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Abstract

The problem of using the α,0 and the α, β-quasi periodic transformations within
a finite element method in studying electromagnetic waves in a periodic space is
addressed. We investigate an a priori error estimate for both transformations
which allows us to solve our problem numerically on a uniform mesh. We also
analyse the Dual Weighted Residual (DWR) method with the α,0-quasi periodic
transformation to derive an a posteriori error estimate. This error estimate is
later used to compute efficiently the numerical solution using an adaptive method.
We then implement the above finite element methods. It is shown numerically
that our numerical results are in good agreement with those in the literature, the
α, β-quasi periodic method converges at a far lower number of degrees of freedom
than the α,0-quasi periodic method and the DWR method converges faster and
requires fewer degrees of freedom than the global a posteriori error estimate or
the uniform mesh. We also explore the geometrical freedom given by the finite
element method and examine wave scattering by the Morpho butterfly wing.
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in medical x-ray imaging [62, 132]. There are also acousto-optic devices, which
are dynamic gratings used to make tunable optical filters. They are used in many
applications for example in the pharmaceutical industry, to characterize the com-
position of drugs, and in spectroscopic sensing, for detecting trace gases [108].

1.1 Background

The problem of electromagnetic wave diffraction is based on solving Maxwell’s
equations in the diffraction grating region, to find the resulting electromagnetic
field when an incident wave shines upon the grating [79, 95]. In many applications
we are more interested in the efficiency of the grating. The reflection (transmission)
efficiency is the ratio of the reflected energy (transmitted energy) to the incident
energy of the electromagnetic field. In our case, we will assume that there is
neither charge nor current so that the Maxwell equations reduce to the Helmholtz
equation [95]. There are two types of grating known as the perfectly conducting
(sound soft) grating, when there is no energy absorbed by the grating (i.e the
electromagnetic field vanishes inside the scatterer), and the dielectric transmitting
(sound hard) grating, where energy can be absorbed by the grating. There are
also two fundamental polarizations [82, 95, 50]. The first is the Transverse Electric
mode (TE), where the direction of the electric field is perpendicular to the direction
of propagation; which means the electric field is E = (0, 0, Ez(x, y, t)) and the
magnetic field is H = (Hx(x, y, t), Hy(x, y, t), 0). The second polarization is the
Transverse Magnetic mode (TM), where the direction of the magnetic field is
perpendicular to the direction of propagation; which means the magnetic field
is H = (0, 0, Hz(x, y, t)) and the electric field is E = (Ex(x, y, t), Ey(x, y, t), 0).
We seek to solve the Helmholtz equation for both grating types and for both
polarizations, in two dimensions, for a periodic grating with respect to one direction
when a plane wave is incident. To this end, we use a finite element method and
use the periodicity of the grating with respect to one direction to focus our study
over one period. Since the domain is infinite in the other direction we need to
truncate the domain and apply some transparent boundary conditions. We then
use the Rayleigh expansion of the electromagnetic fields from the region outside
the truncated domain of the diffraction grating system to match with the solution
inside the diffraction grating region. We then subdivide the diffraction grating
region into finite elements.

There are of course other numerical methods in the literature to solve the
problem of diffraction of waves [95, 99]. There is the differential method where the
dielectric permittivity and the electromagnetic field are expanded in a Fourier se-
ries over the grating period [95]. Then the Fourier expansions are inserted into the
Helmholtz equation and the problem is solved using differential equation shoot-
ing methods. There is also the boundary element method [91], where the wave
problem is formulated as an integral equation. This method is deployable when
we can derive a periodic Green’s function which describes the connection of the
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electrical surface current radiating from one point belonging to the grating to an
arbitrary point in the space. Then there is the finite difference method [65], which
is based on solving the wave equation in the diffraction grating region by divid-
ing the diffraction grating over one period into grids. The spatial derivatives are
then approximated by finite differences. Like the finite element method, it uses
the Rayleigh expansion of the electromagnetic fields from the region outside the
diffraction grating system to match on the boundary the electromagnetic field from
the region inside.

The advantage of the finite element method is its flexibility in dealing with
complex geometries. It also naturally gives rise to a variational formulation which
provides a platform to rigorously derive existence and uniqueness results and reg-
ularity bounds. This allows us to make statements about the well-posedness of
the problem and to derive a priori error estimates. In addition, the finite element
method can achieve a desired level of accuracy and at the same time minimize the
computational cost by applying a posteriori error estimates.

1.2 Outline of the thesis

The first aim of this work is to undertake a rigorous analysis of an a priori error
estimate with what we call the α,0-quasi periodic method when we use the finite
element method and the Rayleigh expansion to solve the Helmholtz problem. This
original work is contained in Chapters 3 and 4.

In applications, we are also interested in controlling efficiently the error that
arises when we solve numerically the scattering problem. This can be done in
the finite element case, by calculating a posteriori error estimates. Since we
are interested in the efficiency of the grating we then choose the efficiency as our
quantity of interest. The second aim of our work is therefore to investigate a goal
oriented a posteriori error estimate called the Dual Weighted Residual (DWR)
method. This method consists of using both the direct solution and the dual
solution of the problem in order to achieve a goal oriented result. This original
work is contained in Chapter 5.

We also want to investigate different formulations of the problem, still based
on finite elements and the Rayleigh expansion, and examine in which cases these
approaches will be more efficient in solving the diffraction problem. Since it has
been reported for single scattering that there is an instability in numerical methods
when we have high wavenumbers [59, 16], we write the solution of the scattering
problem U as a product of the analytical solution of the scattering problem when
the domain is scatterer free and another unknown function we call Uα,β . By doing
so, we get a new wave equation that we will solve for this new unknown function
rather than solving directly the Helmholtz problem for U . We call this the α, β-
quasi periodic method. Hence our third aim is to investigate the a priori error
associated with this approach. The details of this original work are contained in
Chapter 6.
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Our final aim is to implement these methods in a discretised finite element
code and investigate their stability, accuracy, dependency on system parameters,
and their applicability to a set of problems. The details of this work are contained
in Chapter 7.

As there are two types of wave to consider (transverse magnetic (TM) and
transverse electric (TE)) and there are two types of gratings (perfectly conducting
and transmitting dielectric) there are in fact four cases to investigate. We denote
these cases by Case 1A/B: perfectly conducting and Case 2A/B: transmitting
dielectric where A (B) denotes the TE (TM) wave. Whilst we have derived results
for all four cases, in order to emphasise the salient points, we have relegated the
analysis of Cases 1B, 2A and 2B to the appendices (in Chapter 3 we also give
details for Case 2A).

We start by describing the geometry of the problem, in Chapter 2, when an
incident wave is radiating on the grating profile P = f(x) and we give the mathe-
matical formulation of the problem. Due to the periodicity of the grating, we can
focus our study over one period d. When we solve the problem numerically, we
truncate the domain at

∣

∣y
∣

∣ = B < ∞ by using the Dirichlet to Neumann (DtN)
operators. The DtN operator is used to match the Fourier coefficients of the field
obtained by finite elements inside this domain with the Rayleigh expansion of the
field outside. Once we have formulated the problem mathematically, we study
the properties of the DtN map. There have been a small number of theoretical
investigations into the use of the Finite Element Method as a tool for studying the
electromagnetic waves interacting with a diffraction grating [9, 12, 13]. In these
studies the continuity of the DtN map was simply assumed and hence the depen-
dency of the regularity constant on the system parameters such as the wavenumber
was not derived. These are essential components of our analysis and so in Sec-
tion 2.3.3 we derive these results for the first time. We then study the regularity
estimate for the Helmholtz problem for a periodic grating in two dimensions in
Chapter 3. This is needed in Chapters 4 and 6 to show the continuous depen-
dence of the solution of the Helmholtz problem on the data. We then describe
the α,0-quasi periodic method in Chapter 4. We start with an examination of the
continuous problem where we give its variational formulation in an appropriate
Sobolev space. We then investigate the well-posedness of the continuous problem;
that is, the solution exists, is unique and depends continuously on the data. Hence,
a new regularity result is required in order to show this continuous dependence.
The study of the well-posedness of the problem allows us to know in advance
that we can solve the problem. We then discretise the problem to approximate
its solution and derive a new a priori error estimate. This result guarantees the
uniqueness of the approximate solution.

There are essentially two approaches to studying a posteriori error estimates.
We can either study the difference between the exact solution and its approximate
solution or we just choose to focus on a particular linear functional which depends
on these solutions. In our case, we will adopt the second approach in Chapter 5. A
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linear functional Q is defined in such a way that it captures the error made between
the efficiency of the grating in the continuous problem and that obtained from the
discretised problem. By finding an upper bound for Q we derive a formula for an
error indicator function. This indicator function is subsequently used in the finite
element implementation to adaptively refine the size of the individual elements.
We start with the direct problem, then introduce the dual problem before proving
an estimate of the linear functional of the error.

We also want to investigate different transformations of the problem, still based
on finite elements and the Rayleigh expansion. To this end we introduce the α, β-
quasi periodic method in Chapter 6. Similar to Chapter 4, we start with an
examination of the continuous problem where we give its variational formulation.
We investigate the well-posedness of the continuous problem, discretise the prob-
lem to approximate its solution and derive a new a priori error estimate which
guarantees the uniqueness of this approximate solution. We finish by comparing
quantitatively the a priori error estimate from the α, 0-quasi periodic method and
the α, β-quasi periodic method.

In order to validate the theoretical results that are derived in this thesis a series
of numerical experiments were devised and implemented. There are two types of
experiment to be performed. The first set of experiments involve solving the prob-
lem numerically using a standard implementation and confirming that a bounded
solution does indeed exist. We will also use this implementation to examine the
relative convergence of the two problem formulations given in Chapters 4 and 6.
The second set of experiments utilise the new approach detailed in Chapter 5 to
construct an adaptive grid implementation. The aim of these experiments is to
verify that the proposed method does produce correct solutions and converges
faster than alternative strategies. Details of these implementations and the cor-
responding results are contained in Chapter 7. We begin by validating our code
with numerical methods and experiments from the literature. We then compare
the α, β-quasi periodic method with the α, 0-quasi periodic method across a range
of wavenumbers. We produce numerical results that show the advantage of using
the Dual Weighted Residual (DWR) method as compared to the uniform mesh or
the global a posteriori error method proposed in [13]. We have chosen the finite
element method because of its flexibility to adapt to complex scattering geometry.
In our final illustration, we will consider a scattering geometry from a real world
application concerning the Morpho butterfly wing [98, 129, 124, 102].

5



Chapter 2

Physical and mathematical
description of the problem

In this chapter, we start by introducing Maxwell’s equations and show how these
reduce to the Helmholtz equation in two simplified cases. Then, we give the
geometrical description of the diffraction grating and the mathematical formulation
of the problem concerning wave interaction with this. After we study the Dirichlet
to Neumann map, we use this to construct a transparent boundary between an
outer analytic solution and an inner numerical (finite element) solution so that
we can truncate the domain of our problem. We then give the mathematical
formulation of our problem in the truncated domain Ω ⊂ R2.

2.1 Maxwell’s equations and polarization

There are two types of grating [95, 82], the perfectly conducting (sound soft)
grating when there is no energy absorbed by the grating (i.e the electromagnetic
field vanishes inside the scatterer) and the transmitting dielectric (sound hard)
grating where energy can be absorbed by the grating. In this latter case, the
wavenumber inside the scatterer has a positive imaginary part which captures
the energy loss. There are two fundamental polarizations [82, 95, 50]. The first
is the Transverse Electric mode (TE), where the direction of the electric field
is perpendicular to the direction of propagation; which means the electric field
E = (0, 0, Ez) and the magnetic field H = (Hx, Hy, 0). The second polarization is
the Transverse Magnetic mode (TM), when the direction of the magnetic field is
perpendicular to the direction of propagation; which means the magnetic field H =
(0, 0, Hz) and the electric field E = (Ex, Ey, 0). Let us start by studying Maxwell’s
equations and derive the TE and TM problems for the perfectly conducting grating.
After that we will deal with the transmitting dielectric grating.

The time harmonic form of Maxwell’s equations, with e−iwt dependence, is
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given by [95, 60]

∇ × E = −iwB, (2.1)

∇ ×H = iwD + J, (2.2)

∇.J = −iwρ, (2.3)

∇.D = ρ, (2.4)

∇.B = 0. (2.5)

where E is the electric field, H is the magnetic field, B is the magnetic flux density,
D is the electric displacement, J is the electric current density, w is the angular
frequency, and ρ is the electric charge density. The constitutive relations may be
written

D = εE, (2.6)

B = µH, (2.7)

where ε and µ are, respectively, the electric permittivity and magnetic permeability
of the medium. At this stage let us assume that µ = 1 and that there is no charge
and no current, so that ρ = 0 and J = 0.

• Case 1: Perfectly conducting grating

For the perfectly conducting case, in the domain exterior to the grating,
equations (2.6) and (2.7) hold, where the electric permittivity of the medium
ε is constant. Inserting equation (2.7) into equation (2.1) gives

∇ × E = −iwµH. (2.8)

Similarly if we use equation (2.6) in equation (2.2) we get

∇ ×H = iwεE. (2.9)

Introducing the components of each field via E = (Ex, Ey, Ez) and H =
(Hx, Hy, Hz) then, if we assume that E(x, y) and H(x, y), we have from
equation (2.8)

∂yEz = −iwµHx, (2.10)

∂xEz = iwµHy, (2.11)

∂xEy − ∂yEx = −iwµHz, (2.12)

and from equation (2.9)

∂yHz = iwεEx, (2.13)

∂xHz = −iwεEy, (2.14)

∂xHy − ∂yHx = iwεEz. (2.15)
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The perfectly conducting boundary conditions for the fields on the grating
surface are given by

n ×E = 0, (2.16)

n.H = 0, (2.17)

where n = (nx, ny, 0) is the outward unit normal vector on the grating surface
[82]. Examining the components of equation (2.16) we get on the boundary

Ez = 0, (2.18)

and

nxEy − nyEx = 0. (2.19)

Combining equation (2.19) with equations (2.13) and (2.14) gives

nx∂xHz + ny∂yHz =
∂Hz

∂n
= 0 (2.20)

where ∂x is the first order partial derivative with respect to x (∂y is the first
order partial derivative with respect to y). We note that equations (2.10)
to (2.20) can be separated into two independent sets [82]. The first set
consists of (2.10), (2.11), (2.15) and (2.18). These equations only contain
the transverse component Ez of the electric field and the components Hx and
Hy of the magnetic field. Differentiating equation (2.10) with respect to y,
differentiating equation (2.11) with respect to x and adding them gives

∆Ez = iwµ (∂xHy − ∂yHx) .

Using equation (2.15) then gives the Helmholtz equation

∆Ez + k2Ez = 0 (2.21)

where
k2 = w2εµ,

subject to the boundary condition given by equation (2.18). This is called the
Transverse Electric (TE) problem. The second set consists of (2.12), (2.13),
(2.14) and (2.20). These equations only contain the transverse component
Hz of the magnetic field and the components Ex and Ey of the electric field.
In a similar way if we combine equations (2.13) and (2.14) and use equation
(2.12) we get a second Helmholtz problem

∆Hz + k2Hz = 0 (2.22)

subject to the boundary condition given by equation (2.20). This is called
the Transverse Magnetic (TM) problem.

8



• Case 2. Transmitting dielectric grating

We follow the same procedure as in Case 1 but this time we also have to
satisfy Maxwell’s equations inside the scatterer, and so we need to take into
account that the permittivity ε is no longer constant. For the TE case the
combination of equations (2.10), (2.11) and (2.15) (with permittivity ε(x, y))
lead to the Helmholtz problem

∆Ez + k2(x, y)Ez = 0, (2.23)

with
k2(x, y) = w2ε(x, y)µ.

For the TM case a complication arises when we take the derivatives of equa-
tions (2.13) and (2.14) since the permittivity is now spatially dependent.
Hence equations (2.13) and (2.14) can be rearranged and differentiated to
give

∂y

(

1

iwε(x, y)
∂yHz

)

= ∂yEx

and

∂x

(

1

iwε(x, y)
∂xHz

)

= −∂xEy.

Adding these and using equation (2.12) gives

∂x

(

1

k2(x, y)
∂xHz

)

+ ∂y

(

1

k2(x, y)
∂yHz

)

+Hz = 0 (2.24)

since the permeability is constant.

For both Case 1 and Case 2, in order to formulate the scattering problem as a
boundary value problem, we need to include an appropriate radiation condition
(outgoing wave condition). In this thesis we will be considering electromagnetic
waves interacting with a periodic diffraction grating. The usual Sommerfeld radi-
ation condition is therefore not appropriate [28] as the radiating energy does not
diminish in the direction of periodicity. Hence the so-called upward propagating
radiation condition (UPRC) was introduced in [28]. It has been used to establish
the uniqueness of the solution of scattering from a periodic grating. It was shown
that if the grating is periodic then the UPRC is equivalent to the Rayleigh condi-
tion which means when y goes to infinity, Ez and Hz must remain bounded and
can be described as a superposition of outgoing plane waves [97, 95, 4, 5].

2.2 Problem statement

We wish to solve the Helmholtz equation in R2 for a periodic grating of period d
(with respect to x), as shown in Figure 2.1. Since we will consider two types of

9
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Figure 2.1: Diagram representing an incident wave with an angle of incidence θ
with respect to the y axis on a periodic grating in R2. The parameter d represents
the period of the grating in the x direction. The scatterers are represented by the
shaded regions.
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grating (the perfectly conducting grating and the transmitting dielectric grating)
we denote, for the perfectly conducting case, the region of R2 outside the scatterers
by R2

+(the unshaded region in Figure 2.1) and by R2
−, the scatterers in R2 (shown

as the shaded regions in Figure 2.1).

• Case 1A: Perfectly conducting grating: TE case

Here we are solving for U = Ez and, using equations (2.21) and (2.16), we
solve the Helmholtz problem to find U(x, y) ∈ C2(R2

+) such that

∆U(x, y) + k2(x, y)U(x, y) = 0, (x, y) ∈ R
2
+,

U(x, y) = 0, (x, y) ∈ ∂R2
−, (2.25)

subject to the upward propagating radiation condition (UPRC)

lim
|y|→∞

U(x, y) = 0. (2.26)

• Case 1B: Perfectly conducting grating: TM case

Here we are solving for U = Hz and, using equations (2.22) and (2.17), we
solve the Helmholtz problem to find U(x, y) ∈ C2(R2

+) such that

∆U(x, y) + k2(x, y)U(x, y) = 0, (x, y) ∈ R
2
+,

∂U(x, y)

∂n
= 0, (x, y) ∈ ∂R2

−, (2.27)

subject to the UPRC

lim
|y|→∞

U(x, y) = 0. (2.28)

where ∂
∂n

denotes the normal derivative operator on the boundary of each
scatterer.

• Case 2A: Transmitting dielectric grating: TE case

Here we are solving for U = Ez and, using equations (2.23), we solve the
Helmholtz problem to find U(x, y) ∈ C2(R2) such that

∆U(x, y) + k2(x, y)U(x, y) = 0, (x, y) ∈ R
2, (2.29)

subject to the UPRC

lim
|y|→∞

U(x, y) = 0. (2.30)

11



• Case 2B: Transmitting dielectric grating: TM case

Here we are solving for U = Hz and, using equation (2.24), we solve the
Helmholtz problem to find U(x, y) ∈ C2(R2) such that

∇.
(

1

k2
∇U(x, y)

)

+ U(x, y) = 0, (x, y) ∈ R
2, (2.31)

subject to the UPRC

lim
|y|→∞

U(x, y) = 0. (2.32)

We will utilize the periodicity of the grating and restrict our problem to a single
vertical strip, S = [0, d]× R, as shown in Figure 2.2. We restrict the effects of the
scatterers (the grating) to a horizontal strip Ω0 = [0, d]× [−b, b] and we define the
wavenumber k to be

k(x, y) =







k1 ∈ R, for (x, y) ∈ Ω1,
k0(x, y) ∈ C, for (x, y) ∈ Ω0,
k2 ∈ C, for (x, y) ∈ Ω2.

(2.33)

where Ω1 = [0, d]× [b,+∞) and Ω2 = [0, d]×(−∞,−b]. The first reason for having
b is for computational efficiency, so that we can have coarse mesh inside the region
away from the scatterers (|y| > b). The second reason is that we need to use the
Rayleigh expansion inside the region b < |y| < B when we derive an a priori
error estimates when we truncate the DtN map. The third reason is to make our
geometry sufficiently general to cope with the situation where there is a different
material in regions Ωi.

Incident wave

The incident wave is
UI = eiαx−iβ

0
1y, (2.34)

where

α = k1 sin θ, (2.35)

β0
1 = k1 cos θ

and θ is the angle of incidence of the wave as shown in Figure 2.2. We demand
that

ℜ(kj) > 0,
ℑ(kj) ≥ 0,

}

(2.36)

where ℜ(kj) (ℑ(kj)) denotes the real (imaginary) part of kj so that the scattered
and diffracted waves are composed of bounded outgoing waves. We use the no-
tation β0

1 to be consistent with the notation βnj that we will use later on for the

12
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Figure 2.2: Diagram depicting a periodic grating in R2 over one period d in the
x direction. The scattering region is denoted by Ω0, the region occupied by the
scatterer is denoted by Ω3, Ω1 is the upper region with constant wavenumber
k1 ∈ R and Ω2 is the lower region with constant wavenumber k2 ∈ C. UI is the
incident wave.
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different wavenumbers of the diffracted waves in the upper region Ω1 (j = 1) and
lower region Ω2 (j = 2). The reason that there is no subscript or superscript on
α is just a consequence of the Snell’s law for stratified media which makes α the
same in Ω1 and Ω2.

Transparent boundary conditions (Dirichlet to Neumann Maps)

To solve the grating problem numerically for a wide range of grating geometries
we will use a finite element method. We therefore need to truncate our domain
to render it finite. To provide suitable boundary conditions for the finite element
solver we use an analytical solution in the adjacent domains and apply transparent
boundary conditions that match this analytical solution continuously and smoothly
with the finite element solution inside the truncated region. To achieve this we
study the analytic solution of the Helmholtz equation when the wavenumber is a
complex constant; known as the Rayleigh expansion. These transparent boundary
conditions are captured by the Dirichlet to Neumann (DtN) operators T± (see
Section 2.3.2) which match the Rayleigh expansion of the electromagnetic field on
the boundary of the truncated region with the finite element solution inside the
truncated domain. To assist us in this we redefine Ω1,Ω2 to be

Ω1 = {(x, y) : 0 ≤ x ≤ d, b ≤ y ≤ B},
Ω2 = {(x, y) : 0 ≤ x ≤ d,−B < y ≤ −b},

where B is a positive real number and B > b (see Figure 2.3). We also denote

Ω+ = {(x, y) : 0 ≤ x ≤ d, y ≥ B},
Ω− = {(x, y) : 0 ≤ x ≤ d, y ≤ −B},
Γ+ = {(x, y) : 0 ≤ x ≤ d, y = B}, (2.37)

Γ− = {(x, y) : 0 ≤ x ≤ d, y = −B}, (2.38)

and we denote by Ω3 ⊂ Ω0 the scatterer (see Figure 2.3). In our study, the
structure of the diffraction grating in one period can be shown either by Figure 2.3
or Figure 2.4. Then instead of finding U which satisfies one of the equations (2.25),
(2.27), (2.29) and (2.31) in [0, d] × R we will find the equivalent solution of the
problem in

Ω = {(x, y) : 0 ≤ x ≤ d,−B ≤ y ≤ B}. (2.39)

Hence we need an analytical solution to the Helmholtz problem in the homo-
geneous regions that lie above and below Ω so that we can solve our problem in
Ω, this is done in the following section.

14
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Figure 2.3: Diagram showing the truncated periodic grating domain. We redefine
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Figure 2.4: Another type of the grating profile when the interface which separates
the grating with the region above is an open curve.
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2.3 Matching the analytical solution on to the fi-

nite element solution at the transparent bound-

ary

As explained earlier we will need an analytical solution to the Helmholtz problem
in the homogeneous regions that lie above and below Ω defined in (2.39). In the
following section we derive this solution.

2.3.1 Fundamental solution of Helmholtz problem in a ho-
mogeneous domain

In Section 2.2 the methodology for solving these Helmholtz problems for a general
scatterer geometry required an analytical solution in the outer domains; where the
wavenumber is constant. Let u ∈ H1

α#(Ω±)
⋂

C2(Ω±), kj ∈ C and let us find the
analytical solution of

∆u+ k2ju = 0, x ∈ [0, d], | y |≥ B, i.e. x ∈ Ω±, j ∈ {1, 2}.

For that, we need the following lemma. For completeness sake Appendix A contains
the definitions that we shall need in this thesis regarding Sobolev spaces.

Lemma 1. If u is α-quasi-periodic and if kj ∈ C, then the solution of the Helmholtz
problem

∆u(x, y) + k2ju(x, y) = 0, x ∈ [0, d], | y |≥ B, j ∈ {1, 2}, (2.40)

is composed only of outgoing waves (apart from the incident wave). In order to
satisfy the UPRC conditions at y = ∞ so that it is unique, it can be written as
[97, 95, 4, 5]

u(x, y) =
∑

n∈Z
Fn(x)Gn(y) (2.41)

where

Fn(x) = c1e
inαx,

Gn(y) = cne
−iβn

j y + dne
iβn

j y.

For y ≥ B, cn = 0 for all n ∈ Z except for n = 0 which corresponds to the incident
wave and for y ≤ −B dn = 0 for all n ∈ Z in order to satisfy the radiation
condition (UPRC). We also have

nα = α +
2πn

d
, (2.42)

|βnj |2 =
∣

∣k2j − n2
α

∣

∣, βnj = eizn/2(|k2j − n2
α|)1/2, (2.43)
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such that

zn = arg(k2j − n2
α), (2.44)

for j ∈ {1, 2}.
Proof. Let us write u =

∑

n∈Z Fn(x)Gn(y). If u satisfies equation (2.40) then so
does each un = Fn(x)Gn(y). Therefore,

∆un + k2jun = 0, x ∈ [0, d], | y |≥ B, j ∈ {1, 2}. (2.45)

Then, equation (2.45) becomes

F ′′
n (x)Gn(y) + Fn(x)G

′′
n(y) + k2jFn(x)Gn(y) = 0,

which can be rewritten as follows

F ′′
n (x)

Fn(x)
= −G′′

n(y)

Gn(y)
− k2j . (2.46)

We see that the left and right hand sides of equation (2.46), are dependent only
on x, and on y, respectively. Therefore, they both must be constant and so there
exists a constant λn such that

F ′′
n (x) = λnFn(x), (2.47)

G′′
n(y) = −(λn + k2j )Gn(y). (2.48)

Let us begin by solving equation (2.47). Because of the quasi-periodicity of Fn,
we cannot have λn > 0 so we write λn = −n2

α. Therefore,

Fn(x) = C1e
−inαx + C2e

inαx.

Applying the quasi-periodic condition

Fn(d) = eiαdFn(0) (2.49)

gives
(C1 + C2)e

iαd = C1e
−inαd + C2e

inαd,

and so equation (2.49) is satisfied if and only if

nα = α+
2πn

d
(2.50)

and
C1 = 0.

We choose the direction of propagation along the x direction to be from left to
right and so

Fn(x) = C2e
inαx. (2.51)

18



Equation (2.48) can be solved using equation (2.50) to give

−G′′
n(y) − (k2j − n2

α)Gn(y) = 0.

Then, with
(

βnj
)2

= k2j − n2
α, as given by equation (2.43),

Gn(y) = cne
−iβn

j y + dne
iβn

j y. (2.52)

Note that we avoid the case k2j = n2
α which corresponds to the resonance phe-

nomenon [95, 82].

2.3.2 The Dirichlet to Neumann maps T, T α,0 and T α,β

We need the following property of α−quasi-periodic functions before we study the
DtN maps.

Lemma 2. For fixed y = y0, f(x, y0) can be treated as a function of one variable,
x. If f(x, y0) ∈ L1

α#([0, d]), then f(x, y0) can be expanded as the Fourier series

f(x, y0) =
∑

n∈Z
f (nα)(y0)e

inαx (2.53)

where

f (nα)(y0) =
1

d

∫ d

0

f(x, y0)e
−inαxdx

with nα = 2πn
d

+ α.

Proof. Because f(x, y0) is α-quasi-periodic with respect to x, we can use Lemma A-
16 and we can see that g(x, y0) = e−iαxf(x, y0) is periodic with respect to x.
Therefore we can express g(x, y0) as a Fourier series

e−iαxf(x, y0) =
∑

n∈Z
g(n)(y0)e

i 2πn
d
x,

such that

g(n)(y0) =
1

d

∫ d

0

e−iαxf(x, y0)e
−i 2πn

d
xdx,

=
1

d

∫ d

0

f(x, y0)e
−inαxdx,

= f (nα)(y0).

Hence

e−iαxf(x, y0) =
∑

n∈Z
f (nα)(y0)e

i 2πn
d
x,

which finishes the proof.
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We can now expand the solution to the Helmholtz problem detailed in Lemma 1,
u(x, y), as a Fourier series in x (for each y value), by using Lemma 2. This leads
us to

u(x, y) =
∑

n∈Z
U (nα)(y)einαx. (2.54)

By using Lemma 1 for (x, y) ∈ Ω±, this solution can be written as

u(x, y) =
∑

n∈Z
rnj e

iβn
j y+inαx + tnj e

−iβn
j y+inαx, j = 1, 2, (2.55)

where the unknowns rnj and tnj , called Rayleigh coefficients, are complex scalars
(we shall see later in Section 4.1.4 that rnj (tnj ) is related to the grating reflection
(transmission) efficiency of order n). By requiring that u is composed of bounded
outgoing planes waves in Ω±, except the incident wave in Ω+, we have

tn1 = δn0,

rn2 = 0

for all n ∈ Z such that βnj is given by equation (2.43) and δ is the Kronecker delta
defined by

δnm =

{

1, if n = m,
0, otherwise.

(2.56)

We again stipulate that k2j 6= n2
α to avoid the phenomenon of resonance [95]. This

leads us to write

U (nα)(y) = rn1 e
iβn

1 y + δn0e
−iβ0

1y, in Ω+

U (nα)(y) = tn2e
−iβn

2 y, in Ω−. (2.57)

In Ω+, since Γ+ ⊂ Ω+, when y = B, we have

U (nα)(B) = rn1 e
iβn

1B + δn0e
−iβ0

1B,

so

rn1 = U (nα)(B)e−iβ
n
1B − δn0e

−2iβ0
1B. (2.58)

In Ω−, since Γ− ⊂ Ω−, when y = −B,

U (nα)(−B) = tn2e
iβn

2B,

so

tn2 = U (nα)(−B)e−iβ
n
2B. (2.59)
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Inserting the expressions from equations (2.58) and (2.59) in equation (2.57), we
find that

U (nα)(y) =

{

U (nα)(B)eiβ
n
1 (y−B) − δn0

(

eiβ
0
1(y−2B) − e−iβ

0
1y
)

, in Ω+

U (nα)(−B)e−iβ
n
2 (y+B) in Ω−.

(2.60)

From now on, we will just denote by n the unit normal on Γ+. When y ≥ B, we
derive from equation (2.60) that

∂U (nα)(y)

∂n
= iβn1U

(nα)(y)eiβ
n
1 (y−B) − δn0

(

iβ0
1e
iβ0

1(y−2B) + iβ0
1e

−iβ0
1y
)

.

Hence

∂U (nα)(y)

∂n

∣

∣

∣

∣

Γ+

= iβn1U
(nα)(B) − δn02iβ

0
1e

−iβ0
1B. (2.61)

Similarly, let us denote by n the unit normal on Γ−. When y ≤ −B, we derive
from equation (2.60) that

∂U (nα)(y)

∂n
= iβn2U

(nα)(y)e−iβ
n
2 (y+B).

Hence

∂U (nα)(y)

∂n

∣

∣

∣

∣

Γ−

= iβn2U
(nα)(−B). (2.62)

This leads us to,

∂u

∂n

∣

∣

Γ+
=

∑

n∈Z
iβn1U

(nα)(B)einαx − 2iβ0
1e
iαx−iβ0

1B (2.63)

∂u

∂n

∣

∣

Γ−
=

∑

n∈Z
iβn2U

(nα)(−B)einαx.

We now introduce Dirichlet to Neumann maps, T±, which are used to match
continuously and smoothly the outer analytical solution on Γ±, with the inner
solution given by the finite element methods in Ω. They are called DtN maps,
because they give the relationship between the value of the function f on the
boundary (i.e. Dirichlet data) to its normal derivative (i.e. Neumann data).

Definition 3. Let f ∈ H
1
2
α#(Γ±). We define the DtN maps [9], T , where Tf ∈

H
− 1

2

α# (Γ±) and

T±f(x) =
∑

n∈Z
iβnj f

(nα)(±B)einαx,

where f(x, y)|Γ± = f(x,±B), with zn given by equation (2.44), βnj given by equa-
tion (2.43) such that j = 1 corresponds to Γ+ and j = 2 corresponds to Γ−, nα
given by equation (2.42) and f (nα)(±B) given by Lemma 2.
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In Chapter 4 and Chapter 6, two different methods are used to solve the scattering
problem. We will need different DtN maps for each method, which we will denote
by T α,0± and T α,β± .

Definition 4. Let f ∈ H
1
2
#(Γ±). We define the DtN maps [11], T α,0± , where

T α,0± f ∈ H
− 1

2
# (Γ±), and

T α,0± f(x) =
∑

n∈Z
iβnj f

(n)(±B)ei
2πn
d
x,

where f (n)(±B) =
1

d

∫ d

0

f(x,±B)e−i
2πn
d
xdx.

In Chapter 6, we will introduce a function w(y) such that the solution to the
scattering problem U = eiαxw(y)Uα,β. In doing so, we will need to introduce T α,β±
which is defined as follows

Definition 5. Let f ∈ H
1
2
#(Γ±). We define the DtN map, T α,β± , where T α,β± f ∈

H
− 1

2
# (Γ±) and

T α,β± f(x) =
∑

n∈Z
i

(

βnj ± i
w′(y)

w(y)

∣

∣

∣

∣

Γ±

)

f (n)(±B)ei
2πn
d
x, (2.64)

where

w(y) =

{

t1e
−iβ0

1y + r1e
iβ0

1y, b ≤ y ≤ B,

t2e
−iβ0

2y + r2e
iβ0

2y, −B ≤ y ≤ −b, (2.65)

with b and B as shown in Figure 2.3. The parameters t1 = 1, r2 = 0 and r1, t2 ∈ C,
which satisfy |r1| ≤ 1, |t2| ≤ 1, and will be explained in detail in Chapter 6 along
with the function w(y).

Note that we can combine Definition 4 and Definition 5 to obtain

T α,β± f(x) = T α,0± f(x) ∓ w′(y)

w(y)

∣

∣

∣

∣

Γ±

Idf(x), (2.66)

where Id is the identity operator.

2.3.3 Properties of the operators T, T α,0, T α,β

In this section we will derive some results regarding the DtN maps defined above.
To ease the notation we will drop the subscript ± from the maps and write

T = T±,

T α,0 = T α,0± ,

T α,β = T α,β± .
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In order to show the uniqueness of the solution to the scattering problem, one of
the prerequisites is that T is a continuous operator. In many papers [14, 13, 9, 118],
the authors state that T is a continuous linear form but they do not calculate the
constant of continuity. Here we calculate these constants explicitly.

Lemma 6. The operator T : H
1
2
α#(Γ±) → H

− 1
2

α# (Γ±) is a continuous linear form
(the operator is linear and its norm in the image space is bounded by the norm of
the function in the domain). There exists a positive constant 2 ≤ C2 ≤

√
5 such

that

‖ Tf ‖2

H
− 1

2
α# (Γ±)

≤ C2 sup(|k2j |, 1) ‖ f ‖2

H
1
2
α#(Γ±)

for j = 1, 2. In addition, for all n ∈ N and j = 1, 2

|βnj |2 ≤
{

C2|k2j | if |k2j | > n2
α,

C2n2
α if |k2j | < n2

α.
(2.67)

Proof. Let f, g ∈ H
1
2
α#(Γ+), then

T (f + g) =
∑

n∈Z
iβnj (f + g)(nα)(B)einαx,

=
∑

n∈Z
iβnj f

(nα)(B)einαx +
∑

n∈Z
iβnj g

(nα)(B)einαx,

since

(f + g)(nα)(B) =
1

d

∫ d

0

(f + g)(x,B)e−inαxdx,

=
1

d

∫ d

0

(f)(x,B)e−inαxdx+
1

d

∫ d

0

(g)(x,B)e−inαxdx.

If c ∈ C, then

T (cf) =
∑

n∈Z
iβnj (cf)

(nα)(B)einαx,

= cT (f).

To prove continuity, we note from equation (2.43) that

∣

∣βnj
∣

∣

2
=

∣

∣n2
α − k2j

∣

∣ ,

=
∣

∣n2
α

∣

∣

∣

∣

∣

∣

1 − k2j
n2
α

∣

∣

∣

∣

.
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If n2
α > |k2| , we have

1 − k2j
n2
α

= 1 − ℜ
(

k2j
)

n2
α

− i
ℑ
(

k2j
)

n2
α

,

and since
k2j = ℜ2 (kj) − ℑ2 (kj) + 2iℜ (kj)ℑ (kj) ,

then

1 − k2j
n2
α

= 1 − ℜ2 (kj)

n2
α

+
ℑ2 (kj)

n2
α

− i
ℑ
(

k2j
)

n2
α

.

Therefore, we have
∣

∣

∣

∣

1 − k2j
n2
α

∣

∣

∣

∣

< |2 − i|,

and so if |k2j | < n2
α, there exists 2 ≤ c1 ≤

√
5 such that

|
(

βnj
)2 | ≤ c1n

2
α. (2.68)

When, |n2
α| < |k2j | , we have

∣

∣

∣

∣

1 − n2
α

k2j

∣

∣

∣

∣

=

∣

∣

∣

∣

1 − n2
αℜ(k2j )

|k2j ||k2j |
+ i

n2
αℑ(k2j )

|k2j ||k2j |

∣

∣

∣

∣

,

≤ |1 + i|,
≤

√
2,

so if |k2j | > n2
α, there exists 1 ≤ c2 ≤

√
2 such that

|
(

βnj
)2 | ≤ c2|k2j |. (2.69)

Hence, by setting C2 = sup(c1, c2), we have from Definition A-17

‖ Tf(x) ‖2

H
− 1

2
α# (Γ±)

=
∑

n∈Z

(

n2
α + 1

)− 1
2
∣

∣βnj
∣

∣

2 ∣
∣f (nα)

∣

∣

2
,

=
∑

{n∈Z:n2
α<|k2j |}

(

n2
α + 1

)− 1
2
∣

∣βnj
∣

∣

2 ∣
∣f (nα)

∣

∣

2

+
∑

{n∈Z:n2
α>|k2j |}

(

n2
α + 1

)− 1
2
∣

∣βnj
∣

∣

2 ∣
∣f (nα)

∣

∣

2
,

≤
∑

{n∈Z:n2
α<|k2j |}

C2
(

n2
α + 1

)− 1
2 (|k2j |)

∣

∣f (nα)
∣

∣

2

+
∑

{n∈Z:n2
α>|k2j |}

C2
(

n2
α + 1

)− 1
2 n2

α

∣

∣f (nα)
∣

∣

2
,
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by using equation (2.68) and equation (2.69). Therefore for j = 1, 2

‖ Tf(x) ‖2

H
− 1

2
α# (Γ±)

≤ C2|k2j |
∑

{n∈Z:n2
α<|k2j |}

(

n2
α + 1

)
1
2
∣

∣f (nα)
∣

∣

2

+C2
∑

{n∈Z:n2
α>|k2j |}

(

n2
α + 1

)
1
2
∣

∣f (nα)
∣

∣

2
,

since n2
α < n2

α + 1. Finally , we have

‖ Tf(x) ‖2

H
− 1

2
α# (Γ±)

≤ C2 sup
(

|k2j |, 1
)

∑

n∈Z

(

n2
α + 1

)
1
2
∣

∣f (nα)
∣

∣

2
,

≤ C2 sup
(

|k2j |, 1
)

‖ f ‖2

H
1
2
α#(Γ±)

,

by using Definition A-17, which finishes the proof.

We also note the following result which will be used later when we study the
well-posedness of the scattering problems.

Lemma 7. The bilinear form

T (f, g) : (f, g) 7→ (Tf, g)Γ±

such that (. , .)Γ± is given by Lemma A-8 is continuous on H
1
2
α#(Γ±) ×H

1
2
α#(Γ±),

and there exists a constant positive C ≤
√
5 such that

∣

∣(Tf, g)Γ±

∣

∣ ≤ d
√
C sup (|kj|, 1) ‖f‖

H
1
2
α#(Γ±)

‖g‖
H

1
2
α#(Γ±)

.

Proof. We have by using Definition 3

T (f, g)Γ± =

∫

Γ±

∑

n∈Z
iβnj f

(nα)(±B)einαxg(x,±B)dx,

=
∑

n∈Z
iβnj f

(nα)(±B)

∫

Γ±

einαxg(x,±B)dx,

= d
∑

n∈Z
iβnj f

(nα)(±B)g(nα)(±B), (2.70)

from Lemma 2. We use the Schwarz inequality [22] to write

∣

∣(Tg, f)Γ±

∣

∣ =

∣

∣

∣

∣

∣

d
∑

n∈Z
i
(

βnj
)1/2

f (nα)(±B)
(

βnj
)1/2

g(nα)(±B)

∣

∣

∣

∣

∣

,

≤ d

(

∑

n∈Z

∣

∣βnj
∣

∣

∣

∣g(nα)(±B)
∣

∣

2

)
1
2
(

∑

n∈Z

∣

∣βnj
∣

∣

∣

∣f (nα)(±B)
∣

∣

2

)
1
2
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We note that
∑

n∈Z

∣

∣βnj
∣

∣

∣

∣g(nα)(±B)
∣

∣

2 ≤
√
C|kj|

∑

{n∈Z,|k2j |>n2
α}

∣

∣g(nα)(±B)
∣

∣

2

+
√
C

∑

{n∈Z,|k2j |<n2
α}

|nα|
∣

∣g(nα)(±B)
∣

∣

2
,

by using equation (2.67) in Lemma 6. Since |nα| = (n2
α)

1/2 < (n2
α + 1)1/2, we can

write
∑

n∈Z

∣

∣βnj
∣

∣

∣

∣g(nα)(±B)
∣

∣

2 ≤
√
C|kj|

∑

{n∈Z,|k2j |>n2
α}

∣

∣g(nα)(±B)
∣

∣

2

+
√
C

∑

{n∈Z,|k2j |<n2
α}

(

n2
α + 1

)1/2 ∣
∣g(nα)(±B)

∣

∣

2
.

We also have (n2
α + 1)1/2 > 1,

∑

n∈Z

∣

∣βnj
∣

∣

∣

∣g(nα)(±B)
∣

∣

2 ≤
√
C|kj|

∑

{n∈Z,|k2j |>n2
α}

(

n2
α + 1

)1/2 ∣
∣g(nα)(±B)

∣

∣

2

+
√
C

∑

{n∈Z,|k2j |<n2
α}

(

n2
α + 1

)1/2 ∣
∣g(nα)(±B)

∣

∣

2
,

≤
√
C sup (|kj|, 1)

∑

n∈Z

(

n2
α + 1

)1/2 ∣
∣g(nα)(±B)

∣

∣

2
,

≤
√
C sup (|kj|, 1) ‖ g ‖2

H
1
2
α#(Γ±)

.

The last inequality is justified by using the definition of the H
1
2
α#(Γ±) norm given

in Definition A-17. We apply the same arguments to show
∑

n∈Z

∣

∣βnj
∣

∣

∣

∣f (nα)
∣

∣

2 ≤
√
C sup (|kj|, 1) ‖ f ‖2

H
1
2
α#(Γ±)

.

Therefore,
∣

∣(Tg, f)Γ±

∣

∣ ≤ d
√
C sup (|kj|, 1) ‖g‖

H
1
2
α#(Γ±)

‖f‖
H

1
2
α#(Γ±)

The lemma below has been shown to hold for kj ∈ R [9, 85]. However, in the
cases we shall consider kj ∈ C, and therefore we extend the result.

Lemma 8. The wavenumber βnj , of the scattered (or diffracted) wave in a direction
given by α, satisfies

ℜ(βnj ) ≥ 0,
ℑ(βnj ) ≥ 0.

}

(2.71)
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The inner product of a function g and its normal derivative on the boundary Γ±
satisfies

ℜ(Tg, g)Γ± = − d
∑

n∈Z
sin(zn/2)

∣

∣βnj
∣

∣

∣

∣g(nα)
∣

∣

2 ≤ 0,

ℑ(Tg, g)Γ± =d
∑

n∈Z
cos(zn/2)|βnj ||g(nα)|2 ≥ 0,















(2.72)

where zn is defined by equation (2.44).

Proof. We use the definition of βnj given by equation (2.43)

βnj = eizn/2|k2j − n2
α|1/2,

for j = 1, 2. By using Euler’s formula, we can write

βnj = (cos zn/2 + i sin zn/2)
∣

∣k2j − n2
α

∣

∣

1/2
. (2.73)

Then, with zn as defined by equation (2.44)

sin zn =
ℑ(k2j )

|k2j − n2
α| =

2ℑ(kj)ℜ(kj)

|k2j − n2
α| .

From equation (2.21) and equation (2.23), kj = w
√
εj > 0 (since the frequency and

permittivity are positive). Hence ℜ(kj) > 0. From equation (2.60), ℑ(kj) ≥ 0 so
that the scattered and diffracted waves are composed of bounded outgoing waves
in the y direction and we have

sin zn ≥ 0,

and so zn ∈ [0, π]. Therefore, zn/2 ∈ [0, π/2] and hence cos zn/2 and sin zn/2 are
both positive which shows

ℜ(βnj ) = cos zn/2
∣

∣k2j − n2
α

∣

∣

1/2 ≥ 0,

ℑ(βnj ) = sin zn/2
∣

∣k2j − n2
α

∣

∣

1/2 ≥ 0.

We have by using Definition 3

T (g, g)Γ± = d
∑

n∈Z
iβnj
∣

∣g(nα)(±B)
∣

∣

2
,

which can be written using equation (2.73)

T (g, g)Γ± = d
∑

n∈Z
i(cos zn/2 + i sin zn/2)|k2j − n2

α|1/2
∣

∣g(nα)(±B)
∣

∣

2
.

Then,

ℜ
(

T (g, g)Γ±

)

= −d
∑

n∈Z
sin zn/2|k2j − n2

α|1/2
∣

∣g(nα)(±B)
∣

∣

2
,
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and

ℑ
(

T (g, g)Γ±

)

= d
∑

n∈Z
cos zn/2|k2j − n2

α|1/2
∣

∣g(nα)(±B)
∣

∣

2
.

Since d|k2j − n2
α|1/2

∣

∣g(nα)(±B)
∣

∣

2 ≥ 0, we can use equation (2.71) and so

ℜ
(

T (g, g)Γ±

)

≤ 0,

and

ℑ
(

T (g, g)Γ±

)

≥ 0.

The following lemma is a new result concerning the relation between the two
operators T and T α,0 which we can use to derive some properties of T α,0 using T
or vice versa.

Lemma 9. For f ∈ L1
#([0, d])

T (eiαxf(x)) = eiαxT α,0f(x).

Proof. First let us consider the case where y = B. Using Definition 3

T+g(x) =
∑

n∈Z
iβn1 g

(nα)(B)einαx.

We take g = eiαxf(x,B) and so

T+
(

eiαxf(x,B)
)

=
∑

n∈Z
iβn1
(

eiαxf(x,B)
)(nα)

(B)einαx.

By using equation (2.53)

(

eiαxf(x,B)
)(nα)

(B) =
1

d

∫ d

0

eiαxf(x,B)e−inαxdx,

=
1

d

∫ d

0

eiαxf(x,B)e−i(α+
2πn
d

)xdx,

=
1

d

∫ d

0

f(x,B)e−i
2πn
d
xdx.

Hence
(

eiαxf(x,B)
)(nα)

(B) = f (n)(B). (2.74)
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Using equation (2.53) again gives

T+
(

eiαxf(x,B)
)

=
∑

n∈Z
iβn1 f

(n)(B)einαx,

=
∑

n∈Z
iβn1 f

(n)(B)ei(α+
2πn
d )x,

= eiαx
∑

n∈Z
iβn1 f

(n)(B)ei
2πn
d
x,

since eiαx is independent of n. Hence

T+
(

eiαxf(x,B)
)

= eiαxT α,0+ f(x),

by using Definition 4.
When y = −B a similar procedure can be followed to show that

T−(e
iαxf(x)) = eiαxT α−f(x).

The different methods described in the next two chapters lead us to use the
two operators T α,0 and T α,β. In order to show the uniqueness of the solution of the
scattering problem using these two different methods, we require the continuity of
the operators T α,0 and T α,β. We note by using Definition 5, that the continuity
of T α,β follows from the continuity of T α,0. In the literature [9, 14, 118], several
authors state that T α,0 is a continuous linear form but they don’t calculate the
constant of continuity. Below we calculate this constant explicitly.

Lemma 10. The operator T α,0 : H
1
2
#(Γ±) → H

− 1
2

# (Γ±) is a continuous linear form.

There exist positive constants C ≤
√
5 and C1 = sup

(

3, 1 + αd
2π

)2
such that

‖ T α,0f ‖2

H
− 1

2
# (Γ±)

≤ C sup(|k2j |, C1) ‖ f ‖2

H
1
2
# (Γ±)

for j = 1, 2 where f ∈ H
1
2
#(Γ±).

Proof. Let f, g ∈ H
1
2
#(Γ+), then from Definition 4,

T α,0(f + g) =
∑

n∈Z
iβnj (f + g)(n) (±B)ei

2πn
d
x,

=
∑

n∈Z
iβnj f

(n)(±B)ei
2πn
d
x +

∑

n∈Z
iβnj g

(n)(±B)ei
2πn
d
x,

because

(f + g)(n)(±B) =
1

d

∫ d

0

(f + g)(x,±B)e−i
2πn
d
xdx,

=
1

d

∫ d

0

f(x,±B)e−i
2πn
d
xdx+

1

d

∫ d

0

g(x,±B)e−i
2πn
d
xdx.
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If c ∈ C, then

T α,0(cf) =
∑

n∈Z
iβnj (cf)

(n)(±B)ei
2πn
d
x,

= cT α,0(f).

To prove continuity, we note that from Definition A-14

‖ T α,0f(x) ‖2

H
− 1

2
α# (Γ±)

=
∑

n∈Z

(

(

2πn

d

)2

+ 1

)− 1
2

∣

∣βnj
∣

∣

2 ∣
∣f (n)(±B)

∣

∣

2
,

=
∑

{n∈Z:n2
α<|k2j |}

(

(

2πn

d

)2

+ 1

)− 1
2
∣

∣βnj
∣

∣

2 ∣
∣f (n)(±B)

∣

∣

2

+
∑

{n∈Z:n2
α>|k2j |}

(

(

2πn

d

)2

+ 1

)− 1
2
∣

∣βnj
∣

∣

2 ∣
∣f (n)(±B)

∣

∣

2
,

Then,

‖ T α,0f(x) ‖2

H
− 1

2
α# (Γ±)

≤
∑

{n∈Z:n2
α<|k2j |}

C

(

(

2πn

d

)2

+ 1

)− 1
2

|k2j |
∣

∣f (n)(±B)
∣

∣

2

+
∑

{n∈Z:n2
α>|k2j |}

C

(

(

2πn

d

)2

+ 1

)− 1
2

n2
α

∣

∣f (n)(±B)
∣

∣

2
,

by using equation (2.67) in Lemma 6. Since
(

2πn
d

)2
+ 1 ≥ 1, then

‖ T α,0f(x) ‖2

H
−1

2
α# (Γ±)

≤
∑

{n∈Z:n2
α<|k2j |}

C|k2j |
(

(

2πn

d

)2

+ 1

)
1
2
∣

∣f (n)(±B)
∣

∣

2

+
∑

{n∈Z:n2
α>|k2j |}

C

(

(

2πn

d

)2

+ 1

)− 1
2

n2
α

∣

∣f (n)(±B)
∣

∣

2
.(2.75)
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We also note that when n2
α > |k2j | but

(

2πn
d

)2 ≤ n2
α we have

n2
α

(

2πn
d

)2
+ 1

≤ n2
α

(

2πn
d

)2 ,

=

(

nα
2πn
d

+ α − α

)2

,

=

(

nα
nα − α

)2

,

=

(

1

1 − α
nα

)2

. (2.76)

Since
(

2πn
d

)2 ≤ n2
α then

(

2πn
d

)2 ≤
(

2πn
d

+ α
)2
. Therefore, we have 4πn

d
α + α2 ≥ 0.

If n < 0, then
4π|n|
d

α ≤ α2. (2.77)

From equation (2.77), we have

−α

2
≤ 2πn

d
≤ α

2
,

−α

2
+ α ≤ 2πn

d
+ α ≤ α

2
+ α,

α

2
≤ nα ≤ 3α

2
,

and so

2

3α
≤ 1

nα
≤ 2

α
,

− 2

α
≤ − 1

nα
≤ − 2

3α
,

−2 ≤ − α
nα

≤ −2

3
,

−1 ≤ 1 − α
nα

≤ 1

3
.

Therefore, for
(

2πn
d

)2 ≤ n2
α and n < 0 we have

1 ≤ 1

(1− α
nα
)
2 ≤ 9. (2.78)
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If
(

2πn
d

)2 ≤ n2
α and n > 0, we have

2π

d
+ α ≤ 2πn

d
+ α ≤ ∞,

0 ≤ 1
nα

≤ 1
2π
d
+ α

,

− 1
2π
d
+ α

≤ − 1
nα

≤ 0,

− α
2π
d
+ α

≤ − α
nα

≤ 0,

1 − α
2π
d
+ α

≤ 1 − α
nα

≤ 1.

Therefore, for
(

2πn
d

)2 ≤ n2
α and n > 0 we have

1 ≤ 1

(1− α
nα
)
2 ≤

( 2π
d
+ α
2π
d

)2

. (2.79)

We do not consider the case where n = 0 since n2
α > |k2j | and |kj| ≥ α. Hence for

n2
α > |k2j |, and

(

2πn
d

)2 ≤ n2
α, we have from equations (2.76), (2.78) and (2.79)

n2
α

1 +
(

2πn
d

)2 ≤ sup

(

9,

( 2π
d
+ α
2π
d

)2
)

,

and so if we note C1 = sup

(

9,
(

2π
d
+α

2π
d

)2
)

n2
α

(

1 +
(

2πn
d

)2
)

1
2

≤ C1

(

1 +

(

2πn

d

)2
)

1
2

. (2.80)

When n2
α > |k2j |, we note that if

(

2πn
d

)2 ≥ n2
α then

n2
α

(

(

2πn
d

)2
+ 1
)

1
2

≤
(

2πn
d

)2

(

(

2πn
d

)2
+ 1
)

1
2

,

≤
(

(

2πn

d

)2

+ 1

) 1
2

. (2.81)
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Now we can rewrite equation (2.75)

‖ T α,0f(x) ‖2

H
− 1

2
# (Γ±)

≤
∑

{n∈Z:n2
α<|k2j |}

C|k2j |
(

(

2πn

d

)2

+ 1

) 1
2
∣

∣f (n)(±B)
∣

∣

2

+
∑

{n∈Z:n2
α>|k2j |}

CC1

(

(

2πn

d

)2

+ 1

)
1
2
∣

∣f (n)(±B)
∣

∣

2
.

Finally,

‖ T α,0f(x) ‖2

H
− 1

2
# (Γ±)

≤ C sup
(

|k2j |, C1

)

∑

n∈Z

(

(

2πn

d

)2

+ 1

)
1
2
∣

∣f (n)(±B)
∣

∣

2
.

We finish the proof by using Definition A-14 and so

‖ T α,0f(x) ‖2

H
− 1

2
# (Γ±)

≤ C sup
(

|k2j |, C1

)

‖ f ‖2

H
1
2
# (Γ±)

.

We have the following relation between the two DtN maps T and T α,0.

Lemma 11. Let us denote fα = eiαxf and gα = eiαxg such that f, g ∈ H
1
2
#(Γ±).

Then
|T (fα, gα)| =

∣

∣

∣

(

T α,0f, g
)

Γ±

∣

∣

∣
. (2.82)

Proof. We note that fα, gα ∈ H
1
2
α#(Γ±) by using Lemma A-16 and so

|T (fα, gα)| =
∣

∣(Tfα, gα)Γ±

∣

∣ , using Lemma 7,

=
∣

∣

∣

(

T (eiαxf), gα
)

Γ±

∣

∣

∣
,

=
∣

∣(eiαxT α,0f, gα)Γ±

∣

∣ , using Lemma 9.

We note that
(

eiαxT α,0f, gα
)

Γ±
=

∫

Γ±

eiαxT α,0fgαdx,

=

∫

Γ±

eiαxT α,0feiαxgdx,

=

∫

Γ±

T α,0fgdx,

=
(

T α,0f, g
)

Γ±
.

Hence

|T (f, g)| =
∣

∣

∣

(

T α,0f, g
)

Γ±

∣

∣

∣
.
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We also have the following new result which will be used to establish between the
norms of α-quasi periodic and periodic functions.

Lemma 12. Let n ∈ Z and let nα satisfy equation (2.42). There exists constants

C# > 2+α2+
√
α4+4α2

2
and

Cα# >







−(2+α2)+
√

(2+α2)2+4(2α2−1)

2(2α2−1)
, if α2 > 1

2

−(2+α2)−
√

(2+α2)2+4(2α2−1)

2(2α2−1)
, otherwise.

(2.83)

Then

1 + (nα)
2 ≤ C#

(

1 +

(

2πn

d

)2
)

, (2.84)

and

1 +

(

2πn

d

)2

≤ Cα#
(

1 + (nα)
2
)

. (2.85)

Proof. Let us denote y = nα, x = 2πn
d
. We want to find a constant C# such that

1 + y2 ≤ C#

(

1 + x2
)

(2.86)

where y = α + x. When C#(1 + x2) ≥ 1 + (x+ α)2 then C# > K such that
K(1 + x2) = 1 + (x+ α)2 with one point at intersection. Expanding this,

K
(

1 + x2
)

= 1 + x2 + α2 + 2αx,

i.e.
(K − 1)x2 − 2αx+

(

K − 1 − α2
)

= 0.

To intersect once this quadratic has only one solution in x and so the discriminant
must be zero. That is

α2 − (K − 1)(K − 1 − α2) = 0,

α2 − (K2 − 2K + α2 −Kα2 + 1) = 0,

K2 − (2 + α2)K + 1 = 0,

i.e.

K =
(2 + α2) ±

√

(2 + α)2 − 4

2
=

(2 + α2) ±
√
α4 + 4α2

2
.

Taking the larger of these then for C# >
(2+α2)+

√
α4+4α2

2
we have

1 + n2
α ≤ C#

(

1 +

(

2πn

d

)2
)

.
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Let us denote y = nα and x = 2πn
d
, similarly we have (1 + x2) ≤ Cα#(1 + y2) then

Cα# > K∗ such that 1 + x2 = K∗(1 + (x+ α)2
)

and so

1 + x2 = K∗ +K∗(x2 + 2αx+ α2),

(K∗ − 1)x2 + 2K∗αx+K∗ +K∗α2 − 1 = 0.

