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ABSTRACT

By means of finite Pourier transforms the Creen's function and
hence the general solution is found for the Chaplyzin equation of motion
for an important class of flows, i.e. 2-dimensional non-viscous
coapressible 'simple wedge flows' vith circular sector hodographs (these
flovs have been defined and classified according to their hodograph
diagrams by Birkhoff and Zarantonello). From the solution expression for
velocity potential and physical space coordinates are derived in terms of
the hodograph variables.

For the particular case of Réthy flowvs the solution is used to find
the drag coefficient, firstly in an exact analytical form and then, for
sonic jet flows past thin vedges, as a series in ascending powers of the
vedge angle; comparisons are made with the results obtained from the
approximate equations of Tricomi and of Tomotika and Tamada. The study
of sonic Réthy flows of small wedge angle is taken further and series vhich
are uniformly valid for all possible source velocities are found for the
wedge length and stand-off (i.e. distance of the wedge from ¢he channel)
in terns of the (small) wedge angle. From these series certain limitstions
on the lengths and pressure differences can be determined. Some examples
of the general solution (including the solution for Réthy flows) are
discussed in relation to earlier published papers and a discrepancy in
some Russian papers is explained.

The thesis ends vith a theorem on sonic jets. This states that for
simple wedge flovs involving sonic jets, the physical changes due to the
presence of s0lid boundaries in the flow are completed within a finite

distance in those directions in vhich sonic jet flow prevails.
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CHAPTER I

INTRODUCTION

The application of the hodograph method to the equations of
gas dynamics dates back to the turn of the century; it was devised
by Molenbrock in 1898 and used fairly extensively in work on gas
Jets by Chaplygin in 1902. It was not for another thirty years,
hovever, that the full significance of Chaplygin's work was
apprecisted, vhen it was used in the researches of Demtchenko snd
Busemann. More recently (19%7) a gemeral theory for the use of
the hodograph plane for problems of compressible flows past a body
vas presented independently by Cherry (6) and Lighthill (15); ¢heir
wvork has paved the way for the extensive field of research covered
since and still being developed.

Briefly, the method consists in changing the independent varisbles
in the equations of motion from the physical co-ordinates to the
components of velocity. For incompressible (stesdy) flow, the
resulting equations for the stream function $ and the velocity potential
¢ eare still lLaplacian. The effect of the transformation in
compressible flow is to linearise the equations of motion, thus
enabling analytic technigques to be applied in sttempts at solution.
Against this remarkable sdvantage of linearity, however, has to be
set the one drawback of the hodograph method, viz. the difficulty
in assessing boundary conditions. In the Lighthill and Cherry
method, for example, solutions are obtained by generslisation and
anelytic comtinustion from the corresponding solution in incompressible



flow; then the doundary has to be determined a posteriori from the
generalised solution, the boundaries for incompressible flow being
only a limiting case of the compressidble flov boundary. But for
prodlems involving jet flows, vhere the dividing streamline is either
s straight line or free (and therefore of constant veloeity), mo such
difficulty is encountered and the boundary value problem can be set
up immediately in the hodograph plane.

The equation of motion in the hodograph plane of & two-dimensional,
steady, ica-visoous irrotaticnal, coupressible flov of an idesl
polytropic flunid as given by Chaplygin (5) is

hr‘(l-ﬂ}‘% = LT{I-F(P—')T}# -+ {l—(lﬁ’fﬁf}?ﬁe{ = 0 (1.1)

vhere t is related to the resultant speed q at any point by the
relation v ® qz/q‘z. q, being the maximm possible speed in the fluid
under adisbatic expansion; and 0 is the angle made by.'the flovw with
some fixed direction, usually teken as the direction of flow in some
region vhere the streamlines are parallel straight lines. B8 is
related to v , the ratio of specific heats, by 8 = 1/(v-1). A
general solution of (1.1) in which the variables are separated was
given by Cheplygin himself; o second such solution was defined by
Lighthill in 1947. Both solutions involve hypergecmetric functions
and are quoted in Chapter III.

