is regarded as a complete
approach and offers practical validity together as well as a suitable starting point
for the discussion of different definitions that follow.

2.3.2 A quantitative definition

Similarly to the qualitative definitions towards the conceptualization of risk,
[223] offer a quantitative approach which shall be taken as an appropriate idea
behind the concept. Their quantitative approach is built onto three questions to
be answered by a risk analysis:

• What can happen?

• How likely is that it will happen?

• If it does happen, what are the consequences?

Based on the answers to these questions, a scenario list is drawn up, consisting
of the actual scenarios, si , the likelihood of each scenario, pi , and the con-
sequence of each scenario, i.e. the measure of damage, xi. These form a triplet
and the risk R can then be expressed as the set of triplets, i.e. R = {si, pi, xi}
, i = 1, 2, 3, . . . , n. Re-arranging the scenarios in increasing order regarding the
severity of their consequences, i.e. xi ≤ x2 ≤ x3 ≤ · · · ≤ xn, and adding the
cumulated probability, Pi of the scenarios, now allows to plot a staircase function
with {xi, Pi}. Smoothing it out, so that it displays an actual risk curve, will al-
low to consider the continuous case instead of the discrete one, which resembles
reality better, whereas each scenario has a categorical function, meaning that
within it, several different sub-scenarios, resulting each in different consequences,
are entailed. A consequence of this representation is that risk can be defined as
“probability or likelihood and consequence” instead of the prevalent notion in
the respective literature of “probability times consequence”. Though the former
is not preferred without reason as with a single scenario it avoids the equival-
ence of “high probability - low damage” and “low probability - high damage”
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scenarios while with multiple scenarios it avoids the consequence of representing
risk as the expected value of all consequences, i.e. the mean of the risk curve
only.
Nevertheless, presenting the whole risk curve still seems to be representing risk
not precisely enough as one might question the confidence in the curve itself, or if
the curve represents the state of confidence, one might question the confidence in
the state of confidence, a thinking easily leading to a problem of infinite regress.
In other words the probability here is seen as a measure of uncertainty about
future events and consequences based on some assessor’s background knowledge.
A tactic to overcome this is commonly known as the “probability of frequency
approach”. This additional detail however does not change the overall represent-
ation of risk apart from offering the possibility to assign confidence to different
risk curves, even though as it introduces a second-order probability. It should
be mentioned that those are not completely uncontroversial among philosophers
as well as statisticians [282]. Defining risk in this way offers a representation for
integrating uncertainty suitably for common risk analysis tools, such as fault and
event trees as well as the risk assessments methods presented later in this thesis.
For the latter, we might set a particular focus on considering multiple dimension
of a risk definition whereas it seems intuitive that the triplet can be extended in
different ways that may refine it. As already pointed out earlier, one number as
risk measure seems too simplified and even a curve might not be satisfying. In
this regard, [223] specifically mention that the consequence or damage, xi, can be
seen as a vector, entailing different damage types rather than a scalar and thus
transforming the risk curve in a multidimensional space. A further refinement
respects possible interdependences within the vertical line of si as well as the
consequences xi. Thus it overcomes the assumption of independent scenarios.

2.3.3 Some alternative risk definitions and misconceptions

As aforementioned, the topic of risk with its different approaches and definitions
is a rather complex area and some might even call the present characterisa-
tions weakly justified and inconsistent [20]. Therefore a detailed discussion of
as many definitions as possible gets confusing rather quickly. However, some
grouped classifications that were identified by [21] are outlined to provide some
structure.
A first one is Risk = Expected Value (or Loss), a view that is most arguably
the oldest definition of risk going back to the French mathematician De Moivre
(1667-1754). Similarly, sometimes risk is referred to the expected loss solely
[421], to utility, expressed as the product of probability and utility, or expected
disutility solely [62]. As mentioned earlier, these definitions and hence meas-
urements are closely related to finance theory as well as economic perspectives
on risk. Even though in practice, utility is not often used directly, Cost-Benefit
Analyses often determine the acceptability of taking a risk, which in turn is in-
directly but still strictly related to utilities [23]. In fact, in these cases utility is
expressed often in monetary values in form of Net Present Value (NPV), which
is not trivial when thinking about expected loss of lives or irreparable damage to
nature. This shows a certain degree of arbitrariness when working with utilities
(directly or indirectly) in risk analyses despite its acceptance as a rational way
to make decisions.
Another common understanding and measurement of risk is based on Risk =
Probability (of an undesirable event). Within this view, the damage or con-
sequence is specified so that solely its likelihood is considered. This can be done
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in most arguably its simplest form by assigning a probability to the chance that
the loss occurs and respectively obtaining the probability that it does not. It
becomes clear that one crucial consideration is specifying the amount of preci-
sion that goes into the definition of the damage itself, i.e. particular time frame,
circumstances etcetera [230]. On the bottom line it becomes clear that within
this view measurement of risk and risk itself are the same and so an assessor’s
perception and, as some might argue for its existence, an objective risk is not dis-
tinguishable. In a related but different perspective on risk, Risk = Uncertainty,
risk itself and its measurement can be seen as different ideas though, which is
welcomed by some researches arguing that “uncertainties beyond the probabil-
ities should be taken into account” [19]. Referring back to the introduction of
this chapter, alternative ways to measure uncertainties might be questioned.
Another grouping of definitions is summarized as Risk = Objective Uncertainty
whereas the distinction is made between risk as objective and uncertainty as
subjective probability. This idea came to “fame” especially in economical con-
texts, most often attributed to Knight (1885-1972). There are various objections
to this definition, one of the most obvious ones being that risk analysis concerns
a situation in which there is seldom knowledge about the objective distribution
if it exists at all from a philosophical point of view. Further, as seen before,
uncertainty is an inherent part of the concept of risk, so that taking those two
apart only adds confusion if following the approach to risk that was outlined
above.
While the so far presented groupings have concerned uncertainty itself or a cer-
tain measure of it, some other definitions, traditionally coming from an engin-
eering context , take the starting point from the earlier described triplet or a
derivation of it, so that scenarios and consequences are included. For instance,
the definition of Risk = Event or Consequence as expressed e.g. by [346] in
terms of “risk is a situation or event where something of human value (including
humans themselves) is at stake and where the outcome is uncertain” belongs
into this range as all components of the earlier idea of a triplet are included.
However, it constitutes a far less practical concept in the daily usage of risk ap-
plications, such as the ALARP principle, as it does not allow for discriminating
between high or low risk, comparing different risky options and so forth [25].
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Chapter 3

SEJ for common probabilistic
dependence models

This chapter1 addresses the point that in expert judgement studies, a structured
approach to eliciting variables of interest is desirable so that their assessment
is methodologically robust. One of the key decisions during the elicitation pro-
cess is the form in which the uncertainties are elicited. This choice is subject to
various, potentially conflicting, desiderata related to e.g. modelling convenience,
coherence between elicitation parameters and the model, combining judgements,
and the assessment burden for the experts. While extensive and systematic guid-
ance to address these considerations exists for single variable uncertainty elicit-
ation, for higher dimensions very little such guidance is available. Therefore,
this chapter offers a systematic review of the current literature on eliciting de-
pendence. The literature on the elicitation of dependence parameters such as
correlations is presented alongside commonly used dependence models and exper-
ience from case studies. From this, guidance about the strategy for dependence
assessment is given and gaps in the existing research are identified to determine
future directions for structured methods to elicit dependence.

3.1 Chapter introduction

When performed rigorously, elicited quantities, often aggregated from multiple
experts, offer reliable information for model quantification. Nevertheless, there
are several different broad approaches and many choices to be made by the ana-
lyst, all of which can affect the elicitation burden for experts and ultimately also
the reliability of the outcome.
While research and reviews that offer guidance exist for methods addressing the
elicitation of univariate quantities [79, 150, 155, 207, 306, 310], and while de-
pendence modelling is an active research area [244], little guidance exists about
the elicitation of dependencies. The exceptions are Bayesian (Belief) nets (BNs),
though also for these modelling and elicitation challenges remain, as shown later.
In fact, developing defensible elicitation processes for multivariate quantities is
still much under development despite its fundamental importance for decision

1Based on: Werner, C., Bedford, T., Cooke, R. M., Hanea, A. M. and Morales-Nápoles, O.
(2017). Expert judgement for dependence in probabilistic modelling: a systematic literature
review and future research directions. European Journal of Operational Research, 258(3), 801-
819
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as well as risk analysis [298, 372]. Some of the first studies that elicit depend-
ence are [89, 227, 243, 172] and [215]. Since then more ways for quantifying
multivariate distributions and models through experts have been investigated,
yet on the actual elicitation only little discussion and guidance is available. Ref-
erences that introduce some aspects are [104, 244, 306] and [165]. However, a
complete and systematic way of comparing different dependence parameters as
elicited quantities, and reflecting their use in dependence models in the form of
a literature review has been non-existent so far. Therefore, research and applic-
ations of several dependence measures in models and their elicitation methods
are presented. With a practical focus, case studies are discussed whenever avail-
able. This chapter addresses elicitation processes for dependence information
and aims at providing understanding of their use in applications. It offers guid-
ance on making robust choices about which summary of expert knowledge on
multivariate distributions should be elicited, and how they might be used within
a dependence modelling context, as these are key decisions within the overall
elicitation process. This is achieved by outlining how much is understood about
the complexity of approaches to dependence modelling and the cognitive assess-
ment burden for experts.
A comment on the scope of this review is that while we discuss the cognitive com-
plexity of assessing dependence in various ways, such as already considered by
[241], and while insights from psychological studies are mentioned, correspond-
ing research streams for causal and association judgements are not reviewed
exhaustively. Normative and descriptive models for causal reasoning or mental
conceptualisation of correlations, which origin is often attributed to [371], are
found for instance in [279, 177, 41] and [13]. An overview and introduction to
these areas is given in [192] and [359].
The chapter is organised as follows. Section 3.2 discusses the extent to which
findings from eliciting univariate quantities apply to the elicitation of multivari-
ate ones in order to provide the reader with an indication for the scope of the
overall topic. Section 3.3 introduces the modelling context which shows how
modelling and eliciting dependence are related. This offers an overall struc-
ture to the research problem. Then, Section 3.4 discusses how elicitation is
approached for quantifying various dependence models. Section 3.5 presents
dependence parameters that are commonly elicited together with its implica-
tions for experts’ assessment burden. Section 3.6 provides an overview of the
empirical contributions in the literature based on which Section 3.7 formulates
directions for future research and concludes the chapter. We refer to Appendix
B whenever a technical term needs a more detailed explanation, however the
original references should be considered for an extended introduction.

3.2 Generalisations of univariate elicitation processes
for eliciting dependence

Structured processes for the elicitation of dependence follow historically from
findings made when eliciting univariate quantities. In the early days of uncer-
tainty modelling, formal processes for eliciting univariate uncertainties, such as
marginal probabilities, were developed to ensure a methodologically robust ap-
proach to parameter quantification in the face of lacking relevant historical data.
From these, methods to elicit dependence followed given the need of accounting
for relationships between uncertainties. [82] discusses the historical development
of expert judgement in uncertainty analysis and its achievements in more detail.
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This development is not surprising as univariate quantities are (typically) more
intuitive to experts and their specification is required (at least implicitly) prior
to eliciting dependent distributions for two or more uncertain quantities.
In this section we discuss some main foci of structured expert judgement studies
and evaluate the extent to which findings for univariate quantities are gener-
alisable in the multivariate case. This discussion outlines where in a process
adjustments are necessary when eliciting multivariate uncertainty and therefore
provides an indication for the scope of dependence elicitation. Given the overall
focus of the chapter, we outline only the relevant considerations for the elicited
dependence parameters and the aggregation of judgements. However, it should
be noted that an elicitation process is much more complex and other decisions
in it, such as how to design the statistical training for experts prior to an elicit-
ation, might vary as well considerably when eliciting multivariate uncertainty.
Already the earliest expert judgement studies for univariate quantities have
shown that assessment outcomes can differ greatly depending on the use of dir-
ectly or indirectly elicited query formats [375]. As a result, an extensive literature
on heuristics and biases is available on the matter of framing elicitation ques-
tions and choosing a form for the query variable. Further, recommendations are
made on the theoretical suitability of the elicited format, e.g. objections are
made to non-observable quantities [214]. For eliciting multivariate quantities on
the other hand, the same conclusions are not readily applicable. As will be seen,
the effect of direct and indirect elicitation approaches is less well-understood and
findings are often conflicting. The objection to non-observable quantities is less
clear and indeed we show later that eliciting non-observable quantities performs
well in terms of empirical accuracy and mathematical coherence. Similarly, for
heuristics and biases only some extensions for the multivariate case exist, such
as illusory correlation [66], stemming from the availability bias, and confusion
of the inverse, originating with the representativeness bias [306] (for both see
Appendix B). While these findings indicate an overlap for the existence of com-
mon biases, a lack of empirical research on the effect of framing for multivariate
elicitation does not allow for generalisable conclusions.
Once the dependence information has been elicited in the form of some de-
pendence parameter (which is thoroughly addressed in the following sections),
a well-researched topic for univariate uncertainty, which generalisation would
be desirable for multivariate elicitation, is the use of scoring rules. Roughly, a
scoring rule is a numerical evaluation of a probability assessment based on ob-
servations. In expert judgement studies, they are typically used for two reasons,
first to present an incentive for truthful assessment and second to measure the
quality of an assessment after the elicitation, usually to inform a weighted com-
bination of the judgements. In other words, they are used to define desirable
properties of the assessment itself and they serve as a reward structure when
evaluating an assessment. While an incentive is given by using (strictly) proper
scoring rules which ensure that experts achieve their maximal expected score if
and only if stating their true belief, a main property of measuring the quality
of an assessment is its calibration, i.e. the statistical accuracy after observing
an event of interest. Suppose an expert provides a probability distribution P
over a set of n mutually exclusive events i. Then, after observing the events
of interest, we can construct the sample distribution S with S(i) equal to the
number of times that i is observed divided by n. While it appears reasonable to
state at first thought that an expert is not well calibrated if S = P , this might
be false if we suppose that true values represent independent samples from a
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random variable with distribution P . In this case, P relates to “reality” but
we will never have S = P due to statistical fluctuations. Loosely, an expert is
therefore said to be well-calibrated if the true values of the uncertain quantities
can be regarded as independent samples of a random variable with distribution
P [79].
When evaluating experts’ performance, we have to distinguish between scoring
rules for individual variables and scoring rules based on sets of assessments to-
gether with sets of realisations. The first, assigning scores to each individual
assessment and summing these scores over a set of variables, is often suggested
in the literature for the purpose of rewarding, yet it is not a sensible approach.
A main issue is that the resulting scores cannot be interpreted in a meaningful
way without knowing the number of quantities assessed and their overall sample
distribution. This is due to the possible additive decomposition of these types of
scores into a “calibration” and “resolution” term [111]. Resolution measures how
well experts partition the variables into statistically distinct categories while not
considering whether the distributions assigned to these categories correspond to
the experts’ assessment. This becomes problematic when high resolution over-
powers low statistical accuracy. A more detailed presentation of this drawback
and some intuitive examples are given in [79, 83]). Therefore, scoring rules for av-
erage probabilities are highly encouraged for evaluating and combining experts.
While some main properties of scoring rules are applicable in the multivariate
case, others cannot be readily used.
[213] discuss (for the univariate case) the inclusion of order information (re-
quiring an ordered state space). Ordered events allow for rewarding that takes
account of nearness to an event’s realisation. In the multivariate case the lack of
natural ordering means that this approach is not possible. Further, [212] discuss
a wide class of scoring rules, called generalised divergence scores, that allow for
any baseline distribution (rather than a uniform by default), and which reward
according to a measure of distance between the assessed distribution and the
baseline distribution. Of interest for multivariate elicitation is the derivation of
a weighted scoring rule that is closely related to the Hellinger distance which
is a measure of divergence that has been used in the calibration of experts’
multivariate assessments.

3.3 Guide to modelling and elicitation context

The main purpose of eliciting dependence is to quantify a multivariate stochastic
model when this cannot be done wholly by conventional statistical estimation
(which, in our view is a common situation). This section discusses broad ap-
proaches to dependence modelling in order to provide a clear structure for the
next sections by highlighting the link between dependence modelling and ex-
pert judgement. Figure 3.1 shows this general view on the modelling context
with three different broad approaches to assessing dependence and illustrates
the relationships between model input and output variables.

In this general context, S represents the vector of stochastic variables in the
model, and T the vector of output variables which depends deterministically on
S. R represents another set of auxiliary variables used to evaluate the uncertainty
on S. The solid arrows show deterministic relationships between the variables,
and hence the direction in which uncertainty can be propagated.
It is not uncommon for there to be dependence between the output variables
T . This can arise simply as a result of the functional dependence represented in

36 Eliciting dependence for probabilistic uncertainty modelling



CHAPTER 3. SEJ FOR COMMON PROBABILISTIC DEPENDENCE MODELS

R S Tb a

c

Figure 3.1: Schematic representation of modelling and elicitation context

arrow a, even if the stochastic variables in S are modelled as being stochastically
independent. In many applications, however, it is not appropriate to model the
variables in S as independent, and so we should find a way to model and assess
dependence in S.

Approach a In Approach (a) we model the dependence relations between
the variables in S directly. The main techniques are BNs, copulas, parametric
families of multivariate distributions (e.g. the multivariate Gaussian distribu-
tion), and Bayes Linear methods. We provide examples for each method in
the next section. Having assessed the dependence and hence having specified
the distribution of the variables in S, uncertainty is then propagated through
the model (arrow a) to the output variable (or variables) T . As we shall see
later, direct assessment of dependence on the variables S is most predominant
in the literature. However, two other approaches are also important and worth
discussing.

Approach b In Approach (b) we introduce a new set of auxiliary variables
R, which are not directly part of the model variables (though may in practice
have some overlap with the variables S). The variables R are chosen so that their
uncertainty is easier to quantify - in particular one might choose these variables
so that they can be considered stochastically independent, with the dependence
in the variables S arising as a result of the complex relationship between the
“explanatory” variables R and those in S. This is shown in Figure 3.1 as arrow
b. This approach is of interest particularly when change of variables methods
(frequently used in multivariate statistics) can be used to simplify the variable
set from S. A common model type used in this context is a regression model and
an example of introducing and assessing auxiliary variables is given in Section
3.4.2.

Approach c In Approach (c) we “calibrate” the uncertainties on S through
considering some set of output variables T on which the uncertainties can be as-
sessed. Obviously, to be useful, this would have to be a different situation than
the one in which the overall model is to be used (see dashed node inside T ), as
we would otherwise be simply directly assessing the uncertainty in the variables
of interest. This calibration of uncertainties relies on the backwards propagation
of uncertainty from T back to S, shown by arrow c. The dotted arrow is used
to indicate a key difference with the solid arrows a and b. In general, more
than one distribution on S will forward-propagate to the given distribution on
T , that is, the inverse problem has no unique solution (or even worse, it has no
solution). Other criteria (such as max entropy) are then used to select a unique
inverse. That solution then defines a dependence structure on S, which can be
propagated back through arrow a to look at other output contexts. This is called
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Probabilistic Inversion (PI) [80, 239, 244] and we show an example in Section
3.4.3.
This approach is of interest when the dependence structure in S is difficult to
determine directly, but must satisfy reasonable conditions on output variables
that are easier to understand and hence easier to quantify.

A common theme in the latter two approaches is the model boundary. In
both cases we choose to extend the model to include other input or output
variables in addition to those which are strictly necessary for direct modelling.
Indeed it may happen that the auxiliary variables represent simplifications of
more complex issues which are insufficiently understood to be included explicitly
in the model but which are known to collectively impact the behaviour of the
system significantly. An example of this is the modelling of common cause
events in risk analysis [84] where the range of underlying causes is too wide to
be modelled individually, but which together have a substantial effect in inducing
dependencies in the overall system behaviour.
We illustrate the dependence structures shown in Figure 3.1 with the following
simplified project risk management example which shows how choices can be
made in the various modelling contexts. We are managing a project which has
an overall cost (model output variable T ). The cost is determined by individual
activities with associated costs (variables in S) that are of importance for the
project completion. If we want to model the stochastic dependence between
activities in order to obtain information about the overall cost, a first option
is to do so directly by specifying the dependencies directly between the cost
elements. The dependence models used here are part of modelling context a.
If modelling the dependence between the individual activities directly does not
produce a satisfactory model output, we have the choice to include explanatory
variables (R) that help us to understand the relationship better. For instance, we
can include factors like environmental uncertainties if we belief that our project’s
activity costs are (partly) influenced by them. The techniques used here are part
of modelling context b. Recall that we are choosing to extend the model which
relates to the earlier discussion on the model boundary. The reason for modelling
dependency in this way is because it may be easier to consider the impact of
certain factors explicitly rather than implicitly when only using approach a. If
the model output resulting from the inclusion of additional factors is still not
satisfactory, we might choose to model some systemic impacts of the project.
For instance, factors like the availability of qualified staff might be present and
result in a subtle dependence relationship, leading to the distribution for the
overall cost (the model output variables T ) being incorrectly assessed. With
methods used in c, we would have a separate assessment of the distribution (or
at least for features of this distribution) for the overall cost which would lead
to a changed model for the joint distribution of the activity costs (modelling
context a or b). We could also consider modelling a more complex situation
in which we manage several projects. In this case, the overall cost becomes
multivariate instead of univariate (i.e. T becomes a vector of variables). Then,
we can use methods (from c) that allow propagating our uncertainty from one
project about which we have information backwards in order to make inference
about the distribution of the activities (S) and hence the distribution for overall
costs (T ). The common objective is to find a good model for the uncertainties
relating S and T . Conceptually, we can only ever specify part of the required
information for this model, so that in practice our model is always underspecified
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(though this point is often not appreciated because modellers often adopt low-
dimensional parametric families of models early on). Approaches b and c provide
complementary approaches to specify further information about the model.

3.4 Dependence models and expert judgement

Before presenting and reviewing dependence parameters as elicited quantities ex-
plicitly, in this section we first discuss expert judgement for common dependence
models. This includes main challenges when using experts to quantify models
as well as the applicability of elicited forms for a satisfactory representation of
the experts’ information in the model. We present the modelling aspects first
given that decisions here precede and strongly affect the choice of which de-
pendence parameter to elicit. In accordance with the earlier framework (see
Figure 3.1), BNs and copulas together with probabilistic and non-probabilistic
parametric models are introduced for context (a), regression models for (b) and
Probabilistic Inversion for (c).

3.4.1 Elicitation for direct modelling

Bayesian (belief) networks

In (a), a common way of integrating high dimensional uncertainty in a probabil-
istic model is by specifying a multivariate distribution for the random variables
through the product of marginal and conditional probabilities. A common mod-
elling framework is a BN [105, 318]. A random variable is described by a node in
the graph while arcs represent the qualitative dependence relationships amongst
variables. The direct predecessors/successors of a node are called parents/chil-
dren, and the BN is specified (for example) by determining for every child node its
conditional probability distribution given the states of its parent nodes. Hence,
it is composed of a directed acyclic graph with marginal distributions for source
nodes and conditional distributions for child nodes given the parents. A simple
example BN to be used throughout this review is shown in Figure 3.2.

When using expert judgement, [155] views eliciting BNs as an obvious ap-
proach for obtaining dependence information. However, while more has been
written about eliciting the qualitative dependence structure (the arrows in the
BN) [197, 301], eliciting dependence quantitatively has been recognised as a main
issue when constructing BNs [119, 339]. Identified difficulties are the elicitation
for high dimensional models and the assessment burden due to an exponentially
growing number of probabilities to assess (in discrete BNs). Therefore, some
alternative modelling approaches have been developed to be used in conjunction

Figure 3.2: Example Bayesian network with one child and three independent
parents.
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with expert judgement methods.
While in the low dimensional, discrete case, experts provide information in
form of conditional probabilities to populate conditional probability tables, in
higher dimensions this is intractable and too time-consuming. An alternative
approach is to model continuous distributions and to elicit dependence inform-
ation through (un-)conditional rank correlations. These models are known as
non-parametric BNs for which a review of applications can be found in [188].
For these, [290] developed a way of eliciting conditional exceedance probabilities
for higher dimensions to derive the required rank correlations. This method is
detailed in the next section when discussing elicited forms of dependence para-
meters explicitly.
In order to address the reduction of the assessment burden (in the discrete case),
one way is to reduce the number of necessary assessments. For instance, [426]
propose piecewise linear interpolation (see Appendix B) in order to reduce the
overall number of required assessments for a full conditional probability table.
Their method elicits conditional probabilities which are discussed in the next sec-
tion as an elicited form. Another method that reduces the number of required
assessments is through assumptions on the causal interpretation of a BN. The
assumptions on the causal interpretation originate with noisy-OR gates [317]
which use an underlying parametric distribution that reduces necessary assess-
ments logarithmically (see Appendix B). The functional OR relationship denotes
how individual parent nodes are combined for a common effect and assumes that
they are independent of each other with respect to their causal effect on the child
nodes. Thus, the presence of one parent node suffices to produce an effect on
the child independently of other parents (with a certain probability - hence noisy
rather than deterministic). A leaky noisy-OR gate includes a background prob-
ability that represents the influence of non-modelled causes. From this, [436] ,
building onto [120], introduce the elicitation of leaky and non-leaky noisy-OR
parameters as alternatives to conditional probabilities. They use parameters in-
troduced by [197] and [117] and a potential framing (for the BN in Figure 3.2)
is:

“What is the probability that X is present when Y1 is present and
all other causes of X (addition for leaky case: including those not
modelled explicitly) are absent?”

In an experimental setting, [436] elicit leaky and non-leaky noisy-OR paramet-
ers together with conditional probabilities. An artificial dependence relation
between three parents and one child node was determined (causes for anti- grav-
ity of an unknown type of rock) and in a small simulation, participants could
choose the influence (strength level of presence or absence) of each cause and
observe what happens as an effect (anti-gravity or not). Then they assessed the
conditional probability distribution with each assessment method, i.e. non-leaky
and leaky noisy-OR parameters and a direct conditional probability assessment.
The leaky noisy-OR parameter was assessed as most accurate (in terms of Euc-
lidean distance to empirical distribution) while conditional probability was found
least accurate. The authors claim that with an increasing number of nodes their
method offers a clear advantage over conditional probability elicitation as the
latter will become unmanageable. More generally, noisy-OR methods belong to
the group of canonical models [317]. For these, assumptions on the underly-
ing probabilistic relationship are made so that a conditional probability table
can be generated algorithmically given parameters that are assessed by experts
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and which only grow linearly with the number of parent nodes. Usually the
parameters refer to conditional assessments which are made about a number of
combinations of the states of the parent nodes. An alternative to the afore-
mentioned noisy-OR method is the noisy-MAX method [117]. Within the same
group of methods is also the ranked nodes approach [145]. Briefly, ranked nodes
are random variables with discretised ordinal scales which are typically assessed
by experts through verbal descriptors of the scale.
The usage of verbal classifiers to assess BNs has also been proposed more gen-
erally to counteract a high assessment burden. Here, the influence of a node is
simply determined verbally rather than numerically. For instance, [395] use a
scale containing both, numerical and verbal anchors, and [280] conclude (in a
review on the use of expert judgement for BNs in human reliability assessment)
that the use of verbal labelling for inferences in BNs is common. We discuss
verbal elicitation of dependence explicitly in the next section.
A last way to facilitate judgement is by providing graphical support. [191]
provide experts with the pie chart probability tool available in GeNIe Bayesian
Network Software to adjust assessments. Probability masses are determined and
the resulting distribution is graphically visible immediately. This procedure is
repeated until the experts feel comfortable with their assessments.
As shown in Section 3.6, the use of expert judgement for BNs is considered in a
variety of empirical areas given the popularity of this dependence model itself.

Copulas

In certain situations of context (a), a multivariate distribution can also be mod-
elled by a copula rather than by the “marginal-and-conditional approach” [74],
presented for BNs before. While an extensive introduction to copulas can be
found in [125] and [208], recall first that for a continuous random variable X
with distribution function FX , the random variable U = FX(X) is uniformly
distributed. If we have two continuous random variables X and Y , then the
distribution of the vector (FX(X), FY (Y )) is supported on the unit square and
has uniform marginals. Any such distribution is called a (bivariate) copula. This
construction can be reversed: Any set of univariate distribution functions com-
bined with a copula represents a multivariate distribution as a result of [368].
The notion of a copula is easily extended to greater than two dimensions.
Often a one-parameter copula family is used, Cθ(u, v), that can be indexed by
a parameter θ related to a rank correlation such as those of Spearman or Kend-
all (see Appendix B). In fact, both can be expressed in terms of the copula:
Spearman’s correlation is

ρC = 12

∫∫
[0,1]2

C(u, v)dudv − 3 (3.4.1)

and Kendall’s τ is

τC = 4

∫∫
[0,1]2

C(u, v)dudv − 1 (3.4.2)

Within a chosen family of copulas (see Appendix B), expert elicitation can be
used to determine the correlation and hence specify the dependence. Whenever
the family is uncertain, information on how copulas differ for upper or lower
tail concentration, i.e. tail (in-)dependence (see Appendix B), needs be elicited
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additionally. For this, upper (or lower) asymptotic tail dependence is of interest.
The asymptotic upper tail dependence parameter is defined as:

λU (X,Y ) = lim
u→1−

P (Y > F−1
Y (u)|X > F−1

X (u)) (3.4.3)

when a limit λU ∈ [0, 1] exists. In this case, X and Y are defined as de-
pendent in the upper tail when λU > 0, whereas whenever λU = 0, they are
tail independent [208]. In other words, for the former case, it is more likely to
observe high values for Y given high values for X. Following naturally from the
concept of tail dependence, the tail concentration function distinguishes various
copula formats and is defined for any u in (0, 1) as λU = P (U > u, V > v)/(1u).
For the (upper) tail, it leads to the tail dependence coefficient in form of λU =
(12u+ C(u, u))/(1u).
The review results presented in Section 3.6 show limited experience for expert
judgement within a copula modelling framework. One reason might be that cop-
ulas are distinguished on the one hand by measures of association such as rank
correlations, but on the other hand also by its behaviour along the dependence
function as indicated by its family. This constitutes a great deal of complexity
to be integrated into an elicitation method. However, both types of informa-
tion are highly important given that two different copula families exhibit a very
different behaviour even for the same rank correlation (as shown in Appendix
B). This is particularly crucial for copula families that model extreme joint de-
pendence through asymptotic upper/lower tail dependence (as considered in the
first elicitation approach presented below) in contrast to tail independent ones.
At this point, it is important to note that the use and elicitation of measures
of association related to tail dependence depends (obviously) on whether one is
interested in capturing tail dependence explicitly or whether another measure
might serve the modelling purpose better, given the increased cognitive com-
plexity for experts to assess tail dependence.
Some proposed methods that aim at a sensible representation of an expert’s
understanding of dependence in form of a copula are outlined in the follow-
ing. [17] decompose the asymptotic upper tail dependence coefficient (presented
above) and query its components from experts before combining it again. They
consider this as a non-asymptotic approximation of λU (X,Y ). The elicitation
is as follows: in a first step, all non-negligible causes for X to be “extremely
large” denoted as events j , j = 1, 2, . . . , J , are listed. Then, experts assess
P (event j|X = “extremely large”) , so the likelihood that the chosen event
is present if X is in the tail of its distribution. Lastly, experts are queried
P (Y = “extremely large”|event j) , i.e. the probability that the corresponding
event affects Y with the implied magnitude. All assessments are then com-
bined by λU (X,Y ) ≈

∑J
j=1 P (Y = “extremely large”|event j)P (event j|X =

“extremely large”). The proposed framing is:

“Given that an extremely bad outcome is observed in X, what is
your estimate of the probability that Y will experience an extremely
bad outcome?”

According to the authors (whose experts were actuaries) this method was per-
ceived as cognitively easy.
Another option that is being researched further by several co- authors of this
review but has not been published so far is querying conditional exceedance prob-
abilities for chosen quantiles from experts to fit a parametric copula. This is done
by plotting elicited values for each considered quantile together with candidate
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Figure 3.3: Conditional exceedance probabilities at uth quantiles (rank correla-
tions: 0.2 to 0.9).

copula choices and after a first “eyeballing” use conventional goodness-of-fit tests
for the distance to parametric families. Figure 3.3 shows simulated conditional
exceedance probabilities for several parametric copulas with given rank correl-
ations. With the assessment of the probability that Y exceeds its uth quantile
given that X exceeds its uth quantile for a certain number of thresholds u, a
sensible copula choice that represents the experts’ beliefs can be estimated. We
address the details of eliciting conditional exceedance probabilities in the next
section.

As a non-standard parametric alternative, [273] discuss using a minimally
informative copula with given rank correlation. A copula is modelled by asking
experts to provide a dependence constraint between two random variables, and
taking the copula which is minimally informative with respect to the uniform
(independent) copula. This is further developed in [32] and [30]. Here, experts
assess the expectation of functions for the two underlying variables. From that
a (min inf) joint probability is constructed which satisfies the expected value
constraint. An advantage is that in this approach it is easier to relate a copula
parameter to an observable quantity than it is for common parametric famil-
ies. An example is given for the dependence of failure times between machine
components. Minimal informativeness also served as motivation for [236] who
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consider a sub-family of generalised diagonal band (DB) copulas which require a
dependence parameter. It is specified by experts through conditional exceedance
probabilities (given the median value). [397] regards DB copulas as advantageous
when using expert judgement as a dependence parameter that relates to its one
copula parameter can be defined. We will introduce this dependence parameter
in the next section when we address forms of elicited dependence parameters
explicitly.
Besides some empirical work in maintenance optimisation [60], the majority of
experiences for eliciting copulas, such as the first approach presented above,
comes from banking and insurance [17, 47, 336, 361], an area in which the pop-
ularity of copulas has increased lately [170]. Here, expert judgement is typically
used to assess conditional and joint probabilities of (extreme) loss events. These
studies might be helpful for other areas where copulas are gaining increased
interest, such as hydrology [169].

