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Abstract 

The main objective of the work of this thesis is to design model-based fault detection 

and isolation techniques for a large-scale wind turbine. A mathematical model of the 

5MW wind turbine was developed; the model was sufficiently detailed to be used for 

simulation purposes. The stages of the modelling procedure were to divide the 

overall wind turbine system into appropriate sub-models suitable for separate 

modelling. Each sub-model was then presented and combined in order to obtain a 

completed non-linear wind turbine model. Two methods are proposed to calculate 

the gains of a proportional-integral (PI) pitch angle controller for the non-linear 

model: the first method is analytical and the second method is based on simulation. 

The simulation results demonstrated good performance for both proposed PI 

schemes. In order to design an electrical torque controller, an internal model control-

based PI controller was used to find the gains of the current and of the torque 

controller; good static and dynamic performance were achieved. 

 

In this thesis, a quantitative model-based method for early detection and diagnosis of 

wind turbine faults is proposed. The method is based on designing an observer by 

using a linear model of the system; the observer innovation signal is monitored to 

detect faults. The fault detection system was designed and optimised to be maximally 

sensitive to system faults and minimally sensitive to system disturbances and noise; a 

multi-objective optimisation method was utilised to address this dual problem. 

Simulation results are presented to demonstrate the performance of the proposed 

method. Next, a non-linear observer-based scheme for early fault detection and 

isolation of wind turbines was developed. The method is based on designing a non-

linear observer using a non-linear model of the wind turbine. The state-dependent 

differential Riccati equation was used to design a non-linear observer. The 

comparison of system outputs with non-linear observer estimation confirmed good 

performance of the non-linear observer. Based on the non-linear observer, a residual 

generator for monitoring wind turbine model was formulated. Simulation results 

illustrated that the proposed method is a robust method in detecting and isolating a 

single fault or multi-faults in wind turbine sensors.  
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1 Introduction 

This chapter gives a brief description of the motivation and objectives of this study, 

research on fault monitoring and isolation for wind turbines, contributions of the 

thesis, organisation of thesis and publications. 

 

1.1 Motivation 

Modern wind turbines demand a high degree of automation, resulting in increasingly 

complex technical processes. With increased complexity, the probability of faults 

occurring also increases. Faults can occur in wind turbine components, sensors or 

actuators. Examples of common faults include: short-circuiting or overheating of 

electrical components, physical damage to bearings due to mechanical stresses, pipe 

leaks, sticking of valves and sensor drift. Faults can cause a wind turbine to operate 

far from its optimal operating parameters, resulting in reduced efficiency and 

reduced product quality; if the fault becomes sufficiently serious, complete system 

failure may occur resulting, in turn, in additional maintenance costs. The operation 

and maintenance of wind energy converters have evolved over the years, with 

strategies to monitor the operational condition of wind turbines being developed in 

response to the increasing number of wind turbines installed globally. These 

strategies are the breakdown, cyclic maintenance and Condition-based maintenance, 

each with its own advantages and disadvantages, as now described. 

 

I – Breakdown strategy 

The breakdown strategy, also known as the ‘fix it when it breaks’ strategy (see 

Figure 1.1), has been in use since before 1950 [50]. The characteristics of this 

strategy are that: 

• components are used right up to full life time (they are repaired or replaced 

when they break); 

• the fix time is unknown, so planning spare parts and personnel logistics is 

complicated; and 

• the downtime (Tdown) for offshore wind turbines is potentially long due to lack 

of personnel and cranes. 
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II- Cyclic maintenance strategy 

The cyclic maintenance strategy, used since 1950, uses experience to estimate the 

period of time, Tmi, (i=1,2...) needed to repair or replace a new component. Figure 

1.1 shows an increase in Tmi, as a result of improved experience. The important 

characteristics of this method are that: 

• a system is required for planning and controlling work; 

• spare part and personnel logistics must be planned; 

• intervals can be adjusted due to experience, for example Tm3>Tm2> Tm1, as 

shown in Figure 1.1; 

• components are not used fully; and 

• a high personnel capacity is required. 

 

III- Condition-based maintenance strategy  

Condition-based maintenance (CBM), in operation since 1970, is used for 

monitoring the condition of and fault presence in wind turbines.  

 

Figure 1.1: Maintenance strategies [37] 
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Condition monitoring achieves wind turbine reliability and maintainability. The 

characteristics of CBM are that: 

 

• downtime is minimised, as shown in Figure 1.1; 

• spare part and personnel logistics must be planned; 

• maintenance is carried out during periods of low wind; 

• a significant level of effort is dedicated to online monitoring, diagnostics etc; 

• the gradient of a lifetime curve should be identified; and 

• the optimal point in time for maintenance must be determined.  

 

CBM is a preventive maintenance programme whereby a condition monitoring 

system (CMS), which monitors the equipment continuously, is used. The goal is to 

predict when a machine fault is most likely to occur. Under CBM, time intervals 

between maintenance operations are variable. The CBM steps are as now described. 

 

I. Data acquisition. Online monitoring systems are employed and large volumes of 

data are received as measurements.  

II. Data analysis and diagnosis. Improves the understanding and interpretation of 

fault detection.  

III. Isolation. Here, a particular fault is identified and separated from other faults. 

For example, it may be needed to determine in which sensor, actuator or 

component a particular fault has occurred.  

 

In this thesis, a robust model-based fault detection and isolation techniques to detect 

faults in wind turbines will be developed. They can be used to support the CMS. The 

task is to predict when a fault occurs, diagnose or analyse data for better 

understanding and interpretation of fault detection, and to isolate a particular fault 

from others. 

 

1.2 Objective of this thesis  

The main objective of this thesis is to design model-based fault detection and 

isolation techniques for large-scale wind turbines. Fault detection and isolation (FDI) 
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can be achieved by using hardware or analytical methods. Hardware-based methods 

have the advantages of good reliability and direct fault isolation; their disadvantages 

are the additional cost and space required to accommodate components and extra 

weight. Analytical-based methods give an indication of faults by comparing the 

measured and predicted outputs of the process. Analytical-based fault detection 

algorithms can be implemented on a computer and, hence, avoid the disadvantages 

related to the hardware-based fault detection methods. Analytical-based fault 

detection algorithms can be implemented in the same processor as the control 

algorithms, so that no additional hardware is required. Analytical model-based 

techniques use the knowledge of the monitored process and, therefore, are the most 

capable approaches for fault detection. These techniques include observer-based 

approaches, parity space approaches and parameter estimation approaches. In recent 

decades, observer-based methods have received considerable interest for a number of 

reasons: they offer rapid fault detection and require no excitation signal. Other 

model-based approaches, which include the parity-space approach and the parameter 

estimation approach, are, under certain conditions or assumptions, specific forms of 

the observer-based approaches [46].  

 

In this thesis, model-based fault detection and isolation techniques for wind turbines 

are studied in detail. Fault monitoring for linear systems is studied extensively and is 

demonstrated to be extremely useful. If the process has strong non-linearities, or the 

operating region is too wide, the linearisation error will be too large to be handled by 

the linear fault detection techniques. Therefore, for large wind turbines which have 

non-linear dynamics, there is a necessity to study non-linear fault detection 

techniques.  

 

1.3 Research on fault monitoring and isolation for wind turbines 

Fault diagnosis is a key technology required to achieve higher performance and 

increased safety and reliability for contemporary dynamic systems. Faulty 

components in wind turbines can cause high losses in energy production and possible 

damage to the wind turbines themselves; the losses may be higher for offshore wind 

farms. For instance, Figure 1.2 shows the percentage breakdown of the number of 
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failures which occurred during the years 2000-2004 [45]. Most failures were linked 

to the electrical system, followed by sensors and blades/pitch components. Therefore, 

condition/fault monitoring should be applied to avoid abnormal event progression, to 

reduce productivity loss, system breakdowns and damage, all of which lead to 

increasing the safety and reliability of the system. 

 

In the literature, process fault diagnoses range from analytical methods to articulate 

intelligence and statistical approaches. From a modelling perspective, there are 

methods which require accurate process models, quantitative models or qualitative 

models. At the same time, there are methods which do not assume any form of model 

information and depend only on historical process data.  

 

Analytical fault diagnosis methods, surveyed in [19, 47, 48], can be classified into 

two general categories: quantitative and qualitative methods. In quantitative models, 

this understanding is expressed in terms of mathematical functional relationships 

between the inputs and outputs of a system in the form of system descriptions. For 

example, it may be a difference or a differential equation, a state-space model or a 

transfer function. In a qualitative model, the relationships are expressed in terms of 

qualitative functions between the different components of the system. Usually, this 

approach depends upon the expert’s knowledge of the system in both normal and 

fault cases.  

 

The type of process knowledge is the most important characteristic used in 

classifying fault diagnosis systems. The basic knowledge, which is needed for fault 

diagnosis, is the set of failures and the relationship between the observations and the 

failures. A diagnostic system may display them explicitly as in a lookup table or it 

may infer them from some source of domain knowledge. The domain knowledge 

may be developed from a fundamental understanding of the process using first-

principles knowledge; such knowledge is known as deep, causal or model-based 

knowledge [51]. On the other hand, knowledge may be obtained from past 

experience with the process; this knowledge is known as shallow, evidential or 

process history-based knowledge.  
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Figure 1.2: The distribution of a number of failures for Swedish wind turbines 

between 2000-2004 [45] 

 

 

1.3.1 Basic concept of a fault 

Following the SAFEPROCESS Technical Committee’s suggestions, the 

terminologies, used in FDI, were fairly standardised. Throughout the text, a fault 

means an unpermitted deviation of at least one characteristic property or parameter 

of a system from the acceptable/usual/standard condition [52]. A particularly related 

term is failure which is a permanent interruption of the system’s ability to perform a 

required function under specified operating conditions. There is a slight difference 

between fault and failure; failure means a component’s complete breakdown, 

whereas fault is only a deviation from normal characteristics. As far as detection is 

concerned, faults and failures can be treated alike. In this thesis, the term fault is used 

to encompass failure. 
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Faults can be described as external inputs or parameter deviations which change the 

behaviour of the process. Like faults, disturbances and uncertainties can be modelled 

also as external inputs. Furthermore, disturbances and uncertainties have effects on 

the process, in a similar manner to the effects of faults on the process. However, 

compared to faults, disturbances are unavoidable and are present even during the 

normal operation of the process. Moreover, the controller is designed so that it can 

perform well in the presence of disturbances. Faults, on the other hand, are more 

severe changes and their effects cannot be overcome by a fixed controller and, 

therefore, must be detected. 

 

The purpose of fault diagnosis is to detect faults and to determine their location and 

significance. The fault diagnosis procedure consists of three steps: fault detection, 

fault isolation and fault identification. Fault detection is the process of determining 

the presence of faults and the times of their occurrence. The function of fault 

isolation is to locate exactly the cause or the origin of the fault. Once the fault has 

been detected and isolated, the fault identification starts with the aim of identifying 

the approximate time behaviour of the fault.  

 

1.3.2 Types of faults 

A fault is defined as an unexpected deviation from the normal condition of one or 

more of the system’s characteristic properties or parameters. Faults can be divided 

into three types depending on the system’s components: actuators, sensors and 

components. Each of these faults and their effects are described briefly below. 

 

1.3.2.1 Component faults 

Component faults alter the physical parameters of the plant which, in turn, results in 

changes to its dynamical properties. The common reason for these faults is usually 

wear and tear, ageing of components etc. Some examples of component faults are 

leakages in oil tanks, breakages or cracks in the gearbox system and changes in 

friction due to lubricant deterioration etc. Component faults may result in instability 

of the process; therefore, it is extremely important to detect these faults. 
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1.3.2.2 Actuator faults 

Actuators are required to transform control signals into proper actuation signals such 

as torques and forces in order to drive the system. The effect of a fault in an actuator 

may range from mere higher energy consumption to total loss of control. Examples 

of actuator faults include stuck-open control valves, faults in pumps, motors etc. As 

shown in Figure 1.3, some common actuator faults are lock-in-place, float around 

trim, hard-over failure and loss of effectiveness. 

 

 

 

 

Figure 1.3: Common types of actuator faults [53]. Dotted lines show the desired 

value of actuator and the solid lines show actual value. (a) Loss of effectiveness, 

(b) lock-in-place, (c) floating around trim and (d) hard-over failure  

 

1.3.2.3 Sensor faults 

In feedback systems, the measurements obtained by sensors are used to generate the 

control inputs and any sensor fault can cause operating points which are far from 

optimal, resulting in degradation in system performance; it is therefore very 

important to detect these faults. As illustrated in Figure 1.4 , typical examples of 

sensor faults are bias, drift, loss of accuracy, sensor freezing and calibration error. 

 

 

(a) (b) 

(c) (d) 

Time Time 

Time Time 

u u 

u u 



9 

 

 

Figure 1.4 : Types of sensor faults [53]. Solid lines show the actual values whereas 

the dotted lines show the measured values. (a) Loss of accuracy, (b) sensor bias, (c) 

sensor drift and (d) frozen sensor  

 

As shown in Figure 1.5, faults can be categorised according to whether they have 

developed slowly in the system (incipient faults); arisen suddenly like a step change 

(abrupt faults); or occurred in discrete intervals (intermittent faults). Abrupt faults 

have more severe effects and may result in equipment damage. However, fortunately, 

abrupt faults are easier to detect. Incipient faults grow slowly and result in equipment 

degradation. Their slowly changing behaviour makes them difficult to detect. 

Depending to the way in which these faults are modelled, they may be further 

classified into additive faults and multiplicative faults.  

 

 

 

Figure 1.5: Graphical illustration of (a) abrupt fault, (b) incipient fault and (c) 

intermittent fault. r is a residual signal indicating the occurrence of the fault 
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1.3.3 Fault model 

Faults that can be modelled as unknown changes in signals in the wind turbine 

system, for example changes in the control signal, sensor malfunction or slight 

damaged wind turbine element, are additive faults. These faults can be classified 

according to their source as actuator ( )(tu∆ ), sensor ( )(ty∆ ) and component )( tu c∆ ) 

faults [86]. Figure 1.6 shows the effect of additive faults on the observed signals of 

the inputs and outputs, which are represented in equations (1.1) and (1.3). The 

component faults affect both the true output and the observed output, and can be 

written as in the equation (1.2).  

 

  ( ) ( ) ( )
o

u t u t u t= + ∆  (1.1) 

 ( ) ( ) ( )c

o o cy t u t u t= + ∆  (1.2) 

 
0( ) ( ) ( )c

oy t y t y t= + ∆  (1.3) 

 

where 
0( ), ( )c

ou t y t  and ( )
o

y t  are actuator, component and sensor output, 

respectively.   

  

Consider additive system disturbance and sensor noise; the observed signals for the 

input and output can be rewritten as:   

 ( ) ( ) ( ) ( )
o

u t u t u t u tδ= + ∆ +  (1.4) 

 ( ) ( ) ( ) ( )c

o o c cy t u t u t u tδ= + ∆ +  (1.5) 

 
0( ) ( ) ( ) ( )c

oy t y t y t y tδ= + ∆ +  (1.6) 

  

where ( )u tδ  and ( )
c

u tδ  are actuator and component disturbance signals, respectively 

and ( )y tδ is sensor noise signal. 
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Figure 1.6: Diagram of additive faults 

 

 

1.3.4  Model-based fault detection approaches 

The principle of model-based fault detection schemes is to compare the behaviour of 

the actual process to that of the process’s nominal fault-free model driven by the 

same input. Figure 1.7 shows the schematic diagram of a model-based fault detection 

scheme. It consists of two main stages: residual generation and residual evaluation. 

The objective of residual generation is to produce a signal, called a residual signal, 

by comparing the measurements with their estimates. The purpose of residual 

evaluation is to inspect the residual signal for the possible presence of faults. 

 

Based on the model used for the purpose of residual generation, model-based fault 

detection schemes can be divided further into two categories. The model can be an 

analytical model, represented by a set of differential equations, or it can be a 

knowledge-based model represented by, for example, neural networks, petri nets, 

experts systems, fuzzy rules etc. Knowledge-based model approaches do not need 

full analytical modelling and are, therefore, more suitable in information-poor 

systems or in situations where the mathematical model of the process is difficult to 

obtain or is too complex; for example chemical processes, which are difficult to 

model analytically.  

 

In analytical model-based approaches the residual signal is generated using the 

mathematical model of the system. The most commonly used analytical model-based 

approaches for residual generation are described below. 
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Figure 1.7: Schematic diagram of a model-based fault detection scheme 

 

1.3.4.1 Observer-based approaches  

The basic idea of the observer- or filter-based approach is to estimate the system’s 

outputs from the measurements by using either observers in a deterministic setting 

[57, 58, 59, 60, 61, 62] or statistical filters (e.g. the Kalman filter) in a stochastic 

setting [63, 64, 65, 66]. Then, output errors, which are the difference between the 

system’s output and the observer’s output, are used as the residuals. Depending on 

the circumstances, linear [67] or non-linear [57, 68, 69], full or reduced-order, fixed 

or adaptive observers (or Kalman filters) [70, 71] may be used. 

 

It should be noted that there is a difference between observers used for control 

purposes, and observers used for fault detection. The observers needed for control 

are state observers, i.e. they estimate states which are not measured.  By contrast, 

output observers are the observers needed for fault detection, i.e., these observers 

generate estimation of the measurements.  

 

The idea of using observers for residual generation goes back to the 1970s when 

Beard proposed a detection filter modified by Jones to become the so-called Beard-

Jones detection filter [59]. In parallel to the Beard-Jones detection filter, the Kalman 

filter was used in stochastic setting. The robustness of the residual signal against 

unknown inputs was discussed widely in the literature and several approaches were 

proposed to tackle this problem. Frank et al. [72] made the first attempt to improve 
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the robustness of the observer-based instrument fault detection scheme. A related 

approach for robust residual generation is the use of the eigenstructure approach 

which decouples, also, the residual from unknown inputs. Compared to unknown 

input observers, the existing conditions for the eigenstructure assignment approach 

are more relaxed. In this approach, instead of decoupling state estimations from 

unknown inputs, the residual signal is made independent of unknown inputs. For 

example, the effective wind speed on the blades of a wind turbine is an unknown 

input.  

 

1.3.4.2 Parity space approaches 

Parity equations are rearranged and, usually, are transformed variants of the system’s 

input-output or state-space models [73]. The basic idea is to check the parity of the 

system models with sensor output measurements and known process inputs. The 

purpose of this approach is to rearrange the model structure in order to obtain the 

best fault isolation. Willsky [64] introduced dynamic parity relations. Redundancy 

provides freedom in the design of residual generating equations so that further fault 

isolation can be achieved. Fault isolation requires the ability to generate residual 

vectors which, for different faults, are orthogonal to each other. Gertler et al. [74, 

134] suggested a so-called orthogonal parity equation approach in designing 

structured residual sets. The design of directional residual vectors, using parity 

relations, is not straightforward. The systematic approaches of designing parity 

equations with directional properties are presented in [75, 134]. Chow and Willsky 

[76] proposed a procedure to generate parity equations from the state-space 

representation of a dynamic system.  

 

1.3.4.3 Parameter estimation-based approaches 

The parameter estimation approach for fault detection was proposed first in [77, 78] 

and is based on the assumption that the faults are reflected in the physical parameters 

of the system. With this assumption, the parameters of the system are estimated 

online repeatedly; any discrepancy between the estimated and the actual parameters 

gives an indication of the faults. An advantage of the parameter estimation approach 
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is that, with only one input and one output signal, several parameters can be 

estimated, giving a detailed picture on internal process quantities [79]. Another 

advantage of this method is that it yields the size of the deviations, which is 

important for fault analysis [55]. Although it can also detect sensor and actuator 

faults, a parameter estimation-based approach is useful for component fault 

detection. A disadvantage is that an excitation is needed in order to estimate the 

parameters; this may result in problems if the process is operating at stationary points 

[55]. There are several parameter estimation techniques including methods of least 

squares, recursive least squares, extended least squares, etc. Parameter estimation 

techniques have been applied, also, to fault detection in non-linear systems. A study 

of parameter estimation-based fault detection in non-linear systems can be found in 

[79] and an application to a non-linear satellite model in [78].  

 

1.3.4.4 Residual evaluation methods 

Residual evaluation is the second step in a model-based fault detection scheme. In 

this step, the residual signal is manipulated to indicate the occurrence of the fault. In 

ideal situations, when there are no disturbances or their effect on the residual signal 

is eliminated completely, there are no modelling uncertainties and the observer’s 

initial conditions are the same as those of the process. In a fault-free case, the 

residual signal is zero; any deviation of the residual from zero indicates the presence 

of faults. However, these ideal situations are never attained and there are always 

modelling errors; the observer’s initial conditions may be different from those of the 

process. Even in the absence of faults, this causes the residual signal to deviate from 

zero. Even in the presence of disturbances and uncertainties, the purpose of residual 

evaluation is to decide about the occurrence of faults. 

 

Residual evaluation consists of three stages: residual processing, threshold selection 

and decision making. Two strategies have been used for residual processing. For 

deterministic systems, a norm-based residual processing strategy is preferred and, for 

stochastic systems, statistical methods are adopted. Other commonly used evaluation 

functions for deterministic systems include absolute value, peak value, average 
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value, moving average etc. In stochastic settings, the frequently used evaluation 

functions are mean, variance, likelihood ratio, generalised likelihood ratio etc. 

Further details about stochastic evaluation functions can be found in [81]. 

 

The selection of threshold is the second stage in residual evaluation. If the selected 

threshold is too low, it results in false alarms, i.e. some disturbances will cause the 

residual to cross the threshold and result in an alarm. If the selected threshold is too 

high, small faults are undetected. A detailed study of different threshold selection 

methods and their computation details for linear systems can be found in [81]. 

Although the residual generation for non-linear systems has been studied extensively, 

little attention has been given to threshold computations for non-linear systems [82, 

83, 84]. Usually, in deterministic settings, the selected threshold is slightly higher 

than the premium value of the evaluated residual signal in a fault-free case. 

 

Decision logic is the third stage in residual evaluation. The simplest decision logic is 

to compare the evaluated residual signal with the threshold. If the evaluated residual 

exceeds the threshold then the fault alarm is released. There are, also, some 

approaches which use fuzzy logic or neural networks for residual evaluation [55]. 

  

1.3.4.5 Selection of fault detection method 

Selection of a suitable fault detection scheme is difficult and the decision upon which 

the fault detection method should be used depends on several factors (see Figure 1.8) 

including the availability of the mathematical model, information about the process, 

type of disturbances and uncertainties, non-linearities, the presence of closed or open 

loop etc. For example, in electrical and mechanical systems it is relatively easy to obtain 

a mathematical model. Consequently, quantitative model-based approaches are 

preferred and, usually, these are faster and their online implementation is easier making 

them more suitable for processes with fast dynamics. By contrast, chemical and 

industrial processes are difficult to model and complex, even when a mathematical 

model can be obtained; in such cases qualitative model-based approaches should be 

applied. 
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Figure 1.8: Flowchart describing the selection of a fault detection method for a 

wind turbine 
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approach nor the observer-based approach need a change of input signal to detect 

faults, whereas a parameter estimation approach requires input excitation. Compared 

to observer-based approaches and parameter estimation approaches, parity space 

approaches are more sensitive to measurement noise [79]. 

 

Several researchers have observed a degree of correspondence between observer-

based and parity relation approaches when the observer has been designed as a dead-

beat. A full derivation of the equivalence of this structure can be found in [46]. The 

inconvenience of using dead-beat observers in the presence of noise is well known. 

However, for instance, a Kalman observer can be used to minimise the effect of 

noise in the estimation error. This leads to thinking that the resulting residual 

generated by an observer scheme can be superior to that obtained under certain 

conditions with parity relations.    

    

 

1.4 Contributions of the thesis 

The contributions of the thesis are now listed. 

 

a) A model of the 5MW wind turbine is developed. The stages of the modelling 

procedure are to divide the overall wind turbine model into appropriate sub-

models suitable for separate modelling. These sub-models are rotor torque, 

drive-train, doubly-fed induction generator and fixed-point wind speed model 

and controller. The sub-models are then combined to obtain a completed non-

linear wind turbine model.   

 

b) Two PI-based control design schemes are proposed for the control of blade-

pitch angle in variable-speed wind turbines. The first method is analytical and 

the second method is based on simulation to calculate PI gains. 

 

c) A model-based linear fault detection and isolation scheme for wind turbines 

is developed. The method is based on designing an observer using a model of 

the wind turbine. The fault detection system is designed and optimised to be 
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maximally sensitive to system faults and minimally sensitive to system 

disturbances and noise; a multi-objective optimisation method is employed to 

address this dual problem.  

 

d) A novel non-linear observer-based fault detection and isolation method is 

developed. The non-linear observer is designed using the state-dependent 

differential Riccati equation rather than algebraic Riccati equations, which 

can require an overly restrictive requirement on system observability and 

controllability. The fault detection system is designed and optimised to be 

maximally sensitive to system faults and minimally sensitive to system 

disturbances and noise. The residual generator based on the non-linear 

observer is employed to develop a fault monitoring system. Simulation results 

demonstrate that this method is robust for the detection and isolation of a 

single fault or multi-faults in wind turbine sensors. 

 

1.5 Organisation of the thesis 

The organisation of the thesis is now described. 

 

Here, in Chapter One, the motivation, objective, outline and contributions of the 

thesis are presented.  

 

Chapter Two sets up a mathematical model of the large-scale wind turbine and fixed-

point wind speed model. These models are sufficiently detailed to be used as a 

simulation model. The simulation is implemented in three steps for assessing the 

performance of these models. Firstly, the response of the wind turbine rotor’s open 

loop is tested. After that, the performance of the wind turbine system is examined in 

cases of constant wind speed and non-stationary wind speed.  

 

Chapter Three presents a PI controller design for controlling electrical torque and 

pitch angle. For a non-linear model of a 5MW wind turbine two methods are 

proposed to calculate the gains of a PI pitch angle controller; the first method is 

analytical and the second is based on simulation. In order to design an electrical 
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torque controller, an internal model control (IMC)-based PI is used to find the gains 

of the current and torque controller to achieve good static and dynamic performance.  

 

Chapter Four describes the basic concepts of a fault and the types of faults, and 

presents the most common analytical model-based approaches for fault detection. 

Linear observer-based fault detection and isolation methods for a wind turbine are 

proposed. Firstly, an observer-based residual generator is designed using a set of 

structured residual generators. Secondly, a robust observer-based sensor fault 

detection and isolation scheme is developed to accomplish fault detection and 

isolation. Here, each sensor residual is separated from the output of the residual and 

the dimension of the residual is modified using a residual weighting factor.  

 

This scheme is systematic and easy to design and implement. Simulation results 

demonstrate that it is suitable for detection and isolation of faults in sensors and that 

it is simple to handle multiple faults. 

 

Chapter Five presents a survey of methodologies in the theory of a non-linear 

observer-based fault diagnosis. Those methods which this author considers suitable 

for application in monitoring wind turbines and which might gain some relevance for 

future research and practical applications are given a focus. A novel non-linear 

observer-based fault detection and isolation method for monitoring wind turbines is 

presented. Different additive sensor faults are used to test the proposed method. 