To intersect once this quadratic has only one solution in x and so the discriminant
must be zero. That is

(K∗)2α2 − (K∗ − 1)(K∗ +K∗α2 − 1) = 0,

(K∗)2(2α2 − 1) +K∗(2 + α2) − 1 = 0,

i.e.

K∗
1 =

−(2 + α2) +
√

(2 + α2)2 + 4(2α2 − 1)

2(2α2 − 1)
,

and

K∗
2 =

−(2 + α2) −
√

(2 + α2)2 + 4(2α2 − 1)

2(2α2 − 1)
,

we see that if α2 > 1
2
, K∗

2 < K∗
1 so we choose Cα# > K∗

1 and vice versa when
α2 < 1

2
.

We also need the following result to establish relationship between the norms of
α-quasi periodic and periodic functions.

Lemma 13. Let f ∈ L2
#(Γ±) and let fα ∈ L2

α#(Γ±) we have

f (n)(y) = f (nα)
α (y).

Proof. We have

f (n)(y) =
1

d

∫ d

0

f(x, y)e−i
2πn
d
xdx,

=
1

d

∫ d

0

e−iαxfα(x, y)e
−i 2πn

d
xdx,

=
1

d

∫ d

0

fα(x, y)e
−inαxdx,

= f (nα)
α (y).

Lemma 14. The bilinear form

T α,0(f, g) : (f, g) 7→
(

T α,0f, g
)

Γ±
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is continuous on H
1
2
#(Γ±) ×H

1
2
#(Γ±) and

∣

∣(T α,0f, g)Γ±

∣

∣ ≤ d
√
C sup (|kj|, 1) ‖f‖

H
1
2
# (Γ±)

‖g‖
H

1
2
# (Γ±)

,

where C ≤
√
5 and C# as defined in Lemma 12.

Proof. We can use Lemma 11 and we note that
∣

∣

∣
T α,0 (f, g)Γ±

∣

∣

∣
=

∣

∣

∣
(Tfα, gα)Γ±

∣

∣

∣
.

We know from Lemma 7 that T (f, g) = (Tf, g)Γ± is a continuous bilinear form
and so

∣

∣

∣
T α,0 (f, g)Γ±

∣

∣

∣
=

∣

∣

∣
(Tfα, gα)Γ±

∣

∣

∣
,

≤ d
√
C sup(|kj|, 1) ‖ fα ‖

H
1
2
α#(Γ±)

‖ gα ‖
H

1
2
α#(Γ±)

, (2.87)

where C ≤
√
5. In order to prove the continuity of the bilinear form T α,0 (f, g),

we need to express ‖ fα ‖
H

1
2
α#(Γ±)

in terms of ‖ f ‖
H

1
2
# (Γ±)

.

Using Definition A-17, we have

‖ fα ‖2

H
1
2
α#(Γ±)

=
∑

n∈Z

(

1 + (nα)
2)

1
2
∣

∣f (nα)
α (±B)

∣

∣

2
,

=
∑

n∈Z

(

1 + (nα)
2)

1
2
∣

∣f (n)(±B)
∣

∣

2
, using Lemma 13,

≤
∑

n∈Z
C

1
2
#

(

1 +

(

2πn

d

)2
)

1
2
∣

∣f (n)(±B)
∣

∣

2
,

from Lemma 12, equation (2.84) and so

‖ fα ‖2

H
1
2
α#(Γ±)

≤ C
1
2
# ‖ f ‖2

H
1
2
# (Γ±)

(2.88)

using Definition A-14. We can show similarly that

‖ gα ‖2

H
1
2
α#(Γ±)

≤ C
1
2
# ‖ g ‖2

H
1
2
# (Γ±)

. (2.89)

We combine equations (2.87), (2.88) and (2.89) and so

∣

∣

∣
T α,0 (f, g)Γ±

∣

∣

∣
≤ d

√
CC# sup(|kj|, 1) ‖ f ‖2

H
1
2
# (Γ±)

‖ g ‖2

H
1
2
# (Γ±)

(2.90)

to finish the proof.
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Lemma 15. Let f(x) ∈ H
1
2
#(Γ±), then T

α,β is a continuous operator in H
1
2
#(Γ±),

and there exists a positive constant C̃ =
√
C + sup

(

|1+2i|
(|R1|−1)2

, 1
)

such that

‖ T α,βf(x) ‖
H

− 1
2

# (Γ±)
≤ C̃ sup

(

|kj|,
√

C1

)

‖ f(x) ‖
H

1
2
# (Γ±)

. (2.91)

with C ≤
√
5, |R1| ≤ 1 and

√
C1 = sup

(

3, 1 + αd
2π

)

.

Proof. We use the property of T α,β in the remark following Definition 5,

T α,β = T α,0 ∓ w′(y)

w(y)

∣

∣

∣

∣

y=±B
Id.

Note that the identity operator Id, is a continuous operator in H
1
2
#(Γ±). When

y = −B then, from equation (2.65),

w′(y)

w(y)

∣

∣

∣

∣

y=−B
=

−iβ0
2 t2e

iβ0
2B

t2eiβ
0
2B

= −iβ0
2

and so
∣

∣

∣

∣

w′(y)

w(y)

∣

∣

∣

∣

y=−B

∣

∣

∣

∣

=| β0
2 | .

When y = B, we have

w′(y)

w(y)

∣

∣

∣

∣

y=B

= iβ0
1

r1e
iβ0

1B − e−iβ
0
1B

r1eiβ
0
1B + e−iβ

0
1B
,

multiplying by the complex conjugate of w(B), we get

w′(y)

w(y)

∣

∣

∣

∣

y=B

= iβ0
1

|r1|2 − 1 + 2iℑ(r1e
2iβ0

1B)

|w(B)|2 ,

This leads us to
∣

∣

∣

∣

w′(y)

w(y)

∣

∣

∣

∣

y=B

∣

∣

∣

∣

=

∣

∣

∣

∣

iβ0
1

|r1|2 − 1 + 2iℑ(r1e
2iβ0

1B)

|w(B)|2
∣

∣

∣

∣

,

≤ β0
1

∣

∣

∣

∣

1 + 2i

|r1|2 + 1 + 2ℜ(r1e2iβ
0
1B)

∣

∣

∣

∣

,

≤ β0
1

∣

∣

∣

∣

1 + 2i

|r1|2 + 1 − 2|r1|)

∣

∣

∣

∣

,

since |r1| ≤ 1, and |ℑ(r1e
2iβ0

1B)| ≤ |r1e2iβ0
1B| = |r1|. Let

Cw(α, β
0
j , B) = sup

(

β0
1

∣

∣

∣

∣

1 + 2i

(|r1| − 1)2

∣

∣

∣

∣

, |β0
2 |
)
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then

‖ T α,βf(x) ‖
H

− 1
2

# (Γ±)
= ‖ T α,0f(x) ∓ w′(y)

w(y)

∣

∣

∣

∣

y=±B
Idf(x) ‖

H
−1

2
# (Γ±)

,

≤
√

C sup(|k2j |, C1) ‖ f ‖
H

1
2
# (Γ±)

+Cw(α, βj, B) ‖ f ‖
H

−1
2

# (Γ±)
,(2.92)

by the triangle inequality and Lemma 10. Note that

Cw(α, β
0
j , B) = sup

(

β0
1

∣

∣

∣

∣

1 + 2i

(|r1| − 1)2

∣

∣

∣

∣

, |β0
2 |
)

,

≤ |kj| sup
( |1 + 2i|
(|r1| − 1)2

, 1

)

, (2.93)

since |β0
j | ≤ |kj| from equation (2.43). Using Definition A-14, we have for s = −1

2

that

‖ f ‖
H

−1
2

# (Γ±)
=

∑

n∈Z

(

1 +

(

2πn

d

)2
)− 1

2
∣

∣f (n)(±B)
∣

∣

2
,

≤
∑

n∈Z

(

1 +

(

2πn

d

)2
)

1
2
∣

∣f (n)(±B)
∣

∣

2
,

= ‖ f ‖
H

1
2
# (Γ±)

(2.94)

from Definition A-14. Hence, using equations (2.93) and (2.94) we can rewrite
(2.92) and

‖ T α,βf(x) ‖
H

− 1
2

# (Γ±)
≤

√

C sup(|k2j |, C1) ‖ f ‖
H

1
2
# (Γ±)

+|kj| sup
( |1 + 2i|
(|r1| − 1)2

, 1

)

‖ f ‖
H

1
2
# (Γ±)

,

≤ sup
(

|kj|,
√

C1

)

(√
C + sup

( |1 + 2i|
(|r1| − 1)2

, 1

))

‖ f ‖
H

1
2
# (Γ±)

.

Let us denote by C̃ =
√
C + sup

(

|1+2i|
(|r1|−1)2

, 1
)

, then we have

‖ T α,βf(x) ‖
H

− 1
2

# (Γ±)
≤ C̃ sup(|kj|,

√

C1) ‖ f ‖
H

1
2
# (Γ±)

.
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2.4 Mathematical formulation of the truncated

problem

Given the above DtN definitions we can now restate our problem as described in
the following four lemmas. After stating all four lemmas, we outline a common
method of proof.

• Case 1A: Perfectly conducting grating: TE case

Lemma 16. U is a solution of (2.25) if and only if it is a solution of the
following problem set in the truncated domain Ω \ int Ω3 (see Figure 2.3)

∆U(x, y) + k21U(x, y) = 0, (x, y) ∈ Ω \ Ω3, (2.95)

with the DtN map interface conditions at the boundaries of the truncated
region given by

∂nU(x, y)
∣

∣

Γ+ = T+U + g(x) x ∈ Γ+, (2.96)

∂nU(x, y)
∣

∣

Γ− = T−U x ∈ Γ−, (2.97)

the Dirichlet boundary conditions at the surface of the diffraction grating

U(x, y) = 0, (x, y) ∈ ∂Ω3,

and the α−quasi-periodic condition

U(d, y) = eiαdU(0, y), y ∈ [−B,B].

Here

T+U(x) =
∑

n∈Z
iβn1U

(nα)(B)einαx, (2.98)

T−U(x) =
∑

n∈Z
iβn1U

(nα)(−B)einαx, (2.99)

g(x) = −2iβ0
1e

−iβ0
1B+iαx, (2.100)

with

U (nα)(y) =
1

d

∫ d

0

U(x, y)e−inαxdx, (2.101)

and nα = 2πn
d

+ α, with
zn = arg(k21 − n2

α),

and

βnj = eizn/2(|k21 − n2
α|)1/2.
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• Case 1B: Perfectly conducting grating: TM case

Lemma 17. U is a solution of (2.27) if and only if it is a solution of the
following problem set in the truncated domain Ω \ int Ω3

∆U(x, y) + k21U(x, y) = 0, (x, y) ∈ Ω \ Ω3, (2.102)

with the DtN map interface conditions at the boundaries of the truncated
region given by

∂nU(x, y)
∣

∣

Γ+ = T+U + g(x) x ∈ Γ+,

∂nU(x, y)
∣

∣

Γ− = T−U x ∈ Γ−,

the Neumann boundary conditions at the surface of the diffraction grating

∂nU(x, y) = 0, (x, y) ∈ ∂Ω3, (2.103)

and the α−quasi-periodic condition

U(d, y) = eiαdU(0, y), y ∈ [−B,B].

Here T± and g are given by equations (2.98), (2.100) and (2.99) in Lemma 16.

• Case 2A: Transmitting dielectric grating: TE case

Lemma 18. U is a solution of (2.29) if and only if it is a solution of the
following problem set in the truncated domain Ω

∆U(x, y) + k(x, y)2U(x, y) = 0, (x, y) ∈ Ω, (2.104)

with the DtN map interface conditions at the boundaries of the truncated
region given by

∂nU(x, y)
∣

∣

Γ+ = T+U + g(x) x ∈ Γ+,

∂nU(x, y)
∣

∣

Γ− = T−U x ∈ Γ−,

and the α−quasi-periodic condition

U(d, y) = eiαdU(0, y), y ∈ [−B,B].

Here T± and g are given by equations (2.98), (2.100) and (2.99) in Lemma 16.

• Case 2B: Transmitting dielectric grating: TM case
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Lemma 19. U is a solution of (2.31) if and only if it is a solution of the
following problem set in the truncated domain Ω

∇.
(

1

k2(x, y)
∇U(x, y)

)

+ U(x, y) = 0, (x, y) ∈ Ω, (2.105)

with the DtN map interface conditions at the boundaries of the truncated
region given by

∂nU(x, y)
∣

∣

Γ+ = T+U + g(x) x ∈ Γ+,

∂nU(x, y)
∣

∣

Γ− = T−U x ∈ Γ−,

and the α−quasi-periodic condition

U(d, y) = eiαdU(0, y), y ∈ [−B,B],

Here T± and g are given by equations (2.98), (2.100) and (2.99) in Lemma 16.

In the following proof we will just use R2 and Ω, the proof will be similar when
we deal with R2

+ and Ω \ int Ω3.

Proof. The proofs of Lemma 16, Lemma 17, Lemma 18 and Lemma 19 are similar.
The first part of the proof consists of showing that U satisfies in R2 (or in R2

+)

∆U + k2U = 0

if and only if U |Ω = Û (or U |Ω\int Ω3
= Û ) satisfies in Ω (or in Ω \ int Ω3)

∆Û + k2Û = 0.

In fact, if ∆U+k2U = 0 for all (x, y) ∈ R2, in particular Ω ⊂ R2 then ∆U+k2U = 0
in Ω i.e.

∆Û + k2Û = 0.

Now let us suppose that ∆Û + k2Û = 0, by using the DtN maps we match our
inner solution Û with the outer solution denoted by ÛC . Hence U is given by

U =

{

Û , for (x, y) ∈ Ω,

ÛC , for (x, y) ∈ [0, d] × R \ Ω,
(2.106)

and because we have ∆ÛC + k2ÛC = 0 in [0, d] × R \ Ω. In addition the grating is
periodic therefore

∆ÛC + k2ÛC = 0

in R2. The α-quasi-periodic condition and the Dirichlet and Neumann boundaries
for the perfectly conducting grating follow naturally from the boundary conditions
of the original scattering problem in R2

+ or R2.
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The second part of the proof below will consider the continuity and smoothness of
the solution at the truncated region interfaces Γ+ and Γ−. We notice on one hand
that when |y| ≥ B, the wavenumber k is a constant, and so we can set U equal to
the fundamental solution of the Helmholtz equation as given by Lemma 1. When
y ≥ B, k = k1 is constant, and we have

U(x, y) =
∑

n∈Z
rne

iβ0
1yeinαx + tne

−iβ0
1yeinαx (2.107)

We use the condition that U is composed of outgoing waves apart from UI (the
incident wave) which is the only incoming wave allowed in Ω1 (corresponding to
n = 0); so we have tn = 0 for all n ∈ Z \ {0}. On the other hand, we know that a
quasi-periodic function can be written as a Fourier series by using Lemma 2 and
so

U(x, y) =
∑

n∈Z
U (nα)(y)einαx. (2.108)

Equating series (2.108) and (2.107) we see that for n 6= 0

rne
iβn

1B = U (nα)(B),

that is

rn = U (nα)(B)e−iβ
n
1B. (2.109)

For n = 0, with the amplitude of the incident wave t0 = 1,

r0e
iβ1B + e−iβ1B = U (0α)(B),

that is

r0 = U (0α)(B)e−iβ1B − e−2iβ1B (2.110)

From Lemma 1, the analytical solution in the region y ≥ B, x ∈ R, is

ÛC(x, y) =
∑

n∈Z
U (nα)(B)eiβ

n
1 (y−B)einαx − eiβ1(y−2B)eiαx + e−iβ1yeiαx(2.111)

Taking the normal derivative of Û on Γ+, (that is in the y direction) gives

∂Û

∂n
=

∂ÛC
∂n

,

=
∑

n∈Z
iβn1U

(nα)(B)eiβ
n
1 (y−B)einαx − iβ0

1e
iβ0

1(y−2B)eiαx − iβ1e
−iβ1yeiαx(2.112)

and so

∂Û

∂n

∣

∣

∣

∣

y=B

=
∑

n∈Z
iβn1U

(nα)(B)einαx − 2iβ0
1e
iβ1(−B)eiαx. (2.113)
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From the definition of T+ given by (3) and if we denote

g(x) = −2iβ1e
−iβ1Beiαx. (2.114)

We have
∂Û

∂n

∣

∣

∣

∣

y=B

= T+Û(x) + g(x).

This ends the proof for the boundary conditions on the top boundary.
Let us apply the same argument for the boundary condition on the bottom bound-
ary. When y ≤ −B, k = k2 is constant, and so from Lemma 1 we can write

U(x, y) =
∑

n∈Z
rne

iβn
2 yeinαx + tne

−iβn
2 yeinαx. (2.115)

We use the condition that U is composed of outgoing waves and so rn = 0 for all
n ∈ Z. On the other hand, for (x, y) ∈ Ω, U is quasi-periodic, therefore

U(x, y) =
∑

n∈Z
U (nα)(y)einαx. (2.116)

Equating series (2.115) and (2.116) we see that for all n ∈ Z

tne
iβn

2B = U (nα)(−B),

that is
tn = U (nα)(−B)e−iβ

n
2B. (2.117)

From Lemma 1, the analytical solution in the region y ≤ −B, x ∈ R is

ÛC(x, y) =
∑

n∈Z
U (nα)(−B)eiβ

n
2 (y+B)einαx. (2.118)

Taking the normal derivative of Û on Γ−, (that is, in the y direction ) gives

∂Û

∂n
=

∂ÛC
∂n

,

= −
∑

n∈Z
−iβn2U (nα)(−B)e−iβ

n
2 (y+B)einαx

and so

∂Û

∂n

∣

∣

∣

∣

y=−B
=

∑

n∈Z
iβn2U

(nα)(−B)einαx. (2.119)

From the definition of T− given in (3), we have

∂Û

∂n

∣

∣

∣

∣

y=−B
= T−Û(x).
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which ends the proof on the bottom boundary. By noting that U is given by
(2.106), we can see that

lim
y→+∞

∂U

∂n
= lim

y→+∞

∂ÛC
∂n

= 0.

2.5 Summary

In this chapter, we have introduced the physical and mathematical description of
the problem of diffraction when an electromagnetic wave interacts with a periodic
grating. We have shown, by using Maxwell’s equations, that our problem can be
decomposed into two elementary mathematical problems which are the transverse
magnetic and the transverse electric Helmholtz problems. For each problem, the
grating can be perfectly conducting or transmitting, and so we study four cases. We
have also introduced some transparent boundary conditions (DtN maps) in order
to solve the problem numerically. When we formulated the problem in Chapter 2,
the incident wave was included via the boundary conditions. In Chapter 3 we will
consider an equivalent but alternative formulation that incorporates the incident
wave via an inhomogeneous forcing term (with compact support) in the Helmholtz
equation. We introduce the inhomogeneous Helmholtz problem to allow us to study
the regularity of the solution in order to construct an a priori error estimate of
the solution to the problem stated in this chapter, in Chapters 4 and 6.

44



Chapter 3

A regularity estimate for the
inhomogeneous Helmholtz
problem for periodic gratings

3.1 General case

To get to the heart of the matter, we will just focus on the perfectly conducting
grating interacting with a TE wave (Case 1A) in this chapter. We also illustrate
the transmitting dielectric grating interacting with a TE wave (Case 2A). This
case is needed for a special case where the multiple scattering problem is reduced
into a one dimensional single scattering problem. Hence, we can investigate the
robustness of our regularity result using the literature. We will derive the regularity
results corresponding to Case 1B and Case 2B in Appendix C.

3.1.1 Case 1A: Perfectly conducting grating: TE case

Let f(x, y) ∈ L2(R2
+) represent the forcing term in the inhomogeneous Helmholtz

equation. In this chapter, we want to study the regularity of the solution U(x, y) of
the inhomogeneous Helmholtz problem depending on the function f(x, y). The reg-
ularity of the solution U(x, y) will enable us to study the a priori error estimation
of the approximate solution when we solve the Helmholtz problem numerically.
We use the same notation as in Chapter 2 for the spatial domains as shown in
Figure 2.1. We also assume that f is local with respect to the y direction which
means that supp f ⊂ R × [−B,B] (see Figure 2.3).

3.1.1.1 The inhomogeneous Helmholtz equation

In the presence of surface current (J = (Jx, Jy, Jz) 6= 0) or surface charge (ρ 6=
0) (given in equations (2.2) to (2.4)), we can eliminate H and we can get the
differential equation for E using equations (2.1) and (2.2) with the constitutive
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relations given by equations (2.6) and (2.7). That is [64, p. 8], we obtain

∇ × ∇ × E − w2εµE = −iwµJ. (3.1)

Similarly, we can eliminate E to get the equation for H, giving

∇ ×
(

1

ε
∇ ×H

)

− w2µH = ∇ ×
(

1

ε
J

)

. (3.2)

Here we are solving for U = Ez for a given function f(x, y) ∈ L2(R2
+). The

inhomogeneous Helmholtz problem is to find U(x, y) ∈ C2(R2
+) such that

∆U(x, y) + k21U(x, y) = f(x, y), (x, y) ∈ R
2
+, (3.3)

U(x, y) = 0, (x, y) ∈ ∂R2
−. (3.4)

subject to the radiation condition

lim
|y|→∞

U(x, y) = 0. (3.5)

Putting E = (0, 0, Ez) and J = (Jx, Jy, Jz) in equation (3.1) we find that
f(x, y) = iwµJz. We now utilize the periodicity of the grating and restrict our
problem to the vertical single strip S = [0, d] × R as shown in Figure 2.2.

On this vertical single strip U and f are α-quasi-periodic with respect to x.
In addition, we choose our solution U to satisfy the upward propagating radiation
condition [28]. In order to study the regularity of our solution U , we first need to
study the α-quasi-periodic fundamental solution of the problem (3.3).

3.1.1.2 The α-quasi-periodic Green functions of the Helmholtz equa-
tion

Definition 20. The Green’s function G [106] is defined as

G(x, y) = − 1

2d

∑

n∈Z

einαx+iβn
j |y|

−iβnj
(3.6)

for (x, y) ∈ R2, with nα, β
n
j and zn defined by equations (2.42), (2.43) and (2.44)

extended to be valid for j ∈ {0, 1, 2, 3}.

We then have the following lemma.

Lemma 21. For any p ∈ Z, if G is α-quasi-periodic with respect to x, then

G(x, y) = eiαpdG(x− pd, y)

for (x, y) ∈ R2.
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Proof. We may write

G(x, y) = − 1

2d

∑

n∈Z

einα(x−pd+pd)+iβn
j |y|

−iβnj
,

= − 1

2d

∑

n∈Z
eiαpd

einα(x−pd)+iβn
j |y|

−iβnj
,

where the last line is justified by the fact that

einαpd = ei
2πn
d
pd+iαpd = eiαpd.

Then, G is α-quasi-periodic .

To ease the notation, let us define the following functions which will be used
often in this section.

Definition 22. For any {y, y0} ∈ R, and for n ∈ Z, define

gn(y, y0) =
eiβ

n
j |y−y0|

−2iβnj
,

and

g−n(y, y0) =
e−iβ

n
j |y−y0|

−2iβnj
,

such that βnj is given by equation (2.43).
Let us also define for any {m,n} ∈ Z, {x, x0} ∈ [0, d] ⊂ R

hmn(x, x0) = eimαx0einα(x−x0),

such that mα and nα are given by equation (2.43).

In the following four results, we derive an expression for the problem solution
U by using G and we define Sy where [0, d] × Sy = S \ Ω3.

Theorem 23. Case 1A: Let f(x, y) ∈ L2
α#(S\Ω3) and let U ∈ C2(S\Ω3) satisfy

the inhomogeneous Helmholtz equation given by equation (3.3). Then, the solution
is given by

U(x, y) =

∫

S\Ω3

G(x− x0, y − y0)f(x0, y0)dx0dy0 (3.7)

for (x, y) ∈ S \ Ω3 and U = 0 elsewhere.
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Proof. In order to prove Theorem 23, since we know that G is α-quasi-periodic,
we can focus on one period. We use the property that f is α-quasi-periodic, to
write f in its Fourier form

f(x, y) =
∑

m∈Z
f (mα)(y)eimαx, (3.8)

where

f (mα)(y) =
1

d

∫ d

0

f(x, y)e−imαxdx, (3.9)

and so, U , as given by equation (3.7), can be written in the following form

U(x, y) =
1

2d

∫

S

∑

m∈Z
f (mα)(y0)e

imαx0
∑

n∈Z

einα(x−x0)+iβn
j |y−y0|

−iβnj
dx0dy0,

=
1

2d

∫

S

∑

m,n∈Z
f (mα)(y0)e

imαx0
einα(x−x0)+iβn

j |y−y0|

−iβnj
dx0dy0. (3.10)

By using Definition 22, we note

∂ygn(y, y0) =

{

−e
iβn

j (y−y0)

2
, y ≥ y0,

e
−iβn

j (y−y0)

2
, y ≤ y0.

(3.11)

Therefore, we have the following relation, which captures the jump of the partial
derivative of gn at y = y0

∂ygn(y
−, y) − ∂ygn(y

+, y) = 1/2 − (−1/2),

= 1. (3.12)

We use Definition 22 to rewrite the function U as defined by equation (3.10) as
follows

U(x, y) =
1

d

∫

S

∑

m,n∈Z
hmn(x, x0)gn(y, y0)f

(mα)(y0)dx0dy0.

Denote by S+
y the interval in Sy such that y0 > y and by S−

y the interval in Sy
such that y0 < y. Then

U(x, y) =
1

d

∫

[0,d]

(

∫

S−
y ∪{y}

∑

m,n∈Z
f (mα)(y0)hmn(x, x0)gn(y, y0)dy0

+

∫

S+
y ∪{y}

∑

m,n∈Z
f (mα)(y0)hmn(x, x0)gn(y, y0)dy0

)

dx0.

48



The partial derivative of the function U(x, y) with respect to y is then

∂yU(x, y) =
1

d

∫

[0,d]

∫

S−
y ∪{y}

∑

m,n∈Z
f (mα)(y0)hmn(x, x0)∂ygn(y, y0)dy0dx0

+
1

d

∫

[0,d]

∑

m,n∈Z
f (mα)(y)hmn(x, x0)gn(y

−, y)dx0

−1

d

∫

[0,d]

∑

m,n∈Z
f (mα)(y)hmn(x, x0)gn(y

+, y)dx0

+
1

d

∫

[0,d]

∫

S+
y ∪{y}

∑

m,n∈Z
f (mα)(y0)hmn(x, x0)∂ygn(y, y0)dy0dx0.

Since, our function gn is continuous at y0, we have

gn(y
+, y) − gn(y

−, y) = 0.

Consequently, the partial derivative of U(x, y) with respect to y can be written as
follows

∂yU(x, y) =
1

d

∫

[0,d]

∫

S−
y ∪{y}

∑

m,n∈Z
f (mα)(y0)hmn(x, x0)∂ygn(y, y0)dy0dx0

+
1

d

∫

[0,d]

∫

S+
y ∪{y}

∑

m,n∈Z
f (mα)(y0)hmn(x, x0)∂ygn(y, y0)dy0dx0.(3.13)
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We differentiate one more time with respect to y to give

∂2yU(x, y) =
1

d

∫

[0,d]

∑

m,n∈Z
f (mα)(y)hmn(x, x0)∂ygn(y

+, y)dx0

+
1

d

∫

[0,d]

∫

S−
y ∪{y}

∑

m,n∈Z
f (mα)(y0)hmn(x, x0)∂

2
ygn(y, y0)dy0dx0

−1

d

∫

[0,d]

∑

m,n∈Z
f (mα)(y)hmn(x, x0)∂ygn(y

−, y)dx0

+
1

d

∫

[0,d]

∫

S+
y ∪{y}

∑

m,n∈Z
f (mα)(y0)hmn(x, x0)∂

2
ygn(y, y0)dy0dx0,

=
1

d

∫

[0,d]

∑

m,n∈Z
f (mα)(y)hmn(x, x0)[∂ygn(y

+, y) − ∂ygn(y
−, y)]dx0

+
1

d

∫

[0,d]

∫

S−
y ∪{y}

∑

m,n∈Z
f (mα)(y0)hmn(x, x0)∂

2
ygn(y, y0)dy0dx0

+
1

d

∫

[0,d]

∫

S+
y ∪{y}

∑

m,n∈Z
f (mα)(y0)hmn(x, x0)∂

2
ygn(y, y0)dy0dx0,

=
1

d

∫

[0,d]

∑

m,n∈Z
f (mα)(y)hmn(x, x0)dx0

+
1

d

∫

[0,d]

∫

S−
y ∪{y}

∑

m,n∈Z
f (mα)(y0)hmn(x, x0)∂

2
ygn(y, y0)dy0dx0

+
1

d

∫

[0,d]

∫

S−
y ∪{y}

∑

m,n∈Z
f (mα)(y0)hmn(x, x0)∂

2
ygn(y, y0)dy0dx0.

The last equality is justified by using equation (3.12). This leads us to the following
result

∂2yU(x, y) =
1

d

∫

[0,d]

∑

m,n∈Z
f (mα)(y)hmn(x, x0)dx0

+
1

d

∫

S

∑

m,n∈Z
f (mα)(y0)hmn(x, x0)∂

2
ygn(y, y0)dx0dy0. (3.14)

Definition 22 and equation (3.11) give

∂2ygn(y, y0) = −(βnj )
2gn(y, y0), (3.15)

and hence

∂2yU(x, y) =
1

d

∫

[0,d]

∑

m,n∈Z
f (mα)(y)hmn(x, x0)dx0

+
1

d

∫

S

∑

m,n∈Z
−
(

βnj
)2
gn(y, y0)f

(mα)(y0)hmn(x, x0)dx0dy0.(3.16)
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To calculate the partial derivative of second order of U(x, y), with respect to x, we
use equation (3.10) and we follow the same argument as above since einα(x−x0) ∈
C∞ ([0, d]) and we have

∂2xU(x, y) =
1

d

∫

S

∑

m,n∈Z
−n2

αhmn(x, x0)gn(y, y0)f
(mα)(y0)dx0dy0. (3.17)

Now, we can combine equations (3.16) and (3.17) to compute the Laplacian of the
function U(x, y) and so

∆U(x, y) = ∂2xU(x, y) + ∂2yU(x, y),

=
1

d

∫

S

∑

m,n∈Z

(

−n2
α +

(

βnj
)2
)

gn(y, y0)f
(mα)(y0)hmn(x, x0)dx0dy0

+
1

d

∫

[0,d]

∑

m,n∈Z
f (mα)(y)hmn(x, x0)dx0,

= −k2U(x, y) + 1

d

∫

[0,d]

∑

m,n∈Z
f (mα)(y)hmn(x, x0)dx0.

Hence

∆U(x, y) + k21U(x, y) =
1

d

∫

[0,d]

∑

m,n∈Z
f (mα)(y)hmn(x, x0)dx0,

=
∑

m,n∈Z
f (mα)(y)

1

d

∫

[0,d]

eimαx0einα(x−x0)dx0,

=
∑

n∈Z
f (nα)(y)einαx.

The last equation is justified by the fact that

1

d

∫ d

0

ei(mα−nα)x0dx0 =
1

d

∫ d

0

ei
2πn
d

(m−n)x0dx0, (3.18)

= δmn.

Therefore, by equation (3.8), we have shown that

∆U + k21U = f(x, y), ∀(x, y) ∈ S.

In order for U given by equation (3.7) to be the solution of equation (3.3), we need
to show that U satisfies all the boundary conditions. It follows from equation (3.7)
that U = 0 on ∂Ω3. We also note that f(x, y) and G(x, y) are both α−quasi-
periodic and therefore U(x, y) is also α−quasi-periodic. Also G(x, y) is composed
of bounded outgoing waves and f(x, y) has a locally compact support with respect
to y therefore U(x, y) satisfies

lim
|y|→+∞

U(x, y) = 0

which finishes the proof.
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3.1.1.3 Regularity of the solution of Helmholtz problem for periodic
grating

In this section, we use the α−quasi-periodic fundamental solution G to establish
the regularity of our solution which means that we will try to bound its norm and
its partial derivative by using some constants multiplied by the norm of the forcing
term.

Lemma 24. Let U ∈ C2(S \ Ω3) be the solution of equation (3.3). Then, for any
(x, y), (x0, y0) in S \ Ω3, if we define

V (x, y) = sup
n∈Z

1

2‖βn1 ‖∞

∑

n∈Z
einαxf (nα)(y), (3.19)

then we have
‖ U(x, y) ‖L2(S\Ω3)≤‖ V (x, y) ‖L2(S\Ω3) .

Proof. We can use Theorem 23 with the definition of G given by Definition 20 and
equation (3.8) to get

U(x, y) =
1

d

∫

[0,d]

∑

n∈Z
einα(x−x0)

∑

m∈Z
eimαx0

∫

Sy

eiβ
n
1 |y−y0|

−2iβn1
f (mα)(y0)dy0dx0

in S \ Ω3 and U = 0 elsewhere. We know that the profile of the grating ∂Ω3 can
be described by y = P (x) therefore if y 6= y0, and if the profile ∂Ω3 is as shown as
in Figure 3.2, we have

U(x, y) =
1

d

∫

[0,d]

∑

n∈Z
einα(x−x0)

∑

m∈Z
eimαx0

∫

Sy

eiβ
n
1 |y−y0|

−2iβn1
f (mα)(y0)dy0dx0,

=
1

d

∫

[0,d]

∑

n∈Z
einα(x−x0)

∑

m∈Z
eimαx0 (F (y,+∞) − F (y, P (x0))) dx0

such that F (y, y0) =
∫

eiβ
n
1 |y−y0|

−2iβn
j
f (mα)(y0)dy0. By the upward propagating radiation

condition, we have F (y,+∞) = 0, and so for y 6= y0

U(x, y) = −1

d

∫

[0,d]

∑

n∈Z
einα(x−x0)

∑

m∈Z
eimαx0F (y, P (x0))dx0

= 0

because
∑

n∈Z e
inα(x−x0)∑

m∈Z e
imαx0F (y, P (x0)) is continuous and it is periodic of

period d with respect to x0. If the profile is as shown as in Figure 3.1, we have

U(x, y) =
1

d

∫

[0,d]

∑

n∈Z
einα(x−x0)

∑

m∈Z
eimαx0

∫

Sy

eiβ
n
j |y−y0|

−2iβn1
f (mα)(y0)dy0dx0,

=
1

d

∫

[0,d]

∑

n∈Z
einα(x−x0)

∑

m∈Z
eimαx0 (F (y,+∞) − F (y,−∞))dx0
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because the profile ∂Ω3 is a closed curve and the function to integrate is analytic so
its contribution is zero from Cauchy’s theorem [88, p. 4]. From the upward propa-
gating radiation condition, we have F (y,±∞) = 0, and so for y 6= y0 U(x, y) = 0.
Hence, the only contribution comes from y = y0 and so,

U(x, y) = −1

d

∫

[0,d]

∑

n∈Z
einα(x−x0)

∑

m∈Z
eimαx0

1

−2iβn1
f (mα)(y)dx0

This leads us to

‖ U(x, y) ‖2
L2
α#(S) ≤ supn∈Z

1
4‖βn

1 ‖2∞

∑

n∈Z
∣

∣f (nα)(y)
∣

∣

2
= ‖V (x, y)‖2

L2
α#(S),

using equation (3.18).

In order to study the regularity, we need an upper bound of the norm of the
partial derivatives of U in term of the norm of U itself.

Lemma 25. For any γ = (γ1, γ2) such that γj ∈ N, for j = 1, 2, and for x ∈ [0, d]
and y ∈ Sy, then

‖ ∂γ1x U ‖L2(S\Ω3) ≤ sup
n∈Z

‖nα‖γ1∞ ‖ U ‖L2(S\Ω3),

‖ ∂γ2y U ‖L2(S\Ω3) ≤ sup
n∈Z

‖βnj ‖γ2∞ ‖ U ‖L2(S\Ω3) .

Proof. Taking the partial derivative of U with respect to x, y, γ1 times, and using
equation (3.35) gives

∂γ1x U =
∑

m,n∈Z

∫ d

0

(inα)
γ1einα(x−x0)eimα(x0)

∫

Sy

eiβ
n
1

∣

∣y−y0
∣

∣

f (mα)(y0)

−2iβn1
dy0dx0,

and so

‖∂γ1x U‖L2(S\Ω3) ≤

sup
n∈Z

‖nα‖γ1∞
∣

∣

∣

∣

∣

∣

∣

∣

∑

m,n∈Z

∫ d

0

einα(x−x0)eimα(x0)

∫

Sy

eiβ
n
1 |y−y0|f (mα)(y0)

−2iβn1
dy0dx0

∣

∣

∣

∣

∣

∣

∣

∣

L2(S\Ω3)

,

≤ sup
n∈Z

‖nα‖γ1∞‖U‖L2(S\Ω3).

We can do exactly the same with the partial derivative of U with respect to y,

∂γ2y U =
∑

m,n∈Z

∫ d

0

einα(x−x0)eimα(x0)

∫

Sy

(±iβn1 )γ2
eiβ

n
1 |y−y0|f (mα)(y0)

−2iβn1
dy0dx0,
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Ω1

Ω1

Ω1 ∂Ω3

Figure 3.1: A perfectly conducting grating over one period where the profile ∂Ω3

of the scatterer is a closed curve.
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Ω1

∂Ω3

L1 L2

L3

Figure 3.2: A perfectly conducting grating over one period where the profile ∂Ω3

of the scatterer is open.
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and so

‖∂γ2y U‖L2(S\Ω3) ≤

sup
n∈Z

‖βn1 ‖γ2∞
∣

∣

∣

∣

∣

∣

∣

∣

∑

m,n∈Z

∫ d

0

einα(x−x0)eimα(x0)

∫

Sy

eiβ
n
1 |y−y0|f (mα)(y0)

−2iβn1
dy0dx0

∣

∣

∣

∣

∣

∣

∣

∣

L2(S\Ω3)

,

≤ sup
n∈Z

‖βn1 ‖γ2∞‖U‖L2(S\Ω3).

Next, we give an approximation of U using f .

Lemma 26. For any x ∈ [0, d] and for any y ∈ Sy, we have for any function
f ∈ L2

α# (S) and for U as given by equation (3.10)

‖ U(x, y) ‖L2(S\Ω3)≤ sup
n∈Z

1

2‖βn1 ‖∞
‖ f(x, y) ‖L2(S\Ω3) .

Proof. Using Lemma 24 we have

‖ U ‖L2(S\Ω3) ≤ sup
n∈Z

1

2‖βn1 ‖∞
‖
∑

n∈Z
einαxf (nα)(y) ‖L2(S\Ω3),

≤ sup
n∈Z

1

2‖βn1 ‖∞
‖ f(x, y) ‖L2(S\Ω3),

from equation (3.8).

This leads to the following regularity result for Case 1A .

Theorem 27. For any γ = (γ1, γ2) such that γj ∈ N, for j = 1, 2, and for x ∈
[0, d], y ∈ Sy there exists a constant Creg which is independent of the wavenumber
k such that the solution U of equation (3.3) given by Theorem 23 satisfies

‖ DγU ‖L2(S\Ω3)≤ Creg‖k‖|γ|−1
∞ ‖ f ‖L2(S\Ω3),

where ‖ DγU ‖L2(S\Ω3) is as given in Definition A-10.

Proof. We use Lemma 25 with Lemma 26, to give

‖ ∂γ1x U ‖L2(S\Ω3) ≤ sup
n∈Z

‖nα‖γ1∞
2‖βn1 ‖∞

‖ f ‖L2(S\Ω3),

‖ ∂γ2y U ‖L2(S\Ω3) ≤ sup
n∈Z

‖βn1 ‖γ2∞
2‖βn1 ‖∞

‖ f ‖L2(S\Ω3) .

nα, and β
n
1 are given by equations (2.42) and (2.43) and hence

nα =
2πn

d
+ k1 sin θ,

= k1

(

2πn

dk1
+ sin θ

)

,

= k1 sin θn,
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where we define θn ∈ C, and

βn1 = eizn/2
√

|k21 − n2
α|,

= eizn/2
√

|k21(1 − sin θ2n)|,
= |k1|eizn/2

√

|1 − sin θ2n)|,
= |k1|eizn/2 cos θn.

Therefore, we have

‖∂γ1x U‖L2(Ω) ≤ sup
n∈Z

‖ (k1 sin θn)
γ1

|k1|eizn/2 cos θn
‖∞ ‖ f ‖L2(S\Ω3),

≤ sup
n∈Z

‖k1‖γ1−1
∞

| sin θn|
| cos θn|

γ1

‖ f ‖L2(S\Ω3) .

In a similar fashion,

‖ ∂γ2y U ‖L2(S\Ω3) ≤ sup
n∈Z

(‖k1‖∞|eizn/2 cos θn|)γ2−1 ‖ f ‖L2(S\Ω3),

≤ sup
n∈Z

‖k1‖γ2−1
∞ (| cos θn|)γ2−1 ‖ f ‖L2(S\Ω3),

We finish by setting

Creg = 2 sup
n∈Z

(

| cos θn|γ2−1,
| sin θn|
| cos θn|

γ1
)

,

which is well defined since βn1 6= 0, and hence cos θn 6= 0.

3.1.2 Case 2A: Transmitting dielectric grating: TE case

3.1.2.1 The inhomogeneous Helmholtz equation

Let f(x, y) ∈ L2(R2) represent the forcing term in the inhomogeneous Helmholtz
equation for transmitting dielectric gratings. Similar to Case 1A, we want to study
the regularity of the solution U(x, y) of the inhomogeneous Helmholtz problem
depending on the function f(x, y) for Case 2A. The derivation is similar to that
used to derive equation (3.3) but we have the following boundary conditions on
each interface separating two different media with different electric permittivities
[64, p. 10]

n×
(

E1 − E2

)

= 0, (3.20)

n.
(

D1 −D2

)

= ρ, (3.21)

n ×
(

H1 −H2

)

= J, (3.22)

n.
(

B1 − B2

)

= 0, (3.23)
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where Ej, Dj , Hj and Bj represent respectively the electric field, the electric
displacement, the magnetic field and the magnetic flux corresponding to the first
medium for j = 1 and to the other medium for j = 2.

Here we are solving for U = Ez for a given function f(x, y) ∈ L2(R2) . The
inhomogeneous Helmholtz problem is to find U(x, y) ∈ C2(R2) such that

∆U(x, y) + k2(x, y)U(x, y) = f(x, y), (x, y) ∈ R
2, (3.24)

(3.25)

subject to the radiation condition

lim
|y|→∞

U(x, y) = 0, (3.26)

and the interface conditions given by equations (3.20), (3.21), (3.22) and (3.23).
Putting E = (0, 0, Hz) and H = (Hx, Hy, 0) , in equation (3.1) gives

f(x, y) = iwµJz.

We now utilize the periodicity of the grating and restrict our problem to the vertical
single strip S = [0, d]×R as shown in Figure 2.2. Hence we define the wavenumber
k to be

k(x, y) =



















k1 ∈ R for (x, y) ∈ Ω1,

k0 ∈ C for (x, y) ∈ Ω0 \ Ω3,

k3 ∈ C for (x, y) ∈ Ω3,

k2 ∈ C for (x, y) ∈ Ω2

(3.27)

for Case 2A. In a similar way to Case 1A, U and f are α-quasi-periodic with
respect to x on this vertical single strip . We again choose our solution U to
satisfy the upward propagating radiation condition [28]. To study the regularity
of our solution U , we also need to study the α-quasi-periodic fundamental solution
of the problem (3.24).

3.1.2.2 The α-quasi-periodic Green functions of the Helmholtz equa-
tion

The solution U can be found as follows.

Theorem 28. Case 2A: Let f(x, y) ∈ L2
α#(S) and let U ∈ C2(S) satisfy the in-

homogeneous Helmholtz equation given by equation (3.24) in S. Then, the solution
U of equation (3.24) is given by

U(x, y) =

∫

S

Gj(x− x0, y − y0)f(x0, y0)dx0dy0 (3.28)
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for j ∈ {0, 1, 2, 3} with

Gj(x, y) = − 1

2d

∑

n∈Z
cnj
einαx+iβn

j |y|

−iβnj
− 1

2d

∑

n∈Z
dnj
einαx−iβn

j |y|

−iβnj
, (3.29)

with dnj = 0 for j = 1, 2 (upward propagating radiation condition). Each sub-
domain of S where k = kj is constant is denoted by Sj, and for l ∈ {0, 1, 2, 3},
the coefficients cnj , c

n
l and dnl are chosen such that the boundary conditions on the

interface separating Sj and Sl, given by equations (3.20), (3.21), (3.22) and (3.23)
are satisfied.

Proof. We use the same argument as in Theorem 23 in each subdomain Sj of S
and let

Sjx = [0, d], j ∈ {0, 1, 2},
S3x × R \ Sy = Ω3.

(3.30)

For a given y then Sjx is the range of x values in domain Sj and so

∆U =
1

d

∫

Sj

∑

m,n∈Z
k2j
(

cnj gn(y, y0) + dnj g−n(y, y0)
)

f (mα)(y0)hmn(x, x0)dx0dy0

+
1

d

∫

Sjx

∑

m,n∈Z
f (mα)(y)hmn(x, x0)dx0

for (x, y) ∈ Sj . Hence

∆U(x, y) =
∑

j

1

d

∫

Sj

∑

m,n∈Z
k2j
(

cnj gn(y, y0) + dnj g−n(y, y0)
)

f (mα)(y0)hmn(x, x0)dx0dy0

+
∑

j

1

d

∫

Sjx

∑

m,n∈Z
f (mα)(y)hmn(x, x0)dx0,

= −k2U(x, y) + 1

d

∫

[0,d]

∑

m,n∈Z
f (mα)(y)hmn(x, x0)dx0.

We finish the proof by using equations (3.18) and (3.8) and we have

∆U(x, y) + k2jU(x, y) = f(x, y).

The α-quasi-periodicity of U(x, y) follows from the α-quasi-periodicity of f(x, y)
and Gj(x, y). Because f is locally compact with respect to y and G is composed
of upward propagating radiation condition waves, we have

lim
|y|→+∞

U(x, y) = 0.
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3.1.2.3 Regularity of the solution of Helmholtz problem for periodic
grating

In this section, we use the α−quasi-periodic fundamental solution G (or Gj) to
establish the regularity of each solution which means that we will try to bound the
norm of each solution and its partial derivative by using some constants times the
norm of the forcing term. Let us now study the regularity for Case 2A . Combining
equations (3.28), (3.6) and (3.8) gives

U(x, y) =
1

d

∫

[0,d]

∑

n∈Z
einα(x−x0)

∑

m∈Z
eimαx0

∫

R

(

cnj
eiβ

n
j |y−y0|

−2iβnj
+ dnj

e−iβ
n
j |y−y0|

−2iβnj

)

f (mα)(y0)dy0dx0. (3.31)

Before studying the regularity of our solution U(x, y), let us state the following
lemmas. We have the following result.

Lemma 29. For any {y, y0} ∈ R, if

Imn(y, y0) =

∫

R

∑

n∈Z

(

cnj
eiβ

n
j |y−y0|

βnj
+ dnj

e−iβ
n
j |y−y0|

βnj

)

f (mα)(y0)dy0

such that cnj and dnj are the complex scalars defined in equation (3.29) then, we
have

Imn(y, y0) = 0 if y0 6= y, (3.32)

Imn(y, y) =
∑

n∈Z

1

βnj

(

cnj + dnj
)

f (mα)(y) if y0 = y. (3.33)

Proof. When y = y0, the result is immediate

Imn(y, y) =
∑

n∈Z

(

cnj + dnj
) 1

βnj
f (mα)(y).

Now, let us suppose that y0 6= y. Therefore, we have

Imn(y, y0) =

∫

R−{y}

∑

n∈Z

(

cnj
eiβ

n
j |y−y0|

βnj
+ dnj

e−iβ
n
j |y−y0|

βnj

)

f (mα)(y0)dy0,

=

∫ +∞

y+

∑

n∈Z

(

eiβ
n
j |y−y0|

βnj
+ dnj

e−iβ
n
j |y−y0|

βnj

)

f (mα)(y0)dy0

+

∫ y−

−∞

∑

n∈Z

(

eiβ
n
j |y−y0|

βnj
+ dnj

e−iβ
n
j |y−y0|

βnj

)

f (mα)(y0)dy0.
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Since
∑

n∈Z

(

e
iβn

j |y−y0|

βn
j

+ dnj
e
−iβn

j |y−y0|

βn
j

)

f (mα)(y0)dy0 is continuous with respect to y0

then Imn is continuous with respect to y0. Therefore,

Imn(y, y0) = Imn(y,+∞) − Imn(y, y+) + Imn(y, y−) − Imn(y,−∞).

From the continuity of I,

Imn(y, y0) = Imn(y,+∞) − Imn(y,−∞).

The outgoing wave boundary conditions state that f (mα)(y0) and e
iβn

j |y−y0| tend to
zero at ±∞, and so Imn = 0.

From now on, we denote Imn(y, y) by Imn(y). We have the following inequality.

Lemma 30. For any (x, y), (x0, y0) which belong to [0, d] × R, if we define by V
the function

V (x, y) = sup
n∈Z,j

(∣

∣cnj
∣

∣,
∣

∣dnj
∣

∣

)

‖βnj ‖∞

∑

n∈Z
einαxf (nα)(y), (3.34)

for n ∈ Z and j = 0, 1, 2, 3 then we have

‖ U(x, y) ‖L2(S\Ω3)≤‖ V (x, y) ‖L2(S\Ω3),

such that U is given by equation (3.31).

Proof. We have

U(x, y) = 1
d

∫

[0,d]×R

∑

n∈Z e
inα(x−x0)

(

cnj
e
iβn

j |y−y0|

−2iβn
j

+ dnj
e
iβn

j |y−y0|

−2iβn
j

)

∑

m∈Z e
imαx0f (mα)(y0)dx0dy0.

Now
∑

n∈Z

(

cnj
e
iβn

j |y−y0|

−2iβn
j

+ dnj
e
iβn

j |y−y0|

−2iβn
j

)

and f are continuous with compact support

and the integral is well defined so we can use Fubini’s theorem [104, p. 110] to
interchange the order of summation and integration to get

U(x, y) =
1

d

∑

n∈Z

∫

[0,d]×R

einα(x−x0)

(

cnj
eiβ

n
j |y−y0|

−2iβnj
+ dnj

eiβ
n
j |y−y0|

−2iβnj

)

∑

m∈Z
eimαx0f (mα)(y0)dx0dy0,

=
1

d

∑

m,n∈Z

∫

[0,d]

einα(x−x0)

−2i
eimαx0Imn(y, y0)dx0, (3.35)

Using equation (3.33) then

‖ U ‖2
L2
α#([0,d]×R)≤ sup

n∈Z

∣

∣cnj + dnj
∣

∣

2

4‖βnj ‖2
∞

1

d

∑

n∈Z

∫

[0,d]

∣

∣f (nα)(y)
∣

∣

2
dx0,

61



using equation (3.18) and so

‖ U ‖2
L2
α#([0,d]×R) ≤ sup

n∈Z

supn,j
(∣

∣cnj
∣

∣,
∣

∣dnj
∣

∣

)2

‖βnj ‖2
∞

∑

n∈Z

∣

∣f (nα)(y)
∣

∣

2

for j = 0, 1, 2, 3. This leads us to

‖ U(x, y) ‖2
L2
α#([0,d]×R)

≤ supn∈Z
supn,j

(

∣

∣cnj

∣

∣,

∣

∣dnj

∣

∣

)2

‖βn
j ‖2∞

∑

n∈Z
∣

∣f (nα)(y)
∣

∣

2

≤ ‖V (x, y)‖2
L2
α#([0,d]×R)

,

using equation (3.18).

From now on, we use the function V (x, y) given by equation (3.34) to study
the regularity of the function U(x, y) defined by equation (3.31). We have the
following Lemma.

Lemma 31. For any γ = (γ1, γ2) such that γq ∈ N, and x ∈ [0, d] and y ∈ R,
there exists N0 ∈ N, with cnj and dnj equal to zero when |n| > N0, and there exists

kref <
∣

∣kj
∣

∣ such that

‖ ∂γ1x U ‖L2(S) ≤ sup
n∈Z

‖nα‖γ1∞ ‖ U ‖L2(S),

‖ ∂γ2y U ‖L2(S) ≤ sup
n∈Z,j

‖βnj ‖γ2∞ ‖ U ‖L2(S) +C(k0, k3)Cs sup
n∈Z,j

|βnj |γ2−2‖f‖L2(S),

for j ∈ {0, 1, 2, 3} where

C(k0, k3) = sup
j∈{0,3}

(

e
sin zn/2|kj |

sup( 2πN0
d

,|α|)
kref

sup{y0,y}∈∂Ω3

∣

∣y−y0
∣

∣

, 1

)

, (3.36)

Cs = sup
n∈Z,j∈{0,1,2,3}

(γ2 − 1)
(∣

∣cnj
∣

∣,
∣

∣dnj
∣

∣

)

(3.37)

with βnj and zn as given by equations (2.43) and (2.44) (extended for j ∈ {0, 1, 2, 3}).

Proof. Taking the partial derivative of U with respect to x, y, γ1 times, and using
equation (3.35) gives

∂γ1x U =
∑

m,n∈Z

∫ d

0

(inα)
γ1einα(x−x0)eimα(x0)

∫

R

cnj e
iβn

j

∣

∣y−y0
∣

∣

+ dnj e
−iβn

j

∣

∣y−y0
∣

∣

f (mα)(y0)

−2iβnj
dy0dx0,
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and so

‖∂γ1x U‖L2(S) ≤ sup
n∈Z

‖nα‖γ1∞
∣

∣

∣

∣

∣

∣

∣

∣

∑

m,n∈Z

∫ d

0

einα(x−x0)eimα(x0)

∫

R

cnj e
iβn

j |y−y0| + dnj e
−iβn

j

∣

∣y−y0
∣

∣

f (mα)(y0)

−2iβnj
dy0dx0

∣

∣

∣

∣

∣

∣

∣

∣

L2(S)

,

≤ sup
n∈Z

‖nα‖γ1∞‖U‖L2(S).

We can do exactly the same with the partial derivative of U with respect to y, but

we need to take into account that
∑

n∈Z

(

cnj e
iβn

j

∣

∣

y−y0

∣

∣

+dnj e
−iβn

j

∣

∣

y−y0

∣

∣

)

f(mα)(y0)

−2iβn
j

is no

longer continuous for γ2 > 1 on each interface separating each medium of constant
wavenumber kj. Therefore

∂γ2y U =
∑

m,n∈Z

∫ d

0

einα(x−x0)eimα(x0)

∫

R

(±iβnj )γ2
(

cnj e
iβn

j |y−y0| + dnj e
−iβn

j |y−y0|
)

−2iβnj

f (mα)(y0)dy0dx0 +

γ2
∑

p=2

[

∑

n∈Z

(

cnj e
iβn

j |y−y0| + dnj e
−iβn

j |y−y0|
)

−2iβnj
f (nα)(y0)

]

Sj∩Sl

f (nα)(y0),

such that

[

∑

n∈Z

(

cnj e
iβn

j |y−y0|f(nα)(y0)+dnj e
−iβn

j |y−y0|
)

f(nα)(y0)

−2iβn
j

]

Sj∩Sl

denotes the jump at

the interface separating Sj with Sl with j, l ∈ 0, 1, 2, 3 and is given by

∑

n∈Z





(

iβnj
)p−1

(

cnj e
iβn

j |y−y0| + dnj e
−iβn

j |y−y0|
)

−2iβnj

−(iβnl )
p−1 (cnj e

iβn
l |y−y0| + dnj e

−iβn
l |y−y0|

)

−2iβnl

)

f (nα)(y) (3.38)
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for y, y0 ∈ Sj ∩ Sl. Hence,

∣

∣

∣

∣

[

∑

n∈Z

(

cnj e
iβn

j |y−y0| + dnj e
−iβn

j |y−y0|
)

f (nα)(y0)

−2iβnj

]

Sj∩Sl

∣

∣

∣

∣

≤

1

2
sup

n∈Z,j∈{0,1,2,3}
|βnj |p−2

∑

n∈Z

∣

∣

∣

∣

cnj e
iβn

j |y−y0| + cnl e
iβn

l |y−y0|
∣

∣

∣

∣

∣

∣f (nα)(y0)
∣

∣

+
1

2
sup

n∈Z,j∈{0,1,2,3}
|βnj |p−2

∑

n∈Z

∣

∣

∣

∣

dnj e
−iβn

j |y−y0| + dnl e
−iβn

l |y−y0|
∣

∣

∣

∣

∣

∣f (nα)(y0)
∣

∣

≤ sup
n∈Z,l∈{0,1,2,3}

(

|βnj |p−2

∣

∣

∣

∣

cnj e
iβn

j |y−y0|
∣

∣

∣

∣

)

∑

n∈Z

∣

∣f (nα)(y0)
∣

∣

sup
n∈Z,l∈{0,1,2,3}

(

|βnj |p−2

∣

∣

∣

∣

dnj e
−iβn

j |y−y0|
∣

∣

∣

∣

)

∑

n∈Z

∣

∣f (nα)(y0)
∣

∣.

First, we note that when j ∈ {1, 2}, Sj ∩ S0 is given by y = ±b as shown in
Figure 2.2, therefore y − y0 = 0 on the interface and so

∣

∣e±iβ
n
j |y−y0|

∣

∣ = 1. (3.39)

We also note that
∣

∣eiβ
n
j |y−y0|

∣

∣ ≤ 1 (3.40)

because ℑ
(

βnj
)

> 0 and

∣

∣e−iβ
n
j |y−y0|

∣

∣ ≤ e
sin zn/2

∣

∣kj

∣

∣

sup( 2πN0
d

,|α|)
kref

sup{y0,y}∈∂Ω3
|y−y0|

(3.41)

because ℑ
(

βnj
)

= sin zn/2
∣

∣k2j −n2
α

∣

∣

1/2
as given by equations (2.43) and (2.44). We

also note from the remark after Theorem C-2, there exists N0 such that for |n| >
N0, d

n
j equals to zero. Therefore,

∣

∣k2j − n2
α

∣

∣ ≤
∣

∣k2j
∣

∣

∣

∣1 − n2
α

k2j

∣

∣ ≤ 4
∣

∣k2j
∣

∣

sup
(

( 2πN0
d )

2
,|α|2

)

k2ref

such that
∣

∣kj
∣

∣ > kref for j ∈ {0, 1, 2, 3}. Combining equations (3.39), (3.40) and
(3.41), we have

∣

∣

∣

∣

[

∑

n∈Z

(

cnj e
iβn

j |y−y0| + dnj e
−iβn

j |y−y0|
)

f (nα)(y0)

−2iβnj

]

Sj∩Sl

∣

∣

∣

∣

≤ sup
n∈Z,j∈{0,1,2,3}

|βnj |p−2
(∣

∣cnj
∣

∣,
∣

∣dnj
∣

∣

)

sup

(

e
sin zn/2

∣

∣kj

∣

∣
N0

kref
sup{y0,y}∈S0∩S3

|y−y0|
, 1

)

∑

n∈Z

∣

∣f (nα)(y0)
∣

∣

≤ sup
n∈Z,j∈{0,1,2,3}

Cs0

(

e
sin zn/2

∣

∣kj

∣

∣
N0

kref
sup{y0,y}∈S0∩S3

|y−y0|
, 1

)

|βnj |p−2‖f‖L2(S).
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with Cs0 = supn∈Z,j∈{0,1,2,3}
(∣

∣cnj
∣

∣,
∣

∣dnj
∣

∣

)

. Hence

‖∂γ2y U‖L2(S) ≤ sup
n∈Z

‖βnj ‖γ2∞
∣

∣

∣

∣

∣

∣

∣

∣

∑

m,n∈Z

∫ d

0

einα(x−x0)eimα(x0)

∫

R

eiβ
n
j |y−y0|f (mα)(y0)

−2iβnj
dy0dx0

∣

∣

∣

∣

∣

∣

∣

∣

L2(S)

+

γ2
∑

p=2

(

Cs0

(

e
sin zn/2

∣

∣kj

∣

∣
N0
kref

sup{y0,y}∈S0∩S3
|y−y0|

, 1

)

sup
n∈Z,j∈{0,1,2,3}

|βnj |p−2

)

‖f‖L2(S),

≤ sup
n∈Z

‖βnj ‖γ2∞‖U‖L2(S) + Cs0

(

e
sin zn/2

∣

∣kj

∣

∣
N0

kref
sup{y0,y}∈S0∩S3

|y−y0|
, 1

)

(

γ2
∑

p=2

sup
n∈Z,j∈{0,1,2,3}

|βnj |p−2

)

‖f‖L2(S),

≤ sup
n∈Z

‖βnj ‖γ2∞‖U‖L2(S) + Cs0

(

e
sin zn/2

∣

∣kj

∣

∣
N0

kref
sup{y0,y}∈S0∩S3

|y−y0|
, 1

)

(γ2 − 1) sup
n∈Z,j∈{0,1,2,3}

|βnj |γ2−2‖f‖L2(S).