(Probabilistic) parametric models: multivariate distributions

Another way to model dependence in (a) is by specifying a multivariate distri-
bution. For an introduction and overview of the distributions discussed here, see
[26].
As a main challenge when eliciting a multivariate distribution is that its full
specification would be cognitively too complex for experts, we should impose
a structure on the distributional choice. While for univariate distributions it
might be sufficient to assume a minimal structure such as a continuous and
smooth cumulative distribution function which can be specified satisfactorily by
a few quantile assessments [306], in higher dimensions this is still unreasonable
for practical use. Rather, a parametric multivariate distribution that represents
an expert’s belief sufficiently is a necessary assumption. Then, an expert’s opin-
ion is fully specified by determining a few parameters. While any distributional
assumptions have to be in agreement with the experts, they should be as well in
accordance with the modelling purpose. For instance, it should be suitable for
its use in a specific decision problem for which a distributional form is predeter-
mined or its use as a prior in a Bayesian modelling framework. The latter offers
a probabilistic framework to complement the lack of data for some common stat-
istical dependence models. Prior beliefs of experts (see Appendix B) for given
parameters are updated once observations are available. A prior is chosen so
that it can be most easily updated [306]. Generally, this is a different elicitation
situation/purpose than using expert judgements to obtain beliefs about uncer-
tainties without the inclusion of future observations (what is done in most of the
literature reviewed here), but this is not of importance for us as with regards to
dependence elicitation both methodologies have similar challenges. Hence, both
methodologies contribute to the findings presented here.
In the literature on eliciting parameter information for quantifying a multivari-
ate distribution, mainly multivariate normal [9, 10, 115, 162], or t [10, 215] and
Dirichlet distributions [65, 135, 437] are considered. A method that specifies
a multivariate distribution in a more flexible way (as shown below) is given in
[281].
For the common parametric assumption of a multivariate normal or t distribu-
tion, the elicitation aims at quantifying the mean vector, µ, and the covariance
matrix, Σ. Instead of determining the variables of interest directly, even though
this has been attempted through interactive graphical methods [64], typically
hyperparameters that follow from distributional assumptions on the form of µ
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and Σ therefore specify (or index) the multivariate distribution of interest are
determined. In other words, the values of the hyperparameters reflect the avail-
able subjective prior knowledge about the unknown model parameters. This is
typically based on specifying hierarchical priors assuming exchangeability (see
Appendix B) for the joint distribution in question. The variables of interest
are then conditionally independent given the hyperparameters. This is known
as Bayesian hierarchical modelling (see Appendix B) which is a common way
to restructure dependence in order to elicit parameters as univariate quantities.
Typically, the hyperparameters consist of means, scale parameters, degrees of
freedom and the spread matrix which (whenever possible) are elicited through
univariate quantities and conditional medians of observable variables. [321, 322]
presents how the specification of suitable prior distributions can be simplified and
how values of hyperparameters can be elicited from experts through quantiles
of predictive prior distributions for a variety of common distributions in the re-
liability context of mathematical modelling of maintenance. While we explain
this approach below (for Dirichlet distributions), it is noteworthy here that a
main advantage is that observable quantities can be used. Further, he proposes
to elicit fewer quantiles than unknown hyperparameters and use interaction of
experts for further adjustments.
A different problem for which a multivariate distribution needs to be specified
is whenever an event can take one of k possible outcomes (k > 2) and the prob-
ability of the ith outcome, pi, is elicited from experts. This might be denoted as
eliciting the opinion about a “set of proportions” [437]. As the sum of all pi must
equal 1, pi cannot be assessed in isolation. Further, with k > 2, a multinomial
distribution models the overall outcome given that we have independent trials
and the probability of each outcome is the same in each trial. The commonly
chosen parametric distribution is then a Dirichlet distribution, the conjugate
prior distribution of a multinomial one [306]. One of the earliest approaches in
[65] uses an elicitation strategy based on predictive distributions. When consid-
ering a specified number of draws from the population of interest, the expectation
of the number that belongs to a category is in fact pi. Given that, they ask their
experts for the joint modes of the predictive distribution. Other methods assess
the Dirichlet distribution by imaginary observations, i.e. by determining the
extent to which experts change their belief given an observation from a draw
[306]. More recently, [437] proposed a refinement to acknowledge the strong as-
sumptions of a Dirichlet distribution (due to the small number of parameters
that determine its form) and therefore make use of over-fitting. Loosely, they
ask experts for more assessments than (strictly) necessary to fit a distribution
in order to reject the choice of a Dirichlet distribution if it is inappropriate.
A more flexible method that avoids experts’ belief to fit a single pre-specified
parametric family is presented in [281]. While the focus of the elicitation is
laid on the analyst who seeks to identify the probability density function for
a multivariate vector, the posterior distribution is based on the prior distribu-
tion as specified by an expert. In order to ensure flexibility on the parametric
assumptions, the analyst’s prior belief is a Gaussian process which allows the
multivariate distribution to take a variety of forms given the experts’ assess-
ments. The elicited parameters are univariate quantities and a small number of
joint probabilities, unless the elicitation of the latter can be reduced to querying
univariate information as well, depending on assumptions for the multivariate
vector’s probability space.
Given that dependence information for quantifying parametric multivariate dis-
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tributions is (mainly) elicited through univariate quantities, experimental studies
show a similar performance to expert judgement studies with univariate variables
of interest. For instance, (conditional) medians are regarded as cognitively easy
and reliable to assess [11]. Empirical findings on the elicitation of multivari-
ate distributions are scarce however which is why no indication for a particular
application area can be given (Section 3.6).

(Non-probabilistic) parametric models: Bayes linear methods

An alternative to eliciting distributional (prior) beliefs for Bayesian models in (a)
is the Bayes linear method (BLM) [173]. It differs by using expectation as basis
and is able to represent more complex problems through adjusting beliefs by lin-
ear fitting. Without distributional assumptions all required parameters are first
and second moments [142]. Hence, eliciting dependence information concerns be-
liefs about the covariance of parameters (rather than joint probabilities). While
not much experience on the actual elicitation is found in the literature, [341, 342]
and [340] address expert judgement for BLM specifically. The dependence model
considered is Y = αX +R where X is the explanatory variable of Y . R repres-
ents the unexplained uncertainty between X and Y (with no correlation between
X and R) and α is used to measure the strength of the relationship between X
and Y . As a pragmatic way to elicit covariance information, the elicitation of
quantiles is proposed whereas the relation between these and the moments needs
to be derived. A possibility is through [320], further developed in [225], who pro-
pose eliciting from three to five percentiles to obtain means and variances. Hence,
with the 5th, 50th and 95th quantiles specified as x0.05, x0.5 and x0.95 for an uncer-
tain variableX, the mean is derived by µX = 0.63x0.5+0.185[x0.05+x0.95] and the
variance by σ2

X = ((x0.95−x0.05)/(3.29−0.1(∆/σ0))2 with ∆ = x0.95+x0.05−2x0.5

and σ0 = ((x0.95 − x0.05)/3.25)2.
In [341] five elicitation techniques are compared. A first one is the direct elicit-
ation of cross-moments which is omitted here given that it is discussed in the
next section as a commonly elicited form. For the remaining methods we assume
that the mean and variance of X and Y have been elicited beforehand. In the
direct calculation approach, experts assess their updated belief of E(Y ) after
the observation that E(X) increased hypothetically. While α can be computed,
for the uncertain variable R the experts’ 5th, 50th and 95th quantiles are elicited
through:

“Given that X is known to be x̄ with complete certainty, what are
the 5th, 50th and 95th quantiles of Y ?”

It follows that E(R) and var(R) can be calculated as shown before and then
E(Y ) = αE(X)+E(R), var(Y ) = α2var(X)+var(R) and cov(X,Y ) = αvar(X).
For the adjusted expectation method, experts are asked to re-assess their belief
about X based on the true value of Y . When defining the true value as ȳ the new
belief for E(X) is EY (X) = XY with observed ȳ. The covariance can then be cal-
culated as cov(X,Y ) = ((EY (X)−E(X))/(Y −E(Y )))var(Y ). The value of α is
again computed and defines the values an expert can assess for coherence reasons.
The adjusted uncertainty approach works in the same way as adjusted expecta-
tion, with the only difference that the variance ofX is updated based on an obser-
vation of the true Y . With the adjusted variance denoted as varY (X), the adjus-
ted covariance is then derived using cov(X,Y ) =

√
(var(X)− varY (X))var(Y ).

In an experimental setting of the same study, experts were presented with the
pairs of variables for life expectancy between males and females (in the same
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country), height and weight of male students, as well as mean time to failure
between vehicles. All experts were familiar with basic statistical summaries,
but not with BLM. The different techniques were compared for accuracy, inco-
herence and intuitiveness. Thereby, adjusted uncertainty was the only method
that exhibited incoherent assessments and also had more inaccurate results with
far more assessments of negative or no correlation when all empirical data was
positively correlated. Direct calculation on the other hand had the best perform-
ance in terms of accuracy and no incoherent assessments. Direct correlation and
adjusted expectation barely showed any differences for experts’ performance.
However, over 15 % of the responses were deemed inconsistent.
While this is the first and only such complete attempt to explicitly focus on the
actual elicitation of covariance in BLM, some main references for empirical stud-
ies with documented expert judgement approaches are [174], [342], [33], [143]
and [307].

3.4.2 Elicitation for indirect modelling with auxiliary variables

Regression models

A common dependence model in context (b) is a regression model. For recent
overviews, see [353] and [409].
Recall that here information on the dependence is modelled indirectly by re-
structuring the natural input. Technically restructuring is done using variable
transformation techniques. Beliefs about parameters are then elicited while be-
ing formulated as univariate query variables. Similar to quantifying parametric
multivariate distributions, elicitation here is typically done for prior beliefs in a
Bayesian methodology.
The parameter of interest is a regression coefficient, β. The likelihood function
p(Y |X,β) relates observed data Y to regression coefficients β and covariates X.
Experts then specify the prior distribution for p(β) typically through hyperpara-
meters which are the mean and the variance of the regression coefficient [204].
Eliciting moments of regression coefficients directly however might be cognitively
too complex given that experts would need to understand the effect that a change
of covariateX has on Y . Therefore, the literature on eliciting priors for regression
models proposes indirect approaches. For these, experts provide a probability of
the response value based on specified values of the explanatory variables or vice
versa. From this, prior elicitation methods for linear models, normal [215] and
multiple [164], piecewise-linear [163] as well as logistic regression models [309]
have been developed. For the latter, experts typically assess conditional means,
E(Y |X,β) [36, 204] for a probability of presence, pi, with binary responses for
observation i modelled as logit(pi) = β0 + β1xi,1 + β2xi,2 + · · ·+ βjxi,j + ηi [309].
For instance, [70] elicit the probability of presence for a certain wallaby type
at a specified location with fixed habitat characteristics in habitat modelling.
Depending on distributional assumptions for the probability of presence (such
as a Beta distribution) the mode rather than an arithmetic average or median
might be elicited due to the potential skewness of the distribution.
In a similar manner, parameters can be elicited for (multiple) linear regression
models. [164] propose a model of the form:

E(Y |x1, x2, . . . , xi) = (β1x1, β2x2, . . . , βixi) (3.4.4)

where again β denotes the regression coefficient and E(Y |x1, x2, . . . , xi) is the
expected (average) value of Y when X1 = x1, X2 = x2, . . . , Xi = xi. Experts
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then specify the prior distribution of β by assessing hyperparameters. To do
so, the authors introduce design points, values at which a prediction is made
after hypothetical data are given. Likewise, [215] elicit fractiles for a predictive
distribution with specified values at design points, using a bisection method (see
Appendix B).
Regression elicitation is further explored in [70, 309] and [11]. [309] present three
different elicitation methods with graphical support, similarly to [11] who use an
interactive graphics method as well. Empirical studies for expert judgement in
regression modelling are mainly found in the area of ecology for which e.g. [70]
summarise various approaches.

3.4.3 Elicitation for modelling propagation of output

Probabilistic inversion

In modelling context (c), a common situation is that input parameters of a de-
pendence model are not observable. Therefore, a direct quantification of these
variables is not sensible and methods such as PI [80, 244] are used. Its aim is
to take the distribution representing the uncertainty on certain observables and
translate it on the uncertainty of target variables. While the distribution can
come from historical data, PI can be used as well as a method for transforming
expert assessments of some observable model outputs into uncertainties on para-
meter values. A motivation for PI (that was never published as such) originated
in the development of expert judgement methods and uncertainty analysis in
the nuclear sector (for a historical overview, see [82, 240]) where experts refused
to assess transfer coefficients directly. Similarly, [239] elicit outputs of a power
law that models spread of lateral plume in atmospheric dispersion in form of
σy(x) = Ayx

By . The output σy(x) denotes the lateral (indicated as y) spread at
wind-speeds x and is determined by the dispersion coefficients A and B. Instead
of querying the joint distribution on (A,B), which would require experts to con-
sider all possible effects of this relationship through the model, they are asked
to quantify uncertainty on the output at various downwind distances through a
univariate elicitation method. In addition to modelling plume spread, the same
paper discusses a case study in banking. Empirical findings of the method are
however lacking which is why no indication of specific application areas can be
given.

3.5 Forms of elicited dependence parameters

This section reviews the proposed forms of dependence parameters for elicitation,
i.e. association measures or summary types of an expert’s joint distribution
that are used in an elicitation question. As well, the corresponding framing
of elicitation questions is presented. In addition to outlining the main elicited
forms, an evaluation regarding desirable properties is given whenever possible.
Chosen desiderata allow for guidance on the suitability of elicited dependence
parameters from different perspectives.

Desiderata for elicited dependence parameters

A first perspective concerns theoretical feasibility whereas a common desider-
atum for expert judgement is that the elicited forms are observable and physic-
ally measurable. This allows assessments to be credible and defensible [79]. With
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a similar objective, a rigorous foundation in probability theory is desirable.
A further perspective considers the assessment burden for experts. In this regard
[214] emphasise practicality, i.e. that experts feel comfortable at assessing un-
certainty while their opinion is captured to a satisfactory degree. For the former,
query variables should be kept intuitively understandable. For the latter, queried
information should be linked as directly as possible to the specific dependence
model of interest, ensuring that an expert’s assessment is satisfactorily reflected
in the final output of the model. As variables are often transformed into some
other parameter than the one that populates a dependence model (e.g. due to
a potential reduction in the assessment burden), it is important to measure and
control the degree of resemblance between the resulting assessments (through
the model) and the dependence information as specified by the expert [238].
Note that the transformation of dependence parameters is typically based on
assumptions about the underlying bivariate distribution. For instance, when
transforming a product moment correlation coefficient into a rank correlation,
this is straightforward under the assumption of bivariate normality. However,
positive definiteness is not guaranteed which relates to the next desideratum,
that of mathematical coherence. Coherence means that the outcome should be
within mathematically feasible bounds. For dependence measures, ensuring pos-
itive definiteness of a resulting correlation matrix might be a potential issue and
methods that adjust experts’ judgements might be necessary [262]. Yet, whether
an expert agrees with this adjustment or not determines their confidence in the
final assessment. Another solution to incoherence is to fix possible bounds for
the assessment a priori, even though this can severely decrease the intuitiveness
of the assessment. A last desideratum is to calibrate assessments on statistical
accuracy. This means, we would like to test experts’ performance (in terms of
statistical accuracy) against empirical data (if available), often to inform the
weighting for mathematically combining judgements.
While no elicited dependence parameter meets all desiderata, their consideration
supports comparison and allows a better guidance in terms of suitability within
certain modelling situations.
At a broad level, a distinction for elicited quantities can be made between probab-
ilistic and statistical approaches [74, 238, 290]. Whenever possible the presented
findings are categorised into one of the groups. Approaches that do not fit in
any of these classifications can be found in Section 3.5.3.

3.5.1 Probabilistic methods

In the selected literature popular variables to elicit are of probabilistic nature.
This popularity can be attributed to the firm foundation (in probability theory)
and the (potential) observability of the elicited variables which accompany this
choice.

Forms of probabilistic dependence parameters

Conditional (exceedance) probabilities In the context of probabilistic meas-
ures of dependence, conditional probability might be the best known one. A
common way to elicit conditional probabilities is to provide an expert with the
information that the conditioning variable is observed above (or below) its me-
dian value (marginal probabilities are elicited first or are known from data)
before the probability that the target variable lies above (or below) its median
value is enquired. A possible framing of the question is:
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Figure 3.4: Expert’s conditional probability assessment as a function of the
product moment correlation coefficient.

“Consider the pair of variables, X and Y . Suppose now that Y has
been observed to be above its/your median value for it. What is the
probability that X lies also above its/your median value for it?”

This might be extended to any quantile defining for the pair of random vari-
ables X and Y the elicited form for a conditional probability as PCP (xi, yi) :=
P (X ≥ xi|Y ≥ yi) where i = 0.5 refers to the median value, but i might take
any other quantile. Experts assess independence between X and Y as PCP =
(xi, yi) = P (X ≥ xi) implying that learning about P (Y ≥ yi) does not add any
information. For a (strong) negative relationship experts state their belief as
PCP ∈ [0, P (X ≥ xi)) while for a (strong) positive it is PCP ∈ (P (X ≥ xi), 1].
Given the above form, a conditional probability is sometimes also called condi-
tional exceedance probability. In contrast, another way to elicit a conditional
probability is by PCP (xi, yi) := P (X ≥ xi|Y = yi). This way can be applied
similarly and its use depends strongly on context. However, [306] regard it as
less cognitively complex. In order to transform a conditional probability into a
product moment correlation coefficient (e.g. for modelling purposes) the relation
between the two can be derived as shown in Figure 3.4.

The above derivation is possible only when an assumption about the under-
lying copula is made [244]. Figure 3.4 was obtained under the assumption of
normal copula density for X and Y . The analyst finds the product moment
correlation that ensures a positive definite correlation matrix and satisfies the
expert’s assessments [290].
Experts’ performance when eliciting conditional probabilities (in comparison to
six other methods) has been investigated in [73]. The assessed pairs of variables
are relationships such as height-weight, as well as dependence between individual
stocks, their indices and the relation between stocks and their indices. Parti-
cipating experts were MBA students with some basic statistical training. In
this experimental setting, conditional probability is among the worst performing
methods for coherence and fourth out of six in terms of accuracy against empir-
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ical data. Similar coherence issues when assessing conditional probabilities were
observed by [299] who therefore provided their experts with a Joint Probabil-
ity Table which led to large improvements in performance. Generally, for this
method the elicitation of several values to condition on is recommended [89].
In the case-study literature (Section 3.6), the elicitation of conditional probabil-
ities is nevertheless favoured as it often serves as direct model input. Main refer-
ences where this approach has been formally used stem from the Joint CEC/US-
NRC Uncertainty Analysis framework [88]. The experts participating in these
studies became familiar with this format which underlines the importance of
training experts to ensure familiarity.
An alteration to the elicitation of conditional probabilities which is also closely
related to concordance probabilities (see below) is presented in [140]. Experts
are asked to assess the median deviation concordance probability which is also
known as quadrant probability [241]. It is defined as the probability of the
two variables, X and Y , falling both either below or above their medians, i.e.
PQP (x, y) := P ((X − x0.5)(Y − y0.5) > 0) with x0.5 and y0.5 being the respective
medians. This could be asked for as follows:

“Consider the pair of variables X and Y . You have indicated that
there is a 50/50 chance of X being above or below x0.5 and Y being
above or below y0.5. What is the probability that X and Y both will
either be above or below their medians?”

The above formulation is a slightly altered version of the original reference to
offer a general framing. While the conditional probability cannot be fully rep-
resented with a quadrant probability, the author claims that the dependence
elicitation concentrates on events that experts “should be capable of making
most informed judgements about” [140]. According to [241], this is “perhaps
the simplest measure of association between two random variables” and an
advantage is that it can be assessed and interpreted on the customary range.
This measure is non-parametric, meaning that is has a well-defined interpret-
ation (even) when structural assumptions, such as bivariate normality, do not
hold. Further, it is ordinally invariant, i.e. it remains unchanged by mono-
tone functional transformations of its coordinates. This has advantages with
regards to modelling convenience as well as in terms of cognitive complexity to
assess it. The measure is closely related to Blomqvist β [45] which is defined as
β = P ((X − x0.5)(Y − y0.5) > 0)− P ((X − x0.5)(Y − y0.5 < 0).
Similar to [241] when discussing the conveniences of using the quadrant prob-
ability, [45] describes his measure of association as being “valid under rather
weak assumptions regarding the distribution of the population” and “easy to
deal with in practice”. Under the assumption of bivariate normality, a relation
to the correlation coefficient, ρ, is given by (2/πarcsinρ). Given the advantages
from a modelling together with elicitation perspective and as pointed out by a
reviewer of an earlier version of this chapter’s published version, the quadrant
probability and Blomqvist β deserve more attention when eliciting dependence.

Conditional (exceedance) probabilities (for higher dimensions) Eli-
citing higher dimensions of dependence such as in [289] and [290] requires the
assessment of conditional rank correlations in addition to unconditional ones. To
do so, the variables of interest that are conditioned onto are ordered according to
some order of preference. This corresponds for instance to the relation of parent
to child nodes in a directed acyclic graph. Once experts have assessed the uncon-
ditional rank correlation ρX,Y1 (in Figure 3.2) with any of the other techniques

Eliciting dependence for probabilistic uncertainty modelling 51



CHAPTER 3. SEJ FOR COMMON PROBABILISTIC DEPENDENCE MODELS

presented here, the conditional rank correlations need to be determined (ρX,Y2|Y1
and ρX, Yk|Y2, Y1 in Figure 3.2). A probabilistic way to do so is through con-
ditional (exceedance) probabilities for higher dimensions which directly follow
from the low dimensional case discussed above. A question (according to Figure
3.2) might be framed as follows:

“Suppose that not only Y1 but also Y2 has been observed above it-
s/your median value. What is now your probability that also X will
be observed above its/your median value?”

For this the conditioning set of the unconditional case will be extended to
PCP (xi, y1,i, y2,i) := P (X ≥ xi|Y1 ≥ y1,i, Y2 ≥ y2,i) for the ith quantile, e.g.
i = 0.5 for the median. If experts assess (conditional) independence, the estim-
ate will be the same as for PCP (x, y1) = P (X ≥ xi|Y1 ≥ y1,i). Otherwise the
positive/negative relationship is assessed as before. Whenever PCP (x, y1, y2) 6= 1
or 0 it follows that X is not completely explained by Y1 so that Y2 adds to the
explanation of the former. In psychological research of causal learning theory,
Y1 , Y2 and Yk would be referred to as cues that compete for associative strength
[279]. The idea of associative strength shows a key difference to the elicitation
of noisy-OR parameters presented earlier in the context of BNs.
The intuitiveness of this method might be inhibited given that the choice of the
first (unconditional) correlation imposes restrictions of the possible values for
the second (conditional) correlation (similar to those of positive definiteness of
a correlation matrix). This introduces the necessity to compute (in real time)
updated intervals (different than the unrestricted [−1, 1]) into which the new
assessment can fall, to preserve coherence. Technical details can be found in
[287].
In order to test experts’ performance when assessing a multidimensional de-
pendence structure, [289] compared conditional probabilities of exceedance with
the direct elicitation of pairwise correlation. In their study, a group of 14 ex-
perts (with previous training on statistics) was presented with two versions of a
graphical model for the relationship between sulphur dioxide emissions and fine
particular matter in Alabama, USA. The experts were split into two groups so
that different dependence measures could be elicited. For the first model, query-
ing the rank correlation directly exhibited the best performance when averaging
out the absolute difference of empirical data and all individual answers. Based
on a performance-based measure of accuracy (see next chapter), the top three
most accurate experts assessed correlation directly. However, when averaging
performances per elicitation technique and model, the conditional exceedance
probabilities outperformed direct assessments. Nevertheless, the authors could
not formulate definitive conclusions since the different model versions might have
had an influence on the differences in experts’ performances.

Joint probabilities From conditional probabilities it follows naturally to con-
sider the elicitation of joint probabilities. A joint probability, PJP (x, y) :=
P (X ≥ x, Y ≥ y), can be queried for two random variables, X and Y , by
asking:

“Consider the pair of variablesX and Y . What is the probability that
both are within the lower (upper) kth percentage of their respective
distributions?”

If an expert assesses independence between X and Y , the joint probability cor-
responds to PJP (x, y) = FX(x)FY (y), where FX and FY represent the marginal
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cumulative distributions of the corresponding elicitation variables. A positive
relationship is assessed by either PJP (x, y) = FX(x) or PJP (x, y) = FY (y). For
a negative relationship PJP (x, y) approximates 0.
A relation to the (product moment) correlation coefficient is derived similarly as
in the case of conditional probability. For medians, conditional probabilities are
derived by using the relation 2P (X ≥ x0.5, Y ≥ y0.5) = P (X ≥ x0.5|Y ≥ y0.5)
[306]. [104] mention a modification to elicit joint probabilities. It is presented
in [281], where the elicited probability takes the form PJP (x, y) := P (xi ≤ X ≤
xj , yi ≤ Y ≤ yj). It is concluded that this alternative is able to capture the most
important features of an expert’s distribution with a good accuracy and by just
making use of a small amount of data.
Eliciting joint probability directly however is seen as rather cognitively complex
and (even) assessing independence in such a way is regarded as non-intuitive
[165]. A systematic bias for this kind of assessment is that experts tend to
overestimate the probability of conjunctive events and underestimate that of
disjunctive ones [306]. This might be due to the requirement that certain know-
ledge of probability theory is necessary for this method. [73] found that when
elicited joint probabilities are transformed to correlations, the obtained values
tend to be out their feasible bounds rather frequently. Further, it was the least
accurate method when compared to empirical data.

Concordance probabilities A further way to think probabilistically about
dependence is by considering concordance (and discordance) of random variables.
The concept of concordance probabilities is closely related to the earlier intro-
duced quadrant probability and it is limited to a frequency or cross-sectional
interpretation for the pair of variables in question, i.e. it requires a population
to draw from [74]. The question can be framed as:

“Consider two independent draws (xa,ya) from their common un-
derlying population a and (xb,yb) from population b. Given that
xa > ya holds for population a, what is your probability that the
relation xb > yb holds for population b?”

Exemplary populations for a and b might be height and weight of some
specified group of people. Formally, the probability of concordance between two
random variables, X and Y , considering n independent draws (xa,ya) to (xb,yb)
is given by:

PC(x, y) =

∑n−1
a=1

∑n
b=a+1 1C∗((xa, ya)(xb, yb))(n

2

) (3.5.1)

with C∗ = (xa − xb)(ya − yb) > 0. It can be assessed by an expert on [0, 1]. A
value of (or close to) 0 indicates a strong negative relationship, 0.5 represents
independence, and 1 refers to a strong positive relationship. The transforma-
tion to a rank correlation such as Kendall’s tau, τ , is defined as τ = 2PC1.
With the assumption that X and Y can be approximated by a bivariate normal
distribution, the relation from τ to other correlation measures, such as Pear-
son’s product moment correlation, ρ∗, or Spearman’s rank correlation, ρ, can
be inferred through ρ∗ = sin(πτ/2) and ρ∗ = 2sin(πρ/6) [241]. Nevertheless, a
(transformed) product moment correlation matrix that is positive definite is not
guaranteed [238].
Within the psychological literature of causal learning, the concordance probabil-
ity relates to the term degree of relatedness. In the classical experimental design,
participants are presented with information about the presence or absence of
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an input variable, representing a candidate cause, as well as the presence or ab-
sence of an effect/outcome. For instance, medical experts assess the likelihood of
a disease from the (non-)occurrence of a symptom. Based on their assessments
of discordant and concordant observations the aim is to formulate descriptive
rules for inferring causal strength [359].
In [73], this technique performed reasonably accurate in comparison to other
methods and only rarely incoherent assessments were made. Similarly, [165],
[243] and [172] come to the conclusion that this method is reasonably accur-
ate and might be preferred if a population is given. Yet the importance of an
expert’s familiarity with the population is emphasised.

Expected conditional quantiles (fractiles/percentiles) The quantile (fract-
ile/percentile) method requires conditional estimates and therefore shares cer-
tain characteristics with eliciting conditional probabilities. Experts are presented
with information that the conditional value corresponds to a certain quantile (or
fractile/percentile) and given that information, the experts assess which expec-
ted quantile the other variable takes. A possible framing might be:

“Consider variables X and Y . Given the value Y has been observed
at its ith quantile, qi. What is your expectation of X’s value in terms
of its quantile?”

For the pair of random variables, X and Y , this is defined as E(FX(x)|Y = y(qi))
where FX(x) is the corresponding distribution function of X and y(qi) is the
value that Y takes at its ith quantile. The relation to rank correlation is
given through the standard non-parametric regression function of E(FX(x)|Y =
y(qi)) = ρX,Y (FY (y)0.5) + 0.5 (Figure 3.5 and 3.6). The conditional quantile is
bounded by µmin ≤ E(FX(x)|Y = y(qi)) ≤ µmax where µmin = min[FY (y), 1FY (y)]
and µmax = max[FY (y), 1FY (y)]. If FY (y) is above its median, the values close
to the minimum refer to a (strong) negative relationship, and the values close to
the maximum indicate a (strong) positive one. For independence, experts assess
E(FX(x)|Y = y(qi)) = 0.5. A closely related method is predictive assessment
which was mentioned in the context of hyperparameters.
It should be noted that this dependence parameter has certain characteristics
which would have similarly justified listing it among the statistical approaches
which are presented in Section 3.5.2, after the general discussion on the assess-
ment burden of probabilistic methods.

Assessment burden of probabilistic methods

Despite the limited empirical evidence available for experts’ intuitive understand-
ing of different assessment methods, [290] and [73] conclude that probabilistic
statements are not perceived as cognitively easy. Conditional as well as joint
probability assessments were rated by experts as most difficult among all other
methods presented to them. In particular, when moving towards higher dimen-
sions, the growing conditioning sets for conditional exceedance probabilities were
met with accordingly growing concern. Additionally, for conditional quantiles
(fractiles/percentiles) the expert must understand these location properties of
distributions quite well together with the notion of regression towards the mean
which might induce cognitive difficulties [74]. A possible advantage of these
techniques is that the assessment burden can be decreased for most probabil-
istic methods by re-framing the questions. For instance, it is often possible to
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Figure 3.5: Conditional quantiles to rank correlations (perspective).

Figure 3.6: Conditional quantiles to rank correlations (contour).

express their forms as relative frequencies which are a more natural way of think-
ing about probabilities. Such framings were found to have a positive effect both
on assessment burden and accuracy in the univariate case [198]. Recognition of
the cognitive burden of assessing dependence has existed at least since [241], who
supports probabilistic methods, in particular the quadrant probability, due to its
intuitive decision analytic interpretation in comparison to statistical methods.

3.5.2 Statistical methods

Despite some objections to the direct elicitation of moments of distributions or
even cross moments, such as non-observability [214], the literature offers some
interesting findings and conclusions about the direct assessment of statistical
measures of association (and alternative formulations).
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Forms of statistical dependence parameters

Direct (rank) correlation Directly asking experts for the natural input
of a dependence model is seen by some as a natural way of eliciting dependence.
Often, this is a correlation coefficient. One option is to ask experts for an
estimate of the (rank) correlation between pairs of variables X and Y . A framing
might be simply:

“Consider variables X and Y . What is the (rank) correlation between
them?”

This usually refers to the Spearman’s rank correlation coefficient (see Appendix
B) which is defined on the interval of [1, 1]. A value of ρ = 1 denotes the strongest
possible negative correlation, ρ = 0 expresses that X and Y are uncorrelated
while ρ = 1 refers to the strongest possible positive relation. An advantage of
eliciting rank correlations over product moment ones is that the interpretation of
the former is independent of its marginal distributions implying that its values
are always in the aforementioned interval. Nevertheless, for choosing the appro-
priate correlation co-efficient, an analyst has to take into account what kind of
relationship is assessed. Rank correlations, such as Spearman’s version, assume
monotonicity while Pearson’s product moment coefficient (see Appendix B) can
only be meaningful for linear relationships [337].
An obvious precondition for this type of dependence parameter to be intuitive is
a certain level of familiarity with statistical measures. Therefore, several (con-
flicting) conclusions have been made from research on this query variable. Some
studies, such as [214], [297], as well as [172], view a direct method as unreli-
able. The latter for instance conclude that even trained statisticians will have
difficulties with this method even when being presented with graphical output
in form of scatterplots. This is in agreement with [275] who conclude that ex-
perts judge the degree to which variables deviate from perfect correlation rather
than directly assessing dependence of variables when shown a scatterplot. Yet
according to other research, a direct elicitation has performed better in compar-
ison with other assessment methods. [341], [73] and [74] concluded that eliciting
a correlation coefficient is more accurate than other dependence variables (in
relation to empirical data) as well as more coherent. The better performance
in comparison to other methods is primarily attributed to sufficient normative
expertise of the experts.

Ratios of (rank) correlation When considering higher orders of depend-
ence, a direct way to elicit this information from experts is through ratios of
(unconditional) rank correlations. In this method, experts assess the “relative
strength” of each rank correlation [287]. [288] and [112] present it as an alternat-
ive to conditional exceedance probabilities for higher dimensions which have the
requirement to assess large conditioning sets that make the elicitation exercise
rather unintuitive.
When defining unconditional rank correlations in the exemplary BN of Figure
3.2 as rX,Y1 and rX,Y2 , then for the first conditional rank correlation, ρX,Y2|Y1 ,
the ratio R = rX,Y2/rX,Y1 would be elicited. The corresponding question might
be framed as:

“Given your previous estimate, what is the ratio of rX,Y2 to rX,Y1?”

Similar to the conditional probabilistic techniques, the values that an expert
can assess are restricted for each subsequent ratio. Imposing bounds ensures
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coherence but makes the elicitation less intuitive. Empirical comparisons to
probability of exceedance have neither shown a superior nor an inferior per-
formance. Nevertheless, the proponents of this method found that experts often
think in terms of unconditional correlations rather than ratios. The intention
of the ratio framing is to prompt experts to think in terms of relative influence
between variables. However, there is no way of ensuring the experts will follow
the proposed path.

Verbal An indirect statistical approach to elicit experts’ beliefs about de-
pendence is through the use of a pre-defined scale. The most common way
to do so is by using verbal descriptions that correspond to certain correlation
coefficient values. For instance, [73] use a scale of seven points on which the
relationship between X and Y is measured as SX,Y . The points range from 1 de-
scribing a very strong negative relationship up to 7 which denotes a very strong
positive relationship. Accordingly, 4 refers to no relationship. The transforma-
tion to Spearman’s rank correlation is done through ρ = (SX,Y 4)/3. Despite its
obvious subjectivity in determining the scale due to the rather informal transla-
tion of verbal qualifiers, a good performance in terms of coherence and accuracy
can be observed in empirical studies using this method. Moreover, the method
is intuitive which makes it popular. In the area of human reliability analysis,
[386] introduce the Technique for Human Error Rate Prediction (THERP) which
uses a verbal scale for assigning the dependence level between human errors.
The conditional probability for failure between tasks A and B is computed as
P (B|A) = (1+KP (B)/(K+1) where K is assessed via verbal qualifiers of com-
plete dependence (K = 0) to high (K = 1), medium (K = 6), low (K = 19) and
zero dependence (K = inf). The dependence assessment method in THERP is
the foundation of various further developments of dependence modelling efforts
in this area.

Coefficient of determination A method that has been used rather rarely
but that is still possible is to elicit the coefficient of determination. For this, [74]
propose to ask for the percentage of variance explained as it would result from
regressing one variable on another (R2). [397] uses this idea to construct a de-
pendence measure which can be used in the elicitation of copula parameters.
It is proposed for a common risk factor model within the context of the Pro-
gram Evaluation and Review Technique (PERT) for which dependence is mod-
elled with a DB copula (see previous section). PERT is an operational research
technique for analysing and scheduling projects whereas the uncertainty in com-
pletion time is typically of interest. For modelling the dependence between the
(aggregated) common risk factor Y (factors influencing project completion time)
and random variable X (completion time), first R(X) = ba, i.e. the range where
realisations of X can be observed, is defined. Next, the range of the conditional
distribution, R(X|Y = y, φ), is specified where the state of different common
risk factors that result in the aggregate risk of Y as well as the dependence
parameter of the DB copula, φ, are known. From this, the dependence measure
ξ(X|Y, φ) = (1R(X|Y, φ)/R(X))100% is derived (see reference for full elabora-
tion). This measure can be thought of as the average percent reduction in the
range of X when the state of common risk factor, Y , is given. Suppose Y defines
the set of possible risk factors, Y = {rain, no rain}, and the range of X is the
length of an activity, e.g. a project’s duration in days. Then the query question
is asked as follows:
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“Not knowing the state of the common risk factor, Y , a value of x
has been assessed for X. Suppose you knew the state of the common
risk factor, Y , on average within a spread of how many days could
you now assess the completion of this activity,X?”

An expert’s assessment of 5 days would then correspond to 50%, i.e. this is
the percentage of uncertainty that is explained by knowing the state of the risk
factor. The author highlights that the elicitation question is framed in terms of
X which is an observable quantity. While an intuitive appeal for the method is
mentioned, no empirical results in terms of performance or cognitive burden for
experts have been reported. Extensions for use with different copula families are
achieved by slightly altering the formulation of R(X).

