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ABSTRACT 

The techniques for computing dam-break flood waves in prismatic 

channels are reviewed. Numerical models for cases with or without 

an initially dry downstream bed are developed. The models are 

based on the characteristic forms of the shallow water equations, 

both in (X-T) and (R-T) space, using specifiedtime intervals and 

incorporating the Rankine-Hugoniot shock equations. 

Three numerical models for rectangular section channels are 

studied, namely the parallel (X-T), the expanded (R-T) and the 

contracted (R-T) cases; any two of these are then linked to 

produce three further models, described as the Contracted-Plain 

(RT-XT), the Contracted-Expanded (RT-RT) and the Plain-Expanded 

(XT-RT) models. 

Four physical models were tested and compared with results 

from the numerical models and with those from Barr and Das (1980), 

Marshall and Menendez (1981) and Katopodes and Schamber (1983). 

The numerical and experimental results are given in the form of 

comparative plots of front heights, surface profiles, front trajectories 

and depth hydrographs. Variations from the well-known solutions 

by Ritter (1892) and Stoker (1957), including those caused by 

radial flow effects are found to occur and are discussed. 
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CHAPTER ONE 

INTRODUCTION 

The use of dams for water impoundment goes back to the dawn of 

history. Reservoirs were constructed in the Middle East before man 

could read or write. Although most of these have collapsed because 

of old age, or lack of maintenance, their value to the communities they 

serve has been inestimable. Some historians even speculate that the 

deterioration of the Arab Empire was caused by inadequate maintenance 

of the reservoirs which were so vital to food production and life 

(Sowers (1974)]. Also, as Toran (1973) stated, 'Dams are large, noble; 

they are elephants needing an attendant to care for them'. 

Flood waves caused or augmented by dam failures have been in the 

newspaper headlines in recent years. In the Daily Telegraph issued 

on Monday, 21st April 1986,1100 Dead as Dam Bursts', was the headline, 

and stated, 'At least 100 people were feared dead yesterday after a 

reservoir bank collapsed in eastern Sri Lanka and water engulfed a 

nearby town. Officials in the district capital of Trincomalee 

estimated that 18,000 people in the town of Kantalai had been left 

homeless. Officilas said the bank collapsed at a point where a crack 

had been noticed several weeks ago, but had been left unattended'. 

According to the New Civil Engineer magazine issued on 1st flay 

1986, the force was tremendous since the reservoir is about 25km square 

and the water about 14m deep. The reservoir emptied in three hours 

whilst 7800 people had been made homeless by the flooding. The Sri 

Lankan government needed to know rapidly whether saboteurs had caused 

the breach org if it was due to other factors, whether steps needed to be 
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taken to safeguard other reservoirs. Various facts were subsequently 

reported by that magazine issued on 29th May 1986. After a prompt but 

nevertheless thoroughly researched investigation the conclusion was 

reached that sabotage had played no part in the Kantalai disaster. 

Rather, Dr. P. Back and D. Knight then concluded, piping of water and 

consequential collapse of the upstream end of a sluice in the bund's 

left bank seem certain to have been the cause of failure. Averaging 

out the information available, the point of failure was located at the 

edge of a temporary excavation made by the Royal Engineers many years 

before when installing the sluice. 

The sluice was thought to have been built by cut and cover 

techniques leaving a sloping interface between ancient compacted fill 

which was built 1300 years ago and the Royal Engineer's backfill when 

construction finished. Also an unwisely sited pumphouse was built by 

a French company in 1982 or 1983 during which construction the 

excavation process caused considerable vibrations and seems to have 

played a part in the collapse. 

Flash floods resulting from dam failures have often claimed heavy 

casualties and property damage. The-losses in such events can be 

categorized in the following way: 

a. Human lives and injuries. 

b. Property losses. 

c. Environmental damage. 

d. Loss of function of the reservoir. 

In all cases, the financial cost is large and difficult to quantify. 
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The possibility of such an occurrence has caused many countries to 

impose regulations requiring the determination of the wave parameters 

likely to follow the collapse of every large dam. Such calculations 

for new dams are routinely made as a part of the dam design project, 

in order to organize the defence of inhabitants and structures in the 

valley downstream. In the United Kingdom, for example, the risk of 

such an incident is reduced by regular government inspections under 

the Reservoir Safety Act of 1975. Furthermore, the growing concern for 

the safety of nuclear power plants, where liable to be inundated, 

has contributed to questions about the effects of dam failures. 

The mechanisms giving rise to dam failure are the result of one 

or more of the following: 

a. Hydraulic conditions (overtopping, seepage, piping, uplift). 

b. Type of structure and construction (inadequate design, 

seepage through poor materials). 

c. Geological conditions (landslide). 

d. Environmental conditions (frost, ice, earthquake). 

e. Deliberate action (wartime). 

One of the earliest records of a dam breach is given in the 

Koran I.... so we sent upon them the flood of Irem'. The scene of this 

disaster was the Mareb Dam situated in the Yemen, 300 km north of Aden, 

S. W. Arabia. The dam was built about 1700 BoCo by the Kingdom of Saba, 

from huge blocks of dressed and fitted stones held together by small 

rods of lead, It is believed to have been breached about 100 A. Do 

The dam was 3.2 km long and had a height of 37 m [Babb and Mermel (1968) 

and Thomas (1976)], 

3 



One of the most catastrophic examples of failed dams was the St. 

Francis Dam, U. S. A., built in 1926; it was a curved gravity dam 60 m 

high which failed without warning on 12th March, 1928. Five hundred 

lives were lost and the damage to property was then estimated as being 

in the range of $02.5-15) million. The concrete structure suddenly 

broke up; a single piece remained standing whilst the rest slumped 

to the valley floor and was swept downstream. Blocks of concrete 

weighing thousands of tons were carried more than a kilometre down the 

canyon. The reservoir of 46.9 million m3 was practically full at the 

time. The average discharge during the. flood was 11,327 m 
3. 

sec-1, 

and the maximum was between 16,990 and 22,654 m 
3. 

sec-1. The average 

velocity of the flood wave was 15.68 km. hr-1, and the maximum was 28.80 

km. hr-1, with minimum)velocity 9.44 km. hr-1. The structure had been 

well built and the prime cause of failure was the foundation rock's 

weakening on saturation [Outland (1963), Toran (1973) and Thomas (1976)]. 

A Isuperflood' wave following a sudden release of water may occur 

which is not necessarily from a ruptured dam. This happened at the 

Vaiont Dam in Italy; in October 1963, a rock mass of approximately 

250 million m3 bordering the reservoir, changed from creeping into 

a sudden slide with a velocity of 25 m. sec-1. It apparently displaced 

40 million m3 of kkter, which was reported to have reached a maximum 

elevation of 100 m above the reservoir level and overtopped the dam 

causing the deaths of 1900 peopI6 and completely destroying four 

villages. The arch dam itself was practically undamaged [Toran (1973) 

and Thomas (1976)]. 

Even small dams cause disasters when they fail. A 7.62 m high 

earthfilled dam burst and discharged 60,000 m3 of water into the 

town of East Lee in the U. S. A. Two persons were killedq several homes 
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were destroyed and a manufacturing plant was damaged at a cost of 

$8 million (Reynolds (1975)]. 

The following are the known instances of dam failure in Scotland 

(where this research has been carried out) and in Iraq (the author's 

country). In Scotland two dams have failed; in 1859 at Baxter on the 

Angus river, north of Dundee and at Skelmorlie in April 1925, where 

the dam was overtopped by 26,600 m3 water from a quarry filled by 

choked culvert which suddenly released [Babb and Mermel (1968)). 

Recently a crack was discovered in the ýtjllardoch Dam owned by the 

North of Scotland Hydroelectric Board, necessitatingdrainage of 

the reservoir. Six dams have failed in Iraq which are tabulated in 

Table 1.1 below, after Babb and Mermel (1968): 

Table 1.1 : Known Instances of Dam Failure in Iraq 

Dam 
Name Location 

Date of 
Construction Type 

Cause of 
Flood 

Abu Habba North of Baghdad 600 B. C. Masonry Flood 

Atheim At Atheim River, 2500 B. C. Masonry Flood 
tributary to 
Tigris 

Atrush At Atrush River, 700 B. C. Masonry Flood 
tributary to 
Tigris, North of 
Mossul 

Diyala North East of completed Masonry Flood 
Baghdad 500 B. C. 

Sennacherib At Tigris River, 800 B. C. - Stone unknown 
North of Nineveh 

Shuster At Tigris River 

I -- 

250 A. D. 

I 

Masonry 

I 

Piping 

I 
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In an emergency situation, which occurs when a dam fails 

upstream from a populated area, there is no way to stop the destructive 

force. The alternative is to evacuate the people as quickly as possible, 

and wait for the energy to be dissipated through natural flow downstream. 

To assess this possibility, certain information is clearly needed 

before the disaster: 

The arrival time of the wave-front in order to locate a refuge 

which may be reached within a limited time. 

b. The propagation velocity and profile of the wave-front 

for estimating the impulsive force on the local structures. 

C. Inundation area and the distribution of water depth, etc. 

Calculations of such quantities may be made by using computer 

programs which simulate the dam break mechanism. A review of the 

achievements hitherto by this approach is given in the next chapter. 

From the literature survey it appears that there is no one type of 

model completely satisfying the solution requirements of-the dam- 

break problem. 

It may be that the predominant features of water motion in the 

reservoir and the downstream channel can be simulated by connecting 

together any two from three geometrically simple forms of channel, 

as may be locally appropriate. The three sections are defined as 

follows: 

a. Plain or parallel sides (X-T) 

b. Expanded or divergent sides (R-T) 

--ý7 

-4 
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c. Contracted or convergent sides (R-T) 

The present work describes three numerical models for 

rectangular section channels with a wet or dry bed downstream. These 

are the parallel, the expanded and the contracted models; two of 

these were then connected together to produce another three models, 

as follows: 

a. Contracted - Plain (RT-XT) 

b. Contracted - Expanded (RT-RT) 

c. Plain-Expanded (X T-RT) 

I 

L7 

EEE 

Four physical models were built, in the Hydraulics Laboratory 

at the University of Strathclyde, of the plain (X-T), the contracted- 

plain (RT-XT), the contracted-expanded (RT-RT), and the plain- 

expanded (XT-RT), all having a smooth, horizontal bed. 
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CHAPTER TWO 

PREVIOUS SOLUTIONS FOR THE DAM-BREAK AND BORE WAVES 

2.1 Introduction 

It is the extreme rapidity of variation of water stages and 

velocities which makes simulation of unsteady flow due to dam failure 

a special case. When a dam collapses, the water retained behind it 

begins to move; the wall of water 'rotates' at the dam section, as 

shown in Figure 2.1. After the initial phase of acceleration, a 

negative wave is created upstream of the dam and propagates along the 

reservoir with a celerity depending upon the topography. The 

negative wave corresponds to the volume evacuated as a positive wave 

propagating downstream, advancing either on a dry bed, or in a water 

depth corresponding to the downstream flow before the failure. The 

downstream initial conditions are of decisive importance as to the 

character and behaviour of the positive wave. If the wave propagates 

on a dry bed, its front has very strong curvature near its tip as 

shown in Figure 2.1(a). The celerity of the front is then equal to the 

velocity of the water particles situated immediately behind it. If 

the wave propagates in some initial depth of water, its front is much 

more like a mobile hydraulic jump (bore) which may be most 

conveniently schematized as a sharp discontinuity with two different 

water stages at the same longitudinal point, as seen in Figure 2.1(b). 

The dam-break flow can be schematised as four regions (see 

section 3.4.1); the horizontal motion, the negative wave, the 
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Figure 2.1 Two Types of Dam Break Waves . (a) Propagation on 
a Dry Bed, (b) Propagation on an Initial Depth 

gradually varied unsteady flow, and the positive wave. Generally the 

flow in the reservoir is subcritical, at least until the negative wave 

reaches the upstream limit of the reservoir. After that time, the 

motion depends upon the reservoir's topography (mainly the longitudinal 

slope) and upon the discharge entering it through the upstream section. 

As for the flow downstream, its character depends upon the topography 

of the valley and also upon the initial depth of water downstream of the 

dam. For a rectangular frictionless cross section, if the ratio of the 

initial. downstream depth to the initial upstream (reservoir) depth is 

less than about 14to (the exact solution of the analytical case being 

0.1384), the flow downstream of the dam after its failure will be 

supercritical [Stoker (1957)]. Otherwise it will be suberitical. 

A considerable amount of effort has been spent in past years 

to obtain satisfactory solutions to the dam-break problem. There 

existed a number of hydrodynamic models ranging from very theoretical, 

which use the nonlinear shallow-water equations, to empirical models 

formulated only on the basis of the experimental results. 

The practical importance of the dam-break problem is indicated 

by the fact that many engineers and mathematicians have obtained 

9 



approximate solutions to this problem since the first solution was 

offered by Ritter (1892) over 90 years ago. The Ritter solution 

was obtained for a reservoir of semi-infinite extent upon a 

horizontal bed with zero bed resistance. About 60 years later, 

Dressler (1952) and Whitham (1955) obtained approximate solutions that 

included resistance effects. In more recent years, the emphasis 

has shifted towards numerical solutions such as those given by 

Chen (1980), Chen and Armbruster (1980). Sakkas and Strelkoff (1973) 

and (1976) and Strelkoff, Schamber and Katopodes (1977). Most 

recently, however, Hunt (1982) and (1984) has shown how the kinematic- 

wave approximation can be used to obtain approximation for dam- 

break problem. In this chapter a survey of the previous work is 

presented. 

2.2 Numerical Methods for Bores or Shock Waves 

Waves approaching the shore steepen at the front, develop bores 

and run up the beach. The dam-break wave released into a wet channel 

develops a bore that changes in height and speed due to the bottom 

friction and the varying cross-sectional area. The dam-break wave 

released onto a dry channel behaves in a manner similar to the wave 

runup on the beach. Also it is the same for the shock waves in open 

channel, as is well known, shock waves are characterized by a steep 

front. 

Conventional methods for determining the rate of propagation and 

depth of surge and shock fronts in open-channel flow are based on 

numerical integration techniques of the one-dimensional shallow-water 

equations, which allow either for discontinuous or a weak solution at 

the front [Terzidis and Strelkoff (1970)]. 
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Stoker (1948), in his classic work on bores and breakers, 

proposed using the method of characteristics for predicting inception 

of a bore. Also within the framework of the frictionless, shallow- 

water theory the calculation of a non-steady open stream with a shock 

was performed by Keller, Levine and Witham (1960). The net method 

with Lax's (1954) explicit difference staggered scheme was used. In 

that case the shock was calculated by means of a special system of 

differential equations; the time and length intervals were related by 

the Courant-Friedrichs-Lewy condition within an iteration process. 

Cunge (1970) devised an explicit diffusive scheme specifically 

for computing dam-break waves. A later implicit method, often 

referred to as the Preissmann implicit scheme [Cunge (1975)], uses a 

finite difference scheme with a weighting factor and has been applied 

successfully to the computation of shock waves. Numerical solutions of 

shock waves obtained either by using the explicit diffusive method or 

the implicit method are 'smeared' out or diffused over a certain length 

of the flow. This is in contrast to the clear-cut, sharp shock fronts 

(discontinuities) imposed by the Rankine-Hugoniot equations in the 

shock fitting method. The length of smear or diffusion as well as 

the numerical stability, or oscillation of computation, depends 

largely on the weighting coefficient introduced in the time derivative 

(for the explicit diffusive scheme) or in the space derivative (for 

the implicit scheme) to aid in the numerical solutions. Both 

explicit diffusive and implicit methods may collectively be called 

'through' methods [Cunge, Holly, and Verwey (1980A. The through methods 

and the shock fitting method are frequently used to simulate the front 

after dam-break. Non-dissipative schemes (such as the leap-frog method) 
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need artificial damping in the form of a pseudoviscosity term 

[Von Neumann and Richtmyer (1950)], and may thus be called 

Pseudoviscosity methods [Cunge, Holly, and Verwey (19BOA. 

Faure and Nahas (1961) employed Saint-Venant equations which are 

applied to portions where the flow can be regarded as slowly varying. 

The solution of Saint-Venant equations is obtained by means of deriving 

differential forms of the characteristic equations and integrating them 

by the finite-difference method. When using the method of 

characteristics, one should isolate the shock, and this is done with 

the aid of wave front equations. 

The above-mentioned methods for numerical calculation of shock 

waves, i. e. the net method with the introduction of 'Pseudoviscosity' 

[Preissmann and Cunge (1961)], the method of characteristics with 

additional shock conditions Vaure and Nahas (1961a)], and the net 

method in accordance with the explicit staggered scheme with the 

isolation of the shock line [Keller, Levine, and Whitham (1960)] are 

all to some extent connected with application of numerical methods in 

gas dynamics [Gilmore, Plesset, and Crossley (1950), and Whitham (1958)]. 

Several successful attempts have been made towards the development 

of two-dimensional shallow-water-wave models. The method of 

bicharacteristics seems to be one of the most elegant and accurate 

solution techniques available for continuous flows [Katopodes (1984)]. 

In addition to the numerical models, there have been experimental 

studies [for example Haws (1954) and Sandover and Zienkiewicz (1957)]. 

12 



2.3 Review of Dam-Break Wave Solutions 

2.3.1 Analytical Solution 

The simplest analytical solution is well-known as Ritter's solution 

[Ritter (1892)]. It was obtained by applying the shallow-water 

equations in the Euler form to a highly idealized dam-break surge 

in a horizontal, frictionless dry channel of infinite width. A 

function for the time-dependent position of the water surface was 

found which may be written in the following form: 

1- (2 _x 99 
F91T, 

t (2.1) 

where H= the fluid depth, g= the acceleration due to gravity, H1= the 

initial fluid depth, x= the distance along the channel bed, and t= the 

time, as shown in Figure 2.2. 

The Dam 

Water Surface at Ti me t 

k1&lKW, O-W X=0 7/7I7f/ e- 

Figure 2.2 : Definition sketch for Ritter's solution 

x 
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This parabolic water surface profile for given time (t) intersects 

the line (x=O) at the height OH 1 /9), with a constant discharge rate 

(GH Von-. /27). From experimental investigations, it is known that 
1-I 

Ritter's solution approaches the true positions of the water surface 

for time values (t V'57-11 > 2) [Martin (1983)]. 

Unlike Ritter, Pohle (1952) used the Langrangian equations of 

hydrodynamics (instead of the Saint-Venant equations) to develop his 

model. The model can be used for a wide variety of problems of which 

the breaking of a dam is one. 

Another investigator who solved the problem analytically was 

Dressler (1952). He added the Chezy resistance formula to the non- 

linear shallow-water equations to solve the dam-break with a dry but 

rough, horizontal bed downstream. Furthermore Whitham (1955) 

applied the Pohlhausen method (which is used in conventional boundary- 

layer problems) to a study of the effect of the resistance where the water 

surface meets the ground near the head of the wave. A retardation of the 

wave-front behind the position predicted by Ritter (1892) was found 

to occur. 

Dressler (1958) also obtained an exact solution for the water wave 

in a sloping channel produced by the sudden release of a triangular 

wedge of water (the reservoir) initially at rest behind a vertical 

wall. The behaviour of the solution was exhibited for convenience 

in two level-line charts, and representative wave profiles and velocity 

distributions were presented. 

Most recently an analytical solution was given by Hunt (1982) 

who used the kinematic wave approximation to obtain a simple, closed-form 
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solution for the catastrophic failure of a dam upon a dry, sloping 

channel. The results were compared with those from previous numerical 

solutions by Sakkas and Strelkoff (1976) and with experimental 

results. These comparisons suggested that the kinematic wave solution 

becomes asymptotically valid after the flood wave has advanced about 

four reservoir lengths downstream. The differences between theory 

and experiment were found to be well within experimental error, which 

might have been the result of surface tension, since the scale was 

small. Hunt's model demonstrated that valuable results can be 

obtained at sufficiently long distances downstream of the dam; evidently 

the kinematic-wave solution should be considered as an alternative 

method, under some circumstances, for simulating dam-break floods 

(Katopodes (1983)]. 

