Opportunistic Plan Execution
Monitoring and Control

A thesis presented for the degree of Doctor of Philosophy

Jonathan Gough, 2007
Department of Computer and Information Sciences

University of "%

Strathclyde

Typeset in Charter and AvantGarde with the BIgX 2¢ Documentation System.

The copyright of this thesis belongs to the author under the terms of the United
Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50.
Due acknowledgement must always be made of the use of any material contained in,
or derived from, this thesis.

%fdmd&wo&zmxmﬂf

Contents

Introduction

1.1 Content Summary
1.2 Chapter Summaries

Motivation

Uncertainty in Plan Execution

3.1 Uncertainty in Planning and Execution

3.2 Recognising and Diagnosing Execution Failure
3.2.1 Model-Based Reasoning

3.3 Dealing with Uncertainty
3.3.1 Contingency Planning / JIC approach
3.3.2 MDP approach
3.3.3 Action Packages

3.4 Conservative Planning

3.5 Execution Frameworks

Introspection

4.1 Learning HMMs for Tasks

4.1.1 Simple Navigation

4.1.2 Gradient Navigation

4.1.3 Panoramic Photo (Simulation)

4.1.4 Data Collection

4.1.5 Clustering and Expectation Maximisation
4.2 Error Introduction

O VO NN &

10
10
10
11
13
15

17

22
23
24
26
26
31
36

Evaluation 1

5.1 Raw Data Analysis

5.1.1 Gradient Navigation task

5.1.2 Panoramic Photo with Errors task
5.2 HMM Analysis

5.2.1 Panoramic Photo

5.2.2 Simple Navigation

5.2.3 Gradient Navigation

5.2.4 Panoramic Photo with Errors
5.3 HMM Trajectory Analysis

5.3.1 Gradient Navigation

5.3.2 Panoramic Photo with Errors
5.4 Failure State Identification
5.5 Learnt HMM Conclusions

Failure Detection

6.1 Determining HMM Sequences
6.1.1 Online Viterbi Algorithm
6.2 Failure Detection
6.2.1 Bootstrapping
6.2.2 Taskmodels

Evaluation 2

7.1 Probabilistic Anomaly Detection
7.1.1 Manual Examination of Viterbi Probabilities
7.1.2 Automatic Error Detection

7.2 Temporal Anomaly Detection

7.3 State Tardiness Detection

7.4 Error Detection Evaluation

Reacting to Uncertainty and Failure

8.1 Linkage to High-Level States
8.1.1 MADBoT
8.1.2 Resource Consumption Uncertainty

37

37
38
42

46
51
55
59
69
69
71
73
74

75

77
78
78
82
84

86

88
89
94
95
98
101

102

102
103
105

8.2 Comparison of Opportunistic Plans to Other Techniques
8.3 Opportunistic Plan Types
8.4 Opportunistic Plan Structure
8.4.1 Advanced Variants of Opportunistic Planning
8.5 Opportunity Insertion
8.6 Can an Opportunity be Inserted?
8.6.1 Simple Opportunity Insertion
8.6.2 Advanced Opportunity Insertion
8.7 Should an Opportunity Be Inserted?
8.7.1 Opportunity Trees
8.7.2 Expected Utility Calculation
8.7.3 Expected Utility Propagation
8.7.4 Pruning
8.8 Execution
8.9 Results
8.10 Opportunistic Plan Execution Conclusions

Conclusion
9.1 Further Research Possibilities
9.1.1 HMM Learning and Evaluation

9.1.2 Opportunistic Planning
9.2 Final Summary

Raw Data Graphs

CLPD Graphs for Error Executions

TSCEM Graphs for Error Executions

Error Detection Techniques Results

107
109
111
112
115
115
117
118
121
122
124
125
127
129
129
132

133
135
135

136
137

138

153

156

159

iv

Abstract

When executing a plan, the traditional assumption of complete certainty
is rarely valid; in real-world situations, actions may fail to complete, or
may take much longer than initially anticipated. Because of this, layers of
robustness are required that allow flexibility during execution.

There are two aspects of an executive that need addressing to provide the
ability to deal with uncertainties: monitoring and control. This thesis ex-
amines both of these aspects and shows how these may be used during
execution.

For monitoring, the use of Hidden Markov Models is proposed. Tracing
the execution of a task through a model allows the executive to detect its
current state, even when this is not directly observable from within the
system. The trajectory of states through the model can reveal execution
irregularities, which can be flagged and identified as failure. This work
explores the use of learnt models, evaluating their performance in various
contexts.

For control, the use of opportunistic plans is examined. These can be used
after failure has occurred, or when an action successfully finishes early.
The definition of opportunistic plans is expanded to include extra struc-
tures that may be of use during the creation of these. Execution issues
surrounding opportunistic plans are addressed, including how to decide
when to execute an opportunity. The logical requirements for this are dis-
cussed, and several opportunity insertion strategies are developed. This is
followed by a technique for deciding if resources should be conserved for
later opportunities with the prospect of greater reward.

Good fortune is what happens when opportunity
meets with planning

— Thomas Edison

CHAPTER 1

Introduction

It is possible to fail in many ways. .. while to
succeed is possible only in one way

— Aristotle

HE RESEARCH area of planning has advanced significantly since the first plan-

ners were conceived over 35 years ago. Modern planners are now capable of

ordering many hundreds of actions to produce highly complex plans with in-
terlinked actions and dependencies. Although working on plans at a theoretical level
such as this is important, the issue of real-world execution must also be addressed to
ensure the usefulness of plans. Unfortunately, methods of executing plans in real-world
situations have not progressed at the same rapid pace that has been seen with planning
technologies. There are now many types of plans that can be easily generated, but
cannot be easily executed due to the uncertainties present in the real world.

One of the biggest challenges with real-world execution is the problem of uncertainty;
it can never be guaranteed that an action will complete on time, or will accomplish all
of the effects that it set out to achieve in the first place. Environments are also often

1.1

CHAPTER 1. INTRODUCTION

dynamically changing, and there may even be unmodelled entities that can interfere
with the plan. With this in mind, there are two aspects of execution that must be
addressed if these uncertainties are to be confronted:

Monitoring
Tracking execution of a plan to detect any deviation from the norm

Control

Reacting appropriately to issues that arise during execution

Content Summary

The work presented here builds on the research areas of model-based reasoning as well
as plan execution under uncertainty. This thesis contains a proposal for a novel method
of monitoring plan execution through learnt models of tasks. A second aspect of this
thesis concerns a method of plan execution control using opportunistic plans, and how
to best use the resources available to the executive. Specifically, this thesis:

o Identifies suitable tasks from which to learn models for use in evaluating failure
prediction

e Builds on the work in [Fox et al., 2006] and uses this to construct Hidden Markov
Models (HMMs) for the tasks

e Investigates how these HMMs can be used during execution to track progress

e Proposes and empirically evaluates methods for using HMMs to detect execution
failure

e Outlines how opportunistic plans may be used in situations of uncertainty, and
how this relates to failure

e Compares and contrasts opportunistic planning with other plan types where un-
certainty is present

e Greatly expands the definition of opportunistic plans, allowing for much richer
plan structures

o Identifies methods to allow opportunities to be inserted safely into a plan

e Describes a method that allows the best use of resources to maximise utility dur-
ing execution of an opportunistic plan

CHAPTER 1. INTRODUCTION

1.2 Chapter Summaries

The content of this thesis is divided into chapters as follows:

1. Introduction This chapter.

2. Motivation Outlines the need for the methods and research contained
within this thesis, as well as a discussion on the benefits that
the work will give.

3. Planning / An introduction to uncertainty in planning, including an as-
Execution sessment of current work on how to deal with uncertainty
Strategies in execution and control.

4. Introspection This chapter focuses on the problem of monitoring, and
addresses the issue of how an executive can determine its
own system status, even when this is not directly observable.
Suitable tasks are identified for analysis, as well as how the
data collected from these can be used to learm HMMs.

5. Evaluation 1 The results from the tasks discussed in Chapter 4 are anal-
ysed in depth. This includes analyses of the raw data from
individual executions of the robot, as well as the HMMs
produced from the data. The raw data is then fed into
the HMMs and the resultant sequences analysed. Patterns,
structures and other useful features are identified along the
way with an in-depth discussion of such structures.

6. Failure Methods are explored for using the HMMs learnt in Chap-
Detection ter 5 to predict task failure,

7. Evaluation 2 In this chapter, the failure detection methods developed in
Chapter 6 are evaluated for their usefulness. This is done
- by examining the data from executions where errors were

deliberately inserted.

8. Reactingto Opportunistic plans are discussed as a method of dealing
Uncertainty with failure and uncertainty. This is followed by an inves-
and Failure tigation into the methods required to control the execution

of opportunistic plans and how best to do so to maximise
utility.

9. Conclusion A final summary of the work presented within this thesis.

CHAPTER 2

Motivation

Doubt is not a pleasant condition,
but certainty is an absurd one

— Voltaire

HERE ARE very few situations in which there is complete certainty about ac-

tions and their outcomes. It could even be claimed that there is no such thing

as certainty outside the realms of theoretical calculations. It therefore makes
sense to expect uncertainty in the execution of actions when planning tasks to carry
out within the real-world. An executive that is to carry out a plan and interact with
the world should also be able to recognise the consequences of uncertainty when they
occur, and then possess methods for dealing with them in a sensible manner. It should
be able to make judgements about its own behaviour and react to these as necessary,
adjusting its behaviour according to how the plan is proceeding. One way for an execu-
tive to make these judgements is to possess models of the expected behaviours. Tracing
the execution of a task through these behaviours allows the executive to determine
exactly how the task is progressing, if there are any issues, or if something is wrong
within the system.

One research area in which autonomy is increasingly required is that of space explo-
ration systems. These often have to deal with slow, unreliable and limited communi-

4

CHAPTER 2. MOTIVATION

cations with Earth, and mistakes can be hugely expensive when things go wrong. The
Mars Polar Lander [NASA, 1999] was set to study the long-term climate change on
Mars, but failed to successfully land on the planet [NASA, 2000]. The probe was de-
signed to use model-based reasoning to switch off the landing thrusters when the probe
made contact with the ground. The model that was used to estimate the state of the sys-
tem was constructed from the English-language requirements [Blackburn et al., 2002].
The cause of the failure is thought to be due to a jolt caused by the landing gear be-
ing lowered, making the model believe that the probe had landed. This resulted in
the landing thrusters being shut down whilst the probe was still 40 meters from the
ground, causing the probe to crash.

The Mars Polar Lander incident illustrates the fact that hand-coded models often do
not capture the subtleties that are required for a model of a system. There is clearly
a need, in some situations, for the automatic learning of models so that no aspect of
the system and its behaviour is overlooked. By using real data to form these models a
much more rich and complex model can be constructed, which can describe the system
to a much greater extent than hand-coded models. Because the models are generated
from the raw data from the executive, they are easily learnt and can be used on any
executive that can record data in real-time.

Within this thesis, a method of using automatically learnt models for behaviour control
is presented. Such models enable the executive to understand and make judgements
about its behaviour, for example decide whether to continue or whether to terminate
a task in the face of execution failure. The models presented here represent internal
system states, abstracted away from the world, rather than the world itself. A repre-
sentation at this level allows many aspects of a task to be covered that would otherwise
not be directly observable.

Even when models are used for failure detection and behaviour control, the issue of
reacting to failure still exists. Various architectures and plan structures have in the
past been developed for this task, but usually suffer from problems of scalability (e.g.
contingency planning), intractability (e.g. POMDPs) or ability to deal only with logical
uncertainty (e.g. probabilistic planning). This thesis proposes the use of opportunistic
plans for dealing with failure and uncertainty, once these have been detected. Oppor-
tunistic plans are scalable and can deal with uncertainty in resource consumption.

If future robots and executives are to be developed past the current technologies,
greater amounts of monitoring and control are required. The effect of this will be
to increase robustness and autonomy, and therefore the usefulness of systems. This
thesis addresses both of the issues of monitoring and control, and shows how these can
be used for effective plan execution.

CHAPTER 3

Uncertainty in Plan Execution

In preparing for battle I have always found that
plans are useless, but planning is indispensable

— Dwight D. Eisenhower

XECUTING A PLAN is not always an easy task. An executive sometimes has to

deal with plans generated from an incomplete world model, which therefore

cannot be executed as initially planned. Worse still, the planner may have an
inconsistent model of the world causing plans to be generated that are invalid with
respect to the environment. If an unmodelled entity interacts with the environment,
removing an already-achieved precondition for example, then the plan will fail.

A system in which an executive is to carry out generated plans must take into account
these problems to ensure that tasks are completed correctly, successfully and on time.
Often, it will have to detect and rectify problems with plan steps on a local level, or
perhaps report back to the planner when a locally-unfixable problem occurs. On an
executive with relatively few sensors this may be a very difficult task and sometimes
plan failure cannot be detected at a local level. There have been many attempts to

3.1

CHAPTER 3. UNCERTAINTY IN PLAN EXECUTION

create strategies at the executive level to solve one or more of the problems described
above. This section explores and discusses some of these.

Uncertainty in Planning and Execution

There are essentially three types of uncertainty that have been explored and modelled
in planning and execution. These can be categorised as follows:

Resource-consumption uncertainty
This type of uncertainty is to do with the unknown values of resource consump-
tion (or production) inherent within a particular action. The actual values of
consumption remain unknown until the action is entirely completed. The re-
source could be either a physical quantity such as fuel, a non-physical quantity
such as memory remaining on a robot, or simply time available. Examples of this
type of uncertainty include:

¢ How long it will take to drive somewhere, dependent on congestion on the
roads

o The power generated from a solar panel, affected by how cloudy it is that
particular day

¢ The amount of storage space required for a photograph, stored with a com-
pression format such as JPEG

With resource-consumption uncertainties, such as the above, the consumption
amounts of each action can be modelled as distributions rather than as the specific
fixed values that are traditionally used in planning. Uncertainty in resources has
proved very problematic in both the planning phase [Bresina et al., 2002] as well
as execution [Pell et al., 1996].

Logical uncertainty
If it is not certain that an action will complete successfully in a particular state it is
said to possess logical uncertainty. An action may have several possible outcomes,
for example:

e A robot designed to pick up a cup may accidentally fail to pick up the cup
with a probability of 0.05

In situations like this, each effect of the action can have a probability associated
with it that it will become true.

CHAPTER 3. UNCERTAINTY IN PLAN EXECUTION

Environmental uncertainty

This is where the planner has an incomplete model of the world, and local infor-
mation about the environment around the executive may not be known until cer-
tain actions in the plan have been executed. In situations like this, the plan may
contain sensing actions that resolve the uncertainties into known states. Worse
still, the planner may have an inconsistent model of the world causing plans to
be generated that are invalid with respect to the environment. An example of this
type of uncertainty is as follows:

e A robot may need to navigate through an office, but doors may be closed,
requiring extra actions to open the door to complete the navigation. The
robot may have an action to sense if a door is open or closed.

A subset of this type of uncertainty involves the world being altered by external,
unmodelled entities. This could include people being present in the office situa-
tion described above, opening and closing doors. These actions are totally outside
of the control of the planner and executive.

Uncertainty is typically either dealt with by trying to minimise (or even completely
remove) the amount of uncertainty, by trying to convert one type of uncertainty to an-
other, or by planning for every possible outcome. Strategies can usually be categorised
into two approaches: those that attempt to deal with uncertainty at the planning level,
and those that deal with it during execution.

One area of planning and execution research that has been particularly fruitful with
respect to uncertainty is that of robotic space exploration. This has produced a wealth
of research into methods of dealing with the problems associated with planning and
execution under uncertainty [Muscettola et al., 1998]. This is because failure in these
situations can have catastrophic effects, potentially leaving a multi-million dollar craft
stranded with no hope of recovery. Communications windows may also be very short
and sometimes only limited to a single unidirectional communication per day. Because
of these limitations, a certain degree of autonomy allows a craft to accomplish signifi-
cantly more than it would if it were not present. In 1997, the Mars Pathfinder lander
(accompanied by its mobile planetary rover Sojourner) [Matijevic, 1996] illustrated
many of the problems that face remote operation in uncertain environments. The So-
journer rover possessed a radiation-hardened CPU that ran at 2 MHz, and consequently
lacked the processing power for replanning on plan failure. Because of this shortage
of computational ability, plans were represented simply as timestamped actions. This
technique however led to a considerable of downtime, which has been estimated to

3.2

3.2.1

CHAPTER 3. UNCERTAINTY IN PLAN EXECUTION

have been between 50-70% of the total time available — all resulting from plan fail-
ure [Horstmann and Zilberstein, 2003]. Despite this, the mission was regarded as a
huge success and accomplished much more than anticipated. The follow-up twin MER
rovers, Spirit and Opportunity, possessed a greater amount of autonomy [Volpe, 2003]
and achieved significantly more, although still taking up to three days to visit a sin-
gle rock [Mausam et al,, 2005]. Plans for even more autonomy aboard future Mars
missions are currently underway [Volpe, 2005, Pedersen et al., 2005].

Recognising and Diagnosing Execution Failure

Even when safeguards are in place to minimise the effects of uncertainty, it can often
lead to situations in which the plan is no longer valid, causing execution to fail. The
capability to recover from failures first requires the ability to detect that an error has
occurred, and then possibly diagnose the cause and solution.

Model-Based Reasoning

Reasoning about the state of a system through the use of system models is a popular
way of establishing the correct real-world state. This typically works by tracing execu-
tion through a model whilst recording observations from sensors. If the sensor values
do not match those predicted by the model then the model may be used to correct the
executive’s beliefs about the world.

One reasoning system that has been successfully deployed in space operations, includ-
ing the highly successful Deep Space 1, is Livingstone [Williams and Nayak, 1999].
This system uses hand-coded models to track the physical system state. The models are
representations of the interconnected system components, and how the system should
respond to particular inputs. Sensor data is fed into the models, which calculate the
expected outputs of the system given these. If there are discrepancies between ex-
pected outputs and the actual observed outputs, then possible explanations for can
be generated. There is a search mechanism that explores the components and their
relationships between one another, aiming to identify the component that has most
likely failed. Livingstone also has the ability to exploit redundancies in the physical
executive. For example, if a fuel valve on a space probe fails, then it may re-route fuel
through a secondary backup valve. This reconfiguration ability allows a certain amount
of robustness in the system.

Techniques for using models have been investigated for many situations, including
modelling and tracking human behaviour [Demeester et al., 2003, Liao et al., 2004],
robot navigation [Bui et al., 2002, Fox et al., 2006] and then in more general cases

3.3

3.3.1

3.3.2

CHAPTER 3. UNCERTAINTY IN PLAN EXECUTION

[Kosaka and Kak, 1992]. Intermediate languages (see Section 3.3.3) have also been
integrated into model-based executives [Williams and Gupta, 1999].

Dealing with Uncertainty

Uncertainty may be dealt with in many ways, all dependent on the types of uncer-
tainty that are present in the target domain. These techniques include using dif-
ferent logical representations [Pettersson, 1997, Dix et al., 1990], probabilistic reason-
ing [Schaffer et al., 2005], or even simply planning for every possible outcome of an
action, for example as the technique of Contingency Planning.

Contingency Planning / JIC approach

Contingency planning is an approach which generates multiple plans for many or even
all eventualities. These are constructed in a tree-like structure, and executed until a
branch is reached. At such a point, the executive chooses the correct branch given its
local knowledge of the current environment. A disadvantage of contingency planning is
that it suffers from problems of scale: the number of plan steps increases exponentially
if multiple outcomes are to be planned for. This branching can produce overly complex
plans, and plans have to be calculated for all eventualities, no matter how unlikely they
are. Also, in many situations an executive will not have the memory capacity to hold
such large plans either.

The ‘Just In Case” approach (JIC) [Dearden et al., 2003] is an attempt to reduce the
problem of scalability by iteratively identifying the most likely possible failure points
and adding contingency plans at these locations. This is essentially a cut-down version
of contingency planning with reduced scalability issues. JIC planning is more tractable
than the traditional approaches to contingency planning as it concentrates efforts on
producing a limited number of contingency branches. Unfortunately, although this
approach can be scaled to larger plans, the scalability issue still exists, and what is
gained in scalability is lost in robustness: there is a cut-off point at which below a
certain threshold particular eventualities will not be planned for. If one of these occurs
then total replanning will be necessary.

MDP approach

Markov Decision Processes (MDPs) attempt to eliminate the need for a general plan,
and instead represent it as a set of policies [Givan and Parr, 2001]. These policies tell
the executive which action to execute for every possible system state. Utility values
are associated with transitions between states, and the sequence of transitions with the

10

3.3.3

CHAPTER 3. UNCERTAINTY IN PLAN EXECUTION

highest utility can be chosen. This allows the most appropriate action to be taken. The
maximal return in utility, however, is offset by the fact that the state space increases
exponentially with the number of variables. This lack of scalability is a major problem
for the MDP approach, and there has been considerable research into combating this
and many of the associated issues [Feng, 2004, Lane and Kaelbling, 2002].

Action Packages

An “action package” is a sequence of low-level commands for the executive that rep-
resent a high-level action as used by the planner. It is possible to convert many types
of logical uncertainty into resource-consumption uncertainty by means of action pack-
ages. The benefit of this conversion is that the executive is much less concerned with
whether or not actions will complete, and therefore may concentrate on evaluation of
other uncertainties. Action packages effectively serve as the ‘glue’ between primitive
plan actions (as used by planning software) and primitive executive actions (the basic
operators of the robot). These two terms are used here to distinguish between the
building blocks of plans and the range of possible commands available to an executive.
A simple primitive plan action may require several low-level executive commands in se-
quence that must be executed to complete the plan action. These can be constructed by
hand then re-used during execution whenever required in a plan. In the example men-
tioned above, regarding the robot picking up a cup, there is the primitive plan action
of PICKUP_CUP, which could translate to the following sequence of primitive executive
actions:

OPEN_GRIPPER;
MOVE_ARM (CUP);
CLOSE_GRIPPER;
RAISE_ARM;

As well as primitive executive actions, action packages may also contain code for pro-
gram flow and control. With this in mind, the PICKUP_CUP action could be potentially
be modelled more robustly with the following pseudo-code:

int count = 0;
while (GRIPPER_EMPTY && count<3) {
OPEN_GRIPPER;

(continued on next page)

11

CHAPTER 3. UNCERTAINTY IN PLAN EXECUTION

MOVE_ARM (CUP);
CLOSE_GRIPPER;

count++;

}i

if (count==3) {
FAIL;

b

RAISE_ARNM;

This action package represents a program that would attempt three times to pick up
the cup, otherwise fail. Earlier, the basic pickup-cup action was theorised to have a
probability of completion of 0.95. The »; chance of failure has now been reduced to a
much more useful g through the use of this simple action package.! Robustness could
be further improved by adding conditional branches to deal with cases where the robot
knocks the cup over, or the cup is slightly out of reach. If, in using this action package,
the robot has not successfully picked up the cup after three attempts it is probably the
case that something has gone significantly wrong, causing this repeated failure, possibly
an environmental uncertainty manifesting itself (e.g. wrong size cup, cup not present
etc.). Recovery from such a major failure can only be dealt with by replanning and is
outside the scope of recovery by the robot itself. What has happened though is that
by enclosing the action in an action package, the logical uncertainty that was initially
present in the action has been greatly reduced. The action will now complete with
a much higher degree of certainty, at the expense of an uncertain duration; it could
succeed on any of the three attempts to pick up the cup. It must be noted that this
is a greatly simplified example and real-world action packages would be much more
complex, but the principle of converting logical uncertainty into resource-consumption
uncertainty remains.

There have been many attempts at execution languages that use action packages,
such as Reactive Action Packages (RAP) [Firby, 1989], Reactive Model-based Program-
ming Language (RMPL) [Ingham et al., 2001] and also the Task Description Language
(TDL) [Simmons and Apfelbaum, 1998]. A comparison of execution languages can be
found in [Gregory, 2001]. Attempts have also been made to integrate the expressibility
of these action packages into planning / execution frameworks [Bonasso et al., 1997,
Gat, 1992, Volpe et al., 2001].

1This is a theoretical value. In reality this would be of a higher probability as the probabilities of failure
at each attempt would not be independent

12

34

CHAPTER 3. UNCERTAINTY IN PLAN EXECUTION

Although action packages provide a reliable method for making specific actions robust,
this is not always the most preferable approach. If primitive plan actions are dealt with
singularly, then the system can lose sight of the specific task in hand, and concentrate
on the individual actions that are to be carried out. For example, consider the situation
in which a robot arm were to move a block from a tower to the surface of a table. If
the robot were to accidentally lose its grip on the block whilst picking it up, the block
may drop onto the table, completing the plan in a somewhat unexpected manner. If
an intermediate language were used, it may attempt to finish the pickup action by re-
attempting to pick up the block, before eventually returning it to the table on the next
action. The second attempt to pick up the block in this case is superfluous. This is a
very basic example, but it would have a much greater significance when applied to a
large and complex plan with many interactions.

Conservative Planning

Conservative planning seeks to address the issue of resource-consumption uncertainty.
This is achieved by using very conservative resource allocations for each action in the
plan. A plan is generated by considering the distributions of the action’s resource con-
sumption and creating the plan by using (for example) the 95% percentile of the distri-
bution. This ensures that enough resources are available, in most cases, for the plan to
complete. For example, if an action has a duration that follows the Normal distribution
N(20,5) seconds, then the action is assumed to take the 95™ percentile amount of time
to execute, which is 28.27 seconds. This is the value that is fed into the planner to use
for plan generation.

Traditional planning and execution frameworks take the schedule generated by the
planner as fixed and rigid, and actions are executed when the exact time-point occurs.
In domains with resource-consumption uncertainty, planning using such time-points
becomes a futile task — it is almost certainly the case that the schedule will change
during execution due to the variability in the durations of the actions. Conservative
planning therefore seeks to represent plans as orderings rather than timestamped ac-
tions. Adopting this methodology means that action preconditions and effects must be
carried down to the executive level to ensure that these are not violated at run-time
(see Section 8.5). This type of problem can occur in non-linear plans where actions
have dependencies on several other actions.

In Figure 3.1, Actions 1, 2 and 3 have an uncertain duration. Action 1 has a precondi-
tion of —B and an effect of P. Action 3 has a precondition of P. Action 3 must follow
Action 2. In Case 1, the actions can execute as planned. If Action 1 were to take longer
than planned (as in Case 2), then P is not true when Action 3 is required to start and

13

CHAPTER 3. UNCERTAINTY IN PLAN EXECUTION

CASE 1
“p p
2. 3.
P
CASE 2 Sanie
p P
; iz
CASE 3
p p
2. $
Postpone

Figure 3.1: How uncertainty in action durations can lead to plan failure

the plan fails. To fix this, a partial ordering between Actions 1 and 2 must be imposed,
and the execution of Action 3 delayed to ensure that this precondition is not violated,
as shown in Case 3.

This method of representing actions as orderings allows the most to be made of any
difference in action duration that arises, be it an action finishing early or a delay in
action completion. The ordering effectively says when the action can possibly happen,
and the preconditions and effects specify if it can happen. Combining these two allows
the execution of conservative plans in the most efficient way possible.