Assessment burden for statistical methods

Overall, the statistical methods are seen as intuitively accessible for experts and
enjoy favourable feedback in terms of assessment burden [73, 341]. Especially
verbal scales are seen as directly applicable and have therefore enjoyed further
consideration. [73] report that for statistical methods training and feedback for
follow-up studies improved accuracy. This is confirmed by expert studies with
frequent feedback on correlation assessments, such as weather forecasters [51].
Similarly, neurological experiments in which experts get frequent feedback on
correlation coefficients find evidence for a human ability to “learn” the effect
of varying correlation coefficients [432]. Even though not conclusive, there are
reasons to believe that statistical methods for dependence elicitation are more
intuitively understandable, or at least “learnable”, when compared to other ap-
proaches. This is nevertheless a signal rather than a strong conclusion also due
to the fact that statistical methods have often been tested (only) for simple
examples (e.g. heightweight relationships) rather than complex elicitation prob-
lems.
With regards to the complexity of problems for which experts might assess a
correlation directly, [241] offers perhaps one of the most detailed discussions. He
addresses the cognitive complexity required for assessing correlation coefficients
directly in terms of their operational, decision-analytic and intuitive interpret-
ation. From this perspective, according to him the necessary level of cognitive
processing for assessing a correlation coefficient can be rather high. For instance,
when interpreting a (rank) correlation in terms of concordance and discordance of
hypothetical observations of a population (which has a clear and intuitive mean-
ing) experts might have to assume (the rather unintuitive idea of) an infinite
population (see Appendix B for the definition of rank correlations). The product
moment coefficient is seen as (even) more difficult to assess as it is not ordinally
invariant which (as aforementioned) inhibits a simple, intuitive understanding
given that any assessment is interpreted with regards to the transformations
made to the marginal distributions.

3.5.3 Other methods

In the following, methods that do not fit the categories above (for reasons which
will be explained) are considered.
One such method is proposed by [2] who elicit joint probabilities through uni-
variate distributions and isoprobability contours. In other words, dependence is
elicited indirectly. We present this approach separately because experts express
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preferences over binary gambles with identical payoffs rather than providing
probabilistic (or numerical) responses directly.
Loosely, an isoprobability contour is a collection or set of points which have the
same cumulative probability. In order to elicit the 50th percentile of a contour
for two variables of interest, X and Y , experts assess first the common quantiles
for X, e.g. the median, x0.5, the 75th quantile, x0.75, and so forth. Then, the
experts are offered two gambles, for which the authors propose the framing of:

A:“You receive a fixed amount, z , if the outcome of variable X is less
than x0.5 and variable Y takes any value.” (short:(x0.5,ymax)) B:“You
receive the same fixed amount, z , if the outcome of variable X is
less than x0.75 and the outcome of variable Y is less than y1 (with
y1 < ymax).” (short:(x0.75,y1))

The formulation has been altered to fit the wording of the earlier framings for
elicitation questions in this review. The value for y1 is specified and depend-
ing on the response of an expert, y1 is adjusted until the expert is indifferent
between the two gambles. If no indifference is achieved, the process ends after
a pre-determined number of iterations and upper and lower bounds for y1 are
specified to choose the midpoint. With the same framing, the experts continue
choosing between binary deals while varying the quantiles for X and values of
yn, such as A : (x0.75, y1) and B : (x0.9, y2) and so forth. Through enough iter-
ations, i.e. a sufficient number of indifferent choices that determine the points
on the contour, its 50th percentile is assessed. Once this is achieved, the joint
cumulative distribution of any point, (x, y) ∈ [xmin, xmax] × [ymin, ymax], can be
derived with one additional assessment of a univariate quantity such as a mar-
ginal probability for any of the variables of interest, FX(x), by finding the point
(x1, ymax) lying on its isoprobability contour. The joint probability assessment

reduces then to a univariate problem through F (x, y) = F (x1, yma)
∆
= FX(x1).

This approach was tested with graduate students who assessed the joint probabil-
ity of weight and height relationships within their university cohort. A monetary
incentive was offered for obtaining honest and accurate answers. The authors
conclude that this method is sensible with respect to difficulty, monotonicity and
accuracy, but still discuss some possible assumptions that might ease the assess-
ment burden. As a main advantage over conventional methods they mention the
flexibility in analysing the results by deriving various dependence measures from
the elicited outcomes.
Another method that has been proposed for specifying dependence through ex-
pert judgements and which fits into this sub-section is [312]. They consider a
Bayesian updating procedure for dependent binary random variables. Again,
dependence assessments are not made directly, but a threshold copula approach
is used to fully determine the dependence structure.

3.6 Dependence elicitation in the empirical literature

Following the previous discussions about elicitation in various modelling contexts
and about forms of elicited dependence parameters, this section provides an
overview of the common approaches in practice that are prevalent in the case
study literature.
While a complete outline of our review methodology can be found in Appendix A,
we briefly present how the literature on eliciting dependence has been reviewed.
The objective for this literature review is two-fold:
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• Assess the application areas and approaches to dependence modelling that
are used in case studies published in the literature, in order to evaluate the
reach of the different elicitation methods.

• Ensure that the theoretical review is complete and includes a broad variety
of perspectives.

As a first step, a search strategy was formulated that defined the key words
used in order to ensure a thorough search of potential references of interest.
For this, we started combining common key words of expert judgement studies
such as “expert judgement” (British English)/“judgment” (American English)
or “elicitation” itself, with general key words of dependence elicitation and mod-
elling. This was refined by including key words for specific dependence model-
ling techniques and dependence parameters. Next, appropriate databases were
identified, again starting generally before searching explicitly in archives of the
topic’s research areas, such as Operational Research and Decision as well as Risk
Analysis. For evaluating the relevance of references under equal principles, cri-
teria that specify the fit to this review (and which are outlined completely in
Appendix A) had to be defined. The candidate references were then filtered and
lastly, the selected findings were distinguished between theoretical and practical
contributions as the latter were categorised for the overview in this section.
In total 53 references have been identified in which dependence has been elicited
within decision analysis/risk analysis case studies (in some, more than one de-
pendence parameter was elicited). The elicited dependence parameters are cat-
egorised as conditional (exceedance) probabilities (CP/CEP), point estimates as
well as quantiles, joint probabilities, statistical parameters such as correlation
coefficients, verbal and other methods (whereas other methods here differ from
the ones presented in Section 3.5). A detailed list of the identified case studies
can be found in the additional supplementary material. The empirical references
were investigated from different perspectives and Figure 3.7 summarises how the
empirical literature is clustered.
In the upper-left corner it can be seen that the predominant dependence model
for which dependence is elicited is a BN (61.02%). For that, the main depend-
ence parameters elicited are conditional (exceedance) probabilities (point estim-
ate) and verbal scales. Dependence is elicited much less frequently for copulas,
BLM approaches or parametric multivariate distributions.
For dependence parameters per aggregation method an apparent finding is that
performance-based methods are used mainly together with conditional (exceedance)
probabilities (through quantile assessments). This might not be surprising given
that the authors for these studies come from the same expert judgement school
that emphasises the use of performance-based combination and quantile (rather
than point) assessment. In total performance-based weighting is used in 22.03%
of all case studies, just more than equal weighting which is used in 18.64% of
all references. Most significant however is that for 37.28% of all case studies the
aggregation method is not described or mentioned at all.
When clustering the experts’ domains and substantive expertise (upper-right
corner), it is shown that in particular for environmental and ecological studies as
well as in risk analyses for infrastructure problems, dependence is elicited through
probabilistic variables (CP/CEP), point and quantile assessments, together with
verbal methods. Overall, the main domains that experts have substantive ex-
pertise in are environmental/ecological (38.98%), infrastructure (23.72%) and
energy decision analysis/risk analysis (11.86%). In this context, it is an interest-
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ing observation that the relevant case studies (see supplementary material) are
mostly published in domain-specific journals rather than journals with a focus
on the modelling and hence elicitation methodology. This gives a few indications
about the status-quo of the empirical side of the research problem addressed in
this review. It shows that modelling dependence together with expert judge-
ment for quantification is a research problem that is (actually) recognised in the
identified domains. Interestingly, the domains have an established tradition of
applying rigorous risk analysis methods, often stemming from the area of prob-
abilistic risk analysis [84]. Further, this finding indicates that due to a focus
on the application in the fields, there is less focus on developing new theory for
dependence modelling and elicitation which would be found in journals with a
methodological focus. This allows for cross-fertilisation of various findings dis-
cussed in the previous sections and our review aims to establish a contribution
for this.
While a recommended number of experts from marginal elicitation protocols is
between 5 and 10 experts (see aforementioned references on guidance for univari-
ate elicitation), for dependence elicitation this is taken into consideration only
in 15.25% of the cases. Slightly more often (22.03%), less than five experts are
used. Again, the predominant percentage (33.89%) for “multiple” implies a less
clear documentation.
While these findings are not conclusive they offer an indication on the predom-
inant approaches in the case study literature.
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Figure 3.7: Different perspectives on elicited dependence parameters’ use in the
case study literature.
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3.7 Chapter conclusions and further research

We have argued that multivariate decision models under uncertainty are be-
coming more and more prevalent whether as BNs (continuous or discrete), as
parametric multivariate models, or as separate specifications of univariate distri-
butions together with copulas to model the dependencies. We also argued that
this immediately leads to the need for elicitation techniques to quantify these
models.
The biggest challenge in the use of expert judgement to quantify dependence is in
the way we manage the elicitation burden for experts. Implicit in our discussion
above is that the elicitation burden has two key dimensions:

• The required quantity of information - there is a danger that large amounts
of information required from experts will burden them too much in terms
of time and the prolonged intensity of the task.

• The complexity of the required information - there is a danger that the ex-
perts might not be able to hold all the required information in the forefront
of their minds while considering complex scenarios in which (conditional)
probabilities are required.

Both considerations should guide the analyst to choose between ways to reduce
the elicitation burden, by: simplifying the parameterisations of models, by con-
sidering the qualitative and quantitative steps of elicitation separately, or by
finding ways of explaining in practical terms the quantities that are being eli-
cited. However, there is a clear trade-off between easing the elicitation burden
and building models that replicate the important behaviour of real world sys-
tems. Satisfying both the above requirements is challenging and under research.
The qualitative structure provided by a Bayesian network is one example in this
direction. However, often it is difficult to decide on a particular form of network.
We may have situations, for example, where a multivariate distribution can be
estimated from data for moderate values of the variables, but where qualitat-
ively different behaviour can occur in the tails. Expert judgement may be more
appropriate in this context, as stochastic behaviour is then driven by different
relationships between variables.
The literature review illustrates clearly the challenge faced in finding better ways
to elicit multivariate uncertainties: In many cases the reported studies use stu-
dents instead of (costly) experts. Often, when experts are used, they are asked to
only provide guidance on parameters, but the justification for the chosen para-
metric family is not given. Clearly, for purposes of validity and verification we
need to evolve better practices in selecting such families. Otherwise we are not in
a strong position to challenge poor operational practice, such as the prevalence
of the Gaussian copula used widely in financial modelling prior to the recent
crash, and almost certainly still in equally wide use [354].
Finally, in the chapter we have focused on the use of expert assessment in quan-
tifying multivariate distributions. However, the revolution in data analytics is
using machine-learning and expert systems rather than human experts. It is
therefore worth reflecting on the relative benefits, similarities and complement-
arities of these approaches. An individual human expert may be considered
analogous to a particular machine-learning model, and the empirical result that
machine-learning model averaging typically gives better results than any one of
the models on their own, reflects older observations in the use of expert judge-
ment that weighted averages of expert assessments are better calibrated than
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individual experts. However, the human expert may be able to provide sim-
plifications through parametric model choices, and insights into model “phase
changes” that the machine-learning models struggle with, because the data does
not go far enough into the tail. The research challenges we have set out above
will help us find a more satisfactory approach to combining human and machine
expert judgements for uncertainty modelling.

Appendix

Review Methodology

In this Appendix we set out how publications and studies have been searched
and selected. The selection protocol is the systematic process shown in Figure 1
below. The subsequent steps allowed for a thorough identification of references of
interest by evaluation under common principles. Next, each step of the selection
process is detailed.

Search Strategy Formulation

n order to find as many potentially relevant references as possible, appropriate
keywords had to be defined. This included expressions such as “elicitation”, “ex-
pert judgement” (British English) and “expert judgment” (American English)
together with keywords for multivariate distributions and dependence measures.
These were linked by AND/OR operators as standard in scientific databases. In
a first round, a general approach was taken. In addition to the terms “depend-
ence” and “association”, common probabilistic expressions, e.g. “multivariate
distribution”, “joint distribution” and “bivariate distribution”, were used. This
reflects the varying ambitions in dependence modelling and elicitation, where
focus might be on bivariate relationships or higher orders of dependence. Search
terms for expert judgement studies were then combined with specific measures
of dependence that are often used as elicited variables. These correspond to the
ones presented later, e.g. “conditional probability”, “joint probability”, “correl-
ation” and so forth. A third round considered search terms from dependence
modelling techniques. General expressions such as “dependence model”, “de-
pendence modelling” (British English) and “dependence modeling” (American
English) etc. were used before including specific techniques such as “Bayesian
Belief Networks”, “Belief Networks” (or “Nets”), “Copulas” and so forth.

Identification

In the identification stage, the search strategy was applied for various scientific
databases and other sources of references. Candidate references were identified
by scanning titles together with abstracts. General scientific databases such as
Web of Science, Ebsco Host and Scopus served as starting points. Then, the
focus was narrowed down to more specific archives from areas in which expert
judgement and uncertainty analysis are of interest. These relate mainly to Oper-
ational Research and Management Science as well as statistics and risk analysis.
Lastly, university databases were searched. For all, identification was restricted
to the first 300 search results by the ordering criterion relevance. For com-
pleteness, bibliographical cross-references and personal archives of contributing
scholars in the field of expert judgement were queried.
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Evaluation

Next, identified candidate references were evaluated according to their relevance
and fit for purpose for this review. References were rejected if they were either
out-of-scope or outdated.

Out-of-Scope. Being out-of-scope might be subject to several criteria. A
first criterion concerns a psychological research focus of candidate references.
Similar to the heuristics and biases research stream for expert judgement stud-
ies in general, dependence elicitation has been considered at least indirectly by
psychological researchers which results in an overlap of search terms. In particu-
lar causal learning theory makes use of the concept of association and occasion-
ally statistical measures of dependence such as correlation. Main references for
normative and descriptive theories on association learning in human cognition
as well as causal reasoning are mentioned in the Introduction. Another out-of-
scope criterion concerns references studying dependence between experts. Given
the high similarity in keywords and abstracts, their evaluation has proven to be
tedious. While combining experts is considered in Section 6 of this review, the
case of aggregating dependent assessments is not addressed. Some main sources
for this topic are Hora (2010), Kallen and Cooke (2002) and Jouini and Clemen
(1996). Further, references were rejected if they focus on multivariate modelling
but experts are solely used for eliciting marginal distributions. As this process
is not always clearly presented within abstracts (nor captured in the titles), fil-
tering these studies out was again time-consuming. Another related field that
shares common search terms is investigating structural uncertainty of complex
phenomena yet without quantification. In this context, some references had to
be sorted out if considering dependence only qualitatively. Lastly, alternative
expressions of uncertainty nor MCDA-based approaches were not considered as
explained in the Introduction of this review.

Outdated. Apart from being out-of-scope a source might be outdated.
While no specific threshold date had been defined, less recent studies were eval-
uated according to their current importance in the field.

Selection

Lastly, an important distinction was made between empirical and theoretical
foci among the selected references. While information from both was used, the
former was recorded separately for the overview of the practical experiences in
the literature.
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Chapter 4

Considerations and approaches
along the SEJ process when
eliciting dependence

This chapter1 addresses the main elements of structured expert judgement pro-
cesses for dependence elicitation. We introduce the processes’ common elements,
typically used for eliciting univariate quantities, and present the differences that
need to be considered at each of the process’ steps for multivariate uncertainty.
Further, we review findings from the behavioural judgement and decision mak-
ing literature on potential cognitive fallacies that can occur when assessing de-
pendence as mitigating biases is a main objective of formal expert judgement
processes. Given a practical focus, we reflect on case studies in addition to
theoretical findings. Thus, this chapter serves as guidance for facilitators and
analysts using expert judgement.

4.1 Chapter introduction

A structured approach to eliciting multivariate uncertainty is encouraged as it
supports experts to express their knowledge and uncertainty accurately, hence
producing well-informed judgements. For instance, cognitive fallacies might be
present when experts assess dependence which can inhibit the judgements’ accur-
acy. Therefore, mitigation of these fallacies is a main objective of an elicitation
process. Further, a structured process addresses other questions which affect the
reliability of the elicited result and hence model outcome, such as aggregating
various judgements. Lastly, a formal process makes the elicited results transpar-
ent and auditable for anyone not directly involved in the elicitation.
Complementary to the case of eliciting univariate uncertainty, this chapter’s ob-
jective is to outline the main elements of formal expert judgement processes for
multivariate uncertainty elicitation. This is done by discussing theoretical and
empirical findings on the topic, though the reader should note that fewer findings
are available for eliciting joint distributions than for the elicitation of univariate

1Based on: Werner, C., Hanea, A. M., Morales-Nápoles, O. (2018). Eliciting multivariate
uncertainty from experts: Considerations and approaches along the expert judgement process.
In: Dias, L. C., Morton, A., Quigley, J. (eds.) Elicitation: The science and art of structuring
judgement, New York: Springer International Series in Operations Research and Management
Science, 171-210
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quantities.
The structure of this chapter is as follows. In section 4.2, the importance of
formal expert judgement processes is discussed and an overview of the necessary
adjustments for dependence elicitation is given. This provides the reader with
the scope of the topic. Section 4.3 outlines the heuristics and biases that might
occur when eliciting dependence. Then, section 4.4 discusses the preparation of
an elicitation (or the pre-elicitation stage) which for instance entails the choice
of the elicited forms and the training of experts. In section 4.5, we present
considerations for the actual elicitation phase, including structuring and decom-
position methods as well as the quantitative assessment. In section 4.6, we review
required alterations of the process for the post-elicitation stage, such as when
combining the expert judgements. Finally, section 4.7 concludes the chapter by
summarising the main points addressed and discussing the status-quo of this
research problem.

4.2 Structured Expert Judgement processes: an over-
view

The necessity for a structured and formal process when eliciting uncertainty from
experts, such as in form of probabilities, has been recognised since its earliest
approaches. For instance, it has been acknowledged in the area of Probabilistic
Risk Analysis (PRA) which comprises a variety of systematic methodologies for
risk estimation with uncertainty quantification at its core [84]. From a historical
perspective, main contributions in PRA have been made in the aerospace, nuc-
lear and chemical process sector. Hence, after expert judgement was used only
in a semi-formal way in one of the first full-scale PRAs, the original Reactor
Safety Study2 by the US Nuclear Regulatory Commission [77], major changes
towards a more scientific and transparent elicitation process were made in the
subsequent studies, known as Nureg-1150 [78, 227]. When reflecting on the
historical development of PRA, [82] highlights the improvements made through
a traceable elicitation protocol as a newly set standard and main achievement
for expert judgement studies.
Another pioneering contributor to formal approaches for expert judgement is the
Stanford Research Institute (SRI). The Decision Analysis Group of SRI similarly
acknowledged the importance of a formal elicitation process when eliciting uncer-
tainty from experts. Therefore, they developed a structured elicitation protocol
that supports a trained interviewer through a number of techniques to reduce
biases and aid the quantification of uncertainty [375, 377].

Following from these early contributions, various proposals for formal expert
judgement processes have been made and its various components were further
developed. While not one particular step-by-step process to follow exists given
the varying and particular objectives of each elicitation, there is agreement re-
garding which high level steps are essential. Fairly complete elicitation protocols
are for instance presented in [274], [176], [87], [407], [75] and [150]. Even though

2The study is also known as WASH-1400 and as the Rasmussen Report due to Norman
Carl Rasmussen. At that time, the use of expert opinion for assessing uncertainties was often
viewed highly sceptical, however a main challenge was that until then no nuclear plant accident
had been observed. Therefore, the report, together with its use of expert opinion, was only
revived due to the Three Mile Island accident (1979). After the incident, the report’s results
were prescient. In particular, the inclusion of human error as a source of risk made the case for
expert judgement.
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these references explicitly address the case of eliciting a univariate quantity, they
serve as guidance for our purpose of presenting and discussing the considerations
for eliciting dependence.
The elicitation of dependence follows historically from advances made for eli-
citing univariate uncertainty and an overview of the historical development of
expert judgement in risk analysis is presented in [82]. This development is not
surprising given that marginal distributions need to be specified (at least impli-
citly) before any dependence assessment can be made. Furthermore, univariate
quantities are (typically) more intuitive to assess. Whereas some findings for
eliciting univariate uncertainty are still applicable in the multivariate case, for
other parts of the process adjustments need to be made. Fig. 4.1 shows the vari-
ous elements of elicitation processes with the modifications that are necessary
when eliciting dependence.
Regarding the different roles during an elicitation, in this chapter we consider
the situation of a specific decision or risk analysis problem that is of importance
for a decision maker. Experts assess the uncertainty on the variables without
any responsibility for the model outcome or consequences of the later decision.
The experts are chosen based on their substantive (also subject-matter) expert-
ise, meaning they are experts on the particular topic of the decision problem.
This implies that the experts might not have normative expertise, thus they
are not statistical or probabilistic experts. The facilitator, who manages the
actual elicitation part of the overall process, might be either the same person as
the decision maker or an independent third type of attendee at the elicitation
workshop. The facilitator clarifies any questions from the experts. An analyst
on the other hand is usually in charge of the whole process. This includes the
preparation of the elicitation and the finalisation of results afterwards. Such a
situation with a given, formulated problem and clearly defined roles is often the
case, however other ones are possible. [155] discusses various elicitation contexts
and their potential implications.

We regard an elicitation as successful if we can be confident that the experts’
knowledge is captured accurately and faithfully, thus their uncertainty is quan-
tified through a well-informed judgement. However, the assessments’ reliability
might be still poor if little knowledge about the problem of interest prevails. This
often implies that there is high uncertainty in the area of the decision problem
overall.
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(4.4.1) Problem Identification:

� Identify relationships between variables, specify dependence
problem/determine modelling context

� Design elicitation for chosen dependence model

(4.4.2) Choice of Elicited Parameters:

� Account for desiderata of elicited forms

� Consider prevalence of cognitive fallacies for certain forms

� Account for experts’ familiarity with dependence parameter

Preparation of Background Information, Brief-
ing Document and Elicitation Document

Expert Identification and Selection

(4.4.3) Specification of Marginal Distributions:

� Assess from historical data (if available) or decide whether
to assess in same or separate EJ session

Trial-Run of Elicitation

(4.4.4) Training and Motivation:

� Familiarise the expert with elicited form

� Complement feedback of training questions with simulation-
based learning approaches

� Explain common biases

(4.5.1) Knowledge and Belief Structuring:

� Assess experts’ rationale behind assessment

(4.5.2) Quantitative Elicitation

(4.6.1) Aggregation of Expert Judgements:

� Decide on reasonable aggregation method

� Base probabilistic independence on structural information

(4.6.2) Feedback and Robustness Analysis:

� Use graphical outputs for “feeding back”

Documentation

ad
ju

st
em

en
ts

if
n

ec
es

sa
ry

(h
er

e
or

in
su

b
se

q
u

en
t

st
ep

s)

p
os

si
b

ly
fr

om
d

iff
er

en
t

ex
p

er
ts

(4
.4

)
P

re
p

ar
a

ti
o

n
/

P
re

-E
lic

it
a

ti
o

n
(4

.5
)

E
lic

it
a

ti
o

n
(4

.6
)

P
o

st
-E

lic
it

a
ti

o
n

Figure 4.1: Overview of the expert judgement process adjusted for eliciting
dependence (steps discussed in this chapter are in grey).
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4.3 Biases and Heuristics for Dependence Elicitation

In this section, we review main findings from the behavioural judgement and de-
cision making literature on assessing dependence as psychological research shows
that experts are not guaranteed to act rationally when making such assessments.
Hence, the goal of this section is to raise awareness of departures from rationality
in the hope to minimise them in the elicitation. Briefly, rationality implies that
experts make assessments in accordance with normative theories for cognition,
such as formal logic, probability and decision theory. Irrationality, on the other
hand, is the systemic deviation from these norms. While this definition suffices
here, the topic is much more complex and a critical debate on the concept of ra-
tionality can be found in [379] and [311]. In contrast to normative theories that
describe how assessments ought to be made, descriptive research investigates
how assessments are actually made. This relates directly to our earlier definition
of a successful elicitation (section 4.2) that states our aim of eliciting accurate
and faithful assessments from experts. In other words, a successful elicitation
aims at mitigating a range of potential biases.

For expert judgement, in particular two types of biases, cognitive and motiv-
ational, are of importance as they can distort the elicitation outcome severely.
Cognitive biases refer to the situation in which experts’ judgements deviate from
a normative reference point in a subconscious manner, i.e. influenced by the way
information is mentally processed [171]. This bias type occurs mainly due to
heuristics, in other words because people make judgements intuitively by using
mental short-cuts and experience-based techniques to derive the required assess-
ments. The idea of a heuristic proof was used in mathematics to describe a
provisional proof already by [327], before the term was adopted in psychology,
following [367] with the concepts of bounded rationality and satisficing.
Motivational biases may deviate experts’ judgements away from their true be-
liefs. In other words, experts ought to make the most accurate judgements
regardless of the implied conclusion or outcome, yet they do not. Motivational
biases happen consciously and depend on the experts’ personal situations. For
instance, social pressures, wishful thinking, self-interest as well as organizational
contexts can trigger this type of biases [284]. Given that motivational biases are
not different for univariate and multivariate uncertainty assessments we will not
consider them in our review in section 4.3.2.
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Regarding the mitigation of biases, a motivational bias can be addressed in
a technical way by introducing (strictly proper) scoring rules or as well by the
direct influence of a facilitator who encourages truthful answers. A cognitive
bias is mainly counteracted through training of experts, decomposing and/or
structuring the experts’ knowledge prior to the quantitative elicitation as well
as a sensible framing of the elicitation question(s). The latter also entails the
choice of the elicited form.
Over the last 40 years, the number of newly identified heuristics and biases has
increased tremendously. Nevertheless, only a few findings are available for the
case of assessing dependence. We present these findings in the remainder of this
section and Table 4.1 provides an overview. For discussions on some main uni-
variate biases, we refer to [245] and [284].
As can be seen in Table 4.1, most identified heuristic and biases that are ap-
plicable for the case of multivariate uncertainty concern conditional assessments,
such as conditional probabilities. While conditionality is a common way to con-
ceptualise probabilistic dependence, it is shown that in addition to the explicit
fallacies (as introduced in the following), understanding and interpreting condi-
tional forms remains a challenge in today’s statistics and probability education
[114]. An explanation for this difficulty comes from [63] who note that a main fo-
cus of probability education is on frequentist approaches to probability together
with (idealised) random experiments, such as coin tosses. Regarding conditional
probabilities, such a position is however problematic as with equally likely cases,
reducing the subspace has no clear impact on the equal probabilities. With a
subjective view on probability on the other hand, a conditional probability is
more intuitive as one simply revises judgements given new information that has
become available [53].

4.3.1 Causal reasoning and inference

Before we address in detail the biases from Table 4.1, recall that we are interested
in the experts’ ability to assess dependence in accordance with the subjective
dependence definition presented in the introduction. Usually this is done through
specifying a dependence parameter and we address the choice of an elicited
form in section 4.4.3. While emphasizing that assessing dependence, e.g. as
a correlation, is not the same as claiming a causal relationship, we consider
experts’ mental models about causal relationships as a main determinant for
their assessments (despite the missing statistical noise). Therefore, we briefly
address findings of behavioural studies on causal reasoning and inference first.
The concept of causation itself is highly debated3 and its discussion is out of
scope here, yet it is proposed that in most situations people believe that events
actually have causes. In other words, their belief is that events mainly occur
due to causal relationships rather than due to pure randomness or chance [192].
Moreover, it is argued that people have systematic rules for inferring such causal
relationships based on their subjective perception [134]. They then update their
mental models of causal relationships continuously and might express summaries
of causal beliefs in various forms, such as serial narratives, conceptual networks
or images of (mechanical) systems [192].

3There has been ongoing philosophical debate about the meaning of causation. While some
refuted the concept of causation in science altogether [352], others focused on specific aspects.
For us, probabilistic causation [384] and its perception/inference are of interest. [203] proposes
one of the most established accounts for that. He proposes a (unobservable) causal mechanism
which is inferred through the regularity of an effect following a cause.
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Due to incomplete knowledge and imperfect mental models, we emphasize the
concept of probabilistic causation [384]. A formal framework that has been
used widely for representing probable causes in fields such as statistics, artificial
intelligence, as well as philosophy of science and psychology, is a probabilistic
(causal) network. The topic of causation within probabilistic networks is however
not without criticism and generates debate. Extensive coverage of this topic is
given in [376], [319] and [350].
A first type of information for inferring a probabilistic causal relationship is the
set of necessary and sufficient conditions that constitute a presumed background
of no (or only little) causal relevance (i.e. they are not informative for inference),
but which need to be in place for an effect to happen. These conditions are
known as causal field. For instance, when inferring the cause(s) of someone’s
death, being born is a necessary and sufficient condition, nevertheless it is of
little relevance for establishing a causal explanation [134]. The causal field is
a key consideration when structuring experts’ beliefs about relationships as it
relates to model boundaries and determines which events should be included in
a graphical (or any other) representation of the system of interest. We discuss
structuring beliefs in section 4.5.1.
Another type of information that is assumed to be in place for making causal
inferences is summarised as cues-to-causality. Most of these origin with [203] and
comprise temporal order, contiguity in time and space, similarity, covariation,
counterfactual dependence and beliefs about the underlying causal mechanism
as seen by events’ positions in causal networks [192]. Generally, the presence
of multiple cues decreases the overall uncertainty, even though conflicting cues
increase it. The way in which these cues are embedded in the causal field and
how both types of information together shape one’s causal belief is shown by
[134] with the following example:

“Imagine that a watch face has been hit by a hammer and the
glass breaks. How likely was the force of the hammer the cause of
the breakage? Because no explicit context is given, an implicitly as-
sumed neutral context is invoked in which the cues-to-causality point
strongly to a causal relation; that is, the force of the hammer pre-
cedes the breakage in time, there is high covariation between glass
breaking (or not) with the force of solid objects, contiguity in time
and space is high, and there is congruity (similarity) between the
length and strength of cause and effect. Moreover, it is difficult to
discount the causal link because there are few alternative explana-
tions to consider. Now imagine that the same event occurred during
a testing procedure in a watch factory. In this context, the cause of
the breakage is more often judged to be a defect in the glass.”

This simple example shows that by changing the contextual factors while keep-
ing the cues constant, someone’s causal belief can change rather dramatically.
The ways in which these types of information influence a causal perception are
important for the remainder of this section as experts’ causal beliefs and infer-
ences often serve as candidate sources for several biases.

4.3.2 Biased Dependence Elicitation: an Overview

In the following, the main cognitive fallacies that can occur when eliciting de-
pendence, as shown in Table 4.1, are presented in more detail. In addition to
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introducing the examples that the original researchers of the different biases pro-
pose, we illustrate each bias with a simplified example from the area of project
risk assessment. Explaining all biases with the same example allows for a better
comparison between their relevance and the context in which they apply.
Suppose, we manage a project with an associated overall cost. The project’s
overall cost is determined by various individual activities which are essential for
the project completion and which each have their own cost. We denote the cost
of an individual activity by ca and when we distinguish explicitly between two
different activities, we do so by indexing them as 1 and 2, so as ca1 and ca2 .
It follows that we are interested in modelling and quantifying the dependence
between the individual activities’ costs and the dependence’s impact on the over-
all cost. Note that assuming independence between the activities might severely
underestimate the likelihood of exceeding some planned overall cost. In order
to better understand the dependence relationships, we take for instance into ac-
count how the individual activities can be jointly influenced by environmental
and systemic uncertainties. In this simple example, we consider whether (and
if yes, how) such uncertainties impact the activities’ costs, e.g. due to affecting
the durations of certain activities. The duration or time an activity takes is
represented by ta. A main area of research in PRA that focuses on modelling
implicit uncertainties, which have a joint effect on the model outcome but that
are not well enough understood to consider these factors explicitly, is common
cause modelling. For an introduction, see [84].

Confusion of the inverse

A common way of eliciting dependence is in form of conditional judgements, such
as conditional probabilities (section 4.4.2). A main bias for conditional forms of
query variables is the confusion of the inverse [272, 127, 106, 193]. [402] provide
a list of alternative names proposed in the literature. For that, a conditional
probability P (X|Y ) is confused with P (Y |X). In our project risk example, this
might happen when considering the time that an activity takes and whether this
influences its own (but also other activities’) cost. When eliciting the conditional
probability P (ca ≥ v|ta ≥ w) where v and w are specific values, an expert might
confuse this with its inverse, P (ta ≥ w|ca ≥ v).
An empirical research area in which this fallacy has been studied more extensively
is medical decision making. It is shown that medical experts often confuse condi-
tional probabilities of the form P (test result|disease) and P (disease|test result).
In a pioneering study, [127] reports this confusion for cancer and positive X-ray
results. More recently, [393] lists the confusion of the inverse among the main
misunderstanding that “educated citizens” have when making sense of probab-
ilistic or statistical data. Further, [393] outlines several cases in which being
prone to this fallacy has led to false reporting about risk in the media.
One explanation for confusing the inverse is attributed to the similarity of X
and Y . Therefore, some researchers suggest that this bias is linked to the bet-
ter known representativeness heuristic [218, 217]. For that, people assess the
probability of an event with respect to essential characteristics of the population
which it resembles. For dependence assessments this implies that experts regard
P (X|Y ) = P (Y |X) due to the resemblance or representativeness of X for Y and
vice versa [306]. For instance a time-intensive project activity might resemble a
cost-intensive one and vice versa.
Another explanation for this fallacy is related to neglecting (or undervaluing)
base-rate information [234, 146]. Generally, the base-rate neglect [219, 27] states
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that people attribute too much weight to case-specific information and too little
(or no) to underlying base-rates, i.e. the more generic information. With re-
gards to confusing the inverse, [168] distinguish between natural and non-natural
sampling spaces. A natural sampling space is one that is accessed more easily
in one’s memory (this may or may not be the sample space as prescribed by
probability theory). In the fallacy’s classical example of P (test result|disease)
for instance, the sample space of “people with a disease” often comes to mind
easier than that of “people with a certain test result”, such as “positive”, given
that the latter can span over several types of diseases. Similarly in our project
risk example, for P (ca ≥ v|ta ≥ w) an expert ought to regard the activities ex-
ceeding a certain duration before thinking of the activities within this subspace
that exceed a certain cost. However, the sample space of activities exceeding a
specified cost might be more readily available so that from this the proportion
of the activities exceeding a certain time is considered.
A last suggested source for the inverse fallacy stems from experts’ (potentially)
perceived causation between X and Y . [325] attribute a potential confusion
between conditionality and causation to similar wordings such as “given that”
or “if”. Remember that temporal order is important for determining the cause(s)
and the effect(s) of two or more events. For instance, [29] show how causal beliefs
influence the inference of their temporal order and vice versa, i.e. how temporal
order informs causal beliefs. Thus, when eliciting the dependence between two
activities’ durations, experts might confuse P (ta1 ≥ w|ta2 ≥ w) with its inverse
if the durations are not easily observed, e.g. due to lagging processes, and the
first completed activity is seen as causing the other.
In the medical domain, in which this confusion has been observed most often, we
note that for P (test result|disease) the test result is observed first (in a temporal
order) even though the outbreak of the disease clearly preceedes in time. There-
fore, the cause is inferred from the effect. This is a situation in which [134] see
the confusion of the inverse very likely to occur, even though temporal order has
no role in probability theory. By some researchers, this is called the time axis
fallacy or Falk phenomenon [141]. Another interesting example from medical
research concerns the early days of cancer research and the association between
smoking and lung cancer. While it is now established that smoking causes lung
cancer, some researchers have also proposed the inverse [267]. Indeed, the ques-
tion of whether a certain behaviour leads to a disease or whether a disease leads
to a certain behaviour can be less clear. A potential confusion of the inverse is
then subject to the expert’s belief on the candidate cause.