Hint (1983) extended his model to obtain a solution for a sloping 

channel in which finite flow depths exist both upstream and downstream 

from the dam. The solution showed that increasing the initial water 

depths in the channel, both upstream from the reservoir and downstream 

from the dam, increases both the time and distance that are required 

for the resulting shock to approach any given depth downstream. Also 

it had been shown that the kinematic-wave solution becomes valid 

only after the shock travels a certain distance downstream and that 

increasing the initial water depth in the channel increases this 

distance. This seems intuitively obvious. 

In another extension to his model, Hunt (1984a) obtained a closed- 

form solution for the more usual case when the reservoir, the dam 

breach and the downstream channel all have different widths. The 

reservoir outflow was calculated by using a quasi-steady- flow approximation; 
downstream flood depths were calculated by using the kinematic-wave 
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approximation. The maximum water depth in the reservoir was assumed to 

change slowly enough with time to allow the reservoir Outflow to be 

treated as quasi-steady (distributed mass source). The kinematic-wave 

approximation downstream is equivalent to assuming that the free 

surface was nearly parallel to the channel bottom. A numerical example 

showed that maximum downstream flood depths decay relatively slowly 

because of storage contained within the upstream reservoir. 

In order to enhance the validity of the kinematic-wave solutions, 

Hunt (1984b) used the method of matched asymptotic expansions to find 

a solution for the complete and instantaneous collapse of a dam in a 

prismatic and infinitely-long, sloping channel. In this solution, the 

formal outer solution was a kinematic-wave approximation whilst an inner 

solution, including a depth-gradient term in the momentum equation, was 

calculated for the region near the moving kinematic shock front. The 

reservoir was modelled as a point source of mass rather than the 

distributed mass source that was used earlier by Hunt (1982), (1983) 

and (1984a). This approach, like the earlier solutions, suggested 

that the solution becomes asymptotically valid after the wave front has 

advanced about four reservoir lengths downstream. 

2.3.2 Graphical Solution 

Earlier studies of the problem in France have been centered around 

various graphical techniques based on the method of characteristics for 

solving the Saint-Venant equations [for example Re (1946), Craya (1946), 

and Levin (1952)]. 

Faure and Nahas (1961) first programmed Craya's (1946) graphical 

solution procedures on the computer for the computation of shock waves, 
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whether resulting from powerhouse operations or from dam failures in 

either an initially dry or wet channel- Their method was also based 

on the Saint-Venant equations and the shock wave equations. 

2.3.3 Solutions Depending on Characteristics Method Coupled 

with Moving Jump Equations 

Stoker (1940) and (1957) used the method of characteristics and 

the theory of moving hydraulic jump to deal with the dam-break problem 

for a channel with constant depth downstream. He considered four 

different regions in the fluid at any time (t, > 0), as shown in 

Figure 2.3: 

Figure 2.3 : Definition for the Four Zones - by Stoker 

The zone (0) is the zone of quiet downstream which is terminated 

on the upstream side by the shock wave; the zone (2) is a zone of 

constant state in which the water, however, is not at rest; the 

zone (3) is a centered simple wave which connects the constant state (2) 

with the constant state (1) of the undisturbed water upstream. These 

zones were also utilised by Henderson (1966). If H2 = the shock wave 

depth, w= the shock wave velocity, and H0= the initial fluid depth 
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downstream, then using the conservation of mass and momentum in a 

moving hydraulic jump gives: 

w 
2H2-u0H0 

H 2-Ho 

(2.2) 

ý'gH2 
(H +H 2H 2o 

(2.3) 

By connecting the state (2) with the state (1) through the zone (3) 

along two curved characteristics from each, where the quantity u+2C 

is a constant: 

u+ 2c = 2c 1=u2+ 2c 2 since u1 =0 

where u= the fluid velocity and c= the celerity Vg-H. 

H2 may be found for all values of the ratio H0 /H 
1 between zero 

and one. Then a curve was fitted for UH 
2 -H 0 

)/H 
1 versus (H 

0 
/H 1). 

The curve rises very steeply to its maximum (H 
2 -Ho = 0.32H 1) for 

(H 
0 

/H 
1=0.176) and then falls to zero again when H, =Hl, as shown 

in Figure 2.4. 

(2.4) 

Sakkas and Strelkoff (1973) used also the characteristic equations 

which they were derived from the Saint-Venant equations to solve the 

problem. Strelkoff (1969) and (1970) investigated the characteristics 

solution of Saint-Venant equations. The equations were transformed 

to dimensionless form. 
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Figure 2.4 : The Height of the Shock Wave- by Stoker 

Yevjevich (1975) used the shock fitting method as a numerical 

scheme for the solution of the Saint-Venant equations for computing 

rapidly varied flows resulting from sudden water release. In the 

method, the velocity and depth across the shock front were 

considered as discontinuities and were made to satisfy the shock 

conditions (the Rankine-Hugoniot equations). The waves upstream and 

downstream of the discontinuity were assumed to be gradually varying 

and were simulated by a solution of the Saint-Venant equations using 

the method of characteristics on specified time intervals. 

Kordas and Witkowska (1976) presented a mathematical model of 

the dam break wave for a schematised natural valley having a nonprismatic, 

trapezoidal form of cross-section with different successive side 
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slopes, various roughness coefficients and bed slopes. The model was 

based on the numerical integration of the Saint-Venant equations and 

shock wave equations (moving hydraulic jump). The computations were 

performed by two explicit finite difference methods (Lax-Wendroff and 

leap-frog) [see for example Lax (1964). and Lax and Wendroff (1960) 

and (1964)]. 

Amein (1977) used the shallow water equations together with the 

jump conditions to solve both the dam break and the bore problem 

(Amein (1966b)]. The method of characteristics was applied to the dam- 

break wave both in a dry and in a wet channel. Using an explicit finite 

difference scheme, the characteristic differential equations were 

replaced by analogous finite difference algebraic equations. For 

irregular channels and cases where friction becomes important, it was 

thought necessary to use an implicit solution [Amein (1966a)]. The 

application of the method was illustrated by numerical examples 

restricted to infinitely wide horizontal channels. 

2.3.4 Discontinuity at Time (t=O) 

To initiate numerical solutions, prior specification of conditions 

of downstream flow are usually found to be essential. Water behind 

the dam is at rest before dam failure. The discontinuity in H at the 

dam position when (t=O) tends to inhibit smooth starting of the 

numerical solution. Therefore at the time of dam failure the steady 

state may be considered to be succeeded by a so-called simple wave in which 

neither bottom slope nor resistance plays a role. This intermediate 

state, if continuously connected to the general unsteady flow domain, 

thus constitutes an appropriate initial condition for the start of 

the computation. Subsequently the increasingly dominant resistance and 
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topographical terms cause the attenuation of any errors in the initial 

condition. 

Initial conditions to be imposed prior to the numerical solution, 

at a small initial time, may be chosen from one of the following: 

a. Ritter's (1892) solution for dry bed downstream. 

b. Stoker's (1957) theory for wet bed downstream. 

c. Dressler's (1952) perturbation solution modified by Su and 

Barnes (1970). 

A generalized Ritter's solution for a prismatic channel of general 

parabolic cross section was obtained and used as the initial condition 

by Sakkas and Strelkoff (1973). Ritter's solution was also used by 

many others like Kordas and Witkowska (1976), Amein (1977), Katopodes and 

Strelkoff (1978) and Matsutomi (1983). For the case of an existing 

downstream water depth, Stoker's theory was used by Kordas and 

Witkowska (1976) for example. Das (1978) and Barr and Das (1980) used 

Dressler's (1952) perturbation solution modified by Su and Barnes (1970) 

to impose the initial conditions. 

2.3.5 Shock Front Treatment and Negative Wave 

The elementary theory of a moving hydraulic jump [Stoker (1957)] 

to deal with the discontinuity at the front cannot be used when the 

downstream channel is dry. Since the flow near the tip differs 

strongly from the flow in other regions, an alternative treatment is 

essential. 

Dressler (1952) visualized the tip region to be moving somewhat 
like a separate entity pushed along by the water behind it, and within 
the tip, the velocity u to be changing (increasing) rather slowly 
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towards the front so that uT could be taken as an approximation for 

the front velocity w, as shown in Figure 2.5: 

H 

0- 

Figure 2.5 : Velocities in the wave tip-by Dressler (1952) 

x 

This theory was called 'Backwavel theory by Dressler (1954) 

since it uses results of resistive action in the full region behind the 

tip to give information for the entire wave without actually studying 

the tip region itself. In 1953 Whitham [according to Dressler (1954)] 

studied this tip and joined its solution to the solution given by 

Ritter (1892). The method required the solving of one highly non-linear 

ordinary differential equation to guarantee continuity at the unknown 

join position. This was called the 'Tip' theory, which was presented 

and used by Dressler (1954). Subsequently, Whitham (1955) applied 

the Pohlhausen method, as mentioned in section 2.3.1. 

Montouri (1965) also assumed a small depth of water in the 

neighbourhood of the wave front moving along the dry bed. Utilizing 

the method of characteristics, he obtained a boundary condition at the 
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wave front simply by equating the velocity of propagation of the wave 

and the flow velocity at a section of some small depth near the wave 

front. Vasiliev (1970) and Katopodes and Strelkoff (1978) used Montouri's 

method to find the solution at the wave front with a dry bed downstream. 

The experimental corroboration of computed results was satisfactory. 

Sachdev and Bhatnagar (1969) studied the progress of a bore, 

produced by the sudden break of a dam, when there is a flow of water 

over the downstream bed which also has a mild slope and offers 

resistance. They employed Whitham's (1958) method. 

Su and Barnes (1970) extended Dressler's (1952) theoretical 

study to include the effects both of resistance and of channel cross- 

section on the waves following a sudden release. It was shown that the 

effect of channel cross-sectional shape and resistance was significant. 

The solutions for water surface profiles and velocity distributions, with 

and without resistance, for rectangular, parabolic and triangular 

shapes were presented. The retardation effect by the channel boundary 

roughnesses was apparent. Furthermore, the effect of variable cross- 

sectional geometry with a fixed resistance indicated that the 

narrowing of each cross-sectional shape increases the retarding effect 

on the positive wave front. Also Su (1970 and 1977) used the same 
technique and conditions with the additional effect of the bed slope. 
He obtained the trajectory of the positive wavefront from the 

mathematical model and compared the theoretical results with 

experimental data extracted from the literature. He found that the 

effect of channel slope becomes more significant in the region of the 

negative wave, as time and distance from the origin increases. 
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Furthermoreq the experimental results demonstrated that the effect of channel 

resistance on the negative wavefront is insignificant. The trajectory 

of the positive wavefront, computed from the mathematical model, 

was in good agreement with the experimental data. As expected, for 

the case without resistance, the flow was subcritical upstream 

of the origin (the dam site), supercritical downstream, and 

critical at the origin. However, for the case with resistance, 

the critical section which separates the subcritical and 

supercritical no longer remained at the origin but moved downstream 

with respect to time. Finally a summary of the relative 

significance of the channel parameters was given and is reproduced 

in Table 2.1. 

Table 2.1 - Relative Significance of Channel Parameters - 
after Su (1977) 

Negative wave Positive wave 

Front Body Body Front 

Channel Boundary Resistance 3 2 2 1 

Channel Cross-Sectional 
Geometry 3 2 2 1 

Channel Slope 1 3 3 2 

Symbols of Relative Significance: 

1. t1ost Significant, 2. Less Significant, 3. Least Significant 
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Sakkas and Strelkoff (1973) used a simplified form of the 

equation of motion, derived from consideration of the physical situation 

existing in the tip region, after Whitham (1955). The computed 

results were compared with theoretical and experimental results 

obtained by Dressler (1952) and (1954). The agreement with 

experimental results was generally good. Kordas and Witkowska (1976) 

also used the Whitham (1955) method in the case of a dry bed in the 

front region. Das (1978) and Barr and Das (1980) used the method of 

Sakkas and Strelkoff (1973). 

Marshall and Menendez (1981) solved the non-conservation forms 

of the equations of shallow water theory by an extension of the 

Random Choice Method (RCM). The non-conservation Riemann problem 

was analysed in terms of two non-linearly interacting waves and was 

solved by means of a numerical integration along characteristic curves. 

The advantages of the method are, firstly, that there is no need for 

a separate treatment of discontinuities and, secondly, that one can 

use a fixed rectangular mesh. The method automatically accounts 

for the spontaneous formation of shocks without introducing numerical 

diffusion and dispersion. Numerical solutions for the dam-failure 

problem in cartesian (x-t) were presented. The results were 

compared with the numerical results obtained by Sakkas and Strelkoff 

(1973) and Re (1946). These comparisons were shown to be 

satisfactory. 

Kosorin (19B3) observed that since the flow in both of the dam 

break singularities (the initial phase of the wave and the flow 

structure at the front) did not suit the assumptions of the shallow 
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water theory, it was necessary to treat those items outside the 

framework of this theory. He therefore used the 'theory of boundaries, 

which permits certain N-dimensional hydrodynamic problems to be 

transformed into (N-1) dimensions. This allowed him to obtain both 

a new relation for the wave front speed (which differed from Ritter's 

solution) and also a relation between the height and the velocity 

of the wave front. According to these ideal flow calculations, 

the vertical components of celerity and acceleration in the free 

surface, during the initial moments of sudden and total failure, 

attain substantial values (depending on the dam height). However, 

because of the presence in reality of damping in time and space, the 

shallow water equations were deemed still to be generally suitable 

for the wave as a whole. 

Hunt (1984b) eliminated the discontinuity which appeared in 

his outer kinematic-wave solution by decreasing peak depths behind 

the shock and by placing a rounded nose in front of the kinematic 

shock. Mass was conserved during this process by making the volume 

of water contained between the new shock nose and the kinematic 

shock equal to the volume lost behind the kinematic shock when the 

kinematic-wave solution was replaced with the inner solution. 

A simple treatment to circumvent the singularity problem at 

the front wave in the case of dry bed consists of assuming a 

fictitious base flow downstream. Chen (1980) assumed such a 

fictitious depth (very small) downstream in the case of dry bed. 

In general, agreement between the computed and the measured results 

was close. Katopodes and Schamber (1981) discussed Chen's (1980) 

work especially with reference to the fictitious flow and the 

negative wave profile approaching the horizontal tangentially. 
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In the subsequent discussion closure, Chen (1982) explained the 

validity and generality of the fictitious initial flow and also showed 

that computed results with the negative wave taken into account did 

not differ very much from those without it. Therefore, for 

simplicity and less time-consuming computation, the negative wave 

was not taken into account. Marshall and Menendez (1981) also 

assumed a fictitious depth since the Random Choice Method (RCM) 

cannot deal with a dry bed downstream. 

Sakkas and Strelkoff (1976) extended the solution for the even 

more general problem of when the negative wave-front arrives at the 

upstream end of the reservoir. There, the depth of flow reduces to 

zero at the upper end of the moving water body. Because of poorly 

defined intersections of the characteristics at the very low depths 

near the trailing edge, the usual method of integration does not work 

well. Instead, the simple assumption was made that a fictitious stream 

enters the flow field at the upstream computational boundary, a little 

short of the end of the reservoir. The fictitious inflow amounted to 

less than 5% of the discharge at the flood crest. Comparison with 

experimental data was considered to be adequate. 

2.3.6 Two-Dimensional Models 

Abbott (1974 and 1979) provided a numerical analysis of flows with 

continuous and discontinuous parts, leading to numerical procedures 
for efficient simulation of these flows. One of these flows was the 

failure of a dam. He clarified both the one-dimensional and the two- 
dimensional flows then occurring, also with structures downstream 

intercepting the two-diemnsional flow. 

KatDpodes and Strelkoff (1978) and (1979), they also used a 
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mathematical model of the two-dimensional dambreak flood wave, based 

on the method of characteristics, to solve the problem involving 

three independent variables. The selection of the method was based 

on the fact that the curvilinear wave boundaries and irregular 

geometry associated with the dambreak problem in two space dimensions 

are poorly modelled by direct finite difference methods. In addition, 

the propagation of the wave boundaries, the transition from subcritical 

to supercritical flow inside the flow domain, and the finite speed 

of propagation of information had been found to lead to considerable 

difficulties when the finite element method was employed. Initial 

conditions were constructed at a small initial time out of the one- 

dimensional Ritter solution (as mentioned in section 2.3.4). The 

negative wave upstream was assumed one dimensional across the width of 

the breach. In quarter circles of plan area centered on each edge of 

the breach, the same profile was ascribed onto vertical planes 

radiating out from the breach edge. The short jet downstream was 

taken to be unidirectional and perpendicular to the dam axis. Its 

profile followed the Ritter solution except at the very tip where a 

short'nose'of uniform velocity was placed to account for the initial 

effects of bottom resistance. The mathematical model was tested for 

its effectiveness and stability. The qualitative similarity with a 

laboratory scale model was evident, although some disagreement was 

ascribed to the assumption of hydrostatic pressure distribution 

everywhere. Also, the computational cost was relatively high 

compared to those of one-dimensional models. 

Katopodes (1977 and 1980) studied the wave emerging from a 
breached dam using both computational and experimental data. The 
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location of the wave front was determined by means of high speed 

photography in the laboratory, and the results were compared to the 

solution from a two dimensional mathematical model. The extent of 

the divergent flow downstream of the dam was determined and the two- 

dimensional computation was allowed to degenerate to a one-dimensional 

unsteady flow model. This was then used for the computation of 

the remaining part of the wave. The model, consisting of a two- 

dimensional part near the breach and the one-dimensional part used 

for the remainder of the wave, was found to produce satisfactory 

results with reasonably low cost and good resolution. Comparisons 

of the results obtained by the mathematical and physical models indicated 

the following: The depth of flow at the breach and the central 

area of the channel agreed quite well. The same was true within 

the angle of expansion. The height of the side wave was in error, 

but the discrepancy there was not in agreement with the theoretical 

prediction. For some runs the computed values were higher and for 

others lower than observed. The highly turbulent nature of the wave 

and the fluctuation of its peak were thought to have caused some lack 

of precision in the laboratory measurements. 

Jovanovic and Radojkovic (1982) also developed a two-dimensional 

model for simulation of the unsteady flow caused by dam failure. 

The model was based on an explicit finite difference scheme with a 
dissipative weighting factor being used as an artificial damping 

term. The verification of the model was carried out using a small- 

scale laboratory model following which the numerical model was applied 
to a real-life situation. Computed results were compared with the 

experimental ones and also with the method of characteristics. It 

was found that finite difference results were only somewhat inferior 

in comparison to those from the method of characteristics. 
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Matsutomi (1983) also developed an explicit finite difference model 

of two-dimensional, rapidly-varied flow on a dry bed. Dam-break 

flows in one-dimensional channel were computed and the results were 

compared favourably with experimental results. 

2.3.7 Experimental Investigations 

The first reported experiments with waves produced by sudden water 

releases were those conducted by Schoklitsch (1917) [according to 

Yevjevich (1975)). His results agreed with Ritter's solution for 

the negative wave. For the positive wave, his experimental data 

indicated a 40% slower velocity than did Ritter's theoretical 

velocity. Later experiments made by Egiazarov (1935) showed that: 

a. The velocity with which a wave propagates over a dry 

channel was about 70% smaller than the theoretical velocity 

given by Ritter. 

b. Roughness of the channel significantly influenced the 

propagation velocity of the positive wave front; the 

greater the roughness, the larger was the wave height, and 

consequently, the smaller the propagation velocity. 

c. The front of a positive wave tended to steepen, and could 

be assumed to be approximately vertical. 