One of the advantages of this approach is that if one action were to take an unusually
long amount of time to execute (and over-run the 95 percentile mark), then it is
highly likely that the time would be gained back from other actions executing in the
plan due to the padding the 95" percentile provides. This would prevent failure of the
plan as a whole, even though the individual action failed to complete in its planned
duration. It would also probably be true that in the 5% of cases where the action
duration exceeds the planned value, there is the potential of a fundamental failure in
the plan execution. Such a failure may be irreparable from the executive’s view of the

14

3.5

CHAPTER 3. UNCERTAINTY IN PLAN EXECUTION

world, or the executive may lack the computational power to resolve the failure. If this
were to occur, replanning at a higher level may be required.

Execution Frameworks

Even when an execution strategy like those mentioned in Section 3.3 is used, failure can
still sometimes occur. For example in the JIC approach, a step may be reached where a
contingency plan wasn’t generated for a particular situation. In this case it is necessary
for the system to react in some way if the plan is to be successfully completed. To do
this, an executive usually lies within an execution framework — a software architecture
consisting of intercommunicating components. This allows the executive to receive
updated plans from a higher level (be that a computer or a human operator) to repair
the plan if required.

Most execution frameworks work on a layered approach, usually consisting of three lay-
ers. The idea of a three-layer architecture [Gat, 1998] was the dominant view amongst
the Al community in the early 80s. The principle involved splitting the control system
of the robot framework into three separate layers, each dealing with different parts
of the task. The layers sat on top of each other and could communicate with each
other; plans were passed down from planner to executive, and sensed information
could be passed back up through the layers to provide a feedback loop. The top layer
includes the planner, generating the theoretical instruction steps from a model of the
world. The bottom layer usually contains the executive, where the theoretical actions
get transformed into output. Often, an intermediate layer is used, which can be used
to encode error-correction and detection routines, and can also go some way towards
emulating a contingency-plan-style solution. This helps to ensure the robustness and
correctness of the plan execution process. Often, an intermediate language is also used
to precisely define how the intermediate layer is to behave, and may be constructed
from action packages.

The concept of a three-layer architecture is still commonplace today, but it has been ex-
tended and built into more useful and mature frameworks. A few of these are outlined
below:

3T architecture
The 3T architecture [Bonasso et al., 1997] is a three-layer architecture that is
built around RAPs (see Section 3.3.3). It is a very mature architecture and has
been in development for over eight years. The architecture has been implemented
on a wide variety of very different systems with different operating systems and

15

CHAPTER 3. UNCERTAINTY IN PLAN EXECUTION

capabilities. A number of software tools have also been created to allow the use
of the 3T architecture on real-world robots.

CLARAty

The CLARAty (Coupled Layer Architecture for Robotic Autonomy) architecture is
a two-layer architecture, which makes a deviation from the standard approach of
three layers for robot control [Volpe et al., 2001]. The argument for compress-
ing three layers into two emerges from shortfalls proposed in the three-layer ap-
proach. These include the fact that most architectures seem to give dominance
to particular layers, leaving others redundant. Another problem that led to the
development of the CLARAty architecture is the lack of access from the top layer
to the bottom layer in the standard three-layer model: access can usually only be
gained by interaction through the intermediate layer.

ATLANTIS
The ATLANTIS framework presents itself as “a heterogeneous, asynchronous ar-
chitecture for controlling autonomous mobile robots which is capable of control-
ling a robot performing multiple tasks in real time in noisy, unpredictable envi-
ronments” [Gat, 1992]. ATLANTIS works by attempting to combine a traditional
planner with a reactive control mechanism.

The key relationship between these execution architectures is that they all possess dif-
ferent forms and amounts of control and monitoring. These two aspects are critical in
any system in which a certain reliability is required. The following chapter will examine
one form of execution monitoring and how this may be evaluated.

16

CHAPTER 4

Introspection

If anything is certain, it is that change is certain.
The world we are planning for today will not exist
in this form tomorrow.

— Philip Crosby

F AN EXECUTIVE is required to perform a task autonomously then it must be able to

provide some degree of robustness to ensure the completion of that task correctly

and in a timely manner. When robustness cannot be guaranteed, the usefulness
of an executive decreases rapidly. The first step towards robustness is an ability to
correctly detect failure of the task being executed. Once failure has been detected and
identified, steps can be taken to correct the failure.

There are many different types of controlling mechanisms that may be used for exec-
utives. These range from completely reactive control systems, dealing with low-level
sensor data, through to abstracted control systems, dealing with high-level tasks with
no reactive behaviour. In reactive control systems, the executive chooses the best course
of action given the current sensor values. The executive simply reacts to the sensor

17

CHAPTER 4. INTROSPECTION

values and does not attempt to analyse them. At the other end of this scale is an ab-
stracted control architecture, where the robot is given high-level commands (possibly
from a planner) and does not react to the environment in any way. These commands
are executed strictly at fixed timepoints and there is no flexibility in the schedule. An
introspective control system is a compromise between these two extremes. On one
level, it reacts to sensor values, but also simultaneously attempts to analyse and reason
with these to make judgements about the best course of action to take. These judge-
ments are viewed in the context of the overall result that is required for the task being
carried out.

Introspective monitoring can be used for failure detection and prediction. For this, the
executive must have the ability to examine itself throughout the course of an action so
that it can monitor its progress towards completion. The current state of the action, as
well as success or failure, can be tracked to detect if the action is proceeding correctly,
or if failure is imminent.

Failure situations can be notoriously difficult for an executive to detect because its in-
ternal representation of the environment may be inconsistent with reality. For example,
a simple wheeled robot may bottom-out if traversing over a rugged terrain, causing the
wheels to leave the ground and the robot to become stuck. The sensors will still be
reporting that the wheels are rotating and therefore the robot will be updating its loca-
tion accordingly using dead-reckoning. Simply given this sensor data, it is not possible
to detect if the robot is moving or not. This is because the robot’s internal response
to the sensor data rests entirely on the assumption that the wheels are in contact with
the ground, which in this case they are not. Adding some form of position localisation
to the robot may cause the robot to correct its location continually and minimise er-
rors [Dellaert et al., 1999], but will not detect the fact that something has gone wrong
— the task of localisation is to simply update the robot’s position as required. What is
needed is a layer of abstraction on top of this with the ability to analyse the current
sensor readings and detect any situations in which these deviate from expected values.
This layer allows the executive to determine the state of the world (to a certain level
of accuracy) according to some model. In the case of the robot, this may be a routine
which detects if there is a consistent anomaly between the wheel-encoding values and
localisation from sonar sensors: such a routine could detect if the robot was stuck and
could pass on this information to a planner to form a strategy to free the robot. This
ability to examine sensor data to determine the current state of the executive and its
surroundings using a model is called introspection. The monitoring provided by intro-
spection is not confined to easily apparent physical aspects of the system (such as if the
robot is blocked and cannot move), but also other less-obvious properties (such as if
one of the robot’s actuators is operating at 50% efficiency, causing it to move slowly).

18

CHAPTER 4. INTROSPECTION

In any executive, there is always a model that describes how the fluctuations in sensor
values reflect the changes in the physical executive. This model may be one that is only
present in the mind of the programmer who constructed the task, and then hardcoded
into the action. In such a case, the model is not explicitly available to the executive and
therefore cannot be used for reasoning. In the example of the wheeled robot bottoming-
out, as above, there is a model which relates the rotations of the wheels to the physical
movement of the robot. This model in this situation simply indicates that when the
wheels rotate, the robot moves by the distance of the number of rotations times the
diameter of the wheel. In the situation above, the wheels had left the ground, causing
the assumptions underlying the model to become invalid and therefore inaccurate. The
assumptions could also have be invalidated in other ways, such as if the robot were
travelling across a sandy surface, resulting in wheel-slippage.

An executive is usually controlled by a set of programmed behaviours that determine
the choices it should make to guide it towards the completion of a task. Throughout
the task, the executive will pass through various states where different behaviours are
observed. For example, a robot with a task of picking up an object might exhibit the
following behaviours:

Object recognition

Robot localisation

Robot positioning

Gripper localisation

Gripper positioning

Grasping

Raising arm

Each of the above behaviours may be further subdivided into states representing fine-
grained aspects. For example, there may be several states associated with “Robot posi-
tioning” that correspond to the different amounts of positioning required. Even subtler
differences are possible, including differences between states relating to the distance to
the nearest obstacle, or the current angle of the robot to the object. During execution
of the task, the robot transitions between these states in complex ways. Figure 4.1 is an
illustration of a purely theoretical arrangement of behaviours, states within these and
the transitions between them.

19

CHAPTER 4. INTROSPECTION

Object recognition

Robot localisation
- w

\ 7 A)
t positioning

Gripper localisation

\-
Gripper positioning
\ ay

syl

Grasping /__,_——
L\

/

ising arm

Figure 4.1: An example theoretical model of states and behaviours representing the “pickup” action

20

CHAPTER 4. INTROSPECTION

Introspection can be defined as the recognition of which particular behaviour or system
state is manifesting itself at a specific instant during execution. With a small number
of simple behaviours, the identification of these might be easily hand-coded. Even
with a simple model though, the robot may exhibit states involving combinations of
behaviours. With the above gripper robot example, it is possible to imagine states that
involve simultaneously localising and positioning the gripper for added accuracy. These
multi-state combinations would especially be present in a robot with a sophisticated
multi-layered control architecture where behaviours interact, overlap or subsume one
another. Such a complex model may have emergent behaviours that are resultant from
combinations and interactions of the simple behaviours. These emergent behaviours
cannot be classified in the same sense as the above list, and are often too complex
to identify or classify manually. It is therefore not possible to detect such complex
behaviours for introspection, and another method to identify these is required.

Models can be used for the detecting when execution does not proceed in a normal
manner. The execution of a task can be traced through a model and any transitions or
states that are ‘out of character’ for the particular action can be flagged and used as
evidence that the action is not executing correctly. A large deviation from the expected
behaviour predicted by the model should therefore be construed as a failure of that
task.

A model must be generic enough to deal with all the different outcomes and possible
executions of a particular task, but specific enough that it will not misinterpret a failure
as normal execution. If the model is too specific then any small deviation from the
norm will incorrectly be reported as a failure. On the other hand, if the model is too
relaxed then the executive may find itself progressing into a situation where failure has
occurred but has not been detected by the model. Getting a balance between these two
cases is critical if the model is to be of use during execution.

There are many possible representations for models, as well as ways of acquiring these.
Techniques include (amongst others) neural networks, dynamic Bayesian networks or
Kohonen networks. In [Fox et al., 2006], a process is described in which models can be
generated from data collected from a robot through the use of a Kohonen network. This
work has been adapted for the rest of this chapter, which explores and builds on this to
show how a particular type of model can be learnt automatically from data collected
during a series of executions. This is followed by Chapter 5 in which the learnt models
are analysed in depth. Chapter 6 expands on this and examines how these models can
be used to predict failure.

21

4.1

CHAPTER 4. INTROSPECTION

Learning HMMs for Tasks

At the beginning of this chapter, some example behavioural states for a gripper robot
were introduced. Note that these states may not be directly observable from the view of
the robot because of limitations in sensors and inaccuracies of the model. These states
can be imagined as having probabilities of transitions to other states. In essence, there
is a Hidden Markov Model (HMM) with these states and the transition probabilities
between them.

It might be possible to construct a HMM for a task by hand, perhaps by examining the
source-code and building up structures in the HMM based on the control structures in
the code. Such a model might give a very good representation of a single, simple task
with no external interactions, but be highly inaccurate for real-world systems. Another
factor to take into account is that when multiple behaviours are present, there will also
be subtleties between the interactions of these that cannot be predicted or planned for.
The robot’s model of the world at any timepoint may also be incorrect (but recoverable
from), leading to a deviation between the physical world and the predicted HMM state.
In all of these cases, there are hidden states that cannot be guaranteed to be captured
by hand-coded models. These states are not directly observable from the executive’s
point of view but can be represented through the use of HMMs. A representation at
this higher level enables the executive to make judgements about these hidden states
that would otherwise not be accessible. Since models possessing these hidden states
cannot be easily hand-coded, it therefore makes sense to try to automatically learn
these models so that many more aspects and eventualities of a task are covered.

In [Fox et al., 2006] there is a description of a way of automatically learning an HMM
for a robot task. This process includes automatically classifying states and learning the
most probable HMM from these states, given data collected from the robot. Figure 4.2
shows an overview of the technique. Raw data is collected from the robot, which is
then processed, clustered and converted using into a series of observations. An in-depth
explanation of this work is beyond the scope of this thesis, but an outline summary of
this technique is provided in the next section with additional relevant details.

To assess the quality of the HMMs and their scope for predictive power, learnt mod-
els have to be evaluated in terms of how well they capture the actual behaviour of an
executive. For this, a series of tasks were required from which to collect data for evalu-
ation. These tasks were carried out by an ActivMedia AmigoBOT robot. This is a small,
inexpensive robot with basic functionality including autonomous navigation and eight
sonar sensors for obstacle avoidance and localisation from a pre-programmed map.
The AmigoBOT is a two-wheeled robot that can turn on the spot, making it particularly

22

4.1.1

CHAPTER 4. INTROSPECTION

Deliberative control processes
e.g. planning, execution monttoring,
despatching, fault diagnosis

HMM ylelds a behavioural

model abstracting the
undertying behaviours for
the deliberative processes

Hidden Markov Model
~.\ lInking observations o
“-\\Underying behaviour

Processing, Clustering and
Expectation Maximisation

T

Raw data from
$ONSOrs

Figure 4.2: Learning an HMM (Figure reprinted from Fox et al. AlJ vol 170, no 2)

suited for simple navigation tasks in small- to moderately-sized indoor environments.
To test the learning process effectively, careful decisions had to be made when identi-
fying tasks: for gathering useful information, a task has to be one that is sufficiently
complex so that execution is not straightforward. It is also required to have a signif-
icant duration so that enough data can be collected for analysis. With this in mind,
three tasks were chosen for analysis:

e Simple Navigation task
e Gradient Navigation task

e Panoramic Photo task

Simple Navigation

The Simple Navigation task was carried out in a cluttered environment with boxes
used as obstacles. The task involved a simple autonomous navigation over a distance
of approximately four metres with no map for guidance. This meant that localisation
was not possible and the wheel-encoding data had to be used to determine the location
of the robot using dead-reckoning. The robot was required to use its sonar sensor array
to avoid the obstacles whilst traversing from the start to the finish location. The boxes
were placed so that multiple routes existed between the start and finish location and
the robot could follow any of these to complete the navigation. Dead-ends were also

23

CHAPTER 4. INTROSPECTION

0 B 9
¥ 18

Figure 4.4: An actual execution of the Simple
Navigation task

A
8

Figure 4.3: The Simple Navigation task

included so that the robot may have to backtrack to reach the goal. The locations
of the boxes were varied after each execution so that the learnt model would not be
dependent on a particular layout of the environment. Figure 4.3 shows a sample layout
of the task, and Figure 4.4 shows a typical example of an execution of this task, using
real data that was collected from the robot. The white circle is the start and the black
circle is the finish. In the middle of the room, indecision can be seen where the robot
tries to navigate around a pair of boxes. In this situation, the robot is seeking, trying to
find the best route around the boxes.

Gradient Navigation

This task was similar to the above task except that a map of the walls of the room was
used for position estimation and localisation. As before, boxes were used as obstacles,
but the locations of these were not marked on the map. The robot could use the
sonar data reflected from the walls to perform localisation to correct positional errors.
Because of this, a much longer navigation task could be used without the risk of the
robot losing its position and failing to complete the task successfully.

The task that was used was a simple navigation of a room approximately 10 metres
long and 3 metres wide. The room was cluttered with eight large boxes positioned
randomly, as in Figure 4.5. The robot had a map of the outline of the room that it
could use for localisation, but the positions of the boxes were unknown to the robot.
The task was to navigate between six waypoints positioned around the room. Although
the robot can gain little information from the flat walls for use in localisation, they
contained slightly recessed doorways (not shown) that were marked on the map and
could be used for localisation purposes. The navigation between the final two way-
points involves a traversal across the middle of the room, which does not give many
opportunities for accurate localisation. Because of this, the final waypoint is located in

24

CHAPTER 4. INTROSPECTION

Figure 4.5: The Gradient Navigation task

Figure 4.6: An example execution of the Gradient Navigation task

the top-left corner where localisation is highly effective due to the two adjacent walls.
Figure 4.6 shows an actual example of an execution of this task (the locations of the
boxes are not shown). In this figure, localisation steps (which are characterised by large
jumps in the robot’s believed location) are recorded as white lines. These are where
the robot updates its location using sonar data. Note that the trajectory drawn on the
map is the robot’s perceived position, and not its actual position. The actual location of
the robot is not obtainable from the sensor data available. In this particular execution,
the robot does not quite achieve the waypoint in the top-right corner, but it gets close
enough to register as having been reached.

25

4.13

4.14

CHAPTER 4. INTROSPECTION

Panoramic Photo (Simulation)

Due to the limited functionality of the robot, this task was a partially simulated task
designed to imitate the functionality of a more able robot. The robot was instructed
to repeatedly rotate through 90-degree angles, pausing after each rotation to take a
photograph (the robot, not possessing an imaging device, made the noise of a camera
shutter to simulate this). This rotate/take photo behaviour was repeated 20 times,
providing five complete rotations of the robot on the spot. In pseudo-code, this can be
represented as:

n=0;

while (n++ < 20) {
take_photo();
turn(90);

Because of the nature of dead-reckoning localisation based on wheel encoding data,
errors in the angle of the robot would quickly build up and so therefore increased the
complexity of the problem. To combat this, localisation using the robot’s sonar data
was performed. It was a deliberate choice for this action to have large errors, but also
the potential to correct them. This produced a behaviour that saw the robot rotating
through 90-degrees then correcting its angle before taking the simulated photograph.
Sometimes, these corrections were not required and the robot proceeded as normal. In
other instances, the robot had to turn back to an angle that it had overshot. Because the
sonar data and the localisation from it is fairly inaccurate, this task was carried out in
a mapped environment where boxes were placed to uniquely identify its location from
any set of sonar readings (if the robot had been placed in a uniformly square room,
then a set of sonar readings could represent any one of four angles).

Data Collection

To collect data for the automatic learning of models, the tasks were repeated between
40 and 100 times (dependant on the duration of the task and how long it took to collect
data), often with slight variations in the environment to prevent over-learning. The raw
data from the robot was collected for each execution of the task, and was stored for
later processing.

As has already been stated, the AmigoBOT robot is quite primitive in its functionality,
meaning that the data that can be collected from it is very limited. The raw data that
is available from the robot is listed in Figure 4.7.

26

CHAPTER 4. INTROSPECTION

Data | Definition
x-coordinate | Measured in mm from the starting location*
y-coordinate | Measured in mm from the starting location
0 | Current angle of the robot
Speed | Current speed of the robot
Angular Speed | Current angular speed of the robot
Sonar Data[8] | 8 distance readings indicating the distance to the nearest obstacle
Left Stall | Is the left wheel stalled? [Binary, yes or no]
Right Stall | Is the right wheel stalled? [Binary, yes or no]
Camera State | The current state of the camera [Binary, off or on] (simulated)

Figure 4.7: The 16 AmigoBOT data points recorded every 100 ms

Data is available from the robot every 100ms, providing 160 readings per second.
On their own, these raw values are not very useful as they abstract away some of the
physical behaviours of the robot at any particular timepoint. Any model that was learnt
from these readings would lack generality. For example, the x-coordinate of the robot
is quite meaningless in terms of representation of any particular behaviour; a low or
a high value of x does not signify or imply any state. On the other hand, the distance
travelled over a short period of time relates to the speed of the robot, whether it is
stopped, at full speed or somewhere in between. The distance travelled is a much
more useful variable to learn a model from because it is closer to the actual behaviours
that are exhibited by the robot. So instead of using the raw data values from the
robot, they are converted into nine different readings designed to attempt to provide
more useful and discriminatory values for learning a model?. The nine readings are
described in depth below. During this conversion, the data was averaged over a sliding
window to reduce noise in the data. The size of the sliding window proved to be a
very difficult variable to choose — the window was required to be large enough to
reduce noisy data, but small enough to capture the fast changes in velocity and angle
that the robot is capable of. If the window were too large, then the subtleties of the
robot’s movement could be smoothed out too far and would not be encapsulated by
the data. Conversely, if it were too small then greater variations would be registered
that are not characteristic of the behaviour occurring at that time. With this in mind,

1The x and y coordinates reported are the robot’s perceived location, and not the actual physical lo-
cation. There may be a discrepancy between the two because of the build up of errors. If localisation is
enabled then the robot tries to correct any discrepancies between the actual and perceived values using
sonar data.

21t is worth noting that as an aside to the research, the raw data was fed into a neural-network learning
tool to see if a network could be trained to report the predicted time remaining from the data. When the
raw data from the robot was used, a useful model could not be learnt, and the resulting network had
poor performance. When the converted readings were used, the network reported sensible values for time
remaining and provided a good model for prediction. Although this is a potentially an interesting avenue
for research, it also is beyond the scope of this thesis. What this does prove, though, is that the raw data
alone does not directly contain useful information for predicting the time remaining in a task, whereas
the converted data possesses some structure that can definitely be used to make predictions.

27

CHAPTER 4. INTROSPECTION

smoothing windows of sizes 4-24 were tried (which here represent smoothing the data
over periods ranging from 400 ms-2400 ms), but the best was found to be around eight
frames.

Once the data had been smoothed, data was sampled from every fourth reading, and
the rest of the data was discarded. This reduced an otherwise excessive amount of data
and decreased the computational requirements of the learning of models. The number
of readings to discard was chosen in the same way as the size of the sliding window. It
may be interesting for future work to experiment with the sizes of these values to see
how they affect the predictive power of the models.

With the following:

n Current timepoint
s Size of smoothing window over which data is averaged
x, Value of x at timepoint ¢

The converted values may be defined:

Origin Distance
The robot’s Cartesian distance from its location at the start of the task.

§
origin distance = 1 '} \/ (% —x0)> + (3 —30)?

t=n—s

Curvilinear Distance
How far the robot has moved forwards during the smoothing window, taken as
the sum of the Cartesian distances between each successive pair of (x,y) coordi-
nate readings.

s
curvilinear distance = 1 '} \/ (% —x-1)2 + Or —ye1)?

t=n-s
The actual value for curvilinear distance omits any successive pairs that exceed
the 95th percentile of the Normal distribution of the current set of pairs. Such
values are most likely to be localisations where the robot’s position has been sig-
nificantly updated because of a localisation step. If these values were not ignored,
then unwanted spikes would appear in the curvilinear distance measurement.

Angular Change
The total angle through which the robot has turned within the smoothing win-
dow, taken as the sum of all the absolute differences between each successive

28

CHAPTER 4. INTROSPECTION

Figure 4.8: The weighting vector applied to Figure 4.9: Polygon defined by the locations
the sonar sensors of the sonar reflection points

0 reading. A robot that has rotated 90 degrees clockwise and then 90 degrees
counter-clockwise within the smoothing window therefore has an angular change

of 180 degrees.
angular change = 1 Zs" 16, — 6,
1=n—s
As with Curvilinear Distance, this is also filtered by the 95 percentile in the same
manner.
Angular Difference

The absolute difference in angle between the first and last reading inside the
smoothing window. A robot that has rotated 90 degrees clockwise and then 90 de-
grees counter-clockwise within the smoothing window has an angular difference
of 0 degrees.

angular difference = 0, —6,,_;
Cluttering
How cluttered the environment is, calculated from the area inside the polygon

formed by the sonar reflection points. This is weighted towards the front sensors
as these are more important.

The robot reports eight sonar readings, of angle o, ...o0g and distance d ...ds

Sonar values are multiplied by a weighting vector w = [3,4,5,5,4,3, 1, 1], as shown
in Figure 4.8. Therefore weighted distance is defined as ¢; = w;d;. The Cartesian
coordinates of the weighted distances are calculated as:

sx; = e;sin™! G; sy, = e;jcos™! G;

Then the area inside the polygon defined by these points (Figure 4.9) is calcu-
lated:

29

CHAPTER 4. INTROSPECTION

8
cluttering = -12- Z SX;SYi+1 — SXi4+15Yi
i=1

(where sxg = sx1,5y9 = sy1)

Lower values of this value represent that the robot has less room to manceuvre,
and therefore a more cluttered environment.

Speed
The average speed of the robot over the smoothing window
' 5
speed = % Z speed;

t=n—s
Distance Spread

The difference between the maximum and minimum curvilinear distances inside
the smoothing window:

distance spread = max \/ (x; — xi=1)2 + (¥i = ¥i-1)2

—min \/(xi—xi-1)2+(}’i—)’i—l)2

wherei=(n—s)...s

High values of Distance Spread indicate that the robot has changed its speed
during the course of the smoothing window, whilst low values show that the
speed has remained roughly the same. Extremely high values are indicative of a
position localisation step, where the speed has been low and then has increased
dramatically. An example of this is shown in Figure 4.10. In Case (a), a typical set
of eight coordinate pairs is shown, representing the robot's movement across the
smoothing window with low distance spread. Case (b) is an identical execution,
except for a position localisation step that corrects the location of the robot in one
large jump. It can clearly be seen by visual examination that the robot is unlikely
to have physically navigated between these two points within 100 ms.

Angular Spread
The difference between the maximum and minimum angular changes inside the
smoothing window:

angular spread = max(|6; —0;-1|) —~ min(|8; — 6,_;|)
wherei= (n—s)...s

In the same way that Distance Spread can be used to detect position localisa-
tion, Angular Spread can be used to detect angle localisation where the robot’s
perceived angle changes abruptly.

30

4.1.5

CHAPTER 4. INTROSPECTION

i S

(a) Low Distance Spread (b) Very high Distance Spread

Figure 4.10: Distance Spread and its relation to localisation steps

Camera State
Current state of the camera (0 or 1). Because of the binary nature of the camera
state, averaging was not used but instead the modally occurring value within the
smoothing window was used. In the event of a tie, the last occurring value was
used.

Once the raw data had been collected, converted and smoothed as above, the converted
data was used to learn an HMM for the task. There are two fundamental steps to this
process, clustering and expectation maximisation.

Clustering and Expectation Maximisation

The processed data was clustered to automatically identify a number of observations.
An observation is a physical state of the system that can be represented by certain
values of the processed data. For example, one observation could be identified as a
situation where the distance spread was high and the angular spread low. Clustering
was done using a Kohonen map [Kohonen, 1990].

Kohonen maps work by mapping a multidimensional input space onto a space of lower
dimensions. In this case, the 9-dimensional data collected from the robot is projected
onto a 2-dimensional grid, or network. The size of the network affects the complexity

31

CHAPTER 4. INTROSPECTION

of the learnt model, which was varied here between size 10x10 and 30x30. The
Kohonen map is initialised with each location in the network being associated with a
random vector in the 9-dimensional input space. To avoid problems with initial bias,
the vectors were initialised so that no two vectors were within n degrees of each other
(with n being chosen depending on the size of the network).