If the variable v is trensformed to ¢ vhere

" ow oL i =T pg (1.2)
‘l(v—r.) T



L being the value of t st soniec speed, chap.‘lygin"s equation assumes
the simple form

&’ + k(o-)gt# = 0, (1.3)

vhere k(o) = (1t )28(1-t/z,)/(1-t)20%)

The complexity of the solution of the Chaplygin equation has
encouraged meny authors to seek approximstions to the equstion,
particularly in the form (1.3). The simplest of thews, & replacement
of (o) by the first term in its Maclauwrin expension, leads, with the
change of variable n hﬂ)"c » %o the equation

g:*yf‘_+ t'% = O.

!hoolnticnetthhqutiuimolm!uadhutimmmm.
widely discussed by Tricomi. lm.tmmmiodhm«u
valid only for small perturbstions sbout ¢ = O (i.e. v = v ),
l-o.mh.miamdmauﬂtueﬂunwiupm
(“0000). But it has been videly used (and with good results)
for a variety of problems involving nesr-parallel flows st near-somic
spoods. WM.MmeMuﬂtn
both the sonic and the stagnation point is due to Tomotike and
Tamads (22). Here

R St APRR TP LY ) 1
The solution again involves only Bessel Functions, dut is more complex
then ibe Tricomi solwtics.

In recent years a grest deal of ressarch has gone into the
solution of the Chaplygin equation im its exact and spproximete forms



L
tamicnlueh-mofnov. For exmmple, Germain (11) has shown,
wvith particular reference to the Tricomi and Tomotika end Temadas
equations, how transform techniques can be applied to gemeralised
equations of type (1.3). His ideas have been developed by Mackie (16)
and used to obtain am exact solution for the "Roshko model™ problem.
Bergman (3) has used another method, defining operators vhich transform
analytic functions of a complex variable into stream functions defined
in e ‘pseudo-logaritimic' plane to solve the Chaplygin equation for
e wide class of flows.

Yet another method of solving the Chaplygin equation, this time
ruthclmofﬂmdmbyﬁrmmmnou'dqh

flovs past wedges" with ecircular sector hodographs (c.f. Chapter II),
forms the first part of this thesis. The method, although not so
generally applicedle as those just mentioned (of Germein, Masckie and
Berguen), nevertheless gives a simple and direct solution to the exact
Chaplygin equation itsel? (rather then the generalised form (1.3)) for
an important class of flows. Once the general solution for the
strean function ¢ (in terms of the velocity components t and © ) has
mm.awmimmmnmwmommm
wm«:.mht«-«ruc.rwﬂm.
nmvanmmrmuammm
are spplied o the special sub-class of Réthy fiovs. The wedge length
mmm«dﬂcimmm,ﬁrnhummurm.

mm,fcaunicjnm-uwmc.hthofmoru

series in ascending powers of a. Bhuu-minmmdng



5.
coafficient arc subseguently found, starting from the Tomotiks &nid
Tamada equation and from the Tricomi equation (in place of Chaplyginj;
interesting results come out in the comparison of the three series.
The study of Rethy flows of senic jets past thin wedges is then
taken further in order to find out exactly hov the length of the wedge
and its distance from the channel vary with the wedge angle (a), the
channel width and the source velocity, and hence to find the variation

possible in predetermining initial conditions for setting up such a
flow.

Bafore returning to more general resulis, one chapter (VII) will

be devoted to a study of some recently published papers vhich are

connected in one way or another with the work of this thesis. In

particular, ssveral Russian papers contain solutions of the Chaplygin
equation (obtained by various metbods) for flows which are included in
the generzl class defined here.