Martin and Moyce (1952) used a very thin waxed paper diaphram, 

held in position in a horizontal flume, of 5 inches height (127mm) 

and 2.25 inches width (57.15mm), to simulate the sudden-release device. 

The major emphasis was on the phenomena related to the collapse of 
liquid column on to a rigid horizontal plane, rather than to the 

effects of other physical factors such as the channel roughness, 
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geometry and bed slope on the wave propagation. 

To check his theoretical solutions, Dressler (1954) made 

experiments in a horizontal rectangular flume 65m long and 0.225m 

wide. An uplift gate with spring system was used to simulate the 

instantaneous release. Three different channel bottoms ranging from 

smooth to very rough were used. The experimental results 

deviated in a consistent way from the theoretical results, indicating 

more generally that the Chezy resistance function, normally used for 

steady flows, may be inadequate to describe either the highly 

unsteady flow or the nature of turbulent resistance in a tip region. 

Thus instead of using the Chezy or Manning formulae for resistance 

assessments, Das (1978) and Barr and Das (1980) used the Colebrook- 

White (C-W) turbulent transition function. Their experimental data 

was obtained from two horizontal rectangular flumes, the larger 

having a smooth painted bed and the smaller with both smooth and rough 

beds. There was good agreement between the numerical solution and 

the experimental data. 

The U. S. Corps of Engineers (1960) conducted experiments in a sloped 

(0.005), rectangular flume 400 feet (121.92m) in length and 4 feet 

(1.2192m) in width with the dam located midway along its length. 

The dam was lifted upward by a pulley-weight system. Various test 

conditions, each representing a different breach pattern, were 

simulated with and without a base flow. The base flow was accomplished 

by water passing through a partial opening in the model dam. 

Experimental results showed that : 

a. The propagation celerity of the negative wave front was 

independent of channel roughness. 

31 



b. The propagation celerity of the positive wave front varied 

inversely with the flume roughness expressed by Manning's 

coefficient. 

Faure and Nahas (1961) conducted experiments for the propagation 

of a positive wave front both in a dry and wet channel. The time 

trajectory of the positive wavefront was in good agreement with the 

theoretical. solutions, computed by the Whitham's method (1955). 

That the wave patterns in dry and wet channels are substantially 

different was verified by Nakagawa et al. (1969) in experiments at 

Kyoto University, Japan. They showed four kinds of wave patterns, 

distinguished by different values of (H 
0 

/H 
1 

): 

H0 /H 
1=0 

(the case of dry bed), a parabolic wave with rounded 

front. 

b. 0<Ho /H 
1<0.4 ,a uniformly progressive wave with a 

breaking front (moving hydraulic jump). 

C. 0.4 <H0 /H 
1<0.56, unstable undular bore with a front partly 

broken. 

d. 0.56 <H0 /Hj < 1.0, stable undular bore. 

Memos et al. (1983) presented experimental results from a two- 

dimensional model where the breach, the reservoir and the channel 

each had different but finite widths. 

2.3.8 Applications to Real Problems 

Escande et al. (1961) obtained experimental results from a 1: 300 

scale model of the Truyere Valley below the Sarrans Dam in France. 

Different roughnesses were used, and the experimental results for 

32 



the height and velocity of the wave, indicated that the propagation 

celerity of positive wave was a function of the initial water depth 

behind the dam, the initial base flow and the river bed roughness. 

Balloffet et al. (1974) studied the hypothetical collapse of the 

temporary works for the Bou Regreg dam (in Morocco). The dam was 

located so as to regulate flows in two rivers. Important precautions 

were thus called for in the design of the river diversion system 

during construction. Data was required for a flood warning and 

evacuation plan following collapse of the upstream cofferdam. Two sets 

of studies were made; an lengineeringl, study in which a gradual 

collapse mechanism was simulated and the 'theoretical' case of the 

instantaneous removal of the cofferdam. The mathematical model 

techniques involved the finite difference solution of the one- 

dimensional equations. The results obtained appeared to be adequate, 

both for design purposes and so as to prepare an emergency plan for the 

anticipated failure (which, fortunately, did not occur). 

Xanthopoulos and Koutitas (1976) investigated the propagation of 

a flood wave due to dam failure both on one and two dimensional dry 

plains by mathematical model. The velocity components, the water 

depth and the position of the water front for each time step were 

computed through an explicit finite difference scheme in Eulerian space. 

A series of numerical experiments validated the model for the case 

of unidirectional flow following its comparison with laboratory 

experiments. The model was then applied to the inundation of a plain 

in Northern Greece which might result from the failure of an existing 

earth dam. The forcing function consisted of a specified form of 
discharge hydrograph at a plain boundary point. The model exhibited 
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satisfactory descriptive properties for small water heights and 

velocities and negligible inertia terms. 

The computed flood wave resulting from a hypothetical failure 

of MacKay Dam, which is located on the Big Lost River in south-central 

Idaho, U. S. A., was used to show the validity and the applicability of 

the coupling technique developed by Chen and Druffel (1977) (see 

section 2.3.9) . Chen (. 1980) later improved the explicit version 

of the characteristics method employed. Not only was the model applied 

to failure (full and partial) of the MacKay Dam but also, laboratory 

data an dam-break flood waves were used in the verification of the 

model. This data was collected in 1960-1961 at the United States 

Army Engineer Waterways Experiments Station, as mentioned in 

section 2.3.7. Chen and Armbruster (1980) further improved the same 

one-dimensional model. The flood wave resulting from the failure of 

Laurel Run Reservoir Dam (southwest Pennsylvania, U. S. A. ) was first 

reconstructed by using the model and then compared with data from field 

surveys. The major improvement consisted of a large reduction in the 

inaccuracies and oscillations of computed flows at a rapid contraction 

or expansion, such as may occur at a partial dam breach. The model 

was deemed to be particularly suitable for routing in a nonprismatic 

channel because of the close agreement between observed and 

computed peak stages. 

Matsutomi (1983) applied his model to the flood occurring after 

the Zenkoji Earthquake in 1847. This was thought to have been the 

biggest disaster, caus6d by landslide failure of an embankment, in 

Japan. The results indicated the same flow pattern as the old 

records. 

34 



2.3.9 Comparison Between Different Models 

Vasiliev (1970), with others in the Institute of Hydrodynamics 

(Novosibirsk, USSR) applied three different numerical methods to solve 

the equations of unsteady, one-dimensional flow in an open channel. 

The methods were the use of characteristics, the 'continuous 

calculation'. and the 'isolation of discontinuities' methods. They 

considered that the use of characteristics was not convenient for 

programming, while the continuous calculation, which was relatively 

simple to program, caused smoothing of the discontinuities. The third 

method allowed for the isolation of significant discontinuities, whilst 

on the other hand smoothing the insignificant ones. 

Chen and Druffel (1977) investigated two numerical techniques 

for computing dam-break flood waves in nonprismatic channels, with 

or without a base flow. One technique was to formulate an explicit 

scheme based on the characteristics method with specified time 

intervals and use the Rankine-Hugoniot shock equations for the solution 

of the shock wave. The other technique was to formulate a linearized 

implicit finite-difference scheme for the solution of the Saint- 

Venant equations and compute a shock wave without resorting to the 

shock equations. The former technique gave a clear-cut, sharp shock 

front (or discontinuity), while the latter technique spread the 

wave-front over a certain length of the flow. Several dam-breaking 

problems under different hypothetical base-flow conditions and channel 

geometries were investigated using both techniques. The comparison 

indicated that a technique using the method of characteristics scheme 

works better soon after the dam break, and the other technique works 

better at later times. For attaining the best resolution of a practical 
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problem, both techniques were linked. 

Katopodes and Schamber (1983) compared five dam-break flood 

wave models. These consisted of: 

A. Saint-Venant Models 

a. Inverse Characteristic Scheme 

b. Predictor-Corrector, Finite-Difference Scheme 

B. Approximate Routing Models 

a. Zero-Inertia Implicit Scheme 

b. Kinematic-Wave Characteristic Model 

c. Kinematic-Shock-Profile Model. 

These models were compared with the experimental results 

obtained by the Waterways Experiment Station (U. S. A. ). They were used 

in dimensionless form to establish general criteria for their applic- 

ability, in prismatic channels of rectangular cross section, to total 

failure on a dry bed. Saint-Venant models are able to compute 

surges advancing on a dry bed. They can also compute the propagation 

of a hydraulic bore on an existing stream. The models can also 

handle a number of other internal or external boundary conditions, 

such as partial breaches, recession, free overfall at critical 

conditions, and internal hydraulic jumps. By contrast, the 

approximate models are constructed with the aim of achieving 

relatively simple and inexpensive predictions of the flood waves. 

In approximate m6dels, the absence of the inertia terms precludes 

computing flow conditions either in the negative wave region or at the 

failed structure itself, unless the discharge hydrograph at the 

breach is known a priori. The results of computational experiments 
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with the five models, indicated the following; for a prismatic 

channel, the characteristic and integrated finite-difference models 

gave results of similar accuracy and expense; the characteristic 

model was far more sensitive and aborted rather earlier in the 

presence of difficulties (It was, however, the easier of the two to 

interpret as regards identifying and eliminating sources of trouble); 

the zero-inertia model presented both a relatively inexpensive and a 

versatile model; the kinematic-wave model was both inexpensive and 

'tolerant'; the kinematic-shock profile model yielded results almost 

identical to that of zero inertia; finally the combined kinematic- 

wave and shock-profile model seemed to be an attractive means for 

inexpensive dam-break flood prediction. 

2.3.10 Partial Failure 

Examination of the literature on historical failures indicates 

that concrete arch and gravity dams breach by the sudden collapse, 

overturning or sliding away of the structure due to overstresses. 

Correspondingly, the predominant mechanism for breaching of earthfill 

dams is the erosion of the embankment material by the flow of water 

either over or through the dam. In this type of dam failure, the 

breach size grows continuously as material is removed by outflows. 

Thus the size, shape, and time required for development of the 

breach are dependent on the erodability of the embankment material and 

the characteristics of the flow forming the breach. Breaches of this 

type can occur fairly rapidly or can take several hours to develop. Also, 

the size of the breach is often significantly less than the entire 

dam. Other than the brief review following, the studies presented in 

this thesis do not deal with this type of breaching mechanism. 
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A conceptual method for reproducing flood wave peaks due to 

overtopping failures of small homogeneous earthfill dams had been 

introduced by Fread and Harbaugh (1973). A mathematical model 

based on a numerical solution of the St. Venant unsteady flow equations 

was developed for predicting the transient reservoir flow produced 

by the gradual breach of an earthfill dam. 

Rajar (1978) analysed total, partial, and gradual collapse of 

dams in prismatic and nonprismatic channels with wet and dry bed 

downstream. Two numerical methods were used, namely the diffusive 

scheme and the Lax-Wendroff scheme. Also a physical model 

was made of a dam in the form of a vertical plate, which was lifted 

in approximately 0.1 second to simulate total and instantaneous 

collapse. Jo simulate partial (instantaneous) collapse, a vertical 

plate was ejected downward through a slot in the bottom so that a 

part of the plate remained in the flow; to simulate a gradual collapset 

the plate was moved down with a constant speed, the duration of 

collapse being from 0.1 to 10 seconds. 

One limitation on the use of the numerical models for partial 

dam failures is the accuracy of the input data for the geometric and 

temporal characteristics of the dam breach. Data on a number of 

historical dam failures were collected by MacDonald and Langridge- 

Monopolis (1984). Both earthfill dams, in which breaches are formed 

by erosion of the embankment material, and non-earthfill dams, that 

may have failed partly due to erosion and partly due to sudden collapse 

caused by instabilities, were studied. These data were analyzed 

to develop relationships which would form the basis of a methodology for 

estimating the geometric and temporal characteristics of breaches. 
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Schamber and Katopodes (1984) compared three one-dimensional 

models, for partially breached dams, based on a characteristic model 

and on a difference scheme of the predictor-corrector type. The 

breach section was treated as an internal boundary condition which 

interrupted the continuous long wave occurring upstream and downstream 

of the dam. At the breach section, the basic equations of mass, 

momentum, and energy conservation were formulated in terms of depths 

and velocities occurring immediately upstream and downstream of the 

dam. These equations were then coupled with the long time solution 

of the unsteady flow equation via appropriate characteristic relations 

emanating from the breach. 

2.3.11 Radial Flow 

The radial flow condition is remarked as the simplest example of 

two-dimensional wave propagation [Abbott (1966)]. In practice the flow 

through an expanding or contracting channel section could be 

analysed as a radial flow. A few investigators of dam break have 

since used the radial flow theory whilst Abbott (1968) and Abbott and 

Lindeyer (1969) employed it elsewhere. 

Marshall and Menendez (1981) used the Random Choice Method (RCM) 

to calcul. ate the dam break wave through a contracting channel 

section in cylindrical coordinates (radial flow, R-T space). 

Martin (1983) developed theoretical solutions on the basis of 

the shallow water theory for the dewatering flows caused by the sudden 

collapse of a dam in a horizontal rectangular channel (Plane dewatering) 

and in channels with divergent side walls (Radial dewatering). For the 

plane dewatering flows, the initial conditions were derived from 
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earlier work by Pohle (1952). For the radial case the boundary 

conditions were determined at the dam location with the initial 

conditions being derived from experimental investigations. The 

numerical results were compared with experimental investigations 

for models having both different radii and angles. 

It was concluded that at a time [t =(Fg7-H, )-' I the discharge 

per-unit length of the dam (q =8H, %rg-Hi/27) is achieved, for all 

reservoir shapes,. whilst for [t > (V_g7Kj)_1) boundary conditions 

apply so long as no reflected waves from the reservoir boundary 

arrive at the location of the dam. The influences of friction and 

storage in the downstream regions were ignored. 

To this Author's knowledge no other work has been carried out, 

using a radial application of the method of characteristicst for 

the various combinations of parallel, converging and diverging 

boundaries - both upstream and downstream of a dam break. 

2.4 Conclusion 

Franz (1977) discussed the various important points which must 

be taken into consideration to develop the ideal analysis method for 

dam break waves. His expectations were: 

a. The procedure should be able to simulate both continuous 

and discontinuous flow without restriction as to the state 

of the flow (subcritical or supercritical). Dry bed 

conditions should also be simulated. 

b. The procedure should be able to establish meaningful 

initial conditions once the flowrates at the initial time 

have been given. Comprehensive error detection and reporting 

were considered to be essential. 
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c. The procedure should be sufficiently robust that flow 

situations never tested should have a high probability 

of being successfully simulated. Moreover, the cost of 

performing an analysis should increase in a nearly linear 

fashion with the complexity of the system. 

These are high expectations and no method seems, so far, to have 

come close to meeting them. Various models must continue to be 

developed with the above objectives if dam-break, flood-wave 

analysis is to become an established part of the set of tools used 

by civil engineers. It was with this in mind that the work which 

follows was carried out. 
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CHAPTER THREE 

BASIC THEORY AND WHERICAL INTEGRATION 

3.1 Shallow Water Waves 

Any change of discharge in an open channel causes a wave to be 

propagated from the point where the change is started. The wave 

is often said to be Itranslatory' implying that all particles of 

water in any cross-section move together and may be assumed to 

remain in one plane. Open channel waves may also be classified 

depending on whether the vertical component of the acceleration of 

particles of water is negligible or not. 

Both these general circumstances are contained by 'shallow water' 

theory, in which the mean vertical displacements experienced by 

the fluid particles are sufficiently smal-1, compared with their 

mean horizontal displacements, for wave speeds to be depth dependent. 

The dam-break flood wave is usually regarded as belonging to 

the shallow water class whose equations are the basic hydrodynamic 

equations of motion under the assumption of hydrostatic pressure 

distribution. 

Liggett (1975) has shown that the hydrostatic assumption is 

indeed justified for problems characterized-by scales which are much 

larger in the horizontal than in the vertical. Even if the vertical 

displacement is significant, still the flow can be well-characterized 

as 'shallow' as long as the vertical acceleration has a negligible 

effect on pressure distribution. This requires that surface 

curvature is small in the Boussinesq sense - as discussed by Abbott, 

Petersen and Skovgaard (1978). 
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The bore is a discontinuity in the fluid motion at the front of 

the dam-break and the bore motion is described by the integral 

momentum equation. When the jump conditions at the bore are coupled 

to the equations of the shallow water theory, a procedure for evaluating 

the entire motion is established (see Figure 3.8). 

In order to present the problem completely, this chapter 

includes (a) derivations of the shallow water equations for one- 

diemnsional flow in (X-T) and (R-T) space; (b) application of the 

method of characteristics to these equations; (c) the discontinuous 

solution for the front and the resulting stability criteria for the 

overall solution. 

3.2 Shallow Water Equations 

3.2.1 Equations in X-T Space 

There are a number of methods to derive the shallow water 

equations. Each has its advantages in that it displays some of the 

assumptions and approximations that go into the equations. Probably 

the most elegant of the derivations begins with the Navier-Stokes 

equations of hydrodynamics. However, the derivation provided in 

the following presentation is chosen for its simplicity. 

The following derivation is for the (X-T) one-dimensional 

equations in which the dependent variables are the depth-mean 

velocity U, and total water depth H, and the independent variables are 

longitudinal distance x and time t. 

The continuity equation represents conservation of mass for a 

control volume and requires that 'The net rate of flow into the volume 

rate of storage change in the volume'. 
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The control volume Figure 3.1 is one unit wide in the horizontal 

direction normal to flow and, the position x is at the mid-point. The 

volume is of finite height, H, but the dimension in the x-direction, 

Ax, will be taken to zero. Thus the mass balance is 

U- au Ax 
a 

Figure 3.1 :, Element employed in deriving the partial 
differential equations of shallow water wave motion in a homogeneous fluid in (X-T) space. 

UH Ax Inflow (Quantity entering the element) = (u - -L . -ý-x ) (H - -L . ax 2 ax 2 

Outflow (Quantity leaving the element) = (u + -LU 
A-x ) (H + -ý-H . -ýX- ) ax 2 ax 2 

Change of storage ati Ax at * 

sot 
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au Ax (H -aH (U + 
lu xx 

- 
L- ) (H + 

aH 
. -ý- )= aH 

- Ax 
ax ax 2 ax 2 ax 2 at 

After multiplying out the factors and taking Ax to zero, the 

continuity equation is: 

3H 
+a (uH) =0 at ýx 

(3.1) 

(3.2) 

The momentum equation requires conservation of momentum so 

that 'The net rate of momentum entering the element + the sum of 

the forces acting on the element = the rate of accumulation of 

momentum'. The rate of flow of momentum in a fluid is the product 

of the mass rate of flow and velocity. 

Momentum entering =p {u(uH) - -L [u(uH)I. Ax 
ax 2 

Momentum leaving p {u(uH) +' [u(uH)I. 'x I 
ax 2 

Three types of forces will be considered; gravity, pressure 

and frictional resistance. 