Training of the Kohonen map is done by presenting each of the input vectors in se-
quence, and identifying the cell in the grid that has the closest vector to the input
vector. This vector, plus the vectors in the surrounding area in the grid (the neighbour-
hood cells), are aligned towards the input vector by scalar multiplication. The size of
the neighbourhood is set initially large, but decreases exponentially over time to facil-
itate training and avoid local maxima. Decreasing the size allows the network settle
into a stable state. This training process is carried out fifty times across the data set,
and then the order of the input data is randomised before repeating training a further
fifty times. The reordering helps to eliminate any overlearning issues that may occur
due to the ordering of the data.

After the training is complete, the result is a series of vectors, each associated with a
cell in the network. These are grouped according to the number of input vectors that
are attracted to each of the output vectors. The groupings define the clusters that are
used in the final model, each internally represented as a normalised vector.

Kohonen maps were chosen because they require no prior knowledge of the number
of clusters during the learning process. Some clustering techniques, such as K-means
clustering [MacQueen, 1967], require this number as an input to the learning process.
Not specifying the number of clusters allows the network to best determine this value,
outside of the influence of manual estimates. Since the training data possessed an
unknown number of clusters this was the preferred method. An outline of the clustering
process carried out by the Kohonen map, as described above, can be seen in Figure 4.11.

The size of the Kohonen map had to be chosen manually to ensure that a reason-
able, but not excessive number of observations (clusters) were identified. A larger
Kohonen map will produce a greater number of observations, and a smaller map will
produce fewer observations. With too few observations, the discriminatory power is
lost as all data gets classified into a limited number of observations; with too many
observations, the noise in the learning process becomes too significant relative to the
signal and training becomes ineffective. Extensive testing showed the optimal size of
the map seemed to be one that, after expectation maximisation (see below), produced
HMMs possessing in the range of 15-30 states. When learning the models, one of the
things that had to be considered was the complexity of the task. For a simple task, a

32

CHAPTER 4. INTROSPECTION

by counts

i/:\"“ \ '/1,\\ ‘ Landscape Construction

Figure 4.11: Clustering using a Kohonen map (Figure reprinted from Fox et al. AlJ vol 170, no 2)

model with few states is more preferable, but more complex tasks require more com-
plex models to represent them. In [Fox et al., 2006], dimensions for the Kohonen map
ranging from 15-45 were used for a data set of 15,000 data-points. It was found that
these values also worked best for the data sets collected within this thesis, which range
in size from 15,000 up to 55,000 data-points (depending on the task being learnt).

Once the data had been clustered using the Kohonen map, each recorded piece of data
could be classified by the map into a numbered observation by using the normalised
vectors. Entire sequences of data from each execution can then be converted into
numbered lists of observations. From these, expectation maximisation can be used to
learn an HMM that could have produced this data.

The observations as learnt above are decomposed into a series of states using a state-
splitting strategy. This works by examining the angles between the vectors and splitting
them into subsets. The result of this process is a set of observations and a set of states.
Expectation maximisation calculates a Hidden Markov Model that represents the rela-
tionship between these two. The HMM is represented by three sets of parameters:

33

CHAPTER 4. INTROSPECTION

Prior Probabilities
The probability that the model starts in each state, in initial model all equally
probable

State Transition Probabilities
The probability of transitioning between each pair of states, in initial model all
equally probable

Observation Probability Distribution
The probability of seeing a particular observation in a particular state of the
HMM. Initially, all equally probable.

Expectation maximisation works by iterating over the model represented by these three
sets of parameters. For each iteration, the model is presented with all observation
sequences. Expectation maximisation tries to maximise the probability of the model
producing each of the observation sequences. This is a two-phase process, split into
the E phase and the M phase. The E phase (expectation) calculates the probability of
seeing each observation given the current model. The M phase (maximisation) then
updates the model to maximise the probability seen in the E phase. This is a repeated
hill-climbing strategy that improves the HMM with respect to the evidence.

After expectation maximisation, the HMM is a model that can predict the internal state
of the executive and how it transitions between certain hidden states of execution. In
Chapter 6, learnt HMMs will be used to monitor these states during execution and
attempt to use this information for controlling the executive.

Figure 4.12 shows an example HMM learnt from the Panoramic Photo task by using
the above process. All of the states and the transitions between these are automatically
generated. This HMM is included here to give the reader an insight into what a learnt
model looks like. The start state is marked in green and the finish is coloured red.
Note some of the structure present such as the loops and cycles between states, and
the “starting” and “finishing” behaviours. Also note that there are shortcuts in the
cycles that allow certain states in the loop to be bypassed. With an automatically learnt
model such as this, it is important to note that there is not a simple interpretation of
these states — any analysis of automatically learnt models has to be done manually. It
is not necessary to understand or interpret this graph at the moment, but this HMM
(along with others) will be examined and discussed in depth in Chapter 5.

CHAPTER 4. INTROSPECTION

0.0076

Figure 4.12: An HMM for Gradient Navigation

35

CHAPTER 4. INTROSPECTION

4.2 Error Infroduction

To test the ability of the learning process to identify error states, an error-prone version
of the Panoramic Photo task was developed. This was a partially simulated action that
had a small failure probability. This could be seen as contrived, but it was important
that the process was tested on an action that had recognisable failure states and was
repeatable under test conditions. Developing a real action that could fail repeatedly
and on command was deemed too difficult. The Panoramic Photo with Errors task was
implemented roughly as follows:

n=0;
while (n++ < 20) {
turn(90);
if (rand() < 0.97) { // 3% probability of failure
take_photo();
} else {
shutter_stuck();

wait (rand()); // random duration to unstick

The action simulated the camera shutter malfunctioning and becoming stuck. During
this period, the robot simulated attempts to free the camera shutter, which took a ran-
dom duration to unstick. The simulation meant that the execution of the action never
failed entirely and could always recover from the failure, but the duration for recovery
was uncertain. The duration was in the region of 2-30 seconds. The 20 repetitions of
the camera shutter provided an action that would experience a failure in 46% of the
cases (1 —0.97%%). If the error rate were too low, then a significant number of data
points would have to be collected to show meaningful data. In a real-world situation,
a sufficient number of data points would have to be sampled to ensure that the action
covered all possible executions and the errors contained within these.

Now that suitable tasks have been identified, the following chapter will examine data
collected from these as well as the resultant HMMs produced through the learning
process that has been outlined above.

36

5.1

CHAPTER 5

Evaluation 1

The cause is hidden; the effect
is visible to all

— Ovid, Roman Poet

T IS USEFUL to examine the raw data collected from the robot to understand pat-

terns, trends and features of the data. If there are no such patterns, then attempts

to learn models will not produce meaningful results. The first part of this chapter
examines data from individual runs to try to identify what is happening with the robot
and the states that it may be in. The second part of this chapter investigates the HMMs
learnt from the processed data.

Raw Data Analysis

This section will examine the raw data collected from a single execution for both the
Gradient Navigation task and the Panoramic Photo with Errors task. These were chosen
for analysis because they possess much more interesting structures than the Simple
Navigation or standard Panoramic Photo task. The full-size graphs for this section

37

5.1.1

CHAPTER 5. EVALUATION 1

can be found in Appendix A, but small inline versions are also included in for easy
reference. Whilst reading this section, it is advisable to refer to the graphs to examine
the correlations described below. A series of points of interest have been identified,
and these points are marked on each of the graphs. For both of the tasks, analyses
of only the most interesting and relevant variables are shown below — an omission
indicates that the variable did not contain any interesting structures deemed necessary
for analysis.

Gradient Navigation task

Distance from Origin (Sheet 1) = [ea1]
There are four distinct phases that can be 12000 e o BT T het |
seen in this graph, which are marked at jeoco Y
i | - A RVJ}V \t\

the top of the graph. § / g \

. | | A A\
Phase 1 is characterised by the distance 5 // K
from the origin increasing at a roughly - AN
constant rate. This is the robot travelling " Lo i 2" %

at maximum velocity, unimpeded by ob-
stacles. There are two small plateaus at A and B where the robot has slowed, perhaps
navigating to avoid a box that was in the way, but these were not major deviations from
the straight-line path and had little effect on the distance from origin. The third phase
is similar to the first, except that the robot is returning to the start, thus the distance
from the origin is decreasing.

Phase 2 lies around a distance of 9m from the origin, where Waypoints 2 and 3 for
the task lie. During this phase, the distance fluctuates as the robot navigates around a
series of obstacles that are in its way. The robot cannot easily see the route through the
obstacles so it takes a short while to complete, trying various options until success.

In the fourth phase, a similar behaviour to the second phase is seen, however the robot’s
overall behaviour during this phase is quite different. Here, the robot is trying to return
to the starting location after a navigation across the middle of the room. Whilst crossing
the room, the robot’s sensors do not have the range to pick up the locations of the walls
and therefore localisation cannot be performed. This causes any error in its location to
accumulate. When the robot finally re-detects the wall, it starts to localise itself once
more whilst travelling to the final waypoint. The robot regularly updates its position
based on the new data, and this may fluctuate for a short while with large errors in
its model of up to 2 m or more. The robot continuously aims to reach the waypoint,
but its estimated location may alter frequently due to localisation. This may cause

38

CHAPTER 5. EVALUATION 1

the robot to stop, start and turn to where it believes is the goal. Eventually, the error
is sufficiently reduced to allow the robot to reach its final waypoint, and the action
successfully terminates.

Velocity (Sheet 2) e = [eet]
The main features in this graph are the 0

two points at which the velocity goes neg- : fad] fMl fu"\ m i f.r"ﬁun‘ lhq‘ JlnL
ative i.e. the robot is reversing (Points D E:: P T p“\}']
and G). This is due to the robot having o \'”l Wl | |
stalled due to a collision with an obsta- T o olle o w w o
cle, and then trying to recover from this .1-: U iy
by reversing out of the situation before A B CD wem E F G
continuing.

The periods during which the robot is travelling unimpeded at maximum velocity can
also clearly be identified, with a maximum speed of around 230 mm/s. If this graph is
compared with Sheet 1, the distance from origin, then the plateaus that were identified
at A and B can be correlated directly with drops in velocity of the robot.

Angular Change (Sheet 3) — =T
From this graph it can be seen that the 20
robot rarely travels in a relatively straight 0

line for prolonged periods of time. There

are three distinct points on this graph
where the robot has a very low angu-
lar change, and therefore travelling for-

Anguiar Change (degrees)
8
—

8

o

L
d&d (A LW
Uy

wards without turning significantly. Very A B CD wew E F G
shortly after starting the angular change

becomes low. This is because at this point the robot had turned towards the first way-
point and had no obstacles directly in its path, allowing it to proceed in a straight line.
Points D and G can be correlated with Sheet 2 to match up with the times when the
robot had negative velocity. This means that the robot was not rotating whilst reversing
during stall recovery.! For a short while after Point E, the angular change is low. This
is just after the 3™ waypoint when the robot was travelling towards the finish, and had
no obstacles to avoid. Angular change is then significantly higher after Point F when
the robot is trying to locate the finishing waypoint.

11f the stall recovery attempt had not been successful, the robot would have tried other methods to free
itself, including turning back and forth.

39

Angular Difference (Sheet 4)

This graph, although hard to interpret at
first, can be used to interpret periods of
indecision. If this graph is compared to
Sheet 3, Points A and C have a high an-
gular change alongside an angular differ-
ence that quickly fluctuates between pos-
itive and negative values. This means
that the robot is performing a lot of ro-
tational movements, both clockwise and
anticlockwise, and in this case the robot
is searching for a route around an obsta-
cle and cannot decide whether to pass the
obstacle to the left or right.

Curvilinear Distance (Sheet 5)

This graph is very similar to Sheet 2, the
graph of the robot’s velocity. This is as
would be expected given the close rela-
tionship between velocity and distance
travelled. The main deviations between
these graphs occur when the robot’s ve-
locity went negative, at Points D and G.
No additional pertinent information can
be derived from this graph that has not
been already derived from Sheet 2.

Cluttering (Sheet 6)

The cluttering graph is difficult to inter-
pret and is probably more useful when
viewed alongside other graphs. Note
again that lower values mean a more
cluttered environment. If this graph is
compared with Sheet 1 then it can be
seen that Phases 2 and 4 contain several
times when the environment was very
cluttered. This fits in with what has been
deduced so far.

CHAPTER 5. EVALUATION 1

Gradient Navigation Angular Difference |m
E]:‘\‘ Mﬂ\IAAMlIAM
J\n LA, [} J
b o S e g
- FI
Gradient Navigation Curvilinear Distance ‘ﬁ
. TN alilaTN T
L Y (AT 1)
j o0 i]
. [
00 A ” B ‘DCD “ nmor:o Em0 lmF I‘(’G
Gractent Navigation Cluttering [sheet 6 |

40

CHAPTER 5. EVALUATION 1

Point | Identified Situation
A | Obstacle avoidance

B | Obstacle avoidance with indecision
C | Localisation step

D | Collision recovery
E

F

G

Nominal straight-line navigation
Homing-in on Goal
Collision recovery

Figure 5.1: Points identified in the Gradient Navigation task

Distance and Angular Spread
(Sheets 7 and 8)

Peaks in these graphs are indicative of lo-

Grodient Navigation Distance Spread Sheet 7
calisation steps in which the robot’s posi- e
tion or angle have been significantly up- %000
dated. There are a couple of well-defined | ¢ **
peaks around Point C, and several smaller E T:
peaks across the graphs. In the case of 5 =
Point C, Sheet 1 shows that the robot’s 50 I r “Ur h nL"U}L
position changed by approximately 2 m in 0 o @ o @ im w w
a very short space of time, supporting the a8 N = 3 A
evidence that this is a localisation step.
It is interesting to note that on Sheet 2 Gracdont Navigatien Angular Spread Sheet 8
the velocity drops down to 20 mm/s after °
this point. This suggests that the robot :
may have collided with an obstacle at this } "
point due to the localisation not being ac- o
f:urate. Indeed shortly after this, Point D § % -—] i]5 n jnL -
is reached where the robot has stalled by N VALUALLLER A rut
colliding with an obstacle and can only "a%8 o wn £ F G

recover by reversing.

Gradient Navigation Summary

From the graphs, the major events in this particular execution are summarised in Fig-
ure 5.1. Assigning names to all these different states is of little importance: the sig-
nificance is that it is possible to distinctly differentiate behaviours of the robot based
on the raw data. If it were not possible to do this manually then it would probably be
a futile task to try to learn these states automatically. Ultimately, what is required is
a number of distinct states into which can be used to classify the robot’s behaviour. A

41

512

CHAPTER 5. EVALUATION 1

classification tool should be able to take a set of the nine variables and deduce which

behaviour the robot is exhibiting at any particular timepoint.

Panoramic Photo with Errors task

Sheets 9-14 show some of the raw data
graphs for an execution of a Panoramic
Photo with Errors task. This particular
execution was chosen because of the fact
that two simulated camera failures oc-
curred during execution.

Camera State (Sheet 9)

The periodicity of the task can clearly be
seen with the camera shutter alternating
between open and closed, with around
two seconds between photos. Also, the
two failures can also be easily identified
when the simulated camera shutter was
stuck open, from C to D, and from F to G.
Note that once the shutter has been suc-
cessfully ‘unstuck’, it still needs to take
the photograph at that angle. This means
that failures are always followed immedi-
ately by another photo.

Angular Change (Sheet 10)

Again, the periodicity is easily recognis-
able in this graph with periods of turning
to the required angle, and then remain-
ing still to take the photo. The periods
of inactivity whilst trying to fix the cam-
era shutter are also evident from C to D
and F to G. These periods do not seem to
match up exactly with the periods iden-
tified from the camera shutter data, but
this is due to the navigation techniques
used by the robot. The robot may report

Ponoramic Photo with Errors Camera I Sheet 9
Open —
10 20 30 60
B C D me G
Fanoramic Photo wih o Angular Change | sheet 10]
50
a5
L0
g %
30
g 2
20
g 16
10
5
. A
10 20 30 60
B C D " G
Panoramic Photo with Erors Angular Spread |M14‘
26
20
E "
i L |
g 5
0
10 20 30 &
)
B C D ™ G

42

CHAPTER 5. EVALUATION 1

that it has finished the movement, but then make minor corrections to get closer to

the desired angle. This may happen if localisation detects small errors in the position

and the robot reacts by correcting these. There are also several points on Sheet 10

where the angular change goes significantly higher than usual, for example at Point E.
This indicates that that the robot is turning more than usual to take the photo, which
initially seems bizarre as the angle through which the robot turns should be constant.
When this graph is compared to the angle spread on Sheet 14 a large spread of values
is seen at Point E, which is indicative of an angle localisation. What happened here was
that the robot turned the 90-degree angle, but part way through the turn it corrected
an error in this angle. This meant that it had to turn more to reach the correct heading.

Angular Difference (Sheet 11)

This graph shows several periods during
which the angular difference goes nega-
tive, for example at Point B and just be-
fore Point E. A negative value indicates
that the robot is actually turning in the
opposite direction to that which it has
been instructed to do so. By comparing
to Sheet 14 again, these two points also
correspond to angle localisation steps. In
these cases however, the robot rotated
too far and had to turn back to reach the
desired heading.

Distance from Origin (Sheet 12)

The main feature in this graph is the
huge increase in distance at Point A.
Sheet 13 shows that this point corre-
sponds to a large localisation step ap-
proximately three seconds after starting
the task. This is because when the robot
starts the task it has very little data with
which to perform localisation. One the
robot starts rotating, it receives many
more sonar reflections that provide quite
detailed information about the location
of the robot. With all of this sonar data,

Angular Difference M

e f—

A B C D "em F G
Panoramic Photo with Erors Distance from Origin |snunz
300
N
E 1850
g 100
80
0
10 20 30 40 50 60
A B c D™ F G
Panoramic Photo with Erors Distance Spread Sheet 13
300
250
E 200
g 150
E 100
50
g ulhll-l wunlt ln.nl llll AI.M
10 20 30 4 50 Y
50
A B C D "mgw F G

43

5.2

CHAPTER 5. EVALUATION 1

Point | Identified Situation
A | Initial position localisation
B | Over-rotation localisation and correction
C-D | Camera shutter stuck
E | Under-rotation localisation and correction
F-G | Camera shutter stuck

Figure 5.2: Points identified in the Panoramic Photo with Errors task

it can accurately correct any discrepancy between the believed location (at the origin)
and the actual location. The actual location in this case is around 20 cm from the origin
and is continuously updated throughout the task. The robot does not change its posi-
tion throughout the task, only its idea of its location. The fluctuations over the course
of the task are mostly due to the imprecise nature of the sonar data.

Panoramic Photo with Errors Summary

From the graphs, the major events that have been determined in this particular execu-
tion are summarised in Figure 5.2.

HMM Analysis

To analyse the learnt HMMs, a tool called ModelViz was produced. This takes an array
of transition probabilities between states in the HMM and displays them graphically as
a connected network.

The ModelViz tool uses the Graphviz software package [Ellson et al., 2004] to produce
the state transition diagrams found later in this Chapter. In simple operation, ModelViz
generates a basic monochrome visualisation of the directed graph that constitutes the
HMM. If the start and finish states are supplied to ModelViz, then the tool performs
a number of simulations of the HMM, tracing through executions of the model. In
this case, the output diagram is coloured to indicate more clearly the structure of the
HMM. The states that get visited most (and therefore are most important to the HMM)
are coloured with darker blue colours. Those that are visited infrequently are coloured
white or pale blue. Additionally, the start and finish states are coloured green and red
respectively. The thickness and darkness of the transition lines is determined by the
probability that the transition will occur.

The ModelViz tool has a further option with which transitions to the same node are
ignored. This can be useful for HMMs that produce long repeating sequences of the
same state. When this option is enabled, the self-transition probability is removed, and

44

CHAPTER 5. EVALUATION 1

the rest are normalised to equal 1.0. With this, the probabilities adjacent to the transi-
tions represent the probabilities of the next different state occurring. Normalisation in
this manner is useful in some situations to simplify an HMM, but in others it can mask
structure by discarding important self-transitions. In the analyses below, self-transitions
have been ignored as the extra clarity of the models produced outweighs the structure
lost in the process.

In most HMMs produced by the learning process, there are a large number of transi-
tions, which would make a graph overly complex. To reduce the complexity, transitions
below a certain probability (0.05) are omitted by default. One of the drawbacks of this
simplification technique is that it can leave the graph unconnected and result in dead-
ends and never-ending loops. The ModelViz tool was therefore altered to recognise
unconnected parts of the graph and search these for the highest probability transition
that links it to a connected part of the graph. The result is a visualisation of the HMM
that is fully connected and will always eventually terminate.

In the next section, there will be a visual examination of some of the HMMs learnt for
each of the tasks:

e Simple Navigation
¢ Gradient Navigation
e Panoramic Photo

e Panoramic Photo with Errors

An attempt to identify the characteristics of particular states has been made, but it must
be noted that there is some guesswork involved in this process. This is because a state
in the HMM may represent more than one aspect of behaviour, and interpretation of the
values is required. A state can be identified by finding the observations that are most
characteristic of that particular state, and then examining the normalised vectors asso-
ciated with the observation to see the relative values of the variables. Figure 5.3 shows
an example normalised vector. The values represent the number of standard deviations
from the mean that is associated with the observation. In the example, note there is a
large positive angular change alongside a large negative angular difference, indicating
that this vector is associated with the robot turning anticlockwise. Also worth noting
is that the angular spread is reasonably large, which may either indicate a localisation
step (characterised by a big jump in angular change) or it could be that the robot has

45

5.2.1

CHAPTER 6. EVALUATION 1

Data Type | Normalised Value

Origin Distance 0.19
Curvilinear Distance -0.16
Angular Change 0.64
Angular Difference -0.63
Cluttering -0.08

Speed 0.21

Distance Spread -0.08
Angular Spread 0.41
Camera State -0.22

Figure 5.3: Identifying characteristics of an observation

just started turning very suddenly. To establish which of these is the case, it is necessary
to examine the other normalised vectors and attempt to infer which is the case.

For each of the tasks, several different sized Kohonen networks were used for the learn-
ing process. These varied from a small 10x 10 network up to a large 30x30 network
— inside the range identified in [Fox et al., 2006]. A smaller network will produce an
HMM with fewer states. If there are too few states to accurately describe the task then
there is the possibly of dissimilar states being grouped together into one state. With a
larger network, structure may be lost due to the presence of excess noise. The different
sizes of Kohonen networks were learnt to find what made an acceptable balance in
HMM size.

Because of the huge amount of time taken to learn these HMMs it was not possible
to do a comprehensive study of all of the variables that affected the output of the
learnt models. These were set through much trial and error based on values used
in [Fox et al., 2006].

Panoramic Photo
Size 10 (Figure 5.4)

Because of the limited size of the Kohonen network used to learn this HMM, there are
very few states and therefore not much discrimination between these. The main visible
feature in this HMM is the prominent looping behaviour of 0 — 5 — [3|6] — 2 —
T — 0. The robot’s behaviour within this loop alternates between states of turning
and the camera shutter being active at 5, reflecting the TAKE PHOTO, TURN behaviour
that comprises the Panoramic Photo task. 2 can be identified as an angle localisation
step, and this is often preceded by 3 in which the robot appeared to be adjusting its
position. There are no states that appear to have even a weak association with position
localisation.

46

CHAPTER 6. EVALUATION 1

Figure 5.4: HMM for Panoramic Photo with size 10 network

At the start of the model, insertion into the loop is usually through 4, associated with
the camera shutter being open. This is the first thing that is expected to happen in
the Panoramic Photo task. Interestingly, there is a small probability that the loop will
be entered at 3, which permits the robot to adjust its position, localise itself and turn
before taking the first photo.

At the end of the model, 7 corresponds to the robot being idle, which was a pro-
grammed behaviour of the Panoramic Photo task to allow the task to complete and the
sensor values to settle because of the smoothing window. The probability of entering
this idle state (and therefore terminating) is 0.049. An ideal model should have a prob-
ability that results in an average of 20 cycles around the loop, the number of turns that
were programmed into the task. This ideal probability can be calculated:

Y ip(1-p)=20
i=0

and then solving this for p gives:
p=0.05

This value is approximately the same as the probability that has been learnt in this
model, indicating that this aspect of the task is represented well.

47

CHAPTER 5. EVALUATION 1

A network of this size seems to produce an HMM that has too few states to capture the
intricacies of the task, as can be seen by the lack of states corresponding to position
localisation. It is interesting however to see the model as a reference point for more
complex models.

Size 20 (Figure 5.5)

As with the size 10 network, the main feature in this HMM is the looping behaviour in
the centre of the diagram, except that here there are several loops visible with multiple
paths. The most prominent loop is 4 — 6 — 3 — 0 — 9 — 7 — 4. This corresponds
to a camera shutter event, followed by a turning behaviour with localisation steps in
between. There are also shortcuts and side branches to this loop, for example the
transition from 9 — 4 that bypasses the need for a localisation step within the loop.
This could correspond to the robot having turned accurately, removing the need to
localise at this point.

Also within this HMM is the possibility of taking the transition 6 — 8, which corre-
sponds strongly to an angle localisation step followed by fast turning, before entering
into the main loop again. This seems to be a learnt option that could allow the robot
to correct its angle if it deviated significantly from the expected values.

At the start and end of the model there are states that correspond to the robot being
idle. 5 is an idle behaviour much like the one seen at the end of the size 10 network
above. The combined probability of entering this state is once again very close to the
ideal probability of 0.05 (as calculated above).

Size 25 (Figure 5.6)

More complex still than the previous models, this HMM again has a prominent main
loop, but this time much more complex. There are many paths of traversal through
the HMM, as well as shortcuts bypassing localisation steps. For example, there is an
interesting feature at 10 where there are transitions to 0 or 3 with almost equal proba-
bility. If the transition to 3 is taken, then there is a sequence of localisation steps, but
if the transition to 0 is taken then no localisation occurs. Examples such as this can
show how the learnt HMM has adapted to take into account physical uncertainties as
aspects of the task. This is in contrast to the size 10 HMM, which does not have states
to represent these different uncertainties. The size 20 HMM possessed some of these
characteristics.

Although similar in many ways to the size 10 and size 20 models, this model does not
have the expected probability close to the ideal for exiting the loop and transitioning

48

CHAPTER 5. EVALUATION 1

0.0076

0.048

Figure 5.5: HMM for Panoramic Photo with size 20 network

49

CHAPTER 5. EVALUATION 1

FAST TURN

FAST TURN &
ANGLE LOCALISE

0.97

FAST|TURN

ANGLE LOCALISE
0.089

0.029

POSITION
0.066

Figure 5.6: HMM for Panoramic Photo with size 25 network

50

5.2.2

CHAPTER 5. EVALUATION 1

through 6 to the finish state. This is not a major issue as it is of the correct magnitude,
but could indicate that this model has not learnt this feature correctly.