Causality heuristic

The close connection between conditional assessments and causal beliefs can be
the source of another cognitive fallacy. In a pioneering study, [8] coined the term
causality heuristic, claiming that people prefer causal information and therefore
disregard non-causal information, such as base-rates with no causal implication.
Other researchers (e.g. [40]) have since then confirmed this preference for causal
information. At a general level, the causality heuristic relates to causal induction
theories in contrast to similarity-based induction [370]. For instance, [271] found
that people regarded the statement “bananas contain retinum, therefore mon-
keys do” as more convincing than “mice contain retinum, therefore monkeys do”
which shows that the plausibility of a causal explanation can outweigh a similar
reference class.
In the context of conditional assessments, it is noteworthy that people assess a
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higher probability for P (X|Y ) when a causal relation is perceived between X
and Y , even though according to probability theory, a causal explanation should
make no difference in the assessment [141]. This is shown further by people’s
preference to reason from causes to effects rather than from to effects to causes
[192]. As a result, causal relations described as the former are judged as more
likely than the latter even though both relations should be equally probable.
For our example of assessing P (ca ≥ v|ta ≥ w), we therefore need to consider
whether experts perceive a causal explanation and how it influences the assess-
ment outcome.
In an experimental study, [391] asked subjects whether it is more probable that
(a) a girl has blue eyes if her mother has blue eyes?, (b) a mother has blue eyes
if her daughter has blue eyes?, or (c) whether both events have equal probabil-
ity? While most participants (75) chose the correct answer (c), 69 participants
responded (a) compared to 21 that chose (b). Whether this result can be fully
attributed to the role of participants’ perception of causation is however ques-
tionable given other possible influences on the assessments such as semantic
difficulties [134]. Nevertheless, it is an indicator for how experts are led by
preferences about perceiving a conditional relation (which might contradict the
elicited one) once they regard the variables as causes and effects.
While sometimes being regarded as a different bias, the simulation heuristic [228]
affects judgements in a very similar manner. Here, the premise is that conditional
probability judgements are based on the consideration of if-then statements. This
is an idea originating with [334] and his “degree of belief in p given q”, roughly
expressing the odds one would bet on p, the bet only being valid if q is true.
Hence, it is proposed that for assessing a conditional probability, P (X|Y ), one
first considers a world in which Y is certain before assessing the probability of
X being in this world. The simulation heuristic states then that the ease with
which one mentally simulates these situations affects the probability judgement.
People often compare causal scenarios and tend to be most convinced by the
story that is most easily imaginable, most causally coherent and easiest to fol-
low. However, they then neglect other types of relevant information together
with causal scenarios that are not readily available for their conception.

Insufficiently regressive prediction

A fallacy that might occur when people interpret a conditional form as a predict-
ive relation is insufficiently regressive prediction. [219] show that when assessing
predictive relationships, people do not follow normative principles of statistical
prediction. Instead, they “merely translate the variable from one scale to an-
other” [219]. In the project risk example, when predicting an activity’s cost from
its duration, e.g. through conditional quantiles, experts might simply choose the
value of the cost’s ith quantile based on the time’s ith quantile. This is prob-
lematic as typically there is no perfect association between the variables. Hence,
people do not adjust their assessment for a less than perfect association between
the variables. [306] give an example of predicting the height of males from their
weight while assuming a correlation of 0.5 between the variables. Then, for a
male who is one standard deviation above the mean weight, the best prediction
for his height should only be 0.5 standard deviations above the mean height.
However, people tend to assess the prediction too close to one standard devi-
ation above the mean height.
A common explanation for this fallacy is again the representativeness heuristic.
Regarding one variable representative for the other, e.g. viewing tall as repres-
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entative for being heavy or a time-intensive project activity as representative for
a cost-intensive one, experts disregard the aforementioned imperfect association.
As shown in section 4.4.2, eliciting conditional quantiles is one common way to
elicit dependence information.

Bayesian likelihood bias

Research investigating experts’ conditional assessments in the context of intuit-
ively using Bayes’ Theorem4 formulated what is named (by some) the Bayesian
likelihood bias [122]. Bayes’ Theorem is proposed as a normative rule for revising
probabilities given new evidence. The fallacy is that people are too conservative
in their assessment [132], at least for certain framings (see [245] for a critical
discussion on this fallacy). The univariate equivalent is the conservatism bias.
It refers to the finding that higher probabilities are underestimated while lower
ones are overestimated, i.e. assessments vary less from the mean and avoid ex-
treme values. For P (ca1 ≥ v|ca2 ≥ v), experts might make too conservative
assessments in light of new information about another activity’s cost. In a pion-
eering study by [122], participants assessing the probability of a person’s gender
given the height, P (gender|height), tended to underestimate the number of tall
men and overestimate the number of tall women.

Confusion of joint and conditional probabilities

A cognitive fallacy that might be present when assessing dependence for events
occurring together, i.e. the conjunction of events, such as in a joint probability
assessment is the confusion of joint and conditional probabilities.

Consider the framing of the elicitation question: “What is the probability of
ca1 ≥ v and ca2 ≥ v?” While a more precise framing (specifying that we elicit
the joint probability) or eliciting a joint probability still framed differently (see
section 4.4.3) would be helpful, it is important to note that from the view of
probability theory, when using the word “and”, we would expect the expert to
assess P (ca1 ≥ v ∩ ca2 ≥ v), i.e. the conjunction of the events. However, it is
shown that this is often interpreted differently. For some people “and” implies
a temporal order (which has no role in probability theory), so they assess the
conditional probability of P (ca1 ≥ v|ca2 ≥ v) instead [134]. This fallacy is closely
related to the confusion of the inverse for which one explanation is based as well
on an implicit influence of temporal order.

Conjunction fallacy

A more extensively studied bias that is relevant when eliciting the conjunction
of events is the conjunction fallacy [391]. In experiments, subjects assessed the
probability of a conjunction of events P (X ∩ Y ) as more probable than its sep-
arate components, i.e. P (X) or P (Y ), despite its contradiction to probability
theory. For instance, when [250] asked participants which of the following two
statements is more likely: (a) a randomly selected male has had more than one
heart attack, and (b) a randomly selected male has had more than one heart
attack and he is over 55 years old, (b) was judged more probable than (a) by

4Bayes’ Theorem is named after Thomas Bayes (1701-1761) who first proposed it. Since
then it has been further developed and had its impact in a variety of problem contexts (see
[267] for a historical overview). In its simplest form, for events X and Y , it is defined as

P (X|Y ) = P (Y |X)P (X)
P (Y )

whereas P (Y ) 6= 0.
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most participants. Similarly, experts in our project risk example might assess
P (ca ≥ v ∩ ta ≥ w) as more probable than P (ca ≥ v) or P (ta ≥ w) separately.
As with the confusion of the inverse, a suggested source for the conjunction fal-
lacy is the representativeness heuristic. However, while this is the most common
explanation, it is not without criticism and numerous other candidate sources
for this fallacy exist [90, 388]. For example, another explanation is the afore-
mentioned causality heuristic. Hence, the constituent events are related through
a causal explanatory variable. The additional information that constitutes the
subset is then judged as causally relevant, as e.g. in our earlier examples being
over the age of 55 is seen as causally relevant for having a heart attack, and an
activity exceeding a certain duration for exceeding a certain cost.
In the context of assessing conditional probabilities, [249] discuss the conjunc-
tion fallacy through the related concept of disjunction errors. People assess
the conditional probabilities through subordinate and superordinate categories.
For example in their example, a subordinate category, Asian flu, was regularly
judged as more probable than its superordinate category, flu, given a set of
symptoms. A possible explanation is based on a predictive interpretation for the
conditional probability. Participants view the symptoms as more predictive for
the subordinate category and base their likelihood judgement on it.

Cell A strategy

Some research focuses on interpreting and assessing dependence as the concord-
ance of events whereas this is based on a frequency (or cross-sectional) interpret-
ation for the event pairs. In other words, it explicitly requires a population to
draw from. At the most general level, this relates to people’s ability to assess
dependence in form of the “perhaps simplest measure of association” [241], the
quadrant association measure. It gives the probability that the deviations of two
random variables from (for instance) their medians have the same signs, i.e. pos-
itive or negative. This is closely related to assessing a concordance probability
which is introduced in section 4.4.3.
In some situations this is the way how people perceive association between (bin-
ary) variables and a research stream that investigates this form of dependence
perception is associative learning [279]. A common cognitive fallacy is the cell
A strategy [221] which is named like this for reasons that will become apparent.
While certain activities are highly standardised and performed similarly across
numerous projects, it is still rather an idealised case to serially observe whether
or not the duration of an activity exceeded a certain value for j projects with
j = 1, 2, ..., J , i.e. whether ta,j ≥ w or ta,j < w, before obtaining this information
for its cost. Despite its idealisation, this is how experts would perceive depend-
ence in this case. Similarly in his pioneering study, [371] worked with medical
experts and the variables referred to symptoms and diseases. The experts were
given information about the presence or absence of a disease following informa-
tion on the presence or absence of a symptom and then assessed its correlation.
This information can be ordered within four quadrants. The upper left cor-
responds to the presence of both variables, the lower right shows the joint ab-
sence and the remaining two quadrants relate to one variable being present
while the other is absent. Whereas in normative theory, all four quadrants
should be equally informative, it is found that people focus on the joint pres-
ence of both variables disproportionally in relation to the observed frequencies,
so that this quadrant has a larger impact on the assessment. This quadrant
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has also been called cell A when labelling the four quadrants from A to D5

which explains the name of this fallacy. It suggests that subjects fail to use all
relevant information available and in fact, a preference order exists in form of
(X+, Y+) > (X+, Y−) ≈ (X−, Y+) > (X−, Y−) [268]. [264] offer two explanations.
The first considers the frequencies (or observations) per quadrant as a sample
from a larger population and assumes presence is rare (P < 0.5) while absence
is common (P > 0.5). Then a joint presence is more informative to judge a
positive relationship in contrast to joint absence. In other words, it would be
more surprising to observe a joint presence rather than a joint absence. The
second explanation relates to hypothesis testing and since the quadrant of joint
presence is evidence in favour of the hypothesis, this is again (typically) more
informative in contrast to both non-joint quadrants that are evidence against it.

Illusory correlation

A cognitive fallacy that is not subject to the specific form of an elicited variable
but applies at a general level is known as illusory correlation. For this, experts
assess that two uncorrelated events show a (statistical) dependence or the cor-
relation is (at least) overestimated. Note that this bias is a systematic deviation
that experts may make consistently and not simply a false belief that one expert
has but not another. Illusory correlation can be present due to prior beliefs that
people have about the co-occurrence of events so that a statistical dependence
is expected even though actual observations/data do not confirm this.
In their pioneering research in psychodiagnostics, a field of psychology study-
ing the evaluation of personality, [66] found that medical experts assessed an
illusory correlation for the relation of symptoms and personality characteristics.
The phenomenon of assuming a correlation where in fact no exists was since then
confirmed in different settings and experiments [131] and explains various social
behaviours, such as the persistence of stereotypes [185].
One explanation for the (false) expectation of a correlation is that it is triggered
by the availability bias. This bias implies that people are influenced considerably
by recent experiences and information that can be recalled more easily [390]. For
instance, one might be overvaluing the recent observation of a co-occurrence of
two events by regarding it as a commonly observed co-occurrence. In our project
risk example, this could apply when having recently observed a project delay be-
fore seeing its cost exceeding a certain value and regarding this co-occurrence
as a frequent observation for similar type of projects. Another source of this
fallacy is attributed to pre-existing causal beliefs [40]. In this regard, the prior
belief about the correlation stems simply from a false belief about an underlying
causal mechanism, as shown in the causality bias.

4.3.3 Implications of biases for the elicitation process

After having presented the main biases that are relevant for eliciting depend-
ence from experts in various forms, we briefly outline the implications that these
findings have for the design of the elicitation process.
One finding is that various biases are triggered from the different possible ways
that experts might interpret a dependence relationship. In particular, for con-
ditional forms of elicitation, such as conditional probabilities, it is crucial for

5 When, + indicates the presence of variables X and Y , and − their absence, the quadrants

can be presented as:
A : (X+, Y+) B : (X+, Y−)

C : (X−, Y+) D : (X−, Y−)
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a facilitator to understand whether the experts might assess the conditional
relationships based on similarity/representativeness, causation (e.g. temporal
order), or predictive power. As shown, each of these different interpretations
can have an effect on the amount and type of information that experts take into
consideration when making assessments. In other words, each of the interpreta-
tions biases the outcome of an elicitation in a certain way. While more research
is necessary to understand how different interpretations are triggered and affect
an assessment, we highlight the importance of structuring experts’ knowledge
and beliefs about a dependence relationship qualitatively, prior to the quantit-
ative elicitation. This ensures that the decision maker and the experts have the
same understanding about the dependent variables and more insight about ex-
perts’ interpretation might be provided. Further, it helps experts to clarify their
own understanding and interpretation. This is essential for ensuring confidence
in the resulting elicitation outcome as well as for supporting transparency and
reproducibility of the expert judgement process.
In addition, the different interpretations and their implications should be ad-
dressed in a training session for the experts, in which misunderstandings, such
as semantic ones, are resolved. Then, common pitfalls, such as confusing condi-
tional statements and conjunction of events, can be avoided.
Another finding is that several of the presented fallacies originate with (and
are closely linked to) more common biases that are not only observed when as-
sessing dependence, e.g. the representativeness heuristic, base-rate neglect and
availability bias. For these, research has addressed debiasing methods through
alternative framing of elicitation questions, eliciting variables in various forms
and training. [284] discuss and give an overview to debiasing methods. Further,
Table 4.1 lists specific debiasing techniques for the discussed biases.

4.4 Elicitation process: Preparation/Pre-elicitation

As can be seen in Fig. 4.1, the elicitation process starts already before actually
interacting with any experts. The different elements of the preparation (or pre-
elicitation) phase ensure that the decision maker’s problem is addressed properly
and in accordance with the underlying model for which the right variables need
to be quantified by suitable experts. In addition, the choices made in this phase
allow the experts to assess the uncertain variables as intuitively as possible. In
the following, we present the various elements of the this part in more detail.

4.4.1 Problem identification and modelling context

The first step in an elicitation process is the identification of the actual problem
at hand in accordance with the decision maker or stakeholder. This step has been
termed for instance background [75] or preparation [306] and includes typically
not just the definition of the elicitation’s objective but also the identification of
the variables of interest.
When drawing conclusions from one of the earliest experiences on formal pro-
cesses for probability elicitation, [375] referred to this step as the deterministic
phase. They describe it as the part of the modelling process in which relevant
variables are identified and their relationships are determined before uncertainty
assessment is considered (in the probabilistic phase).
Likewise for dependence elicitation, a main consideration during this part of the
process is to design the elicitation in accordance with the underlying dependence
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model. A multivariate stochastic model might be pre-determined by the decision
maker or is decided upon at this point in accordance with the analyst. In this
regard, a broad variety of dependence models exists and their applicability is
subject to particular problem situations as they serve different purposes and
allow for varying degrees of scrutiny. [412] review the elicitation for several de-
pendence models and discuss how decisions in the modelling context are related
to the elicitation by outlining elicitation strategies for three different, broad de-
pendence modelling situations which were introduced in the previous chapter.
The implication for the remainder of the process is that the choices in the differ-
ent modelling contexts are determined by the level of understanding about the
dependencies to be modelled and therefore formulate our variables of interest.
These in turn, define the applicability of elicited forms for a satisfactory rep-
resentation of the experts’ information in the model. Therefore, decisions on
the model strongly affect the choice of which dependence parameter to elicit as
discussed next.

4.4.2 Choice of elicited parameters

The next step in the preparation phase is the choice of an appropriate elicited
form for the dependence information. [412] review commonly elicited dependence
parameters extensively with regards to the modelling context (section 4.4.1) as
well as the assessment burden for experts. These two considerations for choosing
an elicited form formulate already main desiderata for this choice, however more
are worth discussing.
While some desiderata are the same as for eliciting univariate uncertainty, others
are of particular concern when eliciting multivariate quantities. Two desiderata
that stem from the univariate case, are: 1.) a foundation in probability the-
ory, and 2.) the elicitation of observable quantities. A foundation in probability
theory ensures a robust operational definition when representing uncertainty.
Observable quantities are physically measurable, and having this property may
increase the credibility and defensibility of the assessments [79]. Moreover, the
form of the elicited variable should allow for a low assessment burden. [214] em-
phasise practicality in this regard. The elicited variables should be formulated so
that experts feel comfortable assessing them while their beliefs are captured to
a satisfactory degree. For the former, the elicited parameter should be kept in-
tuitively understandable and for the latter, the information given by the experts
should be linked (as directly as possible) to the corresponding model. When eli-
citing dependence, it might be preferred (for instance due to a potential reduction
in the assessment burden) to elicit a variable in a different form than the one
needed as model input, in which case we need to transform the elicited variable.
Then, it is important to measure and control the degree of resemblance between
the resulting assessments (through the model) and the dependence information
as specified by the expert [238]. The transformation of dependence parameters
is typically based on assumptions about their underlying bivariate distribution.
For instance, when transforming a product moment correlation into a rank cor-
relation, the most common way assumes bivariate normality [241]. Similarly,
when transforming a conditional probability into a product moment correlation,
we might assume an underlying normal copula [287]. A potential issue is that
positive definiteness is not guaranteed [238], leading to the next desideratum
which is coherence. Coherence means that the outcome should be within math-
ematically feasible bounds. If it is not, it might need to be adjusted such that it
still reflects the expert’s opinion (as good as possible). Another solution to inco-
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herence is to fix possible bounds for the assessment a priori, even though this can
severely decrease the intuitiveness of the assessment. Both solutions are rather
pragmatic and show why forms of elicited parameters that result in coherent as-
sessments while being intuitive should be preferred. A last desideratum relates to
the (mathematical) aggregation of numerous expert judgements (section 4.6.1).
When combining expert judgements, it is desirable to base this combination on
the accuracy of experts’ assessments measured by performance against empirical
data. Therefore, the availability of related historical data based on which we
can measure such performance is preferred. While there is no query variable
that fulfils all of these desirable properties, the desiderata serve as guidance for
which elicited parameter to choose under certain circumstances. For instance,
an analyst might chose an elicited form that corresponds directly to the model
input given a familiarity of the experts with the dependence parameter, therefore
having intuitiveness ensured.
At a broad level, most elicited forms can be categorised into probabilistic and
statistical representations. Table 4.2 outlines some main elicited forms in more
detail.
We note that the majority of approaches for eliciting dependence fall under
the probabilistic umbrella. Probabilistic forms have two main advantages: they
(usually) elicit observable quantities and they are rooted in probability theory.
Moreover, they are the direct input into various popular models, such as discrete
BNs [319, 317] and its continuous alternative [188]. For instance, [412] found in
a review of the literature on dependence elicitation and modelling that 61% of
case studies, in which dependence was elicited, a BN was used for modelling the
dependence. The predominant form for the elicited parameter was a conditional
probability (point estimates and quantile estimates).
A potential issue with the forms elicited in the probabilistic approaches, such
as conditional and joint probabilities, is that they are regarded as non-intuitive
and cognitively difficult to assess. [73] compare their assessment with other ap-
proaches, such as the direct assessment of a correlation coefficient, and found that
conditional and joint probabilities were among the worst performances for co-
herence and in terms of accuracy against empirical data, i.e. not well-calibrated.
In particular, joint probability assessments seem cognitively complex.
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This is even true for independence assessments which are (typically) among
the easier judgements to express. A further concern is the assessment of a con-
ditional probability with a higher dimensional conditioning set, as discussed in
[287] and [289]. The growing conditioning set poses a challenge for experts and
this method is (in its current form) difficult to implement. Similarly, expected
conditional quantiles (percentiles) are difficult to assess as they require the un-
derstanding of location properties for distributions together with the notion of
regression towards the mean [74].
As a more accurate and intuitive probabilistic way to assess dependence, con-
cordance probabilities have been proposed [172, 73, 165]. A requirement, which
may restrict the variables of interest that can be elicited in this way, is the exist-
ence of a population to draw from and a certain familiarity with the population.
Alternatively to eliciting probabilistic forms, we can ask experts to assess de-
pendence through statistical dependence measures. While theoretical objections,
such as non-observability [214], persist for the elicitation of moments and sim-
ilarly cross-moments, they seem to perform well with respect to various desid-
erata (other than theoretical feasibility). For instance, the direct elicitation of
a (rank) correlation coefficient is shown to be accurate and intuitive in some
studies [74, 73, 341, 295], even though some research is not in agreement with
this finding [172, 214, 176]. The contrasting opinions may arise from the dif-
ference in normative expertise that the experts in the studies have or as well
from the difference in the complexity of the assessed relationships. For example,
in the studies which conclude that eliciting a correlation coefficient is accurate
and intuitive, the assessed correlations are on rather simple relationships, such
as height-weight, or as well on relationships between stocks and stock market
indices. This suggests that regarding relationships for which experts have a
certain familiarity and maybe even some knowledge about historical data, the
direct statistical method is indeed advantageous. Support for this conclusion
comes from findings of weather forecasting. Here, experts obtained frequent
feedback on correlations which allowed them to become accurate assessors [51].
Neurological research concludes similar findings after evaluating the cognitive
activity in a simulation game where participants obtained regular feedback on
correlation assessments [432].
An indirect statistical approach is the assessment of dependence through a verbal
scale that corresponds to correlation coefficients (or other dependence paramet-
ers). [73] for example provide a scale with seven verbal classifiers. Generally,
verbal assessment is seen as intuitive, directly applicable and has therefore en-
joyed further consideration. [386] introduce the Technique for Human Error
Rate Prediction (THERP) which uses a verbal scale for assigning multivariate
uncertainty between human errors. Since its introduction, THERP has been
developed extensively in the field of human reliability analysis (HRA) and it
has been applied in various industries (see [280] for a review on modelling and
eliciting dependence in HRA).
Further, some BN modelling techniques, originating with noisy-OR methods
[317], make use of verbal scales. For instance, in the ranked nodes approach,
random variables with discretised ordinal scales are assessed by experts through
verbal descriptors of the scale [145].
While these are the main approaches for eliciting a dependence parameter, note
that when quantifying some models, such as parametric multivariate distribu-
tions and regression models, more commonly so called hyperparameters are eli-
cited. They allow (through restructuring) for eliciting (mainly) univariate vari-
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ables.
For a more detailed and comprehensive review of the elicitation methods and
elicited forms mentioned above together with some additional ones, see [412].

4.4.3 Specification of marginal distributions

Before dependence can be elicited, the marginal distributions for the variables
of interest need to be specified. In some situations, this information is available
from historical data and we can simply provide the experts with this data (if
they do not know it already). If this is not the case however, we need to eli-
cit the information on the marginal distributions prior to eliciting dependence.
This is important as otherwise the experts base their dependence assessments
on different beliefs.
Consider for instance, we elicit dependence from experts in a conditional form.
If the marginal distributions have not been specified formally, each expert will
base their assessment on their own implicit judgement and as a result each as-
sessment will be conditional on different marginal probabilities. While this leads
to dependence assessments which are not comparable and therefore cannot be
combined for model input, the implicitly specified marginal probabilities are also
likely to lack the scrutiny that a formal elicitation process would allow for. In
other words, even if eliciting multivariate uncertainty only from a single expert,
a formal process for specifying the marginal distributions is still highly encour-
aged to ensure less biased and better calibrated assessments. Note that if we
omit the specification of the marginal distributions, experts might even refuse
to assess dependence as they regard the process as flawed.
Various expert judgement methods exist to elicit univariate quantities (as presen-
ted elsewhere in this book) and the process is similarly complex as the one
presented here. This is an important remark as we need to decide whether all
(univariate together with multivariate) variables are elicited in the same session
or whether this is done separately. Eliciting all variables in one session is likely
to be tiring for the experts while arranging two separate elicitation workshops
might be challenging in terms of availability of experts and organisational costs.

4.4.4 Training and motivation

Training and motivating are likely to improve elicitation outcomes for various
reasons, one of which being the effort to mitigate motivational and cognitive
biases [199]. Recall from section 4.3.2 that although it is possible for experts
to have an intuitive understanding of probabilistic and/or statistical depend-
ence parameters, psychological research shows that interpreting and assessing
dependence is often cognitively difficult and results may be distorted. There-
fore, we try to counteract the influence of biases and a main approach to achieve
this is to train and motivate experts. As aforementioned, motivational biases
are not specific to quantifying multivariate uncertainty and are therefore not
discussed in this chapter. Consequently, we will further consider only training
(not motivating) experts.
Generally, a training session serves to familiarise the experts with the form in
which the query variables are elicited by clarifying its interpretation. For uni-
variate quantities this (typically) includes introducing the experts to particu-
lar location parameters, such as the quantiles of a marginal distribution. This
ensures that these are meaningful to the experts and they feel comfortable as-
sessing them. Further, experts are made aware of the main cognitive fallacies
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that might affect their assessments so that they can reflect on them and make
a well-reasoned judgement by taking a critical stance. While this ability is an
important characteristic of someone’s statistical literacy [158], we emphasise a
pragmatic approach to training experts as even experienced statisticians often
have difficulties with such critical examining and reasoning.
For assessing multivariate uncertainty, the objectives are similar. As concluded
in section 4.3.3, main determinants of cognitive biases when assessing depend-
ence are the different interpretations of the elicited forms (in particular of the
conditional form). Recall that causal, predictive as well as similarity-based in-
terpretations have a misleading influence on assessments. Therefore, a first focus
of an effective training is on explaining the correct interpretation of the depend-
ence parameter to be elicited. This involves an emphasis on the probabilistic
and statistical features, such as randomness, in contrast to causal, predictive
as well as similarity-based relationships. For instance, causal relationships are
often regarded as deterministic, i.e. if Y is understood as the cause of X, then
it follows that P (X|Y ) = 1 as X is always present when Y is present. How-
ever, P (X|Y ) = 1 is not claiming a causal relationship and we might need to
account for other factors that affect X and Y [114]. As aforementioned, the
confusion of the inverse as well as the causality heuristic (section 4.3.2) are two
main biases that can be explained by such a misleading interpretation. In this
regard, some researchers have mentioned their concern about the language that
is used in many statistics textbooks to teach fundamental concepts such as in-
dependence [114]. For instance, the phrase “whenever Y has no effect on X” is
used to explain that two variables, X and Y , are independent and their joint
distribution is simply the product of their margins. However, for many experts,
the term “effect” might imply a causal relationship. This shows that training
on the elicited form should also address any semantic misunderstandings at this
step of the elicitation process.
In the same manner, we can address the other misinterpretations. For example,
in order to avoid that conditional assessments are based on similarity, i.e. re-
semblance of X for Y , we should stress that the assessments might also be
influenced by other factors. As such, a specific outcome, such as a certain dia-
gnosis, can be typical for a certain disease but still unlikely [306].
While probabilistic reasoning is commonly included in school curricula, its teach-
ing is often done through formula-based approaches and neglects real-world ran-
dom phenomena [28]. Therefore, it is common that experts hold misconceptions
on probabilistic/statistical reasoning which are hard to eradicate. In fact, they
might even consider this kind of reasoning as counterintuitive. A possibility
to enhance a better understanding of these concepts might be to complement
the practice of forming probability judgements and providing feedback on train-
ing questions (as commonly done before elicitations) with simulation-based ap-
proaches. There is empirical evidence that multimedia supported learning envir-
onments successfully support students in building adequate mental models when
teaching the concepts of correlation [260] and conditional probability [133].
Once the experts are familiar with the elicited form and its correct interpreta-
tion, an additional focus of the training session is on outlining the common biases
as identified in section 4.3.2. This allows the experts to obtain a better concep-
tual understanding and we can address potential issues more specifically, such
as recognising that a conditional probability involves a restriction in the sample
space, distinguishing joint and conditional probabilities or as well distinguishing
the inverses.
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4.5 Elicitation process: Elicitation

After the preparation/pre-elicitation phase is concluded, the actual elicitation
starts. Note that this is the phase in the overall process in which the facilitator
works interactively with the experts, first when supporting experts to structure
their knowledge and beliefs (or rationale), and second when eliciting the uncer-
tain variables quantitatively. We will explain both steps in more detail below.

4.5.1 Knowledge and belief structuring

Neglecting existing knowledge and data that can be relevant for an assessment is
another reason for biased elicitation outcomes in addition to misinterpreting the
elicited form (section 4.3.3). However, experts often have cognitive difficulties in
exploring the underlying sample space to a satisfactory degree. Therefore, they
need support for making better use of their knowledge and beliefs, a procedure
we call structuring or which is also known as knowledge evocation [59]. Apart
from mitigating biases, structuring experts’ knowledge and beliefs about a joint
distribution prior to eliciting dependence quantitatively is essential for ensuring
confidence in the later assessment as well as for supporting transparency and
reproducibility of the expert judgement process. In fact, when quantifying mul-
tivariate uncertainties, identifying the factors that are relevant to the particular
problem is a main outcome of the structured expert judgement process. In other
words, knowledge structuring allows for obtaining an insight into the details of
experts’ understanding about the dependence relationships, thus their rationale.
[201] views this step of probability elicitation as the most challenging one in the
process. This is due to people possessing knowledge about uncertain events or
variables which is composed of many fragmented pieces of information, often all
being of high relevance. Further, people typically know more than they think,
therefore neglecting this step could result in less informative judgements.
Structuring knowledge might be part of a hybrid approach to dependence mod-
elling in which qualitative, structural information about dependence relation-
ships is specified first, before probabilistic quantification is considered. Typically,
graphical models are used to reduce the cognitive load on experts’ short term
memory, even though other structuring methods, such as directed questions
(checklist-based approaches) have been proposed [59]. Some commonly used
graphical models are knowledge maps [201], event and fault trees [84], influence
diagrams6 [358, 202] and BNs (section 4.4.1). Note that we can nevertheless also
include a structuring part when quantifying a dependence model with experts
which offers no such a graphical representation. In this case, rather than in-
cluding the result of knowledge structuring in the actual model, we use it solely
for supporting the experts. That being said, when reviewing the literature on
eliciting dependence in probabilistic modelling, [412] found that the dependence
model, which is used most often together with expert judgement, is in fact a
BN. A reason for its popularity is likely that it allows for an intuitive graph-
ical representation. According to [438], deriving the structure of a BN can be
achieved in four ways. First, the structure can be specified through transform-
ing existing probabilistic models of the problem, such as event and fault trees.
Such a transformation is straightforward as the necessary structural information
is already given in the existing models and it can be sensible as BNs are more

6In the literature on event trees and influence diagrams, the idea of decomposition is of-
ten mentioned as it describes a “divide and conquer” technique [199] that allows to ease the
assessment in particular of conditional probabilities (see e.g. [232]).
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flexible. Second, a BN structure can be inferred from some empirical or physical
model. Third, the structure can be built based on existing historical data and
fourth, it can be elicited from experts. The last way is of most interest for us as
it is a common situation that not only the probabilistic information needs to be
elicited from experts, but also the qualitative relationships [326, 149]. Further,
it corresponds directly to the knowledge structuring part of the process.
[438] propose to begin the structural elicitation with identifying the relevant vari-
ables and to achieve this, they refer for instance to organized interviews [190].
Then, the actual arcs are elicited, either interactively (as we describe below) or
through reusable patterns of structures [144]. Last, they deal with unquantifi-
able variables (e.g. through proxies).
As mentioned before, one way to derive the graphical structure is by eliciting
the experts’ input on these interactively [303]. One advantage of such an inter-
active procedure is that it allows (typically) for discussion among experts about
the justification of nodes and arcs. In other words, pre-existing knowledge is
challenged and elaborated on if necessary. Further, experts obtain a greater
ownership of the model which they structured themselves so that they are more
comfortable in quantifying it later on. A potential difficulty, which needs to be
considered, is that the consensus on the final model structure might have been
achieved by a dominating expert who dictated the result or due to group-think,
i.e. without critical evaluation. Regarding these potential issues, [407] suggest
to elicit a structure from each individual expert, whenever there is a concern
about not capturing the opinion of less confident experts. Aggregating diverse
structural information coherently through rules (as opposed to consensus) is
discussed in [55]. While for hybrid dependence models a combined graphical
structure is necessary, in terms of knowledge structuring it is also of interest
how sharing knowledge and rationales among experts affects a later assessment.
For instance, [187] integrate group interaction in a structured protocol for quant-
itative elicitation as it is shown to be beneficial in assessment tasks.
Besides the initial structuring step, [197] mentions the potential necessity to
refine a model structure during the actual quantification. In particular, the vi-
olation of conditional independence is of concern. By definition of a BN, the
successor nodes (children) are conditionally independent given their parents. If
this is not the case when observing the final model, an additional node is required.
[317] regards conditional independence therefore as a guiding principle as where
it fails, further clarification about an assumed, hidden variable is needed.

4.5.2 Quantitative elicitation

After structuring experts’ knowledge and beliefs about the factors that influence
the variable(s) of interest, the quantitative assessment follows. This step of the
process is also named encoding [375]. In this step, experts assess the variable(s)
of interest in the form that was chosen to be appropriate with respect to various
desiderata (section 4.4.3).
The main considerations herewith are similar to those of eliciting univariate
uncertainty. Likewise, we need to decide on how much interaction between the
experts we allow for (we address the aggregation of assessments in section 4.6.1).
Further, at least one facilitator is present to answer questions regarding the
understanding of the query variables. Prior to the session, experts should have
received a briefing document which helps them to familiarise themselves with
the purpose and structure of the elicitation [85].
As there are no differences to univariate uncertainty elicitation in this part, we
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Figure 4.2: Exemplary elicitation question with visualisation

devote the remainder of this sub-section to illustrating an exemplary assessment
which has been used similarly in an actual dependence elicitation problem. [295]
and [292] elicit and quantify dependence between rain amount and rain duration
in the Netherlands through conditional exceedance probabilities. The elicited
results are used as model input for quantifying parametric copulas. Modelling
dependence in this way informs resilience analysis for critical components of
road networks, such as tunnels and road sections. The aim of this analysis
is to improve the understanding about the effects of extreme rainfall for the
development of probabilistic models in reliable infrastructure risk analysis.
Fig. 4.2 shows a way of presenting experts with the elicitation question:

For Rotterdam, NL, consider all samples for which the rain duration
in hours (X) is larger than its 95th quantile (4 hours). What is the
percentage of this set of samples, for which the rain amount in mm
(Y ) is also larger than its 95th quantile (6 mm)?
This can be expressed as P (Y ≥ 95th quantile|X ≥ 95th quantile) or
likewise as P (Y ≥ 6mm|X ≥ 4hours).
Please provide your assessment:

The inclusion of a visualisation can be helpful for experts to obtain a better
understanding about the framing of the elicitation question.

4.6 Elicitation process: Post-Elicitation

The last phase in the overall elicitation process (Fig. 4.1) is the post-elicitation
part. The two main steps that are of importance here are aggregating the as-
sessments of various experts and providing feedback to the experts. We address
both steps in more detail below.

4.6.1 Aggregation of expert judgements

In order to capture a broad perspective on the uncertainties that we model and
quantify, we (usually) elicit judgements from a variety of experts. Therefore, a
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main aspect of the post-elicitation phase is the aggregation (or combination) of
the assessments from several experts.
As in the univariate case, a distinction at a broad level is made between beha-
vioural and mathematical (or algorithmic) aggregation methods. The first type
aims at reaching consensus so that the outcome is a single assessment upon which
the group of experts has agreed. This might be achieved within a group elicita-
tion session or through methods, such as Delphi [351]. Given that these methods
are the same as for univariate elicitation, they are not further discussed here.
Recall however that a potential shortcoming of these methods (in the univariate
as well as multivariate case) is that the consensus might be reached through one
expert dominating the elicitation discussion or even dictating the elicitation’s
outcome [155].
For aggregating judgements mathematically, in particular two approaches are
common. The first is the Bayesian approach which allows for modelling qual-
ity aspects of individual expert distributions, for example overconfidence. The
second approach is a pooling function which is typically seen as more robust and
easier to use [200].
For Bayesian aggregation, we apply Bayes’ Theorem (section 4.3.2) while regard-
ing the expert judgements as data. If we are interested in an event or unknown
quantity x, we elicit its probability or set of quantiles and obtain the experts’
individual prior opinions, f0,e(x) for experts e = 1, 2, ..., E. We denote the set of
elicited distributions as D = (f0,1(x), ..., f0,E(x)), and get the combined posterior
distribution for x, f1,DM (x|D) through f1,DM (x|D) ∝ f0,DM (x)LDM (D|x). It
is then necessary to elicit the likelihood function of observing D given x, i.e.
LDM (D|x) [422]. A Bayesian aggregation model which has been used more com-
monly is [300].
A pooling function on the other hand assigns weights to individual assessments
to derive a weighted combination of the experts’ judgements. The weights are
either equal for each expert or they reflect an expert’s competence or perform-
ance (in terms of statistical accuracy, if empirical data can be used for measuring
this). For equal as well as performance-based weighting, all weights are non-
negative and sum to one. A commonly used pooling function is linear averaging,
for which the combined assessment is DM(f1(x),...,fn(x)) =

∑E
e=1wefe(x), with

we being the weight of expert e. Alternatively, other pooling methods exist,
such as logarithmic pooling, for which the combined assessment is defined as
DM(f1(x),...,fn(x)) = k

∏E
e=1 fe(x)we where k is a normalising constant.