The force due to gravity F9= PgHS 0 
Ax 

where P= fluid density, S =the channel slope along x-direction. 0 

The pressure force F =-l pg[(H --2-H . 
Ax )2 _ (H + 

3H Ax )2] 
p2 ax 2 ax 2 

The frictional resistance F PgHS Ax 
sf 

where Sf= the friction slope. Combining these elements into a 

single equation for conservation of momentum gives: 
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P[u 
2H_3 (U2H). Ax 1_ P[U2 H+ -L (U 2 11) - 

A-x 
ax ax 

PgHS Ax +1 pgE(H 
2 3H 2 Ax) 

- (H 2+ aH2 AX 

02 ax 2 ax 2 

pgHS Ax =a (PuH)Ax 
f at 

After combining terms, dividing through by p and Ax, then 

taking ax to zero, 

aa2 2) 
= gH (S s (uH) + (u H+H 

ax 2 ax 0f 

The derivatives are rearranged to give: 

(3.3) 

(3.4) 

aH a ZH H. 13-ut 
I -. at I U. (uH) + uH. -Lu + gH. = gH (S _S (3.5) iT ax ax 0f 

The second and third terms are eliminated by equation (3.2) and 

dividing through by H, the momentum equation is: 

au au aH 
at - -- ax + g--ix- =g (So 

3.2.2 Equations in R-T Space 

(3.6) 

The simplest example of an expanding or a contracting flow is 

provided by purely radial flow [Marshall and Menendez (1981) and 

Martin (1983)]. Taken by itself , of course, purely radial flow is 

something of an abstraction. However it Is consideration is 

important because it typifies the problems of restricted expansions 

and contractions in canals, rivers and estuaries in a continuous 

representation. Also it is the simplest example of two-dimensional 

wave propagation [Abbott (1966)]. 
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To construct the corresponding equations of continuity and 

motion, the element shown in plan and in isometric in Figure 3.2 is 

referred to: 

A 

Figure 3.2 : Element employed in deriving the partial differential 
equations of radially symmetric shallow water wave 
motion in a homogeneous fluid in (R-T) space 

On the same principles as in section 3.2.1 , the shallow 

water equations are derived herein. 

The continuity equation; 

Inflow entering the element = (u - 
2u 

. 
A-r) (H - 

311 
ar 2 3r 22 

47 



Outflow leaving the element =( 
au Ar (H aH Ar) (0(r + 

Ar 
u+ "ýFr* -2) + '5r 22 

aH Change of storage at . Ar (or) 

According to the conservation of mass for a control volume, 

u au Ar (u -L )(H aH [E)(r- -ý-r )l 
ar 2 ar 22 ar 2 

aH 
. 

Ar ) [e(r + 
ý-r A= aH 

. Ar (er) 
Br 22 at 

(3.7) 

After multiplying out the factors and taking Ar to zero, the 

continuity equation is: 

3H a (uH) + UH 
=0 at Tr r 

The momentum equation : 

Momentum entering = P{u(uH) -3 [u(uH)]. '&r 1[0(r - 
A-r )I 

3r 22 

Momentum leaving = p{u(uH) +a [u (u H) I Ar (r + -ý-r ar 22 

The force due to gravity F9 pgHS 0 
Ar (or) 

The pressure force F =-! Pgl(H _ 
IH 

. 
ýr)2 [O(r - 

ýr )l - (H 
P2 3r 22 

3H AL )2 A-r ), H2 5-r * -2 22 

The frictional resistance Fs= pgHS f ar (or) 

(3.8) 
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Combining these elements into a single equation for conservation 

of momentum gives: 

P(u 
2H- 2- (u 2 H). -ýr- 

"r A- plu 
2H+ ý_ (u 

ar 22 ar 

I(t, aH )2 r)] (H Ar + pgtiS ar(or) + -1 pg [e(r 
202 3r 22 

V )2 CO(r + 
ArA 

+ 2H 2 
Ar. -t I- pgHS Ar(er) (puH)Ar(or) 

ar 222f at 

(3.9) 

After combining terms, dividing through by p, e, r and Ar, then 

taking Ar to zero, 

u2H a2 (H2) = gH(S S (u H) + 9- 
-a-f (uH) + -r + -a r2 ar 0 

The derivatives are rearranged to give: 

(3-10) 

3H uH H. 2ýu- HH) 
+ uH. 

I+ 
gH. 

1- 
= gH(S 5 

at at U. (uH) +u (2- 
3r r ar ar 0f 

(3.11) 

The second, third and fourth terms are eliminated by equation (3.8) 

and dividing through by H, the momentum equation is, 

au au aH 
at g. 2ýr = g(5 o- 

s (3.12) 

Note that this is identical to the equation (3.6) of motion for 

one-dimensional (rectilinear) propagation in(X-T) space, as determined 

in section 3.2.1. 
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3.3 Numerical Integration 

3.3.1 Integration in X-T Space 

The equations (3-2) and (3.6) in section 3.2.1 are the continuity 

and the momentum equations for open channel of constant rectangular 

cross-sectional shape and constant longitudinal bottom slope 

(prismatic channel). These equations constitute a system of non- 

linear partial differential equations of the hyperbolic type. In 

other words they are two simultaneous quasi-linear partial differential 

equations of two dependent variables (u and H) and two independent 

variables N and 0 [Lister (1960)]. 

These equations are non-linear and no uniquely determined solutions 

can be obtained unless extensive simplification and linearisation 

are made. This difficulty in direct integration is dealt with by 

choosing one of various numerical integration techniques. There 

are two fundamental divisions of methods for the solution of hyperbolic 

partial differential equations. The method of characteristics is 

based upon the characteristic form of the equations whilst finite 

difference methods are based upon the partial differential equations 

as originally derived. It is difficult to make a comprehensive 

analysis of the available numerical methods used to solve the shallow 

water equations. However, Liggett and Woolhiser (1967), Price (1974) 

and Liggett and Cunge (1975) have studied a number of finite 

difference methods for the solution of shallow water equations. Their 

general conclusion was that the method of characteristics has some 

general advantages over other explicit schemes using finite differences. 

In fact Liggett and Woolhiser (1967) stated that 'The method of 

characteristics was found to be the most suitable general method in 
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that it gave good results over wide ranges of the parameters', and 

Price (1974) concluded that 'The fixed mesh characteristic method 

is most accurate when ( Ax/At) is slightly smaller than the Courant 

speed'. Also, as is well known, the solution proceeds numerically 

along the paths followed by waves in the physical plane. This 

property has the advantage of leading to a clear understanding of the 

physical implications of the numerical procedures [Vardy (1976)]. 

Historically speaking one should remember that the first 

application of the characteristics method to hydraulics was made by 

Massau (1889) and its development to Craya (1946). The method of 

characteristics may be described as a technique whereby the problem 

of solving two simultaneous partial differential equations can be 

replaced by the problem of solving four ordinary differential equations. 

This description of the method implies a continuous situation, where 

derivatives are everywhere defined in almost all directions. Here, 

linear combinations of the differential equations are sought which 

contain derivatives of the two unknown functions in one direction 

only. For this type of equation there are two such directions, 

called characteristic directions. 

Several procedures are available for transforming the equations 

into the characteristic form. One must first remove H from 

equation (3.6) by substitution (c 2=gH), 
where c is the speed of a 

long low wave in water of depth H; accordingly, c becomes the 

measurement of the depth. Note that [d(gH) = d(c 2)=2cdcl, 
so 

the equation (3.6) will be: 

au au c 
Tt + u. -T + 2c. g(SO-5d x x ax 

(3.13) 
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Equation (3.2) is expanding into the following form: 

ati aH 
+ H. 2u 

at ax ax 
(3.14) 

ftiltiplying throughout by g, and substituting (c 2 
=gH) as before, 

and dividing throughout by c, equation (3.14) will be: 

2. -2-c- + 2u .ac 
au a 

at ax ,- ax 

The two equations (3.13) and (3.15) after rearranged: 

(3.15) 

au au 
U. -ä- + 2c. -LC = g(S -s (3.16) 

x x ax 0f 

-. 
au 

+ 2. -Lc + 2u .ac= ax at ax 
(3.17) 

By writing first the sum, and then the difference, of equations 

(3.16) and (3.17), obtaining two further equations: 

au 
+ (U+c). -ýu + 2.3c + 2(u+c). ac 

= g(Sc3-Sr) 
ax at ax 

au 
.+ (U-C). au 

- 2. ac 
- 2(u-c). ac 

= g(S -S at ax at ax af 

(3.18) 

(3.19) 

From equations (3.18) and (3.19), the so-called 'characteristic 

form I is: 

1 -2- + (U+C). -2- 1 (u+2c) g(S -s at ax 0f 

aa 
a-t 

(U-C). 
ax I W-20 g(S 0- 

s f) 

(3.20) 

(3.21) 
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According to equations (3.20) and (3.21 ) functions c and u are 

differentiated along curves in the (x, t) plane which satisfy the 

differential equations (ýx =u± c). The differentiation operators dt 

are nothing more than total derivatives along these curves: 

D+ 
Ut- (u+2c) = g(Sc)-Sf. ) 

D- (u-2c) = g(S -S Dt 0f 

(3.22) 

(3.23) 

Thus for any point moving through the fluid with the velocity 

(u t c), the relationship (3.22) is true along the positive 

characteristic curves, defined by (ý-x- = u+c) , while the dt 

relationship (3.23) is valid along the negative characteristic 

curves, defined by (9x = U-C). If the channel is frictionless and dt 
horizontal (i. e. Sf =S 0 =0), equation (3.22) state (u+2c = constant) 

along the positive characteristic, while equation (3.23) state 

(u-2c = constant) along the negative characteristic, as shown in 

Figure 3.3. 

x 

Figure 3.3 : Characteristic Lines in the (x, t) Plane 
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For a prismatic channel with Sf /0 and 50 JO , expressions between 

two points 1 and 2 along positive characteristic can be obtained 

from equation (3.22): 

[U+2c] 2gI (S -S) dt (3.24) 1t10f 

and along negative characteristic from equation (3.23) 

2t2 [u-2c] =g (S S) dt 11 o- f (3.25) 

So the characteristics are curves in (x-t) space and they are 

defined by: 

dx + 
dt c (3.26) 

In Figure 3.4, two characteristic curves are passing through 

point M where solutions are required. The dependent variables at 

points L and R are assumed known and the solution is to be projected 

to point M. From equations (3.24) through (3.26): 

tM 

M +2c M) - (u 
L+ 2c L)= 

tm 
xm-xLf (u+c) dt 

tL 

(S 
O-S f) 

dt (3.27) 
tL 

(3.28) 

tm 
(UM -2c m (u R- 2c R) =g 

.1 
(So- sF) dt (3.29) 

r- 

xm- 

tm 

f (U-c) dt 
tR 

R 

(3.30) 
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Four equations, (3.77) through to (3.30), consist of four 

unknowns (uMj CMI XM and tM) for which solutions can be obtained. 

The integrals are line integrals along the characteristics. No 

approximations have been made. The numerical approximation enters 

in evaluating the integrals. 

4 

x 

Figure 3.4 : Characteristic Solution for Point M 

Liggett and Cunge (1975) stated that trapezoidal integration 

is the most accurate method that can be used without bringing in 

additional points. Thus equations (3.27) through to (3.30) can 

be approximated by: 

(u + 2c (u + 2c g (5 fmý-I- ) (t A (3.31 
SS 

mmLL02ML 

UM+CM-ý'UL+CL 
xxL=(2) (tm-t 

L) (3.32) 

S+ 
(u m- 2c M) - (u R- 2c R) =9 (So -2 (tm-t 

R 
(3.33) 
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(u M-CWUR-CR (t -t ) 
2MR 

(3.34) 

In this way the characteristic method forms a net of points 

spaced at uneven intervals. In practice, however, solutions at 

certain points at certain times are usually preferred. Therefore, 

a rectangular grid system in x and t can easily be formed, as shown 

in Figure 3.5. Where I is the grid number along x direction. 

t 

tM --e- 

At 

M- 
At -ý I 1-1 I 1+1 

AxAX 

x 

Figure 3.5 : Rectangular Grid in (x, t) Plane 

Solution point M is located at a grid point on time level tM 

and characteristic curves passing through M are extended backwards 

until they intersect the distance line at (t 
M- At), as shown in 

Figure 3.5. The dependent variables at grid points on time level 

N- At) are assumed known, and the solution needs to be advanced 

to time level t M* Integration along characteristic curves ML and 

MR can be performed by an iterative method, as originally suggested 

by Hartree (1953). The various techniques employed depend on which 
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point is being used to find the slope of the characteristics, 

commonly by using point 1, whilst some use of point M or points L 

and R has been made - as in equations (3-31) through to (3.34) 

(Courant and Friedrichs (1948)]. 

As shown in Figure 3.5j with a rectangular grid system, 

characteristic curves do not always Pass through grid points. So, 

interpolation becomes necessary to locate the intersecting points of 

characteristics along the distance-line. In dam-break problems, 

since the water surface rapidly changes from one point to the other, 

the method of interpolation becomes more important than locating 

the slope of the characteristics; as will be shown in section 3.5. 

Alternatively, both Wylie (1980) and Kaya (1985) have suggested 

time-line interpolation schemes in order to reduce the numerical 

error. However, in dam-break the Flow changes from suberitical 

flow to supercritical flow causing the method to fail at certain 

Points, as shown in Figure 3.60 unless special treatment is given 

in advance to those points. This also makes the computer program 

more complicated and the distance-line interpolation scheme was used 

herein. 

t 

ucriticaI 
Cri tic aI Supercritical 

Figure 3.6 : Time-line interpolation in flow changing from 

subcritical to supercritical 
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3.3.2 Integration in R-T Space 

On the same basis as in section 3.3.1, the shallow water 

equations (3.8) and (3.12) in (R-T) space may be transformed into 

their characteristic form. Removing H from the momentum equation 

(3.12) by the substitution (c2 =gH) gives: 

au au c 
üt + u. -i- + 2c. -2c = g(SO-Sf) r r 3r 

(3.35) 

The continuity equation (3.8) is expanding into the following 

form: 

3" aH 
+ H. iu uH 

3t 3r 3r r 

Miltiplying throughout by g, and substituting (c 2 
=gH) as 

before, and dividing throughout by c, equation (3.36) will be: 

2.2-0 + 2u. 1-0 au 
r 

UO 
=0 at ar '- ar r 

(3.36) 

(3.37) 

The two equations (3.35) and (3.37) after being rearranged are: 

au 
+ U. au + 2c. -2-c 

,= 
g(S s) at ar ar o- f 

and 

uc uc c- -L + 2. -L + 2u. ac 
=-- ar at 'W r 

(3.38) 

(3.39) 

First taking the sum, and then the difference, of equations 
(3.38) and (3.39), obtaining two further equations: 

58 



au 
+ (u+C). au 

+ 2.1-c +2(u+c). 
ac 

=- uc +g (5 -S ) 
ar at ar r0f 

(3.40) 

au 
+ (u-c). -ýu -2. -ý-c - 2(u-c) ac ! E- +g (s -S ) (3.41) 

i -t 3r at *ý+rof 

From equations (3.40) and (3.41), the characteristic form is: 

1 -2- + (u +c )a l(u+2c) uc +g (S -S at ar r0f 

{ -L + (u-c) -L I W-20 =+ 
uc +g (5 -S at Zr r0f 

(3.42) 

(3.43) 

According to equations (3.42) and (3.43) functions c and u are 

differentiated along curves in the (r, t) plane which satisfy the 

differential equations: 

dr + 
dt -uc 

(3.44) 

The differentiation operators (total derivatives) along these 

curves: 

D+ (u+2c) uc +g (S -S ut- r0f 

D- 
Ft- (u-2c) + -UC +g (50-Sr) 

r 

(3.45) 

(3.46) 

Thus for any point moving through the fluid with the velocity 

(u t c), the relationship (3.45) is true along the positive 

characteristic curves, defined by ( ý-r 
= u+c), while the relationship dt 
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(3.46) is valid along the negative characteristic curves, defined 

by (ý-r = u-c). These equations differ from (3.22) and (3.23) by 
dt 

the terms (t 2-c ) only. r 

Expressions between two points 1 and 2 along positive 

characteristic can be obtained from equation (3.45) 

1> tz 
[u+2clý =I 

t 
uc +g (5 -S dt 

r0f 

and along negative characteristic from equation (3.46) 

(3.47) 

[u-2c]4 I [+ uc +g (S -S dt (3.48) 1t1r0f 

Solving for point M in r-t plane as in Figure 3.4 the 

equation (3.31) through to (3.34) will be: 

(uM+2c 
M) - (u 

L +2c L) 

(u e L) (o M+c L) s 
0- .S 

fm +S fL 

2(rM+r L)2 

- M-t 

x m-x Lu 
M+0 ff+'u L+c L) N-Y 

2 

(3.49) 

(3.50) 

(u�-2c 
m)- 

(u 
R-2c R) = [+(UM+UR)(CM+CR) +g (S 

o- 

s fm +s fFl. 
)]. 

2 (r �j+r R) 2 

. ti-t R) 
(3.51) 

UH-CWUR-C 
x M-xR = 

2 
) (t 

M-t R) (3.52) 

The four equations, (3.49) through to (3.52), contain four 

unknowns, utI, cM9 rM and tM, for which solutions can be obtained in 

tz 

60 



principle, but which in fact prove to be rather difficult. This 

is especially so at the front when they are coupled with the jump 

equations. For simplicity the equations are written as: 

(u +2c )=E-+ g(S SA (t t (3.53) 
ULCL 

m"m LLrL 0- fL M- L 

x MA ý (u L +C L) N-Y (3.54) 

(UM-2c )- (u -2c )= [+ 
URCR 

+ g(S -S )l (tm-t 
R 

(3.55) 
mRRrR0 fR 

x M-XR = (u 
R-CR) 

(tM-tR) (3.56) 

So the main equations for radial flow in characteristic form 

are: 

and 

dr + 
ýt =UC 

2c] 2 
1 

t2 
[- UC + g(s +S )l dt 

t1r0f 

(3.57) 

(3.58) 

Thus, the case of radial flow leads to quasi-invariants, and 

since (3.58) must hold for all wave regions one supposes that there 

must be some energy exchange between the characteristic components. 

This is suported by the observation that any localised disturbance 

will spread, through the integrals in (3.58), so as to influence 

every point within the disturbance's region of influence, so that 

the disturbance is attenuated This condition obtains in the 

application of equations (3.58) to the computation of flow over 

changes in canal section. The form of computation in this case is 
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schematized in Figure 3.7. 

Rectilinear Flow Radial FIow Rectilinear Flow 

I 

r I 

F 

r2 

Figure 3.7 : Schematization of a change of canal section, 
regarded as an example of radial flow 

In this respect, the change of section in Figure 3.7 corresponds 

to the equation [Abbott (1966)1: 

Kr and r14r<r2 (3.59) 

where B is the breadth of the canal, K is a constant, and r1 and r2 

are the inception points of the change of section. 

3.4 Discontinuous Solution for Bores 

3.4.1 Discontinuity in Open Channel 

As mentioned in section 3.1, open channel waves may be divided 

into two broad categories depending on whether the vertical 

component of the acceleration of particles of water is negligible 

or not. If the vertical component is small, there is said to be 

gradually-varied, unsteady flow; a large vertical component is 
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associated with rapidly-varied, unsteady flow. 

Examples of gradually-varied, unsteady flow are flood waves 

in rivers and the change of flow resulting from slow operation of 

controlling structures such as gates and sluices. 

With rapidly-varied, unsteady flow an abrupt change of surface 

level occurs as a 'surge' moves along the channel. Surges are of 

different types, depending on whether they move upstream or downstream 

and whether the water level behind them is higher than in front 

(a positive surge) or lower (a negative surge) [Pickford (1969)]. 

A positive surge moves downstream into the valley below a dam 

after the dam failure. Such a surge may also be caused by a sudden 

gate opening. A negative surge moves upstream into the reservoir 

after the dam failure, which becomes an attenuated wave*'ý 

Thus, the dam-break flow may be divided to four zones 

depending on the type of flow, as shown in Figure 3.8. 

As indicated by Figure 3.8, the method of characteristics 

may be applied to zones (1), (2) and (3) and coupled with the jump 

equation in zone (4) - see later in this section (3.4). Since 

a proper numerical solution for the negative wave becomes time- 

consuming a separate treatment is employed as described in section 

4.3.5. 