Size 30 (Figure 5.7)

At this size, the network becomes very complex and difficult to analyse in depth. There
are micro-structures that can be identified within the model, but comprehending the
structure of the HMM as a whole is very difficult. It can be seen that the structure is
very similar to that of the size 25 model with loops and transitions that bypass parts
of these. Because of the complexity of this model, not all of the states in this diagram
have been labelled.

In this model there are not one, but two states that correspond to the camera shutter
being open. This seems to suggest that either the model has learnt some distinction
between the camera states to classify them differently, or a size 30 model is too large
and has split this state into two unnecessarily. It is not possible to tell which is the case.

As with the size 25 model, the exiting probability to 12 is not close to the ideal value of
0.05, but again is around the correct order of magnitude.

Simple Navigation
Size 10 (Figure 5.8)

The size 10 Simple Navigation HMM is comprised mostly of a small cluster of five states
in the middle. This cluster is highly interlinked with transitions from nearly every
state to every other state within the cluster. Although it is not shown here, each state
possesses a very high self-transition probability of around 0.7, with the exception of 3,
which does not transition to itself. These high self-transition probabilities indicate that
states mostly occur several times in succession before transitioning to another state.
Most of the states here have been identified as cruising, that is moving forwards without
turning and no obstructions. The cruising behaviour here can be strongly associated
with being close to the origin (near the start of the task in this case), or far from the
origin near the finishing waypoint. There are also different speeds of cruise observed
within this model.

0 seems to correspond to a slow movement behaviour, which is always seen on the robot
when it is trying to finalise its position whilst reaching a waypoint. In this case, the slow
movement will be the robot trying to find the finishing waypoint for the navigation task.
For this reason, this can be seen as a ‘finishing’ behaviour.

. : 51

CHAPTER 5. EVALUATION 1

Figure 5.7: HMM for Panoramic Photo with size 30 network

52

CHAPTER 5. EVALUATION 1

CRUISE FAR
FROM ORIGIN

o ()

0.11 022 026

CRUISE FAR
FROM ORIGIN

0.12 0.26

CLOSE TO ORIGIN

|

[

{ 9061 0,058 0065 017
,

4

SLOW CRUISE
0.52 0.31 0.046

State0)SLOW, FAR
ROM ORIGIN

Figure 5.8: HMM for Simple Navigation with size 10 network

The only state in this HMM that is associated with turning is 2, which only weakly
corresponds with turning right and is therefore not marked. There are no states in
this model that are associated with turning left. This lack of a left-turning behaviour
suggests that either the robot did not turn left during the main part of the execution,
or the Kohonen Map used to learn the HMM was too small. Since the robot did turn
left during execution, it can be seen that a size 10 model is too small for capturing this
task effectively.

Size 20 (Figure 5.9)

Although the Kohonen network used here has twice the dimension length as the size 10
network, there is only one more state present. The “cluster of states” feature identified
the diagram are the self-transition probabilities that are very high for all of the states
except 2 and 5.

In this network there is a lot more discrimination between the states. For example in
the size 10 HMM, there was no state associated with turning left, but this is present
here in both 0 and 6. Curiously, 6 is also the only state associated with reversing.

53

CHAPTER 5. EVALUATION 1

0.16

CRUISE &
0.17

0.12 /0.33

/

\ L
REVERSE

Figure 5.9: HMM for Simple Navigation with size 20 network

0.052

5.2.3

CHAPTER 5. EVALUATION 1

Size 25 (Figure 5.10)

This HMM is much more complex than the size 20 network with many transitions
between states. Because of the size of the network, it is difficult to see patterns in the
structure. There are, however, individual states associated with turning left and right
for both forwards and backwards motion. This is a structure that was not seen in the
smaller networks for the Simple Navigation task, indicating that this network possesses
a good discrimination between states.

With this model (and also with other models for the Simple Navigation task) it is nec-
essary to label some of the states with ambiguous names such as ‘indecision’ or ‘slow
right’ because there is no strong defining characteristic for the behaviour associated
with some states. The task did not possess enough recognisable structure to make
manual identification of these states simple.

Size 30 (Figure 6.11)

Much larger than the size 25 network, this HMM has lost much of the obvious cluster
structure that has been evident in all of the smaller models, and has been replaced with
some very different structures. There was a second model learnt from this data with
slightly different variables (not shown here) that possessed a linear structure, where
states were each visited in turn with few loops or shortcuts. This evidence points to-
wards the fact that the model has become susceptible to over-learning and is identifying
structures specific to this task, rather than generic states for Simple Navigation. For this
reason, the Kohonen Network used here was probably too large and the HMM is not a
useful model for use in a generic situation. If an even larger network were used, it is
expected that the structures would break down further.

Gradient Navigation
Size 10 (Figure 5.12)

The main feature in this HMM is the cluster of interlinked states on the left of the
diagram. This is very similar to the structures that were seen in the Simple Navigation
task. Two of the states in the cluster correspond to cruising far from the origin, and
the other two represent reversing plus turning (left or right). 0 is also associated with
localisation, but this is not a strong association.

The implementation of the Gradient Navigation task consists of navigation between
several waypoints. It starts at the origin, moves to a waypoint far from this and then
returns back to a location near the start (see Figure 4.5). Aside from the cluster on the

CHAPTER 5. EVALUATION 1

CRUISE & (€

SLOW RIGHT _ el

0.28 0.22

0.18 0.12 0.16 0.1

0.57 0.11

&)

BACKWARDS
0.12 0.17

~ T
4 BACKWARDS
/o3 o013 |

CRUISE &
TURN LEFT

Figure 5.10: HMM for Simple Navigation with size 25 network

56

0.24

CHAPTER 5. EVALUATION 1

¥40MIdU OF 2218 YIIM UONDSIADN a)dung 1of WAH :11°S 2314

57

CHAPTER 5. EVALUATION 1

REVERSE
& TURN
& MINOR LOCALISE

CRUISE FAR
FROM ORIGIN

CRUISE FAR
FROM ORIGIN

CRUISE

Figure 5.12: HMM for Gradient Navigation with size 10 network

left, there are three states associated with cruising close to the origin (2, 7 and 6). It
can be seen that the model can start in these states and then moves into the cluster on
the left for the main body of the task. Once the robot returns close to the origin, it can
return to this part of the model before exiting through 6.

It should be noted that with the Gradient Navigation task it was difficult to accurately
identify the start and finish states, which are both required whilst learning the model.
This was the case for all of the HMM sizes used. Identification is difficult due to the fact
that the start and finish states for this task are very similar; the states are both close
to the origin, both have low speed and both possess low angular change. A certain
amount of guesswork and intuition was required in these cases.

Size 20 (Figure 5.13)

Once again, there is a similar structure to the size 10 HMM, with essentially the same
structures present. The cluster is still present on the left, but no longer possesses states
that correspond to reversing. The right-hand side of the HMM has become simplified
and is mostly dominated by 3 and 2 which produce a turn/cruise behaviour along with
localisation.

58

5.24

CHAPTER 5. EVALUATION 1

CRUISE FAR
'/ FROM ORIGIN

o RUISE &
URN LEFT
0.17 029
FAST TURN
Jo3s e RIGHT

CRUISE FAR CRUISE
FROM ORIGIN
& TURN LEFT

Figure 5.13: HMM for Gradient Navigation with size 20 network

Size 25 (Figure 5.14)

For the size 25 network, a much more complex HMM has been learnt. Manually iden-
tifying states and structures within this HMM is too difficult.

Size 30 (Figure 5.15)

The size 30 network has been included here for completeness. As with the size 25
network, it is too large to attempt to manually identify features.

Panoramic Photo with Errors

Please note that within this section two HMMs are shown for each model. The first of
each omits self-transitions and the second includes these. This has been done to allow
the structures (specifically the induced failure states) to be identified with ease. Please
note that transitions that are included on one of the diagrams may be omitted from the
other due to it being a low-probability transition below 0.05.

Size 10 (Figures 5.16 & 5.17)

This HMM is surprisingly simple: perhaps too simple to encompass the whole structure
of the task. There is a state that is associated with the camera (2) and two states for
turning (0 and T). The typical execution of this HMM remains mostly in 0 and T, and
oscillates between the two. Occasionally, the transition from 1 to 2 occurs, albeit with
very low probability. This probability is too low to be shown in Figure 5.17. The model

59

CHAPTER 5. EVALUATION 1

JLoMIdU GZ aZ1S YIm UONDSIADN JU2IPDID) 10f WAH H1°S 2anS1g

"o
00 nd, 1600 9500 @0 oo uo sie
n %o wue o

e o

160 00

L o 1o 1o

" ue o 6o

®<

o

storo

0

60

CHAPTER 5. EVALUATION 1

e

5o sTo

YL0MIaU OF 2215 Y11M UOIDSIADN JUIIPD.LD 10f WAH ST'S 9anS1yg

61

CHAPTER 5. EVALUATION 1

TURN LEFT
& LOCALISE

0.039 TURN LEFT
& LOCALISE

0016 0.14 0.13

IDLE
0.35

@

Figure 5.16: HMM for Panoramic Photo Figure 5.17: HMM for Panoramic Photo
with Errors size 10 network with Errors size 10 network (including self-
transitions)

TURN LEFT

can exit through 3 (which indicates that the robot is idle), pausing briefly before the
end of the task.

Since this HMM represents a task that includes induced errors, a good model should
include state(s) that can be traced to these errors. This model does not possess these.
Also, there are no states that are associated with any form of localisation behaviour,
suggesting that the model is not large enough to represent all the observed behaviours.

Size 20 (Figures 5.18 & 5.19)

This model has a much more defined structure than the size 10 HMM, with an easily
identifiable loop between 0, T and 7. This corresponds to turning (with angle localisa-
tion) and then taking a photo. There is an optional detour to 4 that allows for extra
turning and position adjustment if required.

Perhaps the most interesting feature can be identified when self-transitions are in-
cluded. This shows two states, 2 and 6 that correspond to the camera shutter being
open. These states have very low probabilities of being transitioned to, combined with
very high self-transition probabilities of around 0.95. This evidence points towards
these two states corresponding to the induced error of the camera shutter being stuck
open. The HMM has learnt this aspect of the behaviour correctly and has allocated
these states that could potentially be used to identify this type of failure.

62

CHAPTER 5. EVALUATION 1

(suonisun.j-f)as 3uipnjoul)
¥10MI2U ()Z 2Z1S SAOLIF YIIM 010Yd IMUDI0UD] 10f WAH :61°S 2InSLd $L0MIDU (OZ 271 SIOLIT YILM 010Yd dMUDIOUD] 10f WNH *81°S IN31]

NOILISOd 1snrav

NOILISOd LSNraV
atml_ﬁ ® 1437 N¥0

170

6500 €10 aLd

3SIMvo01
NOILLISOd
? VYIWVD

3SIvo01

NOILISOd

3SITVO0T ITONVY ® VH3INVO
® 1437 NyNL

TA43T NYNL

63

CHAPTER 5. EVALUATION 1

Size 25 (Figures 5.20 & 5.21)

With this model, the HMM starts to get much more complex, but structures are still
visible and identifiable. Although not immediately apparent, there are two loops in this
HMM. The first is from 7 — 14 - 6 — 4 —» 15 —» 17 — 7. The second is from2 — 1 —
0 — 18 — 3 = 5 — 2. These loops are almost identical and contain similar features,
including the camera shutter being active as well as turning and localisation. There
are several transitions between the two loops, but these have low probabilities: once
a loop is entered into, it is rarely exited. The fact that there are two loops here when
one would apparently do suggests that this model may have over-learnt differences
between the two. An alternative possibility is that there is a subtle difference between
the two loops that is not obviously apparent under visual examination.

Apart from the starting and finishing behaviour states, there are two states that are
not in the main loops, 12 and 13. These are both strongly associated with the camera
shutter being open and, like before, have low probabilities of occurring as well as high
self-transition probabilities. These most likely correspond to the induced error states.

Size 30 (Figures 5.22 & 5.23)

As with the size 25 model, there are two main loops in this diagram that correspond to
the TAKE PHOTO, TURN behaviour. In addition, there is a cluster of states consisting of
10, 1, 11, 2 and 18, which all correspond to the camera shutter being open. With the
high self-transition probabilities and low probabilities of occurring, these are probably
the induced error states. The large amount of repetition in the camera shutter states
suggests that this model has overlearnt this feature, where fewer states would have
sufficed. This indicates that this model may be too large.

CHAPTER 5. EVALUATION 1

FAST TURN
& ANGLE LOCALISE

TURN & ANGLE

031
LOCALISE

0.055

0.19

POSITION
LOCALISE

.61

ADJUST

0.075 POSITION 0.067

0072

TURN &
ADJUST POSITION

FAST TURN &
MINOR LOCALISE

ANGLE LOCALISE
0.16 01

ANGLE JOCALISE
0

Figure 5.20: HMM for Panoramic Photo with Errors size 25 network

NGLE
LOCALISE

FAST TURN
ANGLE LOCALISE

TURN & ANGLE
LOCALISE

013

0.055

CHAPTER 5. EVALUATION 1

0.047

FURN &
R LOCALISE

0.072

.83

0.082

POSITION
0.1 LOCALISE

ADJUST
POSITION

Figure 5.21: HMM for Panoramic Photo with Errors size 25 network (including self-transitions)

66

TURN & ANGLE

T

LOCALISE

01

ST
POSITION

Figure 5.22: HMM for Panoramic Photo with Errors size 30 network

0.051

TURN & ANGLE
LOCALISE

0.8

0.078

S POSITION
= /LOCALISATION

67

CHAPTER 5. EVALUATION 1

0.093

CHAPTER 5. EVALUATION 1

TURN & ANG
LOCALISE

026

091

0.92

0.074

079 m’ 093 082 0.78 0093

ANGLE LOCALISE
0.18

0.03 0

0.066
OSsT

POSITION
0071 026

0079 01
LO ISE
0.09

083 0.0057

088 0.02

Figure 5.23: HMM for Panoramic Photo with Errors size 30 network (including self-transitions)

68

CHAPTER 5. EVALUATION 1

»

A

b »d
« > < L &

Phase 1 Phase 2 Phase 3 Phase 4

T

0 20 40 60 80 100 120 140

A B CD Tme(E F G

v

State
PWNNO =B OOO

Figure 5.24: HMM state sequence for Gradient Navigation using Size 10 HMM

5.3 HMM Trajectory Analysis

5.3.1

In Section 5.1, the raw data from the robot was analysed from a particular execution
for two of the tasks. During this process, a number of locations were labelled on the
graphs that had been manually identified. Section 5.2 explored the HMMs that were
learnt from the raw data, and attempted to identify many of the states present. It must
be strongly emphasised that these analyses were done independently of one another,
and the HMMs were learnt with no input of the manually identified features. The cor-
relations listed below are an indication of the strong learning capability of the models,
and not a by-product of the learning process.

The two analyses performed so far can be correlated by turning the raw data examined
earlier into sequences of states by plugging the data into the HMMs. This allows the
identified locations in the raw data to be compared directly to the identified HMM
states at those locations. The graphs in this section show these HMM state sequences
for several models to illustrate how the robot passed through the models during the
course of execution. For curiosity, it is possible to directly compare the numbered
states below with the raw data graphs and the HMMs to see how execution passes
through these, but this is not necessary. The numbered states along the vertical axis
in each graph have been rearranged to best illustrate the structure of the task and the
transitions between the states. Also note that there are some states that are not visited
by the executions analysed below.

Gradient Navigation
Size 10 (Figure 5.24)

Immediately apparent in this graph are the different phases of the task, as identified
previously in Sheet 1 of the raw data. Although the structures do not line up perfectly

69

CHAPTER 5. EVALUATION 1

3
y
A

»d b
» e L

Phase 1 Phase 2 Phase 3 Phase 4

= o’

g,

State
VW= NwoouuoNLO

T T T T T T

20 40 60 80 100 120 140

A B CD Tme(s) E o G

Figure 5.25: HMM state sequence for Gradient Navigation using Size 20 HMM

o

with the phases, the general outline can be seen. The first and third phases loosely
correspond to 2 and 7, which were both classified as “cruise” states in the HMM (Fig-
ure 5.12, p.58). There is a cluster of 0, 1, 4 and 5 which make up the main body of the
task during the second phase. Points A and B, previously identified in the raw data as
“obstacle avoidance” are both represented by 0. This state was manually identified in
the HMM as “reverse, turn and minor localise”, which can easily be seen as an obstacle
avoidance behaviour.

Size 20 (Figure 5.25)

Similar to the Size 10 sequence above, this follows the same basic pattern but in a more
pronounced manner. There is an oscillation between 2 and 3 at the beginning and end
of the task, and then the main body of the task is made up of the cluster 0, 8, 5 and
6. In this model, the “obstacle avoidance” at Points A and B both correspond to 3. The
clearest correlations here though are Points D and G which are very obviously associ-
ated with 7. These two points were classified in the raw data as “collision recovery”,
and have been allocated their own state here. During the HMM analysis, 7 was labelled
as “idle” (Figure 5.13, p.59), but this discrepancy may be due to the HMM state not
having a pronounced association with any particular behaviour on visual examination.

Size 25 (Figure 5.26)

Once again, the same overall structure exists, except with a lot more detail and def-
inition. The “collision recovery” points at D and G have, like before, been classified
into one state, 5, which does not occur at any other time. Due to the visual complex-
ity of the learnt model, the HMM states were not labelled when previously examined
(Figure 5.14, p.60) but it is now clear that 5 is associated with collision recovery.

70

17

-
WOOON—~=—0b0

State

10
15
12

14

State
b =—-0NWLO

CHAPTER 5. EVALUATION 1

£

»d »d »
L w

Phase 2 Phase 3 Phase 4

- o’

” III i .
J'If Illlll-l III I |I||Il
il

Phase 1

J [1

[
T ! Tl
(') 2'0 4'0 6T0 8'0 1 (')O] '20 1 ;‘10
B CD Time (s) E F G

Figure 5.26: HMM state sequence for Gradient Navigation using Size 25 HMM

B Y

T T T T T 1

10 20 30 40 50 60

B C D m F G

Figure 5.27: HMM state sequence for Panoramic Photo with Errors using Size 10 HMM

5.3.2 Panoramic Photo with Errors
Size 10 (Figure 5.27)

In this model, the lack of states and discriminatory power is very apparent. Out of the
seven states, only 0 and 1 are regularly visited throughout the course of the task. There
are two occurrences of 2, and these correspond to the periods between C and D, and
between F and G. When the raw data was examined, these periods were identified
as the failure states where the camera shutter was stuck open. This matches with the
label “camera” that was assigned to the HMM state when analysed earlier (Figure 5.16,
p-62). This model, although small, has successfully captured the ability to detect these
error states, but at the expense of not being able to detect the non-error camera states.

71

CHAPTER 5. EVALUATION 1

L '._'I.
o fﬂ#. S
0 A 10 i 2OC o nmg) 40 I 50 e 60

Figure 5.28: HMM state sequence for Panoramic Photo with Errors using Size 20 HMM

Size 20 (Figure 5.28)

The cyclical nature of the Panoramic Photo with Errors task becomes apparent here,
with a clear cycle of 7 — 0 — 1 —7. This sequence of states was identified in the
HMM (Figure 5.18, p.63) as “idle” — “turn left & angle localise” — “camera & position
localisation” — “idle”. Occasionally, the robot moves into 4 during this process. Point E
sits firmly inside this state, and was identified in the raw data as “under-rotation lo-
calisation and correction”. In the HMM, this state was classified as “turn left & adjust
position”, which is the visible behaviour that would appear if the robot localised itself
due to under-rotation.

The times at which failure occurs now correspond to two separate states, 2 and 6,
which are extremely well defined in this execution. Why the model has learnt these as
two separate states is unknown, but it suggests that there may be redundancy present
in the model. In this HMM, 1 was previously identified as being associated with the
non-error camera shutter. This occurs 18 times in this HMM, plus the two error camera
shutter states makes the total of 20 camera events that make up the task.

Size 25 (Figure 5.29)

This model provides an even richer insight into the structure of the task. In the learnt
HMM of this size (Figure 5.20, p.65), there were two cycles identified which can be
seen in the upper and lower halves of the state sequence graph. Point A, which was
identified as “initial position localisation” in the HMM, is associated with 11 in this
execution. This state was labelled as “adjust position” in the HMM. There are also
the two states that correspond to the failures, 12 and 13. In the HMM, 1 and 15 were
identified as the non-error camera shutter states. Between them, these states occur 18

72

54

CHAPTER 5. EVALUATION 1

State
s
—
 —
——

6 i |l|
14 l|
7 I |
1
16
9
8
19 |
0 10 20 30 40 50 60
A B C D Tmegm F G

Figure 5.29: HMM state sequence for Panoramic Photo with Errors using Size 25 HMM

times, which makes the required 20 camera shutter events when the two error states
are included.

In this execution, the “under-rotation localisation and correction” behaviour at Point E
is represented not by a state, but by an omission of 6. In all of the other cycles, 6
always follows 14, but it is skipped and goes straight to 4. The transition 14 — 4 has an
extremely unlikely chance of happening (0.3%), but it has been recognised as the most
likely transition in this case. In the HMM, 6 was identified as being a “turn & adjust
position” behaviour. The omission of this state suggests that the absence, as well as the
presence of a state can be an indication of particular behaviours.

Failure State Identification

The Panoramic Photo with Errors task and the resultant HMMs show that it is possible
to manually identify failure states within the system. In the general case though, it
is unlikely that all failures are easily characterised by a particular state, but are more
likely represented by a transitional behaviour across several states. In the case of the
Panoramic Photo with Errors task, repeated occurrences of a particular state are excel-
lent indicators of the shutter becoming stuck. In a more complex task, the executive
may try several steps to recover, producing a set of states indicating failure. For ex-
ample, a wheeled robot that manoeuvres itself onto a sandy surface may experience

73

5.5

CHAPTER 5. EVALUATION 1

large amounts of wheel-slippage, causing the odometry data to be incorrect, requiring
a greater amount of localisation. This would produce the behaviour of the robot appar-
ently moving forwards, interspersed with localisation at regular intervals to correct the
error in the robot’s position. In an HMM, this could be seen as two separate states, one
moving forwards and one localising, which are repeated in succession. If enough pairs
of this state have occurred then it is likely that wheel-slippage has been occurring and
an error can be reported.

Sadly; there is not enough data here to analyse if it would be possible to automatically
identify states or behaviours that could represent failure (as opposed to the manual
identification that has been done here), but it has been proved that these failure states
can be learnt in an HMM. Even if these failure states and behaviours cannot be auto-
matically identified, there are methods that can be used to detect failure if the executive
deviates too far from the learnt HMM. These methods will be explored in Section 6.2.

Learnt HMM Conclusions

In this chapter, HMMs were learnt for the different task by using Kohonen Networks
of varying sizes. These were compared back with the raw data by cross-referencing
through the HMM state sequences produced by these models. In all cases, the Size 10
networks had problems with missing states, or not possessing a fine-grained represen-
tation of the tasks. Such models would not suitably represent the necessary aspects
of the tasks. On the other hand, the Size 30 networks appeared to contain too many
states and connections between these. This resulted in models that appeared to dupli-
cate states and structures within the model. The ideal size Kohonen Network seemed to
be between these values, around Size 20-25 depending on the complexity of the task.
Judging the ideal network size is still a trial and error process however, and experimen-
tation with different network sizes (as within this chapter) is probably required when
deciding on network sizes for future work.

74

CHAPTER 6

Failure Detection

If everything seems under control, you're
just not going fast enough

— Mario Andretti

HE ABILITY of an executive to examine its internal state through introspection,

as discussed in Chapter 4 is of no use unless there is some form of feedback

available. The state of a system must be analysed and interpreted before making
a decision as to how to make sense of the data and best use this for control. The
system has to track the progress of the task being carried out by the executive by using
introspection, and then identify any anomalies. Once this has been done, it needs to
prescribe a course of action that will minimise the disruption to the overall plan and
the available resources. These actions may include everything from basic monitoring
of general tasks, through to the detection of very specific error cases. There is a huge
scope for different types, and indeed different amounts of control at such a level.

Figure 6.1 shows a proposed layout of such a system as described above. The raw data
is collected and converted into a series of observations and, finally, states within an

75

CHAPTER 6. FAILURE DETECTION

y
o)
g Executive ‘g
'5 5
0 §
52 8
5 Raw Data o
A CONTROLLER
Processes data
Converted Data Identifies anomalies
% Construct corrective tasks
=
2 ;
o Observation =
8 g
(@) TASKMODEL
[8
— L % Information about correct
z 8 execution of task
= |HMM State Sequence =

Figure 6.1: The proposed structure for control

HMM, as described earlier. This data can then be passed onto a controller that has in-
formation about how the task should progress, in the form of a taskmodel. A taskmodel
contains a description of an HMM and also extra information that is useful for deter-
mining anomalies. This Chapter will explore what sort of extra information can be
contained in a taskmodel that can be used for failure detection. During execution, the
data received from the HMM can be compared to the taskmodel to determine devia-
tions and what course of action, if any, should take place. This can then be passed back
to the executive to continue execution.

When executing a task, there are two stages to the failure detection procedure:

1. Identify the most likely transitions through the HMM for the task so far

2. Decide if it is anomalous to see this sequence of transitions at this point during
execution

This chapter will address both of these points, followed by Chapter 8 which examines
the issue of opportunity insertion, which can be used when failure of a task occurs.

76

CHAPTER 6. FAILURE DETECTION

Current state: 1
Best sequence: 1,1,1,1,1

@
®
@

New Observation

Current state: 1
Best sequence: 1,1,2,2,3,1

Figure 6.2: How the Viterbi algorithm can produce fairly large fluctuations over time

6.1 Determining HMM Sequences
The Viterbi algorithm [Russell and Norvig, 1995] can be used to establish the most
likely state of the HMM during execution of the task. This is a dynamic programming
algorithm for finding the most likely sequence of states in an HMM, given a series of
observations. From the raw data collected, a series of observations is taken and then the
Viterbi algorithm converts these into the most likely state sequence within the HMM.

In this chapter so far, the terminology ‘indicative of failure’ has been used, rather than
failure itself. This is because the algorithms described here are subject to fluctuations
that could potentially falsely report a failure, even during a normal execution. For
example, one of the disadvantages of using the Viterbi algorithm for state estimation is
that the trajectory of states can fluctuate quite wildly over time when extra observations
are added. In Figure 6.2, a sequence of:

1-1-1-1-1
could quickly change to a sequence of:

1-1-2-2-53-51

at the next timepoint, with the addition of a single extra observation that provided
evidence that the latter sequence of states was more likely. Any mechanism that detects

77

6.1.1

6.2

CHAPTER 6. FAILURE DETECTION

errors must allow for fluctuations such as this and minor errors to avoid reporting false
positives. Such techniques will be explored in Chapter 7.

