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ABSTRACT 

 

Evacuation analysis of passenger ships is mandatory since June 2016 for all passenger ships as 

prescribed by the International Maritime Organisation (IMO) in the revised guidelines for evacuation 

analysis (MSC.Circ.1533). 

The advanced evacuation analysis defined in the IMO guidelines, relies on the usage of computer 

models to simulate the movement of people and their interactions with the environment and the 

other evacuees. These models are powerful tools which allow for a detailed representation of the 

environment and the people specific characteristics and behaviour.  

Setting up and running simulations is a very time consuming process and the bigger and more 

complex the ship or building is, the longer it takes.    

In situations when time is critical such as during emergencies and when a fast assessment of the 

evacuation time is needed, then relying on evacuation simulation tools might not be an option.  

Having a simplified model that can capture the different factors influencing the evacuation process 

and predict the total evacuation time would be a real advantage. 

In the research presented here, an attempt to develop such a simplified model has been made.  

The work undertaken during this research focused on investigating the possibility to derive a 

parametric model that could be simple enough to produce fast estimates of evacuation times but 

also capture the different elements of the evacuation process to satisfactory accuracy 

Different parametric models were investigated. The nature of the problem led to investigate arrival 

processes, which were a good candidate for the underlying model explaining the evacuation of 

passengers. A close analysis showed that a Batch Non-Homogeneous Poisson Process (Batch NHPP) 

was needed to model the problem at hand.  

The batch arrivals and the NHPP are independent of each other so they were modelled and studied 

separately.   

The data used in this research came from a number of simulations (8 000 individual runs) performed 

with the Evacuation simulation software Evi as well as from the validation dataset produced by the 

EU-funded project SAFEGUARD and its associated Evi simulation runs (about 200 runs). 
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The work was split between the fitting of the batch sizes of the arrivals and the NHPP. A complete 

analysis of the data was performed. 

The fitting of the batch sizes as well as the arrivals with the selected models produced very good 

results. 

Then, using the fitted models, new data was generated and analysed. The results were compared to 

the original data for both the batch sizes and the NHPP.  
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1 INTRODUCTION AND STRUCTURE OF THE THESIS 

 

1.1 Introduction 

 

Evacuation analysis of passenger ships is now mandatory for all passenger ships as 

prescribed by the International Maritime Organisation (IMO) in the revised guidelines for 

evacuation of passenger ships which came into force in June 2016 [2]. This came as a result 

of discussions at IMO, after the Costa Concordia accident [1]. 

Modelling the evacuation of people from any enclosed space, be it a building or a ship is a 

challenging and complex task. In most cases the analysis relies on computer models 

(simulation) of the people movements and interactions with their environment and the 

other evacuees. 

These powerful tools allow for a detailed representation of the environment (ship, building, 

etc. …) and the people specific characteristics and behaviour. A great deal can be learned by 

observing the simulations and their outcome such as overall evacuation time and bottle 

neck locations but this comes at a price: time. Setting up and running simulations is a very 

time consuming process and the bigger and more complex the ship or building is, the longer 

it takes.    

In situations when time is critical such as during emergencies and when a fast assessment 

of the evacuation time is needed, then relying on evacuation simulation tools might not be 

an option.  

In these situations, having a simplified model that can capture the different factors 

influencing the evacuation process and predict the total evacuation time would be a real 

advantage. 

The model might not be restricted to emergency situations. Any time a quick estimation of 

the overall evacuation time is needed, the model could be used. 

In the research presented here, an attempt to develop such a simplified model has been 

made. The process and methodology adopted as well as the obtained results are presented 

and explained throughout the chapters of this thesis. 
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The next section will outline the structure of the thesis and gives a brief description of each 

chapter.     

 

1.2 Structure of the thesis 

 

This thesis is organised in 9 chapters as follows: 

• Chapter 1: Introduction and Structure of the thesis 

This chapter outlines the overall structure of the thesis 

• Chapter 2: Scope and objectives 

The scope and objectives of the research are described in this chapter.  

• Chapter 3: Critical review 

This chapter provides an overview of the way evacuation simulation is modelled and the 

leading software tools available. It also discusses agent arrival processes. 

• Chapter 4: Evacuation software 

This chapter describes in more detail the evacuation software tool used to generate the 

data for this work.  

• Chapter 5: First approach and the proposed parametric model 

The different approaches considered during the development of the parametric model and 

the model adopted are explained in this chapter. 

• Chapter 6: Evacuation Data 

The data used in this research, how it was obtained and the requisite analysis are presented 

in this chapter. 

• Chapter 7: Batch fitting  

This chapter describes the fitting of the agent arrival batches for the available datasets. It 

also describes the generation of batches based on the results of the fitting. 
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• Chapter 8: Non-Homogeneous Poisson Process (NHPP) fitting  

Explaining the fitting of the NHPP and discussing its generation based on the results of the 

fitting is the subject of this chapter. 

• Chapter 9: Conclusion and future work 

Finally, this chapter concludes the thesis and discusses future work. 
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2 SCOPE AND OBJECTIVES 

 

2.1 General Remarks 

 

Evacuation simulation tools are very useful tools to assess ships in terms of the evacuation 

time. They are also used to identify areas of congestions and bottlenecks on-board. They 

can be used at the concept design stage to evaluate different options for example or help 

address potential problems. During operations, these can help with crew training for 

example but one area where evacuation simulation might not be of too much help is during 

an emergency situation on-board where the total evacuation time needs to be estimated 

and known in a matter of seconds.  Although computers are more and more powerful these 

days, for ships the size of the “Oasis of the seas”, for example, with more than 8000 people 

on-board, performing an evacuation simulation during a crisis when every second counts, 

would not be the way forward.    

2.2 Aim and objectives 

 

The aim of this thesis is to propose a newly developed parametric model for prediction of 

passengers evacuation time based on input from a large number of simulations as well as 

real data.   

In order to achieve this aim the following objectives are defined: 

• Propose a model that describes the evacuation process 

• Identify the parameters of the model based on data produced by the simulation 

software 

• Compare the result to a set of real data. 

2.3 Contribution 

 

The work presented here will contribute to improve the evacuation assessment by 

providing a fast evaluation of the evacuation time of a vessel in time of crises.  
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It is hoped that this research will open the door to a more in-depth analysis of simplified 

models of evacuation to be used in emergencies, for example as part of a decision support 

system on-board. 
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3 CRITICAL REVIEW 

 

3.1 General Remarks 

 

In this chapter some of the available evacuation simulation tools will be reviewed as well as 

the agent arrival processes and the methods to model these. 

3.2 Evacuation analysis software 

 

Following the introduction of the IMO guidelines for evacuation analysis [2] the use of 

advance evacuation analysis tools (computer based) in the maritime industry started being 

consistently used mainly for rule compliance but also for design and operation. 

There exists a number of different software for ship evacuation. These can be categorised 

as: flow models and agent-based models.  

The flow models address the problem at macroscopic level. People movements are 

modelled as flow through “pipes” in a graphical representation of the geometry. The 

second type of models, the agent-based models, considers the interaction between people 

and with the environment at a microscopic level. For this kind of models, the geometry is 

represented in detail.  

The first type of models is quite easy to implement and make use of network flow 

algorithms and methods, but fails to capture important aspects such as the interaction 

between agents like avoidance, group effect (where people tend to move as a group at the 

pace of the slowest member) or the counter-flow effect when people move in opposite 

directions. These aspects are accommodated by the second type of models. 

Another category of model, which combines both micro and macro level of planning is the 

mesoscopic models. At the micro-level, rules are in place to govern agents’ movements 

from way finding to avoidance strategies while at a macro-level there is the path planning 

process.   

Models can further be distinguished by their modelling of the environment (geometry) 

where some models are grid based and others model the environment as a continuum. 



21 

 

There exists a number of simulation software available on the market specific to the 

maritime field. Some of the agent-based models are briefly reviewed here. 

Maritime Exodus [5] was developed at the Fire Safety Engineering Group of the University 

of Greenwich and is part of the Exodus suite of software. The ship geometry is modelled as 

a grid and is specified automatically using a DXF file or manually using the interactive tools 

provided with the software. The software comprises five core interacting sub-models: the 

Passenger, Movement, Behaviour, Toxicity and Hazard sub-models. The motion and 

behaviour of each individual is determined by a set of heuristics or rules which are mostly 

stochastic. 

ANEAS [3] jointly developed by TraffGo-HT and GL (now DNV GL), is also a grid-based 

model. The software is based on PedGo [6] with additional functionalities for the use within 

the marine industry. PedGo has three components: an editor to construct the model, the 

simulation core and a viewer to visualise the simulation. 

Odigo [4], developed by Principia, models the ship as a continuum.  It is an integrated tool 

including a pre-processor, a simulation engine, and a post-processor. The simulation engine 

uses a multi-agent method of a cognitive/reactive hybrid type. The agent definition 

(features and starting position) are stochastically defined. The agents act upon objectives 

(join cabin, move to craft), which can be chained (succession of events). 

Finally, Evi which was developed by the Ship Stability Research Centre at the University of 

Strathclyde and Safety At Sea Ltd (now part of the Brookes Bell Group), which is used in this 

study and is presented in detail in a dedicated chapter of the thesis (Chapter 4).   

3.3 Non-Homogeneous Poisson Process (NHPP) 

 

This part of the chapter will focus on the arrival processes in general and on the Non-

Homogeneous Poisson Process (NHPP) in particular. 

Traditionally, arrival processes (people at bus stops, calls at call centres, etc.…) have been 

modelled using a Poisson distribution. When the rate of arrivals is constant, then a Poisson 

Process is used to model the arrivals. However, when the rate of arrivals changes over time 

then a non-homogeneous or sometimes referred to as non-stationary Poisson Process, is 
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more appropriate. The change in the arrival over time is defined by a rate or intensity 

function, which characterises the non-homogeneous Poisson Process. 

In other words, to be able to define a NHPP its rate function needs to be properly modelled. 

Modelling of the rate function can either be achieved through parametric or non-

parametric estimations. 

Leemis [7] proposed a non-parametric technique for estimating the cumulative intensity 

function of a NHPP for arrivals to queuing systems (but not limited to such arrivals) where 

the modeller is not required to specify any parameters or weighting functions.  

For parametric models, the rate function is modelled as a piecewise linear [8-9] or 

piecewise polynomial [10] function. Others, such as MacLean [11] proposed an exponential 

rate function estimated using maximum likelihood estimator. 

The work presented in this thesis uses a non-parametric method developed by Kuhl and 

Wilson [12]. The method is explained in detail in Chapter 5 and it is not further reviewed 

here. 

For completeness, a brief note on methods for the generation (simulation) of Non- 

Homogeneous Poisson Process is provided here. The main and widely used methods to 

generate a NHPP are the inverse method and the thinning method [15]. The inverse 

method (which is considered in this study) uses the inverse of the cumulative rate function 

to produce the events of the NHPP. The thinning method assumes that the intensity 

function has an upper constant bound. Arrival times are generated using the constant 

bound, then events are either rejected or accepted based on the thinning criterion. The 

interested reader is referred to Gerhardt and Nelson [16] and Devroye [17] for more 

details.      
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4 THE EVACUABILITY INDEX (EVI) SOFTWARE 

 

4.1 General Remarks 

 

The objective of this chapter is to present the background of the evacuation simulation tool 

Evacuability Index (Evi) used to produce part of the data needed to deliver this work.  

The advanced evacuation simulation software Evi is a commercial software developed at 

the Ship Stability Research Centre (SSRC) of the University of Strathclyde and maintained 

and commercialised by Brookes Bell Safety At Sea. 

This chapter will briefly introduce Evi notions as well as the IMO Guidelines for Evacuation 

analysis.  

4.2 IMO Guidelines for Evacuation Analysis 

 

For a better understanding of the work presented in this thesis and before describing Evi, 

there is a need to present some background notions related to the evacuation of ships and 

in particular the IMO guidelines for evacuation analysis.  

What follows is a very brief overview of the guidelines. The reader is referred to the IMO 

circular 1533 for more detail [2].    

Here and throughout this thesis, evacuation refers to the mustering process of passengers 

at Assembly (or Muster) Stations on-board.  

The IMO guidelines define the necessary information to perform an evacuation analysis of a 

passenger ship and explain the steps needed to perform the analysis. The Guidelines 

propose two methods to perform the analysis: the simplified method and the advanced 

evacuation analysis, which requires the use of computer tools. The advanced evacuation 

analysis, which is of interest in this work, is the subject of Annex 3 of the IMO circular. 

In order to perform an evacuation analysis, the ship geometry, topology and related 

semantics should be known prior to the start of such analysis and, in particular the escape 

routes and the location of the assembly (muster) stations. All this information will be used 

to build the ship model. 
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The Guidelines also make a number of assumptions as follows: 

• The passengers and crew are represented as unique individuals with specified individual 

abilities and response times; 

• Passengers and crew will evacuate via the main escape routes unless otherwise stated - 

full availability of escape arrangements is considered; 

• A safety factor having a value of 1.25 is introduced in the calculation to take account of 

modelling omissions and assumptions. These issues include: 

o The crew will immediately be at the evacuation duty stations ready to assist 

the passengers; 

o Passengers follow the signage system and crew instructions (i.e., route 

selection is not predicted by the analysis); 

o Smoke, heat and toxic fire products present in fire effluent are not 

considered to impact passenger/crew performance; 

o Family group behaviour is not considered in the analysis; and 

o Ship motion, heel, and trim are not considered.  

The requisite scenarios (benchmarks) for the analysis are defined as follows: 

• a night case scenario where all passengers are in their cabins,  

• a day case scenario where all passengers are in public spaces and  

• two other scenarios: one for day scenario and one for night scenario with reduced 

escape route availability.  

• Two additional scenarios that may be considered as appropriate:  

o if an open deck is outfitted and used by passengers, the open deck can be 

considered as a public space for the day case.  

o If embarkation stations are different from assembly stations, the analysis of 

travel duration from assembly stations to entry point of LSA should be 

taken into account.  

The evacuation time is calculated and then compared with the performance standards, 

which are: 

1.25�� � �	 � 23 �� � �	  � 

�� � �	  30	��� 
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Where: 

�: Response duration �: Travel duration �: Embarkation duration for the Life Saving Appliances �: Launching duration of the Life Saving Appliances �: 60 minutes for Ro-Ro passenger ships and for passenger ships with less than 3 Main 

Vertical Zones (MVZ).   

 80 minutes for ships with more than 3 MVZs 

 

4.3 Evacuability Index Software: Evi.  

4.3.1 Evi- Evacuation Simulation Tool 

 

Following the introduction of the IMO Guidelines and the background information needed 

to perform an evacuation analysis, this section will briefly describe Evi. 

Evi is an “agent” based evacuation simulation tool specifically tailored to ship environment, 

which incorporates the following aspects: 

• Multi-Agent modelling 

• Synchronisation 

• Modelling Human behaviour 

• Demographics.  

These are further explained below 

a) Multi-Agent Modelling 

An ‘agent’ is defined as an encapsulation of code and data, which is capable of executing 

independently the appropriate piece of code depending on its own state (the encapsulated 

data), the observables (the environment) and the stimuli (messages from other parts of the 

system or interactively provided).  

• The agent’s action model is a 'sense-decide-act' loop. 
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• The sense step is the interface of the agent with the data structures representing 

the environment.  

• The decision process requires access to the perceived information. It is an access 

interface between the environment and the agents. 

• An environment is defined to be an artificial representation of the space where 

agents evolve and is implemented as a collection of data structures in the 

computer.  

To address the modelling of human behaviour at the microscopic and macroscopic level, 

the agent model itself can be seen as being composed of a number of levels (Figure 4-1). 

 

Figure 4-1: Agent model 

At the highest level, an Objective defines agent task or desire. In order to fulfil this desire, 

the Objective requests a path plan (routing) to be calculated, which defines how an agent 

will advance from the current location to the destination. Once this data structure is in 

place, the agent will select a waypoint, an intermediate location to travel to, usually in 

direct line-of-sight from the agent (i.e. within a convex region). With a defined direction to 

travel to, defined by the waypoint, the agent will move towards that location using position 
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updating. In doing so, the agent will avoid the boundaries of spaces and other agents in the 

locality by taking account of environment and inter-agent conflicts. 

The different aspects of this model are discussed hereafter: 

I. The environment model 

Modelling of the environment is one of the most important aspects of multi-agent 

modelling. This consists of three aspects: geometry, topology and domain semantics. The 

whole ship layout is segmented into Euclidean convex regions with a structure of a linear 

space, directly connected if they have a common gate. This connectivity topology, for all 

computation and analysis purposes can be represented by a graph. 

In ship layout terms, regions correspond to spaces and gates correspond to doors. Regions 

can be defined as rectangular or convex polygons with attributes that control initial 

conditions and semantic information that agents may query when traversing through (such 

as initial number of persons, fire zone, destination, etc.).  

Two regions are called directly connected if they have a common gate (real or artificial 

doors). Regions can be located at different level entities, called decks, defined by the height 

above a reference level or baseline. The problem of finding the path of an agent to a 

muster point becomes reduced to searching the topology graph. 

The perception model of the agents will be able to use the information in these three 

abstractions at different levels of the decision processes.  

A first exhaustive search over the gate graph is used in Evi to choose the optimal path 

(shortest path) to be used for high level planning activities.  

II. Mesoscopic Modelling  

When an agent travels along a route it will have to interact with other agents along the 

route and react to the surrounding environment. The Macroscopic modelling addresses the 

problem of how agents may find their way from one part of the ship environment to 

another (high-level planning), and the Microscopic modelling considers how individuals 

interact with the environment within close proximity (low-level planning). Mesoscopic 

modelling accounts for both. 
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III. Microscopic behaviour:  

The microscopic model covers the behaviour of movement of agents within spaces. It 

dictates the way agents avoid boundaries of spaces and how to avoid other agents. Given 

these constraints, the objective is to steer the agent towards a local destination (waypoint) 

in an optimal manner without being uncooperative towards the other agents in the space. 