These faults are pitch angle, the difference between turbine rotor angle and generator 

rotor angle, wind turbine rotor speed, generator rotor speed, electric torque and wind 

turbine torque. A dynamic threshold is designed for each sensor to identify the fault 

based on residual curves, with consideration given to the accuracy of each sensor; in 

the case of no sensor fault, unity (1) is returned, and in the case of a sensor fault, zero 

(0) is returned. Simulation results demonstrate that it is a robust method for the 

detection and isolation of wind turbine faults. 
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Finally, Chapter Six presents the conclusions of the work of this thesis and makes 

recommendations for future work concerning non-linear observer-based fault 

diagnosis methods and condition monitoring of wind turbines. 
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2 Wind Energy Conversion System Models 

The purpose of this chapter is to set up a mathematical model of large-size wind 

turbines; the model will be sufficiently detailed to be used as a simulation model. 

The stages of the modelling procedure are to divide the overall wind turbine model 

into appropriate sub-models suitable for being modelled separately. These sub-

models are: rotor torque model, drive-train model, doubly fed induction generator 

model, grid-side converter model and fixed-point wind speed model and controller. 

Each wind turbine sub-model is presented and combined to obtain a complete non-

linear model of a wind turbine. 

 

2.1 Wind turbine overview 

Wind turbines are categorised into two types depending on the axis of the turbine. 

The most common type, the horizontal axis wind turbine (HAWT), has a turbine that 

rotates around a horizontal axis. Less common is the vertical-axis wind turbine, 

where the rotor rotates around a vertical axis. 

 

HAWT’s are usually three-bladed (cyclic loads on the turbine shaft for three-bladed 

rotors are much smaller than those produced by two-bladed rotors [9]), with the main 

rotor shaft and electrical generator at the top of the tower. The rotor of a HAWT 

must be pointed into the wind. Small HAWT’s are pointed by a tail and large 

HAWT’s use a wind sensor coupled with a servo motor. Most wind turbines have a 

gearbox, which turns the slow rotation of the blades into a faster rotation that is more 

suitable to drive an electrical generator. Since turbulence is produced behind the 

turbine tower, it is usual for the turbine to be pointed upwind of the tower and thus, 

avoid the turbulent area. The terms ‘downwind rotor’ and ‘upwind rotor’ denote the 

location of the rotor with respect to the tower and wind direction (see Figure 2.1). 

Downwind turbines do exist, despite the problem of turbulence, since they do not 

require an additional mechanism to keep them facing into the direction of the wind. 

Furthermore, in cases of high wind speed, the blades of downward turbines can be 

allowed to bend, thus reducing their sweep area [3].  
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Modern HAWT’s are large and, rather than being fixed-speed, they are variable-

speed and pitch-controlled, they have a drive-train with or without gearboxes and 

they are highly controllable. The variable-speed operation of HAWT’s allows the 

rotational speed of the turbine to be adapted continuously in such a manner that the 

turbine operates constantly at its optimal level of aerodynamic efficiency. While 

fixed-speed wind turbines are designed to achieve maximum aerodynamic efficiency 

at a single wind speed, variable-speed wind turbines achieve maximum aerodynamic 

efficiency over a wide range of wind speeds. Furthermore, variable speed operation 

allows the use of advanced control methods to increase power capture [1, 34].  

 

 

 

Figure 2.1: Schematic view of upwind (left) and downwind (right) of HAWTs  

 

 

2.2 Modern horizontal-axis wind turbines: Main components 

The main components of a modern HAWT are illustrated in Figure 2.2 and described 

below. 
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Figure 2.2: Main components of a HAWT 

2.2.1 Rotor  

The rotor consists of three blades that are fastened to the central hub (see Figure 2.2). 

It has a mechanism to adjust the blade-pitch angle ( β ), which is the angle between 

the blade chord line and the plane of the rotation. This pitch change mechanism, 

which controls the rotational speed of the rotor, consists of high quality mechanical 

devices with actuators and computerised controls. 

2.2.2 Drive-train  

The HAWT drive-train consists of a main shaft (known as a low-speed haft or 

turbine shaft), a gearbox, a high-speed shaft, a generator, a rotor break and auxiliary 

equipment for control, lubrication and cooling systems. Some HAWTs have a direct 

drive from the turbine to the generator with no gearbox, turbine shaft or drive shaft.  

 

The low-speed shaft with its bearings, lubrication and couplings, it may include rotor 

control and safety devices such as sensors and a rotor brake, as well as rotary 

hydraulic couplings, slip rings for power and data transfer, and attached electrical 

and mechanical equipment with their necessary cables and piping.  

 

Rotor torque oscillations can be attenuated before they reach the gearbox by applying 

the correct amount of torsion in the turbine shaft. However, the turbine shaft also 

needs to be strong under deformation in order to support the rotor weight. To meet 

these requirements, the turbine shaft may be composed of two concentric shafts 

Gearbox Generator 
Hub 

Blade 

Brake Main shaft 

High-speed shaft 

Housing 

Tower 
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connected at the hub end and separated at the gearbox end; the outer shaft is a stiff 

primary structure supporting the rotor and the flexible inner shaft, the so-called quill 

shaft, transmits only torque to the gearbox [35]. 

 

The HAWT gearbox has a step-up ratio equal to the generator shaft speed divided by 

the turbine shaft speed; this ratio varies from 1 to 100 in a large scale HAWT. The 

step-up ratio is determined by generator design, rotor diameter and blade tip speed.  

 

A high-speed shaft is a conventional machine element with bolted flanges on both 

ends. The rotor brake disk may be mounted on the drive shaft rather than on the 

turbine shaft for multiplication of the braking power to the square of the step-up 

ratio. Small-scale wind turbines may drive variable speed alternators and direct 

current (DC) generators, whereas medium- and large-scale HAWTs use alternating 

current (AC) generators.   

2.2.3 Tower 

The tower of the wind turbine carries the nacelle (housing) and the rotor. Most large 

wind turbines have tubular steel towers, which are manufactured in sections with 

flanges at either end and bolted together on-site. The towers are conical, with their 

diameter increasing towards the base in order to both increase the tower strength and 

minimise material use. 

 

2.3 Wind turbine models 

Wind turbine modelling is the focus of contemporary research by many academic 

institutions and companies. Although there are many publications in the literature, 

clarifications, extensions and adaptations are still needed for wind turbine models. 

 

Published simulation and analysis information on modelling wind turbine presents 

various modelling approaches. Often, electrical engineers attempt to simplify the 

aerodynamic, mechanical parts and stress generator descriptions. In contrast, 

mechanical engineers disregard generator performance details. Therefore, some 

published models lack a detailed description of their parameters.   
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This section presents aerodynamic modelling of wind turbines. The aim is to present 

wind turbine model structures that allow the prediction of the output of a wind 

turbine during continuous operation. Here, a doubly-fed induction generator model 

for a variable-speed turbine is employed. 

 

2.3.1 Theoretical wind turbine model 

A model for the entire wind energy conversion system (WECS) can be structured as 

several interconnected subsystem models, as shown in Figure 2.3. The model 

encompasses the rotor, drive-train and the generator. The rotor subsystem describes 

the transformation of the three-dimensional wind speed field into aerodynamic 

torque that originates from the rotational movement. The drive-train transfers the 

aerodynamic torque on the blades to the generator shaft. The electrical subsystem 

describes the conversion of mechanical power at the generator shaft into electricity. 

Finally, the actuator subsystem models the behaviour of the pitch servo. 

 

 

 

 

 

 

 

 

 

Figure 2.3: Block diagram of a variable-speed variable-pitch WECS [4] 

 

2.3.1.1 Variable pitch blades 

As shown in equation (2.1), the primary aim of modelling is to determine the wind 

torque generated by the turbine rotor in the form:  

 

 ( , , )
wt wt

T f β ν ω=  (2.1) 
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where: 

v    : wind speed (m/s) 

wtω  : rotational speed of the rotor (rad/s) 

β  :  blade-pitch angle (degrees) 

Based on blade element theory, the blade can be divided into a number of cross-

sectional elements along its length. A blade element j is obtained by sectioning the 

blade with two parallel planes located at distances r and (r + dr) from the hub and 

perpendicular to the blade. Figure 2.4 shows the blade element profile and the 

undertaken aerodynamic load, where: 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

w   : relative wind speed to the blades when the vortex motion is considered (m/s) 

w0 : relative wind speed to the blades when the vortex motion is not considered (m/s) 

a   : axial flow interference factor 

b   : tangential flow interference factor 
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Figure 2.4: Aerodynamic loads along the blade profile 
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dF : total force acting on the blade element (N) 

dD : elementary drag force (N) 

dL : elementary lift force (N) 

dFt : elementary tangential force in the direction of rotation (N) 

dFa : elementary axial thrust force (N) 

 

The main modelling assumptions of the blade elementary theory are that [9]:  

 

• interactions between adjacent elements of the same blade are disregarded; 

• the radial component of the speed is disregarded; 

• the aerodynamic coefficients are a function of the angle of attack and the 

blade profile; and 

• infinite number of blade sections is assumed.  

 

In turbine motion, the basic concept is that the wind flow has a relative movement to 

the rotating blade, defined by the relative wind speed to the blades (w). This variable 

has angle of attack (α) with the blade element reference chord. This is an important 

variable in determining the aerodynamic behaviour of the turbine. It is possible for 

the angle of attack to be changed by wind speed, rotational speed and pitch angle.  

 

The elementary axial and tangential interference factors are computed based on the 

tip speed ratio ( ) ( ) /
r wt

j r j vλ ω= and on the Lagrange coefficient 20.5LcK Rπρ=  (is 

considered invariant) to find the approximate values for a(j) and b(j)  [10]:  

 

 

2

2 2 2

( )
( ) .

(1 ) 1 ( ) / (1 )

Lc r

Lc r Lc

K j
a j

K j K

λ

λ
=

− + −
 (2.2) 

 

 
2 2

1
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(1 ) 1 ( ) / (1 )

Lc

Lc r Lc

K
b j

K j Kλ
=

− + −
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From Figure 2.4, tan (α(j)+β(j)) is given by:  

 

2

2 2

(1 ( ))
tan( ( ) ( ))

( ) (1 ( ))wt

a j v
j j

r j b j
α β

ω

−
+ =

+
 (2.4) 

 

Thus, the angle of attack of the j-th element is given by:

  

 
1

2

1 ( )
( ) tan ( ) ( )

( )(1 ( ))
r

a j
j j

j b j
α β

λ
− −

= −
+

 (2.5) 

          

where λ(j) is the elementary tip speed ratio ( ) ( ) /
wt

j r j vλ ω= . 

 

The wind speed relative to the blade is deduced from the speed diagram (Figure 2.4):  

 

 2 2 2( ) (1 ( )) ( )(1 ( ))rw j v a j j b jλ= − + +  (2.6) 

   

The elementary lift force in the direction of rotation is computed as: 

 

 2( ) 0.5 ( ) ( ) ( ) sin( ( ) ( ))[1 tan( ( ) ( ))].t LdF j c j w j C j j c j j drρ α β α ε β α= + − +  (2.7) 

  

where c is the chord, CL(α) is the lift coefficient, CD(α) is the drag coefficient and 

ε(α) is a ratio reflecting the turbine aerodynamic efficiency. As shown in equation 

(2.8) [11]. 

       

 
( )

( )
( )

L

D

C

C

α
ε α

α
=  (2.8) 

 

Each blade element develops an elementary torque ( )dT j  given by: 

 ( ) ( ) ( )t
dT j  r j .dF j  =  (2.9) 

where r( j) is the elementary distance to the hub r( j) and dFt ( j) is the elementary 

tangential force in the direction of rotation. 
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By integrating equation (2.9) along the blade length and by using equation (2.7), the 

total torque is given by: 

 ( ) ( ). ( )
t

dT j r j dF j= ∫  (2.10) 

2.3.1.2 Fixed-pitch blades 

The torque of the fixed-pitch wind turbine depends on the rotational speed of the 

low-speed shaft and the wind speed. It is possible to develop more complicated 

aerodynamic models which consider the rotational sampling filter, spatial filtering or 

induction lag, leading to a more complex expression of the developed torque [3, 12, 

13]. The rotational sampling is due to the rotating motion of the blades inside the 

turbulence field of the fixed-point wind speed [5]. The spatial filter averages the 

variations in wind speed across the area swept by the rotor. The induction lag 

describes an aerodynamic effect demonstrated experimentally when the wind speed 

or the pitch angle changes. In addition, power coefficient characteristics take into 

account the effects arising from the Reynolds number and air density changes. For 

low power wind turbines these effects, together with the structural dynamics, can be 

disregarded and simplified models can be used. In the case of a fixed-pitch wind 

turbine, the torque (Twt) is given by: 

 ( , )
wt wt

T f ν ω=  (2.11) 

 

The aerodynamic performance of a wind turbine is usually characterised by the 

variation of the non-dimensional CP vs. λ curve and the power extracted by a wind 

turbine is expressed as [9]:  

   

 
2 30.5 ( )wt pP R v Cρπ λ=  (2.12) 

 

The equation of the wind turbine torque can be written as: 

 

 
2 30.5 ( )wt

wt t

wt

P
T v R Cπρ λ

ω
= =  (2.13) 

where the torque coefficient is given by: 



30 

 

 
P

t

C
C

λ
=  (2.14) 

 

Figure 2.5 shows a block diagram for the wind torque, which illustrates a simplified 

description of the wind speed fluctuations due to wind turbine interaction [12]. The 

fixed-point wind speed model is described and discussed in section 2.5. The target of 

the spatial filter is to perform the variations of average wind speed across the area 

swept by the rotor. The transfer function of the spatial filter is represented in 

equation (2.15) [12, 14]: 

Figure 2.5: Block diagram of wind torque 
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 (2.15) 

where:  

asf  :   empirical factor = 0.55 

bsf : parameter describing the relation between wind speed evolutions in different 

points across the rotor, which can be expressed as:  
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γ=  (2.16) 

wtω
 

 

Fixed- 

point 

wind 

speed 

model 

Spatial 

filter 

Rotational 

sampling 

filter 

.
wt

R

v

ω

 

Wind 

torque 

Induction 

lag _ 
+ 

β
 

+ 

+ 
Twt 

v 



31 

 

with 1.3sfγ =  

R  : wind turbine radius  

s
v  : average wind speed at the hub 

 

According to Wilkie et al. (1990) and Rodriguez-Amenedo et al. (1998) [12, 14], the 

transfer function of the rotational sampling filter is erpresented by equation (2.17):   

 

 
2 2

( )( )
( )

( ) ( )

b wt b wt
rs

s b wt

s N s N
H s

s N

ω ε ω ε

σ ω

+ + + −
=

+ +
 (2.17) 

 

where parameters ε and 
s

σ  
determine the magnitude of the power density 

concentration at Nb and 
wt

ω . Nb is the number of blades [12, 14]. 

 

In addition, Figure 2.5 depicts the subsystem of the induction lag, which is described 

as a transient aerodynamic effect proven experimentally when the wind speed or the 

pitch angle changes suddenly. This effect is modelled as a lead-lag compensation and 

is presented in equation (2.18) [14]: 

 

 
1

     ( )    
1

c s
H s c d

d s

+
= >

+
 (2.18) 

where the time constants c=11.25s and d=7.5s. 

 

 2.4 Model of a 5MW wind turbine  

In the development of wind turbine technology several types of wind turbines such as 

fixed-speed, variable-speed wind turbines and wind turbines with doubly-fed 

induction generator have been constructed and tested. Recently, wind turbines with a 

doubly-fed induction generator (DFIG) have become more acceptable due to their 

characteristics of high energy transfer efficiency, low investment and flexible 

control. Therefore, in the following sections, mathematical models of wind turbine 

with DFIG were studied and implemented, as shown in Figure 2.6.    
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This section is concerned with the modelling of a 5MW wind turbine in two modes 

for both under-rated and over-rated wind speed. These modes are variable-speed 

fixed-pitch and fixed-speed variable-pitch (see nominal physical parameters of the 

5MW wind turbine in Appendix A [16]). 
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Figure 2.6: Wind turbine with a DFIG 

2.4.1 Rotor torque model  

When the wind speed is under-rated, the aim of the controller is to maximise the 

output power of the turbine. When losses in the drive-train are disregarded, equations 

(2.13) and (2.14) detail the aerodynamic torque Twt at the turbine shaft. Parameters 

Cp and 
i

λ  are estimated using equations (2.19) and (2.20). These equations were 

applied to predict and generate Cp curves for 5MW wind turbine [15].  

 

 5

1 2 3 4
( ) 0.0068

c

p
C c c c c eβ λ−= − − +  (2.19) 

where: 
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C1= 0.5176, C2=
116

iλ
, C3= 0.4, C4= 5, C5= 

21

iλ
and 

i
λ  is given by:           

             

 

3

3

( 0.08 )( 1)

( 1) 0.035( 0.08 )
i

λ β β
λ

β λ β

+ +
=

+ − +
 (2.20) 

 

2.4.2  Two-mass drive-train model 

When the dynamic model is compared with other mechanical models of a wind 

turbine, the first concern is the dynamic model of the drive-train since it is necessary 

to give priority to the parts of the dynamic structure of the wind turbine which 

contribute to grid integration [23, 24].  

 

Often, a two-mass drive-train model is applied when analysing the interaction of the 

wind turbine with the grid. Therefore, the drive-train exerts a significant influence on 

the power fluctuations [24, 28]. In addition, the torque control can assist in 

dampening mechanical oscillations. Figure 2.7 shows a two-mass drive-train that can 

be described mathematically by equation (2.21); the corresponding Simulink model 

is illustrated in Figure B. 4.   
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 (2.21) 

 

 

where JT is turbine inertia, JG is generator inertia, bd ≥  0 is the damping coefficient; 

and 
wt

θ  and 
m

θ represent the turbine rotor angle and generator rotor angle, 

respectively.   
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Figure 2.7: Two-mass drive-train model with gearbox [16] 

 

In steady state the power balance is given by 2

wt wt e m d mT T bω ω ω= + or 
wt wt e m

T Tω ω=  at 

bd=0. The low-speed shaft torque can be written as [16]: 

 

 ( ) ( )m m
lss s k s k s wt s wt g hss

g g

T K C K C n T
n n

θ ω
θ θ θ ω= + = − + =�  (2.22) 

where 

 
m

k wt

g
n

θ
θ θ= −  (2.23) 

and Ks is the torsional stiffness of the low-speed shaft, Cs is the torsional damping of 

the low-speed shaft, ng is the gearbox ratio, Tlss is the low-speed shaft torque and Thss 

is the high-speed shaft torque. 

  

 

wtω
 

wtT
 

sK
 

SC
 

lssT
 

TJ  

m
ω  

hssT
 

GJ
 

d
b  

Te 

Rotor Low-speed shaft Gear 

box 

High-speed 

shaft 
Generator 

1:ng 



35 

 

2.4.3 Doubly-fed induction generator model 

In order to analyse the dynamic modelling of the DFIG, the following assumptions 

are made [9, 30]: 

• the DFIG is modelled using physical equations; and 

• the control systems for the decoupled control of the active and reactive 

powers are represented. 

 

The dynamic performance of AC generator is complex because the three-phase rotor 

windings move with respect to three-phase stator windings. The analysis can be 

simplified greatly by transforming the three-phase stator and rotor windings (with 

angular displacement) to the two-phase windings are called d-q frame (see Appendix 

D). Then the state equations of the 4
th

 order DFIG model can be expressed in the d-q 

frame as [9, 33]:   

 

ds

s ds s qs ds
qs

s qs s ds qs

r dr sl qr drdr

r qr sl dr qr

qr

d

dt
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 
  

 (2.24) 

where ψds and ψqs are the stator flux d-q components and ψdr and ψqr are the rotor 

flux d-q components, ids, iqs, idr and iqr are the stator and rotor current d-q 

components, respectively. Rs and Rr are the stator and rotor resistances,

2 /s g pf nω π= (rad/s) is the stator field frequency, np is the pole pairs number, fg is 

the grid frequency; , , ,ds qs dr qrv v v v  are the stator and rotor voltage d-q components, 

respectively. The stator and rotor flux ψ  equations are given by:  

 

ds s ds m dr

qs s qs m qr

dr r dr m ds

qr r qr m qs

L i L i

L i L i

L i L i

L i L i
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 (2.25) 

where Ls and Lr are the stator and rotor inductances, respectively and Lm is the mutual 

inductance. The electrical torque is:  
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 ( )m
e p qs dr ds qr

s

L
T n i i

L
ψ ψ= −  (2.26) 

where 
sl

ω  is the difference between a synchronous speed and generator rotor speed. 

 
sl s m

ω ω ω= −  (2.27) 

 

Thus, the slip (S) of the generator can be rewritten as:  

 
sl

s

S
ω

ω
=  (2.28) 

2.4.4 Power flow 

The total mechanical power Pa of the DFIG system (see Figure 2.8) is simply the 

sum of stator power Ps and rotor power Pr when the power converter is assumed to 

be lossless, i.e.  

     
a s r

P P P= +  (2.29) 

The active power from the rotor is proportional to the slip of the generator: 

 s m

s

S
ω ω

ω

−
=  (2.30)  

 
                   

r s
P S P= −  (2.31) 

where 
s

ω  is the synchronous speed and 
m

ω  is the generator rotor speed. Substitute 

equation (2.31) into equation (2.29), to obtain:  

 

 ( ) 1  
a s

P S P= −  (2.32) 

 

 

 

 

 

 

 

 

 Figure 2.8: Power flow of a lossless DFIG wind turbine system 
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When operating in super-synchronous mode (the rotor speed above the synchronous 

speed), the generator feeds electrical power to the grid through both the rotor and the 

stator. If the generator is running in sub-synchronous mode, the electric power is 

delivered only into the rotor from the grid (traditional induction generators never 

produce power when running in sub-synchronous mode) [29]. 

 

If it is assumed that the converter is able to control the power flow at the converter-

supply side at any point in time, then its reactive power is zero. This assumption is 

acceptable as a result of the converter rating being a maximum 30% of the generator 

rating and it is used primarily to supply the active power of the rotor to the grid. 

Therefore, the reactive power exchanged between the DFIG and the grid Qtotal is 

equal to the reactive power in the stator Qs (equation (2.33)). 

  
total s

Q Q=  (2.33) 

The reactive power from the stator will be zero in the case of a strong power system 

or when there is no requirement for the DFIG to control the voltage. In this case, 

with its power factor close to unity, the DFIG supplies only active power and it is 

magnetised through the rotor. Under other conditions, the reactive power set point of 

the DFIG will be defined for the purpose of voltage control [30]. 

 

2.4.5 Grid-side converter modelling 

Figure 2.9 illustrates the grid-side converter. The voltage across the inductors can be 

written as:  
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where va,,vb, vc, ia,,ib, ic are three-phase voltage and current signals, 
,

,c c c

a b c
v v v  are three 

different control voltage outputs, Rg is the grid resistance and Lg is the grid 

inductance. 

 

The three-phase signal with three quantities (va, vb and vc) can be transformed to d-q 

reference frame by using reference frame conversion (see appendix D). The voltage 

equations in the d-q frame are therefore given by: 

 1

cd
d g d g g q d

di
v R i L L i v

dt
ω= + − +  (2.35) 

 1

q c

q g q g g d q

di
v R i L L i v

dt
ω= + + +  (2.36) 

 

 

Figure 2.9: Schematic diagram of the grid-side converter [16] 

 

 

Equations (2.35) and (2.36) can be converted to the state-space model and written as:  
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y x

 
=  
 

 (2.38) 

 

where: 

State variables : [ ]T

d q
x i i=   

Input : 
1

[ ]T

d q
u v v= and controller output 

2
[ ]c c T

d q
u v v=   

Output : [ ]T

d q
y i i=  

 

Active and reactive grid powers can be calculated as: 

 
g d d q qP v i v i= +  (2.39) 

 
g d q q dQ v i v i= − +  (2.40) 

2.4.6 DC-link model 

It is assumed that the back-to-back converter is lossless and losses in the inductor 

resistance can be disregarded. Figure 2.10 shows an equivalent circuit of the DC-link 

model, where the power flows through the grid-side converter and the rotor-side 

converter. The power PDC in the DC-link capacitor (CDC) is dependent on the power 

delivered to the grid and the power delivered to the rotor circuit of the DFIG, as 

given by: 

 

 
DC DC DC g rP v i P P= = −  (2.41) 

 

where DC
v  and DC

i are DC-link voltage and current, respectively, Pg is grid power and 

Pr is rotor power. 

 

The DC-link current is given by: 

 
DC

DC DC

dv
i C

dt
=  (2.42) 

From equations (2.41) and (2.42), the DC-link voltage is: 
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g rDC

DC DC

P Pdv

dt v C

−
=  (2.43) 

 

 

 

 

 

 

 

 

Figure 2.10: DC-link model (irDC and igDC are rotor and grid currents) 

 

 

2.4.7 Summary 

The total model of the wind turbine system will now be summarised. 

 

• Aerodynamic Torque 

The torque acting on the rotor is: 
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• Generator 

The states for the DFIG model are: 

ds
s ds s qs ds

qs

s ds s qs qs

dr

r dr sl qr dr

qr

r qr sl dr qr

d
R i v

dt

d
R i v

dt

d
R i v

dt

d
R i v

dt

= − + +

= − + +

= − + +

= − − +

ψ
ω ψ

ψ
ω ψ

ψ
ω ψ

ψ
ω ψ

 

 

• DC-link model 

g rDC

DC DC

P Pdv

dt v C

−
=  

 

2.5 Fixed-point wind speed model  

In order to model the wind speed it was assumed that, due to the roughness of the 

ground, turbulence occurred mainly from the friction between the air and the ground. 

Wind dynamics are influenced by the meteorological conditions and the local 

characteristics of a given site. Therefore, wind speed was modelled as a non-

stationary random process which, as shown in equation (2.44), is generated by two 

components (see Figure 2.11) [1, 2, 3, 4]. 

 ( ) ( ) ( )
s t

v t v t v t= +  (2.44) 

where: 

 )(tvs
:  low frequency component 

 )(tvt
 : turbulence component 

 

A low-frequency component, ( )
s

v t , represents the very slow variations in wind 

speed, which represents the average wind speed of the site and gives an indication for 

available wind power. The low-frequency component can be modelled theoretically 

by using a Weibull distribution or a Rayleigh distribution [5]. 
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The turbulence component, ( )
t

v t , is due to the  rapid variations in wind speed. It can 

be described mathematically as a zero mean normal distribution of which the 

standard deviation (
s

σ ) depends on the current value of the average wind speed (
sv

), as given in equation (2.45). The intensity of the turbulence (
t

I ) is a measure of the 

global level of turbulence and depends on the roughness of the ground surface. This 

is defined in equation (2.46). 

 s
t

s

I
v

σ
=  (2.45)                                          

 
0

1

ln ( / )
tI

z z
=  (2.46) 

where z is the hub height of the wind turbine and 
0z  is  the ‘roughness length’ of the 

land surface. 

 

The ‘roughness length’ (z0) depends on the frontal area of the average element 

(facing the wind) divided by the ground width it occupies. A lower roughness length 

implies less exchange between the ground surface and the air, but also stronger wind 

near the ground. A terrain classification based on roughness length is given in Table 

2.1.          