Finally s theorem is proved for the general flows defined in

Chapter II, vhen the free stream velocity is sonic. In 1947 ’

Ouderley (V) proved that a jet of inviseia gas, issuing wvith sonic
speed on the free boundary from a hole in an infinite straight vall,

Wamifouptnn.looniajnataﬁnitediume from the

hole. The same result, imcluding a calculation of the 'length' of the

Jet was given later by Roumien (20), Oviaunikov (19) and Germain and

Bader (12). In the final chapter of this thesis, Guderley's result

is gemeralised to all simple flows past vedges with circuler sector

hodographs; for all such flows it is proved that when the pressure



&,
on the jet surfece inm such that the frece siream velecity is sonic, ail
the disturbances due to the presence of solid boundaries in the flow
take place vwithin a finite distance, after which the flow continuen

as & mnifore parallel sonic stresm.



CHAPTER II

THE BOUNDARY VALUE PROBLEM

The boundsry value problem for the solution of the Chaplygin
equstion is set up for subsonic and sonic jet flows, whose boundary
hmmmmhhmh.ﬂmmmm.ns
constent sngle to this line, and free, and whose boundary in the
Bodogregh plane is the perimeter of a circular sector of angle not
greater than w . mnmmm.jnnu‘@m.m,
Mwnw.mm.gmm. The corresponding
incomressible flovs, "simple flows past vedges” with eirculer sector
hodographs, have been classified by Birkhoff and Zerantonello (b) as
Mdsmdchuﬂimofcilphnm'(lhphhtmm«
m')umﬁuumhrmuuutiopinmmm.
The bodograph disgrams are unchanged for compressible flow snd can de
used to define the flows to be considered here.

@ A complex velocity field Wz), defined on an open domein R with
closure f is called en Euler simple flow if and only if
(1) R is locally simply covered,
(41) R is simply comnected,
(i33) ¥(s) is bounded and comtinuwous in K,
(iv) the boundery E-R consists of & finite mmber of rectifisble
stremmlines turning through & finite total angle.



The Birkhoff and Zarantonello classification is based on the
formula

11,4'2“'-0'31\‘:. 2+n‘+2-n", (2.1)

Mao.almnzmmimﬂnm&.iMctm,
oceans (i.e. semi-infinite streams) and infinite streams, n, is the
mauwupdmumwmmn.cmma
internal stagnation points in the flow. The method of classification
“iohdnn‘lun.mmhrwimmmm
ww:;wofno.nlaunznﬁmm
free boundaries.

Flowvs with eircular sector hodographs have no intermal stagnation
points and at most one dividing point omn the boundary (at stagration),

i.ec n =0, n3=00rl;
hence, from (2.1) there cannot be more than three singularities om the
hodograph boundary; in fact, the left-hand side of (2.1) must assume
the value 2 or 3. In addition, in order that a flow be stadle (in
the sense that it vill not "splash"), it is necessery thet at every
separation point on the boundary, the flow is from the fixed to the
free boundary and not the other vay roumd. (A geometrieal
configuration as shown in Pigure IT.1 (a) for example is unstable:
the flow represented there is the flow round a pipe elbow; cketched in

(b), which will splash).



FIGURE II.1
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The complete classification, according to their hodograph
diagrams, of stable simple flows past wedges vith circular sector
hodographs, is shown in Pigwre I¥.2. Limiting forms can be obtained
by letting two singularities (demoted by a cross on the boundary)
coalesce or by displacing a singularity into a corner of the
hodograph disgram. Typicedl physical plane sketches of the flows in
1.2 are given in TI.3. Thus II.3 (a), & typical Réthy flov, has a
hodograph disgrem as shown in IX.2 (a) ete. (In figures such as
I1.3 (a) vhere only the upper half plane is shown, the dividing
stroanline is indicated.by =c=c=¢) .

mofﬂ.a(.)mﬂnnwputcvdphucml. Jet
flov past a wedge, flov against a wall, jet flov from a funnel ete.
An interesting limiting caseof (b) is the flov at a cul-de-sac.
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The flows for which this problem is stated are thus ell fiows
represented by the hodograph diagrams in Pigure II.2 and contained
within the range 0 & T & Ty o 0& 6 & v of the velocity variebles.
Let the maximum values of v and © for any given flowv be Y (g 1’.)
and ¥/E (< v) respectively; then the hodograph boundaries have
equations 0 = 0, 0 = ¢/, T =t . Between any two of the

singularities on the hodograph boundaries, the stream function is
constant.