Online Viterbi Algorithm

The Viterbi algorithm is usually intended to be used once on a complete set of data,
when all observations are available. In the case of an executive as here, observations
are being generated constantly resulting in a dynamically increasing set of data. Be-
cause the Viterbi algorithm needs to be applied on a set of data that is continually
growing, there are optimisations that can be made to significantly reduce the amount
of computation required to run it. The Viterbi algorithm requires the calculation of
the most probable path through what is sometimes referred to as a Viterbi trellis. Each
observation is represented by the addition of an additional layer to the trellis. Rather
than entirely recompute the probabilities in the trellis with every new observation, the
trellis can be stored and then reused next time the algorithm is called. When a new
observation is made, only a single layer is added to the trellis and calculation of the
Viterbi algorithm proceeds as normal (see Figure 6.3). Essentially, the Viterbi algorithm
is simply paused between the addition of layers, and the final step of tracing the most
probable transitions is performed at every layer. This variation on the standard Viterbi
algorithm has been termed the online Viterbi algorithm, in reference to the fact that it
works in real-time with incomplete data sets that are extended once they are known.

The online Viterbi algorithm works because the probabilities of the intermediate states
of the trellis are unaffected by the addition of new data points at the end; all that is
affected is the path of highest probability, which can be calculated in the usual manner
by tracing back through the trellis. As long as the best-transition path is retained be-
tween observations, this functions identically to the standard Viterbi algorithm without
the overhead of recalculation each time.

Failure Detection

To detect failure from a list of states, the concept of what is a normal execution looks
like needs to be learnt. Fortunately, this is already available in the form of the data
that was collected to create the HMMs in Chapter 4. These include every successful
execution of the task, and from this can be extracted the information of what is normal
and what is abnormal during execution. There are three methods that were developed
to identify if an HMM state sequence is abnormal:

78

CHAPTER 6. FAILURE DETECTION

S
Re-used Trellis

Figure 6.3: How layers in the Viterbi trellis can be stored and extended later

79

CHAPTER 6. FAILURE DETECTION

Probabilistic Anomaly Detection

The Viterbi algorithm functions by calculating the probability of observing state
sequences, and then reports back with the most probable sequence that has oc-
curred. One of the side effects of the Viterbi algorithm is this calculation of these
probabilities, and these can be used to evaluate the likelihood that a sequence
occurred!. By using the data from which the models were learnt, the general
trends of how the probability behaves throughout the course of the action can
be recorded. A deviation from these general trends is indicative of failure. In
Figure 6.4, two actual executions of the Panoramic Photo task are shown. The
first is a normal execution, as taken from the training data, and the second is
from test data where the robot’s radio connection to the controlling computer
was deliberately broken after around 17 seconds. It can clearly be seen that the
probability from the failed execution deviates from the probability of normal ex-
ecution at around 35 seconds after the start. Note that the probability values
simply represent the amount of certainty that the model has the correct sequence.
A higher probability does not mean less or greater likelihood of failure. Because
methods of detecting deviations such as this are not straightforward, these will
be investigated and evaluated in Chapter 7.

Temporal Anomaly Detection
This method detects if the correct number of occurrences of a particular state
have been observed, done by counting the number of occurrences of each state at
each timepoint, and comparing this to the number of occurrences in the training
data. If there are more or fewer incidences of states than in the training data
(for the particular timepoint), then this should be interpreted as a failure. For
example, if it is known that in all successful executions 9 occurred at least twice
by timepoint 10, then any execution that has not seen at least two of 9 at time-
point 10 is indicative of failure. Similarly, if there are at most eight occurrences of
9 at timepoint 10, then anything exceeding eight occurrences is also indicative of
failure. By taking a maximum and minimum value of occurrences for each state
at each timepoint, upper and lower bounds can be established. These bounds
can be represented as a graph, as shown in Figure 6.5. Each state in the action
has a similar graph with the range of normal possible statecounts. During execu-
tion, the number of occurrences of each state will increase, and must stay in the
area between the maximum and minimum statecounts. If the execution wanders
into one of the shaded failure areas then the abnormal number of occurrences of

1The probabilities calculated are very low because they are the conditional probability that a sequence
of states occurred given a specific sequence of observations. For example, with 100 observations, the
most probable sequence of states is likely to have a probability around the order of 10-'%, This is the
probability that a particular sequence of 100 states occurred, and hence is very improbable even though
it is the most probable sequence.

80

CHAPTER 6. FAILURE DETECTION

Viterbi Sequence Probability Change Across Time
Time
O 8 16 24 32 40 48 56 64 72 80 88 96 104 112
0 e Sy 3 & A A ' A ' A A A A " A A A A L A A A A A A A A J
201 . - Normal Execution
‘ S, ELTT Failure Execution
-40 1 I &
Z 60+ Failure
o induced i
§ -80 | u..-. .,
8 Probability et
81001 starts becoming
affected
-120
.]401
oy

Figure 6.4: Detecting failure using Viterbi sequence probabilities.

that particular state indicates that something may have gone wrong. The graph
shows two example executions of actions and the paths they take through this
graph. Execution A successfully completes without entering the shaded areas.
Note that this execution finishes quite quickly in roughly 130 steps, far short of
the number of steps that the graph is valid for: it is not necessary for an action
to take any particular number of steps as long as the statecounts do not leave
the area bounded by the maximum and minimum values. Execution B enters the
shaded area at the bottom indicating too few occurrences of the particular state
that the graph represents. Note that if the action were left to continue, it would
not recover from this failure and it would be beneficial to terminate the action if
it remains in this area for a certain amount of time. As stated above, this graph
only represents one of the states; in an HMM with thirty states there would be
twenty-nine similar graphs tracking the progress of the execution. If any of the
thirty graphs encounters an abnormal statecount then this is indicative of failure.

State Tardiness Detection (non-temporal)
This works by recording the latest point at which a particular HMM state has been
seen. For example, if it is known that 9 in the HMM was never seen in the training
data after timepoint 50, then any occurrence of 9 after this timepoint should be
construed as a failure. State Tardiness Detection was conceived to detect errors

81

6.2.1

CHAPTER 6. FAILURE DETECTION

Maximum and Minimum Statecounts
90 -
80 1 I_r‘
70 1 MAX
01 = Execution A
g 60 JERERUNEENE—. 4 Jemees Execution B
g 40 -
30 1
20 FAILURE AN C
10d /A s (s
. < ,_B MIN
0 - - - : . v . . . v . . . v
0 40 80 120 160 200 240 280
Timepoint (observations)

Figure 6.5: Detecting failure using maximum and minimum statecounts.

in the cases where a particular state has to occur at some timepoint through the
action, but not at the end. If that particular state occurs too late in the action
then it is indicative that something has gone wrong.

Bootstrapping

A technique of bootstrapping from the learnt model was tried, albeit with limited suc-
cess. The aim of this was to produce a prediction of how long the action has remaining
given the current state. For example, if the Viterbi algorithm reports that the executive
was in State ¥, then the prediction could say that there were roughly T more observa-
tions until the action could be expected to finish. This information would be very useful
for an executive because it would allow it to determine if the time remaining for the
action was greater than the time available. If this were the case, then the task would
not be able to complete in time, and the task could be reported as having failed early.

To form the predictions, executions of the HMM were simulated by taking transitions
between states as indicated by the probabilities in the model. The average number
of timepoints (number of steps) to reach the end state starting from each state was
recorded. This value can be taken as an average distance to the end of the action, and
can be used during execution to predict how long is remaining until completion.

For this representation to be useful in terms of execution monitoring, each state should
have a distinctive time remaining. There should be some states that have high average

82

CHAPTER 6. FAILURE DETECTION

Predicted Time Remaining per State

Steps
8

15 | ol aohRaEsERION 0. 2 6 18 8 12 14) 2
State #

Figure 6.6: Predicted number of timepoints (HMM steps) remaining per state, sorted by time
remaining

times to completion, and also some that have short times. When the above bootstrap-
ping technique was tried, the states did not have highly discriminatory times. The re-
sults for one typical HMM can be seen in Figure 6.6 (the task that produced this HMM
was a Panoramic Photo with Errors task). All but four of the states predict completion
times within the region of 120-145 steps. These other states predict times that rapidly
decrease to zero with no states representing anything from 10-85 steps to completion
of the task. It is interesting to note that even though the action is one with deliberate
errors inserted, there are no states with higher times to completion, which could be
indicative of error states. Other HMMs produce very similar diagrams, and this char-
acteristic distribution of times to completion is seen across all HMMs that were tried.
Also, the failure states that were manually identified earlier did not have unusually
high durations to completion, and so this technique could not be used to automatically
identify these.

To illustrate the lack of predictive power of this method, a typical execution using real
data from the Panoramic Photo with Errors task was taken and converted into a state
sequence for the above HMM. By plotting a graph of time remaining to completion
versus the predicted time for each state in sequence, Figure 6.7 is produced. If the pre-
dicted time remaining accurately represented the actual time remaining then it should
decrease at a constant rate, as indicated by the line in the figure. Unfortunately this
does not happen and the predicted time remaining using this method proves to be a
very poor estimate of the actual time remaining. It constantly over-estimates the time
remaining and is wildly inaccurate with high errors. Towards the end of the action

83

6.2.2

CHAPTER 6. FAILURE DETECTION

Predicted Time Remaining vs. Actual Time Remaining
when using bootstrapped data
160 1
140 1=
g]20‘
[-
g 100 1
g 80 1
=
g 60 1
40 - .
—— Predicted Time Remaining| e,
201 |~ ActualTimeRemaining | T, N
e o oyl Y
140 130 120 110 100 90 80 70 60 50 40 30 20 10 O
Predicted time remaining

Figure 6.7: Using the bootstrapped data to predict time remaining for an real execution

there are a few points at which the prediction decreases, but it generally remains high
until the very end.

It is probably the case that the loops and cycles in the HMMs caused any distinctions
between states to be watered down. Indeed, the HMMs are learnt as non-temporal
structures where states are not assigned times. Instead, they are probability based and
have no memory of the number of times a particular state has been encountered. Loops
will always have a fixed exiting probability within the HMM, rather than altering based
on previous observations. For future work, there is the possibility of learning a second
higher-order HMM, with the new observations being represented by the state of the
original HMM paired with time. If such a model were learnt, it would lose some of the
generality as it would now be tied to actions of a specific duration. It seems that there
may be a choice here between having a generic model with low predictive power, or
having a highly specialised model with high predictive power.

Taskmodels

In Chapter 4, details of how to learn an HMM for a task were discussed, and this has
been expanded on by providing methods for detecting failure by using the HMM. If
all of this information is collated then the result is a reusable model of an action that
can be used for failure prediction. For this purpose, a type of file called a taskmodel
was developed. A taskmodel contains all of the information required for an executive

84

CHAPTER 6. FAILURE DETECTION

controller to monitor the progress of an action through an HMM, and then how to
use this information to provide extra details that may be useful for controlling the
action. It is designed to be portable and used easily by any control architecture. As a
proof of concept, taskmodels were used within the MADBOT control architecture (see
Section 8.1.1).

Although many failure detection routines have been proposed within this chapter, an
analysis of these is required to evaluate their usefulness. The following chapter there-
fore provides a detailed analysis of the failure detection routines that were outlined
above, along with an evaluation of their error-detection rates.

CHAPTER 7

Evaluation 2

Malum consilium quod mutari non potest
(It’s a bad plan that can’t be changed)

— Publilius Syrus

VALUATION OF THE error detection methods discussed in the previous chapter

is essential for discovering their practicality. This chapter evaluates these tech-

niques, alongside measurements of their ability to detect or predict errors. The
Panoramic Photo task was chosen for this evaluation as it produced the HMMs with
the clearest structures out of the learnt models. This ensures that successful detec-
tion methods are not masked by poor task models. To evaluate these methods of error
detection, three sets of data were collected:

e Training (50 executions)
e Verification (20 executions)

e Error (50 executions, split into five groups of 10 executions for different errors)

86

CHAPTER 7. EVALUATION 2

The training data was used to learn the HMMs, and the verification data was kept
separate so that the learnt models could be tested. The error data consisted of times
where a specific type of error was induced during the execution. For all of the error
executions, data was collected up to the point that the task finished or long enough to
allow a reasonable algorithm to detect an error. The errors induced were as follows:

Lost Connection
The radio connection between the controlling computer and the robot was dis-
connected, meaning that the robot stopped receiving commands and could not
transmit new sensor data.

Blocked
The robot was trapped so that it was unable to turn to the next angle to take a
photograph. This is to simulate the robot becoming blocked by some environ-
mental factor.

Slowed
In this data, the robot was deliberately slowed down by exerting friction on the
top of the robot. This caused the robot to turn much more slowly than normal.

Propped Up

This set of data was collected to simulate the robot “bottoming-out” by the wheels
losing contact on the ground on an uneven surface. Simply put, the front of the
robot was propped-up on a block so that the wheels could not make the robot
rotate. The execution continues as normal as the robot believes that it is still
rotating, however there may be an extreme number of localisation steps as it
tries to correct the errors. Eventually the robot’s localisation cannot keep up with
the errors and becomes wildly inaccurate.

Unknown Environment
This is perhaps the hardest type of error to detect, as it was induced by placing the
robot in an unknown environment; one which the internal map did not match,
causing localisation attempts to produce potentially incorrect and inconsistent
results. The robot was still able to complete the task, but the angles through
which it turned were incorrect.

Throughout this chapter, analysis was done by using the size 20 HMM for the Panoramic
Photo task, as in Figure 5.5. This was selected for its relative simplicity whilst still
retaining some structures of the more complex aspects of the task. With larger models,
the average number of times a state is visited is also lower (there are more states to
visit, but the same number of observations). This makes the maximum and minimum
statecount values lower and therefore less distinctive.

87

7.1

CHAPTER 7. EVALUATION 2

Viterbi Sequence Probability Change Across Time

(Training Data)
Time
0O 8 16 24 32 40 48 56 64 72 80 88 96 104112120128 136
Y TP T SR Sl LT 0 1 P S S0 S BT S A S S SN e
-20 1
-40 A
_60.

log (probabilty)
8

-120 1

2140 1

-]60 -

-180 4 Training Data
range

-200 J

Figure 7.1: The Viterbi sequence probabilities for the training data

Probabilistic Anomaly Detection

As briefly mentioned in the previous chapter, irregular executions can be detected from
identifying anomalies in the Viterbi sequence probabilities. Determining a strategy for
identifying these anomalies requires examination of the executions to look for patterns
and features that could be used to indicate failure. Figure 7.1 shows the probabilities
obtained from the fifty Viterbi sequences used to learn the Panoramic Photo task. Time
is plotted horizontally, and log(probability) vertically. Logarithmic values are used due
to the fact that the probabilities are multiplied at each timepoint, and therefore de-
crease exponentially. In this figure, the probabilities of the training data decrease at a
relatively uniform rate, and are contained within a range of about 40 magnitudes in
size. There is one execution in the training data that took about twenty seconds longer
to complete than the rest, and this protrudes past the end of the rest of the data. The
most likely reason for this single execution taking longer is a build up of errors that led
to a series of localisation steps that did not correct the error entirely.

The following section contains an analysis of the HMM sequence probabilities for each
of the remaining data sets.

88

7.1.1

CHAPTER 7. EVALUATION 2

Viterbi Sequence Probability Change Across Time
(Verification Data)

Time (seconds)

Ot e a1

)
(=)

88 &

-
N
o

log (probability)
8

180 1 I:] Training Data

Figure 7.2: The Viterbi sequence probabilities for the verification data

Manual Examination of Viterbi Probabilities
Verification Data (Figure 7.2)

This graph shows the probabilities from twenty executions that were gathered for ver-
ifying the model. Almost all of the probability lines lie inside the shaded area that
represents the range of probabilities observed from the training data. Most of the veri-
fication executions stay within or around the same area as the training executions, but
there are several executions that deviate slightly. The difference is relatively minimal
though, and never more than around 8 orders of magnitude. Note that all of the execu-
tions take longer than 49 out of the original 50 executions in the training data. Because
of the amount of time it took to collect data, the training data and the verification data
were collected on different occasions. In hindsight, it would have been better to have
collected all of the data and then partitioned it randomly into training and verification
data, but time pressures meant that this was not done.

Lost Connection Errors (Figure 7.3)

The cases where the connection was deliberately terminated can be seen in this fig-
ure. The upshot of terminating the connection is that the robot cannot report back
new sensor data, and the computer uses the last known values instead. These values
are repeated until the action is manually terminated. In the graph, the times at which

89

CHAPTER 7. EVALUATION 2

Viterbi Sequence Probability Change Across Time
(Lost Connection Errors)
Time (seconds)
0O 8 16 24 32 40 48 56 64 72 80 88 96 104112120128 136

0 PRI WA T VLT Wy TR L L A i) 1 1 TP L . S v |

0Os (fime of
induced failure)

log (probability)
8 8

range

Figure 7.3: The Viterbi sequence probabilities for the ‘Lost Connection’ error data

the failures were induced are indicated at the end of each line. When the failure was
induced at 0 seconds, the probability decreases at a very slow rate right from the be-
ginning. This is a behaviour that was not seen in any of the training data. In five of the
remaining nine cases the probability decreases roughly the same rate as the training
data up to a point, and then breaks off before decreasing at the slower rate. The other
four cases (failures induced at 6, 12, 24 and 20 seconds) show no obvious changes in
the rate of probability decrease, and all appear with probabilities similar to the training
data. It may seem strange at first that in the majority of the failure cases the proba-
bilities are higher than the training data, but this is to be expected. The probability
reported by the Viterbi algorithm is the chance that a particular sequence of observa-
tions produced a particular output sequence of states. In the case of these errors, the
algorithm is simply more confident that it has the correct sequence of states for the
given observations. For the size 20 model that was used (which can be seen in Fig-
ure 5.5), these state sequences tend to be represented by a repetition of State 5.This is
the state that can occur just before the end of the model, and has a high self-transition
probability of 0.68. In one of the error cases, State 2 was repeated in the same manner,
which also has a high self-transition probability of 0.75. As would be expected, it seems
that the HMM is seeking out the best place to stay to maximise the probability of the
sequence.

90

CHAPTER 7. EVALUATION 2

Viterbi Sequence Probability Change Across Time
(Blocked Errors)
Time
R R R EEEEEEEEEERE RN

PP e AT 0 e P g o

-20 4

-40 1 Os (time of

induced fallure)

_60-
£ 801
3
g -100
g

-120 1
g

-140 1

-160 1 40s

Training Data
aso{ [T
_2m.

Figure 7.4: The Viterbi sequence probabilities for the ‘Blocked’ error data

Because the last received sensor data is repeated when the connection is terminated,
the robot could report that it is continuously stuck in any one of the states through
which it progresses. This means that some of the states may be easily detected, such
as states that that rarely repeat in succession. Others states may be much harder to
identify, for example those that repeat many times in succession during normal execu-
tions. The fact that only six of the ten sequences display obvious anomalies could be
attributed to this fact.

Blocked Errors (Figure 7.4)

Like the error cases in which the connection was terminated, these executions have
probabilities that deviate upwards from the training data. The difference here is that
all of the sequences exhibit this behaviour, and not just the majority. One explanation
for this could be down to the sensor values reported from the robot; as opposed to the
case where the radio connection was severed, the data reported back here will always
indicate that the robot is barely moving. The sensor values may change slightly as the
robot tries to free itself, but it never manages to do so and angular change remains very
close to zero.

91

CHAPTER 7. EVALUATION 2

Viterbi Sequence Probability Change Across Time
(Slowed Errors)

-300 1 Training Data
7 g

Figure 7.5: The Viterbi sequence probabilities for the ‘Slowed’ error data

Slowed Errors (Figure 7.5)

Since the robot is being slowed down during turning, the action takes much longer to
complete than the normal executions. In these error cases, the probabilities decrease
at a greater rate than normal, proceeding to a minimum probability of around 1073%,
compared to a minimum of 10~'%° for the training data. The very low-probability se-
quences could be due to the fact that the most appropriate HMM sequences in these
cases loop on states that have low self-transition probabilities. Such a trajectory is

highly unlikely to occur.

Propped Up Errors (Figure 7.6)

The data collected from these error executions does not show any apparent differ-
ence to the training or verification data. The probabilities reported back are within
acceptable limits and it is impossible to distinguish these executions as possessing any
anomalies.

Unknown Environment Errors (Figure 7.7)

Again, there is no apparent distinction between errors of this type and normal execu-
tions. All of the executions progressed with sensible probabilities that do not indicate
the occurrence of any failure.

92

CHAPTER 7. EVALUATION 2

Viterbi Sequence Probability Change Across Time
(Propped Up Errors)
Time
cw2INQ9ISINSggSRERIS
° i
.20 -
-40
60 -
3 601
2-100-
§-120-
-140 1
-160
a80{ | jng bt
200

Figure 7.6: The Viterbi sequence probabilities for the ‘Propped Up’ error data

Viterbi Sequence Probability Change Across Time
(Unknown Environment Errors)
Time
co23HeSIBINBe 3288333
0 . a el e e AN
20
.40
60
Z 801
g.m.
8-120-
-140 -
160 -
-180 :;ar:glengooto
.200 4

Figure 7.7: The Viterbi sequence probabilities for the Unknown Environment’ error data

93

CHAPTER 7. EVALUATION 2

7.1.2 Automatic Error Detection

Since visual examination of the graphs can detect certain types of errors, a method
for automatically detecting these errors is highly desirable. The method proposed be-
low has been termed Cumulative Log Probability Difference, or CLPD. Simply put, the
CLPD measures how far the sequence has wandered outside the range defined by the
maximum and minimum probabilities seen for the training data. If the sequence wan-
ders outside the boundaries seen for a particular timepoint, the difference between the
log(probabilities) is summed. By definition, the training data always remains in this
range and will always have a CLPD of 0.

More formally, with the following:

px = log(probability of Viterbi sequence at timepoint x)
m, = max(log(probability from training data at timepoint x))
n, = min(log(probability from training data at timepoint x))

Cumulative Log Probability Difference may then be defined:

LPD, = 0O [Px < mx A px > 1y
(Px - nx) [Px < ”x]
(mx - Px) [Px > mx]

CLPD, = iLPDi
i=0
Figure 7.8 shows the CLPD of the verification data, plotted on a log scale vertically for
clarity. Note that all but two of the executions have CLPDs of below 5001, suggesting
that in this task a CLPD of 500 or lower is a good indicator of successful execution.
Once a sequence has a CLPD of over 500 it can be identified as having failed. These
areas have been marked on the graph for clarity.

The graphs of CLPD values for each execution of the five error types can be found in
Appendix B. The times at which the error has been detected (CLPD value exceeds 500)
can be found in Figure 7.9. Note that most of the errors in the ‘Lost Connection’,
‘Blocked’ and ‘Slowed’ data were detected before the action terminated, but only one
of the ‘Propped Up’ errors was detected and none in the ‘Unknown Environment’ data.
The latter two are much more difficult to characterise in terms of possessing a physical

10ne of these executions exceeds a CLPD of 500 just before the end of the task, at the point where
there was only one training execution of this length. This means there was little evidence for the possible
spread of values at this timepoint, and causes the CLPD to rise sharply after this point. As mentioned
earlier, selecting the training and verification data randomly from the set of all normal executions would
most likely have eliminated this problem, leaving only one normal execution with a CLPD of over 500.

94

7.2

CHAPTER 7. EVALUATION 2

Cumulative Log Probability Difference
(Verification Errors)

100000
100001 $
i)
o
1000 A
500 -
& o
o 2
V]
3
10";’
1 S —— . -
0.1

Time (s)

Figure 7.8: The CLPD values for the verification data

behaviour that is different to a normal execution. Indeed, a human presented with
the raw data of one of these executions and a normal execution would most likely
not be able to distinguish between the two. It had been hoped that there would be
a difference in the amount of localisation required for these two error types, but it
seems that the sonar data and subroutines for localisation are not accurate enough to
provide meaningful data when such errors occur. Had the robot been equipped with
a more accurate localisation device (such as a laser range-finder) as well as a more
sophisticated algorithm then these errors may have been detected.

Temporal Anomaly Detection

Temporal Anomaly Detection identifies Viterbi sequences with an anomalous number
of occurrences of states (either too few or too many). To measure the amount of error,
a similar technique to the probabilistic anomaly detection above is used. The difference
between the observed number of occurrences of each state and the expected number
of states at each timepoint is summed. This may be formally defined as follows:

= number of states in HMM

t
c(s,x) = number of occurrences of state s up to timepoint x in current execution
m(s,x) = max(# of occurrences of state s up to timepoint x from training data)
n(s,x) = min(# of occurrences of state s up to timepoint x from training data)

95

CHAPTER 7. EVALUATION 2

DIDP 40.L12 9Y3 $S0.9D asupuLiofiad U0 Ajpwouy d1sTIqPqold 6°L am3iy

- 896 - 901 9's01 ot
- - - 2ol 001 ce
- - - 66 ¥901 144
- - oclt 008 - 114
- - 901 008 ¥'8L L1
- - ¥'v6 0'89 - (48
- - ¢111 (A VA 0'v9 o1
- - ¥'0L - - 9
- — ¥'c8 8'+9 9'€s €
- — ¢S4 ¥'0€ ¥'0€ 0
(S) pa1d9319p 10119 (S) powalap 10113 | (S) Pa1d3aap (S) pa109319p | (S) Pa1013p 1o11d | (S) 10119 paonpul
JUDWUOIIAUY umon{up, Adn paddoag, 10113 pAMOIS, | 10113 pPOO[d, | UONIUUO] 1507, Joou]

96

CHAPTER 7. EVALUATION 2

Temporal State Count Error Magnitude
(Verification data)

180 1

140 1
120 1

Errors

© ® 2 x 8§ § § 8 I R B 8B & 3

Time (s)

Figure 7.10: The TSCEM values for the verification data

The error magnitude for state s at timepoint x is defined as how far the current execu-
tion deviates from the training data:

ésx) = 0 [c(s,x) < m(s,x) Ac(s,x) > n(s,x)]
n(s,x) —c(s,x) [e(s,x) < n(s,x)]
c(s,x) —m(s,x) [c(s,x) > m(s,x)]

Temporal State Count Error Magnitude (TSCEM) for a sequence at timepoint x may
then be defined as the sum of all error magnitudes across all states up to that timepoint:

x [t
TSCEM, = Z(e(s,i))
i=0 \s=0

Figure 7.10 shows the TSCEM values for the verification data. Note that the magnitude
of the errors is usually below 100, and only one has a TSCEM value of over 125.
Because of this, it shall be taken that a TSCEM value anything over 125 as an indication
of failure in this case for this task.

The TSCEM values for each of the error executions can be found in Appendix C. As
with Probabilistic Anomaly Detection, identification of the ‘Lost Connection’, ‘Blocked’
and ‘Slowed’ errors was very successful. However, this technique detected the errors
more reliably than the CLPD technique. The technique was less successful with the
‘Propped Up’ and ‘Unknown Environment’ errors.

97

7.3

CHAPTER 7. EVALUATION 2

One possible extension to this method of error detection would be to take the Normal
distribution of occurrences of each state at each timepoint, rather than simply the max-
imum and minimum. The sum of the number of standard deviations by which each
statecount varies (z-score) could be taken instead of the TSCEM value. This would be
defined as follows:

u(s,x) = mean(# of occurrences of state s up to timepoint x from training data)
o(s,x) stddev(# of occurrences of state s up to timepoint x from training data)

The normalised error magnitude for state s at timepoint x is defined as:

X

NSCEM, = Y ()i clsd) —psi) i))
pri e R O
Using this value would provide a finer distinction between what does and what does
not constitute an error. The disadvantage is that calculation times would be slightly
greater and more training data would be required to get accurate Normal distributions
for each state at each timepoint. Since a great deal of data would be required to analyse
this, such a method would be an ideal subject for further research.