   

A mathematical model of the turbulence's dynamical properties )(tvt
 can be 

developed by using either one of two approaches: Kaimal’s spectrum is suitable for 

Average wind 

speed 

 

White noise Shaping 

filter 

TF & KF Standard division 

x 

Σ 
vS(t) 

 vt (t) 

 v (t) 

Figure 2.11: Non-stationary wind speed generation [9]. Simulink block diagram of 

the non stationary wind speed is presented in Figure B. 2 
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experimental data, whereas von Karman’s spectrum is more applicable to 

theoretically founded approaches [1].  By using von Karman’s model, the transfer 

function of the shaping filter has the following form: 

 

 
0.4 1

( )
( 1)(0.25 1)

F
t F

F F

T s
H s K

T s T s

+
=

+ +
 (2.47) 

 

The static gain FK  and time constant 
FT  depend on low-frequency wind speed (

sv ). 

The time constant is calculated using equation (2.48) and the value of Lt is derived 

from practical experience. For instance, in the Danish standard, equation (2.50) is 

used to compute Lt. Equation (2.49) computes the static gain KF [6].  

 

 /  
F t s

T L v=  (2.48) 

 

 4F FK T=  (2.49) 

                   

 
150( ) 30

5 ( ) 30
t

m if z m
L

z m if z m

≥
= 

<
 (2.50) 

 

This method was proposed by Welfonder [8] and adapted by Nichita [2]. It is 

implemented as shown in Figure B.2 in Appendix B to generate the non-stationary 

wind speed. For example, Figure 2.12 presents details of the wind speed profile when 

vs=10 m/s. 
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Figure 2.12: Wind speed profile for vs=10 m/s 

 

Table 2.1: Terrain roughness classification [7] 

Class Roughness 

length (m) 
Landscape features 

No. Name 

1 sea 0.0002 open water, tidal flat, snow with fetch above 3 km 

2 smooth 0.005 featureless land, ice 

3 open 0.03 
flat terrain with grass or very low vegetation, airport 

runway 

4 
roughly 

open 
0.10 

cultivated area, low crops, obstacles of height (H) 

separated by at least 20 H 

5 rough 0.25 
open landscape, scattered shelter belts, obstacles 

separated by 15 H or so 

6 very rough 0.5 
landscape with bushes, young dense forest etc 

separated by 10 H or so 

7 closed 1.0 
open spaces comparable with H, eg mature forest, low-

rise built-up area 

8 chaotic > 2.0 
irregular distribution of large elements, eg city centre, 

large forest with clearings 
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2.6 Wind turbine control 

A wind turbine has many different types of vibration such as fore-aft vibrations and 

side-to-side vibrations of the tower. Moreover, each blade can vibrate in two main 

directions and the low-speed drive-train up to and including the gearbox has torsional 

vibrations [1, 19, 201]. The vibration frequencies depend on the turbine. It is not 

possible to suppress all vibrations because only the following two manipulation 

variables exist: 

 

• the electrical torque through which the turbine speed can be controlled indirectly; 

and  

• the pitch angle through which the aerodynamic torque can be regulated.   

 

 

2.6.1 Torque control in the case of below-rated wind speed 

Optimising the power output of the wind turbine below the rated wind speed is 

realised by using the torque control scheme for a variable-speed wind turbine As 

shown in equation (2.13), the reference electrical torque (Te(ref)) can be written as:  

 
(max)

( )  =
wt

e ref

wt

P
T

ω
 (2.51) 

From equations (2.13) and (2.14), Te(ref) at maximum output power is calculated as:  

 

2 3

(max)

( )

0.5 ( )wt
p

opt

e ref

m

R
R C

T

ω
ρπ

λ
=

ω
 (2.52) 

where Cp(max) is the maximum power coefficient and 
optλ is the tip speed ratio at 

Cp(max).  

 

The reference electrical torque can be rewritten as: 

 

 2

( )e ref opt m
T K= ω  (2.53) 
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where 

 

5

(max)

3 3

0.5 w p

opt

opt g

R C
K

n

ρπ
=

λ
 (2.54) 

It should be noted that in steady state 
mω = ng wtω . Equation (2.53) is applied only 

when 
mω > 0. In the infrequent cases when 

mω < 0 (i.e. the turbine rotates backwards), 

it is better not to apply any electrical torque, i.e. Te(ref) = 0, and instead to wait until 

the speed reverts to 
mω > 0.  

 

 Kopt should be provided by the turbine manufacturer. However, Kopt might differ 

from turbine to turbine. Furthermore, it will change during a turbine’s lifetime.  

 

Figure 2.13 demonstrates the overall wind turbine system in the case when the wind 

speed is less than the rated wind speed. The block diagram for the wind turbine is 

implemented in Figure B.3 based on equations (2.13) and (2.19). Block diagrams for 

drive-train and generator are described in the preceding sections. Figure 2.14 gives 

the block diagram of the controller. 

 

 

 

 

Appendix B gives the Simulink diagrams of the turbine rotor, drive-train, generator 

and controller for the wind turbine system that is implemented in Matlab/Simulink. 

Figure B. 6 illustrates the controller in Figure B.1. It consists of a Simulink model to 

calculate the reference electrical torque in Figure B.7; a Simulink model of the 

reference rotor current calculation in Figure B.8; and a Simulink model of the rotor 
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Figure 2.13: Block diagram for the control of the mechanical part of a wind turbine in 

the case of below-rated wind speed 
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voltage controller in Figure B.9. Here, PI controllers were used to assess the 

performance of the wind turbine model. As shown in Figure 2.14, the controller has 

electrical and mechanical inputs and outputs. Electrical inputs are stator and rotor 

currents of the generator ( , , ,ds qs dr qri i i i ) and the mechanical inputs are the torque and 

rotational speed of the generator. Electrical output control signals are the rotor 

voltage ( ,c c

dr qr
v v ) and the mechanical output is the generator torque ( c

eT ). The 

function of the controller is to control electrical torque and rotor voltage in order to 

obtain optimal output power. The tuning of proportional-integral (PI) controllers will 

be discussed in the next chapter.  

 

 

 

Figure 2.14: Block diagram of a controller 

 

The electrical torque of the generator should be kept constant at a desired value. 

However, when dampened lightly, strong variations in wind speed might lead to 

oscillations in the drive-train, In addition, oscillations can damage the gearbox, 

which is one of the most expensive components in a wind turbine. Hence, there is a 

requirement to reduce these oscillations; one successful method is to control the 

generator torque, as shown in Figure 2.14.  

 

In order to achieve a decoupled control between the stator active and reactive 

powers, the DFIG’s d-q reference frame was used with the d-axis oriented along the 
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stator-flux vector position. Since the stator is connected to the grid, it is valid to 

make the following assumptions: 

 

• The stator magnetising current space is the phasor 
msms ii
��

= . In the steady 

state, it is 
msi
�

=constant. 

 

• The frequency of the power supply to the stator is constant (
gf =50Hz) and, 

consequently, 
2 g

s

p

f

n

π
ω = .  

• The stator resistance Rs can be disregarded (usually acceptable where a 

generator power is very high). 

 

Then, from stator and rotor flux ψ, equation (2.25) can be rewritten as [36]: 

 

 
2

0

ds m ms

qs s qs m qr

dr m ms r dr

qr r qr

L i

L i L i

L i L i

L i

=

= + =

= +

=

�

�

ψ

ψ

ψ σ

ψ σ

 

 

where 
s

ms

s m

v
i

L
=

ω

�
�

, leakage coefficient σ

2

1 m

s r

L

L L
= −  and 3s sv V=

�
 (Vs is the stator 

voltage). 

 

The state equations of the 4
th

 order DFIG model (2.24), after some substitutions, can 

be written as: 
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0

( )

3
( )( )

ds
ds s ds s qs

qs

qs s qs s ds s ds s

dr
dr r r dr s m r qr

qr m s
qr r r qr s m r dr

s s

d
v R i

dt

d
v R i v

dt

di
v L R i L i

dt

di L V
v L R i L i

dt L

ψ
ω ψ

ψ
ω ψ ω ψ

σ ω ω σ

σ ω ω σ
ω

= − + ≈

= + + ≈ =

= + − −

= + + − +

�

 (2.55) 

 

From equation (2.26), the reference rotor current can be calculated as: 

 

 
( ) ( )

3

s s
qr ref e ref

p m s

L
i T

n L V

ω
= −

 (2.56)  

The rotor voltages vdr and vqr output from the controller are used to control the rotor 

voltages of the generator. 
_dr refi is given by the outer loop controller for grid 

integration. In this simulation, 
_dr refi is assumed to equal zero; this assumption is true 

when the difference between DC-link voltages Vdc_ref and Vdc equals zero. 

 

The model was verified by generating a step response at v=10 m/s using the Simulink 

model of Figure B. 3. For wind turbine torque, Figure 2.15 illustrates that the 

response is slow, which is a result of the induction lag. This is due to an aerodynamic 

effect when the wind speed or the pitch angle changes.  

 

Figure 2.15: Wind turbine torque Twt at wind speed = 10 m/s 
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2.6.2. Rotor torque control in the case of above-rated wind speed 

In the case of wind speed above the rated wind speed, the main task is to maintain a 

generated power at the rated value. This can be realised by using the rotor current 

controller and the rotor-side converter to maintain a constant electrical torque and, 

also, by employing the pitch control to regulate the turbine speed (see Figure 2.16).  

 

This section aims to evaluate the validity of the wind turbine model. Therefore, this 

chapter will not discuss the design of a controller for a non-linear model and pitch 

controller (those are the objectives of the next chapter).     

 

 

 

 

  

 

 

2.7 Simulation results    

The simulation is implemented in three steps. Firstly, the response of the open loop 

of the wind turbine rotor was tested using a Simulink block diagram model of the 

wind turbine rotor, as shown in Figure B.3. After that, the performance of the wind 

turbine system was examined in cases of constant wind speed and non-stationary 

wind speed using a Simulink model for all subsystems of the wind turbine (see 

Figure B.1).       

Figure 2.16: Block diagram for the control of the mechanical part of a wind turbine 

in strong wind 
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  I. Testing the open loop of the wind turbine rotor model  

Figures 2.17 and 2.18 show the performance of the power coefficient vs. the tip 

speed ratio and of the torque coefficient vs. the tip speed ratio at different pitch 

angles. Figure 2.19 illustrates the relationship between the power output of the rotor 

and the wind turbine rotational speed at different wind speeds (v =5, 10, 15 m/s) and 

constant pitch angle equal zero. The theoretical maximum efficiency of a wind 

turbine is given by the Betz Limit, and is around 59 percent. Practically, wind 

turbines operate below the Betz Limit. For example, in Figure 2.17 where the pitch 

angle= 0
o
, it is operated at the optimal tip speed ratio of 8.2; its power coefficient is 

around 0.47. This suggests that for maximum power extraction, a wind turbine 

should be operated around these values when β =0 and a wind speed is less than the 

rated wind speed. 

 

Figure 2.17: Cp curves for a 5MW wind turbine for different pitch angles (pitch=0
o
, 1

o
, … 12

o
) 

 

Figure 2.18: Ct curves for a 5MW wind turbine for different pitch angles (pitch=0
o
, 1

o
, … 12

o
) 
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Figure 2.19: 5MW power characteristics, for pitch angle = 0 

 

II. Test model for all subsystems of the wind turbine at constant wind speed 

In this case, the results were based on a constant wind speed of 10 m/s and pitch 

angle =0
o
. Consequently, as shown in Figures B.6 and B. 9, the gains of PI 

controllers were defined using Matlab (
1 2 3, 1 2 3, , , ,p p p i i iK K K K K K =60, 0.9, 5, 0.1, 

0.001 and 2, respectively).  

 

Figures 2.15 and 2.20 show that, for wind speed v =10 m/s, the maximum wind 

turbine rotor speed is 1.4
wt

ω = rad/s and, at that speed, the maximum wind turbine 

torque Twt = 2000 KNm is achieved. The corresponding maximum power is Pwt 

=2.77MW, as shown in  Figures 2.19 and 2.21. 

 

Figure 2.20: Wind turbine rotor speed at wind speed = 10 m/s 
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Figure 2.21: Wind turbine power at wind speed = 10 m/s 

 

 

The value of power coefficient Cp is maintained at its maximal value in the steady 

state (see Figure 2.22). This demonstrates the achievement of the control objective to 

capture the maximum wind energy with maximum Cp = 0.47 and optimal λ  = 8.2 

(see Figure 2.17). Moreover, Figure 2.18 shows that the torque coefficient Ct = 0.057 

at the optimal tip speed ratio is equal to the calculated value 
max /t p optC C= λ .  

 

 

Figure 2.22: Plot of Cp at wind speed = 10 m/s, pitch angle= 0
o 

 

III. Test model for all subsystems of the wind turbine at stationary wind speed 

Here, the third case of simulation at a more realistic profile of wind speed was 

implemented (see Figure 2.12). As described in Table 2.1, the turbulence intensity 

was calculated for a wind turbine in the sea. In Figure B.2, the generated wind speed 

along the turbine axis was based on the Simulink block diagram of the non-stationary 

wind speed.  

 

Simulation results are shown in Figures 2.23, 2.24 and 2.25 for the generator rotor 

speed, wind turbine torque and electric torque, respectively. The figures illustrate the 
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response oscillation around their optimal value that is expected to happen when the 

controller is designed as a constant operating point, so that the optimum torque and 

maximum power are achieved. 

 

 

Figure 2.23: Generator rotor speed, in the case of stationary wind speed (average 

wind speed of 10 m/s) 

 

 

 

Figure 2.24: Wind turbine torque, in the case of stationary wind speed (average 

wind speed of 10 m/s) 

 

 

 

Figure 2.25: Electric torque, in the case of stationary wind speed (average wind 

speed of 10 m/s) 
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2.8 Conclusions  

In this chapter, the mathematical models for wind speed and the main components, 

particularly aerodynamic rotor, two mass drive-train, generator, electrical torque 

controller and DFIG rotor current controllers were presented within a 5MW wind 

turbine system. Matlab/Simulink was used to implement all these models. The 

simulation results demonstrated that the physical wind turbine system can be 

modelled by using Matlab based on a mathematical model. Accordingly, Matlab is a 

very powerful tool in developing models and monitoring methods. Nevertheless, for 

a wind turbine system, the interconnections between the subsystems were complex. 

 

An advanced control method should be used for a non-linear system based on a 

realistic wind-speed profile. Several researchers have investigated this issue and 

numerous strategies are being used to reduce the deviations in the characteristics 

surrounding the optimum operating points of the various regimes [9].  
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3  PI Controller Design for Wind Turbine  

In this chapter, PI controllers for controlling electrical torque and pitch angle were 

designed. Two methods were proposed to calculate the gains of a PI pitch angle 

controller for a non-linear model of a 5MW wind turbine; the first method was 

analytical and the second was based on simulation. Firstly, the power coefficient 

characteristics were calculated for different pitch angles. Secondly, the output 

powers vs. rotor speed curves were simulated from cut-in to cut-out wind speeds. The 

results from the first and second analyses were used to find the control gains at 

different wind speeds. Finally, a wind-turbine model was used to determine the 

tracking characteristics of the turbine. 

 

In order to design an electrical torque controller, an IMC-based PI was used to 

determine the gains of the current and torque controller which achieved good static 

and dynamic performance. 

 

3.1 Introduction 

Pitch variable-speed wind turbines have become the dominating type of yearly 

installed wind turbines in recent years. Typically, there are two control strategies for 

variable-speed wind turbines. At low wind speed, below a rated value, the speed 

controller can adjust continually the rotor speed to maintain the speed at a level 

which gives the maximum power coefficient. Then, for a variable-speed wind turbine 

[17], the turbine’s efficiency will be increased by using the torque control scheme. In 

the case of wind speed above the rated wind speed, the main task is to maintain the 

generated power at the rated value. This can be realised by using a pitch angle 

control to regulate the turbine speed. Small changes in pitch angle can affect the 

power output. The purpose of the control can be summarised in the following three 

aims: 
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• Optimising the power output when a wind speed is less than the rated wind 

speed (see Figure 2.13 in Chapter 2). 

• Keeping the rotor power within the design limits when the wind speed is 

above the rated wind speed (see Figure 2.16 in Chapter 2).  

• Minimising the fatigue loads of the turbine’s mechanical components. 

  

The design of the controller must take into account the effects of the loads, and the 

controller should ensure that any control action would not result in extreme loads. It 

is possible to go further than this by, as an additional objective, designing the 

controller clearly to reduce certain fatigue loads.  

 

In an active PID pitch controller, the sensitivity of the aerodynamic power to the 

rotor-collective blade-pitch angle is negative when the wind speed is above the rated 

wind speed. Then, with positive control gains, the derivative term will increase the 

effective inertia of the drive-train. Hansen et al. (2005) [23] recommended using a PI 

controller. However, based on test results, Boukhezzar et al. (2007) [38] suggested 

using only a proportional pitch controller which showed that a more complex 

controller (PI and PID) would make the pitch control more turbulent without any 

significant improvement in power regulation performance. Moreover, it was shown 

that using an advanced control strategy, such as a linear quadratic Gaussian control 

design technique, ensured better power tracking than the PID. However, this turned 

out to still be insufficient to meet all the control objectives [39].   

 

3.2 Pitch Controller 

As shown in Figure 3.1, adjusting the pitch angle to the blades provided an effective 

means of limiting turbine performance in strong wind speeds. We used electric or 

hydraulic pitch servos to put the blades into the desired pitch angle. 

 

The blade control strategies can be classified according to the input signals used to 

generate the pitch set point [40] as follows: 
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• Ideally, the pitch angle reference can be obtained from the curve at the pitch 

angle versus wind speed. This control strategy is not an acceptable method since 

the effective wind speed cannot be measured accurately. 

• The error signal of the generated power is sent to a controller to produce a 

reference pitch angle.  

• The error between the generator rotor speed and its set point is sent to the 

controller to produce a reference value to the pitch angle. This method is the most 

popular since it is the most accurate.     

 

 

Figure 3.1: Power coefficient characteristics of 5MW wind turbine for different 

pitch angles (pitch=2
o
, 3

o
, 4

o
… 39

o
) 

 

The power in the wind, P, is proportional to the cube of the wind speed and can be 

expressed as: 

 3 0.5P Avρ=  (3.1)  

where ρ is the air density, A is the area swept by the blades and v is the wind speed.  
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A wind turbine can only extract part of the wind power which is limited by the Betz 

limit (maximum 59%). This fraction is described by the power coefficient of the 

turbine which is a function of the blade-pitch angle and the tip speed ratio. Therefore, 

the mechanical power of the wind turbine extracted from the wind is: 

 

 ( )3 0.5  C  ,  wt pP Avρ β λ=  (3.2) 

 

where Cp is the power coefficient of the wind turbine, β is the blade-pitch angle and λ 

is the tip speed ratio. The value of Cp (β, λ) is highly nonlinear and varies with the 

wind speed, the rotational speed of the turbine and turbine blade parameters, such as 

the pitch angle. Here, equations (2.19) and (2.20) in Chapter 2 were used to calculate 

the value of the Cp (β, λ).  

 

The tip speed ratio is the ratio between the blade tip speed and the wind speed. 

Therefore, any variance in the rotor speed or the wind speed induces a change in the 

tip speed ratio, leading to power coefficient variation.  

 

As shown in Figure 3.2, the power extracted by the turbine increases as the wind 

speed increases at the rated wind speed and the generating power reaches the rated 

power of the turbine. If the wind speed continues to rise, the output power will 

increase, also, and, consequently, the control system is required to keep the power 

constant at the design limit. For safety considerations, the turbine must shut down at 

speeds exceeding the cut-out wind speed. 
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Figure 3.2: Output power from wind turbine rotro vs. rotor speed for different wind 

speeds (3, 5, and 6…25 m /s) for   

 

 

3.3 Actuator model 

The pitch system consists of three identical pitch actuators; each has a controller and 

a hydraulic actuator, which is used to turn the blade along their longitudinal axis (see 

Figure 3.3). Therefore, the section describes only one actuator model. The actuator 
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model describes the dynamic behaviour between a pitch demand β d
 from the pitch 

controller and the measurement of a pitch angle β . 

 

The dynamics of the blades are nonlinear with saturation limits on both the pitch 

angle and the pitch rate. In a closed loop, the pitch actuator can be modelled as a 

first-order dynamic system with saturation in the amplitude and derivative of the 

output signal [39]. Figure 3.4 shows a block diagram of the first-order actuator 

model. 

 

 

Figure 3.3: Hydraulic pitch system 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Model of the pitch angle actuator 
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The dynamic behaviour of the pitch actuator operating in its linear region is 

described by the differential equation: 

 
1 1

d

β β

β β β
τ τ

= − +�  (3.3) 

 

From the above equation, the transfer function for the actuator is: 

 
1

1
d

sβ

β

β τ
=

+
 (3.4) 

 

where 
βτ is a time constant of the pitch actuator. Typically, pitch angle ranges from 

0
o 

to 30
o 

and varies at a maximum rate of 10
o
/s. 

 

 

3.4 Conventional pitch angle control methods  

As described below, the methodology of conventional pitch angle controls is divided 

into collective and individual blade-pitch controls.  

  

 3.4.1 Collective blade-pitch control 

3.4.1.1 Blade-pitch control system using a simple single-degree-of-freedom 

In order to design a blade-pitch control system using a simple single-degree-of-

freedom (see Figure 3.5), Jonkman et al. (2009) [41] presented in the following 

equation the operating point of the blade-pitch angles’ perturbation about their 

operating point as: 

 
0

( )

t

g p I Dn K K dt Kβ ω ω ω∆ = ∆ + ∆ + ∆∫ �  (3.5) 

where KP, KI, and KD are the blade-pitch controller proportional, integral, and 

derivative gains, respectively. 
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Figure 3.5: Simple flowchart of the blade-pitch control system 

 

In an active pitch controller, the sensitivity of aerodynamic power to the rotor-

collective blade-pitch angle, /P β∂ ∂ , is negative when the wind speed is above the 

rated wind speed (see Figure 3.6).  

 

 

Figure 3.6: The sensitivity of aerodynamic power ( /P β∂ ∂ ) to rotor-collective 

blade-pitch angle (above rated wind speed) [23]. 

 

Then, with positive control gains, the derivative term acts to increase the effective 

inertia of the drive-train, the proportional term adds damping, and the integral term 

adds restoring. Additionally, for the reason that the generator torque drops with 

increasing speed error (to maintain constant power) in Region 3, the generator-torque 

controller introduces a negative damping in the speed error response [41]. This 
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negative damping must be compensated by the proportional term in the blade-pitch 

controller. Hansen et al. (2005) [23] recommended neglecting the derivative gain, 

ignoring the negative damping from the generator-torque controller and aiming for 

the response characteristics given by natural frequency (
n

ω ) = 0.6 rad/s and damping 

ratio ( ξ )= 0.6 to 0.7. This specification leads to direct expressions for choosing PI 

gains once the sensitivity of aerodynamic power to rotor-collective blade pitch, 

dP/dβ, is known: 

 

 

1

_2 wt ref n

p

g

J P
K

n

ω ξω

β

−
 ∂

= − ∂ 
 (3.6) 

 

 

12

_ nwt ref

I

g

J P
K

n

ω ω

β

−
 ∂

= − ∂ 
 (3.7) 

 

where 
_wt refω  is the rated low-speed shaft rotational speed, and J is the drive-train 

inertia. The blade-pitch sensitivity, /P β∂ ∂ , is an aerodynamic property of the rotor 

which depends on the wind speed, the rotor speed and the blade-pitch angle.  

 

The corresponding values of the constants 
pK  and 

I
K  of the PI-controller can be 

calculated when the pitch sensitivity /P β∂ ∂  is known (see Figure 3.6). This 

quantity must be calculated from the aerodynamic properties of the rotor. The 

calculated pitch sensitivity gives a large variation with wind speed (numerically 

increasing with increasing wind), and, consequently, constant values of 
P

K and 
I

K

will not give the desired result. The plot of the pitch sensitivity as a function of the 

pitch angle in Figure 3.6 shows a nearly linear relation [41]. This implies that a gain 

correction factor, ( )GK β , multiplied with both 
P

K  and 
I

K  will solve the problem 

and produce a nearly constant gain over the range of relevant wind speeds: 

 

 

1

_2
( )

wt ref n

p

g

J P
K GK

n

ω ξω
β

β

−
 ∂

= − ∂ 
 (3.8) 
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and 

 

 

12

_
( )nwt ref

I

g

J P
K GK

n

ω ω
β

β

−
 ∂

= − ∂ 
 (3.9) 

 
1

( )

1
K

GK β
β

β

=

+

 (3.10) 

 

where 
Kβ  is a rotor-collective blade-pitch angle at which the pitch sensitivity has 

doubled from its value at the rated operating point, and ( )GK β  is the dimensionless 

gain-correction factor [23] which depends on the blade-pitch angle. 

 

In order to realise the gain-scheduled PI blade-pitch controller, Jonkman et al. (2009) 

[41] used the blade-pitch angle from the previous controller time step to calculate the 

gain-correction factor at the next time step. 

 

3.4.1.2 Blade-pitch control system using the dynamic behaviour of the system 

Hansen et al. (2005) [23] assumed that the dynamic behaviour of the system could be 

approximated with second-order system behaviour and, then, the parameter design of 

the PI speed controller could be based on the transient response analysis for a 

second-order system:   

 

2

2

2 2 2

2 2 2
2

nd n

nd nd nd n n

K

J s D s K s s

ω

ξω ω
=

+ + + +
 (3.11) 

where 
2nd

J , 
2nd

K and 
2nd

D denote the system inertia, stiffness and damping (for 

assumed second-order system) respectively. Hence, the natural frequency and the 

damping ratio can be expressed as:  

 
2

2

nd
n

nd

K

J
ω =  (3.12) 

 
2

22

nd
n

nd

D

K
ξ ω=  (3.13) 

In the literature, two main parameterisations of the PI controller are applied: 
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• PI controller - parameterisation I: 

 ( )i
p

K
y K u

s
= +  (3.14) 

 

From equations (3.6), (3.9), (3.12) and (3.13), the proportional and integral gain can 

be expressed as:  

 

1

_ 2wt ref nd

p

g

D P
K

n

ω

β

−
 ∂

= − ∂ 
 (3.15) 

 

 

1

_ 2wt ref nd

I

g

K P
K

n

ω

β

−
 ∂

= − ∂ 
 (3.16) 

 

In this PI controller, the integral gain 
I

K  is proportional to the stiffness 
2nd

K of the 

system, whilst the proportional gain 
P

K  is proportional to the damping of the system 

2nd
D . It should be noted that when this parameterisation is used, both controller 

parameters contain gain scheduling, i.e. they vary with the sensitivity function

1[ ]
p

β
−∂

∂
. 

 

• PI controller - parameterisation II: 

 
1

(1 )
p

i

y K u
sT

= +  (3.17) 

Then, the integral time is expressed as: 

 
2

2

p nd
i

I nd

K D
T

K K
= =  (3.18) 

This parameterisation of the PI controller is used typically in control systems. It 

should be noted that here only one parameter, i.e. the proportional gain 
P

K , has a 

proportional variation with the reciprocal sensitivity function 1[ ]
p

β
−∂

∂
 , whilst the 
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integral time Ti could be determined directly based on design parameters (damping 

2nd
D  and stiffness 

2nd
K of the system). 

 

As discussed in the previous section, constant values of 
P

K  and 
I

K  will not give the 

desired result. A gain correction factor, GK( β ) multiplied with both 
P

K  and 
I

K  will 

solve the problem and produce a nearly constant gain over the range of relevant wind 

speeds. 

 

3.4.1.3 Proportional pitch controller 

In order to control the wind turbine electric power output, whilst avoiding significant 

loads and maintaining the rotor speed within acceptable limits, B. Boukhezzar et al. 