Hence the boundary value problem may be formally stated as the
solution of equation (1.1), vis.
b u-.r),aa;_t_ + T {1+ (e-ﬁr}% w. D u-(ww}%‘_\g_ « 0

Pw 06Ta% , 060a vy whee RET, , Wyew

subject to the conditions
Ve f(‘r) on 8seo0o
¥ = g(r) on eaT/y -
¥ = h (@) on T = ‘l'.

where £(+), £(t) and h(8) are piecewise constant along the
respective boundary lines.



CHAPTER IXI

THE SOLUTION OF THE BOUNDARY VALUE PROBLEM
General ﬁélutions of the Cheplygin equation (1.1) in which the
variables are separated were found by Chaplygin himself and by
Lighthill. Chsplyg:n'l lolueioﬁ, given in 1904 (5) is

A+ ZAnwﬂms{n(na+dﬂ)

sl

vhere A , A and ¢, are constants, and In('l') is the solution,
snalytic at v = 0, of the equicn

BT (1-T) 51@“ + AT{H- (#-;]1-} %QT o {I-—(:.ﬁﬂ)t}u) = Q. (3.1)
It therefore has the form
Q) = . (7) = ‘L’"”",F.. (a,‘ % nel:T)

vhere 2!'1 is the hypergeometric fumction in the usual notation, and
e end bn are related by the egquations
a,+ b, = n-p S W —.!ipn(n-i-.l).

Lighthill (15) giving & second solution of the same form, defines

lf,,;' ‘I’n(‘l") 3 mC \k_n(-r)}m n is & positive integer
. m+ n > 3

W= Y=

! -\l,_n(-r) for ‘tll other values of n

Here C, = I(s )N(ze1-b_)/r(a -n)F(2-b_){r(n1)} Z , and has been
chosen 80 as $o remove the difficulty of the simple Pole intn(t) vhen
n is e negative integer other them -1.

To find the solution mi-ﬁlu the boundary conditions stated
in Chapter IT, it is convenient todviv.ldo‘tho problem into two parts.



In the first part, the solution *1 is found for which
£(z) = g{t) 2 0 in (2.2): this is easily obtained as a Fourier Series.
In the second part h(0) = 0, and more advanced techniques are required
to f£ind the solution. The two solutions are superimposed to give the
final result.
The first part then comsists of finding the solution of (1.1)
that satisfies the boundary conditions
vy= 0O on ©=0 and Os= T/3
{ (3.2)
v = h(e) on .. % T ‘
Mm-hmﬁtiuammnut-tbwthhmycph
plane occur at the pointe Pp('b' 0’), P = 0,1,...p, Vhere
0= 0 &8,Sece s '5 ® ¥/€. [The erd points (7,0 0) and (,,%/¢)
are assumed t0 De singular points both here and in the second part
of the solution. If in fect no singularity exists in the final
solution 9, the singularities in 01 and '2 vill be found to cancel
each other out .] As h(0) is piscevise constant, it may be defined
as
h@) = hy, 8<0¢ 8, , p=oy.. p-1. (heo)
It follows from Figure II.2 and the above remark comcerning the
end points that P s 5. These boundary conditions ere represented
 4n Pigwe I




The most general Chaplyzin solution satisfying the first of
the boundary conditions (3.2) is

¥y = ZA"‘s}v“(r\a;nn}'O

‘Mmq’"-'& arbitrary. The second condition of (3.2)

m in Migure 1X1.2(a).

requires that these be chosen 50 that

2 An: *'.‘ (T‘) Sin '\SQ = h(g)
Hence, by the theory of FPourier sine series,

Alﬂ"n}(‘rb\ = # S. l'i' ((.os n!ﬁ, e "“"_IOPM)'
The solution setisfying both boundary conditicns is therefore

¥, = %_ Z z.:.\ l\,(aosnkbp-mn’!o,n)w Sianil (33)

ne: Pvo Yrslt)

It will De shown in the next chapter that this series is uniformly
convergent everyvhere in the hodograph sector OAB except at the
points P, p= 0, 1, .. Do Thus ¢, is continuous in OAB except at
r,.mamonm.wwofm(q’_ru,).

