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Abstract

Environmental noise impacts the everyday life of millions of people and it

represents a growing concern for the health of the world’s population. To mitigate

this impact, noise reducing materials such as foam or barriers are employed

extensively with effective results. However, the efficacy of such materials is

limited by the inverse relationship between the frequency of the attenuated

waves and materials characteristics like thickness and density, as described by

the mass-law. In order to overcome this fundamental limitation, a new challenge

in acoustic engineering has emerged to design and manufacture lightweight and

subwavelength materials that can break the mass-law. A potential solution to

this challenge is represented by a recently discovered family of materials, called

acoustic metamaterials, which show properties typically not found in nature.

These materials are made of resonant building blocks that are smaller than the

wavelength of the attenuated acoustic wave. When these building blocks are

combined to form a metamaterial, they lead to the formation of band gaps -

near their resonance frequency - that deeply attenuate the incident sound. The

manufacturing of noise reducing acoustic metamaterials could also largely benefit

from recent advances in three-dimensional printing technologies, as they offer the

possibility to fabricate abstract shapes and to carefully choose some properties of

the printed materials. The work presented in this thesis describes the modelling,

fabrication and measurement of noise reducing acoustic metamaterials based on

Helmholtz resonators, thin plates and active piezoelectric plates. These materials

have been produced through original and innovative three-dimensional printing

techniques. The results of this thesis can be applied to noise control in audio

applications such as headphones, hearing aids and smart speakers. Similarly,

other fields like aerospace and automotive industry or architectural acoustics

could also greatly benefit from lightweight subwavelength noise reduction.
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Chapter 1

Introduction

1.1 Motivation

The pervasiveness of acoustic noise has become a significant problem that can

negatively affect the health and well-being of the world’s population. According

to the World Health Organization (WHO), noise can seriously harm human

health and has a long-term effect on hearing, school and work performance, sleep,

and cardiovascular health. The WHO estimates that every year a total of one

million healthy years of life are lost in Western Europe due to traffic-related noise

pollution [18–22]. To better understand the sources and distribution of noise

pollution, various studies have generated noise maps by positioning sensors at

key locations around cities and by developing machine listening algorithms that

can identify the main types of noise sources [23–27]. Similarly, sensors placed in

forests and other habitats and hydrophones used for underwater sound detection

have shown how environmental noise represents a risk for the health of animals

and how it drastically changes their behaviour [28–31].

As a consequence of the growing concerns related to the impact of noise in our

everyday experience, our ability to control the propagation of acoustic waves is of

fundamental importance. Traditional ways to reduce noise include absorbers such

as porous-fibrous materials and panels, reflecting surfaces like noise barriers, and

enclosures. These solutions are usually applied inside and outside buildings or

near roads, allowing to efficiently enclose and isolate noise sources such as engines

1



1.1. Motivation

and to dampen mechanical vibrations [32, 33]. Nevertheless, the efficacy of these

materials is constrained by the mass-law [34], which states that the frequency

of the acoustic wave attenuated by any traditional noise mitigation material is

inversely proportional to its density and thickness. In general, absorbers like

foams are effective at frequencies above 1000 Hz, while noise reduction below this

frequency is usually achieved through thick barriers or dense coating materials

[35, 36]. For small-scale audio devices, such as headphones, noise attenuation

solutions rely mostly on traditional absorbers and sometimes on active noise

cancellation. However, the latter approach works well only at frequencies below

500 Hz and it is limited by the necessity of using electricity to charge batteries

and to power signal processing computations [36–38]. Therefore, noise reduction

and the development of materials with new attenuation properties are ongoing

and important engineering challenges.

Acoustic metamaterials are artificial structures made of building blocks, also

called meta-atoms. When resonant building blocks are assembled to form an

acoustic metamaterial, stop bands where the sound is deeply attenuated - usually

named band gaps - are generated near the meta-atoms individual resonance

frequencies. Acoustic metamaterials have been extensively studied in the last

decade because of their ability to control sound waves in new ways. Their

peculiar properties - such as negative effective mass density and bulk modulus

- had not been previously found in nature and have led to advancements in the

fields of noise control, wave steering and sound focusing [39–41]. Similar results

had been obtained in the past by using phononic and sonic crystals. These are

periodic materials capable of controlling frequencies with a wavelength of the

same order of the lattice parameter, defined as the distance between the building

blocks. In comparison, the unusual attenuating properties of resonant acoustic

metamaterials represent a more effective approach to noise reduction. In fact,

as these properties originate from the resonances of the meta-atoms, acoustic

metamaterials are capable of breaking the mass-law and can control acoustic

waves in the subwavelength regime [3, 6, 7, 42–44].

Until recently, the majority of research related to acoustic metamaterials had

been confined in the laboratory environment and was applied mainly to noise
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control for large-scale applications, such as panels and metadiffusers for room and

buildings acoustics [8, 13]. Some recent papers have shown that the properties

of metamaterials can be used to create innovative devices that can function as

frequency and sound directionality analysers [9, 10] or as ultra-open silencers

that attenuate noise while allowing air flow [11]. These latter examples suggest

that it would be possible to include metamaterials in small-scale devices such

as headphones or hearing aids or other applications that have space limits

and require lightweight solutions. To do so, it is necessary to develop reliable

techniques for the fabrication of resonant unit-cells tuned at the desired frequency

and at the same time to design these unit-cells in a way that can accommodate

the required space constraints.

In this thesis, unit-cells for acoustic metamaterials are designed and fabricated

with the aim to present new noise control materials for applications that require

lightweight subwavelength-attenuating solutions. Parametric models are built

to adapt the unit-cells designs to specific frequency and space constraints. A

new technique based on additive manufacturing technology is also developed to

fabricate Helmholtz resonators, membranes, and thin plates, which are often

used as unit-cells or meta-atoms in acoustic metamaterials. As highlighted

in [45], many commercial three-dimensional printers are not able to fabricate

thin and accurate membranes, but recent advances in digital light processing,

stereolithography, and multi-material fabrication have shown promising results

for three-dimensional printing passive thin plates and membranes as well as active

piezoelectric membranes [46–48].

The development of these novel fabrication techniques together with the research

on optimisation algorithms can pave the way for the integration of acoustic

metamaterials into products. This new field has the potential to change

the approach to noise control not only in large-scale scenarios such as noise

attenuation in buildings and cities, but also for small-scale audio devices like

hearing aids, headphones, and smart speakers or in the automotive and aerospace

industries.
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1.2 Novelty of Research & Objectives

The principal work of this thesis involved the design and fabrication of new

resonant unit-cells for acoustic metamaterials. The novelty of these unit-cells was

found both in the design aimed at tuning the band gaps to the sought frequency

range as well as in the novel three-dimensional printing techniques that allowed

to obtain small-scale and subwavelength noise reduction solutions. The research

objectives of this work are summarised below.

i. To study the possible designs of Helmholtz resonators and to broaden their

band gap by including multiple sources of resonance such as overtones and

thin plates inside one resonator. This would allow to obtain broadband

noise attenuation in small-scale applications by exploiting multiple reso-

nances within one unit-cell rather than alternating unit-cells with different

resonances.

ii. To investigate the use of membranes or thin plates as unit-cells for resonant

acoustic metamaterials. Special attention is given to the development of

a novel three-dimensional printing technique that allows to customise the

choice of materials and hence to tune the band gaps according to specific

material properties.

iii. To apply the concepts and techniques detailed above to real-world devices.

Specifically, the first prototype explores the possibility to 3D printing piezo-

electric thin plates for active and reconfigurable acoustic metamaterials

applications such as real-time noise attenuation. The second prototype

consists of 3D printed headphones capable of attenuating external noise by

integrating acoustic metamaterials in the ear cups.

1.3 Thesis Organization

The remaining part of this thesis is organised as follows:

Chapter 2 introduces the background and theory necessary to understand the

content of this thesis. Firstly, basic theory on fundamentals of acoustics and

4



1.3. Thesis Organization

wave propagation is discussed. Secondly, reviews of noise control techniques and

the origin and development of acoustic metamaterials are presented.

The methods used for modelling, fabricating and measuring acoustic metama-

terials are presented in Chapter 3. Modelling methods include the transfer

matrix approach and finite element methods. Fabricating methods describe

the main new techniques developed in this thesis for three-dimensional printing.

Measurement techniques include experimental measurement in the acoustic booth

using microphone, function generators, and loudspeakers, and the description of

instruments such as impedance tube, and laser Doppler vibrometer.

The main work conducted for this thesis was experimental and consisted in

designing and fabricating resonant building blocks for acoustic metamaterials.

Chapter 4 presents the design and fabrication of acoustic metamaterials based on

small-scale Helmholtz resonators. A study of the design of Helmholtz resonators

allowed to carefully tune the first overtone at a frequency close to the frequency

of the first mode of vibration. By doing so, it was possible to obtain a broad band

gap which was the result of hybridisation of the band gap of the first resonance and

the band gap of the overtone. This band gap was subsequently further broadened

by fabricating thin plates inside Helmholtz resonators. A parametric model of

Helmholtz resonators is presented, along with the fabrication and measurement

procedures, and a discussion of the results.

Chapter 5 presents the fabrication and characterisation of thin plates unit-cells

for acoustic metamaterials. A parametric model of thin plates allows to predict

the resonance of the plate according to its geometry and material properties.

Special attention is given to three-dimensional printing procedures and to the

choice of materials. Measurements using impedance tube, laser vibrometer and

nanoindentation are presented and compared with transfer-matrix models and

finite-element models.

Chapter 6 introduces two prototypes: the first is an active acoustic metamaterial

based on three-dimensional printed resonators and piezoelectric plates, and the

second consists of noise cancelling headphones integrating acoustic metamaterials
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in their design.

Finally, Chapter 7 presents a conclusion on the research presented in this thesis

as well as discussions on future work.
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Chapter 2

Background and Theory

2.1 Introduction

This chapter presents the theory and background knowledge necessary to

understand the research presented in this thesis. Firstly, some fundamental

concepts of general acoustics are introduced, with particular focus on acoustic

waves propagation in air and on acoustic systems studied in this thesis, namely

Helmholtz resonators and thin plates. Secondly, traditional noise attenuation

techniques such as acoustic insulation, absorption, and active noise cancellation

are reviewed. Thirdly, acoustic metamaterials are discussed through a literature

review investigating their origin, development, and the state-of-the-art.

2.2 Fundamentals of Acoustics

Acoustics is a branch of science that studies the vibration of waves and

propagation of sound [49, 50]. In its broader definition, acoustics is an inter-

disciplinary field encompassing various disciplines such as physics, engineering,

psychology, neuroscience, physiology, audiology, architecture, music, and others,

as represented in Lindsay’s wheel of acoustics [1, 2] (See Fig. 2.1). This

section aims to provide some introductory notes on acoustics concepts that

are fundamental to understanding the research presented in this thesis. It can

be utilised as a glossary, and a reference to each notion will be added where

appropriate in the remaining chapters.
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2.2. Fundamentals of Acoustics

Figure 2.1: Lindsay’s wheel of acoustics [1, 2] describing the different fields
and subfields that deal with acoustics, source https://exploresound.org/what-
is-new/fields-of-acoustics/, accessed on 10 April 2021.
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2.2.1 Acoustics of Waves

What is a Wave?

A wave is a traveling disturbance that transmits energy from one point to another

in a medium, without transmitting matter [49, 51]. Mechanical waves can

propagate in any medium that possesses a mass density and an elastic modulus

[52]. In this thesis, we mainly encounter two types of waves: acoustic waves,

which are longitudinal waves that travel through a fluid such as air parallel to

the direction of propagation and waves on a membrane or thin plate, that are

transverse waves where the disturbance travels perpendicular to the direction of

propagation.

Acoustic Waves

Acoustic waves generally refer to the longitudinal propagation of vibrations in

a fluid, such as gas or water. In this thesis, the medium in which the acoustic

waves propagate is air. Sound transmission is generated by a change in pressure

that results in compression and rarefaction of air particles. Air is considered an

adiabatic medium, as the energy propagation due to pressure change is much

faster than energy propagation generated by heat flow [53]. The acoustic wave’s

motion mainly depends on the interaction between inertial and elastic physical

properties of air: density and bulk modulus.

Density

Density - or more specifically mass density - ρ is defined as mass m per unit

volume V :

ρ =
m

V
. (2.1)

The SI unit of density is m/kg3. The density of air is 1.29 kg/m3 [35], which

can be calculated by knowing the volume of an air particle and the atomic mass

and percentage of each gas that composes the air molecule. It is worth noting

that density represents the inertial property of air, and a wave propagating

through a denser medium is slower, as the same applied force will result in a

lower acceleration, hence a slower disturbance. However, in the vast majority of
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materials, this effect is massively compensated for by the usual increase in bulk

modulus.

Bulk Modulus

Bulk modulus B is a measure of resistance to compressibility of a fluid, and

describes the decrease in volume V with an increase of pressure p [52]:

B = −V dp

dV
. (2.2)

A higher bulk modulus results in a gas that compresses less easily. As stiffer

materials speed up the displacement of force between two neighboring molecules,

a high bulk modulus produces a faster wave propagation. It has units of Pascals.

Speed of Sound

Given the mass density ρ and the bulk modulus B of a medium, it is possible

to define the speed of sound of acoustic waves through that particular medium.

The speed of sound in a fluid medium describes the speed at which a wave can

transport energy:

c =

√
B

ρ
. (2.3)

As explained in 2.2.1, the adiabatic bulk modulus is dependent on static pressure

of gas, which in turn is dependent on temperature T , hence the speed of sound

varies as
√
T . A generally accepted value for the speed of sound in air at 20◦C is

343 ms−1 [52]. It is worth noting that a higher Bulk modulus, results in a higher

speed of sound. Conversely, the larger the mass density, the slower the speed of

sound.

Wavelength

The wavelength λ of a wave is the distance in meters over which the phase of the

wave repeats. It has units of metres [51].
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Frequency

Frequency determines the number of repetitions of a particular event in time.

In acoustics, frequency is measured as cycles per seconds (Hz) and quantifies the

repetition of the phase of a wave in time. A sine wave with a period T of 1 s, which

means that the phase repeats every 1 s, has a frequency f = 1/T = 1/(1s) = 1

Hz. Angular frequency ω is defined as:

ω = 2πf, (2.4)

and has units of rad/s. A sine wave with a frequency of 1 Hz repeats once per

second, which means that in 1 s it will complete 2π radians, the full rotation of

a circle [51].

Wavenumber

Wavenumber k depends on the wavelength λ and is defined as:

k =
2π

λ
. (2.5)

While frequency quantifies the repetition of the phase of a wave in time, the

wave number can be interpreted as a spatial frequency, with units of m−1, and

quantifies the number of repetitions per meter of the phase of a wave [51].

Universal Wave Equation

The universal wave equation is a well known physical relation that links the speed

of a wave c to its wavelength and frequency [51]:

c = fλ. (2.6)

An example of the utility of this equation throughout this thesis is the prediction

of the properties of phononic crystals and acoustic metamaterials. In phononic

crystals, the distance between two unit cells is of the same order of the wavelength

of the wave to be attenuated due to Bragg scattering [54]. For example, two

pillars positioned at 3 cm distance in air will attenuate a wave with frequency

f = c/λ = c/0.03m. If we assume c = 343 ms−1, the frequency attenuated
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is f = (343 m/s)/(0.03m) = 11433 Hz. Acoustic metamaterials are considered

subwavelength, because the same frequency can be attenuated with unit cells

at a distance that is at least one order of magnitude less than the wavelength,

resulting in more compact structures.

Dispersion Relation

The dispersion relation describes how the speed of sound changes with the

frequency of a wave. In many simple vibrating systems existing in nature, the

wave frequency and the wavenumber scale linearly; hence, the speed of sound

remains constant at every frequency. In this case, the dispersion relation is

obtained by rewriting equation 2.6:

ω(k) = ck, (2.7)

where c is the speed of sound, k is the wavenumber, and ω(k) is the angular

frequency. When a sound wave travels through air and reaches the listener, all

the frequencies arrive at the same moment in time, since air is a non-dispersive

medium. If a medium is dispersive, the speed of sound changes with frequency,

and each frequency reaches the listener at a different moment, which is what

happens in the typical example of light passing through a prism. The dispersion

relation is fundamental in the study of acoustic metamaterials and phononic

crystals, as they are often modelled using the wave band theory, where the

dispersion relation is usually called dispersion diagram or band diagram. In

such systems, not only the dispersion relation shows a nonlinear relation between

frequency and wavenumber, but also presents some frequency bands - namely

band gaps - where sound energy does not propagate [55].

Sound Fields

A sound field can be divided into two regions - near field and far field - defined

by the distance from the sound source [33].

Near Field

The near field is the region situated in the proximity of the sound source; it

extends for less than a wavelength in the outward direction. In this region, the
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particle velocity is not in phase with the sound pressure and sound waves behave

as evanescent waves (2.2.1).

Far Field

The far field extends from the near field outwards. An object is located in the

far field with respect to the sound source with dimension l if its distance r from

the source satisfies the conditions:

r � λ

2π
, (2.8)

r � l, (2.9)

r � πl2

2λ
(2.10)

In the far field, sound waves propagating from the approximately point-source

behave as acoustic plane waves (2.2.1) and the particle velocity is in phase with

the sound pressure.

Propagation of Acoustic Plane Waves

The pressure of a plane acoustic wave propagating in the direction x is:

p(t, x) = Aei(ωt−kx), (2.11)

where p is the pressure, t is time, A is the amplitude of the wave, ω = 2πf = kc

is the angular frequency of the wave, f its frequency, k its wave number and c

the speed of sound. The pressure p and particle velocity u are:

p = Aei(ωt−kx), (2.12)

u =
A

ρc
ei(ωt−kx), (2.13)

where ρ is the density of the medium in the far field.

Evanescent Waves

In the near field, sound waves are characterised by a complex behaviour not

directly associated with sound propagation. The sound energy never really
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propagates from the sound source, rather circulates back and forth. These

waves that do not propagate but are generated and decay exponentially are

called evanescent waves. For evanescent waves, the equation of wave propagation

introduced in 2.2.1 holds:

p(t, x) = Aei(ωt−kx). (2.14)

However, the propagation vector k for evanescent waves is imaginary, hence ik is

real:

p(t, x) = Aeiωte−krealx. (2.15)

Therefore, evanescent waves are sinusoidally varying over time and exponentially

decaying in space.

Characteristic Impedance of a Medium

The characteristic impedance zc of a medium is the product of density ρ and

speed of sound c of the medium:

zc = ρc. (2.16)

The characteristic impedance is an important quantity in the field of sound

control, as when the acoustic wave propagates between two media having a

different characteristic impedance, the acoustic wave can be reflected, absorbed,

diffused according to the physical characteristics of the two media. Given

Eq. (2.3) for the speed of sound, the characteristic impedance can also be defined

by:

zc =
√
Bρ, (2.17)

where B is the Bulk modulus, and ρ is the density of the medium.

Sound Transmission Loss

Transmission loss TL of an acoustic material can be defined as the difference

between the incident sound intensity level Iin and the transmitted sound intensity
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level Itr given the reference sound intensity Iref :

TL = 10 log10

(
Iin
Iref

)
− 10 log10

(
Itr
Iref

)
= 10 log10

(
Iin
Itr

)
. (2.18)

If τ =
(

Iin
Itr

)
is defined as the intensity transmission coefficient,

TL = 10 log10

(
1

τ

)
. (2.19)

In composite materials, the effective transmission loss of the composite is:

TLeff = 10 log10

(
1

τ̄

)
, (2.20)

where:

τ̄ =

∑n
i=1 Siτi∑n
i=1 Si

, (2.21)

Si is the surface area of the material i, and n is the number of materials in the

composite.

Absorption Coefficient

When an incident sound wave passes through a material layer, part of the energy

is dissipated by the material and transformed into heat. The energy lost in

the process of reflection from the material is considered to be absorbed. The

absorption coefficient α is defined as the ratio of the sound intensity absorbed by

the material Iab to the sound intensity incident on the material Iin:

α =
Iab
Iin

; (2.22)

the sound intensity absorbed by the material is the sum of the dissipated Idis and

transmitted Itr sound intensity:

Iab = Idis + Itr. (2.23)

Hence, the sound intensity absorbed by the material Iab is also the difference

between the incident sound wave Iin and the reflected sound waven Ir. Therefore,
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α =
Iin − Ir
Iin

= 1−R2, (2.24)

where R = pr
pi

is the pressure reflection coefficient. The sound absorption

coefficient α is a function of frequency, it is also defined as the ratio between

the absorbed and incident sound intensity, and it is 0 ≤ α ≤ 1. In composite

materials, the effective absorption coefficient ᾱ of the composite is:

ᾱ =

∑n
i=1 Siαi∑n
i=1 Si

, (2.25)

where Si is the surface area of the material i and n is the number of materials in

the composite. The total absorption by a surface follows Sabine definition:

Total absorption by a surface = Sᾱ (2.26)

1 Sabine, a unit of measurement named after one of the founders of the field of

architectural acoustics Wallace Clement Sabine, is defined as the sound absorption

unit of a 1m2 surface with total absorption [51].

The Mass-Law

The mass-law relates the transmission of airborne sound across a wall with

its mass. It is considered of particular importance when introducing acoustic

metamaterials, as - differently from traditional materials - they can break this

law. The mass-law states that the transmission T of a sound wave through a

material immersed in a fluid is described by [34]:

T ≈
(

2ρc

m′′ω

)2

, (2.27)

where ρ is the density of the fluid, c is the speed of sound in the fluid, m′′ = ρmh

is the mass per unit area of the material, ρm is the density of the material, h

its thickness and ω is the angular frequency of the sound wave. Therefore, by

doubling the mass, density, or thickness of a material or by doubling the frequency

of the incident sound wave, the sound transmission across a wall is halved.

A halved sound transmission corresponds to an attenuation of 6 dB SPL. For

example, given a sound transmission T1 Pa measured across a wall, by doubling
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its thickness (or mass, density, incident frequency) the transmission T2 Pa is:

T2 =
1

4
T1. (2.28)

The corresponding transmission in dB SPL of T1 is given by T̃1:

T̃1 = 10 log10 (T1) . (2.29)

Therefore, the transmission in Decibels across T2 is given by;

T̃2 = 10 log10 (1/4) (2.30)

= T̃1 + 10 log10

(
1

4

)
= T̃1 − 6dB SPL.

As will shall see later, acoustic metamaterials can break the mass-law, because

they are capable of deep sound attenuation well above 6 dB for a doubling of

thickness in specific frequency bands, without an increase in mass, density or

frequency.

Interference of Acoustic Waves

When two plane waves in a linear medium encounter, the superposition law tells

us that a resulting wave is formed from their sum. If the waves have the same

phase and periodicity, a constructive interference is formed. If they have opposite

phase, a destructive interference is formed, where the amplitude of the wave is 0

[51]. The destructive interference of acoustic waves is at the base of active noise

cancellation methods and, as we will see later, also happens in sonic crystals and

acoustic metamaterials.

2.2.2 Helmholtz Resonator

Definition and Origin

The Helmholtz resonator consists of a rigid cavity with an open neck immersed

in a fluid, usually air. It was invented in 1850 by Herman von Helmholtz (1821-
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1894), a physicist, physiologist, and pioneer of acoustics theory [56]. Helmholtz

engineered resonators having different cavities and with a neck that could fit into

a human ear (see Fig. 2.2). Every resonator was characterised by a different

resonance, covering various frequencies within the human audible spectrum.

By inserting one resonator in the ear, it was possible to amplify a particular

frequency corresponding to the resonance frequency of the Helmholtz resonator

and attenuate any other sound. This way, a complex sound could be analysed to

obtain its frequency components: a primitive spectrum analyser was invented. As

shown in the next paragraph, a Helmholtz resonator’s advantage with respect to

a simple pipe is that a similar volume corresponds to a lower frequency. In a pipe,

the air inside the cavity acts as a mass. Conversely, the cavity of the Helmholtz

resonator acts as a spring and the air inside the neck as a mass, resulting in

a different system that produces a lower frequency [52]. Numerous acoustics

systems can be modelled as Helmholtz resonators. For example, empty bottles

and cans are cavities filled air having an open neck. In musical instruments,

the body of the guitar, ocarinas and other types of flutes, act as Helmholtz

resonators. Often, the enclosure of a loudspeaker includes a port, since the

membrane of the loudspeaker has a natural low-frequency resonance that modifies

or ’colours’ the sound and makes it ’boomy’: by adding a port to the enclosure,

the enclosure becomes a Helmholtz resonator with a lower resonance that matches

the resonance of the membrane and compensates for the coloration by resonating

in anti-phase with respect to the loudspeaker’s membrane [51]. In the field of

room acoustics, Helmholtz resonators are usually placed in corners of rooms

to attenuate low frequencies, otherwise difficult to tackle due to the mass-law

Section 2.2.1, requiring thick and dense walls for low-frequencies attenuation. In

biology, Helmholtz resonators constitute the body of insects such as cicadas and

have the function of amplifying the buckling of ribbed tymbals [52]. Finally, and

of interest for this thesis, Helmholtz resonators are extensively used as unit cells

for acoustic metamaterials [6, 7] .

Vibration of Helmholtz Resonator

To study the behaviour of Helmholtz resonators when inserted in acoustic

systems, it is useful to model and measure their vibration and specifically
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Figure 2.2: Helmholtz resonators made in 1870, Hunterian Museum and Art
Gallery in Glasgow, source https://en.wikipedia.org.

their resonance frequency. A standard formula for the resonance frequency of

Helmholtz resonators is reported below. It is worth noting that this standard

formula is valid when the dimensions of the resonator do not exceed 1/10 of the

wavelength of the incident wave. When this assumption is not valid, the geometry

of Helmholtz resonators has to be taken into account in the model. A Helmholtz

resonator (see Fig. 2.3) can be approximated to a mass-spring system: the air in

the cavity acts as a spring, and the air inside the neck vibrates like a mass. It

can be shown that - when damping is not considered - its resonance frequency f0

is given by:

f0 =
c

2π

√
S

L′V
, (2.31)

where c is the speed of sound in the gas filling the cavity, S is the cross-sectional

area of the neck, L′ = l+ 1.7a is the effective length of the neck, l is the length of

the neck, a is the radius (for cylindrical Helmholtz resonators) or surface length

(for non cylindrical Helmholtz resonators) of the neck and V is the volume of

the cavity. The effective length of a pipe is a quantity that takes into account
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both the length of the pipe and its end correction, i.e. a short distance applied

to the actual length whose value depends on the type of end (open/flanged, or

closed) and geometry of the pipe. When the Helmholtz resonator is vibrating

at its resonance frequency, the neck behaves as an open/flanged pipe, and its

end correction parameter is usually approximated as 1.7. As shown later in this

Section, when the Helmholtz resonator vibrates at one of its overtones’ frequencies

the cavity acts as a pipe, which is closed at one end and almost closed at the end

facing the neck, hence its end correction parameter is usually approximated as

0.6 [57].