IV. High level planning: Path planning and graph search 

The path-planning algorithm computes the distance from the Assembly station to all the 

doors in the graph in a pre-processing phase (before the actual simulation starts) and the 

information about the distance is stored with each door. 

When an agent is located in a region, the distance information from each door of the region 

can be obtained, thus allowing the agent to use the shortest path leading to the destination 

area. Re-planning during the evacuation is still possible if for some reason the path is 

blocked.  

V. Low level planning: Steering of agents 

Pursuit of a static target acts to steer the agent towards a specified position in global space. 

This behaviour adjusts the agent so that the velocity is radially aligned towards the target. 

The “desired velocity” is a vector in the direction from the agent to the target representing 

global “flow speed”, adjusted on the basis of local density. 

The steering vector is the difference between the desired velocity and the agent’s current 

velocity. In the absence of any obstacle or other evacuees, every agent will “flow” along the 

evacuation route i.e. it will be passing through the gates unobstructed. Otherwise 

avoidance heuristics are used to avoid collision with the neighbouring agents and obstacles 

present along the evacuation path. 

b) Synchronisation  

One of the most important aspects of the microscopic behaviour algorithms is the 

synchronisation between agents. Considering the total number of agents in the simulation 

of an evacuation scenario in e.g., large passenger ships, updating each one of them at the 

same time would require substantial parallel processing of the information.  
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In Evi the update process is performed in two steps as follows:  

• First Step 

In the first step, the Perception–Decision Phase where all agents calculate / update their 

information using one environment state but do not move (they perceive the update in 

parallel). This is further explained hereafter. 

Perception phase:  

The perception algorithm checks the space (in the form of discreet directions see Figure 

4-2) around the agent for boundaries and other agents.  

 

Figure 4-2: Searching directions. Agents are represented by the blue circles 

The calculation stops if a direction is found where the agent can progress without breaching 

any walls or interfering with other agents.  

Decision phase:  

The decision algorithm uses a rational rule-based process to select the action to take for the 

current time step. The decision process makes use of information on the previous time step 

combined with information acquired from the Perception algorithm.  

Before entering the decision process, the algorithm first gathers state information from the 

current environment that may affect the perception process. This includes update of the 

desired travel direction, consideration of the current waypoint and selection of the current 

maximum speed.  

• Second Step: 

In the second step, the action phase is where agents carry out their calculated / updated 

actions. 

Speed of advance 
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Each agent is assigned a walking speed represented by a random variable according to its 

age and gender (this aspect is discussed in more detail in the section about demographics 

below). During the simulation the speed is adjusted to the density of the crowd in the 

region as defined in the IMO guidelines [2]. The crowd density corresponding to an evacuee 

in an escape route describes the number of persons divided by the available escape route 

area pertinent to the space where the evacuee is located. As the model geometry is 

reproduced to exact measurements of the actual vessel, the density calculations are 

deemed to be very accurate.  

Additionally, when long queues form, the effect on speed of advance is calculated 

rigorously on the basis of the queue length. 

c) Modelling human behaviour 

There is a large number of parameters that are likely to affect the evolution and the 

outcome of an evacuation scenario. Some are related to the population profile (number, 

age, gender, persons of impaired mobility and so on), passenger distribution (spatial and 

temporal) and crew number, distribution and functionality in any given crisis. Others are 

related to behavioural aspects. 

Within Evi, people on-board are treated as agents moving in a “command” and “decision” 

structure where agents representing passengers are mainly controlled with two objectives 

(tasks): 

• The “Evacuate” objective (default objective) is used to assign an assembly station to an 

agent and control the route it takes to get there.  

• The “Lost” objective is applied to passenger agents when they are modelled as lost, as 

part of the initial conditions of the scenario. Lost agents will select exit doors randomly. 

This behaviour continues until route information is found from the environment or a 

crew member.  

Agents representing Crew have a wider range of objectives:  

• The Control objective is used to model crew procedural activities such as Stairway 

Guiding. The objective has the effect that passengers near the controlling agent 

crew increase their speed and any lost agents are directed to an assembly station.  
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• The Search objective is used to model crew travelling around the environment 

making passenger agents aware of the evacuation. This behaviour reduces 

passengers’ awareness (reaction) time.  

• The Inspect Clear objective is similar to the Search objective except that the crew 

agent will wait until all passenger agents have left the space before proceeding to 

the next space to be searched. 

• The Re Route objective is used to direct passenger agents to alternative routes. 

In addition to these objectives, a messaging system exists which provides a way for agents 

to communicate between them. 

Through messaging, crew agents can directly affect the behaviour of passenger agents. 

For example, a passenger agent will receive information about the location of the muster 

station from crew members or about alternative routes to use. 

Passenger agents can also send messages to other passenger agents informing them of the 

presence of a blocked door. 

Two forms of messages are supported: 

i. Local verbal messages are broadcast at the location of the sending agent and travel for 

only a short distance, controlled by the range distribution for passengers and crew 

separately.  

ii. System wide messages are broadcast at the centre of all spaces and have an unlimited 

range of travel (represents PA system for example). 

d) Demographics:  

All parameters related to human decision or action, are modelled as random variables with 

user-defined probability distributions. Variables such as awareness/response time, gender 

and walking speed are referred to as demographics. 

During simulations, Monte-Carlo sampling is carried out to derive the values of response 

time and walking speed for each agent taking part in the simulation. 
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The IMO guidelines define the population demographics as follows: 

Passengers groups Percentage of passengers (%) 

Females younger than 30 years 7 

Females 30-50 years old 7 

Females older than 50 years 16 

Females older than 50 years mobility impaired 1 10 

Females older than 50 years mobility impaired 2 10 

Males younger than 30 years 7 

Males 30-50 years old 7 

Males older than 50 years 16 

Males older than 50 years mobility impaired 1 10 

Males older than 50 years mobility impaired 2 10 

  

Crew groups Percentage of crew (%) 

Crew females 50 

Crew males 50 

Table 4-1: Composition of population (age and gender) 

 

The reaction time is defined by the following log normal distribution. 

For the Night cases: 

� � 1.01875√2�	0.84�� � 400	��� �� �ln�� � 400	 � 3.95	"2 # 0.84" $ 
And  400 % � % 700 

For the Day cases: 

� � 1.00808√2�	0.94� ��� �� �ln��	 � 3.44	"2 # 0.94" $ 
and  0 % � % 300 
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Walking speeds are defined per age group for flat terrain and up and down the stairs as a 

uniform distribution, min and max of which are as follows: 

1) For flat terrain 

 

Walking speed (m/s) 

Passengers groups Min Max 

Females younger than 30 years 0.93 1.55 

Females 30-50 years old 0.71 1.19 

Females older than 50 years 0.56 0.94 

Females older than 50 years mobility impaired 1 0.43 0.71 

Females older than 50 years mobility impaired 2 0.37 0.61 

Males younger than 30 years 1.11 1.85 

Males 30-50 years old 0.97 1.62 

Males older than 50 years 0.84 1.4 

Males older than 50 years mobility impaired 1 0.64 1.06 

Males older than 50 years mobility impaired 2 0.55 0.91 

 

  

Crew groups Min Max 

Crew females 0.93 1.55 

Crew males 1.11 1.85 

Table 4-2: Min and max values of the uniform distribution for walking speed on flat terrain per 

population group 
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2) For stairs 

Walking speed 

Down (m/s) 

Walking speed Up 

(m/s) 

Passengers groups Min Max Min Max 

Females younger than 30 years 0.56 0.94 0.47 0.79 

Females 30-50 years old 0.49 0.81 0.44 0.74 

Females older than 50 years 0.45 0.75 0.37 0.61 

Females older than 50 years mobility impaired 1 0.34 0.56 0.28 0.46 

Females older than 50 years mobility impaired 2 0.29 0.49 0.23 0.39 

Males younger than 30 years 0.76 1.26 0.5 0.84 

Males 30-50 years old 0.64 1.07 0.47 0.79 

Males older than 50 years 0.5 0.84 0.38 0.64 

Males older than 50 years mobility impaired 1 0.38 0.64 0.29 0.49 

Males older than 50 years mobility impaired 2 0.33 0.55 0.25 0.41 

Crew groups Min Max Min Max 

Crew females 0.56 0.94 0.47 0.79 

Crew males 0.76 1.26 0.5 0.84 

Table 4-3: Min and max values of the uniform distribution for walking up and down stairs per 

population group 

These values have been used in the simulations performed for this work. 

If or when different values are used, this will be explained and defined. 

4.3.2 Evacuability Index 

For the purpose of undertaking evacuation analysis, a number of performance measures 

can be evaluated, such as time for a group of persons to clear a particular area or time for 

all agents to complete assembly.  

Considering the above, Evacuability is defined to be the ability to complete a specific 

objective (for example to evacuate a ship environment) within a given time for given initial 

conditions as follows: 

E � f(env, d, r�t	, s�n0	; t2 
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where: 

env: represents the ship model (geometry, topology, semantics) 

d: initial distribution (spatial location) of the people on-board, 

r�t	: initial reaction time of people on-board (cue perception, interpretation of instructions, ...) 

s�n0	: walking speed of individual people 

4.3.3 Additional Features of Evi 

 

Evi software offers the capability of assessing the impact of hazards associated with 

flooding and fire.  

Time histories of ship motions and flood water in the ship compartmentation from time-

domain flooding simulation tools can be imported into Evi. The impact of ship motions and 

floodwater on the agents is modelled by applying walking speed reduction coefficients that 

are functions of the inclination of the escape routes due to heel and/or trim of the ship, 

generated by the damage [20, 18]. 

In terms of fire hazards, Evi is capable of importing fire hazards information from fire 

analysis tools such as Fire Dynamics Simulator (FDS) [19]. Fire hazards are described in the 

form of parameters such as temperature, heat fluxes, concentration of toxic gases (such as 

CO, CO2) and oxygen, smoke density, visibility, etc.  

Including these two hazards was out of the scope of the work completed in this thesis. 

Taking into account their effects can be the subject of future work. 
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5 FIRST APPROACH AND THE PROPOSED PARAMETRIC 

MODEL  

 

5.1 General Remarks    

 

The evaluation of a ship evacuation process is either based on real drills or on model 

simulations. The research presented in this thesis attempts to develop a method to 

estimate the ship evacuation time, based on real data and simulated data using Evi 

software, to be incorporated in a decision support system to be used at the design stage 

and for design planning to improve the ship safety and make the evacuation more efficient. 

To achieve this goal, it is important to (a) study the evacuation process as discussed in 

Chapter 4 and to (b) use the evacuation curves estimated from the different simulations for 

ship evacuation processes (that are ship types dependent). 

The methodology to estimate the required time for a ship evacuation is explained in this 

chapter. 

5.2 First parametric model 

 

Predictions of ship evacuation time usually are obtained from running a simulation or by 

measurements on-board (drills). Both are time consuming. Without an effective and fast 

predictive capability method to estimate the evacuation time, the use of such simulation 

models and full-scale trials cannot be avoided. 

The first approach considered to assess the ship evacuation time, using data from the 

simulated evacuation curves was the use of a sigmoid function 

With the evacuation curves having a typical “S” shape, the sigmoid function was the 

obvious choice. 

There exist different formulae of the sigmoid curve. The formulation that produced to best 

agreement with the evacuation curves produced by Evi is the function given by (Eq. 5-1) 

[21] the shape of which can be seen in Figure 5-1: 
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� � 45 � 46 �451 � exp	�� �� � �9	 :; 	 Eq. 5-1 

Where: 

45: Is the point of intersection of the curve and the Y axis  46: Asymptotic value when � → ∞  �9: Is the inflexion point of the curve :: Is the difference between �>  and �?    

 

 

Figure 5-1: Sigmoid function 

For the purpose of the work and for the set of data available, the initial parameters values 

were taken to be: 

45 � 0 46 � @A@BC	�D�E�F	AG	�BHH��I�FH	A�EABFJ �9 � ��JJC�	AG	@���	��@�FKBC : � C��I@L	AG	��@�FKBC	M@N/P, @Q/PR where @N/P and @Q/P are times of the first and third 

quarters of the total time interval of the evacuation  

 

:46

45 �> �?�9
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With the exception of 45 , all the parameters above have been adjusted during the fitting 

process to obtain the best fit.  

The sigmoid defined by (Eq. 5-1) produced good results (�" � 0.993) in terms of fitting the 

data produced by the simulations although the sigmoid tends to overestimate the number 

of passengers at the muster stations at the beginning of the simulation as can be seen in 

(Figure 5-2). 

Initially, the function proposed seemed to give a good estimation of the evacuation time 

compared with the simulation model (Evi), but a closer look at the residual for the curve 

fitting (Figure 5-3) showed trends in the residuals (no random relationship) meaning that an 

underlying phenomenon is not captured by the proposed fitting model.  

 

Figure 5-2: Example of fitting results for the sigmoid curve 
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Figure 5-3: Plot of residual for fitting evacuation curve with a sigmoid function 

In order to obtain a better fitting, it was then decided to extend the study and investigate 

other approaches that could be used to estimate the evacuation time. The approach that 

has been selected is discussed in the following section. 

 

5.3 Proposed parametric model 

 

As explained above, the first approach using a sigmoid function was not conclusive even 

though the fitting seemed fine at first sight. Other models were then investigated.  

In a real situation, an evacuation can be seen as an arrival process to the muster station of 

the people on-board the ship. Mathematically speaking, an arrival process to a specific 

location can be modelled using Poisson Processes. 

In probability theory, the Poisson process is widely used to model random points in time. 

A Poisson process is defined as a counting process (counting of occurrences of events 

overtime) as follows [22]: 
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A stochastic process (S�@	: @ T 02 is a Poisson process if: 

1. S�0	 � 0 

2. For 0 � @9 % @N % ⋯ % @V , 

S�@N	 � S�@9	, S�@"	 � S�@N	,⋯ , S�@V	 � S�@VWN	 are independent 

3. There is a function	X�@	 called intensity function or instantaneous arrival rate 

at time @, such that for a small L: 

Y�S�@ � L	 � S�@	 � 1	 � LX�@	 � 	Z�L	 Eq. 5-2 

Y�S�@ � L	 � S�@	 T 2	 � Z�L	 Eq. 5-3 

Where Z�L	 is a number whose magnitude is smaller than that of  L. 

X�@	 is nonnegative integrable function and the corresponding mean value function is given 

by: 

[�@	 � �MS�@	R � \ X�]	dz,∀t T 0	6
9  

Eq. 5-4 

If X�@	 is a positive constant, the Poisson process is called Homogeneous Poisson Process 

with rate X. 

. . 

For processes where the arrival rate is a function of time, the Poisson process is called Non-

Homogeneous Poisson Process (NHPP) or Non-Stationary Poisson Process (NSPP). In the 

rest of the thesis the first terminology will be used. 

When analysing the simulation data, it was clear that the arrival rate of the agents in the 

muster station was not constant. As such a homogeneous Poisson process could not be 

used as a model for the data (see Figure 5-4 for example of arrival rates). 
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Figure 5-4: Example of arrival rates for different interval lengths (10s, 20s and 30s) for the same 

evacuation data 

The arrivals at muster stations within a specific time interval [@> , @?] will be independent 

from (not influenced by) the arrivals at the muster stations during another time interval 

[@` , @a] with � b c b d b C, as arrivals will be governed by the initial positions of agents, the 

reaction time and walking speed which follow random probability distributions. 

Another characteristic of the arrivals at the muster stations was the fact that people arrive 

at the muster stations in groups or batches where the size of the group varies from 1 to n 

(where the maximum value of n is the total number of people on-board).  

To account for both these features the model selected to represent the data is a Batch 

Non-Homogeneous Poisson Process (BNHPP) arrival model. 
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The BNHPP arrival model can be decomposed into two distinct models: modelling the 

number of passengers arriving in each batch and modelling the arrival events. These two 

problems can be addressed independently. 

5.3.1 Batch arrivals 

 

Let e�D� be a discrete random variable representing the number of passengers per batch 

arriving at the muster stations.  

Batch sizes can be modelled by a Geometric distribution. Thus: 

 e�D�~g�A���	  
and its probability mass function is given by: 

Y�e�D� � d	 � ��1 � �	`WN , d T 1 Eq. 5-5 

The parameter of the probability function will be derived from the data during the fitting 

process. 

5.3.2 Non-Homogenous Poisson Process 

 

A Non-Homogenous Poisson Process (NHPP) is completely characterised by its rate or mean 

value function. A number of methods parametric and non-parametric exist to estimate the 

rate function of NHPP from arrival data. 

A first model for the rate function was used; the sum of exponential functions of the form: 

X�@	 � B�56 � h�i6  Eq. 5-6 

 

Where B, E, h, J are parameters to be estimated. 

The result of the fit was good in terms of R
2
 and also visually but the residuals did not 

exhibit a random pattern as can be seen in the figure below. 
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Figure 5-5: Example of fit using sum of exponential for rate function 

The reason for the poor fit is that in order to use conventional regression analysis, the 

response needs to be independent, normally distributed with a constant variance, which is 

not the case for NHPP observations.      

The following model developed by Kuhl and Wilson [12-14] is the model used in Chapter 8 

to find a fit to the rate function. It is explained in the rest of this section. The model 

description is largely based on [14].  