(2007) [38] recommended a proportional pitch controller (see Figure 3.7). The 

operating point of the blade-pitch angles’ perturbation about their operating point is 

expressed as: 

 

 
pK eωβ∆ =  (3.19) 

where: 

 
_m ref meω ω ω= −  (3.20) 

The proportional gain is: 

 
_

P

m ref m

K
β

ω ω

∆
=

−
 (3.21) 

 

 

 

 

 

 

 

 

 

Figure 3.7: Flowchart of the P controller 

P 
Pitch 

actuator 

Wind 

turbine 

m
ω  β

 
+ 

- 

_m refω  e ω
 

β∆  



68 

 

3.4.2 Individual blade-pitch control 

In individual blade-pitch control, the loads of blades are endured by an individual 

mechanism; consequently, each blade has its own pitch-control mechanism and is 

driven individually. If one of the mechanisms failed, the others could continue to 

work. Based on this characteristic, the individual pitch control could be used to 

reduce the flap of the blade, and, therefore, it has some advantages over the 

collective one. An individual blade-pitch control could be realised through two 

modes: the hydraulic mode and the motor mode.  

 

Hongwei et al. (2006) [42] proposed piecewise PID control with weight-number 

distribution arithmetic (see Figure 3.8). This meant that, after obtaining β∆  based on 

the collective blade control, weight numbers are allocated by referring to the azimuth 

angles to reduce the flap of the blades. Generally, the weight numbers are allocated 

according to the wind speeds on each blade of the wind turbine. The higher the speed 

is, the bigger the weight number is and the higher the change in the pitch angle.  

 

 

 

 

 

 

  

 

 

 

 

Figure 3.8: Flowchart of the structure of individual control 

 

For large-scale wind turbines it is possible to disregard the random variables of wind 

speed on the long blades. However, the altitude’s effects on the blades are notable. 
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0 0

n

HV H

V H

 
=  
 

 (3.22) 

where 
0V  is the wind speed on the point of the blade whose distance from the ground 

is
0H , and 

HV  is the wind speed on the point whose distance from the ground is H. n 

is a parameter ranging from 0.1-0.4 and is decided by the degree of the roughness of 

the ground.  

 

 
0

1 sin 120 ( 1)
2

n

oi

o

v R
i

v H
θ

 
 = + + −  

 
 (3.23) 

 

where R represents the length of the blades, θ  is the azimuth angle of the first blade, 

and i=1,2,3 denotes the number of the blades. Therefore, the weight number 
ik  is 

calculated by using the following formulation: 

 
0

3

1 0

3 i

i

i

i

v

v
k

v

v=

 
 
 =
 
 
 

∑
 (3.24) 

 

After the weight number allocation, the change, which should have been transferred 

to the actuator mechanism, is:   

 
i i

kβ β∆ = ∆  (3.25) 

 

 

3.5 Determination of the PI pitch controller gains 

Variable-speed variable-pitch wind turbine modes take into account rotational speed 

and power limitations. These modes are: 

 

1) Operating at minimal value (near to cut-off in wind speed), the tip speed ratio 

could be optimised by pitch control. 
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2) Variable-speed fixed-pitch operation: the operating point describes the optimal 

regime's characteristic. Here, a torque control scheme to optimise the power is 

used. 

3) Fixed-speed variable-pitch operation: the rotational speed limitation at its rated 

value. In this mode, the pitch angle controller to achieve power limitation is used. 

 

3.5.1 Selection of the operating point 

As shown in Table 3.1, the nominal parameters of a 5MW wind turbine were used 

[16], with an assumed wind speed of 15 m/s. From Figure 3.2, this wind speed is 

above the rated speed, and, therefore, the operating point is in mode 3. Then, 

rotational speed must be equal to the rated rotor speed (
_wt refω ). Consequently, the 

desired constant speed of the turbine is 1.87 rad /s. By using Figure 3.9 and Figure 

3.10, λ and Cp operating points were selected. As selected from the power 

coefficient curve of Figure 3.1, the pitch angle is 9.65
o
. By repeating the same steps 

for each wind speed, it was possible, as shown in Table 3.2, to calculate the optimal 

values of λ , Cp and pitch angle for mode 3. 

 

Table 3.1: Parameters of the 5MW wind turbine and controller  

Description Parameter Value 

Rated turbine power Pn 5MW 

Turbine blade length R 55m 

Gearbox ratio ng 60.88 

Air density ρ  1.225 kg/m
3
 

Reference generator speed  ωm_ref 113.85(rad/s) 

Cut-in wind speed vcin 3 m/s 

Cut-out wind speed vcout 25 m/s 
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Figure 3.9: Tip speed ratio vs. wind turbine rotational speed shows operating mode 

3, fixed-rotational speed and variable-pitch operation 

 

 

 

Figure 3.10: Wind turbine output power vs. Cp shows operating mode 3, fixed-

rotational speed and variable-pitch operation 
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3.5.2 Theoretical method to calculate PI controller gains  

Figure 3.11 illustrates the PI controller’s output signal is
dβ , which contains, also, the 

actuator’s transfer function obtained from equation (3.4). Then, the PI controller and 

desired pitch angle can be expressed as follows: 

 

 
d p i

K e K e dtωβ = + ∫  (3.26) 

where  

 
_m ref meω ω ω= −  (3.27) 

To find the solution, let: 

 
i

x K e dtω= ∫  (3.28) 

or 

 i

dx
K e

dt
ω=  (3.29) 

 

Figure 3.11: PI Pitch controller 

 

From equations (3.26) and (3.28), the partial derivative of
dβ , with respect to eω

, is 

expressed as follows: 

 
/

/

d
i

d edx dx dt
Kp Kp Kp K

dede de de dt

dt

ω

ωω ω ω

β
= + = + = +  (3.30) 

For an adjustable-slip asynchronous generator, the variation range of eω
is very 

small. Moreover, 
P

K  is far greater than Ki. Hence, equation (3.30) can be simplified 

as follows: 

 d
p

d
K

deω

β
=  (3.31) 
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Table 3.2: Wind turbine characteristics 

Power optimisation 

v 

(m/s) 
λ  Cp β  Kopt 

_wt refω  

(rad/s) 

3 11 0.43 2 1.3842 0.5984 

4 9.9 0.44 2 1.9242 0.7293 

5 10 0.43 2 1.796 0.9163 

6 9.9 0.44 2 1.9242 1.0846 

7 10 0.43 2 1.6726 1.3277 

8 9.9 0.44 2 1.9242 1.4399 

9 11.43 0.44 2 1.2513 1.87 

10 10.29 0.44 2 1.7161 1.87 

11 9.4 0.43 2 2.2568 1.87 

12 8.6 0.41 2 2.8219 1.87 

Power limitation 

v 

(m/s) 
λ  cp β  Kp 

_wt refω  

(rad/s) 

13 7.9 0.39 2 24.09 1.87 

14 7.3 0.31 5.85 16.26 1.87 

15 6.8 0.25 9.65 20.51 1.87 

16 6.4 0.21 13 52.2 1.87 

17 6 0.17 15.75 33.48 1.87 

18 5.7 0.15 18.16 131.25 1.87 

19 5.4 0.13 20.23 146.57 1.87 

20 5.1 0.11 22.22 47.23 1.87 

21 4.8 0.09 24.03 21.8 1.87 

22 4.6 0.08 25.52 27.95 1.87 

23 4.4 0.07 26.9 29.46 1.87 

24 4.2 0.06 28.21 24.86 1.87 

25 4.1 0.06 29.15 150.38 1.87 
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where 
d d

d β β=  with initial value 
_ 0d inβ = . To find the direct relation between β and 

d
β , the inner closed loop was reduced for the actuator, as shown in Figure 3.13, to 

the forward path and assumed 
βτ =1s. Consequently, the following transfer function 

is obtained:   

 
1

2d s

β

β
=

+
 (3.32) 

In the steady state, s ⇒ 0, and 2
d

β β= . Then substitute 
d d

d β β= in equation (3.31), 

Kp is:   

 
_

2
p

m ref m

K
β

ω ω
=

−
 (3.33) 

And substitute equation (3.33) in equation (3.30), then Ki is: 

 

 
_

1 2
*( )*d

i

m ref m

d
K

e de tω ω

β β ω

ω ω

∂
= −

− ∂
 (3.34) 

 

From equations (3.33) and (3.34), the integral coefficient (
i

K ) equals zero since the 

middle part of equation (3.34) equals zero in the steady state. Then the controller is 

summarised as: 

 

2
, 0

j
j j

p ij
K K

eω

β
= =  

 

where jβ  and j
eω

 are blade-pitch angle and error at wind speed j
v . By using the plot 

of pitch angle β  vs. wind speed (Figure 3.12), it is possible to design scheduling as 

illustrated in Figure 3.13. 
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Figure 3.12: Pitch angle β vs. wind speed. The value of β  is between 2
o
-30

o 

 

Figure 3.13: Block diagram of the pitch angle PI controller based on the 

theoretical method. Simulink models for switching (change from electrical 

torque controller to blade-pitch controller) and WT are presented in Figures 

B.12 and B.13, respectively  

 

3.5.3 Simulation-based method to calculate PI gains 

Above the rated wind speed, the rotor power must be kept at the design limits by 

using the PI pitch angle controller. Here, it is necessary to compute the PI gains of 

the pitch angle controller for all the system’s operating points.  

 

From Figure 3.11, the relationship between error eω and pitch angle β  is: 
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Since values of β  and eω
 were selected from Table 3.2 and the wind turbine model 

respectively, it was possible to calculate 
P

K  and Ki by using simulations to shape the 

responses in equation (3.35). 

 

Figure 3.14 shows the block diagram, which was implemented to calculate 
P

K  and 

i
K  by inserting data of wind turbine as input and gains as output. We implemented 

the simulation by using Matlab/Simulink software. The generator speed (
m g wtnω ω= ) 

is the feedback and the rated generator speed,
_m refω  is a set value. The error is input 

to the controller, which commands a change in the blade-pitch angle. The new 

requested pitch angle is
n ew d

β β β= − . The actuator operates on a pitch rate 

command. The pitch rate is determined from the difference between the desired pitch 

angle and the measured blade-pitch angle. By using this method, the PI gains were 

obtained, as shown in Figure 3.14, and achieved desired rotor speeds and output 

power. Table 3.2 was used to find control gains at different wind speeds (13, 14 …25 

m/s). The value of Ki was very small (Ki <<1/10000). 

 

 

Figure 3.14: Block diagram to calculate Kp and Ki. Simulink model to determine gains is 

presented in Figure B.23 

 

 

For example, Figure 3.15 shows the values of 
pK  and 

i
K  at wind speed 15 m/s. 

Figure 3.16 shows the response of the output pitch angle at different operating points 

(wind speed = 12, 15, 18, 21 m/s). Here, it should be noted that, when the wind speed 

12 m/s is below the rated value, the controller should switch to electrical torque 

controller. 
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Figure 3.15: Values of Kp and Ki at wind speed 15 m/s 

 

 

 

Figure 3.16: Shows the simulation output of pitch angle at different operating 

points (wind speed v = 12, 15, 18, 21 m/s)  

 

 

3.6 Generator-torque controller 

For the 5MW wind turbine, a conventional variable-speed, variable blade-pitch were 

chosen. In such wind turbines, the conventional approach for controlling power-

production operation relies on the design of two basic control systems: a generator-

torque controller and a full-span rotor-collective blade-pitch controller. The two 

control systems are designed to work independently, for the most part, in the below-

rated and above-rated wind-speed range, respectively. In this section a generator-

torque controller will be designed to maximise power capture below the rated wind 

speed. 
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3.6.1 Model strategy of the generator 

In section 2.6.1 the stator voltage vector is oriented to the q-axis of the reference 

frame. Therefore, it can be seen that the stator voltage vector and the order of the 

DFIG model decreases from fourth to second order which is beneficial in simplifying 

the DFIG’s excitation control system (see Figure 3. 17). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6.2 Control strategy of DFIG 

In order to realise the maximum power point tracking, the electric torque was 

considered to be a reference. Under the current-mode control, the electric torque is 

proportional to the q-axis rotor current iqr. Consequently, the reference value iqr for 

the current inner loop could be derived from Te directly as is discussed in section 

2.6.1 of the previous chapter as: 

 _ _ _
3

s s
qr ref e ref T e ref

p m s

L
i T K T

n L V

ω
= − = −  (3.36)   

Figure 3. 17 depicts the cascaded control scheme under torque-mode control. A PI 

controller is the controller in the torque outer loop. Under current-mode control, a PI 

controller is the controller in the current inner loops.   

Figure 3. 17: Block diagram of the DFIG model 
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3.6.3 Reference electrical torque 

When the wind speed is below rated, optimising the wind turbine’s power output is 

achieved by using the torque control scheme for a variable-speed wind [17]. In this 

case, the following equations hold: 

 
(max)

e_ref

m

  =
wtP

T
ω

 (3.37) 

or 

 

2 3

_ max

_

0.5 ( )wt
p

opt

e ref

m

R
R C

T

ω
ρπ

λ

ω
=  (3.38) 

 

where 
_e refT  is the reference electrical torque, Cp_max is the maximum power 

coefficient and 
optλ  is the tip speed ratio at Cp_max.  

 

Since in the steady state,
m g wtnω ω= , the optimal gain is defined as:   

 

 

5

_ max

3 3

0.5 p

opt

opt g

R C
K

n

ρπ

λ
=  (3.39) 

 

Therefore, equation (3.38) can be rewritten as: 

 

 2

_e ref opt mT K ω=  (3.40) 

 

Figure 3.18: Control structure under current and electric torque 
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It should be noted that the transmission friction losses were not considered. From 

equation (3.39), it is clear that the optimal gain varies from one turbine to another, 

even when they both have the same rated power. Furthermore, these gains could be 

changed during a turbine's lifetime. For example, dirt on blades or a slightly 

damaged blade can reduce the aerodynamic efficiency. 

 

3.6.4  IMC-based PI controller 

Internal Model Control (IMC) is a commonly used technique that provides a 

transparent mode for the design and tuning of various types of control. In this 

section, by using the IMC-based PI controller [43, 44], it was possible to design the 

controller in current and torque loops in order to achieve good static and dynamic 

performance. The IMC based PID structure uses the process model as in IMC design. 

In the IMC procedure, the controller Q(s) is directly based on the invertible part of 

the process transfer function. The IMC results in only one tuning parameter, which is 

filter tuning parameter.  

 

Here, as shown in Figure 3.18, the IMC-based PI design procedure was applied for 

the control structure under current and torque. 

I- Given current model: 

 
1

( )
iqr

r r

G s
L s Rσ

=
+

 (3.41) 

Transfer function for PI controller:  

 ( ) ( )
p i

idr iqr

K s K
C s C s

s

+
= =  (3.42) 

By applying the IMC, the equivalent standard feedback controller is obtained using 

the transformation:  

 ( )
1

iqr r r
iqr

iqr iqr f

Q L s R
C s

Q G s

σ

λ

+
= =

−
 (3.43) 

where  

 
1

( ).
1

iqr iqr

f

Q inv G
sλ

=
+

 (3.44) 
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fλ  is the filter-tuning parameter to vary the speed of the response of a closed-loop. 

Then, the result is compared with the PI controller transfer function and, hence, the 

PI tuning parameters are: 

r
p

f

L
K

σ

λ
=  and 

r
i

f

R
K

λ
=  

To confirm that the current inner loop’s response is faster than that of the torque 

outer loop, 
fλ =0.1 was selected; then  0.97pK =  and 0.018

i
K = (see Figure 3.19).  

 

Figure 3.19: Simulation of IMC-based PI current model when 
fλ =0.1 

 

 

II- Given torque model: 

From figure 3.18 the transfer function for torque is: 
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 (3.45) 

  

By applying the IMC, the equivalent standard feedback controller is obtained using 

the transformation: 
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0.1 1

( )
1

e

e

e e

T

T

T T f

Q s
C s

Q G sλ
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 (3.46) 

where  

 
1

( ).
1e eT T

f

Q inv G
sλ

=
+

 (3.47) 

 

Therefore, the PI-tuning parameters of the torque closed loop are: 

0.1
p

f

K
λ

=  

1
i

f

K
λ

=  

 

 

Figure 3.20: Simulation of IMC-based PI torque model when 
fλ = 0.5 

 

  

From Figure 3.20 it can be seen that when = 0.5, the gains of PI torque controller 

are 0.2pK =  and 2
i

K = . The simulation results in Figure 3.21 demonstrate that the 

torque controller is accomplished.   
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Figure 3.21: Electrical torque response at different wind speeds (6, 8, 10, 12 m/s 

and above-rated speed) 

 

 

3.7 Simulation results for a non-linear wind turbine model 

In order to control the pitch angle and output power for non-linear wind turbine 

models, gain-scheduling was implemented. This uses its input value to select a case 

condition, which determines the subsystem that should be executed to give the 
P

K  

value as output as shown in Figure 3.22 and B.10. Figure B.12 illustrates that the 

switch block receives wind speed as a single input to change to the blade pitch 

control system and/or a change in the electrical generator torque control loop. 
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Figure 3.22: Block diagram of the pitch angle PI controller based on the simulation 

method. Simulink models for gain scheduling, PI controller, switching and wind 

turbine are presented in Figures B.11, B.12 and B.13, respectively   

 

The simulation output results for turbine characteristics and tracking characteristics, 

presented in Figure 3.23, and the operating regimes for Cp-λ  shown in Figure 3.24, 

demonstrate that power optimisation and power limitation are realised. Figure 3.25 

shows output power from the wind rotor vs. wind speed. 

 

 

Figure 3.23: Illustrative turbine characteristics and tracking characteristics 

achieved by using the electrical torque controller and blade-pitch angle controller 
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Figure 3.24 Illustrative operating regimes for Cp-λ  

 

 

 

Figure 3.25: Output power from wind rotor vs. wind speed 

 

 

3.8 Conclusions  

This chapter focused on the design of a PI controller for a 5MW wind turbine. 

Firstly, two PI-based control design schemes were proposed for the blade-pitch angle 

controller in a variable-speed wind turbine; one analytical method and one 

simulation-based method to calculate the PI gains. The simulation results 

demonstrated good performance for both proposed PI schemes.  
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Secondly, the IMC-based PI design procedure was applied for the control of current 

and electric torque. Figures B.15 and B.14 for subsystems to calculate the power 

coefficient and optimal tip speed ratio enabled the design of a rotor torque model 

without feedback of the rotational speed of the rotor, such that this non-linear model 

had similar characteristics to that of a real wind turbine (the wind turbine subsystem 

converts wind speed into aerodynamic torque) (see Figure B.13 and B14).               
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4 Model-based Fault Detection and Isolation 

Methods for Wind Turbines 

 

4.1 Introduction 

Faulty components in wind turbine can cause high loses in energy production and 

possible damage to the wind turbines. The losses may be higher for offshore wind 

farms. This decreases the reliability and increases the cost of maintenance of the 

wind turbines. Therefore, the aim of the wind turbine fault monitoring is to avoid 

abnormal event progression and reduces productivity loss, system breakdowns and 

damage. It increases safety and reliability of the system to achieve higher 

performance.  

 

Model-based Fault Detection and Isolation Methods surveyed in literature can be 

classified into two general categories, quantitative and qualitative methods. In 

quantitative method, the understanding is expressed in terms of mathematical 

functional relationships between the inputs and outputs of the system in the form of 

system descriptions. In qualitative method, the relationships are expressed in terms of 

qualitative functions between different components of the system. This approach 

usually depends upon the knowledge from experts in both the normal and fault cases.  

 

In this chapter, a quantitative model based method is proposed for early fault 

detection and diagnosis of wind turbines. The method is based on designing an 

observer using a model of the system. For application to the wind turbines, a 

simplified state space version of the wind turbine model is derived for design an 

observer. The observer innovation signal is monitored to detect faults. The fault 

detection system is designed and optimised to be most sensitive to system faults and 

least sensitive to system disturbances and noises. A multi-objective optimization 
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method is then employed to solve this dual problem. Simulation results are presented 

to demonstrate the performance of the proposed method. 

 

4.2 Observer-based fault detection 

The basic design of observer-based fault detection is to compare the actual 

measurements (y) with the output provided by an observer ( ŷ ), so that the residual 

depends on the difference between y  and ŷ  as shown in Figure 4.1.  

 

Figure 4.1: Block diagram of observer-based residual generation 

 

 

The system described by equation (4.1) is used to design an observer. The 

mathematical description of the observer is the same as that of the system except that 

the observer has an additional term, the gain K, which continuously corrects the 

system output and improves the state estimates. The observer is defined in equation 

(4.2). 

 
( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t

y t Cx t Du t

= +

= +

�
 (4.1) 

 
ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))

ˆ ˆ( ) ( ) ( )

x t Ax t Bu t K y t y t

y t Cx t Du t

= + + −

= +

�
 (4.2) 

where x, u, y are the state, input and output of the system of dimensions n, m and p, 

respectively and A, B, C and D are system matrices of appropriate dimensions.  
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To define the error, equation (4.2) is subtracted from equation (4.1): 

 
ˆ ˆ( ) ( ) ( ( ) ( ))

ˆ ˆ ˆ ˆ( ) ( ) ( ( ) ( )) ( ( ) ( )) ( )( ( ) ( ))

y t y t C x t x t

x t x t A x t x t K y t y t A KC x t x t

− = −

− = − − − = − −��
 (4.3) 

 

Defining the difference between ( )x t and ˆ( )x t  as the state error vector (residual), e(t), 

the dynamic error can be written as: 

 ˆ( ) ( ) ( ) ( ) ( )e t x t x t A KC e t= − = −�� �  (4.4) 

 

For fault monitoring purposes, a weighted residual is defined as follows: 

 ( ) ( )r t QCe t=  (4.5) 

where Q is the residual weighting factor. 

 

Equation (4.10) illustrates the dynamic behaviour of the innovation signal and this is 

governed by the eigenvalues of the matrix (A-KC). 

 

If the matrix A-KC is stable, the error will tend to zero or a constant. If the 

eigenvalues are chosen in such a way that the dynamic behaviour of the error is 

asymptotically stable and adequately fast, then any error will tend to zero with 

sufficient speed. This is possible by choosing an appropriate value for K to achieve 

the stability when the system is completely observable. The observability can be 

examined using equation (4.6).  

 

 

2

1

0
.

.
n

C

CA

CA

CA
−

Ο = ≠  (4.6) 

4.2.1 Observer gain matrix 

It is assumed the matrices A, B, C and D are identical for both the observer and the 

system, so if there is any difference, the dynamics of the observer error are no longer 
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governed by equation (4.4). It is necessary to find K, so that the observer is stable 

and the error remains acceptably small.         

 

4.2.1.1 Transformation approach to find state observer gain matrix  

By using this method, the observer gain matrix K can be calculated by the following 

equation [85]: 

 

1

1 1 2 1

2 1 12 3

1

1 1

1

1 0

1 0 0 0
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n nn n
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k aCA
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 (4.7) 

 

where the characteristic polynomial for matrix A is given by: 

 1 2

1 2 1

n n n

n nsI A s a s a s a s a
− −

−− = + + + +�  (4.8) 

 

and the desired eigenvalues for closed loop are: 

  

 1 2

1 2 1 2 1( )( ) ( ) n n n

n n ns p s p s p s s s sα α α α− −
−− − − = + + + + +� �  (4.9) 

 

When the matrix of the system is in the observable canonical form, then the gain 

matrix can be obtained by the following equation: 

 

 

1

2 1 1

1 1

n n

n n

n

k a

k a
K

k a

α

α

α

− −

−   
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   
   

−  

� �
 (4.10) 

 

4.2.1.2 Ackermann’s formula for determination of the observer gain matrix 

Ackermann’s formula to find the matrix K is given by equation (4.11). 
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 (4.11) 

 

The gain matrix K depends on the desired characteristic equation; to make sure the 

observer error is very small; the observer poles must be five times faster than the 

controller poles. In the case where the sensor noise is considerable, it is possible to 

select the observer poles to be two times slower than the controller poles, so that the 

bandwidth of the system will become lower and smooth the noise. In this case, the 

system response will be strongly influenced by the observer poles. If the observer 

poles are located to the right of the controller poles in the left-half S plan, then the 

system response will be dominated by the observer poles [85]. 

 

In the design of the observer, it is important to obtain a number of observer gain 

matrices based on different desired characteristic equations. Then, it is possible to 

select the best from the viewpoint of overall system performance by using 

simulation. The selection of the best observer gain matrix K depends on a 

compromise between response and sensitivity to disturbances and noises.               

 

4.2.2 Residual generation 

Assume the system is fully observable. The system dynamics with faults and 

disturbance models can be written as: 

 

 
1

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x t Ax t Bu t R f t d t

y t Cx t Du t R f t

= + + +

= + +

�
 (4.12) 

 

where f(t) represents the fault vector and is considered to be an unknown function of 

time. The vector d(t) is the disturbance vector and can be written as in equation 

(4.15). The matrices R1 and R2 are fault distribution matrices; they can be determined 
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if one has defined which faults are to be diagnosed. For example, sensor and actuator 

fault matrices can be represented as: 

    

 
1

0 sensor faults
R

B actuator faults


= 


 (4.13) 

 
2

m
sensor faultsI

R
D actuator faults


= 


 (4.14) 

 ( ) ( ) ( )d t Ax t Bu t= ∆ + ∆  (4.15) 

 

The residual generator studied in this section, as explained in Figure 4.2, is based on 

an observer. The principle is to estimate the system output from the measurements 

using an observer. The weighted estimation error is used as a residual. The flexibility 

in this selection, the observer gain and the weighting matrix give a choice to achieve 

good detection performance.    

 

 

 

Figure 4.2: Residual generation via a full order observer 
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then the estimation error and residual are obtained, as in equations (4.16) and (4.17) 

respectively, and  

 
1 2

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )e x t x t A KC e t d t R f t KR f t= − = − + + −�� �  (4.16) 

 
2

( ) [ ( ) ( )]r t Q C e t R f t= +  (4.17) 

 

By taking the Laplace transform of equation (4.17), the residual can be written as: 

 

1 1

2 1 2( ) [ ( ) ( )]f(s) ( )

( ( ) (0)) ( , , ) ( ) ( , , )(d(s) e(0))rf rd

r s Q R C sI A KC R KR QC sI A KC

d s e G s K Q f s G s K Q

− −= + − + − + − +

+ = + +
 (4.18) 

 

where e(0) is the initial value of the state estimation error.  

 

4.2.3 Performance indices in residual generation 

Faults and disturbances affect the residual. Therefore, to design good fault detection, 

it is necessary to maximise the effect of the faults on the residual and minimise the 

effect of the disturbances on the residual. This means that the effect of the faults 

must be maximised by maximising the following performance index in the frequency 

domain [91]: 

 

 
1 2

1

1 2 1 2
[ , ]

( , ) inf {[ ( ) ( )]}J K Q QR QC j I A KC R KR
ω ω ω

σ ω −

∈
= + − + −  (4.19) 

 

and this is equivalent to the minimisation of the following performance index:  

 
1 2

1

1 2 1 2
[ , ]

( , ) sup { [ ( ) ( )] }J K Q QR QC j I A KC R KR
−

∈

= − + − + −
ω ω ω

σ ω  (4.20) 

where {.}σ and {.}σ denote to minimal and maximal singular values. 