Figure 2.3: Representation of a Helmholtz resonator consisting of a cylindrical
neck of length l, cross-sectional area S, and a cylindrical cavity of volume V and
length h.

Eq. (2.31) has been obtained by assuming that the cavity behaves as a mass,

the neck as a spring, and can been derived as follows. The angular resonance

frequency of the resonator depends on mass m of the neck and spring constant k

of the cavity (2.2.2):

ω =

√
k

m
, (2.32)

where the mass m (m=volume × density, see Eq. (2.1)) is given by the density

of air ρ, the effective length of the neck L′ and its cross-sectional area S:

m = ρL′S. (2.33)
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When the mass of air in the neck oscillates it is displaced by a distance dx into

the cavity, reducing the volume of the cavity by Sdx. The change in the cavity

volume dV is:

dV = −Sdx. (2.34)

Recalling from Eq. (2.2) that the bulk modulus is defined as B = dp/(−dV/V ),

the pressure inside the cavity varies by:

dp = B(−dV/V ) = BSdx/V. (2.35)

The force acting on the mass of air in the neck is:

dF = −dpS = −dx(
BS2

V
), (2.36)

where the negative sign represents the outward movement of the mass. From

Hooke’s law, F = −kx, hence the spring constant k is:

k =
−dF
dx

=
BS2

V
. (2.37)

By substituting Eq. (2.33) and Eq. (2.37) into equation Eq. (2.32) and by recalling

from Section 2.2.1 the speed of sound c =
√
B/ρ, we obtain the angular resonance

frequency of the Helmholtz resonator:

ω =

√
k

m
=

√
BS2

V ρL′S
= c

√
S

V L′
, (2.38)

which gives Eq. (2.31), since - after Eq. (2.4) - f = ω/2π.

Sinusoidally Driven Damped Helmholtz Resonator

Since the Helmholtz resonator acts as a mass-spring system, it can be modelled

as the well-known harmonic oscillator. A simple harmonic oscillator consists of a

mass m and a spring k. By equating Newton’s second law F = mẍ and Hooke’s

law F = −kx we obtain:

mẍ+ kx = 0, (2.39)
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where x is the displacement of the mass over time and ẍ is its acceleration. To

model a forced, sinusoidally driven, Helmholtz resonator, it is necessary to add

damping to equation Eq. (2.39), which is conservative and - without damping

- would lead to exponentially increasing solutions. Damping models the energy

losses of the system, as for example the viscous losses in the neck of the resonator

where the mass of air is moving or the imperfections of the cavity, that acts as

the spring of the resonator. This kind of damping is proportional to the velocity

of the oscillator.

In particular, in this thesis Helmholtz resonators are used to attenuate an

incoming sound wave, hence a sinusoidal driving force needs to be added to

the model. The equation of motion of the driven damped harmonic oscillator is

represented by [52]:

mẍ+ γẋ+ kx = Feiωt, (2.40)

where m is the mass, γ is the damping parameter, k is the stiffness, F is the

amplitude of the driving force, ω is its angular frequency, ω0 is the angular

resonance frequency of the oscillator, and t is time. Dividing by m we obtain:

ẍ+ 2αẋ+ ω2
0x = (F/m)eiωt, (2.41)

where α = γ/2m is the damping factor and ω0 =
√
k/m is the resonance of the

oscillator. By assuming as solution x = aei(ωt+Θ) and substituting this solution

into Eq. (2.41), we obtain:

aeiΘ =
(F/m)

(ω2
0 − ω2) + 2jωα

. (2.42)

This equation of motion is formulated in the complex domain, and to observe

the motion of the resonator we need to compute amplitude and phase in the real

domain. The absolute value of Eq. (2.42) gives the amplitude of the motion of

the resonator with respect to the driving force. Since |eiΘ| = 1 and for complex

numbers of the kind z = x + iy the magnitude is
√
x2 + y2, the amplitude a of

the driven damped resonator is:

a =
(F/m)√

(ω2
0 − ω2)2 + 4ω2α2

. (2.43)
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By looking at Eq. (2.43), it is possible to notice that when the denominator is at

its minimum, the amplitude of oscillation is at its maximum, i.e. at resonance.

To find the minimum, the derivative of the denominator is calculated and equated

to zero. By solving this equation, it can be shown that when the frequency ω

of the driving force is equal to
√
ω2

0 − 2α2, the denominator is at its minimum

value; hence, the amplitude of the oscillation of the mass of air inside the neck

is maximum. To approximate even further, given α � ω0, it can be stated that

amplitude is at its peak when the driving force has a frequency slightly lower

than the resonance frequency of the resonator. The phase-lag of the motion of

the resonator with respect to the impinging wave is given by:

Θ = tan−1

(
−2ωα

ω2
0 − ω2

)
. (2.44)

At low frequencies, Θ ≈ 0. When ω = ω0, Θ = −π/2. In other words, in the

frequency band near resonance, the mass of air inside the neck begins to oscillate

with an amplitude which is high in value (near the peak) and 90◦ out of phase

with respect to the impinging wave. In the frequency band after the resonance,

Θ = −π it oscillates in anti-phase (i.e. 180◦ out of phase) with the impinging

wave.

This is a key point for the study of acoustic metamaterials, as this behaviour is

leveraged to create a band gap where the sound is deeply attenuated. When the

response of the resonator is out of phase with the incoming wave, a frequency

band is generated where the energy is still amplified by the resonance effect, that

oscillates in anti-phase with the impinging wave. A destructive interference (see

Section 2.2.1) is created, where the sound is attenuated. The extent of the band

gap is determined by the Q factor: a very high Q factor will result in a narrow

frequency band where there is still enough energy in the anti-phase zone and a low

Q factor will see a larger band gap, but at a lower energy that might not be enough

to cancel the amplitude of the driving force. This trade-off should be taken into

consideration when designing a system, based on the constraints of a particular

application and objectives of the experiment. This response based on Eq. (2.43)

and Eq. (2.44) is shown in Fig. 2.4. It is worth noting that, by increasing the

amount of damping, the frequency of the resonator is detuned and the Q factor
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decreases. This effect can be observed in Fig. 2.5, where the damping value is

swept between 1 and 10000 with 1000 increments. The amplitude of vibration of

Helmholtz resonators decreases with damping, as shown in Fig. 2.6.

Figure 2.4: Amplitude and phase lag of a driven damped Helmholtz resonator.
The resonance frequency of the resonator is slightly higher than 5 kHz, its mass
is 1 kg, damping is 1000. When the frequency of driving force is at 5 kHz, the
mass of air in the neck oscillates in anti-phase with the impinging wave.

Overtones of Helmholtz Resonators

As shown in the previous section, the first mode of vibration of Helmholtz

resonators is the result of the volume of air in the neck acting as a mass and

the volume of air in the cavity acting as a spring. There are however higher

modes of vibrations due to the oscillation of air in the cavity. As a consequence,

higher resonances are not integer multiples of the fundamental frequency and

are classified as overtones instead of harmonics [57]. The ocarina is a musical

instrument that leverages the different origins of higher mode of vibration,

emitting almost a pure tone containing very few overtones, as the higher modes

of vibration are considerably higher in frequency and lower in amplitude than

the fundamental resonance. According to Fletcher [52], cylindrical Helmholtz

resonators with a large cavity behave - at higher modes of vibration - as pipes

closed at both ends. On the other hand, when volumes are smaller, the cavity
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Figure 2.5: Amplitude and phase lag of a driven damped Helmholtz resonator.
The frequency of the resonator with no damping is at 5 kHz, its mass is 1 kg,
the damping value is swept between 1 and 10000 with an increment of 1000. The
effect of the damping is noticeable in the detuned frequency and decreased Q
factor.

Figure 2.6: Amplitude of vibration of a Helmholtz resonator decreases with
increasing damping.
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acts as a pipe closed at one end and open at the other end. In the first case, the

overtones will be:

fn = (n− 1)
c

2h′
, (2.45)

with n = 2, 3, 4, ..., etc. In the second case, the overtones will be:

fn = (2n− 1)
c

4h′
, (2.46)

with n = 1, 2, 3, ..., etc.,

where c is the speed of sound in the host medium, h′ = h + 0.6r is the effective

length of the cavity and r is its radius. Finally, it is worth noting that in many

cases these idealised models do not reflect the behaviour or resonators, and factors

like the geometry of cavity and neck and the constituting materials can greatly

influence the vibration of Helmholtz resonators.

2.2.3 Membranes and Plates

Introduction and Definition

Membranes and plates are two-dimensional representations of common acoustic

surfaces. In membranes, the restoring force depends on tension and are assumed

to be infinitely thin and with no stiffness. Examples of membranes include drums,

resonators found in banjos, as well as the tympanic membrane or eardrum. In

plates, the restoring force depends on stiffness and material properties. The

sounding board of a piano can be modelled as a plate. Other two-dimensional

models of surfaces include shells, in which the thickness of the material is small

compared to its lateral extent. In general, many two-dimensional surfaces existing

in nature or that are part of musical instruments can be modelled as membranes,

plates, or shells [52]. Membranes, plates with or without loaded masses have

become popular as unit cells in acoustic metamaterials, because of their potential

lightweight and small size. In some cases - particularly when these surfaces are

fabricated via additive manufacturing techniques - these surfaces could exhibit

a behaviour in-between the three main models outlined above. The three-

dimensional printed layers presented in Chapter 5 of this thesis can be modelled
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as thin plates; hence they are dominated by stiffness, and they have no tension.

However, some small discrepancies between experiments and models suggests that

some tension is applied in the three-dimensional printing process. In the next

sections, general models of both membranes and plates will be introduced. Since

the vibration of thin plates depends on their material properties, the concepts of

Young’s modulus, Poisson’s ratio and molecular weight will also be defined.

Young’s Modulus

Young’s modulus is defined as the amount of elastic stress (force/area) to strain

(extension/length) of a material [52]. It is measured in Pascals, and defined as

force per unit area, or N/m2. In general, Young’s modulus can vary from sample

to sample according to purity of material. Some common values for polyethylene

are 2 − 7 GPa, for aluminium 6.9 − 7.9 × 102 GPa, steel has values around

1.9− 2.1× 103 GPa [51].

Poisson’s Ratio

The Poisson’s ratio of a material under stress is defined as the ratio of the

fractional decrease in diameter to the fractional increase in length [52]. When a

sample of material is compressed in the transverse direction, it becomes thicker

in the longitudinal direction, and vice versa. When the sample is elongated in

the transverse direction, it becomes thinner in the longitudinal direction and

vice versa. Most materials have values between 0 and 0.5, the typical value of

Poisson’s ratio for most materials is ∼ 0.3 [53].

Molecular Weight

Molecular weight is defined as the sum of the atomic weight values of the atoms

in a molecule.

Vibration of Membranes

Membranes need to be stretched on a frame in order to vibrate. The amount

of tension resulting from the attachment to a support plays a significant role in

determining their vibration behaviour. The most commonly modelled membranes
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- as well as those presented in this thesis - have a circular geometry. The equation

of motion of rectangular membranes is [52]:

∂2z

∂x2
+
∂2z

∂y2
=

σ

ρM

∂2z

∂t2
, (2.47)

where σ is the elastic stress of the membrane, and ρM is the density of the

membrane. For circular membranes, the transformation using polar coordinates

(r, φ) yields:

1

r
r
∂z

∂r
+

1

r2

∂2z

∂φ2
=

σ

ρM

∂2z

∂t2
. (2.48)

If we define cM as the wave speed in the membrane, we can rewrite Eq. (2.48) as:

1

r
r
∂z

∂r
+

1

r2

∂2z

∂φ2
=

1

c2
M

∂2z

∂t2
. (2.49)

If an oscillatory behaviour along the z axis is assumed with angular frequency ω

and following the convention eiωt, we obtain:

z(r, φ, t) = Ψmn(r, φ)eiωt, (2.50)

where Ψ are the eigenfunctions of the form:

Ψmn(r, φ) = MmnJm(kmnr) cosmφ, m = 0, 1, 2, ... n = 1, 2, 3, ... (2.51)

with:

M0n = [J1(k0na)]2 Mmn = [Jm−1(kmna)]2. (2.52)

The above result is obtained by fitting the boundary condition of a membrane

clamped (z = 0) at r = a, J is a Bessel function. The main zeros of the Bessel

functions are given in Table 2.1.

The angular resonance frequency at each mode is obtained as follows:

ωmn = kmncM , (2.53)

and values for membranes of different radiuses a can be obtained by substituting

the values in Table 2.1 and value of radius:

28



2.2. Fundamentals of Acoustics

Table 2.1: Zeros of Circular Membrane Equation of Motion

m = 0 k01a = 2.405 k02a = 5.520 k03a = 8.654
m = 1 k11a = 3.832 k12a = 7.016 k13a = 10.173
m = 2 k21a = 5.136 k22a = 8.417 k23a = 11.620
m = 3 k31a = 6.380 k32a = 9.761 k33a = 13.015
m = 4 k41a = 7.588 k42a = 11.065 k43a = 14.373
m = 5 k51a = 8.772 k52a = 12.339 k53a = 15.700
m = 6 k61a = 9.936 k62a = 13.589 k63a = 17.004

ωmn =
kmn

a
cM . (2.54)

By substituting values from Table 2.1 into Eq. (2.51) and in Eq. (2.53), it is

possible to show the main modes of vibration of circular clamped membranes

and their resonance frequencies with respect to the fundamental resonance f0, as

illustrated in Fig. 2.7.

Vibration of Plates

Plates are dominated by stiffness with no tension. They can also be referred

to as stiff membranes or panels and they are the two-dimensional equivalent

of bar. Plates can be clamped to a frame or can also vibrate freely without

being attached to any support. The material properties of plates play a major

role in determining their vibration behaviour. With respect to membranes, the

overtones of plates are increased in frequencies due to the effect of stiffness, which

makes the fundamental frequency much lower than the frequency of other modes

of vibration. The equation of motion of a plate clamped at its edges without

tension is [53]:

∇4z +
3ρM(1− ν2)

E(h/2)2

∂2z

∂t2
= 0, (2.55)

where ρM is the density of the material, ν its Poisson’s ratio, E its Young’s

modulus and h is the thickness of the plate. It is worth noting that the equation

of motion of the plates presents a higher order with respect to the equation of
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Figure 2.7: First twelve vibration modes of clamped membrane, obtained with
MATLAB.
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motion of membranes; while membranes stretch only in the xy plane and are

considered to have no thickness, plates stretch over the xyz plane. It can be

shown that frequencies of vibration for a circular plate of radius a clamped at its

edges are [53]:

fmn =
πh

4a2

√
E

3ρM(1− ν2)
(β2

mn), (2.56)

where the first nine coefficients βmn are [53]:

Table 2.2: Coefficients for Vibration of Circular Plates Clamped at Edge

m = 0 β01 = 1.015 β02 = 2.007 β03 = 3.000
m = 1 β11 = 1.468 β12 = 2.483 β13 = 3.490
m = 2 β21 = 1.879 β22 = 2.992 β23 = 4.000
m = 3 β31 = 2.274 β32 = 3.354 β33 = 4.391
m = 4 β41 = 2.657 β42 = 3.768 β43 = 4.822
m = 5 β51 = 3.032 β52 = 4.172 β53 = 5.244
m = 6 β61 = 3.402 β62 = 4.569 β63 = 5.658

By substituting values from Table 2.2 into Eq. (2.56), it is possible to show the

main modes of vibration of circular clamped plates and their resonance frequencies

with respect to the fundamental resonance f0, as shown in Fig. 2.8.
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Figure 2.8: First twelve vibration modes of circular plates, obtained with
MATLAB. Although the modes behaviour is the same as that of membranes,
plates present higher and more distanced frequencies for corresponding modes.
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2.3 Review of Noise Control Techniques

Noise can be defined as a part of acoustic energy that is unwanted and needs to be

controlled. Depending on the context, some sound energy needs to be enhanced,

and other sound energy needs to be attenuated. For example, in a classroom, the

voice of a teacher should be enhanced, while the speech of other students or the

noise coming from other neighbouring rooms and from the external environment

should be attenuated. Noise has negative consequences on health, causing hearing

loss, difficulty in sleeping and concentration, headache, fatigue [18–22]. Noise

control techniques can be applied at the source, in the acoustic path separating

source and receiver, or directly at the receiver location. At the source, a better

design of the mechanics that introduce vibration can lead, for example, to quieter

motors or compressors and reduce electric noise. Barriers can be placed in the

acoustic path between highways and houses to isolate communities from traffic

noise; absorbers and isolators can be built outside or inside buildings. At the

receiver end, earmuffs, earplugs, and headphones with active noise cancellation

can be used to reduce external noise and protect the hearing health of individuals

[36]. To better understand the advantages of acoustic metamaterials in noise

control applications, it is essential to identify traditional noise control techniques

that have been successfully used in various contexts in the past decades. In

this section, traditional noise control techniques such as absorption, isolation,

diffusion, and active noise cancellation will be reviewed.

2.3.1 Acoustic Materials

Acoustic materials are designed to attenuate noise by controlling, steering, and

manipulating sound waves. When an acoustic wave encounters a boundary,

it is partly reflected, transmitted, and absorbed (see Fig. 2.9). Noise control

techniques use materials and structures, including insulators, diffusers, and

absorbers, to manipulate the transmission, reflection, and absorption needed for

a specific application. Metrics to evaluate the performance of acoustic materials

are transmission loss and absorption coefficient (Section 2.2.1).
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Figure 2.9: Reflection, absorption and transmission of incident acoustic energy
at a boundary including a material layer.

2.3.2 Insulators

Acoustic insulation leverages impedance mismatch between two different medi-

ums to reflect the incident sound wave. When the density or elasticity - hence

the speed of sound - of a medium changes, an impedance mismatch is created,

and the sound wave is partially or totally reflected. In this type of mirror-like

or specular reflection, the angle of incidence and reflection from the surface are

equal. Acoustic insulation is a type of noise control used, for example, to prevent

sound from penetrating a neighbour wall, a barrier, or from entering a building

or a theatre. Typical materials used for insulation are hard materials that reflect

and block the propagation of waves. In the case of headphones, the hard plastic

cover that surrounds the foam and the electronics in circumaural and supra-

aural headphones functions as a flat reflecting surface. In order to maximise the

impedance mismatch with air, dense and thick materials are needed, as modelled

by the mass-law (Section 2.2.1). It is worth noting that insulators are effective for

reflecting sound, but do not necessarily absorb it. An insulating barrier placed

between source and receiver will result in a quieter environment on the receiver

side, but not on the source side. Concrete, wood, and metal are good acoustic

insulators [36].
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2.3.3 Absorbers

Absorption happens when acoustic energy is transformed into another kind of

energy, for example, heat. In room acoustics, we can define maximum absorption

as that of an open window, where no reflections are present and there is no

impedance mismatch between two materials [51]. Table 2.3 reports the absorption

coefficient of commonly used absorbers [51, 58].

Table 2.3: Absorption coefficients of commonly used absorbing materials.

Materials 125
Hz

250
Hz

500
Hz

1000
Hz

2000
Hz

Acoustic tile .80 .90 .90 .95 .90
Brick .03 .03 .03 .04 .05
Carpet over concrete .08 .25 .60 .70 .72
Heavy curtains .15 .35 .55 .75 .70
Wood floor .15 .11 .10 .07 .06
Fiberglass .22 .82 .99 .99 .99
Marble .01 .01 .01 .01 .02

Absorption is commonly used in reverberant spaces such as gyms, swimming

pools, restaurants and stations. In headphones, absorbers have multiple

functions: they seal the headphone to the ear to avoid sound leakage, absorb

part of the external noise and absorb the reflections coming from the eardrum.

However, the absorption provided with respect to the external noise does not

impede sound to pass through - as with an open window, sound is completely

absorbed as no reflections are present, but it will still pass through and be heard

outside the window - hence the use of active noise cancellation or the potential

use of acoustic metamaterials. Common absorbers reflect less, transmit less, and

dissipate more energy. Most part of absorbed energy is dissipated as heat, and

the remaining is transmitted. There are three main types of absorbers: porous-

fibrous absorbers, panel absorbers, and resonant absorbers.

Porous-Fibrous Absorbers

Common porous-fibrous absorbers are polyurethane foam and fibreglass. Porous-

fibrous absorbers are materials constituted both by a solid-phase frame, like foam
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or fibres, and by a fluid phase, for example, air, situated in the pores of the

material. Sound waves can enter these materials through the numerous pores

and gaps on their surface. The interconnecting fluid tunnels within the materials

minimise the reflection and maximise the absorption of sound energy. Dissipation

happens through the friction of fibres. When the Young Modulus of the solid-

phase frame is high, dissipation can also be achieved through scattering, thanks to

the tortuosity of material or through the structural vibration. A smooth surface

will not allow a sound wave to enter the pores and will result in larger reflection

and, therefore, less absorption. A common porous-fibrous material is usually

protected by a thin, lightweight membrane that allows the sound wave to pass

through and avoids pores blockage over time by contaminating agents such as

dust. A rigid backing material can also be added on one side of the porous layer

to reflect the sound wave towards the pores, and increase absorption. A small air

gap can optionally be introduced between the porous material and the backing

layer: the air gap will help low-frequency absorption, and slightly decrease the

high-frequency average absorption coefficient (see Section 2.2.1)[36]. Advantages

of porous-fibrous materials are good absorption at high frequencies, availability of

natural recyclable materials, and low costs of production. Limitations of porous-

fibrous absorbers are their low durability, easy obstruction by dust, difficulty to

clean, and poor performance at low frequencies below 1000 Hz [59].

Panel Absorbers

Panel absorbers consist of non porous thin sheets of metal or plywood that absorb

low frequencies thanks to their vibrations. They can be fixed or freely suspended.

They can be painted, and are considered aesthetically pleasing and commonly

used for indoor applications. These panels are usually designed and modelled to

vibrate at the natural frequencies of the room to compensate for room modes.

One of the main limitations is the narrow frequency of absorption and the need

for multiple panels to attenuate different frequencies [59].

Resonant Absorbers

Helmholtz resonators are an example of resonant absorbers. They are commonly

used as low frequencies absorbers and individual resonators are placed in
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recording studios near corners between walls to cancel low frequency room modes,

or in noisy environments such as electrical power stations [32]. Only recently, their

absorption functionality has been extended to acoustic metamaterials, where they

form the base of unit-cells. In some cases, Helmholtz resonators are inserted

in panel absorbers, to enhance their properties, and to obtain perforated panel

absorbers.

2.3.4 Diffusers

When the surface used to reflect a sound wave is not flat, the sound is not

reflected according to the incidence angle, but multiple angles of incidence are

formed, producing a diffused scattering. This effect is used above all in theatres,

to avoid echoes and coloration and to provide a more homogeneous listening

experience to the entire audience regardless of position. Otherwise, the audience

would receive an enhanced or attenuated signal according to the position of their

seat with respect to the source position and the angle of incidence on the walls

and acoustics of the space. Differently from absorbers, diffusers placed on a wall

will not affect the acoustic energy, dispersing the reflections without altering the

reverberation time of the room [32].

2.3.5 Active Noise Cancellation

As explained in the sections above, attenuating low-frequency sound waves is a

challenging endeavour, as long wavelengths necessitate thick absorbers, or very

dense and thick acoustic insulation structures. Active Noise Cancellation (ANC)

leverages the destructive interference of waves (see Section 2.2.1) by creating

an ’anti-noise’ signal: a microphone measures the noise to be minimised, and a

wave with opposite phase to the measured one is built to cancel or reduce noise.

ANC is often used in headphones to protect the user from external noise and to

prevent listeners from playing a louder signal than necessary and damaging their

hearing. In a feed-forward ANC system, a reference microphone positioned on the

external cover of the headphones measures the noise. A loudspeaker positioned

in the internal side of the headphones generates an anti-noise signal that inverts

the reference signal. A feed-back ANC system is usually based on an internal

microphone close to the loudspeaker that measures the noise and feeds it back to
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the loudspeaker. Feed-back systems are cheaper, as they use just one microphone,

but they are hard to tune and present stability problems. In hybrid systems,

external microphones perform the main function of measuring noise as done by

feed-forward systems. However, they also use an error microphone positioned

close to the loudspeaker to measure the residual noise: the signal measured by

the error microphone is then fed into adaptive algorithms such as the Least Mean

Square method that minimise the residual noise [38]. Today, feed-forward and

hybrid systems are usually preferred.

2.4 Review of Acoustic Metamaterials

2.4.1 General Introduction to Metamaterials

Creating new materials from the ones readily available in nature is a process

that has challenged and attracted human civilisation for centuries. Today, the

most common way to create new materials consists in mixing atoms of chemical

elements that exist in nature and that are listed in the periodic table. The

invention of metamaterials - from the Greek word µετά, meaning ’beyond’ - goes

beyond this approach by using macroscopic structures as new ’atoms’ that, when

joined together in space, create a new material that acts as a continuous medium

[60]. These ’atoms’, also called ’unit cells’, are in most cases disposed in a periodic

way, but in some cases a different order is also possible [40]. The unit cells can

be shaped and chosen according to the purposes of a specific experiment, they

might be passive or active, and they should be subwavelength with respect to the

incident wave in order to act as an effective medium. One of the first definitions

of the term ’metamaterials’, described them as ”Macroscopic composites having

a manmade, three-dimensional, periodic cellular architecture designed to produce

an optimised combination, not available in nature, of two or more responses to a

specific excitation” [61]. Despite the fact that the purpose of using metamaterials

is indeed their unusual properties, as pointed out by Lapine [60] and Shivola [62],

other materials could have properties not previously found in nature and it is

hence important to also highlight their structural organisation. Therefore, a more

complete definition would be ”Metamaterials are artificial structures, typically

periodic (but not necessarily so), composed of small meta-atoms that, in the
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bulk, behave like a continuous material with unconventional effective properties”

[40].

2.4.2 The Origin of Metamaterials

Before presenting the first examples of acoustic metamaterials, it is important

to take a step back in history to the search for negative index materials

and the first realisations of electromagnetic metamaterials. The possibility

of manufacturing electromagnetic materials with negative parameters was first

predicted by Veselago [63] in 1968. Veselago noted that the only material

properties that govern the propagation of an electromagnetic wave through a

medium are electric permittivity and magnetic permeability. The refractive index

n of a material is described by permittivity ε - a measure of the polarisability of a

material - and permeability µ - a measure of the resistance of a material against

the formation of a magnetic field - as follows [64]:

n =
√
µε. (2.57)

In optics, the refractive index n of a material describes the propagation of light

in the material:

n =
c

v
, (2.58)

where c is the speed of light in vacuum and v is the phase velocity of light in the

material. A higher refractive index describes a slower propagation of light in a

medium. Snell’s law (Fig. 2.10) describes the relationship between the refractive

indices of two media as the ratio of sines of angle of incidence and angle of

transmission (more commonly known as angle of refraction) of a wave propagating

between two different media [64]:

n1

n2

=
sin θ2

sin θ1

, (2.59)

where θ is the angle measured from the normal to the boundary of the two media.