The path of the bore on the (x-t) plane is represented as the 

discontinuity separating two regions of continuous flow as shown in 

Figure 3.9 [Cunge (1975) and Cunge, Holly and Verwey (1980)]. 
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Dam Position 

Negative *-- 

The Reservoir 

I 
(1) (2) 

Downstream Channel 
P0sitive 

](The F ront 

(3) (4) (i ) 
W/9\3w-wl 

Method ofChiracteristIcs Jump 

Equat-I 
ions 

M ethod of Characteristics 

Mainly Horizontal Motion, (2) Negative wave , (3) Gradually 
Varied Unsteady Flow, and (4) Positive Surge (considerable 
vertical motion) 

Figure 3.8 : Schematization of the Dam-Break Flow 

x 

Figure 3.9 : Path of a Bore Separating Two Regions 
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Region 1 is situated on the side of greater depth than Region 

2. The actual path of the bore is the solution of ordinary 

differential equation derived from the relationships valid across the 

front and the slope of this path is defined by the bore velocity. 

dx 
dt w (3.60) 

The relationships are valid whatever happens inside the shock. 

They are the hydraulic equivalents of the Rankine-Hugoniot relation- 

ships for shocks in gases. For an observer moving with the velocity 

w, they reduce to the equation of the stationary hydraulic jump. 

Thus a hydraulic bore is a moving jump. It is obvious that 

in the neighbourhood of the jump the basic shallow water hypotheses 

are violated; the streamline curvature is very strong, vertical 

accelerations are not negligible, and hydrostatic pressure 

distribution cannot be considered to be a valid assumption. However, 

by considering the bore to be a simple discontinuity in the 

water surfaces of infinitesimal length, the moving hydraulic 

jump relations may be used to link the regions upstream and 

downstream. In the following two sections the moving hydraulic 

jump relationships in (X-T) and (R-T) space are derived. 

3.4.2 Unsteady Hydraulic Jump in X-T 

The classical hydraulic jump in (X-T) space is shown in 

Figure 3.10 [following Henderson (1966)]. 
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Ud - tH0A 
H2 

I 

U2 

ll1AY/JJ 

Figure 3.10 : Classical Hydraulic Jump in (X-T) space 

The continuity equation for unit width of the channel: 

u0H0=u2H2 

The momentum equation is: 

P 
0- 

P2= PQ(u2 -u 0) 

where P is the hydrostatic pressure force. For unit width, 

equation (3.62) is: 

pg 02 pgH 22 
_ ý(,, 

2p 
_ 11 

2p ) 
`2 -2 

(3.61) 

(3.62) 

(3.63) 

Dividing throughout by (pg) , and multiplying throughout by 2, 

equation (3.63) becomes: 

H2H2=2 (u 2 li u2H 02g2200 

uH 
Substituting for (u =00), from equation (3.61), and 2H2 

expanding the right hand side, equation (3.64) gives: 

2 (H 
0 

41 2) 
(H Ai 2) = 

2H2 
0 

.m2-u0m 0) 

(3.64) 

(3.65) 
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or, 
u2H 

(H 
0 -H 2) 

(H 
o +H 2) 

0H0. (H 
O-H 2) 92 

(3.66) 

Dividing throughout by (H 
0 -H 2 

), and rearranging equation (3.66): 

2 gH 2 (H +H o -H o2 0 
(3.67) 

Equations (3.61) and (3.67) are the continuity and momentum 

equations for a steady hydraulic jump. These equations may be used 

for moving bores if the later are reduced to stationary bores as 

shown in Figure 3.11. 

WiVyllp, 

Ho 

Moving Surge ( Unsteady Flow ) 

U2 
I U- 

7MWý\ 

W-U2 

I W-U 0 
HO -we 

1111"'If4v- 11110YMRý'- 
Stationary Surge ( Steady Flo w) 

Figure 3.11 : Reduction of the Moving Bore to a Stationary Bore 

Figure 3.11(a) shows the bore as seen by an observer on the 

bank, as unsteady flow; Figure 3.11(b) shows it as seen by an 

observer moving with the bore, as a steady-flow case, since the 
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surge is now stationary. The second picture is produced from the 

first by superimposing on the whole system a velocity equal and 

Opposite to that of the bore w; the stream velocities are therefore 

reduced to (w-u 
a) and (w-u 2) as shown. The state of affairs 

shown in Figure 3.11(b) is simply like the hydraulic jump but with 

flow transfers from high water level in supercritical condition to 

low water level in subcritical condition through the bore itself. 

In this case the continuity equation (3.61) is: 

(W-U )H)% 22 
(W-uo 

Solving for w in equation (3.68), 

u2H2-U0H0 
w 

2 

or substituting (c 2 
=gH), equation (3.69) is: 

u2c22_u0c02 

c2 
2_c 2 

and equation (3.67) becomes: 

(W-u )2_ 
gH 2 (Ho+H2) 

0 2H 

Again solving for w, 

u0 

or substituting (c 2=gH), 
equation (3.72) is: 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

(3.72) 
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discontinuity at the front. 

3.4.3 Unsteady Hydraulic Jump in R-T 

The steady radial hydraulic jump equation can be obtained 

(3.73) 

Equations (3.69) and (3.72) are used in section 3.4.4 for the 

by applying the momentum and continuity equations to the element 

shown in Figure 3.12 [See, for example, Koloseus and Ahmad (1969), 

Khalifa and McCorquodale (1979), France (1981), and Lawson and 

Phillips (1983)]. 

2 

W=U0c22 (c 
02+c22 2c 

0 

P2 

-0 
A PO 

L 
I 

NIMAIINN 

PS 

I. - 
D. *- 

Pe- 

P2 

U2 
H2 

79&7jFý)\T 

Figure 3.12 : Definition Sketch for Radial Hydraulic Jump 

The continuity equation through the element in Figure 3.12 is: 
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0H0 
(r 

0 
0) =u2H2 

or 

0H0r0=u2H2r2 

The momentum equation is: 

P+ 2P sin (. 2-) 
-P PQ(u -u 0s222o 

(3.74) 

(3.75) 

(3.76) 

where Ps is the channel side pressure force. Considering a 

wedge-shaped element of the jump and integrating all the component 

forces over the angle 0. This yields: 

p20 = .1 pgH (2r sin 0200 

and 
2 p pgH (2r sin 2222 

(3.77) 

(3.78) 

As the jump surface profile is a straight line, a longitudinal 

section is a trapezoid and the magnitude of the hydrostatic force 

acting on one side can be expressed as: 

ps= PgA s 
HI (3.79) 

where HI is the distance measured from the free surface to the 

centre of the trapezoid and is given by: 

HI =H02 
+H 22 +H oH2 
3(H 

o +H 2) 

and the area As on which the side pressure 

H +H 
-r 

) 
`2 

(3.80) 

force acts is given by: 

(3.81) 
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Substituting for HI and As into equation (3.79) gives: 

p=I (r -r ) (H 2+H 2 
+H H) 

s62002o2 
(3.82) 

Substituting for Pov P 2v Ps and Q into equation (3.76) gives: 

pgH 
2r 

sin . 
2- 

+ ka (r -r ) (H 2 
+H 

2 
+H H )sin ý! 

- 00232oo2o22 

- PgH 
2 

r2sin-2ý= 2p 2rHu2rH )sin -ý (3.83) 
22 

(u2 
2 2- ooo2 

Dividing throughout by (pgsin . 
2-), and solving for u after 20 

substituting for u2 from equation (3.75): 

2 
%J 2(r 

01-Hc) 
L. -r or2HoH2 

Dr2Ho2H 

1 (r 2 
-r r) (H 2H 

+H 
3 

+H H2r2H3 3202o22o222 
(3.84) 

On the same principle as in section 3.4.2 and Figure 3.11, the 

continuity equation for moving bore is obtained from equation (3.75): 

(W-uo)H 
0r0= 

(W-u 
2 

)H 
2r2 

solving for w, 

W= 
2H2r2u0H0r0 

H2r2-H0r0 

or substituting (c 2 
=gH), 

w 
u2c22r2-u0c02r0 

22 
c2r2-c0r0 

q 

(3.85) 

(3.86) 

(3.87) 
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The momentum equation will be, fron. equation (3.84): 

(w-u 
0) 

solving for w, 

9 

2(r 
02H02 -r or2HoH2 

[r rH2H+ -I(r 
2 
-r r o20232o2 

0H2+H23+HoH22)-r22H231 

W--U ±ý9 [r rH2H+ -I(r 
2 

-r r 0 2(r 
02H02 -r or2HH2o20232o2 

(H 
02H2+H23 +H H22)-r22H231 

Assuming that the front is always distinct, as shown in 

Figure 3.13, one may substitute r for ro and r2l and the 

continuity equation (3.86) becomes: 

. 

fil ý\\79 

Fron t 

=2 

w 

I 
Ho UO 

(3.88) 

(3.89) 

//II:, fJJ/f 

Figure 3.13 :A Front which is Distinct so that r0 =r 2 =r 
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2H2-u0 ti 
0 w= ti 2- H 

(3.90) 

i. e. equation (3.87) is: 

w 
u2c22u0c02 

22 
c2- Co 

(3.91) 

The momentum equation (3.89) is, 

0 

KH2- 
(H H 2H: 2+ o) 

or substituting (c 2 41), 

2 
c222 

w=u- (c +C 2 
(Co 2 2c 

0 

(3.92) 

(3.93) 

Thus, the continuity and the momentum equations for a moving 

jump are exactly the same for both (X-T) and (R-T) space when 

assuming that the front is distinct in shape. 

3.4.4 Solution of the Discontinuity 

When the flow conditions are such that a steep front occurs, 

the basic equations founded upon the shallow water hypotheses are 

not valid in the neighbourhood of the discontinuity. As is 

described in section 3.4.1, this is mainly because of the existence 

of the vertical accelerations coinciding with strong streamline 

curvature. When the steep front forms as a roller, or mobile 

hydraulic jump, the zone it affects and in which the shallow water 

hypotheses are invalid is very narrow, most often narrower than the 

distance Ax( or Ar) between two computational points. In such 

cases it is possible to assume that the discontinuity is a boundary 
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between two separate regions in which the shallow water hypotheses 

are valid. 

Three practical methods for the computation of steep fronts have 

been described by Cunge, Holly and Verwey (1980). These were the 

shock-fitting, the pseudoviscosity, and the 'through' methods. The 

shock-fitting method was used to compute dam break waves by Vasiliev, 

Temnoeva, and Shugrin (1965) as in this work. 

In the shock-fitting approach, the propagation of the 

discontinuity is computed for one time step, independently of the 

computation in the two adjacent shallow-water equation regions. 

Depending upon the resulting motion, modifications are then made 

in the boundary conditions and in the extent of these regions. This 

schematization of a bore, which may appear at some time t>0 

in the solution plane (x, t) or (r, t), is physically justified only 

if the detailed structure of the discontinuity is of secondary 

importance. 

The shock points are considered separately from points on the 

standard mesh and are allowed to move independently through the 

mesh. Referring to Figure 3.14 the shock wave is represented by 

the extra point pair 5 (at time tot say) which at the later time 

(t 
0 +At) has moved to 51. Equations (3.69) and (3.72) imposed 

at the shock front (xS and xs) are actually those for one of the 

two cases classified by Stoker (1957). With reference to Figure 

3.14, the dam-break shock wave is a typical example of the case in 

which w>u2> uo and H2>H0, and the shock celerity w satisfies 

the following inequality: 
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eristic Through S 
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( 

(3.94) 

x 

at 

x 

Figure 3.14 : Steep front calculation using the shock fitting 
method; (a) Physical situation; (b) Computational 
grid 

This inequality states that the shock always travels faster than 

a gravity wave on the shallow side and slower than a gravity wave 

on the deep side. Also equation (3.94) states that there are two 

characteristics from region (2), S'L and SIR, in front of, but only 

one characteristic from region (1), SIM, behind the shock, as 

Region( 
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shown in Figure 3.14(b). At time level to, the position of the 

discontinuity xs corresponds to four flow variables as shown in 

Figure 3.14(a) : (H 
s ju S)i at the upstream side of the discontinuity, 

and (H 
s qu s)2 at the downstream side. The new position of the front 

is xsI at time level (t 
0 +AQ and the flow variables on both sides 

are (11 
G! qu SI)i and 2 or, as shown in Figure 3.14(a), (u 2H2) and 

(qO, Ho)t and with shock velocity w. Therefore, at time (to+At) , 
there are six unknowns x. , ws,, Hs 19 usj , Hsi and u st . it 

122 
was found by trial that the most practical way in which to determine 

the unknowns at S' is (see the flow chart in Figure 3.15): 

1. Obtain an estimate of the position of S' by assuming 

the value of the shock velocity along SS' to be that at S, from 

equation (3.60) 

+w. At (3.95) 

2. Calculate the solution on the low depth side of 51 by 

the characteristic equations (3.31) through (3.34): 

(u 
s12 + 2c )- (u 

L +2c L)= g(S o- 
sf) (t 

0 +ät-t 0) 
(3.96) 

2 d12 

XL= (u 
L +C L) 

(t 
0 +At-t ) (3.97) 

,v 
2c, (UR -2c R g(s o- 

sf) (t 
0 +ät-t 0) 

(3.98) s92 2 

st - (u 
R-CR 

) (t 
0 +At-t (3.99) 

where (c2 =gH). Another four equations from the linear interpolation 

on the distance-line, at the time t0, lead to u and c at the two 
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points L and R while u, c and x at point 5 and all the grid points 

are known at time to. Hence the solution for (us!? c s! 
)2 is obtained. 

3. Use the characteristic relations along MS I, equations 

(3.31) and (3.32): 

(ud 
I 

+2c S!, 
)- (uffi-2cM) = g(SO-Sf)(tc)+At-to) (3.100) 

x0-xm= (uwcm) (to+At-to) (3.101) 

Also, the flow variables uM and cM at the point M on the 

distance-line at time tog have to be determined by interpolation. 

4. Use the shock equations (the jump equations) (3-70) and 

(3.73) at shock point SI: 

It . f% -d, -Sý - 01) - EA 
22 

cS, 
i--c0 

and 

wIILL 

2 

2 

U S! 2 
+ 

2c 2 
(c 

S!, +c 

/ 

S! 2 

(3.102) 

(3.103) 

So in the equations (3.100) through to (3.103), there are four 

unknowns in four equations. Because the unknowns are implicit in 

the equations, the Newton-Raphson method is used for solutions. 

The familiar Newton-Raphson iteration for z in f(z) is [see for 

example McCalla (1967)1: 

Z- f (Z) 

where z is the assumed value, z' is the new value, f(z) is the 

(3.104) 
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function for assumed z, and fI (z) is its derivative. This gives 

the solution for w and (u 
S ? PC st 

)1* 

5. Use the shock velocity w at S' to find an improved 

estimate of the position of 51 and repeat from (2) until the 

whole process has converged. This scheme has always been found to 

converge. 

When the values at S' have been determined the point E (or E 

and P, if P lies to the right of the negative characteristic through 

S) may be calculated. It could not be calculated previously since 

the point T lies on the shock path and not on the line t=t 
0 

to find T, interpolation along the shock path is necessary. 

so 

The use of the Courant condition to limit the time step At 

to maintain stability also ensures that the shock will not cross 

more than one mesh point in a single time step, as will be shown 

in section 3.6. 

The same general scheme is followed for the discontinuity in 

radial flow. 

3.5 Distance-Line Interpolation 

Referring to Figure 3.5 and section 3.3.1, the solution at 

point M, which is located at a forward grid point on time level tMY 

arises from equations (3.31) through to (3-34). The Intersection 

points, L and R, do not generally coincide with the grid points 

on time level (tM-at) , for which the dependent variables are known. 

In order to find the dependent variables at these points (L and R), 

linear interpolations between the grid points are required. Since 
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the water surface changes rapidly in the dam-break problem, the 

method of interpolation becomes critical. 

Linear interpolation between grid points (I-1) and (I+1), as 

shown in Figure 3.16, is commonly adopted by many users of the 

characteristics method, and it is: 

(U'C) L= 
(u, c) I-1 

(u, c) R= 
(u, c) 

(u, c)I+1-(U, C)I-l 
2Ax 

2, &x 
(XR-X 

T-&l 
) 

(3.105) 

(3.106) 

Equations (3.105) and (3.106) indicate that the dependent 

variables at points, L and R, are approximated by those along 

the line AC instead of along the curve ABC, as shown in Figure 3.16. 

This approximation tends to cause the water surface in the dam- 

break problem to exhibit saw-toothed variations [also noted by 

Liggett and Cunge (1975)], as shown in Figure 3.17. Here the 

dam break problem has been computed at t=0.725,1.45 and 2.175 

seconds, with the initial water depths upstream H1= 10. Om and 

downstream H0 =0.01m, in a rectangular, horizontal and frictionless 

channel. 

The saw-toothed solution results from the method of 

interpolation and should not be confused with the Courant instability. 

It may be corrected by using the grid points, I-1 and I, to find L, 

and the grid points, I and I+1, to find R, through linear interpolationt 

as follows: 
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Figure 3.16 : Linear interpolation between the grid points 
on the distance-line 

(U'C)L = (x L-XI-l) (3.107) 
AX 

(u, c) i C) + 
(U, C)1+1- (u, c) I (x R-XI+l) 

Ax 
(3.108) 

Equations (3.107) and (3.108) indicate that the dependent 

variables at pointsyL and R, are approximated along the lines AB and 

BC, as shown in Figure 3.16. This approximation is closer to the 

real values and is evidently sufficient to smooth the water surface 

as shown in Figure 3.18, where conditions are otherwise as for 

Figure 3.17. 

(U, C)I-(U, C)I-l 
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In Figure 3.19 the saw-toothed surface is compared with the 

smooth surface (computed at time t=2.175 seconds) and indicates 

that the former is damped on the upstream side of the dam. Together 

with further improvements, presented in section 4.5.5, the above 

interpolation scheme based on the grid points, 1-1 and 1, to 

obtain point L and the grid points, I and I+1, to obtain point R, 

was used exclusively for both (X-T) and (R-T) space. 

3.6 Stability Criteria 

The time increment (at) in a numerical scheme is always 

subject to certain restrictions because of stability considerations. 

For explicit schemes, including those based on the method of 

characteristics, it has been shown that stability is assured when 

the domain of dependence of any forward point as given by' the finite 

difference approximation to the characteristic equations is not less 

than the exact domain of dependence of the differential equation. 

In other words, with reference to Figure 3.5, the points L and R 

at the base of characteristic lines through point M are internal 

to the line (I+1)(I-1). 

This is the so called Courant-Friedrichs-Lewy (CFL) condition, 

established by the three authors in 1928. For a fixed grid 

characteristics scheme, requires that: 

At 4 
Ax 

c+juj 

Thus a Courant number Cý may be defined as: 

AX +Iu U-A 

(3.109) 

(3.110) 
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The time increment, At, is selected jointly on the basis of 

the Courant condition Cr<1 and also on the basis of the shock 

velocity which is: 

at 4 
Ax 

w (3.111) 

The latter ensures that the shock will travel less than the 

distance increment ; Ax or Ar, in one time step. 

At is chosen as the lesser of the values determined from the 

Courant condition and the shock velocity condition at all grid 

Points, multiplied by a Courant number of less than unity, the 

latter being chosen by trials. 
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CHAPTER FOUR 

APPLICATIONS OF THE NUMERICAL 
TECHNIQUE 

4.1 Introduction 

Arising from the last chapter, two primary numerical models and 

three others for computing dam-break flood waves have been developed 

in this thesis. These models are based on the characteristics method 

together with the shock fitting method. 