 

Similarly, the effect of the disturbances and initial condition on the residual must be 

minimised by minimising the following performance index:  

 
1 2

1

2
[ , ]

( , ) sup { ( ) }J K Q QC j I A KC
ω ω ω

σ ω −

∈

= − +  (4.21) 

 



94 

 

Here, only faults and disturbances are considered since noise in the system can affect 

the residual. To study the effect of noise, it is assumed that )(tξ  and )(tη are input 

and sensor noise signals, respectively. Thus, the system equation will be: 

 

 
1

2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

x t Ax t Bu t R f t d t t

y t Cx t Du t R f t t

ξ

η

= + + + +

= + + +

�
 (4.22) 

 

It can be seen that the sensor noise as well as faults acting through R2 f(t) affect the 

system at the same excitation point and, hence, affect the residual in the same way. 

Therefore, in order to reduce the effect of noise on the residual the following norm 

should be minimised: 

 1|| ( ) ||Q Q C j I A K C Kω −− − +  (4.23) 

 

The minimisation of the above norm contradicts the requirement for maximising the 

effects of the faults on the residual. Moreover, the frequency ranges of the faults and 

noise are usually different. For an incipient fault signal, the fault information is 

contained within a low frequency band since the fault development is slow; however, 

noise comprises mainly high frequency signals. Based on these observations, the 

effects of noise and faults can be separated by using different frequency-dependent 

weighting penalties ( ( )W jw ). In this case, the index J1 is given by: 

 

 
1 2

1

1 1 2 1 2
[ , ]

( , ) sup { ( )( [ ( ) ( )])}J K Q W jw QR QC j I A KC R KR
ω ω ω

σ ω −

∈

= − + − + − (4.24) 

 

and the minimising effect of noise on the residual, index J3 is: 

  

 
1

3 3
[ 1, 2]

( , ) { ( ) [ ( ) ]}supJ K Q W j Q I C j I A KC K
ω ω ω

σ ω ω −= − − +  (4.25) 

 

To maximise the effects of faults at low frequencies and to minimise the noise effect 

at high frequencies, the frequency-dependent weighting factor W1(jω) should have 

large magnitude in the low frequency range and small magnitude at high frequencies. 
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The frequency effect of W3(jω) should be opposite to W1(jω) and can be chosen as 

W3(jω)=W1
-1

(jω).  

 

The disturbance and input noise affect the residual in the same way. As both effects 

should be minimised, the performance index J2 does not necessarily need to be 

weighted. However, modelling uncertainty and input noise effects may be more 

complex for one or more frequency bands. The performance index should reflect this 

fact and, hence, a frequency-dependent weighting factor must also be placed on 

J2(K,Q) in some situations: 

 

 
1 2

1

2 2
[ , ]

( , ) sup { ( ) ( ) }J K Q W j QC j I A KC
ω ω ω

σ ω ω −

∈

= − +  (4.26) 

 

Now, considering the steady state value of the residual: 

 1 1

2 1 2( ) [ ( ) ( )] ( ) ( ) ( )r Q R C A KC R KR f A KC d
− −∞ = − − − − ∞ − − ∞  (4.27) 

 

After the transient period, the residual steady state value plays an important role in 

fault detection; ideally, it should reconstruct the fault signal. The disturbance effects 

on the residual can be minimised by minimising the following performance index: 

 1

4 ( ) || ( ) ||J K A KC
−= −  (4.28) 

 

When J4 is minimised, the matrix K is very large and the norm ||(A-KC)|| approaches 

a constant value. This means that the fault effect on the residual has not been 

changed by reducing the disturbance effect. This is what is required for good FDI 

performance.    

 

Four performance indices, J1(K,Q), J2(K,Q), J3(K,Q) and J4(K,Q), have been defined. 

To achieve robust fault detection, a multi-objective optimisation problem must be 

solved. The parameter set to be designed is the observer gain matrix K, which must 

guarantee the stability of the observer. This leads to a constrained optimisation 

problem that is difficult to solve. The observer design is a dual problem of the 

controller design and all techniques in control design can be applied. 
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4.3 Observer-based fault detection and isolation for a wind turbine 

4.3.1 Linear model of the wind turbine 

The non-linear model for 5MW wind turbine was designed and demonstrated in 

Simulink/Matlab and is presented in Chapter 2and Chapter 3. The next step in this 

study is to design the fault detection and isolation system. Therefore, it is necessary 

to linearise the non-linear model and determine the state-space model. The 

linearisation method is performed using the following steps: 

 

1) Determine the operating point equation by solving the non-linear equation in a 

stationary point. 

2) Approximate the non-linear expiration with a first-order Taylor approximation. 

3) Subtract the operating point equation from Taylor approximation. The result is a 

linear equation in small signal values. 

From the wind turbine models for the actuator, drive-train and generator in equations 

(3.3), (2.21) and (2.24), the following states exist: 

 

• Actuator  

d

β

β β
β

τ

− +
=�                                         

• Drive-train  

 
wtwt ωθ =�  

mm ωθ =�  

           )(
1

lsswt

T

wt TT
J

−=ω�  

           
1

( )m hss e d mT T b
JG

ω ω= - -�  

  where: 
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 ( ) ( )m m

lss s k s k s wt s wt g hss

g g

T K C K C n T
n n

θ ω
= θ + θ = θ − + ω − =�   

 

• Generator 

ds s ds s s qs s m qr dsR i L i L i vψ ω ω= − + + +�                                                 

qs s s ds s qs s m dr qsL i R i L i vψ ω ω= − − − +�                                                 

dr s m q s r dr s r qr m m qs m r qr drL i R i L i L i L i vψ ω ω ω ω= − + − − +�                   

qr s m ds s r dr r qr m m ds m r dr qrL i L i R i L i L i vψ ω ω ω ω= − − − + + +�                            

  

The linear approximation for the wind turbine around an operating point is: 

 

( ) ( ) ( )d

dp p

d d
t t t

d d

β β
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( ) ( ) ( ) ( ) ( )ds ds ds ds
ds ds qs qr ds

ds qs qr dsp p p p

d d d d
t i t i t i t v t

di di di dv

ψ ψ ψ ψ
δψ δ δ δ δ= + + +

� � � �
�                          

( ) ( ) ( ) ( )
qs qs qs qs

qs ds qs qr qs

ds qs qr qsp p p p

d d d d
t i t i t i t v

di di di dv

ψ ψ ψ ψ
δψ δ δ δ δ= + + +

� � � �
�                          

( ) ( ) ( ) ( ) ( ) ( )dr dr dr dr dr
dr qs dr qr m dr

qs dr qr m drp p pp p

d d d d d
t i t i t i t t v t

di di di d dv

ψ ψ ψ ψ ψ
δψ δ δ δ δω δ

ω
= + + + + +
� � � � �

�
    

( ) ( ) ( ) ( ) ( ) ( )
qr qr qr qr qr

qr ds dr qr m qr

ds dr qr m qrp p pp p

d d d d d
t i t i t i t t v t

di di di d dv

ψ ψ ψ ψ ψ
δψ δ δ δ δω δ

ω
= + + + +
� � � � �
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The states x and inputs u and output y are given by: 

[ , , , , , , , , ]T

wt m wt m ds qs dr qrx i i i iβ θ θ ω ω=  

[ , , , , , , ]c T

d w t e ds dr dr qru T T v v v vβ=  

[ , , , ]T

wt m ey Tβ ω ω=  

Then the state-space model can be written as: 

Cxy

BuAxx

=

+=�
 

and the matrices A, B and C are given by:  

 

2 2

1
0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 ( ) ( )

0 0 0 0 ( ) 0

s s s s

T T g T T g

s s s s d

G g G g G g G g G

s s s s m

s s s s m

m qs r qr m s m r r s m

m ds r dr m s m r

K K C C

J J n J J n
A

K K C C b

J n J n J n J n J

R L L

L R L

L i L i L R L

L i L i L L

βτ

ω ω

ω ω

ω ω ω ω

ω ω

−

− −

=
− −

−

−

− − −

− − − − −

+ − − − ( )s m rRω ω

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − − 
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1
0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1
0 0 0 0 0 0

1
0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

T

G

J
B

J

βτ

 
 
 
 
 
 
 
 
 =  

− 
 
 
 
 
 
 
  

 

 

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

3
0 0 0 0 0 0 0 0

p m s

s s

C

n L V

L

 
 
 
 =
 
 
 ω 

 

 

• Operating point: 

 Wind speed=10 m/s, generator speed 
m

ω =87.22 rad/s; generator currents are 

ids=53.2A, iqs=2217A, idr=-52.1A, iqr=-2293A, 1βτ = . Wind turbine parameters are 

presented in Table A.1. 

 

By computing the observability matrix for state-space systems, for an n-by-n matrix 

A and a p-by-n matrix C, obsv(A,C) returns the observability matrix 

2

1

.

.
n

C

CA

CA
ob

CA
−

=  

where n and p are the dimensions of state and output, respectively. 
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Matlab commands were used to calculate the observability matrix ob and the number 

of unobservable states, unob:  

 

ob = obsv(A,C);  

unob = length(A)-rank(Ob) 

 

The resulting number of unobservable states is five, meaning that the system is not 

completely observable. Therefore, the model can be revised by changing the drive-

train model from 4th order to 3rd order and, then, substituting equation (2.23) into 

equation (2.21), giving the drive-train model as:  

 1
( ) 1

( )

1
( ) 1

( )

wt

m
wtwt m

k g

m

wtwt lss

wt T wt lss

T

m

hss e d m m

hss e m

n

T T
J T T

J

T T b
JG T T b

JG

ω
ω

ωθ ω
θ

θ

ω
ω

ω
ω ω

ω

 
         −                  = → =    −     −               − −     − −   

 

�
�

�

�
�

�
�

 (4.29) 

  

The linear approximation for ( )k tδθ� around an operating point is: 

 

( ) ( ) ( )k k

k wt m

wt mp p

d d
t t t

d d

θ θ
δθ δω δω

ω ω
= +
� �

�  

where: 

[ , , , , , , , ] T

k w t m d s q s d r q rx i i i iβ θ ω ω=  

[ , , , , , , ]c T

d w t e ds dr dr qru T T v v v vβ=  

[ , , , ]T

w t m ey Tβ ω ω=  

 

The matrices A, B, C and D are: 
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2

1
0 0 0 0 0 0 0

1
0 0 1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 ( ) ( )

0 0 0 ( ) 0 ( )

g

s s s

T T T g

s s s d

G g G g G g G

s s s s m

s s s s m

m qs r qr m s m r r s m

m ds r dr m s m r s m r

n

K C C

J J J nA

K C C b

J n J n J n J

R L L

L R L

L i L i L R L

L i L i L L R

βτ

ω ω

ω ω

ω ω ω ω

ω ω ω ω


−




−



− −
=

 −

−

 −

− − −

− − − − −

+ − − − − −

















 
 
 
 
 

 

1
0 0 0 0 0 0

0 0 0 0 0 0 0

1
0 0 0 0 0 0

1
0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

T

G

J
B

J

βτ

 
 
 
 
 
 
 
 
 =  

− 
 
 
 
 
 
 
  

  

 

( )

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 ,  zeros 4,7

3
0 0 0 0 0 0 0

p m s

s s

C D

n L V

L

 
 
 
 = =
 
 
 ω 

  

 

From the calculation of the observability matrix ob it follows that there are four 

unobservable states. Thus, the state-space model is still not observable. Therefore, 

the model requires further revision.  
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From the voltages, currents and flux linkages are expressed by the d-axis and q-axis 

components in Section 2.6.1 (Chapter 2). The stator voltage vector was oriented to 

the q-axis of the reference frame. Therefore, it should be noted that the stator voltage 

vector and the order of the DFIG model can be modified. From equation (2.55), the 

model for the generator can be written as: 

 

 

( )

3
( )( )

dr
r r dr s m r qr dr

qr m s
r r qr s m r dr qr

s s

di
L R i L i v

dt

di L V
L R i L i v

dt L

σ ω ω σ

σ ω ω σ
ω

= − + − +

= − − − + +

 (4.30) 

 

From the models for actuator, drive-train and generator in equations (3.3), (4.29) and 

(4.30), the linear state-space model for the wind turbine around an operating point is 

as follows:  

 

The states, inputs and outputs are defined as: 

[ , , , , , ] T

k w t m d r q rx i iβ θ ω ω=  

[ , , , , ]c T

d w t e dr qru T T v vβ=  

[ , , , ]T

w t m ey Tβ ω ω=  

 

A, B, C and D are: 

 

2

1
0 0 0 0 0

1
0 0 1 0 0

0 0 0

0 0 0

0 0 0 ( )

3
0 0 0 ( )

g

S S S

T T T g

S S S

G g G g G g

r
qr S m

m s r
dr S m

s s r r

n

K C C

J J J n
A

K C C

J n J n J n

R
i

Lr

L V R
i

L L L

βτ

ω ω
σ

ω ω
ω σ σ

 
− 
 
 −
 
 
 −

− 
 

=  − 
 
 

− − −
 
 

− + − −
  
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( )

1
0 0 0 0

1 0 0 0 0 00 0 0 0 0

0 0 1 0 0 01
0 0 0 0

0 0 0 1 0 0, , D zeros 4,5

1 0.8383 3
0 0 0 0 0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

T

p m s

r
G s s

B CJ

n L V
L

J L

βτ

σ
ω

 
 
 

  
  
  
  = = =
  

−   
  
  

 
 
 

  

The number of unobservable states is zero and, consequently, the state-space model 

is observable. 

4.3.2 Linear model validation 

Comparing the output of the non-linear model with the output from the state-space 

model at a wind speed 10 m/s, as shown in Figures (4.4) to (4.8), the outputs from 

both models are very similar.  

 

Figure 4.3: Comparing non-linear model and state-space model 

  

Figure 4.4: Non-linear model and state-space pitch angle outputs. Here, the wind 

speed (10 m/s) is below the rated value, therefore the pitch angle controller is 

inactive.  
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Figure 4.5: Non-linear model and state-space rotor speed outputs 

 

 

Figure 4.6: Non-linear model and state-space generator speed outputs 

 

 

Figure 4.7: Non-linear model and state-space electrical torque outputs 
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Figure 4.8: Non-linear model and state-space generator speed outputs, where drive-

train disturbance covariance is 0.1 and the sensor noise covariance is 0.5 

 

4.3.3 Fault detection and isolation 

One approach for fault isolation is to design a set of structured residuals. Each 

residual is designed to be sensitive to a particular type of fault and insensitive to 

other types of fault (Gertler, 1991) [86]. To implement this approach, two steps 

should be taken. The first step is to define the sensitive and insensitive relationships 

between residuals and faults for each type of fault, represented as mathematical 

equations. The second step is to design a set of residual generations according to 

those equations. Faults are classified into three groups: actuator, sensor and 

component (rotor, drive-train and generator) faults. The system equation can be 

expressed as: 

 

 
1 1 1

2 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

a a s s c c

a a s s c c

x t Ax t Bu t R f t R f t R f t d t

y t Cx t Du t R f t R f t R f t

= + + + + +

= + + + +

�
 (4.31) 

 

where R1 and R2 are fault matrices and a, s and c denote actuator, sensor and 

component, respectively. 

   

According to Chiang et al. (2001) [87], the sensor, actuator and component fault 

matrices can be represented by equations (4.32) and (4.33). 
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 1

0 sensor fault

R B actuator fault

I component fault




= 



 (4.32) 

 2

0

I sensor fault

R D actuator fault

component fault




= 



 (4.33) 

Substituting equations (4.32) and (4.33) into equation (4.31), gives the following 

system equation:  

 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

a c

a s

x t Ax t Bu t Bf t If t d t

y t Cx t Du t Df t If t

= + + + +

= + + +

�
 (4.34) 

Referring to the performance indices of residual generation in equations (4.20) and 

(4.28), the performance indices can be rewritten as: 

 

 
1 2

1

2
[ , ]

( , ) sup { [ ( ) ( )] }afJ K Q Q D QC j I A KC B KD
ω ω ω

σ ω −

∈

= − + − + −  (4.35) 

 
1 2

1 1

[ , ]

( , ) sup {[ ( ) ( )] }sfJ K Q QI QC j I A KC KI
ω ω ω

σ ω − −

∈

= + − + −  (4.36) 

 

 
1 2

1

[ , ]

( , ) sup { [ ( ) )]}cfJ K Q QC j I A KC
ω ω ω

σ ω −

∈

= − − +  (4.37) 

 

 1( ) || ( ) ||dJ K A KC
−= −  (4.38) 

 

From the above equations, the performance indices of the actuator Jaf(K,Q), sensor 

Jsf(K,Q), component faults Jcf(K,Q) and disturbance effects Jd(K) need to be 

optimised as follows: 

 

• The effect of the actuator, sensor and component faults can be maximised via 

minimisation of Jaf(K,Q), Jsf(K,Q) and Jcf(K,Q) indices. 
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• Disturbance effects in the steady state period on the residual can be minimised by 

minimising Jd(K) index. 

 

4.3.4 Multi-objective optimisation using the method of multi-objective genetic 

algorithm  

The problem can now be stated as minimising the criteria in equations (4.35), (4.36), 

(4.37) and (4.38). This is a multi-objective optimisation problem and, hence, the use 

of a genetic algorithm (GA) is proposed to solve the problem. 

 

A multi-objective genetic algorithm (MOGA) is used to minimise the objective 

functions (see Appendix C). This is more suitable than other approaches such as 

conventional genetic algorithms because it is not necessary to apply an equality 

constraint with a MOGA [88]. The method finds the solution to problems with two or 

more objectives to be satisfied together. Often, such objectives are in conflict with 

each other, and are expressed in different units. Because of their nature, multi-

objective optimization problems normally have not one but a set of solutions, known 

as Pareto points or Pareto optimal solutions [89].  

 

4.3.4.1 Minimisation of two objective functions for sensor faults 

Firstly, two objective functions, Jsf(K,Q) and Jd(K), with n+ p
2
 decision variables 

should be minimised. Mathematically, the problem can be written as: 

 

Define:  

F(X) = [F1(X); F2(X)]  

where  F1(X)= Jsf(K,Q) and F2(x)=Jd(K), and X={x1,……, 2
n p

x
+

} is a vector of 

decision variables. 

The problem is to minimise F(X) subject to: 

 

• F1(X) ≤ 0 and F2(X) = 0. 

• F1(X): inequality constraint evaluated at X 



108 

 

• F2(X) : equality constraint evaluated at X 

 

In the vector function F(x), some of the objectives may be in conflict with others and 

some have to be minimised while others are maximised. The constraints define the 

feasible region X, and any point x∈X is a feasible solution. There is rarely a situation 

in which all F(X) have an optimum in X at a common point. Therefore, in the 

absence of preference information, solutions to multi-objective problems are 

compared using the notion of Pareto dominance. 

 

Without loss of generality, in a minimisation problem for all objectives, a solution X1 

dominates a solution X2 if the two following conditions are true: 

 

• X1 is no worse than X2 for all objectives, i.e., fi(X1) ≤ fi(X2) 

• X1 is strictly better than X2 for at least one objective, i.e., fi(X1) < fi(X2).  

 

Then, a solution is said to be Pareto-optimal if it is not dominated by any other 

possible solution, as described above. Thus, the Pareto-optimal solutions to a multi-

objective optimisation problem form the Pareto front or Pareto-optimal set [55]. 

 

The performance indices Jsf(K,Q) and Jd(K) are functions in K and Q. Therefore, the 

parameters set to be designed are the observer gain matrix and residual weighting 

factor matrix. The matrix K must achieve the stability of the observer and 

optimisation of the performance indices. Ackermann’s formula is used to 

parameterise the matrix K [85]:  

 1 2

1 2 1

1

0

0

1

n n n

s n n

n

C

CA
K A A A A I

CA

α α α α− −
−

−

   
   
    = + + + + +     
   
   

�
� �

  

where the desired eigenvalues are: 

1 2

1 2 1 2 1( )( ) ( ) n n n

n n ns p s p s p s s s sα α α α− −
−− − − = + + + + +� �  
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To improve the design, the desired eigenvalues are assigned in pre-defined regions to 

meet stability and response requirements, as in the following equations [46]: 

2( - ) sin ( ),  1, ...,i i i i ip L U L x i n= + =  

Li 
≤

i
p ≤  Ui   

where:  

Ui =[-6 -10 -1 -3 -8.5 -14]; Li =[-8 -12 -2 -4 -9.5 -20]; 

 

where Ui and Li are the lower and higher limits for the eigenvalues, respectively; 

index xi can be freely selected. Constrained performance indices have now been 

transformed into unconstrained indices, as a function of X: 

 

( )1 2 3 4 5 6,  ,  ,  ,  ,  sK f x x x x x x=  

7 11 15 19

8 12 16 20

9 13 17 21

10 14 18 22

s

x x x x

x x x x
Q

x x x x

x x x x

 
 
 =
 
 
 

 

 

where 
1 2 3 4 5 6
,  ,  ,  ,  ,  x x x x x x are the desired eigenvalues (

i
p ), 

s
K is the observer gain 

for sensor faults and Qs is the residual weighting factor matrix for the sensor faults. 

 

4.3.4.2 Multi-objective genetic algorithm procedure 

This section summarises the steps of the MOGA procedure using the Matlab MOGA 

Toolbox for solving the performance indices in equations (4.35) - (4.38). Firstly, two 

objective functions are minimised for the sensor faults (Jsf(K,Q) and Jd(K)), as shown 

in Figure 4.9.  

 

Step 1:  

Define the wind turbine state-space model. 

Step 2:  

Describe the fitness function (F(X))) as a multi-objective vector function ([F1(X); 

F2(X)]) and input it to the Matlab MOGA Toolbox. 
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Step 3:  

Define the following MOGA parameters: 

 

1) Number of independent variables = 22 for the fitness function. 

2) Initial range of variables, the fitness function lower and upper bounds for the 

entries of the vectors in the initial population. The initial range can be 

specified as a matrix with two rows and initial length columns. The first row 

contains the lower bounds for the entries of the vectors in the initial 

population, while the second row contains the upper bounds. 

3) Population size (how many individuals are in each generation). 

4) Number of generations, which specifies the maximum number of iterations 

the GA performs. 

The tuning parameters were set as follows: initial range of variables= [0; 10000], 

population size: 75, number of generations: 200.  

 

a) Step 4:  

Generate an initial randomly chosen population that satisfies the bounds. 

 

b) Step 5:  

Evaluate all objective functions using the distance measure function: 

          ( ) ( )1 1

1 2 1 2( ) ( )j k j k
F X F X F X F X

− −∩ < ∩
  

in order to determine the concentration of the population. 

 

c)  Step 6:  

Plot various aspects of the GA as: 

1) Score histogram of the parents. This shows which parents contribute to each 

generation. 

2) Pareto front plots, which show values for all best possible solutions.  
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Figure 4.9: Flow chart of the multi-objective simulation optimisation framework 
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d) Step 7:  

Stopping criteria determine what causes the algorithm to end: 

1) Generations specify the maximum number of iterations the GA performs. 

2) Fitness limit: if the best fitness value is less than or equal to the value of 

fitness limit, then the algorithm stops. 

 

e) Step 8:  

1) Selection chooses parents for the next generation based on their scaled values 

from the fitness functions. 

2) Crossover combines two individuals, or parents, to form a new individual, or 

child, for the next generation.  

3) Mutation functions make small random changes in the individuals in the 

population, which provide genetic diversity and enable the GA to search a 

broader space. 

 

f) Step 9:  

Select the best values from Pareto front to determine the eigenvalues, the observer 

gain matrix and the residual weighting factor matrix. 

 

The top chart in Figure 4.10 illustrates the score diversity for each objective. The 

bottom chart in Figure 4.10 shows the Pareto front, which plots the Pareto front for 

every generation. From Figure 4.10 it can be seen that there is only one optimal value 

on the Pareto front figure, that gives Jsf(K,Q)=0, which means the maximal 

performance index of the sensor is infinity and Jd(K) = 258.  

 



113 

 

 

Figure 4.10: Number of generations and the Pareto front for sensor index (fun1 and 

objective 1 represent Jsf(K,Q), fun2 and objective 2 represent Jd(K)) 

 

From the results shown in Figure 4.10, the eigenvalues at these indices Ps, the matrix 

Ks and residual weighting factor matrix Qs are: 
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4426 4495 7814 5446

3015 4094 6897 1503

3836 3872 4308 8549

5144 6240 6211 5673

sQ

 
 
 =
 
 
 

    

                                                           

4.3.4.3 Minimisation of two objective functions for actuator faults 

Optimisation of Jaf(K,Q) and Jd(K) uses the same steps as in the first stage for the 

sensor faults. From the results in Figure 4.11, the best values of Jaf(K,Q) =-

11681x10
4
 and Jd(K)=258 are selected. The eigenvalues at these indices (Pa ), the 

matrix Ka, and the residual weighting factor matrix (Qa ) are: 

 

[ ]-7.4   -11   -1.14   -4   -8.5  -20aP =       

                                                     

-10-06 -08

-05 -15

-04 -14

-12

-16-10

-16-10

0.143 2.7x108.9x10 -2.8x10

-9.7x10 -1.9144 6.13x10-0.0168

14.9752.792x10 -0.0165 -1.2x10

-4228-0.1591 17.536 7.8x10

-1.8x10 -672-9.5x10 0.0792

11.032-2.5x10-9.8x10 -6.8542

a
K





=









 
 
 
 

   

 

  

8934 5713 2991 4010

7069 3547 2338 5786

7870 6083 5323 7954

5232 5901 2359 1312

a
Q

 
 
 =
 
 
 

     

 



115 

 

 

 

Figure 4.11: Number of generations and the Pareto front for actuator index (fun1 

and objective 1 represent Jaf(K,Q), fun2 and objective 2 represent Jd(K) ) 

           

4.3.4.4 Minimisation of two objective functions for component faults 

By repeating the same steps as in the first stage for the sensor faults, Figure 4.12 

gives Jcf(K,Q) =-3.2x10
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Figure 4.12: Number of generations and the Pareto front for the component index 

(fun1 and objective 1 represent Jcf(K,Q), fun2 and objective 2 represent Jd(K) ) 
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_ ( ) ( ) ( )c c c

qr f qr qrv t v t v t= + ∆  (4.39) 

• Sensor fault: sensor of generator speed has been perturbed by 2% at 200 s: 

 
_m f m mω ω ω= + ∆  (4.40) 

• Component fault: for example, dirt on blades or slight damaged blade causes 2% 

lower rotor torque due to changed aerodynamical efficiency. 

 

 
_wt f wt wtT T T= + ∆  (4.41) 

 

 

Figure 4.13: Observer-based residual generators using three observers designed to 

generate actuator, sensor and component fault residuals. ra, rs and rc are actuator, 

sensor and component fault residuals, respectively. 
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4.3.6 Simulation results for observer-based FDI scheme 

Figure 4.14 shows residuals for normal operation, when the wind turbine has only 

disturbance and noise signals.  

 

 

Figure 4.14: The residual norm when the wind turbine has disturbance and noise 

 

 

Figure 4.15 shows when the actuator fault occurs; the residual fault appears for a 

short time, due to control loops bringing the variables back to their set point, even 

though the fault continues to be present in the system. This type of system behaviour 

makes an actuator fault difficult to diagnose; all residual generators are affected as a 

result of changing the output.    
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Figure 4.15: The residual norm, when the wind turbine has disturbance and noise 

as well as an actuator fault 
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Figure 4.16: The residual norm, when the wind turbine has disturbance and noise 

as well as a sensor fault 

 

Figure 4.17: The residual norm, when the wind turbine has disturbance and noise 

as well as a component fault 
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4.4 Observer-based sensor fault detection and isolation scheme  

A successful FDI should be accompanied by a fault isolation procedure to isolate a 

particular fault from others; for example, to determine in which sensor, actuator or 

component the fault happened. The observer-based residual generator approach is 

suitable for detecting a fault [52], but to isolate the fault, a new method is proposed 

here. 