Veselago predicted through mathematical proof that a negative refractive index

where waves could bend ”backward” could be obtained at particular frequencies

if either ε or µ were negative:

39



2.4. Review of Acoustic Metamaterials

Figure 2.10: Visualisation of the refraction of a wave propagating between two
different media as described by Snell’s law.

µ = −|µ| (2.60)

ε = −|ε| (2.61)

n =
√
µε (2.62)

=
√
−1×

√
−1×

√
|µ||ε|

= j2
√
|µ||ε|

= −
√
|µ||ε|

=⇒ n < 0.

He also predicted that if both ε and µ were negative, the wave would propagate

forward and would be characterised by an effective negative refractive index.

As shown in Fig. 2.11, a negative refractive index could cause a wave to bend

backward in quadrants 1 and 4, while a positive index would transmit the wave

in quadrants 2 and 3.
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Figure 2.11: Visualisation of possible regions of wave refraction wr when an
incident wave wi propagates between two different media. Quadrants 1 and 4
exhibit negative refractive index n and quadrants 2 and 3 positive refractive
index n.

From an experimental point of view, some successful results were obtained in the

late ’80s and early ’90s by Yablonovitch who built a periodic dielectric structure

that created a band gap to attenuate spontaneous electromagnetic emissions

[65, 66]. Similarly, Genack and Garcia leveraged destructive interference to

attenuate electromagnetic waves traveling through periodic metallic spheres

[67]. These devices that could control electromagnetic waves were referred

to as ’photonic crystals’. In fact, it was noted that the distance between

the microstructures of these periodic devices determined the wavelength of the

incoming wave that was attenuated.

In 1999, 31 years after Veselago’s prediction, Pendry was able for the first time to

fabricate a device that exhibited negative permeability [68]. This device consisted

in a copper split-ring structure with a resonance frequency characterised by a

wavelength which is much larger than the diameter of the ring. This type of

structure was referred to as ’metamaterial’. Pendry also extended the work of

Veselago by proposing a new method create a lens having a theoretically perfect

focus [69].
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Following this discovery, negative index metamaterials and other metamaterials

with negative parameters were experimentally obtained [70, 71]. Today, negative

index metamaterials can be applied to the study of lenses, subwavelength imaging

and invisibility cloaks [72–75].

2.4.3 Acoustic Metamaterials

In acoustics, the quest for new materials is driven by the possibility to control

sound waves in new ways. For example, acoustic metamaterials could substitute

traditional materials by attenuating sound with small-scale and light-weight

structures, or they could bend sound in different directions, control vibrations,

realise acoustic cloaks, and energy harvesting devices.

In parallel to the field of photonic crystals, in the early ’90s researchers started to

apply similar concepts to the realm of elastic and acoustic waves, giving origin to

the field of phononic crystals. Sigalas and Economou noted that in acoustics the

two material parameters that characterised wave properties are density and bulk

modulus [76]. Phononic crystals were periodic composites made of two alternating

materials with different elastic properties, that, thanks to Bragg scattering and

wave interferences, could bend or attenuate vibrations and sound waves with a

wavelength of the same order of the distance between the materials [77–79].

About 11 years after Pendry’s realisation of electromagnetic materials prediction,

the concept of metamaterials was extended to acoustic materials as well, through

the work of Liu et al. [3] who modelled and fabricated a locally resonant

acoustic metamaterial to achieve wave attenuation. Liu built a three-dimensional

structure made of heavy resonators - specifically lead spheres - embedded in

an epoxy matrix (Fig. 2.12). Differently from phononic crystals, the phase

shift and wave attenuation were caused by the resonance of inclusions, that

due to a difference in phase speed with the coating material could oscillate and

generate a 180° phase shift. Since these materials could attenuate waves having

a wavelength much larger than their dimensions and because this was considered

a breakthrough with respect to the properties of phononic crystals, they were

named acoustic metamaterials. Today, the definition of acoustic metamaterials
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sometimes includes phononic crystals and defines as ’locally resonant acoustic

metamaterials’ the types of materials that leverage resonance instead of Bragg

scattering to control waves. According to other taxonomies, phononic and sonic

crystals are not considered to be acoustic metamaterials. Finally, it is worth

noting that many publications propose the use of unit cells that are both resonant

and periodically spaced, leveraging both types of band gaps. The main focus of

this thesis is on resonant acoustic metamaterials, hence sometimes the structures

here presented are simply referred to as acoustic metamaterials. In the next

sections, some basic theory and literature review of phononic crystals, sonic

crystals and locally resonant acoustic metamaterials will be presented.

Figure 2.12: First experimental realisation of acoustic metamaterials proposed
by Liu et al. [3]. A three-dimensional structure made of periodically spaced lead
spheres embedded in an epoxy matrix is capable of isolating low-frequency sound
and to break the mass law.

Crystals

Crystals are solid materials that can be found in nature. A crystal is characterised

by components or units, such as atoms and ions, that are arranged in a periodic
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or ordered structure to form a lattice [80]. In a lattice, units are organised in

regularly repeating patterns. Examples of natural crystals are table salt, sugar,

snowflakes, quartz and diamonds.

Sonic and Phononic Crystals

Following from the definition of a natural crystal, sonic crystals can be defined

as artificial crystals whose units (or unit cells) are scatterers (also called sonic

scatterers) made of reflective materials such as wood or metal, usually embedded

in a fluid homogeneous host material. When the host material is a solid, these

types of metamaterials are called phononic crystals [81]. The periodicity of the

crystals can be in one, two, or three dimensions. One-dimensional sonic crystals

are a series of scatterers positioned at an equal distance along the direction

of periodicity and separated by a fluid such as air; they are characterised by

periodic variation of bulk modulus and density (or in other words characteristic

impedance) in one direction. Two-dimensional sonic crystals are arranged in

two directions and the distance between scatterers can be equal or different in

the two chosen directions; bulk modulus and density vary periodically in the

two independent directions. The drawback of sonic crystals is that, following

from Bloch’s Theorem, the wavelength of the attenuated sound waves must be

of the same order of the lattice constant, i.e. the distance between the unit-

cells. Considering that the audio frequencies between 100 Hz and 20000 Hz

have wavelengths in air in the range of 17 cm to 3.4 m, sonic crystals are

large structures and cannot be used to attenuate noise in small-scale devices

or machinery. The first example of two-dimensional sonic crystal was realised by

Martinez [4], who proposed an outdoor structure that could shield environmental

noise (see Fig. 2.13). The sculpture had a diameter of 4 meters and was composed

of a cylindrical base filled with hollow stainless steel cylinders that acted as

scatterers, having a 2.9 cm diameter. Sound attenuation up to 20 dB was obtained

at frequencies around 1.5, 2.5, 3.5 and 4 kHz. Miyashita [5] proposed a two-

dimensional sonic crystal where a panel of rods was embedded in air and arranged

at equal distances along two directions. Similarly, three-dimensional sonic crystals

are characterised by independently periodic variation of bulk modulus and density

in three directions. As shown in the previous paragraph (Fig. 2.12), Liu et al.
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[3] were the first to propose a three-dimensional sonic crystal that was made of

locally-resonant unit cells. In their publication, they presented a cubic structure

made of lead balls embedded in a matrix of epoxy. According to the definition

and terminology used, this first example of three-dimensional sonic crystal can

also be considered the first metamaterial or simply a locally-resonant sonic crystal.

Figure 2.13: Two-dimensional sonic crystal outdoor sculpture by Eusebio
Sempere and resulting sound attenuation [4].

To study acoustic wave propagation in crystals, models rely on their symmetry.

This allows to investigate wave propagation in a reduced area of a unit cell and

to then extend it to the entire crystal. To do so, concepts such as Bravais lattice,

direct and reciprocal lattice, irreducible Brillouin zone and Bloch’s Theorem are
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Figure 2.14: Two-dimensional sonic crystal slab based on aluminium rods
embedded in air and resulting sound transmission [5].

briefly introduced.

Band Gaps

Band gaps are frequency bands where the sound does not propagate or is

greatly attenuated. In periodic structures, band gaps are the result of periodic

modulation of density or bulk modulus of the materials alternating in the unit cell.

The band gaps can be interpreted as the result of destructive Bragg interferences

and are modelled by Bloch’s Theorem. Hence, the wavelength of the attenuated

sound waves are of the same order of the lattice constant, which is the minimum

distance between two unit cells. By analogy, the attenuation band resulting from

destructive interference in acoustic metamaterials is also called band gap. In this

thesis we use the term ’band gap’ to refer to frequency bands where the sound is

deeply attenuated as a result of the effect of acoustic metamaterials. Although

a better terminology would be ’attenuation band’ or ’stop band’, the term ’band

gap’ is used as is commonly found in the literature. It is also important to reflect

on the definition of the limits of the band gap. In absence of an official standard

to define the limits of band gaps in acoustic metamaterials, we propose to use a

similar rule of thumb to the one used for transition bands in filters. The proposed

definition would define the start of the band at the point where the attenuation

is 1 dB with respect to reference and the end the point where the notch is again

1 dB from the reference.
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Bravais Lattice

In crystallography, a Bravais lattice is an infinite array of unit cells whose

orientation appears to be the same regardless of the unit cell the array is

observed from. In one dimension, there exists only one possible Bravais lattice.

In two dimensions, there are five possible categories of Bravais lattices, for

example rectangular or oblique; in three dimensions there exist fourteen different

arrangements of unit cells, such as cubic, hexagonal, tetragonal, etc. [80]. A

three dimensional Bravais lattice can be described in mathematical terms as a

collection of points with position vector ~R:

~R = n~a 1 +m~a 2 + l~a 3, (2.63)

where ~a 1, ~a 2 and ~a 3 are the three primitive vectors lying in three different planes

and n, m and l are integers [55].

Primitive Cell

The primitive cell of a lattice is the space that contains one unit cell and can be

translated in all the lattice dimensions without overlapping itself or leaving voids

[55].

Filling Fraction

The filling fraction or packing density in a sonic crystal is the ratio between

the volume occupied by the primitive cell and the total volume occupied by

the sonic crystal. Typical arrangement in sonic crystals are cubic lattices -

because they are easy to build - and hexagonal lattices [59]. The metamaterials

presented in the next Chapter of this thesis present a circular geometry in order

to replicate previous work on soda cans, as well as to facilitate the fabrication at

the prototyping stage. Nevertheless, filling fraction is important to consider in

the research area of metamaterials optimisation and in order to scale production.

Direct Lattice

The direct lattice is a Bravais lattice, it represents the geometrical arrangement

of the crystal and it is studied in the real space.
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Wigner-Seitz Cell

The Wigner-Seitz cell is a primitive cell in the direct lattice constructed by

drawing lines that connect a lattice point to all the neighbouring lattice points.

Given these connecting lines, by adding new lines that pass through their mid

point and normal to them, the smallest volume enclosed by these lines or planes is

defined as the Wigner-Seitz cell. This cell respects the symmetry of the underlying

Bravais Lattice [55].

Reciprocal Lattice

The reciprocal space can be described as the Fourier Transform of the real space.

For any function f(~r) which is periodic in the direct lattice, there exists a set of

vectors ~G, such as:

f(~r) =
∑
~G

f(~G)ei
~G~r. (2.64)

A periodic function in the Bravais lattice satisfies:

f(~r) = f(~r + ~R), (2.65)

where ~R = n~a 1 +m~a 2 + l~a 3. Therefore,

f(~r + ~R) =
∑
~G

f(~G)ei
~G(~r+~R) = f(~r) =

∑
~G

f(~G)ei
~G~r. (2.66)

Hence,

ei
~G~r = 1, (2.67)

and

~G~r = 2πN, (2.68)

where N is an integer. The reciprocal lattice is a set of unit cells or points whose

positions are given by the vectors ~G, that satisfy the condition ~G~r = 2πN , where

N is an integer, for all ~R in the Bravais lattice. It can be shown that, if ~a 1,

~a 2 and ~a 3 are the primitive vectors of the three dimensional direct lattice, the

primitive vectors of the reciprocal lattice ~b 1, ~b 2 and ~b 3 are given by:
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~b1 = 2π
~a2 × ~a3

~a1 · (~a2 × ~a3)

~b2 = 2π
~a3 × ~a1

~a2 · (~a3 × ~a1)

~b3 = 2π
~a1 × ~a2

~a3 · (~a1 × ~a2)

(2.69)

and:

~G = n′~b 1 +m′~b 2 + l′~b 3, (2.70)

where n′, m′ and l′ are integers [55]. The reciprocal lattice is also a Bravais lattice

and it corresponds to the direct lattice in the reciprocal space. If for example a

simple cubic direct lattice is created in the real space, having a distance a between

each unit cell, the reciprocal lattice will be a cubic Bravais lattice with distance

2π/a between unit cells.

Irreducible Brillouin Zone

The Brillouin zone can be found in the reciprocal lattice following the same rules

defined to find the Wigner-Seitz cell in the direct lattice. Given the symmetries

in the Brillouin zone, it is possible to limit the study to the irreducible Brillouin

zone, which is the space limited by the points of high symmetry. Usually the

points of highest symmetry in a two dimensional lattices are represented with

the letters Γ, X and M . Studying the wave propagation along the perimeter of

the irreducible Brillouin zone is sufficient to understand the propagation of waves

throughout the entire crystal.

Bloch’s Theorem

Bloch’s Theorem states that the acoustic field inside a periodic structure takes

on the same symmetry and periodicity of the structures [59]. The waves created

inside a periodic structures are denominated Bloch Waves and can be represented

as:
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p(~r) = A(~r)ej
~k~r, (2.71)

where A is the amplitude envelope that reflects the same periodicity and

symmetry of the crystal and satisfies A(~r+~a) = A(~r), ej
~k~r is the plane-wave-like

term and ~a represents the primitive lattice vectors. Bloch waves exist just at

discrete frequencies, which must have the same periodicity of the crystal. Since

the allowed frequencies are discrete, there must be some frequencies at which

wave propagation is not allowed in the material.

Bragg Scattering

From a physics point of view, Bragg’s law predicts the angles of reflection of a wave

passing through two different media and describes the resulting constructive and

destructive interferences. In phononic crystals, the impedance contrast between

the matrix material and the inclusion (scattering) material, results in waves being

scattered at an angle described by Bragg’s law. The main effect, as modelled

by multiple scattering theory, is destructive interference [82, 83]. This makes

phononic crystals a good candidate for applications such as noise attenuation.

However, waves attenuated by phononic crystals have a wavelength of the same

order of the lattice constant (or distance between two unit cells). For this reason,

applications in the audio domain would be quite large and therefore, phononic

crystals are more often used in ultrasound applications.

2.4.4 Acoustic Metamaterials Based on Local Resonances

When an oscillator is driven by a wave slightly higher than its resonance frequency,

there is a delay in the oscillator with respect to the driving force that results in

a 180 degrees phase shift. Since the behaviour of an oscillator near resonance

is characterised by a larger displacement than at other frequencies, the phase

shift has an amplitude large enough to interfere constructively or destructively

with the incoming wave. Given the size limitation of sonic and phononic crystals,

the realisation that metamaterials-based local resonances could not only achieve

negative effective parameters, but also attenuate noise using subwavelength

structures gave origin to the new field of locally resonant acoustic metamaterials.
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Acoustic metamaterials based on local resonances are at least two orders of

magnitude smaller than the wavelength of the attenuated wave. Typical unit

cells consist of Helmholtz resonators (which are more subwavelength than pipes)

for negative effective bulk modulus and membranes and thin plates for negative

effective density [40]. The standard way to fabricate locally resonant acoustic

metamaterials is to include resonant objects inside a matrix material characterised

by a higher phase speed. The first three-dimensional acoustic metamaterial based

on resonances was introduced by Liu et al. in 2000 [3]: an 8 × 8 × 8 array of

unit cells, where each unit cell consisted of an epoxy matrix embedding a lead

sphere. These acoustic metamaterials had wave attenuating properties at narrow

frequency bands near the resonances of the lead spheres (around 300 Hz and 1500

Hz). Following Liu et al. work, many researchers presented ways to maximise the

attenuation, optimise unit cells, obtain larger band gaps and create hybridisation

band gaps using both phononic crystals and resonant acoustic metamaterials [84–

87].

Physical Interpretation of Negative Effective Properties

In acoustic metamaterials, when the effective bulk modulus Beff and the effective

mass density ρeff are negative, the refractive index becomes negative, and the

acoustic wave can be bent very sharply towards the source direction or at other

unusual angles. When either effective bulk modulus or density become negative,

the speed of sound becomes imaginary, and the wave decays exponentially; hence

the sound wave is deeply attenuated. The physical meaning of negative effective

density can be interpreted as an acceleration to the left when a medium is pushed

towards the right direction and vice versa. The negative effective bulk modulus

implies an expansion of the medium when experiencing compression and vice

versa. In other words, due to the 180 degrees phase shift at resonance, the

average momentum or expansion of the unit cells moves in the opposite direction

to the wave propagating in towards the metamaterial.

Acoustic Metamaterials Based on Helmholtz Resonators

As shown in Section 2.2.2, Helmholtz resonators have lower resonances with

respect to pipes of similar dimension; hence they are good candidates for
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low-frequency subwavelength attenuation in acoustic metamaterials. Another

advantage of Helmholtz resonators is that, for sound applications, they do

not produce impedance mismatch and maximise the wave control effect of

metamaterials: the medium of wave propagation is the same as the medium that

causes them to resonate. Acoustic metamaterials based on Helmholtz resonators

can achieve a negative effective bulk modulus. One of the first publications

using Helmholtz resonators as unit-cells was a paper by Fang et al. [6] (see

Fig. 2.15). Fang obtained ultrasonic wave attenuation near 30 kHz. Another

notable publication by Lemoult et al. used arrays of soda cans acting as Helmholtz

resonators to steer and focus sound waves [7] (see Fig. 4.1). Recently, Helmholtz

resonators have become a common and popular way to attenuate sound and

control acoustic waves [88–91]. A promising development is the investigation of

active Helmholtz resonators that can change shape in real-time or be driven by

piezoelectric actuators in order to tune the frequency to be controlled [92, 93].

Acoustic Metamaterials Based on Membranes and Thin Plates

The first paper to introduce the idea of membrane-based acoustic metamaterials

was published by Yang et al. [94]. These metamaterials are characterised by

membranes as unit-cells and have a negative effective mass density: ρeff ≤ 0

[95, 96]. In the literature, it is common to find two types of membranes and

thin plates: with no mass attached [43] and with a small masses attached to

the centre of the membrane or thin plate [97, 98]. The membranes are usually

inserted inside waveguides or sometimes attached to other resonators. Yang et

al. proposed a membrane-based metamaterial panel for sound attenuation in the

50-1000 Hz regime[8] (see Fig. 2.17). The advantage of this type of metamaterials

is the very thin nature of membranes and thin plates and their lightweight and

small-scale characteristics.

2.4.5 Active Acoustic Metamaterials

The acoustic metamaterials described above use resonance to passively control

sound. Passive acoustic metamaterials are capable of going beyond narrowband

attenuation and of controlling sound in extended frequency bands. Nevertheless,

once the metamaterials are designed and built, the band gap where the sound
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Figure 2.15: Ultrasonic metamaterials based on Helmholtz resonators, proposed
by Fang et al. [6] (a) Schematic of Helmholtz resonator, (b) chain of Helmholtz
resonators, (c) effective modulus.

Figure 2.16: Acoustic metamaterials based on soda cans, introduced by Lemoult
et al. [7]. (a) experimental setup, (b) sound transmission and band gap.
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Figure 2.17: Transmission spectra and displacement amplitude of membrane-
based acoustic metamaterials with attached mass as proposed by Yang et al.
[8].
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is controlled cannot be modified. Active acoustic metamaterials can offer

reconfigurable and tunable solutions that respond in real-time to changes in the

acoustic field. This is possible for example by integrating transducers in the

metamaterials, by fabricating unit-cells made of piezoelectric materials or by

mechanically reconfiguring the elasticity, mass or shape of unit cells [40, 99–107].

2.4.6 Applications of Acoustic Metamaterials

In the past decade, the field of acoustic metamaterials has obtained outstanding

achievements in research labs. However, thus far, there has been limited progress

from the lab environment to industrial fabrication. Nevertheless, this field is

rapidly growing, and new developments and real-world products are expected

in the coming years. The main applications that have been proposed include

noise attenuation in automotive and aerospace industries, sound control in audio

devices, acoustic cloaks, acoustic superlenses, and energy harvesting devices.

Noise Attenuation

One of the most sought-after applications of acoustic materials is noise reduction,

which is also the primary purpose of the work presented in this thesis. The ad-

vantages of using acoustic metamaterials for noise attenuation are, of course, the

ability to break the mass-law and to fabricate thin and lightweight materials that

can attenuate low frequencies. Acoustic metamaterials have been successfully

used for low-frequency noise reduction of traffic and transportation noise and as

filters in sensors and transducers [8, 11, 108, 109]. In this type of application,

acoustic metamaterials have either negative effective bulk modulus or density.

When these properties become negative, the speed of sound is just composed by

the imaginary part, and therefore the sound propagation stops inside the material

and noise is filtered out.

Applications to Audio Devices

Applications to audio devices are one of the main objectives of this thesis.

Designing small-scale acoustic metamaterials that could fit into audio devices

such as headphones, hearing aids, and loudspeakers would have the advantage of
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reducing noise, localising, and enhancing sounds without using power-consuming

complex signal processing computations. Xie et al. [9], see Fig. 2.18, developed

a device to tackle the problem of ’cocktail party problem’ [110] and mimic the

auditory system ability to focus on one speaker when multiple speakers are talking

in a noisy environment. This device consisted of a single microphone surrounded

by fan-like waveguides holding Helmholtz resonators of random heights. The

wave modulating properties of Helmholtz resonators allowed to filter the incoming

waves in unique ways depending on the source location and, consequently, to

amplify signals coming from a specific direction. A similar application was

developed by Esfahlani [10], who proposed an acoustic dispersive prism consisting

of a fluid-filled waveguide with vibrating thin plates and attached ducts. Recently,

Ghaffarivardavagh [11] (see Fig. 2.20) presented a small-scale circular device

that cancels sounds and, at the same time, allows air to flow by using acoustic

metamaterials based on pipes elliptically shaped around the air gap.

Figure 2.18: Single-sensor multispeaker based on acoustic metamaterials
developed by Xie et al. [9].
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Figure 2.19: Acoustic dispersive prism based on membrane-type acoustic
metamaterials developed by Esfahlani [10].

Acoustic Cloaks and Metasurfaces

Acoustic cloaks are devices that enclose objects and bend the acoustic waves

around them to avoid reflections from the target [12, 111–114]. Acoustic cloaks

(see Fig. 2.21) could be used, for example, to soundproof buildings, concert

halls, rooms: by coating walls with acoustic cloaks, the incident sound waves

coming from external sources would bend around the building and realise acoustic

insulation. Another application of acoustic cloaking is in defence, for example,

in sonar. To identify the location of an object, sonar underwater systems use

a transducer to transmit acoustic waves towards the desired direction and then

measure - through a hydrophone - the acoustic waves reflected from the object

back to the sonar. The time delay between the incident and reflected waves

permits to calculate the distance from the object to the sonar system. By coating

an object - such a submarine or water vessel - with acoustic cloaks, it is possible

to bend the waves around it and to prevent reflections from being sent to sonar

systems. A variation of acoustic cloaks consists of metasurfaces and metadiffusers.

By coating the internal side of walls in concert halls, it would be possible to control

the reflections and spread them more uniformly across the concert hall for better

control of reverberation (see Fig. 2.22) [13, 115].
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Figure 2.20: Ultra-open acoustic metamaterial silencer proposed by Ghaffarivar-
davagh [11].
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Figure 2.21: Acoustic cloak [12].

Figure 2.22: Acoustic metasurface [13].
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Acoustic Superlenses

Traditionally, acoustic lenses are capable of focusing waves propagating in the

far field. They do so by designing the reflecting material in a way that bends -

following Snell’s Law - the waves and makes them converge in the same point.

Far fields extend from a distance λ from the source to infinity (Section 2.2.1):

this limitation on spatial resolution is called the diffraction limit. Acoustic

superlenses can be defined as devices that are capable of creating acoustic images

of subwavelength objects or materials, i.e., materials that have a dimension that

is less than the wavelength of the wave propagating through the lens. Double

negative acoustic metamaterials have a negative refractive index and can bend

waves at angles not possible with traditional materials. By reverse-bending the

refracted waves, it is possible to amplify not only propagating waves, but also

evanescent decaying waves situated in the near field. Acoustic superlenses can

be used to increase the resolution of ultrasounds and non-destructive testing

or decrease the frequency of waves used for medical imaging [14, 116, 117]. For

example, Deng et al [14] theoretically investigate subwavelength imaging obtained

by immersing acoustic metamaterial slabs in a liquid matrix (see Fig. 2.23 and

Fig. 2.24).

Figure 2.23: Single negative acoustic metamaterials producing a near-field
subwavelength image [14].
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Figure 2.24: Double negative acoustic metamaterials producing a subwavelength
real image [14].

Energy Harvesting

An exciting application of acoustic metamaterials is the development of energy

harvesting devices [15, 108, 118, 119]. Energy harvesting devices take energy from

the environment - such as acoustic energy - and convert it to a different type of

energy, for example, electrical. A common way to harvest energy in acoustic

systems is to make piezoelectric membranes vibrate and to store the resulting

electrical energy. Other ways to harvest acoustic energy include converting

mechanical waves into electromagnetic or electrostatic energy. Wu et al. [15] (see

Fig. 2.25) were able to harvest energy by removing a unit-cell at the centre of a

sonic crystal made of rods and substituting it with a piezoelectric piezoelectric

material. Hu et al. [119] proposed a multifunctional acoustical metamaterial

capable of simultaneously create a band gap and harvest energy.
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Figure 2.25: Energy harvesting metamaterial proposed by Wu et al.[15]. The
PVDF film at the centre of a sonic crystal shows maximum output voltage near
the resonance of the cavity created by the point defect in a 5 X 5 array of rods.
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Chapter 3

Methods

Chapter 3 outlines the methods used in this dissertation to model, fabricate

metamaterials, measure, and analyse their performance. An overview of

three-dimensional printing is provided, focusing on stereolithography and the

manufacturing techniques developed in this research. The laboratory free-field

set-up used to measure the response of Helmholtz resonators is illustrated in

detail. Next, the impedance tube used to measure thin plates is described. An

introduction to laser Doppler vibrometry and its use for thin plates vibration

analysis is provided. Finally, the two modelling methods used in this thesis

are presented. The transfer-matrix approach is used to model the impedance

tube system. The finite element analysis software COMSOL Multiphysics is

used throughout this work in conjunction with analytical models to predict the

behaviour of acoustic metamaterials.