Linear pooling functions originate with [383] and [110] and the legitimacy of
their application from an axiomatic perspective is primarily based on event-
wise independence (or the weak set-wise function) and unanimity preservation
[7, 266, 116]. The first axiom implies that the collective probability of an event
is only determined by the individual probabilities for that specific event (and
not that of other ones). Unanimity preservation holds that if all experts give the
same assessment, then this will be the collective one.
For aggregating dependence assessments, mainly linear pooling functions have
been used [412], which is why we address them in more detail. Before we discuss
these however, note that a possible concern with mathematical aggregation in
the multivariate case is that not all dependence assessments are preserved. For
instance, a linear combination of correlation matrices is still a correlation matrix,
however conditional independencies such as in a BN are not preserved. Further,
an axiomatic issue might be that of preserving probabilistic independence which
ensures that if all experts regard two variables as (conditionally) independent,
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then this is preserved in the combined assessment. For several pooling func-
tions (e.g. linear as well as logarithmic ones) this is problematic. However, it
might be argued that unless independence assessments are also based on struc-
tural judgements (section 4.5.1), i.e. they are not purely accidental, this norm-
ative constraint is questionable [55]. Note that this is a question of whether
one regards dependence information as fully represented by probabilistic (un-
)conditional dependence or only in addition to structural judgements in form of
graphical representations (such as in BNs). As we have emphasised in section
4.5.1 that structural information should be elicited either within the same mod-
elling framework or separately, the independence axiom is not of concern and we
regard linear pooling methods as applicable for dependence information.

Equal weighting

One option to set weights in a linear pooling function is by equally weighting
all assessments (simple average). When eliciting correlation parameters directly,
overall accuracy improved in that way through adding experts [424]. The authors
tested the robustness by removing/adding experts and found that the mean
absolute error (MAE) decreased when the number of experts increased.

Performance-based weighting

Alternatively, [424] also showed that taking the average of only the top per-
forming cohort of experts (in terms of lowest MAE) instead of the whole set of
experts reduces the overall MAE further. This finding is consistent with expert
judgement studies for univariate quantities [86] and therefore motivated the idea
of using a measure of calibration to assess experts’ performance in terms of stat-
istical accuracy as a score for multivariate assessments. Before we introduce this
score, note that there is an indication that a common calibration method for
univariate expert judgements [79] might not be feasible for aggregating depend-
ence assessments [289].
The first and only calibration score for multivariate assessments (according to
the authors’ knowledge) is the dependence calibration score introduced in [294]
which is based on the Hellinger distance. In order to assess this score (similar
to Cooke’s Classical model [79]) seed variables known to the facilitator but not
the experts are elicited in addition to the target variables. Then, two bivariate
copulas fC (a copula model used for calibration purposes) and fE (a copula es-
timated by expert opinions) are used to derive the Hellinger distance, H, which
is defined as:

H(fC , fE) =

∫∫
[0,1]2

√
1√
2

(
√
fC(u, v)−

√
fE(u, v))2dudv

In [3] an overview of different distances between distributions is given. If the
distributions are Gaussian, these distances can be written in terms of the para-
meters of the Gaussian distributions (i.e. the mean and covariance matrix).
Under the Gaussian copula assumption, H may be parametrised by two correl-
ation matrices:

HG(ΣC ,ΣE) =

√
1− det(ΣC)1/4det(ΣE)1/4

(1
2det(ΣC) + 1

2det(ΣE))1/2
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Here ΣC is a correlation matrix used for calibration purposes and ΣE the one
estimated by experts. The d-calibration or dependence calibration score is:

D = 1−H

The score is 1 if an expert’s assessments correspond to the calibration model
exactly. Conversely, it differs from 1 as the expert’s opinion differs from the cal-
ibration model. Under the Gaussian assumption, i.e. when using HG, the score
approaches 1 as ΣE approximates ΣC element-wise and it decreases as HG differs
from HC element-wise. A score equal to zero means that at least two variables
are linearly dependent in the correlation matrix used for calibration purposes
and the expert fails to express this. Or contrary to this, an expert expresses
perfect linear dependence between two variables when this is not the case. For
more details, see [293]. In the same paper [293], the method discussed in [294] is
extended by using the Hellinger distance to compare a Gumbel copula generated
from precipitation data with a copula constructed from experts’ assessments of
tail dependence between rain amount and duration in Rotterdam and De Bilt,
in the Netherlands. The experts’ assessments are obtained by a similar framing
as shown in section 4.5.2 and varying the elicited quantiles, e.g. 50th and 95th

(see [287] for more details). An overview of the results in given in Table 7.1.
In this study, the combination of expert opinions based on the dependence

calibration score outperforms individual expert opinions as well as weighting
experts equally. In fact, the equal weights approach does not give satisfactory
results. We observe that the performance-based aggregation is much closer to
the actual empirical rank correlation. Further, it was noticed that experts with
highest calibration scores for univariate assessments are not necessarily the ex-
perts with the highest dependence calibration score.
In order to combine dependence assessments, experts are weighted according to
their dependence calibration score. Similar to the univariate case, a cut-off level
is established, either chosen by the facilitator or by optimising the performance
of the combination. If an individual expert falls below this level, their score will
be unweighted for the pooling function.

4.6.2 Feedback and robustness analysis

Similar to eliciting univariate uncertainty, one of the final steps of the depend-
ence elicitation process is testing the robustness of elicited results and provid-
ing feedback to the experts after a combined assessment has been constructed.
While this procedure is not much different for the multivariate case, it should be
noted that many dependence models produce graphical outputs, such as scatter
plots. Depending on the experts’ understanding of the graphical output and
their willingness to examine such outputs, it might be possible to feedback such
a visualisation and assess their agreement with it.
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Table 4.3: Dependence calibration results based on rank correlation, Gaussian
(HG) and Hellinger (H) distance (Morales-Nápoles et al. 2016b)

Name Rotterdam De Bilt Rotterdam De Bilt
X > 0.95 X > 0.95 X > 0.5 X > 0.5

1− HG

Expert 1 0.809 0.812 0.894 0.897

Expert 2 0.889 0.892 0.766 0.769

Expert 3 0.960 0.963 0.853 0.856

Expert 4 0.746 0.769 0.960 0.963

Expert 5 0.832 0.812 0.979 0.982

Expert 6 0.733 0.736 0.730 0.733

Expert 7 0.787 0.790 0.730 0.733

Expert 8 0.809 0.812 0.894 0.897

1− H

Expert 1 0.822 0.825 0.900 0.903

Expert 2 0.895 0.899 0.784 0.787

Expert 3 0.962 0.965 0.862 0.865

Expert 4 0.767 0.787 0.962 0.965

Expert 5 0.843 0.825 0.980 0.983

Expert 6 0.756 0.759 0.753 0.756

Expert 7 0.802 0.805 0.753 0.756

Expert 8 0.822 0.825 0.900 0.903

Calibration
Score:

Equal Weighting 0.814 0.817 0.837 0.841

Performance-Based
Weighting

0.960 0.963 0.979 0.982

Rank Correlation
(Result):

Equal Weighting 0.264 0.264 0.326 0.326

Performance-Based
Weighting

0.578 0.578 0.608 0.608

Realisation 0.622 0.617 0.622 0.617
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4.7 Chapter conclusions

In this chapter, we have presented the main considerations for eliciting mul-
tivariate uncertainty from experts. As shown, there are several important ad-
justments that are necessary when eliciting dependence given that many of the
findings from expert judgement processes for univariate quantities are not read-
ily applicable.

A first remark for concluding this chapter is that a few areas still lack in-
sight to a considerable extent. For instance, we have discussed that the biases
and heuristics which influence dependence assessments might be mitigated by
training and knowledge structuring. In particular, experts’ potential misinter-
pretations of dependence parameters need to be corrected and ways to do so
might be informed by the educational literature on teaching concepts such as
conditional and joint probabilities. Nevertheless, we need to acknowledge that
experiences here might not be directly transferable to designing experts’ train-
ing due to a different understanding of that of students and therefore further
research in training design is necessary.
Further, more insight is needed on the exact triggers of the potential biases and
their relative influence on judgements. It would be desirable for behavioural re-
searchers to take a similar interest in this field as they do with the more common
(typically univariate probability) heuristics and biases. This would allow devel-
oping the various (undeveloped) steps in the pre-elicitation phase, e.g. format
choices.
In the elicitation phase, in particular the topic of structuring knowledge is iden-
tified as a key area for which further research is necessary. For instance, the
graphical representation of BNs offers a way to incorporate qualitative depend-
ence information. However issues still remain such as eliciting the structure of
highly complex BNs as well as eliciting tail dependencies graphically. Therefore,
again, we need to obtain more experiences for this part of the elicitation process.
Lastly, we have discussed that when combining assessments mathematically,
more research is necessary for addressing some common desiderata for this step,
such as performance-based as well as mathematically coherent aggregation.
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Chapter 5

Mapping conditional scenarios
for knowledge structuring in
(tail) dependence elicitation

This chapter1 addresses the challenge that guidance for eliciting dependence
is sparse whereas particularly little research addresses the structuring of ex-
perts’ knowledge about dependence relationships prior to a quantitative elicit-
ation. However, such preparation is crucial for developing confidence in the
resulting judgements, especially when assessing tail dependence. Therefore, we
introduce a scenario mapping technique that structures experts’ knowledge about
(tail) dependence.Further, we show with an illustrative example how to elicit
conditional scenarios that support assessing a quantitative model for the complex
risks of the UK higher education sector.

5.1 Chapter introduction

Structuring experts’ knowledge about a joint distribution before its quantitative
elicitation is one of the most neglected parts of research in formal elicitation
processes for multivariate uncertainty. Nevertheless, it is essential for ensuring
confidence in the elicitation, supporting transparency and reproducibility of the
expert judgement study as well as mitigating experts’ potential cognitive falla-
cies.
The few methods which specifically structure knowledge about joint distributions
are part of hybrid approaches to dependence modelling by specifying qualitat-
ive relationships first, before assessing them probabilistically. These approaches
comprise Knowledge Maps [201], Event and Fault Trees [84], Influence Diagrams
[358, 202] and Bayesian Belief Networks [317]. While these methods enjoy pop-
ularity in the decision and risk analysis literature due to their convenient graph-
ical representation, they are not suitable in various modelling contexts which
might be of interest. For example, they do not address potential tail dependen-
cies as these models in themselves do not capture main characteristics of systems
where extreme value distributions emerge, such as underlying vicious cycles (or

1Based on: Werner, C., Bedford, T. and Quigley, J. (under review). Mapping Conditional
Scenarios for Knowledge Structuring in (Tail) Dependence Elicitation, Journal of the Opera-
tional Research Society
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reinforcing loops). Moreover, due to their hybrid nature, these models require a
specific (often large) number of assessments for quantifying the underlying joint
distribution.
In order to address knowledge structuring for joint distributions in a more flex-
ible manner, i.e. for various models, including those suitable for capturing tail
dependence, and separate from quantification (i.e. without the need to quantify
all underlying relationships), we present our scenario mapping method. It builds
on findings and approaches from Probabilistic Risk Analysis (PRA) [84] together
with research in risk perception [338], Problem Structuring (PSM or “soft OR”)
[152, 347, 278], Systems Thinking (ST) [251, 255, 324, 67] and Scenario Plan-
ning (SP) [54]. By doing so, it is in line with the arguments in favour of
“sense-making” through qualitative scenarios when modelling uncertainty [156],
whereas such a representation of a simplified part of reality has also been termed
“small world” [357].
The remainder of this chapter is as follows. First (in section 5.2), we define the
variables of interest for a quantitative dependence elicitation and in section 5.3
present a way to elicit them for a common model that captures tail dependence
if applicable. This shows the assessments that experts are required to make. In
section 5.4, we propose our scenario definition and derive the main desiderata
that determine the type of information we want to capture from experts. Next (in
section 5.5), we outline the features of existing structuring/system analysis meth-
ods on which our scenario mapping method is based and introduce our method
in section 5.6. After that we present in section 5.7 an illustrative example which
shows how the method was applied to structure and model tail dependencies in
the UK higher education sector. Finally, we conclude the chapter in section 5.8
with a reflective discussion on the method’s achievements (for instance, mitig-
ating common biases of dependence elicitation), the validation of the resulting
scenario models and the method’s current limitations.

5.2 Tail dependence models and the resulting vari-
ables of interest for the elicitation

Tail dependence can be modelled with a copula. For an introduction and dis-
cussion on the topic, see [208]. Recall, we can decompose any multivariate
distribution function into its univariate margins and a copula. This can be
reversed in order to construct new multivariate distribution functions with a
given copula, so that a convenient modelling feature is the separate treatment
of the marginal distributions and the dependence relationship. Various common
parametric copulas can be grouped into classes. For instance, Elliptical copulas
are radially symmetric, i.e. their upper and lower tail dependence is the same,
whereas Archimedean copulas do not show this symmetry. This is an important
modelling property as for the former, large losses always occur together with
large gains which might not be a realistic dependence characteristic. For ex-
ample, [99] show how copulas can be used to appropriately model asymmetric
dependence of joint high default rates in a credit card portfolio.
Formally, lower tail dependence (which is of interest in our illustrative case study)
for the distribution functions FX and FY of random variables X and Y is defined
as:

λL(X,Y ) = lim
u→0

P (Y ≤ F−1
Y (u)|X ≤ F−1

X (u))
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when a limit λL ∈ [0, 1] exists. Whenever λL > 0, X and Y are dependent in the
lower tail whereas whenever λL = 0 they are tail independent. In other words,
in the tail dependent case one is more likely to observe low values for Y given
low values for X. From that, we can distinguish various copula types through
their lower tail dependence coefficient limu→0

C(u,u)
u (see [208] for its derivation)

of which we make use in the elicitation (as shown in the next section).
In this chapter, we are focusing on bivariate dependence as this is already cognit-
ively complex for experts to assess. Hence, our variables of interest are denoted as
X and Y and correspond to a risk characteristic (monetary losses in the later case
study) for which we are particularly interested in potential tail dependence. Note
that similarly to the bivariate case for which we structure conditional scenarios
corresponding to the elicitation of P (Y ≤ uthquantile|X ≤ uthquantile), our
method can be extended to structure conditional scenarios of larger conditioning
sets, such as P (Y ≤ uthquantile|X1 ≤ uthquantile,X2 ≤ uthquantile, . . . , Xn ≤
uthquantile).

5.3 Tail dependence elicitation

While an elicitation can be designed in various ways, we briefly present a method
that allows for the explicit consideration of tail dependencies as these are often
of interest for a decision maker. The assessment of tail dependence highlights
the need for a structuring process due its low intuitiveness. In particular, we
re-emphasise the importance of a formal approach to structuring experts’ know-
ledge as a necessary further development of previous approaches that evoke ex-
perts’ narratives (or rationales) within univariate uncertainty elicitation [85, 87].
The process below is a pragmatic solution to eliciting dependence information
for choosing a copula that represents an experts belief, yet it allows for distin-
guishing main parametric forms. Together with other elicitation methods it is
discussed in [412] in more detail. Note, this is only a brief description focussing
on the actual elicitation while neglecting elements of pre- and post-elicitation,
such as training experts and aggregating judgements:

1. The marginal distributions are specified either through historical data or
an expert judgement method for univariate quantities.

2. We elicit the conditional median in the form of P (Y ≤ 50thquantile|X ≤
50thquantile) for the variables of interest X and Y . This can be framed
as:“Given that X is below your median for it, what is the probability that
Y is also below your median?” (see Figure 5.1 on the left).

3. We elicit another quantile, one that corresponds to the (lower) distribution
tail (e.g. the 5th), i.e. P (Y ≤ 5thquantile|X ≤ 5thquantile) which can be
framed as:“Given that X is below your 5thquantile for it, what is the
probability that Y is also below your 5thquantile?” (see Figure 5.1 on the
right).

4. With the assessments of 2.) and 3.) in place, we can compare an ex-
pert’s judgements with different parametric copula forms. This is done
by plotting the assessments against the converging conditional exceedance
probabilities for selected parametric copulas simulated at the uth quantile
from 0 to 0.5 through the tail concentration function. Figure 5.2 shows
the comparison of parametric copulas at the 50th and 5th quantile for a
rank correlation of 0.3 and 0.7. The copula choices and rank correlations
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Figure 5.1: Schematic representation of eliciting the conditional 50th and 5th

quantile.

can be varied for approximating the assessments better (see illustrative
case-study).

Figure 5.2: Convergence of exceedance probabilities for (selected) parametric
copula families (rank correlation 0.3 (left) and 0.7 (right)).

5. With a first idea of which copula represents the expert’s information reas-
onably well given a specific rank correlation, we can test the robustness
of that choice, e.g. by “feeding back” the probabilities for non-elicited
quantiles and check an expert’s agreement for it.

Alternatively to 3.), we might elicit the conditional median for various quantiles.
Thus, we elicit P (Y < 50thquantile|X < uthquantile), solely varying the uth

quantile for X. Both ways of eliciting dependence information allow for deriving
a copula that represents an expert’s input satisfactorily and both alternatives
relate to our scenario mapping method.
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5.4 Scenario definition and desiderata of structuring
methods

In this section, we propose a definition of the underlying scenarios that allow
experts to express a rationale for their quantitative assessment. From this defin-
ition, we derive the main desiderata that a method, which structures experts’
knowledge through conditional scenarios, should possess.
The term scenario is used differently in operational research, risk analysis and
related fields. Purposes for which scenarios are formulated include forecasting
[61], strategic planning [396], multi-criteria decision making [382], as well as de-
cision analysis, e.g. through decision tree modelling [69, 157], and risk analysis
by identifying hazards and vulnerabilities [222, 223]. Therefore, in the literature
scenarios are used variously to support predictions of what will happen, explora-
tion of what can happen (through hypothetical futures) and what happens if (in
stress testing). The latter is also known as “wind-tunnelling” [396]. Depending
on the purpose, scenarios can be qualitative, quantitative or both. For instance,
the Scenario Planning literature spans various qualitative techniques to develop
scenarios as narratives [15, 399], whereas in PRA quantitative scenarios are more
common [223] (though there is also first a qualitative step followed by a quanti-
fication step).
While scenario thinking has been around most arguably since Plato in form of
treatises on utopias and dystopias [54], [216] are regarded as pioneers in estab-
lishing it in the Scenario Planning literature. In other areas, such as PRA, Raiffa
and his work on decision trees pioneers the use of scenarios [332]. The former re-
gard a scenario as “a hypothetical sequence of events constructed for the purpose
of focussing attention on causal processes and decision points”. Similarly, [130]
describe scenarios as “hypothetical sequences of events constructed as causal
chains of argumentation for the purpose of focussing attention on alternative
futures”. Building onto these descriptions, we define scenarios with probabil-
ity space notation [235] and cylinder set theory. It defines the larger world in
which triggering events result in (potentially adverse) consequences. Experts
state which elements the sample space contains. From that, the state of the
world and its future path is defined as ωi = x0, x1, . . . , xk with ωi denoting one
possible outcome from the entire sample space and x0 being the current state of
the world. Hence, x1 is the state of the world one time unit into the future up
to k time units for xk. Further, ωi is contained by the cylinder set of order k,
(x0, x1, . . . , xk|x′0, . . . , xk ∈ Au) where x′0 describes the specified/known current
state and Au represents a certain aspect that is defined for the state of the world
at time k, in our case being below the uth quantile. With a similar definition
for another scenario set y in place, the set of (triggering) events is contained in
today’s state and determines alternative future states x1, y1, . . . , xk, yk all satis-
fying Au for the state of the world at time k.
From that, we define a scenario as a sequence that links triggering events to
specified consequences (or final states) through intermediate conditions. This
definition builds on the literature of defining risk, decomposed into hazards (or
threats), vulnerabilities and outcomes, the first being the “source of risk” [84].
This decomposition corresponds to the quantitative definition of risk in form of
the triplet 〈si, pi, xi〉 [223] with si as the scenario, pi the probability of scenario
i, and xi as its consequence. Further, it is in line in systems-based definitions of
risk that highlight the importance of the concepts of vulnerability and resilience
[182].
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From our scenario definition, we identify two main desiderata which a method
that structures scenarios for dependence elicitation should possess. First, it
should only evoke scenarios that are relevant by resulting in a future consequence
with the specified condition Au, i.e. below the specified uth quantile. For the
second desideratum, a method should identify the systemic impact of threats
(through determining the interconnectivity of the intermediate conditions). In
risk analysis, failures can be attributed very rarely to a single cause but rather
chains of events that combine to produce the outcome. This is reflected in the
alternative future states x1, y1, . . . , xk, yk that result from the set of triggering
events. In particular, we are interested in the interconnectivity of intermedi-
ate conditions for understanding the difference between the unconditional and
conditional distributions of X and Y .

5.5 Applicability and features of existing structuring
methods

With respect to the main desiderata, we reviewed the literature on potentially
applicable techniques, such as the ones used in Systems Thinking, Problem Struc-
turing, PRA and Scenario Planning.
In order to identify the features of existing methods that we can use for our pur-
poses, we examined how they perform in terms of three different properties, 1.)
understanding severities in an anticipatory way, 2.) modelling the dynamic com-
plexity of an underlying system and 3.) capturing how common causes propagate
through systems. The first property relates to the desideratum of identifying rel-
evant scenarios, i.e. regarding severities through a specific quantile. The other
two properties relate to the second desideratum of understanding the impact on
both, the unconditional and conditional distribution. Table 5.1 below shows the
features of various methods.
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For the first property, applicable methods identify events that lead to a par-
ticular type and level of severity through backwards logic. This differs from
forward logic approaches by not considering the possible development of scen-
arios from a fixed starting point (such as a threat) but by determining threats
from given outcomes. In the SP literature, the terms forecasting and backcasting
have been introduced for that [44] and [123] distinguish exploratory and anticip-
atory scenarios. [430] apply backwards logic to enhance traditional SP methods,
such as Intuitive Logics [396], with a way to focus particularly on rare events
with low predictability, i.e. ones which implicitly are assigned a probability close
to zero. Their method is motivated by crisis management approaches which aim
at preparing organizations for high impact/low probability catastrophes. An al-
ternative SP method is the Horizon Mission method (HM) [16]. HM originated
within NASA to support engineers’ decision-making for research and develop-
ment pathways as their scenarios often led to recommending incremental rather
than breakthrough research. For enhancing scenarios, in the HM method en-
gineers first envision a horizon mission (infeasible given today’s technology) and
then identify the new capabilities needed. The Impact of Future Technologies
method serves the same purpose in IBM [44]. Similarly to SP’s backwards logic,
in PRA in particular Fault Tree and Root Cause analysis methods [84] investigate
how specific failure events can occur. In PRA however, scenarios are captured
by event sequences rather than narrative SP approaches.
Regarding the second property, we observe from Table 5.1 that most PRA and
many SP methods do not allow for modelling the dynamic complexity of a sys-
tem. Yet, capturing this is important for experts to understand how interde-
pendent components of systems interact over time and across different systems.
[314] emphasises the need for traditional PRA methods, which often model en-
gineered systems, to apply more holistic forms of analysis in order to address
the challenge of more complex risks. Likewise, [416] examines the deficiency of
PRA methods with regard to systems thinking and [6, 5] highlight the need for
a comprehensive, holistic and systemic approach to risk analysis to account for
“risk systemicity”. It refers to the idea that “the effect of two risks might be
more than the sum of the two individual effects thus reflecting systemicity” [420].
While there is no agreement on the definition of a dynamic and complex system
(see [247] for a discussion), a commonly mentioned characteristic is non-linearity
due to reinforcing (or vicious) feedback loops. Their identification is hence cru-
cial when analysing a system. Various methods, summarised under the umbrella
of systems thinking, together with “soft OR”/PSMs are analytical approaches
for understanding a system holistically rather than through its separate parts.
Common methods that identify feedback loops by graphical representation of
influences are Causal Loop Diagrams [296] and Cognitive Maps [328, 4]. Both
methods allow a participatory approach to modelling complex problems [102]
and have been used in mixed-method approaches together with cybernetics for
analysing structures of systems [261].
Related to understanding dynamic and complex systems is the assessment of
common cause propagation through distinct systems. This is the third prop-
erty and it is not clear how most methods distinguish between (what is per-
ceived/defined as) different systems (Table 5.1). It draws on a fundamental as-
pect of systems thinking/PSM, the idea of a system boundary [71]. For ST/PSMs,
identifying what lies inside a system and hence which factors are included in a
model requires experience and judgement, which is why the modelling process is
usually iterative and circular rather than linear [296]. Once a first model version
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is constructed, experts might refine the model by re-assessing which factors to in-
clude (or exclude) based on a reflective understanding. Emphasising the import-
ance of the modelling process and the judgemental nature of a model boundary
is in agreement with [277] who discusses the definition of a system’s boundary
from the viewpoint of Critical System Heuristics [392]. This is a framework
for participatory and reflective practice on boundary judgements which requires
system thinkers to consider critically what a system includes and to examine it
from multiple perspectives through a checklist/question-based approach. More
generally, for decision models this is related to the issue of infinite regress when
modelling [154], and for which [323] introduced the term of a requisite model
that results from a circular and interactive modelling process.
In order to understand better the difference of the unconditional and conditional
sub-systems that determine our distributions, it is important to derive the over-
all system boundaries as well as the boundaries of the sub-systems. Therefore,
we use a technique from PRA, a bow-tie model for which the idea of system
propagation of events can be illustrated by the bow-tie logic [12] in the sense of
assessing how a hazard is caused by threats and at the same time is the cause
of a consequence.

5.6 Mapping conditional scenarios

After having identified some useful features of existing methods that comply with
our desiderata, we introduce our method which synthesizes specific elements of
some of the methods discussed above for our purpose of structuring knowledge
for (tail) dependence elicitation.

5.6.1 Overview of the mapping process

For mapping conditional scenarios, we propose an iterative process which is facil-
itated with the experts individually, and scenarios are shared only as a final step
of knowledge sharing. Figure 5.3 provides an overview of the overall mapping
process. In the first step, the facilitator ensures the expert’s familiarity with the
set-up, i.e. the different steps together with the tasks at each of them. Fur-
ther, common expert judgement formalities, such as confidentiality of personal
information and usage of mapping session results, are clarified.
In the second step, the expert is introduced to the first variable of interest, X,
which concerns the unconditional distribution. Further, we clarify the specified
time-frame in which scenarios lie, e.g. the next five years (we regard our method
more suitable for shorter rather than longer time frames due to the focus on tail
dependencies which might be not recognisable for events too far into the future).
Then, the expert is presented with the final condition of the required scenarios,
Au, which states that the unconditional distribution is above (or below) a certain
quantile.
In step three, the expert is given time to brainstorm and note the different reas-
ons why the variable of interest lies above (or below) the specified quantile. We
emphasise reason here as this is an unstructured part of the process and an ex-
pert might express these in own words. Further, note that this step employs
backward logic by reasoning from a specific consequence to potential causes.

Fourth, the facilitator together with the expert classifies the reasons, identi-
fied in the previous step, into two different event types according to their causal
logic. For this, note that an expert’s dependence assessment might be based on
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Figure 5.3: Overview of Scenario Mapping Process.
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various sources of information. However, we regard in particular mental mod-
els about causal relationships as main determinants for their assessments. This
is in agreement with the behavioural judgement and decision making literature
which proposes that people believe that most events have causes (rather than
happening due to pure randomness) and further, that they use systematic rules
to derive causal inferences [134]. Yet, as these rules are often incomplete or im-
perfect, we adopt a probabilistic view on causation [384]. Probable causes are
invariably linked to linguistic expressions of causal relationships, such as cause,
enable, prevent [369]. In accordance with the former two, the event types used
for classification are:

Trigger Event (immediate) A trigger event is a plausible initiator of a scen-
ario contained in the current state of the world and it may or may not be (fully)
observable. For clarification we might add words like “start”, “outbreak”, “at-
tack”, “eruption”, “shock” etc., e.g. “disease outbreak”, “terrorist attack”, “vol-
canic eruption”, “oil price shock”. For observable trigger events, it is possible to
neglect any preceding events as we condition on the them knowingly. However,
for trigger events that are only partly observable, we need to include immediate
preceding events (which led to the trigger event) for ensuring a richer set of
scenarios. Suppose for instance that an expert identified “oil price shock” as a
trigger event. In this case, the facilitator might have to clarify whether this is
due to geo-political risks involving OPEC countries or due to a change in usage
of alternative energy sources, as for both versions, very different scenarios unfold
in the future.
Another remark on correctly identifying a trigger event is that experts cannot
position a trigger event in the future. If this occurs, it is important that the
facilitator supports the expert in re-considering why such an event will happen
in future in order to identify its corresponding trigger event in the current state
of the world.

Trigger Event (evolving) Evolving trigger events are similar to immediate
ones, a difference is however that they capture a longer development of an event
which can be seen as an initial cause. For these, it is possible to insert words like
“development” in a sensible manner, e.g. “development of (long lasting) rain
showers” as a trigger event for a certain flood severity.

Enabling Conditions Complementary to both types of trigger events, an
expert should also identify enabling conditions. These follow from the trigger
events and capture evolving trends in a system by constituting the conditions
that need to be in place for a trigger event to reach a certain consequence. They
might labelled as “higher”/“lower”, e.g. “lower economic growth”, “higher risk
of infection”, “higher migration” for clarification. Enabling conditions are dir-
ectly related to the ideas of system vulnerability and resilience in PRA [182].
The categorisation into the different event types is important for elaborating
conditional scenarios from the current unconditional ones as shown in the sub-
sequent steps as well as their comparison across experts. Note that risk percep-
tion research [338] identifies similar event types whereas trigger events are called
hazard events which result in secondary effects that affect more people than the
ones affected by the original trigger event, e.g. economic impacts or social and
political pressures. Thus, our definition of event types is not only justified from
the natural language of probabilistic causation but should also correspond to
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people’s experience with unfolding risks.
In the fifth step of the process, experts determine the links between trigger events
and enabling conditions in order to map out the path to the specified final condi-
tion. This part makes use of cognitive mapping and causal loop diagram methods
as we can identify feedback loops and the overall interconnectivity of the events.
Links are set according to an expert’s belief while we omit the assignment of po-
larities as these are already captured in the enabling conditions. In fact, it serves
as a robustness test for the enabling conditions as experts might change their
labelling based on the links. Testing robustness in graphical models is commonly
embedded in the modelling process [252, 283]. This part can be supported by
mapping software (such as the one developed within this project [411]) to allow
for a direct visualisation of the unfolding scenarios. Once an expert is satisfied
with the resulting set of scenarios, the final picture can be captured.
Next (in step six ), the expert maps how (and if at all) the triggering events that
are relevant for the unconditional distribution propagate in the conditional one.
For that, we simply import the previous trigger events (e.g. automatically with
the developed software) onto a blank screen which represents the conditional
scenario space of Y . Then, an expert identifies the relevant enabling conditions
(in forward logic) from the imported trigger events with respect to the specified
time frame. This part of the process corresponds to the “bow-tie” element dis-
cussed earlier.
Now, an expert has a thorough understanding of how both variables of interest
are affected by the same events and we can proceed with the quantitative assess-
ment in the form introduced earlier.
The last step of the process allows for (anonymously) sharing experts’ scenarios.
By facilitating the structuring/scenario mapping sessions with experts first in-
dividually, before providing each experts with the scenarios of other experts,
this process shows similarities with elicitation processes, such as Delphi [351]. A
difference is however that we do not seek consensus. Rather, our process builds
on findings that the accuracy of individual assessments improves upon receiving
feedback about other people’s judgement [425, 433]. An expert judgement pro-
cess for univariate quantities which encourages a second round of assessments
after individual assessments have been shared and discussed with other experts,
is the IDEA protocol [187].
The overall process of mapping scenarios is repeated for all quantiles of interest.

5.7 An illustrative example: Managing risk in the
UK Higher Education sector

The higher education (HE) sector in the United Kingdom (UK) has been fre-
quently in focus for applying operational research techniques, mainly for prob-
lems of performance measurement and resource allocation [210, 109, 265]. Less
experience is available for assessing and managing risk in this sector. This is the
case, even though the general management of HE in the UK has been studied
and is well-understood [195, 194]. As factors that might pose a risk to an HE
institution, [195] outlines variable tuition fees, which increase competition and
change students’ expectations, the increased exposure to and reliance on overseas
markets, large investments in infrastructures to facilitate institutional expansion
as well as potential loss of market share due to new technologies. Likewise,
[14] view tuition fee income as a main driver for internationalisation whereas
some uncertainties affecting its development are political realities together with
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national security concerns, such as changing visa requirements in the face of
international terrorism, government policies influencing the cost of studies, the
potential expansion of domestic capacity for sending countries to meet education
demands, the increasing importance of English as lingua franca, the alignment
and accreditation of degrees and the future impact of e-learning offerings.
In order to better understand such complex uncertainties, our method has been
applied to support decision-makers in charge of managing the postgraduate
taught course portfolio at the authors’ home institution and department (for
the full details of the case-study, see [411]). Our method was used to map the
interdependence of future scenarios that might affect the tuition fee income of
the established MSc Business Analysis and Consulting (BAC) course and the
newly introduced MSc Data Science course within the next four years. After
that, the dependence between the courses was assessed quantitatively. We ap-
plied our method with five experts who are in charge of managing postgraduate
taught courses (and implementing the new course) and our variables of interest
are defined as the generated income from each course through tuition fees. After
having specified the marginal distributions for our variables of interest with a
structured expert judgement process for univariate uncertainties [79], we intro-
duced our experts to the elicitation questions for the dependence assessments2:

1. “Given that the generated income of the MSc BAC is below its median
in the academic year 2020/21, what is the probability that the MSc Data
Science is also below its median?”

2. “Given that the generated income of the MSc BAC is below its 5th quantile
in the academic year 2020/21, what is the probability that the MSc Data
Science is also below its 5th quantile?”

Then, we started structuring the scenarios with each expert individually as de-
scribed in the previous section, first the unconditional and conditional scenarios
for being below the median, then the same process for being lower than the 5th

quantile. Figures 5.5 and 5.6 show the scenarios of one of the experts that were
elaborated within approximately an hour.
As we can see in Figures 5.5 and 5.6, for the 50th quantile the expert believes that
most trigger events of the unconditional scenarios will affect the conditional ones
similarly. However, a slight difference relates to the future demand of MSc Data
Science graduates (in particular) due to a more important data science market.
For the 5th quantile, this expert considered the trigger events that result from
the unconditional scenarios to have the same impact on the conditional ones.
In other words, once the income generated from tuition fees by the MSc BAC
is below a certain threshold, the scenarios must be relevant on a more global
level, so that the MSc Data Science will be affected similarly. The idea of such
tail dependence corresponds to most experts’ scenarios and assessments as they
view the risk of being below the 5th quantile as a result of events that affect the
UK HE sector more broadly rather than the different courses individually. Due
to such similar beliefs, no expert changed her/his assessment after reviewing
the other experts’ scenarios in the last round of the process (Figure 5.3). As
a result, when aggregating the experts’ assessments, both, an equal weighting
combination as well as a performance-based one (based on the statistical accur-
acy of experts for the marginal distributions), indicate the fit of a tail dependent
copula. Figure 5.4 shows how both combinations fit well with a Clayton and

2The experts were given the corresponding monetary values for the specific quantiles.
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Figure 5.4: Fitting parametric copula forms to combined assessments (rank cor-
relation=0.55).