The objective is to fit the mean-value function of the NHPP to a single realisation of 

observed arrivals over the interval (0, S]. The following semiparametric model is proposed:  

[�@	 � [�j	��@	, ∀@ ∈ �0, jR Eq. 5-7 

 

Where ��@	 is a non-decreasing function representing the cumulative proportion of arrivals 

up to time t.  
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A uniformly accurate approximation to the function ��@	 can be achieved using a 

polynomial of sufficiently high degree r with the special following form: 

��@	 � lm
n@ j; ,																																																																						F � 1
op`q@ j; r`sWN
`tN �u1 �op`sWN

`tN vq@ j; rs, F w 1 

 

Eq. 5-8 

 

The coefficient vector xs �	�pN, ⋯ , psWN	 is constrained so that �′�@	 T 0, ∀@ ∈ �0, jR 
The form of the above equation ensures that ��0	 � 0 and ��j	 � 1 for all values of xs. 

To estimate the function ��@	, the following procedure is applied: 

• Transform the data using a variance-stabilising transformation; 

• For the transformed data, estimate the degree r of the best-fitting polynomial using 

a modified likelihood ratio test; and 

• Given the polynomial degree r, estimate the vector xs  by applying the method of 

least squares to the original arrival data. 

Let z> � � {�j	;  be the cumulative proportional arrivals up to time @�>	 of the i
th

 arrival for 

� � 1, 2, … ,{�j	. 
 

The variance stabilising transformation for � � 1,… ,{�j	is of the form: 

}> �	H��WNq~z>r Eq. 5-9 

 

Arrival times are also scaled as follows: 

�> � @> j;  Eq. 5-10 

 

For the transformed points [}> , �> 	], the aim is to fit the statistical model �M}>R � 	 Gs��>;	�s	 

such that: 
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Gs�D; �s	 �
l�m
�n�2 D,																																																																						F � 1
o�`D`sWN
`tN �u�2 �o�`sWN

`tN vDs,																							F w 1 

 

Eq. 5-11 

 

 

For D ∈ M0,1R and �s is the coefficient vector: 

 

�s ≡ �� 2; 																																								�G	F � 1M�N,… , �sWNR� 																							�G	F w 1 
 

Eq. 5-12 

 

   

Subject to the constraint G′s�D;	�s	 T 0. 

 

The vector �s is estimated via constrained least square for successive values of r for the 

transformed data set of size  � � {�j	: 
 

��s � BFI	 min���:���q�;	���r�9o�}> � Gsq�>; 	��sr�"�
>tN  

 

Eq. 5-13 

 

The error sum of squares for F T 2	is given by: 

jj�s �o�}> � Gsq�>;	��sr�"�
>tN  

 

Eq. 5-14 

For F � 1,  

jj�N �o�}> � ��2�� � 1	�"
�
>tN  

 

Eq. 5-15 

Let ��s" be the estimator of the response variance for each r, given by: 

��s" �	jj�F�  
Eq. 5-16 
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And let 

}� � 	∑ }��>tN�  
Eq. 5-17 

 

  then the total sum of squares is given by: 

jj� �oM}> � }�R"�
>tN  

 

Eq. 5-18 

 

The final estimate of r is given by: 

F̃ � �1																																															�G	 jj�1 jj� % 0.01	AF	�  2⁄
min �F: F T 2;�� ln� ��s"��sWN" �  �NW�" �1	� � 1 																		�CH� 

 

Eq. 5-19 

 

For a significance level   and �NW�" �1	 is the 1 �   quantile of the chi-squared distribution 

with 1 degree of freedom. 

Once the degree F̃ is determined the vector xs̃  is estimated by solving the least squares 

problem with the original data: 

x� s̃ � BFI	 minx�F�:�′FqD;	x�F�rT0o�z� ��Fq@;	x� F�r�2�
��1  

 

Eq. 5-20 

For F̃ ≥2 and if F̃ � 1, then  x�N � 	pN � 1. 

The estimator of the mean value function is thus, 

[��@	 � {�j	�q@, F̃, x� s̃r∀@ ∈ �0, jR Eq. 5-21 

and the estimated rate function 

X¡�@	 � [�′�@		∀@ ∈ �0, jR Eq. 5-22 
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6 EVACUATION DATA  

 

6.1 General Remarks  

 

This chapter presents the data produced and used to derive the Non Homogenous Poisson 

Process (NHPP) Models. At the beginning of the study, it was planned to only use simulated 

data because of the lack of any other ship evacuation data. Later on, the author was 

involved in the EU FP7-funded project SAFEGUAD [23] and it was decided to include the 

datasets produced by the project in the present study. 

Two different data sets were used for the analysis described in this chapter:  

• evacuation simulation data produced by the simulation software Evi and  

• trial data obtained from evacuation drills on-board two different passenger ships 

performed during the SAFEGUARD project. 

This chapter is organised as follows: 

• Discussion on the quality of the data 

• Presentation and description of the evacuation simulation data  

• Analysis of the simulated data 

• Presentation and description of the real data 

• Analysis of the real data. 

Details are presented in the following sections. 

6.2 Data quality 

 

When using data to build a model, it should be kept in mind that the quality of the data will 

have an impact on the accuracy and prediction capability of the resulting model. So before 

proceeding with the description and analysis of both the simulated and real data, a brief 

discussion on the quality of the data is needed. 

By definition simulation data is the result of an interpretation (model) of the reality. Thus, it 

will suffer from a number of shortcomings such as model simplifications, coding 

implantation, error propagation and (pseudo) random generation of numbers. 
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Real or trial data are not exempt from errors or weaknesses either. They can suffer from 

errors due to the data collection methods, might not be replicated as a number of 

parameters cannot be controlled or are limited in terms of the entities that can be 

measured.  

For example, in the case of the real data that has been used in this work, in one of the trials 

an unknown number of people decided to take part in the drill at the last minute so they 

were not provided with tracking devices.  Their arrival times at the muster stations could 

not be accounted for but they had an influence on the overall mustering process. This has 

introduced uncertainties which are hard to assess. 

Uncertainty quantification of both the simulation and real data is outside the scope of this 

work and data quality and its impact on the resulting stochastic model have not been 

investigated further. Nevertheless, when interpreting the results of the model fitting and 

then the generation of the batches as well as the NHPP, this was taken into account to a 

certain degree.  

6.3 Ship model 

 

This section describes the ship model used to produce the simulated data. 

The ship, the model of which was used in the evacuation simulation, is a 166m ROPAX 

vessel carrying up to 1800 passengers and 137 crew members. The ship characteristics are 

given in Table 6-1 below: 

Length Overall (m) 166.1 

Length between perpendiculars (m) 150 

Moulded beam (m) 29 

Maximum draught (m) 6.78 

Displacement (tonnes) 16 939 

Number of passenger 1 800 

Number beds 1 601 

Number of cars 510 

Total crew 137 

Table 6-1: ship particulars 
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For confidentiality reasons, the general arrangement of the ship cannot be shown. Instead 

a brief description of the different decks is given below. 

• Deck 2 has crew cabins and crew recreation areas (sauna, swimming pool and gym).  

• Deck 3 (upper and lower) is the car deck.  

• Deck 4 is an accommodation deck and contains disable passengers cabins. The gang 

ways are also situated on this deck.  

• Deck 5 and Deck 6 are also accommodations decks with very similar layout.  

• On Deck 7 there are public spaces with shops, casino, bars, the galley and crew 

mess.  

• The main restaurant is on Deck 8, with the 1
st

 level of the auditorium, crew cabins 

and the crew recreation room.  

• On Deck 9 there is the second level of the auditorium, cinema and projection 

rooms.  

• Deck 10 has the sundeck, bar and lounge, crew cabins (officers) and some crew 

spaces (sauna, offices,…).  

• On Deck 11, there is the bridge and the helicopter landing area.  

• Deck 12 is the wheel house top.  

In addition, there are three (03) muster stations on-board the ship:  

• two (02) muster stations are located on deck 7: the “Gaming area” and the 

“Bar” muster stations and  

• one (01) on deck 8 the “Restaurant” muster station.  

Each space on-board is assigned a muster station. Passengers would then go to the 

muster station assigned to the space they would find themselves in. 

Figure 6-1 below shows the Evi model of the ship (profile and deck layout). Areas in pink in 

Figure 6-2 show the muster stations in the Evi model of the ship. 
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Figure 6-1: Evi model of the ROPAX ship used for the study 

 

Figure 6-2: Location of the muster stations on-board the ship 
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6.4 Simulation setting 

 

In order to derive a parametric model of the simulation process a number of simulations 

have been performed.  The IMO [2] primary scenarios have been used in this study. 

6.4.1 IMO Scenarios 

 

The IMO night and day cases are summarised hereafter. A detailed description can be 

found in [2]. 

Case 1 (primary evacuation case, night) 

• All passengers are in cabins with maximum berthing capacity fully occupied;  

• Two thirds (2/3) of crew members in their cabins;  

• Of the remaining 1/3 of crew members: 

o 50% should be initially located in service spaces and behave as passengers 

having walking speed and reaction time as defined in the IMO guidelines and 

presented in Chapter 4; 

o 25% should be located at their emergency stations and should not be explicitly 

modelled; and 

o 25% should be initially located at the assembly stations and should proceed 

towards to the most distant passenger cabin assigned to that assembly station 

in counterflow with evacuees;  

 

Case 2 (primary evacuation case, day) 

• Public spaces are occupied to 75% of maximum capacity of the spaces by 

passengers. Crew will be distributed as follows: 

• 1/3 of the crew, initially distributed in their cabins, will behave as passengers with 

crew’s walking speeds and reaction times; 

• 1/3 of the crew, initially distributed in the public spaces, will behave as passengers 

with crew’s walking speeds and reaction times; 

• The remaining 1/3 should be distributed as follows: 

o 50% should be located in service spaces; 
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o 25% should be located at their emergency stations and should not be explicitly 

modelled; and 

o 25% should be initially located at the assembly stations and should proceed 

towards to the most distant passenger cabin assigned to that assembly station 

in counterflow with evacuees;  

Cases 3 and 4 (secondary evacuation case, night and day) 

In these cases, only the main vertical zone, which generates the longest assembly time, is 

further investigated. These cases utilise the same population demographics as in case 1 (for 

case 3) and as in case 2 (for case 4).  

The secondary cases were not simulated in the context of this thesis. There are mentioned 

here only for completeness. 

6.4.2 Parameters of the simulated scenarios 

 

In the different scenarios considered in this work, the following elements were varied: 

• Time of day 

• Passengers loads 

• Reaction time 

• Walking speed 

The variations were considered as follows: 

1. Day scenarios and Night scenarios for the 1
st

 parameter 

2. The second parameter, passenger load, varied from 10% to 100% with an increment of 

10% of the total number of passengers who could be carried on-board. It was assumed 

that crew numbers would stay the same in all scenarios. 

3. The reaction time was set to a fixed value (0s) for all agents and then to the reaction 

time as defined in the IMO guidelines (log normal distribution) for both night and day 

scenarios. 

4. Walking speed was set to a fixed value then to the IMO defined values for walking 

speed. 



53 

 

The following are the numbers of scenarios considered for which simulations have been 

performed: 

• For a fixed speed and varying reaction time, 10 passenger loads for the day case, 

and 10 passengers load for the night case, 

• For a varying speed and a fixed reaction time, 10 passenger loads for the day case, 

and 10 passengers loads for the night case, 

• For a varying speed and a varying reaction time, 10 passenger loads for the day 

case, and 10 passengers loads for the night case. 

• For a fixed speed and fixed reaction time, 10 passenger loads for the day case, and 

10 passengers load for the night case, 

This gives a total number of 80 scenarios, where each of the scenarios has been simulated 

100 times.  

The simulation produces an evacuation curve where the arrival time of the passenger 

agents to the muster station is recorded. Here the arrivals are aggregated for all the muster 

stations. Arrival at individual muster stations was not studied for this part of the work as 

this information was not available. Arrival at individual muster stations was analysed for the 

trial data as will be detailed in the dedicated section later in this chapter.  

6.5 Analysis of the simulated data 

 

The data generated from the 8000 individual runs was analysed in terms of batch sizes 

(number of people arriving at the muster stations at the same time) and he number of 

arrivals as these two aspects characterise the arrival process to be modelled. 

In the following subsections, analysis of the data for the simulated Day and Night cases is 

presented. 

6.5.1 Analysis of the batch sizes and events count for the Day cases 

 

The Day scenarios are defined as Random Day case (random speed and random reaction 

time), Fixed Reaction Day case (random speed), Fixed Speed Day case (random reaction) 

and Fixed Speed and Fixed Reaction Day case. The results of each case are presented 

below.  
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As the minimum value that a batch size can take is 1, the interested focuses in the max 

value of the batch sizes which are shown hereafter. 

6.5.1.1 Day Random 

 

For the Day Random the maximum and minimum values over a hundred runs per 

passengers load, of the Max batch size value are shown in the graph below. 

As can be seen in Figure 6-3 there is quite a large variation in the size of the batches over 

the runs and per passengers load. 

 

Figure 6-3: Variation of max and min values of the maximum batch size for the day case per 

passengers load. 

The number of events over the simulation runs per passengers loads does not vary as 

much. The difference between the minimum and maximum number of events is quite small 

as can be seen in Figure 6-4 below. 
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Figure 6-4: Variation of number of events in the simulation runs for the day case per passengers 

load. 

 

6.5.1.2 Day Fixed Reaction 

 

For the Day Fixed Reaction case, very similar results are obtained. There is quite a large 

variation between the min and max values of the maximum batch size and a small variation 

between the min and max values of the number of events as can be seen in Figure 6-5 and 

Figure 6-6. 
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Figure 6-5: Variation of max and min values of the maximum batch size for the day case with fixed 

reaction per passengers load. 

 

 

Figure 6-6: Variation of number of events in the simulation runs for the day with fixed reaction 

case per passengers load 
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6.5.1.3 Day Fixed Speed 

 

Results for the Day Fixed Speed case are very similar to the previous cases as can be seen in 

Figure 6-7 and Figure 6-8 below. 

 

Figure 6-7: Variation of max and min values of the maximum batch size for the day case with fixed 

speed per passengers load. 

 

Figure 6-8: Variation of number of events in the simulation runs for the day with fixed speed case 

per passengers load 
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6.5.1.4 Day Fixed Speed and Fixed Reaction 

 

Finally, for the Day Fixed Speed and Fixed Reaction case, the results are shown in Figure 

6-9 and Figure 6-10. 

 

Figure 6-9: Variation of max and min values of the maximum batch size for the day case with fixed 

speed and reaction per passengers load. 

 

Figure 6-10: Variation of number of events in the simulation runs for the day with fixed speed and 

reaction case per passengers load 
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Here again results are very similar to the previous ones.  

6.5.1.5 Summary 

 

As expected, the number of events (arrivals at the muster stations) increases linearly with 

the passengers load and this is regardless of the speed or reaction time being random or 

fixed.  

As can be seen in Table 6-2 below, for passengers load below 50%, the max number of 

events for both the “Fixed Speed and Reaction” and “Fixed Reaction” cases are very similar. 

The difference starts to be more significant for loads higher than 50%.  

For the “Day Random” and the “Fixed Speed” cases, the max numbers of events are similar 

for loads below 30% and above 70%. In between the difference in the max number of 

events between these two cases is bigger.  

For the minimum number of events, the trends are also very similar. The results for the 

“Day Random” case and the “Fixed Speed” case are close together and the ones for the 

“Fixed Speed and Reaction” and “Fixed Reaction” cases are close together.  

 

 Max Number of Events Min Number of Events 

% Pax 

Load 

Day 

rando

m 

Fixed 

Reaction 

Fixed 

speed 

Fixed 

Speed + 

Reaction 

Day 

random 

Fixed 

Reaction 

Fixed 

speed 

Fixed Speed 

+ Reaction 

10 240 181 234 183 209 164 212 170 

20 305 252 310 242 292 226 287 229 

30 380 314 377 309 355 288 334 277 

40 446 373 423 372 414 347 390 331 

50 505 425 485 434 467 395 444 391 

60 558 491 525 469 523 454 492 446 

70 612 550 592 543 575 510 544 494 

80 697 622 643 605 628 568 589 538 

90 722 682 717 653 667 621 646 586 

100 767 741 761 705 722 670 681 649 

Table 6-2: Max and min number of events for different passengers loads and for the different day 

cases. 
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6.5.2 Analysis of the simulated data for the Night cases  

 

The analysis of the batch size and the number of events per evacuation simulation as 

produced by the simulations for the night case are presented hereafter. 

The Night scenarios are defined as Random Night case (random speed and random reaction 

time), Fixed Reaction Night case (random speed), Fixed Speed Night case (random reaction) 

and Fixed Speed and Fixed Reaction Night case. The results of each case are presented 

below.  

Similarly to the day case, we are only interested in the maximum value of the batch sizes. 

6.5.2.1 Night Random 

 

The maximum and minimum values over a hundred runs per passengers load, of the Max 

batch size value are shown in the graph below, for the Night Random case. 

 

Figure 6-11: Variation of the min and max values of the maximum batch size per passengers load 

for the night case 
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constant at a value of 8 for loads bigger than 80% but it is worth noting that at 70% 

passengers load if it was not for the drop in the batch size by one unit, the maximum value 

could have been constant from 60% passenger load. 

The number of events over the simulation runs per passengers loads does not vary as 

much. The difference between the minimum and maximum number of events is quite small 

as can be seen in Figure 6-12 below with the exception of the 100% load where a “jump” 

can be observed for the maximum number of events. 

 

Figure 6-12: Variation of the min and max values of the number of events per passengers load for 

the Night case. 

 

6.5.2.2 Night Fixed Reaction 
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from a 50% load as can be seen in Figure 6-13. 
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As can be seen in Figure 6-14, there is not much difference between the min and max 

number of events.  