3.1 Three-Dimensional Printing

Introduction

Three-dimensional printing - also known as additive manufacturing - is a method

to fabricate a physical object, layer by layer. The object is first designed

using Computer-Aided Design (CAD) software or by three-dimensional scanning

an existing shape, and it is then converted into STL format. The three-

dimensional printed software slices the STL file in layers of specified thickness,

determined by the printer’s highest resolution. Next, various three-dimensional
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printing techniques can be deployed to fabricate the object layer by layer. The

most common techniques will be described below and include extruding heated

materials from a nozzle, solidifying liquid polymers, and melting powders. Lastly,

the printed object is cleaned and polished. Three-dimensional printing has

become increasingly popular in the last decade, both in industry and academia,

as a rapid prototyping method. As these techniques are refined, additive

manufacturing is also starting to find its place in final products. The following

sections will review the history and development of three-dimensional printing,

the principal additive manufacturing techniques, and the role these methods play

in the world of acoustics and acoustic metamaterials.

Origin of Three-Dimensional Printing

Three-Dimensional Printing originated in 1981 when the Japanese inventor Hideo

Kodama used ultraviolet light to harden polymers and obtain a solid object.

Three years later, in 1984, Stereolithography (SLA) and the ‘.STL’ file format

were invented and patented by Charles Hull [120]. In 1986 Carl Deckard patented

Selective Laser Sintering (SLS) [121], and in 1989, Scott Crump invented Fusion

Deposition Modelling (FDM) [122].

In the 30 years following the invention of the principal three-dimensional printing

methods, these fabrication techniques were gradually improved. It became

possible to fabricate objects with complex shapes and various materials. Today

the list of three-dimensional printable parts includes human tissue, food, clothes,

musical instruments, replacement parts for electronic appliances, entire houses,

and machines that can three-dimensional print other similar machines [123–

130]. While some of these applications require expensive machines, a market

has developed for cheaper desktop three-dimensional printers that have become

popular for rapid prototyping in Universities, Fab Labs, maker spaces, and

sometimes for home use [131–133].
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Three-Dimensional Printing in Acoustics

The field of acoustics could greatly benefit from the advances of three-dimensional

printing technology. The use of additive manufacturing in the fabrication

of musical instruments has already produced examples of three-dimensional

printed violins made of plastic, flutes, ukuleles, and other small instruments

[129, 134–136]. For now, these early examples have mostly produced cheap

musical instruments made in plastic that do not compete with traditionally

hand-crafted instruments produced using wood and traditional materials. As

these techniques advance and more materials can be used, it might become

possible to quickly produce good quality musical instruments and to witness

new inventions in the music technology field. Rapid and reliable fabrication of

three-dimensional printed transducers is also desirable and has been investigated

in research publications [47, 137]. Acoustic metamaterials could greatly benefit

from using three-dimensional printers, as suggested by Cummer et al. [40]. The

study of acoustic metamaterials has seen the publication of many models, but in

comparison, few laboratories have produced samples, and even fewer have realised

fully-functional products. The lack of experimental research might be due to the

difficulty of fabricating several identical unit cells. Membranes and thin plates are

usually stretched by hand on supports and might result in units having different

resonance frequencies. Thus, the research presented in this dissertation aims to

present new examples of acoustic metamaterials and methods to rapidly prototype

these unit cells using additive manufacturing technology.

Three-dimensional Printing Techniques

The main three-dimensional printing techniques are briefly presented in the

following paragraphs, with particular attention to stereolithography - which is

the principal technique used in this research.

Stereolithography

A stereolithography apparatus (SLA) is a three-dimensional printer that uses

a light source to cure a liquid photopolymer into hardened plastic, layer by

layer, following a specified geometry [138]. Resins usually consist of one or

more monomer materials, a photoinitiator, and an absorber, used to control
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light’s penetration depth. The penetration depth can be predicted by Beer’s

law [139], that relates the quantity of light absorbed by a material to its

thickness. As described in [139] it is possible to describe the critical dose at which

polymerisation of the resin travels at a distance through the material sufficient

to result in a solid material. The critical dose necessary to reach a certain depth

in the material depends on time. Therefore, once the material properties are

known, it is possible to predict the exposure time necessary to reach the desired

polymerisation depth. A step by step process of this three-dimensional printing

technique is illustrated in Fig. 3.1 and explained below:

i. Design a three-dimensional object in a CAD program and save it as STL

format. Common CAD software offers basic shapes and helpful tools to

develop a design quickly. Some advanced software allows to automatically

obtain a drawing from an imported photo.

ii. Send the STL file to the printer software (most printers offer proprietary

software) to slice the design in layers along the z-axis. The specifications of

the printer determine the minimum layer. Today, most printers can achieve

a 10 µm-100 µm layer, while cheaper printers might offer a thicker minimum

layer of 0.4 mm.

iii. Choose the liquid polymer (also referred to as resin) and pour it into the

resin tank. While most printers only allow using proprietary materials, in

some cases, it is possible to customise the resin by mixing it directly in the

laboratory using off-the-shelf chemicals.

iv. Start the printer. Today, most SLA printers use an upside-down printing

process, starting with the last layer of the CAD file and ending the print

with the first layer.

v. A laser or projector will focus the UV light at a specific wavelength on the

resin through the transparent film at the bottom of the tank and trace the

first layer’s geometry.

vi. Thanks to the polymerisation process, molecular chains of monomers will

join together, harden into plastic, and attach to the build platform.
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vii. The build platform will then move upwards of one step to allow the second

layer to be printed. This process will continue until the last layer has been

fabricated. In order to obtain an object made of multiple materials, some

printers allow the user to pause this process and substitute the tank with a

different material. Some supports might also be printed around and inside

the object to keep it in place and maintain a correct calibration.

viii. The three-dimensional printed object is then manually detached. The post-

processing involves eliminating the supports and cleaning the printed object

from the viscous fluids that might remain attached to the object using

isopropyl alcohol (IPA) or machines such as ultrasonic cleaners.

Figure 3.1: Illustration of SLA three-dimensional printer.

Fusion Deposition Modelling

Fusion Deposition Modelling (FDM) is a three-dimensional printing technique

based on the extrusion of heated material Fig. 3.2. A wire of polymer is heated

and extruded through a nozzle and deposited to the build platform. When

deposited, the extruded material cools down and hardens into a solid object.

FDM works layer by layer, moving the nozzle upwards at each step of the process.

Usually, the minimum layer is thicker than SLA; its lower resolution and average
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lower price make FDM printing an excellent investment for Fab Labs, maker

spaces, rapid prototyping in universities and industries.

Figure 3.2: Illustration of FDM three-dimensional printer.

Selective Laser Sintering

Similarly to SLA, Selective Laser Sintering (SLS) directs a light source through

the tank which contains powder. The powder will melt according to the specified

geometry and solidify to form an object.

Digital Light Processing

Digital Light Processing (DLP) printers are based on a mechanism very similar

to SLA. The resin is poured into a tank with a transparent bottom, and the part

is printed layer by layer and upside-down. While SLA projects the laser point-

by-point onto the resin, DLP uses a digital projector screen to cure all the points

in a layer simultaneously.

Inkjet Printing

Like FDM, three-dimensional inkjet printing uses a nozzle to extrude material,

layer by layer, on a build platform. While FDM extrudes hot material that cools

and hardens once released, inkjet printing extrudes liquid polymers cured through

exposure to a light source, similarly to SLA.
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Development of Customised Stereolithography Technique

In this dissertation, acoustic metamaterials have been fabricated using SLA

printing. The printer chosen for fabrication is Asiga Pico Plus 27 (Sydney,

Australia) with a pixel image resolution of 27 by 27 µm, a minimum build

layer thickness of 1 µm, and a build area of 20.58 mm×32.86 mm×76 mm. The

advantages of this printer are the possibility of using non proprietary materials

during the fabrication process and its resolution, originally intended for small-

scale fabrication such as dentistry or jewellery and applicable to small-scale

acoustic metamaterials. The main idea developed here in order to customise

the printing process consisted in mixing polymers with other materials using off-

the-shelf chemicals, instead of purchasing resins ready to be used. In particular,

the base polymer was chosen paying attention to the material properties, such as

Young’s modulus and density. Table 3.1 shows the values of Young’s modulus,

density and Poisson’s ratio that were estimated before the printing process began,

and used to determine which polymer to use based on the desired application.

For example, if one were to print thin plates, then a lower Young’s modulus

would result in a lower resonance frequency. During the printing process, the

physical properties of materials change, hence some characterisation processes

were developed and are reported in the next sections.

Table 3.1: Material properties of materials used in this thesis, estimated before
printing from vendors specifications and preliminary tests.

Material Density Young’s Modulus Poisson’s Ratio

PEGDA 250 1.11 g/mL 250 MPa 0.35− 0.4
PEGDA 700 2 g/mL 10 MPa 0.35− 0.4
PMMA 1.11 g/mL 1800− 3100 MPa 0.35− 0.4
BEMA 1.09 g/ML 12 MPa 0.35− 0.4

After choosing the base polymer, the photo-initiator I819 is added to initiate

the photo-polymerisation reactions. Photo-initiators are compounds that, when

exposed to UV light, generate free radicals. These free radicals then react with

monomers, such as PEGDA, and initiate polymer chain growth.
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It is worth noting that, even if in the Asiga Pico Plus 27 software it is possible to

select a layer 1 µm thick, when printing on a void the resin will keep expanding

and produce a layer 100 µm thick. This is phenomenon is predicted by Beer’s law

and modelled by [139] as explained in the sections above. To avoid this behaviour

and to finely control the thickness of membranes and thin plates that are usually

printed on hollow cylinders, the absorber Sudan I was added to the mix. Fig. 3.3

illustrates the difference between printing on a void with and without the use of

absorbers.

(a) No Sudan I added to mix. (b) Sudan I added to mix.

Figure 3.3: Illustration of the effect of adding Sudan I to the mix. Panel (a)
shows an over-polymerisation when printing onto a void: a single layer expands
to 10 layers, resulting in a thick membrane. Panel (b) shows how Sudan I absorbs
the light and controls the exposure, resulting in a membrane of correct thickness.

Optionally, other chemicals can be added to the mix. For example, Barium

Titanate (BaTiO3) was used to scatter the light more uniformly along the

horizontal plane and was also chosen for its piezoelectric properties, useful for

active metamaterials applications. If printing a multi-material sample, where

for example a structure such a cylinder is printed with one material and the

membrane stretching above it is printed with a different material, it is possible to

pause the printer, clean the sample without detaching it from the build platform,

change the resin tank, and start the printer again. To combine all the chemicals

and obtain a uniform resin, they were first mixed using Thinky ARE 250 planetary
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mixer (INTERTRONICS) and then sonicated for 15 minutes. Finally, the post-

processing step consisted of cleaning the part with isopropyl alcohol (IPA) within

an ultrasonic cleaner or applied directly to the part if too fragile. A general

scheme of the customised SLA three-dimensional printing process is reported in

Fig. 3.4 below. This scheme was adapted to each application, and details for each

experiment will be described in the corresponding chapters.
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Figure 3.4: Step by step illustration of customized three-dimensional printing
process.
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3.2 Acoustic Booth Measurements

The experiments described in Chapter 4 and Chapter 6 have been conducted

inside an acoustic booth, using a setup which can be classified as free-

field measurement. Free-field measurements are defined as measurements

conducted inside anechoic chambers, where all the reflections from surfaces have

been eliminated. This type of measurement is different from a diffuse field

measurement, where walls are highly reflective and positioned at oblique angles.

In diffuse-fields experiments, the sound does not appear to have a single source;

conversely, free-field measurements are ideal when it is crucial to consider the

source and receiver location. Fig. 3.5 shows the typical setup used throughout

this dissertation in experiments that evaluated the noise attenuation performance

of acoustic metamaterials.

Data Acquisition and Post-Processing Software

A MATLAB (Natick, Massachusetts , USA) code was written to trigger the

National Instruments (NI) Data Acquisition System and post-processes data.

The code uses proprietary NI libraries to trigger both the function generator

and loudspeaker, and at the same time to record through the microphone and

pre-amplifier. In this type of setup, the sound field is measured first with and

then without the sample to obtain the noise attenuation performance of acoustic

metamaterials. Since the acoustic booth provides partial isolation from external

noise, the measurements are repeated multiple times and averaged to eliminate

sudden changes in the sound field. Final results are plotted on logarithmic scale,

to present and analyse information using an appropriate scale that reflects human

hearing perception characteristics.

Data Acquisition Hardware

A National Instruments (Austin, Texas, U.S.) Data Acquisition System (DAQ)

was used to communicate with the microphone. This system was required in

order to trigger data acquisition and it is preferred to a standard sound card, as

it provides input/output synchronisation, lower noise floor, and high sampling

rate.
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Figure 3.5: Experimental setup: a loudspeaker connected to a function generator
emits a swept sine wave that impinges on the three-dimensional printed sample.
A microphone, connected to a pre-amplifier and positioned right above the
metamaterials, records the signal controlled by a data acquisition device and
triggered by a software running on a laptop.
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Loudspeaker and Function Generator

A periodic chirp extending along the human frequency range (20 Hz - 20 kHz)

is a standard way to measure the performance of an acoustic system [140]. The

chirp used in this dissertation was generated by a function generator (Keysight

Technologies, Santa Rosa CA, USA) and emitted by a 8 Ω, 2 ′′ loudspeaker

(Visaton, Haan, Germany).

Microphone and Pre-Amplifier

To measure sound pressure, a Bruel & Kjaer (B&K, Nærum, Denmark) 1/8 ′′

pressure-field microphone connected to a pre- amplifier (B&K Nexus Microphone

Conditioner) was positioned above the metamaterials. The same setup was used

to measure the sound field in the absence of acoustic metamaterials. Because if its

small size with comparison to wavelength of frequencies used in this dissertation,

this microphone could be positioned as shown in Fig. 3.5 without any change in

response between waves incident on the front or on the side of the microphone

head.

Oscilloscope

Although the setup illustrated in Fig. 3.5 was preferred to allow a better control

of parameters and a quick conversion of data for post-processing, an oscilloscope

was also used in some experiments described in chapter 6. An oscilloscope is an

electronic test device that displays the variation of signal voltages over time. It

allows one to easily trigger function generator and measurement system and to

observe the time domain and frequency domain response in real-time.

3.3 Laser Doppler Vibrometer Measurements

A Laser Doppler Vibrometer (LDV) uses the Doppler Effect to measure vibrations

of an object under test. The Doppler Effect describes the change in frequency of

a wave, measured by a receiver that is moving with respect to the position of the

source. In a LDV measurement, a laser beam is pointed towards an object that is

set into vibration. The measured Doppler shift allows one to retrieve the velocity,
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displacement, phase and frequency of vibration of the object. Principles of wave

superpositions are used to analyse the signal received by the photodetector and to

retrieve displacement and velocity of the sample, its resonance modes and phase

changes. Fig. 3.6 illustrates the working principle of a LDV.

Figure 3.6: Illustration of Laser Doppler Vibrometer working principle, informed
by http://www.polytec.com/us/company/technologies/.

Firstly, the laser beam with a frequency freference = f0 is split by a beamsplitter

into reference beam and test beam. The reference beam is directed by a mirror

through a Bragg cell towards the photodetector. The test beam is focused towards

the sample under test using an adjustable lens. While the sample vibrates, the

reflected beam having a frequency ftest = f0 + δf is redirected through a beam

splitter where it is added to the reference beam and reaches the photodetector.

Therefore, the Doppler-shifted signal sd captured by the photodetector would be:

sd = sin (f0) + sin (f0 + δf) (3.1)

≈ sin

(
2f0 + δf

2

)
sin

(
δf

2

)
.

Since the initial frequency of the reference signal emitted by the laser is very high,

the Bragg cell acts as modulator and adds a frequency shift f1 to the test signal.
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Therefore, the test signal st measured at the photodetector is:

st = sin (f0 + δf) + sin (f0 + f1) (3.2)

≈ sin

(
2f0 + f1 + δf

2

)
sin

(
f1 + δf

2

)
.

The ’beat’ frequency f1+δf is in a range that can measured by the photodetector.

This method is called heterodyne.

Fig. 3.7 shows the typical setup used in Chapter 5 and 6 of this dissertation. A

loudspeaker emits a sound wave that causes the sample under test to vibrate,

while the Polytec three-dimensional Laser Doppler Vibrometer measures the

Doppler shift caused by the sample vibration. A reference microphone is also

used to measure the sound level near the sample. The Polytec PSV-300-F used

during this research offers 1D, 2D or 3D modes; when measuring membranes

and plates displacements in Chapter 5 and 6, the 2D mode is preferred. Polytec

software is also used to trigger the loudspeaker, select the type of sine sweep and

post-process data, to analyse frequencies of vibration, obtain animations of the

modes of vibration and phase shifts.

Figure 3.7: Schematic of setup used to measure objects vibration using a Polytec
Laser Doppler Vibrometer.
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3.4 Impedance Tube Measurements

An impedance tube, also known as a standing wave apparatus or standing wave

tube, is a device commonly used to measure the sound absorbing properties of

acoustic materials. A standing wave tube with two microphones allows one

to obtain absorption and reflection coefficients and normally incident acoustic

impedance. With four microphones, it is possible to also obtain transmission

coefficients. An illustration of a typical four microphone standing wave tube

is presented in Fig. 3.8. A loudspeaker is inserted at one end of the tube

and continuously produces a swept sine wave. The sound pressure from the

loudspeaker travels through the tube towards the material sample, positioned in

the middle of the tube, where it is partly reflected, absorbed and transmitted. The

forward acoustic waves transmitted by the loudspeaker and the reverse acoustic

waves reflected by the material under test combine to form a standing wave.

When the sample material completely reflects the incident sound wave, forward

and reverse wave will have the same amplitude; antinodes will have twice the

initial pressure and nodes will have zero pressure. When the sample material

absorbs or transmits the incident sound wave, the microphones positioned

alongside the tube will measure the amplitude values of nodes and antinodes.

The standing wave ratio, defined as the ratio between pressure at antinode and

node, determines absorption, reflection, transmission coefficients and impedance

of material sample. The impedance tube used in Chapter 5 of this dissertation was

fabricated by the Centre de Transfert de Technologie du Mans at the University of

Le Mans, France. The work conducted using this impedance tube was completed

at the Laboratoire d’Acoustique of the University of Le Mans (France) during a

Short Term Scientific Mission founded by the DENORMS COST Action 15125,

with the help of Dr. Vicente Romero Garćıa and Dr. Jean-Philippe Groby.

Details on how to obtain the coefficients are reported in Section 3.5.

3.5 Transfer Matrix Modelling Method

The transfer matrix method can be used to model the propagation of acoustic

waves travelling inside an impedance tube containing the material under test

and to retrieve the acoustic properties of the material. Fig. 3.8 illustrates the
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Figure 3.8: Sketch of a four-microphone impedance tube and sample, used for
transfer matrix method modelling as proposed by Song and Bolton [16, 17].

impedance tube modelled below, as proposed by Song and Bolton [16, 17]. A

loudspeaker placed at one end of the impedance tube generates a plane wave

measured by microphones at positions x1, x2, x3 and x4, with pressure P1, P2, P3

and P4:

P1 = (Ae−jkx1 +Bejkx1)ejωt, (3.3a)

P2 = (Ae−jkx2 +Bejkx2)ejωt, (3.3b)

P3 = (Ce−jkx3 +Dejkx3)ejωt, (3.3c)

P4 = (Ce−jkx4 +Dejkx4)ejωt. (3.3d)

In Eq. (3.4a) k is the wave number in air, A and C are the complex amplitudes

of the forward wave in the first and second section of the tube, while B and D

are the complex amplitudes of backward waves in the first and second section of

the tube. The plane wave is represented using a e+jωt convention. It is possible
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to rewrite Eq. (3.4a) in terms of the coefficients A, B, C, D:

A =
j(P1e

jkx2 − P2e
jkx1)

2 sin k(x1 − x2)
, (3.4a)

B =
j(P2e

−jkx1 − P1e
−jkx2)

2 sin k(x1 − x2)
, (3.4b)

C =
j(P3e

jkx4 − P4e
jkx3)

2 sin k(x3 − x4)
, (3.4c)

D =
j(P4e

−jkx3 − P3e
−jkx4)

2 sin k(x3 − x4)
. (3.4d)

The transfer matrix method is used to relate the pressure P0 and particle velocity

V0 at the incident end of the material sample and the pressure Pd and particle

velocity Vd at the transmission end:

[
P

V

]
x=0

=

[
T11 T12

T21 T22

][
P

V

]
x=d

. (3.5)

By rewriting Eq. (3.5) in terms of the plane acoustic waves, we obtain:

P0 = A+B, (3.6a)

V0 =
(A−B)

ρ0c
, (3.6b)

Pd = Ce−jkd +Dejkd, (3.6c)

Vd =
Ce−jkd −Dejkd

ρ0c
, (3.6d)

where ρ0 represents air density and c is the speed of sound in air. After obtaining

ρ and c based on ambient temperature and humidity, pressures P1, P2, P3, P4

through microphones measurements, it is possible to retrieve the coefficients A,

B, C, D from Eq. (3.4a) and thus to obtain P0, Pd, V0 and Vd from Eq. (3.6).

Assuming reciprocity and symmetry, the following conditions are set in order to
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simplify Eq. (3.5) and obtain only two unknown for two equations:

T11 = T22, (3.7a)

T11T22 − T12T21 = 1. (3.7b)

It is then possible to obtain the transfer matrix elements in terms of pressure and

particle velocity:

T11 =
PdVd + P0V0

P0Vd + PdV0

, (3.8a)

T12 =
P 2

0 − P 2
d

P0Vd + PdV0

, (3.8b)

T21 =
V 2

0 − V 2
d

P0Vd + PdV0

, (3.8c)

T22 =
PdVd + P0V0

P0Vd + PdV0

. (3.8d)

If the incident plane wave has unit amplitude, Eq. (3.6) reduce to:

P0 = 1 +R, (3.9a)

V0 =
(1−R)

ρ0c
, (3.9b)

Pd = Te−jkd, (3.9c)

Vd =
Te−jkd

ρ0c
, (3.9d)

where R = B/A is the reflection coefficient and T = C/A is the transmission

coefficient. By substituting Eq. (3.9) into Eq. (3.8) we obtain transmission

(T ), reflection (R), and absorption (α) coefficients of a sample inserted in an

impedance tube with anechoic termination:
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T =
2ejkd

T11 + (T12/ρ0c) + ρ0cT21 + T22

, (3.10a)

R =
T11 + (T12/ρ0c)− ρ0cT21 − T22

T11 + (T12/ρ0c) + ρ0cT21 + T22

, (3.10b)

α = 1− |T |2 − |R|2. (3.10c)

The method described above allows one to retrieve transmission and reflection

coefficients of any sample by measuring pressure at four points in the impedance

tube as illustrated in Fig. 3.8. To obtain the characteristic impedance of the

sample under test, it is necessary to know or analytically model the transfer

matrix of that sample and to solve for the characteristic impedance. For example,

the transfer matrix of a homogeneous, isotropic porous material of thickness d is

[17]:

[
T11 T12

T21 T22

]
=

[
cos kpd jρpcp sin kpd

j sin kpd/ρpcp cos kpd

]
. (3.11)

The wave number kp is retrieved as:

kp =
1

d
sin− 1

√
−T12T21, (3.12)

and the characteristic impedance Zp is:

Zp = ρpcp =

√
T12

T21

. (3.13)

In general, the method to retrieve material parameters, as for example reported

in Chapter 5, is as follows:

i. measure the material sample in the impedance tube,

ii. obtain the transfer matrix,

iii. calculate the reflection, transmission and absorption coefficients,

iv. model the transfer matrix analytically,
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v. compare the coefficients obtained with impedance tube to those obtained

through a model,

vi. change the material parameters in the model until reflection, transmission

and absorption coefficients overlap in model and measurements.

3.6 Finite Element Modelling Method

When studying the acoustic behaviour of systems based on simple geometrical

objects - like circles and rectangles - or of well known acoustic systems - such

as musical instruments, pipes, and Helmholtz resonators - it is common to rely

on mathematical and analytical models, as in the case of the transfer matrix

described in the previous section. The analytical approach models the physics

of the acoustic systems under test and obtains the equation of motion of such

an object, relating Newton’s laws of motions to conservation of energy laws,

thermodynamics, and other physics laws that describe it. However, analytical

models and resulting differential equations can become very hard to solve or

rely on simplified assumptions when the system under test is characterised by

a complex geometry, different boundary conditions, or multiple materials. An

alternative to analytic models is represented by Finite Element Modelling (FEM).

FEM methods use meshes to subdivide complex geometries into simple shapes,

such as triangular, quadrilateral, or tetrahedral elements. The nodes at the

intersection between meshes or elements vertices are assigned a number of degrees

of freedom, depending on the specific application or physics domain’s parameters.

Next, a set of differential equations are formed and solved at each node.

Software packages like COMSOL Multiphysics, used for research throughout this

dissertation, conveniently allow the user to create or import a CAD design, choose

one or multiple domains (such as acoustics, structural mechanics, heat transfer,

optics), set material parameters and boundary conditions either manually or by

selecting predefined models and materials. The user can then select a mesh and

a type of analysis, and results can be analysed through COMSOL or exported for

analysis with a different package. The choice of mesh resolution determines the

computation power and accuracy of results; hence careful trade-off considerations

need to be addressed when using FEM methods. An example of acoustic
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metamaterial model using COMSOL is reported below.

Modelling impedance tube and Helmholtz resonators with COMSOL Multi-

physics

A typical unit cell used for acoustic metamaterials is the Helmholtz resonator.

This paragraph gives an example of how to model several Helmholtz resonators

placed into an impedance tube. A similar method can be followed if modelling

the resonators in the free-field, as done in Chapter 4.

i. The first step when opening COMSOL Multiphysics is to select the ’Model

Wizard’ icon, that allows to load pre-defined models. The selected geometry

in this example is a three-dimensional geometry. The physics domain is

the Pressure Acoustics, Frequency Domain. If modelling also the walls

of Helmholtz resonators, the module Acoustic-Solid Interaction should

be selected instead. The frequency domain study allows to evaluate

the response of metamaterials in the frequency domain, and to find the

frequencies at which Helmholtz resonator attenuate incoming sound waves.

ii. Firstly, the geometry of the model is imported or built directly in COMSOL.