Survival Joe copula of rank correlation of 0.55). Note that this is a pragmatic
way of combining experts’ assessments and the performance-based aggregation
of dependence assessment is a topic of ongoing research [411].
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5.8 Discussion and chapter conclusions

In this chapter, we have proposed a scenario mapping method for structuring
experts’ knowledge about dependence relationships due to the high cognitive
complexity that experts face when assessing joint distributions. The aim is to
offer a method that can be used together with various dependence models, in-
cluding ones for tail dependence.
Structured approaches for supporting experts in expressing their rationale have
already been recommended for eliciting univariate uncertainty [85, 87] and (as
mentioned in the introduction) they (1) increase confidence for the quantitative
assessment, (2) mitigate potential cognitive fallacies and (3) support transpar-
ency as well as reproducibility of the expert judgement study. In this conclusion
we briefly discuss how our method achieves the above.
With respect to (1), increasing confidence for the later quantitative assessment,
the experts’ feedback showed that they regard our method as helpful for obtain-
ing a better understanding of the dependence relationships and hence have more
confidence to assess dependence quantitatively after using it. This is due to the
possibility to express their thinking in natural language whereas the classification
into the different event types is regarded as intuitive. Further, the decomposition
of the dependence relationships, which allows for seeing how the trigger events
that are elaborated in backwards logic (for the unconditional distribution) are
relevant when thinking about the conditional distribution, is appreciated by the
experts as a structured way to think about complex scenarios and the influencing
factors of dependence relationships.
With regards to (2), the mitigation of biases, we first discuss briefly how our
method addresses two main cognitive fallacies of (conditional) dependence as-
sessment (see [415] for an overview) before we discuss mitigating fallacies when
assessing extreme probabilities, such as in tail dependence assessment, with our
method.
When eliciting dependence in conditional form, a common fallacy is the confusion
of the inverse [193, 106]. A conditional probability, such as P (X|Y ), is confused
with P (Y |X). One explanation states that this bias is related to the better
known representativeness heuristic [217] as people assess how similar or repres-
entative characteristics of X are for Y (rather than the conditional probability).
This can lead to getting confused between the inverses. Another explanation
refers to the perception of a causal relationship between X and Y . People might
have incorrect preconceptions or observations on information that is important
for causal inferences, such as the temporal order of events [29, 134], which can
enhance the confusion. Our method decomposes the underlying factors of both
variables of interest and by doing so, it challenges the representativeness heur-
istic through alternative scenarios and clarifies the perceived causal and temporal
orders.
In other cases, people confuse conditional and joint probabilities [134]. The main
candidate explanations attribute this confusion to linguistic ambiguities intro-
duced by describing conditional dependence relationships through “given that”
or “if” [134]. Our method - and even though this is only anecdotal evidence -
helped one of the experts to clarify the meaning of “given that” (i.e. that we
elicit conditional probabilities in the case-study) when thinking out loud about
the probability of a “perfect storm”. She first thought about the probability of a
“perfect storm” event happening as being extremely small before realising that
this is not applicable for conditional assessments and the conditional probability

Eliciting dependence for probabilistic uncertainty modelling 113



CHAPTER 5. MAPPING CONDITIONAL SCENARIOS FOR KNOWLEDGE
STRUCTURING IN (TAIL) DEPENDENCE ELICITATION

is higher after reflecting on her scenario map (see [314] on the idea of a “perfect
storm” in risk analysis).
When eliciting tail dependencies (i.e. extreme events), the applied backwards
logic, which is used to structure scenarios for the unconditional distribution,
allows for mitigating some main issues that can arise due to cognitive complex-
ity. While the advantages of applying backwards logic are similarly discussed
by [430] (in a different decision analysis context in which extreme scenarios are
important), for us it is specifically useful as it addresses the following cognitive
challenges.
The first is frame blindness, i.e. forecasting the wrong event. With backwards
logic, experts elaborate scenarios by starting from the final condition, so that
they will not explore scenarios that are not relevant. However, a potential diffi-
culty might be that backwards reasoning can be unintuitive [192].
Another challenge is that low probability events (in the tail of a distribution) by
definition lack a reference class for similar events. Therefore, we cannot assess
whether experts have well-calibrated assessments or are (for example) frequently
overconfident. Through outlining experts’ mental models on underlying causal
processes we can however go beyond the historical data. A main part of that
is to see which experts’ scenarios are (mostly) coherent. Through backwards
logic experts can explore how final conditions can (or cannot) be reached from
the current state of the world and if not discard them. A potential issue with
relying on causal models is that a plausible representation of causal processes
might increase the associated likelihood for a scenario. This has been called sim-
ulation heuristic [220]. Therefore, we need to ensure that a rich set of scenarios
is developed and these are shared, so that alternative scenarios are considered
and challenge existing presumptions.
The graphical representation of the experts’ rationales is also important for (3),
ensuring transparency of the quantitative assessment results. Experts’ scenario
maps can be associated with later assessments which makes the outcome of the
elicitation more transparent for anyone not involved in it. However, not only
transparency is of concern for anyone not involved in an elicitation, but they
also need to have confidence that the scenario maps are the correct qualitative
models for the assessments. Thus, we need to ensure the validity of the scenarios.
To do so, we clarify that validity does not mean that the conditional scenarios
should be compared against the real-world events that have happened by the
time this can be done. Rather than basing validation on prediction, we emphas-
ize explanation. This has been called white box validation in the operational
research literature [231] and can be achieved by a process by which experts (not
involved model development) determine, with some level of confidence, whether
a model is suitable for decision-making [167, 166]. This is usually determined by
common-sense and comparison to the real world [167].
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Chapter 6

Sequential Refined
Partitioning for probabilistic
dependence assessment

This chapter1 addresses the challenge that, whenever relevant data for quanti-
fying and modelling dependence between uncertain variables is lacking so that
expert judgement might be sought to assess a joint distribution, without restrict-
ive parametric assumptions, a model is underspecified while experts’ assessments
may also be easily overspecified, particularly when making several, detailed as-
sessments. Underspecification means that we cannot determine a unique distri-
bution as various alternatives are compatible with the given (partial) informa-
tion. For overspecification, experts’ assessments on a distribution’s related parts
are contradictory and infeasible. The sequential refined partitioning method ad-
dresses under- and overspecification whilst allowing for flexibility about which
part of a joint distribution is assessed and its level of detail. Potential over-
specification is avoided by ensuring low cognitive complexity for experts through
eliciting single conditioning sets and by offering feasible assessment ranges. The
feasible range of any (sequential) assessment can be derived by solving a linear
programming problem. Underspecification is addressed by modelling the density
of directly and indirectly assessed distribution parts as minimally informative
given their constraints. Hence, our method allows for modelling the whole distri-
bution feasibly and in accordance with experts’ information. A non-parametric
way of assessing and modelling dependence flexibly in such detail has not been
presented in the expert judgement literature for probabilistic dependence models
so far. We provide an example of assessing terrorism risk in insurance under-
writing.

6.1 Chapter introduction

In this chapter, we address the problem that experts can only ever assess cer-
tain aspects of a joint distribution whereas a decision-maker might desire these
assessments to be made at a detailed level. The former implies that we have
a partially unknown distribution for which various alternatives fit the given in-

1Based on: Werner, C., Bedford, T. and Quigley, J. (2018). Sequential Refined Partitioning
for probabilistic dependence assessment, Risk Analysis, doi: 10.1111/risa.13162
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formation. This is known as model underspecification. More specifically, we are
only ever given the probability mass (or density) within some distribution parts,
either through their direct assessment or (in parts which are never assessed)
through the indirect result of these parts together with related assessed parts
having to comply with the marginals. However, we can model these probabil-
ity masses in various forms which all have the right amount (i.e. are feasible).
Of course, we might elicit additional information from experts to distinguish
between distributions, yet we need to acknowledge the impossibility of ever eli-
citing enough information to single out a unique distribution. This is unless ad-
opting a low-dimensional parametric model early on in the modelling process2.
Such parametric assumptions nevertheless restrict the obtained knowledge on
dependencies and we might miss potentially important model aspects, such as
random variables’ behaviour in the extreme parts (tails) of a joint distribution.
Hence, it is often desirable to avoid distributional assumptions which might ex-
clude phenomena that the expert thinks are important.
Within a non-parametric setting, an elicitation should capture detailed distribu-
tion features, e.g. the probability mass within narrowly defined parts of the dis-
tribution, such as the tails to determine tail dependence, as they result in a more
specific distribution, thus making the model more valuable for a decision-maker.
Nevertheless, while detailed assessments might be desired by decision-makers,
they increase the experts’ cognitive burden, potentially resulting in inconsistent
and infeasible assessments. This is termed overspecification, the second model-
ling challenge that we encounter3.
As a non-parametric approach, addressing under- and overspecification, we present
the sequential refined partitioning (SRP) method for assessments that can be
made to any level of detail for any part of a joint distribution. In the SRP
method, we address overspecification through an elicitation procedure which
never increases the conditioning set to more than one condition and thus main-
tains a low cognitive complexity. Further, the procedure ensures consistent and
feasible assessments through explicit guidance on assessments’ feasibility ranges.
Underspecifcation is dealt with by allowing the expert to specify as much detail
as is desired and by then determining the density form of directly and indirectly
assessed parts of the distribution through the unique copula distribution that is
minimally informative with respect to the independent copula and that corres-
ponds to the elicited information. Hence, we do not introduce any unspecified
assumptions. This ensures that the whole distribution is in agreement with the
experts belief. The minimum information approach offers a recognised approach
to incomplete knowledge[206]. Further, it allows us to stop the elicitation pro-
cess at any time and still derive a unique distribution (in contrast to common
probabilistic dependence models for which a full conditional probability table is
required, e.g. Bayesian (Belief) nets (BNs) [317]). In the context of dependence
elicitation, minimum information methods (and related approaches) have been
used before, for instance in probabilistic inversion (PI) methods [35, 239, 273, 80],
vine-copula quantification [32, 31], or as well joint distributions more generally
within decision analysis contexts [286, 285, 1, 42]. However, these previous meth-
ods do not consider flexible nor detailed dependence assessments and their im-
pact on potential overspecification of experts’ judgements and on the minimum

2Under low-dimensional parametric assumptions, it suffices to assess a chosen form’s main
parameters. E.g. eliciting the mean vector and the covariance matrix quantifies a multivariate
Gaussian distribution sufficiently.

3Overspecification can also occur with parametric models, e.g. if assessed covariances jointly
do not result in a positive definite matrix.
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Figure 6.1: Modelling context of the SRP method.

information solution to underspecification. For example, [35] explicitly provide
guidance on feasibility constraints. Yet, they consider dependence elicitation at
a rather broad level, eliciting only a small number of assessments. This restricts
the information to be obtained already early on in the modelling process and thus
neglects focusing on specific parts of a distribution more exclusively. The SRP
method’s contribution is therefore that we provide an elicitation procedure to as-
sess any part of a distribution to any desired level of detail while maintaining low
cognitive complexity4 and avoiding infeasible expert judgements. Similarly, the
SRP method’s approach to underspecification is more detailed than in previous
research. Figure 6.1 illustrates our method’s modelling context schematically.

In the upper part, we observe that incomplete knowledge leads inevitably to
an underspecified model. This is solved by a minimum information approach.
In order to derive a model that is valuable for a decision-maker, the modelling
process deviates along the dashed lines to the lower part. Here, the constraints
of the minimum information problem determined by the experts’ judgements are
assessed as detailed as desired. As these might be overspecified, we the use an
elicitation process that leads to feasible assessments. In the remainder of this
chapter, this is presented in section 6.2, introducing the elicitation procedure,
and section 6.3, outlining the optimisation problem. Section 6.4 shows how our
method has been used in an insurance underwriting risk assessment of political
violence/terrorism in which a detailed and flexible method is of particular interest
for stress-testing a model. Finally, section 6.5 concludes the chapter.

6.2 Eliciting detailed dependence information feas-
ibly and consistently through sequential refined
partitioning

In this section, we introduce our sequential elicitation procedure which addresses
the potential issue of overspecification by providing explicit guidance on making
feasible and consistent assessments. In the expert judgement literature, several
approaches to ensuring feasibility and consistency are proposed, each with dif-
ferent implications on the robustness of the final assessment result. As such,

4As such, it also contributes to expert judgement methods for dependence in which increasing
conditioning sets pose a concern (see [412] for a discussion).
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some methods (always) allow for an assessment within the elicited forms’ stand-
ard ranges (for correlation coefficients ∈ [−1, 1] and for conditional and joint
probabilities ∈ [0, 1]). However, this might jeopardise experts’ commitment and
confidence in the elicitation method if assessments are adjusted afterwards (for
ensuring feasibility). While other methods do not modify assessments, they
might increase experts’ cognitive complexity. For instance, by limiting assess-
ment ranges (away from the aforementioned standard ones), or by imposing
unrealistic assumptions onto experts’ understanding of elicited forms, e.g. when
eliciting conditional judgements with large conditioning sets. For the latter,
we might expect an expert to include and equally consider all the information
given by a large conditioning set so that common cognitive fallacies, such as
the conjunction fallacy and its conditional version (see [415] for an overview on
heuristic and biases in dependence assessment), should be (ideally) avoided and
hence feasibility is given. Yet, this might not be guaranteed.
In our method, we do not impose such unrealistic assumptions on experts’ cog-
nitive capabilities, nor do we modify assessments after they have been given.
Rather, we only ever elicit single conditioning sets and give guidance on possible
feasible assessment ranges. This includes not only providing the corresponding
upper and lower bounds but also explaining their interpretation.
Mathematically, the feasibility range for any sequential assessment procedure is
derived by solving a linear programming (LP) problem (see [398] for an intro-
duction to LP). The number of constraints is restricted to a maximum of nine,
irrespective of the number of elicitations. In the remainder of this section, we
first present the general set-up together with the relevant proofs before we out-
line some specific elicitation sequences, which we regard as of interest for several
practical applications.

6.2.1 General set-up of sequentially refined partitioning

We shall start by introducing some definitions. The unit square is here defined
as the product of (0, 1]×(0, 1]. Given values u0 = 0 < u1 < · · · < un < 1 = un+1,
and v0 = 0 < v1 < · · · < vm < 1 = vm+1, we define the associated quantile parti-
tion of the unit square as the set of rectangles of the form (ui, ui+1]× (vi, vi+1].
We call this set of rectangles QP (u, v).
Given (p, q) with p different to the ui and q different to the vj , the (p, q)-
refinement of QP (u, v), denoted QP (u, v; p, q), is the quantile partition obtained
by including p and q in the values for u and v respectively. All rectangles in
the old partition are either in the new partition or are a union of two or four
rectangles of the old partition. Figure 6.2 shows two partitioned example dis-
tributions which result from any number of previously elicited quantiles (solid
lines) in addition to new ones (dashed lines).

A probability distribution on a quantile partition QP (u, v) simply assigns a
probability value to each rectangle of the quantile partition. A (p, q)-refinement
of such a probability distribution is a probability distribution on QP (u, v; p, q)
such that the probability of a rectangle in QP (u, v) is either the same as it is in
the (p, q)-refinement of QP (u, v), or it equals the sum of the probabilities of the
rectangles that make it up.
A merging of a quantile partition QP (u; v) is obtained by merging together some
of the partition rectangles in such a way that we still have a quantile partition.
This can also be obtained by taking a subsequence of the u’s and v’s and building
the corresponding quantile partition. A merged probability distribution on the
refined quantile partition is obtained by adding together the probabilities of the
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Figure 6.2: Partition exampleQP (ũ, ṽ; p, q) with solid lines for previously elicited
quantiles and dashed lines for new ones.

rectangles in each refined rectangle.
We always work with discrete copula distributions, which are probability distri-
butions on a quantile partition that have the additional property that (for any k)
the sum of probabilities of rectangles (ui, ui+1]×(vi, vi+1] with ui+1 ≤ uk is equal
to uk, and similarly, the sum of all probabilities of rectangles (ui, ui+1]×(vi, vi+1]
with vi+1 ≤ vk is equal to vk. For a general introduction to copula theory, see
[302],[208] and [125]. However, note that most theory is on continuous copulas
with marginals being continuous uniform distributions. For an overview on eli-
citation methods for copulas, see [412].

Proposition 1. Suppose we are given values u0 = 0 < u1 < · · · < un < 1 =
un+1, and v0 = 0 < v1 < · · · < vm < 1 = vm+1 (where n,m > 0), 0 < p, q < 1,
with p different to the ui and q different to the vj. Then a copula distribution
on QP (u, v) can be refined to a copula distribution on QP (u, v; p, q).

The proof of proposition 1 is found in the Appendix.
Having shown that we can always refine a copula distribution as above, we now
wish to establish the possible range of values that can be taken by the rectangle
(p, 1]×(q, 1] in a refined copula distribution. That is, we depart from the specific
copula refinement defined in the Proof of Proposition 1, and ask what range
of values can be allocated as the probability of (p, 1] × (q, 1] in some copula
refinement.
Suppose that i and j are chosen such that ui is the largest of the u-quantiles that
is smaller than p, and vj is the largest of the v-quantiles that is smaller than q
(this includes the possibility that ui or vj is 0, or that ui+1 or vj+1 is 1). Define
ũ1 = ui, ũ2 = ui+1, ṽ1 = vj and ṽ2 = vj+1. The quantile partition QP (ũ, ṽ) is a
merging of QP (u, v), and we can merge the copula distribution on QP (u, v) to
get one on QP (ũ, ṽ).
Furthermore QP (ũ, ṽ; p, q) is a merging of QP (u, v; p, q). Note that QP (ũ, ṽ)
has at most 9 rectangles and that QP (ũ, ṽ; p, q) has at most 16 rectangles - see
Figure 6.3.
For convenience we shall now consider only the case of 16 rectangles, which
occurs when ui, vj 6= 0 and ui+1, vj+1 6= 1, as shown on the right of Figure 6.3.
Other cases are simplifications of the one we consider here and can be dealt with
in the same way.
We label the 16 rectangles of QP (ũ, ṽ; p, q) as R11, . . . , R44 as shown in the right
hand of Figure 6.3.
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Figure 6.3: Maximum case of 16 partitions (right) resulting from partitioning 9
rectangles (left).

The 9 rectangles of QP (ũ, ṽ) are labelled as R̃11, . . . , R̃3,3 as shown in the
left hand of Figure 6.3. Clearly R11, . . . , R4,4 are each unions of rectangles in
QP (u, v), and furthermore,

R12 ∪R13 = R̃12

R42 ∪R43 = R̃32

R21 ∪R31 = R̃21

R24 ∪R34 = R̃23

R22 ∪R23 ∪R33 ∪R32 = R̃22.

Suppose we are given a copula distribution on QP (ũ, ṽ), for which p̃st is the
probability of R̃st (s, t = 1, 2, 3). We wish to assign copula probabilities pst to
the rectangles Rst (s, t = 1, 2, 3, 4) so that the new distribution merges to p on
QP (ũ, ṽ).
For the merging we simply require,

• for the corner rectangles of QP (ũ, ṽ): p11 = p̃11, p14 = p̃13, p41 = p̃31,
p44 = p̃33,

• for the central rectangle in QP (ũ, ṽ): p22 + p32 + p23 + p33 = p̃22,

• for the remaining rectangles

p12 + p13 = p̃12

p42 + p43 = p̃32

p21 + p31 = p̃21

p24 + p34 = p̃23.

To ensure that the new distribution is a copula we also need to impose two
constraints corresponding to a row and a column:

p21 + p22 + p23 + p24 = p− ũ1

p12 + p22 + p32 + p42 = q − ṽ1.

(Note that these constraints correspond to row 2 and column 2 of the right
hand of Figure 6.3. We could also have specified similar constraints on row 3
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and column 3, but it straightforward to see that these are redundant).
Now define,

f(p11, ..., p44) = p33 + p43 + p34 + p44

to be the total probability in the square (p, 1]×(q, 1]. This in a linear function of
the pst and we are free to choose it to take any value subject to the constraints
listed above. As all these are linear, we immediately see that we have the form of
a linear programming problem, and so the range of allowable values is an interval
whose maximum and minimum values can be found be solving 2 LP problems.
The cases in which QP (ũ, ṽ; p, q) has fewer than 16 rectangles work similarly.
The above discussion (with minor adaptations to the other cases by removing
further redundant constraints) can be summarized in the following Proposition:

Proposition 2. The range of feasible values for the probability of (p, 1]× (q, 1]
in any copula refinement of the copula distribution on QP (ũ, ṽ) is given by the
interval:

[min f,max f ] ,

given the corresponding constraint sets.
We can obtain min f and max f by solving feasible LP problems with at most 12
variables and 9 constraints.

This now allows us to construct an algorithm for assessing copulas with
expert judgements for quantile exceedance probabilities of the form:

P (Y > yq|X > xp)

where xp and yq index the pth and qth quantile for X and Y accordingly. For
example, p = 0.5 and q = 0.5 correspond to the medians of X and Y . Other dis-
tribution areas can then be derived. Given a number of such coherent elicitations
at quantile pairs (u1, v1), . . . , (un, vn) we can calculate the copula distribution on
the copula partition QP (u, v).
For a new quantile pair (p, q), we then solve the LP problem to obtain the exact
feasible range for the probability of (p, 1] × (q, 1]. Note that this does not fully
specify the distribution on all elements of the refined partition QP (u, v; p, q). To
achieve this, either

(a) we can carry out further elicitations at corner points in QP (u, v; p, q) using
proposition 2 repeatedly for obtaining feasible ranges from the expert; or

(b) we can make assumptions, such as minimally informative probabilities to
restrict the number of elicitations required.

In the next section, we give a simple example of making assessments in the tail
of the distribution along the lines of (a) but carried out in a slightly different
order as there are few constraints in this case.

6.2.2 Commonly assessed quantile partition sequences

After having presented the mathematical set-up of refined partitioning generally,
we now discuss some partitions that might be commonly assessed in practice.
One recurrent way of refining a joint distribution’s assessments is by sequentially
choosing a quantile for p and/or q that is either higher or lower than any previ-
ously assessed value. Then, we elicit the corresponding area above it for a new
maximum or below it for a new minimum. Such sequences assess in particular
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Figure 6.4: Example of a quantile partition for assessing the upper tail.

the distribution tails more explicitly. Figure 6.4 illustrates a sequence of quantile
partitions on the upper tail constructed through setting new quantile maxima
in (ii) to (iv) following an initial assessment (i) (note that this carries out the
option (a) described in the previous section). We consider the procedure of Fig-
ure 6.4, i.e. further partitioning that probability mass which has been assessed
directly in step (i) as most intuitive and practically useful. Nevertheless, the
initial assessment also determines the probability mass in areas of the joint dis-
tribution which are not assessed further, P (Y > yq|X ≤ xp), P (Y ≤ yq|X > xp)
and P (Y ≤ yq|X ≤ xp), meaning we can also use a similar procedure to refine
these.

First (in (i)), we elicit the overall probability mass and then subsequently
refine the assessment. Suppose we first elicit P (Y > y0.5|X > x0.5). Alternat-
ively, we might choose to elicit specific values, e.g. 1, 10, . . . , 100, rather than
common quantiles, such as the median. This relates to the choice of whether to
frame the elicitation question in terms of quantiles or values. Both have been
suggested (as P- and V-methods) since the pioneering probability elicitations by
the Stanford Research Institute in the 1970s [375].
Following (i), we elicit a refined quantile partition as determined by a new xp
in (ii). A common choice here might be the 90th or 95th quantile in order to as-
sess the probability mass in the joint distribution’s extreme (tail) region. Thus,
we elicit for instance P (Y > y0.5|X > x0.95). In the illustrative case-study of
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Figure 6.5: Quantile partition of the joint distribution from (i) to (iv).

Section 6.4, we use a scenario mapping method [414] prior to the elicitations in
order to gauge experts’ familiarity with such tail judgements and decide on a
quantile for which experts are comfortable to make assessments.
In (iii), we condition on Y and the new yq is chosen to assess the tail region.
With xp being the median, we thus elicit P (X > x0.5|Y > y0.95). Depend-
ing on the underlying meaning of the variables, and knowledge about causal or
probabilistic relationships (see e.g. [350, 415]), the expert might find it easier
to condition on one variable than the other. Our method is flexible enough to
allow for this.
In the last step of this quantile partition sequence, experts assess either P (Y >
y0.95|X > x0.95) or P (X > x0.95|Y > y0.95), depending on case-specific interest,
whereas p and q are the ones from the previous two rounds. Thus we further
explore the joint tail region. Figure 6.5 displays the refinement in the quantile
partition from the first to the latest assessment.

The assessments’ feasibility ranges are as follows. The assessment in (i) is
unrestricted, meaning experts can assess any value between [0, 1]. If the expert
believes the variables are independent, the assessment is equal to P (Y > yq), that
is learning about X does not change experts’ belief. For negative dependence,
the assessment is between [0, P (Y > yq)) and for positive dependence, it is within
(P (Y > yq), 1].
All following assessments on the other hand are restricted and only feasible if
the assessed value falls within the range which is determined by solving the
LP problem of minimising and maximising the possible values of the assessed
area subject to the constraints that any new partition simply adds up to their
previous assessments (see medium and dark grey areas P̃k in Figure 6.2) while
areas which have not been newly partitioned do not change (see light grey areas
P̃k in Figure 6.2). Consider for example the assessment in (iv). It is only feasible
within the range that is determined by solving the following LP problem (with
regards to Figure 6.2 on the right):

min

max

}
p22 (2.1.1)

subject to

Eliciting dependence for probabilistic uncertainty modelling 123



CHAPTER 6. SEQUENTIAL REFINED PARTITIONING FOR PROBABILISTIC
DEPENDENCE ASSESSMENT

X

Y

xp

(v)

X

Y

xp

yq

(vii)

X

Y

yq

(vi)

Figure 6.6: Further refining the assessment on the joint upper distribution tail.

p11 + p12 = P̃1 (2.1.2)

p21 + p22 + p23 + p24 = P̃2 (2.1.3)

p3 = P̃3 (2.1.4)

and

p41 + p42 = P̃4 (2.1.5)

Experts express negative dependence again through a judgement close or
equal to the lower bound, positive dependence is expressed by judgements close
or equal to the upper bound and independence is assessed as before. As the upper
and/or lower bounds deviate from the standard range of [0, 1], it is necessary to
communicate these restricted feasibility bounds to an expert and explain their
interpretation.
The procedure for assessments (ii) to (iv) is repeated as often as necessary (with
appropriate modifications) to obtain a desired level of detail (see assessments (v)
to (vii) in Figure 6.6 for the next round of three assessments). Having assessed
previously the 90th or the 95th quantile of X and Y , we now might consider the
99th quantile. This allows for “zooming in” on the joint distribution’s tail even
further.

The resulting quantile partitions are illustrated in Figure 6.7.
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Figure 6.7: Resulting quantile partitions after further refining the previous as-
sessments.

While this section presents an example with a focus on refining the upper
distribution tail, remember that the generality of the method (as introduced in
Section 6.2.1) allows for any further refinement of the distribution, such as for
instance shown in Figure 6.2 (on the right).

6.3 Modelling the form of directly and indirectly as-
sessed probability masses through minimum in-
formation

After having presented the elicitation procedure, which allows for feasibly assess-
ing the probability mass within any part of the joint distribution, in this section
we outline how we model the form of directly and indirectly assessed parts as
minimally informative.
The reason for a minimum information approach is to address the modelling
issue of underspecification. We do not have enough information for choosing a
distribution that fits the experts’ assessments uniquely but we wish to find the
simplest distribution that matches them. This approach allows us to derive a
unique distribution regardless the quantile partition’s level of detail. As such, it
does not restrict the flexibility of the assessment procedure from section 6.2.
Formally, we aim for modelling dependence through that copula which is chosen
to have minimum information (also called Kullback-Leibler divergence [242]) with
respect to the uniform copula given the quantile constraints. The resulting dis-
tribution is considered the most independent copula satisfying the constraints.
Consider the joint distribution g(x, y) with marginal densities g1(x) and g2(y).
Whenever g1 and g2 are not independent, i.e. g(x, y) 6= g1(x)g2(y), we need
to model the dependence between them. To do so, we introduce the concept
of relative information I(g;h) which is a measure of similarity between the two
distributions and it is defined for g(x) with respect to h(x) as:

I(g;h) =

∫
g(x) log

(
g(x)

h(x)

)
dx (6.3.1)

Whenever g(x) = h(x), it follows that I(g;h) = 0. A higher value of I(g1; g2)
corresponds to less similarity. We consider h(x) a background distribution, com-
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monly chosen as uniform or log-uniform. Alternatively, we use sensitivity ana-
lysis for selecting an appropriate form [35]. Together with the constraints, this
choice determines the form of g(x) in absence of further information [32].
Information is invariant under monotone transformations. Therefore, if cg and
ch are copula densities associated with the previous densities g and h, we have
I(cg; ch) = I(g;h). In particular if h is the joint independent distribution
with the same marginals as g (g1 and g2), so that h = g1g2 then I(g; g1g2) =
I(c; uniform) where h is the uniform copula. This gives the interpretation of
our minimum information copula as the most independent copula given the con-
straints.
See [34] for a detailed derivation on how a minimum information distribution
can be approximated by the equivalent distribution of maximum entropy5 [360].
For an extensive discussion on obtaining a minimum information copula through
the convex optimisation problem, we refer to [32, 34, 35]. Here, it suffices to say
that the conditional density within each rectangle is uniform. As discussed in
Section 6.2, when we stop eliciting information from experts, some rectangles’
density has been directly assessed by an expert while for other rectangles the
mass is given indirectly through related assessment and the marginals. In order
to obtain a unique solution for the whole distribution, we hence need to solve
the minimisation problem of equation for directly and indirectly assessed parts.
We refer to [34] and [273] for the corresponding proofs that such a minimum
information distribution exists and is unique. Furthermore, [35] and [42] discuss
and apply a Lagrangian dual for a minimum information problem to show a way
for obtaining more insight on the optimal solution.

6.4 An illustrative case-study: assessing spatial de-
pendence of political violence/terrorism risk in
insurance underwriting

Given the flexibility and detail that the SRP method allows for when modelling
dependence, we regard it as of particular interest for application areas in which
common simplifying assumptions, such as bivariate normality, are not justified.
Rather, different kinds of tail dependencies which potentially induce extreme
impact scenarios are prevalent. For these, we often assess and model upper
and lower tail dependence exclusively (similarly to testing the goodness of fit
for asymmetric, Archimedean copulas to historical data when available) given
that e.g. joint large losses are typically not observed together with joint large
gains[237, 291].
As such, we consider (re-)insurance as an industry in which rigorous dependence
modelling approaches are of particular interest. Due to the increasing complexity
of (re-)insurance products, new (holistic) modelling approaches, such as dynamic
financial analysis (DFA) (a Monte Carlo simulation-based method to model risks
jointly), have become popular among actuaries to better understand the risks
an insurer underwrites [137]. For these new approaches, flexible and detailed
assessments of dependencies under a specific probability model are required.
Exemplary for a DFA application, [136] present how various parametric copulas
can be used for stress-testing an insurer’s risk management strategies together
with the implication on stakeholders, such as regulators and rating agencies. The

5In the context of expert judgement, an invariance approach to encoding information prob-
abilistically is considered a main justification for maximum entropy methods [304].
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DFA model inputs, the perils (or risks) covered by an insurer, are informed by
a catastrophe model. The components of catastrophe models are a hazard, in-
ventory, vulnerability and loss estimation module. The loss estimation output is
usually an exceedance probability curve specifying probabilistically the severity
levels of a certain hazard in a region. Capturing relevant dependencies between
severity levels is crucial for a more robust output. See [179] for an introduction
to catastrophe models.
We have already established that a common challenge is lacking relevant histor-
ical data for quantifying dependence relationships serving as model input. In
actuarial risk assessment, non-life insurance underwriting is particularly chal-
lenged. So called low frequency-high severity perils, natural and man-made, are
by definition not frequently observed but cannot be ignored. Therefore, we re-
quire structured expert judgement to model their uncertainty. In this illustrative
case-study, we apply the SRP method to elicit and model the spatial depend-
ence of the man-made peril of terrorism. Terrorism attacks are not only often
low frequency-high severity catastrophes but pose an additional challenge due
to intelligent adversaries which further inhibit the use of historical data. Better
understanding the dependence between terrorism attacks’ frequencies in differ-
ent regions globally is nevertheless key for an insurer to quantify and price this
peril’s risk when managing a portfolio of (global) clients6.

6.4.1 Pricing terrorism risk in insurance

Traditionally, pricing of terrorism risk in insurance has not been evaluated from
actuarial principles, but rather covered by the balance of supply and demand in
the insurance market together with some less formal risk selection from site sur-
veys [427]. Terrorism coverage (e.g. in the United States) had been included in
standard commercial insurance policies as an unnamed peril on all-risk commer-
cial and home owners coverages for property and contents [276]. More recent loss
developments though have highlighted the necessity of treating its risk assess-
ment more rigorously. A major turning point for dealing with terrorism risk in
insurance was the attacks of September 11th, 2001 (9/11) on the United States.
The attacks incurred an estimated monetary loss up to 60 billion US dollars,
distributed among various lines of business, such as property insurance, business
interruption insurance and workers’ compensation [108]. Globally, the worst
15 terrorist attacks in terms of casualty numbers have occurred since 1982 with
many more near-miss events [276]. Mathematically, the relationship between the
frequency of more recent attacks and their severity can be described by a power
law, i.e. attack severities that are orders of magnitude larger than the mean can
be common [72]. The changing nature of its risk through an increasing number
of frequencies and severities in multiple regions globally underlines the urgent
need for improved assessment.

6.4.2 Expert judgement for adversarial risk

A specific aspect of assessing terrorism risk is the role of intelligent adversar-
ies. Their impact is thus included in recent discussions on risk definitions
[22, 24, 21, 94]. In fact, 9/11 led many researchers to propose modified risk

6As [427] emphasises, we must not confuse quantifying terrorism risk with predicting a
next attack. This is similar to natural catastrophes, such as earthquakes, for which we cannot
determine the time, location and severity of the next event, but the aim is rather to evaluate
the annual exceedance probability of loss, for instance to inform a property insurance portfolio.
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definitions [182]. For instance, the triplet definition by [223] is extended to in-
clude adversaries in [160] and [161] by considering the likelihood of a hazard as
the conditional probability of a successful attack given that an attack is planned.
Models addressing adversarial risk are typically of game-theoretic nature [139,
95, 315] whereas the area of adversarial risk analysis comprises decision-analytic
approaches combining traditional probabilistic risk analysis (PRA) methods with
game theory [331, 343, 344]. Nevertheless, there is some debate on (traditional)
PRA’s effectiveness for adversarial problems (see [139] defending its usefulness
and [58] and [96] arguing against it). A main argument against PRA approaches
for adversaries is the dynamic attacker’s decision rule for choosing a target as
this choice might be based on the anticipated defender’s assessment of targets’
likelihoods. In other words, a defender’s PRA might inform the attacker’s choice
and hence override its purpose as the previously most likely target has now zero
probability of being attacked (closely related in terrorism risk analysis are de-
cision on allocating defensive resources [43]). Experts quantifying adversarial
risk should therefore decompose their judgement in accordance with adversarial
risk definitions, so that we understand experts’ beliefs about attackers’ choices.
When doing so, assessments of an attack choice might be based on attackers’
motivations, resources and capabilities together with defenders’ vulnerabilities.
In that way, expert judgement is used in the Probabilistic Terrorism Model by
Risk Management Solutions Inc. (RMS7) for assessing likelihoods on target se-
lection, capabilities of attack modes and an attack’s overall likelihood. However,
dependence between targets is neglected [421]. In other approaches, event trees
are used to reason from an attacker’s capabilities through a defender’s counter-
measures [348, 406]. In addition, several qualitative approaches for structuring
the available knowledge on terrorists’ objectives and motivations exist in the risk
and decision analysis literature [363, 226, 160].