 

Figure 6-13Variation of the min and max values of the maximum batch size per passengers load for 

the night fixed reaction case 

 

 

Figure 6-14: Variation of the min and max values of the number of events per passengers load for 

the Night fixed reaction case 
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6.5.2.3 Night Fixed Speed 

 

For the Night Fixed Speed case, there is still a significant difference between the min and 

max values of the maximum batch size as can be seen in Figure 6-15. For this case the 

minimum value of the max batch size is constant starting from 50 % load. For the max 

value, it is constant for loads bigger than 60% with a slight “dip” at 90% loads. 

The difference between the min and max values of the number of events is not very 

significant as can be seen in Figure 6-16.  

 

Figure 6-15: Variation of the min and max values of the maximum batch size per passengers load 

for the night fixed speed case 
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Figure 6-16: Variation of the min and max values of the number of events per passengers load for 

the Night fixed speed case 
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Figure 6-17: Variation of the min and max values of the maximum batch size per passengers load 

for the night fixed speed and reaction case 

 

Figure 6-18: Variation of the min and max values of the number of events per passengers load for 

the Night fixed speed and reaction case 
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6.5.2.5 Summary  

 

Similarly to the Day cases, the number of events (arrivals at muster stations) increases 

linearly with the passengers load and this is not affected by the speed or reaction time 

being random or fixed.  

As can be seen in Table 6-3 below, the max numbers of events for all cases are quite similar. 

Notice that the results for the “Night Random” and “Fixed Reaction” cases could be 

grouped together as their ranges are comparable. The same can be said of the results for 

the “Fixed Speed” and “Fixed Speed and Reaction”.  

For the minimum number of events, the trends are also very similar. The results for the 

“Night Random” case and the “Fixed Reaction” fall within similar ranges. The same is 

applicable to the results for the “Fixed Speed and Reaction” and “Fixed Speed” cases. 

 Max Number of Events Min Number of Events 

% Pax 

Load 

Night 

rando

m 

Fixed 

Reaction 

Fixed 

speed 

Fixed 

Speed + 

Reaction 

Night 

random 

Fixed 

Reaction 

Fixed 

speed 

Fixed Speed 

+ Reaction 

10 250 234 239 225 225 210 217 200 

20 352 346 331 326 326 316 298 296 

30 437 425 416 425 408 393 380 371 

40 531 528 511 496 486 476 457 448 

50 626 612 596 595 579 578 532 546 

60 715 720 669 708 668 671 611 639 

70 797 819 759 764 758 755 701 715 

80 919 916 865 867 863 858 794 800 

90 978 996 957 962 936 934 870 886 

100 1265 1086 1050 1046 1040 1028 964 963 

Table 6-3: Max and min number of events for different passengers loads and for the different night 

cases 
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6.5.3 Discussion 

 

The above results show that for the Max batch size, the Day cases show more randomness 

in the results than the Night cases. The maximum and minimum values of the Max Batch 

size are also bigger for the Day cases (up to 19 for Day cases and 8 for the Night cases for 

max values and up to 11 for the Day cases and 5 for the Night cases for minimum values). 

This leads to less events happening but more people in each batch. For the Night case, the 

opposite happens, where more events are happening but at smaller batch sizes. 

This could be explained by the fact that for the Night cases, all passengers start from the 

cabins and there is very little randomness in the starting location of the passengers from 

one simulation run to the other. In contrast for the Day cases, passengers are located in 

public spaces and can be spread out throughout the ship. In addition, some of those public 

spaces are muster stations meaning that some passengers might already be in their 

assigned muster station explaining bigger batch sizes. 

 

6.6 Real data  

 

The data presented and analysed in this section has been produced by the FP7, EU-funded 

project Safeguard (2009-2012), the aim of which was to propose new benchmark scenarios 

for the evacuation analysis of passenger ships. During the project a number of assembly 

drills on-board a large RO-PAX ferry and a Cruise Ship were carried out.  

Passengers who took part wore Infrared (IR) tags so their starting and ending locations as 

well as their arrival times were recorded by means of a number of beacons located at 

different positions on-board.  Video cameras were also used to record the drills and extract 

reaction times.  

This has produced two data sets: The Safeguard Validation Data Sets (SGVDS), SGVDS1 and 

SGVDS2 for the large RO-PAX ferry and the Cruise Ship, respectively. These datasets were 

made public and can be accessed at this address:  
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http://fseg.gre.ac.uk/validation/ship_evacuation (last accessed on September 2016). They 

can be used to assess evacuation simulation tools [23-26].  

In the context of this thesis, the data is analysed from the point of view of the arrival 

processes. In addition, the author (who participated in the project) contributed to the 

generation of Evi simulations corresponding to the actual drill and so had access to this 

data, which is also analysed in the context of this thesis and allows for a comparison with 

the real data. 

The datasets are briefly described in the following subsections. More details can be found 

in [23-26]. 

6.6.1 SGDVS1  

 

The information provided in this subsection is largely taken from [27]. 

The dataset was collected on-board a large RoPax Ferry which layout is shown in Figure 

6-19 below. Only three decks were used in the drills. 

The ship has four (04) muster stations A, B, C and D. They are shown below (Figure 6-20). 
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Figure 6-19: RoPax layout- taken from [27] 

 

 

Figure 6-20: Location of RoPax Muster Stations - taken from [27] 

During the drills 764 passengers took part and wore the IR tracking device. As taking part 

was not compulsory 569 decided not to participate and so were not given tags. Eventually a 
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large proportion of the 569 took part. It was not possible to determine how many of them 

did the drill so it was assumed that 250 additional passengers took part. When simulations 

were set for this dataset, the 250 additional passengers were added to the simulation as 

being part of the overall population but were not included in the analysis of the assembly 

station arrival curves and the total assembly times. The gender, age and walking speed 

distributions were defined according to the IMO Guidelines [2]. 

 

The starting locations of the passengers are shown in Figure 6-21. 

 

 

Figure 6-21: Stating locations of the passengers during the drill on-board the RoPax Ferry - taken 

from [27] 
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Passengers distribution per space and their final distribution is shown in Table 6-4 and 

Table 6-5 for the passengers who wore tracking devices and those who didn’t respectively. 

 

Starting Location of Population 

with IR Tags 

Total number of 

agents starting in 

each area 

End locations- 

Muster Stations 

A B C D 

Deck 3- Seating 77 2 45 6 24 

Deck 2 - Bar 39 0 9 30 0 

Deck 2 - Seating 4 0 0 2 2 

Deck 2 - General area 35 6 22 0 7 

Muster Station D 145 5 1 0 139 

Deck 2 - Restaurant 190 43 0 0 147 

Deck 1 - Bar 30 3 19 19 0 

Muster Station C 34 3 2 28 1 

Deck 1- General area 35 2 28 5 0 

Muster Station B 30 3 37 1 1 

Muster Station A 99 80 13 1 5 

Deck 1- Shop 7 7 0 0 0 

Deck 1- Lockers 16 3 3 10 0 

Total arriving at each Muster 

Station 157 179 102 326 

Table 6-4: Number and starting location for the passengers wearing IR tags. RoPax Ferry- Adapted 

from [27] 
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Starting Location of Population 

without IR Tags 

Total number of 

agents starting 

in each area 

End locations- 

Muster Stations 

A B C D 

Deck 3- Seating 30 6 14 2 8 

Deck 2 - Bar 13 0 3 10 0 

Deck 2 - Seating 1 0 0 0 1 

Deck 2 - General area 11 2 7 0 2 

Muster Station D 46 2 0 0 44 

Deck 2 - Restaurant 61 14 0 0 47 

Deck 1 - Bar 18 2 7 9 0 

Muster Station C 11 1 1 9 0 

Deck 1- General area 11 1 8 2 0 

Muster Station B 13 1 12 0 0 

Muster Station A 32 26 4 0 2 

Deck 1- Shop 2 2 0 0 0 

Deck 1- Lockers 1 0 1 0 0 

Total arriving at each Muster 

Station  57 57 32 104 

Table 6-5: Number and starting location for the passengers not wearing IR tags. RoPax Ferry- 

Adapted from [27] 

Reaction times of the passengers were extracted from video footage. The probability 

distribution (log normal) is given by the following equation: 

 

� � 1√2�	�� ��� �� �ln��	 � [	"2�" $ 
Where: ���  �  �B� 

 

 

 

 



73 

 

The values of the parameters were different per area and are defined as follows: 

Location Min Max µ ¢ 

Airline seating (A) 0 145.64 3.413 0.608 

Bar Area (B) 0 402.4 3.432 0.924 

General Ares (G) 0 311 4.019 1.032 

Restaurant Area (R) 0 259.56 3.796 0.847 

Retail/ Shopping area (S) 0 104.8 2.479 0.89 

 

The different starting locations had the following reaction times allocated to them. 

Starting Location Reaction time distributions 

Deck 3- Seating A 

Deck 2 - Bar B 

Deck 2 - Seating A 

Deck 2 - General area G 

Muster Station D R 

Deck 2 - Restaurant R 

Deck 1 - Bar B 

Muster Station C G 

Deck 1- General area G 

Muster Station B G 

Muster Station A G 

Deck 1- Shop S 

Deck 1- Lockers G 

 

Each muster station has an arrival curve associated to it. In addition, an overall arrival curve 

is also available.  

6.6.2 SGDVS2 

 

The information provided in this subsection is largely taken from [28]. 
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The dataset was collected on-board a Cruise Vessel which layout is shown in Figure 6-22 

below. Twelve (12) decks were used during the drills. 

 
 

Figure 6-22: Cruise ship layout- taken from [28] 

The vessel has four (04) Muster Stations: A, B, C and D. They are shown below (Figure 6-23). 

 

Figure 6-23: Location of Cruise ship Muster Stations - taken from [28] 

During the drills 1779 passengers took part and wore the IR tracking device.  

The gender, age and walking speed distributions were defined according to the IMO 

Guidelines [2] in the simulations corresponding to this dataset. 
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Passengers distribution per space and their final distribution are shown in Table 6-6 

 

Starting Location 

End locations- Muster 

Stations 

A B C D 

Deck 12 0 6 2 0 

Deck 11 Amidships 6 11 7 10 

Deck 11 Other 16 14 14 12 

Deck 10 Restaurant 129 126 103 65 

Deck 10 Other 24 52 30 16 

Deck 9 Aft Portside Cabins 1 5 12 13 

Deck 9 Aft starboard side Cabins 0 10 2 14 

Deck 9 Other 11 25 10 1 

Deck 8 Aft Portside Cabins 0 4 14 35 

Deck 8 Aft Starboard side Cabins 0 17 8 22 

Deck 8 Other 25 21 7 0 

Deck 7 Aft Portside Cabins 1 5 10 24 

Deck 7 Aft Starboard side Cabins 0 22 3 6 

Deck 7 Other 30 11 14 0 

Deck 6 Aft Portside Cabins 0 4 11 22 

Deck 6 Aft Starboard side Cabins 0 13 4 11 

Deck 6 Other 33 19 20 2 

AS D 4 3 6 14 

Deck 5 Other 9 4 5 7 

AS C 2 0 3 0 

AS B 1 14 0 0 

Deck 4 Other 18 31 28 25 

AS A 5 0 0 0 

Deck 3 Restaurant 46 43 56 52 

Deck 3 Other 13 58 15 0 

Deck 2 Aft Portside Cabins 0 0 18 7 

Deck 2 Aft Starboard side Cabins 1 11 8 1 

Deck 2 Other 25 45 15 2 

Deck 1 2 1 12 4 

Total 402 575 437 365 

Table 6-6: Number and starting location for the passengers on-board the Cruise ship- Adapted 

from [28] 

Like for SGVDS1, passengers reaction times were extracted from video footage. A global 

probability distribution was derived given by the following equation: 
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� � 1√2�	0.89� ��� �� �ln��	 � 5.012	"2�0.89	" $ 
Where: 0  �  1379 

Each muster station has an arrival curve associated to it. In addition, an overall arrival curve 

is also available.  

6.6.3 Analysis of the real data: SGVDS1 dataset   

 

The analysis of the number and size of batches of the SGDVS1 data set showed the 

following results  

Events count Max Batch Size 

Muster A 66 2 

Muster B 102 4 

Muster C 55 3 

Muster D 115 6 

Overall 223 8 

Table 6-7: Event counts and max batch size for SGVDS1 dataset 

 

6.6.3.1 Corresponding evacuation simulation runs. 

 

When simulating evacuation of passengers corresponding to this dataset, to account for the 

passengers who took part in the drill and did not wear tracking devices as explained in the 

subsection describing SGVDS1, three scenarios were considered as follows; 

• Scenario A: Passengers are sent to their assigned muster stations using regional 

response time. 

• Scenario B: As scenario A, but with global reaction time distribution  

• Scenario C: Passengers assemble in the nearest muster stations using regional 

reaction time distributions.  

Passengers distribution over the ship is as described earlier. 
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Each scenario was runs 50 times. The analysis of the simulation runs is presented hereafter. 

The events count “N” and the maximum value of the batch sizes “Max BatchSize” for each 

scenario are shown in Table 6-8 to Table 6-10 below. 

Scenario A 

N Max BatchSize 

Mean Min Max Mean Min Max 

Muster A 72.1 66 75 2.18 2 3 

Muster B 126.42 118 128 2.52 2 4 

Muster C 69.44 64 72 2.16 2 3 

Muster D 158.24 148 167 2.94 2 4 

Overall 308.02 289 316 5.12 4 8 

Table 6-8: Statistics of the events count and max batch size for the Scenario A simulations for 

SGVDS1 

 

Scenario B 

N Max BatchSize 

Mean Min Max Mean Min Max 

Muster A 72.32 68 77 2.14 1 3 

Muster B 126.82 120 130 2.52 2 3 

Muster C 69.54 63 71 2.1 2 4 

Muster D 158.58 146 162 3 2 4 

Overall 310.5 292 330 5.1 4 6 

Table 6-9: Statistics of the events count and max batch size for the Scenario B simulations for 

SGVDS1 

 

Scenario C 

N Max BatchSize 

Mean Min Max Mean Min Max 

Muster A 6.88 5 7 1.1 1 2 

Muster B 83.58 79 85 2.14 2 3 

Muster C 76.86 74 78 2.18 2 3 

Muster D 206.72 192 215 3.46 3 5 

Overall 287.38 271 295 4.82 4 6 

Table 6-10: Statistics of the events count and max batch size for the Scenario C simulations for 

SGVDS1 
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When compared to the trial data, the events count obtained through simulations are 

overestimating those of the trial data for all scenarios as can be seen in Figure 6-24 to 

Figure 6-26 below. 

 

Figure 6-24: Comparison of the events count from simulation results with the trial data per muster 

station for scenario A 
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Figure 6-25: Comparison of the events count from simulation results with the trial data per muster 

station for scenario B 

 

Figure 6-26: Comparison of the events count from simulation results with the trial data per muster 

station for scenario C 
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For the max batch size, the simulation results tend to underestimate the max batch size 

when compared to the trial data as can be seen in Figure 6-27 to Figure 6-29 below.

 

Figure 6-27: Comparison of the max batch size values from simulation results with the trial data 

per muster station for scenario A 

 

Figure 6-28: Comparison of the max batch size values from simulation results with the trial data 

per muster station for scenario B 
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Figure 6-29: Comparison of the max batch size values from simulation results with the trial data 

per muster station for scenario C 

 

Results for scenarios A and B are almost identical. The only difference between the two 

scenarios is the response time. In scenario A, regional response times are used whereas in 

scenario B global response times are used.  

This could mean in this case that the impact of the response time on the arrival process 

(events count and batch size) is negligible. 

As expected scenario C produces the results with the most significant differences when 

compared to the real data and this is because, agents would go to the nearest muster 

station instead of their designated muster station upsetting the events counts at the 

individual muster stations. Observing the overall arrival process only, then scenario C would 

provide the closest estimate in terms of event counts. 
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6.6.4 Analysis of the real data: SGVDS2 dataset   

 

The analysis of the number and size of batches of the SGDVS2 data set showed the 

following results. 

Events count Max Batch Size 

Muster A 320 4 

Muster B 398 5 

Muster C 345 4 

Muster D 273 3 

Overall 790 8 

Table 6-11: Event counts and max batch size for SGVDS2 dataset 

 

6.6.4.1 Corresponding evacuation simulation runs. 

 

For this dataset, the simulation scenario was run 50 times. Passengers distribution over the 

ship and their reaction time is as described in the subsection describing SGVDS2 dataset. 

The events count and the batch sizes statistics over the 50 runs are shown in Table 6-12 

below. 

 

N Max BatchSize 

Mean Min Max Mean Min Max 

Muster A 366.86 354 374 2.88 2 4 

Muster B 505.04 488 519 3.06 2 4 

Muster C 396.72 385 403 2.86 2 4 

Muster D 331.9 319 337 2.18 2 3 

Overall 1181.12 1145 1198 5.56 5 7 

Table 6-12: Statistics of the events count and max batch size for simulation for SGVDS2 
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Figure 6-30: Comparison of the events count from simulation results with the trial data per muster 

station for SGDVS2 

 

Figure 6-31: Comparison of the max batch size values from simulation results with the trial data 

per muster station for SGVDS2 
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Similarly to SGDVS1 results, the event counts from the simulation runs tend to 

overestimate the ones obtained from the trial dataset whereas the max batch size value is 

under estimated in the simulation runs. 

6.6.5 Discussion 

 

It was not expected that the simulations would provide an exact replication of the arrival 

processes. Differences in arrival times at muster stations are hence expected.   

In the present case, Evi simulations predicted more arrivals with smaller batch sizes than 

the actual data and this is consistent for both datasets and all the muster stations. 

At this stage it is not possible to say whether the simulations would have been able to 

reproduce the real arrival processes as too many parameters are unknown. Only the 

reaction times and initial locations of the people were known and like in the case of 

SGDVS1 even those elements were uncertain. In addition, only one trial per set was done. 