We finish the proof by denoting Cs = Cs0(γ2 − 1)

We can now give an upper bound on the solution in terms of the forcing term.

Lemma 32. For any x ∈ [0, d] and for any y ∈ R, we have for any function
f ∈ L2

α# ([0, d] × R) and for U as given by equation (3.31)

‖ U(x, y) ‖L2(S)≤ sup
n∈Z,j

(∣

∣cnj
∣

∣,
∣

∣dnj
∣

∣

)

‖βnj ‖∞
‖ f(x, y) ‖L2(S)

for j = 0, 1, 2, 3

Proof. Using Lemma 30 we have

‖ U ‖L2(S) ≤ sup
n∈Z,j

(∣

∣cnj
∣

∣,
∣

∣dnj
∣

∣

)

‖βnj ‖∞
‖
∑

n∈Z
einαxf (nα)(y) ‖L2(S),

≤ sup
j∈{0,1,2,3},n∈Z

(∣

∣cnj
∣

∣,
∣

∣dnj
∣

∣

)

‖βnj ‖∞
‖ f(x, y) ‖L2(S),

from equation (3.8) which finishes the proof.

We then have the following regularity result for Case 2A .

Theorem 33. For any γ = (γ1, γ2) such that γj ∈ N, for j = 1, 2, and for
x ∈ [0, d], y ∈ [−B,B] ⊂ R there exists a constant Creg which is independent of
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the wavenumber k such that the solution U of equation (3.24) given by Theorem 28
satisfies

‖ DγU ‖L2(Ω)≤ Creg
(

1 + CsC(k0, k3)
)

‖k‖|γ|−1
∞ ‖ f ‖L2(Ω),

with Cs and C(k0, k3) as given by equations (3.37) and (3.36) in Lemma 31 and
‖ DγU ‖L2(Ω) is as given in Definition A-10.

Proof. We use Lemma 31 with Lemma 26, we have

‖ ∂γ1x U ‖L2(S) ≤ sup
n∈Z

‖nα‖γ1∞
2‖βnj ‖∞

‖ f ‖L2(S),

‖ ∂γ2y U ‖L2(S) ≤ sup
n∈Z

‖βnj ‖γ2∞
2‖βnj ‖∞

‖ f ‖L2(S) +C(k0, k3)Cs sup
n∈Z,j

|βnj |γ2−2‖f‖L2(S),

with C > 1 We note that nα, and β
n
j are given by (2.43)

nα =
2πn

d
+ k sin θ,

= k

(

2πn

dk
+ sin θ

)

,

= k sin θn.

We proceed the same as with nα for βnj , and we have

βnj = eizn/2
√

|k2 − n2
α|,

= eizn/2
√

|k2(1 − sin θ2n)|,
= |k|eizn/2

√

|1 − sin θ2n)|,
= |k|eizn/2 cos θn,

therefore, we have

‖∂γ1x U‖L2(S) ≤ sup
n∈Z

‖ (k sin θn)
γ1

|k|eizn/2 cos θn
‖∞ ‖ f ‖L2(S),

≤ sup
n∈Z

‖k‖γ1−1
∞

| sin θn|
| cos θn|

γ1

‖ f ‖L2(S) .
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In a similar fashion,

‖ ∂γ2y U ‖L2(S)≤ sup
n∈Z

(

‖k‖∞|eizn/2 cos θn|
)γ2−1 ‖ f ‖L2(S)

+C(k0, k3)Cs sup
n∈Z,j

|βnj |γ2−2 ‖ f ‖L2(S),

≤ sup
n∈Z

(

‖k‖∞|eizn/2 cos θn|
)γ2−1 ‖ f ‖L2(S) +C(k0, k3)Cs

sup
n∈Z,j

(

‖k‖∞|eizn/2 cos θn|
)γ2−1

‖k‖∞|eizn/2 cos θn| ‖ f ‖L2(S),

≤ sup
n∈Z

‖k‖γ2−1
∞ (| cos θn|)γ2−1 ‖ f ‖L2(S)

+C(k0, k3)Cs sup
n∈Z,j

(

‖k‖∞|eizn/2 cos θn|
)γ2−1

kref | cos θn| ‖ f ‖L2(S) .

If we denote

Creg = sup
n∈Z

( | sin θn|γ1
| cos θn| , | cos θn|γ2−1,

1

kref | cos θn|

)

,

which is well defined because βnj 6= 0, therefore cos θn 6= 0. Hence,

‖ ∂γ2y U ‖L2(S) ≤
(

Creg‖k‖γ2−1
∞ + Creg‖k‖γ2−1

∞ C(k0, k3)Cs
)

‖ f ‖L2(S),

≤ Creg(1 + CsC(k0, k3))‖k‖γ2−1
∞ ‖ f ‖L2(S) .

Since supp f ⊂ Ω, then

‖∂γ2y U‖L2(Ω) ≤
(

Creg‖k‖γ2−1
∞ + Creg‖k‖γ2−1

∞ C(k0, k3)Cs
)

‖f‖L2(Ω),

≤ Creg(1 + CsC(k0, k3))‖k‖γ2−1
∞ ‖f‖L2(Ω).

3.2 A special case

In this section we want to check the accuracy of our regularity results. We study
a special case of equation (3.24), when the wavenumber k is independent of the
x direction and Ω3 does not exist; therefore there are three layers with different
wavenumbers. In this case, by using the method of separation of variables, each
of the Fourier coefficients U (nα)(y) of our solution satisfies the one-dimensional
Helmholtz equation for n2

α < k2. For the case n2
α > k2 the field equation becomes

transformed Poisson’s equation and a detailed analysis of this case is also per-
formed here. The regularity bound for the one-dimensional Helmholtz equation
was studied in [85] for Case 2A . Hence, we can use a similar analysis to produce
a regularity result for this special case here. In this section, we will show that the
regularity result for this special case precisely matches that in Theorem 33.
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3.2.1 Solution operator Nβn
j

Let f ∈ L2
α#(Ω) and U ∈ C2(Ω). We have the Helmholtz equation for this special

case

∆U + k2U = f in Ω, (3.42)

U(d, y) |ΓR
= eiαxU(0, y) |ΓL

, (3.43)

∂U

∂n
|Γ+ = T+U, (3.44)

∂U

∂n
|Γ− = T−U, (3.45)

such that

k(y) =







k1 in Ω1,
k0 in Ω0,
k2 in Ω2,

(3.46)

where kj ∈ R, j = 0, 1, 2 (so that we fulfill the conditions in [85]) and Ω is as given
in Figure 2.3 in Chapter 2 and

ΓL = {(0, y) ∈ Ω} , (3.47)

ΓR = {(d, y) ∈ Ω} . (3.48)

The boundary condition is defined using the Dirichlet to Neumann map T as given
by Definition 3. Since U and f are quasi-periodic

U(x, y) =
∑

n∈Z
U (nα)(y)einαx, (3.49)

and
f(x, y) =

∑

n∈Z
f (nα)(y)einαx. (3.50)

Now, we can substitute equations (3.49) and (3.50) inside equation (3.42) to give

−(
d2

dy2
−
(

βnj
)2
)U (nα)(y) = f (nα)(y), for y ∈ [−B,B], ∀n ∈ Z (3.51)

and in equations (3.44) and (3.45) to give

∂

∂n
U (nα)(y) |y=±B= iβnj U

(nα)(±B), j = 1, 2. (3.52)

To study the regularity of U , we use equation (3.51). We start by approximating
the partial derivatives of U (nα)(y)einαx.
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Lemma 34. For all n ∈ Z, and for all p1 ∈ {0, 1, 2}, there exists a constant
C1 ≤ sup(1, k−2) such that if α 6= 0

‖ ∂p1x (U (nα)(y)einαx) ‖L2([−B,B])≤ C1 ‖ ∂2x(U (nα)(y)einαx) ‖L2([−B,B]) . (3.53)

If α = 0, there exists a constant C2 ≤ sup(1, d2

4π2 ) such that

‖ ∂p1x (U (nα)(y)einαx) ‖L2([−B,B])≤ C2 ‖ ∂2x(U (nα)(y)einαx) ‖L2([−B,B]), ∀n ∈ Z\{0}.
(3.54)

Proof. If nα 6= 0, and α 6= 0, then

∂p1x (U (nα)(y)einαx) = (inα)
p1U (nα)(y)einαx,

=
(inα)

p1

−n2
α

∂2x
(

U (nα)(y)einαx
)

.

We note that
∣

∣

∣

∣

(inα)
p1

−n2
α

∣

∣

∣

∣

≤ 1

because p1 ≤ 2. If n 6= 0 and α = 0, since |nα| ≥ 2π
d
then

∣

∣

∣

∣

(inα)
p1

−n2
α

∣

∣

∣

∣

≤ sup(
d2

4π2
, 1).

Next we study the properties of the functions U (nα)(y) which correspond to the
1D case. We consider the two cases where k2 > n2

α and where k2 < n2
α separately.

The case where k2 = n2
α corresponds to the resonance phenomenon and is not

considered here [95].

3.2.2 First case: k2 > n2α

In this case, for each n ∈ Z, equation (3.51) corresponds to the general Helmholtz
equation in one dimension [85].

Definition 35. Let Nβn
j
: L2([−B,B]) → L2([−B,B]) be an operator defined by

Nβn
j
f (nα)(y) =

∫

[−B,B]

Gβn
j
(y − y0)f

(nα)(y0)dy0,

where Gβn
j
: R \ {0} → C corresponds to the Green’s function of the operator

χβn
j
:= d2

dy2
−
(

βnj
)2
, with

(

βnj
)2
< 0. As a consequence we have

Gβn
j
(y) = gβn

j
(
∣

∣y
∣

∣),

where

gβn
j
(r) := −eiβ

n
j r

2iβnj
. (3.55)
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This leads to the following result.

Lemma 36. Let v(nα)(y) = Nβn
j
f (nα)(y) where Nβn

j
is given by Definition 35. If

(

βnj
)2
< 0, then v(nα) is a solution of equation (3.51), and we have

U (nα)(y) = v(nα)(y) = Nβn
j
f (nα)(y) =

∫

[−B,B]

Gβn
j
(y − y0)f

(nα)(y0)dy0

where U (nα)(y) satisfies equation (3.51) [85].

Proof. The proof can be seen in detail in [85].

3.2.2.1 Properties of U (nα)

We have shown that U (nα)(y) can be written in term of the solution operator Nβn
j
,

when
(

βnj
)2
< 0. We also have U (nα)(y) = v(nα)(y) given by Lemma 36. Let us

investigate some properties of the v(nα)(y). From Lemma 36, we can apply the
results given in [85].

Lemma 37 (Decomposition Lemma). Let B1 ≥ B. Then, there exists a constant
C > 0 depending only on B1 and βref such that ‖ βnj ‖∞> βref > 0, and for any

f (nα) ∈ L2([−B,B]), the function v(nα) given by

v(nα)(y) = Nβn
j
f (nα)(y) =

∫

[−B,B]

Gβn
j
(y − y0)f

(nα)(y0)dy0, y ∈ [−B,B],

satisfies

(

βnj
)−1 ‖ v(nα)(y) ‖H2([−B,B]) + ‖ v(nα)(y) ‖H1([−B,B]) +β

n
j ‖ v(nα)(y) ‖L2([−B,B])

≤ C ‖ f (nα)(y) ‖L2([−B,B]) . (3.56)

Proof. The proof of Lemma 37 was already given and can be seen in detail in
[85].

We then have the following results.

Lemma 38. For all p2 ∈ {0, 1, 2}, we have

‖ ∂p2y v(nα)(y) ‖L2([−B,B])≤‖ (iβnj )
p2

(

βnj
)2 ‖∞‖ ∂2yv(nα)(y) ‖L2([−B,B]) (3.57)

and
‖ ∂2yv(nα)(y) ‖L2([−B,B])≤ C ‖ βnj ‖∞‖ f (nα)(y) ‖L2([−B,B]) (3.58)

such that C is the constant given in equation (3.56) in Lemma 37.
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Proof. We show Lemma 38, by noting that

v(nα)(y) =

∫

[−B,B]

−eiβn
j (y−y0)

2iβnj
f (nα)(y0)dy0

∂p2y v
(nα)(y) =

∫

[−B,B]

(iβnj )
p2

−eiβn
j (y−y0)

2iβnj
f (nα)(y0)dy0

=

∫

[−B,B]

(iβnj )
p2

(iβnj )
2

(βnj )
2eiβ

n
j (y−y0)

2iβnj
f (nα)(y0)dy0

we take the norm and we have

‖ ∂p2y v(nα)(y) ‖L2([−B,B]) ≤ ‖ (iβnj )
p2

(iβnj )
2 ‖∞‖

∫

[−B,B]

−(iβnj )
2eiβ

n
j (y−y0)

2iβnj
‖L2([−B,B]),

= ‖ (iβnj )
p2

(iβnj )
2 ‖∞‖ ∂2yv(nα)(y) ‖L2([−B,B]),

which ends the proof of equation (3.57). We also note that

‖ ∂2yv(nα)(y) ‖L2([−B,B]) =

∫

[−B,B]

∣

∣

∣

∣

(

βnj
)2
eiβ

n
j (y−y0)

2iβnj
f (nα)(y0)

∣

∣

∣

∣

2

dy0

≤ ‖ βnj ‖4
∞‖ v(nα)(y) ‖2

L2([−B,B]),

≤ ‖ βnj ‖2
∞‖ βnj ‖2

∞‖ v(nα)(y) ‖2
H1([−B,B]),

from Definition A-10 with l = 1 and s = 2 and so

‖ ∂2yv(nα)(y) ‖L2([−B,B]) ≤ C2 ‖ βnj ‖2
∞‖ f (nα)(y) ‖2

L2([−B,B]),

from equation (3.56) which finishes the proof.

It then follows that

Lemma 39. Let N− = {n ∈ Z : n2
α < k2}, there exists a constant ǫ > 0 and a

constant C depending on λ, βref as defined in Lemma 37 such that ∀p = (p1, p2)
with | p |≤ 2, we have

∑

n∈N−

‖ Dp(U (nα)(y)einαx) ‖L2(Ω)≤
√

C(ǫ)k|p|−1
∑

n∈N−

‖ f (nα)(y)einαx ‖L2(Ω),

where C(ǫ) = C2 supn∈N−

(

C3

ǫn
+ 1
)

such that C is the constant defined in equa-

tion (3.56), C3 = sup (C1, C2) which are given in Lemma 34 and ǫn ≥
(

k2

(nα)
2−1

)2p2
.
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We also have

Lemma 41. For n ∈ Z such that n2
α > k2, and for p2 ∈ {0, 1, 2} we have

‖ ∂p2y U (nα)(y) ‖L2([−B,B])≤‖ f (nα)(y) ‖L2([−B,B]) .

Proof. We know that U (nα) satisfies

−∂2yU (nα) + (n2
α − k2)U (nα) = f (nα)(y).

Using the Fourier transform of U (nα), we have

∑

m∈Z

(

m2 + (n2
α − k2)

)

U (nα)
m eimy = f (nα)(y),

which can be written as

∑

m∈Z

(

m2 + (n2
α − k2)

m2

)

∂2y
(

U (nα)
m eimy

)

= f (nα)(y),

Furthermore we know that n2
α − k2 > 0, which means

‖
∑

m∈Z

(

m2 + (n2
α − k2)

m2

)

∂2y
(

U (nα)
m eimy

)

‖L2([−B,B])

=‖ f (nα)(y) ‖L2([−B,B])≥‖
∑

m∈Z
∂2y
(

U (nα)
m eimy

)

‖L2([−B,B]) .

We apply Lemma 40 to finish the proof of Lemma 41.

We also need the following property

Lemma 42. For (nα)
2 > k2, we have the following result

‖ U (nα)(y) ‖L2([−B,B]) ≤ (n2
α − k2)−1(‖ f (nα)(y) ‖L2([−B,B])

+ ‖ ∂2yU (nα)(y) ‖L2([−B,B])).

Proof. The result is straightforward by noting that U (nα) satisfies

−∂2yU (nα) + (n2
α − k2)U (nα) = f (nα),

and
(n2

α − k2)U (nα) = f (nα) + ∂2yU
(nα),

U (nα) = (n2
α − k2)−1(f (nα) + ∂2yU

(nα)).

We take the norm to finish the proof.

Now let us denote by N+ = {n ∈ Z : n2
α > k2}. Then, we have the following

result
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Lemma 43. For all n ∈ N+, and for p = (p1, p2) with |p| ≤ 2, there exists a
constant ǫ+ > 0 such that

∑

n∈N+

‖ Dp(U (nα)(y)einαx) ‖2
L2(Ω)≤ (

1

ǫ+
+ 2)

∑

n∈N+

‖ f (nα)(y)einαx ‖2
L2(Ω) .

Proof. We have for p = (p1, p2), p1, p2 ∈ {0, 1, 2}

‖ DpUnα(y)einαx ‖2
L2(Ω) = ‖ ∂p1x

(

Unα(y)einαx
)

‖2
L2(Ω) + ‖ ∂p2y

(

Unα(y)einαx
)

‖2
L2(Ω)

≤ ‖ −n2
αU

nα(y)einαx ‖2
L2(Ω) + ‖ ∂2yUnα(y)einαx ‖2

L2(Ω),

by using Lemma 40. We use Lemma 41 and Lemma 42 to give

‖ DpUnα(y)einαx ‖2
L2(Ω) ≤ (

n4
α

(n2
α − k2)2

+ 1) ‖ fnα(y) ‖2
L2(Ω)

= (
1

(1 − k2

n2
α
)2

+ 1) ‖ fnα(y) ‖2
L2(Ω)

Furthermore, we have k2

n2
α
< 1, then if we denote ǫ+n =

(

1 − k2

n2
α

)2

, we have

‖ DpUnα(y)einαx ‖2
L2(Ω)≤ (

1

ǫ+n
+ 1) ‖ fnα(y) ‖2

L2(Ω) .

We take the sum over n ∈ N+ and taking the ǫ+ = infn∈N+ ǫ
+
n to end the proof

∑

n∈N+

‖ Dp(Unα(y)einαx) ‖2
L2(Ω)≤ (

1

ǫ+
+ 1)

∑

n∈N+

‖ fnα(y) ‖2
L2(Ω) .

3.2.4 Regularity of the solution corresponding to the spe-

cial case

Finally, we can use Lemma 39 and Lemma 43 to show the regular estimate corre-
sponding to equations (3.42) to (3.45).

Theorem 44. If U(x, y) satisfies equations (3.42) to (3.45), there exists kref < k
such that we have the following regularity estimate

‖ DpU ‖L2(Ω)≤
√

C(ǫ, kref , ǫ+)k
|p|−1 ‖ f ‖L2(Ω)

where ǫ and ǫ+ are given respectively in Lemma 39 and Lemma 43.
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Proof. We have from Lemma 43 and Lemma 39 that

∑

n∈Z
‖ Dp(U (nα)(y)einαx) ‖2 =

∑

n∈N−

‖ Dp(U (nα)(y)einαx) ‖2

+
∑

n∈N+

‖ Dp(U (nα)(y)einαx) ‖2
L2(Ω),

≤ C(ǫ)k2(|p|−1)
∑

n∈N−

‖ f (nα)(y) ‖2
L2(Ω)

+

(

1

ǫ+
+ 1

)

∑

n∈N+

‖ f (nα)(y) ‖2
L2(Ω),

≤ C(ǫ, kref , ǫ+)k
2(|p|−1)

∑

n∈Z
‖ f (nα)(y) ‖2

L2(Ω)

with

C(ǫ) +
1
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with a TE wave (Case 1A) and the transmitting dielectric interacting with a TE
wave (Case 2A). To keep this chapter to a manageable size Cases 1B and 2B are
relegated to Appendix C. We investigated the robustness of our regularity result
for the special case where the multiple scattering problem is reduced into a one
dimensional single scattering problem. We have given the solution in terms of the
Green’s functions so that we can examine the regularity of our solution in terms of
the forcing term (incident wave). We derived a result for multiple scattering and
this showed an explicit dependence on the wavenumber k and the forcing term f .
This regularity result will give us a hold on the convergence and the stability of the
solution when we later solve numerically the scattering problems using finite ele-
ment methods. In fact, if we let h denote the maximum mesh size of our elements,
and p be the highest order of the finite element basis, since we know explicitly
the dependence of the regularity result on the wavenumber k, then the a priori
error estimate will present a power factor of kh/p. This shows that when we have
a high wavenumber, we need a finer mesh or a higher order for the polynomial
basis. Hence, when we solve numerically, we can use this information to balance
the computational time and the accuracy of our approximated solution.

We also examined a special case that reduced the multiple scattering problem
into a one dimensional single scattering problem. In fact, when k2 > (nα)

2, we
have shown that each U (nα)(y) satisfies a one dimensional Helmholtz problem.
Hence, we can use the results given in [85] which studied recently the Helmholtz
problem for single scattering for the TE, transmitting dielectric gratings case.
In the other case, where k2 < (nα)

2, we cannot use the results from [85] since
U (nα)(y) satisfies transformed Poisson’s equation, so we need to use the properties
of the Fourier transform to study the regularity of U (nα)(y). We have shown that
the regularity result for this special case, which is given by Theorem 44, agrees
with the regularity result in Theorem 33. So, the regularity result given for the
general case are the best approximation and the only results to date for a periodic
grating with respect to one direction, which show an explicit dependence on the
wavenumber k, for perfectly conducting gratings. Regularity results in H1(R2) for
general unbounded penetrable rough layers have been studied in [74]. Since the
authors in [74] did not focus on the special case where the grating is periodic, their
regularity constant depends on the wavenumber k(x, y) (if p = 1 in Theorem 33
then we just have k0 dependency).

In the following chapters, we will study the homogeneous problem correspond-
ing to equations (2.95) and (2.104). The regularity of the solution of the inhomo-
geneous Helmholtz problem will be used to perform an a priori error estimate of
the solution corresponding to the homogenous problems.
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Chapter 4

A priori error estimates using the
α, 0-quasi periodic transformation

In this chapter, we introduce the approximation method that we will use to solve
the diffraction problems described in Chapters 2 and 3. For clarity, we mainly
focus on Case 1A and we relegate Cases 1B, 2A and 2B to Appendix D. Since U is
α-quasi periodic then we can use the α, 0-quasi periodic transformation by defining
a function denoted by Uα,0 which is periodic with respect to x where U = eiαxUα,0.

Note that it is easier to study analytically the scattering problem using U since
it lends itself more readily to a variational formulation. It will transpire however
that the numerical implementation of the finite element method is computation-
ally less expensive and less complicated if we base it on Uα,0. Hence, instead of
approximating numerically the scattering problem and looking directly for U , we
look for the wave equations satisfied by Uα,0. We start by studying the continuity
properties corresponding to Uα,0, and then examine the variational formulation.
When we adopt such an approach, we need to show that the problem correspond-
ing to the variational formulation is well-posed; that is, the solution exists, is
unique and depends continuously on the data. We will show that the problem is
H1
α#(Ω \ int Ω3)-coercive. We then use the finite element method to discretise the

problem, and provide a rigorous study of the a priori error estimation. In order to
do so, we first derive a regularity result for the scattering problem in periodic space
H l

#(Ω \ int Ω3) for l ≥ 1. We will show that solving the variational formulation
for U is equivalent to solving the variational formulation for Uα,0. Since we have
already derived regularity results in the quasi-periodic case in Chapter 3 and since
the variational formulation for U is much simpler than that of Uα,0, we investi-
gate the a priori error estimation in H l

α#(Ω \ int Ω3). This will then allow us to
prove a new error estimate that differs from those in the literature since it provides
an explicit dependence on the wavenumber. This provides a clearer insight into
the convergence of the solution and will help in our numerical implementation to
balance the accuracy against the computational cost.
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4.1 Restatement of the boundary value problems

for the periodic solution

We are going to use the α-quasi periodicity of the solution U . Hence, from
Lemma A-16 there exists Uα,0 which is periodic, of period d with respect to x,
such that

U(x, y) = eiαxUα,0(x, y). (4.1)

Therefore the propagating equation is changed, and we have the following lemma.

Lemma 45. Let Uα,0 ∈ C2(Ω \ int Ω3) satisfy equation (4.1), then Uα,0 is the
solution of the following problem in the truncated domain Ω\int Ω3 (see Figure 2.3)

∆Uα,0 + (k2 − α2)Uα,0 + 2iα∂xUα,0 = 0, (4.2)

with the DtN map interface conditions at the boundaries of the truncated region
given by

(T α,0+ − ∂

∂n
)Uα,0 = 2iβ0

1e
−iβ0

1B, on Γ+, (4.3)

(T α,0− − ∂

∂n
)Uα,0 = 0, on Γ−. (4.4)

The Dirichlet boundary condition at the surface of the diffraction grating is

Uα,0(x, y) = 0, on ∂Ω3, (4.5)

and the periodic condition

Uα,0(d, y) = Uα,0(0, y), y ∈ [−B,B], (4.6)

holds where U(x, y) is the solution of the original Helmholtz problem given by
equation (2.95) and

T α,0± Uα,0(x) =
∑

n∈Z
iβn1Uα,0

(n)(±B)ei
2πn
d
x, (4.7)

using Definition 4.

Proof. We have

∇U = ∇
(

eiαxUα,0
)

,

= ∇(eiαx)Uα,0 + eiαx∇Uα,0,

=

[

iαeiαx

0

]

Uα,0 + eiαx∇Uα,0. (4.8)
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We also have

∇.∇U = −α2eiαxUα,0 + 2iαeiαx∇Uα,0 + eiαx∆Uα,0,

∆U = eiαx
(

−α2Uα,0 + 2iα∂xUα,0 +∆Uα,0
)

,

and since eiαx 6= 0, then equation (2.95) implies

∆Uα,0 + 2iα∂xUα,0 + (k2 − α2)Uα,0 = 0,

which is equation (4.2). For the boundary conditions, since U is α-quasi periodic
with respect to x then Uα,0 is periodic by using Lemma A-16 and similarly if Uα,0
is periodic with respect to x then U is α-quasi periodic. On the top boundary
Γ+ = {(x, y) ∈ Ω : y = B}, we have from equation (2.96),

∂n(U)
∣

∣

Γ+
= ∂n

(

eiαxUα,0
)

Γ+
= T+

(

eiαxUα,0
)

− 2iβ0
1e

−iβ0
1Beiαx.

By using Lemma 9 this becomes

eiαx∂nUα,0

∣

∣

∣

∣

Γ+

= eiαx
(

T α+Uα,0 − 2iβ0
1e

−iβ0
1B
)

. (4.9)

Since eiαx 6= 0 then

∂nUα,0

∣

∣

∣

∣

Γ+

= T α,0+ Uα,0 − 2iβ0
1e

−iβ0
1B.

On the bottom boundary Γ− = {(x, y) ∈ Ω : y = −B}, we have from equation
(2.97)

∂n(U)
∣

∣

Γ−
= ∂n

(

eiαxUα,0
)

Γ−
= T−

(

eiαxUα,0
)

.

By using Lemma 9, we can write

eiαx∂nUα,0

∣

∣

∣

∣

Γ−

= eiαxT α,0− Uα,0. (4.10)

Since eiαx 6= 0 then

∂nUα,0

∣

∣

∣

∣

Γ−

= T α,0− Uα,0.

Since eiαx 6= 0, we finish the proof by noting that U = 0 on ∂Ω3 if and only if
Uα,0 = 0 on ∂Ω3.
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4.1.1 Variational formulation

To obtain a numerical method for computing an approximation to Uα,0 we start
by deriving a variational statement of our scattering problem.

Lemma 46. The variational form of the boundary value problem given by equa-
tion (4.2) to equation (4.6) is given by the following statement. Find Uα,0 ∈
H1

#(Ω \ int Ω3), for all v ∈ H1
#(Ω \ int Ω3) and v

∣

∣

∂Ω3
= 0 such that

a(Uα,0, v) = (f, v)Γ+
, (4.11)

and
Uα,0 = 0, on ∂Ω3

where

a(w, v) =

∫

Ω\intΩ3

∇w.∇v −
∫

Ω\intΩ3

(k2 − α2)wv − 2iα

∫

Ω\intΩ3

(∂xw)v

−
∫

Γ+

T α,0+ wv −
∫

Γ−

T α,0− wv (4.12)

and

(f, v)Γ+
= −

∫

Γ+

2iβ0
1e

−iβ0
1Bvdx, (4.13)

for w ∈ H1
#(Ω \ int Ω3) and w

∣

∣

∂Ω3
= 0.

Proof. Multiplying both sides of equation (4.2) by v and integrating gives

∫

Ω\intΩ3

∆Uα,0v +

∫

Ω\intΩ3

(k2 − α2)Uα,0v + 2iα

∫

Ω\intΩ3

(∂xUα,0)v = 0,

for all v ∈ H1
#(Ω \ int Ω3). We integrate by parts to get

∫

Ω\intΩ3

∇Uα,0.∇v −
∫

Ω\intΩ3

(k2 − α2)Uα,0v − 2iα

∫

Ω\intΩ3

(∂xUα,0)v

−
∫

∂(Ω\int Ω3)

∂Uα,0
∂n

v = 0,

for all v ∈ H1
#(Ω \ int Ω3) and v

∣

∣

∂Ω3
= 0. Then,

∫

Ω\intΩ3

∇Uα,0.∇v −
∫

Ω\int Ω3

(k2 − α2)Uα,0v − 2iα

∫

Ω\int Ω3

(∂xUα,0)v

−
∫

∂Ω3

∂Uα,0
∂n

v −
∫

ΓL∪ΓR∪Γ±

∂Uα,0
∂n

v = 0. (4.14)
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with ΓL, ΓR as defined in equations (3.47) and (3.48). Let nΓL
(nΓR

) denote the
exterior unit normal vector on ΓL (the exterior unit normal vector on ΓR), and
note that nΓL

= −nΓR
. Since v and Uα,0 are periodic then

∫

ΓL∪ΓR

∂Uα,0
∂n

v =

∫

ΓL

∂Uα,0
∂n

v +

∫

ΓR

∂Uα,0
∂n

v

=

∫

ΓL

(

∂Uα,0
∂n

v − ∂Uα,0
∂n

v

)

= 0.

We also have
∫

∂Ω3

∂Uα,0

∂n
v = 0 from the Dirichlet boundary condition on v and so

equation (4.14) becomes

∫

Ω\int Ω3
∇Uα,0.∇v −

∫

Ω\int Ω3
(k2 − α2)Uα,0v − 2iα

∫

Ω\intΩ3
(∂xUα,0)v

−
∫

Γ+
T α,0+ Uα,0v −

∫

Γ−
T α,0− Uα,0v = −

∫

Γ+
2iβ0

1e
−iβ0

1Bv

using equations (4.3) and (4.4) and this finishes the proof.

4.1.2 Equivalence of the variational forms for the periodic

and α-quasi periodic problems

We want to show that the periodic problem is well posed. We also want to establish
an upper bound on the error that arises when we solve the scattering problem
numerically. For these reasons, we need to study the equivalence of the variational
form for the periodic and α-quasi periodic problem and this can be described as
follows.

Similar to Lemma 46, for the periodic function Uα,0 and vα ∈ H1
#(Ω \ int Ω3),

let

a(Uα,0, vα) = (∇Uα,0,∇vα)Ω\int Ω3
− 2iα(∂xUα,0, vα)Ω\intΩ3

−
(

(k2 − α2)Uα,0, vα
)

Ω\int Ω3
−
(

T α,0± Uα,0, vα
)

Γ±
, (4.15)

(fα, vα)Γ+
= −

∫

Γ+

2iβ0
1e

−iβ0
1Bvα.

We have the Dirichlet boundary condition that

Uα,0 = 0, on ∂Ω3, (4.16)

and T α,0± are given by Definition 4. The variational problem is to find Uα,0 ∈
H1

#(Ω \ int Ω3) for all vα such that

a(Uα,0, vα) = (fα, vα)Γ+
. (4.17)
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Similarly, for the α-quasi periodic function U let

a(U, v) = (∇U,∇v)Ω\int Ω3
−
(

k2U, v
)

Ω\intΩ3
− (T±U, v)Γ±

(4.18)

(f, v)Γ+
= −

∫

Γ+

2iβ0
1e
i(αx−β0

1B)v

where T± are given by Definition 3 and U satisfies the Dirichlet boundary condition

U(x, y) = 0, on ∂Ω3. (4.19)

The variational problem is to find U ∈ H1
α#(Ω \ int Ω3) for all v ∈ H1

α#(Ω \ int Ω3)
such that

a(U, v) = (f, v)Γ+
. (4.20)

We have the following result.

Lemma 47. Finding Uα,0 ∈ H1
#(Ω \ int Ω3) for all vα ∈ H1

#(Ω \ int Ω3) such that
a(Uα,0, vα) = (fα, vα) as given in equation (4.17) is equivalent to finding U ∈
H1
α#(Ω \ int Ω3) for all v ∈ H1

α#(Ω \ int Ω3) such that a(U, v) = (f, v)Γ+
using

equation (4.20).

Proof. Let v = eiαxvα, w = eiαxwα, such that wα ∈ H1
#(Ω \ int Ω3), then we have

(∇vα,∇wα)Ω\intΩ3
=

(

∇
(

e−iαxv
)

,∇
(

e−iαxw
))

Ω\int Ω3

=

∫

Ω\intΩ3

[

−iαe−iαxv + e−iαx∂xv
e−iαx∂yv

]

.

[

iαeiαxw + eiαx∂xw
eiαx∂yw

]

and we have

(∇vα,∇wα)Ω\intΩ3
=

∫

Ω\intΩ3

(

α2vw − iαv∂xw + iαw∂xv + ∇v.∇w
)

. (4.21)

Since vw is periodic with respect to x, then
∫ d

0
∂x(vw) = 0 and imposing Dirichlet

boundary condition on ∂Ω3 we also get
∫

Ω\intΩ3
∂x(vw) = 0. So,

∫

Ω\intΩ3

(∂xv)w = −
∫

Ω\intΩ3

v(∂xw)

and hence equation (4.21) becomes

(∇vα,∇wα)Ω\int Ω3
=

∫

Ω\intΩ3

(

α2vw + 2iαw∂xv + ∇v.∇w
)

. (4.22)

Examining the next term in the sesquilinear form given by equation (4.15) we see

−iα(∂xvα, wα)Ω\intΩ3
= −iα

∫

Ω\int Ω3

(

−iαe−iαxv + e−iαx∂xv
)

eiαxw

=

∫

Ω\int Ω3

(

−α2vw − iαw∂xv
)

. (4.23)
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Next we have the following

((

k2 − α2
)

vα, wα
)

Ω\intΩ3
=

∫

Ω\intΩ3

(

k2 − α2
)

e−iαxveiαxw

=

∫

Ω\intΩ3

(

k2 − α2
)

vw. (4.24)

Finally, the last term of the sesquilinear form in equation (4.15) can be written as

(

T α,0± vα, wα
)

Γ±
=
(

T α,0± e−iαxv, eiαxw
)

Γ±
= (T±v, w)Γ±

. (4.25)

Substituting equations (4.22),(4.23),(4.24) and (4.25) into equation (4.15) we get

a(v, wα) =

∫

Ω\intΩ3

(

∇v.∇w − k2vw
)

−
∫

Γ±

T±vw

= a(v, w).

We finish the proof of Lemma 47 by noting that

(fα, wα)Γ+
= −

∫

Γ+

2iβ0
1e

−iβ0
1Bwα,

= −
∫

Γ+

2iβ0
1e

−iβ0
1Beiαxw,

= (f, w)Γ+
. (4.26)

4.1.3 Well posedness of the variational problem

Before solving the variational formulation numerically, we first show that our prob-
lem is well posed which means that a solution exists, it is unique and the solution
depends continuously on the data (also called regularity of the solution) [54, 37].
We differ from other previous published work [9] since we show rigorously this well
posedness of the boundary value problem. The variational form associated with
U is easier to study analytically so we are going to show that the α-quasi peri-
odic problem is well posed and from that result we then show that the variational
formulation corresponding to Uα,0 is also well posed.

4.1.3.1 Existence and uniqueness of the solution

Lemma 48. For all v ∈ H1
#(Ω \ int Ω3), the solution Uα,0 ∈ H1

#(Ω \ int Ω3) which
satisfies equation (4.11) exists and is unique.
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Proof. We note by using the Cauchy-Schwarz inequality [22, p. 50] that

∣

∣(∇U,∇v)Ω\intΩ3

∣

∣ =
∣

∣

∫

Ω\intΩ3

∇U.∇vdxdy
∣

∣, (4.27)

≤
∫

Ω\intΩ3

∣

∣∇U.∇v
∣

∣dxdy, (4.28)

≤ ‖ ∇U ‖L2
α#(Ω\intΩ3)‖ ∇v ‖L2

α#(Ω\int Ω3), (4.29)

and also that

∣

∣

(

k2U, v
)

Ω\intΩ3

∣

∣ =
∣

∣

∫

Ω\intΩ3

k2Uvdxdy
∣

∣, (4.30)

≤ ‖ k2 ‖∞

∫

Ω\intΩ3

∣

∣Uv
∣

∣dxdy, (4.31)

≤ ‖ k2 ‖∞‖ U ‖L2
α#(Ω\intΩ3)‖ v ‖L2

α#(Ω\int Ω3) . (4.32)

Definition 3 and Lemma 2 with f = v give

∣

∣

∫

Γ±

T±Uvdx
∣

∣ = d
∣

∣

∑

n∈Z
iβnj U

(nα)(±B)v(nα)(±B)
∣

∣,

= d
∣

∣

∑

n∈Z
iβnj
(

1 + n2
α

)−1/4 (
1 + n2

α

)1/4
U (nα)(±B)v(nα)(±B)

∣

∣,

≤ d

(

∑

n∈Z

∣

∣βnj
∣

∣

2 (
1 + n2

α

)−1/2 ∣
∣U (nα)(±B)

∣

∣

2
)1/2

(

∑

n∈Z

(

1 + n2
α

)1/2 ∣
∣v(nα)(±B)

∣

∣

2
)1/2

.

We use equations (2.68) and (2.69)

∑

n∈Z

∣

∣βnj
∣

∣

2 (
1 + n2

α

)−1/2 ∣
∣U (nα)(±B)

∣

∣

2 ≤c2
∑

n∈Z:n2
α<|k2j |

|k2j |
(

1 + n2
α

)−1/2 ∣
∣U (nα)(±B)

∣

∣

2

+ c1
∑

n∈Z:n2
α>|k2j |

n2
α

(

1 + n2
α

)−1/2 ∣
∣U (nα)(±B)

∣

∣

2
,

≤c2|k2j |
∑

n∈Z

(

1 + n2
α

)−1/2 ∣
∣U (nα)(±B)

∣

∣

2

+ c1
∑

n∈Z

(

1 + n2
α

)1/2 ∣
∣U (nα)(±B)

∣

∣

2
,

≤c2|k2j | ‖ U ‖2

H
− 1

2
α# (Γ±)

+c1 ‖ U ‖2

H
1
2
α#(Γ±)

,
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from Definition A-17. Hence
∣

∣

∣

∣

∫

Γ±

T±Uvdx

∣

∣

∣

∣

2

≤ C2d2
(

|k2j | ‖ U ‖2

H
− 1

2
α# (Γ±)

+ ‖ U ‖2

H
1
2
α#(Γ±)

)

‖ v ‖2

H
1
2
α#(Γ±)

,

where C2 = sup (c1, c2) and we have

∣

∣

∣

∣

∫

Γ±
T±Uvdx

∣

∣

∣

∣

2

≤ C2d2
(

|k2j | ‖ U ‖2
L2
α#(Ω\int Ω3)

+ ‖ U ‖2
H1

α#(Ω\int Ω3)

)

‖ v ‖2
H1

α#(Ω\int Ω3)
, (4.33)

from Theorem A-13. Hence, we have from equation (4.18)

∣

∣a(U, v)
∣

∣ ≤
∣

∣U
∣

∣

H1
α#(Ω\intΩ3)

∣

∣v
∣

∣

H1
α#(Ω\intΩ3)

+ k2‖U‖L2
α#(Ω\intΩ3)‖v‖L2

α#(Ω\int Ω3)

+ Cd
(

|k2j | ‖ U ‖2
L2
α#(Ω\int Ω3)

+ ‖ U ‖2
H1

α#(Ω\intΩ3)

)

‖ v ‖2
H1

α#(Ω\intΩ3)
,

and so
∣

∣a(U, v)
∣

∣ ≤ C0 sup
(

1, k2
)

‖U‖H1
α#(Ω\intΩ3)‖v‖H1

α#(Ω\int Ω3). (4.34)

Hence, a(U, v) is continuous using Definition A-6. Taking the real part of a(U, U)
and from equation (2.72), we get

ℜ(a(U, U)) ≥
∣

∣U
∣

∣

2

H1
α#(Ω\intΩ3)

− ℜ
(

k2
)

‖U‖2
L2
α#(Ω\int Ω3)

. (4.35)

Hence,

ℜ(a(U, U)) + ℜ
(

k2
)

‖U‖2
L2
α#(Ω\int Ω3)

≥
∣

∣U
∣

∣

2

H1
α#(Ω\intΩ3)

and

∣

∣a(U, U) + ℜ
(

k2
)

‖U‖2
L2
α#(Ω\intΩ3)

∣

∣ ≥ ℜ(a(U, U)) + ℜ
(

k2
)

‖U‖2
L2
α#(Ω\intΩ3)

,

≥
∣

∣U
∣

∣

2

H1
α#(Ω\int Ω3)

,

≥ M1‖U‖2
H1

α#(Ω\int Ω3)
. (4.36)

Then, a(U, U) is H1
α#(Ω \ int Ω3)-coercive from Definition B-4. We can then use

Lemma B-5 to show the existence of a solution from its uniqueness. Let us suppose
that we have two solutions U1 and U2 and let us denote w = U1 − U2. We have
from equation (4.18) that

a(w,w) =
∣

∣w
∣

∣

2

H1
α#(Ω\intΩ3)

−
∫

Ω\intΩ3

k2
∣

∣w
∣

∣

2 −
∫

Γ±

(T±w)w = 0
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and so

∣

∣w
∣

∣

2

H1
α#(Ω\intΩ3)

−
∫

Ω\int Ω3

ℜ
(

k2
)∣

∣w
∣

∣

2 − ℜ
(
∫

Γ±

(T±w)w

)

− i

(

ℑ
(
∫

Γ±

(T±w)w

)

+

∫

Ω\intΩ3

ℑ
(

k2
)∣

∣w
∣

∣

2
)

= 0.

Hence,

∣

∣w
∣

∣

2

H1
α#(Ω\intΩ3)

−
∫

Ω\int Ω3

ℜ
(

k2
)∣

∣w
∣

∣

2 − ℜ
(
∫

Γ±

(T±w)w

)

= 0

and
(

ℑ
(
∫

Γ±

(T±w)w

)

+

∫

Ω\intΩ3

ℑ
(

k2
)∣

∣w
∣

∣

2
)

= 0.

We note that
(

ℑ
(

∫

Γ±
(T±U)U

)

+
∫

Ω\intΩ3
ℑ(k2)

∣

∣U
∣

∣

2
)

≥ 0 from equation (2.72)

and ℑ(k2) = 2ℑ(k)ℜ(k) ≥ 0. Therefore w = 0 and hence U1 = U2. Since
U1 = eiαxUα,01 and U2 = eiαxUα,02 then Uα,01 = Uα,02 which finishes the proof.

In order for a variational formulation to depend continuously on the data, it is
necessary to show that the variational formulation satisfies a regularity estimate
which will be studied in the following section.

4.1.3.2 Regularity estimate of the exact solution

This problem was studied in [9] for the transmitting dielectric grating for the
TE case (Case 2A ). They derived, using Cauchy’s inequality, an a priori error
estimate. However, this estimate did not show an explicit dependence on the
wavenumber k and the degree of the polynomial basis p. Furthermore, the regu-
larity of the solution (which is required to show that the problem is well posed and
is a prerequisite for deriving an a priori error estimate) was simply assumed and
not proven. In our study, we will derive an explicit dependency on k in the proof
of the regularity of the solution. In the a priori error estimate, we will derive an
explicit dependency on the wavenumber k and the degree of the polynomial basis
p. To simplify the algebra, let us define the following norm.

Definition 49. Let F ⊂ R2 and v ∈ H1(̥) (see Definition A-10) then we define
[85]

‖v‖2
H =

∣

∣v
∣

∣

2

H1(̥)
+ ‖ k ‖2

∞ ‖v‖2
L2(̥). (4.37)

Note that ‖v‖H is equivalent to ‖v‖H1(̥) since

inf

(

1,
1

‖k‖∞

)

‖v‖H ≤ ‖v‖H1(̥) ≤ sup

(

1,
1

‖k‖∞

)

‖v‖H
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using Definition A-10. Also note that ‖v‖H ≤
∣

∣v
∣

∣

H1(̥)
+ ‖ k ‖∞ ‖v‖L2(̥). Since

H l
α#(̥) ⊂ H l(̥) and H l

#(̥) ⊂ H l(̥) for any l ≥ 0, then for any v ∈ H1
α#(̥)

(v ∈ H1
#(̥)) ‖v‖H is well defined.

Also we have the following theorem.

Theorem 50. Let v ∈ H l
α#(̥) and let vα,0 ∈ H l

#(̥) such that

v = eiαxvα,0. (4.38)

Let V ⊂ H l
α#(̥) be a finite element subspace of order p with l ≥ 1 as described

in Section B.3 and let us denote with h the maximum mesh size after partitioning
̥. If we make the following standard assumption on the subspace V [35]

infψ∈V

{

‖v − ψ‖L2
α#(̥) +

h

p
‖∇v − ∇ψ‖L2

α#(̥) +

(

h

p

)
1
2

‖v − ψ‖L2
α#(Γ±)

+
h

p
‖v − ψ‖

H
1
2
α#(Γ±)

}

≤ C

(

h

p

)l

‖v‖Hl
α#(̥)

(4.39)

and ‖k‖∞
h
p
< 1, then, we have

‖ vα,0 ‖Hl
#(̥)≤ l2l ‖ v ‖Hl

α#(̥) (4.40)

for l 6= 0 and
‖ vα,0 ‖L2

#(̥)=‖ v ‖L2
α#(̥) . (4.41)

If I ⊂ R, where y = y0 is constant, then we also have

‖vα,0‖
H

1
2
# (I)

≤ C
1/4
α#‖v‖

H
1
2
α#(I)

, (4.42)

where Cα# is given by equation (2.83).

Proof. First, we note that

‖vα,0 − ψα,0‖L2
#(̥) =

∣

∣e−iαx
∣

∣‖v − ψ‖L2
α#(̥) = ‖v − ψ‖L2

α#(̥). (4.43)

Differentiating equation (4.38) gives

h

p
‖∇vα,0 − ∇ψα,0‖L2

#(̥) =
h

p
‖ − iα(v − ψ) + (∇v − ∇ψ)‖L2

α#(̥),

≤ h

p

∣

∣α
∣

∣‖v − ψ‖L2
α#(̥) +

h

p
‖∇v − ∇ψ‖L2

α#(̥),
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by the triangle inequality. Since |iα| < ‖k‖∞ then

h

p
‖∇vα,0 − ∇ψα,0‖L2

#(̥) ≤ ‖k‖∞h

p
‖v − ψ‖L2

α#(̥) +
h

p
‖∇v − ∇ψ‖L2

α#(̥),

≤ ‖v − ψ‖L2
α#(̥) +

h

p
‖∇v − ∇ψ‖L2

α#(̥) (4.44)

since ‖k‖∞
h
p
< 1. We also note that

‖vα,0 − ψα,0‖L2(Γ±) = ‖v − ψ‖L2(Γ±) (4.45)

by Definition A-7. Using Definition A-14, we have

‖ vα,0 − ψα,0 ‖2

H
1
2
# (I)

=
∑

n∈Z

(

1 +

(

2πn

d

)2
)

1
2
∣

∣v
(n)
α,0(y0) − ψ

(n)
α,0(y0)

∣

∣

2
,

=
∑

n∈Z

(

1 +

(

2πn

d

)2
)

1
2
∣

∣v(nα)(y0) − ψ(nα)(y0)
∣

∣

2
,

using Lemma 13 and so from Lemma 12

‖ vα,0 − ψα,0 ‖2

H
1
2
# (I)

≤
∑

n∈Z
C

1
2
α#

(

1 + (nα)
2)

1
2
∣

∣v(nα)(y0) − ψ(nα)(y0)
∣

∣

2
.

Hence, using Definition A-17

‖ vα,0 − ψα,0 ‖2

H
1
2
# (I)

≤ C
1
2
α# ‖ v − ψ ‖2

H
1
2
α#(I)

. (4.46)

and we obtain equation (4.42). Now from equation (4.38) and using Definition A-
10

‖vα,0‖Hl
#(̥) = ‖e−iαxv‖Hl

α#(̥)

=

l
∑

n=0

‖Dne−iαxv‖L2
α#(̥).

Hence, we differentiate to get

=
l
∑

n=0

‖
n
∑

r=0

C(n, r)(−iα)rDn−rv‖L2
α#(̥)

≤
l
∑

n=0

n
∑

r=0

C(n, r)‖k‖r∞‖Dn−rv‖L2
α#(̥).
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Since Dn−rv ∈ Hr
α#(̥), we can use the first term in equation (4.39) and we replace

v by Dn−rv to get

≤
l
∑

n=0

n
∑

r=0

C(n, r)

(

‖k‖∞
h

p

)r

‖v‖Hn−r+r
α# (̥),

≤
l
∑

n=0

n
∑

r=0

C(n, r)‖v‖Hn
α#(̥)

since we assume ‖k‖∞
h
p
< 1 and so

‖vα,0‖Hl
#(̥) ≤

l
∑

n=0

2n‖v‖Hn
α#(̥)

≤ 2l
l
∑

n=0

‖v‖Hn
α#(̥)

≤ l2l‖v‖Hl
α#(̥)

Hence we obtain equation (4.40) which finishes the proof.

In the following theorem, we obtain a new result on the regularity estimate for
the solution Uα,0.

Theorem 51. Let fα ∈ H l
#(Ω\intΩ3) and let Uα,0 ∈ H l

#(Ω\int Ω3) be the solution
of

∆Uα,0 + (k2 − α2)Uα,0 + 2iα∂xUα,0 = fα, in Ω \ int Ω3, (4.47)

(T α,0+ − ∂

∂η
)Uα,0 = 0, on Γ+,

(T α,0− − ∂

∂η
)Uα,0 = 0, on Γ−,

Uα,0 = 0, on ∂Ω3. (4.48)

Then there exists a constant Cstab which is independent of the wavenumber k such
that

‖ Uα,0 ‖H≤ Cstab ‖ fα ‖L2
#(Ω\intΩ3) .

Proof. U ∈ H l
α#(Ω\ int Ω3) is the solution of equation (3.3) and from Definition 49

‖ Uα,0 ‖2
H =

∣

∣Uα,0
∣

∣

2

H1
#(Ω\int Ω3)

+ ‖k‖2
∞ ‖ Uα,0 ‖2

L2
α#(Ω\intΩ3)

.

Since Uα,0 satisfies equation (4.47), then equation (4.38) holds for vα = U and
v = Uα,0 and for vα = f and v = fα and so from equation (4.40)

‖ Uα,0 ‖2
H ≤ 22 ‖ U ‖2

H1
α#(Ω\int Ω3)

+‖k‖2
∞ ‖ U ‖2

L2
α#(Ω\intΩ3)

.
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By using the regularity estimate of the U as given in Theorem 27 we have

‖ Uα,0 ‖2
H ≤ 22C2

reg ‖ f ‖2
L2
α#(Ω\intΩ3)

+‖k‖2−2
∞ C2

reg ‖ f ‖2
L2
α#(Ω\int Ω3)

,

=
(

22 + 1
)

C2
reg ‖ fα ‖2

L2
#(Ω\intΩ3)

using equation (4.45) and we denote Cstab =
√
5Creg which finishes the proof.

We have shown that the problem is well posed by proving that its solution
exists, is unique and satisfies a regularity result. Now, let us study the efficiency
of the diffraction grating which presents the main interest for most applications.

4.1.4 Efficiency of the diffraction grating

For most applications, one is more interested in how efficient a given diffraction
grating is in reflecting or transmitting electromagnetic waves, rather than just
studying the magnetic field Uα,0 for the TM case, or the electric field for the TE
case.

Definition 52. The diffraction efficiency is the physical quantity that character-
izes how the incident field power is distributed between the different orders. It
is given by the ratio between the energy flow of a particular order in a direction
perpendicular to the grating surface and the corresponding flow of the incident
wave through the same surface [79][p. 35].

Hence, for a chosen diffraction order m, the diffraction efficiency for the re-
flected order m (transmitted order m) is given by Rm (respectively Tm) and can
be computed as follows

Rm =
βm1
β0
1

|rm1 |2 (4.49)

Tm =
βm2
β0
1

|tm2 |2 (4.50)

with rm1 and tm2 given by equations (2.58) and (2.59) such that (2πm
d

+α)2 < k2j , for
j = 1, 2. Note that we can compute the diffraction efficiency for allm, however only
the propagating modes can carry energy away from the grating since they do not
have purely imaginary wavevector component βm1 (βm2 ) in the vertical direction
[79][p. 36]. Recall that in our numerical computation we are looking for Uα,0
where U = Uα,0e

iαx since implementing the periodicity condition for Uα,0 is easier
and computationally more efficient than the α-quasi periodicity condition. Hence,
to study the efficiency of the diffraction grating we need to establish a formula
which enables us to compute the efficiency of U from knowledge of Uα,0. From
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equation (2.55), we note that on Γ±, we have

U(x, y) =
∑

m∈Z
rm1 e

iβm
1 y+i(α+ 2πn

d )x + tm2 e
−iβm

2 y+i(α+ 2πn
d )x,

= eiαx
∑

m∈Z
rm1 e

iβm
1 y+i

2πn
d
x + tm2 e

−iβm
2 y+i

2πn
d
x,

= eiαxUα,0(x, y)

and so we can compute the efficiency from the Rayleigh expansion of Uα,0 on
Γ± using equations (2.74), (2.58) and (2.59). We can also use the variational
formulation given by equation (4.12) to show that the energy is conserved. By
calculating the energy we can assess the presence or otherwise of the numerical
inaccuracies in our numerical method. Before doing so, we need the following
results.

Lemma 53. We have

ℜ
(
∫

Ω\int Ω3

(∂xUα,0)Uα,0

)

= 0 (4.51)

Proof. Let us define Ωx where Ωx × [−B,B] = Ω \ int Ω3. We have

∫

Ω\intΩ3

(∂xUα,0)Uα,0dxdy =

∫ B

−B

(
∫

Ωx

(∂xUα,0)Uα,0dx

)

dy.

We note by integrating by parts that

∫

Ωx

(∂xUα,0)Uα,0dx =
[

Uα,0Uα,0
]

∂Ωx
−
∫

Ωx

Uα,0∂xUα,0dx,

and so

∫

Ω\int Ω3

(∂xUα,0)Uα,0dxdy =

∫ B

−B

(

[

Uα,0Uα,0
]

∂Ωx
−
∫

Ωx

Uα,0∂xUα,0dx

)

dy.

For fixed y, either ∂Ωx ⊂ ∂Ω3 or ∂Ωx = 0 or d. In the first case Uα,0 = 0 on ∂Ω3

and in the second case, since Uα,0 is periodic, then

I =

∫ B

−B

[

Uα,0Uα,0
]

∂Ωx
dy = 0.

Hence,
∫

Ω\intΩ3

(∂xUα,0)Uα,0dxdy = −
∫

Ω\intΩ3

Uα,0∂xUα,0dxdy. (4.52)

For any c ∈ C, if c = −c then ℜ(c) = 0 and the result follows.
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4.1.5 Conservation of the energy or energy balance

Let us denote respectively by Er, Et and Eabs, the refracted energy, the transmitted
energy and the absorbed energy by the grating [79, p. 36].

Definition 54. We have

Er =
∑

( 2πm
d

+α)
2
<k21

Rm

Et =
∑

( 2πm
d

+α)
2
<k22

Tm

Eabs =
1

dβ0
1

∫

Ω

ℑ(k2)
∣

∣Uα,0
∣

∣

2

such that Rm and Tm are as given by equations (4.49) and (4.50).

By using the relation between the Rayleigh coefficients (see equation (2.55)) and
the Fourier coefficients of the scattering field on Γ± as given by the system of
equations (2.57), we have the following result.

Lemma 55. The square of the absolute value of the Rayleigh coefficients can be
obtained from the Fourier coefficients of the solution on the top boundary y = B
and the bottom boundary y = −B as follows

∣

∣rn1
∣

∣

2
=
∣

∣U
(n)
α,0 (B)

∣

∣

2
, n ∈ Z \ {0}

∣

∣r01
∣

∣

2
=
∣

∣Uα,0
(0)(B)

∣

∣

2
+ 1 − 2ℜ

(

Uα,0
(0)(B)e−iβ

0
1B
)

∣

∣tn2
∣

∣

2 ≤
∣

∣U
(n)
α,0 (−B)

∣

∣

2
e2ℑ(β

n
2 )B, n ∈ Z

Proof. The proof for the first and the last lines are straightforward using the
system of equations (2.57). So, we will just show the proof of the second line.
From Lemma 13 we note that U (0)(B) = Uα,0

(0)(B). We then use equation (2.58)
to get

∣

∣r0
∣

∣

2
=

∣

∣Uα,0
(0)(B)e−iβ

0
1B − e−2iβ0

1B
∣

∣

2

=
∣

∣Uα,0
(0)(B) − e−iβ

0
1B
∣

∣

2

because we have
∣

∣e−iβ
0
1B
∣

∣ = 1.
Therefore,

∣

∣r0
∣

∣

2
=
∣

∣Uα,0
(0)(B)

∣

∣

2
+ 1 − 2ℜ

(

Uα,0
(0)(B)e−iβ

0
1B
)

.