4.4.1 Sensor fault detection and isolation scheme  

To design a robust observer-based sensor FDI, it was assumed that only one sensor 

fault occurs and that all actuators and components are fault free. Then, from 

equations (4.31) - (4.33), the system equation can be expressed as: 

 

 
2

( ) ( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t d t

y t Cx t R f t

= + +

= +

�
 (4.42) 

 

Then, the residual generator can be created for each sensor as: 

 

 
2( ) [( ( ) ( ))( )]

k k m k
r t Q Ce t R f t C C= + −  (4.43) 

 

where k is the number of the measurement sensor, Ck 
mxmR∈  is obtained from the 

matrix C by deleting zero columns and assuming the kth row is equal to zero. Cm is 

the matrix C without zero columns. From equation (4.43), it is obvious that each 

residual generator is driven, making all other residuals equal to zero.  

 

The observer-based sensor FDI scheme is designed as shown in Figure 4.18. Each 

sensor residual (rk) is separated from the output of the residual (r) by ( ) -m kr x C C , 

and, then, the dimension of rk is modified using Qk. The advantage of this approach 

is that it uses only one observer; alternative approaches use a bank of observers such 

as a structured residual set designed by a dedicated or a generalised observer scheme 

[91].    
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Figure 4.18: Sensor fault detection and isolation scheme 
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Qs are obtained using the MOGA method. Q1, Q2, Q3 and Q4 are residual weighting 
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4.4.2 Simulation results for sensor fault detection isolation scheme 

Simulation results are shown in Figure 4.19 to Figure 4.22. The faults are applied by 

multiplying the sensor signal by 1.05, i.e. an increase of 5% at 200 s, and the 
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generator rotational speed sensors. Figure 4.21 shows the case where a fault has 

occurred in the generator speed sensor and Figure 4.22 shows the case where a fault 

has occurred in the generator torque sensor. The speed of fault detection is very fast. 

Consequently, from these figures, the Boolean decision table can be constructed as 

shown in Table 4.1. If a fault occurs, the results can be compared with this fault 

signature table and the location of the fault can be determined, as shown in Figure 

4.18. Therefore, fault detection and isolation are achieved.   

 

Table 4.1: Boolean decision for sensor faults 

Fault 

 

Residual 

Pitch 

residual 

Rotor speed 

residual 

Generator speed 

residual 

Electrical torque 

residual 

Pitch fault 1 0 0 0 

Rotor speed 

fault 
0 1 1 0 

Generator 

speed fault 
0 1 1 1 

Electrical 

torque fault 
0 0 0 1 

 

 

Decision logic is the last stage in residual evaluation. The most simple decision logic 

is to compare the evaluated residual signal with the threshold. If the evaluated 

residual exceeds the threshold then the fault-alarm is released. For a specific fault, it 

is possible to determine its location using the following thresholds: 

 

 
( ) ( ) 1

( ) ( ) 0

k k k

k k k

r t T f t

r t T f t

> ⇒ =

≤ ⇒ =
 (4.44) 

 

where the threshold Tk =1x10
5
, fk(t) is the sensor fault and k =1, 2, 3, 4 (for pitch 

angle, rotor speed, generator speed and torque sensors, respectively). 

  

The selection of the threshold is very important. If the chosen threshold is too low, it 

results in false alarms, i.e. some disturbances will cause the residual to cross the 
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threshold and result in an alarm. If the selected threshold is too high, small faults are 

undetected. Usually, in deterministic settings, the selected threshold is slightly higher 

than the value of the evaluated residual signal in a fault-free case.  

 

  

4.5 Conclusions 

An observer-based residual generator was designed using a set of structured residual 

generators for the assessment of the performance of this method in wind turbines. 

Simulation results demonstrated that the method is suitable for the detection of faults 

in sensors actuators and components. However, it did not achieve fault isolation.  

 

The contribution of this chapter was to develop a robust observer-based sensor fault 

detection and isolation scheme for wind turbines to accomplish fault detection and 

isolation. This scheme is systematic and easy to design and implement. Simulation 

results demonstrated that it is suitable for the detection and isolation faults in sensors 

and, also, that it is simple to handle multiple faults. The advantage of the proposed 

approach is that it depends on only one observer compared with other approaches, 

using a bank of observers such as a structured residual set designed by a dedicated or 

a generalised observer scheme. 
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Figure 4.19: The residual norm, when a fault occurs in the pitch angle sensor 
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Figure 4.20: The residual norm, when a fault occurs in the rotor speed sensor 
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Figure 4.21: The residual norm, when a fault occurs in the generator speed sensor 
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Figure 4.22: The residual norm, when a fault occurs in the generator torque sensor 
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5 Non-linear Observer-based Fault Detection and 

Isolation 

 

5.1 Introduction 

Linear systems have been studied extensively and have proven to be extremely useful. 

Applying observer-based fault detection to the linear system has been successful, as 

illustrated in the previous chapter. If the process is strongly non-linear or if the operating 

region is too broad, the fault detection techniques must handle a large linearisation error. 

Therefore, there is a necessity to study fault detection techniques for non-linear systems. Fault 

detection in dynamical systems continues to be an active field of research and there is a clear 

need for improvements. 

 

This chapter is organised into three topics. The first section describes how a non-linear 

observer wind turbine model and residual equation are formed. The second section explains 

the non-linear observer methodologies that can be applied to fault detection. The third section 

explains the contribution of this thesis to designing a state-dependent non-linear observer for 

detecting and isolating faults in wind turbines.   

 

5.2 Preface of a non-linear observer wind turbine model  

In the previous chapter (linear state-space wind turbine model), the state of the wind turbine 

linear model was defined by the following equation: 

   

  
( ) ( ) ( )

( ) ( )

x t Ax t Bu t

y t Cx t

= +

=

�

 

  

 

An observer was constructed that has the same structure as the linear model with the addition 

of a driving feedback term whose role is to reduce the observation error to zero, as given by: 

 

 

ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))

ˆ( ) ( )

x t Ax t Bu t K y t y t

y t Cx t

= + + −

=   
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Theoretically, studying observers for non-linear systems is much more difficult than studying 

observers for linear systems; however, the same logic can be used to construct a non-linear 

observer. The non-linear wind turbine model can be represented as: 

 
( , )

( , )

x f x u

y g x u

=

=

�
 (5.1) 

 

, , , (.)n m p
x u y f∈ ∈ ∈� � �

 
and (.)g  are non-linear vector functions of dimensions n and 

p, respectively. Based on the knowledge of linear observers, the following structure for a non-

linear observer can be proposed: 

 
ˆ ˆ ˆ ˆ( , ) ( , )( )

ˆ ˆ( , )

x f x u K x u y y

y g x u

= + −

=

�
 (5.2) 

 

The observation error e(t) tends to zero, at least at the steady state: 

 

 ˆ( ) ( ) ( )e t x t x t= −  (5.3) 

 

The observation error dynamics can be determined by: 

 ˆ ˆ ˆ ˆ( ) ( ) ( ) ( , ) ( , ) ( , )( ( , ) ( , ))e t x t x t f x u f x u K x u g x u g x u= − = − − −�� �  (5.4) 

 

By eliminating ˆ( )x t from the error equation, the following is obtained: 

 

 ˆ( , ) ( , ) ( , )( ( , ) ( , ))e f x u f x e u K x u g x u g x e u= − − − − −�  (5.5) 

 

It is obvious that ( ) 0e t =  is the solution of differential equation; this indicates that the 

constructed observer may have 0e =  at the steady state. The gain must be chosen such that 

the observer and error dynamics are stable asymptotically in order to force the error at the 

steady state to 0e = . The asymptotic stability can be examined using Lyapunov’s first method 

for stability.   
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5.3 Residual generation 

Generation of residuals (signals which contain information about the failures or defects) 

reflects the faults and is achieved by estimating the outputs of the process and using the 

estimation errors as the residuals. For the fault detection task, a single observer or Kalman 

filter is sufficient. For fault isolation, correctly structured sets of residuals are required; one 

may use linear or non-linear, full or reduced-order, fixed or adaptive observers, or Kalman 

filters.  

 

A number of methods have been proposed in recent decades for an observer-based residual 

generation. The most significant approaches are the fault detection filter, the dedicated and 

generalised observer scheme, and the unknown input observer scheme. The design of robust 

residual generators which are invariant or at least insensitive with respect to unknown inputs 

has been an area of increasing focus.  

 

The basic idea of residuals is derived from implicit information in functional relationships; 

this exists between measurements taken from the process and a process model. In this sense, a 

residual is a fault indicator based on the difference between measurements and model-based 

computations. Model-based diagnoses use models to obtain residual signals which are, as a 

rule, zero in the fault-free case and non-zero otherwise. Faults are usually detected by setting 

a threshold on a residual signal generated from the difference between real measurements and 

their estimates using the mathematical model.  

 

Considering processes or sensor faults; the non-linear model given in equation (5.1) can be 

modified as follows: 

 
1

2

( , ) ( )

( , ) ( )

x f x u R f t

y g x u R f t

= +

= +

�
 (5.6) 

         

Matrices R
1 

and R
2
 are the fault distribution matrices. Based on equations (5.2) and (5.6), the 

state estimation error is given by: 

 

 
2 1

ˆ ˆ( , ) ( , ) ( , )( ( , ) ( , )) ( , ) ( ) ( )e f x u f x e u K x u g x u g x e u K x u R f t R f t= − − − − − − +�
  

 (5.7) 

  

The residual is the output estimation error: 
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2

ˆ ( , ) ( , ) ( )r y y g x u g x e u R f t= - = - - +  (5.8) 

 

Residual r depends directly upon 
1( ) n

R t R∈ (actuator or component failures) and 
2 ( ) p

R t R∈  

(sensor failures). f(t) represents a fault vector. 

 

5.4 Methodologies of non-linear observer 

Several observer-based approaches have been proposed in recent years for residual generation 

in non-linear systems. These approaches, which are applied particularly to fault detection, are 

now described. 

5.4.1 Lyapunov-based method 

Adjallah et al. (1994) [102] proposed the so-called Lyapunov-based method for the detection 

and isolation of sensor faults. They designed a non-linear observer in order to achieve fault 

detection and localisation for a wide class of non-linear systems subjected to bounded non-

linearities. They proposed a dedicated non-linear observer scheme for fault detection and 

identification. The basic idea of this approach is to reconstruct the state and output of the 

process under consideration and then to analyse the output estimation error.  

 

The gain matrix ˆ( , )K x u in equation (5.2) is determined using the Lyapunov function in 

equation (5.9), as shown by the following steps:  

 

 ( ) TV e e Pe� �=  (5.9) 

where the matrix P=P
T
 > 0 is symmetric positive and definite. The dynamics of the 

estimation error can be rewritten as in the following equation (refer to [102]): 

 

 
ˆ

( , )
ˆ[ ( , ) ]x xT

f x u
e K x u C e

x
�

=

¶
= -

¶
 (5.10) 

 

 

In [103], an algorithm is proposed to determine the gain ˆ( , )K x u  based on the assumption that

0
error

K C ≠ . The algorithm consists of two steps: (i) determination of P and (ii) determination 

of ˆ( , )K x u  using the previous value of P. 



 

133 

 

 

 

 

1. Step 1:  

If ( ) 0
error

e K C∈ = , then, by substituting equation (5.10) in equation (5.9), equation (5.9) is 

reduced to: 

 
ˆ

( , )
( )

T

x xT

f x u
V e e P e

x
�

=

¶
=

¶
 (5.11) 

 

Next, a matrix P is found, which ensures the condition: 

 
ˆ

( , )
( ) 0

T

x xT

f x u
V e e P e

x
�

=

¶
= <

¶
 (5.12) 

 

Solving equation (5.12) yields a value for P.  

 

2. Step 2: 

ˆ( , )K x u  is determined, verifying the following inequality: 

 

 
ˆ

( , )
ˆ( ) [ ( , ) ] 0

T

x xT

f x u
V e e P K x u C e

x
�

=

¶
= - <

¶
 (5.13) 

 

A sufficient condition to reach this inequality is:  

 

 
ˆ

( , )
ˆ( , ) 0x xT

f x u
K x u C

x
=

¶
- <

¶
 (5.14) 

 

This is achieved by using first the following structure for ˆ( , )K x u : 

 

 1ˆ ˆ( , ) ( , ) TK x u P F x u C Q-=  (5.15) 

 

where ),ˆ( uxF  and Q are n- and p-dimensional square matrices to be determined, 

respectively. Substituting equation (5.15) in equation (5.13) gives: 
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ˆ

( , )
ˆ( ) ( , ) 0

T T T

x xT

f x u
V e e P e e F x u C QCe

x
�

=

¶
= - <

¶
 (5.16) 

 

A map ),ˆ( uxF which satisfies the inequality (5.16) is positive definite and is defined for all t 

such that: 

 

 
ˆ

( , )
ˆ| | ( , ) 0

T T T

x xT

f x u
e P e e F x u C QCe

x
=

¶
< <

¶
 (5.17) 

Secondly, assuming that such a map exists, then equation (5.16) can be rewritten as:  

 

 ˆ ˆ ˆ

( , )
ˆ( ) | | ( , ) 0

T
T T

x x x x x xT T T

f x u g g
V e e P e e F x u Q e

x x x
�

= = =

¶ ¶ ¶
£ - <

¶ ¶ ¶
 (5.18) 

 

 

According to inequality (5.17), a sufficient condition for fulfilling the Lyapunov stability 

condition (5.12) can be summarised as follows:  

 

find a (pxp) matrix Q satisfying C
T
QC - I ≥  0.  

 

All positively defined matrices F(x, u) which verify the inequality: 

 

 
ˆ

( , )
ˆ|| || || ( , ) ||x xT

f x u
P F x u

x
=

¶
<

¶
 (5.19) 

 

satisfy inequality (5.17). F(x, u) can be calculated as the following map [102]: 

 

 
1

1
( , )

2

n

ij ji
j

F x u diag α α
=

ì üï ï
= å +í ý

ï ïî þ
 (5.20) 

where 
ijα  are the elements of the matrix 

xxTx

uxf
P ˆ

),(
=

∂

∂
  

 

By satisfying the above conditions, the state observer can be described by: 

 

 1ˆ ˆ ˆ ˆ( , ) ( , ) ( )T
x f x u P F x u C Q y Cx

−= + −�  (5.21) 
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With regard to the existence of process or sensor faults, as in equation (5.6), the differential 

equation governing the dynamics of the state estimation error is: 

 

 
ˆ 2 1

( , )
ˆ ˆ[ ( , ) ] ( , ) ( ) ( )x xT

f x u
e K x u C e K x u R f t R f t

x
�

=

¶
= - - +

¶
 (5.22) 

It is clear from equation (5.22) that the output estimation error is a function of 
1

R  and
2

R . 

Consequently, the faults affect the output estimation error. Therefore, the latter can be used as 

a residual to indicate that a fault has occurred. 

 

This approach has been applied to a non-linear model of a synchronous machine [102]; 

experimental results were used to illustrate the application of a dedicated non-linear observer 

scheme to isolate sensor faults. In contrast to linearised systems, the resulting non-linear 

observer is robust with respect to the operating point of the non-linear system.  

 

5.4.2 Tsinias observer for non-linear systems 

Tsinias (1989) [103] proposed, as a direct extension to the observer in the linear case, a 

dynamic observer that was suitable for application to a wide class of non-linear systems 

subjected to bounded non-linearities. This approach provided sufficient conditions and an 

extremely simple approach for the observer design. The main sufficient condition, given 

below, is that of the Lyapunov type and it turns out, also, to be necessary in the linear case. In 

addition, it should be pointed out that Lyapunov conditions were used successfully to 

determine stabilising feedback laws for non-linear systems. The trajectories e(t) of the error 

equation are defined for all positive t approaching zero as t →∞  for any initial e(0) and the 

observer performs globally the state determination of the system. Tsinias (1989) considered 

non-linear systems of the form: 

 
( , )x f x u

y Cx

=

=

�
 (5.23)                                  

It is assumed that for any input u and initial state x0 , the corresponding trajectory x (t, x0, u) of 

equation (5.23) is defined for all positive t. Finally, mapping (x, u) is continuously 

differentiable. Tsinias considered an observer in the following form: 

 

 ˆ ˆ ˆ( , ) ( )( )x f x u K u y Cx= + -�  (5.24) 
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Then, the dynamic error is: 

 ˆ( ( , ) ( , )) ( )e f x u f x u K u Ce= - -�  (5.25) 

 

The state determination of equation (5.23) is possible if the following conditions are fulfilled. 

 

Condition 1: 

There exists a positive definite matrix P of dimension n × n and a positive constant k1 such 

that for any {0}
error

e K CÎ = , the following is satisfied: 

 
2

1
{ ( , )}T

x
e P D f x u e k e£ -  (5.26) 

where ||.|| denotes the norm. 

 

Condition 2: 

There exists a continuous real function p and a positive constant k2 such that p(u) ≥ k2, and: 

 
2

| { ( , )} | ( )T

x
e P D f x u e p u e£  (5.27) 

 

Suppose that Conditions 1 and 2 are satisfied, then: 

 

For any sufficiently large positive constant h, the error equation (5.25) holds with: 

  

 1( ) ( ) TK u hp u P C-=  (5.28) 

where p and P are given in Conditions 1 and 2, and perform the state determination of 

equation (5.23).  

 

To define h, Tsinias (1989) [103] considered an open sphere Sp of radius 0>r , centred at 

zero. Let ,p errorh S K C∩=¶  
pS∂  be the boundary of Sp. Then, h is compact and, by use of the 

Condition 1, there exists an open set M such that h
pS M⊂ ∂ ∩  and, the Lyapunov function is 

used for each (x, u) provided that 1

1 2h L L
->  

where: 

 

2

1 2 1
1

( ) 2

( , )

{ ( , )}
(1 )

( ) ( )
sup
p p

T

x

e s s M

n
x u R xU

k ee P D f x u e K
L r

p u p u KÎ¶ - ¶ Ç

Î

= + £ + <¥  (5.29) 
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and: 

 
2

2

( )

0min
p pe s s M

L Ce
Î¶ - ¶ Ç

= >  (5.30) 

 

Consider that the system is observable and satisfies the above two conditions. There is a 

positive constant h such that the linear system can be described by equation (5.31), which is 

an observer for (5.23): 

 

 1ˆ ˆ ˆ( )T
x A x B u h P C y Cx� -= + + -  (5.31) 

When compared to the previous mentioned approach (Lyapunov-based method), the main 

result presents some advantages because it is a direct extension of the observer design in the 

linear case; it is much simpler to follow and the observer's dynamics are at least continuous 

mappings at the origin, where the error equation is stable both globally and asymptotically. 

However, the approach requires exact knowledge of the plant's non-linearities. 

 

It can be concluded that, if the conditions are satisfied, this approach can be developed to 

apply to a wide class of non-linear systems. Direct extension of a dynamic observer in linear 

cases can be used to detect actuator sensor component faults, as in the case of a linear 

observer-based FDI scheme. 

 

5.4.3 Thau non-linear observer approach 

Thau, in 1973 [104], proposed a different approach to observing the states of a non-linear 

system. This method did not include a systematic technique for the construction of the 

observer. Instead, it gave a sufficient condition for asymptotic stability of the origin of the 

error differential equation. Using this method, the error between the system and the output of 

the observer is shown to be convergent asymptotically to zero, provided that an additional 

assumption is valid. The class of non-linear systems examined in this approach is described 

by: 

 
( )x Ax f x Bu

y Cx

= + +

=

�
 (5.32) 

The non-linear function f(x) may contain, also, linear terms in x. Assuming ( , )A C  is 

observable completely, K can be found such that the eigenvalues of 
o

A A KC= -  are in the left 

half plane (LHP). 
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The estimate of the true state is shown by the following equation: 

   

 
ˆ ˆ ˆ( )

ˆ

ox A x f x Bu Ky

y Cx

= + + +

=

�
 (5.33) 

Let error (e) be given by:  

 ˆe x x= -  (5.34) 

Thus, e satisfies the differential equation:  

 

 ˆ( ) ( ) ( ) ( )
o o

e A e f x f x A e f x e f x= + - = + + -�  (5.35) 

 

Since the eigenvalues of Ao are in the LHP, for any given positive definite nxnQ Î R  there 

exists a unique positive definite nxnP ÎR  which satisfies the equation (5.36) [106]: 

 2T

o oA P PA Q+ = -  (5.36) 

Next, consider the following positive definite Lyapunov function candidate: 

 

 ( ) TV e e Pe=  (5.37) 

The derivative of V(e), evaluated along the solution of the error differential equation (5.35) is 

given by: 

 

 ( ) 2 2 [ ( ) ( )]T T T TV e e Pe e Pe e Q e e p f x e f x= + = - + + -� � �  (5.38) 

 

Assume the additional constraint that the function f(x) is Lipschitz locally about the origin; 

that is, there exists a positive constant L such that: 

 

 
1 2 1 2( ) ( )f x f x L x x- £ -  (5.39) 

For all x1, x2 in some open region (Ro) contains the origin. Therefore, if e is contained in Ro, 

then, the following inequalities are valid: 

 

 ( ) 2 2 ( 2 2 )T
V e e Qe L Pe e a L P e£ - + £ - +�  (5.40) 

 

where a is the minimum eigenvalue of Q and P is the maximum eigenvalue of P. Hence, if:  



 

139 

 

 a P L> >  (5.41) 

 

Then 0e =  is an asymptotically stable equilibrium point of equation (5.35). 

 

The Thau observer guarantees that the observer error is convergent globally and 

asymptotically to zero, as illustrated above. However, it may not be possible to satisfy the 

sufficient condition given in equation (5.41). Also, the Thau observer includes the non-

linearity of the system into the observer design, and, therefore, it is essential to have certain 

knowledge of this non-linearity.  

 

Based on Thau observers, the principle for designing a non-linear observer for residual 

generator, designed for one class of continuous-time non-linear multiple input and multiple 

output systems, is shown in [126]. The essential aim was to design a fault-tolerant control 

which was achieved by the conception of a diagnosis procedure. This procedure generated a 

residual signal which was then evaluated within decision functions. 

 

5.4.4 Extended Luenberger observer-based method  

In order to determine ˆ( , )K x u , the observer equation (5.2) is transformed into the canonical 

coordinates (
* *ˆ ˆ ˆ( ( , ))x x T x u= , nxnT RÎ is a non-linear transformation. Then, through an 

extended linearisation about the reconstructed trajectory
*

x̂  of this equation, the observer gain 

is defined according to Zeitz (1987) [107], as in equation (5.42): 

 

[ ]
*

0 2 1 1

1 2 3 *

*

*

ˆ[ ] ( , ) 0 0 1
ˆ

ˆ( , )

ˆ

Tn n

f f f n f f

n

n

g
p p p p Q x u

x
K x u

g

x

� � � � � �
- -

æ ö¶ç ÷+ + + + ç ÷¶è ø=
¶

¶

 (5.42) 

where 
* * 1( , )nx g y u

-= and
* *( , )ny g x u=  is introduced for the equation (5.1), 1 ˆ( , )Q x u-

 is 

the inverse of the observability matrix ( 1)[ , , , ]n Tu u u u� …
-=  and 

1 2[ , , , ]T

np p p p�=
 

is the 

coefficient of the polynomial characteristic. The linear differential operator 
f�  is defined 

according to equation (5.43) [107]: 
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0

* *

1 1

* *

1 1

* * *

1

1, , 1

f

i

f

i

n

f

n

T T

x x

T T
i n

x x

T T f g

x x y x

�

� �

�

+

¶ ¶
=

¶ ¶

¶ ¶
= = -

¶ ¶

¶ ¶ ¶ ¶
=

¶ ¶ ¶ ¶

 (5.43) 

 

ˆ( , )K x u is computed at each time instant; this achieves stability since the requirements of 

repetitive calculations of observer gain result in more online computations and linearisation 

errors.  

 

An extended Luenberger observer approach was applied to detect incipient failures 

automatically in the feedback sensors of the control systems [127]. The feasibility of the 

scheme was investigated by applying it to a simplified version (fourth order) of the control 

system. A single set of inertial instruments was used to provide the feedback signals; the 

redundancy, which is obtained normally by multiple instrument sets, was obtained here, 

artificially, by a subsystem of multiple Luenberger observers and logic circuits. Tests 

indicated that scale factor errors, errors due to threshold effects and bias errors in the 

instruments were detected as they occurred.  

 

5.4.5 State-dependent non-linear observer  

The state-dependent Riccati equation (SDRE) method was demonstrated empirically in a 

number of applications. The method is based on extended linearisation of the process 

dynamics [108, 109]. The dynamics are expressed by: 

 

 
( ) ( )

( )

x A x x B x u

y C x x

= +

=

�
 (5.44) 

 

The matrices A(x), B(x) and C(x) are not unique; efficient selection of these matrices is known 

as the parameterisation problem [110] and may affect the performance of the observer. 

 

For a non-linear observer, the estimated state x̂  is given by: 
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 ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )[ ( ) ]x A x x K x y C x x�= + -  (5.45) 

 

The non-linear observer gain matrix )ˆ(xK  can be computed using the state-dependent 

algebraic Riccati equation (SDARE): 

 

 1ˆ ˆ ˆ( ) ( ) ( )TK x P x C x R -=  (5.46) 

with:  

      1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T TP x A x A x P x P x C x R C x P x Q-+ - + =  (5.47) 

 

Q(x) and R(x) are design matrices selected, as in the case of a linear system, to give weight to 

the state and the observer, respectively. 

 

In some applications, the use of the state-dependent algebraic Riccati equation can impose an 

overly restrictive requirement on the observability and controllability of the non-linear 

system. Therefore, Haessig et al. [111] suggested the state-dependent differential Riccati 

equation (SDDRE) rather than the algebraic Riccati equation (the state estimates do converge 

to the actual states more rapidly, compared with the SDARE observers), which is presented in 

equation (5.48). The solution of SDDRE can be found by using numerical integration 

methods:  

 

 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP x P x A x A x P x P x C x R C x P x Q-= + - +�  (5.48) 

 

By exploring SDDRE techniques for non-linear observer designs, it was noted that all 

previous applications of SDRE concerned control design. In further work, this approach is 

applied here to fault detection for a non-linear wind turbine.  

 

5.4.6 Construct the non-linearity from direct measurements-based method 

Heraud et al. (2010) [105] proposed a non-linear observer-based approach to the fault 

detection and isolation issue of wind turbine systems. They used a DFIG and a non-linear 

observer was employed to generate the residual for fault detection purposes. Tests were 

performed using the experimental benchmark. It consisted of a DC machine of 25 kW, 

emulating the aerodynamic and mechanical behaviour of a wind turbine, and a 15 kW DFIG, 
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emulating the electric generator. This benchmark presented physical characteristics that were 

close to those of most existing wind generators. 