This result alone gives a solution to the equation of motiom
mmmmum,j‘tmm;m‘w.-

The hodograph diagram for the upper
Balf of the flov is shown in ITI.2(b).

FIOURE IXI.2




15.
If @ = w/u is the finel direction of the flow, the solution by
substitution in (3.3) is

A Z'_:S ..Z.. % (1- mn}r) *a_(a)a:n nJe. (3.%)

Vhen #/¢ = /2, the stream function for the flow pest a plate is
obtained. When w/u also takes the value /2, the solution for a jet
flow against en infinite flat plate or wall is

¥ = LA Z‘ Ao  Vanea (T Sin(lin + 2)0,
m 2n+| Yonsa ()

nro
In the second part of the problem, the boundary conditions ere
Vv = .H-r) on O=0
Y 2900 conPewD
Yy = O o b
Proceeding es in the first case, £(t) and g(t) cumbedgﬁnodu
fr) = f‘ » [ET T, 920,100 §=1, where OuT a8 8%

S("’) . 3,. R ESTA T, Ta0,.Fa d'lt.ﬂ. Ot eT & 4 =T

mmwaumamphuq‘(sq.c).q-o. . @
end R, (v,, %/E), r = 0,...¥, as shovn in Pigure II1.3. Once again
the end points are included ss singwlar points; thus G ¢ b; F ¢ M.




16.
To find the solution, finite Fourier transforms are used to transform
the partial differential equation (1.1) with respect to 6. The
resulting ordinary differential equation in t is then solved by
finding its Green's function to give the transform of the unknown

function ¥(v,0), the required solution being then obtained as the

inverse transform.

w/€
Let ¥(nE,t) -J

#(1,0)sin n{ede be the (finite)Fourier sine
° A

transform of #(v,0) vith respect to 6. Multiply (1.1) by sin nE®
and integrate with respect to 0 from @ = O to 6 = w/§. By using the
boundary comditions it_ is easy to show that

v/ ‘
J: L2 1in ngeas = o [ £(c) ~ (1) glx) - nerCat,v)]. e squation
(1.1) transforms into the crdinery differential equation
w-m) &2 {14 (poar) df {1- Gp+ )Tt P
= = n¥ {1.-— (zp-u)«-}{{(ﬂ - (-J)"g(f)} 2

which, since 1 = 1/28+)) may de writtea in the form

d| x4t - p'yig-v -
d‘-[u--‘-)ﬂ d‘l'] ‘"‘t(.-:)‘..f F,.x('!'),

vhere 7, o(r) = -af(ce}{ £(x)-(-1)%(x)} /hee (112,

(3.5)

The Groen's fumction of (3.5) is the solution Gu(t,t) of the
equation

d | T dek8l _  w'f(q,-
o [(l-ﬂ' o F%‘ffmcﬂ“" = §lx-t)

. (3.6)



vhich (i) is finite at T = 0,
(ii) assumes the value zero on v = %
and (iii) is comtinuous on t = ¢.
[xn this equation &(t-t) is the Dirac delte function]. The most
general Gu(t,t) satisfying (i) and (ii) is

Gyfnt)= {

A‘*n! (r) 5 g of & 4

Blyw g = YWy ] ,  T>t (3
vhere A and B are arbitrary functions of t and nf (independent of t),
wnd ¥,.(t) and ¥, (t) are the Cheplygin and Lighthill functions
defined at the beginning of the chapter. To satisfy condition (iii)
it is necessary from (3.7) that |