State Tardiness Detection

State Tardiness Detection is the simplest method of error detection here. The table be-
low shows the time in seconds at which errors were reported for the twenty verification
executions:

92.0 944 93.6 944 92.0
92.8 936 92.0 92.0 944
91.2 928 944 93.6 944
920 912 91.2 93.6 92.0

Note that all of the verification executions are being reported as having errors at around
91-95 seconds into execution i.e. before the task has completed. In a perfect error-
detection routine, the verification data should return no errors at all. This means that
all of these reported errors are false positives, nullifying any of the predictive power of
the algorithm. For completeness, the error detection times for all of the error executions
can be found in Figure 7.12. In these results, most errors are detected at around 91-95
seconds with a few being reported at 5.6 seconds into execution.

98

CHAPTER 7. EVALUATION 2

DIDP 10413 3y} $SO.OD 3dupuLIoftad uondalaq Ajpwouy plodwa] 114 9Ny

- - 9°¢6 - - ot
- - 0001 0'C6 ¢'1s ce
- - 0796 8L YvL 144
— - 0'¥8 ¢’t9 9 0c
- - ¥'8L 265 9'LS L1
- — (A7 8’8t o8y ¢l
- - Y99 (AR 4 oot o1
- 896 (AVA 4 8°9¢€ 09¢ 9
- - ¥'0S (AVAA 08¢ €
— 09 9°LE (X4 [X4 0
(S) pewaep 10119 (S) po1033ap 10119 | (S) Po1daILp () pa191dp | (S) parslep Joud | (S) 0119 padnpul
JuawuoIIAUg umownup, Adn paddoag, 10113 PIMOJS, | J01I9 paydolg, | [ondauuo) 1so07, Joaury,

99

CHAPTER 7. EVALUATION 2

DIDP 10113 3Y] $S0.0D dUDULIOftad U01IAIA(Q SSAUIP.ID] 2IDIS 1TT°L N3

2’16 9't6 16 9't6 9'c6 ov
9'c6 ¥Yv6 16 9'€6 9°c6 ce
0°C6 8°C6 cl6 9't6 9'€6 ¥c
9't6 8°C6 ¥'v6 9'€6 9'€6 0T
8°C6 8°C6 0°C6 9°t6 9'€6 L1
¥'v6 026 9°¢6 — 9'€6 cl
8°C6 9°¢6 16 9°€6 9't6 o1
9°¢6 C'16 6 - 9't6 9
Y'v6 ¥'v6 (A _— 9'€6 €
9'€6 ¥'v6 9's 9's 9'S 0
() pa1339p J0112 (S) po191op 10119 | (S) Paidaldp (S) pa1a1op | (S) por09aIdp 10119 | (S) 10119 padnpul
JUaWUOIIAUY umownun, Adn paddouay, 10113 pPamols, | 10119 payoolg, | uonddUUOY ISOT, joauiy,

100

CHAPTER 7. EVALUATION 2

7.4 Error Detection Evaluation

The data from above is repeated in Appendix D, but grouped by error type instead
of detection method. This allows a direct comparison of the Probabilistic Anomaly
Detection to the Temporal Anomaly Detection method. The State Tardiness method has
not been included here because of the false positives that it produced. From the tables
in the Appendix, it can clearly be seen that Temporal Anomaly Detection detects the
errors earlier, and detects more of the errors. Temporal Anomaly Detection successfully
identified 30/50 errors, while Probabilistic Anomaly Detection identified only 24/50.

101

8.1

CHAPTER 8

Reacting to Uncertainty and Failure

It is far better to foresee even without
certainty than not to foresee at all

— Henri Poincaré

NCE FAILURE has been detected, an appropriate response must follow to en-

sure that the negative impact of failure is minimised. In previous chapters,

the issues of introspection and error detection were covered. To complete the
system and allow full execution, a high-level controlling mechanism is required. Such
a mechanism allows the system to establish how to best react to problems once they
have occurred.

Linkage to High-Level States

So far, the concept of a state has referred specifically to low-level, internal states that
may not be directly observable. Examples include the HMM states that were learnt
in Chapter 5, and analysed in Chapter 7. In a real-world system there needs to be
the capability to deal with high-level physical states, such as a plan generated by an

102

8.1.1

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

External source

Goal
@B Apitration
(Re)Planner /
T
P> Goats >

Controll
/ ounid e /*®
e f ——

Plan Execution State
Dispatch Cacton> Monitoring Estimation

-
Commond > | Gommana > | Somsorata

Physical System:
Actuators and Sensors

Figure 8.1: The MADBOT Execution Architecture

automated planner. The gap between low-level and high-level states means that these
need to be linked together to allow useful execution. Although the research topic of
linking these levels of reasoning is vast, it is not the subject of this thesis. Regardless of
this, the failure analysis methods (as discussed within Chapter 7) were integrated into
a robotic architecture called MADBOT.

MADgor

MADBOT (Motivated And goal-Directed roBOT) is a robotic plan execution architec-
ture that is designed to use changing motivations to generate new goals for an exec-
utive [Coddington et al., 2005]. It was developed to investigate how changing goals
can be integrated into a plan. Figure 8.1 shows an outline of the various system com-
ponents and how these interact with each other. The architecture uses the automated
planner LPG [Gerevini and Serina, 2002] for the generation of plans, and builds on the
work on motivations in [Coddington and Luck, 2004]. Motivations allow the executive
to be controlled in a much simpler manner than traditional architectures where each
goal is explicitly provided to the executive. The executive is allowed to exhibit a much
greater autonomy so that it can decide on its own goals during execution.

103

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

At the lower end of the MADBGT architecture, there is scope for monitoring and con-
trol. Action monitoring through learnt HMMs has been integrated into the architecture,
using the techniques described within this chapter. When an HMM sequence reports
failure, this is passed onto a system component called the Controller. Each action in
MADBOT may be accompanied with a recovery action that can be used when failure oc-
curs. The purpose of a recovery action is to return the executive into a known high-level
state so that execution can continue. For example, an action NAVIGATE W1 W2 instructs
a robot to travel between two waypoints. If the action fails part way through, then the
robot is neither at W1 nor at W2, but somewhere in between. The failure of this action
suggests that there is some obstacle or other reason preventing navigation between
these waypoints. Since the robot’s exact location is unknown at this point, a suitable
recovery action is one that will try to return the robot to a known high-level state. This
is important because almost all actions require the robot to be at a known location,
and these actions are invalid if its location cannot be guaranteed. In the case of nav-
igation, the recovery action is RETURN W1, which instructs the robot to return to the
initial waypoint. Recovery actions may also be nested: for example, a recovery action
can itself possess a recovery action. If the RETURN W1 action were detected through the
HMM state sequence to have failed, then it is likely that the robot has become stuck,
and unable to reach any waypoints. Since further navigation is unlikely to address
the problem, the recovery action for RETURN W1 is simply SAFEMODE. This instructs the
robot to terminate execution immediately and then proceed into a safe state to await
further instructions from the planner or human operator. Such a response is a suitable
recovery action as the robot has been unable to reach the waypoints instructed, and
has probably become stuck.

In MADEOT, the HMMs were used to detect failure. There is, however, another execu-
tion issue that may be addressed: early success. In the case of a conservative plan, a
task may finish early, leaving the executive with extra time or resources available. The
evidence based on the models learnt so far suggests that the early detection of success
would be much harder than early detection of failure. However, success is easy to de-
tect in nominal execution, and can therefore be hardcoded into the task. Failure is a
much more “fuzzy” concept — there are many possible ways in which a task may fail,
but only one way in which it may succeed.

This chapter proposes the use of opportunistic plans as a high-level execution control
mechanism. This caters for the case in which an action has failed (after a recovery
action), as well as the case of uncertainty due to early success. Note that the states
and figures within this chapter refer to high-level plan states, and are separate from
the low-level HMM states that have been used in previous chapters.

104

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

8.1.2 Resource Consumption Uncertainty

When uncertainty is present, the volatile nature of the tasks’ resource consumption
amounts means that normal timestamped plans are not a viable option. In the research
area of planning, a plan is defined as a series of actions for an executive to carry out.
This is typically a set of time-stamped actions such as the following:

0.0003: (NAVIGATE BOT1 HOME PRINTER) [40.0000]
40.0005: (LOAD_ROVER PRINTOUT BOT1 PRINTER) [10.0000]
50.0008: (NAVIGATE BOT1 PRINTER DESK1) [30.0000]

This simple plan is for a robot (BOT1) to deliver a printout from PRINTER to DESKI.
Resources are consumed during the execution of each step of the plan (for example
battery power, CPU cycles, hard-disk space and ultimately time).

Since an executive will have limited amounts of each resource, if any of these runs out
during execution then this can lead to plan failure, data loss, or in the worst case ter-
minal failure where recovery is not possible. In some situations, the cost of recovery or
risk to the executive is too great — this is especially the case where human interaction
is impossible, such as unmanned interplanetary robots, or robots working in hazardous
or extreme environments. In these situations, risks cannot afford to be taken and any
action that might endanger the future of the mission will not be tolerated.

If resource consumption amounts were precisely known beforehand, the task of pre-
venting plan failure due to resource over-allocation would be trivial. Unfortunately,
the precise amounts of resources used by an action are not usually predictable and
different situations will produce varying consumption levels. For example, the amount
of data from a digital camera mounted on a robot will depend on the amount of data
compression obtained, which in turn will be affected by the complexity of the subject
in the photograph. The time taken to acquire a photograph may also depend on the
time of day; i.e. the amount of light varies and hence the duration of the exposure also
must change.

Because of the variations in amounts of resource consumption, each action can be
modelled as having distributions of resource consumption, for example as illustrated
in Figure 8.2. The distributions may be simple, Normal distributions as shown here,
or they could be more complex types of distributions due to the nature of the task
involved. A more complex distribution could emerge from a robot with the task of
picking up a cup; it may require several attempts to succeed, and the distribution for

105

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

Mass Spectrometer Action

(example)

Y .

Duration

A \ Fuel used

Figure 8.2: An example of the distributions of consumption of different resources for an action

this may be the combination of several Normal distributions according to the attempt

number on which the action succeeded.

Some methods of responding to uncertainty were mentioned briefly in Chapter 3. In
this chapter, instead of focussing on techniques that re-evaluate plans based on knowl-
edge of the resources available, there will be an investigation into the technique called
opportunistic planning.

Opportunistic planning [Fox and Long, 2002] is a technique that can be seen as an ex-
tension to conservative planning (see Section 3.4). It seeks to build on the strengths
of conservative planning whilst countering its weakness of low utility plans. Many
planning techniques that deal with uncertainty seek to produce a plan accomplish-
ing as much as possible (with a high utility), and then modify this plan to add ro-
bustness, for example by adding contingencies. Opportunistic planning is a technique
that approaches the problem from the opposite direction, generating a robust con-
servative plan (with a low utility), and then seeks to add optional plan fragments
to this to gain a higher utility. They are usually best considered in environments
where resource consumption uncertainty is present, for example where the duration
of a particular action cannot be predicted with absolute certainty until it has com-
pleted. Other situations where opportunistic plans could be used include oversub-
scribed planning problems possessing uncertainty, such as the Mars rover domain de-
scribed in [Joslin et al., 2005]. Although [Fox and Long, 2002] defines the concept of
opportunistic plans, the issues of implementation are not addressed. This chapter ex-
amines these issues, moving towards a goal of execution of such plans. It does not
address the issue of the creation of opportunistic plans, which should be the subject of
further research.

106

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

8.2 Comparison of Opportunistic Plans to Other Techniques

During the execution of any type of plan, resources can be used to accomplish tasks. Ef-
fectively, resources can be traded for an increase in utility: a plan that uses little of the
executive’s resources will have a low utility; a plan consuming nearly all resources has
the ability to achieve a higher utility.! The closer to the maximum available resources a
plan lies, the more it can potentially achieve. If uncertainty leads to a plan consuming
more resource than are available then it fails. There is effectively a boundary between
success and failure at which lies the optimal usage of resources. Any small step over
the boundary will result in plan failure due to lack of resources. Figure 8.3 is an illus-
tration of how opportunistic planning compares to other plan representations that deal
with uncertainty. In traditional planning (a), the planner tries the hardest to place the
plan as close to the success / failure boundary as possible without exceeding it. In situ-
ations with little or no uncertainty this is the most efficient plan, but once uncertainty
is present then this type of plan can lead to an unacceptably high probability of fail-
ure. Contingency planning (b) could be seen as a “scattergun method”, placing plans
that will end up at various points along the line. If resources allow, the choice to take
a higher utility plan branch can be taken during execution. With conservative plan-
ning (c), only one plan is generated but it lies very far to the left of the boundary. This
results in a very reliable plan at the expense of low utility. An opportunistic plan (d)
uses the same conservative plan, but includes number of opportunity fragments that
can be inserted to approach the boundary safely, with little risk of overstepping this.

To summarise:

Traditional planning
High (highest) possible utility, high failure probability under resource consump-
tion uncertainty

Contingency planning
Many different possible utilities, exponential plan size

Conservative planning
Low utility, low failure probability under resource consumption uncertainty

Opportunistic planning
Approaches highest utility, low failure probability under resource consumption
uncertainty

IThis is assuming sensible plans that are efficient and do not unnecessarily waste resources.

107

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

(a) Traditional plan

(b) Contingency plan

Highest possible utiity

(c) Conservative plan

(d) Opportunistic plan

Figure 8.3: Comparison of different plan representation techniques when uncertainty is present

108

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

8.3 Opportunistic Plan Types

An opportunistic plan consists of a core plan and one or more opportunities, and is
perhaps best illustrated by an example. One simple real-world example would be a
plan to drive to an important business meeting, as detailed below:

You need to attend a highly important meeting in another city. The plan
is simply to drive to the other city, park and then attend the meeting. It is
of utmost importance that you are present at the meeting, so in planning
to get there you decide to be very conservative about the amount of time
it will take to drive and park. Initially, you have no idea if traffic will be
bad, or if a parking space will be hard to find, so you plan to depart an hour
early to make sure that you are not late due to traffic. If you are delayed on
the road you will still have time available to arrive at the meeting before it
starts, at least up to a point. If, however, the traffic is good, then you may
arrive early, and have up to an hour of free time available. At this point, you
have the option to perhaps go to the coffee shop for an espresso rather than
wait in the office for the meeting. On sitting down in the coffee shop, you
could decide that there is enough time to purchase today’s newspaper too.
Another situation could be that you arrive at the coffee shop and discover a
very large queue; you could decide that there is not enough time to queue
up and instead decide to return early to the office for the meeting, possibly
stopping by the newsagent to purchase a paper.

Figure 8.4 shows a greatly simplified version of this plan. There is the core plan:
driving to and attending the meeting. There are several opportunities for extra utility,
and these can be assigned relative values of importance — it could be important to
read the newspaper to see how your shares are performing, but you don’t mind missing
your morning coffee. Utility values could be assigned to each of the opportunities for
evaluation during execution.

There is a second type of opportunistic plan that does not have a core plan. In coreless
opportunistic plans, the initial state is returned to after every opportunity. A coreless
opportunistic plan does not seek to achieve any particular goal but the executive has
free choice as to which opportunities to choose to maximise the utility of the plan given
the resources available. This is similar to a simple oversubscribed planning problem
where a subset of goals needs to be determined, but in this case the opportunities
are chosen during execution rather than at the planning phase. This subtle difference
allows the executive to react to uncertainty and make better use of resources. An

109

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

Drive to office
Park car
Go fo
coffee shop | Go for paper

Buy coffee

Aftend meeting

Drive home

Figure 8.4: The plan for attending a business meeting

example of a type of plan that could be represented as above could be planning for a
Sunday afternoon — imagine you have no set goals for the afternoon, but there may
be some activities that you would like to do, such as the following:

Go for a walk

e Read the newspaper

¢ Go to the cinema

e Paint a picture

e Make dinner

e Order a take-away

e Clean the house

e Write another section of your PhD thesis. . .

e etc.

It is not possible to do all of the tasks in the afternoon, so you need to choose which
you would like to attempt. Using associated utilities for each of these you may to pick
out which activities you would like to do for the afternoon to maximise the utility from
these. Even more than this, it is possible for you to decide in which order the activities
should be chosen in case one of them takes longer than initially planned, causing a
reshuffle of later activities. A technique for selecting the order in which to execute
opportunities during execution is detailed in Section 8.7.

110

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

)

(a) Core plan (b) Simple plan (¢) Advanced plan

Figure 8.5: Examples of opportunistic plans

8.4 Opportunistic Plan Structure

An opportunistic plan may be seen to consist of two components: a core plan and one
or more opportunities. The core plan is an immutable plan consisting of a set of actions
that will accomplish the desired goal. Opportunities are sub-plans that link into the
plan and loop round to reconnect back to the core plan, forming opportunity loops.
These must not affect the execution of the rest of the plan or its desired outcome, but
can be used to perform additional tasks. Although the core plan cannot be changed,
it can be temporarily suspended to make way for other actions in the form of taking
an opportunity. Whether or not to take an opportunity would be evaluated during
execution; if the executive decides that it has the necessary resources to complete the
opportunity then it may be safely inserted. If the resources are not available then the
opportunity is passed over and the core plan continues as normal.

Figure 8.5 shows three examples of opportunistic plans.? In case (a), an example of a
simple linear plan is shown, and (b) introduces three optional opportunity loops that
can be executed at run-time. A much more complex opportunistic plan is shown in (c)
which has structures that allow many different routes of execution. Note that in all the
above plans the core plan is the same.

The concept of a coreless opportunistic plan was introduced in an example above,
but in fact these can be converted into opportunistic plans possessing a core plan; as
mentioned above, it is possible to determine which opportunity to execute first (which
will be explained in Section 8.7). Using this information, a core plan can be created
out of the first opportunity and the remaining opportunities may be pushed down to
follow on from this. The initial state is split into two, representing the start and end of

2Actions are represented in these diagrams (and all those following) by the lines between nodes, and
high-level states of the system by the nodes themselves. All plans start at the top of each diagram and
continue downwards through the actions. Note again that these states are high-level states and different
to the low-level HMM states as discussed in earlier chapters.

111

84.1

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

Figure 8.6: Converting an opportunistic plan with no core into one possessing a core

the first opportunity. The result is an opportunistic plan that functions in exactly the
same manner as before except that the executive does not have to calculate the first
opportunity to execute — this has already been done. Figure 8.6 shows an example of
this process. The opportunity marked in green has been chosen as the first opportunity
to execute. This is then brought to the front of all the other opportunities. Note that
any opportunities that branch off the side of the first opportunity (marked in blue)
remain unchanged. The advantage of converting a plan without a core into one with a
core is that the computation can be done offline by the planner.

Advanced Variants of Opportunistic Planning

The work on opportunistic plans by in [Fox and Long, 2002] lays down a very simple
definition of an opportunistic plan. This thesis proposes extensions to this definition,
allowing various structures that can be used to improve efficiency and utility. One such
structure is shown in Figure 8.7. This plan represents a simple Mars rover situation,
and has two opportunities that represent soil analysis tasks. Before a soil analysis is
performed, the instrument must be heated and afterwards must be cooled. However, if
both opportunities are to be executed, then letting the instrument cool before reheating
it would be a waste of resources. In this case, a step can be taken that bridges between
the two opportunities, bypassing the unnecessary actions.

One way of loosely defining opportunistic plans is to see them as directed graphs in
which every transition may only be used once (this restriction prohibits the creation
of infinite loops in plans). If viewed in this way, all simple non-concurrent plans can
be seen as directed graphs, including conservative and contingency plans as well as

112

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

Figure 8.7: Bridging opportunities to use resources more efficiently

opportunistic plans. If plans are to be represented in this way then execution no longer
becomes a simple task — it may be the case that certain choices within the plan are not
possible. This will be discussed later in this chapter. With the directed-graph represen-
tation in mind, there are several advanced features that may be present in opportunistic
plans, as shown in Figure 8.8. These have been defined as follows:

Multi-point opportunity
This type of opportunity, as shown in case (a) allows an opportunity to be valid
across a certain number of states. It is essentially a loop that can be inserted at
any one of a choice of states in the plan.

Nested opportunities
These opportunities that are attached to other opportunities, forming loops off
loops, as in case (b). They can be used when certain opportunities have precon-
ditions that are only satisfied by the actions in other opportunities.

Bridges
Plan fragments that connect between two separate opportunities, joining them
together are called bridges (c). These may allow certain actions to be omitted
whilst jumping elsewhere in the plan.

Bypasses
Bypasses are opportunities that do not return to the same location in the plan

113

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

i

(a) Multi-point opportunity (b) Nested opportunity
(c) Bridge (d) Bypass

Figure 8.8: Examples of advanced variants of opportunistic plans

from which they started, as in (d).? A bypass could be used to skip certain parts
of a plan to seek other goals with higher utilities.

Multi-point opportunities, nested opportunities and bridges can be converted into sim-
ple opportunistic plans by explicitly expanding every possible execution of the plan.
Bypasses cannot be eliminated in this way. Figure 8.9 shows examples of the expansion
of the above types of opportunities. In the case of multi-point opportunities, a record of
the execution of an opportunity needs to be stored so that it cannot be executed twice.

Performing the expansions makes the plans potentially easier to deal with for an exec-
utive, although at the cost of loss of expressibility; decisions as to which opportunities
to choose must be made at earlier timepoints than if the expansion had not been done.
For example, in Figure 8.8(b) there is a choice of executing an opportunity after two
actions, leading to a choice after five actions to execute the nested opportunity. In the
expanded version in Figure 8.9(b), both those decisions must be made after two actions

31t could be argued that this term is deceptive as the plan fragment does not always reduce the length
of the plan. It does however accomplish an opportunity before bypassing all of the states in between the
start and end state of the opportunity

114

8.5

8.6

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

(a) Multi-point opportunity ex- (b) Nested opportunity expan- (c) Bridge expansion
pansion sion

Figure 8.9: Expanding the advanced variants of opportunistic plans

have been executed. In the expanded plans the decision to take a bridge or a nested
opportunity cannot be put off until the last moment.

Opportunity Insertion

To decide on whether to take an opportunity or not, there are two issues that must
be addressed. These allow the system to decide whether to insert an opportunity at a
certain point in the plan, or whether it should be ignored:

Can the opportunity be inserted here?
Is it possible to insert the opportunity without invalidating the preconditions for
the rest of the plan?

Should the opportunity be inserted here, or ignored?
How can the executive best use its resources? Should it take the opportunity now,
or save up the resources in the hope of gaining a greater reward later on?

These two issues will be addressed in turn in the remainder of this chapter.

Can an Opportunity be Inserted?

To carry out an opportunity during plan execution, the executive must be able to de-
termine if it is possible to insert the opportunity at this point. In a simple, STRIPS-type
plan with an executive that does not allow concurrent actions, only two checks are
required:

115

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

Core plan Opportunity Core plan
A b

e B e

B B B L

Actions left I

to finish
H e Insertion postponed,

inserted after actions finish

actions
Decision taken to Opportunity finishes,
insert opportunity continue core plan

Figure 8.10: Postponing opportunity insertion, waiting for actions to finish before inserting

e Are the weakest preconditions of the opportunity satisfied?

e Are the weakest preconditions of the remaining plan, after the opportunity has
been executed, satisfied?

The set of weakest preconditions is the minimum set of literals that are needed to be
true to satisfy the preconditions in the plan fragment. These can easily be determined
by identifying which preconditions of actions in the opportunity are not established by
earlier effects of actions in the opportunity [Dijkstra, 1976, Hoare, 1983]. Performing
the above two checks allows the executive to determine if the opportunity can be safely
inserted without violating any conditions.

If simultaneously executing actions are to be permitted, then there must be support
for dealing with any actions that may currently be executing at the time of taking the
opportunity. These could be actions that monitor battery level or even those that use
(potentially conflicting) resources. A very simple method for doing this would be to
terminate the dispatch of new actions to the executive and wait for currently executing
actions to finish before inserting the opportunity, as in Figure 8.10. In other words, no
new actions are started, and those that are currently executing are left to finish. Before
this is done, the opportunity’s preconditions are verified as above to ensure that that it
can be inserted without breaking the plan.

An advantage of this postponing technique is that it is very easy with basic analysis to
see if an opportunity will fit in with the existing plan. The disadvantage is that the
opportunity is mutually exclusive with the rest of the plan, and prohibits any kind of

116

8.6.1

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

concurrency between the opportunity and the core plan. Unfortunately, this strategy
can be highly inefficient in some situations. There may also be actions for which termi-
nation is impossible, such as real-time low-level monitoring tasks or actions that never
terminate. If concurrency is to be supported when executing an opportunistic plan, a
more sophisticated technique must be used. Two such strategies were conceived, simple
opportunity insertion and advanced opportunity insertion.

Simple Opportunity Insertion

The strategy detailed below ensures that it is not possible for actions to conflict, and
the plan will always be able to complete. For simple opportunity insertion, actions are
represented in a STRIPS-style manner, with preconditions and effects but no invariants.
Start effects and finish preconditions are not used.

The rules for simple opportunity insertion allow concurrency with a limited amount of
computation power. If any of the rules are violated, then the opportunity cannot be
inserted, and it is ignored. Execution of the core plan continues as normal.

1. There must be enough time remaining to execute the opportunity and any remaining
plan.
To calculate this, take the actual amount of each resource remaining in the sys-
tem, then subtract the conservative estimates (95 percentile) for the opportunity
and remaining plan. Then subtract the conservative estimate of resources used
by each currently executing action (the executive may be able to provide updated
estimates here, otherwise use the initial conservative estimate generated by the
planner). If the resulting value is positive, then there are enough resources re-
maining. The executive may also be able to provide more information about how
much of a specific primitive executive action has been completed, allowing these
estimates to be more accurate.

2. The weakest preconditions of the opportunity must be satisfied before dispatching
the opportunity.
If all the weakest preconditions are satisfied at the current time-point during
execution of the core plan, then the opportunity has the necessary preconditions
to be executed.

3. After executing the opportunity, the resulting state must be one in which the remain-
der of the core plan can execute.
To do this, calculate the weakest preconditions for the remainder of the core plan,
and check that these will be satisfied in the world state after executing the op-
portunity. Also the planner, when generating the plan, must guarantee that all

117

8.6.2

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

.
-~
Ensure no conflicts
No new actions

Decision taken to Opportunity finishes,
insert opportunity continue core plan

Figure 8.11: Simple opportunity insertion

possible outcomes of the opportunity (no matter how quickly or slowly the indi-
vidual actions take to finish) have the same effects. This is, of course, bounded
by the orderings imposed on actions within the opportunity.

4. Check that the currently executing actions do not conflict with the opportunity to be
inserted.
It could be the case that any currently executing action could terminate at any
point during the opportunity due to uncertainty. Therefore, to guarantee that
there will be no conflicts, the currently executing action must be checked to see
if it undoes any precondition of any action in the opportunity.