A solid cylinder is selected to model the waveguide part of impedance tube.

To build Helmholtz resonators, two cylinders are joined to form the neck and

cavity. Microphones are modelled as four points inside the tube. Fig. 3.10

shows the geometry including waveguide, microphones and three Helmholtz

resonators.

iii. Materials are then assigned to tube and air. In the case of a Helmholtz

resonator embedded in a tube, it is usually sufficient to assign the material

properties of air to the fluid domain. The tube material will just act as

a rigid wall. It is also possible to assign a specific material to the tube

walls. For example, in case the resonator material is PEGDA or PMMA,

modelling the material properties can help to determine the minimum

thickness needed to avoid coupling between the vibration modes of walls

and volume of air inside the mass and cavity. Typical properties of air
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3.6. Finite Element Modelling Method

Figure 3.9: Geometry of Helmholtz resonators and impedance tube built with
COMSOL Multiphysics.

are available in COMSOL material properties and can be adjusted if room

temperature and humidity are different from typical values.

iv. In this case, all the domains - tube, neck and cavity - are assigned to the

Pressure Acoustics module. Neck and cavity can be also assigned to the

’Narrow region acoustics’ option within the acoustics module to account for

viscothermal losses.

v. A plane wave radiation should be selected as the incident acoustic pressure

wave, and the two extremities of the impedance tube should be the input

and output locations of the wave.

vi. A mesh can be selected from the list. For this simple model, a free

tethraedral mesh is a good choice.

vii. A parametric sweep is then used to study the system response. The

frequency range is selected to be between 40 Hz and 2000 Hz with a step

size of 10 Hz.

viii. By exporting the pressure at microphones to a different software, in this case

MATLAB, it is possible to plot the reflection, transmission and absorption

coefficients as shown in Fig. 3.11. It is worth noting that at 700 Hz the

reflection is at maximum and transmission at minimum.

ix. It is also possible to analyse the results in COMSOL, for example by plotting
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3.6. Finite Element Modelling Method

Figure 3.10: Free tethraedral meshed geometry of Helmholtz resonators and
impedance tube built with COMSOL Multiphysics.

Figure 3.11: Transmission, reflection and absorption coefficients obtained by
exporting acoustic pressure at microphones positions in COMSOL and plotted in
MATLAB.
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3.6. Finite Element Modelling Method

the sound pressure level at 700 Hz and 1500 Hz, to confirm the results shown

in MATLAB.

These results can be compared with experimental results obtained in a real

impedance tube. As done in the analytical transfer matrix model described in

the previous section, if the two results differ, the parameters chosen to model

the metamaterials can be iteratively fine tuned until measurements and model

converge to the same results.
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Chapter 4

3D Printed Acoustic Metamaterials

Based on Tunable Helmholtz

Resonators

4.1 Introduction

This Chapter presents research and development of acoustic metamaterials based

on three-dimensional printed small-scale Helmholtz resonators. This work started

as a replication study of the research on soda cans conducted by Lemoult et al.

[7]. Lemoult et al. utilised everyday objects shaped as Helmholtz resonators -

namely soda cans - to create an array of periodically distributed unit-cells that in

the bulk acted as acoustic metamaterials. As shown in Fig. 4.1 (a), they built a

7× 7 array of identical soda cans having a resonance frequency at 420 Hz, hence

a wavelength of 80 cm. The distance between the necks of soda cans was 6.6 cm,

ensuring a deep subwavelength scale with respect to the resonance frequency.

Fig. 4.1 (b) shows that they were able to measure a band gap in the frequency

band above resonance, between 420 and 600 Hz. This band gap, exhibiting a

negative effective modulus, was the result of resonant acoustic metamaterials,

rather than Bragg scattering effect found in phononic crystals.

The first work presented in this Chapter replicates the study of Lemoult et

al. and applies two changes: the samples are fabricated using a SLA three-
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4.1. Introduction

Figure 4.1: Setup and measurements of acoustic metamaterials based on soda
cans by Lemoult et al. [7].

dimensional printing technique, and they are designed for small-scale applications.

The reasons for these two changes derive from a question that has recently become

important in the world of applied acoustic metamaterials. It has been phrased by

Daraio [141] as follows: ”Why are not there more metamaterials in our everyday

life?”. One answer to this question can be found in Cummer et al. [40], where

it is stated that as fabrication techniques such as three-dimensional printing will

become more popular and more accurate, it will become easier to move from the

modelling and laboratory environment to a scalable product.

This replication study used a scaled-down version of soda cans dimensions and set

as a primary application small-scale electroacoustic devices such as headphones,

smart speakers, or hearing aids. Similar metamaterials dimensions can also

be applied to panels for noise attenuation in buildings or the automotive and

aerospace sectors. In general, attenuating noise in the audible frequency range

(20 Hz to 20000 Hz) in the small-scale can be challenging, as the materials used

for attenuation should be very dense or thick. Hence, setting small-scale products

as a goal can help to define constraints. Once these constraints have been set, a

parametric model can be built, and parameters such as materials and geometry

can be optimised according to the specific application.

Many Universities have focused on modelling acoustic metamaterials, with

few experimental works, usually relying on everyday objects for unit-cells.

Furthermore, often the outcome of acoustic metamaterials models are unit-cells

with complex shapes. For these reasons, one of the goals of this replication

study was to develop accurate three-dimensional printing techniques that would
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4.2. Methods

facilitate the process of shifting from a model to a real-world product and create

a bridge between research and industrial fabrication. Another reason behind

the problem of lack of metamaterials in our everyday lives can be found in

how the design and modelling process is addressed. In many research works

on metamaterials, models are created to find a new property or maximise one

outcome - such as band gap width or depth - with little regard to the final

application. Inverting this method, i.e., starting from the application and then

optimising the parameters and outcomes, might be the key to accelerate the

process of integrating more metamaterials in our everyday lives.

In the next sections, the primary methods used to design and fabricate the

metamaterials presented in this Chapter will be reviewed, with appropriate

references to the methods described in Chapter 3. The acoustic metamaterials

based on Helmholtz resonators will then be modelled and measured. Data

acquired through measurements will then be presented. Finally, a discussion

of these results and future work related to this Chapter will be added in the last

section.

4.2 Methods

This section describes the methods used to fabricate small-scale acoustic meta-

materials based on Helmholtz resonators. Three versions of this type of

metamaterials were fabricated and abbreviated as Helmholtz Resonators (HR)

version 1, 2, and 3:

i. HR1: a 3 x 3 array of Helmholtz resonators with the same dimensions of

soda cans, scaled down by a factor of 20,

ii. HR2: a 3 x 3 array of Helmholtz resonators with similar dimensions to point

1, but optimised to leverage the band gap produced by overtones,

iii. HR3: a 3 x 3 array of Helmholtz resonators with the same dimensions as

in point 1, and a thin plate on the cavity bottom.

Specifically, resonators in HR1 had the following dimensions: the neck of the

resonator had an inner radius of 0.564 mm and a length of 0.5 mm, the cavity

had an inner radius of 1.6 mm and a length of 5.8 mm. The thickness of the walls
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4.2. Methods

was 0.5 mm. Resonators in HR2 had the following dimensions: a neck radius

of 1 mm and a length of 0.5 mm, and a cavity with a radius of 1.6 mm and a

length of 10.8 mm.The thickness of the walls was 0.5 mm. The resonators in HR3

had the same dimensions as those in HR1 and, instead of having a rigid base,

they included a thin plate with a thickness of 170 µm. These dimensions were

the results of analytic models. These models have been introduced in Chapter 3

and will be outlined in the next section. The samples used in this Chapter

were fabricated with a Asiga (Sydney, Australia) Freeform Pico Plus SLA three-

dimensional printer. To obtain the material used to fabricate the resonators in

HR1 and HR2 we mixed the clear resin (Formlabs, Somerville, Massachusetts,

U.S.) with 0.15% of Sudan I and 1% of Irgacure 819 (Sigma-Aldrich, St. Luis,

Missouri, U.S.). The clear resin was chosen as monomer for its large Young’s

Modulus that allowed us to consider the walls of the resonators as rigid structures

that do not influence their resonances. Autodesk Inventor 2018 was used to design

the CAD model of the resonators. In HR3, PEGDA was used as monomer,

since the clear resin used in HR1 and HR2 could not successfully allow the thin

plate membrane to polymerise on top of the resonators’ walls. CAD designs and

pictures of HR1 are shown in Fig. 4.2.

The three finalised fluids were respectively PEGDA with 0.2% Sudan I and 1%

of Irgacure 819, and BEMA (Sigma-Aldrich) with 0.125% Sudan I. To obtain

the material for thin plates, various attempts were made in order to find a resin

that could accurately produce a thin layer and at the same time could match the

exposure time used to fabricate the resonators made with PEGDA. The Asiga

three-dimensional printer did not allow to change the exposure time once the

fabrication process is started, thus the same exposure time had to be used for

the resonators material and the thin plate material. The final thickness depends

on various factors: the amount of photo-initiator, absorber Sudan I and the

duration of exposure time to light. Fig. 4.3 shows how different exposure times,

between 1 s and 5 s, and fixed amount of Sudan I and Irgacure 819 produce various

thicknesses. The three finalised fluids in Fig. 4.3 were respectively clear resin with

0.15% Sudan I, PEGDA with 0.2% Sudan I and BEMA with 0.125% Sudan I.

An amount of 1% of Irgacure 819 was added to all the resins. BEMA with and

exposure time of 5 s was chosen, as it could match the exposure time of PEGDA
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4.2. Methods

Figure 4.2: Front view (a) and bottom view (b) of the small-scale acoustic
metamaterials based on a 3 X 3 array of Helmholtz resonators. Equivalent CAD
model (c) and wireframe view (d).
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4.2. Methods

and resulted in a thickness of 170 µm. Fig. 4.4 shows pictures and CAD designs

of HR3.

Figure 4.3: Thickness of the membranes against exposure time of UV light during
the three-dimensional printing process. Longer exposure times will result in
thicker membranes. The relation between these two parameters varies with the
material used and the amount of absorber in the fluid.

The setup used to measure the metamaterials HR1, HR2 and HR3 presented in

this Chapter is the one described in Section 3.2. Fig. 4.5 is a picture of the setup

used in the laboratory [90]. The metamaterials HR1 were also measured using

a modified version of this setup to understand if the measured band gaps were

dependent on the location of the source with respect to the metamaterials. To

answer this question, a study on the effects of the position of the source with

respect to the stop band was conducted by utilising an industrial six Degree

of Freedom (D.O.F.) robot [142]. This approach allowed for controlled and

repeatable scanning not only of traditional 3 DOF (x, y, z) positions but also

in roll, pitch and yaw orientations (Fig. 4.6). The robot arm was programmed

to trace a quarter hemisphere around the sample, at a distance of 100, 200, 300

and 400 mm. A loudspeaker was mounted on the robot arm, and the execution

of the robot path was controlled by custom MATLAB code interfaced with the
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4.2. Methods

Figure 4.4: Front view (a) and bottom view (b) of acoustic metamaterials based
on thin plates and Helmholtz resonators. Equivalent CAD model with cut away
section (c) and bottom view (d). The membranes have been highlighted in yellow
for a better understanding of the design.
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robot controller through the KUKA Robot Sensor Interface (RSI) [143]. The data

acquisition was synchronised with the progression of the robot path. Next, the

collected data was encoded with the robot positional feedback, received through

RSI. Two calibrated microphones measured the response above the sample and

outside its near-field as a reference [91].

Figure 4.5: Experimental set-up: a speaker connected to a function generator
emits a swept sine wave that impinges on the three-dimensional printed sample.
A microphone, connected to a pre-amplifier and positioned right above the
metamaterials, records the signal controlled by NI-DAQ hardware and MATLAB
code running on a laptop.

The next sections will show how acoustic metamaterials HR1, HR2 and HR3 were

modelled and will present the results and analysis of measurements.
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4.3. Model

Figure 4.6: Robotic arm configuration. To verify that the attenuation of sound
in the band gap happens at any incident angle of the source a robotic arm
holding a loudspeaker traces a quarter hemisphere around the sample. A reference
microphone measures the sound transmission in air while a second microphone
measures the transmission above the sample.

4.3 Model

This Section first aims to develop a parametric model for small-scale Helmholtz

resonators that receives as input the dimensions of neck and cavity and produces

as output the band gaps of a single Helmholtz resonator. FEM models and

transfer matrix models of resonators arrays are also presented.

Analytical Model of Single Helmholtz Resonator

Let’s start by reviewing Eq. (2.31) for small-scale Helmholtz resonators intro-

duced in Chapter 2. The fundamental frequency is given by:

f0 =
c

2π

√
S

L′V
, (4.1)

where c is the speed of sound in the gas filling the cavity, S is the cross-sectional

area of the neck, L′ = l+1.7a is the extended length of the neck, l is the length of

the neck, a is the radius (for cylindrical Helmholtz resonators) or surface length
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(for non cylindrical Helmholtz resonators) of the neck and V is the volume of the

cavity [57]. In small-scale Helmholtz resonators the first overtone is:

fn = (2n− 1)
c

4h′
, (4.2)

with n = 1, 2, 3, ..., etc.,

where c is the speed of sound in the host medium, h′ = h + 0.6r is the effective

length of the cavity and r is its radius. First, we developed a model that shows

how the band gap produced by the first resonance increases in depth as the

number of resonators in an array increases. To illustrate the phenomenon, we

considered the driven harmonic oscillator in which the response of N Helmholtz

resonators was added to the input sound wave, such that we can describe a

variable y(t):

y(t) =
F (t)

ω2
0

+ αNx(t), (4.3)

where α is a the ratio of pressure from the field generated by the Helmholtz

resonators and the external field, chosen arbitrarily to match experimental data.

The variable y(t) represents the sum of the external driving force and the

motion of the oscillator, which can be considered to be analogous to the acoustic

pressure summed from both an external field and the pressure output from a

driven Helmholtz resonator. Assuming that the external drive is sinusoidal, i.e.

F (t) = Feiωt, we can solve for y(t) in the complex domain, such that the spectral

response of y(t) is given by:

Y (ω) =
Y

ω2
0

√
γ2ω2 + (ω2 − (1 + αN)ω2

0)2

γ2ω2 + (ω2 − ω2
0)2

. (4.4)

Next, it is possible to build a parametric model, that, given different geometries

for neck and cavities, outputs the frequencies of first and second modes of

vibration. By doing so, the geometry of Helmholtz resonators can be modelled

based on the sought frequency range to be attenuated. Fig. 4.8 shows the result of

a model that outputs the fundamental frequency and first overtone of a cylindrical

small-scale Helmholtz resonator when four parameters are varied across different

values. These four parameters are height of the cavity, radius of the cavity,
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Figure 4.7: Plot of the sum of the response of N oscillators and an external
sinusoidal driving force. The values of α (1%) and γ (2500) have been scaled to
correlate with experimentally determined responses. Each curve represents the
range of N from 1 to 10, with 10 being the darkest.

length of the neck and radius of the neck. Each set of permutations of two

varying parameters is plotted and the two remaining parameters are fixed. The

upper and lower limits of the parameters values are set according to constraints

of the Asiga three-dimensional printer described in Chapter 3. The values of fixed

parameters are set to be the mean of possible values.

It is also possible to optimise the choice of fixed parameters depending on a

specific criterium. For example, one might want to maximise or minimise the

difference between the fundamental frequency f0 and the first overtone f1.By

building two four-dimensional matrices with all the possible values for f0 and

f1 and subtracting the two, it is possible to find the parameters that result in

the maximum, minimum or specific difference. Setting the fixed values to these

parameters, allows one to visualise similar solutions and eventually to choose the

parameters that best optimise other constraints, such as damping, sound energy

and dimensionality constraints. Fig. 4.9 is a modification of Fig. 4.8 where the

fixed parameters are chosen in order to minimise the distance between f0 and f1.

By assigning to fixed parameters the mean values of selected ranges, f0 is 1871

Hz and f1 is 2781 Hz. If the fixed parameters are optimised for maximum
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Figure 4.8: Variation of two parameters, while keeping the other two parameters
at a fixed medium value, allows one to choose a desired value for f0 and f1.
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Figure 4.9: Variation of two parameters, while keeping the other two parameters
at a fixed optimised value that maximises the difference between f0 and f1.
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distance between fundamental frequency and overtone, f0 is 2905 Hz and f1

is 13445 Hz. The plots in Fig. 4.8 and Fig. 4.9 provide a way to find the best

geometries given constraints of a specific application, a sought frequency range

and a desired distance between f0 and f1. However, other factors need to be

taken into account, and that are not considered in this parametric model. For

example, damping and coupling with other elements of an application can have

a crucial effect on the amount of attenuation and some geometries that would

match the required frequency range and f0 - f1 distance could not be suitable

for a particular situation. Therefore, this parametric model can be useful as a

starting point to select some candidate geometries that can be used as input in

FEM models that consider the interaction between more elements. The models

shown in Fig. 4.8 and Fig. 4.9 have been coded in MATLAB® and can be found

in Appendix A.1.

4.4 Results

In this Section results from experiments described in Section 4.2 are presented and

analysed. The main goal of these experiments was to show that it is possible to

fabricate small-scale acoustic metamaterials based on Helmholtz resonators using

additive manufacturing technology. Although these metamaterials were designed

without the constraints of a specific application, their small-scale dimensions and

noise attenuation frequency range would make them suitable for applications such

as headphones, smart speakers, automotive and aerospace industries. Once an

application has been chosen, models presented in Section 4.3 can be leveraged in

order to find suitable geometries and the designs presented in this Section can

be modified accordingly. Four different designs and measurements are discussed.

Dimensions and materials used are reported in Section 4.2.

The first measurement compares band gaps obtained with acoustic metamaterials

composed of 3 × 3, 3 × 6 and 6 × 6 arrays of Helmholtz resonators. Fig. 4.10

shows that a stop band is generated where the sound is attenuated. It is worth

noting that by increasing the number of resonators, the stop band has greater

peak attenuation and the incoming sound wave is attenuated approximately 10

dB, 20 dB and 30 dB respectively (peak values). This behaviour is reflected in

the model shown in Fig. 4.7. The measurements are normalised with respect to

102



4.4. Results

a measurement in the free field where no structures or resonators are present.

The slight de-tuning in frequency can be an effect of coupling between the

resonators, as well as of increased damping with increased number of resonators,

since damping can de-tune resonators as explained in Chapter 2.

Figure 4.10: Plot of normalised sound transmission as a function of frequency,
showing an increase in sound attenuation with higher number of resonators. It
can be noticed that the band gap is detuned with increased number of resonators.
This is due to increased damping with higher number of resonators.

The second measurement is a study on how the position of the sound source affects

noise attenuation. This study was performed with the robot setup described in

Chapter 3. As shown in Fig. 4.11, the sound is attenuated in the band gap

(i.e. at 6600 Hz) for each source position, with an increasing attenuation when

the loudspeaker is above the sample, i.e. facing the front of the aperture of the

neck of the resonators. The effect of sound attenuation is present for measurement

spheres of different radiuses, namely 100, 200, 300 and 400 mm and it is consistent

for all the chosen distances. The source is always positioned in the far field

with respect to the samples, since the frequencies of interest are higher than the

minimum distance (f = cs/λ = 343 (m/s) /0.1(s)= 3430(Hz)).
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Figure 4.11: Sound transmission measured above the sample at 5000 Hz (left)
and 6600 Hz (right) with respect to the source playing a swept sine wave and
positioned along a quarter hemisphere with a radius of 100 ((a), (b)), 200 ((c),
(d)), 300 ((e), (f)), and 400 ((g), (h)) mm.
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The third measurement compares the distance of first and second band gap when

using resonators having the dimensions of a soda can scaled down by a factor of

20 and resonators designed to achieve band gaps hybridisation, respectively. In

the first case, shown in plot (a) of Fig. 4.12, the first and second band gaps

are approximately 6.5 kHz apart. In the second case, shown in plot (b) of

Fig. 4.12, the second band gap has been designed to be closer to the first one, and

hybridisation - i.e. the process of merging two band gaps - has been achieved.

Previously, hybridisation had been achieved by merging the first band gap with

band gaps produced by Bragg scattering, a byproduct of the periodicity of

acoustic metamaterials and depending on the lattice distance. Here, hybridisation

of band gaps of fundamental frequency and first overtone is proposed for the

first time. Although the two band gaps are clearly separated at a distance of

approximately 2.5 kHz, they are close enough to achieve hybridisation. In other

words, the frequency band in-between the two band gaps is still attenuated, due

to damping and air non-linearities.

The fourth measurement aims to valuate the effect of adding a thin plate inside

the Helmholtz resonators and to enhance the band gap of the first resonance by

leveraging the band gap created by the resonance of the thin plate. Fig. 4.13

shows that the resonance of thin plates widen the band gaps produced by the

resonators alone: a band gap at 9 kHz that is not present in the samples containing

simple resonators is visible and the band gap of the first overtone is shifted

onto a 2 kHz lower band and enhanced by 10 dB. The nature of this result is

mainly experimental. However, a comprehensive work on thin plates modelling,

fabrication and characterisation is presented in the next Chapter.
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Figure 4.12: Narrow stop bands 6.5 kHz apart, originated in acoustic
metamaterials with unit cells having the dimensions of a soda can scaled down by
a factor of 20 (a). Closer stop bands 2.5 kHz apart and hybridised by a band gap
where the sound is still attenuated by 10 dB, generated by acoustic metamaterials
with tuned overtones (b).
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Figure 4.13: Sound transmission of the acoustic metamaterials based Helmholtz
resonators (blue) and based on Helmholtz resonators with thin plates (red). The
signal has been acquired above the resonator in the middle of a 3× 3 array.

4.5 Conclusion and Future Work

Chapter 4 discussed research on noise attenuation using acoustic metamaterials

based on small-scale three-dimensional printed Helmholtz resonators. The first

work presented as part of this research aimed to replicate previous studies on

large-scale Helmholtz resonators such as soda cans and to show that it was

possible to achieve similar effects in small-scale Helmholtz resonators that had

been fabricated using additive manufacturing technology. By increasing the

number of unit-cells, it was shown - with a model and experiments - that noise

attenuation increases. The second work answered a question on how the position

of the acoustic source affects noise attenuation. To do so, a robotic arm moved

a loudspeaker around a quarter-hemisphere trajectory, while a microphone was

placed on top of a fixed array of unit-cells. The effect of source position was

determined to not have an influence on the band gap for this setup and this type

of acoustic metamaterials. The third work preposed to tune Helmholtz resonators

at the design stage to create a larger ”hybridisation” band gap that merged the

band gap created by the fundamental frequency and the band gap created by the

first overtone. To facilitate design, a parametric model allowed to choose the best

107



4.5. Conclusion and Future Work

geometry to attenuate a specific band gap. An optimisation algorithm allowed

to select a specific band gap depth. By successfully measuring the hybridisation

band gap, it was possible to show that leveraging multiple resonances - such

as overtones - in the same unit-cell is a new way to achieve a broad band gap.

Finally, the fourth work expanded the concept of leveraging multiple resonances

by inserting a resonant thin plate inside Helmholtz resonators. It is worth noting

that the thin plates and the Helmholtz resonators were fabricated using a novel

three-dimensional printing technique that allowed to obtain these unit cells using

multiple materials - one for the thin plate and one for the resonators - in one

print. These results were published in IEEE Sensors Proceedings [90] and IEEE

Sensors Journal [91] and were presented through posters and oral presentation in

multiple events, symposia and workshops.

The results presented above show that it is possible to innovate in the field of

acoustics today, even starting from well-known concepts such as the working

mechanism of a Helmholtz resonator. The field of acoustic metamaterials can

offer new ways to attenuate sound that have not been explored in the past.

However, the work needed to start from theoretical studies or proof-of-concept

experimental work and build real-world products is still in progress and laborious.

One way to develop a bridge between theoretical work and production is to start

from applications that need improvement and then build models, designs and

develop fabrication techniques that are specific to that application. Models are a

powerful tool that can inform the design stage, but they need to consider multiple

parameters such as geometry, depth and breadth of band gap, coupling with

housing and other elements. By defining an application, it is possible to reduce

the initial complexity of the models, and leverage their full potential. Finally,

new technologies such as advance manufacturing techniques that are developed

to optimise a certain parameter, such as for example thickness of a layer, can

unleash creativity, as they allow rapid trial and error. These new technologies also

allow to create complex shapes - such as customised Helmholtz resonators that fit

a loudspeaker enclosure and include resonant or active layers - that were difficult

to build in the past or required the help of expensive chains of manufacturing.

Future work on three-dimensional printed acoustic metamaterials based on
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Helmholtz resonators will present interesting challenges. It will try to answer

questions such as ”Which and how many resonant structures can be used

inside Helmholtz resonators?”, or ”Which applications will benefit from this

technology?”. Some research, also presented in this thesis, is looking at how

to actively control the parameters such as frequency range of band gap of this

type of metamaterials. Of course, the research on materials used to fabricate the

resonators is also very important, including a search for sustainable materials or

resonators already presented in nature that can be used as unit-cells.

The next Chapter will further look into the process of three-dimensional printing

a thin plate, developing a method to go beyond the initial thickness constraints

of a printer and obtaining a characterisation of the thin plates. Chapter 6 will

explore the possibility of modifying the resonators presented in this Chapter to

obtain active metamaterials that can be tuned in real-time.
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Chapter 5

Fabrication and Characterisation of

Thin Plates for Acoustic

Metamaterials Applications

5.1 Introduction

This Chapter presents the research and development of acoustic metamaterials

based on three-dimensional printed thin plates. A novel technique was developed

to fabricate thin resonant layers using additive manufacturing. The material

parameters of these thin plates have been characterised by models and various

measurement techniques. The motivations behind this project are driven by

the opportunity to grow the field of acoustic metamaterials and to create a

bridge between theoretical work, laboratory experiments, and the realisation of

real-world products. In the past decade, many publications have proposed new

acoustic metamaterials based on membranes and thin plates [45]. However, many

of these publications are models, and few present experimental work. This is

also due to the difficulty of fabricating membranes with comparison to simpler

unit-cells such as Helmholtz resonators. Some laboratories rely on manually

gluing membranes to supports, and this can result in unit-cells that are slightly

different and that are not suitable for the periodic and bulk requirements of

acoustic metamaterials. Although some techniques for three-dimensional printing

membranes have been proposed, they usually present thick layers [144, 145].
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The first goal of this work was to develop a technique for three-dimensional

printing thin plates having a low resonance frequency. Thin plates can potentially

be ideal unit-cells for attenuating low frequencies in small-scale and lightweight

applications. While other unit-cells such as pipes need a larger structure to

resonate at low frequencies, thin plates have a resonant frequency that is directly

proportional to their thickness. Therefore, thin plates are good candidates for low

frequency, thin, lightweight, small-scale applications. As explained in Chapter 3,

most additive manufacturing printers do not offer a system to fabricate layers

thinner than 0.1 mm. Hence, developing a technique to fabricate thinner layers

and also include them within other structures such as supports, pipes, Helmholtz

resonators is a fundamental first step for contributing to the field of acoustic

metamaterials. Once this fabrication technique has been developed, the second

goal was to build a parametric model, similar to the one developed in Chapter

4 for Helmholtz resonators, to control geometry and materials and to inform the

final design of acoustic metamaterials. Finally, an experimental characterisation

of three-dimensional printed thin layers was carried out to validate the parametric

models and to quantify both the physical parameters, such as density and Young’s

modulus, as well as the absorption, reflection, and transmission characteristics of

thin layers.