This is not enough to capture the variability of the different parameters influencing the 

evacuation process. 

Based on the previous results, it seems that the maximum value of the batch size produced 

by the simulations provides a fairly good estimate of the real data. 

Regarding the event counts, the minimum value produced by the simulations would be the 

closest to the actual values.   

   

6.7 Concluding remarks 

 

This chapter has presented the results of the analysis of the datasets used in this study to 

derive the simplified model for the evacuation process. 

The following parameters were considered to build the evacuation simulation dataset, the 

first to be analysed: 

• Time (day/night) 

• Passenger’s loads 
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• Speed 

• Reaction time 

The results showed that passenger’s loads, as expected, are proportional to the number of 

event counts (arrivals at the muster stations) regardless of the time (day or night), speed or 

reaction time. 

The impact of the time could be seen in the number of arrivals and the batch sizes. For the 

day case scenarios regardless of speed or reaction time, bigger batch sizes with fewer 

arrivals are observed while the opposite is true for the night cases. Smaller batch sizes with 

more frequent arrivals were observed. 

For the day cases, the reaction time when random produced slightly higher number of 

arrivals (smaller batch sizes) regardless of passenger’s loads or speed. This is to be expected 

as passengers starting at different times will tend to arrive at different times hence more 

arrivals. 

For the night cases, no clear impact of the reaction time or speed can be seen as results in 

all cases are quite similar. 

The second set analysed was the data obtained from drills on-board a large RO-PAX ferry 

and a cruise ship as part of the SAFEGUARD project.  

The data corresponding to the actual drills on-board both vessels (SGVDS1 for the ferry and 

SGVDS2 for the cruise ship) were analysed and compared to their corresponding 

simulations obtained using Evi. 

In the context in which the trial data was collected (quantity and type), it would have been 

extremely difficult to reproduce the results via simulation with the available information. 

Also having only one dataset per ship does not allow for any statistical analysis. 

The results of the comparison between the real data and their corresponding simulations 

showed that the simulations tended to predict more arrivals with smaller batch sizes then 

what was observed in the trial data. 
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7 BATCH FITTING 

 

7.1 General Remarks  

 

As introduced in Chapter 5, the arrival process at the muster stations is characterised by the 

size of the batches and the actual arrivals. 

In this chapter, the data produced by the simulations as well as the real data will be used to 

produce the fitted model of the batch sizes. 

The results of the fitting will be presented.  

Simulation of the batch sizes using the fitted parametric model will then be explained and 

compared to the original data. 

 

7.2 Batch fitting 

 

The batch arrivals of agents to the muster station, has been fitted to a geometric 

distribution with the probability mass function given by: 

Y�e�D� � d	 � ��1 � �	`WN , d T 1 Eq. 7-1 

Both the simulated data and the SAFEGUARD datasets (trial data and corresponding 

simulations) were analysed. 

 

7.2.1 Batch fitting: Simulated data 

 

For each simulation of the 8 000 runs produced, the arrivals data was used to derive the 

value of the parameter � of the geometric distribution. In each case, the fitting showed a 

good agreement with the initial data (R
2
 =0.99). The value of	�  was averaged over the 100 

runs per passengers loads and the coefficient of variation hAK � £¤  which represents a 
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measure of data spread was very low meaning that there was very little dispersion of the 

data.  

The results are presented for the Day and Night cases separately in the following 

subsections. 

7.2.1.1 Day cases results 

 

The results of the day cases fitting of � are summarised in Table 7-1 below. For each case 

the average value of � and the hAK are provided. 

It has been noticed that for the smallest population load the parameter � does not vary too 

much between its min and max values (2.39% change only). The percentage change starts 

to be significant for population loads of 30% and more as can be seen in Figure 7-1 below.   

 

Day random Fixed Reaction Fixed speed Fixed Speed +Reaction 

% population Average � hAK Average p hAK Average p hAK Average p hAK 

10 0.6892 4.22% 0.6853 4.20% 0.6890 3.75% 0.7016 3.68% 

20 0.5835 3.86% 0.6270 5.05% 0.5620 3.49% 0.6025 4.40% 

30 0.5164 4.12% 0.5837 3.86% 0.4800 3.80% 0.5519 4.49% 

40 0.4754 3.45% 0.5648 4.02% 0.4367 4.06% 0.5277 4.51% 

50 0.4501 3.96% 0.5428 3.80% 0.4153 5.26% 0.5189 4.72% 

60 0.4356 4.46% 0.5312 4.44% 0.4079 6.16% 0.5090 4.73% 

70 0.4302 4.78% 0.5235 4.19% 0.3976 6.40% 0.5011 4.40% 

80 0.4293 5.51% 0.5158 3.82% 0.4010 6.14% 0.4965 4.81% 

90 0.4195 5.14% 0.5148 4.28% 0.4017 6.26% 0.4909 5.17% 

100 0.4172 4.58% 0.5029 3.50% 0.4042 6.49% 0.4929 4.81% 

Table 7-1: Fitting of geometric distribution parameter. Results for day case 
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Figure 7-1: Percentage change (from min to max) in the value of the geometric distribution 

parameters with varying population loads for the day scenarios. 

 

For all loads greater than 10%, the lowest value of � is achieved for the scenario with fixed 

speed. The highest value is obtained for scenarios when the reaction time is fixed. In 

addition, the probability of having bigger batch sizes decreases more rapidly when the 

speed is fixed. The slowest decrease in the probability of having big batch sizes is achieved 

in scenarios with fixed reaction time (see Figure 7-2 below for example of probability 

changes with batch sizes for a 20% passengers load).  

This could be explained by the fact that in scenarios where the reaction time is fixed, all 

agents start at the same time creating more opportunities for a number of agents to arrive 

at the muster station at the same time. In the scenario where the speed is fixed, the 

reaction time is random so agents start their movements at different times allowing for 

more spread in the arrivals at the muster station and thus more frequent batches of smaller 
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Figure 7-2: Changes of probability values for batch sizes for a day scenario for a 20% passengers 

load. 

 

For the lowest load of passengers i.e. 10% the lowest value of � is obtained in the scenario 

with fixed reaction times whereas the highest value is obtained for the fixed speed and 

fixed reaction time scenarios although the difference is quite small. For this low load of 

passengers all scenarios have very similar results in term of probabilities of batch sizes. This 

could be explained by the fact that the number of agents in the simulation is very small 
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Night random Fixed Reaction Fixed speed Fixed Speed +Reaction 

% population Average p cov Average p cov Average p cov Average p cov 

10 0.7392 3.72% 0.6895 4.16% 0.7085 3.80% 0.6541 5.09% 

20 0.6672 3.55% 0.6349 4.24% 0.5933 3.96% 0.6030 3.77% 

30 0.5861 3.05% 0.5677 3.66% 0.5404 4.15% 0.5412 4.39% 

40 0.5469 3.68% 0.5323 3.60% 0.5047 4.23% 0.4996 4.32% 

50 0.5305 3.68% 0.5252 3.03% 0.4836 4.08% 0.4960 3.76% 

60 0.5220 3.34% 0.5175 2.81% 0.4493 3.56% 0.4825 3.74% 

70 0.5081 3.09% 0.5034 3.06% 0.4549 4.75% 0.4673 3.49% 

80 0.5092 3.12% 0.5077 2.79% 0.4591 4.02% 0.4703 3.57% 

90 0.4889 2.75% 0.4905 3.15% 0.4423 4.07% 0.4519 3.54% 

100 0.4929 4.43% 0.4869 2.99% 0.4479 3.63% 0.4504 3.56% 

Table 7-2: Fitting of geometric distribution parameter. Results for night case 

 

Figure 7-3: Percentage change (from min to max) in the value of the geometric distribution 

parameters with varying population loads for the night scenarios. 
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compared (� � 0.4889 for the random speed and reaction time scenario and � � 0.4905 for 

the fixed reaction scenario). 

The lowest values of � are mostly achieved for the fixed speed scenario. Only for 

passengers loads of 10% and 40%, the lowest values of � are achieved for the fixed speed 

and fixed reaction scenarios. The difference is very small between the two scenarios for the 

40% passengers load (1% difference).  

The probability of having bigger batch sizes decreases more rapidly for the fixed speed 

scenarios. A slowest decrease is observed for scenarios with random speed and reaction 

times (see Figure 7-4 below). Like for the Day cases, a fixed speed and random reaction 

time could lead to a bigger spread in the arrivals because of different starting times. 

 

Figure 7-4: Changes of probability values for batch sizes for a night scenario for a 20% passengers 

load. 
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7.3 Simulating the batch sizes: simulated data 

 

Having derived the parameter of the geometric distribution from the simulated data, the 

generation of batches using the fitted model uses the inverse of the geometric distribution 

given by the following equation: 

eB@hL> � § ln D>ln�1 � �	¨ Eq. 7-2 

 

where D> is a realisation of the uniform distribution on M0,1R and � the parameter of the 

geometric distribution. 

The algorithm to generate the batches of the NHPP is as follows: 

1. For a value of nb_events  

2. For a value of P. 

3. For i=1 to nb_events D>= random (0,1) 

batchi=© ª« �¬ª«�NW	®  
End for 

 

To help decide how best to choose the parameters “nb_events” and “P”, a closer look at 

the results presented in the previous section was taken. 

The results showed that the parameter of the geometric distribution for the batch sizes 

varies with the passenger loads and the type of scenarios (day/night, random, fixed speed, 

fixed reaction and fixed speed and reaction).  

A summary of the average value of the parameter � of the geometric distribution per 

passenger load and the associated maximum and minimum values of the events count and 

max batch size as derived from the simulation data, are summarised in Appendix I, in Table 

I-1 to Table I-4 for the Days cases (Day Random, Fixed Reaction, Fixed Speed and Fixed 

Speed and Reaction cases, respectively) and in Table I-5 to Table I-8 for the Night cases 
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(Night Random, Fixed Reaction, Fixed Speed and Fixed Speed and Reaction cases, 

respectively). 

First it was decided to take both “nb_events” and “P” equal to the average value obtained 

from the data. This produced sometimes large percentage changes when compared to the 

original data. It was then decided to have one of the parameter follow a random 

distribution and the other one having a fixed value. This did not improve much the results. 

Finally, it was assumed that the parameter of the geometric distribution � follows a Normal 

distribution with parameters [ and � and that the number of event counts � also follows 

a Normal distribution with parameters [V and �V.  

The algorithm then becomes: 

1. nb_events = realisation of �~{�[V, �V	 
2. P= realisation of �~{q[, �r 

3. For i=1 to nb_events D>= random (0,1) 

batchi=© ª« �¬ª«�NW	®  
End for 

 

Fifty, a hundred and a thousand simulations of the above algorithm were run for each of 

the ten (10) passengers load and each of the four (04) cases for the Day and Night scenarios 

for a total of 92000 simulation runs (50 # 10 # 4 # 2 � 100 # 10 # 4 # 2 � 1000# 10 #4 # 2). 

The event counts and the max batch size generated using the fitted model were analysed 

and compared to the original data.  

For clarity, only the results for the 50 runs set are shown below. The results of the hundred 

and thousand runs set are in Appendix II. 

7.3.1 Day cases results  
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This subsection presents the results of the day cases (random, fixed speed, fixed reaction 

and fixed speed and reaction). First the event counts results are presented then the max 

batch size ones.  

The graphs below show the number of events count simulated versus original per 

passenger load for the Day case random, Day case Fixed Reaction time, Day case Fixed 

Speed and Day case Fixed Speed and Reaction cases (Figure 7-5 to Figure 7-8 respectively).    

 

Figure 7-5: Events counts: simulated vs original for Day case Random 
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Figure 7-6: Events counts: simulated vs original for Day fixed reaction 

 

 

Figure 7-7: Events counts: simulated vs original for Day fixed speed 
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Figure 7-8: Events counts: simulated vs original for Day fixed speed and reaction case 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

A
xi

s 
T

it
le

Passengers's loads (%)

Statistics of event counts: Simulated vs Original for the Day Fixed  Speed and 

Reaction case

N_mean_Sim

N_Min_Sim

N_max_Sim

N_mean

N_Min



97 

 

Max batch size  

 

Figure 7-9: Max batch size statistics: simulated vs original for the Day random case 

 

Figure 7-10: Max batch size statistics: simulated vs original for the Day fixed reaction case 
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Figure 7-11: Max batch size statistics: simulated vs original for the Day fixed speed case 

 

Figure 7-12: Max batch size statistics: simulated vs original for the Day fixed speed and reaction 

case 
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7.3.2 Night cases results 

 

The results of the Night Cases are presented in this subsection. First the event counts then 

the max batch sizes. 

The graphs below show the number of events count simulated versus original per 

passenger load for the Night case Random, Night case Fixed Reaction time, Night case Fixed 

Speed and Night case Fixed Speed and Reaction cases (Figure 7-13 to Figure 7-16 

respectively).    

 

Figure 7-13: Events counts: simulated vs original for Night case 
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Figure 7-14: Events counts: simulated vs original for Night fixed reaction 

 

Figure 7-15: Events counts: simulated vs original for Night fixed speed 
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Figure 7-16: Events counts: simulated vs original for night fixed speed and reaction 
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Max batch size 

 

Figure 7-17: Max batch size statistics: simulated vs original for the Night random case 

 

Figure 7-18: Max batch size statistics: simulated vs original for the Night fixed reaction case 
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Figure 7-19: Max batch size statistics: simulated vs original for the Night fixed speed case 

 

Figure 7-20: Max batch size statistics: simulated vs original for the Night fixed speed and reaction 

case 
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graphs where the solid blue and red line representing the mean original and simulated 

number, are very close to each other. The min and max values of the events counts for the 

simulated data also have very good agreement with the original min and max values across 

all cases. 

A closer look at the results shows that on average the absolute percentage changes in the 

values of the min and max for the events count does not decrease when the number of 

simulations performed increases. For example for the night cases, the averages of the 

absolute percentage changes per case are shown in Table 7-3 below. Minimum values are 

highlighted. 

Number of runs N_mean N_Min N_max 

Night random 

 

50 runs 0.21% 1.23% 2.16% 

100 runs 0.08% 1.26% 2.80% 

1000 runs 0.06% 1.74% 3.91% 

Night fixed reaction 

 

50 runs 0.21% 1.29% 1.20% 

100 runs 0.18% 0.78% 1.41% 

1000 runs 0.03% 1.39% 3.07% 

Night fixed speed 

 

50 runs 0.32% 1.14% 0.80% 

100 runs 0.18% 1.32% 1.97% 

1000 runs 0.05% 1.73% 3.16% 

Night fixed speed and reaction 

 

50 runs 0.23% 2.40% 1.69% 

100 runs 0.20% 1.45% 2.59% 

1000 runs 0.06% 1.43% 3.79% 

Table 7-3: Average absolute percentage change for the different night cases for the events count 

 

There does not seem to be a clear pattern for the minimum number of event counts but 

the average absolute percentage change for the max number seems to constantly be less 

for the 50 runs. 
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For the Day cases results are shown below. 

 

Number of runs N_mean N_Min N_max 

Day random 

 

50 runs 0.24% 0.99% 1.64% 

100 runs 0.10% 0.78% 1.62% 

1000 runs 0.06% 1.38% 3.20% 

Day fixed reaction 

 

50 runs 0.30% 1.46% 1.81% 

100 runs 0.11% 1.25% 2.14% 

1000 runs 0.04% 1.90% 3.46% 

Day fixed speed 

 

50 runs 0.29% 1.46% 2.59% 

100 runs 0.15% 0.76% 1.91% 

1000 runs 0.05% 1.23% 3.64% 

Day fixed speed and reaction 

 

50 runs 0.23% 1.26% 2.17% 

100 runs 0.20% 0.61% 2.01% 

1000 runs 0.07% 1.24% 3.66% 

Table 7-4: Average absolute percentage change for the different Day cases for the events count 

In this case there is more consistency in the results as the 100 runs seems to produce the 

minimum absolute percentage change for both the min and max values of the events count 

across all the day cases. 

It seems then reasonable to have the number of events count follow a normal distribution 

with parameters [ and � obtained from the original data. 

For the max batch size, there is much more randomness in the results (as Figure 7-9 to 

Figure 7-12 and Figure 7-17 to Figure 7-20  show) and the percentage changes are very 

high, especially for the night cases.  

Table 7-5 and Table 7-6 below summarise the average absolute percentage changes in the 

statistics of the max batch sizes for the night and day cases respectively. 

For the Night scenarios, almost all cases show the same pattern where the minimum 

percentage change in the mean and max value of the max batch size is achieved for the 50 

runs simulations, whereas for the min value of the max batch size the minimum percentage 

change is achieved for the 100 runs simulations. 
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For the day scenarios, the pattern is not as clear as for the night scenarios but in most 

cases, the minimum percentage change of the max and min value of the max batch size is 

achieved for the 50 runs simulations.    