 

Bennouna et al. (2009) [112] used the DFIG model to assimilate the speed of the constant 

wind and, then, they supposed that the generator’s rotor speed was steady; that is why the 

wind turbine linear model was defined as in equation (5.7). However, in the real case, the 

generator’s rotor speed (
m

ω ) is variable. Therefore, Heraud et al. (2010) [105] considered that 

equation (5.7) could be rewritten in the non-linear state form as: 

  

 
( )mx A x Bu

y Cx

ω= +

=

�
 (5.49) 

  

This representation of the system is non-linear because A is not a constant matrix since it 

depends on
m

ω . The system seems to belong to a class of systems in which the observability 

does not depend on the input; systems of this class are known as uniformly observable 

systems. They allow a gain to be designed, as in Luenberger observers, which either 

compensate all non-linear elements exactly by output injection or dominate them via the 

linear part. Here, the non-linearity can be constructed from direct measurements and, thus, 

compensated in the observer design as proposed in [113, 114, 115]. Then, equation (5.49) can 

be changed as below: 

 

 

( , )x Ax y u

y Cx

ϕ= +

=

�

 (5.50) 

If ( , )A C  is observable, the system (5.50) admits an observer of the form:  

 

 
ˆ ˆ ˆ( , ) ( )

ˆ ˆ

x Ax y u K y y

y Cx

ϕ= + − −

=

�
 (5.51) 

 

with K such that ( )A K C- is stable andϕ  depends only on u and y, which are directly 

available. 
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The overseen conditions of observability and stability, equations (5.50) and (5.51), allow us to 

write the observer in the form: 

 ˆ ˆ( ) ( , )x A KC x y u Kyϕ= − + +�
 (5.52) 

The error of state estimation is given by: 

 ˆe x x= -  (5.53) 

Then, using equations (5.50) and (5.51), we obtain: 

 

 ˆ( )( ) ( )e A K C x x A KC e= - - = -�  (5.54) 

The residue is chosen as: 

 ˆr y y Ce= - =  (5.55) 

Note that r possesses the characteristic features of a residual when the observer matrix K is 

chosen so that  is stable. In this case, x̂  provides, also, an unbiased estimation for x. 

 

This method presented a non-linear observer to solve fault detection and isolation of a wind 

generator, especially the DFIG, which is the most commonly used modern generator. The 

system is totally observable. This method allows one to estimate a state using a non-linear 

observer. It is concluded that the DFIG model and the observer match well to the wind turbine 

model. In further work, this approach can be applied to monitoring other wind turbine 

components such as the drive-train and the wind turbine rotor. 

5.4.7 Extended Kalman filter-based method 

The extended Kalman filter (EKF) has become a standard technique for parameter and state 

estimation in non-linear systems [117, 118]. The EKF uses a basic process model to make an 

estimate of the current state of a system and, then, corrects the estimate using any available 

sensor measurements. The basic role of the filter is to find the states and parameters of a non-

linear dynamic system. Discrete-time non-linear dynamic systems can be described by a 

dynamic state-space model of the following form: 

 

 
1 ( , , )

( , )

k k k k

k k k

x f x u w

z h x v

+ =

=
 (5.56) 

where 
k

x  is the state of the system including any unknown model parameters, 
k

y is the 

measurement of the system, 
k

u is the input of the system and 
k

w  and 
k

v represent the process 

noise and observation noise, respectively. 

( )A KC-
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To design an EKF equation, (5.56) is linearised about the operating points, 
11

ˆ
kk

x
−−

 and
1

ˆ
kk

x
−

, 

respectively: 

 
1 1

1 1

1 1 1
ˆ ˆ( )

ˆ ˆ( ) ( )

k k

k k

k k k k k

k k k k k

x x A x x Ww

z h x H x x Vv

− −

− −

− − −= + − +

= + − +
 (5.57) 

where:  
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i j k k

j

df
A x u

dx −−=  (5.58) 

 
1, 1

ˆ( , )
k

i
i j k k

j

df
W x u

dw −−=  (5.59) 

 
1,

ˆ( )
k

i
i j k

j

df
H x

dx −
=  (5.60) 

 
1,

ˆ( )
k

i
i j k

j

dh
V x

dv −
=  (5.61) 

The EKF’s basic operation involves two steps: prediction and correction. In the prediction 

step, the state and covariance estimates from the previous time step, 
1

1
ˆ

k
k

x
−

−
 and

1
1

k
k

P
−

−
, are 

projected to the current time step: 

 
1 11

ˆ ˆ( , )
k kk k k

x f x u
− −−=  (5.62) 

 
1 1

1 1k k

T T

k k k k k k kP A P A W Q W
− −

− −= +  (5.63) 

In the correction step, the state and the covariance matrices are corrected with the 

measurements: 

 
1 1

1( )
k k

T T

k k k k k k k kK P H H P V R V
− −

−= +  (5.64) 

 
1 1

ˆ ˆ ˆ( ( ))
k k kk k k k k

x x K z h x
− −

= + −  (5.65) 

 
1

( )
k kk k k k

P I K H P
−

= −  (5.66) 

where 
k

R  and 
k

Q  are the measurement and process noise covariance matrices, respectively. 

 

 

The predicted output based on the EKF state estimate is given by: 

 

 
1|

ˆˆ ( )
kk kz h x

−
=  (5.67) 



 

145 

 

Then, the residual is:  

 ˆ
k k k

r z z= −  (5.68) 

The EKF relies on first-order approximations of the non-linear system. These approximations 

can cause substantive errors, which may lead to poor filter performance. 

 

The standard approach of using the EKF filter, as a FDI tool, is to design a bank of Kalman 

filters where, as shown in Figure 5.1, each filter is tuned to a specific fault. The normal EKF 

model provides the best estimate for the system under nominal operating conditions. Other 

EKF models integrate the fault effects in their structures and represent different fault types. 

Each of these filters is built with an embedded fault model and an increase in robustness is 

expected since each filter uses additional knowledge about the expected fault. Since each 

Kalman filter is sensitive to a particular fault, a small residual would suggest a match between 

the actual measurement and the corresponding filter and, therefore, a possible fault. 

Consequently, the size of the residuals from various filters gives a relative indication of how 

each of these models represents the actual fault status sufficiently accurately. Therefore, this 

multiple model approach achieves, also, fault isolation.  

 

 

 

Figure 5.1: Multiple model Kalman filter approach to FDI system structure [120] 

 

Azad et. al. (2011) [116] investigated the EKF Kalman filter-based estimation technique for 

parameter estimation of the DFIG driven by the wind turbine. The DFIG parameters were 
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influenced by various factors including temperature, magnetic saturation and eddy currents. 

Here, the EKF technique was evaluated from three different aspects: (i) estimation accuracy 

and computation time, (ii) robustness to changes of the initial estimates of the parameters and 

(iii) robustness to changes of the filter gains. They also studied the robustness of the algorithm 

to variations of the initial parameter estimates and noise covariance matrices Q and R.  

 

The EKF aims to approximate the non-Gaussian density with the Gaussian one; this may 

cause several problems such as an unbounded error variance growth [120]. The reason is that 

this filter is based on the Kalman filter, which is an optimal estimator only if the noise is 

Gaussian. 

5.4.8 Unscented Kalman filter-based method 

The unscented Kalman filter (UKF) is a non-linear filter, first proposed by Julier and 

Uhlmann [121], to deal with the problems which can appear in EKF estimation due to 

linearisation. The UKF was proposed to be a better alternative to the EKF in state estimation 

for a variety of application fields. The UKF is founded on the concept that it is easier to 

approximate a Gaussian distribution than it is to approximate arbitrary non-linear functions. 

The key to UKF is a sampling technique, known as an unscented transform, which chooses a 

set of sample points to estimate the probabilistic model of the state evolution. These sample 

points are known as ‘sigma points’ and they capture the true mean and covariance of the 

posterior probability density function of the states. These points are propagated through the 

full non-linear system model from which the posterior mean and covariance are obtained. The 

basic operation of the UKF involves two steps as in EKF: prediction and correction. In the 

prediction step, a number of sigma points are selected and, then, the state and covariance 

matrices are estimated as the weighted mean of these sigma points. To find the sigma points 

first, the estimated state and covariance matrices are augmented with the mean and covariance 

of the process noise: 
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Then, 2L + 1 sigma points are found through the following equations, where L is the 

dimension of the augmented state: 

 

 
1 1
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1 1k k

a

k kx x
− −− −=  (5.71) 
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 (5.72) 

 

In equation (5.72), (
11( )

k

a

kL Pλ
−−+ )i is the i-th column of the matrix square root of 

11
( )

k

a

k
L Pλ

−−+

. The sigma points are propagated through the non-linear function and the predicted state and 

covariance matrices are approximated using a weighted mean of the posterior sigma points 

from the previous time step: 
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− −−=  (5.73) 

 
1 1

2

0

ˆ
k k

L
i i

k s k
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=
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The weights are given by: 
 

0

sW
L

λ

λ
=

+
 (5.76) 

 
0 2(1 )cW

L

λ
α µ

λ
= + − +

+
 (5.77) 

 0 1

2( )

i

s c
W W

Lλ
= =

+
 (5.78) 

 2 ( )L k Lλ α= + −  (5.79) 

where µ is related to the distribution of x, and α and κ are related to the spread of the sigma 

points. α is usually set to a small positive value (e.g., 0.001) and κ is usually set to zero [122]. 

In the update step, the predicted state and covariance matrices are augmented with the mean 
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and covariance of the measurement noise. Then, 2L+1 sigma points are derived from the 

augmented state and covariance matrices: 
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The sigma points are propagated through the non-linear observation function and the 

predicted measurement and measurement covariance is formed as the weighted mean of the 

sigma points: 
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f xγ

−
=  (5.84) 
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=∑  (5.85) 

The predicted covariance and the state-measurement cross-covariance matrices are used to 

find the Kalman gain: 

 1

k k k kk x z z zK P P
−=   (5.86) 

where: 
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Then, the state and covariance matrices are updated with the following equations: 
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In the actual implementation of the UKF, there are two parameters which should be tuned 

carefully, the Q and R matrices. The measurement noise covariance matrix, R, is usually 

measured prior to the operation of the filter. In order to determine the measurement noise 

covariance, some offline samples of the measurements should be taken [119].  

 

In [116], the UKF performance for DFIG parameter estimation was evaluated from different 

aspects: estimation accuracy, computation time, robustness to variation of the initial 

parameter estimates and filter gains.   

 

The UKF was used to solve the parameter estimation problem for a wind-driven DFIG. The 

UKF estimation technique has significantly lower estimation errors and converges with fewer 

samples than the EKF method. Also, the study results suggested that UKF is more robust and 

better able to track parameter variations. 

 

5.4.9 Extended unknown input observer-based on unscented transformation 

The basic principle of unknown input observers (UIO) is to decouple disturbances from the 

state estimation error. In this method, the linear UIO design algorithm is extended to non-

linear systems and, then, the observer gain is obtained using unscented transformation (UT). 

Motivated by these considerations, which use unscented transformation in the design 

procedure, UT has apparent advantages over linearisation algorithms and performs better than 

EKF [122]. The extended unknown input observers (EUIO) consist of first extending linear 

UIO to a non-linear framework and, then, employing UT to obtain the observer gain.  

 

Consider the following non-linear discrete-time system with unknown input: 

 

1

1

2

1 1

( , )

( )

k k k k k k k

k k k k

x g x u E d R f

y h x R f

+

+ +

= + +

= +
 (5.91) 

 

where 
k

d  is an unknown input vector representing the disturbance, and 
k

E  is α known matrix 

with appropriate dimensions corresponding to the state-space description of the linear, time-

invariant system. The terms 1

k kR f  and 2

k kR f  represent the actuator and sensor fault, 

respectively. 
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Referring to [131], the EUIO estimate state is represented in equation (5.92):  

 

 
1 1 1

ˆ ˆ ˆ( , ) ( )k k k k k k k k kx G g x u E y K y y+ + += + + −  (5.92) 

where G and E  are matrices based on unscented transformation. 

  

In general, faults can occur in actuators, components inside the system or sensors. To provide 

useful information for fault diagnosis, the residual should be defined such that it is 

approximately zero in a fault-free steady state and deviates from zero when a fault occurs:  

 

 
0

ˆ( )lim lim
0

k

k k k
kk k

T fault free
r y y

T fault→∞→∞

≤ =
= − 

> ≠
 (5.93) 

The residual is examined using a logical decision, with the aim of deciding if the fault has 

occurred when it is higher than a threshold (
k

T ) and avoiding wrong decisions such as a false 

alarm and missing a fault at less than
k

T .  

 

To evaluate the ability of the method, Zarei et al. (2010) [131] designed a single full-order 

observer to detect sensor faults in the presence of unknown inputs (disturbances). The goal 

was to discriminate between the fault effects and the effects of uncertain signals and 

perturbations. Simulation results demonstrated that it was possible to distinguish external 

disturbances from a response to a fault in the sensor.  

 

5.4.10 Sequential Monte Carlo filtering-based method 

The particle filter, a sequential Monte Carlo algorithm, was combined with the innovation-

based fault detection techniques to develop a fault detection and isolation scheme in [128].   

Consider that the system dynamics is known and given by: 

 

 
1 1 1( , )
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k k k k

k k k k

x f x w

y h x v

− − −=

=
 (5.94) 
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Both the functions 
1
( )

k
f − i and ( )

k
h i can be non-linear or linear and are assumed to be known. 

The noise and disturbance are assumed to be additive and their characteristics known; when 

they are generally taken to be zero, this means Gaussian white noise. 

 

Here, the type of faults of interest are the failure type, where the system parameter values 

jump to a new value reflected in a change in the functions 
1
( )

k
f − i and ( )

k
h i . Such faults can be 

detected using the state observer approach or the filtering approach. The idea is to generate 

estimates of the states and the predicted outputs from these state estimates. The residuals from 

the output prediction are used in a measure which changes significantly under a failure type 

fault. Such a fault detection scheme facilitates online application since the state estimates and 

the predicted outputs can be generated online.  

 

The approach is used specifically to replace, as the fault detection criteria, the EKF-based 

estimation scheme by the sequential Monte Carlo filter, and the weighted sum squared 

residual measure by an appropriate innovations likelihood measure. The likelihood is a model 

or hypothesis probability which is useful in model comparison. False alarms may occur with 

this criterion if it is based on a single output measurement. A robust criterion is obtained by 

determining the likelihood over a window of length K, leading to a detection criterion which 

makes use of the complete probability density function state information given by the 

sequential Monte Carlo filter. 

 

 I- Fault Detection 

The following algorithm describes the complete sequential Monte Carlo filter-based fault 

detection scheme: 

 

1. State prediction: 

Samples * ( )kx i  are generated as in the sequential Monte Carlo filter prediction step [40]; where 

i =1, 2,…, n.  

 

2. Output prediction:  

Output prediction samples * ( )ky i  are generated using the measurement equation (5.94): 

 

 * *( ) ( ( ))k k ky i h x i=  (5.95) 
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3. Residual generation:  

The sample mean of the predicted measurements is computed: 

 * ( )k k kr y y i= −  (5.96) 

4. Fault detection:  

The innovation likelihood is given by:  

 
|

1

1
( ) ( )

k

N

k z k

i

p r q i
N =

= ∑ �  (5.97) 

where zk denotes the set of measurements up to time k, ie., zk = yl, y2,…, yk. ( )
k

q i�  are the un-

normalised weights: 

 
*| ( )

( ) ( )
k

k k x i
q i p y=�  (5.98) 

The log likelihood is computed as in the equation(5.99): 

 |

1

( ) ln( ( ))
k

k

k z

j k k

k p r
= − +

= −∑L  (5.99) 

The condition L(k) > ϵ is examined for the presence of a fault. 

 

5. State update:  

Weights ( )
k

q i�  for the samples * ( )kx i  are generated as in the sequential Monte Carlo filter 

update step. 

 

6. Resample: 

Samples ( )
k

x i  are obtained from re-sampling, as in the sequential Monte Carlo filter resample 

step. Then, the steps are repeated recursively for each k.  

 

II- Fault Isolation 

The scheme outlined above is a fault detection scheme which cannot be extended readily to 

fault isolation. One approach to fault isolation is to estimate the parameters of the model and 

track the changes in their values. Such a procedure requires the simultaneous estimation of the 

states and the parameters; this can be achieved using the augmented states model [129]. 

Recently, it was proposed to use a sequential Monte Carlo filter for estimating the states and 

the parameters [130]. 
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The idea is to use an augmented state [ , ]T T Txζ θ=  and rewrite the state-space model in terms 

ofζ . The following set of equations results: 
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 (5.100) 

 

where the dependency of the functions 
1
( )

k
f − i and ( )

k
h i on the parameters θ are made explicit. 

The disturbance term '

1kw −
 is introduced using a random walk model for parameter evolution 

to allow the exploration of the parameter space, as is done typically. 

 

From the state-space equation (5.100), the sequential Monte Carlo filter can be used to 

estimate the states and the parameters. Referring to [128], an estimate can be written as in  

equation (5.101):  

 *

1

ˆ ( ) ( )
N

k k k

i

q i iζ ζ
=

=∑  (5.101) 

The estimate is, in effect, a weighted average of the particles or samples representing the basic 

distribution. The parameter estimates ˆ
kθ  can be compared to the nominal values

0
θ , as a 

means for fault detection and its deviation 
kθ�  in equation (5.102) can be used for fault 

isolation. 

 
0

ˆ
k kθ θ θ= −�  (5.102) 

 

The augmented state-space model is attractive in principle. However, this increases the 

dimensionality of the model and, thereby demands an increase in the number of particles for 

sufficiently accurate results.  

 

A sequential Monte Carlo filter-based approach to a fault detection and isolation scheme was 

developed for a general non-linear system with non-Gaussian noise and disturbances.  

 

According to Kadirkamanathan et al. (2000) [128], the detectability of the sequential Monte 

Carlo filtering approach is superior to the EKF-based scheme, especially in the case where the 

system model is highly non-linear. The fault isolation scheme is shown, also, to identify the 

parameter related with the fault and the level of the fault.  
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5.4.11 Summary  

This section presented a survey of methodologies in the theory of a non-linear observer-based 

fault diagnosis. Because of the existing volume of research activity in this field, it was 

impossible to include a complete representation of the methodologies. Therefore, a focus was 

given to those methods which can be applied for monitoring wind turbines and which may 

gain some relevance for future research and practical applications (see Table 5.1). The 

methods, discussed in the survey, give rise to great encouragement and may help to motivate 

intensive future efforts towards the practical application of these ideas. 

 

Table 5.1: Comparing the methodologies of non-linear observer in section 5.4 

 

Methodology 

Fault 

detection 

Fault 

isolation 

Application 

for wind 

turbines 

 

Lyapunov-based 

method 

Yes Yes No sensor faults for a synchronous 

machine 

Tsinias observer  Yes No No actuator sensor component 

faults 

Thau non-linear 

observer  

Yes No No fault-tolerant control 

Extended Luenberger 

observer 

Yes No No control systems’ feedback 

sensors 

State-dependent non-

linear observer 

No No No control design 

Construct the non-

linearity from direct 

measurements  

Yes Yes Yes  wind turbine generator 

Extended Kalman filter No No Yes parameter estimation for a 

DFIG 

Unscented Kalman 

filter 

No No Yes parameter estimation for a 

DFIG 

Extended unknown 

Input observer 

Yes No No sensor faults  

Sequential Monte Carlo 

filtering-based method 

Yes Yes No general non-linear system with 

non-Gaussian noise and 

disturbances 
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5.5 Design of state-dependent non-linear observer for fault detection and isolation  

A non-linear observer is a dynamic filter that estimates the states or outputs of a system based 

on a mathematical model, sensor measurements and input commands. In the previous chapter, 

a linear observer was designed and applied for the case where the rotor speed varies slowly. 

However, in the real case, both the wind speed and the rotor speed of the generator are 

variable, resulting in non-linear dynamics which must be considered in the FDI design. 

Therefore, it is necessary to develop a non-linear observer.  

 

This section presents a framework for designing a non-linear observer using the state-

dependent differential Riccati equation (SDDRE) rather than the algebraic Riccati equations, 

which may pose an overly restrictive requirement on the observability and controllability of 

the system. The SDRE, based on an extended linearisation of the process dynamics and a 

solution of the SDDRE, can be determined using numerical integration methods. Matlab was 

used to solve problems for ordinary differential equations; specifically the solver ode45 was 

used. The ode45 solver is based on an explicit Runge-Kutta formula [132].  

 

The work presented in this section  aims at detecting faults in the sensors of a wind turbine; 

such faults are related to pitch angle, rotor angle, generator rotor angle, wind turbine rotor 

speed, generator rotor speed, electric torque and wind turbine torque. 

 

5.5.1 Non-linear model for 5MW wind turbine  

Based on the wind turbine equations (3.3), (4.35) and (4.36), the differential equations for the 

subsystems are: 

 

• Actuator model : 

                            
1
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β β β
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= −�  
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• Drive-train model: 

2

1
( )

1
( )

s
wt wt s K s wt m

T g

cs s s
m K wt m e d m

g g g

C
T K C

J n

K C C
T b

JG n n n

ω θ ω ω

ω θ ω ω ω

= − − +

= + − − −

�

�

 

 

• Doubly-fed induction generator model: 
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The non-linear model of a 5MW wind turbine can now be written as:  
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and the output equation is given by:  
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 (5.105) 

 

The state vector, input vector and output vector are defined as: 
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5.5.2 Non-linear observer design 

The non-linear dynamics model given in equations (5.104) and (5.105) can be represented by 

the following linear structure with state-dependent coefficients (SDC): 

 

 
( ) ( )x A x x B u u

y Cx Du

�= +

= +
 (5.106) 

where: 
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After bringing the system to the SDC form, as in equation (5.106), an observer with the same 

structure as in equation (5.106) was constructed, with the addition of the driving feedback 

term whose role is to reduce the observation error to zero as: 

 

 ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )[ ]x A x x B u u K x y Cx= + + -  (5.110) 

 

The non-linear observer gain matrix in equation (5.46) ( 1ˆ ˆ( ) ( ) T
K x P x C R

−= ) is solved using 

the Riccati differential equation (5.48) to find the matrix ˆ( )P x  using A(x), C and 0T
Q C C= ≥ , 

and R(x) > 0 for all x.  

 

5.5.3 Non-linear observer examination  

The performance of a non-linear observer was investigated in comparison with the output of 

the wind turbine using simulations with effective wind speeds of 15 m/s and 7 m/s (such wind 

speeds produce nominal and less than nominal power, respectively); process disturbances and 

sensor noise were not considered in the simulation. The value of R=10
7
 is that which gives a 

fast response and has less error in the steady-state period.  

 

Figure 5.2 and Figure 5.3 show the simulation results for R=10
7
, comparing system outputs 

and estimated states. The sub-figures confirm the good performance of the non-linear 

observer for faults relating to (a) pitch angle, (b) difference between turbine rotor angle and 

generator rotor angle (
K

θ ), (c) wind turbine rotor speed, (d) generator rotor speed, (e) electric 

torque and (f) wind turbine torque with effective wind speeds of 7 and 15 m/s, respectively. 

 

Estimated states values converge rapidly to the non-linear model output. Therefore, it can be 

concluded that the non-linear observer matches well to the estimated states of the wind 

turbine’s mechanical parts. 
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Figure 5.2: Comparison of system outputs with non-linear observer estimation of faults 

related to (a) pitch angle, (b) difference between turbine rotor angle and generator rotor angle 

( )
K

θ , (c) wind turbine rotor speed, (d) generator rotor speed, (e) electric torque; and (f) wind 

turbine torque with an effective wind speed of 7 m/s. The outputs are similar in the sub-

figures (b, c, d and e)  
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Figure 5.3: Comparison of system outputs with non-linear observer estimation of faults 

related to (a) pitch angle, (b) difference between turbine rotor angle and generator rotor angle 

( )
K

θ , (c) wind turbine rotor speed, (d) generator rotor speed, (e) electric torque, and (f) wind 

turbine torque, with an effective wind speed of 15 m/s. The outputs are similar in the sub-

figures (b, c, d and e)  
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5.5.4 Stability of state-dependent observer 

SDRE stabilisation refers to the use of the state-dependent Riccati equations to construct a 

non-linear observer for non-linear systems. The main concept is to represent the non-linear 

system in the form: 

( ) ( )x A x x B u u�= +  

and to use the feedback gain: 

1ˆ ˆ( ) ( ) TK x P x C R -=  

 

where P(x) is obtained from the SDDRE: 

 

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP x P x A x A x P x P x C R C P x Q� -= + - +  

 

and Q and R are design parameters that satisfy the point-wise positive definiteness condition: 

 

0TQ C C= ≥ , and R > 0 for all x 

 

To define the error, equation (5.110) is subtracted from equation (5.106): 

 

 
1ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ[ ( ) ( ) ] ( )

T
x x A x x P x C R y y

A x K x C x x

−− = − − −

= − −

��
 (5.111) 

 

Define the difference between ( )x t and ˆ( )x t  as the state error vector, e, thus the dynamic error 

can be written as: 

 

 1ˆ ˆ[ ( ) ( ) ] ( )T
e x x A x P x C R C e t

−= − = −�� �  (5.112) 

 

Equation (5.112) illustrates the dynamic behaviour of the innovation signal and this is 

governed by the eigenvalues of the matrix 1ˆ[ ( ) ( ) ]T
A x P x C R C

−− . 

 

If the eigenvalues of the matrix 1ˆ[ ( ) ( ) ]T
A x P x C R C

−− are in the left half-plane, then the 

system is stable. The simulation results proved that the state-dependent non-linear observer is 

stable at all the tested points. 
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5.5.5 Non-linear observer-based FDI scheme  

The state-space model of the wind turbine in equation (5.106) can be extended to include 

faults and disturbances as follows: 

 

 
1

2

( ) ( )x A x x B u u R f d

y Cx Du R f

= + + +

= + +

�
 (5.113) 

 

The equation of the observer using this model for d = f = 0, will be: 

 

 
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )[ ]

ˆ ˆ

x A x x B u u K x y Cx

y Cx Du

�= + + -

= +
 (5.114) 

 

where f is the fault vector, which is considered to be an unknown time function. The vector 

d(x) is the disturbance vector, which can be written as: 

 

 ( ) ( )d A x x B u u= ∆ + ∆  (5.115) 

The residual generator, studied in this section, is based on a non-linear observer; it is 

employed to the monitoring system represented by equation (5.113). To define the state error, 

equation (5.114) is subtracted from equation (5.113) to obtain the estimated error equation: 

 

 1 1

1 2
ˆ ˆ ˆ( ( ) ( ) ) ( )T T

e x x A x P x C R C e d R f P x C R R f
− −= − = − + + −�� �  (5.116) 

 

and the residual equation: 

 

 
2 2

ˆ ˆ[ ] [ ( ) ] [ ]r Q y y Q C x x R f Q Ce R f= − = − + = +  (5.117) 

 

To implement this approach, two steps should be taken. Firstly, the sensitive and insensitive 

relationships between residuals and faults should be defined for each type of fault by 

rewriting equation (5.113) in the form:  

  

 
1 1 1

2 2 2

( ) ( ) a a s s c c

a a s s c c

x A x x B u u R f R f R f d

y Cx Du R f R f R f

= + + + + +

= + + + +

�
 (5.118) 
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where 
1

R  and 
2

R  are fault matrices and a, s and c denote actuator, sensor and component, 

respectively. 