The next sections will describe the methods used to fabricate thin layers, and

to build the parametric model. Results of experimental characterisations will be

shown and a final discussion will reflect on the results and on future work.

5.2 Methods

The Asiga three-dimensional printer introduced in Chapter 3 was used to fabricate

the two samples that are presented in this work. Both samples have the same

dimensions and are shown in Fig. 5.1. The shape of three-dimensional printed

layers is circular and they are fabricated on top of a hollow cylinder 1 mm in

height and with 1 mm thick walls. The three-dimensional printer build plate size

is 33.49×20.99×76 mm, and the outer diameters of the support and plate were set

at 20 mm, which is the maximum diameter. Therefore, the effective diameter of
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the thin plate was 15 mm. There are two main reasons for selecting the maximum

possible diameter. Firstly, in order to characterise the plate with an impedance

tube, the diameter should be as large as possible, given the standard dimension of

the tube, in this case having a 30 mm diameter. Secondly, since the resonance of

a thin plate is inversely proportional to the square of its radius, a larger diameter

would result in a lower frequency, as required for noise applications.

The first sample had as main component PEGDA 250 and the second PEGDA

700. The numbers 250 and 700 represent the molecular weights of the two different

types of PEGDA. In particular, PEGDA 700 was preferred for this work as it is

characterised by a lower Young’s modulus than PEGDA 250 and hence a lower

resonance frequency, that could match and attenuate lower frequencies. BaTiO3

nano-powder with a 500 nm diameter average particle size, purchased from US-

NANO, was added to the resin with a 50% weight with respect to PEGDA when

fabricating the plate. BaTiO3 main function was to scatter the light in a uniform

way on the horizontal plane, to obtain a flat plate, since previous attempts

that did not include BaTiO3 resulted in a curved plate. An explanation of the

relationship between light exposure and degree of polymerisation is provided in

Chapter 3. It is important to notice that by adding BaTiO3 to the resin, a

piezoelectric material can be obtained, and its properties are explored in the next

Chapter. Irgacure 819 was added to both mixtures as a photo-initiator with a

1% weight with respect to PEGDA and 0.1% Sudan I was added as absorber to

better control the amount of light that could contribute to the polymerisation

of the resin. While the resin described above was used to print the thin plate,

the support material was made of PEGDA 250, 0.1% Sudan I and 1% Irgacure

819. Since the Asiga three-dimensional printer software does not allow to change

the exposure time to light or other parameters while the print has started, the

chosen exposure time of 5 seconds was of a duration that allowed to print both

the materials of the support and the materials of the membrane. This exposure

time was chosen as a result of a trial and error process. Nevertheless, it is possible

to build models based on Beer’s methods (see Chapter 3) that allow to predict

the optimal exposure time for different materials.

The samples were modelled using the transfer matrix method described in
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Chapter 3. They were measured using an impedance tube described in Chapter 3

shown in Fig. 5.2 and schematised in Fig. 5.3.

Figure 5.1: Three-dimensional printed thin plates front (left) and back (right).

Figure 5.2: Impedance tube used to measure the acoustic coefficients of the plate
under test (a). Open sample holder with plate inserted (b) and closed sample
holder with plate (c).
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Figure 5.3: Scheme of the system modelled through the transfer matrix method.
As in the experiments, the impedance tube contains a sample holder that supports
the plate.

5.3 Model

This Section first aims to develop a parametric model for thin plates that receives

as input the material and geometry parameters and produces as output the

resonance of a single thin plate. Then, a transfer matrix model of thin plates

is also introduced and validated by experiments in the next Section. Four

different parametric models are shown. All these parametric models take as

input Young’s Modulus, Density, Poisson’s Ratio, Thickness and Radius of a

circular thin plate. In each model, every set of permutations of two varying

parameters is varied across a range while the three remaining parameters are

fixed. The value of the fixed parameters is chosen in each model by running an

algorithm that optimises those values based on a specific goal, such as maximising

or minimising the resonance, or obtaining a resonance within a specific range,

such as frequencies between 300 Hz and 3000 Hz, where most of human speech

fundamental frequencies are found.

The first model shown in Fig. 5.4 selects values for the fixed parameters that

maximise the value of f0 within the given parameters’ ranges. The second model

shown in Fig. 5.5 selects values for the fixed parameters that obtain a mid-

frequency values for f0. The third model shown in Fig. 5.6 selects values for

the fixed parameters that minimise the value of f0 within the given parameters’
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ranges. The fourth model shown in Fig. 5.7 selects values for the fixed parameters

that obtain a value for f0 within the frequency range where most human speech

fundamental frequencies are found, namely between 300 Hz and 3000 Hz. The

models shown below have been coded in MATLAB® and can be found in

Appendix A.2.

A transfer matrix model has also been developed to retrieve the thin plate’s

material parameters and simulate the experimental measurements conducted in

the impedance tube. The transfer matrix model described in Chapter 3 has been

applied to this specific sample. The transfer matrix

T =

[
T11 T12

T21 T22

]
(5.1)

is equal to:

T = MendcorrMtube1MplateMtube2Mendcorr, (5.2)

where Mendcorr is the transfer matrix of the end correction ∆l [146]:

Mendcorr =

[
1 iZtkt∆l

0 1

]
. (5.3)

Mtubej is the transfer matrix of the sample holder on the left (j = 1) and right

(j = 2) sides of the plate [147]:

Mtubej =

[
cos(ktlj) iZt sin(ktlj)
i sin(ktlj)

Zt
cos(ktlj)

]
. (5.4)

Mplate is the transfer matrix of the thin plate:

Mplate =

[
1 Zm

0 1

]
, (5.5)
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Figure 5.4: Variation of two parameters, while keeping the other two parameters
at a fixed value, allows one to choose a desired value for f0 and f1. The values of
the fixed parameters are chosen to maximise f0.
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Figure 5.5: Variation of two parameters, while keeping the other two parameters
at a fixed value, allows one to choose a desired value for f0 and f1. The values of
the fixed parameters are chosen to obtain a mid-frequencies value for f0.
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Figure 5.6: Variation of two parameters, while keeping the other two parameters
at a fixed value, allows one to choose a desired value for f0 and f1. The values of
the fixed parameters are chosen to minimise f0.
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Figure 5.7: Variation of two parameters, while keeping the other two parameters
at a fixed value, allows one to choose a desired value for f0 and f1. The values
of the fixed parameters are chosen to obtain a value for f0 within the speech
frequencies range.
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where Zm is the acoustic impedance of the thin plate [148].

The results from this model and the corresponding measurements gathered in the

impedance tube are reported in the next Section.

5.4 Results

The measurements obtained using laser Doppler vibrometer method showed that

the three-dimensional printed samples presented in this paper behave as thin

plates. Two models exist in the literature to predict the modes of vibration

of circular thin layers. The model of a membrane considers a thin layer only

dependent on tension, while the model of the plate is only dependent on stiffness.

Furthermore, a membrane resonance frequency is inversely proportional to its

thickness, while a plate is directly proportional to it [53]. These two models

successfully represent many vibrating layers present in nature and in our everyday

life. Nevertheless, in real-world scenarios, it is possible to encounter objects that

manifest a behaviour in-between membranes and plates. While fabricating the

samples presented in this Chapter, it become clear that a thicker sample had

a higher resonance frequency and therefore a thin plate model was chosen (see

Chapter 2. As shown in Fig. 5.8 (a) for PEGDA 250 and in Fig. 5.8 (b) for

PEGDA 700, it can be clearly seen that the plates present several modes of

vibration, both radial and circular modes. It is possible to predict the frequency

of the modes of vibration of a circular plate as reported in Chapter 2, where

modes (1,1) and (0,2) are predicted to be respectively 2.091 and 3.909 times

higher than mode (0,1). The three-dimensional printed plates present all the

modes of vibrations predicted by Chapter 2 and their frequencies are in good

agreement with those predicted in the literature. Table 5.1 shows the average

resonance frequency for the two types of PEGDA samples. These values were

useful while modelling the plates with the transfer matrix method, as they were

used as initial guess to initiate the optimisation procedure to retrieve the other

parameters.

To characterise the material parameters of the two thin plates, the impedance

tube described in Chapter 3 was used, with a sine sweep between 20 Hz and

2500 Hz as input. Each sample was measured 10 times to assess the repeatability
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Figure 5.8: Modes (0,1), (1,1), (0,2), (0,3) for the PEGDA 250 sample (a). Modes
(0,1), (1,1), (0,2), (1,2) for the PEGDA 700 sample (b).

Table 5.1: Values of fundamental frequency and first circular and radial modes
for samples of PEGDA 250 and PEGDA 700 having a 15 mm diameter, measured
using a 3D laser vibrometer.

Mode Quantity PEGDA 250 PEGDA 700
(0, 1) Fundamental Frequency (Hz) 940 400
(1, 1) First radial mode (Hz) 1500 1070
(0, 2) First circular mode (Hz) 2300 1530
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of the measurements. The reflection, transmission and absorption coefficients

were retrieved from the measurements. Then, the physical quantities, chosen

to initialise the model introduced above, namely density, Poisson’s ratio, loss

factor and Young’s modulus, were optimised to fit the experiments. The

transmission and reflection coefficients were first retrieved through impedance

tube measurements and are represented respectively by the solid magenta and

green lines in Fig. 5.9 for PEGDA 250 (a) and 700 (b). The same coefficients

together with absorption were then retrieved using the transfer matrix model and

initialised using the values given by laser Doppler vibrometer for the resonance

frequency and by vendors data sheets and literature values for density, Young’s

modulus, Poisson’s ratio and loss factor. To minimise the difference between

transmission, reflection and absorption coefficients obtained experimentally with

those obtained analytically, the values of density, Young’s modulus, Poisson’s

ratio and loss factor assumed at the modelling stage where changed iteratively

during an optimisation process, until the modelled coefficients graph in Fig. 5.9

fit into the graph representing the experimental coefficients. Therefore, the

density, Young’s modulus, Poisson’s ratio and loss factor parameters retrieved

in this section result from the process of minimisation of the difference between

experimental coefficients obtained through measurements in the impedance tube

and theoretical transmission, reflection and absorption coefficients modelled with

the transfer matrix approach. Through this inverse method it was therefore

possible to obtain the values of Young’s modulus, density, Poisson’s ratio, loss

factor and fundamental frequency listed in Table 5.2. The differences between

the values of fundamental frequency given by laser vibrometer and the impedance

tube approach are due to the differences in samples preparation. In the first

case, the plate is in the free field and its support is glued to a piece of glass.

Hence, a tiny volume of air is created between the plate and the support. In

the second case, there is no support to separate the plate from its measurement

environment, which is a tube instead than the free field. The values retrieved

through LDV measurements should therefore be used just as initial values for our

model and to show the presence of the modes in the plates. Fig. 5.9 shows that

the plates fabricated in this work would be suitable for acoustic metamaterials

applications. In fact, both kinds of samples show a high reflection coefficient

hence low transmission before the first mode of resonance, which corresponds to
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a region of negative effective density [149–151]. PEGDA 700 presents a lower

frequencies, therefore a peak corresponding to a higher mode is visible in these

measurements.

Figure 5.9: Transmission, reflection and absorption coefficients represented by the
dotted lines correspond to the parameters retrieved with the optimised transfer
matrix model. The solid lines show reflection and transmission coefficients
measured through the impedance tube and normalised to the input signal.
PEGDA 250 values are shown in graph (a) and PEGDA 700 in graph (b).
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Table 5.2: Properties of the materials used to 3D print the plates as retrieved by
using the transfer matrix approach and optimisation with the impedance tube
measurements.

Symbol Quantity PEGDA 250 PEGDA 700
E Young’s Modulus (GPa) 3.04 0.67
ρ Density (kg/m3) 1730 2170
η Loss 0.070 0.075
ν Poisson’s Ratio 0.35 0.35
f0 Fundamental Frequency (Hz) 827 346

Finally, nanoindentation measurements were gathered on both top and bottom

sides of the samples. By looking at Fig. 5.10, it can be seen that the particles

distribution is different on the two sides of the plate. The bottom side tends

to contain more BaTiO3 particles than the top side. Therefore, two different

values for the Young’s Modulus of both PEGDA 250 and PEGDA 700 samples

were retrieved, as outlined in Table 5.3. This non-homogeneous distribution of

particles in the plate can possibly explain the different values of Young’s modulus

given by nanoindentation and retrieved through impedance tube measurements.

Since the tip used for nanoindentation is small in comparison to the dimension

of the particles of PEGDA and BaTiO3 in the plate, it can be inferred that,

for this specific type of plates, impedance tube measurements are more reliable

than nanoindentation. Moreover, the sample required for nanoindentation must

be small and cut from the support, hence possibly eliminating the small stress

that the plate could have received while being attached to the support during

the three-dimensional printing process. This sample preparation process could

cause a modification of the physical properties of the plate. Therefore, in future

designs containing these plates, the results from impedance tube measurements

will be preferred when modelling the system.
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Figure 5.10: Cross-section of the PEGDA 250 sample used for nanoindentation
and obtained with scanning electron microscope. It can be noticed that the top
and bottom side contain different amounts of BaTiO3 and PEGDA.

Table 5.3: Young’s modulus of PEGDA 250 and PEGDA 700 obtained through
nanoindentation measurements. Both top and bottom of the samples have been
measured because of non-homogeneous distribution of BaTiO3 in the sample, as
highlighted by scanning electron microscopy.

Symbol Quantity PEGDA 250 PEGDA 700
E Young’s Modulus (GPa) Top 0.30 0.062
E Young’s Modulus (GPa) Bottom 0.12 0.059
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5.5 Conclusion and Future Work

Chapter 5 discussed research on developing a three-dimensional printing tech-

nique to fabricate thin resonant plates. This new technique allowed to control the

thickness of layers by using a customised resin containing absorbers and scatterers

such as Sudan I and BaTiO3. The materials used to fabricate the thin plates were

chosen to have properties - such as Young’s Modulus and density - that resulted

in a resonance in the low-frequency range. To the best of our knowledge, this

was the first example of three-dimensional printed resonant thin plates fabricate

for low-frequency attenuation. The thin plates were modelled using an analytic

parametric model as well as a transfer matrix method. Absorption, Transmission,

and Reflection coefficients were retrieved by impedance tube measurements.

Material parameters were obtain by characterisation using impedance tube,

3D laser Doppler vibrometer and nanoindentation. Different characterisation

techniques produced results that were consistent, but slightly different due to the

preparation of the samples with an open or closed cavity. A scanning electron

microscope was also used to show the different distributions of the constituting

materials.

The results presented above show that it is now possible to fabricate thin

layers and supports - in one print - using 3D printers that can be affordable

and purchased by Universities and research laboratories. This work also shows

the importance of starting from a specific goal, such as attenuation at low-

frequencies using lightweight and small-scale materials. The number of material

and geometry parameters that determines the final outcome is so large that only

a specific goal can help initialise and optimise these parameters. The process of

selecting a goal, developing a three-dimensional printing technique and fabricating

complex shapes could pave the way to fabricating acoustic metamaterials in

laboratory environments where it was considered difficult to obtain such samples

and where the outcome of research mainly consisted in models and not in

fabrication.

Future work on three-dimensional printed thin plates could focus on building full

products that include these samples. Many variations to the presented samples
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are also possible. For example, it is possible to fabricate thin plates with masses

attached, or to control higher modes of vibration by diving the plate in quadrants

and changing the thickness of the thin plate in different regions. Thin plates can

also be embedded in other resonators, as shown in Chapter 4. The next Chapter

will further look into the process of three-dimensional printing a thin plate, by

showing how an active piezoelectric thin plate can be tuned to a desired frequency

in real-time.
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Chapter 6

Three-Dimensional Printed Acoustic

Metamaterials Devices and

Applications

6.1 Introduction

This Chapter presents two final projects that apply the techniques developed in

previous chapters of this thesis to acoustic and audio devices. The first project

is a proof-of-concept work on active acoustic metamaterials that will be further

developed within our laboratory in the upcoming years. This active acoustic

metamaterial consists of a three-dimensional printed Helmholtz resonator having

a piezoelectric plate at the bottom of its cavity. Fabricating an active acoustic

metamaterial is an opportunity to enable a user to control parameters such as

Q factor, to modify the effective damping, and possibly even the stiffness of a

system. By providing additional energy, at the right phase, an active acoustic

metamaterial will enhance the pressure output from for example a Helmholtz

resonator, and increase the out-of-phase acoustic wave resonating in the cavity

and destructively interfering with the incoming sound. In the second project,

wearable devices such as headphones, or simple ear mufflers, were 3D printed to

leverage the properties of acoustic metamaterials to attenuate external noise in

chosen frequency bands. Although the use of passive foam in headphones and the

addition of active noise cancellation systems represent an efficient and established
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way to attenuate noise in wearable devices, some frequency bands - for example

between 500 Hz and 2000 Hz - are not successfully covered by the existing noise

attenuation techniques [152, 153]. The work here presented proposes to design

and fabricate acoustic metamaterials that can be inserted in headsets or other

devices to tackle noise attenuation in specific frequency bands. For example,

mechanical and electric noise produced by industrial machines, as well as electric

devices such as hair dryers, or vacuum machines are usually narrowband.

6.2 Three-Dimensional Printed Printed Active Acous-

tic Metamaterials

Introduction

Although the nature of the work here presented is mainly experimental, the thin

plates models developed in Chapter 5 have been used as a reference for the initial

design. The concept of active acoustic metamaterials has become increasingly

popular in recent years [41, 154, 155]. Changing the band gap position can be

a convenient property in applications that need to attenuate or control sound

waves that change frequency over time, such as in headphones, sound barriers, or

similar devices that respond to environmental noise. Tuning the band gap is also

practical for scalability of production, where for example, acoustic metamaterials

could be fabricated in large batches and then tuned once integrated into a specific

application. In particular, piezoelectric thin plates have been recently proposed

as unit-cells for acoustic metamaterials [119, 156, 157]. Building on these ideas,

here we investigate the possibility of three-dimensional printing piezoelectric thin

plates that, after poling, can be controlled in real-time. Firstly, an off-the-

shelf piezoelectric buzzer embedded in a three-dimensional printed Helmholtz

resonator was assembled, controlled in real-time, and measured. This device

was used to enhance the attenuation of a Helmholtz resonator at its band gap

by driving the piezoelectric stack in phase with the vibration of the resonator.

Secondly, we used a 3D printer to fabricate a thin plate and then we manually

added silver coating as a conductive layer. The possibility of entirely three-
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dimensional printing an active acoustic metamaterial such as a thin plate could

pave the way to developing complex active noise-reducing structures that could be

tuned to a specific application. This type of acoustic metamaterials would enable

the development of new devices, with new shapes and functionalities that were

difficult or even impossible to fabricate before. This work was made possible by

using new techniques to control the materials and thickness of three-dimensional

printed layers [47]. The next sections will discuss methods used to fabricate these

unit-cells, models, and results. Finally, a conclusion section will summarise the

work and reflect on possible outcomes and future developments.

Methods

A first way to enhance the band gap is to 3D print a Helmholtz resonator and

glue it to an off-the-shelf piezoelectric buzzer or stack. As shown in Fig. 6.1,

an external driver is set at the band gap frequency of the resonator, in this

case, 2200 Hz. A microphone placed on top of the resonator will sense the

sound field and measure the band gap, as displayed through an oscilloscope or

similar visualisation method. The piezoelectric buzzer is driven at the band gap

frequency, and its phase is iteratively changed until the signal measured by the

microphone on top of the resonator is minimised. To better control the band

gap, a custom real-time algorithm is implemented using the framework JUCE,

based on C++. JUCE is an open-source cross-platform framework that is used

to rapidly prototype desktop and mobile applications. This framework allows to

control the signal in real-time and is preferred to others due to the low latency

required for this experiment. The developed user interface is shown in Fig. 6.2.

Next, as shown in Fig. 6.3, the off-the-shelf piezoelectric buzzer is substituted

with a 3D printed piezoelectric thin plate with silver paint sprayed on top. The

plate has been fabricated with the same techniques and specifications described

in Chapter 5. The piezoelectric properties are obtained by adding 50% BaTiO3

to the mix and by exposing the thin plate to poling for several hours. Poling is

done by applying 10kV / mm to the 3D printed sample, and its main function

is to align dipoles that are randomly oriented. After poling, the piezoelectric

properties of the sample can be used and the sample can function as a sensor or
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Figure 6.1: Setup used to measure the response of the Helmholtz resonator and
to drive the piezoelectric transducer in phase with the signal.

Figure 6.2: User Interface developed to measure the signal and control the phase
and frequency of piezoelectric transducer in real-time.
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as an actuator.

Figure 6.3: Front (left) and bottom (right) picture of a three-dimensional printed
piezoelectric thin-plate with silver paint sprayed on top.

Results

The results in Fig. 6.4 show that it is possible to enhance the band gap of a

simple passive Helmholtz resonator up to 4 dB (peak measurement), when driving

an off-the-shelf piezoelectric transducer in phase with the resonator. The blue

continuous line in Fig. 6.4 represents the measured transmission amplitude of a

passive Helmholtz resonator when the plate situated at its base is not active. The

blue starred line highlights the band gap created by this passive device. The read

line show that when the piezoelectric buzzer is active and its phase is controlled

to be in-phase with the natural vibration of the resonator it is possible to enhance

the depth of the band gap by 4 dB.
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Figure 6.4: Measured transmission for simple passive Helmholtz resonator (blue)
and active metamaterial (red) composed of a Helmholtz resonator and an active
piezoelectric stack. The active metamaterial has a 4 dB deeper band gap, i.e.
enhanced noise attenuation.

6.3 3D Printed Quiet Headphones Based on Acous-

tic Metamaterials

Introduction

The second project presented in this Chapter presents the development of

portable devices such as headphones or ear mufflers based on acoustic meta-

materials designed in the previous chapters of this thesis. By designing and

fabricating these wearable devices we aim to tackle the problem of attenuation of

acoustic noise, an unresolved engineering challenge, that has a negative effect on

the population health and wellbeing. Active noise cancellation is effective for low

frequency – generally up to 500 Hz - steady noise such as traffic noise in roads and

airplanes and is based on the waves interference principle. Foams usually address

higher frequencies, by absorbing the incoming external sound waves and at the

same time they avoid the reflection of waves between the speaker and the eardrum.

The absorption property of foams do not provide complete acoustic insulation,

since - according to the mass-law - the transmission of sound is inversely
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proportional to the thickness, density and frequency of the wave. In this project,

headphones and ear mufflers devices based on acoustic metamaterials are designed

to improve the noise cancellation properties of traditional headsets. These novel

devices leverage the properties of acoustic metamaterials to attenuate external

noise in chosen frequency bands. The metamaterials chosen for this project tackle

external noise in the frequency band of speech, in particular between 1000 Hz and

3000 Hz. This choice derives from the fact that lower frequencies are already

successfully attenuated by active noise cancellation, that fails to successfully

cancel higher frequencies. Nevertheless, future versions of this project could

cancel the entire audible frequency spectrum, or could address problems such

as single high frequency machine noise in work environments. An advantage of

headphones based on metamaterials, is that they benefit from the passage of air to

cancel the acoustic noise, hence are lighter and breathable. Furthermore, unlike

active noise cancellation based devices, the passive mechanism here provided

by acoustic metamaterials does not require a source of electricity to work. The

technology here presented is scalable and could be included in other audio devices,

such as smart speakers or VR headsets.

Methods

The headphones here presented (see Fig. 6.5) are the first proof-of-concept audio

device. In this first version, the ear cup of the headphones includes metamaterials

based on Helmholtz resonators. The geometry of the Helmholtz resonators has

been designed to obtain a band gap where frequencies are attenuated between

1000 Hz and 3000 Hz. A second band gap at higher frequencies is also expected.

Different meta-atoms geometries have been tried during the design process to

tackle different frequency bands, and in this Chapter we present a first version

where speech frequencies are attenuated. Other designs could for example use

membranes as meta-atoms instead of Helmholtz resonators, which would result

in a thinner product. After placing the metamaterials inside the headphones,

a standard inset containing a loudspeaker is inserted in both ear cups, that are

connected by a headband (see Fig. 6.6). While the casing of the headphones has

been fabricated via Fusion Deposition Modelling 3D printers, the metamaterials

fabrication necessitates of a more accurate and finer 3D printing fabrication
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method based on stereolithography.

Figure 6.5: Headphones based on acoustic metamaterials.

Figure 6.6: Cut-through view of headphones based on acoustic metamaterials.

To test the effect of metamaterials on external noise, two types of measurements

have been employed. The first test is an open-field measurement (see Fig. 6.7)

obtained inside an acoustic booth by placing a microphone near the inner side

of the headphone while a loudspeaker plays a chirp in the audible frequency

range. This was a preliminary test to check the correct position of the band

gap. The attenuation effects could be lower in this case, because of the open-field

condition. In the second test, the headphones have been placed on a B&K Head &
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Torso Simulator (HATS), equipped with a ½” B&K microphone and standard-size

pinna, while a pink noise signal in the audible frequency range was played by a

loudspeaker (see Fig. 6.8). In both cases, the effect of metamaterials was tested by

measuring the headphones with and without the metamaterials and by comparing

the two results. Ear mufflers – i.e. headphones without the loudspeakers – have

also been tested in both cases.

Figure 6.7: Free-field measurement of noise attenuation properties of headphones
based on acoustic metamaterials.

Figure 6.8: Head and torso simulator measurement of noise attenuation properties
of headphones based on acoustic metamaterials.