 Number of runs 

MaxBatch 

mean 

MaxBatch  

Min 

MaxBatch 

Max 

Night random 

 

50 runs 44.65% 31.33% 64.52% 

100 runs 46.61% 27.33% 95.11% 

1000 runs 46.60% 16.33% 121.16% 

Night fixed reaction 

 

50 runs 45.51% 24.50% 74.94% 

100 runs 50.49% 24.50% 102.87% 

1000 runs 47.79% 17.83% 117.46% 

Night fixed speed 

 

50 runs 67.43% 41.50% 106.81% 

100 runs 68.91% 44.83% 118.04% 

1000 runs 68.55% 34.33% 171.96% 

Night fixed speed and reaction 

 

50 runs 66.51% 34.50% 99.23% 

100 runs 65.42% 28.50% 105.12% 

1000 runs 67.07% 25.00% 171.19% 

Table 7-5: Average absolute percentage change for the different Night cases for the max batch size 
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Number of runs 

MaxBatch 

mean 

MaxBatch 

Min 

MaxBatch 

Max 

Day random 

 

50 runs 12.29% 4.56% 32.38% 

100 runs 11.64% 10.72% 24.10% 

1000 runs 12.55% 13.74% 57.57% 

Day fixed reaction 

 

50 runs 4.46% 9.94% 16.05% 

100 runs 5.34% 12.86% 25.94% 

1000 runs 4.96% 19.29% 51.59% 

Day fixed speed 

 

50 runs 25.31% 14.10% 44.47% 

100 runs 22.50% 11.52% 60.27% 

1000 runs 22.57% 15.71% 92.83% 

Day fixed speed and reaction 

 

50 runs 9.41% 11.11% 16.81% 

100 runs 9.24% 17.37% 32.77% 

1000 runs 7.95% 21.14% 60.82% 

Table 7-6: Average absolute percentage change for the different Day cases for the max batch size 

7.3.4 Conclusion 

 

In order to simulate batch sizes for an arrival process, both the number of events and the 

parameter of the geometric distribution need to be known in advance. The results 

presented in the previous subsection seem to suggest that the choice of the number of 

events following a normal distribution with parameters derived from the original dataset is 

a reasonable one. It also seems that a relatively low number of runs (50 to 100) are needed 

to generate a good approximation of the events count.  

Regarding the size of the batches, the generated sizes are much bigger than the actual data. 

This can be due to a number of factors. One element that can introduce large uncertainties 

is the fact that a discrete distribution is reproduced by a continuous variable. 
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7.4 Batch fitting: Real data  

 

The same process was applied to both SGVDS1 and SGVDS2 datasets and their 

corresponding Evi simulations as introduced in the previous chapter. The results of the 

model fitting and the generation of the batches for the real data are presented in this 

section.  

The results of the fitted parameter of the geometric distribution are shown below in Table 

7-7 and  Table 7-8 for SGVDS1 and SGVDS2 respectively. 

Muster station P 

Muster C 0.738086 

Muster A 0.854883 

Muster B 0.758008 

Muster D 0.622852 

Overall 0.483301 

Table 7-7: Values of the fitted parameter for the geometric distribution for SGDVS1 dataset 

Muster station P 

Muster C 0.7609 

Muster A 0.8016 

Muster B 0.7754 

Muster D 0.6875 

Overall 0.4090 

Table 7-8: Values of the fitted parameter for the geometric distribution for SGDVS2 dataset 

 

For the corresponding simulation runs, the values of the fitted parameters are shown in  

Table 7-8 and Table 7-10 for Evi simulations corresponding to SGVDS1 and SGDVS2 

respectively. The values have been derived by fitting the individual runs and taking the 

average over the 50 runs. The tables also show the standard deviation as well as the 

coefficient of variation of each set of simulation. 
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 Scenario A Scenario B Scenario  C 

 

Average Stand. Dev. CV Average Stand. Dev. CV Average Stand. Dev. CV 

Muster A 0.9323 0.0309 3% 0.9357 0.0316 3% 0.9772 0.0759 8% 

Muster B 0.8916 0.0336 4% 0.8861 0.0307 3% 0.9153 0.0300 3% 

Muster C 0.9349 0.0331 4% 0.9389 0.0266 3% 0.9388 0.0223 2% 

Muster D 0.8262 0.0296 4% 0.8378 0.0307 4% 0.7549 0.0293 4% 

Overall 0.6007 0.0271 5% 0.6067 0.0225 4% 0.6065 0.0253 4% 

Table 7-9: Values of the fitted parameter for the geometric distribution for Evi simulations 

corresponding to SGDVS1 dataset 

 

Average Stand. Dev. CV 

Muster A 0.9212 0.0115 1% 

Muster B 0.8937 0.0149 2% 

Muster C 0.9106 0.0146 2% 

Muster D 0.9437 0.0127 1% 

Overall 0.6484 0.0119 2% 

Table 7-10: Values of the fitted parameter for the geometric distribution for Evi simulations 

corresponding to SGDVS2 dataset 

 

7.4.1 Discussion 

 

The percentage difference in the value of the parameter of the geometric distribution 

obtained from the simulation runs when compared to the values fitted from real data is 

shown in the following figures.  

When comparing Evi simulation of the drill data to the actual data, the simulated data tend 

to overestimate the parameter of the geometric distribution derived from the real data and 

that is for both SGVDS1 and SGVDS2. 

For SGVDS1, for the overall arrival process, all scenarios overestimate the parameter by 

about 25%. There are more variations when arrivals to individual muster stations are 

considered.  

Scenarios A and B have roughly the same pattern of overestimation. These two scenarios 

different only in the reaction time of the passengers, whereas scenario C has different 
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usage of the muster stations and this is quite visible from the graph below for muster 

stations A, B and D. 

 

Figure 7-21: Percentage change in values of the parameter of the geometric distribution derived 

from the different simulation runs scenarios when compared to trial data for SGVDS1 
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Figure 7-22: Percentage change in values of the parameter of the geometric distribution derived 

from the simulation runs when compared to trial data for SGVDS2. 
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7.4.2.1 Trial data results 

 

Figure 7-23 and Figure 7-24 show the results corresponding to SGDVS1 and SGVDS2 

respectively. The graphs show the max batch size of the trial data compared to the average 

max batch size generated through the 50, 100 and 1000 runs.  

 

Figure 7-23: Max batch size average values from simulation compared to trial data max batch size. 
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Figure 7-24: Max batch size average values from simulation compared to trial data max batch size. 
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runs for scenarios A, B and C respectively corresponding to SGVDS1 dataset. 
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Figure 7-28 shows the results for SGVDS2. 

 

Figure 7-25: Max batch size average values from simulation compared to Evi runs of the trial data 

max batch size. SGVDS1- Scenario A. 
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Figure 7-26: Max batch size average values from simulation compared to Evi runs of the trial data 

max batch size. SGVDS1- Scenario B. 

 

Figure 7-27: Max batch size average values from simulation compared to Evi runs of the trial data 

max batch size. SGVDS1- Scenario C 
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Figure 7-28: Max batch size average values from simulation compared to Evi runs of the trial data 

max batch size. SGVDS2. 

7.4.2.4 Discussion 

 

For SGVDS1 and in all cases the average simulated batch sizes are underestimated for all 
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Further analysis of the results presented above, showed that when the percentage change 
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This could indicate that reproducing results of simulations is achieved with fewer errors 

when generating batch sizes.  

 

Figure 7-29: Percentage change in average value of max batch size for real and simulated data for 

SGVDS2 

 

7.5 Concluding Remarks  
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The generation of new datasets from the fitted model was undertaken using the inverse 

method, where a random distribution (normal distribution) for choosing the number of 

events and the parameter of the Geometric distribution was used. 

The generated data overestimated the original data in most cases for all the datasets 

considered in the analysis. 

In addition, it was found that the fitted model derived from simulations produced less 

errors (smaller overestimation) when compared to its original data than what the fitted 

model derived from the real data produced when compared to its original data.  This could 

be due to lack of statistical significance of the real data (only one dataset per ship). 
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8 NON-HOMOGENEOUS POISSON PROCESS (NHPP) FITTING 

 

8.1 General Remarks 

 

This chapter discusses the fitting of the NHPP model presented in Chapter 5 using the Kuhl 

and Wilson method for the simulation data and the real data.  

The method through a variance stabilising transformation, derives the degree of the 

polynomial rate function of the NHPP. 

Both the real data and the simulation data were fitted with this method which was 

programmed using R which a language and environment for statistical computing and 

graphics [30]. 

For the simulated data, a run at random was chosen from the 100 runs of each of the 80 

scenarios defined in Chapter 6: 

• fixed speed and varying reaction time, 10 passenger loads for the day case, and 10 

passengers load for the night case, 

• varying speed and a fixed reaction time, 10 passengers loads for the day case, and 

10 passengers loads for the night case, 

• varying speed and a varying reaction time, 10 passengers loads for the day case, 

and 10 passengers loads for the night case. 

• fixed speed and fixed reaction time, 10 passengers loads for the day case, and 10 

passengers load for the night case, 

For the real data, both SGVDS1 and SGVDS2 arrival times were fitted as well as the 

corresponding Evi simulation runs. A run from each simulated scenario was chosen at 

random for the fitting.  

8.2 NHPP model fitting: Simulation data 

 

Overall the fitting of the data gave very good agreements between the fitted and the 

original data. In most cases high order polynomial for the rate function is obtained.  
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In the next subsection the results for the Day cases are presented followed by the Night 

case results. 

8.2.1 Day cases 

 

The number of coefficients of the polynomial rate function is shown in Table 8-1 below. 

Values of the coefficients are provided in Appendix III. 

Load 10 20 30 40 50 60 70 80 90 100 

Day 7 7 6 7 7 7 7 7 7 7 

Day_Fixed Reaction 7 7 7 6 1 7 7 7 1 7 

Day_Fixed Speed 7 7 7 6 6 7 7 7 1 7 

Day_Fixed Speed & Reaction 6 7 6 7 7 7 7 1 1 7 

Table 8-1:  Number of coefficient of the rate function of the NHPP for the day case scenarios 

As can be seen from the table above and Figure 8-1 below, in most cases, the degree of the 

polynomial rate function is 6.  

 

Figure 8-1: variation of number of coefficient of the rate function per scenario and passenger load 

for the day cases. 

The scaled arrival curves obtained from the fitting were also in most case almost 

overlapping with the original data as can be seen below for the Day case scenarios (Figure 
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shown in Appendix III (Figure III-1, Figure III-2 and Figure III-3 respectively). 
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(i) 

 

(j) 

Figure 8-2: Fitted and original arrival process for the day cases for (a) 10% passenger load, (b) 20% passenger load, (c) 30% passenger load, (d) 40% 

passenger load, (e) 50% passenger load, (f) 60% passenger load, (g) 70% passenger load, (h) 80% passenger load, (i) 90% passenger load, (j) 100% 

passenger load 
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8.2.2 Night cases  

 

At first the choice of the runs for the night cases produced the number of coefficients of the 

polynomial rate function as shown in Figure 8-3 below. 

As can be seen from the figure, there is quite a lot of variation in the degree of the polynomial 

rate function.  No clear pattern can be seen. 

 

Figure 8-3: variation of number of coefficient of the rate function per scenario and passenger load for 

the night cases. 
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8-2 and in Figure 8-4 below. Values of the coefficients are provided in Appendix III. 
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Load 10 20 30 40 50 60 70 80 90 100 

Night 1 1 6 7 7 5 5 6 5 7 

Night Fixed Reaction 1 4 5 4 5 6 6 8 6 5 

Night Fixed Speed 1 1 6 5 6 5 2 4 5 7 

Night Fixed Speed & Reaction 4 8 5 7 10 8 8 4 7 6 

Table 8-2:  Number of coefficient of the rate function of the NHPP for the night case scenarios 

 

 

Figure 8-4: variation of number of coefficient of the rate function per scenario and passenger load for 

the night cases after selecting different runs. 
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(c) (d) 

 

(e) 

 

(f) 
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(g) (h) 

 

(i) 

 

(j) 

Figure 8-5: Fitted and original arrival process for the night cases for (a) 10% passenger load, (b) 20% passenger load, (c) 30% passenger load, (d) 40% 

passenger load, (e) 50% passenger load, (f) 60% passenger load, (g) 70% passenger load, (h) 80% passenger load, (i) 90% passenger load, (j) 100% 

passenger load 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

90% Load

W_90

Fitted_90

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

100% Load

W_100

Fitted_100



129 

 

8.2.3 Sensitivity of the fitting to the chosen input data 

 

The night results above showed that a change in the run chosen to be fitted can lead to very big 

variations in the degree of the polynomial rate function. For example, in the Night Fixed Speed 

scenario for a 70% passenger load the number of coefficients went from 20 to 02.  

It was impractical to fit the 8000 runs produced by the simulations, but a small sample of 10 

runs for the Day scenario for 10% passenger load was fitted. The results are shown below. 

The number of coefficients of the polynomial function varies as shown in Table 8-3 below. The 

variation of the value of R
2
 for then 10 fits is shown in Figure 8-6 below. 

Run 1 3 3 4 5 6 7 8 9 10 

Number of Coefficients 6 5 6 7 9 8 5 7 6 9 

Table 8-3: Variation in number of coefficients for 10 different runs of Day scenario, 10% passenger load 

 

 

Figure 8-6: Variation of R
2
 value over fitting of 10 different runs of Day scenario for 10% passenger 

load. 
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Overall when looking at the fitted curves (not shown here), there was a good agreement 

between the fitted and original data but some fits were better than others. 

8.2.4 Discussion 

 

The Day cases results seem to be overall consistent with a degree of the polynomial function 

being fixed across the different scenarios with some exceptions where the rate function is 

constant (Day Fixed Reaction, Day Fixed Speed and Day Fixed Speed and Reaction for a 90% 

passengers load). 

For the Random Day case, the degree of the polynomial rate function is not affected by the 

load of passengers (with the exception of 20% load. The results for 30% load are deemed 

similar to the rest as there is only one degree difference in the polynomial rate function).  

The fixed rate function could be the result of a particular configuration of agents’ initial 

locations and their constant speed and /or reaction time. This could have led to a constant flow 

of arrival at the muster stations. 

The Night cases offered a totally different picture. At first no clear pattern could be seen from 

the obtained data.  

A choice of different runs to fit provided slightly more homogeneous results, lowering, in some 

instances, the degree of the polynomial function substantially. This led to smaller ranges.  

For the Night cases results, the Random Night case and the Night Fixed Reaction case seem to 

exhibit some sort of consistency. Apart from the lower passenger’s loads, the degree of the 

polynomial rate function seems to vary between 4 and 6 for the Night case and between 4 and 

7 for the Night Fixed Reaction.  

The fitting of the 10 different runs of the same scenario (Day 10% passenger load) shows that 

there are differences in terms of the number of coefficients of the polynomial rate function and 

the fitted curves, meaning sensitivity to the input data used in the fitting.  
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8.3 NHPP model fitting: Real data  

 

The same procedure was applied to the real datasets and their corresponding Evi simulations. 

First the fitting of the actual data, then the fitting of Evi simulation runs corresponding to both 

SGDVS1 and SGDVS2 datasets are presented. 

8.3.1 Actual data 

 

The coefficients of the fitted models are shown in Table 8-4 below. 

SGVDS1 

Muster Station A B C D Overall 

Beta1 2.37 3.29 2.62 2.92 2.63 

SGVDS2      

Muster Station A B C D Overall 

Beta1 0.88 2.18 1.77 2.35 1.83 

Beta2 3.05 -0.43 0.07 -1.18 0.10 

Table 8-4: Model Coefficients for both SGDVS1 and SGVDS2 

The scaled fitted and original arrival curves are shown in Figure 8-7 and Figure 8-8 for SGDVS1 

and SGVDS2 respectively. 

8.3.2 Discussion 

 

For all muster stations of SGDVS1 data set, the rate function is a constant function. For 

SGVDS2, the rate function is a degree 1 polynomial function. 

The R
2
 of the fitting for SGDVS2 was overall better than for SGVDS1, even though for both data 

sets the smallest R
2 

value was 0.9494.   

As can be seen from the scaled fitted and original arrival curved in Figure 8-7 the curve for 

Muster station D and the overall arrival curve show the best fit for SGDVS1. 
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For SGDVS2 (Figure 8-8), the curves for Muster stations C and Overall show the best agreement 

followed by the curves for Muster D and B. 
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(e) 

Figure 8-7: Fitted and original arrival process for SGVDS1 (a) Muster Station A, (b) Muster Station B, (c) Muster Station C, (d) Muster Station D,  (e) 

Overall. 
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(e) 

Figure 8-8: Fitted and original arrival process for SGVDS2 (a) Muster Station A, (b) Muster Station B , (c) Muster Station C, (d) Muster Station D,  (e) 

Overall.
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8.3.3 Corresponding simulated data 

 

Similarly to the simulated data of section 3, one run has been chosen randomly from each set 

of the Evi simulated runs corresponding to each of the Muster stations of each data set.  

Recall that for SGDVS1 three scenarios were run to simulate this data set, Scenarios A, B and C. 

The coefficients of the fitted model per scenario are shown in Table 8-5 below. 

SC A 

Muster Station A B C D Overall 

Beta1 0.29 0.22 -0.14 -0.04 -0.23 

Beta2 2.73 4.46 4.23 0.52 10.44 

Beta3 

   

11.10 -17.04 

Beta4 

   

3.25 

 Beta5 

   

-90.29 

 Beta6 

   

152.95 

 Beta7 

   

-97.45 

 SC B 

Muster Station A B C D Overall 

Beta1 0.59 0.62 -0.96 -0.73 -1.54 

Beta2 2.63 -13.75 27.76 12.55 43.32 

Beta3 

 

138.61 -93.07 -21.14 -274.96 

Beta4 

 

-442.46 182.27 11.83 1028.24 

Beta5 

 

615.98 -231.82 

 

-2246.27 

Beta6 

 

-309.36 103.79 

 

2764.08 

Beta7 

 

-71.82 86.75 

 

-1771.81 

Beta8 

 

81.59 
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SC C 

Muster Station A B C D Overall 

Beta1 0.98 1.94 -0.80 -0.72 -0.29 

Beta2 

 

-30.60 16.76 8.45 7.23 

Beta3 

 

190.54 -50.37 -13.39 -10.74 

Beta4 

 

-421.18 80.71 8.75 34.23 

Beta5 

 

249.63 -65.91 

 

-130.49 

Beta6 

 

261.16 

  

217.81 

Beta7 

 

-160.80 

  

-159.62 

Beta8 

 

-275.83 

   Beta9 

 

24.96 

   Beta10 

 

304.58 

   Table 8-5: Model Coefficients for simulated runs of SGDVS1 

For SGVDS2, the fitted coefficients are shown Table 8-6 below 

SGVDS2 

Muster Station A B C D Overall 

Beta1 1.16 1.28 1.45 1.01 1.07 

Beta2 0.89 0.85 0.88 2.09 1.57 

Table 8-6: Model Coefficients for simulated runs of SGVDS2 

 

The scaled fitted and actual arrival curve for SGDVS1 scenario A, B and C are shown in Figure 

8-9, Figure 8-10 and Figure 8-11 respectively. For SGDVS2 they are shown in Figure 8-12. 