 

Secondly, a set of residuals should be designed according to equation (5.118) and as they are 

presented in equations (5.119) - (5.121). Faults are classified into three groups: actuator, 

sensor and component faults. The performance indices, given in the robust residual generation 

described in Chapter 4, are revised as follows:  

 

 1 2

1 1

[ , ]

1

( , , ) sup { [ ( ( ) ( ) )

( ( ) ( ) )] }

T

af a a a

T

J P R Q Q D Q C j I A x P x C R C

B u P x C R D

ω ω ω

σ ω − −

∈

−

= − + − +

−
 (5.119) 

 

 1 2

1 1

[ , ]

1 1

( , , ) sup {[ ( ( ) ( ) )

( ( ) )] }

T

sf s s s

T

J P R Q Q I Q C j I A x P x C R C

P x C R I

ω ω ω

σ ω − −

∈

− −

= + − +

−
 (5.120) 

  

 
1 2

1 1

[ , ]

( , , ) sup { [ ( ( ) ( ) ) )]}T

cf c cJ P R Q Q C j I A x P x C R C
ω ω ω

σ ω − −

∈

= − − +  (5.121) 

                                          

 1 1( , ) || ( ( ) ( ) ) ||T

dJ P R A x P x C R C
− −= −  (5.122) 

 

The actuator, sensor and component fault matrices are defined as: 

 

 1

0

( )

( )

sensor fault

R B u actuator fault

A x component fault




= 



 (5.123) 

 2

0

C sensor fault

R D actuator fault

component fault




= 



 (5.124) 
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From equations (5.120) and (5.122), it can be seen that the performance indices 

( ( ), , )sf sJ P x R Q and ( ( ), )
d

J P x R  are functions of P(x), R and Qs. Therefore, these parameters 

should be optimised for observer stability by maximising the effect of sensor faults and 

minimising the effect of the disturbance [91]; this is a multi-objective optimisation problem. 

Firstly, P(x) and R, which are represented in the Riccati equation (5.48), are optimised to find 

the best non-linear observer gain matrix )ˆ(xK . The initial matrix P0 is assumed to be zero and 

( )P x� is:  

 

 

1,1 1,5 1,6

2,1 2,6

,1 6,6

( ) ( ) ( )

( ) ( )
( )

( ) ( )i

P x P x P x

P x P x
P x

P x P x

 
 
 =
 
 
  

� � �…

� �… …
�

� … � �

� �… …

 (5.125) 

 

 

From equations (5.120) and (5.122) it can be seen that the norm of the performance index 

Jsf(P,R,Qs) is very large and tends to infinity (see the procedure to minimise two objective 

functions for sensor faults and MOGA, presented in sections 5.4.4.1 and 4.5.4.2). Therefore, 

only the disturbance effects Jd(P,R) need to be optimised. From equation (5.48) it can be seen 

that P is a function of states. Consequently, only R is optimised, giving better sensitivity to 

faults. 

 

 For instance, If a small value is selected for R, the non-linear observer is insensitive to faults, 

as shown in Figure 5.4, where |system output+fault| ≈ |estimated value|. Hence, a value for R 

should be selected very high that gives better sensitivity to faults (form siumlatin the best 

value is R=10
7
), as shown in Figure 5.5, where |system output+fault| > |estimated value|.  
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Figure 5.4: Comparison of system outputs with a non-linear observer where 10% electric 

torque sensor fault occurs at time-point t=45 s with an effective wind speed of 13 m/s and 

R=1 

 

Figure 5.5: Comparison of system outputs with a non-linear observer where 10% electric 

torque sensor fault occurs at time-point t=70 s with an effective wind speed of 13 m/s and 

R=10
7
 

 

The residual weighting factor matrix Qsk is defined as that which gives the appropriate 

residual dimensions for all output by using the Simulink model in Matlab. The values of Qsk 

are defined in equation (5.126). 
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where  

5 5 5 2

1 2 3 4 5 610 , 10 , 10 , 5 *10 , 10, 1.q q q q q q= = = = = =  

 

5.5.6 Non-linear observer-based sensor fault detection and isolation scheme 

To simplify the steps of designing robust sensor-based FDI, we assume all actuators and 

components are fault free. Equation (5.113) can then be simplifed to: 

 

 
2

( ) ( )x A x x B u u d

y Cx R f

= + +

= +

�
 (5.127) 

The residual generator for each sensor will be:  

 
2[( ( )]

k sk m k
r Q Ce R f C C= + −  (5.128) 

 

where k is the number of the measurement sensor, Ck 
pxpR∈  is obtained from the matrix C by 

assuming the kth row equals zero and Cm is equal to the matrix C. From equation (5.128) it is 

obvious that each residual generator is driven, so that all other residuals equal zero. From the 

above, a set of robust and observer-based sensor-fault isolation schemes were designed, as 

illustrated in Figure 5.6.  

 

Each sensor residual (
k

r ) is separated from the output of the residual ( r ) by ( )-
m k

C C  and the 

dimension of 
k

r  is modified using 
sk

Q . Compared to other approaches, this approach uses a 

bank of observers such as a structured residual set designed by a dedicated or a generalised 

observer scheme; this approach is advantageous since it uses only a single observer [91].    

 

In practice, it was insufficient to identify faults based on residual curves because the system 

was non-linear, and it worked at different operating points; it was necessary to design a 

dynamic threshold for each sensor taking into account individual sensor accuracy, supplied by 

the manufacturer. Therefore, residuals were tested using an interval test dynamic threshold 

(see Figure 5.6). This test gave an output of one (no sensor faults occurred) if the input of the 

measurement output signals did not exceed the absolute value of the sum of the estimated 

value, sensor accuracy and sensor noises. The test gave an output of zero (case of sensor fault) 

if the input of the measurement output signal exceeded the absolute value of the sum of the 
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estimated value, sensor accuracy and sensor noises. The mathematical model of an interval 

test dynamic block output is based on equation (5.129): 

 

 
ˆ( ) ( ) ( ) ( ) 1 fault free

ˆ( ) ( ) ( ) ( ) 0 fault

k k k k k

k k k k k

y t y t y t f t

y t y t y t f t

δ η

δ η

≤ + + ⇒ =

> + + ⇒ =
 (5.129) 

 

where ( )
k

y t  is the measurement output signal, ˆ ( )
k

y t  is the estimated value, 
k

η is the sensor 

accuracy and ( )
k

y tδ is the sensor noise.  

 

 

Figure 5.6: Robust non-linear observer-based fault detection and isolation scheme. The 

Simulink model is illustrated in Figures B.19. ,d η and f are disturbance, sensor noise and 

sensor faults, respectively. Here, “0” is indicated on the display when pitch angle and turbine 

speed sensor faults occur. 
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5.5.7 Simulation results  

A non-linear observer-based residual generator was designed, as shown in Figure 5.6 

and Appendix B.19. In order to assess the performance of the method, different types 

of additive sensor fault were applied. The fault types were pitch angle, the difference 

between turbine rotor angle and generator rotor angle, wind turbine rotor speed, 

generator rotor speed, electric torque and wind turbine torque. 

 

The simulation was repeated for two scenarios, illustrated in Table 5.2. In the first 

scenario, it was assumed that only one fault occurs at time-point t=150 s, with an 

effective wind speed of 10 m/s. In the second scenario, a number of faults occurred 

each at different time-points, with an effective wind speed of 12 m/s. In all 

simulation cases, disturbance and sensor noises were assumed to be present.  

 

Under normal operation, when the wind turbine had only disturbance and noise 

signals, the average of the residual norms was very small (»0), as shown in Figure 

5.7. From Figures 5.8 - 5.11, which show the residual norms, when a fault occurred 

in , , or
k wt m

β θ ω ω  respectively, only the related residual increased, which led to fast 

and easy fault location. In the case where there was a 
wt

T or 
e

T  fault, as shown in 

Figures 5.12 and 5.13, it can be seen that the response of the fault detection was very 

fast in the case of wind turbine torque fault and slow (delay time ≈10 s) in the case of 

an electric torque fault; this allows both faults to be identified and located. This is 

further demonstrated by the behaviour of the residual curves in Figure 5.14, where 

both wind turbine and electric torque faults occurred at the same time. Here, first the 

turbine rotor torque sensor becomes apparent and, then, after a few seconds, the 

electric torque, with its slow response, becomes apparent.  

 

In the case of multi-malfunction, the result of the simulation demonstrated that 

detection and isolation is achieved, as illustrated in Figure 5.15, when more than one 

sensor fault occurred (10% , 10% , 10% , 9% and 10%
k wt m e

Tβ θ ω ω  at the time-points 

t=250, 220, 200 180 and 150 s, respectively for an effective wind speed of 12 m/s). 

For example, Figure 5.6 clearly illustrates the robustness of this method when 
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compared to FDI. It demonstrates that as pitch angle and rotor speed sensor faults 

occur, they are represented as zeroes in the fault display, as shown in Figure 5.6. By 

inspecting the residual curves, it is possible to identify the start time for the pitch 

angle and rotor speed sensor faults.   

 

Table 5.2: Sensor noise and percent of faults (system disturbance = 0.01) 

 

 

 

 

 β  
K

θ  
wt

ω  
m

ω  
wt

T  
e

T  

Sensor noise 0.0001 0.0001 0.0001 0.05 0.1 0.1 

First simulation 

scenario 

(one fault occurs at 

t=150 s and 

v=10m/s) 

5% 0 0 0 0 0 

0 8% 0 0 0 0 

0 0 8% 0 0 0 

0 0 0 8% 0 0 

0 0 0 0 8% 0 

0 0 0 0 0 8% 

Second simulation 

scenario  

( multiple faults 

and v=12m/s) 

 

0 0 0 0 
8% 

at 150s 

10% 

at 150s 

10% 

at 250s 

10% 

at 220s 

10% 

at 200s 

9% 

at 180s 
0 

10% 

at 150s 



 

171 

 

 

Figure 5.7: Residual norms in the case of no fault for (a) pitch angle, (b) difference 

between turbine rotor angle and generator rotor angle, (c) wind turbine rotor speed, 

(d) generator rotor speed, (e) electric torque and (f) wind turbine torque (f) 
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Figure 5.8: Residual norms in the case of a 5% pitch angle sensor fault at time-

point t=150 s and an effective wind speed of 10 m/s for (a) pitch angle, (b) 

difference between turbine rotor angle and generator rotor angle, (c) wind turbine 

rotor speed, (d) generator rotor speed, (e) electric torque and (f) wind turbine 

torque   
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Figure 5.9: Residual norms when the difference between turbine rotor angle and 

generator rotor angle sensors is 8% at time-point t=150 s and with an effective 

wind speed of 10 m/s for (a) pitch angle, (b) difference between turbine rotor angle 

and generator rotor angle, (c) wind turbine rotor speed, (d) generator rotor speed, 

(e), electric torque and (f) wind turbine torque 
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Figure 5.10: Residual norms when an 8% wind turbine rotor speed sensor occurs at 

time-point t=150 s with an effective wind speed of 10 m/s for (a) pitch angle, (b) 

difference between turbine rotor angle and generator rotor angle, (c) wind turbine 

rotor speed, (d) generator rotor speed, (e), electric torque and (f) wind turbine 

torque 
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Figure 5.11: Residual norms when an 8% generator rotor speed sensor fault occurs 

at time-point t=150 s with an effective wind speed is 10m/s for (a) pitch angle, (b) 

difference between turbine rotor angle and generator rotor angle, (c) wind turbine 

rotor speed, (d) generator rotor speed, (e), electric torque and (f) wind turbine 

torque 
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Figure 5.12: Residual norms when an 8% wind rotor torque sensor fault occurs at 

time-point t=150 s with an effective wind speed of 10 m/s for (a) pitch angle, (b) 

difference between turbine rotor angle and generator rotor angle, (c) wind turbine 

rotor speed, (d) generator rotor speed, (e), electric torque and (f) wind turbine 

torque 
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Figure 5. 13: Residual norms when an 8% electric torque sensor fault occurs at 

time-point t=150 s with an effective wind speed of 10 m/s for (a) pitch angle, (b) 

difference between turbine rotor angle and generator rotor angle, (c) wind turbine 

rotor speed, (d) generator rotor speed, (e), electric torque and (f) wind turbine 

torque 
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Figure 5.14: Residual norms when an 8% wind rotor torque and a 10% electric 

torque sensor fault occur at time-point t=150 s with an effective wind speed of 12 

m/s for (a) pitch angle, (b) difference between turbine rotor angle and generator 

rotor angle, (c) wind turbine rotor speed, (d) generator rotor speed, (e) electric 

torque and (f) wind turbine torque 
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Figure 5.15: Residual norms for 10% pitch angle, 10% difference between turbine 

rotor angle and generator rotor angle, 10% wind turbine rotor speed, 9% generator 

rotor speed and 10% electrical torque sensor faults occurring at time-points t=250, 

220, 200, 180 and 150 s, respectively, with an effective wind speed of 12 m/s for 

(a) pitch angle, (b) difference between turbine rotor angle and generator rotor 

angle, (c) wind turbine rotor speed, (d) generator rotor speed, (e) electric torque 

and (f) wind turbine torque 
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6 Conclusions and Future work 

 

6.1Conclusions 

The main objective of the work of this thesis was to design model-based fault 

detection and isolation techniques for large-scale wind turbines. The analytical 

model-based fault detection algorithms give an indication of faults by comparing 

measured outputs of the process to their estimations. The analytical model-based 

approach can be implemented in the same processor that implements the control 

algorithms; consequently, no additional hardware is required. Analytical model-

based techniques use the knowledge of the monitored process and, therefore, are the 

most suitable approaches for fault detection. Such tecniques include observer-based 

approaches, which offer quick detection and require no excitation signal or online 

implementation.  

 

In this thesis, model-based fault detection and isolation techniques for wind turbines 

were studied in detail, initially by an initial and extensive study to  fault monitoring 

for linear systems; this proved to be extremely useful. If a process has strong non-

linearities or the operating region is too wide, the linearisation error is too large to be 

handled by linear fault detection techniques. Therefore, a state-dependent non-linear 

observer-based scheme was developed for early FDI in variable-speed wind turbines.  

 

The first part of the thesis focussed on developing a model of a 5MW wind turbine. 

This model was sufficiently detailed to be used as a simulation model (Chapter 2). 

The modelling procedure divided the overall wind turbine model into appropriate 

sub-models suitable of being modelled separately. These sub-models were: 

• rotor torque, 

• drive-train, 

• doubly-fed induction generator, 

• controller and 

• fixed-point wind speed model. 
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Each wind turbine sub-model was presented and combined to obtain a completed 

non-linear wind turbine model. In order to control the non-linear model, two PI-

based control design schemes were proposed for the blade-pitch angle controller in a 

variable-speed wind turbine (Chapter 3); an analytical method and a simulation-

based method were developed to calculate the PI gains. The simulation results 

demonstrated good performance for both proposed PI schemes. The IMC-based PI 

design procedure was also applied for the control of current and electric torque. 

Figures B.15 and B.14 illustrate how subsystems were used to calculate the power 

coefficient, and optimal tip speed ratio allowed to design a rotor torque model 

without feedback of the rotor’s rotational speed, making the proposed non-linear 

model a realistic model of a real wind turbine (the wind turbine subsystem converts 

wind speed into aerodynamic torque (see Figures B.13 and B14)).        

 

The second part of the thesis developed linear and non-linear observer-based sensor 

fault detection and isolation methods for wind turbines. The fault detection and 

isolation method, which can be applied to a linear system, was optimised by using a 

MOGA to maximise the effect of faults and to minimise the effect of disturbances in 

the steady-state period on the residual (Chapter 4). The objectives were in conflict 

with each other, and were expressed in different units. Because of their nature, multi-

objective optimization problems normally have not one but a set of solutions, known 

as Pareto points or Pareto optimal solutions (see Figures 4.17, 4.18 and 4.19).  

 

To realise a complete linear observer-based sensor FDI, a Boolean decision table was 

constructed (see Table 4.1). If a fault occurs, the residual can be compared with this 

fault signature table and the location of the fault can be determined using a threshold. 

The selection of the threshold was very important. If the chosen threshold is too low, 

it results in false alarms, i.e. some disturbances will cause the residual to cross the 

threshold and result in an alarm. If the selected threshold is too high, small faults are 

undetected. Therefore, the threshold was selected slightly higher than the value of the 

evaluated residual signal in a fault-free case. 
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The rotor speed is variable in the case of below-rated wind speed and the behaviour 

of a wind turbine is non-linear so that it is necessary to apply non-linear fault 

detection techniques. A number of non-linear model-based fault diagnosis methods 

(see Table 5.1) were applied to monitoring wind turbines, including constructing the 

non-linearity from direct measurements and the use of an EKF and an UKF to detect 

faults in the wind turbine generator. In this thesis non-linear observer-based sensor 

fault detection and isolation methods were developed to monitor the wind turbine 

rotor, drive-train and generator. The state-dependent differential Riccati equation was 

used rather than the algebraic Riccati equations, which may pose an overly restrictive 

requirement on the observability and controllability of the system (Chapter 5). The 

fault detection system was optimised to be maximally sensitive to system faults and 

minimally sensitive to system disturbances and noise. The residual generator based 

on the non-linear observer was employed to develop a monitoring system, which was 

assessed using different additive sensor faults: pitch angle, the difference between 

turbine rotor angle and generator rotor angle, wind turbine rotor speed, generator 

rotor speed, electric torque and wind turbine torque faults. A dynamic threshold was 

designed for each sensor to identify the fault based on residual curves, with 

consideration given to the accuracy of each sensor; the output was one in the case of 

no sensor fault or zero in the case of a sensor fault. Simulation results demonstrated 

that this is a robust method for the detection and isolation of a fault in wind turbines. 

In addition, using the simulation results for fault detection in components and 

actuators (Chapter 4), these methods can be used to detect and locate the breakdown 

of components. In this case, where components are connected in the cascade, more 

than one fault may appear for a faulty component; it can be inferred that an actuator 

fault has occurred when the residual has the shape of an impulse signal.  

 

The advantages of this scheme are that it is systematic to design and implement the 

algorithm in a practical way. Also, by using return of ‘1’ for each non-faulty sensor 

and ‘0’ for a faulty sensor, both single and multiple faults can be located quickly.   

 

Compared to unknown input observers, this scheme is more relaxed. In this 

approach, instead of decoupling state estimations from unknown inputs, the residual 
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signal is made independent of unknown inputs such as the effective wind speeds on 

the blades of a wind turbine.  

 

6.2 Future work 

Future work concerning the non-linear observer-based fault diagnosis methods is 

proposed in Table 5.1. It is possible to apply the proposed methods to monitoring 

wind turbines, thus adding relevance for future research and practical applications.  

 

The non-linear observer-based fault detection technique can be applied to monitor 

the vibrations of the tower and drive-train. Vibration monitoring is one of the most 

important aspects in wind turbine monitoring because it helps determine the 

condition of the rotating equipment. In a wind turbine, this equipment consists of the 

main bearing, the gearbox and the generator. In addition, vibration monitoring can be 

used on the turbine structure at the base and on the nacelle. This provides 

information concerning structural bending and the aerodynamic effect of the wind.  

 

Finally, in monitoring wind turbines, it is recommended that the proposed non-linear 

observer-based fault detection and isolation method is used to support the CMS. The 

task is to predict when a machine fault occurs, diagnose or analyse data for better 

understanding and interpretation of fault detection, and to isolate a particular fault 

from others.  
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Appendix A: Parameters of a 5MW wind turbine 

 

Table A. 1: Nominal physical parameters of a 5MW wind turbine [16] 

Description Parameter Value 

Rated turbine power PN 5MW 

Number of blades NB 3 

Turbine blade length R 55m 

Turbine inertia JT 2:225* 10
7
 kgm

2
 

Gearbox ratio ng 60.88 

Generator inertia JG 600 kgm
2
 

Torsional stiffness Ks 7.5 *10
8
 Nm/rad 

Torsional damping Cs 100 Nms/rad 

Damping coefficient bd 0 kgm
2
/s 

Air density ρ  1.225 kg/m
3
 

Grid frequency f 50Hz 

Synchronous speed 
sω
 

104.7 rad/s 

Stator resistance Rs 0.0022 Ω  

Rotor resistance Rr 0.0018 Ω  

Stator inductance Ls 3 H 

Rotor inductance Lr 2.9 H 

Mutual inductance Lm 2.9 H 

Pole pairs np 3 

Stator voltage Vs 690V (RMS) 

Hub height  z  125 m 

Roughness length 
0z  0.0002 
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Appendix B: Simulink models  

 

 
 

 

Figure B. 1: Simulink model for all subsystems of the wind turbine 

 

 

 

Figure B. 2: Simulink block diagram of the non stationary wind speed 
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Figure B. 3: Simulink block diagram model of the wind turbine rotor 

 

 

Figure B. 4: Simulink model of the two mass drive-trains 
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Figure B. 5: Simulink model of the 4th order DFIG 

 

 

 Figure B. 6: Simulink model of the controller 

 

 

Figure B. 7: Simulink model of the reference electrical torque calculation 
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Figure B. 8: Simulink model of the reference rotor current calculation 

 

 
Figure B. 9: Simulink model of the rotor voltage controller 

 

 

 

 

Figure B.10: Simulink model of the Pitch angle PI controller with gain scheduling 
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Figure B.11: Simulink implementation of PI controller 

 

 

Figure B.12: Simulink implementation of switching 

 

 

 

 

Figure B.13: Simulink model of non-linear wind turbine. In this model, we modified the 

models of wind turbine, DFIG and torque controller as shown in figures B.14, B.16 and B.17 

respectively.  
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Figure B.14: Simulink block diagram model of the wind turbine. Subsystem to calculate Cp 

is presented in Figure B.15 

 

 

Figure B.15: Subsystem to calculate power coefficient in Figure B.14 
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Figure B. 16: Simulink model of the DFIG in Figure B.13 

 

Figure B. 17: Simulink model of the electric torque controller in Figure B.13 
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Figure B.18: Simulink model for observer-based sensor fault detection and isolation 
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Figure B.19: Robust non-linear observer-based fault detection and isolation 

scheme. The simulink model of the wind turbine and interval test dynamic residual 

are illustrated in Figures B.22 and B.20. Here, is indicated “0” in the display of 

electrical torque sensor fault happened 
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Figure B.20: The simulink model of the interval test dynamic residuals 

 

 

Figure B.21: The simulink model of the interval test dynamic residual of pitch angle. All 

other interval test dynamic residuals in Figure B.20 have the same structure 
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Figure B.22: Simulink model of non-linear wind turbine with faults and noises 
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Figure B.23: Simulink model to calculate Kp and Ki 

 

  

 

Kp

1.87*60.88

wref

Pitch

wind

Lam_opt

wm

p

wind turbine1

24

wind speed
5.007e+006

power

28.21

pitch

4.2

lam_opt

1

const

2.486e-005

Ki

1

s

Integrator

2

Gain

Divide2

Divide1

Divide

24.86



 

208 

 

Appendix C: Multi-objective genetic algorithm 

 

Multi-objective genetic algorithms 

For multiple-objective problems, the objectives are generally conflicting, thus 

preventing simultaneous optimisation of each objective. Many, or even most, real 

engineering problems have multiple-objectives, for example to minimise cost, 

maximise performance, maximise reliability, etc. These are difficult but realistic 

problems. Genetic algorithms (GA) can be easily modified to find a set of multiple 

non-dominated solutions in a single run. The ability of a GA to simultaneously 

search different regions of a solution space makes it possible to find a diverse set of 

solutions for difficult problems with discontinuous and multi-modal solution spaces. 

The crossover operator of a GA may exploit structures of good solutions with respect 

to different objectives to create new non-dominated solutions in unexplored parts of 

the Pareto front. In addition, most multi-objective GAs do not require the user to 

prioritise, scale or weigh objectives. Therefore, GAs have been the most popular 

approach to multi-objective design and optimisation problems.  

 

I. GA Terminology  

 

• Individual: 

 A solution vector x X∈ is called an individual or a chromosome. Chromosomes 

are made of discrete units called genes. Each gene controls one or more features of 

the chromosome.  

  

• Population: 

GA operates with a collection of chromosomes, called a population. The population 

is usually randomly initialised.  

 

• Crossover: 

The crossover operator is the most important operator of a GA. In crossover, 

generally two chromosomes, called parents, are combined together to form new 
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chromosomes, called offspring. The parents are selected from existing chromosomes 

in the population with a preference towards fitness so that the brood is expected to 

inherit good genes, which make the parents fitter. By iteratively applying the 

crossover operator, genes of good chromosomes are expected to appear more 

frequently in the population, eventually leading to convergence of an overall good 

solution. 

 

• Mutation 

The mutation operator introduces random changes into the characteristics of the 

chromosomes. Mutation is generally applied at the gene level. In typical GA 

implementations, the mutation rate (the probability of changing the properties of a 

gene) is very small so that new chromosomes produced by mutations will not be very 

different from the original chromosomes. Mutation re-introduces genetic diversity 

back into the population and assists the search escape from local optima. 

 

• Selection 

Chromosomes for the next generation are selected. In the most general case, the 

fitness of an individual determines the probability of its survival for the next 

generation. Different selection procedures are used depending on the fitness values.  

 

II. The procedure of a generic GA is given as follows: 

1. Randomly generate a number of solutions to form the first population, P1. 

Evaluate the fitness of solutions in P1. 

2. Crossover. Generate an offspring population:  

� select two solutions, x and y, from the population according to fitness values, 

� using a crossover operator, generate offspring. 

3. Mutation. Mutate each solution using a predefined mutation rate. 

4. Fitness assignment. Evaluate and assign a fitness value to each solution. 

5. Selection. Select a number of solutions based on their fitness.  

6. If the termination criterion is satisfied, terminate the search and return the current 

population, otherwise, set i=i+1, go to 2.  



 

210 

 

Appendix D: Reference frame conversion   

 

I. Transformation from a three phase to a stationary reference frame 

A three phase signal with three quantities (sa, sb and sc), such as voltage (v), current 

(i) and flux  ψ   can be transformed to a two phase vector in the complex plane by: 

 

 0

a

s b

c

s s

s T s

s s

α

β

   
   =   
         

           

 

 

where 
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2 2

3 3
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2 2

2 2 2

2 2 2

sT c

− − 
 
 

− 
=  

 
 
 
    

 

c is a constant. If we take c =
3

2
  and, then, TS is unitary, the power of the system in 

the abc-frame is the same as in the αβ - frame. Then, the αβ  system is called power-

invariant. If we take c =
3

2
 , then the modulus of the signal is maintained after 

transformation. Then, this αβ  system is called non power-invariant. 

 

II. Transformation from a stationary to a rotating reference frame 

αβ  to dq transformation can be written as: 
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 0 0
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q R
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where  
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and the d axis makes an angle θ with a winding which has been chosen as the 

reference. 

 

III. Power-invariant transformation 

We assumed a sinusoidal symmetric three-phase supply voltage system with RMS 

value V, the d-q axis is rotating with angular velocity equal to 1ω and phase shift 2π

/3 given by: 
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The instantaneous active power, P, is given by 

       

 d d q qP v i v i v i v iα α β β= + = +
  

 

The instantaneous reactive power, Q, is given by 

 

 d q q dQ v i v i v i v iα β β α= − + = − +
  

 

Non power-invariant transformation 
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The instantaneous active power, P, is given by 

 

 

3 3
( ) ( )

2 2
d d q qP v i v i v i v iα α β β= + = +

  

 

The instantaneous reactive power, Q, is given by 

 

 

3 3
( ) ( )

2 2
d q q dQ v i v i v i v iα β β α= − + = − +

  

 

  