Results

The measurements of noise attenuation by headphones based on acoustic

metamaterials described in the previous section show that it is possible to

attenuate external noise at chosen frequency bands. Specifically, free-field
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measurements conducted in the acoustic booth showed that it was possible to

attenuate noise up to 4 dB in a frequency range where most speech frequencies

are located and also at higher frequencies (see Fig. 6.9). By measuring the noise

attenuation in a more realistic scenario, i.e. by placing the headphones on a B&K

Head & Torso Simulator inside an acoustic booth, it was possible to show that

the wanted frequency range corresponding to the speech frequency band external

noise was attenuated up to 10 dB. Higher frequencies were also attenuated up to

20 dB (see Fig. 6.10).

Figure 6.9: Free-field sound transmission of headphones based on acoustic
metamaterials measured in acoustic booth. A frequency band around the speech
frequencies shows that it is possible to attenuate noise up to 4 dB in this region
(a). Higher frequency bands are also attenuated due to overtones of the resonant
meta-atoms (b).
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Figure 6.10: Sound transmission of headphones based on acoustic metamaterials
placed on a B&K Head & Torso Simulator inside an acoustic booth. A frequency
band around the speech frequencies shows that it is possible to attenuate noise
up to 10 dB in this region (a). Higher frequency bands are also attenuated up to
20 dB due to overtones of the resonant meta-atoms (b).

6.4 Conclusion and Future Work

This Chapter presented two applications of acoustic metamaterials. The first

application was an active acoustic metamaterial made of Helmholtz resonators

and piezoelectric plates. The second application was a headset wearable device

based on acoustic metamaterials.

Active acoustic metamaterials made it possible to enhance the attenuation of

a Helmholtz resonator at its band gap by 4 dB. This result was obtained by

driving a piezoelectric stack situated at the base of the resonator in phase with

the vibration of the resonator. A setup made of an oscilloscope, a function

generator, and an external microphone was used to manually find the phase that

minimised the measured signal on top of the resonator. A real-time algorithm

was also developed in C++ to obtain the same results. A piezoelectric thin

plate with added silver paint was also three-dimensional printed as proof-of-

concept for new types of active acoustic metamaterial. Future work will focus

on further improving the real-time algorithm to automatically match the phase

of the transducer without a manual search. A feedback loop could be employed

to match the phase automatically. Specifically, a piezoelectric transducer with at
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least two ports would make it possible to leverage a feedback loop. The design of

a new device with two electrically independent and mechanically coupled ports

could be three-dimensional printed to build a full system.

The first headphones based on acoustic metamaterials were designed and

fabricated. It was possible to attenuate noise up to 10 dB in the ‘speech’

frequency spectrum. Higher frequency band gaps reached up to 20 dB noise

attenuation. This result was achieved thanks to an open-back design and

to acoustic metamaterials based on Helmholtz resonators. The properties of

metamaterials make it possible to achieve noise attenuation in the subwavelength

scale, using lightweight materials and allow the passage of air, in contrast with

traditional passive attenuation methods. Future work could optimise the results

as well as tackle other frequency bands. A switch mechanism could be added to

the design to enable or disable noise attenuation. A user study could be designed

to test the perception of noise attenuation in listeners. Other metamaterial types

such as membranes or resonators with different geometries and shapes could be

used in future versions. In the future, headphones and ear mufflers designs could

entirely rely on metamaterials to attenuate external noise as well as on hybrid

solutions including active noise cancellation, foams and metamaterials. This idea

is scalable to other technologies, such as smart speakers, VR headsets, sound-bars,

TVs, IoT and smart devices.
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Chapter 7

Conclusion and Future Work

Over the last few years, we have witnessed rapid advances in the field of acoustic

metamaterials for noise control. Initially predicted by Veselago in 1968 within

electromagnetism, metamaterials are a class of materials that present unusual

properties different from those of conventional materials. In the field of acoustics,

phononic crystals had first been proposed as a new way to attenuate noise by

leveraging the Bragg scattering effect that reduced noise at wavelengths of the

same order of the distance between periodically arranged rods or structures.

Acoustic metamaterials, initially developed in 2000 by Liu, can control sound

at a subwavelength scale, thanks to the change of phase near the resonances

of unit-cells. Since the work of Liu, the field of acoustic metamaterials has

rapidly expanded, and researchers have proposed numerous options for resonant

unit-cells, introduced new models to predict sound transmission, and conducted

experimental work that shows how to control sound. In particular, noise control

could greatly benefit from the use of new techniques. Noise is a significant public

hazard and affects the well-being and health of the population. These promising

new sound control techniques could be applied to attenuate noise at the source,

such as in pieces of machinery, during the propagation path by building better

noise barriers and the receiver side by improving noise cancellation in ear-mufflers

and headphones.

Despite significant advances, only a few products, such as sound reducing

metamaterials in automobiles, have been integrated into real-world products.
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For example, the automobile producer Nissan [158] presented a new car cabins

design that integrated acoustic metamaterials weighing one-fourth of traditional

materials and providing the same degree of sound isolation in the 500 - 1200

Hz regime. One reason for the lack of acoustic metamaterials in industrial

applications might be the difficulty of fabricating abstract shapes and complex

unit-cells in university laboratories. The development of new three-dimensional

printing techniques that can facilitate the fabrication of resonant structures such

as thin membranes and resonators could be the first step to solve this challenge.

Furthermore, narrowing the research to specific applications starting at the

modelling and design stage could also facilitate the process of integrating more

acoustic metamaterials in everyday life. This thesis presented new ways to three-

dimensional printing unit-cells for acoustic metamaterials. Its primary focus was

to apply these methods to small-scale applications such as headphones, hearing

aids, smart speakers, and electroacoustic devices. The automotive and aerospace

industries could also benefit from these techniques due to their requirements for

low-weight and thin structures for noise control.

In Chapter 4, we have designed, three-dimensional printed, and measured acoustic

metamaterials based on small-scale Helmholtz resonators. We have shown that,

in the free-field, an increasing number of unit-cells corresponds to a deeper band

gap. The maximum attenuation in the band gap was −25 dB in a 6×6 array. By

changing the position of a loudspeaker with a robotic arm we showed that this

effect was mostly independent from the source’s location. We have also presented

a new design that leverages the first overtone of Helmholtz resonators to obtain

a hybridisation band gap - up to 2000 Hz broad - between the band gap near the

fundamental resonance and the band gap near the first overtone. The position

of the hybridisation band gap can be predicted by a parametric model and it

was situated between mid and high audible frequencies range. A second way to

enhance the band gap was shown experimentally by three-dimensional printing

Helmholtz resonators with embedded thin plates. This complex structure was

made possible by advanced and novel active manufacturing techniques. The

dimensions of the unit-cells were chosen to fit small-scale applications.

In Chapter 5, we have further developed techniques for three-dimensional printing
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thin plates, with a thickness between 20 µm and 100 µm. By fabricating very

thin layers, it was possible to obtain thin plates with a small radius, having a

fundamental resonance at low frequencies, between 300 Hz and 900 Hz. This is a

desirable geometry for applications that want to tackle low-frequency noise control

and require low-weight attenuating materials. The thin plates were modelled

using the transfer matrix method. Their material parameters and absorption,

reflection, and transmission coefficients were characterised using an impedance

tube. Other characterisation methods were used to highlight other properties:

a 3D laser Doppler vibrometer showed the vibration modes, nanoindentation

further characterised material parameters, and scanning electron microscopy

was used to study the distribution of particles in the three-dimensional printed

material.

In Chapter 6, we have presented two devices that apply acoustic metamaterials to

real-world scenarios. In the first project, we experimentally investigated the use

of piezoelectric sensors as unit-cells. Firstly, an off-the-shelf piezoelectric buzzer

was glued at the base of a Helmholtz resonator. By manually controlling the

phase of the piezoelectric buzzer driven at the same frequency as the Helmholtz

resonator’s resonance it was possible to enhance the band gap by 4 dB. Secondly,

a piezoelectric thin plate was 3D printed by applying the techniques developed

in the previous Chapter. After poling and applying silver paste and attaching

electrodes it was possible to show that the plate could be used as a sensor

or actuator. This proof-of-concept could be further developed to build a fully

three-dimensional printed active acoustic metamaterial, tunable in real-time. In

the second project, a prototype of headphones based on acoustic metamaterials

was fabricated by using three-dimensional printing technology and assembled to

include off-the-shelf loudspeakers. It was possible to attenuate external noise

up to 10 dB in the frequency range between 1000 and 3000 Hz which is usually

difficult to tackle with traditional noise attenuation techniques.

In summary, in this thesis, we have applied a novel additive manufacturing

fabrication technique to the fabrication of acoustic metamaterials. The principal

unit-cells used in this work were small-scale Helmholtz resonators, thin plates,

and piezoelectric buzzers. We have also shown that more complex structures,
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such as thin plates embedded in Helmholtz resonators and piezoelectric active

plates, can be fabricated in one print via additive manufacturing. These complex

structures are able to improve the peak attenuation of the band gaps without

increasing the dimensions of a simple unit-cell. Two final prototypes have been

fabricated to apply these techniques to real-world deices. We hope that this

research will contribute to advancing the field of acoustic metamaterials and

to the development of new ways to attenuate noise in acoustic devices, such

as headphones, smart speakers, in the automotive industry and the aerospace

industry.

Finally, it is useful to reflect on future work beyond this dissertation. Despite

recent rapid advancement in the field of acoustic metamaterials, many challenges

remain. Some of these challenges are highlighted as follows [39, 40, 159]:

• As discussed throughout this dissertation, it has become clear that starting

from an application can be an advantage in the process of integrating

acoustic metamaterials in industrial products. One way to do so is to define

a type of product or set of devices that require improvements in dealing

with noise control. Next, a study of geometrical constraints, weight, and

materials requirements can help select the type of resonator that forms the

unit-cell.

• Models should be able to predict the position of band gaps and evaluate

the sound transmission loss of acoustic metamaterials when inserted in

products. This would require knowledge and modelling of the device

where the metamaterial is inserted. Furthermore, the development of new

optimisation methods to maximise noise attenuation is also crucial in the

modelling phase.

• From a fabrication point of view, developing reliable techniques to scale

the production of metamaterials is essential. Three-dimensional printing

technology is offering new exciting solutions to these challenges. However,

improvements need to be made to control the fabrication process and make

it easier and economically affordable to research labs to rapidly prototype

complex shapes.
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• Similarly to models, also experimental setups should reflect the real-world

scenario where the metamaterials will be integrated. In the case of noise

attenuation for hearing protection, psychoacoustic techniques that evaluate

the effectiveness of acoustic metamaterials and subjective measurements

should be developed and compared to objective measurements.

• Finally, particular attention should be focused on the use of sustainable

materials. As acoustic metamaterials can control acoustic waves in new

ways, it is essential to rethink the list of common materials used in

traditional noise attenuation techniques and to offer a new sustainable

alternative. Although current 3D printers are mainly fabricating plastics

and polymers, great advances have been presented in the field of 3D

printable sustainable materials and it is a topic worth investigating in order

to successfully redesign sustainable noise attenuators.

To realise further progress, it is these sets of challenges that we should focus on

next.
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Appendix A

APPENDIX

A.1 MATLAB Codes for Parametric Models of

Helmholtz Resonators

1 close all

2 clear all

3 clc

4

5 %%%%%%%%%%%% PARAMETRIC STUDY - HELMHOLTZ RESONATORS %%%%%%%%%%%%%

6 %

7 % This code plots the first and second resonance of Helmholtz

8 % resonators. Four geometrical parameters

9 % are varied across different values. These four parameters are

10 % height of the cavity, radius of the cavity, length of the neck

11 % and radius of the neck. Each set of permutations of two varying

12 % parameters is plotted and the two remaining parameters are fixed.

13 %

14 % The second section of this code optimizes the choice of fixed

15 % parameters by selecting the values that maximize the distance

16 % between f0 and f1.

17 %

18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

19

20 %% Non Parametric Code for Helmholtz Resonator Resonances

21
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22 %~~~~~~~~~~~~~~~~~~~~~~~~~~Parameters~~~~~~~~~~~~~~~~~~~~~~~~~~%
23

24 % Neck radius (m)

25 r n = 0.0023; % p4 (0.0005 - 0.004)

26

27 % Neck length (m)

28 l n = 0.0015; % p3 (0.0005 - 0.0025)

29

30 % Cavity radius (m)

31 r c = 0.0055; % p2 (0.001 - 0.01)

32

33 % Cavity height (m)

34 h c = 0.0275; % p1 (0.005 - 0.05)

35

36 % Effective length parameter

37 D1 = 1.7; % fundamental frequency

38 D2 = 0.6; % first overtone

39

40 % Speed of sound (m/s)

41 c = 343;

42

43 %~~~~~~~~~~~~~~~~~~~~~~~Derived values~~~~~~~~~~~~~~~~~~~~~~~~~~%
44

45 % Derived cavity volume

46 V = (r c.ˆ2*pi.*h c);

47

48 % Derived neck cross sectional area

49 S = (r n.ˆ2*pi);

50

51 % Derived effective neck length

52 L = (l n+D1.*r n);

53

54 % Derived effective cavity length

55 H = (h c+D2.*r c);

56

57 %~~~~~~~~~~~~~~~~~~~~~~~Resonant Frequency~~~~~~~~~~~~~~~~~~~~~~%
58

59 f0 = (c/(2*pi))*sqrt(S./(V.*L));

60 f0 = round(f0);

61 fprintf('The resonance frequency is at %f Hz\n', f0);

62
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63 f1 = c/(4*(h c+D2.*r c));

64 fprintf('The overtone is at %f1 Hz\n', f1);

65

66 %% Parametric Code for Helmholtz Resonator Resonances

67

68 % f0 function

69 f0 = @(h c,r c,l n,r n)((c/(2*pi))*sqrt((r n.ˆ2*pi)./((r c.ˆ2*...

70 pi.*h c).*(l n+D1.*r n))));

71

72 % f1 function

73 f1 = @(h c,r c,l n,r n)(c./(4*(h c+D2.*r c)));

74

75 % Fixed values (mid vector)

76 h c fix = h c;

77 r c fix = r c;

78 l n fix = l n;

79 r n fix = r n;

80

81 % Resonances f0 and f1

82 f0 fix = (c/(2*pi))*sqrt((r n fix.ˆ2*pi)./((r c fix.ˆ2*pi.*...

83 h c fix).*(l n fix+D1.*r n fix)));

84 f1 fix = c./(4*(h c fix+D2.*(r c fix)));

85

86 % Number of points in vectors

87 tot = 100;

88

89 % Vectors of possible values

90 h c v = linspace(0.005, 0.05,tot);

91 r c v = linspace(0.001, 0.01,tot);

92 l n v = linspace(0.0005, 0.0025,tot);

93 r n v = linspace(0.0005, 0.004,tot);

94

95 % Plot

96 figure()

97

98 subplot(3,2,1)

99

100 [H C V,R C V] = meshgrid(h c v,r c v);

101 [p1p2 0, h0] = contour(H C V,R C V,f0(H C V,R C V,l n fix, r n fix));

102 h0.LineWidth = 2;

103 clabel(p1p2 0, h0);
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104 caxis([500 10000]);

105 xlabel('Cavity Height (m)');

106 ylabel('Cavity Radius (m)');

107 t = title('(a)

', 'FontSize', 11);

108

109 hold on

110 [p1p2 1, h1] = contour(H C V,R C V,f1(H C V,R C V,l n fix, r n fix));

111 h1.LineWidth = 3;

112 h1.LineStyle = '--';

113 clabel(p1p2 1, h1);

114 caxis([500 10000]);

115 legend('f 0','f 1');

116

117 subplot(3,2,2)

118

119 [H C V,L N V] = meshgrid(h c v,l n v);

120 [p1p2 0, h0] = contour(H C V,L N V,f0(H C V,r c fix, L N V, r n fix));

121 h0.LineWidth = 2;

122 clabel(p1p2 0, h0);

123 caxis([500 10000]);

124 xlabel('Cavity Height (m)');

125 ylabel('Neck Height (m)');

126 t = title('(b)

', 'FontSize', 11);

127

128 hold on

129 [p1p2 1, h1] = contour(H C V,L N V,f1(H C V,r c fix, L N V, r n fix));

130 h1.LineWidth = 3;

131 h1.LineStyle = '--';

132 clabel(p1p2 1, h1);

133 caxis([500 10000]);

134 legend('f 0','f 1');

135

136 subplot(3,2,3)

137

138 [H C V,R N V] = meshgrid(h c v,r n v);

139 [p1p2 0, h0] = contour(H C V,R N V,f0(H C V,r c fix, l n fix, R N V));

140 h0.LineWidth = 2;

141 clabel(p1p2 0, h0);

142 caxis([500 10000]);
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143 xlabel('Cavity Height (m)');

144 ylabel('Neck Radius (m)');

145 t = title('(c)

', 'FontSize', 11);

146

147 hold on

148 [p1p2 1, h1] = contour(H C V,R N V,f1(H C V,r c fix, l n fix, R N V));

149 h1.LineWidth = 3;

150 h1.LineStyle = '--';

151 clabel(p1p2 1, h1);

152 caxis([500 10000]);

153 legend('f 0','f 1');

154

155 subplot(3,2,4)

156

157 [R C V,L N V] = meshgrid(r c v,l n v);

158 [p1p2 0, h0] = contour(R C V,L N V,f0(h c fix,R C V, L N V, r n fix));

159 h0.LineWidth = 2;

160 clabel(p1p2 0, h0);

161 caxis([500 10000]);

162 xlabel('Cavity Radius (m)');

163 ylabel('Neck Height (m)');

164 t = title('(d)

', 'FontSize', 11);

165

166

167 hold on

168 [p1p2 1, h1] = contour(R C V,L N V,f1(h c fix,R C V, L N V, r n fix));

169 h1.LineWidth = 3;

170 h1.LineStyle = '--';

171 clabel(p1p2 1, h1);

172 caxis([500 10000]);

173 legend('f 0','f 1');

174

175 subplot(3,2,5)

176

177 [R C V,R N V] = meshgrid(r c v,r n v);

178 [p1p2 0, h0] = contour(R C V,R N V,f0(h c fix,R C V, l n fix, R N V));

179 h0.LineWidth = 2;

180 clabel(p1p2 0, h0);

181 caxis([500 10000]);
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182 xlabel('Cavity Radius (m))');

183 ylabel('Neck Radius (m)');

184 t = title('(e)

', 'FontSize', 11);

185

186 hold on

187 [p1p2 1, h1] = contour(R C V,R N V,f1(h c fix,R C V, l n fix, R N V));

188 h1.LineWidth = 3;

189 h1.LineStyle = '--';

190 clabel(p1p2 1, h1);

191 caxis([500 10000]);

192 legend('f 0','f 1');

193

194 subplot(3,2,6)

195

196 [L N V,R N V] = meshgrid(l n v,r n v);

197 [p1p2 0, h0] = contour(L N V,R N V,f0(h c fix,r c fix, L N V, R N V));

198 h0.LineWidth = 2;

199 clabel(p1p2 0, h0);

200 caxis([500 10000]);

201 xlabel('Neck Height (m)');

202 ylabel('Neck Radius (m)');

203 t = title('(f)

', 'FontSize', 11);

204

205 % hold on

206 % [p1p2 1, h1] = contour(L N V,W N V,f1(h c fix,r c fix, L N V, R N V));

207 % h1.LineWidth = 3;

208 % h1.LineStyle = '--';

209 % clabel(p1p2 1, h1);

210 caxis([500 10000]);

211 legend('f 0, (f 1 = 2784 Hz)');

212

213 %suptitle('Parametric Evaluation of Resonance f 0...

214 %and First Overtone f 1');

215

216

217 %% Optimization for Maximum Distance between f0 and f1

218

219 Z opt = 2;

220 Z opt old = 0;
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221 k = 0;

222

223 while Z opt-Z opt old>1e-5

224

225 Z opt old = Z opt;

226 [X1,X2,X3,X4] = ndgrid(h c v,r c v,l n v,r n v);

227 Y0 = f0(X1,X2,X3,X4);

228 Y1 = f1(X1,X2,X3,X4);

229 Z = Y1-Y0;

230 [Z opt,idx] = max(Z(:));

231 if sum(Z==max(Z(:)))>1

232 fprintf('Caution! Multiple values found!');

233 end

234 [i1,i2,i3,i4] = ind2sub(size(Z),idx);

235 h c opt = h c v(i1)

236 r c opt = r c v(i2)

237 l n opt = l n v(i3)

238 r n opt = r n v(i4)

239 f0 opt = f0(h c opt,r c opt,l n opt,r n opt);

240 f1 opt = f1(h c opt,r c opt,l n opt,r n opt);

241

242 h c v = linspace(h c v(max(i1-2,1)),h c v(min(i1+2,tot)),tot);

243 r c v = linspace(r c v(max(i2-2,1)),r c v(min(i2+2,tot)),tot);

244 l n v = linspace(l n v(max(i3-2,1)),l n v(min(i3+2,tot)),tot);

245 r n v = linspace(r n v(max(i4-2,1)),r n v(min(i4+2,tot)),tot);

246 k = k+1;

247 fprintf('\n %d - %f \n',k,Z opt)

248 end

249

250 h c fix = h c opt;

251 r c fix = r c opt;

252 l n fix = l n opt;

253 r n fix = r n opt;

254

255 % Vectors of possible values

256 h c v = linspace(0.005, 0.05,tot);

257 r c v = linspace(0.001, 0.01,tot);

258 l n v = linspace(0.0005, 0.0025,tot);

259 r n v = linspace(0.0005, 0.004,tot);

260

261 f1 fix opt = c./(4*(h c fix+D2.*(r c fix)));
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262 f0 fix opt = (c/(2*pi))*sqrt((r n fix.ˆ2*pi)./...

263 ((r c fix.ˆ2*pi.*h c fix).*(l n fix+D1.*r n fix)));

264

265 % Plot

266 figure()

267

268 subplot(3,2,1)

269

270 [H C V,R C V] = meshgrid(h c v,r c v);

271 [p1p2 0, h0] = contour(H C V,R C V,f0(H C V,R C V,l n fix, r n fix));

272 h0.LineWidth = 2;

273 clabel(p1p2 0, h0);

274 caxis([500 10000]);

275 xlabel('Cavity Height (m)');

276 ylabel('Cavity Radius (m)');

277

278 hold on

279 [p1p2 1, h1] = contour(H C V,R C V,f1(H C V,R C V,l n fix, r n fix));

280 h1.LineWidth = 3;

281 h1.LineStyle = '--';

282 clabel(p1p2 1, h1);

283 caxis([500 10000]);

284 legend('f 0','f 1');

285 t = title('(a)

', 'FontSize', 11);

286

287 subplot(3,2,2)

288

289 [H C V,L N V] = meshgrid(h c v,l n v);

290 [p1p2 0, h0] = contour(H C V,L N V,f0(H C V,r c fix, L N V, r n fix));

291 h0.LineWidth = 2;

292 clabel(p1p2 0, h0);

293 caxis([500 10000]);

294 xlabel('Cavity Height (m)');

295 ylabel('Neck Height (m)');

296

297 hold on

298 [p1p2 1, h1] = contour(H C V,L N V,f1(H C V,r c fix, L N V, r n fix));

299 h1.LineWidth = 3;

300 h1.LineStyle = '--';

301 clabel(p1p2 1, h1);
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302 caxis([500 10000]);

303 legend('f 0','f 1');

304 t = title('(b)

', 'FontSize', 11);

305

306 subplot(3,2,3)

307

308 [H C V,W N V] = meshgrid(h c v,r n v);

309 [p1p2 0, h0] = contour(H C V,W N V,f0(H C V,r c fix, l n fix, W N V));

310 h0.LineWidth = 2;

311 clabel(p1p2 0, h0);

312 caxis([500 10000]);

313 xlabel('Cavity Height (m)');

314 ylabel('Neck Radius (m)');

315

316 hold on

317 [p1p2 1, h1] = contour(H C V,W N V,f1(H C V,r c fix, l n fix, W N V));

318 h1.LineWidth = 3;

319 h1.LineStyle = '--';

320 clabel(p1p2 1, h1);

321 caxis([500 10000]);

322 legend('f 0','f 1');

323 t = title('(c)

', 'FontSize', 11);

324

325 subplot(3,2,4)

326

327 [R C V,L N V] = meshgrid(r c v,l n v);

328 [p1p2 0, h0] = contour(R C V,L N V,f0(h c fix,R C V, L N V, r n fix));

329 h0.LineWidth = 2;

330 clabel(p1p2 0, h0);

331 caxis([500 10000]);

332 xlabel('Cavity Radius (m)');

333 ylabel('Neck Height (m)');

334

335 hold on

336 [p1p2 1, h1] = contour(R C V,L N V,f1(h c fix,R C V, L N V, r n fix));

337 h1.LineWidth = 3;

338 h1.LineStyle = '--';

339 clabel(p1p2 1, h1);

340 caxis([500 10000]);
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341 legend('f 0','f 1');

342 t = title('(d)

', 'FontSize', 11);

343

344

345 subplot(3,2,5)

346

347 [R C V,W N V] = meshgrid(r c v,r n v);

348 [p1p2 0, h0] = contour(R C V,W N V,f0(h c fix,R C V, l n fix, W N V));

349 h0.LineWidth = 2;

350 clabel(p1p2 0, h0);

351 caxis([500 10000]);

352 xlabel('Cavity Radius (m))');

353 ylabel('Neck Radius (m)');

354

355 hold on

356 [p1p2 1, h1] = contour(R C V,W N V,f1(h c fix,R C V, l n fix, W N V));

357 h1.LineWidth = 3;

358 h1.LineStyle = '--';

359 clabel(p1p2 1, h1);

360 caxis([500 10000]);

361 legend('f 0','f 1');

362 t = title('(e)

', 'FontSize', 11);

363

364 subplot(3,2,6)

365

366 [L N V,W N V] = meshgrid(l n v,r n v);

367 [p1p2 0, h0] = contour(L N V,W N V,f0(h c fix,r c fix, L N V, W N V));

368 h0.LineWidth = 2;

369 clabel(p1p2 0, h0);

370 caxis([500 10000]);

371 xlabel('Neck Height (m)');

372 ylabel('Neck Radius (m)');

373 t = title('(f)

', 'FontSize', 11);

374 % hold on

375 % [p1p2 1, h1] = contour(L N V,W N V,f1(h c fix,r cdouble fix,...

376 %L N V, W N V));

377 % h1.LineWidth = 3;

378 % h1.LineStyle = '--';
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379 % clabel(p1p2 1, h1);

380 caxis([500 10000]);

381 legend('f0 (f1 = 13445 Hz)');

382

383 %suptitle('Optimized Parametric Evaluation of Resonance ...

384 %f0 and First Overtone f1');

A.2 MATLAB Codes for Parametric Models of Thin

Plates

1 clear all

2 close all

3 clc

4

5 %%%%%%%%%%%% PARAMETRIC STUDY - THIN PLATES %%%%%%%%%%%%%

6 %

7 % This code plots the first mode of vibration of thin plates.