An illustration of this technique can be seen in Figure 8.11. Although computationally
efficient, this strategy can lead to opportunities not being inserted at points where they
could otherwise be used. For example, if a currently executing action is highly unlikely
to conflict with the opportunity then it cannot be inserted at all, as in Figure 8.12.*

Advanced Opportunity Insertion

A second method of opportunity insertion can be considered that can take advantage
of conflicts that are very unlikely to occur. This is identical to above with the exception
that the system only considers pairs of actions in the core plan and opportunity that
are likely to overlap, instead of every possible pair. In this case, the technique has the
potential for much less wasted execution time, but at the expense of requiring much

“The precondition of P is satisfied internally by one of the later actions in the opportunity, and is not
shown here.

118

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

Uncertainty
—>
e [

I

Decision taken to
insert opportunity

Figure 8.12: Advanced opportunity insertion

more validation to ensure that the opportunity will fit into the plan. Advanced oppor-
tunity insertion also expands on simple opportunity insertion to allow PDDL 2.1-style
actions [Fox and Long, 2003], including invariants, pre-conditions and post-conditions.

Advanced opportunity insertion also permits nested opportunities, allowing opportuni-
ties to branch off at any point in the current opportunity. This much richer language
allows the construction of many more ‘useful’ plans: those more likely to exist in real-
world problems. The disadvantage is that this flexibility is traded off for a much costlier
computation time, a very important factor in many executives with limited CPUs.

The advanced set of rules needs to be less restrictive on when opportunity insertion
should occur, but at the same time still provide a guarantee that the plan will actually
complete. This is much more complex due to the sheer number of interactions, over-
lappings and execution traces. Advanced opportunity insertion is defined as follows:

1. There must be sufficient resources remaining to execute the opportunity and any re-
maining plan in the execution stack.
This can be calculated as before (with simple modifications) to the simple oppor-
tunity insertion method.

2. There must be no currently executing actions that are likely to interfere with actions
in the opportunity to be inserted.
With the simple method, all actions were checked to see if any conflicts existed
between any two actions, no matter how unlikely that problems would occur.
To increase the chance of being able to insert an opportunity, only actions that
overlap when the actions run to the 95" percentile duration are considered. In
Figure 8.13(a), there is an action in the core plan with the effect of —B and an

119

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

Uncertainty gncenolnz
_L _A__

T

Opportunity Inserted Opportunity Inserted

(a) Permissible opportunity (b) Non-permissible

Figure 8.13: Evaluating which actions are likely to interfere

action in the opportunity with a precondition and invariant of P. The simple op-
portunity method would prohibit this opportunity from being inserted because
of the conflict between these two actions, even though it is highly unlikely that
they will interfere. Figure 8.13(b) shows a situation in which the 95t percentile
execution duration overlaps with the conflicting action. In such a case the oppor-
tunity shouldn’t be inserted due to the relatively high probability that the action
will fail.

. There must be no actions in the opportunity to be inserted that are likely to interfere
with any of the currently executing actions.

Because PDDL 2.1-style actions can have end conditions, the opportunity’s effects
have to be considered, as above, to ensure that none interfere with currently ex-
ecuting actions. This can be inferred in a similar manner to above, only checking
actions that overlap in the 95™ percentile duration.

. It must be true that whatever happens, the opportunity will be able to complete after
dispatch, regardless of interleavings or orderings due to uncertainty.

It may be the case that a certain interleaving of actions produces a conflict. This
is incredibly computationally expensive to evaluate, but must be checked so as to
ensure that the opportunity can be inserted. The planner may however be able to
evaluate this and make these guarantees during plan construction.

. It must be true that the remainder of the core plan will be able to complete after the
opportunity has finished.

The world state when the opportunity has finished must be one in which the core
plan is able to complete, no matter what happens. Again, the planner may be
able to determine this at the planning stage.

120

8.7

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

In the cases of the simple and advanced rules, concurrency of the core plan and oppor-
tunity is only permitted at the start of an action. This is not possible at then end of the
opportunity where it must be left to complete in its entirety before resuming the core
plan. An even more advanced strategy could be theorised that allows this concurrency
to occur before the opportunity has fully finished, if the predicates allow. The transi-
tions from core plan to opportunity and vice versa are much the same; there is a set
of currently executing actions and a set of actions waiting to be executed. Essentially,
the executive is switching between two modes of execution, and the transition between
these has to be controlled and regulated to ensure that it can happen without need for
outside intervention. There has been some research into mode change analysis in the
area of scheduling [Tindell et al., 1992], which checks the schedulability of tasks dur-
ing the change between modes. This could potentially be adapted for use in the mode
changes between core plan and opportunities.

Should an Opportunity Be Inserted?

Aside from the problem of determining if an opportunity can be inserted safely, there
is another issue that must be addressed: how to choose when to insert an opportunity,
and which opportunities to use when presented with a set of choices. Decisions made
at any timepoint may lead to an inefficient use of resources, for example a low-utility
opportunity selected at the current timepoint may consume resources that could have
been used later for a high-utility opportunity. Because of this, a strategy is required for
opportunity selection to ensure the best use of resources.

A successful opportunity selection strategy must be able to provide a guarantee of plan
completion, as well as being able to accommodate uncertainty management. It should
also be robust to changes in resource consumption amounts, for example if an action
consumes more of a resource than initially allocated. A good strategy may also be
able to take advantage when actions use less resources than expected, leading to an
unexpected amount of extra resources becoming available.

The opportunity selection strategy was built on top a conservative plan execution strat-
egy as described in Section 3.4. To simplify matters, only simple opportunistic plans
that do not allow concurrency will be permitted. During execution, the worst-case sce-
nario is initially assumed with each action consuming an amount of resource equal to
(for example) the 95 percentile of the distribution. If actions consume less than this
amount then they become free to use in opportunities. In the case that an action con-
sumes more than one resource, for example time and fuel, then multiple distributions
need to be dealt with. It is likely that the values produced by multiple distributions
are dependent on each other, but the worst case scenario is that they are independent

121

8.7.1

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

—_—

e

(a) Example opportunistic plan

(b) Expanded opportunity tree

Figure 8.14: Expansion of an opportunity tree

variables. To ensure that the action still has a 95% chance of completing given the
resources available, the ¥/0.95 x 100 percentile must be used, where n is the number of
different types of resources that the action consumes. This ensures that the probability
of each of the distributions consuming less than the percentile is 0.95. For example
with four resources, v/0.95 = 0.987, so the 98.7h percentile is taken as the value to use
for creating the conservative plan. The chance of all four resources using less than this
amount is 0.9747% (i.e. 95%).

Opportunity Trees

It is sometimes useful to expand out the opportunities into an opportunity tree. An
opportunity tree is simply the expansion of all possible execution paths through the
opportunistic plan. Figure 8.14 shows the example expansion of a simple opportunistic
plan (a) into an opportunity tree (b). This expansion makes it easier to see the conse-
quences of particular decisions and how they might benefit or hinder execution later
into the plan. An opportunity tree can be executed by starting at the initial node and
executing the actions in sequence until a branch is reached. At each branching point, a
decision has to be made as to which branch to execute.

During execution of a plan, it may be tempting to execute an opportunity at the first
instant that the necessary resources become available, a greedy strategy. Resources

122

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

would have become available when previous actions consumed less than their allocated
95t percentile amount. This greedy strategy may however lead to bad decisions; it
could be the case that a higher-utility opportunity will be missed because the resources
were spent earlier on a low-utility opportunity. Because of this, there is a need for a
process to decide whether to take an opportunity at the current time-point, or whether
it will be beneficial to ignore it and save those resources for later use. To make these
choices, an opportunity tree can be used to find the best path through the tree and
therefore the best decisions to make during execution. Great care must be taken to
ensure that the executive is not required to execute opportunities that could exceed the
resources available. Because of the nature of the subject of planning and execution, it
is fundamental that there is some guarantee that the core plan will complete. If the
executive runs out of any one resource before plan completion, then the plan has failed
— possibly resulting in data loss, irrecoverable situations or even irreparable damage
to the executive.

There have been studies of similar problems in other areas of research from which expe-
riences can be gained. One possibility is to view the problem as a modified decision-tree
problem, or perhaps even as a multi-dimensional vector-packing task [Epstein, 2003]
(except that the sizes of the objects to be packed are unknown until selected). A similar
problem has been investigated in the area of economics [Buffett and Spencer, 2003],
where fluctuating prices influence the decisions of a buyer over time, but this relies on
the costs being known before taking actions — in plan execution the “costs” are only
known after the action has executed, and anything before is simply a probability dis-
tribution. In economics, the exact price is known before the commitment to purchase
is made. There has also been research looking at MDPs [Boyan and Littman, 2000]
with uncertainty over continuous time distributions, where actions have different out-
comes depending on their start time. In [Bresina and Washington, 2000] a technique
is discussed that deals with uncertainty in time, but with fixed resource amounts. In
many real-world cases where there is uncertainty, it is unlikely to be limited to just one
variable, because the uncertainty in one variable will often depend on another. For
example, fuel or battery consumption may be a constant amount during the course of
an action, and therefore dependent on how long that action takes to execute.

In the problem of uncertain resource consumption as described, the absolute amounts
are not known until the action has successfully completed and terminated. In practice,
it may be that with some actions it could be possible to predict forwards and con-
tinuously improve estimates of values. For example, a robot travelling between two
locations will know how fast it has progressed along the first part of its route, allowing
it to estimate time remaining. Despite this, the assumption that these estimates are
incalculable will be retained for simplicity.

123

8.7.2

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

As stated above, the opportunity tree can be used to calculate which opportunities to
execute. This is done by calculating the expected utility (on average) of making each
choice in the plan, thereby providing a value on which to base decisions. Each branch
in the opportunity tree is labelled with an expected utility, and the best decision is
therefore the choice from which can be expected the largest payoff — the branch with
the highest expected utility.

Expected utility is calculated in a similar manner to how probabilities of outcomes are
calculated in decision trees, but there are some subtle differences, which are outlined
in the table below.

Decision Tree Opportunity Tree

Probability associated with each Probability associated with each

branch is the probability that it branch is established from re-

will occur. source consumption distributions
as well as how much of each re-
source will be available.

Probabilities at each choice-point Probabilities at each choice-point

add up to 1.0. do not add up to 1.0.

Expected Utility Calculation

In an opportunistic plan, the opportunities need to have utility values assigned to them
so that decisions can be made about which to execute. These could be manually as-
signed by a human operator, or perhaps generated by a planner when constructing the
plan according to how useful they are. To assess the relative value of the opportunity
at a particular point in the plan, the probability of the actions involved completing suc-
cessfully must be established. If a single action a has a utility of U(a) and a probability
P(a) of successfully completing, then the expected utility of that action is calculated as
EU(a) = U(a) x P(a). Likewise, with a sequence of actions (a linear plan) consisting of
actions a_, », the expected utility is simply equal to

EU(ay.) = i” U(ap) x P(ap) | (8.1)
p=1

In the situation where a node a has multiple children b;_,, the expected utility from
this choice can be calculated as

EU(a) = U(a) x P(a) + max(EU(by),...,EU(bm)) (8.2)

124

8.7.3

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

This is the utility of the node itself plus the maximum expected utility from its children.
The maximum value of the children is used because, given the choice, it would be
illogical to choose any branch other than the one that on average returns the highest
utility. -

With the knowledge of the algorithms presented above, it is possible to propagate the
expected utility values through the whole of the plan tree to calculate the overall ex-
pected utility for each choice. These values can then be utilised as the basis for decisions
during the plan execution phase (see Section 8.9).

Expected Utility Propagation

To calculate expected utility for each node, a multi-step process is required. This is as
follows:

Propagate cumulative distributions through opportunity tree

Calculate probability of each node successfully completing

Calculate expected utility of each node

Propagate cumulative expected utility through opportunity tree

Propagate cumulative distributions through opportunity tree

In order to calculate the probability of an action completing, P(a), the proba-
bility of the preceding actions completing must be considered. This is done by
calculating the cumulative resource consumption distributions throughout the
opportunity tree. For example, consider a basic plan consisting of five actions
ai,...,as in sequence, each Normally distributed with the duration N(20,5) for
time taken to complete. The second node would have the cumulative distribution
c(a2) = N(40,v/2 x 52) and the last would be distributed as c(as) = N(100,V/5 x 52)
(following the standard rules for summing Normal distributions). If a node has
several children then the distributions are copied and propagated down each
branch, just as if the nodes were in sequence. Distributions are passed down
branches of the tree so that the distributions at any node are the sum of those
of its parents, right back up to the root node. Each of these new distributions
represents the amount of resources that the plan, up to that point, should have
consumed.

125

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

Calculate probability of each node successfully completing

Once the cumulative distributions are established, it is then possible to calcu-
late the probability of each node completing given a set of starting resources.
It is simply a case of reading from the cumulative distribution the probability
that the action will complete, given the resources available at commencement.
Continuing the above example, the cumulative distribution c(as) indicates that
actions ay,...,as take on average 100 seconds to complete in sequence. If the
plan dictates that these actions must be completed within 150 seconds, then this
is a resource constraint. Given this constraint and these distributions, it is pos-
sible to calculate the probability of the plan finishing without exceeding these.
If 150 seconds are available, then p(c(as) < 150) = 0.977 (as per the cumulative
Normal distribution function). This indicates that there is a probability of 0.977
for successfully completing actions 1-5 all in sequence. This calculation is not just
applicable to time, it is also applicable to other resources such as fuel; it could
have been the case that the actions consumed fuel instead of time, and that the
bound of 150 was the size of the fuel tank used. The probability result is still the
same.

Calculate expected utility of each node
As stated earlier, EU = p(a) x u(a) where p(a) is the probability of the action
completing, as calculated in the previous step, and u(a) is the utility assigned to
the action.

Propagate cumulative expected utility through opportunity tree
Starting with the leaf nodes, the cumulative expected utility is propagated up
through the tree back to the root (current) node. This follows the rule described
in equation 8.2.

In the examples above, Normal distributions have been used, but it is likely that real-
world actions will have more complicated distributions such as gamma or multi-modal
compound distributions. Depending on the structure of these, they could either be
approximated with Normal distributions, or represented numerically by using Monte
Carlo simulations. The only requirement is that the distribution generated by the addi-
tion of two others should be representable and calculable. It is obvious that the quality
of the approximation of the real distribution has an effect on the outcome of the calcu-
lation, but the cumulative effect will be to smooth down the shape of the distributions.
What is more important is that the approximation of the distribution covers the correct
range of values. For this reason, it was decided that the Normal distribution was an
acceptable distribution for use in the analysis contained within this chapter.

126

8.74

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

Figure 8.15 shows an example of the cumulative expected utility calculations. In (a),
there is a simple plan with three actions in the core plan and two opportunities that
branch off from the second of these. One of these has a utility of 3 and another 5.
Figure 8.15(b) shows the expansion of this opportunistic plan into an opportunity tree
with five different possible execution traces. The graphs below each node represent
the cumulative resource consumption distributions, calculated by summing the distri-
butions through the tree, from the root up to that point. The probabilities (P) of each
node successfully completing are provided, given the resources available. Expected
utility (EU) for each node is also included, as well as the cumulative expected utility
(CEU). This tree indicates that at this timepoint, given the available resources, it is
better to try executing the opportunity with utility 3 first (with a cumulative expected
utility of 3.6) rather than the one with utility 5 (with a CEU of 3.4). If resources per-
mitted, the utility 5 opportunity could always be executed afterwards.

Pruning

With such a tree as described above, the size of the tree will be exponentially large in re-
lation to the number of branches (opportunities). To counter this exponential increase
in size, efficient pruning strategies are required. The problem of pruning decision trees
is a well-researched area [Fournier and Crémilleux, 2002] and so this thesis does not
attempt to address this issue in depth. Instead, two simple methods are described
below to increase the feasibility of working with larger opportunity trees.

The first strategy that can be used relies on the fact that nodes that are highly un-
likely to complete can be ignored. This is because the expected utility from them (and
any subsequent actions) will be so low as to be insignificant to the overall plan. Any
nodes with less than a 5% chance of success are not expanded. If this probability in-
creases (because of extra knowledge gained at the execution stage), then the node can
be expanded and its expected utility propagated throughout the tree. This strategy
has the potential to prune away large areas of the search tree, but in practice it has
not been hugely efficient at doing so when tested. The best result that was achieved
was the pruning of a tree with around 5 x 10! nodes down to just 500,000, but most
plans investigated showed little or no reduction in size through pruning in this manner.
The technique also suffers from the problems of scale, and plans involving more than
around 25 opportunities require vast amounts of processing power.

A second strategy is to employ a dynamic look-ahead process. This is to restrict the
number of opportunities expanded in each branch, and keep it bounded to a particular
number. This method does not have the same problems of scale as the previous one,
but suffers a decrease in obtainable utility in exchange for faster execution and lower
memory usage.

127

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

Utility = 5
‘ 8
Utility = 3

(a) Original Plan

P=0.30 P=0.25
EU=0.9 EU=0.0
CEU=0.9 CEU=0.0

P=0.45
EU=0.0
CEU=0.0

P=1.00
EU=0.0
CEU=3.6
P=0.30 P=0.25
EU=1.5 EU=0.0
CEU=1.5 CEU=0.0

EU=2.1
CEU=3.6
P=0.65
EU=0.0
CEU=0.0

(b) Expanded Opportunity Tree

Figure 8.15: Opportunity tree Expected Utility Propagation

128

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

8.8 Execution

8.9

Executing an opportunity tree means using the cumulative expected utilities to make
choices as to which opportunity to execute. One possible execution of an opportunity
tree would be to always choose the branch with the highest cumulative expected utility.
Unfortunately, this strategy would probably lead to overall plan failure as the core plan,
excluding opportunities, would be unlikely to complete successfully. The core plan has
no utility associated with it because its utility can be regarded as infinite; the executive
must complete the core plan or suffer the consequences of failure. To counter this
problem, it must be ensured that any chosen branch has a path that will lead to a high
probability that the plan will finish. Short-term gains from opportunities are not useful
unless the plan can be completed. This property can be verified by checking that one
of the leaf nodes below the node to be chosen has a probability of completing greater
than 0.95.

To execute the opportunity tree, the children of the head node of the tree must be
examined. If there is only one node then there is no choice and that node must be
moved to, and the action at that location executed. If the head node has multiple
children then the child node with the highest expected utility is chosen, but only after
ensuring that it has a path below it with a high probability of completing the plan, as
stated above. If there is no such path, then the executive has used more resources than
the allotted 95 percentile so far, and the node with the path of highest probability of
completion must be chosen to attempt to recover from the situation.

Once an action in the plan has finished executing, the previously uncertain first action’s
resource consumptions change from distributions into known values. These absolute
values can then be propagated throughout the tree, using the propagation rules, to
reduce the overall uncertainty, update the expected utility values and allow these up-
dated values to be used for any subsequent decisions. The head of the tree is then taken
to be the current node, and the process is repeated.

Results

To collect results, a simulator was written in Java to create random opportunity tree
instances and follow execution through in the manner explained above. 10,000 plan
instances were randomly generated for each test, varying in number of plan steps (15—
30), number of opportunities (5-20) and other minor factors. Each action consumed
one of several resources in addition to time. For simplicity, resource consumption distri-
butions were Normally distributed with random parameters. In each case, nodes with
a probability less than 0.05 were pruned and assumed to have no expected utility.

129

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

Execution Utility | Success | Relative
strategy increase rate | CPU time®
Conservative 0.0% | 100.0% 1.0
1-LA (Greedy) | 8.59% | 99.98% 18.72

2-TA 12.51% | 99.96% 69.52
3-IA 14.90% | 99.94% | 143.46
5-LA 17.24% | 99.96% | 315.45
10-LA 18.29% | 99.96% | 402.53

oo-LA (BEU) 18.31% | 99.96% | 424.00

Figure 8.16: Look-ahead Strategy Comparison

The tests carried out were as follows:

Conservative
The plan is formed without opportunities, and there are no possibilities to in-
crease utility by executing other actions.

Greedy
The opportunity tree is executed with a greedy strategy; opportunities are taken
at the very first possible point they become available, as long as there is a path
that is likely to complete. This is equivalent to a pruning strategy of 1-look-ahead.

n-look-ahead
Only n opportunities into the future were considered, and the rest of the tree was
pruned away (but then expanded when required during execution).

Best Expected Utility
Execution is carried out by choosing the best available node, as explained by the
strategy previously discussed. This is equivalent to a pruning strategy of co-look-
ahead, i.e. no pruning.

The results from the look-ahead strategies detailed above are presented in Figures 8.16
and 8.17. It can be clearly seen that the inclusion of opportunities can increases the
utility of a plan greatly. As would be expected, the greater look-ahead that is used,
the greater the average utility. This is because the executive can look further into
the plan to see the consequences of any decision that it makes. It can also be seen
that the time taken to choose an execution path increases very substantially as the
amount of look-ahead increases. The success rate drops very slightly if opportunities

SRelative CPU time taken to execute plan as compared to Conservative strategy. This is based on the
total CPU time taken to calculate the execution path through the plan.

130

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

Comparison of Look-Ahead Strategies
1000
BEU
o “ 10-LA
5-A
100 o
3-lA
£ o
=z 2-A
o
@
10 1-lA (Greedy)
1&:5 = .'m ° . T r T v T v v)
0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%
Utility Increase

Figure 8.17: A comparison of the look-ahead strategies

are used, but the amount is negligible. Planning using a higher percentile, for example
the 99t percentile would ensure that this success rate was even higher.

The Best Expected Utility strategy (BEU) resulted in a significantly greater utility than
the greedy strategy, the former yielding more than double the utility of the latter. This
is, however, at the expense of a huge increase in computation time. With different
look-ahead values it is possible to have a compromise between these two strategies. An
alternative strategy could be to have a dynamic look-ahead (not discussed here) so that
it would become an “anytime” algorithm, offering the best found option at any point
during calculation. Such an algorithm would have overheads due to the necessary
recalculations that would occur with this.

As would be expected, the results that can be obtained from the simulator are very
dependent on the ratio of the size of the core plan to the number of opportunities. A
short plan is unlikely to benefit from the option of opportunities, but a long plan is
much more likely to have spare resources available to execute opportunities. Longer
plans also possess larger uncertainties meaning that the plans are less likely to fail when
using the 95™ percentile. The results presented above were obtained with plans of 25~
35 actions, with up to 15 opportunities available to choose from. Had more actions
been used, a higher utility increase would have been seen. In most situations, between
two and four of the 15 opportunities were automatically selected by the executive and
inserted into the plan during execution. Real-world problems are likely to have more
structure than these artificially generated random plans, so it is expected that the utility
increase would be even larger in practice than the results seen here.

131

CHAPTER 8. REACTING TO UNCERTAINTY AND FAILURE

8.10 Opportunistic Plan Execution Conclusions

It has been shown that it is possible to execute plans under high uncertainty of resource
consumption. Such uncertainties are inherent in almost all real-world situations, but
need to be addressed before these types of plans can be executed. Conservative plan-
ning is a viable solution to the problem, but suffers from low utility plans and wasted
resources. Opportunistic plans have been shown to be very useful at increasing overall
plan utility, whilst still ensuring reliability of plans. A greedy strategy for opportu-
nity selection is reasonably good at increasing utility, but if the computing power is
available then analysing only a few opportunities ahead can increase this further. The
insertion of opportunities has only a very slight impact on plan reliability, but this effect
is probably too small to be noticed in practice.

Uncertainty in resource consumption amounts is just one of the possible uncertainties
that an executive will have to deal with in the real-world. If the techniques presented
here were to be combined with other solutions for dealing with incomplete information
and probabilistic effects, then it is expected that this would lead to an executive with
a very high tolerance to uncertainty. Plans with contingencies could be easily included
in this strategy, and would be simply inserted after the opportunistic plan has been
expanded into a tree.

132

CHAPTER @

Conclusion

It always takes longer than you expect, even when
you take into account Hofstadter’s Law

— Hofstadter’s Law

trospection and control, and how opportunities can be used to deal with un-

certainty and failure. This chapter is a brief summary of the conclusions that
have been determined throughout the course of this thesis. In Chapter 1, a list was
presented containing the contributions of this thesis. This list is repeated below, with
specific references to the relevant sections in which the points were addressed:

THIS THESIS presented an investigation into the subject of plan execution, in-

e Identifies suitable tasks from which to learn models for use in evaluating failure
prediction

Four different tasks for a mobile robot were developed that would con-
tain interesting and useful structures, especially for use in learning
models of these tasks (Section 4.1). Also developed were techniques
of converting the raw data collected from the robot into practical val-
ues for learning the models (Section 4.1.4).

133

CHAPTER 9. CONCLUSION

o Builds on the work in [Fox et al., 2006] and uses this to construct HMMs for the
tasks

The HMMs automatically learnt from data collected from the four dif-
ferent tasks were presented. Raw data from two executions was man-
ually examined and features identified (Section 5.1). The HMMs were
then analysed in depth to understand the structures involved and how
best to use them for prediction (Section 5.2). Finally, the results from
the HMMs were cross-referenced back to the raw data (through the
use of the actual HMM state trajectories) to provide further evidence
of their capabilities in determining the current state (Section 5.3). A
strong correlation between the actual behaviour of the learnt models
and the manually-identified states was found. This indicates that the
models were highly successful in encapsulating the behaviours seen in
the tasks.

o Investigates how these HMMs can be used during execution to track progress

A variety of repeatable execution failure types were developed, and
data was collected from the robot with simulated failures (Chapter 7).
These varied from easily identifiable errors through to subtle errors
possessing little observable deviation from normal execution.

e Proposes and empirically evaluates methods for using HMMs to detect execution fail-
ure

Techniques for failure detection were developed using the probabili-
ties of Viterbi sequences, CLPD values and TSCEM values (Section 6.2).
These were analysed by passing the collected failure data into the learnt
HMMs (Chapter 7). Both the CLPD values and TSCEM values were
shown to be effective at identifying failure whilst minimising false pos-
itives. Detailed analysis showed that Kohonen maps of size 20-25 pro-
duced HMMs that were most useful in predicting the state of the robot.

e Outlines how opportunistic plans may be used in situations of uncertainty, and how
this relates to failure

The link between low-level HMM states and high-level plan states was
explained (Section 8.1). Also outlined was how the MADEGT archi-
tecture utilised the failure detection routines to terminate execution
and return to a known state through the use of recovery actions (Sec-
tion 8.1.1).