Aoy (t) = Byny(6)paln) = vuplm) yoy(t) ] (3.8)

and from (3.6), on integrating from t = £-0, to t¢0, that
T=T+0

T (1’1’)—p d an(.r' t)J
T=C-0

i
[

dr

On substituting the value of 5= cbteined from (3.7), this last
condition is equivalent to

orfraf dvm ) ,° o
t(-t)" [Bf L @) = Yyt éﬁ:(_‘)}-— A_d_;!atx_(ﬁ)‘] =1 (3.9)
Bquations (3.8) and (3.9) now give

B=-6"4alt) /0 * 3
t g Li*gii’ Yalt) = Yalt) dg,,,dt(t) 3

qudmiuidcmlmmMmhthcmumot
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the functions "nk:(t)’ and tng'(t); its value, derived simply from

(3.5), is K(1-¢)%/t; from the limiting values of the expansions of
the functions Pnt(t) ete. ds t tends to zero, K is determined to be
equal to nf. Eence |

B= y.y(t) / nY Yoy (T0).
The value of A follows at once from equation (3.8). Thus the
required Green's function, obtained by substituting for A and B in
(3.7), -10

L h" ) [V..;(t)‘}',;(‘l‘.) = Yay(n) \"n':( t)] i Tet
G}(?, t) = { N3 Yay(Ty) il
n & 3 3
-J-n! m_lhx t:_.) [ Yoy (7) Ys U?.) - ¥u(%) Vg (t)] , Tt

To find the solution of equation (3.5), it is now only necessary
to multiply it by its Green's function an(t,t),to multiply (3.6) by
?(r€,%), and subtract, and to integrate with respect to T from v = 0
to T = e After simplifying and using the bdoundary values of G and
¥ , the result is

; Te
VoY, t) = I Falt) Gylmt) dr.

The solution of (3.5), obtained by interchanging v and ¢, is
T
oy, 1) - L Fylt) Gy (t,7)dt (3.12)
To evaluate this integral, it is necessary to’ specify l:'ét) nore
fully. This function wvas originally defined in (3.5) and depends on
£(¢) and g(t) vhich in twrn were specified exactly in terms of £, sad
€. It is convenient for the sake of the notation to subdivide the

problem at this stags and consider first the cese for which g(t) = 0.
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The integral ¥(nf,v) for this problem will be denoted by !'2(n£,t)
and the corresponding solution to the original equation by é.a(t.o).
¥When this has been found, the solution 03(1.0) corresponding to
£(t) & 0 can be written down immedistely by enslogy. The two

solutions superimposed give the required result.
By substitution of the Oreen's function (3.10) in (3.11),

. %
h(ﬂrgf) = :\1? Q.%{ﬂl J; Yo (t) Fy(t) dt
T 5
=4 Van j.y,.,(r) faltldt - 4yt [*:,(t)ﬁ,(t)dt.
Bere -
t) Fastt) = -(z,-7) {L¢ g (6
Py (t) Fastt) -(E‘t;}()?-_ﬂl" n's Yy (£)
= -1; flry dtd,,tx () on using the original equation (1.1)
n

wee g l) = tQ-eyF diaglt) /e,

After some algedra, including the use of the Wronmskien in the form
(™ i) = huMdal®) = n%

mm,mhﬂnmt‘crct‘u.h :
Vg, ) = L4 + 8, " 4 ) 4 T ey,
i nlh e ot bng, "m] % 1,
where : §20, ... 32

Yg = [2 Fy dalglgatm) ~ &ﬁﬁn(f,)mm]
o nigss 2: Fy $a(s) W)
e Tt N

(3.12)
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The solution to the doundary value problem is now obtained by

mesns of the inverse f.r:ufm
y(r,8) = 2 Z J (¥, 7) sinn¥e
T nel
This gives

0
ie = 2 ) L[t wa, Yl 4+ b, 38 Jsinde
‘*.1 o Z n [{'q a"\1 Y ) 9 %’t("t)] (3.13)

which, provided 6 ¥ 0, is equivalent to

- 1@ :‘ an
fo-)+ 2 §ifa, B9+ b g{{v‘;{’(;:)]Sn (g

Ny

The series in (3.13) is uniformly convergent (cf. next chaspter) and

equivalent to (3.18) in tq.s TéT 0 ¢ 8 £ w/E ; hence both

q#l’
expressions give the true value of ¢ in this renge. BHowever, on

® = 0, the series in (3.13) converges to O while (3.1%) converges
to fq { hence only the second expression satisfies the required
boundary condition.