Theorem 56 (Conservation of energy). Let Et, Er, and Eabs be defined as in
Definition 54. Then, we have the energy balance

Et + Er = 1.
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Proof. Since k1 ∈ R then for perfectly conducting k = k1. Hence by using Def-
inition 54, we have Eabs = 0. We use equation (4.15) with w = v = Uα,0 to
get

∫

Ω\int Ω3

∣

∣∇Uα,0
∣

∣

2 −
∫

Ω\Ω3
(k2 − α2)

∣

∣Uα,0
∣

∣

2 − 2iα
∫

Ω\int Ω3
(∂xUα,0)Uα,0

−
∫

Γ±
(T α,0± Uα,0)Uα,0 = 2iβ0

1

∫

Γ+
e−iβ

0
1BUα,0 (4.53)

Taking the imaginary part of equation (4.53) , and using Lemma 53 with Lemma 8
leaves us with

ℑ
(

T α,0± Uα,0, Uα,0
)

Γ±
+ 2β0

1ℜ
(

e−iβ
0
1B, Uα,0

)

Γ+

= 0. (4.54)

Then we use Lemma 55 with equation (2.72) in Lemma 8 to get

ℑ
(

T α,0± Uα,0, Uα,0
)

Γ±
+ 2β0

1ℜ
(

e−iβ
0
1B, Uα,0

)

Γ+

= d
∑

n∈Z
ℜβnj |Uα,0(n)|2 + 2dβ0

1ℜ
(

e−iβ
0
1BUα,0

(0)
)

,

= d
∑

n∈Z
ℜβnj |Uα,0(n)|2 + dβ0

1

(

2ℜ
(

e−iβ
0
1BUα,0

(0)
)

+ 1
)

− dβ0
1 ,

= dβ0
1

∑

n2
α>k

2

Rm + Tm − dβ0
1 . (4.55)

We use equations (4.54) with (4.55) to get

dβ0
1





∑

n2
α>k

2

Rm + Tm − 1



 = 0 (4.56)

which finishes the proof.

4.2 The discrete problem

In order to solve numerically the scattering problem, we need to discretise the
variational formulation corresponding to the continuous problem.

4.2.1 Variational formulation

Let X ⊂ H1
#(Ω \ int Ω3) be a finite element space with dim(X) = N < ∞ and let

ψi for i = 1, .., N , be a basis of X . We discretise the variational form given by the
equation (4.11) and this leads us to find Uα,0h ∈ X , for all vh ∈ X such that

a(Uα,0h , vh) = (f, vh), (4.57)
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and subject to the constraint

Uα,0h = 0, on ∂Ω3

where

a(wh, vh) =

∫

Ω\intΩ3

∇wh.∇vh −
∫

Ω\intΩ3

(k2 − α2)whvh − 2iα

∫

Ω\intΩ3

(∂xwh)vh

−
∫

Γ+

T α,0+ whvh −
∫

Γ−

T α,0− whvh (4.58)

(f, vh) = −
∫

Γ+

2iβ0
1e

−iβ0
1Bvh, (4.59)

for wh ∈ X . Since Uα,0h ∈ X , there exists Uj for j ∈ {1, ., N}, such that Uα,0h =
∑N

j=1 Ujψj(x, y). Hence, the discrete problem given by equation (4.57) is equivalent
to the following linear algebraic system

AU = L (4.60)

with U = Uj for j =, · · · , N ,
A = a(ψi, ψj),

and
L = (f, ψj)

for {i, j} ∈ {1, .., N}.

4.2.2 Truncation of the DtN map

The DtN operators that we use as transparent boundary conditions when we trun-
cate the domain involve an infinite sum. For computational purposes we also need
to truncate the summation in equation (4.7) to a finite sum. Let M ∈ N and
M < ∞, then we approximate T α,0± with

T α,0±
M
(Uα,0h)(x) =

M
∑

n=−M
iβnj U

(n)
α,0 h

(±B)ei
2πn
d
x. (4.61)

At the boundary of the truncated domain we introduced an upward propagating
radiation condition (UPRC) in Section 2.1. Therefore, we will also need Uα,0h to
satisfy the UPRC. First, we expand Uα,0h in a truncated Fourier series

Uα,0h(x, y) =
M
∑

n=−M
U

(n)
α,0 h

(y)ei
2πn
d
x, (4.62)

where

U
(n)
α,0 h

(y) =
1

d

∫ d

0

Uα,0h(x, y)e
−i 2πn

d
xdx.
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By truncating the fundamental solution in equation (2.55), and using equation
(4.1), the solution is truncated as

Uα,0h =

M
∑

n=−M
rn,Mj eiβ

n
j y+i

2πn
d
x + tn,Mj e−iβ

n
j y+i

2πn
d
x, j = 1, 2, (4.63)

where the unknowns rn,Mj and tn,Mj are complex scalars. Uα,0h contains the incident

wave and must satisfy the UPRC condition in Ω1. It follows that t
n,M
j = 0, for n 6=

0 and t0,M1 = 1 in Ω1 and in Ω2, all the r
n,M
j = 0 (UPRC). We proceed exactly as we

have done for the continuous problem but the solution is now truncated as given
by equations (4.62) and (4.63).The coefficients βnj are given by equation (2.43) and
so, similar to equation (2.57),

U
(n)
α,0 h

(y) = rn,M1 eiβ
n
1 y + δn0e

−iβn
1 y, in Ω1, (4.64)

U
(n)
α,0 h

(y) = tn,M2 e−iβ
n
2 y, in Ω2.

At y = ±B, equations (2.58) and (2.59) become

rn,M1 = U
(n)
α,0h

(B)e−iβ
n
1B − δn0e

−2iβ0
1B, (4.65)

tn,M2 = U
(n)
α,0h

(−B)e−iβ
n
2B.

Similarly to the continuous problem, but now we use equations (4.61) and (4.65)
so that the boundary conditions for the discrete problem are given by

(T α,0+

M − ∂

∂η
)Uα,0h = 2iβ0

1e
−iβ0

1B, on Γ+, (4.66)

(T α,0−
M − ∂

∂η
)Uα,0h = 0, on Γ−. (4.67)

Therefore, instead of solving directly equation (4.57), we approximate Uα,0 by U
M
α,0h

and we solve numerically the following problem. Let X ⊂ H1
#(Ω\intΩ3) be a finite

element space with dim(X) = N < ∞ and let ψi for i = 1, .., N , be a basis of X .
We want to find UM

α,0h
∈ X such that for all vh ∈ X we have

aM(UM
α,0h

, vh) = (f, vh), (4.68)

and subject to the constraint

UM
α,0h

= 0, on ∂Ω3

where

aM (wh, vh) =

∫

Ω\intΩ3

∇wh.∇vh −
∫

Ω\int Ω3

(k2 − α2)whvh − 2iα

∫

Ω\intΩ3

(∂xwh)vh

−
∫

Γ±

T α,0±
M
whvh

(f, vh) = −
∫

Γ+

2iβ0
1e

−iβ0
1Bvh, (4.69)
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for wh ∈ X . This leads to a linear algebraic system

AMUM = L (4.70)

with UM = UM
j for j ∈ {1, ., N}, such that UM

α,0h
=
∑N

j=1U
M
j ψj(x, y).

AM = aM(ψi, ψj),

and
L = (f, ψj)

for {i, j} ∈ {1, .., N}.

4.2.3 Efficiency of the grating

The efficiency of the grating with respect to each diffraction order n can be com-
puted by using equations (2.55), (4.49) and (4.63), to give

RM
n =

βn1
β0
1

∣

∣

∣
rn,Mj

∣

∣

∣

2

(4.71)

TMn =
βn2
β0
1

∣

∣

∣
tn,Mj

∣

∣

∣

2

.

When we replace RM with RM
n , and TM with TMn , in Definitions 54 and D-19 then

Et, Er and Eabs will be called respectively EM
t , EM

r and EM
abs.

4.2.4 Checking the energy balance using the truncated
DtN map

By truncating the DTN operator and by discretising the scattering problem,
Lemma 55 becomes

∣

∣

∣r
n,M
1

∣

∣

∣

2

=
∣

∣UM
α,0h

(n)
(B)
∣

∣

2

, n ∈ Z \ {0}
∣

∣r0M
∣

∣

2
=
∣

∣UM
α,0h

(0)
(B)
∣

∣

2

+ 1 − 2ℜ
(

UM
α,0h

(0)
(B)e−iβ

0
1B
)

∣

∣

∣
tn,M2

∣

∣

∣

2

=
∣

∣UM
α,0h

(n)
(−B)

∣

∣

2

, n ∈ Z. (4.72)

We note that when k2 ∈ R, βnj is real or purely imaginary. Hence, we can use the

DtN operator T α,0
M

± given by equation (4.61) to check the energy balance. Let us
call

TM =
(

T α,0±
M
ψl, ψj

)

Γ±

for {l, j} ∈ {1, ...N}. We have

(

T α,0±
M
UM
α,0h

, UM
α,0h

)

Γ±

= d
∑

n∈Z
iβnj
∣

∣UM
α,0h

(n)
(±B)

∣

∣

2

(4.73)
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by following the same process to get equation (2.70) but using Definition 4. Since

UM
α,0h

=
∑N

j=1U
M
j ψj(x, y) then

(

T α,0±
M
UM
α,0h

, UM
α,0h

)

Γ±

=
(

UMTMUM
T
)

Γ±

with

UM = UM
j for j ∈ {1, ., N}. Hence, from equations (4.71) and (4.72)

EM
t + EM

r =
1

dβ0
1

ℑ
(

UMTMUM
T
)

− 2ℜ
(

e−iβ
0
1BUM

α,0h

(0)
)

+ 1 = 1.

4.3 A priori error estimates for the exact solu-

tion

The well-posedness of each problem that we derived in Section 4.1.3 will now allow
us to derive an a priori error estimate for Uα,0. However, since the sesquilinear
form corresponding to U is simpler to study than Uα,0, and we have already studied
the regularity of U in Section 3.1, then we first study an a priori error estimate of
U with the norm ‖ . ‖H. This will then allow us to derive an a priori error estimate
for Uα,0 and we will show an explicit dependence of the result on the wavenumber
k and the order of the polynomial basis p. We have the following three key results

• an estimate of the error from the discretisation of the continuous problem.

• an estimate of the error from truncating the DtN operator corresponding to
the continuous problem.

• an estimate of the total error.

4.3.1 A priori error estimation of the discretised problem

In this section we will derive an upper bound on the error between the exact
periodic solution Uα,0 and that found numerically by discretising the problem Uα,0h .
In each case we will state the discretised periodic problem in its variational form,
find a regularity bound for the α-quasi periodic exact solution U in terms of the
norm in Definition 49, examine the discretisation error for U , and then use this to
derive an a priori bound on the discretisation error for the periodic solution Uα,0.
Let X ⊂ H l

α#(Ω \ int Ω3) be a finite element subspace of order p with l ≥ 1, and
let ζh be any regular partition of X as described in Section B.3. We denote by
h the maximum mesh size after partitioning Ω \ int Ω3 using ζh. We make the
following standard assumption on the subspace X [35]

infψ∈X

{

‖v − ψ‖L2
α#(Ω\intΩ3) +

h

p
‖∇v − ∇ψ‖L2

α#(Ω\int Ω3) +

(

h

p

)
1
2

‖v − ψ‖L2
α#(Γ±)

+
h

p
‖v − ψ‖

H
1
2
α#(Γ±)

}

≤ C

(

h

p

)l

‖v‖Hl
α#(Ω\intΩ3).

(4.74)
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Similarly, let Xα be a finite element subspace of order p of H l
#(Ω \ int Ω3).

The discretised problem corresponding to equation (4.20) is given below.
Find Uh ∈ X such that

a(Uh, φ) = (f, φ)Γ+
(4.75)

with

a(Uh, φ) = (∇Uh,∇φ)Ω\intΩ3
−
(

k2Uh, φ
)

Ω\intΩ3
− (T±Uh, φ)Γ±

, (4.76)

(f, φ)Γ+
= −2iβ0

1

∫

Γ+

ei(αx−β
0
1B)φ (4.77)

for all φ ∈ X such that Uh = 0 on ∂Ω3 and T± are given by Definition 3.

Lemma 57. Let kref be a positive scalar such that ‖k‖∞ ≥ kref and let U ∈
H1
α#(Ω \ int Ω3), then for all v ∈ H1

α#(Ω \ int Ω3) we have
∣

∣a(U, v)
∣

∣ ≤ Cc‖U‖H‖v‖H

such that Cc = Cd+ 1 depends only on the period of the diffraction grating d.

Proof. We note by using Cauchy- Schwarz inequality [22, p. 50] that

∣

∣(∇U,∇v)Ω\intΩ3

∣

∣ =
∣

∣

∫

Ω\intΩ3

∇U.∇vdxdy
∣

∣,

≤
∫

Ω\intΩ3

∣

∣∇U.∇v
∣

∣dxdy,

≤ ‖ ∇U ‖L2
α#(Ω\intΩ3)‖ ∇v ‖L2

α#(Ω\int Ω3), (4.78)

and also that
∣

∣

(

k2U, v
)

Ω\intΩ3

∣

∣ =
∣

∣

∫

Ω\intΩ3

k2Uvdxdy
∣

∣,

≤ ‖ k2 ‖∞

∫

Ω\intΩ3

∣

∣Uv
∣

∣dxdy,

≤ ‖ k2 ‖∞‖ U ‖L2
α#(Ω\intΩ3)‖ v ‖L2

α#(Ω\int Ω3) . (4.79)

We note that
∣

∣

∫

Γ±

T±Uvdx
∣

∣ =d
∣

∣

∑

n∈Z
iβnj U

(nα)(±B)v(nα)(±B)
∣

∣, (4.80)

=d
∣

∣

∑

n∈Z
iβnj

(

1 + n2
α

)−1/4 (
1 + n2

α

)1/4
U (nα)(±B)v(nα)(±B)

∣

∣,

≤d
(

∑

n∈Z

∣

∣βnj
∣

∣

2 (
1 + n2

α

)−1/2 ∣
∣U (nα)(±B)

∣

∣

2
)1/2

×
(

∑

n∈Z

(

1 + n2
α

)1/2 ∣
∣v(nα)(±B)

∣

∣

2
)1/2

. (4.81)
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We use equations (2.68) and (2.69)
∑

n∈Z

∣

∣βnj
∣

∣

2 (
1 + n2

α

)−1/2 ∣
∣U (nα)(±B)

∣

∣

2 ≤c2
∑

n∈Z:n2
α<|k2j |

|k2j |
(

1 + n2
α

)−1/2 ∣
∣U (nα)(±B)

∣

∣

2

+ c1
∑

n∈Z:n2
α>|k2j |

n2
α

(

1 + n2
α

)−1/2 ∣
∣U (nα)(±B)

∣

∣

2
,

≤c2|k2j |
∑

n∈Z

(

1 + n2
α

)−1/2 ∣
∣U (nα)(±B)

∣

∣

2

+ c1
∑

n∈Z

(

1 + n2
α

)1/2 ∣
∣U (nα)(±B)

∣

∣

2
,

≤c2|k2j | ‖ U ‖2

H
− 1

2
α# (Γ±)

+c1 ‖ U ‖2

H
1
2
α#(Γ±)

,

from Definition A-17. We can then write
∣

∣

∣

∣

∫

Γ±

T±Uvdx

∣

∣

∣

∣

2

≤ Cd

(

|k2j | ‖ U ‖2

H
− 1

2
α# (Γ±)

+ ‖ U ‖2

H
1
2
α#(Γ±)

)

‖ v ‖2

H
1
2
α#(Γ±)

,

where C = max {c1, c2} and so we have

∣

∣

∫

Γ±

T±Uvdx
∣

∣

2 ≤ Cd
(

|k2j | ‖ U ‖2
L2
α#(Ω\int Ω3)

+ ‖ U ‖2
H1

α#(Ω\intΩ3)

)

‖ v ‖2
H1

α#(Ω\intΩ3)
,

(4.82)
from the trace theorem given in Theorem A-13 since and so

∣

∣

∫

Γ±

T±Uvdx
∣

∣ ≤ Cd ‖ U ‖H‖ v ‖H, (4.83)

from Definition 49. Since
(

‖U‖L2
α#(Ω\int Ω3)

∣

∣v
∣

∣

H1
α#(Ω\intΩ3)

)2

≥ 0 then

‖ U ‖2
L2
α#(Ω\intΩ3)

∣

∣v
∣

∣

2

H1
α#(Ω\intΩ3)

+
∣

∣U
∣

∣

2

H1
α#(Ω\intΩ3)

‖ v ‖2
L2
α#(Ω\intΩ3)

≥2 ‖ U ‖L2
α#(Ω\intΩ3)

∣

∣v
∣

∣

H1
α#(Ω\int Ω3)

∣

∣U
∣

∣

H1
α#(Ω\int Ω3)

‖ v ‖L2
α#(Ω\intΩ3) .

Hence
(

∣

∣U
∣

∣

H1
α#(Ω\int Ω3)

∣

∣v
∣

∣

H1
α#(Ω\int Ω3)

+ ‖ k ‖2
∞‖ U ‖L2

α#(Ω\int Ω3)‖ v ‖L2
α#(Ω\intΩ3)

)2

=
∣

∣U
∣

∣

2

H1
α#(Ω\intΩ3)

∣

∣v
∣

∣

2

H1
α#(Ω\intΩ3)

+ ‖ k ‖4
∞‖ U ‖2

L2
α#(Ω\intΩ3)

‖ v ‖2
L2
α#(Ω\int Ω3)

+ 2 ‖ k ‖2
∞‖ U ‖L2

α#(Ω\intΩ3)

∣

∣v
∣

∣

H1
α#(Ω\intΩ3)

∣

∣U
∣

∣

H1
α#(Ω\intΩ3)

‖ v ‖L2
α#(Ω\intΩ3)

≤
∣

∣U
∣

∣

2

H1
α#(Ω\int Ω3)

∣

∣v
∣

∣

2

H1
α#(Ω\int Ω3)

+ ‖ k ‖4
∞‖ U ‖2

L2
α#(Ω\int Ω3)

‖ v ‖2
L2
α#(Ω\intΩ3)

+ ‖ k ‖2
∞

(

‖ U ‖2
L2
α#(Ω\intΩ3)

∣

∣v
∣

∣

2

H1
α#(Ω\intΩ3)

+
∣

∣U
∣

∣

2

H1
α#(Ω\intΩ3)

‖ v ‖2
L2
α#(Ω\int Ω3)

)

=
(

∣

∣U
∣

∣

2

H1
α#(Ω\intΩ3)

+ ‖ k ‖2
∞‖ U ‖2

L2
α#(Ω\intΩ3)

)(

∣

∣v
∣

∣

2

H1
α#(Ω\intΩ3)

+ ‖ k ‖2
∞‖ v ‖2

L2
α#(Ω\intΩ3)

)

=‖ U ‖2
H‖ v ‖2

H .
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So
∣

∣U
∣

∣

H1
α#(Ω\intΩ3)

∣

∣v
∣

∣

H1
α#(Ω\intΩ3)

+ ‖ k ‖2
∞‖ U ‖L2

α#(Ω\intΩ3)‖ v



Proof. Using the duality argument [22, p. 137], we will show below that C1 =
CCcCreg‖k‖∞

h
p
. Let w be the dual solution of

∆w + k2w =φ (x, y) ∈ Ω \ int Ω3, (4.86)
(

T ∗
± − ∂n

)

w =0 on Γ±,

for all φ, w ∈ H1
α#(Ω \ int Ω3) where T

∗
± are the dual operators of T± [61, p. 476].

Then [22, p. 146],

‖eh‖L2
α#(Ω\intΩ3) = supφ∈C∞(Ω\intΩ3)

∣

∣(eh, φ)Ω\intΩ3

∣

∣

‖φ‖L2
α#(Ω\intΩ3)

.

Multiplying both sides of equation (4.86) by eh and integrating this becomes

‖eh‖L2
α#(Ω\intΩ3) = supφ∈C∞(Ω\intΩ3)

∣

∣(eh,∆w + k2w)Ω\intΩ3

∣

∣

‖φ‖L2
α#(Ω\intΩ3)

= supφ∈C∞(Ω\intΩ3)

∣

∣a(eh, w)
∣

∣

‖φ‖L2
α#(Ω\intΩ3)

, (4.87)

by integrating by parts. We use Galerkin orthogonality [22, Prop. 2.5.9], which is

a(eh, ψ) = 0 (4.88)

for all ψ ∈ X , and so equation (4.87) becomes

‖eh‖L2
α#(Ω\intΩ3) = supφ∈C∞(Ω\int Ω3)

∣

∣a(eh, w − ψ)
∣

∣

‖φ‖L2
α#(Ω\intΩ3)

. (4.89)

So, from equation (4.76)

∣

∣a(eh, w − ψ)
∣

∣ =
∣

∣(∇eh,∇(w − ψ))Ω\intΩ3
− (k2eh, w − ψ)Ω\intΩ3

− (T±eh, w − ψ)Γ±

∣

∣

≤
∣

∣eh
∣

∣

H1
α#(Ω\int Ω3)

∣

∣w − ψ
∣

∣

H1
α#(Ω\intΩ3)

+ ‖k‖2
∞‖eh‖L2

α#(Ω\intΩ3)‖w − ψ‖L2
α#(Ω\intΩ3)

+Cd‖eh‖H‖w − ψ‖H1
α#(Ω\int Ω3)

from equation (4.82) and using Cauchy-Schwarz inequality [22, p. 50]. Hence,

∣

∣a(eh, w − ψ)
∣

∣ ≤ (Cd+ 1)‖eh‖H‖w − ψ‖H1
α#(Ω\intΩ3)

using equation (4.84). We use the standard approximation estimate in finite ele-
ment space given by equation (4.74) with w − φ to get

∣

∣a(eh, w − ψ)
∣

∣ ≤ C(Cd+ 1)
h

p
‖eh‖H‖w‖H2

α#(Ω\intΩ3). (4.90)
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We use the result from Theorem 27 and we have the regularity estimate

‖w‖H2
α#(Ω\intΩ3) ≤ (Creg‖k‖∞)‖φ‖L2

α#(Ω\intΩ3).

Using this in equation (4.90) we see
∣

∣a(eh, w − ψ)
∣

∣ ≤ CCreg‖k‖∞(Cd+ 1)h
p
‖eh‖H‖φ‖L2

α#(Ω\intΩ3),

and equation (4.89) gives

‖eh‖L2
α#(Ω\intΩ3) ≤ CCreg‖k‖∞(Cd+ 1)

h

p
‖eh‖H

and we finish the proof by letting C1 = CCreg‖k‖∞(Cd+ 1)h
p
.

The previous three lemmas now allow us to derive the following a priori error
estimate for the periodic solution Uα,0.

Theorem 60. Let the wavenumber |k| ≥ kref > 0, let the maximum mesh size
h ∈ [0, h0], and let the polynomial basis p ∈ [p0,∞] such that k h0

p0
< 1, and C3 =

1−(ℜ(k) + ‖k‖∞)C1 > 0 with C1 as given in Lemma 59. Let Uα,0 be the continuous
solution of equation (4.47) then Uα,0h ∈ Xα the corresponding discretised solution
is unique. In addition, if eα,0h = Uα,0 −Uα,0h then there exists a constant Cc which
only depends on the period of the grating d and kref such that

‖eα,0h‖H ≤ 4
Cc
C3

‖Uα,0 − ψα,0‖H,

and

‖eα,0h‖L2
#(Ω\intΩ3) ≤ 2C1

Cc
C3

‖Uα,0 − ψα,0‖H,

for all test functions ψα,0 ∈ Xα, where Cc is given in Lemma 57 and C1 is given
in Lemma 59.

Proof. Let us denote eh = U −Uh, and let ψ = eiαxψα,0, then by using Lemma 58,
we get

(

∣

∣eh
∣

∣

2

H1
α#(Ω\intΩ3)

− ℜ(k)‖eh‖L2
α#(Ω\int Ω3)‖eh‖H

)

≤
∣

∣a(eh, eh)
∣

∣.

Since we have the Galerkin orthogonality, as in equation (4.88), the right hand
side can be written

(

∣

∣eh
∣

∣

2

H1
α#(Ω\int Ω3)

− ℜ(k)‖eh‖L2
α#(Ω\intΩ3)‖eh‖H

)

≤
∣

∣a(eh, U − ψ)
∣

∣.

We use Lemma 57 to get
(

∣

∣eh
∣

∣

2

H1
α#(Ω\intΩ3)

− ℜ(k)‖eh‖L2
α#(Ω\intΩ3)‖eh‖H

)

≤ Cc‖eh‖H‖U − ψ‖H.
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Since |eh|H1
α#(Ω\intΩ3) ≤ ‖eh‖H, then dividing both sides by ‖eh‖H gives

∣

∣eh
∣

∣

H1
α#(Ω\int Ω3)

− ℜ(k)‖eh‖L2
α#(Ω\intΩ3) ≤ Cc‖U − ψ‖H

and so
∣

∣eh
∣

∣

H1
α#(Ω\int Ω3)

+ ‖k‖∞‖eh‖L2
α#(Ω\int Ω3)

− (ℜ(k) + ‖k‖∞)‖eh‖L2
α#(Ω\intΩ3) ≤ Cc‖U − ψ‖H.

From Lemma 59 and using Definition 49, we have

‖eh‖H − (ℜ(k) + ‖k‖∞)C1‖eh‖H ≤ Cc‖U − ψ‖H. (4.91)

Since C3 = 1 − (ℜ(k) + ‖k‖∞)C1 > 0 then

‖eh‖H ≤ Cc
C3

‖U − ψ‖H. (4.92)

So we have from Definition 49

‖eα,0h‖H ≤
∣

∣eα,0h
∣

∣

H1
#(Ω\intΩ3)

+ ‖k‖∞‖eα,0h‖L2
#(Ω\intΩ3),

≤ 2
∣

∣eh
∣

∣

H1
α#(Ω\intΩ3)

+ ‖k‖∞‖eh‖L2
α#(Ω\intΩ3),

from equation (4.41) and so

‖eα,0h‖H ≤ 2
(

∣

∣eh
∣

∣

H1
α#(Ω\intΩ3)

+ ‖k‖∞‖eh‖L2
α#(Ω\intΩ3)

)

≤ 2‖eh‖H. (4.93)

From equation (4.92)

‖eα,0h‖H ≤ 2
Cc
C3

‖U − ψ‖H. (4.94)

We also note

‖eh‖H = ‖eiαxeα,0h‖H,

=
∣

∣eiαxeα,0h
∣

∣

H1
α#(Ω\int Ω3)

+ ‖k‖∞‖eiαxeα,0h‖L2
α#(Ω\intΩ3),

= ‖iαeiαxeα,0h‖L2
#(Ω\int Ω3) +

∣

∣eα,0h
∣

∣

H1
#(Ω\intΩ3)

+ ‖k‖∞‖eα,0h‖L2
#(Ω\intΩ3),

= ‖iαeα,0h‖L2
#(Ω\intΩ3) +

∣

∣eα,0h
∣

∣

H1
#(Ω\int Ω3)

+ ‖k‖∞‖eα,0h‖L2
#(Ω\int Ω3),

using Definition A-10. Then we get

‖eh‖H ≤ 2‖k‖∞‖eα,0h‖L2
#(Ω\intΩ3) +

∣

∣eα,0h
∣

∣

H1
#(Ω\int Ω3)

since
∣

∣α
∣

∣ ≤ ‖k‖∞. Hence,
‖eh‖H ≤ 2‖eα,0h‖H (4.95)
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from Definition 49. If we replace eh with U − ψ and use equation (4.94) then

‖eα,0h‖H ≤ 4
Cc
C3

‖Uα,0 − ψα,0‖H.

Once more, from Lemma 59 and equation (4.92), we get

‖eh‖L2
α#(Ω\intΩ3) ≤ C1

Cc
C3

‖U − ψ‖H. (4.96)

From Theorem 50, we have

‖eα,0h‖L2
#(Ω\int Ω3) = ‖eh‖L2

α#(Ω\intΩ3),

Using this in equation (4.96), we get

‖eα,0h‖L2
#(Ω\intΩ3) ≤ C1

Cc
C3

‖U − ψ‖H,

≤ 2C1
Cc
C3

‖Uα,0 − ψα,0‖H (4.97)

from equation (4.95). Now, let us show that Uα,0h ∈ Xα exists and is unique.
Since Xα has a finite dimension then a solution exists if only if it is unique. Let us
suppose that we have two solutions Uα,0h1 and Uα,0h2. Then, when

h
p
goes to zero

‖Uα,0h1 − Uα,0h2‖L2
#(Ω\intΩ3) ≤ ‖Uα,0h1 − Uα,0‖L2

#(Ω\intΩ3) + ‖Uα,0h − Uα,0h2‖L2
#(Ω\intΩ3)

≤ 0

since C1 also goes to zero in equation (4.97) which finishes our proof.

4.3.2 A priori error estimation of the continuous problem
by truncating the DtN operator

As discussed in Section 2.2, we have introduced the parameter b for three reasons.
Firstly, for computational efficiency, so that when we are far from the scatterer
and |y| > b, then we can use a coarse mesh. Secondly, to derive an a priori error
estimate, the Rayleigh expansion is used in the region b ≤ |y| ≤ B. Finally, it also
allows us to cope with more general problems involving layered geometry such as
cladding or a substrate.
Let UM

α,0 be the approximated solution of the continuous problem of equation (4.48)

when we truncate the DtN map, by approximating T α,0± with T α,0
M

± for M ∈ N

where Definition 4 becomes

T α,0
M

± (v) =
M
∑

n=−M
iβnj v

(nα)(±B)ei
2πn
d
x. (4.98)

Then, the error estimate by truncating T α,0± is given in the following theorem.
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Theorem 61. Let us choose M ∈ N such that M > M0 =
∣

∣k
∣

∣ + |α| and let us
denote by

eMα,0 = Uα,0 − UM
α,0.

If (ℜ(k) + ‖k‖∞)C1 < 1, with C1 as given in Lemma 59, so that C3 = 1 − ℜ(k) +
‖k‖∞C1 > 0 then UM

α,0 is unique and we have

‖eMα,0‖H ≤ 4
d

C3
e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

, (4.99)

‖eMα,0‖L2
#(Ω\intΩ3) ≤ 2

d

C3
C1e

−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

,(4.100)

with Γ1,± = {(x,±b) ∈ Ω} where b is as shown in Figure 2.3. The parameter zn is
given by equation (2.44) and cmin = inf∣

∣n

∣

∣>Md
2π

sin (zn/2) .

Proof. Let U ∈ H1
α#(Ω \ int Ω3) satisfy equation (4.20). Since we truncate the

DtN map, we are approximating this problem by finding UM ∈ H1
α#(Ω \ int Ω3),

such that aM(UM , v) = (f, v)Γ+
with equations (4.18) and (4.19) becoming

aM(UM , v) =
(

∇UM ,∇v
)

Ω\intΩ3
−
(

k2UM , v
)

Ω\int Ω3
−
(

TM± UM , v
)

Γ±
,(4.101)

(f, v)Γ+
=

(

−2iβ0
1e
i(αx−β0

1B), v
)

Γ+

, (4.102)

for all v ∈ H1
α#(Ω \ int Ω3) such that

TM± (v) =

M
∑

n=−M
iβnj v

(nα)(±B)einαx. (4.103)

Then we have

a(U, v) − aM (UM , v) =(∇U,∇v)Ω\int Ω3
−
(

k2U, v
)

Ω\int Ω3
− (T±U, v)Γ±

−
(

∇UM ,∇v
)

Ω\int Ω3
+
(

k2UM , v
)

Ω\int Ω3
+
(

T±
MU, v

)

Γ±

=0.

Let us denote eM = U − UM , since T± = TM± +
(

T± − TM±
)

then

(

∇eM ,∇v
)

Ω\int Ω3
−
(

k2eM , v
)

Ω\intΩ3
−
(

TM± eM , v
)

Γ±
=
((

T± − TM±
)

U, v
)

Γ±
.

(4.104)
We first note that

((

T± − TM±
)

U, v
)

Γ±
= d

∑

∣

∣n

∣

∣≥Md
2π

iβnj U
(nα)(±B)v(nα)(±B). (4.105)
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Since iβnj = (i cos (zn/2) − sin (zn/2))
√

n2
α − k2 when n2

α > k2 from equation (2.43)
and since b < B as shown in Figure 2.3, therefore we can use equation (2.60) to
write

g(nα)(±B) = g(nα)(±b)e−(B−b) sin (zn/2)
√
n2
α−k2j , for j = 1, 2. (4.106)

Let M0 =
∣

∣k
∣

∣+
∣

∣α
∣

∣ then for any M > M0, we have n2
α > k2 for

∣

∣

2πn
d

∣

∣ > M . Hence
from equation (4.105)

((

T± − T±
M
)

U, v
)

Γ±
= − d

∑

∣

∣n

∣

∣≥Md
2π

√

n2
α − k2e(i cos (zn/2)−sin (zn/2))(B−b)

√
n2
α−k2j

× U (nα)(±b)v(nα)(±B).

Note that if n ≥ 0 then 2πn
d

−
∣

∣α
∣

∣ ≤ nα ≤ 2πn
d

+
∣

∣α
∣

∣. Therefore, nα ≥ M −
∣

∣α
∣

∣. In

a similar way, we note that if n ≤ 0, n2
α ≥

(

M +
∣

∣α
∣

∣

)2
. Hence,

∣

∣

((

T± − T±
M
)

U, v
)

Γ±

∣

∣

≤ d
∑

∣

∣n

∣

∣≥Md
2π

e
−(B−b) sin (zn/2)

√

(

M−
∣

∣α

∣

∣

)2

−k2j√
n2
α − k2U (nα)(±b)v(nα)(±B).

We note that

n2
α − k2 ≤ n2

α − k2ref

≤ n2
α

(

1 −
k2ref
n2
α

)

≤ n2
α

(

1 −
k2ref

(

M −
∣

∣α
∣

∣

)2

)

≤ n2
α + 1

since M ≥ |k| +
∣

∣α
∣

∣ then M −
∣

∣α
∣

∣ > |k| > kref . Hence

∣

∣

((

T± − T±
M
)

U, v
)

Γ±

∣

∣ ≤ d
∑

∣

∣n

∣

∣≥Md
2π

e
−(B−b) sin (zn/2)

√

(

M−
∣

∣α

∣

∣

)2

−k2j√
n2
α + 1

×U (nα)(±b)v(nα)(±B)

≤ de
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ∑

n∈Z

√

n2
α + 1

×U (nα)(±b)v(nα)(±B)
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with cmin = inf∣
∣n

∣

∣>Md
2π

sin (zn/2) and so

∣

∣

((

T± − T±
M
)

U, v
)

Γ±

∣

∣ ≤ de
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖U‖
H

1
2
α#(Γ1,±)

‖v‖
H

1
2
α#(Γ±)

(4.107)
using Cauchy’s inequality [22, p. 50] with Definition A-17 and such that Γ1,± =
{(x,±b) ∈ Ω}. We note that the left hand side of equation (4.104)

∣

∣

(

∇eM ,∇eM
)

Ω\int Ω3
−
(

k2eM , eM
)

Ω\intΩ3
−
(

TM± eM , eM
)

Γ±

∣

∣

=
∣

∣aM
(

eM , eM
)∣

∣,

from equation (4.101). Taking the real part of the left hand side of equation (4.104),
we have

∣

∣aM
(

eM , eM
)∣

∣ ≥ ℜ
(

∣

∣eM
∣

∣

2

H1
α#(Ω\intΩ3)

− k2‖eM‖2
L2
α#(Ω\intΩ3)

)

, (4.108)

since −ℜ
(

T±
MeM , eM

)

Γ±
≥ 0 from equation (2.72). From equation (4.104), we get

∣

∣eM
∣

∣

2

H1
α#(Ω\intΩ3)

− ℜ
(

k2
)

‖eM‖2
L2
α#(Ω\intΩ3)

≤
∣

∣

((

T± − TM±
)

U, eM
)

Γ±

∣

∣

≤de
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j

× ‖U‖
H

1
2
α#(Γ1,±)

‖eM‖
H

1
2
α#(Γ±)

(4.109)

from equation (4.107). We use once again the duality argument [22, p. 137] to
approximate ‖.‖L2

α#(Ω\intΩ3), with the dual problem given by equation (4.86). Sim-

ilar to the derivation of equation (4.91) in the proof of Theorem 60, we can use
Lemma 59 with Theorem A-13 so that we can divide by ‖eM‖H to get

‖ eM ‖H −(ℜ(k) + ‖k‖∞)C1‖eM‖H ≤ de
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖U‖
H

1
2
α#(Γ1,±)

.

Since we have C3 = 1 − ℜ(k) + ‖k‖∞C1 > 0 then we get

‖eM‖H ≤ d

C3
e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖U‖
H

1
2
α#(Γ1,±)

(4.110)

and we can use equations (4.93) and (4.95) together with Theorem 50 to get

‖eMα,0‖H ≤ 4
d

C3

e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

. (4.111)
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From Lemma 59 and equation (4.110), we have

‖eM‖L2
α#(Ω) ≤ d

C3
C1e

−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖U‖
H

1
2
α#(Γ1,±)

. (4.112)

From equations (4.93) and (4.95) together with Theorem 50, we conclude that

‖eMα,0‖L2
#(Ω) ≤ 2

d

C3

C1e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

. (4.113)

To show that UM is unique, we note that

∣

∣

∣

∣

∫

Γ±
TM± Uvdx

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Γ±
TM± Uvdx

∣

∣

∣

∣

. Hence,

we can use equation (4.33) and we derive similar to equation (4.34) that

∣

∣aM (UM , v)
∣

∣ ≤ C0 sup
(

1, ‖ k ‖2
∞
)

‖UM‖H1
α#(Ω\intΩ3)‖v‖H1

α#(Ω\int Ω3).

Hence, aM
(

UM , UM
)

is continuous using Definition A-6. In a similar way when
we derive equation (2.72), we have ℜ

(

TM± UM , UM
)

Γ±
≤ 0 and so similar to the

derivation of equation (4.36) we have

∣

∣aM
(

UM , UM
)

+ ℜ
(

k2
)

‖UM‖2
L2
α#(Ω\intΩ3)

∣

∣ ≥ M1‖UM‖2
H1

α#(Ω\intΩ3)
.

Then, aM
(

UM , UM
)

is H1
α#(Ω \ int Ω3)-coercive from Definition B-4. We can then

use Lemma B-5 to show the existence of a solution from its uniqueness. Let us
suppose that we have two solutions UM

1 and UM
2 , then we have

‖UM
1 − UM

2 ‖L2
α#(Ω) ≤ ‖U − UM

1 ‖L2
α#(Ω) + ‖U − UM

2 ‖L2
α#(Ω)

and from equation (4.113), we see that whenM tends to ∞, ‖UM
1 −UM

2 ‖L2
α#(Ω) = 0.

Since UM is unique then UM
α,0 is also unique.

4.3.3 Total error made by solving numerically the problem

The error that we make by solving numerically the Helmholtz equation for a pe-
riodic grating arises from two sources

• discretising using finite elements and

• from truncating the DtN operator when we use the transparent boundary
conditions.

If we denote the total error by eα,0 = Uα,0 − UM
α,0h

then it can be estimated as
follows.
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Theorem 62. Let |k| ≥ kref > 0, the maximum mesh size h ∈ [0, h0], the degree
of the polynomial basis p ∈ [p0,∞] such that k h0

p0
< 1 with

(ℜ(k) + ‖k‖∞)C1 < 1 where C1 is defined in Lemma 59 so that
C3 = 1 − (ℜ(k) + ‖k‖∞)C1 > 0. Let M ∈ N such that M ≥ M0 and let Uα,0 be
the continuous solution of equation (4.47), UM

α,0h
be the corresponding discretised

solution with the truncated DtN operator and the total error be eα,0 = Uα,0 −UM
α,0h

.
Then we have

‖eα,0‖H ≤4
Cc
C3

‖Uα,0 − ψα,0‖H

+ 4
d

C3
e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

,

and

‖eα,0‖L2
#(Ω\intΩ3) ≤2

Cc
C3
C1‖Uα,0 − ψα,0‖H

+ 2
d

C3

C1e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

,

for all test functions ψα,0 ∈ Xα where Cc is given in Lemma 57 and
cmin = inf |n|>Md

2π
sin (zn/2) with zn as defined in equation (2.44).

Note that

inf (1, ‖k‖∞)‖eα,0‖H1
#(Ω\intΩ3) ≤ ‖eα,0‖H ≤ sup (1, ‖k‖∞)‖eα,0‖H1

#(Ω\intΩ3). (4.114)

Then we can use the standard finite element estimate equation (4.74) and we can
write

‖eα,0‖H ≤4 sup (1, ‖k‖∞)

(

h

p

)l−1
Cc
C3

‖Uα,0 − ψα,0‖Hl
#(Ω\intΩ3)

+ 4
d

C3
e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

,

and using the definition of C1 from Lemma 59

‖eα,0‖L2
#(Ω\int Ω3) ≤2‖k‖∞

(

h

p

)l
Cc
C3

(Cd+ 1)Creg‖Uα,0 − ψα,0‖Hl
#(Ω\intΩ3)

+ 2
d

C3
C1e

−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

,

for any integer l ≥ 2.
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Proof. We have

‖eα,0‖H ≤ ‖Uα,0 − UM
α,0‖H + ‖UM

α,0 − UM
α,0h

‖H

where an a priori error estimate of ‖Uα,0 − UM
α,0‖H has already been shown in

Theorem 61. An a priori error estimate for the second term can be derived in a
similar way to that performed in Theorem 61; the only thing that changes is that

T α,0± is approximated by T α,0±
M
. Let us denote eMh = UM−UM

h where UM = eiαxUM
α,0

and UM
h = eiαxUM

α,0h
. By a similar argument to that used in Theorem 61 to derive

equation (4.108) we can derive the following equations

ℜ
(

aM
(

eMh , e
M
h

))

≥ ℜ
(

∣

∣eMh
∣

∣

2

H1
α#(Ω\intΩ3)

− k2‖eMh ‖2
L2
α#(Ω\intΩ3)

)

(4.115)

since −ℜ
(

TM± eMh , e
M
h

)

Γ±
> 0 using Lemma 8. So,

∣

∣eMh
∣

∣

2

H1
α#(Ω\intΩ3)

− ℜ
(

k2
)

‖eMh ‖L2
α#(Ω\intΩ3)‖eMh ‖H ≤

∣

∣aM
(

eMh , e
M
h

)∣

∣

since ℜ(k)‖eMh ‖L2
α#(Ω\intΩ3) ≤ ‖eMh ‖H. So

∣

∣eMh
∣

∣

2

H1
α#(Ω\intΩ3)

− ℜ(k)‖eMh ‖L2
α#(Ω\intΩ3)‖eMh ‖H ≤

∣

∣aM
(

eMh , U
M − ψ

)∣

∣

≤ Cc‖eMh ‖H‖UM − ψ‖H. (4.116)

using Galerkin orthogonality and Lemma 58. Similar to Lemma 59, we can show
that

‖eMh ‖L2
α#(Ω\int Ω3) ≤ C1‖eMh ‖H (4.117)

By using equations (4.116) with (4.117), dividing by ‖ eMh ‖H and following a
similar argument to the proof of Theorem 60 we get

‖eMh ‖H − (ℜ(k) + ‖k‖∞)C1‖eMh ‖H ≤ Cc‖UM − ψ‖H ≤ Cc‖U − ψ‖H

since for M > M0, U
M tends to U . If we suppose that (ℜ(k) + ‖k‖∞)C1 < 1 then

C3 = 1 − (ℜ(k) + ‖k‖∞)C1 > 0 and

‖eMh ‖H ≤ Cc
C3

‖U − ψ‖H. (4.118)

From equations (4.93) and (4.95), we get

‖eMα,0h‖H ≤ 4
Cc
C3

‖Uα,0 − ψα,0‖H. (4.119)

From Lemma 59 and Theorem 50, we get

‖eMα,0h‖L2
#(Ω\intΩ3) ≤ 2

C1

C3
Cc‖Uα,0 − ψα,0‖H. (4.120)

We use the result given by Theorem 61 with equations (4.119) and(4.120) to finish
the proof of the total error of discretising and truncating the DtN operator.
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4.4 Summary

In this chapter, we have transformed the diffraction problem from the α-quasi pe-
riodic space to a periodic space. To emphasise the essential points in our analysis,
we focused on Case 1A and we relegated Case 1B, 2A and 2B to Appendix D.
We investigated the a priori error estimates that arise through discretisation and
through truncating the DtN map. We started by studying the continuous prob-
lem where we gave a variational formulation of the periodic problem. To derive
an a priori error estimate the problem must be shown to be well-posed. In or-
der for a problem to be well posed, the solution needs to exist, be unique and to
depend continuously on the data. In Lemma 48, we showed that the solution of
the variational problem exists and that it is unique. The continuous dependence
on the data, was then shown in Theorem 51 when we studied the regularity of
the solution. We also showed that there is an equivalence between the variational
formulation corresponding to the scattering problem in periodic space with that
in α-quasi periodic space. The variational formulation in the latter case is alge-
braically simpler and we also have the regularity results from Chapter 3. Hence,
we derived a priori error estimates in the α-quasi periodic setting first and then
used these to derive the a priori error estimate in the periodic case. If we compare
the a priori error estimate in the α-quasi periodic space given by combining equa-
tions (4.110) and (4.118) with the a priori error estimate in the periodic space
given by Theorem 62, they just differ by a constant factor. This shows that there
is no significant difference in studying either the α-quasi periodic solution or the
periodic solution. Having dealt with the continuous problem, we then considered
the discrete problem that arises when we approximate the continuous problem
with a finite element solution. Since applying the α-quasi periodic constraints in
the finite element method is more expensive than with periodic constraints, we
solve numerically the periodic problem rather than the α-quasi periodic one. In
Theorem 62, we derived an a priori error estimate that arises due to the discreti-
sation and the truncation of the DtN map. For the discretisation, we derived an
explicit dependency of this error on the maximum mesh size h, the degree of the
polynomial basis p and the wavenumber k. It transpired that the form of the de-
pendency of this error on these parameters is h

p
‖k‖∞. This shows that for a large

wavenumber, we need a finer mesh and a higher order for the polynomial basis.
It also transpires that the a priori error estimate for the truncation of the DtN
map had an exponential convergence rate with the number of Fourier terms used.
This indicates that the number of Fourier terms used when we solve the problem
numerically plays a minor role compared to our choice of the mesh size h and the
order of the polynomial basis p. Having derived these error estimates we then
showed that these discretised problems also had unique solutions. We will show
in Chapter 7 that this error estimate will allow us to use a uniform mesh to solve
the Helmholtz problem and show that the corresponding solution is bounded.

In the following chapter, we will extend our study to an a posteriori error
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estimate of the above transformation which will allow us to implement an adaptive
algorithm to solve our Helmholtz problem.
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Chapter 5

An a posteriori error estimate
using the dual weighted residual
method and the α, 0-quasi
periodic transformation

In the previous chapter we studied a priori error estimation. This consists of find-
ing an upper bound on the error between the exact and the approximate solutions
in terms of the exact solution and the solution to the dual problem. This upper
bound also depends on some stability constants whose dependency on the system
parameters is unknown although they are independent on the wavenumber k, the
mesh size h and the degree of the polynomial basis p. The goal in studying the
a priori error estimate is to guarantee that the discrete solution converges to the
exact solution provided that we keep the interpolation error small with respect
to the wavenumber k. In contrast to the a priori error estimate, the a posteriori
error estimate will provide a computable upper bound. This error estimate is later
used to compute efficiently the numerical solution using an adaptive method.

In this chapter, we will derive an a posteriori error estimate that arises when
we discretise the Helmholtz problem for a periodic grating. Given a grating profile,
one of the main concerns is to know how much of the incident wave will be reflected
and how much will be transmitted. This is achieved by computing the efficiency
of the grating. Hence, rather than estimating the energy norm of the error in
the solution to the Helmholtz problem, we want to estimate a particular linear
functional of this error. This linear functional denoted by Q, is chosen so that we
minimise the error made by computing the efficiency of the grating. To begin with,
we will introduce some basic concepts concerning a posteriori error estimates, and
recall the direct problem corresponding to Cases 1 and 2. We will then introduce
the dual problem which will then allow us to estimate this linear functional of the
error.
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5.1 Introduction

When we solve a boundary value problem numerically, it produces an approxima-
tion of the solution rather than the exact solution. In order to achieve a reliable
and efficient numerical method, we need to know how the system parameters affect
the error between the exact and approximate solution. According to [43], these
errors can be classified into three different sources which are the data, the mod-
elling and the computation errors. Since we use the finite element method we will
focus on the error arising from the discretisation (data and modeling).

Since we have already studied the a priori error estimate of our scattering
problem in Chapter 4, we will focus in this chapter on a posteriori error estimation.
The approach in this latter case is different from the treatment of the a priori error
in that the a posteriori error estimate will be used to refine locally the mesh (h-
version) or raise the degree of the polynomial basis (p-version). By doing so, we
reduce and control both the numerical error and the computational cost. This
process is known as the adaptive computation method [8, 43, 51]

Let us recall that our boundary value problem can be represented by

AUα,0 = f (5.1)

where
A = ∆+

(

k2 − α2
)

+ 2iα∂x (5.2)

for Cases 1A, 1B and 2A and

A = ∇α.

(

1

k2
∇α

)

+ Id (5.3)

for Case 2B with ∇α as given in Lemma D-3 and Id is the identity operator,
A : V → V is a linear operator on V (a Sobolev space with inner product (., .)V
and norm ‖ . ‖), and f is some given data. For all cases, Uα,0 also satisfies the
following boundary conditions

(T α,0+ − ∂

∂n
)Uα,0 = 2iβ0

1e
−iβ0

1B, on Γ+, (5.4)

(T α,0− − ∂

∂n
)Uα,0 = 0, on Γ−. (5.5)

and in addition for Case 1

Uα,0|∂Ω3 = 0, for Case 1A ,

∂nUα,0|∂Ω3 = 0, for Case 1B (5.6)

Γ+ is defined in equation (2.37), Γ− in equation (2.38), and T α,0± in Definition 4. We
denote by Uα,0 the exact solution of the boundary value problem and by Uα,0h ∈
Xα, such that Xα ⊂ V , the corresponding numerical solution. There are two

115



different approaches to estimate the approximation error Uα,0 − Uα,0h . The first
approach consists on looking for upper and lower bounds on Uα,0 − Uα,0h (global
error estimate) and the second one is to use a quantitative estimate of some local
feature of Uα,0 called the quantity of interest (strain, displacement etc) [43], and
to look for an estimate of the error in this quantity of interest (goal oriented error
estimate).

5.1.1 Global error estimate

In this approach, we are looking for the error eh = Uα,0 − Uα,0h in a global norm
such as the L2 norm. Below is the general framework that one follows in order to
derive a global error estimate.

To derive a global error estimate for equation (B.2), we first consider the dual
problem

A∗z = eh (5.7)

where A∗ denotes the adjoint operator of A. We then can represent the error
eh = Uα,0 − Uα,0h in terms of the residual of the finite element solution and the
solution z of the continuous dual problem equation (5.7). We have

‖ eh ‖2 = (eh, eh)V ,

= (eh, A
∗z)V ,

= (Aeh, z)V ,

= (f − AUα,0h , z)V = −(R(Uα,0h), z)V (5.8)

with the residual R(Uα,0h) defined by

R(Uα,0h) = AUα,0h − f. (5.9)

Since (Aeh, v)V = (−R(Uα,0h), v)V = 0 by using Galerkin orthogonality similar
to equation (4.88) for all v ∈ Xα then we can write

‖ eh ‖2= −(R(Uα,0h), z − zh)V (5.10)

such that zh ∈ Xα is an interpolation of z.
We now use a local interpolation estimate which follows from classical interpo-

lation theory [43] of the form

‖ (h/p)−l(z − zh) ‖≤ Ci ‖ Dlz ‖ (5.11)

where Ci is an interpolation constant, h the size of the mesh and p the polynomial
basis degree and Dlz as given in Definition A-10.

Next we need to prove the regularity for the dual continuous problem so that
we can write [43]

‖ Dlz ‖≤ Cr ‖ eh ‖ . (5.12)
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By combining equations (5.8), (5.10), (5.11) and (5.12) we have

‖ eh ‖2 = (R(Uα,0h), zh − z)V ,

≤ CrCi ‖ (h/p)lR(Uα,0h) ‖‖ eh ‖ .

Hence we have
‖ Uα,0 − Uα,0h ‖≤ CrCi ‖ (h/p)lR(Uα,0h) ‖ . (5.13)

This global error estimate now rests on finding the global stability constants Cr
and Ci or some estimate if they cannot be found analytically. The determination of
Cr depends on the solution being approximated since it is linked to the continuous
dual problem. If an analytical upper bound for Cr cannot be found then we look
for an approximation by solving the continuous dual problem numerically. The
constant of interpolation Ci depends on the shape of the elements, the local order of
the polynomial and the choice of the norms in the finite element implementation. It
can be determined using interpolation theory or through calibration by numerically
solving problems with known exact solutions. Once we get equation (5.13), we
choose a given tolerance (denoted by TOL) and demand that the approximate
solution uh satisfies

‖ Uα,0 − Uα,0h ‖≤ TOL

by utilising an adaptive algorithm where each element is iteratively changed until
it satisfies the stopping criterion given by

CrCi ‖ (h/p)lR(Uα,0h) ‖≤ TOL.

We have kept the framework for deriving a global error estimate very general here
and for more details see [92, 39, 43].

5.1.2 Goal oriented error estimate

In many applications, we are interested in the error that arises in some specific,
real valued physical quantity of interest Q that depends on the solution Uα,0. The
global error does not, however, provide useful bounds for this error in the quantity
of interest. Also the sensitivity of the global error to local error sources is not
properly represented when we use the global stability constants [43, 51]. This
issue is addressed by using a goal oriented error estimate so that the error in
the quantity of physical interest can be controlled and at the same time we can
optimise the efficiency of computing this quantity. In order to do so, we combine
the dual problem with the direct problem to derive an estimate of the error in the
target quantity Q(Uα,0) −Q(Uα,0h) from each local residual denoted ρK(Uα,0h) on
each of the mesh cells K. In this way, we can control locally the error in computing
our target quantity.

In order to derive a goal oriented error estimate for equation (B.2) in the
quantity of interest Q, we consider the following dual problem rather than using
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the dual problem given by equation (5.7)

(φ,A∗z)V = Q(φ) (5.14)

for all φ ∈ V . Similar to the global error estimate, we represent the error, which
is now in the target quantity Q(eh) = Q(Uα,0)−Q(Uα,0h), in terms of the residual
of the finite element solution and the solution z of the continuous dual problem
given by equation (5.14). We have

Q(eh) = (eh, A
∗z)V

= −(R(Uα,0h), z)V (5.15)

by equation (5.8).
Once again by using Galerkin orthogonality, we can write

Q(eh) = −(R(Uα,0h), z − zh)V

such that zh ∈ Xα is an interpolation of z and which can be developed using
cell-wise integration as

‖Q(eh)‖ ≤
∑

K

‖(R(Uα,0h), z − zh)V
∣

∣

K
‖ (5.16)

where K represents each mesh cell. There are different methods for evaluating, or
for deriving an approximation to the right hand side of equation (5.16). Examples
include the energy norm based estimate, the influence function estimate and the
Dual Weighted Residual (DWR) method [43, 51]. In our case, we are going to use
the latter method. It is called the dual weighted residual method since the error
in equation (5.16) comes from the cell residual R(Uα,0h) which we denote by ρK
and from the weighted dual solution z that we denote wK . We can therefore write
equation (5.16) as

‖Q(eh)‖ ≤
∑

K

ρKwK .

Similar to the global error estimate implementation, we demand that in our
adaptive computation method the error in the targeted quantity does not exceed
some chosen tolerance. Since we are interested in the grating efficiencies then
the quantity of interest Q is directly linked to the computation of these grating
efficiencies. We start by generalising the continuous Helmholtz grating problem in
such a way that Case 1 and Case 2 are recovered by suitable parameter choices.
We will study the dual problem in which we define the quantity of interest Q,
present the continuous problem and then the variational formulation. Finally, we
combine the direct and the dual problem to derive an a posteriori error estimate
using the dual weighted residual method.
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5.2 Direct problem

In this section, we are going to reformulate the continuous and discrete formulation
of the direct problem for the four cases.

5.2.1 Continuous problem

The continuous variational formulations given by equations (4.11), (D.14), (D.18)
and (D.21) can be rewritten as a single problem as follows. Find Uα,0 ∈ H1

#(F )
such that

a(Uα,0, v) = (f, v)Γ+
(5.17)

for all v ∈ H1
#(F ) with

a(Uα,0, v)

=



































(

1
q
∇Uα,0,∇v

)

F
−
(

1
q
(k2 − α2)Uα,0, v

)

F
− 2iα

(

1
q
∂xUα,0, v

)

F

−
(

1
q
T α,0± Uα,0, v

)

Γ±

+ i(αnxUα,0, v)∂F , for Case 1B
(

1
q
∇Uα,0,∇v

)

F
−
(

1
q
(k2 − α2)Uα,0, v

)

F
− 2iα

(

1
q
∂xUα,0, v

)

F

−
(

1
q
T α,0± Uα,0, v

)

Γ±

, otherwise

(5.18)

and

(f, v)Γ+
= −2iβ0

1

∫

Γ+

1

q
e−iβ

0
1Bv,

where

q =

{

k2 for Case 2B
1 for Case 1A , Case 1B and Case 2A

(5.19)

such that k is given by equation (2.33) and

F =

{

Ω \ int Ω3 for Case 1
Ω for Case 2

(5.20)

and Γ+ is defined in equation (2.37), Γ− in equation (2.38), T α,0± in Definition 4
and nx is the outward unit normal with respect to the x axis. For Case 2B, we
have used the property

(∂xUα,0, v)F =

∫
(
∫

∂xUα,0vdx

)

dy

=

∫
(

[Uα,0v]
x=d
x=0 −

∫

Uα,0∂xvdx

)

dy,

from integration by parts. Since Uα,0 and v are both periodic, then

(∂xUα,0, v)F = −(Uα,0, ∂xv)F . (5.21)

We can also reformulate the corresponding discrete form.
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5.2.2 Discretised problem

Let Xα be a finite dimensional subspace of H1
#(F ) (see Appendix B.3) then we

want to find Uα,0h ∈ Xα such that

a(Uα,0h , vh) = (f, vh)Γ+
(5.22)

for all vh ∈ Xα with

a(Uα,0, v) =



































(

1
q
∇Uα,0h ,∇vh

)

F
−
(

1
q
(k2 − α2)Uα,0h , vh

)

F
− 2iα

(

1
q
∂xUα,0h , vh

)

F

−
(

1
q
T α,0± Uα,0h , vh

)

Γ±

+ i(αnxUα,0h , vh)∂F , for Case 1B
(

1
q
∇Uα,0h ,∇vh

)

F
−
(

1
q
(k2 − α2)Uα,0h , vh

)

F
− 2iα

(

1
q
∂xUα,0h , vh

)

F

−
(

1
q
T α,0± Uα,0h , vh

)

Γ±

, otherwise

(5.23)

and

(f, vh)Γ+
= −2iβ0

1

∫

Γ+

e−iβ
0
1Bvh,

where q and F are given respectively by equations (5.19) and (5.20). We denote
the discretisation error as

eh = Uα,0 − Uα,0h . (5.24)

Now that we have presented the direct problem, we need to study the dual problem
in order to establish an a posteriori error estimate.