Before describing the models, common features are presented 

in section 4.3. These are: - the basic assumptions made in the 

development of the numerical models; the solution of the singularity 

at time (t=D) in order to start the computation; the calculation 

of specific points in the flow domain (like upstream and downstream 

boundary points, and supercritical points); the Colebrook-White (C-W) 

resistance formula; the negative wave characteristics. 

Following the above are two sectionst each describing primary 

situation. These are the plain channel (parallel sides) in X-T space 

and the expanded channel (divergent sides) or the contracted channel 

(convergent sides) in R-T space, together with the numerical results 

for each. Combinations of these primary cases lead to three 

further models which will be discussed, both physically and 

numerically, in Chapters five and six. 

4.2 Definition of Dam-Break 

Sudden destruction of a dam can result in a highly unsteady 

flow, with a forward wave advancing over a dry or a wet channel and 
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a back disturbance propagating into still water above the dam. Thus 

the dam-break problem in its simplest form is the determination of 

flow profiles resulting from sudden release of water initially held at 

rest behind the dam wall. The forward and backward waves are 

generally called positive and negative waves respectively. In the 

physical world the situations belonging to this category include 

the flash flood resulting from dam failures, collapse of the water 

column created in the atmosphere by an underwater explosion and the 

runoff in a step channel after rapid and intense rainfall on an 

impervious surface. In this work, a dam is supposed to be suddenly 

and completely destroyed at zero time. The problem is then to 

determine the subsequent motion of the water along the channel length 

x or (r) and for all time t. 

4.3 Development of the Numerical Model 

4.3.1 Basic Assumptions 

The basic assumptions follow those usually made in numerical 

models of dam-break problems, namely: - 

A. Flow Conditions: 

1. One-dimensional flow (no transverse waves). 

2. Shallow-water wave theory (neglecting vertical acceleration). 

3. The flow velocity is uniform in a transverse section, i. e., 

the velocity-distribution coefficients are equal to unity. 

4. No air entrainment. 

B. Initial Conditions: 

1. ' Instantaneous release of water initially at rest. 
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2. (i) Dry-bed downstream of release opening. 

(ii) Wet-bed downstream of release opening. 

3. No effect of release method on the outflow. 

C. Channel Conditions: 

(i) Prismatic, impermeable channel. 

(ii) Non-prismatic, impermeable channel. 

2. (i) Infinite reservoir extending upstream. 

(ii) Bounded reservoir extending upstream. 

3. No lateral inflow or outflow. 

4. Boundary roughness is expressed by Barr's (1976) generalisation 

of the Colebrook-White (C-W) function. 

4.3.2 Singularity at Time (t=O) 

Referring to Figure 4.1(a), the discontinuity in the water 

depth H at the dam position when the time (t=D) prevents the 

starting of the numerical solution precisely at time (t=O). This 

singularity in the solution was solved by starting the computation 

at some later time (t > 0). In order to do this the analytical 

solution of Ritter (1892) may be used to give the starting flow 

profile at that time (t > 0). Although employed by many investigators, 

Ritter's solution has been shown to express the Positions of the 

water surface only at high time values (t Vg-, 7ffl- > 2) approximately 

Nartin (1983)]. This leaves some doubt as to the early time 

computation on that basis and a different approach is used in this 

work which depends on Stoker's theory (1957). 

When the dam is destroyed a shock wave develops on the downstream 
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(a) Water Depth Discontinuity at Tim t=0 

The Author's Starting Flow Profile 
at Time t=At 

Ritter's Solution Used by Other Investi- 
gators as Starting Flow Profile at Time t> o 

w 

(b) Water Position at Initial Time t 

The horizontal displacement 
is exaggerated. 

Figure 4.1 : Singularity and Its Solution at the Initial Time 

side arising from the downward vertical acceleration of water 

upstream. In fact, since all the water at the dam position 

instantaneously acquires a velocity different from zero, the shock 

will also be created instantly on the downstream side. On this basis, 

the initial conditions are posed as shown in Figure 4.1(b). 

In order to start the numerical solution, at a very small time 
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(t=At) the water column is assumed to be tilted from the vertical 

with a shock moving downstream and a negative wave upstream. 

Depending partly on Ritter's solution, the author is assuming that 

the shock will travel a distance downstream which is twice that covered 

by the negative wave upstream in the same time. Therefore, at 

time (t=At), the negative wave moves (. 1 
Ax) while the shock will 2 

move Ax as indicated in Figure 4.1(b). In this case, there are 

three unknowns; the shock velocity w, the shock depth H2 and the 

water velocity u2 just behind the shock. For given conditions 

upstream and downstream of the dam (ul, H19 uoý and H0) the values 

W9 H2 and u2 may then be calculated according to Stoker's theory 

(1957) connecting state (2) with state (1). Since the quantity 

(u+2c) is a constant along the straight characteristic between the 

two states, it follows therefore that: 

u2+ 2c 2=U1+ 2c 1 

or 

(4.1) 

2+ 2F9 F2 =u1+ 2V-gffl- while c= V-g-T (4.2) 

Together with the shock equations from chapter three; (3.69) and (3.71), 

w 
2H2-u0H0 

H2 -H 0 
(4.3) 

and 

(W-u )2= 
gH 2 (H +H 0 2H o2 0 

(4.4) 
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Thus Stoker's solution, i. e. equations (4.2) through to (4.4), 

allows the determination of the depth H 2' propagation speed w, and 

the velocity of water u2 just behind the bore. In order to cover 

any given conditions for the states (1) and (0), u1 and u0 are left 

in the equations (4.2) through to (4.4). With still water upstream 

and downstream (u 
o =u 1= 0) explicit solution of the three equations 

is possible for all values of the ratio (H 
0 

/H 
1) between zero and one. 

In this way w, u2 and H2 can be found a short time after the initial 

singular condition, in order to start the general computation. 

Referring to Figure 4.1(b), the points A and B are two adjacent 

grid points, i. e. there is no grid point at the dam position. This 

is to prove that there is no special condition at the dam and that 

the numerical model gives results which agree with the condition 

at the dam position, as stated by the analytical solution. This 

will be shown in section 4.4.1. The water depth and the velocity at 

point A are H1 and u1 and at point B are H2 and u2 respectively. At 

the shock points S1 and S2 the water depth and the velocity are H 2' 

u2 and H0, u0 respectively. 

The shock moves to a new position (say 51) during the next time 

step At. To obtain an estimate of the new position S', the shock 

velocity w at point S is used. The calculation at point 51 

was described in section 3.4.4 whilst the rest of the grid points 

are treated normally by the characteristics equations as illustrated 

in section 3.3.1. Variations occur at certain points in the 

interpolation process as explained in the next section. 
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4.3.3 Interior Points 

To avoid the time consuming iteration which arises in the case of 

non-linear interpolation, linear (or first-order) interpolation is 

employed as already formulated in Chapter Three. Thus care must 

be taken to choose the correct pair of adjacent grid points, when 

interpolating the values of x R' UR and cR for subcritical and 

supercritical flow, as shown in Figure 4.2. However, interpolation 

.. 

I 

0 
+81 

r-l; 
- 

E 
11 Ax A N-1 L N 

A 

x or r 

(a) Subcritical Flow 

t, 

1 +81 F- 
0 

M 

A 

0 r-l R+T+ 1+1 N-1 LR 
Ax Ax 

Supercritical Flow 

x or r 

Figure 4.2 Characteristics on a Speci fied-Time- Interval Grid 
Net in One-Dimensional Flow 

Of XLP UL and cL is the same both for subcritical and supercritical 
flow. To test which pair of the two adjacent grid points should be 

used in the interpolation of XRI uR and c RI the following procedure 
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is carried out: 

1. Use the two grid points (I-1) and(I+1) to interpolate the 

two points L and R in order to find M, since the interpolation between 

these two grid points is the same for subcritical and supercritical 

flow points. 

2. Compute the Froude number at point M. 

3. Make a choice between the left and right pair of the grid 

points, depending upon whether the Froude number so computed is 

greater than or less than unity. Then the values at point M will 

be found according to the last interpolating pairs of the two adjacent 

grid points. 

In case of bounded reservoir upstream and bounded channel 

downstream the boundary conditions upstream and downstream are 

functions of the dependent variable H (or c) only, since the velocity 

u is zero. Hence there is only one characteristic line from each 

boundary point 11 extended backward in time for both subcritical 

and supercritical flow as illustrated in Figure 4.2. From this 

characteristic line the only unknown H (or c) can be found. 

For reservoir and channel both extending infinitely, upstream 

and downstream respectively, the boundary conditions are functions 

of the two dependent variables H (or c) and u. Also there is 

only one characteristic line from each boundary point M extended 

backward in time when the flow is subcritical. There are two 

unknowns and only one characteristic line at the boundary points M. 

The solution is possible if there is a special condition at the 
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boundary, such as a specified discharge. Also it is possible to 

apply the mirror image concept [Chowdhqry (1982)] as described in 

t fis IVI 

-1 -- -- -11 4X, 
&-X- I 

4- 

Mk I -t 

____________________________________ 
I 

N-4 L N+l 

A 

X or r 

4- 
2' LR 

(a) Subcritical Flow 

M 

N-1 LRN 

A 

-I- 
1- 

-4 Ax Ax x or r 

(b) Supercritical Flow 

Figure 4.3 : The Mirror Image Concept at the Boundary Points 

Figure 4.3(a). An imaginary domain at the outer side of the boundary 

is assumed and at the same time a flow field is introduced to the 

imaginary domain whose depth and velocity are reflections of 

those on the real domain. Thus, for the left boundary 

-u 2; 2' =H 

and for the right boundary 

N+l = -U N-1 ;H N+l H N-1 

(4.5) 

(4.6) 
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Then the solution at point M in each boundary is possible. 

For supercritical flow there are two characteristic lines 

from point M at the right boundary, so there is no need to the mirror 

image concept since the two lines are on the real side as shown in 

Figure 4.3(b). While, at the left boundary there is no characteristic 

line at the real side and the mirror image is not appropriate. 

Both variables must then be specified independently since they are 

unaffected by changes within the problEým area. 

In fact , the mirror image concept appears simply as an 

elaborate technique for setting u=O. 

4.3.4 Boundary Resistance Formula 

In the past, considerations of simplicity in mathematical 

manipulation have led either to the Chezy formula or to the Manning 

formula in terms which represent the unsteady frictional resistance. 

The only attempt (to the best knowledge of the author) to apply the 

generalised Colebrook-White (C-W) resistance formula in the dam- 

break problem was made by Das (1978) and Barr and Das (1980). After 

an extensive review of the existing resistance formulae by Das (1978), 

the Colebrook-White function, as generalised by Barr (1976), was 

chosen to assess the range of effect of resistance. In such a 
form this generalisation is explicit for friction factor and 

generates appropriate transition routes for different resistance 
types. The advantage of using the Colebrook-White function, as 

opposed to the use of the Manning or of the Chezy type, is that the 

latter cannot be held to deal with other than totally rough turbulent 
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flow on any consistent basis. This is particularly relevant where 

comparisons are to be made with unsteady flows at laboratory scale. 

Therefore the Colebrook-White function continues to be appropriate 

for the resistance term in the present work. 

The direct application of the Colebrook-White formula is 

implicit for friction factor X. An explicit approximation to this 

transition formula was given by Barr (1973). 

The generalised Colebrook-White resistance formula adopted here 

is: 

1=2. Log ( 
3.7d 

e) 
- 2A Log I[Log-l( 2H )] 1/A 

+(3.283 ) 1/A 
v -x ER W 

+l 
R** 

(4.7) 

where de is the equivalent diameter of the open channel, replacing 

pipe diameter, which is given by four times the area of flow divided 

by the wetted perimeter; K is the Nikuradse's equivalent sand 

roughness size, R** is an approximation for the roughness Reynold's 

number R*, and AýEjH, W are the indices and constants required for 

control of the transition route to match experimental evidence. By 

definition: 

1 
de IK 

where R is Reynold's number ud e 
/v and for explicit calculation 

R 0.2149 
Q 0.89 

K 
0.89 d 1-89 

e 

(4.8) 

(4.9) 
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where Q is discharge and v is kinematic viscosity. The friction 

slope Sf appearing in the characteristic conditions is then given 

by 

CZ Xu (4.10) 
-f - 2gd 

4.3.5 Negative Wave Characteristics 

Referring to Figure 4.4 (at the end of the chapter) it appears 

that numerically obtained depth profiles approach the horizontal 

tangentially. This is not theoretically true since the negative 

wave front represent a discontinuity in the slope of forward 

characteristics emanating from the undisturbed zone in the reservoir. 

The depression wave front is therefore, in theory ,a discontinuity 

in the slope of the depth profile. Evidently an interpolation across 

it is incorrect as illustrated in Figure 4.5. In order to find the dependent 

variables at point M, the values of u and c must be known at points 

L and R by interpolating between the grid points as explained in 

Chapter Three. In the case of a negative surge, point L would be on 

the wave path and not an the grid line; therefore the interpolation 

should be along the wave path. 

The view was taken that a more precise computation of the 

negative 
_wav_e__, 

would lead to an excessively complicated and time- 

consuming model. It seemed likely that any error in the negative 

wave would be confined to the upstream grid point and small in the 

context of the entire flood wave computation. 
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Figure 4.5 Discontinuity Manifest in Negative Wave 
Propagation and Smoothed Numerically 

According to Chen (1982), a comparative computation of the 

negative wave supported this view. Here, further evidence is 

given by the comparison made between the author's (X-T) numerical 

model and Ritter's solution, as shown in Figure 4.6. Linear 

interpolation is used between two adjacent grid points [i. e. between 

U-1) and I one hand and I and (I+1) on the other]. The space 

increment, Ax, was chosen to give a reasonably large total number 

of grid points (N=81) along the entire computational line (being 

the total distance occupied by the reservoir and the downstream channel 
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of 100 m). The initial upstream water depth H1 was 10.0 m and the 

fictitious downstream water depth H0 was 0.001 m so as to simulate 

the dry bed. 

Figure 4.6 shows a good agreement between the numerical model and 

the analytical solution, but some smoothing of the numerical depth 

profile appears at the upstream end of the reservoir. In order to 

reduce this effect a fine mesh spacing seemed necessary on the 

reservoir side only rather than throughout the entire flow. A 

number of numerical experiments were conducted with (1/2 At) and 

(113 At) chosen as time increment in the reservoir while At was 

the time increment in the downstream channel side as usual. 

Figure 4.7 demonstrates how an interface separates the two 

regions of different mesh sizes At and (113 At). The stability 

consideration would, in general, limit the overall time step to that 

for the region with the smaller Ax (say Ax'). We can, however, 

calculate points in the two regions at different time steps, each 

being governed by the stability condition in its own region. Points 

in the interior of the regions may be calculated in a straightforward 

manner whilst the only difficulties arise at the interface between 

them. We can see in Figure 4.7 that solution of point M1 is normal, 

with L1 being found by linear interpolation betweeen (I-1) and I, 

at time t0, and R1 similarly from I and (I+1), also at time t0. 

However, we can proceed to point M2 by obtaining L2 by interpolation 

between U-1) and I at time (to + 113 at) whilst still determining 

R2 between I and (I+1) at time t0. This process can continue during 

the total time of integration from to to (t 
0 +. At). The rest of the 
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Figure 4.7 Calculation at an Interface when the Time Step 
of the Integration is Not Equal in the Two 
Regions 

points 0+1) and so on, at time (t 
0+ 

At), in the right-hand region may 

then be calculated so that the whole solution is determined at a 

common time and the process may be repeated. 

This scheme is capable of extension to a multiplicity of regions 

in each of which the mesh size is the same but differs from that in 

neighboring regions by an appreciable factor. The time step of 

integration in each region is then calculated to give stability in 

that region and the region with smallest time step found. The 

calculations start in this region and the solution is built up to 

suit the smaller of the time steps required in the two adjacent 

regions. The solution in that region may then be calculated and this 

continues, at each stage building the solution up to the region with 

the larger time step until finally the whole solution is again 

obtained at a common time. This process results in a substantial 

economy of computer time when compared with the alternative of a 

large number of equally spaced points throughout. 
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Figure 4.8 is the numerical result from such an (X-T) model 

where the nested-grid is used. In the reservoir region the time 

step of (1/2 At) is used which makes the total number of the grid 

points (N) = 106. With a homogeneous increment a total of 81 were 

employed in the normal model whose results appear in Figure 4.6. 

Comparing the depth profile from the nested model with the one from 

Ritter's solution, in each case, indicates better agreement and 

less damping in the former than in the latter discretisation for 

the same problem. Trying another time increment for the reservoir 

region, which is (113 At), makes the total number of the grid 

points 128 as shown in Figure 4.9. A small improvement, only, 

in the profile took place which indicates that (1/2 At) is enough to 

improve the model. 

Figure 4.10 is the result of a homogeneous step (X-T) model 

with large number of grid points. In order to improve the model 

rather more than with the nested-grid with (1/3 At) upstream, the 

number of the grid points must reach 401. 

Comparing the depth profiles in the last four Figures; 4.6,4.8, 

4.9 and 4.10, is not easy since the differences are small. Therefore 

Figure 4.11 contains the four depth profiles which are, from top 

to bottom, the fine mesh for whole flow with total grid points 401, 

the nested-grid of (113 At) at the reservoir region with total 

number of grid points 128, the nested-grid of (1/2 At) with total grid 

points 106, and the moderate mesh with number of grid points 81. 

Clearly there is better improvement by using a universally fine 

mesh rather than a nested-grid but the difference is small while 
the time of computation is much greater. Also the difference between 
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the nested-grid of (1/3 At) and (1/2 At) is very small, confirming 

that the nested-grid of (1/2 At) is a reasonable compromiset keeping 

the computational time low. 

The advantages of three point interpolation were indicated in 

section 3.5. To emphasise this, results from a model with two point 

interpolation are presented in Figure 4.12. This shows a large damping 

in the reservoir region together with the saw-toothed surface 

previously discussed in Chapter Three. The same conditions as in the 

original model (Figure 4.6) were applied except that the interpolation 

was between (1-1) and (I+1). 

The use of a coarse grid in the reservoir is undesirable, despite 

some argument in its favour from the Courant condition, given a 

fixed overall time-step. The prior requirement of resolution is 

demonstrated in Figure 4.13. This indicates a large damping in the 

depth profile for the reservoir region where the distance increment 

is double the one in the downstream channel (i. e. 2Ax). This makes 

the total number of the grid points 71. 

As a general conclusion, to assume completely smooth negativewaves 

is to over simplify. The nested-grid scheme with (1/2 At) upstream 

gives a good compromise with much lower computer times than the 

fine mesh scheme of (N=401) grid points. The ordinary model with a 

moderate number of grid points gives reasonably good results. Although 

a proper treatment of the negative wave requires further work, the 

present model provides excellent simulation of 90', '0 of the flow 

profile and that in the main area of interest. 
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4.4 X-T ýbdel 

4.4.1 Typical Features of Numerical Results 

Figure 4.14 represents a typical example of depth profile 

computations at different successive times (from 0.725 sec. to 4.350 

sec. ), with the initial water depth upstream of 10.0 m& downstream 

the negligibly small H0=0.01 m; in a rectangular, horizontal, and 

frictionless channel. A check calculation showed that mass was 

conserved with errors of less than 0.5 percent. The flow profiles 

all intersect the dam line very close to the height of (4/9 H 1) 

coinciding with that derived mathematically by Ritter. The computed 

velocity at this point also agrees with his value of 2c 1 
/3. 

The effect of bed slope is shown in Figure 4.15 where a 

succession of flow profiles are computed for times of (0.684-2.736 sec. ). 

Conditions are the same as in Figure 4.14 but with a bed slope 

(S 
0 =0.02) and a smaller fictitious base flow depth = 0.001 m. An 

increase in frontal speed with a decrease in frontal height may be 

observed. 