6.4.3 Expert judgement for spatial dependence of terrorism at-
tacks

Knowledge and beliefs on terrorists’ motivations, resources and capabilities to-
gether with defender’s vulnerabilities inform experts directly about the spatial
dependence between attack frequencies. Terrorist groups, such as the Irish Re-
publican Army (IRA), Basque Separatist Group (ETA) or as well Hamas and
the Palestine Liberation Organization (PLO), had and have specific geographical
foci with a politically motivated attack purpose. Their goals are formulated and
self-proclaimed as separatism or liberation. The attacks’ geographical impact is
identified straightforwardly. Based on the number of active terrorist groups per
region plus their resources and capabilities relative to counter-measures, an ex-
pert assesses either positive or negative dependence. While positive dependence
might not seem intuitive at first due to different local foci and typically a lack
of collaboration between these groups, learning and encouragement by another
groups’ successes can still occur. [428] regards learning of optimal behaviours
beyond the own organisation as a main strength of some well-known terrorist
groups. Other scenarios for positive dependence can be due to defenders’ collab-
oration, joint counter-terrorism activities and sharing of intelligence resources.
In contrast to terrorists motivated by self-proclaimed liberatism and separatism,
other groups derive their goals from religious ideology. These groups are often

7RMS, founded at Stanford University in 1989, provides services in the area of catastrophe
modelling for (re-)insurers.
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Figure 6.8: Regions of interest for dependence assessment.

globally active. Their members are organised as multiple independent hubs with
satellite cells. Al-Qaeda and the Islamic State of Iraq and Syria/the Levant
(ISIS/ISIL) are typical examples of such network-based organisations [427, 429].
Models from swarm intelligence and statistical network analyses are used to
evaluate the effectiveness of counter-terrorism measures and understand the at-
tackers’ capabilities. It is understood that organisations like Al-Qaeda and IS-
IS/ISIL are more resilient and capable of more severe attacks than (hierarchical)
army-like structured groups [428]. For dependence assessments, understanding
the global presence of members and sympathisers (potentially future recruits)
together with the functioning of the network structure is crucial. For instance,
scenarios of positive dependence can occur when a terrorist group obtains more
power and resources to extend globally or when new attack types are used for
which little intelligence or counter-measures exists. Scenarios of negative depend-
ence might describe attackers’ scarce resources, e.g. lacking financial support for
regional hubs, so the target focus shifts towards a certain region. The latter also
depends on vulnerabilities of target countries, desired attention through media
or as well a planned revenge, e.g. for a country’s military actions.
While these are only brief considerations for scenarios that can influence the
assessment of dependence between the number of terrorist attacks in different
regions (see [428] for a more extensive discussion on regional and global terror-
ism), it shows the complexity of factors to be thought of. In this illustrative
case-study, we focus on the geographical regions of Central Asia (CA) and West-
ern Europe (WE) which are shown in Figure 6.8 (see the Appendix for a full list
of the countries included per region).

6.4.4 Eliciting the marginal probabilities

Before eliciting dependence assessments from experts, we need to specify the
marginal distributions for the variables of interest. Otherwise, the experts con-
dition their judgements on different marginal probabilities and their assessments
cannot be sensibly aggregated. The specification is done either through his-
torical data (if available) or another, prior elicitation with a structured expert
judgement method for univariate uncertainty, such as [330, 175, 189]. A struc-
tured elicitation for the marginal distributions is also encouraged when eliciting
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dependence only from one expert, i.e. without aggregation, as this mitigates
potential biases of the marginals and ensures transparency[415].
In our case-study, the marginal distributions have been assessed by 17 experts8.
The experts are involved in analysing and pricing the peril of terrorism and other
armed conflict categories. They work for different (re-)insurers, catastrophe
modellers and related service providers. The elicitation session was organised
as part of the European Cooperation in Science and Technology, COST Action
IS1304 - Expert Judgement Network, which aims at stimulating the emergence
and spread of high quality evidence-based decision support approaches through
structured expert judgement methods. The marginal distributions FX(x) and
FY (y) are defined as the number of terrorist attacks in Central Asia (x) and in
Western Europe (y), both in 2017. We define a terrorist attack in accordance
with common global data-bases on the topic (see [380]). Thus, for an attack
to be recorded as such there must be evidence of an intention to coerce, intim-
idate, or convey some other message to a larger audience (or audiences) than
the immediate victims. In this regard, any perpetrator group, any weapon type
(e.g. biological, chemical, explosive, firearms etc.), any attack type (e.g. armed
assault, bombing, facility/infrastructure attack, hostage taking etc.), any target
apart from private persons (i.e. business, infrastructure, military, education-
al/religious institutions etc.) is included.
We elicited FX(x) and FY (y) through the so called Classical Model [?, 79]. Ex-
perts provide various quantile assessments for a continuous quantity rather than
point estimates. Usually (and in our case), we elicit the 5th, 50th and 95th

quantile. The experts answer two types of questions. The first questions are
about so called seed or calibration variables. For these, the true value is known
to the analyst but not the experts at the time of the elicitation (or they will
be known later and within the time frame of the study). The second question
type is about the actual target value or variable of interest, i.e. the uncertainties
we intend to include in the model. Based on each expert’s assessments of the
seed variables, the experts are aggregated. For that, two performance meas-
ures are derived, the calibration and information score. Loosely, the calibration
score measures the statistical accuracy of the experts whose assessments are
treated as statistical hypotheses. The information score measures the assess-
ments’ concentrations relative to a background distribution. Good expertise is
shown by a high calibration and information score (see [79] for a more detailed
introduction). Figure 6.9 shows each experts’ individual assessment for the tar-
get variables’ marginal distributions together with the aggregated assessments
of equal weighting (EW) and the classical method (DM global).

We observe in Figure 6.9 that the marginal distribution assessments are sim-
ilar for both regions whereas most of the experts provide narrow uncertainty
bounds. The experts who are more uncertain are so for both assessments. Hence,
the performance-based and the equally weighted combination show no major dif-
ference for either region. As commonly observed with the classical method, the
performance-based aggregation is more informative even if both combinations
lead to similar median assessments.

8The 17 experts are from a first elicitation round from a currently ongoing study that aims
to include more experts.
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Figure 6.9: Outcome of eliciting the marginal distribution for each region.

6.4.5 Applying the SRP method for quantifying spatial depend-
ence of terrorism risk

Once the marginal distributions had been elicited, we proceeded with eliciting
and modelling dependence through the SRP method. This elicitation was done
with a single expert who is a professional in the area of terrorism catastrophe
modelling within (re-)insurance (as well) and who subscribed to the aggregated
results for the marginal distributions. In total, we elicited six dependence judge-
ments in addition to one further marginal assessment. The latter was required
as we had not considered the 99th quantiles previously. As outlined in the ini-
tial exemplary procedure in the previous chapter, we started by first eliciting an
overall probability mass which was later partitioned to further explore the joint
upper distribution tail. The first elicitation is therefore on the probability of the
terrorist attack frequency in Western Europe (y) being above its 50th quantile,
62 attacks, given that we observe more than 73 attacks in Central Asia (x)
(again the corresponding 50th quantile), both in the year 2017. All judgements
were conditional probabilities given the expert’s familiarity with its interpreta-
tion. Table 6.1 summarises the dependence assessments by showing the results
together with the framing of the questions.

As second part of the SRP method, we then modelled the overall joint dis-
tribution for the spatial dependence through solving the minimum information
minimisation problem based on the above assessments. The result can be seen
in Figure 6.10.

We see that the expert’s distribution indicates a slight negative dependence
relationship between the spatial terrorism risk of both regions which is however
close to independence. This is particularly driven by the first assessment being
equal to 0.5 which indicates independence for a broad area of the joint distribu-
tion. In more detail, the difference between assessment ii.) and iii.) shows that
in the joint tail, the expert assesses that an extreme year in terms of number of
attacks for WE affects CA more than vice versa. The slight negative depend-
ence (close to independence) corresponds to the expert’s rationale which has
been formally facilitated in order to support the expert with structuring his/her
knowledge about the spatial dependence between both regions. For that, we used
a conditional scenario mapping method [414]. In addition to mitigating some
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Table 6.1: Overview of dependence elicitation procedure and results.

Framing “Given that we observe [. . . ]” Conditional Probability Assessment

(i)

“[. . . ] more than 73 terrorist attacks in CA, what is your
probability that we observe more than 62 terrorist attacks
in WE?”

P (Y > y0.5|X > x0.5) 0.5

(ii)

“[. . . ] more than 199 terrorist attacks in CA, what is your
probability that we observe more than 62 terrorist attacks
in WE?”

P (Y > y0.5|X > x0.95) 0.03

(iii)

“[. . . ] more than 197 terrorist attacks in WE, what is your
probability that we observe more than 73 terrorist attacks
in CA?”

P (X > x0.5|Y > y0.95) 0.045

(iv)

“[. . . ] more than 199 terrorist attacks in CA, what is your
probability that we observe more than 197 terrorist attacks
in WE?”

P (Y > y0.95|X > x0.95) 0.025

(v)

“[. . . ] more than 199 terrorist attacks in CA, what is your
probability that we observe more than 225 terrorist attacks
in WE?”

P (Y > y0.99|X > x0.95) 0.04

(vi)

“[. . . ] more than 225 terrorist attacks in WE, what is your
probability that we observe more than 199 terrorist attacks
in CA?”

P (X > x0.95|Y > y0.99) 0.01

Figure 6.10: The experts joint distribution: overall (left) and assessed upper
quadrant (right).
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prevalent cognitive fallacies of assessing dependence, such as the confusion of the
inverse or confusing joint and conditional probabilities(see also [415] for an over-
view), this method allows for considering and reflecting explicitly which scenarios
affect the probability spaces of both regions (in a conditional sense). Scenarios
are defined as “sequences that link triggering events to specified consequences
(or final states) through intermediate conditions” [414]. For the example shown
in Figures 6.11 and 6.12, the expert first reasoned through backwards logic, i.e.
starting from the specified consequence, about observing more than 199 in Cent-
ral Asia until the end of 2017. Then, based on the initiating events that might
cause Central Asia to experience more than 199 attacks and which are (at least
partly) observable today, the expert reasoned (in forward logic) how these same
initiating events affect the development of the number of terrorist attacks in
Western Europe until the end of 2017. Based on the the number and plausibility
of these conditional scenarios causing more than 255 attacks, the expert could
then make a dependence assessment in a more informed and confident manner.
[414] presents the structured process of generating such conditional scenarios in
more detail.
As can be seen in Figures 6.11 and 6.12, the expert considers both regions to be
slightly negatively dependent (close to independence) due to the consideration
that the active terrorist groups in both regions are different. In Central Asia,
local separatists have political and regional motivations while in Western Europe
mainly islamist groups are prevalent despite e.g. Russia’s military involvement
in the Middle East. Furthermore, the expert considers both regions to be differ-
ent with regards to their vulnerability given not only the types of active terrorist
groups but also the varying counter-terrorism and intelligence capabilities which
drive the negative dependence relationship.
Before concluding this illustrative example, a first remark is that for quantifying
the spatial dependence of terrorism attacks the definition used in this example
is rather broad by including all attack types. Thus, the consideration of specific
attack types might have very particular effects on the geographical interdepend-
encies. As such, of growing interest in the adversarial risk literature have been
biological attacks [139] and cyber attacks [362]. For these, it can be informat-
ive to assess the dependence between variables of interest, such as casualties or
monetary losses.
Further, we understand that an elicitation considering more explicitly the geo-
graphical interdependencies of critical infrastructure can be informative for in-
surers, for instance when offering business interruption coverage. Our method
could hence build upon some modelling approaches that have ranked the sus-
ceptibility of critical infrastructures targeted by attacks [316].
Lastly, we acknowledge the inherent difficulties particular when considering at-
tacks, such as 9/11, which some might title “black swans”. For dependencies,
the term “perfect storms” appeared (see [314] for a discussion on the use of
these terms in risk analysis and management). However, even for such events,
structured assessment through experts can be informative and it is interesting
that e.g. Zelikow (as director of the 9/11 Commission) called the misreading of
precursors to these events as “failure of imagination” given that air-planes had
been used before as weapon and the World Trade Center in New York had been
targeted already in 1993 [314].
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6.5 Discussion and chapter conclusions

When using expert judgement for assessing dependence, there is a trade-off
between easing the assessment burden for experts and sufficiently capturing a
real-world phenomenon of interest in our model [412]. Here we presented an
elicitation method that aims to satisfy a decision-maker’s desired level of detail
for a model, whereas the procedure of eliciting dependence from experts provides
an intuitive way of assessing some detailed dependence information (such as ex-
treme parts of a joint distribution) while avoiding infeasible and inconsistent
assessments. We argued that for the decision-maker a non-parametric setting
of modelling multivariate uncertainties is applicable and therefore we addressed
the potential assessment issues of under- and overspecification.
In addition to a discussion on various application areas in which our method
might be of interest, we provided an illustrative example of terrorism risk. In
future research, more applications are desirable to explore how the SRP method
performs and to obtain insights around issues like alternative ways of framing
the judgements, the implication of restricted feasibility ranges, or the elicita-
tion of different forms (other than conditional probabilities). For example, an
alternative to eliciting quantile-based assessments, we can elicit conditional ex-
pectations. This follows from the discussion of [412] on modelling and elicitation
strategies that are determined by the choice of considering influencing factors
of dependence relationships explicitly or implicitly. The latter is similar to PI
methods which aim at satisfying reasonable conditions of a model output due to
its easier understanding and quantification. This is of particular interest when
we cannot observe (and hence elicit) our variables of interest directly. [35] show
an elicitation procedure and minimum information modelling for expectations
on the whole joint distribution. Hence, considering its elaboration based on our
method could allow for a more detailed specification of multivariate uncertainty
for non-observable model input parameters. In the actuarial context of section
6.4, we might ask experts to assess the conditional expectation for a risk measure,
such as probable maximum loss (see [179]), which can be used (partly) as model
output, whereas we assess dependence through PI on the function generating it.

Appendix

Proofs for section 6.2.1:

Proof for Proposition 1:

Suppose we are given values u0 = 0 < u1 < · · · < un < 1 = un+1, and v0 = 0 <
v1 < · · · < vm < 1 = vm+1 (where n,m > 0), 0 < p, q < 1, with p different to
the ui and q different to the vj . Then a copula distribution on QP (u, v) can be
refined to a copula distribution on QP (u, v; p, q).

Proof. In order to prove proposition 1, we divide the set QP (u, v) into four sub-
sets:

1. A(p, q) has a single element which is the rectangle of QP (u, v) containing
the point (p, q).

2. U(p, q) is the set of rectangles in QP (u, v) that overlap the line v = q,
except the one in A(p, q).
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Figure 6.13: Different set of rectangles in QP (u, v).

3. V (p, q) is the set of rectangles in QP (u, v) that overlap the line u = p,
except the one in A(p, q).

4. B(p, q) is the set of all rectangles in QP (u, v) that are not in A(p, q),
B(p, q), or V (p, q).

Define also A∗(p, q) to be the rectangles in QP (u, v; p, q) which are sub-rectangles
of A(p, q), and define U∗, V ∗ and B∗ similarly.
Note that B∗(p, q) = B(p, q), that is, the rectangles in B(u, v) do not get sub-
divided by the lines u = p, v = q. Rectangles in U∗ are obtained by dividing
rectangles in U by the line v = q, and rectangles in V ∗ are obtained by dividing
rectangles in V by the line u = p.

We now define the refined copula distribution on QP (u, v; p, q).
Let α = (p − ui)/(ui+1 − ui), and β = (q − vj)/(vj+1 − vj). We specify how to
define the refined copula distribution as follows:

1. For the rectangles in A∗ , the lower left sub-rectangle is allocated αβ of
the mass of A, the lower right one gets proportion (1 − α)β, the upper
left one gets proportion α(1− β), and the upper right one gets proportion
(1− α)(1− β).

2. Each rectangle in U is subdivided into two sub-rectangles in U∗ by the line
v = q, and the lower sub-rectangle is allocated proportion β of its mass
and the upper sub-rectangle is allocated proportion (1− β) of the mass.

3. Each rectangle in V is subdivided into two sub-rectangles in V ∗ by the line
u = p, whereas the left sub-rectangle is allocated proportion α of its mass
and the upper sub-rectangle is allocated proportion (1− α) of its mass.

4. Any rectangle in B∗(p, q) = B(p, q) is assigned the same probability as it
was in in the copula distribution on QP (u, v).
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This allocation of probabilities to the rectangles of QP (u, v; p, q) adds to 1, while
it is straightforward to check that it is a copula distribution.

Regions of interest in illustrative case-study (section 6.4):

• Central Asia: Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan, Kyrgyz-
stan, Russia, Tajikistan, Turkmenistan, Ukraine, Uzbekistan.

• Western Europe: Austria, Belgium, Denmark, Finland, France, Germany,
Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Por-
tugal, Spain, Sweden, Switzerland, United Kingdom.
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Chapter 7

Eliciting and modelling
probabilistic dependence
between multivariate
uncertainties of bug-drug
combinations

This chapter1 addresses the future impact of antibacterial resistance through in-
creasing resistance rates which are of concern for various stakeholders, ranging
from clinicians, researchers and decision-makers in the pharmaceutical industry
to healthcare policy-makers. Due to multidrug resistance, it is a complex chal-
lenge so that neglecting the dependence between uncertainties of future resistance
rates might severely underestimate the systemic risk for certain bug-drug com-
binations. Therefore, in this chapter, we model the dependence between several
important bug-drug combinations that are of interest for the UK. As a commonly
encountered challenge in probabilistic dependence modelling is the lack of relevant
historical data to quantify a model, we present a method for eliciting the depend-
ence information from expert in a formal and structured manner. This allows
for ensuring transparency and reproducibility of the results as well as mitigat-
ing common cognitive fallacy in dependence assessments. Such a methodological
robustness is of particular importance when the elicitation results are used in
prioritising future investments of antibiotics research and development.

7.1 Chapter introduction

Decision and risks analysis methods that support medical decision-making (MDM)
under uncertainty have gained attention lately due to an increased emphasis on
evidence-based medicine and patient-centered care [186, 129]. Nevertheless, un-
certainty in healthcare decision problems has been common for much longer and
more subtly, for instance across the components of (even regular) medical pro-
cedures, such as disease definition, diagnosis, procedure selection and outcome

1Based on: Werner, C., Bedford, T., Colson, A. and Morton, A. (to be submitted). Risk
assessment of future antibiotic resistance - eliciting and modelling probabilistic dependence
between multivariate uncertainties of bug-drug combinations, Working Paper
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observation given that a clinician is typically confronted with several choices in
each of these steps [128].
A recent topic, which frequently dominates the scientific media and that shows
the implications of little guidance on how to deal with uncertainty in medical pro-
cedures, is the emergence of antibacterial resistance. The widespread prevalence
of antibiotic resistance-elements in bacterial pathogens poses a great concern
for a variety of stakeholders, including clinicians, researchers, policy-makers, the
pharmaceutical industry as well as the public. It is often attributed to mis-
and overprescription of antibiotics by clinicians together with patients’ failure to
follow the treatment course or even patients’ expectation to receive antibiotics
[92, 57]. A further commonly stated reason is the prevalence of antibiotics in
meat products through its frequent use in livestock [401]. The complexity of
antibacterial resistance poses a particular challenge in this regard. For various
bug-drug combinations we cannot regard future resistance rates as independent
from another given that this severely underestimates the risk of multidrug or
even pan-resistance (the latter being the resistance to all available antibiotics).
Hence, a better understanding of the relationships between bug-drug pairs’ res-
istance rates is crucial for clinicians’ guidance on drug prescription as well as
drug discovery which, if successful, is the main antidote to antibacterial resist-
ance. Investing into second line drugs to which a bug is not or only merely less
resistant severely undermines the overall risk and an antibiotics portfolio diver-
sification.
Indeed, complexity is regarded as one of the main sources of uncertainty in MDM
[186]. We therefore focus on probabilistically modelling the dependence between
future resistance rates with the aim of providing a framework to better under-
stand and model the risk of future antibiotic resistance and establish the value of
its future research. A common challenge when modelling dependence probabil-
istically is the lack of relevant historical data for quantifying a model. Whenever
in addition simplifying assumptions, such as independence, are not justifiable,
eliciting dependence information from experts is the most sensible approach. A
formal and structured process to dependence elicitation supports transparency
and reproducibility of the expert judgement study, mitigates experts’ potential
cognitive fallacies and ensures confidence in the model result. These are import-
ant desiderata of an elicitation process given prevalent misconceptions about the
concept of probability in MDM despite the frequent presentation and commu-
nication of health risks in probabilistic form [138, 101].
Structured expert judgement methods have been used previously in several areas
of MDM (even though only univariate uncertainties were considered), for in-
stance in health technology assessment [373, 49, 178, 374, 48, 254], assessment of
surgery effectiveness [76] or as well modelling the risk and efficacy of treatment
types [381]. In the following, we present a structured process for eliciting depend-
ence information from experts and we use the elicited assessment to quantify a
(dependence) model. In addition to outlining the main elements of our elicitation
process, we present an illustrative case-study in which it has been applied for
quantifying the dependence between the uncertainties of certain bug-drug pairs’
resistance rates. Such an application is of particular relevance for informing
policy-making and guidance-setting in antibiotics research and prescribing. In
the next section, we briefly provide an overview on multidrug resistance, the risk
which poses the main motivation for the illustrative case-study. In section 7.3,
we present our method for eliciting dependence from experts, structuring their
knowledge about it and modelling it. The results of the elicitations together with
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the resulting models are given in section 7.4. In section 7.5, we briefly present
how our method can inform policy-making and guidance provision before con-
cluding the chapter.

7.2 Dependence between uncertainties of resistance
rates through multidrug resistance

In this section, we briefly discuss the importance of considering multidrug res-
istance and the reasons for it. This underlines the question of why a robust risk
assessment should account for dependence between resistance rates’ uncertain-
ties.
Currently, around 700, 000 deaths related to antibiotic resistance are recorded
annually with a potential increase up to 10 million by 2050, a future scenario
where all known antibiotics are ineffective [92]. While such an “antibiotic apo-
calypse” might be regarded as media hysteria or even scaremongering by various
researchers in the field, the phenomenon of multidrug resistance together with
its future impact on healthcare is evident (see e.g. [92, 224, 387]).
The first bacteria that became resistant to multiple drugs were enteric ones,
such as Escherichia coli, Shigella and Salmonella. Their multidrug resistance
has been observed first in the late 1950s to early 1960s. Nevertheless, at this
time such discoveries did not lead to changes in health policy-making as they had
been regarded as of little concern. This changed however a decade later when
Haemophilus influenza and Neisseria gonorrhoeae, respiratory and genitourinary
causing organisms, started to develop resistance to multiple drugs. From then
onwards, multidrug resistance and even scenarios of pan-resistance have come
to the fore of various stakeholders. For a more extensive historical overview on
multidrug resistance, see [257].
Today, the topic of multidrug resistance is particularly relevant for global ex-
amples of hospital and community strains such as Klebsiella penuemoniae and
Pseudomonas aeruginosa isolates, even though the case of MRSA (methicillin-
resistant Staphylococcus aureus strains) most arguably attracted the most public
attention [92]. Other occurrences of multidrug resistance pose a risk to certain
regions more specifically. For instance, while we focus in this chapter explicitly
on Escherichia coli and Klebsiella pneumonia resistance to Fluoroquinolones in
the UK, it is estimated that in Southeast Asia and China about 60 to 70% of
Escherichia coli are resistant to Fluoroquinolones in addition to five other drug
families [257].
Bacteria can accrue multiple resistance determinants through the long-term use
(> 10 days) of a single antibiotic as within this time-frame the antibiotic will
choose not solely for bacteria that are resistant to itself but also other ones.
Given such continued antimicrobial selection, resistance not only increases for
the drug taken by a patient but also structurally unrelated drugs. As such,
several observations on the linkage of different resistance genes have been made
[257]. Other influencing factors on the dependence between resistance rates of
bugs to various drugs are ecological ones as can be seen by the disparity between
resistance rates in hospitals and local communities. Here, the density of the an-
tibiotic usage impacts not only the individual users but also others sharing the
same environment [408, 256]. A remark in this context make [98] who emphasize
that high resistance rate correlations among humans and animals do not pose
evidence for causation. This remark is of particular importance when analysing
the resulting of our elicitation together with the experts’ rationales.
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7.3 Methods for dependence elicitation and model-
ling of multidrug resistance

After having presented briefly the implications of and reasons for multidrug res-
istance and hence having introduced the motivation for eliciting (and modelling)
dependence between future antibacterial resistance rate uncertainties from ex-
perts, in this section we present the main components of our structured expert
judgement process for achieving robust elicitation results about multidrug res-
istance. Some components of the overall process are only briefly discussed, such
as training the experts and choosing the form of the elicited variables. The main
foci are on eliciting the marginal distributions, structuring experts’ knowledge
about the dependence between resistant rates, eliciting and combining assess-
ments as well as modelling the dependence. For an extensive, general discussion
on the different components of dependence elicitation processes, we refer to [415].

7.3.1 Eliciting the marginal distributions of future antibacterial
resistance rates

Before we can elicit dependence information from experts, we have to specify
the marginal distributions of the variables of interest, i.e. the future resistance
rates of the bug-drug combinations of interest. This is necessary as otherwise
the experts condition their dependence assessments on different quantile values,
e.g. on different median values, which would make a sensible aggregation of their
assessments impossible [415]. While in some cases we can quantify the marginal
distributions through relevant historical data, in other dependence elicitations
(such as the one presented here) this information also has to be obtained from
subject matter experts. In our case this is due to the predictive nature of the
marginal uncertainties given that we are concerned with future resistance rates
of bug-drug combinations, such as Klebsiella pneumonia and Escherichia coli
isolates resistant to Carbapenems and third generation Cephalosporins, in the
UK in the year 2021.
The elicitation method used for eliciting the marginal distributions is the Clas-
sical model [330, 79]. Briefly, in this method the experts are asked to provide
their assessments over continuous quantities. However, rather than only provid-
ing a single point estimate, they give a number of quantiles in order to capture the
quantities’ uncertainty distributions. For the marginal antibacterial resistance
rates, these were the 5th, 25th, 50th, 75th and 95th quantiles. The 5th quantile is
the number for which the expert thinks that there is a 5% chance that the true
value is below this value and a 95% chance that it is above. We can interpret the
other assessed quantiles similarly whereas for the 50th quantile assessment there
is a 50% chance for the true value to be below it and a 50% to be above it and so
on. Usually, we start the elicitation by asking first for the 5th and 95th quantiles
before eliciting more central quantiles. This might mitigate the anchoring effect
of subsequent assessments around some more central, previously assessed values,
such as the median.
We ask the experts to assess two types of questions. The first are calibration
(or seed) questions and the second are the actual target questions. The former
assessments are used for combining the experts through linear pooling whereas
each expert’s weight is performance-based. Thus, the answer for each calibration
question is known to the analyst or will be known within the time fame of the
research, but it is not known to the experts at the moment of the elicitation. An
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expert is regarded as a good probability assessor if the provided assessments for
the calibration questions capture the true values with the correct long run relat-
ive frequencies (statistical accuracy) while the given distributions are relatively
narrow (informativeness). Statistical accuracy means that for a large number
of questions half of the true values fall above the median quantiles and half fall
below. 90% of the true values fall within the given 90% interval (from the 5th to
the 95th quantile) and 50% of true values between the 25th and 75th quantiles.
Informativeness on the other hand takes into account how concentrated the given
distributions are with respect to a chosen background distribution. For determ-
ining the overall weighting scheme, statistical accuracy is more important than
informativeness, i.e. non-informative but statistically accurate assessments are
still useful as this result might entail an important message regarding the overall
uncertainty in the field.

7.3.2 Eliciting and modelling the dependence between future
antibacterial resistance rates

Various ways to model dependence probabilistically can be used, whereas each
offers certain modelling conveniences and captures specific aspects of a depend-
ence relationships. For example, graphical models, such as Bayesian (belief) nets
[317], allow for a high involvement even of non-statistical experts in determin-
ing the (structural) dependence relationships. Other dependence models, such
as regression models include (so called) a set of auxiliary variables, which are
not directly part of the model variables but allow for an easier quantification of
their uncertainty. [412, 415] discuss the choice of dependence models in certain
modelling contexts and their influence on the expert judgement method in more
detail.
In this chapter, we aim for deriving a parametric copula which satisfyingly cap-
tures the experts’ assessments. This model choice is due a copula’s convenience
that the dependence relationship can be addressed separately from the marginal
distributions and that it allows for modelling tail dependencies. Numerous com-
monly used parametric copulas can be grouped either into the Elliptical copula
class or the Archimedean one. Copulas in the former group are radially sym-
metric, i.e. their upper and lower tail dependence is the same, whereas copulas
in the latter group are asymmetric, meaning that they can capture upper or
lower tail dependencies explicitly. In addition to modelling the overall depend-
ence, tail dependence is an important feature of a joint distribution to capture
as neglecting it can lead to little understanding of the overall risk and hence
poor decision-making when events evoking extreme values appear. The case of
multidrug antibacterial resistance (7.2) highlights the importance of identifying
potential upper tail dependencies as the spread and increase of resistance affect-
ing multiple drugs shows a possibly prevalent systemic risk. In other words, it
might not be desirable to model that a high resistance rate increase for a bug
to one drug is followed by a similarly high decrease in resistance for another
drug, so that antibacterial resistance is balanced out, which would be given in a
symmetric dependence.
For an introduction to copula theory and advanced discussions, we refer to
[302, 208] and [125]. Briefly, recall that the random variable U = FX(X) of
a continuous random variable X with distribution function FX(X) is uniformly
distributed and the same is true for Y . In our context, the variables X and Y
correspond to the rates of resistance for different bug-drug pairs, e.g. Klebsiella
pneumonia isolates resistant to third generation Cephalosoporins (X) and Kleb-
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siella pneumonia isolates to Carbapenems (Y ) in the UK in the year 2021. With
two random variables X and Y , the distribution of the vector (FX(X), FY (Y ))
is then supported on the unit square with uniform marginals. Such a bivari-
ate distribution is called a copula, and its construction can be reversed, so that
any set of univariate distribution functions with a copula represents a multivari-
ate distribution. Formally, upper tail dependence (which is of interest here) is
defined as:

λU (X,Y ) = lim
u→1−

P (Y > F−1
Y (u)|X > F−1

X (u)) (7.3.1)

when a limit λU ∈ [0, 1] exists. Thus, λU > 0 indicates upper tail dependence
whereas for λU = 0 the distribution tails are independent. Loosely formulated
for us here, in the case of upper tail dependence it is more likely to observe
high resistance rates for X given high resistance rates for Y . When mapping
the experts’ assessments onto parametric copulas with given rank correlations,
we use the upper tail dependence coefficient λU = (1− 2u+C(u, u))/(1− u) to
distinguish the various forms (see Figures 7.5 and 7.6 when discussing the results
in 7.4). We refer to the tail dependence coefficient when discussing the results
of the dependence elicitation.

Structuring experts’ knowledge about the dependence relationships
through conditional scenarios

Assessing dependence, e.g. in the form introduced in the next sub-section, can
be cognitively challenging for experts or even counter-intuitive. As a result,
experts might be prone to cognitive fallacies while, more generally, they can
struggle to incorporate their knowledge on complex dependence relationships
in a quantitative assessment. Therefore, in order to mitigate cognitive fallacies,
enhance the understanding of the elicited form and allow for managing and shar-
ing knowledge, we use a method for mapping conditional scenarios [414] prior to
the quantitative assessments. Before presenting our method however, we briefly
explain why dependence assessments can be cognitively demanding and more
precisely which cognitive fallacies are common when assessing conditional prob-
abilities (the choice of eliciting dependence in a conditional form is discussed in
more detail below).
While it is common to conceptualise probabilistic dependence through condi-
tionality, studies show that not only specific cognitive fallacies can easily occur
but that understanding and interpreting conditional forms is (still) a challenge in
today’s statistics and probability education [114]. [63] remark in this regard that
a main focus of education is on frequentist approaches to probability together
with (idealised) random experiments. For understanding and conceptualising
conditional probabilities, such a position is however not easily adopted for real
world random phenomena. Nevertheless, the subjective view on probability,
in which a conditional probability is more intuitive as one simply revises judge-
ments given new information that has become available, is not commonly taught
in curricula of numerous countries [53].
Some specific cognitive fallacies, which are of particular relevance for conditional
probabilities, are confusion of the inverse [272, 127, 193], confusion of joint and
conditional probabilities [134] and the causality heuristic [8]. An extensive in-
troduction to these and other cognitive fallacies for assessing dependence can be
found in [415]. For an overview on heuristics and biases in the area of MDM,
see [46]. Briefly, the aforementioned fallacies can affect dependence judgements
for multidrug resistance as follows.
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The confusion of the inverse states that experts might confuse an elicited condi-
tional probability P (X|Y ) with its inverse P (Y |X). In our case, this can happen
if experts might be unsure (or disagree) about the order in which the first and
second line drugs are used, or if they find it easier to condition on the resistance
rate of a second line being above a certain threshold.
The confusion of joint and conditional probabilities is often explained by the
semantic misinterpretation of “and” which might be interpreted by some expert
as an indicator of temporal order. As such, they assess a conditional probabil-
ity instead of an elicited joint one. Similarly, we have anecdotal evidence [414]
that this fallacy can also work in the opposite direction, thus experts assess a
joint distribution instead of a conditional one. In the case of dependent resist-
ance rates, (unwillingly) assessing the joint probability between two bug-drug
combinations instead of a conditional probability can result in a severe under-
estimation of the multidrug resistance risk as an expert would typically assess a
joint extreme event with a very small probability while in a conditional scenario
systemic risks actually increase the extreme event probability.
Lastly, the causality heuristic refers to experts’ mental (causal) models about
the dependence relationships and states that a conditional probability is assessed
higher if a causal explanation underlies the conditional dependence relationship,
even though such as causal explanation has no role in probability theory. As
shown, when discussing the results of the elicitation together with the experts’
conditional scenarios underlying their assessments, various causal and non-causal
explanations for their assessments are given whereas these should have equal in-
fluence on the assessment result rather than assessing higher probabilities when
more causal explanations are given.
As aforementioned, a way to mitigate these cognitive fallacies and improve ex-
perts understanding of the conditional judgements is through structuring ex-
perts’ knowledge prior to the quantitative assessments. For that, we use a con-
ditional scenario mapping method introduced in [414]. Scenario are defined as
“sequences that link triggering events to specified consequences or final states
through intermediate conditions”. Thus, the experts were first presented with
the final state for the event that we condition onto later, i.e. a bug’s resistance
to third generation Cephalosporins being higher than either its 50th quantile or
95th quantile. Then, they reasoned through backwards logic what the different
reasons for this final state are, taking into account events from today to the year
2021. The events that are observable today are then classified as trigger events
and “imported” into the probability space of the conditional distribution, i.e.
a bug’s resistance to Carbapenems being above either its 50th or 95th quantile.
Taking these imported trigger events, the experts then reasoned in forwards logic
how the conditional scenarios evolve up to the year 2021 while determining the
conditional probability based on the number of relevant trigger events for both,
the unconditional and conditional probability space. The conditional scenarios,
which results are shown in Section 7.4, allow experts to reflect on their know-
ledge about the dependence relationships, clarify the inverses and any causal
versus non-causal factors, and can be shared to challenge each expert’s previous
understanding of the assessments.

Eliciting dependence between the future resistance rates

The following elicitation process might be regarded as a pragmatic approach to
modelling dependence as the final (copula) model is only based on a low number
of assessments. Nevertheless, we argue that the following elicitation method and

Eliciting dependence for probabilistic uncertainty modelling 145



CHAPTER 7. ELICITING AND MODELLING PROBABILISTIC DEPENDENCE
BETWEEN MULTIVARIATE UNCERTAINTIES OF BUG-DRUG COMBINATIONS

the resulting model offer a good balance between assessing detailed dependence
information on the one hand, e.g. it captures the behaviour of the random
variables in the extreme parts (tails) of their joint distribution, and on the other
hand ensuring a low cognitive complexity for experts. In particular, eliciting too
many variables easily leads to infeasible and incoherent assessments. The part
of the elicitation process that focuses on eliciting the target variables is briefly
described in the following steps:

• We elicit the conditional median in the form of P (Y > 50th quantile|X >
50th quantile) for the variables of interest X and Y . For our exemplary
bug-drug pair this can be framed as: “For the year 2021, given that in
the UK the rate of Escherichia coli isolates resistant to third generation
Cephalosporins is higher than 16.21% [50th quantile], what is the probability
that the rate resistance of Escherichia coli isolates to Carbapenems is higher
than 1.996% [50th quantile]?” (see Figure 7.1 on the left).