5.3 Dual problem

Since we want to focus on the error that arises in computing the grating efficiency,
we have chosen a goal oriented error estimate which is the DWR method. Hence,
we first need to define our quantity of interest. We will show that this quantity of
interest is a continuous linear functional, which is necessary for the dual problem
to be well posed. We then formulate the dual problem and use it to study the
error in the quantity of interest.

5.3.1 Quantity of interest: Q

Let f ∈ H
1
2
#([0, d]), we define the map Q where Q(f) ∈ C and

Q(f) =
1

q

∑

|nα|<|k|
cnf

(n)(±B), (5.25)
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such that cn = 0 or cn = 1, d corresponds to the period of the grating as shown
in Figure 2.3 and Γ± are defined in equations (2.37) and (2.38). The Fourier
coefficient f (n)(±B) of f(x,±B) is given by

f (n)(±B) =
1

d

∫ d

0

f(x,±B)e−i
2πn
d
xdx.

From equations (4.49), (4.50) and Lemma 55, we have

∑

|nα|<|k|
|rn1 | + |tn2 | =

∣

∣Uα,0
(0)(B) − e−iβ

0
1B
∣

∣

+
∑

|nα|<|k1|,n 6=0

∣

∣U
(n)
α,0 (B)

∣

∣ +
∑

|nα|<|k2|

∣

∣U
(n)
α,0 (−B)

∣

∣,

≤ sup
n
eℑ(β

n
2 )

∑

|nα|<|k|

∣

∣U
(n)
α,0 (±B)

∣

∣ + 1,

≤ 1 + qeℑ(k2)Q(Uα,0(±B))

since ℑ(βn2 ) ≤ ℑ(k2), when |k2| > |nα|. Hence, the quantity of interest is chosen
so that it is related to the computation of the efficiencies corresponding to the
propagating waves, and for that reason we have the condition |nα| < |k|. In
addition, the constants cn have been introduced so that we can choose which
particular efficiency order m to focus on. Hence we choose

cn = δmn,

with δmn the Kronecker delta (given by equation (2.56)). We will show in the
following result that Q is a continuous linear functional.

Lemma 63. Let f ∈ H
1
2
#(Γ±), kref > 0 such that |k| > kref and let Q as given by

equation (5.25) then Q is a linear continuous functional and we have

|Q(f)| ≤ 1

k2ref
ln
(

|k| − α +
√

1 + (|k| − α)2
)1/2

‖ f ‖
H

1
2
# (Γ±)

.

Proof. The linearity of Q follows from its definition. We show the continuity by
using Schwarz’s inequality. We have

|Q(f)| =

∣

∣

∣

∣

∣

∣

∑

|nα|<|k|

1

q
f (n)(±B)(1 +

(

2πn

d

)2

)

1/4

(1 +

(

2πn

d

)2

)

−1/4
∣

∣

∣

∣

∣

∣

,

≤ 1

k2ref





∑

|nα|<|k|
|f (n)(±B)|2(1 +

(

2πn

d

)2

)1/2





1/2



∑

|nα|<|k|

1
√

1 +
(

2πn
d

)2





1/2

.

By noting that
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∑

|nα|<|k|

1
√

1 +
(

2πn
d

)2
≤
∫ |k|

α

1
√

1 + (nα − α)2
dnα.

We can make the following change of variable x = nα − α and dx = dnα, and
so

∑

|nα|<|k|

1
√

1 +
(

2πn
d

)2
≤
∫ |k|−α

0

1√
1 + x2

dx.

We can write

∑

|nα|<|k|

1
√

1 +
(

2πn
d

)2
=

[

ln(x+
√
1 + x2)

]|k|−α

0
,

= ln
(

|k| − α +
√

1 + (|k| − α)2
)

.

We then have

|Q(f)| ≤ 1

k2ref
ln
(

|k| − α+
√

1 + (|k| − α)2
)1/2

×
(

∑

nα∈Z

∣

∣f (n)(±B)
∣

∣

2
(1 +

(

2πn

d

)2

)1/2

)1/2

,

≤ 1

k2ref
ln
(

|k| − α+
√

1 + (|k| − α)2
)1/2

‖ f ‖
H

1
2
# (Γ±)

from Definition A-14 which finishes the proof.

We now can proceed to the study of the dual problem.

5.3.2 Strong form of the dual problem

In order to estimate Q(Uα,0) − Q(Uα,0h) = Q(eh), we introduce a dual function
z ∈ H2

#(F ) which satisfies

(Av, z) = a(v, z) = Q(v) ∀v ∈ H1
#(F ) (5.26)

where a is given by equation (5.18) and A by equation (5.2) or (5.3). Hence, the
strong form of the dual problem given by equation (5.26) is given by the following
lemma.
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Lemma 64. Let z ∈ H2
#(F ) be the dual solution corresponding to the dual problem

of (5.18) then z satisfies






−q∇.
(

1
q
∇
)

z + 2iα∂xz − (k2 − α2)z + ∂nz − T ∗α,0
± z + iαnxz for Case 1B

−q∇.
(

1
q
∇
)

z + 2iα∂xz − (k2 − α2)z + ∂nz − T ∗α,0
± z otherwise

= J±.

(5.27)
The functional J± is defined as follows

J± =
∑

|nα|<|kj|

cn
d
e−i

2πn
d
x, (5.28)

with j = 1, 2 respectively for J+ (on Γ+) and J− (on Γ−), and T
∗α,0
± is the dual of

T α,0± [61, p. 476].

Proof. By using the divergence theorem, we can integrate by parts a(Uα,0, v) given
by equation (5.18) and we get

(

1

q
∇v,∇z

)

F

= (∇v, 1
q

∇z)F = (v,−∇.
(

1

q
∇
)

z)F + (v,
1

q
∂nz)∂F ,

and
∫

F

(∂xiv)z = −
∫

F

v(∂xiz) +

∫

∂F

(vz)nids,

such that ni is the outward unit normal in the direction of xi. This leads us to
∫

F

(∂xv)z = −
∫

F

v∂xz,

from equation (5.21). We then have for Case 1A and Case 2

a(v, z) =

(

v,−∇.
(

1

q
∇z
))

F

+ 2iα

(

1

q
v, ∂xz

)

F

+

(

1

q
v, ∂nz

)

∂F

−
(

1

q
(k2 − α2)v, z

)

F

−
(

1

q
v, T ∗α,0z

)

Γ±

= Q(v), (5.29)

for all v ∈ H1
#F . Let φ ∈ L2

#(Γ), we also have

T ∗α,0
± φ(x) =

∑

n∈Z
iβnj φ

(n)
(±B)e−i

2πn
d
x, (5.30)

φ
(n)

(y) =
1

d

∫ d

0

φ(x, y)ei
2πn
d
xdx. (5.31)

We note that

Q(v) =
1

q
(J±, v) , (5.32)

such that J± is given by (5.28). For Case 1B , we note that (vnx, z)∂F = (v, nxz)∂F
which finishes the proof.
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5.3.3 Variational form

Since we do not know the exact dual solution z, we will need this weak formulation
later in Chapter 7 to approximate z by either using a finer mesh or by raising
the degree of the polynomial basis in our finite element implementation. The
variational formulation of Lemma 64 is given below.

Lemma 65. Let z ∈ H1
#(F ) (weak solution) then, for any ψ ∈ H1

#(F ), we have
for Case 1A , Case 2A and Case 2B

a∗(ψ, z) =

(

1

q
∇ψ,∇z

)

F

+ 2iα

(

1

q
ψ, ∂xz

)

F

−
(

1

q
(k2 − α2)ψ, z

)

F

−
(

1

q
ψ, T ∗α,0

± z

)

Γ±

=

(

1

q
J±, ψ

)

F

,

and for Case 1B

a∗(ψ, z) =

(

1

q
∇ψ,∇z

)

F

+ 2iα

(

1

q
ψ, ∂xz

)

F

−
(

1

q
(k2 − α2)ψ, z

)

F

+
iα

q
(ψ, znx)∂F −

(

1

q
ψ, T ∗α,0

± z

)

Γ±

=

(

1

q
J±, ψ

)

F

.

Proof. Let ψ ∈ H1
#(F ), then we have from equation (5.27) for Case 1A , Case 2A

and Case 2B
(

ψ,−∇.
(

1

q
∇z
))

F

+ 2iα

(

1

q
ψ, ∂xz

)

F

−
(

1

q
(k2 − α2)ψ, z

)

F

+

(

1

q
ψ, ∂nz

)

F

−
(

1

q
ψ, T ∗α,0

± z

)

Γ±

=

(

1

q
ψ, J±

)

F

.

We note that
(

ψ,−∇.
(

1

q
∇
)

z + ∂nz

)

F

=

(

1

q
∇ψ,∇z

)

F

.

In a similar way, we can prove the weak form for Case 1B .

Now that we have formulated the direct and the dual problem, we now use
them to establish a goal oriented error estimate, using the DWR method, where
the target is related to the grating efficiency.

5.4 A posteriori error estimation

5.4.1 Continuous problem

Let z be the dual solution associated with the dual problem given by Lemma 64.
We then have for any φ ∈ H1

#(F ) that

a(φ, z) = (φ,A∗z)F =

(

1

q
J±, z

)

F

, (5.33)
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such that

A∗ =







−∇.
(

1
q
∇
)

+ 2iα
q
∂x − 1

q
(k2 − α2) + 1

q
∂n − 1

q
T ∗α,0

± + iαnx for Case 1B

−∇.
(

1
q
∇
)

+ 2iα
q
∂x − 1

q
(k2 − α2) + 1

q
∂n − 1

q
T ∗α,0

± otherwise

(5.34)
where A∗ is the dual operator of A defined in equation (5.2) or (5.3), [61, p. 476].
Using equation (5.32) leads us to the following problem: Find z ∈ H1

#(F ) such
that

a∗(φ, z) = (φ,A∗z)F = Q(φ), (5.35)

for any φ ∈ H1
#(F ). We now use the finite element method to discretise the prob-

lem.

5.4.2 Discretised problem

LetXα be a finite element subspace of order p ofH1
#(F ) as described in Section B.3

and let ζh be any regular partition of Xα. We denote by h the maximum mesh
size of the triangular elements in this partition. The finite element approximation
of the dual problem given by equation (5.35) is to find zh ∈ Xα such that

a(φh, zh) = (φh, A
∗zh)F = Q(φh), (5.36)

for any φh ∈ Xα. We are now going to look for an upper bound on Q(eh).

5.4.3 Error estimation

The estimate of the linear functional of the error Q(eh) is given by the following
theorem.

Theorem 66. Let Uα,0h be the solution to equation (5.22), eh be given by equa-
tion (5.24), ζh = {K} be a partition of Xα, and pK and hK be the polynomial
order and the mesh size associated with the element K. Let us also denote the field
equation residual Rh(K) x, we then have

Rh(K) :=

{

∇α

(

1
k2

∇αUα,0h
)

+ Uα,0h for Case 2B

∇.
(

1
q
∇Uα,0h

)

− 2iα
q
∂xUα,0h − 1

q
(k2 − α2)Uα,0h , otherwise

(5.37)
and the flux residual rh(E) for Case 2 is given by

rh(E) :=











− 1
2q
[∂nUα,0h ] if E ⊂ ∂K \ Γ±,

1
q
T α,0+ Uα,0h − 1

q
2ie−iβ

0
1B if E ⊂ Γ+,

1
q
T α,0− Uα,0h if E ⊂ Γ−,

(5.38)
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and for Case 1

rh(E) :=











− 1
2q
[∂nUα,0h ] if E ⊂ ∂K \ (Γ± ∪ ∂Ω3),

1
q
T α,0+ Uα,0h − 1

q
2ie−iβ

0
1B if E ⊂ Γ+,

1
q
T α,0− Uα,0h if E ⊂ Γ−,

(5.39)

with [∂nUα,0h ] denoting the jump of the normal derivatives of Uα,0h, E an edge of
the element K and q as defined by equation (5.19). We then have

|Q(eh)| ≤
∑

K∈ζh

ρKwk (5.40)

such that the cell residuals ρk and weights wK are given by

ρK := ‖ Rh(K) ‖L2
α#(K) + (hK)

−1/2 ‖ rh(E) ‖2
L2
α#(E), (5.41)

wK := ‖ z − zh ‖L2
α#(K) +(hK)

1/2 ‖ z − zh ‖2
L2
α#(E) . (5.42)

Proof. From equations (5.26) and (5.22), we have

Q(Uα,0) −Q(Uα,0h) = a(Uα,0 − Uα,0h , z), (5.43)

and

Q(eh) = (f, z)Γ+
− a(Uα,0h , z) = (f, z)Γ+

− (AUα,0h , z)

using equations (5.17) and (5.26). Let ζ be a partition of the domain F into mesh
cells K, from cell wise integration by parts [39, p. 28], [117, p. 12] and by using
Galerkin orthogonality similar to equation (4.88), we have from equations (5.44),
(5.2) for Case 1A , Case 1B and Case 2A

Q(eh) =
∑

K

(

∆Uα,0h + 2iα∂xUα,0h + (k2 − α2)Uα,0h , z − φ
)

K

−(∇Uα,0h.n + f, z − φ)∂K (5.44)

for all φ ∈ Xα and
⋃

K∈ζ = F . We can use the similar argument for Case 2B to
get

Q(eh) =
∑

K

(

∇α

(

1

k2
∇αUα,0h

)

+ Uα,0h , z − φ

)

K

−(∇Uα,0h .n + f, z − φ)∂K (5.45)

Hence, using equations (5.4), (5.5) and in addition equation (5.6) for Case 1 we
have equations (5.37) and (5.38) or (5.39), then

|Q(eh)| ≤
∑

K

|(Rh(K), z − φ)K + (rh(E), z − φ)∂K | .
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From the Cauchy-Schwarz inequality [22, p. 50]

|Q(eh)|
≤
∑

K

‖ Rh(K) ‖L2
α#(K)‖ z − φ ‖L2

α#(K) + ‖ rh(E) ‖L2
α#(E)‖ z − φ ‖L2

α#(E),

≤
∑

K

(

‖ Rh(K) ‖L2
α#(K) +h

−1/2
K ‖ rh(E) ‖L2

α#(E)

)

×
(

‖ z − φ ‖L2
α#(K) +h

1/2
K ‖ z − φ ‖L2

α#(E)

)

,

=
∑

K

ρKwK

we finish the proof of the error estimation by choosing φ = zh and by using
equations (5.41) and (5.42).

5.5 Summary and conclusion

5.5.1 Summary

In this chapter, we have introduced a basic framework for studying a posteriori
error estimates. We showed that there are two ways of establishing an a posteriori
error estimate. There is the global error estimate and the goal oriented error
estimate. Since our interest is driven by the diffraction efficiency, we chose the
latter and in particular we used the Dual Weighted Residual (DWR) method. In
order to do so, we generalised the continuous problem to cover all four cases. We
introduced our quantity of interest, Q and showed that it is a linear continuous
functional. This allowed us to formulate the dual problem. We then combined the
dual and the direct problems to establish an upper bound for the error estimate
in Theorem 66. The evaluation of the error in the functional Q represents the
primary output that we desire from our model, namely the diffraction efficiency.

5.5.2 Conclusion

In Chapter 4, the a priori error estimate used the duality argument to represent the
error between the exact and approximate solution in terms of the exact solution.
By combining the Galerkin orthogonality with the regularity estimate of the exact
solution, we found an upper bound for this error (see Theorems 62, D-36, D-37 and
D-38). Importantly, these upper bounds depend on the exact solution, and as this
is not normally known, we cannot compute them. The goal in deriving a priori
error estimates is therefore to guarantee that the discrete solution will converge
to the exact solution provided that we keep the interpolation error small with
respect to the wavenumber k . In contrast, for the a posteriori error estimate, the
upper bounds given by equation (5.40) can be evaluated. We find the discrete dual
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problem zh in the same way that we find the discrete direct solution Uα,0h using
Lemma 65 . For the exact solution of the dual problem z, since we do not know it
analytically, we can approximate it either by solving the dual problem numerically
in a very fine mesh or by increasing the polynomial order using the same mesh
as zh. Hence we can estimate the error in the targeted quantity Q(eh) from the
local contribution of each error indicator ρK and wK as defined in equations (5.41)
and (5.42). In fact, these error indicators are the cell residuals ρK multiplied by
the weights wK taken from the computed solution. The ρK in turn consist of
the field equation residual (Rh(K)) and the flux residual (rh(E)) which indicate
the smoothness of the discrete solution. The weights wK capture the influence of
the cell residuals on the targeted error Q(eh) since if we differentiate Q(eh) with
respect to ρK , we are left with wK .

We will show in Chapter 7 that this error estimate will allow us to perform
an automatic mesh adaptation based on the local error indicators ρK and wK .
The dual weighted residual method uses these error indicators to maximize the
accuracy of the computed diffraction efficiency by choosing a tolerance (TOL) and
demanding that

∑

K ρKwK < TOL as we solve our problem. It will allow us to
optimise the computational efficiency. Rather than having a uniform mesh, where
we refine all elements of the mesh at each step, we will just refine where the error
indicators are large and keep the coarse mesh where the error indicators are small.

We investigated both the a priori error estimate and the a posteriori error
estimate using the α-0 quasi periodic method in Chapters 4 and 5. In the following
chapter, we will extend the α,0-quasi periodic transformation and introduce a
function w(y) which depends on the wavenumber k and use the change of variable
U = eiαxw(y)Uα,β. Hence, Uα,β is still periodic and we will investigate the a priori
error estimate for Uα,β.
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Chapter 6

New formulation of the grating
problem and a priori error
estimates using the α, β-quasi
periodic transformation

In this chapter, we will introduce another approach to solve the diffraction prob-
lems described in Chapters 2 and 3 which is an extension of the α, 0-quasi periodic
transformation in Chapter 4. When a series of homogeneous layers are constructed
(that is, Ω3 as shown in Figure 2.2 is not present), the analytic solution of the as-
sociated diffraction problem can be written in the form eiαxw(y) where Snell’ s law
is used to calculate some w(y). This suggests that writing U = eiαxw(y)Uα,β(x, y)
and solving our diffraction problem for Uα,β might improve the a priori error es-
timate. Indeed, when we solve the Helmholtz problem for homogeneous layers,
and we use this transformation, Uα,β is just a constant. The idea is to remove
from U the oscillations w(y)eiαx and then investigate if this new transformation
will improve the dependence on the wavenumber k in the a priori error estimate.
Since U is α-quasi periodic then Uα,β is periodic with respect to x and we will see
that w depends on β. For these reasons we are going to call this new transforma-
tion the α, β-quasi periodic transformation. Hence, the numerical implementation
of the finite element method should be computationally less expensive and less
complicated if we base it on Uα,β.

In keeping the thesis to a manageable size and since we have studied in detail
the four cases in Chapter 4 and Appendix D, we are going to focus, in this chap-
ter, on Case 1A (perfectly conducting grating with a homogeneous region outside
the scatterer (that is k0 = k1 = k2)). The other cases can be derived in a simi-
lar fashion. We start by deriving the differential equation satisfied by Uα,β . We
then examine the variational formulation corresponding to the continuous problem.
Next, we show that this problem is well posed and derive a formula to compute
the efficiency of the diffraction grating from Uα,β. We then use the finite element
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method to discretise the problem, and provide a rigorous study of the a priori
error estimate. In order to do so, we first derive regularity results for the scatter-
ing problem in the periodic space H l

#(Ω \ int Ω3) for l ≥ 1. This then provides
error estimates that give an explicit dependence on the wavenumber. This error
estimate provides an insight into the convergence of the solution and will help in
our numerical implementation to balance the accuracy against the computational
cost. The Chapter concludes with a comparison between this transformation and
that examined in Chapter 4.

6.1 Restatement of the boundary value problem

for the periodic solution

Similar to the analysis in Section 4.1, we seek a periodic function Uα,β such that

U(x, y) = eiαxw(y)Uα,β(x, y) (6.1)

where w(y) is the analytical solution of equation (2.95) given by Snell’s law when
Ω0 is homogeneous (that is, Ω3 is not present) in Figure 2.2 and k0 = k1 = k2.
This can be written as

w(y) = e−iβ
0
1y, −B ≤ y ≤ B, (6.2)

with β0
1 = k1 cos θ where k1 ∈ R is the wavenumber, and θ is the angle of incidence.

Therefore the propagating equation is changed, and we have the following lemma.

Lemma 67. Suppose Uα,β satisfies

−2iβ0
1∂yUα,β+ 2iα∂ α,β





Hence, we can rewrite equation (6.9) to get

eiαx
(

−iβ0
1e

−iβ0
1BUα,β(B) + e−iβ

0
1B∂nUα,β |Γ+

)

=
(

e−iβ
0
1BT α,0+ Uα,β − 2iβ0

1e
−iβ0

1B
)

eiαx.

That is
∂nUα,β|Γ+ = T α,0+ Uα,β − (−iβ0

1)Uα,β(x,B) − 2iβ0
1 . (6.10)

Since Uα,β is periodic with respect to x then we can write

Uα,β(x,B) =
∑

n∈Z
U

(n)
α,β(B)ei

2πn
d
x.

Using Definition 4 then equation (6.10) becomes (since this boundary is in Ω1)

∂nUα,β |y=B =
∑

n∈Z

(

iβn1 + iβ0
1

)

U
(n)
α,β(B)ei

2πn
d
x − 2iβ0

1 .

Using Definition 5 finishes the proof for the boundary condition on Γ+. On the
bottom boundary, when y = −B, then a similar argument shows

∂nUα,β |y=−B =
∑

n∈Z

(

iβn2 − iβ0
1

)

U
(n)
α,β(−B)ei

2πn
d
x.

6.1.1 Variational formulation

Let v ∈ H1
#(Ω \ int Ω3) then we can multiply equation (6.3) by v and integrate to

get

∫

Ω\intΩ3

∆Uα,βv + 2iα

∫

Ω\intΩ3

(∂xUα,β)v

+2

∫

Ω\intΩ3

(−iβ0
1∂yUα,β)v = 0. (6.11)

We can then integrate by parts where we note that

∫

∂ � TmΩ[(v)1.23753]TJΩ/R16 11.9552 TfΩ9.36 0 TdΩ[(=)-282.9(0)-2.83775]TJΩ/R36 11.9552 TfΩ18.36 0 TdΩ(:)TjΩ/R16 11.9552 TfΩ104.52 0 TdΩ[(()-1.42623(6)-2.83775(.1)-2.83775(1)-2.83775())-1.42623]380.45(t)-1.42623(h)0.975323(e)3.38668]T(h)0.975323(327.851775(.1)-2.83775(1)-Vn)-0.86743(a97011 TfΩ6.72623(h)0.975323(e)3.38668]T(h)20.9 5144.95]TJΩ/R86 11.9552 TfΩ17.04 16.32 TdΩ[(Z)2.93822]TJΩ/R45 7.97011 TfTdΩ[(3)8.7485]75323(a)-2.816 111775(.1)-2.83775(1)-V.955212dΩ[(Z)2.9 TfΩ11.28 4.92 T.975323(e)3.3861)-6.h

∫



since the normal derivative of Γ















6.2 Discrete problem

In order to solve numerically the scattering problem, we need to discretise the
variational formulation corresponding to the continuous problem.

6.2.1 Variational formulation

We want to approximate the continuous problem associated with equation (6.13)
which is given by equation (6.14). Let Xα,β be a finite-dimensional subspace of
H1

#(Ω \ int Ω3), with dim(Xα,β) = N < ∞ and let ψi for i = 1, .., N , be a basis

of Xα,β. We discretise the variational form given by the equation (6.14) and this
leads us to find Uα,βh ∈ Xα,β for all vh ∈ Xα,β such that

a(Uα,βh , vh) = (fα,β, vhα,β), (6.34)

and subject to the constraint

Uα,βh = 0, (x, y) ∈ ∂Ω3

with

a(sh, vh) = (∇sh,∇vh)Ω\int Ω3
− 2iα(∂xsh, vh)Ω\int Ω3

+
(

2iβ0
1∂ysh, vh

)

Ω\intΩ3
−
(

T α,β± sh, vh

)

Γ±

, (6.35)

(fα,β, vh)Γ+
=
(

−2iβ0
1 , vh

)

Γ+
, (6.36)

for all sh ∈ Xα,β such that T α,β± is as defined in Definition 5. Since Uα,βh ∈ Xα,β,

there exists Uj for j ∈ {1, ., N}, such that Uα,βh =
∑N

j=1Ujψj(x, y). Hence, the
discrete problem given by equation (6.34) is equivalent to the following linear
algebraic system

AU = L (6.37)

with U = Uj for j =, · · · , N ,
A = a(ψi, ψj),

and
L = (fα,β, ψj)Γ+

for {i, j} ∈ {1, .., N}.

6.2.2 Truncation of the DtN map

Similar to Section 4.2.2, for computational purposes, we need to truncate the
infinite sum inside the DtN map that we use as transparent boundary conditions.

Let M ∈ N and M < ∞. From equation (2.66), T α,β± is approximated by T α,β
M

±
where

T α,β
M

± = T α,0±
M ± iβ0

1Id, (6.38)
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with T α,0±
M

as given by equation (4.61). Similar to the derivation of equation (4.62),
Uα,β is approximated with a truncated Fourier series

Uα,βh(x, y) =
M
∑

n=−M
U

(n)
α,βh

(y)ei
2πn
d
x, (6.39)

where

U
(n)
α,βh

(y) =
1

d

∫ d

0

Uα,βh(x, y)e
−i 2πn

d
xdx.

By truncating the fundamental solution in equation (2.55), and using equation
(6.1), we can derive a similar equation to equation (4.63)

e−iβ
0
1yUα,βh =

M
∑

n=−M
rn,Mj eiβ

n
j y+i

2πn
d
x + tn,Mj e−iβ

n
j y+i

2πn
d
x, j = 1, 2, (6.40)

where the unknowns rn,Mj and tn,Mj are complex scalars. Uα,0h , Uα,βh contain the
incident wave and must satisfy the UPRC condition (see equation (2.26)) in Ω1

(see Figure 2.3). It follows that tn,M1 = 0, for n 6= 0 and t0,M1 = 1 in Ω1 and in Ω2,
all the rn,M2 = 0. We proceed exactly as we have done for the continuous problem
but the solution is now truncated as given by equations (6.39) and (6.40). The
coefficients βnj are given by equation (2.43). From Lemma 71 and equation (4.64),
we can derive

e−iβ
0
1yU

(n)
α,βh

(y) = rn,M1 eiβ
n
1 y + δn0e

−iβn
1 y, in Ω1, (6.41)

e−iβ
0
1yU

(n)
α,βh

(y) = tn,M2 e−iβ
n
2 y, in Ω2.

At y = ±B, equations (2.58) and (2.59) become

rn,M1 = e−iβ
0
1BU

(n)
α,βh

(B)e−iβ
n
1B − δn0e

−2iβ0
1B, (6.42)

tn,M2 = eiβ
0
1BU

(n)
α,βh

(−B)e−iβ
n
2B.

Similarly to the continuous problem, but now we use equations (6.38) and (6.41)
so that the boundary conditions for the discrete problem are given by

(T α,β
M

+ − ∂

∂η
)Uα,βh = 2iβ0

1 , on Γ+, (6.43)

(T α,β
M

− − ∂

∂η
)Uα,βh = 0, on Γ−. (6.44)

Therefore, instead of solving directly equation (6.34) we approximate Uα,β by U
M
α,βh

and we solve numerically the following problem. We want to find UM
α,βh

∈ Xα,β

such that for all vh ∈ Xα,β we have

aM(UM
α,βh

, vh) = (fα,β, vh), (6.45)
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subject to the constraint

UM
α,βh

= 0, (x, y) ∈ ∂Ω3

where

aM(sh, vh) = (∇sh,∇vh)Ω\intΩ3 − 2iα(∂xsh, vh)Ω\intΩ3

+ 2iβ0
1(∂ysh, vh)Ω\intΩ3

− (T α,0
M

± sh, vh)Γ± ∓ iβ0
1(sh, vh)Γ±, (6.46)

(fα,β, vh)Γ±
=
(

−2iβ0
1 , vh

)

Γ+
,

for all sh ∈ Xα,β. This leads to a linear algebraic system

AMUM = L (6.47)

with UM = UM
j for j ∈ {1, ., N}, such that UM

α,βh
=
∑N

j=1 U
M
j ψj(x, y).

AM = aM(ψi, ψj),

and
L = (fα,β, ψj)Γ+

for {i, j} ∈ {1, .., N}.

6.2.3 Efficiency of the grating

The efficiency of the grating with respect to each diffraction order n can be com-
puted by using equations (2.55), (4.49) and (6.40), to give

RM
n =

βn1
β0
1

∣

∣

∣
rn,M1

∣

∣

∣

2

(6.48)

TMn =
βn2
β0
1

∣

∣

∣
tn,M2

∣

∣

∣

2

such that rn,M1 and tn,M2 are given by equation (6.42). We use the same notation
as in Section 4.2.3, where we replaced Et, Er and Eabs with E

M
t , EM

r and EM
abs in

Definition 54. In a similar way to Section 4.2.4, we can check the energy balance
using the truncated DtN map using equation (4.72) such that rn,M1 and tn,M2 are
now given by equation (6.42).

6.3 A priori error estimates for the exact solu-

tion Uα,β

The well-posedness of our problem that we derived in Section 6.1.2 will now allow
us to derive an a priori error estimate for Uα,β . We will first study the error esti-
mation by discretising the continuous Helmholtz problem given by equation (6.14).
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Since we truncate our domain, we apply absorbing boundary conditions through
T α,β± . As these involve an infinite sum, we then need to truncate the T α,β± in order
to perform numerical computation. Hence, we need to study a second a priori
error estimate that arises from this truncation. We combine these two error es-
timates in order to provide the total a priori error estimate. We will also show
that the discrete solution is unique. Before we derive an a priori error estimate,
we first need to establish the dual problem corresponding to equation (6.14) of the
form

a∗(ψ, v) = (ψ, φ) (6.49)

for all ψ ∈ L2
#(Ω \ int Ω3), v ∈ H2

#(Ω \ int Ω3) and for a given φ ∈ L2
#(Ω \ int Ω3).

This dual problem is needed to derive an upper bound of the error estimate in
the L2

#-norm in terms of the error estimate in the H-norm when we discretise our
problem. The formulation of the dual problem is given below.

6.3.1 Dual problem

Lemma 73. Let v ∈ H2
#(Ω \ int Ω3). Then the strong form of the dual problem

corresponding to equation (6.14) is given by

−∆v + 2iα∂xv − 2iβ0
1∂yv = φ,

T α,0±
∗
v − ∂nv = 0,

for a given φ ∈ L2
#(Ω \ int Ω3) and where T α,0±

∗
is the dual operator of T α,0± [61,

p. 476].

Proof. From the Green identities [22, p. 130], and by integrating by parts first
with respect to x and then integrate with respect to y we have

∫

Ω\intΩ3

(∂xψ)v = −
∫

Ω\intΩ3

ψ∂xv +

∫

∂Ω\int Ω3

ψvn1ds, (6.50)

= −
∫

Ω\intΩ3

ψ∂xv +

∫

ΓL
⋃

ΓR

ψvn1ds.

This leads us to
∫

Ω\int Ω3

(∂xψ)v = −
∫

Ω\intΩ3

ψ∂xv +

∫

ΓL

ψv(n1L − n1R)ds,

= −
∫

Ω\intΩ3

ψ∂xv, (6.51)

since ψ and v are periodic with respect to x and the unit normal outward vector
corresponding to ΓL and ΓR, denoted respectively by n1L and n1R, satisfy

n1R = −n1L.
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Once again we use the Green identities [22, p. 130], and proceed in a similar way
to the proof of equation (6.50) but exchange the order of integration in equa-
tion (6.50). We then have

∫

Ω\intΩ3

iβ0
1(∂yψ)v = −iβ0

1

∫

Ω\intΩ3

ψ∂yv +

∫

∂Ω\intΩ3

iβ0
1ψvn2ds,

= −
∫

Ω\intΩ3

iβ0
1ψ∂yv ± iβ0

1

∫

Γ±

ψvdx. (6.52)

From the Green identities [22, p. 130] with equations (6.51), (6.52), (2.66), (6.13)
and (6.2) we get

a(ψ, v) = (ψ,−∆v)Ω\intΩ3
+ (ψ, ∂nv)∂Ω\intΩ3

+ 2iα(ψ, ∂xv)Ω\intΩ3

− 2iβ0
1 (ψ, ∂yv)Ω\intΩ3

±
∫

Γ±

iβ0
1ψvdx

∓
∫

Γ±

iβ0
1ψvdx−

(

ψ, T α,0±
∗
v
)

.

By definition of the dual, we have

a∗(ψ, v) = (ψ,−∆v)Ω\intΩ3 + (ψ, ∂nv)∂Ω\intΩ3 + 2iα(ψ, ∂xv)Ω\intΩ3

− 2iβ0
1 (ψ, ∂yv)Ω\int Ω3

±
∫

Γ±

iβ0
1ψvdx

∓
∫

Γ±

iβ0
1ψvdx−

(

ψ, T α,0±
∗
v
)

. (6.53)

Hence, we can put together the integral inside Ω \ int Ω3 separately from the
integrals on the boundaries of Ω \ int Ω3 and we can use equation (6.49) and so

−∆v + 2iα∂xv − 2iβ0
1∂yv = φ,

∂nv − T α,0±
∗
v = 0

which represents the strong form of the dual problem which finishes the proof.

6.3.2 An a priori error estimation of the discretised prob-

lem

Let Uα,β be the corresponding solution of the continuous problem given by equa-
tion (6.14), and let Uα,βh be the solution of the discretised problem given by equa-
tion (6.34). We are going to study the relation between the norm of the error in
approximating the problem using the H-norm and the L2

#-norm in the following
theorem.
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Theorem 74. If we denote eα,βh
= Uα,β − Uα,βh and if k1h0/p0 < 1 then for all

h ≤ h0 and for all p ≥ p0, the solution to equation (6.34) satisfies

‖ eα,βh
‖L2

#(Ω\int Ω3)≤ C̃1
h

p
‖ eα,βh

‖H

where C̃1 = 2k1CCcCreg with Cc = Cd+ 1 and Creg as defined in Theorem 27.

Proof. We apply the duality argument [22, p. 137] similar to the proof of Lemma 59.
From [22, p. 146], we have

‖ eα,βh
‖L2

#(Ω\intΩ3)= supφ∈C∞(Ω\intΩ3)

∣

∣

(

eα,βh
, φ
)

Ω\intΩ3

∣

∣

‖ φ ‖L2
#(Ω\intΩ3)

. (6.54)

Let v be the solution to the adjoint problem given by Lemma 73. We have for a
given φ ∈ L2

#(Ω \ int Ω3) that

a∗(ψ, v) = (ψ, φ)Ω\int Ω3
, ∀ψ ∈ H1

#(Ω \ int Ω3).

We then have for ψ = eα,βh
by using equations (6.49) and (6.53)

(

eα,βh
, φ
)

Ω\intΩ3
= a(eα,βh

, v),

= a(eα,βh
, v − ψ)

for any ψ ∈ Xα,β by using Galerkin orthogonality similar to equation (4.88).
From equation (6.15), we have

| a(s, v) | =| (∇s,∇v)Ω\intΩ3 | +2k1 | (∇s, v)Ω\intΩ3 | + | (T α,β± s, v)Γ± | . (6.55)

Using Lemma 9 and since e−iβy is independent on x, we get

∫

Γ±

T α,0± sv =

∫

Γ±

eiαx−iβy
(

T α,0± s
)

eiαx−iβyv,

=

∫

Γ±

T±
(

eiαx−iβys
)

eiαx−iβyv. (6.56)

We first look for an upper bound for T α,β± . From equations (4.80), (2.64) and (6.16)
, we have

∣

∣(T α,β± s, v)Γ±

∣

∣ = d
∣

∣

∑

n∈Z
i
(

βn1 ± β0
1

)

s(n)(±B)v(n)(±B)
∣

∣,

≤ d
∣

∣

∑

n∈Z

∣

∣βn1 + β0
1

∣

∣s(n)(±B)v(n)(±B)
∣

∣. (6.57)
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We note that when k2 > 2πn
d
, then
∣

∣βn1 + β0
1

∣

∣ ≤ 2β0
1 ≤ 2k1. (6.58)

For k1 <
(

2πn
d

)

, we have

βn1 + β0
1 =

√

(

2πn

d

)2

+
4πnα

d
+ α2 − k2 +

√
k2 − α2,

=

√

2πn

d

2
(

1 +
dα

2πn
+ d2

α2 − k2

4π2n2

)

+
√
k2 − α2.

Let us denote X2 = d2 α
2−k2

4π2n2 , since
2πn
d
> k1 then 2πn

d

2
>> k21 then X2 tends to

0. We note by using Taylor series that (1 −X2)
1/2

when X2 tends to zero, can be
approximated with 1 −X and so

∣

∣βn1 + β0
1

∣

∣ ≤ C

∣

∣

∣

∣

2πn

d

∣

∣

∣

∣

(6.59)

where 1 < C2 = sup (c1, c2) < 5, the constants c1 and c2 are given by equations
(2.68) and (2.69). We then combine equations (6.56), (6.58), (6.59) and use a
similar argument to that use to prove equation (4.82) with T α,β± to get

∣

∣(T α,β± s, v)Γ±

∣

∣ ≤ Cd ‖ s ‖H1
#(Ω\int Ω3)

(

2k1 ‖ v ‖L2
#(Ω\intΩ3) + ‖ v ‖H1

#(Ω\int Ω3)

)

,

≤ Cd(h/p)−1 ‖ s ‖H1
#(Ω\int Ω3)

(

2k1h/p ‖ v ‖L2
#(Ω\int Ω3) +h/p ‖ v ‖H1

#(Ω\int Ω3)

)

.

By supposing 2k1h/p < 1, we have
∣

∣(T α,β± s, v)Γ±

∣

∣

≤ Cd(h/p)−1 ‖ s ‖H1
#(Ω\int Ω3)

(

‖ v ‖L2
#(Ω\int Ω3) +h/p ‖ v ‖H1

#(Ω\int Ω3)

)

,

≤ Cd(h/p)−1 ‖ s ‖H1
#(Ω\int Ω3)

(

‖ eiαx−iβ0
1yv ‖L2

α#(Ω\int Ω3) +2h/p ‖ eiαx−iβ0
1yv ‖H1

α#(Ω\int Ω3)

)

,

from Theorem 69. Since eiαx−iβy(v) satisfies equation (4.39), then we have

∣

∣(T α,β± s, v)Γ±

∣

∣ ≤ 2CCd(h/p)−1 ‖ s ‖H1
#(Ω\int Ω3) (h/p)

2 ‖ eiαx−iβ0
1yv ‖H2

α#(Ω\intΩ3) .

(6.60)

We now find an upper bound of the other term left in equation (6.55). We note
that

|s|H1
#(Ω\intΩ3)|v|H1

#(Ω\intΩ3) + 2k1|s|H1
#(Ω\int Ω3) ‖ s ‖L2

#(Ω\int Ω3)

= (h/p)−1|s|H1
#(Ω\int Ω3)

(

h/p|v|H1
#(Ω\int Ω3) + 2k1h/p|v|L2

#(Ω\int Ω3)

)

.
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Since 2k1h/p < 1 and similar to the proof of equation (6.60) we get

|s|H1
#(Ω\int Ω3)|v|H1

#(Ω\int Ω3) + 2k1|s|H1
#(Ω\int Ω3) ‖ s ‖L2

#(Ω\int Ω3)

= 2C(h/p)−1|s|H1
#(Ω\int Ω3)(h/p)

2 ‖ eiαx−iβ0
1yv ‖H2

α#(Ω\int Ω3) . (6.61)

Now we can use equations (6.60), (6.61) and (6.55) to get

| a(eα,βh
, v − ψ) | ≤ 2h/p(Cd+ 1) ‖ eα,βh

‖H1
#(Ω\int Ω3)‖ eiαx−iβ

0
1y(v − ψ) ‖H2

α#(Ω\int Ω3),

2h/pCCregk1(Cd+ 1) ‖ s ‖H1
#(Ω\int Ω3)‖ eiαx−iβ

0
1yφ ‖H2

α#(Ω\int Ω3),

2h/pCCregk1(Cd+ 1) ‖ s ‖H1
#(Ω\int Ω3)‖ eiαx−iβ

0
1yφ ‖H2

α#(Ω\int Ω3),

(6.62)

from Theorem 27 and equation (6.26).
We finish the proof by taking the supremum over φ using equation (6.54) and

by denoting C̃1 = 2CCcCregk1, where Cc = Cd+ 1.

Now that we have the relation between the norm of the error estimate by
discretising in H and in L2

#, let us establish that the Galerkin method satisfies
quasi-optimal convergence [114, 109], which is an upper bound of the error eα,βh

in terms of Uα,β − ψ for all ψ ∈ Xα,β.

Lemma 75. Let h0 and p0 satisfy k1h0/p0 << 1, then for any maximum mesh
size h ∈ [0, h0] and any degree of the polynomial basis p ∈ [p0,∞]

‖ eα,βh
‖H≤ Cq ‖ Uα,β − ψ ‖H (6.63)

for all ψ ∈ Xα,β, where Cq = C̃c/
(

MG − C̃1k1(ξ1ξ +MG)h/p
)

. The constants

MG, ξ, ξ1 are given by equation (6.21), C̃c by equation (6.20) and C̃1 is given in
Theorem 74.

Proof. From equation (6.22) and using the equivalence of the H-norm and the
L2
#-norm in Definition 49, we have

|a(eα,βh
, eα,βh

)| ≥ MG ‖ eα,βh
‖2
H −k1(ξ1ξ +MG) ‖ eα,βh

‖L2
#(Ω\intΩ3)‖ eα,βh

‖H,

≥
(

MG − C̃1k1(ξ1ξ +MG)h/p
)

‖ eα,βh
‖2
H, (6.64)

using Theorem 74. Since a is continuous from equation (6.19) and by using
Galerkin orthogonality similar to equation (4.88), we can divide by ‖ eα,βh

‖H
equation (6.64) and we get

C̃c ‖ Uα,β − ψ ‖H≥
(

MG − C̃1k1(ξ1ξ +MG)h/p
)

‖ eα,βh
‖H,

for all ψ ∈ Xα,β. Hence, for h < h0 and p ≥ p0, MG − C̃1k1(ξ1ξ +MG)h/p > 0
which finishes our proof.
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We can now use the equivalence of the H-norm and the L2
#-norm of eα,βh

and
the quasi-optimal convergence result to establish the a priori error estimate.

Theorem 76. Let h0 and p0 satisfy k1h0/p0 ≤ 1, then for any maximum mesh
size h ∈ [0, h0] and any degree of the polynomial basis p ∈ [p0,∞] we have the
following error estimates

‖ Uα,β − Uα,βh ‖H ≤ C̃c + Cq
Cd

‖ Uα,β − ψ ‖H, (6.65)

‖ Uα,β − Uα,βh ‖L2
#(Ω\intΩ3) ≤ C̃1h

C̃c + Cq
pCd

‖ Uα,β − ψ ‖H

for all ψ ∈ Xα,β, with Cd = 1−C̃1k1ξξ1
h
p

≥ 0 where Cq is given by equation (6.63),

C̃1 is given by Theorem 74, ξ and ξ1 are given by equation (6.21) and C̃c is given
by equation (6.20). In addition,the discretised solution Uα,βh is unique.

Proof. For all vα,β ∈ H1
#(Ω \ int Ω3), since Uα,βh ∈ Xα,β ⊂ H1

#(Ω \ int Ω3), and
eα,βh

= Uα,β −Uα,βh belongs to H1
#(Ω\ int Ω3), it follows from equation (6.22) that

MG ‖ eα,βh
‖2
H −CG ‖ eα,βh

‖2
L2
#(Ω\intΩ3)

≤ |a(eα,βh
, eα,βh)|,

≤ |a(eα,βh
, Uα,β − Uα,βh − ψ + ψ)|,

≤ |a(eα,βh
, Uα,β − ψ)|,

for ψ ∈ Xα,β , by using Galerkin orthogonality similar to equation (4.88). We then
can write

‖ eα,βh
‖2
H −k21ξ1ξ ‖ eα,βh

‖2
L2
#(Ω\int Ω3)

≤ C̃c ‖ eα,βh
‖H‖ Uα,β − ψ ‖H + sup (ξ1/ξ,MG) ‖ eα,βh

‖2
H,

from equation (6.19) since a is continuous and using equations (6.21) and (6.23).

‖ eα,βh
‖2
H −k21ξξ1 ‖ eα,βh

‖2
L2
#(Ω\intΩ3)

≤ C̃c ‖ eα,βh
‖H‖ Uα,β − ψ ‖H + ‖ eα,βh

‖2
H (6.66)

since sup (ξ1/ξ,MG) = (ξ1/ξ, 1 − ξ1/ξ) ≤ 1. Using Definition 49, we note that
k1 ‖ eα,βh

‖L2
#(Ω\intΩ3)≤‖ eα,βh

‖H. Hence, we can write

‖ eα,βh
‖2
H −k1ξξ1 ‖ eα,βh

‖L2
#(Ω\intΩ3)‖ eα,βh

‖H

≤
(

C̃c + Cq

)

‖ eα,βh
‖H‖ Uα,β − ψ ‖H

from equation (6.63). We then divide by ‖ eα,βh
‖H and so

‖ eα,βh
‖H −k1ξ1ξ ‖ eα,βh

‖L2
#(Ω\intΩ3)≤

(

C̃c + Cq

)

‖ Uα,β − ψ ‖H .
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Hence,

‖ eα,βh
‖H −C̃1k1ξ1ξ

h

p
‖ eα,βh

‖H ≤
(

C̃c + Cq

)

‖ Uα,β − ψ ‖H,

from Theorem 74. That is
(

1 − C̃1k1ξ1ξ
h

p

)

‖ eα,βh
‖H ≤

(

C̃c + Cq

)

‖ Uα,β − ψ ‖H .

Let Cd = 1 − C̃1k1ξ1ξ
h
p
and let us suppose that Cd > 0 then we have

‖ eα,βh
‖H≤ C̃c + Cq

Cd
‖ Uα,β − ψ ‖H .

Once again, we invoke Theorem 74 to prove the error estimate in the L2−norm.
Hence, we have

‖ eα,βh
‖L2

#(Ω\intΩ3)≤
(

C̃c + Cq

)

C̃1
h

pCd
‖ Uα,β − ψ ‖H .

To prove the uniqueness of the solution let us suppose that there exists two solu-
tions Uh,1

α,β and Uh,2
α,β satisfying equation (6.34). We have

‖ Uh,1
α,β − Uh,2

α,β ‖L2
#(Ω\intΩ3) = ‖ Uh,1

α,β − Uα,β + Uα,β − Uh,2
α,β ‖L2

#(Ω\intΩ3),

≤ ‖ Uh,1
α,β − Uα,β ‖L2

#(Ω\intΩ3) + ‖ Uh,2
α,β − Uα,β ‖L2

#(Ω\int Ω3),

≤ 2C̃1

(

C̃c + Cq

) h

pCd
‖ Uα,β − ψ ‖L2

#(Ω\intΩ3) .

We can easily see that taking h/p tending to zero, we finish the proof of uniqueness.

Before studying the error made by truncating the operators T α,0± in equa-
tion (6.13), let us establish a relation between the two continuous variational
formulations a(s, v) given by equation (6.13) and aM(s, v) (when we truncate the
DtN map inside equation (6.13)).

6.3.3 Comparison between the continuous variational for-

mulation with a truncated DtN map and that with
a full DtN map

Let us denote

aM (sα,β, vα,β) = (∇sα,β,∇vα,β)Ω\intΩ3
− 2iα(∂xsα,β, vα,β)Ω\int Ω3

+ 2iβ0
1(∂ysα,β, vα,β)Ω\intΩ3

− (T α,0
M

± sα,β, vα,β)Γ± ∓ 2iβ0
1(sα,β, vα,β)Γ±,

(6.67)

(fα,β , vα,β)Γ+
=
(

−2iβ0
1 , vα,β

)

Γ+
, (6.68)
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for all sα,β, vα,β ∈ H1
#(Ω \ int Ω3), such that M ∈ N and T α,0

M

± is given by
equation (4.61). Then, we want to find UM

α,β ∈ H1
#(Ω \ int Ω3) such that

aM(UM
α,β, vα,β) = (fα,β, vα,β)Γ+

. (6.69)

Let us also denote

Sa(sα,β, vα,β) = (∇sα,β,∇vα,β)Ω\intΩ3 − 2iα(∂xsα,β, vα,β)Ω\intΩ3

+ 2iβ0
1 (∂ysα,β, vα,β)Ω\intΩ3

∓ 2iβ0
1 (sα,β, vα,β)Γ±

. (6.70)

It follows that

a(sα,β, vα,β) = Sa(sα,β, vα,β) −
(

T α,0± sα,β, vα,β
)

Γ±
, (6.71)

aM(sα,β, vα,β) = Sa(sα,β, vα,β) −
(

T α,0
M

± sα,β, vα,β

)

Γ±

.

Let us also note the following relation between a as defined by equation (6.13) and
aM as given by equation (6.67). If Uα,β and UM

α,β are respectively the solution of
equation (6.14) and equation (6.69) then

a(Uα,β , v) − aM(UM
α,β, v) = 0 (6.72)

for all v ∈ H1
#(Ω \ int Ω3). If we define T α,0

R

± via

T α,0± = T α,0
M

± + T α,0
R

± . (6.73)

then we have the following relations for all s, v ∈ H1
#(Ω \ int Ω3)

a(s, v) = Sa(s, v) − (T α,0± s, v)Γ±.

from equation (6.70). Hence,

a(s, v) = aM(s, v) − (T α,0
R

± s, v)Γ±. (6.74)

Now that we have established the relation between a and aM in equation (6.74)
we can derive an a priori error estimate when we truncate T α,β± in a.

6.3.4 An a priori error estimate from the truncation of

the DtN operators

For computational reasons the DtN map must be truncated. It is therefore impor-
tant to derive an estimate of the error that then arises due to this approximation.

150



Lemma 77. Let Uα,β ∈ H1
#(Ω \ int Ω3) be the solution of equation (6.14), and let

UM
α,β be the solution of equation (6.69). Let us denote the error estimate that arises

when the DtN map is truncated by

eMα,β = Uα,β − UM
α,β. (6.75)

Then, we have

aM(eMα,β, e
M
α,β) = (T α,0

R

± Uα,β, e
M
α,β)Γ±. (6.76)

Proof. We have from equation (6.75) and from Definition A-6 that

aM(eMα,β, e
M
α,β) = aM (Uα,β, e

M
α,β) − aM(UM

α,β, e
M
α,β),

= a(Uα,β , e
M
α,β) + (T α,0

R

± Uα,β , e
M
α,β)Γ± − aM(UM

α,β, e
M
α,β),

from equation (6.74). Then, we can write

aM(eMα,β, e
M
α,β) = (T α,0

R

± Uα,β, e
M
α,β)Γ±,

by using equation (6.72).

For all s, v ∈ H1
#(Ω \ int Ω3) and Γ1,± = {(x,±b) ∈ Ω} as introduced in Sec-

tion 4.3.2, we can use the region b ≤ |y| ≤ B to derive an a priori error estimate.
In a similar way to the derivation of equation (4.107), we get from equation (6.73)

∣

∣(T α,0
R

± s, v)Γ±

∣

∣ =
∣

∣

((

T α,0± − T α,0
M

±

)

s, v
)

Γ±

∣

∣,

≤ de
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k21‖s‖
H

1
2
# (Γ1,±)

‖v‖
H

1
2
# (Γ±)

with cmin = inf∣
∣n

∣

∣>Md
2π

sin (zn/2) where zn is defined by equation (2.44). From

Theorem A-13, we get

(T α,0
R

± s, v)Γ± ≤ de
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k21‖s‖H1
#(Ω\intΩ3)‖v‖H1

#(Ω\intΩ3)

= CT‖s‖H1
#(Ω\int Ω3)‖v‖H1

#(Ω\intΩ3) (6.77)

with

CT = de
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k21
. (6.78)

It will help our subsequent calculation of the a priori error estimate to establish
a relation between the error by truncating the DtN operator in the L2

#-norm with
that in the H-norm.
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Theorem 78. Let Uα,β be the solution of equation (6.14) and let eMα,β be as given
by equation (6.75) then we have the following estimate

‖ eMα,β ‖L2
#(Ω\int Ω3)≤ C̃1

h

p
‖ eMα,β ‖H

where C̃1 is given in Theorem 74.

Proof. As in Lemma 59 we use the duality argument [22, p. 137]. Let φ ∈
H1

#(Ω \ int Ω3), let v ∈ H2
#(Ω \ int Ω3) be the solution of the dual problem given

in Lemma 73. From the definition of the dual norm [22, p. 146], we can write

‖eMα,β‖L2
#(Ω\intΩ3) = supφ∈C∞(Ω\intΩ3)

∣

∣

(

eMα,β, φ
)

Ω\intΩ3

∣

∣

‖φ‖L2
#(Ω\int Ω3)

,

= supφ∈C∞(Ω\intΩ3)

∣

∣a
(

eMα,β, v
)∣

∣

‖φ‖L2
#(Ω\intΩ3)

.

In a similar way to the proof of Theorem 74, we can show that

‖eMα,β‖L2
#(Ω\int Ω3) ≤ C̃1

h

p
‖eMα,β‖H

where C̃1 is defined in Theorem 74.

Finally then, the following results gives an estimate of the error made by trun-
cating T α,β± in the continuous variational formulation given by equation (6.13).

Theorem 79. There exists a positive integer M0 =
∣

∣k
∣

∣ + |α| > 0 such that for
all M ≥ M0, the problem with the truncated DtN map given by equation (6.69)
satisfies the following error estimates.

‖ eMα,β ‖L2
#(Ω\intΩ3) ≤ (CT + Cq)C̃1

h

pCd
‖ Uα,β ‖H,

‖ eMα,β ‖H ≤ (CT + Cq)/Cd ‖ Uα,β ‖H .

with Cd ≥ 0, is defined in Theorem 76 where C̃1 is given by Theorem 74, Cq by
equation (6.63), ξ and ξ1 are given by equation (6.21) and CT by equation (6.78).
Furthermore, the solution UM

α,β is unique.

Proof. In a similar way to derive equation (6.22), we get

MG ‖ eMα,β ‖2
H −CG ‖ eMα,β ‖2

L2
#(Ω\int Ω3)

≤ |aM(eMα,β, e
M
α,β)|.

Hence,

MG ‖ eMα,β ‖2
H −CG ‖ eMα,β ‖2

L2
#(Ω\int Ω3)

≤
∣

∣

(

T α,0
R

± Uα,β, Uα,β − ψ
)

Γ±

∣

∣,
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from equation (6.76). In a similar way to derive equation (6.66), we have

‖ eMα,β ‖2
H −k21ξ1ξ ‖ eMα,β ‖2

L2
#(Ω\intΩ3)

≤
∣

∣

(

T α,0
R

± Uα,β , e
M
α,β

)

Γ±

∣

∣+ ‖ eMα,β ‖2
H .

We then use equations (6.77), (6.22) and Definition 49 to get

‖ eMα,β ‖2
H −k1ξ1ξ ‖ eMα,β ‖L2

#(Ω\intΩ3)‖ eMα,β ‖H

≤ CT‖Uα,β‖H1
#(Ω\intΩ3)‖eMα,β‖H1

#(Ω\int Ω3)+ ‖ eMα,β ‖2
H .

We then divide by ‖eMα,β‖H and use Definition 49 again with equation (6.63) to
give

‖ eMα,β ‖H −k1ξ1ξ ‖ eMα,β ‖L2
#(Ω\intΩ3)≤ (CT + Cq)‖Uα,β‖H.

Using Theorem 78 gives

‖ eMα,β ‖H −k1C̃1ξ1ξ
h

p
‖ eMα,β ‖H≤ (CT + Cq)‖Uα,β‖H.

Let us suppose that Cd ≥ 0, as defined in Theorem 76, then we have

‖ eMα,β ‖H≤ (CT + Cq)/Cd‖Uα,β‖H. (6.79)

If we invoke Theorem 78, with equation (6.79) then we immediately arrive at the
error estimate in the L2−norm

‖ eMα,β ‖L2
#(Ω\int Ω3) ≤ (CT + Cq) C̃1

h

pCd
‖ UM

α,β ‖H . (6.80)

To prove the uniqueness, let us suppose that we have two solutions UM
α,β1

and UM
α,β2

.
Then we have

‖ UM
α,β1

− UM
α,β2

‖L2
#(Ω\intΩ3) ≤‖ Uα,β − UM

α,β1
‖L2

#(Ω\intΩ3) + ‖ Uα,β − UM
α,β2

‖L2
#(Ω\intΩ3)

which goes to zero when h
p
goes to zero from equation (6.80). Hence UM

α,β1
is equal

to UM
α,β2

and the solution is unique.

6.3.5 Estimate of the total error

Similar to Section 4.3.3, the error that we make by solving numerically the Helmholtz
equation for a periodic grating arises from two sources

• when we truncate the DtN operators which describe the boundary conditions.

• when we discretise the continuous problem.
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Let us denote by UM
α,βh

∈ Xα,β the solution of

aM(UM
α,βh

, vα,β) = (fα,β, vα,β)Γ+
, (6.81)

for all vα,β ∈ Xα,β, with aM and (fα,β , vα,β)Γ+
given by equations (6.67) and

(6.68), M ∈ N and T α,0
M

± given by equation (4.61). The estimate of the total
error, eα,β = Uα,β − UM

α,βh
, that we make by solving numerically the Helmholtz

equation is given by the following theorem.

Theorem 80. Let us suppose that Cd ≥ 0 as defined in Theorem 76. Then there
exist positive constant h0 ≤ 1, p0 ≤ ∞ and a positive integer M0 ∈ N\{0} such
that for any h ∈ [0, h0] p ∈ [p0,∞] and M ≥ M0, the total error satisfies

‖ eα,β ‖L2
#(Ω\int Ω3)≤

(

C̃c + Cq

)

C̃1
h

pCd
‖ Uα,β − ψ ‖H + (CT + Cq) C̃1

h

pCd
‖ Uα,β ‖H,

and

‖ eα,β ‖H≤
(

C̃c + Cq

)

/Cd ‖ Uα,β − ψ ‖H +(CT + Cq)/Cd ‖ Uα,β ‖H (6.82)

for all ψ ∈ Xα,β, with C̃c as given in equation (6.20), Cd as defined in Theorem 76,
Cq as defined in equation (6.63), ξ and ξ1 are given by equation (6.21) and C̃1 as
defined in Theorem 74. In addition, the problem equation (6.81) has a unique
solution UM

α,βh
.