 

8.3.4 Discussion 

 

8.3.4.1 SGDVS1 

 

Over the three scenarios for muster station A, the results of scenarios A and B are very similar. 

Both have a 1
st

 degree polynomial rate function for the arrival process. The R
2
 is also very high 
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(results not shown here). Graphically, the two curves (fitted and actual) for both scenarios have 

a good agreement. As expected the results for scenario C, show a weaker fit. 

For muster station B fitted and actual arrival curves are almost overlapping for scenario B and 

C. In both case the rate function is a high order polynomial (degree 7 for scenario b and degree 

9 for scenario C). 

Muster station C shows similar results with scenario C having the best fit. 

Muster station D, show overlapping curves in all scenarios. 

Finally, the Overall arrival curve is also overlapping with its fitted curve in all scenarios with 

scenarios A and B showing the best results.     

 

8.3.4.2 SGDVS2 

 

The results are more consistent over all the muster stations. All rate functions are a degree one 

polynomial and the fitted curves have a good agreement with the actual ones with the Overall 

arrival curve showing the best fit.   
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(e) 

Figure 8-9: Fitted and original arrival process for SGVDS1 Scenario A (a) Muster Station A, (b) Muster Station B , (c) Muster Station C, (d) Muster 

Station D,  (e) Overall. 
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(e) 

Figure 8-10: Fitted and original arrival process for SGVDS1 Scenario B (a) Muster Station A, (b) Muster Station B , (c) Muster Station C, (d) Muster 

Station D,  (e) Overall. 
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(e) 

Figure 8-11: Fitted and original arrival process for SGVDS1 Scenario C (a) Muster Station A, (b) Muster Station B , (c) Muster Station C, (d) Muster 

Station D,  (e) Overall. 
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(e) 

Figure 8-12: Fitted and original arrival process for SGVDS2 (a) Muster Station A, (b) Muster Station B , (c) Muster Station C, (d) Muster Station D,  (e) 

Overall.
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8.4 Simulating NHPP 

 

Similarly to the fitting of the batches described in Chapter 7, a generation of NHPP through 

simulation was done using the results of the previous fitting. 

Simulating NHPP is not a straightforward process. There exist a number of methods which can be 

grouped as follows: Inversion, rejection/acceptance and order statistics [29]. The method used here 

is a rejection method as developed by Kuhl and Wilson [12].  The method has been slightly adjusted 

as no trends or cyclic effects have been considered in this work. 

Recall that the mean-value function of the NHPP over the interval (0, S] is expressed as follows:  

[�@	 � [�j	��@	, ∀@ ∈ �0, jR Eq. 8-1 

 

Where ��@	 is a non-decreasing function representing the cumulative proportion of arrivals up to 

time t.  

A uniformly accurate approximation to the function ��@	 can be achieved using a polynomial of 

sufficiently high degree r with the special following form: 

��@	 � lm
n@ j; ,																																																																						F � 1
op`q@ j; r`sWN
`tN �u1 �op`sWN

`tN v q@ j; rs , F w 1 

 

Eq. 8-2 

 

The estimator of the mean value function is thus, 

[��@	 � {�j	�q@, F̃, x� s̃r∀@ ∈ �0, jR Eq. 8-3 

and the estimated rate function 

X¡�@	 � [�′�@		∀@ ∈ �0, jR Eq. 8-4 

To generate variates from an estimated NHPP, the estimates obtained in the fitting section are used. 

For a rate function	X�@	, @ ∈ M0, jR, the cumulative distribution function of the next event time ¯> 	conditioned on the observed value of the last event time ¯>WN � @>WN	 is given by: 
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°±/±¬²³�@|@>WN	 ≡ YF�¯>  @|¯>WN � @>WN	 Eq. 8-5 

 

 

°±¬|±¬²³�@|@>WN	 � �1 � ��� ��\ X�]	 J]6
6¬²³ $ 																																								�G	@ T @>WN

0																																																																																			A@L�F:�H�  

 

Eq. 8-6 

 

It amounts to solving the following equation for  ¯>: 
 

µ X�]	 J]66¬²³ � �ln�1� ¶>	 � [�¯>	 �[�¯>WN	  Eq. 8-7 

 

Where ¶>~	¶��GAF�	�0,1	, using the inverse method. 

 

The expression of μ�t	  is given by Eq. 8-1, and its estimator (which will be used for the generation of 

the NHPP) is given by Eq. 8-3 so solving equation Eq. 8-7 above leads to: 

¯> � ��1� ∆{�j	���¯>WN		  

Eq. 8-8 

Where ∆� � ln�1 � ¶�	 
 

As mentioned in the introduction to this section the method as proposed by Kuhl and Wilson [12] 

has been adapted. 

It was found that dividing ∆ by N�S	  makes the step increase very slow and a large number of data 

point is generated to reach the upper limit of the interval. 

The method was then adapted following the inverse method detailed in [29]. The algorithm to 

generate a series of events on the interval �0, SR is then as follows: 
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1. 

2. 

3. 

4. 

5. 

6. 

Initialise � ← 1, ¯> � 0 

Generate ¶>~	¶��GAF�	�0,1	 
Compute ∆� � ln�1 � ¶�	 ¯>¼N � �WN�∆� ��¯>		 
If ¯> w j, stop; otherwise � ← � � 1 

Go to step 2 

Figure 8-13: Generation of NHPP Algorithm 

The critical part of the algorithm is the inversion of the function ��@	as this might not exist or be 

very complicated to compute.  

To illustrate the algorithm above (Figure 8-13), a simple expression of the function ��@	 was used. 

The real data set SGVDS1 was chosen as its fitting produced a first degree polynomial function. The 

function ��@	is then expressed as ��@	 � p@,				@ ∈ M0, jR. 
As described in section 8.3 above, the fitting of SGVDS1 produced the following results: 

SGVDS1 

Muster Station A B C D Overall 

Beta 2.37 3.29 2.62 2.92 2.63 

  

Using the values for  p shown in the table above, for each muster station 10 sets of arrival times 

following a NHPP were generated and compared to the original and fitted data. 

The first observation was that even if  ∆ was not divided by  N�S	, as explained above, the 

incremental step was still small and a large number of data points were generated. Table 8-7 below 

summarises the number of events generated for each of the muster station above. For comparison, 

the number of events in the original data set is also given per muster station. 

 MS A MS B MS C MS D Overall 

Min 1349 1830 1376 1180 1444 

Max 1424 1966 1502 1273 1671 

Average 1380 1917.4 1456 1233.6 1547.5 

      

Original 68 104 57 117 225 

Table 8-7: number of events for the generated NHPP for SGDVS1. 
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As it can be seen the number of generated points is considerably bigger than the original dataset. 

For muster station C for example the number of generated points is 25 times the original number. 

Looking at a plot of the generated data, compared to the original data and the fitted data, also show 

quite a difference in the curves as can be seen in Figure 8-14 below for muster station A. Arrivals 

have been scaled.   

Similar results are observed for the other muster stations (results not shown here). 

 

Figure 8-14: Generated NHPP curves (scaled) 

If the generated events were to be combined with the batch arrivals, then the number of passengers 

on-board would be much bigger than the actual ship capacity. 

In this case, the generation of the batches and the arrivals processes cannot be completely 

independent. 

A possible explanation for the large number of arrivals might be that the rate function of the NHPP 

has jumps (there is a non-negative probability that no events will happen for a certain period of 

time). This is not something that is handled by the algorithm presented above. It is outside the scope 

of this work to look at rate functions with jumps. 

It might also be possible that the steps at which the rate function increases during the generation 

process of the NHPP need adjustments. 

Finally, another possible explanation would be that the parameters or indeed the fitted model, used 

to generate were not appropriate in the first place. 
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8.5 Concluding Remarks 

 

This chapter showed the application of the fitting method presented in Chapter 5 as well as a 

generation of the NHPP based on the results of the fitting. 

The Method by Kuhl et al [12] gave good results when the simulated data was fitted with fitted and 

original curves in most cases indistinguishable when plotted.  The fitting also produced high degree 

polynomial rate functions. The fitting method showed a great sensitivity to the input data used. The 

degree of polynomial rate function was lowered in some cases when a different set of data (different 

run) was used as input.  

The fitting of the real dataset also showed good agreement with the original data but with much 

lower degree of the polynomial rate function. The associated simulation data produced also high 

degree polynomial for the rate function for SGDVS1. SGVDS2 results were more consistent with the 

original data. 

The generation of the NHPP proved to be more challenging than anticipated and was not a straight 

forward procedure.   

The major concern with the inversion method to generate the NHPP was the inversion of the 

polynomial function. This was only demonstrated for the SGVDS1 dataset. 

The generation of the NHPP highlighted a number of issues to be addressed:  

• Possible jumps in the rate function 

• Validity of the fitted model and its parameters 

• Steps to increase the rate function in the algorithm for generating the NHPP 

• Linking the batches and the arrivals for a complete model. 

No other methods for generating the NHPP were investigated during the course of this work and no 

attempts have been made either to look at possible modifications of Kuhl’s method (different ways 

to estimate the p coefficients or the polynomial rate function) as this was outside the scope of the 

research. 

In conclusion, further analysis and attention is needed before the method could be used with 

confidence.        
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9 CONCLUSIONS AND FUTURE WORK 

 

9.1 General Remarks 

 

This Chapter will close the thesis by summarising the findings of this research and by discussing 

future work options. 

9.2 Summary of the research  

 

The aim of this research was to derive a parametric model to be used as a fast assessment of the 

evacuation time during emergency situations but with its applicability not limited to those situations. 

To the best knowledge of the author no such parametric model has been proposed before.  

The movement of people in particular on-board a vessel is a very complex problem to model and no 

simple method could capture all the different aspects of this problem. 

Methods to simulate such phenomenon have been developed. Some simple, for example queuing 

systems, arrival processes and other more sophisticated such as agent-based simulation programs 

(microscopic, macroscopic and mesoscopic models). 

The work undertaken during this research focused on investigating the possibility to derive a 

parametric model that could be simple enough to produce fast estimates of evacuation times but 

also capture the different elements of the evacuation process to satisfactory accuracy 

At the beginning of the research, different parametric models were investigated. The nature of the 

problem led the author to investigate arrival processes, which were a good candidate for the 

underlying model explaining the evacuation of passengers. A close analysis of the data showed that 

a Non-Homogeneous Poisson Process was needed (NHPP) to model the problem at hand. In 

addition, arrivals at the muster stations were happening in groups, where the size of the group 

varies from 1 to a certain number N. Therefore, the whole evacuation could be modelled by a batch 

NHPP.  The batch arrivals and the NHPP are independent of each other so they were modelled and 

studied separately.   

Once the underlying model was identified, the fitting process could be done. Here again a number of 

methods were looked at and those (for batch fitting and NHPP) that were deemed to be the most 

appropriate were used for the fitting of the data. 
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The data used in this research came from a number of simulations (8 000 individual runs) performed 

with the Evacuation simulation software Evi [20] as well as from the validation dataset produced by 

the EU-funded project SAFEGUARD [23] and its associated Evi simulation runs (about 200 runs). 

The work was split between the fitting of the batch sizes of the arrivals and the NHPP. The batch 

sizes were fitted using a Geometric distribution. A complete analysis of the data was performed. 

For the NHPP a method developed by Kuhl et al [12] was used for the fitting of the data and a 

complete analysis also performed. 

Using the fitted models, new data was generated and analysed. The results were compared to the 

original data for both the batch sizes and the NHPP.  

 

9.3 Conclusions 

 

The analysis of the simulated data which was the first step in this study allowed looking at the 

impact some parameters had on the arrival process.  

When batch sizes were analysed, it was found that the Day cases showed more randomness in the 

results than the Night cases. In addition, larger batch sizes and fewer arrivals were observed for the 

Day case, while the opposite (smaller batch sizes and more frequent arrivals) was true for the Night 

cases. 

For the day cases, the reaction time, when random, produced slightly higher number of arrivals 

(smaller batch sizes) regardless of passenger loads or speed. This was expected as passengers 

starting at different times will tend to arrive at different times hence more arrivals. 

For the night cases, no clear impact of the reaction time or speed could be seen as results in all cases 

were quite similar. 

The second set analysed was the data obtained from drills on-board a large RO-PAX ferry and a 

cruise ship as part of the SAFEGUARD project. The data corresponding to the actual drills on-board 

both vessels (SGVDS1 for the ferry and SGVDS2 for the cruise ship) were analysed and compared to 

their corresponding simulations obtained using Evi. 

As only one dataset per ship was available for the trial data, no statistical analysis could be done. 

Only number of arrivals and batch sizes were derived for each dataset. 
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The corresponding simulations were also analysed and it was found that the simulations produced 

smaller batch size and more frequent arrivals then what was found in the real data. 

The second stage of the study was to fit a model to the available data. The fitting of the batch sizes 

and the NHPP was done separately as previously explained. 

It was found that the fitting of the batch sizes with a Geometric distribution produced very good 

results. 

The fitting of the arrivals using a Non Homogeneous Poisson Process (NHPP) was also a good choice. 

The Method used for the fitting using a variance stabilising transformation and a polynomial rate 

function of a specific form produced very good results. When visually inspected, the curves obtained 

for the NHPP fitted model and the ones corresponding to the original data could not be 

distinguished. 

It is worth noting that the fitting produced high degree polynomial rate functions and that the 

method showed a great sensitivity to the input data used. The degree of polynomial rate function 

was lowered in some cases when a different set of data (different run) was used as input.  

The fitting of the real dataset also showed good agreement with the original data but with much 

lower degree of the polynomial rate function. The associated simulation data produced also high 

degree polynomial for the rate function for SGDVS1. For SGVDS2 results were more consistent with 

the original data. 

The final stage was to generate new data using the fitted models obtained in the previous stage. The 

inverse method was used for both the batch sizes and the arrival process.  

For the batch sizes, it was found that the generated data overestimated the original data in most 

cases for all the datasets considered in the analysis. 

This could probably be explained by the fact that the Geometric distribution is a discrete distribution 

which is simulated using a continuous variable.  

In addition, it was found that the fitted model derived from simulations produced less errors 

(smaller overestimation) when compared to its original data than what the fitted model derived 

from the real data produced when compared to its original data.  This could be due to the lack of 

statistical significance of the real data (only one dataset per ship). 

Regarding the NHPP generation, this proved to be more challenging and was not a straight forward 

process.   
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In most cases, the degree of the polynomial function was very high. Only the data corresponding to 

SGDVS1 was used to demonstrate the generation process as the inversion of the polynomial function 

was a major issue (either the inversion was not possible or would involve complex computation). 

The model generated a large number of arrivals. There is a need for a deeper analysis of the fitted 

model in order to generate meaningful results.   

 

9.4 Future work 

 

The complex interactions between agents and their environment might not be accurately and totally 

captured by a simplified model. A deeper investigation of the arrivals at the muster stations would 

be needed before such a model could be used with confidence in an emergency situation. 

The variability in the degree of the polynomial intensity function of the NHPP makes it 

computationally hard or sometimes not even possible to simulate data from the fitted model. More 

analysis is needed to understand the variability and to investigate the possibility to cap the degree of 

the polynomial function to a value that can be handled easily when generating data. 

The possibility of having/allowing jumps in the rate function is another aspect of the NHPP that 

would benefit from a deeper analysis. 

Investigating the best option for steps increase in the algorithm for generating the NHPP is another 

issue to consider. 

The validity of the fitted model and its parameters could also represent an interesting research 

subject. 

Data quality, error propagation and uncertainty analysis would be another investigation possibility. 

Once the above are well understood, linking the batches and the arrivals process would need to be 

studied to produce a complete model. 

From a more general perspective, other aspects such as the impact of different ship geometries 

would be an interesting point to investigate. In this research, as described in Chapter 6, simulated 

data was produced using a Ro-Pax model and real and simulated data from a Ferry and a Cruise ship. 

The scenarios producing the different data being different for the three geometries it was not 

possible to study the impact of the geometry on the model.  
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The impact of external factors such as crew actions, fire and flooding for example has not been 

considered in this research. This could constitute another avenue for research.  
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 - Summary values for the parameter of the geometric Appendix I

distribution, the event counts and the Max batch size. 
 

Day random 

% 

population Average  

Max Event 

count 

Min Event 

count 

Max Batch 

max size 

Min Batch 

max size 

10 0.6892 240 209 6 3 

20 0.5835 305 292 8 4 

30 0.5164 380 355 10 5 

40 0.4754 446 414 13 6 

50 0.4501 505 467 14 7 

60 0.4356 558 523 15 7 

70 0.4302 612 575 15 8 

80 0.4293 697 628 17 9 

90 0.4195 722 667 17 9 

100 0.4172 767 722 18 11 

Table I-1: Average value of the geometric parameter and min and max values of the event count and max 

batch size for the Day Random case. 