• As an intermediate step, we then vary the conditional variables, typic-
ally to explore the joint distribution tail, i.e. more extreme scenarios
more explicitly. For that, we elicit the conditional probability of P (Y >
50th quantile|X > 95th quantile). In our example this is asked for by: “For
the year 2021, given that in the UK the rate of Escherichia coli isolates
resistant to third generation Cephalosporins is higher than 38.59% [95th

quantile], what is the probability that the rate resistance of Escherichia coli
isolates to Carbapenems is higher than 1.996% [50th quantile]?”

• In a similar way, we now vary the other quantile, so that both refer
to the joint distribution’s tail, i.e. we elicit P (Y > 95thquantile|X >
95thquantile). We frame the question as: “For the year 2021, given that
in the UK the rate of Escherichia coli isolates resistant to third generation
Cephalosporins is higher than 38.59% [95th quantile], what is the probabil-
ity that the rate resistance of Escherichia coli isolates to Carbapenems is
higher than 17.24% [95th quantile]?” (see Figure 7.1 on the right).

• With the above assessments, we can now compare each expert’s judge-
ments with different parametric copula forms. This is done by plotting
the assessments against the converging conditional exceedance probabilit-
ies for selected parametric copulas simulated at the uth quantile from 0.5
to 1 through the tail concentration function. Figures 7.5 and 7.6 show the
comparison of parametric copulas at the 50th and 95th quantiles for various
rank correlations. The copula choices and rank correlations can be varied
for approximating the assessments better.

• With a first idea of which copula represents an expert’s information reas-
onably well given a specific rank correlation, we can test the robustness
of that choice, e.g. by “feeding back” the probabilities for non-elicited
quantiles and check an expert’s agreement for it.

All assessments are made in a conditional probability form as we regard
it as more intuitive than eliciting other dependence parameters. For instance,
joint probabilities are cognitively difficult to conceptualise and understand by
experts [73] while correlation coefficient are only reliably assessed for dependence
relationships in which experts get frequent feedback [432]. Further, we can use
the scenario mapping method for conditional dependence relationships as shown
in the previous sub-section.
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Figure 7.1: Schematic representation of elicitation sequence

Aggregating dependence assessments from various experts

In many expert judgement studies, it is of interest to elicit assessments from more
than one expert in order to capture a broader range of knowledge and beliefs
about the uncertainties of interest. Whenever we elicit more than one assess-
ment, an important decision concerns aggregating several judgements in a sens-
ible way. While some methods are based on behavioural aggregation approaches,
thus these methods advocate that experts should achieve a consensus opinion
for the variable of interest, other methods combine experts’ judgements math-
ematically. Mathematical aggregation of expert judgements can avoid common
shortcomings of behavioural aggregation methods, such as one expert dictating
the final elicitation outcome (e.g. due to a strong personality and/or power re-
lationships between the experts) or as well group-think, i.e. experts try to avoid
discussion and conflict about elicited result [155]. Therefore, we only consider
mathematical aggregation methods in the following. More specifically, we con-
struct several combined assessments through different linear pooling methods.
This allows to compare the different results and feed these back to the experts
as the topic of combining dependence assessments is less well explored than it is
the case for univariate uncertainty.

Equal Weighting Another way of combing expert judgements is simply
through the weights determined by the earlier calibration questions for the mar-
ginal distributions. In other words, we assume that each expert’s performance on
the previous calibration questions together with the resulting weights not only re-
flects their ability to assess marginal probabilities, but to make assessments more
generally, also about probabilistic dependence. While some research [291, 289]
suggests that experts who perform well with the Classical model cannot be re-
garded as good dependence assessor, we remark that these are indicative results
which is why we include a linear pool weighting scheme based on the previous
calibration questions.

Performance-based weighting: Dependence-calibration score The
last aggregation method requires the elicitation of dependence calibration vari-
ables in addition to the actual target variables. Experts’ assessments are then
combined based on a dependence calibration score which is introduced by [294]
while an extensive introduction and discussion is given in [291] and [412, 415].
For that, the Hellinger distance measures the distance of experts’ assessments
and the actual rank correlation values. An information score as with Cooke’s
model is not derived.
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In total we elicited nine calibration questions which are of two different types.
This has the advantage of considering experts’ performance from different per-
spectives, and (as in our case) it simply allows for including more calibration
variables. The latter can be relevant as (in our experience) finding suitable cal-
ibration variables for dependence relationships might be challenging given that
association measures, e.g. rank correlation coefficients, which then constitute
the true values require more historical data to be relevant than this is the case
for univariate uncertainties.
Our first type of calibration questions is: “Given that in the UK in 2015, the rate
of resistance for Escherichia coli isolates to third generation Cephalosporins was
above its median of 10.09% (2010-2015), what is the probability that the rate of
resistance for Escherichia coli isolates to Carbapenems was also above its median
of 0.433%?”
The rank correlation coefficients for the above framing are based on the depend-
ence over time, i.e. the resistance rates per year for 2010 to 2015.
For the second type of calibration question, we ask: “Given that the UK in 2015,
was below the European (Italy, Spain, France, UK) median of 25.43% for the rate
of resistance of Escherichia coli isolates to third generation Cephalosporins, what
is the probability that it is also below the median (1.23%) for Escherichia coli isol-
ates to Carbapenems?”
The correlation coefficients for the second type of calibration questions considers
the dependence over various countries but within the same year.
Note that we ask for conditional probabilities in the calibration questions even
though the historical data are given as rank correlations. This is to keep it in
the same form as the target variable elicitation for which we already justified
the choice of conditional probabilities in Section 7.3.2. Nevertheless, we now
need to transform the experts’ assessments from conditional probabilities into
(Spearman’s) rank correlations. More technical details on this transformation
together with an introduction on how to derive this transformation for other
quantile values is given in [290].

7.4 Results of dependence elicitation for multidrug
resistance rates

After having presented the main components of our structured dependence elicit-
ation process, in this section we present the corresponding results. In accordance
with the previously presented calibration and target questions, in the following
we show the results for the dependence between Escherichia coli isolates’ resist-
ance to third generation Cephalosporins and its resistance to Carbapenems.
In total, six experts participated in the elicitation of the marginal distributions
and four (of them) participated in the dependence elicitation. All experts have a
broad subject matter expertise ranging from clinicians’ day-to-day experience of
prescribing antibiotics to research involvement in new antibiotics’ development.
We elicited the marginal distributions and dependence from each expert in sep-
arate expert judgement sessions. Figures 7.2 and 7.3 show the elicited marginal
distributions for the resistance rate in 2021 of the bug-drug pairs of Escheri-
chia coli isolates to Carbapenems and Escherichia coli isolates resistant to third
generation Cephalosporins accordingly. In addition to each expert’s individual
assessment, we show the performance-based combination according to the Clas-
sical model (DM) and the equal weight combination (EW).

We observe that for resistance to Carbapenems, all experts apart from Expert
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Figure 7.2: Elicited marginal distribution (5th, 25th, 50th, 75th and 95th quantile)
for the rate of resistance of Escherichia coli isolates resistant to Carbapenems in
the UK in 2021.

Figure 7.3: Elicited marginal distribution (5th, 25th, 50th, 75th and 95th quantile)
for the rate of resistance of Escherichia coli isolates resistant to third generation
Cephalosporins in the UK in 2021.
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Figure 7.4: Elicited conditional exceedance probabilities for quantiles u = 0.5
and 0.95 with fitted copulas per expert.

Figure 7.5: Elicited conditional exceedance probabilities for quantiles u=0.5 and
0.95 with fitted copulas per combined weighting.

1 assess narrow distributions with medians which are close to each other. This is
reflected in both combinations through similar median values. Nevertheless, the
DM is much more informative than the EW combination as Expert 1 receives
less weight in the former. For the resistance to third generation Cephalosporins,
the assessments are less in agreement and we therefore obtain a much wider DM
distribution even though it is still more informative than the EW combination.
Based on the elicitation results for the marginal distributions, we then elicited
the dependence between both resistance rates according to the procedure in
Section 7.3.2. Figure 7.4 shows each experts’ assessment about the dependence
between the future resistance rates of the bug-drug pairs together with some
fitted parametric copula choices.

Similarly, Figure 7.5 presents the combined assessments (for each of the dif-
ferent aggregation methods) again together with the best-fitting copulas. We
observe that the experts differ considerably in that two experts’ best fitting cop-
ulas are symmetric (Expert 1’s assessments result in a Frank copula with rank
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Table 7.1: Individual and combined multidrug dependence assessment results.

Expert/Combination method > 0.5| > 0.5 > 0.95| > 0.95

Classical model (marginal seeds) 0.7979 0.6711

Equal Weighting) 0.7875 0.65

Dependence Calibration 0.7295 0.6949

Expert 5) 0.8 0.6

Expert 4 0.7 0.55

Expert 3 0.7 0.7

Expert 1 0.95 0.75

correlation 0.9 and Expert 5’s assessments correspond to a Student t copula with
rank correlation 0.6 the shaded area adds ±0.1) while the other two experts’
assessments fit asymmetric copula with upper tail dependence (Expert 3’s as-
sessments correspond to Joe copula with rank correlation of 0.45 and Expert
4’s assessments match a Gumbel copula with rank correlation of 0.45). In con-
trast to these individual differences, we see that the combined assessments for
all aggregation methods result in copulas with upper tail dependence (Joe and
Survival Clayton copulas with rank correlation 0.45 for the performance-based
weighting scheme and a Gumbel copula with rank correlation of 0.55 for equal
weighting). We observe that tail independent copulas, such as the Gaussian
copula, do not fit well. Table 1 summarises the assessment results.

The results of the aggregated assessments are supported by the experts’ com-
bined rationales. Each expert’s assessment has been supported by the conditional
scenario mapping method introduced in section 7.3.2. We then combined all ra-
tionales and fed these back to the experts for sharing the overall knowledge and
giving them a possibility to adjust their assessments. While no expert modified
their assessments, all agreed on these meta conditional scenarios. Figure 7.6 and
7.7 show the unconditional and conditional scenarios for the previously discussed
bug-drug combinations. We can see which trigger events for the unconditional
probability space are impacting the conditional one together with the sub-set of
events which are still relevant for the extreme (95th quantile) scenarios (in the
red shaded areas). For instance, we observe that a main scenario for upper tail
dependence between Escherichia coli resistance to third generation Cephalospor-
ins and Escherichia coli to Carbapenems is due to the potential emergence of a
new strain. This leads to the target-oriented policy decisions across the National
Health Service (NHS), which aim to reduce the prescriptions of Carbapenems
and third generation Cephalosporins, not to be working anymore. Other scen-
arios supporting upper tail dependence consider trigger events that lead to a
higher beta-lactam antibiotics’ use or as well bottlenecks in the raw material
supply chain. A scenario, against possible tail dependence, is that Carbapenem
use might decrease until 2021 which then leads to an increase in the use of third
generation Cephalosporins.
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7.5 Discussion on informing the value of future anti-
biotics’ R&D and chapter conclusions

In this chapter we have addressed the challenges of using quantitative risk as-
sessment techniques to model future antibacterial resistance to multiple drugs.
Given the lack of relevant historical data for quantifying a (dependence) model
in this context, we have introduced a structured expert judgement process for
eliciting dependence between future resistance rates uncertainties. Proposing
prescriptive decision aiding methods is in line with the trend that decision mod-
els are gaining importance and acceptance as formal methods to inform health
policy making [209].
A main result of our case-study is the identification of upper tail dependence,
indicating a potential future systemic risk which negatively affects the usefulness
of some common first and second line drugs against their corresponding bugs. A
main motivation for our case-study (as mentioned in the chapter introduction)
is to offer a method that informs decision-makers who manage a portfolio of
antibiotics and make decisions about adding new ones to it through R&D in-
vestments. In the following, we briefly discuss how our findings and structured
dependence elicitation more generally can be used in medical decision-making
informing policy-making.
Referring to the term “concern-driven risk management”, [97] criticises the
World Health Organization [418] for basing their recommendations and guidance
to identifying critically important antibiotics and thus prioritising R&D activ-
ities on qualitative levels of concern. This means that risk-based decisions are
taken if a regulatory agency “is sufficiently concerned about risks from current
human behaviours” (such antibiotic use) rather than considering quantitative
modelling methods. However, past experience shows that such concern-driven
recommendations can have devastating consequences, such as happened in Den-
mark and the European Union where animal illnesses and mortality surged after
banning five animal antibiotics. While a quantitative risk model might lack rel-
evant data for informing such decisions, our method provides a way of addressing
such modelling challenges and provide evidence-based decisions.
Another example in this regard, in which omitting the possible effects of de-
pendence between resistance rate uncertainties were of particular importance,
is the guidance given by the U.S. Food and Drug Administration’s Center for
Veterinary Medicine [305]. [93] remarks that due to not considering any pos-
sible correlations, no sensible risk management recommendations can be given.
Again, using a structured expert judgement process for specifying uncertain-
ties and their dependence improves risk management decisions and thus impacts
positively the current value of information for quantifying and comparing the
economic consequences of different actions. As such, using formal uncertainty
assessment methods when determining medical innovations and future research
needs is crucial [349].
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Chapter 8

General Conclusions

Within this thesis, I have made various contributions to the research on elicit-
ing dependence from experts which is an important area of the decision and
risk analysis literature. This concluding chapter summarises my research results
by reflecting on the research objectives of this thesis together with the connec-
tion between the presented contributions/chapters, by re-addressing the research
questions and by discussing the limitations of the findings presented here while
proposing suggestions for further research.

8.1 Reflections on the research objectives and the
connection between the research contributions

This thesis highlights the importance of using structured processes to elicit de-
pendence information for probabilistic modelling from experts when relevant
historical data are lacking. Research in this area can be approached in different
ways. In this section, I therefore explain and reflect on how the different contri-
butions (and hence chapters) presented in this thesis relate to and follow from
each other. This helps clarifying how the research design adopted here helps
achieving the research objectives.
In the introduction to this thesis, Figure 1.1 provides an overview on how the
chapters, which are based on published (or to be published) contributions, are
placed in a conceptual framework of prescriptive, supportive methods for de-
cision and risk models. Chapter 2 is not shown as it outlines preliminaries and
is of introductory nature rather than a research contribution. This framework
is based on the discussion of section 1.4 about the proposed research methodo-
logy for prescriptive methods and models in decision and risk analysis. Similar
frameworks can be found, for example in [75].
On the left hand side of Figure 1.1, the main elements of a decision/risk ana-
lysis process are shown at a (fairly) general level. As decision and risk analysts,
we first need to understand the problem context. At such a general level, this
involves observing the problem together with identifying as well as defining it.
These steps are part of the element shown as a cloud shape in which usually
the decision-maker is still involved. In this thesis, the (broad) problem con-
text that we observe concerns dependence relationships between uncertainties.
These occur in various application areas and can have unexpected consequences
for decision outcomes if neglected by decision-makers. Therefore, together with
the decision-maker we should first determine whether dependencies can be neg-
lected or not, and if not, decide which attributes of dependence relationships
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are of interest for the decision. This determines how much detailed information
is necessary for making a sensible decision and hence identifies and defines the
problem to be modelled.
In the next step, we make choices on appropriate models that we consider suit-
able for modelling the decision/risk analysis problem at hand. These choices are
often based on the needs and preferences of the decision-maker. For the topic
of this thesis, this implies that after identifying and defining the dependencies
between uncertainties, which might have an impact on the decision and are of
interest for a decision-maker, we choose models that capture the dependence
relationships’ attributes of interest. In this regard, various dependence mod-
els exist whereas different model types address different aspects of dependence
relationships. A model aspect, which is of relevance for several dependence rela-
tionships discussed, assessed and modelled in the reviews and case-studies of this
thesis, and which is of importance for sensible dependence assessment in many
application areas, is that of tail dependence. Often, we need to consider poten-
tial tail dependencies to better understand extreme risks. For these, we might
observe that (in a bivariate relationship) conditional on being above a critical
threshold for one particular variable, the other variable is also above a critical
threshold. Further, we might also want to capture whether tail dependencies
are either asymmetric or symmetric. For example, when considering monetary
losses as risk factors, in the latter situation losses are balanced out by gains,
whereas this is not the case for the former, i.e. with asymmetric tails [137].
At this point of the decision/risk analysis framework, we might enter a loop
in the process of choosing various models and selecting the one(s) which fit(s)
best in the problem context. However, a decision-maker might desire a different
model with different or less assumptions and/or different capabilities (in terms of
the produced output) and therefore, we need to alter the current model or select
a different one. This part of model altering and selection might then be repeated
several times. This is also known as the Management Science process [419]. For
dependence models, it can be common to propose parametric, low-dimensional
models first. They are easier to understand, quantify and use. However, due to
their strong assumptions and potential restrictions, for instance in case of model-
ling tail dependence, the decision-maker asks then for a more flexible dependence
model. For example, a model that captures tail dependencies and implies less
parametric assumptions. In this way, we can enter a loop of refining the model
choices with the decision-maker.
The above two steps are similarly applicable in other decision and risk prob-
lem contexts (than ones in which dependence modelling is directly of interest).
For example, when applying forecasting/time-series methods (through historical
data), we might start by proposing models that can be quantified with little data
and are, at the same time, easily understandable. In this modelling area, some
of the easiest models are näıve ones, which simply take the last observed value
as forecast, or as well forecast through simple averaging of some observed past
values [56]. Decision-makers however might require more sophisticated models
as solutions to their problems.
Similarly in simulation-based decision and risk analyses, such as when applying
discrete event simulation, we might choose simple models first. Then, in a loop-
like process, we develop (in agreement with a decision-maker) more sophisticated
simulations. These either incorporate more detail or use a multi-methodological
approach to represent sub-systems (which provide the input variables of certain
model parts) more accurately. Common examples are simulations which are
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primarily process-oriented but apply an agent-based simulation for certain parts
of the model as these might require a different level of detail (see e.g.[233]).
Once we have chosen one or more appropriate model(s) that can provide the
information and output required by the decision-maker, we need to identify the
potential modelling challenges which are prevalent for the particular model(s).
Often, and as it is the case in this thesis, the modelling challenges in a decision
and risk analysis context are related to the prescriptive purpose of a model. As
aforementioned, prescriptive decision theory aims at offering guidance or pro-
cedures which allow for making optimal choices of decisions. This can be based
on the difference between normative and descriptive decision theory, whereas
prescriptive models differ to ones that seek to explain or describe a phenomenon
of interest (see section 1.4 for a more extended introduction to the models con-
sidered in this thesis).
The prescriptive methods are then our specific tools and techniques which can
be used to offer such guidance. Typically, we use an optimisation technique to
identify the optimal solution most efficiently. However, we can also run scen-
arios (e.g. through Monte Carlo simulations altering model parameters) or use
trial-and-error as ways to gain a better insights on our best choice in terms of
which decision to make. Each technique has its own advantages and drawbacks
and the choice is likely to be based again on the decision-maker’s preferences.
An optimisation technique can be most efficient (if a solution can be obtained in
that way) but may constitute a black box to the decision-maker if only optimal
solutions are presented without much more information on how it was obtained.
Running scenarios or using trial-and-error on the other hand might be more
time-consuming, but can offer a better familiarisation with the behaviour of a
model and the impact of changes made to the model parameters.
In that way, the above techniques can be applied for identifying an optimal solu-
tion if the underlying model is a dependence model, either as a decision or risk
model itself or if it is “plugged into” (and complements) another model. Sim-
ilarly, we require some technique, such as the above ones, for simulation and
forecasting models when they are part of a prescriptive analysis.
A modelling challenge to use optimisation or scenario-based techniques can be
a lack of relevant historical data on the uncertainties involved in the decision
problem and on the preferences for choosing certain decisions. Therefore, struc-
tured elicitation techniques for guiding uncertainty and preference assessments
are key for making optimal decisions and according to [37], “the art and science
of elicitation of values (about consequences) and judgments (about uncertain-
ties) lies at the heart of prescriptive endeavours.”
This statement is particularly fitting for dependence between uncertainties as it
not only adds complexity to an assessment, but also because relevant historical
data on dependencies are often scarce, even if relevant data on marginal distri-
butions are available.
The above discussion on the broad decision and risk analysis context with a focus
on its prescriptive purpose already shows how dependence models and hence the
assessment of dependencies are part of a more general decision and risk analysis
literature. Given that this thesis has contributed to this area (with a prescript-
ive focus), we can now outline where the contributions lie within such a general
framework, how the research has been influenced by the steps of the framework
and lastly how the contributions are related along this framework. This is done
by re-considering the research design, methodology and objectives formulated in
the introduction of this thesis (see sections 1.3 and 1.4).

Eliciting dependence for probabilistic uncertainty modelling 159



CHAPTER 8. GENERAL CONCLUSIONS

Recall that our research design and methodology to achieve our objectives is
based on two pillars of knowledge production, that of (1) research authors struc-
turing knowledge and that of (2) users applying knowledge when solving prob-
lems (in the real world). We already clarified earlier why the latter is particularly
relevant when contributing to prescriptive decision and risk analysis research
while the former is a common prequisite for most research areas.
Nevertheless, in the research on expert judgement methods for dependence, this
structured knowledge has not been given, apart from the few, less comprehensive
overviews mentioned in chapter 3. Therefore, I decided to provide reviews on
dependence elicitation as ways to offer such structured knowledge for researchers
interested in dependence assessments first. This is in line with the first object-
ive that is to propose a taxonomy for the current research on expert judgement
methods for dependence assessment and set its future agenda.
In line with the framework of Figure 1.1, the first literature review (that of
chapter 3) is motivated by the various dependence models and how the mod-
elling choice (which occurs after having identified and defined the decision and
risk problem) impacts the elicitation method. The elicited form is in this re-
gard particularly influenced by the model choice and at the same time is a key
decision for the elicitation. As such, chapter 3 addresses the upper part of the
framework to bridge the gap between real-world problems, models and modelling
challenges, which in this case is that of lack of relevant data and the question
in which form to elicit it (considered as one of the most basic decisions for an
elicitation).
The second literature review, chapter 4 in this thesis, takes a different starting
point and addresses the lower part of the process, i.e. focussing on the prescript-
ive purpose of elicitation processes. As aforementioned, structured, prescriptive
processes for supporting experts in making dependence assessments are crucial
as they impact the optimal decision directly. Therefore, I provide a compre-
hensive review on how well the different elements of such processes have been
explored in the research community.
After obtaining some structure for the knowledge in the research area, I then
address the second research objective. I do so by proposing novel prescriptive
methods, which address some of the identified research gaps, and test these in
real-world decision and risk problems for ensuring their practical and pragmatic
value. Hence, on the right of Figure 1.1, we can see that chapters 5 to 7 are the
chapters that contribute to the second research objective. As can be seen, the
research gaps addressed by the proposed novel methods are primarily identified
from the literature on elicitation processes. However, I should note that when
applied in case-studies and with specific models, the methods are also influenced
by findings on elicitation in specific modelling contexts.
Following this reflection on the research contributions as part of the broader de-
cision and risk analysis literature and while doing so, having clarified the chosen
order of presenting these contributions in this thesis, I will now re-address and
discuss the research questions proposed in the introduction.

8.2 Re-addressing the research questions

Research Question 1: Which dependence models are most prevalent in the
decision and risk analysis research and for which of these has expert judgement
been used to address the lack of relevant historical data? What are the foci of
these models and how can they be considered in assessment methods?
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Chapter 3 of this thesis, which is based on [412], offers a systematic review of the
literature on dependence models for which expert judgement has been used for
assessment purposes. In that, we include proposed structured expert judgement
methods for specific models as well as non-structured elicitations of dependen-
cies as it is for example often the case when conditional probabilities are elicited
for BNs. The latter are considered in particular when surveying the case-study
literature in which dependence has been elicited for models in real-world applic-
ations.
Not only, but also because of the recorded non-structured elicitations, BNs are
the most widely used dependence models in the modelling literature that includes
expert judgement by accounting for around 64% of models used. In addition to
a general increased interest in BNs (which developed over approximately the
last three decades since [317]) in the decision and risk analysis literature, this
preference in model choice might also be attributed to the fact that with such
graphical models experts are often “called in” for deriving the structure of the
model and it might be then natural to do additional quantitative elicitations on
the corresponding conditional probability table afterwards if data are lacking.
This outlines already that one main modelling aspect, which is of interest in
the literature, concerns graphical dependence models. For these, experts can be
used for the elicitation of structural information which in turn can clarify ex-
perts’ quantitative assessments. We have therefore explored the idea of hybrid
models in particular for tail dependence further in chapter 5 and [414].
Another, modelling aspect that has been highlighted in this review is that of
higher dimensions and extreme joint distributions, as ones with tail dependence.
In the modelling literature we can see a fair interest into modelling more complex
dependence relationships together with a higher interest in models that capture
dependence in the extreme parts, i.e. joint tails, e.g. through copulas. Given
that a lack of relevant historical data is already now identified as a modelling
challenge as shown by the few rather ad hoc methods mentioned in the review,
we identified the modelling aspect of capturing tail dependence as one of in-
creased current and future interest. In order to address this, we also proposed
the SRP method in chapter 6 and [413].
While copulas and BNs are mentioned as the main models of interest for fu-
ture research, we should however still consider other research in this area, such
as that of assessing parametric joint distributions and regression models as in
certain application areas, such as ecological and environmental risk assessment,
they are of high interest and an ongoing research topic.

Research Question 2: Which key elements of processes for eliciting depend-
ence from experts have partly or completely been neglected in past and current
research?
Both literature reviews (chapters 3 and 4) present some of the main choices that
need to be made when eliciting dependence from experts. The first focuses on
the choices that result from the model choice, in particular whether we can elicit
the natural input parameter of a model or if it needs to be transformed. While
some findings exist on the ease with which experts can assess a particular asso-
ciation measure, more research in that is necessary.
Chapter 4 on the other hand addresses the whole elicitation process. The most
crucial research gaps with regards to the elements of such processes (in the sense
that they have been the most neglected but are necessary for any elicitation) are
the choice of the elicited form, training experts, structuring experts’ knowledge
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and beliefs and aggregating expert judgements. We re-address these elements
below when discussing the future research of dependence elicitation.

Research Question 3: What is the status-quo of related research topics of
interest for cross-fertilisation from the elicitation of experts’ (univariate) prob-
abilities (e.g. behavioural research on cognitive fallacies) and to what extent
have these taken into account in current dependence elicitation methods and
processes?
In chapter 4, we have presented some findings on a main cross-fertilisation topic,
that of behavioural research on cognitive fallacies. While some cognitive falla-
cies for dependence assessment (in particular for conditional dependence, e.g.
through conditional probabilities) have been identified and studied, they might
almost seen as a by-product of the much more active psychological research on
probability assessment in general (usually for univariate quantities). As such,
it is important to note that in future more research in this area is desirable, in
particular to guide the chosen elicited form and to provide experts with training.
For training experts, we mentioned some potential studies for cross-fertilisation
in chapter 4 as we might obtain some insight from the problems that student
face when learning the concepts of various dependence parameters.
Another cross-fertilisation topic which has been identified as lacking, but is not
addressed in depth in this thesis, is the question of what makes a good depend-
ence assessor. In the introduction we have briefly discussed who an expert is,
however in this regard this question needs to be extended to whether the same
properties are true for an expert on dependence. Research on this could then
further inform the area of choosing experts and sensible aggregation methods -
for instance, when wanting to use calibration questions.

Research Question 4: How can a method support experts in structuring their
knowledge and beliefs about dependence relationships in order to mitigate com-
mon cognitive fallacies and enhance experts’ confidence in their dependence as-
sessments?
In order to address this research question, we have proposed a conditional scen-
ario mapping method in chapter 5 and applied it in a case-study on risk assess-
ment in the UK Higher Education sector. While developing this method we have
taken the presented desiderata of our method as guidance whereas these served
to identify the shortcomings of other methods. Future methods for this purpose
might base their work on these desiderata or even extend this list.
Through the feedback from the experts, who take part in the case-study, we can
identify how well we achieve supporting experts in mitigating cognitive fallacies.
For instance, anecdotal evidence in the study presented in chapter 5 indicates
that our method can avoid the confusion of joint and conditional probabilities
whereas at the same time we enhance experts’ confidence in later quantitative
assessments. Especially through decomposing (conditional) dependence rela-
tionships through backwards and forwards logic as well as structuring experts’
reasoning via suggested event types and an appropriate graphical representation
we aim at mitigating cognitive fallacies and make assessments more intuitive.

Research Question 5: How can we support experts in making feasible de-
pendence assessments while not restricting the level of detail and flexibility of a
dependence model as desired by a decision-maker?
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In chapter 6 we propose the SRP method which guides experts in making feasible
assessments on detailed aspects of a joint distribution. This might be important
when a detailed specification is desired by a decision-maker, such as when tail
dependencies are of interest. The method provides an algorithm, which gives
upper and lower bounds for assessments, to ensure feasibility. We identified this
as a sensible approach as it ensures that experts will stay within feasible ranges
and it should be preferred to altering experts’ assessments after they have been
given. Of course, it is possible that experts are not willing to stay within those
ranges which highlights the importance of other elements in the expert judge-
ment process, such as structuring knowledge prior to a quantitative assessment.

Research Question 6: How can we ease experts’ cognitive burden when making
detailed dependence assessment, in particular when assessing tail dependence?
As mentioned in Research Question 1, we identified an increased interest in mod-
elling tail dependencies in the overall research literature on dependence models.
As such, models become more flexible and sophisticated to capture extreme joint
distributions which are often more useful for a decision-maker than ones with
low-dimensional assumptions. As with other dependence models, and in fact
uncertainty models generally, a modelling challenge is that of lack of relevant
historical data. In fact, the tails of joint distributions lack data by definition
through having low probability.
Therefore, we have had a particular focus on how our methods of chapter 5, 6
and 7 address tail dependencies in addition to how compatible they are with
models of interest, such as copulas. Especially chapter 7 shows an elicitation
method which can be applied if we simply want to identify parametric copulas
for checking if tail dependence is of relevance and if yes, whether it is symmetric
or asymmetric.

8.3 Limitations of the presented research

The main limitation with the research presented in this thesis is that for the
original research only a very limited number of case-studies exists in which their
robustness has been tested. It is therefore key to continue the evaluation of these
methods through further case-studies, including different experts and problem
areas. Some possible extension and alteration, which might be of interest, have
been mentioned when concluding the chapters in the original research part.
A further limitation of the proposed original methods is the lack of supporting
material. While protocols and also to some extent online/software tools exist,
these can be improved for future studies, also in order to maintain a high quality
in applying these methods.
Lastly, for the literature reviews the common limitations apply, such as only peer-
reviewed studies and reports that are available in the selected online libraries
have been considered whereas some (also) lack having been applied in a variety
of settings. As such, we have not included potential non-published approaches
that might be found in industry applications.

8.4 Future research

Nowadays, the term “complexity” is a buzzword and as such it is not surprising
that the interest in dependence modelling applications for complex systems is
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increasing. In this regard, BNs have already seen a sharp increase in use (ap-
proximately) over the last three decades and this interest is likely to continue.
However, also other models, such as copulas, are seeing more frequent use more
recently. Therefore, research on dependence elicitation becomes more pressing
as a lack of historical data will always be of concern - similar to the univariate
case. In fact, the case of having sufficient relevant historical data to quantify a
model satisfactorily might be even less common as such data on dependence re-
lationships are often unavailable even if marginal distributions are given. In this
thesis we have identified some of the main areas to be addressed in dependence
elicitation and we have proposed novel methods for some main elicitation ques-
tions. In future more research efforts in this direction are necessary. Building
onto the answer to our first research question, the main future research might
be focused on the following.
With regards to an appropriate and robust choice of an elicited form, in partic-
ular the literature review of chapter 3 and [412] conclude that it is on the one
hand crucial to ensure intuitiveness or at least experts’ familiarity of the elicited
form while on the other hand eliciting direct model inputs whenever sensible.
The direct elicitation of the natural model input is important for avoiding the in-
troduction of additional assumptions when transferring the elicited form into the
model input. Further, it is important to limit the possibility of making infeasible
judgements. This is why in many studies in which experts are used to quantify
dependence a focus is laid on direct or “natural” inputs. However, it is not
stated nor discussed whether experts are familiar with this choice nor whether
they considered the elicitation part as intuitive. For enhancing future depend-
ence elicitation methods, more feedback on which forms experts are familiar with
is crucial. This can come case-studies of dependence elicitations (even if this is
not the main focus of the paper) together with more insight from research, such
as [73]. Though, as we already aforementioned regarding the latter, case-studies
of actual decision and risk analysis context provide more accurate feedback than
stylised elicitation contexts and we need to be more critical with such stylised
contexts (in particular if we elicit assessments from students rather than actual
experts).
In particular, when making a sequence of assessments on a multivariate distri-
bution, such as done in chapter 6 and [413], it is “easy” to make infeasible judge-
ments and additional guidance on possible upper and lower feasibility bounds
needs to be given. This becomes however more complicated when eliciting within
different forms. With the advent of novel modelling approaches and tail depend-
ence being en vogue, new approaches to eliciting dependence for copulas might
emerge and for these the choice of the elicited form and the question on how to
approach sequential assessments become even more pressing than in the multi-
tude of studies in which simply conditional probabilities as direct inputs for BNs
are elicited - even though it remains questionable in how many of these studies
the experts had a good idea about the concept of conditional probabilities.
In fact, for BNs of higher dimensions, i.e. whenever we include growing con-
ditioning sets, we need to question experts’ understanding of the elicited form
and similar questions to those above arise. For instance, we can use algorithms
which provide experts with feasibility bounds, such as proposed in our elicitation
method, for which we explicitly focused on eliciting conditional probabilities but
avoid problems of such growing conditioning sets.
Lastly in the context of choosing the elicited form, more research in the role of
feedback is important as some studies seem to suggest that directly eliciting cor-
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relation coefficients can be a preferred method when the experts obtain frequent
feedback in this form. In situations of no feedback, such a choice can however
be too complicated to conceptualise for an expert.
Another, area of necessary future research is training experts. In chapter 4
and [415], we outlined some review findings on training experts before elicit-
ing dependence from them. Yet, this was only possible by including common
findings from the literature on how students learn the relevant concepts in their
mathematical education. While we believe that possibilities for cross-fertilisation
between this area and training experts exists, it is clear that the work in this part
for elicitation processes, i.e. how to train experts for dependence assessments,
is lacking and need to be explored for improving future dependence elicitation
protocols.
In addition to suitable training for experts, structuring their knowledge on de-
pendence relationships is another main area for future research. As a main
motivation for our conditional scenario mapping approach [414] served the find-
ings of chapter 4 and [415], i.e. that until then no approach to structure experts
judgements had existed. Of course, several dependence models, such as BNs,
entail a prior, qualitative structuring of dependence relationships, however no
methods existed to extend such efforts to other dependence models and in par-
ticular tail dependencies. Additionally to ease experts’ cognitive burden, in
particular for justifying the experts’ assessments and transparency reasons, the
detailed recording of their rationales is also crucial and should be further ex-
plored.
Finally, we have mentioned mathematical aggregation of dependence assessments
in chapters 3 and 4 and the case-study of chapters 5 and 7. We used and com-
pared some available methods but aggregating assessment has not been the fo-
cus of these studies. And while of course, behavioural aggregation methods and
equal-weighting methods are also applicable for dependence assessments, it is
clear that this area needs more research in future.
The above discussion on some main possible future research areas for eliciting
dependence from experts shows that still much work is needed, nevertheless the
advances along elicitation processes presented in this thesis show that this can
be fruitful and rewarding.
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