Proof. We have

‖eα,β‖H = ‖Uα,β − UM
α,βh

‖H = ‖Uα,β − UM
α,β + UM

α,β − UM
α,βh

‖H,

≤ ‖Uα,β − UM
α,β‖H + ‖UM

α,β − UM
α,βh

‖H,

= ‖eMα,β‖H + ‖UM
α,β − UM

α,βh
‖H.

In a similar way to the proof of Theorem 76, it can be shown that

‖ UM
α,β − UM

α,βh
‖H≤ C̃c + Cq

Cd
‖ UM

α,β − ψ ‖H, (6.83)

and

‖ UM
α,β − UM

α,βh
‖L2

#(Ω\int Ω3)≤ C̃1
C̃c + Cq
Cd

h

p
‖ UM

α,β − ψ ‖H

by using Uα,β instead of UM
α,β. For M > M0, U

M
α,β tends to Uα,β and so we can

replace ‖ UM
α,β − ψ ‖H with ‖ Uα,β − ψ ‖H. Then we can use equation (6.83) and

Theorem 79 to get the total error estimate in the H-norm. We finish the proof by
following a similar argument for the L2−norm. In a similar way to the proof of
Theorem 76 and Theorem 79, it can be shown that the solution UM

α,βh
is unique.
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6.4 Summary and conclusion

6.4.1 Summary

In this chapter, we transformed the diffraction problem Case 1A , using an exten-
sion of the α, 0-quasi periodic transformation proposed in Chapter 4. This was
achieved by setting U = eiαxe−iβ

0
1yUα,β, where e

iαxe−iβ
0
1y is the analytic solution of

the Helmholtz problem when we have a series of homogeneous layers (that is Ω3 is
not present). We started by deriving the boundary value problem for Uα,β which
was followed by the variational formulation of the continuous problem. Similar to
Chapter 4, our aim was to derive an a priori error estimate. Hence the problem
had to be shown to be well-posed. Recall that, in order for a problem to be well
posed, the solution needs to exist, be unique and to depend continuously on the
data. In Lemma 68 we showed that the solution of the variational problem exists
and that it is unique. The continuous dependence on the data, was then shown in
Theorem 70 when we studied the regularity of the solution. Comparing Theorems
51 and 70, it is evident that Uα,β has the same k1 dependence as Uα,0. Having
dealt with the continuous problem, we then considered the discrete problem that
arises when we approximate the continuous problem with a finite element solution
and when we truncate the DtN operators. This then allowed us to derive an a
priori error estimate, due to discretisation and truncation of the DtN map, in The-
orem 80. Having derived this error estimate we then showed that the discretised
problem also had a unique solution. Again in our error estimate, we showed an
explicit dependency on the maximum mesh size h, the degree of the polynomial
basis p and the wavenumber k.

6.4.2 Conclusion

We use Theorem A-13 and the note following Definition 49 and we note that

‖Uα,0‖H1/2
# (Γ1,±)

≤ ‖Uα,0‖H.

Using this result in Theorem 62, the upper bound for the a priori estimate of the
total error in the H-norm for the α, 0-quasi periodic transformation is

‖eα,0‖H ≤4Cc/C3‖Uα,0 − ψ‖H + 4CT/C3‖Uα,0‖H (6.84)

for all ψ ∈ Xα and where we use the definition of CT given by equation (6.78). The
constant Cc as given in Lemma 57 is independent of the wavenumber k1, the mesh
size h, and the degree of the polynomial basis p, C3 = 1 − (ℜ(k) + ‖k‖∞)C1 > 0
as defined in Theorem 60 and C1 is defined in Lemma 59. Hence, replacing C3 by
its definition and choosing ψ = 0, equation (6.84) can be rewritten as

‖eα,0‖H ≤ 4
Cc + CT

1 − 2CCcCregk
2
1h/p

‖Uα,0‖H. (6.85)
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In the following, we rewrite the upper bound corresponding to the a priori estimate
of the total error in the H-norm for the α, β-quasi periodic transformation given
in Theorem 80 so that we can derive a qualitative comparison between the upper
bounds. From Theorems 74 and 76, we have

Cd = 1 − 2CCregCcξξ1k
2
1

h

p
. (6.86)

Hence, the upper bound corresponding to the a priori estimate of the total error
in the H-norm for the α, β-quasi periodic transformation given in Theorem 80 can
be rewritten as

‖ eα,β ‖H≤
C̃c + Cq

1 − 2CCregCcξξ1k21
h
p

‖ Uα,β − ψ ‖H +
CT + Cq

1 − 2CCregCcξ1ξk21
h
p

‖ Uα,β ‖H (6.87)

for all ψ ∈ Xα,β. To allow us to compare qualitatively between the upper bounds
let us investigate the case where ξ1 goes to zero, the denominator in equation (6.87)
given by equation (6.86) tends to 1. Hence, choosing ψ = 0 equation (6.87)
becomes

‖ eα,β ‖H≤
(

C̃c + CT + 2Cq

)

‖ Uα,β ‖H . (6.88)

Since ξ1 tends to zero then Cq =
C̃c

1−2k21CCcCregh/p
then by denotingX = 2CCcCregk

2
1h/p

and by noting that C̃c = Cc + (d+ 1), we can rewrite equation (6.89) as

‖ eα,β ‖H ≤
(

C̃c + CT + 2
Cc + d+ 1

1 −X

)

‖ Uα,β ‖H,

≤

(

C̃C + CT

)

(1 −X) + 2Cc + 2d+ 2

1 −X
‖ Uα,β ‖H (6.89)

and we can also rewrite equation (6.84) as follows

‖eα,0‖H ≤ 4
Cc + CT
1 −X

‖Uα,0‖H,

≤ 2Cc + 2Cd+ 2 + 4CT
1 −X

‖Uα,0‖H, (6.90)

since Cc = Cd + 1. From Lemma 6, we have 2 ≤ C2 <
√
5 hence C > 1 and

2Cd > 2 . Therefore, when X tends to 1, the equivalent upper bound for the
α, 0-quasi periodic transformation is

‖eα,0‖H ≤ lim
X→1

2Cc + 2Cd+ 2 + 4CT
1 −X

‖Uα,0‖H, (6.91)

whereas the upper bound for the α, β-quasi periodic transformation is

‖ eα,β ‖H≤ lim
X→1

2Cc + 2d+ 2

1 −X
‖ Uα,β ‖H . (6.92)
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From equations (6.91) and (6.92), we can see that the α, 0-quasi periodic transfor-
mation blows up faster than the α, β-quasi periodic transformation and this makes
the error bound given in equation (6.91) for Uα,0 larger than the error bound given
in equation (6.92) for Uα,β. We have X tending to 1 either by having k2 small with
h/p large or by having k2 large with h/p small. We are interested in the latter
case, since it is known that there are difficulties in solving the Helmhotz equation
when the wavenumber k becomes large. Equations (6.91) and (6.92) indicate that
the α, β-quasi periodic transformation is more efficient than the α,0-quasi periodic
transformation proposed in Chapter 6 as we have suggested.

In the next chapter, we will show some numerical evidence and the advantage
of this difference on the convergence behaviour between the α, β-quasi periodic
solution and α, 0-quasi periodic solution for a different range of wavenumber k1.
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Chapter 7

Numerical methods and
numerical results

This chapter is concerned with the numerical methods that we use in our im-
plementations in order to solve the Helmholtz problem. To validate our code,
numerical results will be given that compare the results from different numeri-
cal methods and experiments in the literature to our implementation. We will
then provide numerical results that compare the α, β-quasi periodic method with
the α, 0-quasi periodic method across a range of wavenumbers. We then produce
numerical results that show the advantage of using the Dual Weighted Residual
(DWR) method as compared to the uniform mesh or the global a posteriori error
method proposed in [13]. We have chosen the finite element method because of its
flexibility to adapt to complex scattering geometry. In our final example, we con-
sider a scattering geometry from a real world application concerning the Morpho
butterfly wing [98, 129, 124, 102].

7.1 Numerical methods

In this section, we show how the discrete forms given in Sections 4.2, 5.2.2 and 6.2
are implemented to solve numerically our problem. Some of this implementation
requires standard techniques that can be found in the literature [21, 64, 113, 66].
In these cases we will not go into the details but restrict ourselves to the main
steps with appropriate links to the previous chapters. Where the implementation
presents some novel aspects we will be more expansive and provide enough details
to convey our ideas. We start by describing our implementation when we use a
uniform mesh. We then show the implementation for an adaptive mesh.

7.1.1 Uniform mesh

Let Xα (resp. Xα,β) be a finite dimensional subspace of H1
#(F ) with dim(X) =

N < ∞ and let ψi for i = 1, .., N , be a basis ofXα (resp. Xα,β) where F = Ω\int Ω3
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α,0-qp α, β-qp

Case 1A 1B 2A 2B 1A

F Ω \ int Ω3 Ω Ω \ int Ω3

b1 1 1 1 1/k2 1

b2 -2i α -2i α -2i α -i α/k2 -2i α

b3 0 0 0 i α/k2 0

b4 0 0 0 0 2iβ0
1

b5 −(k2 − α2) −(k2 − α2) −(k2 − α2) −(k2 − α2)/k2 0

b6 0 iα 0 0 0

b7 0 0 0 0 iβ0
1

b8 -1 -1 -1 −1/k21 -1

b9 -1 -1 -1 −1/k22 -1

b10 −2iβ0
1e

−iβ0
1B −2iβ0

1e
−iβ0

1B −2iβ0
1e

−iβ0
1B −2iβ0

1e
−iβ0

1B/k21 −2iβ0
1

Table 7.1: The coefficients bj of equations (7.1) and (7.2) corresponding to Cases
1A, 1B, 2A and 2B for the α,0-quasi periodic transformation (α,0-qp) and Case
1A for the α, β-quasi periodic transformation (α, β,-qp).

for Case 1 and F = Ω for Case 2. Then equations (4.58), (D.63), (D.67), (D.71)
and (6.35) present this general form

a(ψi, ψj) = b1(∇ψi,∇ψj)F + b2(∂xψi, ψj)F + b3(ψi, ∂xψj)F
+ b4(∂yψi, ψj)F + b5(ψi, ψj)F + b6(nxψi, ψj)∂Ω3

± b7(ψi, ψj)Γ±
+ b8

(

T α,0+

M
ψi, ψj

)

Γ+

+ b9

(

T α,0−
M
ψi, ψj

)

Γ+

(7.1)

since we need to truncate T α,0± . The values of bj for j = 1, · · · , 9 and F are given
in Table 7.1. We also have equations (4.59), (D.64), (D.68), (D.72) and (6.36) into
this general form

(

f̂ , ψj

)

Γ+

= (b10, ψj)Γ+
(7.2)

where the value of b10 is also given in Table 7.1. In our finite element code, the
operations are done element wise by looping over all elements of a given triangu-
lation. Hence, each element is mapped to a reference element through an affine
transformation [21, 64, 113]. We therefore map each basis φi into the local basis
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φ̃i through this transformation and so equations (7.1) and (7.2) become

a
(

ψ̃i, ψ̃j

)

= b̃1

(

∇ψ̃i,∇ψ̃j
)

F
+ b̃2

(

∂xψ̃i, ψ̃j

)

F
+ b̃3

(

ψ̃i, ∂xψ̃j

)

F

+ b̃4

(

∂yψ̃i, ψ̃j

)

F
+ b̃5

(

ψ̃i, ψ̃j

)

F
+ b̃6

(

nxψ̃i, ψ̃j

)

∂Ω3

± b̃7

(

ψ̃i, ψ̃j

)

Γ±

+ b̃8

(

T α,0+

M
ψ̃i, ψ̃j

)

Γ+

+ b̃9

(

T α,0−
M
ψ̃i, ψ̃j

)

Γ+

(7.3)

and
(

f̂ , ψ̃j

)

Γ+

=
(

b̃10, ψ̃j

)

Γ+

. (7.4)

We need the following steps to implement equations (7.3) and (7.4).

• step 1: Assemble the mass matrix

By denoting

Kij = b̃1

(

∇ψ̃i,∇ψ̃j
)

F
+ b̃2

(

∂xψ̃i, ψ̃j

)

F
+ b̃3

(

ψ̃i, ∂xψ̃j

)

F
+ b̃4

(

∂yψ̃i, ψ̃j

)

F

+ b̃5

(

ψ̃i, ψ̃j

)

F
+ b̃6

(

nxψ̃i, ψ̃j

)

∂Ω3

± b̃7

(

ψ̃i, ψ̃j

)

Γ±

, (7.5)

we can use numerical integration to calculate the surface and element inte-
grals to get Kij [70, 87, 38].

• step 2: Assemble the load vector

Similar to step 1, numerical integration can be used to compute
(

b̃10, ψ̃j

)

Γ+

.

• step 3: Assemble the DtN operators

Let us denote Bij = b8

(

T α,0+

M
ψ̃i, ψ̃j

)

Γ+

+b9

(

T α,0−
M
ψ̃i, ψ̃j

)

Γ+

, from equations

(4.80) and (6.56), we note that

(

T α,0
M

± ψ̃i, ψ̃j

)

Γ±

= d
M
∑

m=−M
iβml ψ̃

(m)
i (±B)ψ̃

(m)
j (±B). (7.6)

We note that ψ̃
(m)
j can be computed as follows using equation (2.53)

ψ̃
(m)
j (±B) = 1/d

∫ d

0

ψ̃j(x,±B)e−i2πm/dxdx,

= 1/d

∫ xj+1

xj

ψ̃j(x,±B)e−i2πm/dxdx (7.7)

where xj and xj+1 delimit the element edge where ψ̃ is different from zero
and hence supp ψ̃j(x,±B) = [xj , xj+1]. We can write

ψ̃j(x,±B) =

N
∑

l=0

clx
l

160



since ψ̃j(x,±B) is a polynomial of order N . Hence, equation (7.7) becomes

ψ̃
(m)
j (±B) = 1/d

∫ xj+1

xj

N
∑

l=0

clx
le−i2πm/dxdx,

= 1/d
N
∑

l=0

clGl(xj , xj+1, m, d) (7.8)

where

Gl(xj , xj+1, m, d) =

∫ xj+1

xj

xle−i2πm/dxdx. (7.9)

It can be shown by integrating by parts and by induction that

Gl(xj, xj+1, l, m, d) =














xl+1

l+1
, if m = 0

∑q
t=0

l!
(l−t)!(2iπm/d)t

[

xl−t e
−2iπm/d

−2iπm/d

]x=xj+1

x=xj

+ l!
l−(q+1)!

1
(2iπm/d)q+1Gl−(q+1), otherwise

(7.10)

for q ≤ l − 1. We can then use equations (7.8), (7.10) and (7.6) to compute
Bij .

• step 4: Apply the periodicity boundary conditions for all cases and the
Dirichlet boundary conditions for Case 1A

Since our problem is find Uα,0 (resp. Uα,β) such that a(Uα,0, ψ) =
(

f̂ , ψ
)

Γ+

(resp. a(Uα,β , ψ) =
(

f̂ , ψ
)

Γ+

). By denoting
(

f̂ , ψ̃i

)

Γ+

= Fi and by noting

that a
(

ψ̃i, ψ̃j

)

= Kij +Bij our solution
∑N

j=1Ujφj(x, y) satisfies

(Kij +Bij)Uj = Fi (7.11)

for i, j = 1, · · ·N . For the periodicity boundary condition, let us denote Np

the set of nodes i such that φi belongs to the boundary x = 0 or x = d and
NO the set of nodes j such that φj belongs to ∂Ω3 for Case 1A. We use the
techniques described in [2] which apply the periodicity constraints and the
Dirichlet constraints to the nodes i ∈ Np and j ∈ NO.

• step 5: Solve the system

We can solve the system (7.11) and find the coefficients of the approximate
solution to our Helmholtz problem.

• step 6: Refine the meshes such that each element is subdivided into four
new elements and repeat step 1 to step 5 until the solution converges. In
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our numerical implementation, either the solution is the field or the grating
efficiency. If we look at the field, we have convergence when the absolute
value of the field coincides to a known or given solution and if it is the
grating efficiency, we have convergence when we the grating efficiency from
successive refinements present the same n first digits.

7.1.2 Adaptive mesh

Once more the operations are done element wise by looping over all elements of a
given triangulation. Hence, each element is mapped to a reference element through
an affine transformation.

• step 1: Choose a tolerance TOL.

• step 2: Repeat step 1 to 5 for the uniform mesh to solve the direct problem

Use the same technique as described with the uniform mesh with equations
(4.58), (D.63), (D.67), (D.71), (4.59), (D.64), (D.68) and (D.72) to solve the
direct problem since they satisfy the general form given in equations (7.3)
and (7.4).

• step 3: Repeat step 1 to 5 for the uniform mesh to solve the dual problem
to find zh using Lemma 65.

Since the variational form of the dual problem as given in Lemma 65 has the
general form given in equations (7.3) and (7.4) we use the same technique
described for the uniform mesh to solve the dual problem.

• step 4: Repeat step 1 to 5 for the uniform mesh to solve the dual problem
using Lemma 65 with a higher polynomial order or a finer mesh to give
approximation.

• step 5: Compute the upper bound given by equation (5.40) and denoted this
upper bound by

Ierr =
∑

ρKwK . (7.12)

We can use the standard techniques (reference element and numerical inte-
gration) [70, 38, 113, 66] to compute equation (5.37). For the flux residual

given by equations (5.38) and (5.39), we can compute T α,0
M

± ψj using Defini-
tion 4 and equation (7.8) which leaves us with the jump derivative [∇ψi.n].
Let us denote by K and K1 two triangles which share an edge E, and let
the affine transformation which maps K to the reference element (and ψi
to ψ̃i), be described by Jx + b where J is a 2 × 2 matrix. Let the affine
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transformation which maps K1 to the reference element (and ψ1
i to ψ̃1

i ), be
described by J1x+ b where J1 is a 2 × 2 matrix. We then have

[∇ψi.n] =
(

J−T∇ψ̃i + J1−T∇ψ̃1
i

)

.n

since n1 = −n. Hence by using y = g(x) to represent the curve ∂K
⋂

∂K1,
we have
∫

E

∣

∣[∇ψi.n]
∣

∣

2

=

∫ g(x0)

x=x0

∣

∣

∣

√

1 + g′(x)2J−T∇ψ̃i(x, g(x)) +
√

1 + g′(x)2J1−T∇ψ̃1
i (x, g(x))

∣

∣

∣

2

dx

where the edge E is delimited by g(x0) and x0.

• step 6: Let NT be the list of elements K where ρ(K)wK is in decreasing
order and such that

∑

NT
ρ(K)wK ≥ 0.7Ierr. Refine the mesh in NT .

• step 7: Check that the mesh is periodic if it is not then make it periodic.

• Repeat step 1 to step 7 until Ierr ≤ TOL.

Having briefly described the numerical technique used to solve numerically our
Helmholtz problem, we present some numerical results in the following section.

7.2 Numerical results

In this section, we start by comparing our numerical results using the α, 0-quasi
periodic method and the α, β-quasi periodic method with different results in the
literature in order to validate our code.

7.2.1 Code validation

We will start by comparing our numerical results from the α, 0-quasi periodic
transformation with the experimental results given in [95]. In this first example,
we have a perfectly conducting echelette grating given by Figure 7.1 used in a
-m Littrow mount. For this grating, the mth-order diffracted wave propagates
backwards in the opposite direction to the incident wave and most of the energy
is concentrated into the mth-order diffracted wave provided that

2 sin θ = m
λ

d

where θ is the angle of incidence, λ is the wavelength and d is the period of the
grating [95, 79]. The facet angle of the grooves is called the blaze angle and
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the wavelength corresponding to the maximum energy is called blaze wavelength
[95, 79]. This type of grating is used in laser system design for wavelength selective
reflectors and in spectroscopic devices. In our case, the blaze angle is equal to 5
degrees, and m = 1.

By doing so, we want to investigate the variation of the reflection efficiency
R−1 given by equation (4.71), when the ratio λ/d varies from 0 to 2. We solve
numerically for the reflection efficiency R−1 using the α,0-quasi periodic method
described by equations (4.58), (D.63), (4.59) and (D.64) where B = 0.15, the
degree of the polynomial basis is p = 3 for both TE and TM cases and the degrees
of freedom (dof given by equation (B.7)) is 3577 for the TE case and 14065 for the
TM case. In Figure 7.2, the experimental data is given by the discrete points and
our numerical results are given by the full line (for the TE case) and the dashed
line (for the TM case). We can conclude from Figure 7.2 that we have a good
agreement between the numerical and experimental results outside the region of
resonance (βnj = 0 in equation (2.43) that is λ = 2d/(2n+ 1)).

5 deg
0 d

Figure 7.1: An echelette grating with an apex angle equal to π/2, blaze angle
a = 5 degrees and period d.

We now consider a second example where we have a perfectly conducting cylin-
der grating given by Figure 7.3 with a radius a and wavenumber k1 outside the
scatterer. This semi-analytical approach uses scattering theory, involving multiple
scattering between adjacent cylinders, with an eigenfunction expansion in cylin-
drical coordinates that assumes radial symmetry. This restricts this approach to
problems with cylindrical geometry. We will compare a semi-analytic solution
given in [81] with the numerical solution obtained by using the α, 0-quasi periodic
method for the TE case. This type of scattering geometry is useful in helping to
develop an understanding of the loads on offshore platforms and wave power de-
vices. We have implemented the series solution in [81], using N = 61 and M = 6
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Figure 7.2: A perfectly conducting echelette grating (Case 1) as shown in Fig-
ure 7.1. Comparison between the reflection efficiency of order −1 from the α,0-
quasi periodic method (dashed line for TM and full line for TE) and the experi-
mental results (circle for TM and square for TE) in [95].
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terms in each expansion. In our numerical results using the α, 0-quasi periodic
method described in equations (4.58) and (4.59), we chose the polynomial order
p = 3 and the number of degrees of freedoms (dof) as 14112. In this numerical
experiment, we chose a wavenumber k = π, angle of incidence θ = π/4, radius of
the cylinder a = 0.1, period d = 1 and upper domain boundary y = B = 1. In
Figures 7.4 and 7.5 we compare the spatial distribution of the imaginary and real
parts of the solution for each method and we see a good agreement between both
approaches.

k1

2a

d

Figure 7.3: Cylinder grating.

In this third example, the grating is composed of two dielectric transmitting
cylinders as shown in Figure 7.6. We want to find the reflection efficiency of
order zero (R0) as defined in equation (4.71) for the TM case (Case 2B) where
we let the ratio λ/d vary from 0.7 to 1. We use the α,0-quasi periodic method
to solve the problem numerically from equations (D.71) and (D.72). We then
compare this with the result obtained using the lattice sum technique given in
[128]. This latter method is found in 2-D photonic bandgap structures in which the
cylindrical harmonic expansion is used so that the array of cylinders are viewed as
a spatially periodic lattice and this allows for coupling between adjacent cylinders.
Therefore, this method is limited to scattering with polygonal geometry. By using
a polynomial basis of degree 4 with 21633 degrees of freedom, we have plotted
R0 as a function of λ/d in Figure 7.7. We can conclude from this figure that our
numerical results from the α,0-quasi periodic method are in good agreement with
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Figure 7.4: A periodic grating consisting of a perfectly conducting cylindrical array
of period d = 1 (see Figure 7.3). The spatial distribution of the imaginary part
of the wave amplitude is shown for (a) semi-analytic solution in [81] and (b) the
α, 0-quasi periodic method. The radius of the cylinder is a = 0.1, the wavenumber
is k = π, and the angle of incidence is θ = π/4.
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Figure 7.6: Double layered dielectric transmitting cylinders.
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Figure 7.7: A two layer, periodic grating consisting of dielectric transmitting cylin-
ders in a TM field (Case 2B) (see Figure 7.6). Comparison between the reflection
efficiency of order 0 from the α,0-quasi periodic method (full line) and the lattice
sum technique (dashed line) [128]. The reflection efficiency is shown as a function
of the ratio of the wavelength of the incident field (λ) to the lattice period (d).
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those from the lattice sum technique. It is also of interest to examine the effects
that the degree of the polynomial basis p, the number of Fourier terms N and the
number of degrees of freedom dof have on the computational cost in using the α,0-
quasi periodic method. In the example below we have set d = 1.085, λ = 1.55 and
have kept two of the parameters fixed {p,N, dof} and let one of the parameters
vary. We plot the computational cost against the parameter which varies. We
can conclude from Figures 7.8(a), 7.10(a) and 7.9(a) that the computational cost
grows faster with the degrees of freedom and the order of the polynomial basis
than the number of Fourier terms. In Figure 7.8(b), we let N = {11, 15, 21, 31}
and we plot the variation of R0 with respect to N = Ni for i ∈ {1, 2, 3, 4}

‖R0(Ni) −R0(Ni−1)‖ (7.13)

against Ni using p = 3 and dof = 12193. We do the same in Figure 7.10(b) but
we keep fixed N = 15, dof = 12193 and vary p ∈ P such that P = {3, 4, 5} and
we plot the variation of R0 with respect to Pi for i ∈ {1, 2, 3}

‖R0(Pi) −R0(Pi−1)‖ (7.14)

against Pi. In Figure 7.9(b) we keep fixed N = 15, p = 3 and vary dof ∈ D such
that D = {781, 3073, 12193, 48577} and we plot the variation of R0 with respect
to Di

‖R0(Di) −R0(Di−1)‖ (7.15)

against Di. We conclude from Figures 7.8(b), 7.9(b) and 7.10(b) that the accuracy
of the diffraction efficiency is less affected by changes in the number of Fourier
terms as opposed to changes in the order of the polynomial basis and the number
of degrees of freedom.

In the final example in this section, we consider the perfectly conducting
echelette grating (Case 1) as shown in Figure 7.11. We want to find the reflec-
tion efficiency of order 0 (R0 defined in equation (4.71)) using equations (4.58),
(4.59), (D.63) and (D.64) when we let the ratio l/d vary, where l is the grating
depth and d is the grating period. We will use both the α,0-quasi periodic method
and the α, β-quasi periodic method to solve the problem numerically. We then
compare this with results from method of variation of boundaries given in [25] in
Figure 7.12. The method of variation of boundaries is a perturbation technique
based on expansions in a small parameter (l) which corresponds to the height of
the echelette surface. These echelette designs are used in solar energy absorbers
and antireflecting surfaces. We can conclude from Figure 7.12 that our numerical
results from both the α,0-quasi periodic method (red diamond for both TE and
TM) and the α, β-quasi periodic method (blue cross for both TE and TM) are in
good agreement with the numerical result using the method of variation of bound-
aries (black circle for both TE and TM). The agreement is so good that the points
lie precisely on top at each other. In a similar manner to the previous example
it is of interest to study the convergence of the error in the calculation of the
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Figure 7.8: A double layered, dielectric transmitting, periodic grating consisting of
cylinders interacting with a TM field (Case 2B) (see Figure 7.6). (a) Dependence of
the computational cost in calculating R0 using the α,0-quasi periodic method (on
a uniform mesh) on the number of Fourier terms N and (b) accuracy in calculating
R0 given by equation (7.13) when the number of Fourier terms varies from Ni−1

to Ni.
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Figure 7.9: A double layered, dielectric transmitting, periodic grating consisting
of cylinders interacting with a TM field (Case 2B) (see Figure 7.6. (a) Dependence
of the computational cost in calculating R0 using the α,0-quasi periodic method
(on a uniform mesh) on the number of degrees of freedom dof and (b) accuracy in
calculating R0 given by equation (7.15) when the degrees of freedom varies from
Di−1 to Di.
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Figure 7.10: A double layered, dielectric transmitting, periodic grating consisting
of cylinders interacting with a TM field (Case 2B) (see Figure 7.6. (a) Dependence
of the computational cost in calculating R0 using the α,0-quasi periodic method
(on a uniform mesh) on the polynomial degree p and (b) accuracy in calculating
R0 given by equation (7.14) when the degree of the polynomial basis varies from
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Figure 7.11: A perfectly conducting, echelette grating with depth l and period d.
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Figure 7.12: A perfectly conducting, echelette grating with depth l and period d
(see Figure 7.11) interacting with (a) a TE field (Case 1A), comparison between
the reflection efficiency of order 0 from the α,0-quasi periodic method (diamond),
the α, β-quasi periodic method (cross) and the method of variation of boundaries
(circle) and (b) a TM field (Case 1B), comparison between the reflection efficiency
of order 0 from the α,0-quasi periodic method (diamond), the α, β-quasi periodic
method (cross) and the method of variation of boundaries (circle).
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grating efficiencies as the parameters in the algorithm are varied. In the following
examples, we fix the pitch of our grating to be l/d = 0.05, perform uniform mesh
refinement and study the convergence of the efficiencies of orders 0, 1 and 2 of the
reflected waves. The degree of the polynomial basis (p ) is varied between 3 and 7
and we calculate the error in calculating the grating efficiency as

|RE
j − Rj(α, β)| (7.16)

where RE
j is the numerical result given in [25] (used as the exact values) and

Rj(α, β) is the numerical result obtained from using the α, β-quasi periodic method.
We then plot this error against the degree of the polynomial basis p. The results
shown in Figure 7.13 show that as the degree of the polynomial basis decreases,
the mesh must be refined in order to reproduce the numerical results given in
[25] which used the method of variation of boundaries. We note that when the
number of vertices is bigger than 150, and the degree of the polynomial basis is
greater than 4, there is no significant difference in reproducing the reference solu-
tion in [25]. In the next section, we investigate how efficient the α, 0-quasi periodic
method is compared with the α, β-quasi periodic method for different ranges of
the wavenumber k.

7.2.2 Variation with k of the α, 0 and the α, β-quasi periodic

methods

By introducing the α, β-quasi periodic method in Chapter 6 it is envisaged that
this will provide a more accurate and stable method for addressing the grating
problem. In particular, the α, β-quasi periodic method should be able to overcome
the high wavenumber numerical instabilities that is normally observed when using
finite element methods [59, 16]. A series of numerical examples below investigate
this hypothesis. To begin with we will examine the simplest scenario when in fact
the domain is scatterer free and hence we know precisely that the transmitted
energy Et, as given by Definition 54, is equal to one. We will study a TM wave
(Case 1B) described by equations (D.63) and (D.64). We define the relative error
ǫ(α, 0) (resp. ǫ(α, β)) for the α,0-quasi periodic method (resp. α, β-quasi periodic
method) when we compute the transmitted energy Et, as ǫ(α, 0) = |Et(α)−Et| and
ǫ(α, β) = |Et(α, β) − Et|. We then compare the logarithm of ǫ(α, 0) with ǫ(α, β)
for a fixed number of nodes and a fixed degree of the polynomial basis. We can
see from Figure 7.14 that the α, β-quasi periodic method is far more accurate than
the α,0-quasi periodic method. The α, β-quasi periodic method has a consistent
accuracy of 10−14 for a wide range of wavenumbers. In fact to achieve a relative
error of 10−14 at k = 20d the α, β-quasi periodic method requires 625 dof whereas
the α,0-quasi periodic method requires 9409 dof . It is known for single scattering
that there is an instability in numerical methods when we have high wavenumbers
[59, 16]. Here we observe however that not only is the α, β-quasi periodic method
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Figure 7.13: A perfectly conducting grating (see Figure 7.11) interacting with a
TE field (Case 1A). The numerical results given in [25] are used as the exact values.
The errors in the computation of efficiencies of the diffracted waves are plotted
against the number of vertices dofh, as defined in Section B.3.3, using polynomial
bases of degrees p = 3 (full line) up to p = 7 (dashed dot line) in (a) for the
efficiency of order 0, (b) for the efficiency of order 1 and (c) for the efficiency of
order 2.

reliably accurate, it is also able to cope with high wavenumbers where the standard
approach fails.

In this second example of this section, we consider again the perfectly conduct-
ing echelette grating as shown in Figure 7.11. As before we use the results given
in [25] (denoted RE

j ) as the exact values of the diffraction efficiency Rj for j = 0, 1
and 2. We then use a uniform mesh and we calculate the diffraction efficiency ob-
tained with the α, 0-quasi periodic method (denoted Rα,0

j ), using equations (4.58)

and (4.59), and with the α, β-quasi periodic method (denoted Rα,β
j ) using equations

(6.35) and (6.36). We examine the absolute error |ǫ(α, 0/α, β)| =
∣

∣RE
j − R

α,0/α,β
j

∣

∣

and plot this error as a function of the degree of the polynomial basis p (keeping h

176



50d 100d 150d 200d
−16

−14

−12

−10

−8

−6

−4

−2

0

 

 

k

lo
g
1
0
ǫ(
α
,0
/α
,β

)

Figure 7.14: A scatterer free calculation using a TM wave (Case 1B). Comparison
of the logarithm of the relative error in computing the transmitted energy from the
α,0-quasi periodic method (full line) and the α, β-quasi periodic method (dashed
line). The degrees of freedom is fixed for both cases and the wavenumber k is
varied.
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fixed and the same dof in each method). We can see from Figure 7.15 that there
is no significant difference in the rate of convergence of the numerical solutions
obtained from the two quasi periodic methods with the echelette grating when
the wavenumber k = 1/0.4368 as given in [25] is not large. In the following ex-
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Figure 7.15: A perfectly conducting echelette grating (see Figure 7.11) interacting
with a TE field (Case 1A). Comparison between the absolute error from the α, 0
(dashed line) and the α, β-quasi periodic methods (full line) in calculating (a) the
reflection efficiency of order 0 (R0),(b) the reflection efficiency of order 1 (R1) and
(c) the reflection efficiency of order 2 (R2).

ample, we consider the perfectly conducting cylinder grating shown in Figure 7.3
interacting with a TM wave (Case 1B). Here the exact solution is not computable,
and so we compute the transmitted energy (given by Definition 54) and keep re-
fining uniformly the mesh until this converges (that is, when the first four digits
are the same). We denote this converged value by Et. We define the relative
error ǫ(α, 0) (resp. ǫ(α, β)) for the α,0-quasi periodic method described by equa-
tions (D.63) and (D.64) (resp. for the α, β-quasi periodic method described in a
similar way to equations (6.35) and (6.36)) as ǫ(α, 0) = |Et(α, 0) − Et|/Et (resp.
ǫ(α, β) = |Et(α, β)−Et|/Et). We then fix the number of degrees of freedom at the
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point where ǫ(α, β) = 0 in the α, β-quasi periodic method and examine how each
method performs as the wavenumber is varied. It can be seen in Figure 7.16(a)
that the α, β-quasi periodic method is considerably more accurate and requires far
fewer computational resources than the α,0-quasi periodic method. To achieve a
relative error of 10−14 at k = 30d the α, β-quasi periodic method requires 3600 dof
whereas the α,0-quasi periodic method requires 55872 dof. We now use the same
geometry but this time set the cylinder as a transmitting dielectric grating in a
TE field (Case 2A). As above, we compare the logarithm of the relative error in
computing the transmitted energy where we fix the number of degrees of freedom
at the point where the α, β-quasi periodic method converges and examine how each
method performs as the wavenumber is varied. A similar conclusion is obtained
when we examine Figure 7.16(b) where it can clearly be seen that the α, β-quasi
periodic method outperforms the α,0-quasi periodic method by some degree. In
fact, to achieve a relative error of 10−14 the α, β-quasi periodic method requires
6433 dof whereas the α,0-quasi periodic method requires 101761 dof . In Table
7.2, we show the effect of each uniform refinement on the number of elements NK ,
the dofp when p = 4 is fixed and the total degrees of freedom dof . This shows
us that, since each element is divided into four new elements, the dof becomes
four times larger. Hence, the computational cost becomes significantly large for
the refined mesh compared to the unrefined one. This makes the computational
cost from using the α, β-quasi periodic mesh cheaper since it converges with fewer
nodes as opposed to the α,0-quasi periodic. The previous sections showed the

Case number of refinement NK dofp dof
Case 1B 3 768 3168 3600

4 3072 12480 14112
5 12288 49536 55872

Case 2A 3 1408 5696 6433
4 5632 22656 25537
5 22528 90368 101761

Table 7.2: The variation of the number of elements Nk, the degrees of freedom
from p-refinement dofp and the degrees of freedom dof defined in Section B.3.3
when we make uniform refinement with a cylinder grating as shown in Figure 7.3
for Case 1B and Case 2A.

benefits of using the α, β-quasi periodic method and throughout the computations
were conducted on a uniform mesh. We now want to investigate the benefits that
can be obtained by using an adaptive grid and in particular where this adaptivity
is driven by the Dual Weighted Residual method constructed in Chapter 5.
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Figure 7.16: Cylinder grating as shown in Figure 7.3. Comparison of the loga-
rithm of the relative error in computing the transmitted energy from the α,0-quasi
periodic method (full line) and α, β-quasi periodic method (dashed line) (a) for
Case 1B and (b) for Case 2A.
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7.2.3 Comparison with the DWR method

In the following example, we consider the transmitting dielectric lamellar grating
as shown in Figure 7.17. This type of grating is used in modeling multiscale
phenomena grating problems, and has been studied in [13] using a hybrid approach
that combines a perfectly matching layer technique and an adaptive finite element
method driven by a global a posteriori error estimate and it can be applied in
solving optimal design problems. For our investigation we will fix the wavenumbers
as k1 = 2π and k2 = (0.22 + 6.71i)2π, the angle of incidence θ = π/6 and the period
d = 1. We will consider a TM field (Case 2B) as described by equations (D.71)
and (D.72), and compute the reflection efficiency of order zero (R0) as given by
equation (4.71). Since we will use the DWR method, we employ Lemma 65 and
equation (5.40) to find the dual solutions and the error bounds. We follow the
algorithm in Section 7.1.2 and we choose a tolerance TOL = 10−4. To provide a
basis for a relative error we use the global method in [13] with 201205 degrees of
freedom which gives RE

0 = 0.8484815. We then compare the relative error using
the global a posteriori error estimate in [13] and the DWR method defined by

ǫ(DWR/Global) =
∣

∣R
DWR/Global
0 − RE

0

∣

∣/RE
0 . We can see from Figure 7.18 that the

DWR method converges faster than the global a posteriori error method studied in
[13]. We also note that the indicative computed error Ierr given in equation (7.12)
decreases monotonically which shows the convergence of our DWR method. We
choose to stop at a relative error of 10−6 since the mesh becomes very irregular
and this will lead to a numerical instability if we keep refining [3, 20]. In addition,
since we focus on the local error, there is a pollution coming from the global error.
In practice, we can avoid this problem by refining the mesh in the neighborhood of
the high stress gradients; that is, at the singularities in the geometry. We cannot
always guarantee that the areas of high stress gradients coincide with the areas
of interest and this may lead to pollution error. Hence, we can improve the goal-
oriented error estimation method by using a proper balance between the local error
and the global error so that the mesh is refined to assure a high level of accuracy
of the quantity of interest and at the same time we do not underestimate the effect
of the global error [51]. We can also compare the DWR method with the use of a
uniform mesh. As above, we compare the relative error using the uniform mesh and
the DWR method defined by ǫ(DWR/Uniform) =

∣

∣R
DWR/Uniform
0 −RE

0

∣

∣/RE
0 .

We can see from Figure 7.19 that the error associated with the DWR method
does not decrease monotonically unlike that associated with the uniform mesh.
However when the dof > 104 the DWR converges faster and requires fewer degrees
of freedom than using the uniform mesh when we use with the α,0-quasi periodic
method.
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Figure 7.17: Transmitting dielectric lamellar grating.
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Figure 7.18: The transmitting dielectric lamellar grating shown in Figure 7.17 in
a TM field (Case 2B). The relative error in computing the reflection efficiency
R0, using the global a posteriori error estimate in [13] (dashed line), the DWR
method (straight line) and the indicative computed error Ierr (dotted line) given by
equation (7.12) which shows an upper bound of the discretisation error in solving
numerically the Helmholtz problem.
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Figure 7.19: The transmitting dielectric lamellar grating shown in Figure 7.17 in
a TM field (Case 2B). The relative error in computing the reflection efficiency R0,
using uniform mesh (full line) and the DWR method (dashed line).
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7.2.4 Application of the DWR to a scatterer with a com-

plex geometry: the butterfly wings

One of the main reasons for using a finite element approach is of course its abil-
ity to tackle any prescribed geometry. The examples we have discussed so far
have all dealt with regular geometries and this of course has allowed us to com-
pare our method with exact or semi-analytic methods that capitalise on this
regularity. In order to develop more sophisticated grating structures that can
help push this technology forward it is necessary to be able to investigate irreg-
ular geometries. One recent exploration of what could be achieved by freeing
up these geometrical constraints has been inspired by a naturally occurring pe-
riodic diffraction grating. When scattered by light, the Morpho butterfly wing
produces colour and this allows a dynamical control of light flow and wavelength
interaction [125]. The scattering of the Morpho butterfly wing has inspired appli-
cations in biomimetics such as gas sensors, electronic display screens and paints
for cars [98, 129, 124, 102]. A cross-section of the butterfly wing geometry,which
is a transmitting dielectric grating, has been studied experimentally in [125] using
a focused laser technique to examine the absolute reflectivity and transmittiv-
ity. We have scanned one period of this image and extracted the coordinates of
the grating interface which we subsequently smoothed using a Savitzky Golay fil-
ter [100, p. 183,644-645] (Figure 7.20). We have set the wavenumber inside the
butterfly wing as k2 = (1.57 + 0.06i)2π/0.455 and outside the butterfly wing as
k1 = 2π/0.455; which belongs to the range of values given in [125]. We impose
a TM field (Case 2B), as described by equations (D.71) and (D.72), and use our
DWR method. Therefore, we need Lemma 65 and equation (5.40) to find the dual
solutions and the error bounds. The degrees of freedom used is dof = 11557,
with N = 15 Fourier terms and the degree of the polynomial basis p = 3. We
choose a tolerance TOL = 0.001 in the algorithm in Section 7.1.2 to reproduce the
imaginary and real parts of the magnetic field. The final indicator computed error
Ierr as given in equation (7.12) shows that the discretisation error in solving the
Helmholtz problem was kept under Ierr = 3.0312310−4 so that the level of accuracy
in our numerical solutions is of this order. This numerical result is a first step in
showing that we can use the DWR method to solve numerically the diffraction
phenomenon using a single scale transmitting dielectric grating from the butterfly
wing. At this stage it is difficult to compare this result with the experimental data
[125, 98, 130] as there are no plots of the field given. In our study, we produce the
solution field and there are no such images in those literature. We could produce
the reflection coefficient spectrum but the experimental situation in [125, 98, 130]
is far more complex since the butterfly wing is pre-treated in a liquid and therefore
we need to develop a more sophisticated model.
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Figure 7.20: Reproduction of the image of the Morpho butterfly wing over one
period d.
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(a)

(b)

Figure 7.21: A transmitting dielectric Morpho butterfly wing grating (Case 2B)
as shown in Figure 7.20. The spatial distribution of the magnetic field is shown
for (a) the imaginary part and (b) the real part.
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7.3 Summary and Conclusion

In this chapter, we described the implementation of our finite element methods for
solving the periodic grating Helmholtz problem. In the case where the implemen-
tation presented some novel aspects, we gave details to expose this novelty. We
gave details of both the uniform mesh and the adaptive mesh algorithm as this
provides a computational basis for comparing the two approaches. Our first task
was to show the validity of the our implementation by comparing our results with
those from the literature. Our numerical results presented in Section 7.2.1 showed
good agreement with the experimental results in [95], the analytical approach in
[81], the lattice sum technique in [128] and the method of variation of boundaries
in [25]. We also found that the order of the polynomial basis and the degrees of
freedom had a significant impact on the accuracy of the diffraction efficiency and
on the computational cost as compared to the number of the Fourier terms. We
then compared the α,0-quasi periodic approach to the α, β-quasi periodic method
to investigate any improvements in accuracy, stability and computational cost.
In Section 7.2.2, we found that the results from the α, β-quasi periodic trans-
formation and α, 0-quasi periodic transformation converged at the same rate for
the echelette grating. This result changed for larger wavenumbers for a perfectly
conducting cylindrical grating. It transpired that the α, β-quasi periodic method
converges at a far lower number of degrees than the α,0-quasi periodic method
(for example to achieve a relative error of 10−14 for k = 30d the α, β-quasi periodic
method required 3600 dof whereas the α,0-quasi periodic method required 55872
dof) for Case 1B and we noted the same behaviour for Case 2A (for example to
achieve a relative error of 10−14 for k = 30d the α, β-quasi periodic method re-
quired 6433 dof whereas the α,0-quasi periodic method required 101761 dof). We
then investigated the merits of using an adaptive grid driven by a Dual Weighted
Residual (DWR) method. In Section 7.2.3, we concluded that the DWR method
converged faster and required fewer degrees of freedom than the global a posteriori
error estimate proposed in [13]. Finally, we took advantage of the geometrical free-
dom that the finite element method allows and examined a naturally occurring,
periodic diffraction grating in the form of a butterfly wing. Its diffraction proper-
ties have previously been experimentally measured but this is the first attempt to
mirror those results using a finite element approach. The TM field was success-
fully calculated and showed the complex interaction between the scatterer and the
field. There are still some open questions regarding this approach to numerically
solving these diffraction problems. It will be interesting to investigate numerically
the sensitivity of the grating efficiency to small changes in the geometry of the
grating profile. This would be important when we consider the inverse problem
where we have a desired grating efficiency spectrum and we wish to construct the
grating profile that would give rise to the spectrum. Also, we still do not have
an analytical relation to justify our choice of parameters such as the number of
the Fourier terms, the truncation of the domain B, the order of the polynomial

188



basis and the mesh size h. It transpires that the accuracy of the numerical results
is not significantly affected by the truncation of the DtN operators. It would be
good therefore to have an analytical result to show that there is advantage in using
finite element methods because fewer Fourier coefficients are needed.
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Chapter 8

Conclusion

Diffraction gratings have been used for example in crystalline silicon solar cells [94],
gas sensors [98], high intensity colour displays [36], and in medical imaging through
x-ray [62, 132]. The gratings are also used on credit cards or other identification
cards as a security measure, providing an image that can be read by an optical
scanner [19]. In order to develop these technologies further it would be useful
to have fast and reliable mathematical models so that putative designs can be
constructed. The appropriate model is given by the Helmholtz equation but this
needs to be solved numerically even for fairly simple diffraction gratings.

We started by describing the physical and mathematical aspects of the prob-
lem of diffraction when an electromagnetic wave interacts with a periodic grating.
From Maxwell’s equations, it can be shown that the problem can be decomposed
into two elementary mathematical problems which are the transverse magnetic
(TM) and the transverse electric (TE) Helmholtz problems. For each problem,
the grating can be perfectly conducting or transmitting and so we studied four
cases. In order to keep this thesis at a reasonable length, we have just shown the
results for Case 1A (TE case for the perfectly conducting grating) when we studied
the a priori error estimate using the α,0-quasi periodic method and the results
for Case 1A (TE case for the perfectly conducting grating) in the main body of
the thesis. We truncated the domain with respect to the y direction and intro-
duced the Dirichlet to Neumann (DtN) maps. We then formulated the boundary
value problems corresponding to the truncated domain, where the incident wave
was included via the boundary conditions. We then considered an equivalent but
alternative formulation that incorporated the incident wave via an inhomogeneous
forcing term (with compact support). We derived a regularity result for multiple
scattering that showed an explicit dependence on the wavenumber k and the forc-
ing term f . This regularity result was then used to prove the well-posedness of the
variational formulation. It also gave us a hold on the convergence and the stability
of the solution when we later solved numerically the scattering problems. In fact,
if we let h denote the maximum mesh size of our elements, and p be the highest
order of the finite element basis, since we know explicitly the dependence of the
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regularity results on the wavenumber k, then the a priori error estimate presented
a power factor of k h

p
. Hence, we can choose the mesh size h and the order of the

polynomial basis p for a given wavenumber k to balance the computational time
and the accuracy of our approximated solution.

We then studied the α,0-quasi periodic method which transformed the diffrac-
tion problem from the α-quasi periodic space to a periodic space. We gave a
variational formulation on an appropriate Sobolev space and demonstrated the
well-posedness of this continuous problem. We then investigated the a priori error
estimates that arise through discretisation and through truncating the DtN map.
In this way, we made sure that the approximate solution is unique. In Theorem 62,
we derived an a priori error estimate for Case 1A that arises due to the discreti-
sation and the truncation of the DtN map. For the discretisation, we derived an
explicit dependency of this error on h, p and k. It transpired from our a priori
error analysis that the number of Fourier terms used, when we solve the problem
numerically, plays a minor role compared to our choice of the mesh size h and the
order of the polynomial basis p.

We then derived an a posteriori error estimate that arises when we discretise
the Helmholtz problem using the Dual Weighted Residual method which consisted
in estimating a particular linear functional of this error. We started by recalling the
direct problem and introducing the dual problem. We then estimated this linear
functional of the error in equation (5.40) and we showed in Section 5.5.2 that this
upper bound can be evaluated. This allowed us to perform an automatic mesh
adaptation based on the local error indicators ρK and wK as defined in equations
(5.41) and (5.42) in Chapter 7.

It has been reported for single scattering that when we have a high wavenum-
ber k, numerical methods such as the finite element method become unstable. In
an attempt to circumvent this problem we transformed the diffraction problem
by writing the solution U as a product of the analytical solution of the scatterer
free Helmholtz problem with an unknown solution Uα,β. We were able to show in
fact that the dependence of this transformed wave equation on the wavenumber k
is of order 1 compared to order 2 for the original solution Uα,0. In order to test
our analytical results a series of numerical investigations was undertaken in Chap-
ter 7. We started by describing the implementation of our finite element method
and gave details of both the uniform mesh and the adaptive mesh algorithm so
that we could compare the two approaches. This was followed by the validation
of our implementation where we compared our results with those from the liter-
ature. In Section 7.2.1, we got good agreement with the experimental results in
[95], the analytical approach in [81], the lattice sum technique in [128] and the
method of variation of boundaries in [25]. We also demonstrated that the order of
the polynomial basis and the degrees of freedom had a significant impact on the
accuracy of the diffraction efficiency and on the computational cost as compared
to the number of the Fourier terms. In Section 7.2.2, we compared the α,0-quasi
periodic approach to the α, β-quasi periodic method. We found that the results
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from the α, β-quasi periodic transformation and α, 0-quasi periodic transformation
converged at the same rate for the echelette grating in the low wavenumber regime.
This result changed for larger wavenumbers for a perfectly conducting cylindrical
grating and a transmitting dielectric grating. In these cases, the α, β-quasi pe-
riodic method converged at a far lower number of degrees of freedom than the
α,0-quasi periodic method. We then investigated the advantages of using an adap-
tive grid driven by a Dual Weighted Residual (DWR) method. In Section 7.2.3,
we concluded that the DWR method converged faster and required fewer degrees
of freedom than the global a posteriori error estimate proposed in [13]. Finally, we
took advantage of the geometrical freedom that the finite element method allows
and examined a naturally occurring, periodic diffraction grating in the form of
a butterfly wing. Its diffraction properties have previously been experimentally
measured but this is the first attempt to mirror those results using a finite ele-
ment approach. The TM field was successfully calculated and showed the complex
interaction between the scatterer and the field.

Modeling of wave interaction with a diffraction grating is a very active research
topic, and there are lots of open problems in this field. For example, how the
efficiency of the diffraction grating is affected by a small change in the geometry of
the scatterer. From a design perspective it is important to investigate the inverse
problem of achieving a desired device performance using a model driven approach.
In this area, the theory of uniqueness and existence is still not fully understood.
Another open question is the dependence of the numerical results on the extent of
the truncated domain. We can also think of improving the computational cost of
solving the problem by performing parallel computation. It will be also interesting
to extend our numerical methods to dynamic gratings so that we can investigate
acousto-optic devices for tunable optical filters [108]. Finally, it will be interesting
to extend our methods to the three dimensional Helmholtz problem for biperiodic
gratings.
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proach. Birkhäuser, Boston, 1994.

[45] L. Demkowicz et al. Computing with hp- adaptive finite elements, volume 2.
Chapman and Hall, New York, 2008.

[46] S. Fan, J. D. Joannopoulos, Joshua N. Winn, Adrian Devenyi, J. C. Chen,
and Robert D. Meade. Guided and defects modes in periodic dielectric
waveguides. J. Opt. Soc. Am. B, 12(7):1267–1272, 1995.

[47] S. Gedny, J. Lee, and R. Mittra. A combined FEM/MOM approach to ana-
lyze the plane wave diffraction by arbitrary gratings. IEEE Trans. Microwave
Theory Tech., 40(2):363–370, 1992.

[48] C. I. Goldstein. A finite element method for solving Helmholtz type equations
in waveguides and other unbounded domains. Mathematics of Computation,
39(160):309–324, 1982.

[49] B. Gralak, G. Tayeb, and S. Enoch. Morpho butterfly wings modeled with
lamellar grating theory. Opt. Express, 9(11):567–578, 2001.

[50] G. Granet. Reformulation of the lamellar grating problem through the con-
cept of adaptive spatial resolution. J. Opt. Soc. Am. A, 16(10):2510–2516,
1999.

196
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Appendix A

Sobolev spaces

In order to make statements about the existence and uniqueness of solutions to
our problem we will use results from functional analysis [68]. We therefore have
to clearly define the space that the solution is a member of. To that end let us
start by defining Sobolev spaces and associated norms. This section is concerned
with establishing the notation which will be used in this thesis. More details on
Sobolev spaces can be found in [35, 22, 68]. We start by giving the definition of a
norm as described in [22].

A.1 Some useful definitions

Definition A-1. Let V be a linear space, then, for all v ∈ V , a norm ‖ . ‖ is
a function which maps each element v to a positive real value which satisfies the
following properties

1. ‖ v ‖≥ 0,

2. ‖ v ‖= 0 if and only if v is equal to zero.

3. For c ∈ R, ‖ cv ‖= |c| ‖ v ‖ .

4. ‖ v + w ‖≤‖ v ‖ + ‖ w ‖, for all w ∈ V . This last property is called the
triangle inequality.

Remark If only properties 1, 3 and 4 hold then ‖ . ‖ is a semi-norm and is denoted
by |.| instead.

Definition A-2. An inner product is a map

(·, ·)V : V × V → C

that satisfies the following three axioms for all vectors x, y, z ∈ V and all scalars
c ∈ C
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1. Conjugate symmetry
(x, y)V = (y, x)V .

2. Linearity in the first argument

(cx, y)V = c(x, y)V , (A.1)

(x+ y, z)V = (x, z)V + (y, z)V .

3. Positive-definiteness
(x, x)V ≥ 0

with equality only for x = 0.

Definition A-3. A linear space V with an inner product is defined as an inner
product space and is denoted by (V, (·)V ) .
Definition A-4. Let (V, (·)V ) be an inner-product space. If the associated normed
linear space (V, ‖ · ‖) is complete, then (V, (·)V ) is called a Hilbert space [22].

Definition A-5. Let V be a linear space. A bilinear form, b(., .), is a mapping
b : V × V → R such that for any v, w ∈ V , the maps v 7→ b(v, w) and w 7→ b(v, w)
are linear forms on V .

Definition A-6. Let (V, (·)V ) be an inner-product space. A form a : V × V → C

is sesquilinear if

a(x+ y, z + w) = a(x, z) + a(x, w) + a(y, z) + a(y, w) (A.2)

a(c1x, c2y) = c̄1c2 a(x, y)

for all x, y, z, w ∈ V and for all c1, c2 ∈ C. In addition a sesquilinear form is
continuous if there exists a constant Ccont > 0, such that

|a(u, v)| < Ccont ‖ u ‖V ‖ v ‖V
for all u ∈ V , v ∈ V .

Definition A-7. Let f be a function defined in a bounded domain ̥ ⊂ Rm, for
m = 1, 2 and let p ∈ N. Then we define the space Lp(̥) by

Lp(̥) = {f :‖ f ‖Lp(̥)< ∞}.
Here

‖ f ‖Lp(̥):=

(
∫

̥

|f(x, y)|p dxdy
)

1
p

, 1 ≤ p < ∞,

and for p = ∞
‖ f ‖L∞(̥):= ess sup{|f(x, y)| : (x, y) ∈ ̥},

where

ess sup {|f(x, y)| : (x, y) ∈ ̥} = inf{C ≥ 0 : |f(x, y)| ≤ C for almost everywhere}.
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Lemma A-8. For S ⊂ Rm, for m = 1, 2 and for any f, g ∈ L1(S)

(f, g)S =

∫

S

fgdS, (A.3)

is an inner product [22].

Proof. We need to check the three properties given in Definition A-2. We note
that

(g, f)S =

∫

S

gfdS,

=

∫

S

fg,

= (f, g)S.

we also have for c ∈ C that

((cf + h), g)S =

∫

S

(cf + h)gdS,

= c

∫

S

fgdS +

∫

S

hgdS,

= c (f, g)S + (h, g)S .

We finish the proof by noting that

(f, f)S =

∫

S

ffdS,

=

∫

S

|f |2dS,

= ‖ f ‖2
L2(S),

from Definition A-7 for p = 2 and so

(f, f)S = 0

if and only if f = 0 from Definition A-1.

Definition A-9. Let K be any compact subset of int̥, where int̥ is the interior
of ̥. Then we define by

L1
loc(̥) := {f : f ∈ L1(K)},

the set of locally integrable functions.

We can now define the Sobolev norm and the associated Sobolev space as follows.
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Definition A-10. Let l be a positive integer, and let f belong to L1
loc(̥). Let

γ, γ1 and γ2 be positive integers. Also let us assume that for all |γ| ≤ l the weak
derivatives Dγf exist where

Dγ = ∂x
γ1∂y

γ2 ,

such that
|γ| := γ1 + γ2.

Then the Sobolev space is defined as

W l
p(̥) :=

{

f :‖ f ‖W l
p(̥)< ∞

}

where

‖ f ‖W l
p(̥):=





∑

|γ|≤l
‖Dγf‖pLp(̥)





1/p

,

for 1 ≤ p < ∞. If l = ∞, then

‖ f ‖W l
∞(̥):= max

|γ|≤l
{‖Dγf‖L∞(̥)}.

Definition A-11. Let l be a positive integer, and let f belong to W l
p(̥). The

Sobolev semi-norm is defined as

|f |W l
p(̥) := (

∑

|γ|=l
‖Dγf‖pLp(̥))

1/p,

for 1 ≤ p < ∞. If l = ∞, then

|f |W l
∞(̥) := max

|γ|=l
{‖Dγf‖L∞(̥)}.

This can be generalised for l = s ∈ R. For the special case when p = 2 we write
W s

2 (̥) = Hs(̥).

This leads to the following definition.

Definition A-12. Let ζ ⊂ ∂̥. The space H
1
2 (ζ) is defined as [35]

H
1
2 (ζ) = {v ∈ L2(ζ) : ‖v‖

H
1
2 (ζ)

< ∞},

with
‖v‖2

H
1
2 (ζ)

= ‖v‖2
L2(ζ) + |v|2

H
1
2 (ζ)

,

and the semi-norm

|v|2
H

1
2 (ζ)

=

∫

ζ

(
∫

ζ

|v(x) − v(y)|2
|x− y|2 dx

)

dy.

Note that if f ∈ H
1
2 (ζ) then f ∈ L1(ζ) and f ∈ L2(ζ) [35].
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The following theorem will be used a lot later when we study the a priori error
estimate of the problem.