Fixed Reaction 

% population Average  

Max Event 

count 

Min Even 

count 

Max Batch 

max size 

Min Batch 

max size 

10 0.6853 181 164 6 3 

20 0.6270 252 226 7 4 

30 0.5837 314 288 9 4 

40 0.5648 373 347 11 6 

50 0.5428 425 395 12 5 

60 0.5312 491 454 13 6 

70 0.5235 550 510 16 6 

80 0.5158 622 568 15 7 

90 0.5148 682 621 14 7 

100 0.5029 741 670 16 8 

Table I-2: Average value of the geometric parameter and min and max values of the event count 

and max batch size for the Day Fixed Reaction case. 
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Fixed speed 

% 

population Average � 

Max Event 

count 

Min Even 

count 

Max Batch 

max size 

Min Batch 

max size 

10 0.6890 234 212 6 3 

20 0.5620 310 287 8 4 

30 0.4800 377 334 10 5 

40 0.4367 423 390 10 6 

50 0.4153 485 444 12 7 

60 0.4079 525 492 13 7 

70 0.3976 592 544 17 9 

80 0.4010 643 589 16 10 

90 0.4017 717 646 18 10 

100 0.4042 761 681 19 11 

Table I-3: Average value of the geometric parameter and min and max values of the event count 

and max batch size for the Day Fixed Speed case. 

Fixed Speed +Reaction 

% 

population Average � 

Max Event 

count 

Min Even 

count 

Max Batch 

max size 

Min Batch 

max size 

10 0.7016 183 170 8 3 

20 0.6025 242 229 8 4 

30 0.5519 309 277 10 5 

40 0.5277 372 331 10 5 

50 0.5189 434 391 12 5 

60 0.5090 469 446 12 6 

70 0.5011 543 494 13 7 

80 0.4965 605 538 14 7 

90 0.4909 653 586 13 7 

100 0.4929 705 649 15 8 

Table I-4: Average value of the geometric parameter and min and max values of the event count 

and max batch size for the Day Fixed Speed and Reaction case. 
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Night random 

% 

population Average p 

Max Event 

count 

Min Event 

count 

Max Batch 

max size 

Min Batch 

max size 

10 0.73919432 250 225 5 3 

20 0.66716013 352 326 6 4 

30 0.58608196 437 408 7 4 

40 0.54694141 531 486 8 4 

50 0.53048239 626 579 9 4 

60 0.52198629 715 668 8 5 

70 0.5081201 797 758 7 5 

80 0.50918357 919 863 8 5 

90 0.4889121 978 936 8 5 

100 0.49289353 1265 1040 8 5 

Table I-5: Average value of the geometric parameter and min and max values of the event count 

and max batch size for the Night Random case. 

Night Fixed Reaction 

% 

population Average p 

Max Event 

count 

Min Even 

count 

Max Batch max 

size 

Min Batch 

max size 

10 0.68953811 234 210 5 3 

20 0.63492089 346 316 7 4 

30 0.56766895 425 393 9 4 

40 0.53233007 528 476 7 5 

50 0.52516106 612 578 8 5 

60 0.51749219 720 671 9 5 

70 0.50336522 819 755 8 5 

80 0.50772751 916 858 8 5 

90 0.49050876 996 934 8 5 

100 0.48686815 1086 1028 8 5 

Table I-6: Average value of the geometric parameter and min and max values of the event count 

and max batch size for the Night Fixed Reaction case. 
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Night Fixed speed 

% 

population Average p 

Max Event 

count 

Min Even 

count 

Max Batch 

max size 

Min Batch 

max size 

10 0.70845508 239 217 6 3 

20 0.59332418 331 298 6 4 

30 0.54042385 416 380 8 4 

40 0.50471289 511 457 7 4 

50 0.48362013 596 532 9 5 

60 0.44926466 669 611 8 5 

70 0.45490624 759 701 8 5 

80 0.45914066 865 794 8 5 

90 0.44226266 957 870 7 5 

100 0.44789838 1050 964 8 5 

Table I-7: Average value of the geometric parameter and min and max values of the event count 

and max batch size for the Night Fixed Speed case. 

Fixed Speed +Reaction 

% 

population Average p 

Max Event 

count 

Min Even 

count 

Max Batch 

max size 

Min Batch 

max size 

10 0.65411526 225 200 6 3 

20 0.60298628 326 296 7 4 

30 0.54124411 425 371 7 4 

40 0.49959857 496 448 7 5 

50 0.4960195 595 546 7 5 

60 0.48249117 708 639 8 5 

70 0.46731539 764 715 8 5 

80 0.47033884 867 800 7 5 

90 0.45186815 962 886 8 5 

100 0.45043066 1046 963 8 5 

Table I-8: Average value of the geometric parameter and min and max values of the event count 

and max batch size for the Night Fixed Speed and Reaction case. 
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 - Results of batch simulations for a hundred and a Appendix II

thousand runs: Percentage changes for Max batch size statistics. 

Day Random 

 

Figure II-1: Percentage change in Max value of max batch size when compared to original data. Day Random 

Case 
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Figure II-2: Percentage change in Min value of max batch size when compared to original data. Day Random 

Case 

 

Figure II-3: Percentage change in average value of max batch size when compared to original data. Day 

Random Case 
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Day Fixed Reaction 

 

Figure II-4: Percentage change in Min value of max batch size when compared to original data. Day Fixed 

Reaction Case

 

Figure II-5: Percentage change in Average value of max batch size when compared to original data. Day Fixed 

Reaction Case 
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Figure II-6: Percentage change in Max value of max batch size when compared to original data. Day Fixed 

Reaction Case 
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Day Fixed Speed 

 

Figure II-7: Percentage change in Min value of max batch size when compared to original data. Day Fixed 

Speed Case

 

Figure II-8: Percentage change in Average value of max batch size when compared to original data. Day Fixed 

Speed Case 
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Figure II-9: Percentage change in Max value of max batch size when compared to original data. Day Fixed 

Speed Case 
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Day Fixed Speed and Reaction  

 

Figure II-10: Percentage change in Min value of max batch size when compared to original data. Day Fixed 

Speed and Reaction Case

 

Figure II-11: Percentage change in Average value of max batch size when compared to original data. Day 

Fixed Speed and Reaction Case 
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Figure II-12: Percentage change in Max value of max batch size when compared to original data. Day Fixed 

Speed and Reaction Case 
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Night Random 

 

Figure II-13: Percentage change in Max value of max batch size when compared to original data. Night 

Random Case

 

Figure II-14: Percentage change in Min value of max batch size when compared to original data. Night 

Random Case 
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Figure II-15: Percentage change in Average value of max batch size when compared to original data. Night 

Random Case 
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Night Fixed Reaction 

 

Figure II-16: Percentage change in Min value of max batch size when compared to original data. Night Fixed 

Reaction Case

 

Figure II-17: Percentage change in Average value of max batch size when compared to original data. Night 

Fixed Reaction Case 
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Figure II-18: Percentage change in Max value of max batch size when compared to original data. Night Fixed 

Reaction Case 
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Night Fixed Speed 

 

Figure II-19: Percentage change in Min value of max batch size when compared to original data. Night Fixed 

Speed Case

 

Figure II-20: Percentage change in Average value of max batch size when compared to original data. Night 

Fixed Speed Case 
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Figure II-21: Percentage change in Max value of max batch size when compared to original data. Night Fixed 

Speed Case 
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Night Fixed Speed and Reaction  

 

Figure II-22: Percentage change in Min value of max batch size when compared to original data. Night Fixed 

Speed and Reaction Case

 

Figure II-23: Percentage change in Average value of max batch size when compared to original data. Night 

Fixed Speed and Reaction Case 
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Figure II-24: Percentage change in Max value of max batch size when compared to original data. Night Fixed 

Speed and Reaction Case
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 - Coefficient values of the polynomial rate Appendix III

function of the NHPP 

 

Day case fitted coefficient  

 

10 20 30 40 50 60 70 80 90 100 

Beta1 1.51 0.91 1.36 1.35 1.13 1.14 1.25 0.91 1.39 1.15 

Beta2 0.17 12.16 11.06 6.07 7.60 7.63 2.52 12.57 2.08 4.52 

Beta3 54.69 -55.59 -72.82 -34.76 -39.85 -55.40 -5.45 -101.56 -15.56 -28.99 

Beta4 -360.98 110.19 219.19 98.29 86.24 207.48 -4.19 407.78 65.46 94.80 

Beta5 970.23 -82.20 -343.12 -166.25 -64.64 -453.30 18.95 -903.69 -167.17 -180.67 

Beta6 -1319.73 -43.42 264.89 165.81 -43.45 565.38 -8.51 1110.44 232.63 194.66 

Beta7 897.51 100.12   -90.35 90.25 -370.20 -12.52 -707.73 -162.12 -109.15 

Table III-1: Fitted coefficient of the rate function for the day case scenario per passenger loads 

Day Fixed Reaction case fitted coefficient  

 

10 20 30 40 50 60 70 80 90 100 

Beta1 2.03 2.84 1.97 2.19 1.68 2.41 1.79 1.89 1.59 1.96 

Beta2 5.70 -4.98 -0.48 -4.10   -10.84 -3.93 -4.82   -8.66 

Beta3 -88.11 -10.42 -2.49 12.84   82.37 21.37 24.88   63.56 

Beta4 447.71 162.75 3.90 -18.42   -338.23 -54.03 -60.04   -233.58 

Beta5 -1104.43 -537.34 12.20 4.21   744.57 51.26 52.40   460.86 

Beta6 1422.93 794.78 -41.56 9.89   -894.87 7.22 14.00   -506.72 

Beta7 -924.34 -559.40 40.22     553.54 -39.91 -45.35   293.56 

Table III-2: Fitted coefficient of the rate function for the Day Fixed Reaction case scenario per 

passenger loads 
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Day Fixed Speed case fitted coefficient  

  10 20 30 40 50 60 70 80 90 100 

Beta1 1.62 1.20 1.52 0.99 1.17 0.98 1.26 1.10 1.37 0.93 

Beta2 -3.75 5.04 5.77 12.71 1.94 8.97 2.38 4.04   10.45 

Beta3 39.75 -22.07 -38.31 -77.82 -6.86 -67.04 -15.38 -26.68   -80.79 

Beta4 -114.53 48.30 121.04 231.27 14.10 274.28 63.51 97.39   313.25 

Beta5 100.65 -41.20 -190.12 -358.94 -21.12 -646.19 -160.72 -211.54   -670.98 

Beta6 46.02 -26.15 124.01 273.93 18.33 848.07 220.23 258.57   793.24 

Beta7 -116.26 62.75 -6.41     -573.32 -151.00 -163.15   -484.13 

Table III-3: Fitted coefficient of the rate function for the Day Fixed Speed case scenario per passenger 

loads 

 

Day Fixed Speed and Reaction case fitted coefficient  

 

  10 20 30 40 50 60 70 80 90 100 

Beta1 1.62 6.48 1.60 1.33 14.04 1.34 2.18 1.32 1.40 1.98 

Beta2 8.47 -35.48 -1.86 -3.71 -164.73 -0.54 -5.59     -12.65 

Beta3 -80.20 115.10 3.61 40.57 984.03 2.18 33.91     101.00 

Beta4 281.75 -182.64 -2.76 -199.14 -3197.85 -4.20 -91.72     -386.62 

Beta5 -471.48 101.23 2.50 487.26 5963.06 4.85 88.40     794.17 

Beta6 375.32 72.66 -4.29 -627.31 -6371.47 -10.58 21.56     -905.79 

Beta7   -116.26   407.48 3624.79 14.43 -85.95     540.37 

Table III-4: Fitted coefficient of the rate function for the Day Fixed Speed and reaction case scenario 

per passenger loads 
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Fitted arrival curves for the Day Fixed Reaction 

 

(a) 
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(c) (d) 

 

(e) 

 

(f) 
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(g) (h) 

 

(i) 

 

(j) 

Figure III-1: Fitted and original arrival process for the Day Fixed Reaction cases for (a) 10% passenger load, (b) 20% passenger load, (c) 30% passenger 

load, (d) 40% passenger load, (e) 50% passenger load, (f) 60% passenger load, (g) 70% passenger load, (h) 80% passenger load, (i) 90% passenger load, 

(j) 100% passenger load 
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(e) 
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(i) 

 

(j) 

Figure III-2: Fitted and original arrival process for the Day Fixed Speed cases for (a) 10% passenger load, (b) 20% passenger load, (c) 30% passenger 

load, (d) 40% passenger load, (e) 50% passenger load, (f) 60% passenger load, (g) 70% passenger load, (h) 80% passenger load, (i) 90% passenger load, 

(j) 100% passenger load 
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(i) 

 

(j) 

Figure III-3: Fitted and original arrival process for the Day Fixed Speed and  Reaction cases for (a) 10% passenger load, (b) 20% passenger load, (c) 30% 

passenger load, (d) 40% passenger load, (e) 50% passenger load, (f) 60% passenger load, (g) 70% passenger load, (h) 80% passenger load, (i) 90% 

passenger load, (j) 100% passenger load 
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Night case fitted coefficient  

  10 20 30 40 50 60 70 80 90 100 

Beta1 0.18 -0.12 -0.46 139.27 12.07 -2.21 3.10 -22.88 -2.90 2.17 

Beta2     -4.39 -1046.90 -75.97 6.51 -33.03 140.93 11.79 -35.65 

Beta3     12.55 2958.00 148.86 -4.54 112.95 -302.28 -12.03 162.55 

Beta4     -1.18 -3505.92 -61.07 1.00 -168.17 202.35 -0.82 -298.85 

Beta5     -5.02 331.00 -81.88 2.36 119.96 173.38 10.89 199.08 

Beta6     -4.19 3293.68 10.23     -307.01   86.99 

Beta7       -3032.89 106.34         -182.40 

Table III-5: Fitted coefficient of the rate function for the night case scenario per passenger loads 

Night Fixed Reaction fitted coefficient 

  10 20 30 40 50 60 70 80 90 100 

Beta1 -0.28 9.58 3.54 -4.26 -3.80 6.28 -2.49 0.99 6.28 -2.78 

Beta2   -62.56 -19.45 17.12 13.50 -54.82 7.75 -15.17 -54.82 12.05 

Beta3   137.67 24.50 -28.57 -13.97 173.95 -3.18 50.34 173.95 -12.76 

Beta4   -121.82 13.74 27.28 1.17 -264.35 -3.59 -39.12 -264.35 -0.80 

Beta5     -35.30   10.32 219.15 1.53 -42.11 219.15 11.52 

Beta6           -98.43 3.46 59.39 -98.43   

Beta7               31.99     

Beta8               -73.76     

Table III-6: Fitted coefficient of the rate function for the night Fixed Reaction case scenario per 

passenger loads 
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Night Fixed Speed fitted coefficient 

  10 20 30 40 50 60 70 80 90 100 

Beta1 0.38 -0.31 6.85 2.95 10.17 -3.37 -2.17 -2.24 4.89 -19.90 

Beta2     -31.86 -19.11 -67.28 10.71 6.07 6.10 -46.03 154.96 

Beta3     35.12 26.30 141.37 -9.58  -2.40 149.17 -491.67 

Beta4     11.48 18.58 -77.87 1.20  -0.38 -217.38 781.17 

Beta5     -12.25 -47.77 -83.82 6.03    152.32 -558.33 

Beta6     -25.02  118.80        10.83 

Beta7                204.54 

Table III-7: Fitted coefficient of the rate function for the night Fixed Speed case scenario per passenger 

loads 

Night Fixed Speed & Reaction fitted coefficient 

  10 20 30 40 50 60 70 80 90 100 

Beta1 56.11 16.74 18.44 -3.43 0.37 0.44 -2.92 -1.11 11.56 0.48 

Beta2 -297.31 -61.97 -131.95 6.98 -8.96 -6.68 17.17 -0.52 -109.71 -17.60 

Beta3 569.47 38.10 352.99 3.90 26.03 12.86 -53.37 14.64 381.36 92.01 

Beta4 -467.44 66.23 -451.44 -9.66 -20.96 3.28 93.98 -19.15 -603.16 -190.53 

Beta5  -34.52 286.15 -2.99 3.86 -9.40 -61.87   387.95 200.55 

Beta6  -52.33   5.37 -5.02 -8.42 -15.66   64.33 -105.78 

Beta7  2.27   9.13 6.40 3.87 21.25   -201.82   

Beta8  38.01     7.38 12.85 13.62       

Beta9       -5.12           

Beta10       -10.37           

Table III-8: Fitted coefficient of the rate function for the night Fixed Speed  & Reaction case scenario 

per passenger loads 
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Fitted arrival curves for the Night Fixed Reaction 

 

(a) 
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(c) (d) 

 

(e) 

 

(f) 
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(g) (h) 

 

(i) 

 

(j) 

Figure III-4: Fitted and original arrival process for the Night Fixed Reaction cases for (a) 10% passenger load, (b) 20% passenger load, (c) 30% 

passenger load, (d) 40% passenger load, (e) 50% passenger load, (f) 60% passenger load, (g) 70% passenger load, (h) 80% passenger load, (i) 90% 

passenger load, (j) 100% passenger load 
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(i) 
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Figure III-5: Fitted and original arrival process for the Night Fixed Speed cases for (a) 10% passenger load, (b) 20% passenger load, (c) 30% passenger 

load, (d) 40% passenger load, (e) 50% passenger load, (f) 60% passenger load, (g) 70% passenger load, (h) 80% passenger load, (i) 90% passenger load, 

(j) 100% passenger load 
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(i) 

 

(j) 

Figure III-6: Fitted and original arrival process for the Night Fixed Speed and  Reaction cases for (a) 10% passenger load, (b) 20% passenger load, (c) 

30% passenger load, (d) 40% passenger load, (e) 50% passenger load, (f) 60% passenger load, (g) 70% passenger load, (h) 80% passenger load, (i) 90% 

passenger load, (j) 100% passenger load 
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