4.4.2 Comparison with Previous Works 

Experimental data on the dam-break problem is required not only 

to allow full assessment of the numerical (X-T) model but also to 

justify extensions of the same principles in the development of the 

radial (R-T) model. According to the literature survey, there is 

hardly sufficient data to test the radial model thoroughly. 

Experiments by Das (1978) had been previously conducted in the 

same Hydraulics Laboratory of this University and were obviously 
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appropriate. Two rectangular horizontal flumes had been used for the 

experiment. The larger flume was 110 ft (33.53 m) long, 5 ft (1.529 m) 

wide and 1.5 ft (0.457 m) deep. A plate, at 25 ft (7.62 m) from the 

upstream end, acted as a dam. The bed of the flume was made of 

steel plate plastered with white paint and had been taken to be 

hydraulically smooth. 

The smaller flume was 14.5 ft (4.42 m) in length, 1.25 ft (0.381 m) 

in width and 0.65 ft (0.198 m) deep. As in the large flume, a gate 

was placed at 2.5 ft (0.762 m) from the upstream reservoir end to 

act as a dam. Thus the length of the reservoir of the small flume 

was 1/10ths of the length of the large flume reservoir. The flume 

was made of perspex. Experimental data on this flume was taken for 

both smooth and rough bed conditions. The roughnesses used were 

single and double layers of steel wire mesh. In both the flumes the 

gate was lifted manually at a sufficiently high speed to simulate 

sudden collapse. 

Water depths with respect to time at different cross-sections of 

the flumes and the position of the front, with respect to time, for 

different configurations of upstream and downstream initial depths 

extracted from Das's experiments are compared with the (X-T) numerical 

model. The computed profiles for the large flume with smooth bed 

are compared with the experimental data and presented in Figures 4.16 

to 4.31. The front trajectories are also compared and presented 

in Figures 4.24(B) and 4.29(B) to 4.31(B) for the same flume. Further 

profile comparisons are made for the small flume with two different 

rough beds; Figure 4.32 for single layer mesh (K=0.044 ft), and 

Figure 4.33 for double layers mesh (K=0.127 ft). Both profiles are 
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computed with computations incorporating the generalised Colebrook- 

White (C-W) function as resistance formula. In all. the comparative 

plots of surface profiles and front trajectories, it is seen that 

there is good agreement between the (X-T) numerical results and the 

experimental data, with an average error of 4.51% for the surface 

profiles and 9.241'0 for the front trajectories. Another form of 

assessment of the (X-T) numerical model may be made by the comparison 

of stage hydrographs. The (X-T) numerical model is compared on this 

basis with the five mathematical models and experimental data from 

Katopodes and Schamber (1983). Two models are based on the Saint- 

Venant equations for open channel flow; the characteristic model 

and the integrated finite-difference model. Three others are the 

approximate flood routing models; the zero-inertia implicit model, 

the kinematic-wave characteristic model, and the kinematib-shock- 

profile model. The experimental data was. obtained at the Waterways 

Experiment Station (WES) [U. S. Corps of Engineers (1960)]. In that 

study, a plastic-coated plywood flume of rectangular cross section 

was used to simulate the dam-break flood wave. The flume was 400 ft 

(121.92 m) long, 4 ft (1-22 m) wide, set on a ý-2% slope, and terminated 

in a free overfall (as mentioned in section 2.3.7). The model dam 

was 1 ft (0.305 m) high and was located in the middle of the flume, 

as shown in Figure 4.34. In the first series of experiments, 

identified as being in a hydraulically smooth channel, a Manning 

(n=0.009) was found to accurately represent the resistance 

characteristics. In the second series, identified as in a tough 

channel, the Manning n was found to vary significantly with depth 

and the value adopted for computational purposes was 0.05, which is 

very high. The bed resistance Sf was approximated by: 
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Figure 4.34 : Initial Depth Before Dam Burst 

5 
22 

nu 
c2R 4/3 
u 

(4.11) 

where n= Manning coefficient of roughnessv Cu = units coefficient 

(C 
u =1 in the metric system, and Cu=1.486 in the English system) and 

R= channel hydraulic radius. 

Figures 4.35 and 4.36 show hydrographs computed-by the (X-T) 

numerical model for the' cases corresponding to both channels under 

full breach conditions, at two points 25.0 ft (7.62 m) and 150.0 ft 

(45.72 m) downstream of the dam site. Figures 4.37 and 4.38 show 

comparisons of the present (X-T) numerical model with the five 

models and the experimental data. It may be deduced that the present 

numerical model and the previous characteristic and integrated 

difference models yielded very close results, as may be expected 

since the three models were based on the same equations. Results 

from all dynamic models show a good agreement with the experimental 

(WES) data. 

The present author has conducted some physical model tests of the 

(X-T) situation, whose comparison with the (X-T) numerical model will 
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be shown in Chapter Six. However sufficient confidence in the (X-T) 

numerical model had been gained from the above to encourage tests 

on the radial (R-T) numerical model which is developed next and on 

the same basis. 

4.5 R-T tbdel 

4.5.1 Convergent Sides 

Referring to section 3.3.2, the main equations in characteristic 

form for radial flow through contracting channel, as shown in Figure 

4.39, are: 

dr 
u+c dt - 

and 

-- 

fu±2c 122 [+ uc + g(%-Sf)] dt f 
1tr 

Lef t 
Boundary Dam 

Si te 

H 

Right 
--, IlQuQda ry 

Figure 4.39 : Dam-Break in a Convergent Channel 

(4.12) 

(4.13) 

Corparing the equations 0.58) and (4.13), the only difference is the 
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sign before the term ( uc ) which depends on whether the sides converge r 
or diverge. 

The flow converges towards the point C located at the extreme 

right of Figure 4.39. It may be anticipated that the radial movement 

causes both surface heights and mean velocities to increase; in 

Figures 4.40 to 4.46 are shown the effects of a contracting channel 

section having different values of rR (the distance from the centre C). 

While the value of rR increases from 0.0 to 400.0 m, the radial effect 

decreases until, when approaching rR = co, the sides become parallel 

and the problem returns to that in (X-T) space. Figures 4.40 to 

4.46 present the depth profiles for different times (from 0.684 sec. 

to 2.736 sec. ) and for a depth upstream of the dam of 10.0 m and a 

'fictitious' depth downstream of 0.001m. A clear comparison between 

the depth profiles for different values of rR is presented in 

Figure 4.47 at 1.368 sec. and in Figure 4.48 at 2.736 sec. It may be 

seen that the depth profiles intersect the dam at heights greater 

than Ritter's ratio (4/9 H1) but reducing to it for large values of rR* 

The heightsand velocities increase as the value of rR decreasesq 

which was expected. 

In Figure 4.49 the present model for a contracting channel section 

has been applied to the conditions studied by Marshall and Menendez 

(1981) using the Random Choice Method (RCM). The initial conditions 

were; H0=2m, u0=0 downstream of the dam and H1= 10 m, u1=0 

upstream of the dam. The flow converges towards the point located 

at the extreme left of the figure. The depth profiles are for 

time 150 sec., 300 sec., and 450 sec. Satisfactory agreement in the 

negative wave region (the reservoir region) can be observed. Howeverg 
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the height and the velocity of the front, as predicted by this author 

are both less than those calculated by Marshall and Menendez. The 

error in mass conservation is less than 0.07%', in the (R-T) model, 

whilst larger errors appear to exist in a conservation check based 

on their results and presented in Figure 4.49(a). 

4.5.2 Divergent Sides 

The main equations in characteristic form for radial flow through 

expanding channel, as shown in Figure 4.50, are: 

dr + 
dt' = U-C 

and 

(4.14) 

(4.15) 

They are the same equations (3.57) and (3.58). Referring to Figure 

4.50, the flow diverges from the point C located at the extreme left of 

the figure. 

Right 
B oundý5 

r 

Figure 4.50 : Dam-Break in a Divergent Channel 
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Figures 4.51 to 4.57 show that the radial expansion causes the 

heights and the velocities to decrease when the value rL decreasesp 

where conditions are otherwise for Figures 4.40 to 4.46. As before, 

when rL approaches infinity the sides become parallel and the problem 

returns to (X-T) space. The depth profiles presented in Figure 4.58 

intersect the dam at heights lower than Ritter's ratio (4/9 Hj) 

and approach it for large values of rU Evidently the model of the 

expanding flow is consistent in predicting the converse of effects 

in the contracting case. The depth profile for a contracting 

section where rR =0.0 is superimposed on Figure 4.58 and shows a 

clear transition from rR =0, through r=-, to rL =0 in both the 

contracting and the expanding cases. Smaller reservoir volume 

and a divergent channel in the expanding case cause a larger 

depression of the water depth profile by contrast with a smaller 

elevation of the profile for the contracting case at the same time. 

The contraction effects are emphasised at later times as shown in 

Figure 4.48 where the flow has increased upon reaching the narrower 

sections. 

ill 
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CHAPTER FIVE 

THE PHYSICAL MODELS 

5.1 Ceneral Layout of Tests 

The reservoir and the downstream channel can be simulated by 

connecting three main sections together, depending on the geometry. 

The three sections are (as mentioned in Chapter One): 

1. Plain or parallel sides (X-T). 

2. Contracted or convergent sides (R-T). 

3. Expanded or divergent sides (R-T). 

The numerical models for each of the above three sections, discussed 

singly in chapters three and four; may be connected together in 

pairs to produce three composite models, as follows: 

1. Contracted - plain (RT-XT). 

2. Contracted - expanded (RT-RT). 

3. Plain - expanded (XT-RT). 

For these three and the plain one, four physical models were built 

in the Hydraulics Laboratory of the University. The models were 

built from four plastic-coated plywood walls. Two walls for each 

side of the dam, the reservoir and the downstream channel, were 

placed and sealed on the base of large steel tank capable of 

containing each composite model. The wall joints were sealed by a 

metallic tape and the bed of each model was covered with clear 

smooth perspex. The gate which performed the role of a dam was fixed 

in the middle of the tank between two wing walls, as shown in 

Figure 5.1 (at the end of the chapter). 
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The first model was the plain (X-T) model with parallel sides 

giving a channel 0.1 m wide, 0.465 m deep and 4.085 m long of which 

1.828 m acted as a reservoir, as illustrated in Figure 5.2. The 

main purpose of this model was as a further cross-check between the 

general performance of the experimental models and the numerical 

ones (since the (X-T) numerical model had already been tested 

against previous work in Chapter Four]. 

The second model was the contracted-plain (RT-XT) model with the 

same (X-T) downstream channel and a section upstream contracting 

from 0.259 m to 0.1 m having same length and depth as the (X-T) model, 

as illustrated in Figures 5.2 to 5.4. 

The third model was the contracted-expanded (RT-RT) case in 

which the previous parallel section was replaced by a section 

downstream expanding from 0.1 m to 0.297 m also of the Bame length 

and depth as the former models, which is represented in Figures 5.2 

and 5.5. 

In the final model the above sequence was continued; the plain- 

expanded (XT-RT) model retained the same (RT-RT) downstream side 

and the previous (X-T) upstream side was reintroduced as illustrated 

in Figures 5.2 and 5.6. 

5.2 Experimental Arrangements and Procedure 

In all models the gate was lifted manually by a quick-lift 

mechanism. The gate moved freely in vertical, plastic grooves 

on each side of an aluminium frame. The gate was lifted by pulling 

a lever connected to the gate by a steel wire through a pulley, as 
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shown in Figures 5.1,5.7 and 5.8. Thus the time required to lift 

the gate was less than 0.1 sec. which, being small compared with 

the wave propagation time, seemed likely to simulate full and 

instantaneous collapse of a dam. 

Prior to the gate's removal, inflow created a reservoir 

upstream. As soon as the dam collapsed, the dam-burst wave moved 

downstream until it was reflected by the downstream dead end. Prior 

to reflection of the front, conditions could be described as 

representing the usual dam-break situation. 

Water depths with respect to time were obtained at six 

different cross-sections along the channel, together with estimates 

of the position of the front. Different combinations of 

upstream and downstream initial depths were employed. Records were 

created largely by the joint use of a high speed tape recorder, 

a chart recorder, three Churchill-type wave probes upstream, and 

three pressure transducers downstream. Photographic evidence was 

also collected. 

The six cross-sections were divided into three upstream and 

three downstream of the dam, being at 0.5,1.0t 1.792t 2.5ý 2.95, and 

3.5 m. from the upstream end of the reservoir, as shown in 

Figure 5.9. At the reservoir side three wave probes were used in 

order to record the drop in the water elevation with time at three 

sections after lifting the gate. The first two probes P1 and P2 

were connected to the chart recorder while the third probe P3 

was also connected to the tape recorder. Since the downstream channel 

was dry for a certain number of experiments the use of wave probes 
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was unsuitable and 'Gaeltec' pressure transducers were deployed. 

These were placed inside cups below holes in the bed of the downstream 

channel so as to transfer an initially small hydrostatic pressure 

from the channel to the transducers. The transducers were also 

connected to the tape recorder, as shown in Figures 5.10 to 5.13. 

The upstream and downstream initial depths were measured by 

a point gauge against which the probes and the transducers were 

calibrated frequently. 

5.3 Measurement of Depth with Respect to Time 

The dam-break phenomena in the physical model takes a short 

time (1-2 sec. ) so that extra care was taken to ensure accurate 

response of the measurement system. The tape recorder has four channels 

to which the three transducers and the probe P3 were connected while 

the two probes P1 and P2 were connected to the chart recorder which 

had six channels. During the experiment the water depths at all six 

sebtions were registered by the chart recorder at its top speed 

(60 cm. min-'). At the same time the depths at the four sections 

P 3' T1, T2 and T3 were also recorded on tape at a speed of 33-4 inches- 

sec -1 
. After the experiment, the tape recorder was replayed at a 

slower speed (15/16 inches-sec-1) through the chart recorder at its 

top speed, thus spreading the wave over a larger time (exactly 

four times the original recording time). This made for the most 

accurate extraction of points for comparison with the numerical 

models. 

Each experiment was repeated more than twice to allow for 

variations in the initial conditions. As the gate was operated manually 
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it was unlikely that the speed and the time of lifting the gate could 

be precisely repeated. However, for the majority of the experimental 

pairs, very little difference was observed between the wave features 

generated by nominally the same initial conditions. The results 

of two typical experiments are shown in Figure 5.14 as recorded 

by the chart recorder and a replay of the same two experiments is shown 

in Figures 5.15 and 5.16. 

Prior to experiments, tests were carried out to find the effect 

of any flow disturbance by the probe P3 on the waves, since the 

probe P3 is very near to the gate. It was found that no measurable 

disturbance was created. In addition to this, because of the 

relative and variable narrowness at some sections, a friction effect 

was expected at the side walls. This was investigated by placing 

the three probes close to one of the walls in the (X-T) model and 

repeating one of the standard tests. The resulting wave fronts did 

not show any significant changes. It was difficult to make the same 

comparison for the downstream wave, because of the nature of the 

transducers. 

5.4 Analysis of Physical Results 

A summary of conditions for experimental runs in all the four 

models, giving the different initial upstream and downstream 

depths (H 
1 and H0 respectively) is presented in Table 5.1. 
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Table 5.1 : Upstream and Downstream Depths (H 
1 and H0) Configurations 

HM H0 (CM) 

H1 =lo cm. H1 =15cm. H1 =20 cm. 

0 Dry Dry Dry 

0.025 0.25 0.375 0.5 

0.05 0.5 0.75 1.0 

0.1 1.0 1.5 2.0 

0.176 1.76 2.64 3.52 

0.2 2.0 3.0 4.0 

0.4 4.0 6.0 8.0 

0.8 8.0 12.0 - 

In order to analyse the experimental chartsq the opening time 

of the gate, not recorded thereon, must be known. A consistent 

estimate of this was obtained by using the numerical model. The time 

between opening the gate and the front reaching the section T1 was 

assumed to be equal to the time calculated by the numerical model. 

It was subsequently observed that the first changes in the trace, 

from probe P 31 occurred very close to this estimate of failure time. 

Thus the starting time of the dam-break can be located and the 

analysis of each recording section can be made, giving attention to 

the various small distances separating the six pens the chart 

recorder. 
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The data obtained from the physical experiments, i. e. water 

depths at the six sections with respect to time, are compared with 

the numerical models in the next chapter. Four kinds of figures 

are presented; the water surface profiles at different timesq the 

stage hydrographs at the six sections, the front trajectory and a 

comparison with Stoker's solution for the front height. According 

to Table 5.1. the total number of experimental runs for each model 

is 23, giving a total of 92 runs for the four models. Only a 

selection of these experiments is presented in Chapter Six, having 

a total number of 32, i. e. 8 experiments for each model as illustrated 

in Table 5.2. 

Table 5.2 :A Selection of Experimental Runs from Each Model 

H0 /H 
1 

ratio 

H0 

downstream 

H1 

upstream 

0 Dry 10 

0.025 0.375 15 

0.05 1.0 20 

0.1 1.5 15 

0.176 1.76 10 

0.2 4.0 20 

0.4 6.0 15 

0.8 8.0 10 
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FIGURE 5.1 : THE GATE AND ITS OCNTAINING VokLLS IN THE STEEL 

TANK BEFORE BUILDING THE 1413ELS . THE POSITICN 

OF THE DOUNMEAM TRANSDUCERS CAN BE SEEN . 
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FIGURE 5.3 : THE RESERVOIR SIDE ( UPSTREAM OF THE GATE ) IN THE 
(RT-XT) NODEL , SHOWING PROBES AND DEPTH GAUGE . 
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FIGURE 5.4 : THE CHANNEL ( DOMNSrREAM OF THE GATE ) IN THE (RT-XT) 

IACDEL . 

173 



FIGURE 5.5 : THE EXPANDING CHANNEL ( DOWNSTREAM OF THE GATE ) IN 

THE (RT-RT) MJDEL . 
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FIGURE 5.6 : THE DOWNSTREAM CHANNEL IN THE (XT-RT) K)DEL , 
SHOWING MIRRORS ATTACHED TO THE SIDE WALLS FUR 
PH9110GRAPHING THE FRONT . 

175 



) 4 

ý4 

bo 
r- 

II 

\ý, \ \\\, 

0 

"_4 

4) 
r--4 

a) 
44 

176 



00 

177 



10 
M 

x 

04 

0. 

C" 
0 

U) 
4-J 5 
4) 

cz (U 

a) 
4-J 
(d U 

Zýý 

ca 

N 

P4 

ý4 

aj 

Lr) 
LO 

ul 

CN 
co Cý 

cq 

W 

4-1 

$-i 

0 

tnl (N 

0 cz 9) 

ul 

Ln 

0 
-I 

U 
U) 

r-4 
cd 
u 

-, 4 
4-J 
ý4 

0 
(I) 

�-. 4 

4) 
r-4 
cd 
U 

U) 

178 



FIGURE 5.10 : PHOTOGRAPH OF THE PROBE AND THE W&VE WNITIOR . 

FIGURE 5.11 : PHOIDGRAPH OF THE TRANSDUCERME a)P, AND THE UAVE 

MN Ilm . 
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CHAPTER SIX 

COMPARISON OF PHYSICAL AND NUMERICAL RESULTS 

6.1 X-T Model 

As indicated in Chapter 5, the physical X-T tests are regarded 

as an important verification of the numerical model, both as regards 

its performance against model data elsewhere and also for its 

confident extension to the R-T case. There was also concern that the 

two methods of depth measurement were each sufficiently accurate. 

The twin wire probes responded directly to depth variations (with a 

small surface tension error) whilst the sensors downstream responded 

rather to pressure. Provided the pressure remained close to 

hydrostatic, its transformation to an equivalent depth was justified. 