Theorem A-13 (Trace theorem). Let s ≥ 1/2, the trace operator τ : Hs(̥) →
Hs− 1

2 (∂̥) is a bounded operator [22, 35, 40] that is

‖ τg ‖
Hs− 1

2 (∂̥)
≤‖ g ‖Hs(̥) .

The operator τ extends to a linear and continuous operator from Hs(div,̥) to
Hs−1/2(∂̥) for s ≥ −1/2 [26], such that

Hs(div,̥) = {g ∈ Hs(̥) : div g ∈ Hs(̥)}.

Let ̥ ⊂ R2 and s ∈ R, then we will denote ‖ f ‖Hs
#(̥) the norm of f in Hs(̥)

when the function f is periodic with respect to x. For the particular case where
the function is periodic and ̥ ⊂ R, we also have the following definition.

Definition A-14. Let g(x) be a complex periodic function of period λ where
x ∈ R. The space Hs

#(̥) for s ∈ R is [105]

Hs
#(̥) = {g ∈ L2(̥) : g(0) = g(λ) and ‖g‖Hs(̥) < ∞, }

with

‖g‖2
Hs

#(̥) =
∑

n∈Z

(

1 +

(

2πn

λ

)2)s

|g(n)|2, (A.4)

and

g(n) =
1

λ

∫ λ

0

g(x)e−i
2πn
d
xdx, for n ∈ Z.

A.2 Quasi-periodicity

Definition A-15. A function G(x, y) is α-quasi-periodic of period d if

G(x+ d, y) = eiαdG(x, y)

for some d ∈ R.

The periodicity of the grating combined with the presence of the incident wave
make U α-quasi-periodic [95, 82] and we have the following Lemma holds.

Lemma A-16. Gα is α-quasi-periodic of period d if and only if there exists a
periodic function G with the same period as Gα such that

Gα(x, y) = eiαxG(x, y).
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Proof. If we suppose that we have

Gα(x, y) = eiαxG(x, y), (A.5)

then

Gα(x+ d, y) = eiα(x+d)G(x+ d, y),

= eiαdeiαxG(x, y), since G is periodic with period d,

= eiαdGα(x, y),

by using equation (A.5) so Gα is α-quasi-periodic. Now, let us suppose that Gα is
α-quasi-periodic

Gα(x, y) = eiαdGα(x− d, y),

= eiα(d+x−x)Gα(x− d, y),

= eiαxe−iα(x−d)Gα(x− d, y).

Let us denote G(x, y) = e−iαxGα(x, y) and let us show that G is periodic with
period d. We have

G(0, y) = Gα(0, y), (A.6)

and

G(d, y) = e−iαdGα(d, y).

Gα is α-quasi-periodic and so

Gα(0, y) = e−iαdGα(d, y), (A.7)

= G(d, y). (A.8)

Using equations (A.6) and (A.7) gives

G(0, y) = G(d, y)

which finishes the proof.

From now on, if ̥ ⊂ R2 and s ∈ R, then we will denote ‖ f ‖Hs
α#(̥) the norm

of f in Hs(̥) when the function f is α- quasi periodic with respect x. For the
particular case where ̥ ⊂ R, and g(x) an α-quasi periodic function of period λ.
We have the following definition.

Definition A-17. Let g(x) be a complex α-quasi-periodic function of period d
where x ∈ R. The space Hs

α#(̥) for s ∈ R is [118],

Hs
α#(̥) = {g ∈ L2(̥) : g(λ) = eiαλg(0) : ‖g‖Hs([̥]) < ∞},
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with

‖g‖2
Hs

α#(̥) =
∑

n∈Z

(

1 +

(

2πn

λ
+ α

)2)s

|g(nα)|2, (A.9)

and

g(nα) =
1

λ

∫ λ

0

g(x)e−i(
2πn
λ

+α)xdx, for n ∈ Z.

In light of these definitions, let us return to our problem and establish some
notation that will allow us to define the various functions that will arise in each
of the domains in Figure 2.3. When we study the grating problem analytically in
Chapter 3, Chapter 4 and Chapter 6 we use both periodic and α-quasi-periodic
functions, therefore the function spaces that we will utilize on the boundaries and
with the DtN maps are

Ls#([0, d]) = {g ∈ Ls([0, d]) : g(d) = g(0)}, (A.10)

Lsα#([0, d]) = {g ∈ Ls([0, d]) : g(d) = eiαdg(0)}, (A.11)

Hs
#([0, d]) = {g ∈ Hs([0, d]) : g(d) = g(0)}, (A.12)

Hs
α#([0, d]) = {g ∈ Hs([0, d]) : g(d) = eiαdg(0)}, (A.13)

and the function spaces that we will utilize inside Ω are

Ls#(Ω) = {f ∈ Ls(Ω) : f(d, y) = f(0, y), ∀ y ∈ [−B,B]}, (A.14)

Lsα#(Ω) = {f ∈ Ls([0, d]) : f(d, y) = eiαdf(0, y), ∀ y ∈ [−B,B]},(A.15)
Hs

#(Ω) = {f ∈ Hs(Ω) : f(d, y) = f(0, y), ∀ y ∈ [−B,B]}, (A.16)

Hs
α#(Ω) = {f ∈ Hs(Ω) : f(d, y) = eiαdf(0, y), ∀ y ∈ [−B,B]}. (A.17)
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Appendix B

The Finite element method

In this appendix we recall some basics tools in the mathematical theory of finite
elements that we need in our analysis. The finite element method is a numerical
technique commonly used to approximate the solution to the partial differential
equations that arise in many mathematical models. The finite element method
reformulates the problem as a variational one which involves an integral of the
partial differential equation over the spatial domain. This domain is broken into
a finite number of pieces called elements, and the finite element method uses local
basis functions to express the approximate solution in each element. By carefully
matching this patchwork of local approximations the solution to the original prob-
lem is found. In this section we provide a brief review of the basic concepts used
in the numerical analysis of finite element methods [35, 22, 21, 92].

B.1 Variational formulations of elliptic bound-

ary value problems

In the following, let ̥ ⊂ R2 be a bounded domain and let ∂̥ denote the boundary
of ̥ . Also, let L be a partial differential operator of second order and let u ∈
C2(D) be such that

Lu := −
2
∑

j,k=1

∂j(ajk∂ku) + a0u, (B.1)

where ajk(x, y) and a0 belong to L∞(D). The associated boundary value problem
is given as follow. Find u ∈ C2(D) such that for f ∈ L2(D) and g ∈ L2(τ2), we
have

Lu = f in D,

u = 0 in τ1,
∂u

∂n
= g in τ2, (B.2)
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where τj ⊂ ∂̥ for j = 1, 2.

Lemma B-1. Let us denote C1
0 (̥) = {v ∈ C1(̥) : v(x, y) = 0, (x, y) ∈ τ1}. Then

for any v ∈ C1
0(̥), the given boundary value problem (B.2) can be formulated as a

variational problem often referred as weak formulation as follows. Find u ∈ C1(̥)
that satisfies

a(u, v) = (l, v)V , (B.3)

where

a(u, v) =

∫

̥

(

∑

j,k

ajk∂ku∂jv + a0uv

)

dxdy,

(l, v)V =

∫

̥

fv −
∫

τ2

∑

j,k

ajkg v njds, (B.4)

and f ∈ L2(̥) and g ∈ L2(τ2). Here nj is the j-th component of the outward-
pointing normal derivative n for j = 1, 2.

Proof. We use Green’s formula in our proof [22]

∫

̥

∂jwvdxdy = −
∫

̥

w∂jvdxdy +

∫

∂̥

wv njds (B.5)

for j = 1, 2 where v, w is a C1 function. We insert w = ajk∂ku in (B.5) which leads
us to

∫

̥

∂j(ajk∂ku)vdxdy = −
∫

̥

ajk∂ku∂jvdxdy +

∫

∂̥

ajk∂kuvnjds, (B.6)

= −
∫

̥

ajk∂ku∂jvdxdy +

∫

τ2

ajkgvnjds,

because v = 0 on τ1 and we use equation (B.2), which finish the proof.

B.2 Analysis background

In this part we will introduce a brief review of the analysis, which is used to
establish existence and uniqueness of solutions to variational formulations based
on elliptic boundary value problems. Let V be a Hilbert space with induced norm
||.|| and let a : V × V → C be a bounded, sesquilinear form, which is continuous
(see Definition A-6). The dual of V , which we denote by V ′, is defined as the set
of all linear maps

ψ : V → C.

We want to show that our problem is well posed by proving that the solution exists
and is unique. We need one of the following results.
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1. Lax-Milgram

Definition B-2. A sesquilinear form a : V × V → C is called V− elliptic
(positive definite) if there exists a positive constant C such that

C‖u‖2
V ≤

∣

∣a(u, u)
∣

∣

for all u ∈ V [58][p. 46].

We prove the existence and uniqueness of solutions for positive definite prob-
lems by using the following Lax-Miligram theorem.

Theorem B-3. (Lax-Miligram) Assume that a sesquilinear form a : V ×
V → C, defined on a Hilbert space V , satisfies

(a) continuity which means there exists M > 0 such that

∣

∣a(u, v)
∣

∣ ≤ M‖u‖V ‖v‖V

for all u, v ∈ V ,

(b) V-ellipticity as given in Definition B-2 and let f be a continuous linear
functional defined on V . Then there exists a unique element u0 ∈ V
such that for all v ∈ V we have [58][p. 46]

a(u0, v) = (f, v)V ,

2. Fredholm alternative

Definition B-4. A sesquilinear form a : V × V → C is called V -coercive if it
satisfies for all v ∈ V the G̊arding inequality [58][p. 51]

M ‖ v ‖2
V ≤ C ‖ v ‖2 +

∣

∣a(v, v)
∣

∣, for all v ∈ V

where M and C are positive constants and

‖ v ‖2= (v, v)V .

The following result is used to prove the existence of solutions to the variational
equation from their uniqueness.

Lemma B-5. If the sesquilinear form a : V × V → C is V -coercive. Then the
problem corresponding to a(u, v) = (f, v) satisfies the Fredholm alternative and
either the problem has a solution u ∈ V for all continuous linear functionals f or
there exists a nontrivial solution of the homogeneous problem. Hence the existence
of the solution follows if we can show uniqueness [58][p. 51].
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B.3 Finite element space

We assume that the reader is familiar with finite element analysis but we include
parts of this section to establish notation using [35, 22, 21, 92].

1. Finite element partitions.

In our study, we use the polynomial space Pp to construct finite elements on
a triangular mesh. The space Pp is the set of polynomials of total degree at
most p in the variables x and y,

Pp = span{xlym, 0 ≤ l, m, l +m ≤ p, for l, m, p ∈ N }.

We will use D to denote a polygonal domain and ∂D to denote its boundary.
A finite element partition ζ of D is a collection {K} of elements such that

• the elements form a partition of the domain, that is

Ω = ∪K∈ζK,

where Ω (K) is the closure of Ω (is the closure of K).

• each triangular element is contained in D,

• the intersection of two adjacent elements is always nonempty and either
it is a single common vertex or a single common edge of both elements

2. Finite element spaces on triangles.

Let p ∈ N and let ζ be a regular partition of the domain D into triangular
elements. The finite element subspace of order p associated with ζ is given
by

V =
{

v ∈ C(D) : ∀K ∈ ζ, v|K ∈ Pp
}

where D is the closure of D. The mesh size of an element (triangle) is defined
as the diameter of the triangle.

3. Degrees of freedom.

Let p ∈ N and let ζ be a regular partition of the domain D into triangular
elements. The total number of triangular elements K inside the partition ζ
is denoted NK . To construct each triangular element we need 3 nodes (nodal
degrees of freedom) and the total nodes needed for all the triangular elements
inside ζ is denoted by dofh. To construct the polynomial basis of degree p
on each triangular element K we need to add 3(p − 1) + p − 2 nodes. If
we denote by dofp, the total number of nodes needed for all the polynomial
bases of degree p on all the triangular elements then the total number of
degrees of freedom, denoted by dof , is defined as

dof = dofh + dofp. (B.7)
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Appendix C

A regularity estimate for the
inhomogeneous Helmholtz
problem for periodic gratings for
Case 1B, Case 2A and Case 2B

For completeness of Chapter 3, regularity results for Case 1B and Case 2B will be
derived in this chapter.

C.1 General case

Let f(x, y) represent the forcing term in the inhomogeneous Helmholtz equa-
tion. For perfectly conducting gratings, we have f(x, y) ∈ L2(R2

+) and we have
f(x, y) ∈ L2(R2) for transmitting dielectric gratings. In this chapter, we want
to study the regularity of the solution U(x, y) of the inhomogeneous Helmholtz
problem depending on the function f(x, y) for Case 1B and 2B. The regularity of
the solution U(x, y) will enable us to study the a priori error estimation of the
approximate solution when we solve the Helmholtz problem numerically.
We again use the same notation as in Chapter 2 for the spatial domains as shown
in Figure 2.1. We also assume that f is local with respect to the y direction which
means that supp f ⊂ R × [−B,B] (see Figure 2.3).

C.1.1 The inhomogeneous Helmholtz equation

Similar to the derivation of equation (3.3), we have

• Case 1B: Perfectly conducting grating: TM case

Here we are solving for U = Hz for a given function f(x, y) ∈ L2(R2
+). The
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inhomogeneous Helmholtz problem is to find U(x, y) ∈ C2(R2
+) such that

∆U(x, y) + k21U(x, y) = f(x, y), (x, y) ∈ R
2
+,

∂U(x, y)

∂n
= 0, (x, y) ∈ ∂R2

−. (C.1)

subject to the radial condition

lim
|y|→∞

U(x, y) = 0, (C.2)

where ∂
∂n

denotes the normal derivative operator on the boundary of each
scatterer (shaded region in Figure 2.1). Putting H = (0, 0, Hz) and J =
(Jx, Jy, Jz) in equation (3.2) we find that f(x, y) = ∂y (Jx) − ∂x (Jy).

Similar to the derivation of equation (3.24), we have for Case 2B.

• Case 2B: Transmitting dielectric grating: TM case

Here we are solving for U = Hz for a given function f(x, y) ∈ L2(R2). The
inhomogeneous Helmholtz problem is to find U(x, y) ∈ C2(R2) such that

∇
(

1

k2
∇U(x, y)

)

+ U(x, y) = f(x, y), (x, y) ∈ R
2, (C.3)

(C.4)

subject to the radiation condition

lim
|y|→∞

U(x, y) = 0, (C.5)

and the interface conditions given by equations (3.20), (3.21), (3.22) and
(3.23). Putting H = (0, 0, Hz) and E = (Ex, Ey, 0), equation (3.2) gives

f(x, y) = ∂y

(

1

iw2ε(x, y)
Jx

)

− ∂x

(

1

iw2ε(x, y)
Jy

)

.

We now utilize the periodicity of the grating and restrict our problem to the vertical
single strip S = [0, d] × R as shown in Figure 2.2. Hence the wavenumber k is
given by equation (2.33) for Case 1B and equation (3.27) for Case 2B.

In a similar way to Case 1A, U and f are α-quasi-periodic with respect to x on
this vertical single strip . We again choose our solution U to satisfy the upward
propagating radiation condition [28]. To study the regularity of our solution U ,
we also need to study the α-quasi-periodic fundamental solution of the problems
(C.1) and (C.3).
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C.1.2 The α-quasi-periodic Green functions of the Helmholtz

equation

In a same way to derive Theorem 23, we have the following results.

Theorem C-1. Case 1B: Let f(x, y) ∈ L2
α#(S \ Ω3) and let U ∈ C2(S \ Ω3)

satisfy the inhomogeneous Helmholtz equation given by equation (C.1). Then, the
solution U of equation (C.1) is given by

U(x, y) =

∫

S\Ω3

G(x− x0, y − y0)f(x0, y0)dx0dy0. (C.6)

Proof. We replace S \ Ω3 with S \ Ω3 and we can use the same process as in
Theorem 23 to show that

∆U(x, y) + k21U(x, y) = f(x, y).

Also, U is α-quasi -periodic because G and f are both α-quasi-periodic. In addi-
tion,

lim
|y|→∞

U(x, y) = 0

because G is composed of bounded outgoing waves and f has a locally compact
support with respect to y. We finish the proof by noting that

∂U

∂n

∣

∣

∣

∣

∂Ω3

=

∫

∂Ω3

∂G(x− x0, y − y0)

∂n
f(x0, y0)dx0dy0.

In our case, for perfectly conducting gratings, the profile of the grating ∂Ω3 can
be presented either by Figure 3.1 or Figure 3.2. First, let ∂Ω3 be a closed curve as
shown in Figure 3.1, we can see that ∂G(x−x0,y−y0)

∂n
f(x0, y0) is regular inside ∂Ω3,

therefore we can apply Cauchy integral theorem [88, p. 4]and we have

∂U

∂n

∣

∣

∣

∣

∂Ω3

= 0. (C.7)

Next, if ∂Ω3 is an open curve as shown in Figure 3.2, we can see that ∂G(x−x0,y−y0)
∂n

f(x0, y0)
is regular inside the closed contour C, where C consists of ∪3

j=1Lj ∪ ∂Ω3 such that
L1 and L2 are a period d apart. We can apply Green’s theorem and we have

∂U

∂n

∣

∣

∣

∣

C

=

∫

C

∂G(x− x0, y − y0)

∂n
f(x0, y0)dx0dy0,

= 0.
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We note that the contributions from L1 and L2 cancel each other and the contri-
bution from L3 also vanishes, by UPRC since G consists of waves traveling away
from the grating. Hence

∂U

∂n

∣

∣

∣

∣

∂Ω3

=

∫

∂Ω3

∂G(x − x0, y − y0)

∂n
f(x0, y0)dx0dy0, (C.8)

= 0 (C.9)

which finishes the proof.

For the TM case, we have the following result

Theorem C-2. Case 2B: Let f(x, y) ∈ L2
α#(S) and let U ∈ C2(S) satisfy the

inhomogeneous Helmholtz equation given by equation (C.3) in S. Then, we have

U(x, y) =

∫

S

Gj(x− x0, y − y0)f(x0, y0)dx0dy0, (C.10)

for j ∈ {0, 1, 2, 3} with Gj as defined by equation (3.29) where dnj = 0 for j = 1, 2
(radiation condition) and such that for l ∈ {0, 1, 2, 3}, the coefficients cnj , c

n
l and

dnl are chosen such that the boundary conditions on the interface separating Sj and
Sl, given by equations (3.20), (3.21), (3.22) and (3.23) are satisfied.

Proof. The proof is similar to Case 2A .

Remark The coefficients cnj and dnj are different for Case 2A and Case 2B
because when we apply the interface conditions we use E = (0, 0, Ez) and H =
(Hx, Hy, 0) for Case 2A whereas we use H = (0, 0, Hz) and E = (Ex, Ey, 0) for
Case 2B . From physical considerations, cnj and dnj equals to zero for some |n| >
N0 ∈ N; N0 depends on the complexity of the profile of the grating. Denoting Cj =
(

cnj
)

|n|=0,··· ,N0
, Dj =

(

cnj
)

|n|=0,··· ,N0
for j = 0, 1, 2, 3 then we have the same number

of unknowns and equations using equations (3.20), (3.21), (3.22) and (3.23).

C.1.3 Regularity of the solution of Helmholtz problem for

periodic grating

In this section, we use the α−quasi-periodic fundamental solution G (or Gj) to
establish the regularity of each solution which means that we will try to bound
the norm of each solution and its partial derivative by using some constants times
the norm of the forcing term. From Theorem 27, we have derived the regularity
of the solution U in terms of the given function f for Case 1A . We can proceed
similarly for Case 1B and we have the following regularity result.

• Case 1B: Perfectly conducting grating: TM case
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Theorem C-3. For any γ = (γ1, γ2) such that γj ∈ N, for j = 1, 2, and
for x ∈ [0, d], y ∈ Sy there exists a constant Creg which is independent
of the wave number k such that the solution U of equation (C.1) given by
Theorem C-1 satisfies

‖ DγU ‖L2(S\Ω3)≤ Creg‖k‖|γ|−1
∞ ‖ f ‖L2(S\Ω3),

where ‖ DγU ‖L2(S\Ω3) is given in Definition A-10.

• Case 2B: Transmitting dielectric grating: TM case

From Theorem 33, we have derived the regularity of the solution U in terms
of the given function f for the Case 2A . We proceed similarly for Case 2B
and we have the following results.

Lemma C-4. For any γ = (γ1, γ2) such that γq ∈ N, and x ∈ [0, d] and
y ∈ R, there exists N0 ∈ N, with cnj and dnj equal to zero when |n| > N0, and

there exists kref <
∣

∣kj
∣

∣ such that U given by equation (C.10) in Theorem C-1
satisfies

‖ ∂γ1x U ‖L2(S\Ω3) ≤ sup
n∈Z

‖nα‖γ1∞ ‖ U ‖L2(S\Ω3),

‖ ∂γ2y U ‖L2(S) ≤ sup
n∈Z,j

‖βnj ‖γ2∞ ‖ U ‖L2(S) +C(k0, k3)Cs sup
n∈Z,j

|βnj |γ2−2‖f‖L2(Ω),

for j ∈ {0, 1, 2, 3} where C(k0, k3) is as given by equation (3.36) and

Cs = sup
n,j∈{0,1,2,3}

(γ2)
(∣

∣cnj
∣

∣,
∣

∣dnj
∣

∣

)

(C.11)

for n ∈ Z with βnj and zn as given by equations (2.43) and (2.44). The
coefficients cnj and dnj are defined in Theorem C-2.

Proof. We proceed similarly as in the proof of Lemma 31, but we note
that ∇U is no longer continuous across the interface separating two me-
dia therefore for γ2 > 0 there is a jump condition across the interface and
Cs = Cs0(γ2).

Next, we give an approximation of U using f .

Lemma C-5. For any x ∈ [0, d] and for any y ∈ R, we have for any function
f ∈ L2

α# ([0, d] × R) and for U as given by equation (C.10)

‖ U(x, y) ‖L2(S)≤ sup
j∈{0,1,2,3},n∈Z

supn,j
(∣

∣cnj
∣

∣,
∣

∣dnj
∣

∣

)

‖βnj ‖∞
‖ f(x, y) ‖L2(S)

for any n ∈ Z and j = 0, 1, 2, 3
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Proof. We proceed similarly as we have done for Lemma 32.

This leads to the following regularity result for Case 2B .

Theorem C-6. For any γ = (γ1, γ2) such that γj ∈ N, for j = 1, 2, and for
x ∈ [0, d], y ∈ [−B,B] ⊂ R there exists a constant Creg which is independent
of the wave number k such that the solution U of equation (C.3) given by
Theorem C-2 satisfies

‖ DγU ‖L2(Ω)≤ Creg(1 + CsC(k0, k3))‖k‖|γ|−1
∞ ‖ f ‖L2(Ω),

with Cs and C(k0, k3) as given by equation (C.11) in Lemma C-4 and equa-
tion (3.36) in Lemma 31 and ‖ DγU ‖L2(Ω) is given in Definition A-10.

Proof. We follow the same procedure as we have done in Theorem 33 for
Case 2A .
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Appendix D

A priori error estimates using the
α, 0-quasi periodic transformation
Case 1B, Case 2A and Case 2B

For completeness of Chapter 4, we have relegated the analysis of Cases 1B, 2A
and 2B to this chapter. Similar to Case 1A, U is α-quasi periodic then we can use
α, 0-quasi periodic transformation and define a function denoted by Uα,0 which
is periodic with respect to x where U = eiαxUα,0. The subscripts α, 0 indicate
the transformation used to make risen the function. We start by looking for the
wave equations satisfied by Uα,0, study the continuity properties corresponding to
Uα,0, and then examine the variational formulation. We show that the problem
corresponding to the variational formulation is well-posed. We then use the fi-
nite element method to discretize the problem, and provide a rigorous study of
the a priori error estimation. Following the same approach in Case 1A, we derive
regularity results for the scattering problem in periodic space H l

#(Ω) for the trans-

mitting dielectric (H l
#(Ω \ int Ω3) for perfectly conducting) gratings for l ≥ 1. We

then show that solving the variational formulation for U is equivalent to solving the
variational formulation for Uα,0. Since, we have already derived regularity results
in the quasi-periodic case in Appendix C and Chapter 3, and since the variational
formulation for U is much simpler than that of Uα,0, we investigate the a priori er-
ror estimation in H l

α#(Ω) for transmitting dielectric (H l
α#(Ω \ int Ω3) for perfectly

conducting) gratings. This will then allow us to prove new error estimates which
give an explicit dependence on the wavenumber.

D.1 Restatement of the boundary value prob-

lems for the periodic solution

We proceed similarly as in Section 4.1 when we study Case 1A and we derive

• Case 1B: Perfectly conducting grating: TM case
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Lemma D-1. Let Uα,0 ∈ C2(Ω \ int Ω3) satisfy equation (4.1), then Uα,0 is
the solution of the following problem set in the truncated domain Ω \ int Ω3

(see Figure 2.3)

∆Uα,0 + (k2 − α2)Uα,0 + 2iα∂xUα,0 = 0, (D.1)

with the DtN map interface conditions at the boundaries of the truncated
region given by

(T α,0+ − ∂

∂n
)Uα,0 = 2iβ0

1e
−iβ0

1B, on Γ+, (D.2)

(T α,0− − ∂

∂n
)Uα,0 = 0, on Γ−. (D.3)

The Neumann boundary conditions at the surface of the diffraction grating
is

∂nUα,0(x, y) = −iαnxUα,0(x, y), on ∂Ω3, (D.4)

and the periodic condition

Uα,0(d, y) = Uα,0(0, y), y ∈ [−B,B], (D.5)

holds where U(x, y) is the solution of the original Helmholtz problem given
by equation (2.102) where T α,0± is given by equation (4.7) in Lemma 45 and
n = (nx, ny) is the normal unit vector exterior to ∂Ω3.

Proof. We omit most of the proof because it is very similar to Lemma 45. The
boundary condition on the interface ∂Ω3 given by equation (2.103) becomes

∂nU = ∂n
(

eiαxUα,0
)

,

= Uα,0∇
(

eiαx
)

.n + eiαx∂nUα,0,

= iαnxe
iαxUα,0 + eiαx∂nUα,0 = 0

and since eiαx 6= 0 then ∂nU = 0 if and only if iαnxUα,0 + ∂nUα,0 = 0 on
∂Ω3.

• Case 2A: Transmitting dielectric grating: TE case

Lemma D-2. Let Uα,0 ∈ C2(Ω) satisfy equation (4.1), then Uα,0 is the
solution of the following problem in the truncated domain Ω (see Figure 2.3)

∆Uα,0 + (k2 − α2)Uα,0 + 2iα∂xUα,0 = 0, (D.6)
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with the DtN map interface conditions at the boundaries of the truncated
region given by

(T α,0+ − ∂

∂n
)Uα,0 = 2iβ0

1e
−iβ0

1B, on Γ+, (D.7)

(T α,0− − ∂

∂n
)Uα,0 = 0, on Γ−. (D.8)

The periodic condition

Uα,0(d, y) = Uα,0(0, y), y ∈ [−B,B], (D.9)

holds where U(x, y) is the solution of the original Helmholtz problem given
by equation (2.104) where T α,0± is given by equation (4.7) in Lemma 45.

Proof. The proof is similar to Lemma 45.

• Case 2B: Transmitting dielectric grating: TM case

Lemma D-3. Let Uα,0 ∈ C2(Ω) satisfy equation (4.1), then Uα,0 is the solu-
tion of the following problem set in the truncated domain Ω (see Figure 2.3)

∇α.

(

1

k2
∇αUα,0

)

+ Uα,0 = 0, (D.10)

with the DtN map at the boundaries of the truncated region given by

(T α,0+ − ∂

∂n
)Uα,0 = 2iβ0

1e
−iβ0

1B, on Γ+, (D.11)

(T α,0− − ∂

∂n
)Uα,0 = 0, on Γ−. (D.12)

The periodic condition

Uα,0(d, y) = Uα,0(0, y), y ∈ [−B,B], (D.13)

holds where U(x, y) is the solution of the original Helmholtz problem given
by equation (2.105) where T α,0± is given by equation (4.7) in Lemma 45 and
∇α = ∇ + i(α, 0).
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Proof. Since U = eiαxUα,0 then

∇.
(

1

k2
∇U

)

= ∇.
(

1

k2
∇
(

eiαxUα,0
)

)

,

= ∇.
(

1

k2
(

i(α, 0)eiαxUα,0 + eiαx∇Uα,0
)

)

,

= ∇.
(

1

k2
eiαx∇αUα,0

)

,

= iαeiαx
(

1

k2
∇αUα,0

)

+ eiαx∇.
(

1

k2
∇αUα,0

)

,

= eiαx∇α.

(

1

k2
∇αUα,0

)

,

and so equation (2.105) becomes

0 = ∇.
(

1

k2
∇U

)

+ U,

= eiαx∇α.

(

1

k2
∇αUα,0

)

+ eiαxUα,0.

We have eiαx 6= 0 therefore

∇α.

(

1

k2
∇αUα,0

)

+ Uα,0 = 0.

The rest of the proof is similar to Lemma 45.

D.1.1 Variational formulation

To obtain a numerical method for computing an approximation to Uα,0 we start
by deriving a variational statement of each scattering problem. Similar to the
derivation of Lemma 46 for Case 1A, we have the following results.

• Case 1B: Perfectly conducting grating: TM case

Lemma D-4. The variational form of the boundary value problem given by
equation (D.1) to equation (D.5) is given by the following statement. Find
Uα,0 ∈ H1

#(Ω \ int Ω3), for all v ∈ H1
#(Ω \ int Ω3) such that

a(Uα,0, v) = (f, v)Γ+
, (D.14)
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where

a(w, v) =

∫

Ω\intΩ3

∇w.∇v −
∫

Ω\intΩ3

(k2 − α2)wv − 2iα

∫

Ω\intΩ3

(∂xw)v

+i

∫

∂Ω3

αnxwv −
∫

Γ+

T α,0+ wv −
∫

Γ−

T α,0− wv (D.15)

(f, v)Γ+
= −

∫

Γ+

2iβ0
1e

−iβ0
1Bv, (D.16)

for w ∈ H1
#(Ω \ int Ω3).

Proof. We proceed in a similar way as in Lemma 46 and get from equa-
tion (D.1),

∫

Ω\intΩ3

∇Uα,0.∇v −
∫

Ω\intΩ3

(k2 − α2)Uα,0v − 2iα

∫

Ω\intΩ3

(∂xUα,0)v

−
∫

∂Ω3

∂Uα,0
∂n

v −
∫

ΓL∪ΓR∪Γ±

∂Uα,0
∂n

v = 0,(D.17)

for all v ∈ H1
#(Ω\ int Ω3). Since v and Uα,0 are periodic then

∫

ΓL∪ΓR

∂Uα,0

∂n
v =

0. Using equations (D.2), (D.3) and (D.4) gives

∫

Ω\int Ω3
∇Uα,0.∇v −

∫

Ω\int Ω3
(k2 − α2)Uα,0v − 2iα

∫

Ω\intΩ3
(∂xUα,0)v

+i
∫

∂Ω3
αnxUα,0v −

∫

Γ+
T α,0+ Uα,0v −

∫

Γ−
T α,0− Uα,0v = −

∫

Γ+
2iβ0

1e
−iβ0

1Bv

which finishes the proof.

• Case 2A: Transmitting dielectric grating: TE case

Lemma D-5. The variational formulation corresponding to the boundary
problem given by equation (D.6) to equation (D.9) can be formulated as fol-
lows.

Find Uα,0 ∈ H1
#(Ω), for all v ∈ H1

#(Ω) such that

a(Uα,0, v) = (f, v)Γ+
, (D.18)

with

a(w, v) =

∫

Ω

∇w.∇v −
∫

Ω

(k2 − α2)wv − 2iα

∫

Ω

(∂xw)v (D.19)

−
∫

Γ+

T α,0+ wv −
∫

Γ−

T α,0− wv
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and

(f, v)Γ+
= −

∫

Γ+

2iβ0
1e

−iβ0
1Bv (D.20)

for w ∈ H1
#(Ω).

Proof. The proof is similar to that of Lemma 46.

• Case 2B: Transmitting dielectric grating: TM case

Lemma D-6. The variational formulation corresponding to the boundary
problem given by equation (D.10) to equation (D.13) can be formulated as
follows.

Find Uα,0 ∈ H1
#(Ω), for all v ∈ H1

#(Ω) such that

a(Uα,0, v) = (f, v)Γ+
, (D.21)

where

a(w, v) =

∫

Ω

1

k2
∇w.∇v −

∫

Ω

1 − α2

k2
wv − iα

∫

Ω

1

k2
(∂xw)v (D.22)

+iα

∫

Ω

1

k2
(w)∂xv −

∫

Γ+

1

k21
T α,0+ wv −

∫

Γ−

1

k22
T α,0− wv,

and

(f, v)Γ+
= −

∫

Γ+

2iβ0
1

k21
e−iβ

0
1Bv,

for w ∈ H1
#(Ω).

Proof. Multiplying both sides of equation (2.105) by vα, such that

vα = e−iαxv, and integrating gives

∫

Ω

∇.
(

1

k2
∇U

)

vα +

∫

Ω

Uvα = 0,

for all vα ∈ H1
α#(Ω). We integrate by parts to get

∫

Ω

1

k2
∇U.∇vα −

∫

Ω

Uvα −
∫

∂Ω

1

k2
∂U

∂n
vα = 0.

Then,
∫

Ω

1

k2
∇U.∇vα −

∫

Ω

Uvα −
∫

ΓL∪ΓR∪Γ±

1

k2
∂U

∂n
vα = 0. (D.23)
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with ΓL, ΓR as defined in equations (3.47) and (3.48). Let nΓL
(nΓR

) denote
the exterior unit normal vector on ΓL (the exterior unit normal vector on
ΓR) and note that nΓL

= −nΓR
, and also kΓL

= kΓR
from the geometry of

our scattering problem (see Figure 2.3). Since v and Uα,0 are periodic then
∫

ΓL∪ΓR

1

k2
∂Uα,0
∂n

v =

∫

ΓL

1

k2
∂Uα,0
∂n

v +

∫

ΓR

1

k2
∂Uα,0
∂n

v

=

∫

ΓL

1

k2

(

∂Uα,0
∂n

v − ∂Uα,0
∂n

v

)

= 0.

Hence, equation (D.23) becomes
∫

Ω

1

k2
∇U.∇vα −

∫

Ω

Uvα −
∫

Γ±

1

k2
∂U

∂n
vα = 0.

Since U = eiαxUα,0 and vα = eiαxv, we have
∫

Ω

1

k2
∇U.∇vα −

∫

Ω

Uvα

=

∫

Ω

1

k2
∇Uα,0.∇v +

∫

Ω

α2

k2
Uα,0v − iα

∫

Ω

1

k2
(∂xUα,0)v

+ iα

∫

Ω

1

k2
Uα,0∂xv −

∫

Ω

Uα,0v −
∫

Γ±

1

k2
∂Uα,0
∂n

v

=0

and we finish the proof by using equations (D.11) and (D.12).

D.1.2 Equivalence of the variational forms for the periodic

and α-quasi periodic problems

We want to show that the periodic problems are well posed. We also want to
establish an upper bound on the error that arises when we solve the scattering
problem numerically. For these reasons, we need to study the equivalence of the
variational forms for the periodic and α-quasi periodic problems. Hence, the three
cases can be described as follows.

• Case 1B: Perfectly conducting grating: TM case

Similarly to Lemma D-4, for the periodic function Uα,0, let

a(Uα,0, vα) = (∇Uα,0,∇vα)Ω\int Ω3
− 2iα(∂xUα,0, vα)Ω\intΩ3

+ (iαnxUα,0, vα)∂Ω3

−
(

(k2 − α2)Uα,0, vα
)

Ω\intΩ3
−
(

T α,0± Uα,0, vα
)

Γ±
, (D.24)

(fα, vα)Γ+
= −

∫

Γ+

2iβ0
1e

−iβ0
1Bvα.
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The variational problem is to find Uα,0 ∈ H1
#(Ω \ int Ω3) for all vα ∈ H1

#(Ω \ int Ω3)
such that

a(Uα,0, vα) = (fα, vα)Γ+
. (D.25)

Similarly, for the α-quasi periodic function U let

a(U, v) = (∇U,∇v)Ω\intΩ3
−
(

k2U, v
)

Ω\intΩ3
− (T±U, v)Γ±

(D.26)

(f, v)Γ+
= −

∫

Γ+

2iβ0
1e
i(αx−β0

1B)v. (D.27)

The variational problem is to find U ∈ H1
α#(Ω \ int Ω3) for all v ∈ H1

α#(Ω \ int Ω3)
such that

a(U, v) = (f, v)Γ+
. (D.28)

We have the following result.

Lemma D-7. Finding Uα,0 ∈ H1
#(Ω \ int Ω3) for all vα ∈ H1

#(Ω \ int Ω3)
such that a(Uα,0, vα) = (fα, vα) as given in equation (D.25) is equivalent to
finding U ∈ H1

α#(Ω \ int Ω3) for all v ∈ H1
α#(Ω \ int Ω3) such that a(U, v) =

(f, v)Γ+
using equation (D.28).

Proof. The proof is similar to Lemma 47.

• Case 2A: Transmitting dielectric grating: TE case

Similarly to Lemma D-5, for the periodic function Uα,0, let

a(Uα,0, vα) = (∇Uα,0,∇vα)Ω − 2iα(∂xUα,0, vα)Ω
−
(

(k2 − α2)Uα,0, vα
)

Ω
−
(

T α,0± Uα,0, vα
)

Γ±
, (D.29)

(fα, vα)Γ+
= −

∫

Γ+

2iβ0
1e

−iβ0
1Bvα.

The variational problem is to find Uα,0 ∈ H1
#(Ω) for all vα ∈ H1

#(Ω) such
that

a(Uα,0, vα) = (fα, vα). (D.30)

Similarly, for the α-quasi periodic function U let

a(U, v) = (∇U,∇v)Ω −
(

k2U, v
)

Ω
− (T±U, v)Γ±

(D.31)

(f, v)Γ+
= −

∫

Γ+

2iβ0
1e
i(αx−β0

1B)v. (D.32)

The variational problem is to find U ∈ H1
α#(Ω) for all v ∈ H1

α#(Ω) such that

a(U, v) = (f, v)Γ+
. (D.33)

We then have the following result.
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Lemma D-8. Finding Uα,0 ∈ H1
#(Ω) for all vα ∈ H1

#(Ω) such that a(Uα,0, vα) =
(fα, vα)Γ+

as given in equation (D.30) is equivalent to finding U ∈ H1
α#(Ω)

for all v ∈ H1
α#(Ω) such that a(U, v) = (f, v)Γ+

using equation (D.33).

Proof. By using Ω instead of Ω \ int Ω3 we can use the same process as in
the proof of Lemma 47.

• Case 2B: Transmitting dielectric grating: TM case

Similarly to Lemma D-6, for the periodic function Uα,0, let

a(Uα,0, vα) =

(

1

k2
∇Uα,0,∇vα

)

Ω

− iα

(

1

k2
∂xUα,0, vα

)

Ω

(D.34)

+iα

(

1

k2
Uα,0, ∂xvα

)

Ω

−
((

1 − α2

k2

)

Uα,0, vα

)

Ω

−
(

1

k2
T α,0± Uα,0, vα

)

Γ±

,

(fα, vα)Γ+
= −

∫

Γ+

2iβ0
1

k21
e−iβ

0
1Bvα.

The variational problem is to find Uα,0 ∈ H1
#(Ω) for all vα ∈ H1

#(Ω) such that

a(Uα,0, vα) = (fα, vα)Γ+
. (D.35)

Similarly, for the α-quasi periodic function U let

a(U, v) =

(

1

k2
∇U,∇v

)

Ω

− (U, v)Ω −
(

1

k2
T±U, v

)

Γ±

(D.36)

(f, v)Γ+
= −

∫

Γ+

2iβ0
1

k21
ei(αx−β

0
1B)v.

The variational problem is to find U ∈ H1
α#(Ω) for all v ∈ H1

α#(Ω) such that

a(U, v) = (f, v)Γ+
(D.37)

and we have the following result.

Lemma D-9. Finding Uα,0 ∈ H1
#(Ω) for all vα ∈ H1

#(Ω) such that a(Uα,0, vα) =
(fα, vα)Γ+

as given in equation (D.35) is equivalent to finding U ∈ H1
α#(Ω) for all

v ∈ H1
α#(Ω) such that a(U, v) = (f, v)Γ+

using equation (D.37).

Proof. From equation (4.21), the first term of the sesquilinear form given by equa-
tion (D.34) becomes

(

1

k2
∇Uα,0,∇vα

)

Ω

=

∫

Ω

(α2Uv − iαU∂xv + iαv∂xU + ∇U.∇v)
k2

. (D.38)
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Using equation (4.23) and examining the next term in the sesquilinear form given
by equation (D.34) we see

−iα
(

1

k2
∂xUα,0, vα

)

Ω

=

∫

Ω

(−α2Uv − iαv∂xU)

k2
. (D.39)

We also note that

iα(vα, ∂xwα)Ω\intΩ3
= iα

∫

Ω\intΩ3

(

e−iαxv
)(

eiαx∂xw + iαeiαxw
)

=

∫

Ω\intΩ3

(

−α2vw + iαv∂xw
)

. (D.40)

From equation (D.40), the third term of the sesquilinear form given by equa-
tion (D.34) becomes

iα

(

1

k2
Uα,0, ∂xvα

)

Ω

=

∫

Ω

(−α2Uv + iαU∂xv)

k2
. (D.41)

We also use equation (4.24) to get

((

1 − α2

k2

)

Uα,0, vα

)

Ω

=

∫

Ω

(

1 − α2

k2

)

Uv (D.42)

and from equation (4.25), the last term of the sesquilinear form given by equa-
tion (D.34) is

(

1

k2
T α,0± Uα,0, vα

)

Γ±

=

(

1

k2
T±U, v

)

Γ±

(D.43)

Substituting equations (D.38),(D.39),(D.41),(D.42) and (D.43) into equation (D.34)
we get

a(Uα,0, vα) =

∫

Ω

(

1

k2
∇U.∇v − Uv

)

−
∫

Γ±

1

k2
T±Uv.

= a(U, v)

and we finish the proof of Lemma D-9 in a similar way to that in Lemma 47.

D.1.3 Well posedness of the variational problem

Before solving the variational formulation numerically, we show that our problem
is well posed like we have done for Case 1A in Section 4.1.3.
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D.1.3.1 Existence and uniqueness of the solution

• Case 1B: Perfectly conducting grating: TM case

Lemma D-10. For all v ∈ H1
#(Ω\int Ω3), the solution Uα,0 ∈ H1

#(Ω\int Ω3)
which satisfies equation (D.14) exists and is unique.

Proof. Since the TE case and TM case for perfectly conducting only differ
on the boundary condition on ∂Ω3, and they both have the same sesquilinear
form, then we can use the same arguments as in Lemma 48 to show Lemma D-
10.

• Case 2A: Transmitting dielectric grating: TE case

Lemma D-11. Let kref > 0 such that
∣

∣k
∣

∣ > kref . For all v ∈ H1
#(Ω), the

solution Uα,0 ∈ H1
#(Ω) which satisfies equation (D.18) exists and is unique.

Proof. Note that we can obtain the sesquilinear form for the TE case for the
transmitting dielectric grating from the sesquilinear form for the TE case for
the perfectly conducting grating by replacing Ω\ int Ω3 with Ω. We can then
use the same arguments as in Lemma 48 to show Lemma D-11.

• Case 2B: Transmitting dielectric grating: TM case

Lemma D-12. Let kref > 0 such that
∣

∣k
∣

∣ > kref . For all v ∈ H1
#(Ω), the

solution Uα,0 ∈ H1
#(Ω) which satisfies equation (D.21) exists and is unique.

Proof. We note by using Cauchy-Schwarz inequality [22, p. 50] that

∣

∣

(

1

k2
∇U,∇v

)

Ω

∣

∣ ≤ 1

k2ref

∫

Ω

∣

∣∇U.∇v
∣

∣dxdy, (D.44)

≤ 1

k2ref
‖ ∇U ‖L2

α#(Ω)‖ ∇v ‖L2
α#(Ω), (D.45)

and from equation (4.30) we get

∣

∣(U, v)Ω
∣

∣ ≤ ‖ U ‖L2
α#(Ω)‖ v ‖L2

α#(Ω) . (D.46)

From equation (4.33), we have

∣

∣

∣

∣

∫

Γ±

1

k2
T±Uvdx

∣

∣

∣

∣

2

≤ Cd
1

k2ref

(

|k2j | ‖ U ‖2
L2
α#(Ω) + ‖ U ‖2

H1
α#(Ω)

)

‖ v ‖2
H1

α#(Ω) .

(D.47)
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Hence, we have from equation (D.36)

∣

∣a(U, v)
∣

∣ ≤ 1

k2ref

∣

∣U
∣

∣

H1
α#(Ω)

∣

∣v
∣

∣

H1
α#(Ω)

+ ‖U‖L2
α#(Ω)‖v‖L2

α#(Ω)

+ Cd
1

k2ref

(

|k2j | ‖ U ‖2
L2
α#(Ω) + ‖ U ‖2

H1
α#(Ω)

)

‖ v ‖2
H1

α#(Ω),

and so

∣

∣a(U, v)
∣

∣ ≤ C0 sup

(

1,
1

k2ref
,

|k2|
k2ref

)

‖U‖H1
α#(Ω\int Ω3)‖v‖H1

α#(Ω\intΩ3). (D.48)

Hence, a(U, U) is continuous using Definition A-6. Taking the real part of
a(U, U) and we get

ℜ(a(U, U)) =

∫

Ω

ℜ
(

1

k2

)

∣

∣∇U
∣

∣

2 −
∫

Ω

∣

∣U
∣

∣

2 −
∫

Γ±

ℜ
(

1

k2
TUU

)

. (D.49)

Hence,

ℜ(a(U, U)) +

∫

Γ±

ℜ
(

1

k2
T±UU

)

+

∫

Ω

∣

∣U
∣

∣

2 ≥ 1

‖k‖2
L∞(Ω)

∣

∣U
∣

∣

2

H1
α#(Ω)

and we use equation (D.47) to get

∫

Γ±

ℜ
(

1

k2
T±UU

)

≤
∣

∣

∫

Γ±

(

1

k2
T±UU

)

∣

∣,

≤
√
Cd

1

kref

(

|kj| ‖ U ‖L2
α#(Ω) + ‖ U ‖H1

α#(Ω)

)

‖ U ‖H1
α#(Ω)

≤ C
√
Cd

|kj|
kref

‖ U ‖2
L2
α#(Ω)

from the equivalence of the norm in H l
α#(Ω) for l ≥ 0. Hence

∣

∣a(U, U) + (C + 1)‖U‖2
L2
α#(Ω)

∣

∣ ≥ M1‖U‖2
H1

α#(Ω)

from the equivalence of the norm in H l
α#(Ω) for l ≥ 0. Then, a(U, U) is

H1
α#(Ω)-coercive from Definition B-4. We can then use Lemma B-5 to show

the existence of a solution from its uniqueness. The rest of the proof is
similar to Lemma 48. Let us suppose that we have two solutions U1 and U2

and let us denote w = U1 − U2. We have

a(w,w) =

∫

Ω

1

k2

∣

∣∇w
∣

∣

2 −
∫

Ω

∣

∣w
∣

∣

2 −
∫

Γ±

1

k2
(T±w)w = 0. (D.50)
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Since ℜ
(

1
k2

)

can be positive or negative, we have to deal separately with each
case. First, if ℜ

(

1
k2

)

> 0, we can take the imaginary part of equation (D.50)
to get

∫

Ω

ℑ
(

1

k2

)

∣

∣∇w
∣

∣

2 −
∫

Γ±

ℑ
(

1

k2

)

ℜ((T±w)w)

−
∫

Γ±

ℜ
(

1

k2

)

ℑ((T±w)w) = 0. (D.51)

By noting that ℑ
(

1
k2

)

< 0 and using equation (2.72), we have
∫

Ω

ℑ
(

1

k2

)

∣

∣∇w
∣

∣

2 −
∫

Γ±

ℑ
(

1

k2

)

ℜ((T±w)w)

−
∫

Γ±

ℜ
(

1

k2

)

ℑ((T±w)w) ≤ 0. (D.52)

From equations (D.51) and (D.52) we have w = 0 and so U1 = U2. Secondly,
if ℜ

(

1
k2

)

< 0, we can take the real part of equation (D.50) to get
∫

Ω

ℜ
(

1

k2

)

∣

∣∇w
∣

∣

2 −
∫

Ω

∣

∣w
∣

∣

2 −
∫

Γ±

ℜ
(

1

k2

)

ℜ((T±w)w)

+

∫

Γ±

ℑ
(

1

k2

)

ℑ((T±w)w) = 0. (D.53)

Once more by noting that ℑ
(

1
k2

)

< 0 and using equation (2.72), we have
∫

Ω

ℜ
(

1

k2

)

∣

∣∇w
∣

∣

2 −
∫

Ω

∣

∣w
∣

∣

2 −
∫

Γ±

ℜ
(

1

k2

)

ℜ((T±w)w)

+

∫

Γ±

ℑ
(

1

k2

)

ℑ((T±w)w) ≤ 0. (D.54)

From equations (D.53) and (D.54) we have w = 0 and so U1 = U2.

We finish the proof by noting that U1 = eiαxUα,01 and U2 = eiαxUα,02 and
since eiαx 6= 0 then Uα,01 = Uα,02.

To show the continuous dependence of the variational formulation on the data, it
is necessary to investigate the regularity estimate if the variational formulation.
This is done below.

D.1.3.2 Regularity estimate of the exact solution

In a similar fashion to that proposed in Section 4.1.3.2, we derive an explicit
dependency on k in the proof of the regularity of the solution and in the a priori
error estimate. In this latter, we also derive an explicit dependency on the degree
of the polynomial basis p. In the following theorem, we obtain a new result on the
regularity estimate for the solution Uα,0 for Cases 1B, 2A and 2B.
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• Case 1B: Perfectly conducting grating: TM case

Theorem D-13. Let fα ∈ H l
#(Ω \ int Ω3) and let Uα,0 ∈ H l

#(Ω \ int Ω3) be
the solution of

∆Uα,0 + (k2 − α2)Uα,0 + 2iα∂xUα,0 = fα, in Ω \ int Ω3, (D.55)

(T α,0+ − ∂

∂η
)Uα,0 = 0, on Γ+,

(T α,0− − ∂

∂η
)Uα,0 = 0, on Γ−,

∂nUα,0 = −iαUα,0nx, on ∂Ω3.

Then there exists a constant Cstab which is independent of the wavenumber
k such that

‖ Uα,0 ‖H≤ Cstab ‖ fα ‖L2
#(Ω\intΩ3) .

Proof. We proceed similarly as in Theorem 51 but we use the regularity
estimate given by Theorem C-3.

• Case 2A: Transmitting dielectric grating: TE case

Theorem D-14. Let fα ∈ H l
#(Ω) and let Uα,0 ∈ H l

#(Ω) be the solution of

∆Uα,0 + (k2 − α2)Uα,0 + 2iα∂xUα,0 = fα, in Ω, (D.56)

(T α,0+ − ∂

∂η
)Uα,0 = 0, on Γ+,

(T α,0− − ∂

∂η
)Uα,0 = 0, on Γ−.

Then there exists a constant Cstab which is dependent of the wavenumbers k1
and k3 such that

‖ Uα,0 ‖H≤ Cstab ‖ fα ‖L2
#(Ω)

where Cstab = Creg(1 + CsC(k0, k3)) and CsC(k0, k3) is as defined in Lemma 31.

Proof. We proceed similarly as in Theorem 51 but we use the regularity
estimate given by Theorem 33.

• Case 2B: Transmitting dielectric grating: TM case

Theorem D-15. Let fα ∈ H l
#(Ω) and let Uα,0 ∈ H l

#(Ω) be the solution of

∇α.

(

1

k2
∇αUα,0

)

+ Uα,0 = fα, in Ω, (D.57)

(T α,0+ − ∂

∂η
)Uα,0 = 0, on Γ+,

(T α,0− − ∂

∂η
)Uα,0 = 0, on Γ−.
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Then there exists a constant Cstab which is dependent on the wave numbers
k0 and k3 such that

‖ Uα,0 ‖H≤ Cstab ‖ fα ‖L2
#(Ω)

where Cstab = Creg(1 + CsC(k0, k3)) and CsC(k0, k3) is as defined in Theo-
rem C-6.

Proof. We proceed similarly as in Theorem 51 but we use the regularity
estimate given by Theorem C-6.

D.1.4 Efficiency of the diffraction grating

We can use the definition of the grating efficiency given in Section 4.1.4 and use
the variational formulation given by equations (D.15), (D.19) and (D.22) to show
that the energy is conserved for each of these cases. Before doing so, we need the
following results.

Lemma D-16. For Case 1B, we have

ℜ
(
∫

Ω\int Ω3

(∂xUα,0)Uα,0

)

= 0 (D.58)

and we also have for Case 2 that

ℜ
(
∫

Ω

(∂xUα,0)Uα,0

)

= 0. (D.59)

Proof. For Case 1B, let us define Ωx where Ωx × [−B,B] = Ω \ int Ω3. We have

∫

Ω\intΩ3

(∂xUα,0)Uα,0dxdy =

∫ B

−B

(∫

Ωx

(∂xUα,0)Uα,0dx

)

dy.

We note by integrating by parts that
∫

Ωx

(∂xUα,0)Uα,0dx =
[

Uα,0Uα,0
]

∂Ωx
−
∫

Ωx

Uα,0∂xUα,0dx,

and so
∫

Ω\int Ω3

(∂xUα,0)Uα,0dxdy =

∫ B

−B

(

[

Uα,0Uα,0
]

∂Ωx
−
∫

Ωx

Uα,0∂xUα,0dx

)

dy.

If ∂Ωx = 0 or d, then we can use the periodicity of Uα,0 and I = 0. If ∂Ωx ⊂ ∂Ω3

and if ∂Ω3 is a closed curve as shown in Figure 3.1 then we can use Cauchy’s
theorem to show that I = 0. If ∂Ωx ⊂ ∂Ω3 and if ∂Ω3 is an open curve then we
can use the path ∂Ω3 ∪Lj as shown in Figure 3.2 with Cauchy’s theorem to show
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that I = 0. Hence, we get equation (4.52) and for any c ∈ C, if c = −c then
ℜ(c) = 0. Hence we get equation (D.58). For Case 2, we note that

∫

Ω

(∂xUα,0)Uα,0dxdy =

∫ B

−B

(
∫ d

0

(∂xUα,0)Uα,0dx

)

dy.

We integrate by parts to get

∫

Ω

(∂xUα,0)Uα,0dxdy =

∫ B

−B

(

[

Uα,0Uα,0
]d

0
−
∫

Ω

Uα,0∂xUα,0dx

)

dy.

Since Uα,0 is periodic then
[

Uα,0Uα,0
]d

0
= 0 and so

∫

Ω

(∂xUα,0)Uα,0dxdy = −
∫

Ω

Uα,0∂xUα,0dxdy,

and the result follows.

D.1.5 Conservation of the energy or energy balance

We again define respectively by Er, Et and Eabs, the refracted energy, the trans-
mitted energy and the absorbed energy by the grating. For Cases 1B and 2A, their
definitions are given in Definition 54.

• Case 1B: Perfectly conducting grating: TM case

Theorem D-17 (Conservation of energy). Let Et, Er, and Eabs defined as
in Definition 54. Then, we have the energy balance

Et + Er = 1.

Proof. Note that ℑ
∫

∂Ω3
iαnx

∣

∣Uα,0
∣

∣

2
= 0 since ∂Ω3 is an open curve (see

Figure 2.4), Uα,0 is periodic and so the integral is zero. If ∂Ω3 is a closed
curve (see Figure 2.3) then using Cauchy’s theorem, the integral is zero and
the rest of the proof is similar to Lemma 56.

• Case 2A: Transmitting dielectric grating: TE case

Theorem D-18 (Conservation of energy). Let Et, Er, and Eabs as given by
Definition 54. Then, we have the energy balance

Et + Er + Eabs = 1.
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Proof. We take the imaginary part of equation (D.29), and we use equa-
tion (4.51) with Lemma 8 to get

(

ℑ
(

k2
)

Uα,0, Uα,0
)

Ω
+ ℑ

(

T α,0± Uα,0, Uα,0
)

Γ±
− 2β0

1ℜ
(

e−iβ
0
1B, Uα,0

)

Γ+

= 0.

(D.60)
We proceed similarly as in Lemma 56. Hence, we use Lemma 55 with equa-
tion (2.72) in Lemma 8 to get equation (4.55) which is

ℑ
(

T α,0± Uα,0, Uα,0
)

Γ±
+ 2β0

1ℜ
(

e−iβ
0
1B, Uα,0

)

Γ+

= dβ0
1

∑

n2
α>k

2

Rm + Tm − dβ0
1 .

We use equations (D.60) and (4.55) to get

dβ0
1





∑

n2
α>k

2

Rm + Tm − 1



 +
(

ℑ
(

k2
)

Uα,0, Uα,0
)

Ω
= 0 (D.61)

which finishes the proof.

• Case 2B: Transmitting dielectric grating: TM case

Definition D-19. For Case 2B, the refracted energy, the transmitted energy
and the absorbed energy by the grating are given respectively by

Er =
∑

( 2πm
d

+α)
2
<k21

Rm,

Et =
k21

ℜ(k22)

∑

( 2πm
d

+α)
2
<k22

Tm,

Eabs =

∫

Ω

1

ℑ(k2)
|∇Uα,0|2 +

∫

Ω

2α

ℑ(k2)
(∂xUα,0)Uα,0

+

∫

Ω

α2

ℑ(k2)
|Uα,0|2 + d

∑

(m+α)2>k22

∣

∣

∣
Uα,0

(m)(−B)
∣

∣

∣

2

such that Rm and Tm are as given by equations (4.49) and (4.50).

Theorem D-20 (Conservation of energy). Let Er, Et and Eabs be defined as
in Definition D-19. The energy is conserved and we have the energy balance

Et + Er + Eabs = 1

The theorem can be proved by following the same process given for the
Case 2A in Theorem D-18. We just need to use equation (D.22) instead of
equation (D.19).

236



D.2 The discrete problem

In order to solve numerically the scattering problem, we need to discretize the
variational formulation corresponding to the continuous problem as we did for
Case 1A in Section 4.2.

D.2.1 Variational formulation

• Case 1B: Perfectly conducting grating: TM case

Let X ⊂ H1
#(Ω \ int Ω3) be a finite element space with dim(X) = N < ∞

and let ψi for i = 1, .., N , be a basis of X . We discretize the variational form
given by the equation (D.14) and we want to find Uα,0h ∈ X , for all vh ∈ X
such that

a(Uα,0h , vh) = (f, vh), (D.62)

where

a(wh, vh) =

∫

Ω\intΩ3

∇wh.∇vh −
∫

Ω\intΩ3

(k2 − α2)whvh − 2iα

∫

Ω\int Ω3

(∂xwh)vh

+i

∫

∂Ω3

αnxwhvh −
∫

Γ+

T α,0+ whvh −
∫

Γ−

T α,0− whvh (D.63)

(f, vh) = −
∫

Γ+

2iβ0
1e

−iβ0
1Bvh, (D.64)

for wh ∈ X . Similarly as Case 1A , there exists Uj for j ∈ {1, ., N}, such
that Uα,0h =

∑N
j=1Ujψj(x, y). Hence, the discrete problem given by equa-

tion (D.62) is equivalent to the following linear algebraic system

AU = L (D.65)

with U = Uj for j = 1, · · · , N ,

A = a(ψi, ψj),

and
L = (f, ψj)

for {i, j} ∈ {1, .., N}.