134

9.1

9.1.1

CHAPTER 9. CONCLUSION

e Compares and contrasts opportunistic planning with other plan types where uncer-
tainty is present

A comparison of planning techniques along with an evaluation of their
approaches to utility maximisation was presented (Section 8.2).

e Greatly expands the definition of opportunistic plans, allowing for much richer plan
structures

Many new advanced plan structures were identified, including bridges,
nested opportunities, multi-point opportunities and bypasses. Tech-
niques for simplifying these structures were also discussed, as well as
the proposal for representing a plan as a directed graph (Section 8.7).

e Identifies methods to allow opportunities to be inserted safely into a plan

Several strategies for opportunity insertion were created and described,
including simple and advanced strategies for dealing with concurrency
in such plans (Section 8.6).

e Describes a method that allows the best use of resources to maximise utility during
execution of an opportunistic plan

Opportunity trees were created to enable an executive to make the
best choice as to whether to take an opportunity or leave it. This was
through choosing the branch with the Best Expected Utility. Pruning
strategies were also identified and evaluated. (Section 8.7). It was
shown possible to execute plans reliably under uncertainty of resource
consumption in this manner.

Further Research Possibilities

Although great care has been taken to provide thorough investigations and evaluations,
there are still aspects of this research that could be extended and developed further.
Time limitations meant that it was not been possible to investigate many of these factors
involved in the evaluations throughout this thesis.

HMM Learning and Evaluation

There are many relevant variables that influence the size and complexity of the HMMs
produced. These factors will also affect other aspects, such as their associated perfor-
mance for error detection. A full analysis of all of these is well beyond the scope of the
work here, but the chosen variables were determined by experimentation combined

135

9.1.2

CHAPTER 9. CONCLUSION

with intuition. As well as different variables, other methods of learning the models are
possible. For example, different clustering algorithms for learning the observations that
make up the HMMs, '

The tasks from which HMMs were learnt were simple, basic tasks developed to show
the capabilities of the HMMs to their full potential. Further work could include much
more complex tasks in more “real-world” scenarios. Such tasks would either require
more expensive robots, or data from some other non-robotic executive.

In the evaluation of the HMMs for failure prediction (Chapter 7), tests were only carried
out on one of the learnt models. Although these tests were extensive, they did not
investigate the effect of different sizes of models on failure prediction ability.

Another extension, as briefly mentioned at the end of Chapter 6, is the possibility of
learning a second, higher-order HMM that attempts to capture some of the temporal
information missed by the HMMs learnt here. There would be a great deal of work
involved in processing the data for this, and it may not yield any more useful results
than already established.

One further extension to the work includes developing and investigating further tech-
niques for detecting errors in the HMM sequences, for example the NSCEM (Normalised
State Count Error Magnitude) values as mentioned in Section 7.2.

Opportunistic Planning

Although the subject of executing opportunistic plans was discussed in detail, there are
no planners yet capable of producing these. A method needs devising to create such
plans and put these into practise. Possible techniques for creating plans dealing with re-
source uncertainty have been investigated [Bresina et al., 2002, Dearden et al., 2003],
but have yet to be put into practice.

Some planning problems with this type of uncertainty may involve more complicated
scenarios than those discussed within this thesis: it may be the case that a problem
consists of a combination of limited and unlimited resources. For unlimited resources,
any over-consumption is a penalty rather than a failure — time could be viewed as an
unlimited resource in many situations, as it does not “run out” in the same way that fuel
does. An example of such a problem could be a lorry driver with a working day of a set
number of hours. If traffic is bad then the journey between locations may take longer
than expected, taking the driver into double-paid overtime. Obviously, such a planner
would want to maximise the number of parcels delivered in a day (as the driver is paid

136

9.2

CHAPTER 9. CONCLUSION

per day regardless of whether or not he is driving the whole time), but also minimise
the amount of potential of expensive overtime.

Future extensions to opportunistic plan execution include the use of resource produc-
tion distributions. For example a generator could be used to recharge a depleted bat-
tery. This type of action could have a consumption distribution for fuel and time, but
a production distribution for battery power. In this way, it would be possible for an ex-
ecutive to choose to take an opportunity to trade off fuel and time to recharge battery
power. This would be very beneficial if a later high-utility opportunity required extra
power. The opportunity selection process that was developed could easily be adapted
to deal with actions of this type.

Final Summary

Only through the use of effective monitoring and control can a system be flexible
enough to deal with the uncertainties that are present in real-world situations. This
thesis has presented and evaluated valid solutions for both of these problems, and has
then developed these into useful and effective techniques for use in plan execution
monitoring and control.

137

APPENDIX A

Raw Data Graphs

The following pages contain graphs of the raw data for an execution of the Gradient
Navigation task (Sheets 1-8) and an execution of the Panoramic Photo with Errors task
(Sheets 9-14).

Points of interest have been marked on the graphs with letters and these are referred
to extensively in Section 5.1, where these graphs are analysed in depth.

138

APPENDIX A. RAW DATA GRAPHS

O = 4 ©euw as ¢ \'/
ovl 0ozl 0oL : 08 9 : oy 0 : O
. 1 I ' 1 1 X A | # 1 y o
0002
9
@«
Q
000y 3
®
| o
| 0009 3
| Q
| Q
| 0008 =
i 2
| E
m ' . ' .
1 T, SIS ES———— I 1 . : 000Z1
< 7OPUd ;. €8sDud Z 9soyd L Lesoud :

L 93YS

uiBuO woll adupisiq UOIIOBIADN JUSIPDIS

139

APPENDIX A. RAW DATA GRAPHS

3 4 4 (s) swiy ad vV

== == —— — — ‘ . [4 — e 4“.\\ !,iiﬁ O@ _.|
BE . . : 0G-
| br 0zl ool 08 09 [:| :ov 0z %
| . 1 . 1 1 1 1 . 1 1 O
, : M
| H s 9
| “ | 2
| : : \WJ
| 5 f zm oe.w
a i \ ” ¥ b

W ri: ¢: \ _ 002

“ m_ ” 052
| SRS NPT SISm——— . S . 00€

¢ 1994S

Ao0IoA

UONDDIADN JUSIipnid

140

APPENDIX A. RAW DATA GRAPHS

O 4 v
ozl oc : 0
| =l _ 0
?7 05
: Q@
: c
: Q
W oot 9
: Q
“ p |
ﬁ ¥ ?
y _ 0Gl .m
: Q
©
‘ 8
. 00¢
¢ Jo9ys QOCUEU _U_:OC< UOJOBIADN JUaIpDIS

141

APPENDIX A. RAW DATA GRAPHS

A

(seaibBop) @ousiay|qg p|NBuy

¥ 199US

aoualay)iqg Ioinbuy

et i —ed (02

UOIJDDIADN JUSIpPDID

142

APPENDIX A. RAW DATA GRAPHS

3. 4 | () ouuL ad A"

orl ozl 0oL : 08 09 0¥ 0z . 0

— — — : S T B o : 0
| . + 00l
f | 002 ﬁnwu
3 m ; o0e
W O | 2
| | m ooy Z
| m | 8
| __ m 00S m.

1IN 1 d \ 58
AN, I

A “ 00z
i3 ot LA i 008

G I99yS

22UDJsIq JDSBUIIAIND

UOIJDDIADN JUSIpDIS

143

APPENDIX A. RAW DATA GRAPHS

0 = 3 ©euny ans € v
orL ozl oL : 08 09 : oy i 0g : O
— s — e G R e e

000¢

e
oo

U L T W A
U i

e 1N € m m 000V L

Buusyn|d

Q jod9ys OC__Q.,S_U UOIDDIADN JUaIpDIS

144

APPENDIX A. RAW DATA GRAPHS

0
00S
000l &
Q
| L m
| oost &
| go)
m g
| 000Z a
| 0052 =
| 000€
|
- loose
[, 1©9yS UU@._Qm 20UDIjSIg UOIDDIADN JUSIpDIid

145

APPENDIX A. RAW DATA GRAPHS

Sheet 8

Angular Spread

Gradient Navigation

......................... 1..... aevees
.................................... .
. B
(L ©
r___r—"’ (e 0]
L3
—] - 3
L
.................................... -
T - m—— Y PN I
| e
Ej
E'-Lk_
| O
N
nabieine noleeseilsesnssfesessdaaiesfusnicafe e .: Nk s ain®is
o

H
QL B0 O o O O O o O O
o ®©

~ VO O ™ N o~

(seeibop) poaids 1ojnbuy

Time (s)

146

APPENDIX A. RAW DATA GRAPHS

Bw adD 8 V

09 05 ov o€ .0z . 0l -0
ﬂ : H . _ —PesoI0
%
| w o
| . Q
| : 3
| _ o
m : Q
: w
| . -3
_ ; m
| : o)
” @
| ” -
| : ®
} W =| 1 Lusdo

6 1e9ys

Dl UO S10113 Yim OJOyd DlpIoUDd

147

APPENDIX A. RAW DATA GRAPHS

0S

ov

@w 0 D

0g - 0¢

4 v

ol 0

oL

Gl

} H+ 02

-+ sz

- 0€

Ge

(sea1bep) abupyd ID|NBuy

e —

ov

Ol ie3ys

1°1%

abupy) IonBuy

0S

SIOIIF YlIM OJOUd JlWDIouDd

148

APPENDIX A. RAW DATA GRAPHS

ctbun 0O

E

W . - e (B

m m oz
| w M o- Z
09 05, * 0 02 ¢ 5
ﬂ : “ “ A 0 g
” ,I W ” ™ 2
, “ _ g
, : o
i ot 8
| m e
,ﬁ m 0¢ .m
” ! Q
w I,f é! ot &
w _ : r

, i .
Mh o
o —— - lgg

L1l {e3YS

aoualajiqg IoinbBuy

SIO1I3 UM OjOUd JlWDIoUDg

149

APPENDIX A. RAW DATA GRAPHS

o 4 @bwy 0 O g v
09 08 oV 0e 0z ol 0
M 1 2k ”. ‘ ._ 1 ; O
“_ 05
| m m
| m g
L : 0oL 3
m
| 0S1 o
: Q
0 | 00 =
“ : =
: : 2
_JL (0]°74
L et 00€
Z1 leays uIBuO wol @oupnjysiq SIO1IF UM OjoUd DIWDIoUDd

150

APPENDIX A. RAW DATA GRAPHS

Bew 0 O

d v

: : : . - . == 0G-
09 08 ov 0e . 0e oL 0
L — _ — —t 0
| 0S o
| 8
- 0oL 9
,. w
| o
B osL &
| Q
| e
| 00z 3
| 0se
|
: - +looe
€L {93US poaidg aounjsig SIOIIT UM OjOUd OIWbIoUDd

151

APPENDIX A. RAW DATA GRAPHS

7L 199US

d v
et oo : — G-
ol 0
: 0
1
@
= m.u; M
w
O
8
oL g
o)
o)
Q
GL o
o
0c
‘ -+t lgz

poaidg 1ojnbuy

SIOII3 YJIM OJOUd OIlUDIOUDd

152

APPENDIX B

CLPD Graphs for Error Executions

Cumulative Log Probability Difference
(Lost Connection Errors)

100000 1

10000

1000

500 -

100 1

CLPD

10 -

1

O

0.1~

=
L
48 -
44
80

e
112
128
144

Time (5)

Figure B.1: The CLPD values for the ‘Lost Connection’ data

153

APPENDIX B. CLPD GRAPHS FOR ERROR EXECUTIONS

Cumulative Log Probability Difference
(Blocked Errors)

100000 1
o
100001 5
3
1000 A
500 1
g
a 100 1
et 2
o
3]
10 1
] T T T T T T : f T T T T
<>Wf%4%8a’gg§
0.1 -
Time (8)
Figure B.2: The CLPD values for the ‘Blocked’ data
Cumulative Log Probability Difference
(Slowed Errors)
100000 1
o
100001 5
2
1000 -
500 1
5
O
8§ 3
Time (s)

Figure B.3: The CLPD values for the ‘Slowed’ data

154

APPENDIX B. CLPD GRAPHS FOR ERROR EXECUTIONS

Cumulative Log Probability Difference

(Propped Up Errors)
100000 7
10000{ §
2
1000 A
500 A
g
O 100 1
10 A
] by T T T T T T T T
c T H o= r:
0.1
Time (s)
Figure B.4: The CLPD values for the Propped Up’ data
Cumulative Log Probability Difference
(Unknown Environment Errors)
100000 -
10000{ $
2
1000 A
500 -
[a]
3 100 _,_,_//
8 P
] =
101 32
vl gt
] 5 T T T T T T T T T T T
RN EEE
0.1-
Time (s)

Figure B.5: The CLPD values for the ‘Unknown Environment’ data

155

APPENDIX C

TSCEM Graphs for Error Executions

Errors

1000 1
900 A
800
700 -
600 -
500 1
400 A
300 1
200
100 1

0 -

o

o

Temporal State Count Error Magnitude
(Lost Connection data)

Failure

g = By 8 T T T w | SRS |
B EEEEEEEEREEE

120 1

128 A

136 1

Figure C.1: The TSCEM values for the ‘Lost Connection’ data

156

APPENDIX C. TSCEM GRAPHS FOR ERROR EXECUTIONS

Temporal State Count Error Magnitude
(Blocked dataq)
900 1
800 -
700 A
600
g 500 -
5 400 -
*
300 A
200 1 Failure
100 {Success
0 - T T T ‘—'—""Tﬁ' T T T T T T
°©o® o3I NYYZINSLITLIRST B
Time (s)
Figure C.2: The TSCEM values for the ‘Blocked’ data
Temporal State Count Error Magnitude
(Slowed datq)
600 -
500 -
400 A
é 300 1
*
2001 Failure
100 iy /
= —
0- ——
°©® o INLIIYIBINBBSLISTREEIIB
Time (s)

Figure C.3: The TSCEM values for the ‘Slowed’ data

157

APPENDIX C. TSCEM GRAPHS FOR ERROR EXECUTIONS

Temporal State Count Error Magnitude
(Propped Up datq)
300 7
250 A
e
=2
200 1 E
®
2 150
w
H*
100 -
2
3
501 S /_
w T
0 T T T T T T T T T T T T T
°© ® © ¥ 8 8§ % 8 3 /¥ 8 8 ¥ 3
Time (s)

Figure C.4: The TSCEM values for the ‘Propped Up’ data

Temporal State Count Error Magnitude
(Unknown Environment data)

140 -
120
100 -

80

Errors
Success

20 A é/ At o r~
0 T L) T T T T T T Al T T g
°e @ 2 ¥ 8 8 @ 8 ¥I /R 8 B ¥

Time (s)

Figure C.5: The TSCEM values for the ‘Unknown Environment’ data

158

APPENDIX D

Error Detection Techniques Results

Time of Probabilistic Anomaly | Temporal Anomaly

induced error (s) time detected (s) time detected (s)
0 304 23.2
3 53.6 28.0
6 —_ 36.0
10 64.0 40.0
12 — 48.0
17 78.4 57.6
20 — 62.4
24 106.4 74.4
32 104.0 51.2
40 105.5 —_

Figure D.1: Effectiveness of anomaly detection techniques for Lost Connection’ data

Time of Probabilistic Anomaly | Temporal Anomaly

induced error (s) time detected (s) time detected (s)
0 30.4 23.2
3 64.8 27.2
6 —_ 36.8
10 71.2 43.2
12 68.0 48.8
17 80.0 59.2
20 80.0 63.2
24 99.2 78.4
32 102.4 92.0
40 106.4 —_

Figure D.2: Effectiveness of anomaly detection techniques for ‘Blocked’ data

159

APPENDIX D. ERROR DETECTION TECHNIQUES RESULTS

Time of Probabilistic Anomaly | Temporal Anomaly
induced error (s) time detected (s) time detected (s)
0 75.2 37.6
3 82.4 50.4
6 70.4 47.2
10 111.2 66.4
12 94.4 75.2
17 106.4 78.4
20 112.0 84.0
24 — 96.0
32 — 100.0
40 — 93.6

Figure D.3: Effectiveness of anomaly detection techniques for ‘Slowed’ data

Time of
induced error (s)

Probabilistic Anomaly
time detected (s)

Temporal Anomaly
time detected (s)

0
3
6
10
12
17
20
24
32
40

96.8

64.0

96.8

Figure D.4: Effectiveness of anomaly detection techniques for ‘Propped Up’ data

Time of
induced error (s)

Probabilistic Anomaly
time detected (s)

Temporal Anomaly
time detected (s)

4]

3

6
10
12
17
20
24
32
40

Figure D.5: Effectiveness of anomaly detection techniques for Unknown Environment’ data

160

Bibliography

[Blackburn et al., 2002] Blackburn, M. R., Busser, R., Nauman, A., Knickerbocker, R.,
and Kasuda, R. (2002). Mars Polar Lander fault identification using model-based
testing. In ICECCS.

[Bonasso et al., 1997] Bonasso, R. P, Firby, J., Gat, E., Kortenkamp, D., Miller, D. P,
and Slack, M. G. (1997). Experiences with an architecture for intelligent, reactive
agents. In Journal of Experimental & Theoretical Artificial Intelligence, pages 237-
256.

[Boyan and Littman, 2000] Boyan, J. A. and Littman, M. L. (2000). Exact solutions to
time-dependant MDPs. In Advances in Neural Information Processing Systems (NIPS)
2000, pages 1026-1032. MIT Press.

[Bresina et al., 2002] Bresina, J., Dearden, R., Meuleau, N., Ramakrishnan, S., Smith,
D., and Washington, R. (2002). Planning under continuous time and resource un-
certainty: A challenge for Al. In Proceedings of the 18th Conference on Uncertainty in
Artificial Intelligence (UAI-02).

[Bresina and Washington, 2000] Bresina, J. and Washington, R. (2000). Expected util-
ity distributions for flexible, contingent execution. In Proceedings of the AAAI-2000
Workshop: Representation Issues for Real-World Planning Systems.

[Buffett and Spencer, 2003] Buffett, S. and Spencer, B. (2003). Efficient monte carlo
decision tree solution in dynamic purchasing environments. In Proceedings of the
5th international conference on Electronic commerce, pages 31-39. ACM Press.

[Bui et al., 2002] Bui, H., Venkatesh, S., and West, G. (2002). Policy recognition in the
abstract hidden markov models. Journal of Artificial Intelligence Research, 17:451-
499,

[Coddington et al., 2005] Coddington, A., Fox, M., Gough, J., Long, D., and Serina,
I. (2005). MADbot: A motivated and goal directed robot. In Proceedings of the

161

Twentieth American National Conference on Artificial Intelligence (AAAI-05) — Demo
Session.

[Coddington and Luck, 2004] Coddington, A. M. and Luck, M. (2004). A motivation-
based planning and execution framework. International Journal on Artificial Intelli-
gence Tools, 13(1):5-25.

[Dearden et al., 2003] Dearden, R., Meuleau, N., Ramakrishnan, S., Smith, D. E., and
Washington, R. (2003). Incremental contingency planning. In ICAPS-2003 Workshop
on Planning under Uncertainty and Incomplete Information.

[Dellaert et al., 1999] Dellaert, E, Fox, D., Burgard, W, and Thrun, S. (1999). Monte
carlo localization for mobile robots. In IEEE International Conference on Robotics and
Automation (ICRA99). '

[Demeester et al., 2003] Demeester, E., Nuttin, M., Vanhooydonck, D., and Brussel,
H. V. (2003). A model-based, probabilistic framework for plan recognition in
shared wheelchair control: Experiments and evaluation. In Proceedings of the 2003

" IEEE/RSJ Intl. Conference on Intelligent Robots and Systems.

[Dijkstra, 1976] Dijkstra, E. W. (1976). A Discipline of Programming. Prentice Hall
PTR, Upper Saddle River, NJ, USA.

[Dix et al., 1990] Dix, J., Posegga, J., and Schmitt, P (1990). Modal logic for Al plan-

ning.

[Ellson et al., 2004] Ellson, J., Gansner, E., Koren, Y., Koutsofios, E., Mocenigo, J., and
North, S. (2004). Graphviz 2.6 graph visualization software. available from http://

www.graphviz.org/.

[Epstein, 2003] Epstein, L. (2003). On variable sized vector packing. Acta Cybern.,
16(1):47-56.

[Feng, 2004] Feng, Z. (2004). Towards better scalability in solving MDPs and POMDPs.
In ICAPS 2004 Doctoral Consortium.

[Firby, 1989] Firby, R. J. (1989). Adaptive Execution in Complex Dynamic Domains. PhD
thesis, Yale University.

[Fournier and Crémilleux, 2002] Fournier, D. and Crémilleux, B. (2002). A quality
index for decision tree pruning.

[Fox et al., 2006] Fox, M., Ghallab, M., Infantes, G., and Long, D. (2006). Robot Intro-

spection through Learned Hidden Markov Models. Artificial Intelligence, 170(2):59-
113.

162

http://www.graphviz.org/.

[Fox and Long, 2002] Fox, M. and Long, D. (2002). Single-trajectory opportunistic
planning under uncertainty. In UK Planning SIG, Delft.

[Fox and Long, 2003] Fox, M. and Long, D. (2003). PDDL2.1: An extension of PDDL
for expressing temporal planning domains. Journal of Al Research, 20:61-124.

[Gat, 1992] Gat, E. (1992). Integrating planning and reaction in a heterogeneous
asynchronous architecture for controlling mobile robots. In Proceedings of the Tenth
National Conference on Artificial Intelligence (AAAI).

[Gat, 1998] Gat, E. (March 1998). On three-layer architectures. In Artificial Intelligence
and Mobile Robots: Case Studies of Successful Robot Systems. MIT Press.

[Gerevini and Serina, 2002] Gerevini, A. and Serina, 1. (2002). Lpg: A planner based
on local search for planning graphs with action costs. In AIPS, pages 13-22.

[Givan and Parr, 2001] Givan, B. and Parr, R. (2001). An introduction to markov deci-
sion processes. Talk given at Dagstuhl, available online at http://www.ece.purdue.
edu/"givan/talks/mdp-tutorial.pdf.

[Gregory, 2001] Gregory, I. P (2001). A comparative review of robot programming
languages.

[Hoare, 1983] Hoare, C. A. R. (1983). An axiomatic basis for computer programming.
Commun. ACM, 26(1):53-56.

[Horstmann and Zilberstein, 2003] Horstmann, M. and Zilberstein, S. (2003). Auto-
mated generation of understandable contingency plans. 13th International Confer-
ence on Automatic Planning & Scheduling (ICAPS).

[Ingham et al., 2001] Ingham, M., Ragno, R., and Williams, B. (2001). A reactive
model-based programming language for robotic space explorers. In Proceedings of
ISAIRAS-01.

[Joslin et al., 2005] Joslin, D., Frank, J., J6nsson, A. K., and Smith, D. E. (2005).
Simulation-based planning for planetary rover experiments. In Winter Simulation
Conference.

[Kohonen, 1990] Kohonen, T. (1990). Self-organized formation of topologically cor-
rect feature maps. In Shavlik, J. W, and Dietterich, T. G., editors, Readings in Machine
Learning, pages 326-336. Kaufmann, San Mateo, CA.

[Kosaka and Kak, 1992] Kosaka, A. and Kak, A. C. (1992). Fast vision-guided mo-
bile robot navigation using model-based reasoning and prediction of uncertainties.
CVGIP: Image Underst., 56(3):271-329.

163

[Lane and Kaelbling, 2002] Lane, T. and Kaelbling, L. P (2002). Nearly deterministic
abstractions of markov decision processes. In Eighteenth national conference on Ar-
tificial intelligence, pages 260-266, Menlo Park, CA, USA. American Association for
Artificial Intelligence.

[Liao et al., 2004] Liao, L., Fox, D., and Kautz, H. (2004). Learning and inferring
transportation routes. In Proceedings of the 19th National Conference on Al (AAAI-
04), San José, CA.

[MacQueen, 1967] MacQueen, J. (1967). Some methods for classification and anal-
ysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on
Mathematics, Statistics and Probability, 1:281-296.

[Matijevic, 1996] Matijevic, J. (1996). Mars pathfinder microrover — implementing a
low cost planetary mission experiment.

[Mausam et al., 2005] Mausam, Benezara, E., Brafman, R. I, Meuleau, N., and
Hansen, E. (2005). Planning with continuous resources in stochastic domains. In
Proceedings of IJCAI'0S.

[Muscettola et al., 1998] Muscettola, N., Nayak, P, Pell, B., and Williams, B. (1998).
Remote agent: To boldly go where no Al system has gone before. Artificial Intelli-
gence, 103(1-2):5-47.

[NASA, 1999] NASA (1999). Mars Polar Lander Press Kit.

[NASA, 2000] NASA (2000). Report on the loss of the Mars Polar Lander and deep
space 2 missions.

[Pedersen et al., 2005] Pedersen, L., Smith, D., Deans, M., Sargent, R., Kunz, C,, Lees,
D., and Rajagopalan, S. (2005). Mission planning and target tracking for au-
tonomous instrument placement. In Proceedings of the 2005 IEEE Aerospace Con-
ference, Big Sky, Montana.

[Pell et al., 1996] Pell, B., Gat, E., Keesing, R., Muscoletta, N., and Smith, B. (1996).
Plan execution for autonomous spacecraft. In Plan Execution: Problems and Issues:
Papers from the 1996 AAAI Fall Symposium, pages 109-116. AAAI Press, Menlo Park,
California.

[Pettersson, 1997] Pettersson, L. (1997). Real-time scheduling using fuzzy techniques.

[Russell and Norvig, 1995] Russell, S. J. and Norvig, R (1995). Artificial Intelligence:
A Modern Approach, pages 762-766. Prentice Hall, first edition.

164

[Schaffer et al., 2005] Schaffer, S., Clement, B., and Chien, S. (2005). Probabilistic
reasoning for plan robustness. In 19th International Joint Conference on Artificial
Intelligence.

[Simmons and Apfelbaum, 1998] Simmons, R. and Apfelbaum, D. (1998). A task de-
scription language for robot control.

[Tindell et al., 1992] Tindell, K., Burns, A., and Wellings, A. J. (1992). Mode changes
in priority pre-emptively scheduled systems. In IEEE Real-Time Systems Symposium,
pages 100-109.

[Volpe, 2003] Volpe, R. (2003). Rover functional autonomy development for the mars
mobile science laboratory. In Proceedings of the 2003 IEEE Aerospace Conference, Big
Sky, Montana.

[Volpe, 2005] Volpe, R. (2005). Rover technology development and mission infusion
beyond MER,. In Proceedings of the 2005 IEEE Aerospace Conference, Big Sky, Mon-
tana. :

[Volpe et al., 2001] Volpe, R., Nesnas, 1., Estlin, T., Mutz, D., Petras, R., and Das, H.
(2001). The claraty architecture for robotic autonomy.

[Williams and Gupta, 1999] Williams, B. and Gupta, V. (1999). Unifying model-based
and reactive programming within a model-based executive. Workshop on Principles
of Diagnosis.

[Williams and Nayak, 1999] Williams, B. C. and Nayak, P (1999). A model-based
approach to reactive self-configuring systems. In Minker, J., editor, Workshop on
Logic-Based Artificial Intelligence, Washington, DC, June 14-16, 1999, College Park,
Maryland. Computer Science Department, University of Maryland.

165

Thank you Derek Long and Maria Fox for your
supervision, perseverance, much needed nagging
and above all, faith in my work.

Many thanks also go to my family, as well as
my colleagues and friends, Andrew, Amanda, Pete,
Ivan, Sam R., Marion, Sam G., Naomi, Camilla,
Jen, the extremely helpful folks at Typophile and
the countless others who supported me through
difficult times.