8 % Geometrical and material parameters are are varied across

9 % different values. These five parameters are Youngs Modulus,

10 % Density, Poissons Ratio, Thickness and Radius of a circular

11 % thin plate. Each set of permutations of two varying

12 % parameters is plotted and the three remaining parameters are fixed.

13 %

14 % The second section of this code optimizes the choice of fixed

15 % parameters by selecting the values according to different criteria.

16 % The first optimization aims to maximize the value of f0. The second

17 % aims to obtain f0 within mid frequency range. The third minimizes f0.

18 % The fourth model optimizes f0 to be in the speech frequency range.

19 %

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

21

22 %% %%%%%%%%%%%%%%%%%%%%%% Parameters %%%%%%%%%%%%%%%%%%%%%%%%%

23

24 % Young's Modulus

25 E v fix = 200*10ˆ6;

26 E v = linspace(1*10ˆ6, 1*10ˆ9, 50);

27 % loss=0.05;

28 % E = 200*10ˆ7*(1+1i*loss);
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29

30 % Density

31 rho fix = 1180;

32 rho = linspace(1000, 3000, 50); % Kg/mˆ3

33

34 % Poisson's Ratio

35 nu fix = 0.35;

36 nu = linspace(0.3, 0.5, 50);

37

38 % Thickness

39 d fix = 70*10ˆ(-6); % m

40 d = linspace(20*10ˆ(-6), 0.5*10ˆ(-3), 50);

41

42 % Radius

43 r fix = 15*10ˆ(-3)/2; % m

44 r = linspace(3*10ˆ(-3), 10*10ˆ(-3), 50);

45

46 % Constant for circular membrane

47 K = 10.22;

48

49

50 %% %%%%%%%%%%%%%%%%%%%%%% Fixed Formula %%%%%%%%%%%%%%%%%%%%%%%%%

51

52 %f0 = K*d/(rˆ2*2*pi)*sqrt(E/(rho*12*(1-nuˆ2)));

53

54

55 %fprintf('The resonant frequency is %f Hz\n', f0);

56

57 %% %%%%%%%%%%%%%%%%%%%% Parametric Formula %%%%%%%%%%%%%%%%%%%%%%

58

59 % f0 function

60 f0 = @(E v, rho, nu, d, r)(K*d./(r.ˆ2*2*pi)...

61 .*sqrt(E v./(rho*12.*(1-nu.ˆ2))));

62

63

64 %% Plot

65

66 figure()

67

68 subplot(5,2,1)

69
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70 [E V,RHO] = meshgrid(E v,rho);

71 [p1p2 0, h0] = contourf(E V,RHO,f0(E V,RHO,nu fix, d fix, r fix));

72 h0.LineWidth = 2;

73 clabel(p1p2 0, h0);

74 %caxis([500 3000]);

75 xlabel('Young''s Modulus (Pa)');

76 ylabel('Density (Kg/mˆ3)');

77 t = title('(a)

', 'FontSize', 11);

78 %caxis([500 3000]);

79 %legend('f0 (Hz)');

80

81 subplot(5,2,2)

82

83 [E V,NU] = meshgrid(E v,nu);

84 [p1p2 0, h0] = contourf(E V,NU,f0(E V,rho fix,NU, d fix, r fix));

85 h0.LineWidth = 2;

86 clabel(p1p2 0, h0);

87 %caxis([500 3000]);

88 xlabel('Young''s Modulus (Pa)');

89 ylabel('Poisson''s Ratio');

90 t = title('(b)

', 'FontSize', 11);

91 %caxis([500 3000]);

92 %legend('f0 (Hz)');

93

94 subplot(5,2,3)

95

96 [E V,D] = meshgrid(E v,d);

97 [p1p2 0, h0] = contourf(E V,D,f0(E V,rho fix,nu fix, D, r fix));

98 h0.LineWidth = 2;

99 clabel(p1p2 0, h0);

100 %caxis([500 3000]);

101 xlabel('Young''s Modulus (Pa)');

102 ylabel('Thickness (m)');

103 t = title('(c)

', 'FontSize', 11);

104 %caxis([500 3000]);

105 %legend('f0 (Hz)');

106

107 subplot(5,2,4)
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108

109 [E V,R] = meshgrid(E v,r);

110 [p1p2 0, h0] = contourf(E V,R,f0(E V,rho fix,nu fix, d fix, R));

111 h0.LineWidth = 2;

112 clabel(p1p2 0, h0);

113 %caxis([500 3000]);

114 xlabel('Young''s Modulus (Pa)');

115 ylabel('Radius (m)');

116 t = title('(d)

', 'FontSize', 11);

117 %caxis([500 3000]);

118 %legend('f0 (Hz)');

119

120 subplot(5,2,5)

121

122 [RHO,NU] = meshgrid(rho,nu);

123 [p1p2 0, h0] = contourf(RHO,NU,f0(E v fix,RHO,NU, d fix, r fix));

124 h0.LineWidth = 2;

125 clabel(p1p2 0, h0);

126 %caxis([500 3000]);

127 xlabel('Density (Kg/mˆ3)');

128 ylabel('Poisson''s Ratio');

129 t = title('(e)

', 'FontSize', 11);

130 %caxis([500 3000]);

131 %legend('f0 (Hz)');

132

133 subplot(5,2,6)

134

135 [RHO,D] = meshgrid(rho,d);

136 [p1p2 0, h0] = contourf(RHO,D,f0(E v fix,RHO,nu fix, D, r fix));

137 h0.LineWidth = 2;

138 clabel(p1p2 0, h0);

139 %caxis([500 3000]);

140 xlabel('Density (Kg/mˆ3)');

141 ylabel('Thickness (m)');

142 t = title('(f)

', 'FontSize', 11);

143 %caxis([500 3000]);

144 %legend('f0 (Hz)');

145
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146 subplot(5,2,7)

147

148 [RHO,R] = meshgrid(rho,r);

149 [p1p2 0, h0] = contourf(RHO,R,f0(E v fix,RHO,nu fix, d fix, R));

150 h0.LineWidth = 2;

151 clabel(p1p2 0, h0);

152 %caxis([500 3000]);

153 xlabel('Density (Kg/mˆ3)');

154 ylabel('Radius (m)');

155 t = title('(g)

', 'FontSize', 11);

156 %caxis([500 3000]);

157 %legend('f0 (Hz)');

158

159 subplot(5,2,8)

160

161 [NU,D] = meshgrid(nu,d);

162 [p1p2 0, h0] = contourf(NU,D,f0(E v fix,rho fix,NU, D, r fix));

163 h0.LineWidth = 2;

164 clabel(p1p2 0, h0);

165 %caxis([500 3000]);

166 xlabel('Poissons''s Ratio');

167 ylabel('Thickness(m)');

168 t = title('(h)

', 'FontSize', 11);

169 %caxis([500 3000]);

170 %legend('f0 (Hz)');

171

172 subplot(5,2,9)

173

174 [NU,R] = meshgrid(nu,r);

175 [p1p2 0, h0] = contourf(NU,R,f0(E v fix,rho fix,NU, d fix, R));

176 h0.LineWidth = 2;

177 clabel(p1p2 0, h0);

178 %caxis([500 3000]);

179 xlabel('Poissons''s Ratio');

180 ylabel('Radius(m)');

181 t = title('(i)

', 'FontSize', 11);

182 %caxis([500 3000]);

183 %legend('f0 (Hz)');
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184

185 subplot(5,2,10)

186

187 [D,R] = meshgrid(d,r);

188 [p1p2 0, h0] = contourf(D,R,f0(E v fix,rho fix,nu fix, D, R));

189 h0.LineWidth = 2;

190 clabel(p1p2 0, h0);

191 %caxis([500 3000]);

192 xlabel('Thickness (m)');

193 ylabel('Radius(m)');

194 t = title('(j)

', 'FontSize', 11);%caxis([500 3000]);

195 %legend('f0 (Hz)');

196

197 %suptitle('Parametric Evaluation of Thin Plates Resonance...

198 % (Hz) - Speech Frequencies Optimization');

199

200 %% Low Frequency Optimization

201

202 [X1,X2,X3,X4, X5] = ndgrid(E v,rho,nu, d, r);

203 F0 = f0(X1,X2,X3,X4, X5);

204

205 [F0 low,idx] = min(F0(:));

206

207 if sum(F0==max(F0(:)))>1

208 fprintf('Caution! Multiple values found!');

209 end

210 [i1,i2,i3,i4, i5] = ind2sub(size(F0),idx);

211

212 E v low = E v(i1)

213 rho low = rho(i2)

214 nu low = nu(i3)

215 d low = d(i4)

216 r low = r(i5)

217

218 %% Plot Low Freq

219

220 figure()

221

222 subplot(5,2,1)

223
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224 [E V,RHO] = meshgrid(E v,rho);

225 [p1p2 0, h0] = contourf(E V,RHO,f0(E V,RHO,nu low, d low, r low));

226 h0.LineWidth = 2;

227 clabel(p1p2 0, h0);

228 %caxis([500 3000]);

229 xlabel('Young''s Modulus (Pa)');

230 ylabel('Density (Kg/mˆ3)');

231 t = title('(a)

', 'FontSize', 11);

232 %caxis([500 3000]);

233 %legend('f0 (Hz)');

234

235 subplot(5,2,2)

236

237 [E V,NU] = meshgrid(E v,nu);

238 [p1p2 0, h0] = contourf(E V,NU,f0(E V,rho low,NU, d low, r low));

239 h0.LineWidth = 2;

240 clabel(p1p2 0, h0);

241 %caxis([500 3000]);

242 xlabel('Young''s Modulus (Pa)');

243 ylabel('Poisson''s Ratio');

244 t = title('(b)

', 'FontSize', 11);

245 %caxis([500 3000]);

246 %legend('f0 (Hz)');

247

248 subplot(5,2,3)

249

250 [E V,D] = meshgrid(E v,d);

251 [p1p2 0, h0] = contourf(E V,D,f0(E V,rho low,nu low, D, r low));

252 h0.LineWidth = 2;

253 clabel(p1p2 0, h0);

254 %caxis([500 3000]);

255 xlabel('Young''s Modulus (Pa)');

256 ylabel('Thickness (m)');

257 t = title('(c)

', 'FontSize', 11);

258 %caxis([500 3000]);

259 %legend('f0 (Hz)');

260

261 subplot(5,2,4)
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262

263 [E V,R] = meshgrid(E v,r);

264 [p1p2 0, h0] = contourf(E V,R,f0(E V,rho low,nu low, d low, R));

265 h0.LineWidth = 2;

266 clabel(p1p2 0, h0);

267 %caxis([500 3000]);

268 xlabel('Young''s Modulus (Pa)');

269 ylabel('Radius (m)');

270 t = title('(d)

', 'FontSize', 11);

271 %caxis([500 3000]);

272 %legend('f0 (Hz)');

273

274 subplot(5,2,5)

275

276 [RHO,NU] = meshgrid(rho,nu);

277 [p1p2 0, h0] = contourf(RHO,NU,f0(E v low,RHO,NU, d low, r low));

278 h0.LineWidth = 2;

279 clabel(p1p2 0, h0);

280 %caxis([500 3000]);

281 xlabel('Density (Kg/mˆ3)');

282 ylabel('Poisson''s Ratio');

283 t = title('(e)

', 'FontSize', 11);

284 %caxis([500 3000]);

285 %legend('f0 (Hz)');

286

287 subplot(5,2,6)

288

289 [RHO,D] = meshgrid(rho,d);

290 [p1p2 0, h0] = contourf(RHO,D,f0(E v low,RHO,nu low, D, r low));

291 h0.LineWidth = 2;

292 clabel(p1p2 0, h0);

293 %caxis([500 3000]);

294 xlabel('Density (Kg/mˆ3)');

295 ylabel('Thickness (m)');

296 t = title('(f)

', 'FontSize', 11);

297 %caxis([500 3000]);

298 %legend('f0 (Hz)');

299
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300 subplot(5,2,7)

301

302 [RHO,R] = meshgrid(rho,r);

303 [p1p2 0, h0] = contourf(RHO,R,f0(E v low,RHO,nu low, d low, R));

304 h0.LineWidth = 2;

305 clabel(p1p2 0, h0);

306 %caxis([500 3000]);

307 xlabel('Density (Kg/mˆ3)');

308 ylabel('Radius (m)');

309 t = title('(g)

', 'FontSize', 11);

310 %caxis([500 3000]);

311 %legend('f0 (Hz)');

312

313 subplot(5,2,8)

314

315 [NU,D] = meshgrid(nu,d);

316 [p1p2 0, h0] = contourf(NU,D,f0(E v low,rho low,NU, D, r low));

317 h0.LineWidth = 2;

318 clabel(p1p2 0, h0);

319 %caxis([500 3000]);

320 xlabel('Poissons''s Ratio');

321 ylabel('Thickness(m)');

322 t = title('(h)

', 'FontSize', 11);

323 %caxis([500 3000]);

324 %legend('f0 (Hz)');

325

326 subplot(5,2,9)

327

328 [NU,R] = meshgrid(nu,r);

329 [p1p2 0, h0] = contourf(NU,R,f0(E v low,rho low,NU, d low, R));

330 h0.LineWidth = 2;

331 clabel(p1p2 0, h0);

332 %caxis([500 3000]);

333 xlabel('Poissons''s Ratio');

334 ylabel('Radius(m)');

335 t = title('(i)

', 'FontSize', 11);

336 %caxis([500 3000]);

337 %legend('f0 (Hz)');
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338

339 subplot(5,2,10)

340

341 [D,R] = meshgrid(d,r);

342 [p1p2 0, h0] = contourf(D,R,f0(E v low,rho low,nu low, D, R));

343 h0.LineWidth = 2;

344 clabel(p1p2 0, h0);

345 %caxis([500 3000]);

346 xlabel('Thickness (m)');

347 ylabel('Radius(m)');

348 t = title('(j)

', 'FontSize', 11);%caxis([500 3000]);

349 %legend('f0 (Hz)');

350

351 % suptitle('Parametric Evaluation of Thin Plates Resonance (Hz)...

352 %- Low Frequency Optimization');

353

354

355 %% High Frequency Optimization

356

357 [X1,X2,X3,X4, X5] = ndgrid(E v,rho,nu, d, r);

358 F0 = f0(X1,X2,X3,X4, X5);

359

360 [F0 low,idx] = max(F0(:));

361

362 if sum(F0==max(F0(:)))>1

363 fprintf('Caution! Multiple values found!');

364 end

365 [i1,i2,i3,i4, i5] = ind2sub(size(F0),idx);

366

367 E v high = E v(i1)

368 rho high = rho(i2)

369 nu high = nu(i3)

370 d high = d(i4)

371 r high = r(i5)

372

373 %% Plot High Freq

374

375 figure()

376

377 subplot(5,2,1)
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378

379 [E V,RHO] = meshgrid(E v,rho);

380 [p1p2 0, h0] = contourf(E V,RHO,f0(E V,RHO,nu high, d high, r high));

381 h0.LineWidth = 2;

382 clabel(p1p2 0, h0);

383 %caxis([500 3000]);

384 xlabel('Young''s Modulus (Pa)');

385 ylabel('Density (Kg/mˆ3)');

386 t = title('(a)

', 'FontSize', 11);

387 %caxis([500 3000]);

388 %legend('f0 (Hz)');

389

390 subplot(5,2,2)

391

392 [E V,NU] = meshgrid(E v,nu);

393 [p1p2 0, h0] = contourf(E V,NU,f0(E V,rho high,NU, d high, r high));

394 h0.LineWidth = 2;

395 clabel(p1p2 0, h0);

396 %caxis([500 3000]);

397 xlabel('Young''s Modulus (Pa)');

398 ylabel('Poisson''s Ratio');

399 t = title('(b)

', 'FontSize', 11);

400 %caxis([500 3000]);

401 %legend('f0 (Hz)');

402

403 subplot(5,2,3)

404

405 [E V,D] = meshgrid(E v,d);

406 [p1p2 0, h0] = contourf(E V,D,f0(E V,rho high,nu high, D, r high));

407 h0.LineWidth = 2;

408 clabel(p1p2 0, h0);

409 %caxis([500 3000]);

410 xlabel('Young''s Modulus (Pa)');

411 ylabel('Thickness (m)');

412 t = title('(c)

', 'FontSize', 11);

413 %caxis([500 3000]);

414 %legend('f0 (Hz)');

415

165



A.2. MATLAB Codes for Parametric Models of Thin Plates

416 subplot(5,2,4)

417

418 [E V,R] = meshgrid(E v,r);

419 [p1p2 0, h0] = contourf(E V,R,f0(E V,rho high,nu high, d high, R));

420 h0.LineWidth = 2;

421 clabel(p1p2 0, h0);

422 %caxis([500 3000]);

423 xlabel('Young''s Modulus (Pa)');

424 ylabel('Radius (m)');

425 t = title('(d)

', 'FontSize', 11);

426 %caxis([500 3000]);

427 %legend('f0 (Hz)');

428

429 subplot(5,2,5)

430

431 [RHO,NU] = meshgrid(rho,nu);

432 [p1p2 0, h0] = contourf(RHO,NU,f0(E v high,RHO,NU, d high, r high));

433 h0.LineWidth = 2;

434 clabel(p1p2 0, h0);

435 %caxis([500 3000]);

436 xlabel('Density (Kg/mˆ3)');

437 ylabel('Poisson''s Ratio');

438 t = title('(e)

', 'FontSize', 11);

439 %caxis([500 3000]);

440 %legend('f0 (Hz)');

441

442 subplot(5,2,6)

443

444 [RHO,D] = meshgrid(rho,d);

445 [p1p2 0, h0] = contourf(RHO,D,f0(E v high,RHO,nu high, D, r high));

446 h0.LineWidth = 2;

447 clabel(p1p2 0, h0);

448 %caxis([500 3000]);

449 xlabel('Density (Kg/mˆ3)');

450 ylabel('Thickness (m)');

451 t = title('(f)

', 'FontSize', 11);

452 %caxis([500 3000]);

453 %legend('f0 (Hz)');
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454

455 subplot(5,2,7)

456

457 [RHO,R] = meshgrid(rho,r);

458 [p1p2 0, h0] = contourf(RHO,R,f0(E v high,RHO,nu high, d high, R));

459 h0.LineWidth = 2;

460 clabel(p1p2 0, h0);

461 %caxis([500 3000]);

462 xlabel('Density (Kg/mˆ3)');

463 ylabel('Radius (m)');

464 t = title('(g)

', 'FontSize', 11);

465 %caxis([500 3000]);

466 %legend('f0 (Hz)');

467

468 subplot(5,2,8)

469

470 [NU,D] = meshgrid(nu,d);

471 [p1p2 0, h0] = contourf(NU,D,f0(E v high,rho high,NU, D, r high));

472 h0.LineWidth = 2;

473 clabel(p1p2 0, h0);

474 %caxis([500 3000]);

475 xlabel('Poissons''s Ratio');

476 ylabel('Thickness(m)');

477 t = title('(h)

', 'FontSize', 11);

478 %caxis([500 3000]);

479 %legend('f0 (Hz)');

480

481 subplot(5,2,9)

482

483 [NU,R] = meshgrid(nu,r);

484 [p1p2 0, h0] = contourf(NU,R,f0(E v high,rho high,NU, d high, R));

485 h0.LineWidth = 2;

486 clabel(p1p2 0, h0);

487 %caxis([500 3000]);

488 xlabel('Poissons''s Ratio');

489 ylabel('Radius(m)');

490 t = title('(i)

', 'FontSize', 11);

491 %caxis([500 3000]);
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492 %legend('f0 (Hz)');

493

494 subplot(5,2,10)

495

496 [D,R] = meshgrid(d,r);

497 [p1p2 0, h0] = contourf(D,R,f0(E v high,rho high,nu high, D, R));

498 h0.LineWidth = 2;

499 clabel(p1p2 0, h0);

500 %caxis([500 3000]);

501 xlabel('Thickness (m)');

502 ylabel('Radius(m)');

503 t = title('(j)

', 'FontSize', 11);%caxis([500 3000]);

504 %legend('f0 (Hz)');

505

506 %suptitle('Parametric Evaluation of Thin Plates Resonance (Hz)...

507 % - High Frequencies Optimization');

508

509

510 %% Mid Frequency Optimization

511

512 [X1,X2,X3,X4,X5] = ndgrid(E v,rho,nu,d,r);

513 F0 = f0(X1,X2,X3,X4,X5);

514

515 F0 mean = mean(F0,'all');

516 F0 mean eval = abs(F0-F0 mean);

517 [F0 mean val,F0 mean idx] = min(F0 mean eval(:));

518

519 if sum(F0==max(F0(:)))>1

520 fprintf('Caution! Multiple values found!');

521 end

522 [i1,i2,i3,i4, i5] = ind2sub(size(F0),F0 mean idx);

523

524 E v mean = E v(i1);

525 rho mean = rho(i2);

526 nu mean = nu(i3);

527 d mean = d(i4);

528 r mean = r(i5);

529

530 %% Plot Mid Freq

531
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532 figure()

533

534 subplot(5,2,1)

535

536 [E V,RHO] = meshgrid(E v,rho);

537 [p1p2 0, h0] = contourf(E V,RHO,f0(E V,RHO,nu mean, d mean, r mean));

538 h0.LineWidth = 2;

539 clabel(p1p2 0, h0);

540 %caxis([500 3000]);

541 xlabel('Young''s Modulus (Pa)');

542 ylabel('Density (Kg/mˆ3)');

543 t = title('(a)

', 'FontSize', 11);

544 %caxis([500 3000]);

545 %legend('f0 (Hz)');

546

547 subplot(5,2,2)

548

549 [E V,NU] = meshgrid(E v,nu);

550 [p1p2 0, h0] = contourf(E V,NU,f0(E V,rho mean,NU, d mean, r mean));

551 h0.LineWidth = 2;

552 clabel(p1p2 0, h0);

553 %caxis([500 3000]);

554 xlabel('Young''s Modulus (Pa)');

555 ylabel('Poisson''s Ratio');

556 t = title('(b)

', 'FontSize', 11);

557 %caxis([500 3000]);

558 %legend('f0 (Hz)');

559

560 subplot(5,2,3)

561

562 [E V,D] = meshgrid(E v,d);

563 [p1p2 0, h0] = contourf(E V,D,f0(E V,rho mean,nu mean, D, r mean));

564 h0.LineWidth = 2;

565 clabel(p1p2 0, h0);

566 %caxis([500 3000]);

567 xlabel('Young''s Modulus (Pa)');

568 ylabel('Thickness (m)');

569 t = title('(c)

', 'FontSize', 11);
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570 %caxis([500 3000]);

571 %legend('f0 (Hz)');

572

573 subplot(5,2,4)

574

575 [E V,R] = meshgrid(E v,r);

576 [p1p2 0, h0] = contourf(E V,R,f0(E V,rho mean,nu mean, d mean, R));

577 h0.LineWidth = 2;

578 clabel(p1p2 0, h0);

579 %caxis([500 3000]);

580 xlabel('Young''s Modulus (Pa)');

581 ylabel('Radius (m)');

582 t = title('(d)

', 'FontSize', 11);

583 %caxis([500 3000]);

584 %legend('f0 (Hz)');

585

586 subplot(5,2,5)

587

588 [RHO,NU] = meshgrid(rho,nu);

589 [p1p2 0, h0] = contourf(RHO,NU,f0(E v mean,RHO,NU, d mean, r mean));

590 h0.LineWidth = 2;

591 clabel(p1p2 0, h0);

592 %caxis([500 3000]);

593 xlabel('Density (Kg/mˆ3)');

594 ylabel('Poisson''s Ratio');

595 t = title('(e)

', 'FontSize', 11);

596 %caxis([500 3000]);

597 %legend('f0 (Hz)');

598

599 subplot(5,2,6)

600

601 [RHO,D] = meshgrid(rho,d);

602 [p1p2 0, h0] = contourf(RHO,D,f0(E v mean,RHO,nu mean, D, r mean));

603 h0.LineWidth = 2;

604 clabel(p1p2 0, h0);

605 %caxis([500 3000]);

606 xlabel('Density (Kg/mˆ3)');

607 ylabel('Thickness (m)');

608 t = title('(f)

170



A.2. MATLAB Codes for Parametric Models of Thin Plates

', 'FontSize', 11);

609 %caxis([500 3000]);

610 %legend('f0 (Hz)');

611

612 subplot(5,2,7)

613

614 [RHO,R] = meshgrid(rho,r);

615 [p1p2 0, h0] = contourf(RHO,R,f0(E v mean,RHO,nu mean, d mean, R));

616 h0.LineWidth = 2;

617 clabel(p1p2 0, h0);

618 %caxis([500 3000]);

619 xlabel('Density (Kg/mˆ3)');

620 ylabel('Radius (m)');

621 t = title('(g)

', 'FontSize', 11);

622 %caxis([500 3000]);

623 %legend('f0 (Hz)');

624

625 subplot(5,2,8)

626

627 [NU,D] = meshgrid(nu,d);

628 [p1p2 0, h0] = contourf(NU,D,f0(E v mean,rho mean,NU, D, r mean));

629 h0.LineWidth = 2;

630 clabel(p1p2 0, h0);

631 %caxis([500 3000]);

632 xlabel('Poissons''s Ratio');

633 ylabel('Thickness(m)');

634 t = title('(h)

', 'FontSize', 11);

635 %caxis([500 3000]);

636 %legend('f0 (Hz)');

637

638 subplot(5,2,9)

639

640 [NU,R] = meshgrid(nu,r);

641 [p1p2 0, h0] = contourf(NU,R,f0(E v mean,rho mean,NU, d mean, R));

642 h0.LineWidth = 2;

643 clabel(p1p2 0, h0);

644 %caxis([500 3000]);

645 xlabel('Poissons''s Ratio');

646 ylabel('Radius(m)');
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647 t = title('(i)

', 'FontSize', 11);

648 %caxis([500 3000]);

649 %legend('f0 (Hz)');

650

651 subplot(5,2,10)

652

653 [D,R] = meshgrid(d,r);

654 [p1p2 0, h0] = contourf(D,R,f0(E v mean,rho mean,nu mean, D, R));

655 h0.LineWidth = 2;

656 clabel(p1p2 0, h0);

657 %caxis([500 3000]);

658 xlabel('Thickness (m)');

659 ylabel('Radius(m)');

660 t = title('(j)

', 'FontSize', 11);%caxis([500 3000]);

661 %legend('f0 (Hz)');

662

663 % suptitle('Parametric Evaluation of Thin Plates Resonance (Hz)...

664 % - Mid Frequencies Optimization');
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