• Case 2A: Transmitting dielectric grating: TE case

Let X ⊂ H1
#(Ω) be a finite element space with dim(X) = N < ∞ and let ψi

for i = 1, .., N , be a basis of X . We discretize the variational form given by
the equation (D.18) and we want to find Uα,0h ∈ X , for all vh ∈ X such that

a(Uα,0h , vh) = (f, vh), (D.66)
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where

a(wh, vh) =

∫

Ω

∇wh.∇vh −
∫

Ω

(k2 − α2)whvh − 2iα

∫

Ω

(∂xwh)vh

−
∫

Γ+

T α,0+ whvh −
∫

Γ−

T α,0− whvh (D.67)

(f, vh) = −
∫

Γ+

2iβ0
1e

−iβ0
1Bvh, (D.68)

for wh ∈ X . Once more there exists Uj for j ∈ {1, ., N}, such that Uα,0h =
∑N

j=1 Ujψj(x, y). Hence, the discrete problem given by equation (D.66) is
equivalent to the following linear algebraic system

AU = L (D.69)

with U = Uj for j = 1, · · · , N ,

A = a(ψi, ψj),

and
L = (f, ψj)

for {i, j} ∈ {1, .., N}.

• Case 2B: Transmitting dielectric grating: TM case

Let X ⊂ H1
#(Ω) be a finite element space with dim(X) = N < ∞ and let ψi

for i = 1, .., N , be a basis of X . We discretize the variational form given by
the equation (D.21) and we want to find Uα,0h ∈ X , for all vh ∈ X such that

a(Uα,0h , vh) = (f, vh), (D.70)

where

a(wh, vh)

=

∫

Ω

1

k2
∇wh.∇vh −

∫

Ω

1 − α2

k2
whvh − iα

∫

Ω

1

k2
(∂xwh)vh

+ iα

∫

Ω

1

k2
(wh)∂xvh −

∫

Γ+

1

k21
T α,0+ whvh −

∫

Γ−

1

k22
T α,0− whvh, (D.71)

and

(f, vh) = −
∫

Γ+

2iβ0
1

k21
e−iβ

0
1Bvh, (D.72)

for wh ∈ X . Once more there exists Uj for j ∈ {1, ., N}, such that Uα,0h =
∑N

j=1 Ujψj(x, y). Hence, the discrete problem given by equation (D.70) is
equivalent to the following linear algebraic system

AU = L (D.73)
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with U = Uj for j = 1, · · · , N ,

A = a(ψi, ψj),

and
L = (f, ψj)

for {i, j} ∈ {1, .., N}.

D.2.2 Truncation of the DtN map

The DtN operators that we use as transparent boundary conditions are truncated
for computational purposes as shown in Section 4.2.2and we approximate T α,0± in
equation (4.7) with equation (4.61). Therefore, instead of solving directly equa-
tions (D.62), (D.66) and (D.70) for Cases 1B, 2A and 2B, we approximate Uα,0 by
UM
α,0h

and we solve numerically the following problems.

• Case 1B: Perfectly conducting grating: TM case

Let X ⊂ H1
#(Ω\ int Ω3) be a finite element subspace with dim(X) = N < ∞

and let ψi for i = 1, .., N , be a basis of X . We want to find UM
α,0h

∈ X , for
all vh ∈ X such that

aM
(

UM
α,0h

, vh
)

= (f, vh), (D.74)

where

aM(wh, vh) =

∫

Ω\intΩ3

∇wh.∇vh −
∫

Ω\intΩ3

(k2 − α2)whvh − 2iα

∫

Ω\int Ω3

(∂xwh)vh

+i

∫

∂Ω3

αnxwhvh −
∫

Γ±

T α,0±
M
whvh,

(f, vh) = −
∫

Γ+

2iβ0
1e

−iβ0
1Bvh, (D.75)

for wh ∈ X . This leads to the following linear algebraic system

AMUM = L (D.76)

with UM = UM
j for j ∈ {1, ..., N}, such that UM

α,0h
=
∑N

j=1U
M
j ψj(x, y),

AM = aM(ψi, ψj),

and
L = (f, ψj)

for {i, j} ∈ {1, .., N}.
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• Case 2A: Transmitting dielectric grating: TE case

Let X ⊂ H1
#(Ω) be a finite element subspace with dim(X) = N < ∞ and

let ψi for i = 1, .., N , be a basis of X . We want to find UM
α,0h

∈ X , for all
vh ∈ X such that

aM(UM
α,0h

, vh) = (f, vh), (D.77)

where

aM (wh, vh) =

∫

Ω

∇wh.∇vh −
∫

Ω

(k2 − α2)whvh − 2iα

∫

Ω

(∂xwh)vh

−
∫

Γ±

T α,0±
M
whvh

(f, vh) = −
∫

Γ+

2iβ0
1e

−iβ0
1Bvh, (D.78)

for wh ∈ X . There exists UM = UM
j for j ∈ {1, ., N}, such that UM

α,0h
=

∑N
j=1 U

M
j ψj(x, y). Hence, we get the following linear algebraic system

AMUM = L (D.79)

with
AM = aM(ψi, ψj),

and
L = (f, ψj)

for {i, j} ∈ {1, .., N}.

• Case 2B: Transmitting dielectric grating: TM case

Let X ⊂ H1
#(Ω) be a finite element subspace with dim(X) = N < ∞ and

let ψi for i = 1, .., N , be a basis of X . We want to find UM
α,0h

∈ X , for all
vh ∈ X such that

aM(Uα,0h , vh) = (f, vh), (D.80)

where

aM(wh, vh) =

∫

Ω

1

k2
∇wh∇vh −

∫

Ω

1 − α2

k2
whvh − iα

∫

Ω

1

k2
(∂xwh)vh

+iα

∫

Ω

1

k2
(wh)∂xvh −

∫

Γ±

1

k2
T α,0±

M
whvh

(f, vh) = −
∫

Γ+

2iβ0
1

k21
e−iβ

0
1Bvh, (D.81)

for wh ∈ X . We are looking for UM = UM
j for j ∈ {1, ., N}, such that

UM
α,0h

=
∑N

j=1U
M
j ψj(x, y). We get the following linear algebraic system

AMUM = L (D.82)
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with
AM = aM(ψi, ψj),

and
L = (f, ψj)

for {i, j} ∈ {1, .., N}.

D.3 A priori error estimates for the exact solu-

tion.

We derive an a priori error estimate for Uα,0 corresponding to Cases 1B, 2A and
2B in similar fashion to that of Case 1A in Section 4.3. We again have the following
three key results

• an estimate of the error from the discretisation of the continuous problem.

• an estimate of the error from truncating the DtN operator corresponding to
the continuous problem.

• an estimate of the total error

D.3.1 A priori error estimation of the discretized problem

In this section we will derive an upper bound on the error between the exact
periodic solution Uα,0 and that found numerically by discretizing the problem
Uα,0h . In each case we will state the discretized periodic problem in its variational
form, find a regularity bound for the α-quasi periodic exact solution U in terms of
the norm in Definition 49, examine the discretisation error for U , and then use this
to derive an a priori bound on the discretisation error for the periodic solution
Uα,0.
Let X ⊂ H l

α#(Ω \ int Ω3) be a finite element subspace of order p with l ≥ 1, and
let ζh be any regular partition of X as described in Section B.3. We denote by
h the maximum mesh size after partitioning Ω \ int Ω3 using ζh. We make the
standard assumption given by equation (4.74) on the subspace X . Similarly, let
Xα be a finite element subspace of order p of H l

#(Ω \ int Ω3).

• Case 1B: Perfectly conducting grating: TM case

The discretized problem corresponding to equation (D.25) is given below.
Find Uh ∈ X such that

a(Uh, φ) = (f, φ) (D.83)
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with

a(Uh, φ) = (∇Uh,∇φ)Ω\intΩ3
−
(

k2Uh, φ
)

Ω\intΩ3
− (T±Uh, φ)Γ±

, (D.84)

(f, φ)Γ+
= −2iβ0

1

∫

Γ+

e−i(αx−β
0
1B)φ. (D.85)

for all φ ∈ X , where T± is given by Definition 3.

Lemma D-21. Let U ∈ H1
α#(Ω \ int Ω3), then for all v ∈ H1

α#(Ω\ int Ω3) we have
∣

∣a(U, v)
∣

∣ ≤ Cc‖U‖H‖v‖H

such that Cc = Cd+ 1 depends only on the grating period d.

Proof. The proof is similar to that of Lemma 57.

We also have the following

Lemma D-22. For U ∈ H1
α#(Ω \ int Ω3), we have

∣

∣U
∣

∣

2

H1
α#(Ω\intΩ3)

− ℜ(k)‖U‖L2
α#(Ω\intΩ3)‖U‖H ≤

∣

∣a(U, U)
∣

∣

such that a(u, v) is given by equation (D.26).

Proof. Since the only difference for Case 1A and Case 1B is the boundary condition
on the interface, they both satisfy the same sesquilinear form a(u, v). Hence, the
proof of Lemma D-22 is similar to that of Lemma 58.

We also have the following result.

Lemma D-23. Let U ∈ H1
α#(Ω \ int Ω3) be the solution of equation (D.28), and

let Uh be the corresponding discretized solution which satisfies equation (D.83). If
we call eh = U−Uh then there exists a constant C1 = C(Cd+ 1)‖k‖∞

h
p
Creg, where

Creg is the constant defined in Theorem C-3, such that

‖eh‖L2
α#(Ω\intΩ3) ≤ C1‖eh‖H.

Proof. Using the duality argument [22, p. 137], let w be the solution of equa-
tion (4.86) then

‖eh‖L2
α#(Ω\intΩ3) = supφ∈C∞(Ω)

∣

∣a(eh, w − ψ)
∣

∣

‖φ‖L2
α#(Ω\intΩ3)

(D.86)

for all ψ ∈ X , by using Galerkin orthogonality (analogous to the derivation of
equation (4.88)). So, from equation (D.84)
∣

∣a(eh, w − ψ)
∣

∣ =
∣

∣(∇eh,∇(w − ψ))Ω\intΩ3
−
(

k2eh, w − ψ
)

Ω\int Ω3
− (T±eh, w − ψ)Γ±

∣

∣

≤
∣

∣eh
∣

∣

H1
α#(Ω\intΩ3)

∣

∣w − ψ
∣

∣

H1
α#(Ω\intΩ3)

+ ‖k‖2
∞‖eh‖L2

α#(Ω\intΩ3)‖w − ψ‖L2
α#(Ω\int Ω3)

+ C‖eh‖H‖w − ψ‖H1
α#(Ω\intΩ3)
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using Cauchy’s inequality [22, page. 50] and from equation (4.82). Hence,

∣

∣a(eh, w − ψ)
∣

∣ ≤ (Cd+ 1)‖eh‖H‖w − ψ‖H1
α#(Ω\intΩ3)

from equation (4.84). We use the standard approximation estimate in finite ele-
ment space given by equation (4.74) and we have

∣

∣a(eh, w − ψ)
∣

∣ ≤ C(Cd+ 1)
h

p
‖eh‖H‖w‖H2

α#(Ω\intΩ3). (D.87)

We use the result from Theorem C-3 and we have the regularity estimate

‖w‖H2
α#(Ω\intΩ3) ≤ (Creg‖k‖∞)‖φ‖L2

α#(Ω\intΩ3).

Using this in equation (D.87),

∣

∣a(eh, w − ψ)
∣

∣ ≤ h
p
C(Cd+ 1)Creg‖k‖∞‖eh‖H‖φ‖L2

α#(Ω\intΩ3),

and equation (D.86) gives

‖eh‖L2
α#(Ω\intΩ3) ≤ C(Cd+ 1)‖k‖∞

h

p
Creg‖eh‖H

and we finish the proof by letting C1 = C(Cd+ 1)Creg‖k‖∞
h
p
.

The previous three lemmas now allow us to derive the following a priori error
estimate for the periodic solution Uα,0.

Theorem D-24. Let the wavenumber |k| ≥ kref > 0, let the maximum mesh size
h ∈ [0, h0], and let the order of the polynomial basis p ∈ [p0,∞] such that k h0

p0
< 1,

and C3 = 1 − (ℜ(k) + ‖k‖∞)C1 with C1 as given in Lemma D-23. Let Uα,0 be
the continuous solution of equation (D.55). Then Uα,0h ∈ Xα the corresponding
discretized solution exists and is unique. In addition, if eα,0h = Uα,0 − Uα,0h then

‖eα,0h‖H ≤ 4
Cc
C3

‖Uα,0 − ψα,0‖H,

and

‖eα,0h‖L2
#(Ω\intΩ3) ≤ 2C1

Cc
C3

‖Uα,0 − ψα,0‖H,

for all test functions ψα,0 ∈ Xα, where C1 is given in Lemma D-23 and Cc is
defined in Lemma D-21.

Proof. We leave the proof because it is similar to that of Theorem 60.
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For transmitting dielectric gratings, let X ⊂ H l
α#(Ω) be a finite element sub-

space of order p with l ≥ 1, let ζh any regular partition of X as described in
Section B.3. Let h be the maximum mesh size after partitioning Ω using ζh. Once
more, let us make the following standard assumption on the subspace X as given
by equation (4.39), [35]

infψ∈X

{

‖v − ψ‖L2
α#(Ω) +

h

p
‖∇v − ∇ψ‖L2

α#(Ω) +

(

h

p

)
1
2

‖v − ψ‖L2
α#(Γ±)

+
h

p
‖v − ψ‖

H
1
2
α#(Γ±)

}

≤ C

(

h

p

)l

‖v‖Hl
α#(Ω).

(D.88)

• Case 2A: Transmitting dielectric grating: TE case

The discretized problem corresponding to equation (D.33) is given below.
Find Uh ∈ X such that

a(Uh, φ) = (f, φ) (D.89)

with

a(Uh, φ) = (∇Uh,∇φ)Ω −
(

k2Uh, φ
)

Ω
− (T±Uh, φ)Γ±

, (D.90)

(f, φ)Γ+
= −2iβ0

1

∫

Γ+

ei(αx−β
0
1B)φ. (D.91)

for all φ ∈ X , where T± is given by Definition 3.

Lemma D-25. Let U ∈ H1
α#(Ω), then for all v ∈ H1

α#(Ω) we have
∣

∣a(U, v)
∣

∣ ≤ Cc‖U‖H‖v‖H

such that Cc = Cd+ 1 depends only on the grating period d.

Proof. Similarly as in the proof of Lemma 57, we can use Cauchy- Schwarz in-
equality [22, p. 50] to get

∣

∣(∇U,∇v)Ω
∣

∣ ≤ ‖ ∇U ‖L2
α#(Ω)‖ ∇v ‖L2

α#(Ω), (D.92)

and also that
∣

∣

(

k2U, v
)

Ω

∣

∣ ≤ ‖ k2 ‖∞‖ U ‖L2
α#(Ω)‖ v ‖L2

α#Ω . (D.93)

Hence, using together equations (D.92), (D.93), (4.83) we have
∣

∣a(U, v)
∣

∣ ≤
∣

∣U
∣

∣

H1
α#(Ω)

∣

∣v
∣

∣

H1
α#(Ω)

+ ‖ k ‖2
∞ ‖U‖L2

α#(Ω)‖v‖L2
α#(Ω) + Cd‖U‖H‖v‖H

and so
∣

∣a(U, v)
∣

∣ ≤ Cc‖U‖H‖v‖H, (D.94)

we let Cc = (Cd+ 1) to finish the proof.
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We also have the following property.

Lemma D-26. For U ∈ H1
α#(Ω), we have

∣

∣U
∣

∣

2

H1
α#(Ω)

− ℜ(k)‖U‖L2
α#(Ω)‖U‖H ≤

∣

∣a(U, U)
∣

∣

such that a(u, v) is given by equation (D.31).

Proof. By taking the real part of a(U, U), we can write

ℜ(a(U, U)) =
(

∣

∣U
∣

∣

2

H1
α#(Ω)

− ℜ
(

k2
)

‖U‖2
L2
α#(Ω) − ℜ(T±U, U)

)

,

≥
∣

∣U
∣

∣

2

H1
α#(Ω)

− ℜ(k)2‖U‖2
L2
α#(Ω)

using Lemma 8. Since (ℜ(k))2 ≥ ℜ(k2) and because ℜ(k)‖U‖L2
α#(Ω) ≤ k‖U‖L2

α#(Ω) ≤
‖U‖H then

ℜ(a(U, U)) ≥
(

∣

∣U
∣

∣

2

H1
α#(Ω)

− ℜ(k)‖U‖H‖U‖L2
α#(Ω)

)

.

We finish the proof by noting that ℜ(a(U, U)) ≤
∣

∣a(U, U)
∣

∣.

We also have the following result which gives the relationship between the norm
in H and the norm in L2 of the error estimate that we will use later to give an
upper bound of the error estimate by discretizing the problem.

Lemma D-27. Let U ∈ H1
α#(Ω) be the solution of equation (D.33) and Uh be the

solution of equation (D.89). If we call eh = U − Uh then there exists a constant
C1 = C(Cd+ 1)‖k‖∞

h
p
Cstab, where Cstab = (1 + CSC(k0, k3))Creg is the constant

defined in Lemma 31, such that

‖eh‖L2
α#(Ω) ≤ C1‖eh‖H.

Proof. We use the duality argument [22, p. 137], and let w be the dual solution of

∆w + k2w = φ (x, y) ∈ Ω, (D.95)

T ∗
± − ∂nw = 0 on Γ±,

for all φ, w ∈ H1
α#(Ω) where T

∗
± are the dual operators of T±, [61, p. 476]. Then,

similarly as in the proof of Lemma 59, we have for any ψ ∈ X

‖eh‖L2
α#(Ω) = supφ∈C∞(Ω)

∣

∣a(eh, w − ψ)
∣

∣

‖φ‖L2
α#(Ω)

(D.96)

and

∣

∣a(eh, w − ψ)
∣

∣ ≤ (Cd+ 1)‖eh‖H‖w − ψ‖H1
α#(Ω).
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We use the standard approximation estimate in finite element space given by
equation (D.88) and so

∣

∣a(eh, w − ψ)
∣

∣ ≤ C(Cd+ 1)
h

p
‖eh‖H‖w‖H2

α#(Ω). (D.97)

We use the result from Theorem 33 and we have the regularity estimate

‖w‖H2
α#(Ω)

‖φ‖L2
α#(Ω)

≤ (1 + CSC(k0, k3))Creg‖k‖∞.

Using this in equation (D.97), we see

∣

∣a(eh, w − ψ)
∣

∣ ≤ h
p
C(Cd+ 1)Creg(1 + CSC(k0, k3))‖k‖∞‖eh‖H‖φ‖L2

α#(Ω),

and so equation (D.105) gives

‖eh‖L2
α#(Ω) ≤ C(Cd+ 1)‖k‖∞

h

p
Cstab‖eh‖H

with Cstab = (1 + CsC(k0, k3))Creg. We finish the proof by letting

C1 = C(Cd+ 1)Cstab‖k‖∞
h

p

.

The previous three lemmas now allow us to derive the following a priori error
estimate for the periodic solution Uα,0.

Theorem D-28. Let the wavenumber |k| ≥ kref > 0, let the maximum mesh size
h ∈ [0, h0], and let the order of the polynomial basis p ∈ [p0,∞] such that k h0

p0
< 1,

and C3 = 1 − (ℜ(k) + ‖k‖∞)C1 > 0 with C1 as given in Lemma D-27. Let Uα,0
be the continuous solution of equation (4.47). Then Uα,0h ∈ Xα the corresponding
discretized solution exists and is unique. In addition, if eα,0h = Uα,0 − Uα,0h then
we have

‖eα,0h‖H ≤ 4
Cc
C3

‖Uα,0 − ψα,0‖H,

and

‖eα,0h‖0 ≤ 2C1
Cc
C3

‖Uα,0 − ψα,0‖H,

for all test functions ψα,0 ∈ Xα, where C1 as given in Lemma D-27 and Cc as
defined in Lemma D-25.
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Proof. Let us denote eh = U −Uh, and let ψ = eiαxψα,0. We can use Lemma D-26
with Galerkin orthogonality (analogously to equation (4.88)) to get

(

∣

∣eh
∣

∣

2

H1
α#(Ω)

− ℜ(k)‖eh‖L2
α#(Ω)‖eh‖H

)

≤
∣

∣a(eh, U − ψ)
∣

∣.

From Lemma D-25 and since |eh|H1
α#(Ω) ≤ ‖eh‖H we have

∣

∣eh
∣

∣

H1
α#(Ω)

− ℜ(k)‖eh‖L2
α#(Ω) ≤ Cc‖U − ψ‖H

and so

∣

∣eh
∣

∣

H1
α#(Ω)

+ ‖k‖∞‖eh‖L2
α#(Ω)

− (ℜ(k) + ‖k‖∞)‖eh‖L2
α#(Ω) ≤ Cc‖U − ψ‖H.

Using Lemma D-27, we have

‖eh‖H − (ℜ(k) + ‖k‖∞)C1‖eh‖H ≤ Cc‖U − ψ‖H.

Since C3 = 1 − (ℜ(k) + ‖k‖∞)C1 > 0 then

‖eh‖H ≤ Cc
C3

‖U − ψ‖H. (D.98)

From Theorem 50 and equation (4.93), we have

‖eα,0h‖H ≤ 2‖eh‖H,

then we use equation (D.98) to get

‖eα,0h‖H ≤ 2
Cc
C3

‖U − ψ‖H.

We use equation (4.95) and this becomes

‖eα,0h‖H ≤ 4
Cc
C3

‖Uα,0 − ψα,0‖H.

We use once more Lemma D-27 with equation (D.98) and we get

‖eh‖L2
α#(Ω) ≤ C1

Cc
C3

‖U − ψ‖H.

From Theorem 50 and from equation (4.95), we have

‖eα,0h‖L2
#(Ω) ≤ 2C1

Cc
C3

‖Uα,0 − ψα,0‖H.

The rest of the proof is similar to that of Theorem 60.
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• Case 2B: Transmitting dielectric grating: TM case

The discretized problem corresponding to equation (D.37) is given below.
Find Uh ∈ X such that

a(Uh, φ) = (f, φ)Γ+
(D.99)

with

a(Uh, φ) =

(

1

k2
∇Uh,∇φ

)

Ω

− (Uh, φ)Ω −
(

1

k2
T±Uh, φ

)

Γ±

, (D.100)

(f, φ)Γ+
= −2iβ0

1

k21

∫

Γ+

ei(αx−β
0
1B)φ.

for all φ ∈ X , where T± is given by Definition 3.

Lemma D-29. Let U ∈ H1
α#(Ω), then for all v ∈ H1

α#(Ω) we have
∣

∣a(U, v)
∣

∣ ≤ Cc‖U‖H‖v‖H

such that Cc =
1

k2ref
(Cd+ 1) depends only on the period of the diffraction grating

d and a lower bound on the wavenumber kref .

Proof. Similarly as in the proof of Lemma 57, we can use Cauchy- Schwarz in-
equality [22, p. 50] with the first term of equation (D.36) to get

∣

∣

(

1

k2
∇U,∇v

)

Ω

∣

∣ ≤ 1

‖ k2 ‖∞
‖ ∇U ‖L2

α#(Ω)‖ ∇v ‖L2
α#(Ω),

≤ 1

k2ref
‖ ∇U ‖L2

α#(Ω)‖ ∇v ‖L2
α#(Ω) . (D.101)

We note for the second term in equation (D.36) that
∣

∣(U, v)Ω
∣

∣ ≤ ‖ U ‖L2
α#(Ω)‖ v ‖L2

α#Ω . (D.102)

Hence, with the triangle inequality and putting equations (D.101), (D.102) and
(4.83) in equation (D.36) we have

∣

∣a(U, v)
∣

∣ ≤ 1

k2ref

∣

∣U
∣

∣

H1
α#(Ω)

∣

∣v
∣

∣

H1
α#(Ω)

+ ‖U‖L2
α#(Ω)‖v‖L2

α#(Ω) +
Cd

k2ref
‖U‖H‖v‖H.

Since ‖k2‖∞
k2ref

≥ 1 then

∣

∣a(U, v)
∣

∣ ≤ 1

k2ref

(

∣

∣U
∣

∣

H1
α#(Ω)

∣

∣v
∣

∣

H1
α#(Ω)

+ ‖k2‖∞‖U‖L2
α#(Ω)‖v‖L2

α#(Ω) + Cd‖U‖H‖v‖H

)

and so by using equation (4.84)
∣

∣a(U, v)
∣

∣ ≤ Cc‖U‖H‖v‖H, (D.103)

where Cc =
1

k2ref
(Cd+ 1) to finish the proof.
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We also have the following property.

Lemma D-30. For U ∈ H1
α#(Ω), we have

1

‖ ℜ(k2) ‖∞

∣

∣U
∣

∣

2

H1
α#(Ω)

− ‖U‖2
L2
α#(Ω) ≤

∣

∣a(U, U)
∣

∣+
∣

∣

(

1

k2
T±U, U

)

Γ±

∣

∣

such that a(u, v) is given by equation (D.36).

Proof. From equation (D.36), we have

(

1

k2
∇U,∇U

)

Ω

− (U, U)Ω = a(U, U) +

(

1

k2
T±U, U

)

Γ±

.

Since
∣

∣ℜ(c)
∣

∣ ≤ |c| for any c ∈ C then

∣

∣ℜ
(

1

k2
∇U,∇U

)

Ω

− (U, U)Ω
∣

∣ ≤
∣

∣a(U, U) +

(

1

k2
T±U, U

)

Γ±

∣

∣.

By noting that
∣

∣b− c
∣

∣ ≥
∣

∣b
∣

∣−
∣

∣c
∣

∣ and with the triangle inequality we get

∣

∣ℜ
(

1

k2
∇U,∇U

)

Ω

∣

∣− (U, U)Ω ≤
∣

∣a(U, U)
∣

∣ +
∣

∣

(

1

k2
T±U, U

)

Γ±

∣

∣.

The proof is finished by noting that

∣

∣ℜ
(

1

k2
∇U,∇U

)

Ω

∣

∣ ≥ 1

‖ ℜ(k2) ‖∞

∣

∣U
∣

∣

H1
α#(Ω)

.

The following result shows the relationship between the norm in H and the
norm in L2 of the error estimate.

Lemma D-31. For U ∈ H1
α#(Ω) be the solution of equation (D.37), and let

Uh the corresponding discretized solution of equation (D.99). If we denote eh =

U − Uh, then there exists a constant C1 = CCstab
h
p
‖k‖∞
k2ref

(Cd+ 1), where Cstab =

(1 + CSC(k0, k3))Creg is the constant defined in Theorem C-6, such that

‖eh‖L2
α#(Ω) ≤ C1‖U‖H.

Proof. We use the duality argument [22, p. 137], and let w be the dual solution of

∇.
(

1

k2
∇w
)

+ w = φ (x, y) ∈ Ω, (D.104)

(

T ∗
± − ∂nw

)

= 0 on Γ±,
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for all φ, w ∈ H1
α#(Ω) where T

∗
± are the dual operators of T± [61, p. 476]. Then,

similarly as in the proof of Lemma 59, we have

‖eh‖L2
α#(Ω) = supφ∈C∞(Ω)

∣

∣a(eh, w − ψ)
∣

∣

‖φ‖L2
α#(Ω)

(D.105)

such that ψ ∈ X and so from equation (D.100)

∣

∣a(eh, w − ψ)
∣

∣ =
∣

∣

(

1

k2
∇eh,∇(w − ψ)

)

Ω

− (eh, w − ψ)Ω −
(

1

k2
T±eh, w − ψ

)

Γ±

∣

∣

≤
∣

∣

(

1

k2
∇eh,∇(w − ψ)

)

Ω

∣

∣+
∣

∣(eh, w − ψ)Ω
∣

∣+
∣

∣

(

1

k2
T±eh, w − ψ

)

Γ±

∣

∣

≤ 1

k2ref

(

∣

∣eh
∣

∣

H1
α#(Ω)

∣

∣w − ψ
∣

∣

H1
α#(Ω)

+ ‖k‖2
∞‖eh‖L2

α#(Ω)‖w − ψ‖L2
α#(Ω)

+Cd‖eh‖H‖w − ψ‖H1
α#(Ω)

)

.

using equation (4.82) with Cauchy’s inequality [22, p. 50]. Hence, using equa-
tion (4.84) we get

∣

∣a(eh, w − ψ)
∣

∣ ≤ (Cd+ 1)
1

k2ref
‖eh‖H‖w − ψ‖H1

α#(Ω).

We use the standard approximation estimate in finite element space given by
equation (D.88) and so

∣

∣a(eh, w − ψ)
∣

∣ ≤ C(Cd+ 1)
1

k2ref

h

p
‖eh‖H‖w‖H2

α#(Ω). (D.106)

We use the result from Theorem C-6 and we have the regularity estimate

‖w‖H2
α#(Ω)

‖φ‖L2
α#(Ω)

≤ (1 + CSC(k0, k3))Creg‖k‖∞.

Hence
∣

∣a(eh, w − ψ)
∣

∣ ≤ C‖k‖∞
h

pk2ref
Creg(Cd+ 1)(1 + CSC(k0, k3))‖eh‖H‖φ‖L2

α#(Ω),

and so

‖eh‖L2
α#(Ω) ≤ CCstab

h‖k‖∞
pk2ref

(Cd+ 1)‖eh‖H

with Cstab = (1 + CsC(k0, k3))Creg. We finish the proof by letting

C1 = CCstab
h‖k‖∞
pk2ref

(Cd+ 1).
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We have the following result.

Theorem D-32. Let the wavenumber |k| ≥ kref > 0, let the maximum mesh
size h ∈ [0, h0], and let the order of the polynomial basis p ∈ [p0,∞] such that
k h0
p0
< 1, and c4 = 1 − 2‖k‖∞C1 > 0 with C1 as given in Lemma D-31. Let Uα,0

be the continuous solution of equation (D.57). Then Uα,0h ∈ Xα the corresponding
discretized solution exists and is unique. If eα,0h = Uα,0 − Uα,0h then we have

‖eα,0h‖H ≤ 4ck(2Cd+ 1)/c4‖Uα,0 − ψα,0‖H,

and
‖eα,0h‖0 ≤ 2ckC1(2Cd+ 1)/c4‖Uα,0 − ψα,0‖H,

for all test functions ψα,0 ∈ Xα, where C ∈ R, d the period of the grating and
ck =‖ ℜ(k2) ‖∞ /k2ref .

Proof. With eh = U − Uh, and let ψ = eiαxψα,0. We can use Lemma D-30 with
Galerkin orthogonality similar to equation (4.88) to get

1

‖ℜ(k2)‖∞

(

∣

∣eh
∣

∣

2

H1
α#(Ω)

− ‖ℜ
(

k2
)

‖∞‖eh‖2
L2
α#(Ω)

)

≤
∣

∣

∣

∣a(eh, U − ψ)
∣

∣+
∣

∣

(

1

k2
T±eh, eh

)

Γ±

∣

∣

∣

∣.

From Lemma D-29 and equation (4.83) and since ‖ k ‖2
∞≥‖ ℜ(k2) ‖∞, we see that

1

‖ℜ(k2)‖∞

(

∣

∣eh
∣

∣

2

H1
α#(Ω)

− ‖ k ‖2
∞ ‖eh‖2

L2
α#(Ω)

)

≤ Cc ‖ eh ‖H‖ U − ψ ‖H +
Cd

k2ref
‖ eh ‖H‖ U − ψ ‖H (D.107)

using Céa’ s theorem [22, p. 64]. Since Cc =
1

k2ref
(Cd+ 1) as given in the proof of

Lemma D-29, we have

1

‖ℜ(k2)‖∞

(

∣

∣eh
∣

∣

2

H1
α#(Ω)

− ‖ k ‖2
∞ ‖eh‖2

L2
α#(Ω)

)

≤ 2Cd+ 1

k2ref
‖ eh ‖H‖ U − ψ ‖H .

By letting ck = ‖ℜ(k2)‖∞/k
2
ref and noting that ‖ k ‖∞ ‖eh‖L2

α#(Ω) ≤ ‖eh‖H, we
get

∣

∣eh
∣

∣

2

H1
α#(Ω)

− ‖k‖∞‖eh‖L2
α#(Ω)‖eh‖H

≤ ck(2Cd+ 1) ‖ eh ‖H‖ U − ψ ‖H .
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We can use Definition 49 to substitute for the first term on the left hand side and
divide by ‖ eh ‖H

‖ eh ‖H −2‖k‖∞‖eh‖L2
α#(Ω) ≤ ck(2Cd+ 1) ‖ U − ψ ‖H .

Using Lemma D-31, we have

‖eh‖H − 2‖k‖∞C1‖eh‖H ≤ ck(2Cd+ 1)‖U − ψ‖H. (D.108)

We suppose that 2‖k‖∞C1 < 1 and so c4 = 1 − 2‖k‖∞C1 > 0

‖eh‖H ≤ ck
c4
(2Cd+ 1)‖U − ψ‖H. (D.109)

From Theorem 50 and equation (4.93), we have

‖eα,0h‖H ≤ 2‖eh‖H,

then we use equation (D.109) to get

‖eα,0h‖H ≤ 2ck(2Cd+ 1)/c4‖U − ψ‖H.

We use equation (4.95) to get the first result

‖eα,0h‖H ≤ 4ck(2Cd+ 1)/c4‖Uα,0 − ψα,0‖H.

To show the second result, we use once more Lemma D-27 with equation (D.109)
and we get

‖eh‖L2
α#(Ω) ≤ ckC1(2Cd+ 1)‖U − ψ‖H.

From Theorem 50 and from equation (4.95), we have

‖eα,0h‖L2
#(Ω) ≤ 2ckC1(2Cd+ 1)‖Uα,0 − ψα,0‖H.

The proof of the uniqueness of Uα,0h is similar to that of Theorem 60.

D.3.2 A priori error estimation of the continuous problem
by truncating the DtN operator

As explained in Section 4.3.2, the parameter b is introduced for computational
efficiency, to derive an a priori error estimate, and to allows us to cope with more
general problems involving layered geometry such as cladding or substrate. We
have the following results for Cases 1B, 2A and 2B.

• Case 1B: Perfectly conducting grating: TM case

Let UM
α,0 be the approximate solution of the continuous problem given by equa-

tion (D.55) when we truncate the DtN map by T α,0
M

± with M ∈ N, as given by
equation (4.98). The error estimate from truncating the DtN operator is given in
the following theorem.
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Theorem D-33. Let us choose M ∈ N such that M > M0 =
∣

∣k
∣

∣ + |α| and let us
denote by

eMα,0 = Uα,0 − UM
α,0.

If (ℜ(k) + ‖k‖∞)C1 < 1 , such that C1 is as given in Lemma D-23, and so C3 =
1 − (ℜ(k) + ‖k‖∞)C1 > 0, then UM

α,0 exists and is unique and we have

‖eMα,0‖H ≤ 4
d

C3

e
−(B−b) sin (zn/2)

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

, (D.110)

‖eMα,0‖L2
#(Ω) ≤ 2

d

C3

C1e
−(B−b) sin (zn/2)

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

, (D.111)

where Γ1,± = {(x,±b) ∈ Ω} and zn is given by equation (2.44) with b as shown in
Figure 2.3.

Proof. Let U ∈ H1
α#(Ω \ int Ω3) satisfy a(U, v) = (f, v)Γ+

for all v ∈ H1
α#(Ω \ int Ω3)

as given by equation (D.28). We proceed similarly as in the proof of Theorem 60,
so we are approximating the continuous problem by finding UM ∈ H1

α#(Ω \ int Ω3),
such that

aM(UM , v) = (f, v)Γ+
(D.112)

with

aM(UM , v) =
(

∇UM ,∇v
)

Ω\intΩ3
−
(

k2UM , v
)

Ω\int Ω3
−
(

TM± UM , v
)

Γ±
,(D.113)

(f, v)Γ+
=

(

−2iβ0
1e
i(αx−β0

1B), v
)

Γ+

,

for all v ∈ Ω\ int Ω3 such that TM± (v) is given by equation (4.103). From equations
(D.28) and (D.112) we have

a(U, v) − aM (UM , v) = 0. (D.114)

We let eM = U − UM and since T± = TM± +
(

T± − TM±
)

then

(

∇eM ,∇v
)

Ω\intΩ3
−
(

k2eM , v
)

Ω\intΩ3
−
(

T±
MeM , v

)

Γ±
=
((

T± − T±
M
)

U, v
)

Γ±
.

(D.115)
Similar to the proof of Theorem 61, we let M ∈ N such that for M > M0 we have
M >

∣

∣k
∣

∣+
∣

∣α
∣

∣ then n2
α > k2 for

∣

∣

2πn
d

∣

∣ ≥ M and we can show that

∣

∣

((

T± − T±
M
)

U, v
)

Γ±

∣

∣ ≤ de
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖U‖
H

1
2
α#(Γ1,±)

‖v‖
H

1
2
α#(Γ±)

(D.116)
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such that Γ1,± = {(x,±b) ∈ Ω} and cmin = inf
∣

∣n
∣

∣ > Md
2π

sin (zn/2).
We note again as in the proof of Theorem 61 that the left hand side of equa-
tion (D.115) satisfies

∣

∣

(

∇eM , eM
)

Ω\intΩ3
−
(

k2eM , eM
)

Ω\intΩ3
−
(

T±
MeM , eM

)

Γ±

∣

∣,

≥ ℜ
(

∣

∣eM
∣

∣

2

H1
α#(Ω\intΩ3)

− k2‖eM‖2
L2
α#(Ω\intΩ3)

)

,

since −ℜ
(

T±
MeM , eM

)

Γ±
≥ 0 from equation (2.72). So,

∣

∣eM
∣

∣

2

H1
α#(Ω\intΩ3)

− ℜ
(

k2
)

‖eM‖2
L2
α#(Ω\int Ω3)

≤
∣

∣aM
(

eM , eM
)∣

∣.

Hence, using equation (D.115), we get
∣

∣eM
∣

∣

2

H1
α#(Ω\intΩ3)

− ℜ
(

k2
)

‖eM‖2
L2
α#(Ω\intΩ3)

≤ de
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖U‖
H

1
2
α#(Γ1,±)

‖eM‖
H

1
2
α#(Γ±)

.

Again we use the duality argument [22, p. 137] to approximate ‖.‖L2
α#(Ω), with the

dual problem given by equation (4.86). Therefore, we can use Lemma D-23 and
equation (4.91) to get

∣

∣eM
∣

∣

H1
α#(Ω\intΩ3)

− ℜ(k)C1‖eM‖H ≤ de
−cmin(B−b)

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖U‖
H

1
2
α#(Γ1,±)

.

Since ‖ eM ‖H≥‖ eM ‖L2
α#(Ω\intΩ3) then

∣

∣eM
∣

∣

H1
α#(Ω\intΩ3)

+ k‖eM‖L2
α#(Ω) − (ℜ(k) + ‖k‖∞)C1‖eM‖H

≤ de
−cmin(B−b)

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖U‖
H

1
2
α#(Γ1,±)

.

Since we have C3 = 1−ℜ(k)+‖k‖∞C1 > 0, we can use equations (4.93) and (4.95)
together with Theorem 50 and Definition 49 to get

‖eMα,0‖H ≤ 4
d

C3
e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

. (D.117)

From Lemma 59 and equations (4.110), (4.93) and (4.95) together with Theo-
rem 50, we conclude that

‖eMα,0‖L2
α#(Ω) ≤ 2

d

C3

C1e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

. (D.118)

The proof for the uniqueness is similar to that in Theorem 61.

254



• Case 2A: Transmitting dielectric grating: TE case

Let UM
α,0 be the approximate solution of the continuous problem given by equa-

tion (D.56) when we truncate the DtN map by T α,0
M

± , with M ∈ N, as given by
equation (4.98). The error estimate by truncating T α,0± is given by the following
theorem.

Theorem D-34. Let us choose M ∈ N such that M > M0 =
∣

∣k
∣

∣ + |α| and let us
denote by

eMα,0 = Uα,0 − UM
α,0.

If (ℜ(k) + ‖k‖∞)C1 < 1, such that C1 as given in Lemma D-27, so that C3 =
1 − (ℜ(k) + ‖k‖∞)C1 > 0 then UM

α,0 exists and is unique and we have

‖eMα,0‖H ≤ 4
d

C3
e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

,

‖eMα,0‖L2
#(Ω) ≤ 2

d

C3
C1e

−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

.

The constant cmin = inf∣
∣n

∣

∣>Md
2π

sin (zn/2) with Γ1,± = {(x,±b) ∈ Ω} and zn is given

by equation (2.44) where b is described in Figure 2.3

Proof. The proof is similar to that of Theorem 60 and Theorem D-33. We just
need U ∈ H1

α#(Ω) to satisfy a(U, v) = (f, v)Γ+
, for all v ∈ H1

α#(Ω), as given by
equation (D.33).

• Case 2B: Transmitting dielectric grating: TM case

Let UM
α,0 be the approximate solution of the continuous problem given by equa-

tion (D.57) when truncate the DtN map by T α,0
M

± , with M ∈ N, as given by
equation (4.98). We have the following theorem.

Theorem D-35. Let us choose M ∈ N such that M > M0 =
∣

∣k
∣

∣ + |α| and
2π|n|/d > M . Let ‖k‖∞ ≥ kref and let us denote by

eMα,0 = Uα,0 − UM
α,0.

If 2‖k‖∞C1 < 1, such that C1 as given in Lemma D-31, C ≤
√
5 as defined in

Lemma 7 then C4 = 1 − 2‖k‖∞C1 > 0 and UM
α,0 exists and is unique. In addition,

we have

‖eMα,0‖H ≤ 4ck
d

C4



C ‖ Uα,0 − ψα,0 ‖H +e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
α#(Γ1,±)



 ,

‖eMα,0‖L2
#(Ω) ≤ 2ckd

C1

C4



C ‖ Uα,0 − ψα,0 ‖H +e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
α#(Γ1,±)



 ,
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for all test functions ψα,0 ∈ Xα with ck =
‖ℜ(k2)‖∞

k2ref
, cmin = inf |n|>Md

2π
sin (zn/2) and

Γ1,± = {(x,±b) ∈ Ω} and zn is given by equation (2.44).

Proof. Let U ∈ H1
α#(Ω) satisfy a(U, v) = (f, v)Γ+

, for all v ∈ H1
α#(Ω), as given by

equation (D.37). We proceed similarly as in the proof of Theorem D-32, so we are
approximating the continuous problem by finding UM ∈ H1

α#(Ω), such that

aM(UM , v) = (f, v)Γ+
(D.119)

with

aM(UM , v) =

(

1

k2
∇UM ,∇v

)

Ω

−
(

UM , v
)

Ω
−
(

1

k2
TM± UM , v

)

Γ±

, (D.120)

(f, v)Γ+
=

(

−2iβ0
1

k21
ei(αx−β

0
1B),v

)

Γ+

,

for all v ∈ Ω such that TM± (v) is given by equation (4.103). We note again from
equations (D.37) and (D.119) that

a(U, v) − aM (UM , v) = 0. (D.121)

By letting eM = U − UM and noting that T± = TM± +
(

T± − TM±
)

, we get from
equation (D.121)
(

1

k2
∇eM ,∇v

)

Ω

−
(

eM , v
)

Ω
−
(

1

k2
T±

MeM , v

)

Γ±

=
(

1
k2

(

T± − T±
M
)

U, v
)

Γ±

aM
(

eM , v
)

=
(

1
k2

(

T± − TM±
)

U, v
)

Γ±
.(D.122)

Similarly as in the proof of Theorem 61, we let M such that M > k +
∣

∣α
∣

∣ so that
n2
α > k2 for

∣

∣n
∣

∣ ≥ Md
2π

and we can show that

∣

∣

((

T± − T±
M
)

U, v
)

Γ±

∣

∣ ≤ de
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖U‖
H

1
2
α#(Γ1,±)

‖v‖
H

1
2
α#(Γ±)

(D.123)
with cmin = inf∣

∣n

∣

∣>Md
2π

sin (zn/2). Then, we note that ℜ
(

aM
(

eM , v
))

≤
∣

∣aM
(

eM , v
)∣

∣.

Also, we note that truncating T± does not affect the validity of Lemma D-30 and
so

1

‖ ℜ(k2) ‖∞

(

∣

∣eM
∣

∣

2

H1
α#(Ω)

− ‖ k ‖2
∞‖ eM ‖2

L2
α#(Ω)

)

, ≤
∣

∣

(

1

k2
TM± eM , eM

)

Γ±

∣

∣+
∣

∣aM
(

eM , eM
)∣

∣,

≤
∣

∣

(

1

k2
TM± eM , eM

)

Γ±

∣

∣+
∣

∣aM
(

eM , U − ψ
)∣

∣

since we have Galerkin orthogonality similar to equation (4.88), where
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ψ = eiαxψα,0 with ψα,0 ∈ Xα. By noting that
∣

∣

(

TM± v, v
)

Γ±

∣

∣ ≤
∣

∣(T±v, v)Γ±

∣

∣, we can

use equations (4.83), (4.104) and similar to (4.109) we get

1

‖ ℜ(k2) ‖∞

(

∣

∣eM
∣

∣

2

H1
α#(Ω)

− ‖ k ‖2
∞‖ eM ‖2

L2
α#(Ω)

)

,

≤ Cd

k2ref
‖ eM ‖H‖ U − ψ ‖H

+ de
−(B−b) sin (zn/2)

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖U‖
H

1
2
α#(Γ1,±)

‖eM‖
H

1
2
α#(Γ±)

≤ Cd

k2ref
‖ eM ‖H‖ U − ψ ‖H

+
d

k2ref
e
−(B−b) sin (zn/2)

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖U‖
H

1
2
α#(Γ1,±)

‖eM‖H

since UM
h minimizes aM , we can use Céa’ s Lemma [22, p. 64] and Theorem A-13

with the equivalence of the norms in H and in H1
α#(Ω). Once more, we use the

duality argument [22, p. 137] to approximate ‖.‖L2
α#(Ω), with the dual problem

given by equation (4.86). Therefore, we can use Lemma D-31 and similar to
equation (D.108), we get

1
‖ℜ(k2)‖∞

(

‖ eM ‖H −2‖k‖∞C1 ‖ eM ‖H
)

≤ Cd
k2ref

‖ U − ψ ‖H

+ d
k2ref

e
−(B−b) sin (zn/2)

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖U‖
H

1
2
α#(Γ1,±)

.

Letting ck =
‖ℜ(k2)‖∞

k2ref
and supposing 2‖k‖∞C1 < 1, we have C4 = 1−2‖k‖∞C1 > 0

and

‖ eM ‖H≤ ck
C4
d



C ‖ U − ψ ‖H +e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖U‖
H

1
2
α#(Γ1,±)





(D.124)
with cmin = inf |n|>Md

2π
sin (zn/2). We can use equations (4.93) and (4.95) together

with Theorem 50 to get

‖eMα,0‖H ≤ 4
ck
C4
d



C ‖ Uα,0 − ψα,0 ‖H +e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
α#(Γ1,±)



 .

(D.125)
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From Lemma 59 and equations (D.125), (4.93) and (4.95) together with Theo-
rem 50, we conclude that

‖eMα,0‖L2
α#(Ω) ≤ 2

d

C4
ckC1



C ‖ Uα,0 − ψα,0 ‖H +e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
α#(Γ1,±)



 .

(D.126)
We can show that UM

α,0 is unique in a similar way to that in Theorem 61.

D.3.3 Total error made by solving numerically the problem

Similar to Section 4.3.3, we also note that the error made by solving numerically
the Helmholtz equation for Cases 1B, 2A and 2B for a periodic grating arises
from discretising using finite elements and truncating the DtN operator when
we use the transparent boundary conditions. Let us denote the total error by
eα,0 = Uα,0 − UM

α,0h
then it can be estimated as follows for the three cases.

• Case 1B: Perfectly conducting grating: TM case

Theorem D-36. Let |k| ≥ kref > 0, the maximum mesh size h ∈ [0, h0], the degree
of the polynomial basis p ∈ [p0,∞] such that k h0

p0
< 1 with (ℜ(k) + ‖k‖∞)C1 < 1

where C1 is defined in Lemma D-23. Let C3 = 1 − (ℜ(k) + ‖k‖∞)C1. Let M ∈ N

such thatM ≥ M0 and let Uα,0 be the continuous solution of equation (D.55), UM
α,0h

be the corresponding discretized solution with the truncated DtN operator and the
total error be eα,0 = Uα,0 − UM

α,0h
. Then we have

‖eα,0‖H ≤4
Cc
C3

‖Uα,0 − ψα,0‖H

+ 4
d

C3
e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

,

and

‖eα,0‖L2
#(Ω\intΩ3) ≤2

Cc
C3

C1‖Uα,0 − ψα,0‖H

+ 2d
C1

C3
e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

,

for all test functions ψα,0 ∈ Xα where Cc is given in Lemma D-21, cmin =
inf |n|>Md

2π
sin (zn/2) with zn as defined in equation (2.44).

Since we have equation (4.114), then we can use the standard finite element esti-
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mate equation (4.74) and we can write

‖eα,0‖H ≤4 sup (1, ‖k‖∞)

(

h

p

)l−1
Cc
C3

‖Uα,0 − ψα,0‖Hl
#(Ω\intΩ3)

+ 4
d

C3

e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

,

and using the definition of C1 from Lemma D-23

‖eα,0‖L2
#(Ω\int Ω3) ≤2‖k‖∞

(

h

p

)l
Cc
C3

(Cd+ 1)Creg‖Uα,0 − ψα,0‖Hl
#(Ω\intΩ3)

+ 2
d

C3

C1e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

,

for any integer l ≥ 2.

Proof. The proof is similar to that of Theorem 62.

• Case 2A: Transmitting dielectric grating: TE case

Theorem D-37. Let |k| ≥ kref > 0, the maximum mesh size h ∈ [0, h0], the degree
of the polynomial basis p ∈ [p0,∞] such that k h0

p0
< 1 with (ℜ(k) + ‖k‖∞)C1 < 1

where C1 is defined in Lemma D-27. Let C3 = 1 − (ℜ(k) + ‖k‖∞)C1 and M ∈ N

such that M ≥ M0. Let Uα,0 be the continuous solution of equation (D.56), UM
α,0h

be the corresponding discretized solution with the truncated DtN operator and the
total error be eα,0 = Uα,0 − UM

α,0h
. Then we have

‖eα,0‖H ≤4
Cc
C3

‖Uα,0 − ψα,0‖H

+ 4
d

C3
e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

,

and

‖eα,0‖L2
#(Ω) ≤2

Cc
C3
C1‖Uα,0 − ψα,0‖H

+ 2d
C1

C3

e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

,

for all ψα,0 ∈ Xα where Cc is given by Lemma D-25, cmin = inf |n|>Md
2π

sin (zn/2)

with zn as defined in equation (2.44).
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Note that

inf (1, ‖k‖∞)‖eα,0‖H1
#(Ω) ≤ ‖eα,0‖H ≤ sup (1, ‖k‖∞)‖eα,0‖H1

#(Ω). (D.127)

Then we can use the standard finite element estimate equation (D.88) and we can
write

‖eα,0‖H ≤4 sup (1, ‖k‖∞)

(

h

p

)l−1
Cc
C3

‖Uα,0 − ψα,0‖Hl
#(Ω)

+ 4
d

C3

e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

,

and using the definition of C1 from Lemma D-27

‖eα,0‖L2
#(Ω) ≤2‖k‖∞

(

h

p

)l
Cc
C3

(Cd+ 1)Cstab‖Uα,0 − ψα,0‖Hl
#(Ω)

+ 2
d

C3
C1e

−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

,

for any integer l ≥ 2.

Proof. We have

‖eα,0‖H ≤ ‖Uα,0 − UM
α,0‖H + ‖UM

α,0 − UM
α,0h

‖H

Similar to the proof of Theorem 62, we derive an a priori error estimate for the
second term. Let eMh = UM − UM

h where UM = eiαxUM
α,0 and UM

h = eiαxUM
α,0h

. In
a similar way to derive equation (4.115), we get

ℜ
(

aM
(

eMh , e
M
h

))

≥ ℜ
(

∣

∣eMh
∣

∣

2

H1
α#(Ω)

− k2‖eMh ‖2
L2
α#(Ω)

)

since −ℜ
(

TM± eMh , e
M
h

)

Γ±
> 0 using Lemma 8. So,

∣

∣eMh
∣

∣

2

H1
α#(Ω)

− ℜ(k)‖eMh ‖L2
α#(Ω)‖eMh ‖H ≤

∣

∣aM
(

eMh , e
M
h

)∣

∣

since ℜ(k)‖eMh ‖L2
α#(Ω) ≤ ‖eMh ‖H. Then

∣

∣eMh
∣

∣

2

H1
α#(Ω)

− ℜ(k)‖eMh ‖L2
α#(Ω)‖eMh ‖H ≤

∣

∣aM
(

eMh , U
M − ψ

)∣

∣

≤ Cc‖eMh ‖H‖UM − ψ‖H

using Galerkin orthogonality and Lemma D-26. Similar to the proof of Theorem 62
to derive equation (4.117), we have

‖eMh ‖L2
α#(Ω) ≤ C1‖eMh ‖H
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. Hence,

‖eMh ‖H − (ℜ(k) + ‖k‖∞)C1‖eMh ‖H ≤ Cc‖UM − ψ‖H ≤ Cc‖U − ψ‖H

using Lemma D-25 and by noting that when M ≥ M0, U
M tends to U . Since we

suppose that (ℜ(k) + ‖k‖∞)C1 < 1 then

‖eMh ‖H ≤ Cc
C3

‖U − ψ‖H (D.128)

where C3 = 1 − (ℜ(k) + ‖k‖∞)C1. From equations (4.93), (4.95) and (D.128), we
get

‖eMα,0h‖H ≤ 4
Cc
C3

‖Uα,0 − ψα,0‖H. (D.129)

From Lemma 59 and Theorem 50, we get

‖eMα,0h‖L2
#(Ω) ≤ 2

C1

C3
Cc‖Uα,0 − ψα,0‖H. (D.130)

We use the result given by Theorem D-34 with equations (D.129) and(D.130) to
finish the proof of the total error of discretizing and truncating the DtN operator.

• Case 2B: Transmitting dielectric grating: TM case

Theorem D-38. Let |k| ≥ kref > 0, the maximum mesh size h ∈ [0, h0], the
degree of the polynomial basis p ∈ [p0,∞] such that k h0

p0
< 1 with 2C1‖k‖∞ < 1 so

that C4 = 1− 2C1‖k‖∞ > 0 where C1 is defined in Lemma D-31. Let M ∈ N such
that M ≥ M0 and let Uα,0 be the continuous solution of equation (D.57), UM

α,0h

be the corresponding discretized solution with the truncated DtN operator and the
total error be eα,0 = Uα,0 − UM

α,0h
. Then we have

‖eα,0‖H ≤4
ck
C4

(3Cd+ 1)‖Uα,0 − ψα,0‖H

+ 4
ck
C4
de

−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

,

and

‖eα,0‖L2
#(Ω) ≤2

ck
C4
C1(3Cd+ 1)‖Uα,0 − ψα,0‖H

+ 2d
ck
C4

C1e
−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

,
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for all ψα,0 ∈ Xα where ck = ‖k‖∞
k2ref

, Cc is given by Lemma D-29, C ≤
√
5 as in

Lemma 7 and cmin = inf |n|>Md
2π

sin (zn/2) with zn as defined in equation (2.44).

Since we have equation (D.127) then we have

‖eα,0‖H ≤4 sup (1, ‖k‖∞)

(

h

p

)l−1
ck
C4

(3Cd+ 1)‖Uα,0 − ψα,0‖Hl
#(Ω)

+ 4
ck
C4
de

−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

,

and using the definition of C1 from Lemma D-31

‖eα,0‖L2
#(Ω) ≤2‖k‖∞

(

h

p

)l
ck
C4
Cstab(3Cd+ 1)‖Uα,0 − ψα,0‖Hl

#(Ω)

+ 2d
ck
C4
C1e

−(B−b)cmin

√

(

M−
∣

∣α

∣

∣

)2

−k2j ‖Uα,0‖
H

1
2
# (Γ1,±)

,

Proof. We have

‖eα,0‖H ≤ ‖Uα,0 − UM
α,0‖H + ‖UM

α,0 − UM
α,0h

‖H

where ‖Uα,0 −UM
α,0‖H has already been shown in Theorem D-35. An a priori error

estimate for the second term can be derived in similar way to that performed
in Theorem D-37. Let us denote eMh = UM − UM

h where UM = eiαxUM
α,0 and

UM
h = eiαxUM

α,0h
. We can show similarly as for Lemma D-30 that

1

‖ ℜ(k2) ‖∞

∣

∣eMh
∣

∣

2

H1
α#(Ω)

− ‖eMh ‖2
L2
α#(Ω) ≤

∣

∣aM
(

eMh , e
M
h

)∣

∣ +
∣

∣

(

1

k2
T±e

M
h , e

M
h

)

Γ±

∣

∣.

Similar to that proof of Theorem D-28, we have

1
‖ℜ(k2)‖∞ ‖ eMh ‖2

H −2 ‖ k ‖2
∞ ‖eMh ‖2

L2
α#(Ω)

≤
∣

∣aM
(

eMh , e
M
h

)∣

∣ + 1
k2ref

∣

∣

(

TM± eMh , e
M
h

)∣

∣.

Similarly as we did to get equation (D.107), we get

‖ eMh ‖H −2‖k‖∞‖eMh ‖L2
α#(Ω)

≤ ck(2Cd+ 1) ‖ UM − ψ ‖H

where ψ = eiαxψα,0 such that ψα,0 ∈ Xα. In a similar way to derive Lemma D-31,
we have ‖eMh ‖L2

α#(Ω) ≤ C1‖eMh ‖H. We can divide by ‖eMh ‖H and so

‖ eMh ‖H −2C1‖k‖∞‖eMh ‖H

≤ ck(2Cd+ 1) ‖ UM − ψ ‖H .
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Since we suppose 2C1‖k‖∞ < 1 then C4 = 1 − 2C1‖k‖∞ > 0 and we have

‖ eMh ‖H≤ ck
C4

(2Cd+ 1) ‖ UM − ψ ‖H .

For M ≥ M0, U
M tends to U therefore

‖ eMh ‖H≤ ck
C4

(2Cd+ 1) ‖ U − ψ ‖H . (D.131)

From equations (4.93) and (4.95), we get

‖eMα,0h‖H ≤ 4
ck
C4

(2Cd+ 1)‖Uα,0 − ψα,0‖H. (D.132)

From Lemma 59 and Theorem 50, we get

‖eMα,0h‖L2
#(Ω) ≤ 2

ck
C4
C1(2Cd+ 1)‖Uα,0 − ψα,0‖H. (D.133)

We use the result given by Theorem D-35 with equations (D.132) and(D.133) to
finish the proof of the total error of discretizing and truncating the DtN operator.
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