A water profile thus inferred from the physical model, which 

corresponded closely with numerical and analytical solutions in the 

X-T case, tends to confirm the position. 

Both physical and numerical tests have therefore been compared 

firstly with Stoker's solution regarding the front height, as 

Presented in Figure 6.11 for different ratios of (H 
0 

/H1) and 

different upstream water depth H, (see Table 5.1). Figures 6.2 to 

6.31 contain both the numerical and experimental (X-T) data in three 

types of computer plots; the water depth profiles, the front 

trajectories, and the stage hydrographs. The water depth profiles 

are given at six different times for each run. The front trajectories 

consist of the time elapsed for the front to travel some distance 

downstream of the dam. The stage hydrographs are presented as 

variations with time of the dimensionless water depth (H/Hl) (the 
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Water depth divided by the initial depth upstream the dam) at the 

six sections (three upstream the dam and three downstream the dam as 

shown in Figure 5.16). The experimental runs are for different 

ratios of the initial depths upstream and downstream the dam as 
illustrated in Table 5.2 where H0A1=0,0.025,0.05y 0-1,0.176, 

0.2v 0.4 and 0.8 with initial water depths upstream of H, = 10,15 

and 20 cm. The reason for taking (H. /H1 = 0.176) was to confirm 

Stoker's theory that the maximum height of the front above the 

initial water level downstream the dam (H 
2 -H 0=0.32 H1) occurs at 

this ratio, as shown in Figure 6.1. Since the front trajectories at 

the three sections (T1, T2 and T3) can be read from the stage 

hydrographs plots, three plots only were presented for different 

initial depth ratios, as shown in Figures 6.4,6.8 and 6.12. 

A good agreement between the experimental and the numerical 

results (with a general difference less than 3%) in one hand and 

between the both and Stoker's solution (with a general difference 

less than Woo) in the other hand regarding to the front heights. 

Close agreement between computed and measured stage hydrographs (with 

a general difference less than 6%) further support the view that the 

experimental work is valid in testing the other three models. However, 

at high ratios (HO/n, = 0.4 and 0.8), immediately after the dam 

break an oscillation with a small dip and recovery was noted in the 

experimental runs as shown in Figures 6.26,6.27,6.30 and 6.31. 

This oscillation seems to have been partly caused by the initial 

downsurge following the first movements of the gate, before the 

latter was clear of the downstream surface. Also some blurring of 

the initial portion of the downstream stage hydrograph inevitably 
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occurs as a result of the turbulent front-whereas the numerical model 

exhibits a rapid rise. 

[6.2 RT-XT MODEL CONTINUED ON P. 219 
FIGURES 6.1 TO 6.31 FOLLOW DIRECTLY] 
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6.2 RT-XT Model 

In this section the author attempts to assess the numerical 

(RT-XT) model which is a combination of the radial model (convergent 

sides) upstream of the dam and the plain (X-T) model (parallel sides) 

downstream. This assessment was aided by making a comparison 

between the results obtained from the physical model which is 

illustrated in Chapter Five and the numerical results. 

Comparison of the front heights with Stoker's (X-T) solution was 

made for different ratios of initial water depths (H 
o 

/H 
1), as 

presented in Figure 6.32. The front height divided by the initial 

depth upstream [(H 2- H 
o)/HI 

I versus the ratio of initial water depths 

(H 
0 

/H 
1) is plotted for Stoker's (X-T) solution, the numerical 

results and the experimental data for different water depths upstream. 

Close agreement between computed or measured front heights (with a 

general difference less than 4%) on one hand and Stoker's (X-T) 

solution (with a general difference less than 3.5%) suggests that 

the upstream reservoir shape has no effect on the front heights to 

some extent since the front height was slightly higher than in the 

X-T case with a general difference of 2%. However, both numerical 

and physically observed water depths upstream of the dam are 

generally higher than in the (X-T) model and exhibit a sharp drop 

in the water profile as it passes through the gate. Figure 6.33, 

photograph of the water profile at the gate and just behind it shows 

this phenomenon, also shown in Figure 6.34 an enlargement of the 

photograph in Figure 6.33. 

Referring to Figures 6.35 to 6.60, numerical and experimental 
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dam-break results are now compared in two types of plots; the water 

depth profiles and the stage hydrograohs, for the same ratios of 

initial water depths as in the (X-T) model. The agreement is good 

and the effect of changing the cross-section upstream is clearly 

exhibited by the depth profile plots, i. e. the depth of water becomes 

higher just behind the dam and then drops sharply when it reaches the 

dam. The difference between the numerical and. experimental results 

generally was the same as in the X-T model. 

[6.3 RT-RT MODEL CONTINUED ON P. 250 
FIGURES 6.32 TO 6.60 FOLLOW DIRECTLY] 
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FIGURE 6.33 : pHmuGRApti OF THE WKTER PROFILE AT THE GATE IN THE 

( RT - XT ) M3DEL . THE SHARP FALL IN THE PROFILE 

IS INDICATED BY THE ARROWS . 
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F IGURE 6.34 : ENLARGEMENT OF THE PtUM"H IN FIGURE 6.33 ; THE 

VATER PROF ILE AT THE GATE IN THE ( RT - XT ) K)DEL 

SwIL CIRCULAR %lkVEFRCNTS ARE CAUSED By DROpS 

FALLING FRCM THE GATE - 
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6.3 RT-RT Model 

The numerical (RT-RT) model is a combination of two radial 

models, with convergent sides upstream and divergent sides downstream 

of the dam. In order to assess the numerical model a comparison 

between the numerical results and the experimental results is also 

carried out in this section. 

In Figure 6.61, comparisons of the front heights resulting from 

the (RT-RT) numerical and physical models with Stoker's (X-T) 

solution, after dam-break, for different ratios of (H 
0 

/H 
1) and 

different initial depth upstream the dam as illustrated in the 

previous sections. The agreement between the numerical and the 

experimental results is good with a general difference less than 5l'oe 

The numerical results are slightly higher than the experimental 

results where the ratio (H 
0 

/H 
1) is less than (0.176) while the 

opposite is true for values more than (0.176). The front heights 

are substantially lower than the front heights (20% lower) which are 

computed either by Stoker's (X-T) solution or by the XT-RT modelt 

presumably because of the more radical cross-section change now 

effected by the wall alignments upstream and downstream. 

As for the X-T channel, if the dam-break wave propagates over 

dry bed downstream, there is no substantial shock at the front. 

A tip region of small heights is formed, which is pushed by the 

upstream mass of water, as shown in Figure 6.62. While the water 

surface is high just behind the dam a noticeable drop occurs in the 

water height after the dam. Since the walls were made of wood, 

mirrors were fitted inside to help in taking the photographs. Two 
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large mirrors were fixed on the both walls and the reflection of 

the water profile from one mirror to the other was taken its 

photograph. 

As the flow passes through the expansion downstream the dam, the 

height of the wave front and the depths behind it are reduced, as 

shown both in Figure 6.63 and in Figure 6.64. Downstream of the dam 

a short reach exists with supercritical flow and a depression in 

the water profile. The reach ends with an oblique hydraulic jump. 

These phenomena are clearly defined in the comparative plots of 

Figures 6.65 to 6.90. The plots again consist of two types; the 

water depth profiles and the stage hydrographs, for the same ratios 

of initial water depths as previously in sections 6.1 and 6.2. 

In all of Figures 6.65 to 6.90, the agreement is good between 

the physical and numerical results with a general. difference less than 

5 al ., a, The depth profile shows enhancement of the feature observed in 

the RT-XT model whilst now the sharp fall is connected to the wave 

-front through an hydraulic jump, except where the bed is virtually 

dry downstream. 

[6.4 XT-RT MODEL CONTINUED ON P. 2 81 
FIGURES 6.61 TO 6.90 FOLLOW DIRECTLY] 
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FIGURE 6.62 : PHOTOGRAPH OF THE WATER PROFILE DOWNSTREAM THE GATE 

IN THE ( RT - RT ) NMEL ,HI= 15 an AND H0= DRY - 
THE FRONT IS NARKED BY THE ARROW . 

FIGURE 6.63 : PHUTIOGRAPH OF THE W&TER PROFILE DOMNSTREAM THE GATE 
IN THE ( RT - RT ) MCDEL ,HI= 15 an AND Ho= 1 .5 an 
NOTE THE HE lGiff AND SHAPE OF THE FRONT . 
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FIGURE 6.64 : PHOTOGRAPH OF THE 'WATER PROFILE DOlWNSrREAM THE CATE 

IN THE ( RT - RT ) NMEL ,HIý 15 an AND H0=3 an. 
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6.4 XT-RT Model 

The numerical (XT-RT) model is a combination of the plain (X-T) 

model, with parallel sides upstream of the dam, and the radial (R-T) 

model, with divergent sides downstream. The assessment again begins 

by making a comparison of the front heights of the numerical model 

both with those of the physical model and with Stoker's (X-T) 

solution, as. shown in Figure 6.91. The same ratios of (H 
0A1) and 

the same initial depths upstream the dam were employed as in the 

previous sections. The same difference was also found as in the RT- 

RT model, while the front height was slightly lower (in general 2%) 

than the front height in the RT-RT case. 

Referring to Figures 6.92 to 6.94, the same phenomena occurred 

as in the RT-RT model, but slightly less obviously. These phenomena 

are also defined in the comparisons given in each of Figures 6.95 

to 6.120, having the same general differences as in the RT-RT model. 

(6.5 OVERVIEW OF THE FOUR MODELS CONTINUED ON P. 311 
FIGURES 6.91 TO 6.120 FOLLOW DIRECTLY] 
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FIGURE 6.92 : PHCYIDGRAPH OF THE WATER PROFILE DOIWNSrREAM THE GATE 

IN THE ( XT - RT ) KDEL ,HI= 15 cm AND H0= DRY 

FIGURE 6.93 : PHCYIUGRAPH OF THE 'WATER PROFILE DOWNSrREAM THE GATE 
IN THE ( XT - RT ) MCDEL ,HI= 15 an AND H0=1.5 an. 
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FIGURE 6.94 : PHOTOGRAPH OF THE WALTER PROFILE DOWNSrREAM THE GATE 

IN THE ( XT - RT ) NMEL ,H1ý 15 cm AND H=3 cm. 
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6.5 Overview of the Four Models 

In this section, a comparison of the four physical and numerical 

models is presented. In order to make the comparison clear, Figures 

6.121 to 6.128 are presented on two facing pages. 

Figure 6.121 illustrates the comparisons of model front heights 

with Stoker's (X-T) solution. In all cases, the difFerence between 

the numerical and experimental results generally less than 5%. 

Stoker's (X-T) solution lies close to those from (X-T) and (RT-XT) 

models, but it is substantially (20%) higher than in the (RT-RT) 

and (XT-RT) models. 

Comparing the front heights of the (X-T) and (RT-XT) modelsl 

00 shows the front heights in the (RT-XT) to be slightly (say 2%) higher 

in general than in the (X-T) model. A somewhat higher figure applies 

for downstream depths close to those consistent with maximum front 

height. The same occurs in the (RT-RT) model whose front heights are 

higher than those in the (XT-RT) model. Evidently the converging R-T 

reservoir, of greater area than in X-T space, enhances the momentum 

supply per unit width and encourages a higher downstream surge. 

Conversely, the R-T expansion downstream both encourages greater 

energy dissipation and also decreases the momentum supply (per unit 

width) - leading to lower surges. 

The value of the shock fitting method in the simulation is clear. 

Figure 6.122 presents instantaneous profiles from the four models, 

where the initial depth upstream is (H 
1= 10 cm) and dry bed downstream. 

The profiles were selected so that, in each case, the front had 

reached the same point downstream of the dam, although the time 
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required to do so was different. The same time was required in the 

(X-T) and (RT-XT) models and which was lower (by 11.6%) than for the 

(RT-RT) and (XT-RT) models. This is consistent with the wave fronts 

of the (X-T) and (RT-XT) model being higher in depth and faster than 

those of the (RT-RT) and (XT-RT) models for the reasons above. The 

water depth profiles of the (X-T) and (XT-RT) models are cutting 

the dam site at height (0.444 and 0.424) of H1 respectively. The 

first of these figures supports Stoker's theory since the walls are 

parallel upstream of the dam (plain reservoir) whilst the second is 

slightly lower than the (4/9) ratio in the case of (XT-RT) model 

because of the divergent sides in the downstream channel. Conversely, 

the water depth profiles of the (RT-XT) and (RT-RT) models are higher 

than the ratio (4/9) being 0.516 and 0.498 respectively. This is 

because of the convergent walls upstream of the dam in both models 

whilst the divergent walls downstream in the RT-RT model supress 

the increase. The water depth in the (RT-RT) and (XT-RT) models 

falls suddenly at the transition section (at the dam site). 

As downstream depth ratios increase up to and beyond the critical 

value of 0.138, we may eventually expect a 'drowning' of the 

accelerating flow through the dam site. Prior to this, a transition 

from the supercritical flow immediately below the dam to subcritical 

flow behind the front appears - in the form of a weak hydraulic jump. 

This feature is well demonstrated by physical and numerical models 

of R-T downstream cases especially in Figures 6.123 to 6.128. 

The general comparisons between experimental and numerical 

results and also of both these with Stoker for the front heights 

indicate small differences. For a summary of these differences 

see Table 6.1. 
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TABLE 6.1 : ME SURAWY OF THE GENERAL DIFFERENCES . 

H 

I 

Front Height 

1 
HO/H Ix 

Depth Profile 

ff (N Th D The Four Models % Difference ) 
erence o. e i X-T RT - XT RT - RT XT - RT 

Difference between Exp- 
erimental & Numerical 3% 4% 5% 5% 
Front Heights (1) 

Difference between Sto- 
ker's Front Height and 4% 3.5 % 209/o 2Vo 
the Experimental & Num- 
erical one (2 

General Difference bet- 
ween Experimental and 6% 6 5% 5 %' 
Numerical Results (3) 

Al so ; 

The Front Height in General f or Model 

RT - XT Higher than X-T by 2% 

and 
RT - RT Higher than XT - RT by 2 
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CHAPTER SEVEN 

DISCUSSIONp CONCLUSIONS AND RECOMMENDATIONS 

7.1 Discussion and Conclusions 

7.1.1 This study was aimed at numerical simulations of dam-break 

flood waves in prismatic channels with either a dry bed or finite 

water depth downstream. The theoretical basid behind such problem 

was established and followed by the development of numerical models'. 

Both the well known X-T case and the less studied radial flow (R-T) 

situation were simulated. The X-T model not only reproduced the 

basic Ritter (1892) solution but also compared. well with the numerical 

and physical models by Barr and Das (1980). The radial flow model 

reproduced the effects anticipated for convergent and divergent 

walls, namely: 

a. Both surface heights and mean velocities, increased in the 

convergent sections and decreased in the divergent ones. 

b. The depth profiles intersected the dam. at heights exceeding that 

from the ratio 4/9 in the convergent sections and lower in 

the divergent ones. 

7.1.2 Combinations of the three basic models2 namelythe (X-T) 

with parallel sides and the (R-T) model with both convergent and 

divergent sides led to a further three composite numerical models; 

the contracted-plain (RT-XT), the contracted-expanded (RT-RT), 

and the plain-expanded (XT-RT) model. Physical models were built 

and tested in the laboratory in order to assess these numerical 

models. From the comparison of the numerical results and experimental 

data relating to front heights, surface profilesq front trajectories 
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and depth hydrographs, it is claimed that the composite numerical 

solution provides satisfactory simulation of the following phenomena, 

also observed on the physical models: 

a. The converging R-T reservoir, of greater area than in X-T 

space, enhances the momentum supply per unit width and 

encourages a higher and faster downstream surge. 

b. The R-T expansion downstream both encourages greater energy 

dissipation and also decreases the momentum supply (per 

unit width) - leading to lower and slower surges. 

C. The water depth profiles of the (XT-RT) model cuts the dam 

site at a height of slightly less than given by the (4/9) 

ratio. Conversely, the water depth profiles of the (RT-XT) 

and (RT-RT) models are higher than this value. 

d. The water depth in the (RT-RT) and (XT-RT) models. falls 

suddenly at the transition section and a short reach exists 

with supercritical flow. The reach ends with an oblique 

hydraulic jump. 

7.1.3 The explicit form of the characteristics method with specified 

time intervals also incorporated the Rankine-Hugoniot shock equations 

for computing the propagation of the shock front. The technique, 

which is often called the shock fitting method, gives a clear-cut 

front, but whose height closely matched the observed values in the 

physical models, confirming the useful nature of this particular 

technique. 

7.1.4 Certain numerical difficulties, peculiar to this problem, 

were also resolved. These arose firstly where flow depths approached 

zero near the leading edge of the advancing flood wave (i. e. ý the dry 
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bed in the downstream channel) and secondly, near the upstream end 

of the finite-length reservoirs. Both cases were treated successfully 
4 by assuming a small fictitious depth of flow. A value of 10- times 

the initial water depth upstream the dam, of the order of the machine 

precision was found suitable. 

7.1.5 The usual two-point interpolation process tended to cause the 

water surface to exhibit saw-toothed variations. This was 

corrected by interpolating between two adjacent grid points to find 

the intersection point. This situation was also found to occur by 

Liggett and Cunge (1975). 

7.1.6 The numerical dissipation causes reductions in the water level 

on the reservoir side and arising from ignoring the negative wave 

computation can be reduced to an acceptable level if smaller time 

steps are used upstream of the dam. The nested-grid of Q-2At) upstream 

the dam gives a good improvement with low computer time consumption. 

7.1.7 All the models were run for a sufficiently long time to 

allow the conservation of mass to be checked against the initial mass 

before the dam failure. The mass consumption, was, very small (less 

than 0.5%) as a computational error. 

7.1.8 The (X-T) numerical model was also found to compare well 

with five mathematical models and experimental data (Katopodes 

and Schamber (1983)]. The (R-T) convergent sides model compared 

well with the numerical model of Marshall and Menendez' (1981) in the 

negative wave region. A disagreement in the positive, wave front- 

seems to have been caused by the mass creation (3.661,16 of the'initial 

mass) in Marshall and Menendez's model. The author Is, (R-T) model 
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consumed only very small mass (0.07d'a of the initial mass).. 

7.2 Recommendations for Future Studies 

7.2.1 In the negative wave calculation, the depth profiles approach 

the horizontal tangentially. This is physically reasonable but 

theoretically incorrect, since the negative wave front represents a 

discontinuity in the slope of forward characteristics emanating 

from the undisturbed zone in the reservoir. The depression wave 

front therefore also represents a discontinuity in the slope of the 

depth profiles, so that careful interpolation along it is 

suggested as a future refinement of the numerical model. The true 

flow position would require consideration of velocity variation in 

the vertical plane. 

7.2.2 A small fictitious depth made possibl*e ', simulation of the 

dam-break flood wave in a dry channel and near an upstream end of a 

finite-length reservoir with success. The generality of such 

fictitious initial and boundary conditions is questionable, although 

the models behaved well in such conditions. However, in the light 

of the method of the characteristics, satisfactory and more 

rigorous simulations of the movement of the liquid edge over dry 

bed have been obtained by Chowdhury (1982) - which may be relevant. 

7.2.3 The (R-T) convergent sides model was compared only with 

Marshall and Menendez (1981) numerical model, and a good agreement 

in the negative wave region was observed, as stated before. In the 

author's physical models comparison was possible in the negative 

wave region, also with close results. No downstream convergence 

model was tested, so that for positive wave verification a physical 
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study seems to be essential in order to assess the complete range 

of the R-T numerical model. 

7.2.4 The radial (R-T) models have been applied only to the 

rectangular channel with a smooth horizontal bed. A useful 

extension of this work may be made by studying the effects of 

different channel sections, bed slopes and resistance values. 
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