o v @
q ";,1" 'z,g—l - { +°

ﬂ—‘q.' ’ = 0.
The true representation oftz in 0.& 0 & %/¢ is therefore

V.. = - +2. ’lnl(_ b Yl sin }9
ag = HU1R Z» [*+s | Mm] T sy

RETEFu, qr0L--3e

vhere a_ q and bn,q are defined in (3.12).

The corresponding solution 03'!_ (2,0) is

a j" - 2 zu mm. + d, m.‘_‘__]-ﬁnhxo
Vu’i("b) Va (1s) (3.16)

T.$TeT re 00 F-y,

ne)



2l.
where the functions concerned ere defined exactly as inm (3.12),

replacing a by ¢, Dby d, £ by g and q by r.

The complete solution ¢ is obtained by adding 01 and the
appropriate values of ¥, and ¥, given respectively by (3.3), (3.15)
and (3.16). Although each of '1. '2 and '3 has been defined with
singularities at two of the corners O, A, B, the sum ¥ may be shown
to be continuous at any of these points at which there is no
singularity in the prescrided value of ¢ on the hodograph boundary;
the discontinuities in individual parts merely cancel each other out.
(The total mumber of singularities in ¢ is in faect two or three,
oceurring on the hodograph boundsry as indicated in Pigure .2
To sum up, the solution of the Chaplygin equation of motion for

flows with boundaries represented in Pigure III.k is

VIR R AR A (3.4
W P
where Y = _z, 2 (c.osn‘u - C“ﬂxapﬂ)m Sinnip 5
¥ (0)
P-O
Voo = h(1-10) + .‘LZ 2,y b) s b 4a0 ] st
" ‘1 l‘ [ ¥ \l"( b) \h\‘("&)
5"'6 Lo 2 %lo'.....i-')
\P,t_.Q-u-le.‘:_“,‘ dalD) 4 $a1t7) |sinnlo,
S 3'. v LS e ¢n’j (Tb) d“‘ ‘k-gﬂ;):! i
T ¢TsT reQl,.. Fely

with g = L

[2: ( {' - fia) Bty Vats) - 2({‘, ﬂ-c) dl 2)’4’«1("5)]
Py t, ff-%whm,
-Jd

5120 s datmtitn - Z(g,- R A
ni 2 (3" 3'—0 nx(rr) ‘l’m("‘b)



FIGURE ITI.h
As & check, the above solution will be used to write down the
stream function for the flovw of a sonic jet through an orifice. The

diagrams for this flow are given in Pigure III.5

0
s

(Wa  ¥e0 (v

PIGURE IXI.5
tt-o.h ® g = ~q0,s w/E = w/2 . Hence the solution is

8 + &’ $20(?) sinn'%e

2t | z o Mg U
mummmtmwmum(n)wmmm

of the corresponding solution in incompressidble flow. In this

particularly simple case no analytical continustion is required. Nore
complicated examples will be discussed in Chapter VII.
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CEAPTER IV

THE VELOCITY POTENFTTIAL AND PHYSICAL PLANE COORDINATES

The velocity potential for the flows considered in the last
chapter can be found from the gemeral solution for ¢ by means of
the relations

T L (s.1)

231 - e o )3_{_ ;
e W "o 3
Pirst, hovever, it is necessary to examine the infinite series
oceurring in (3.17) for uniform convergence.

Certain esymptotic expansions will be found useful, end are
quoted here for reference. Lighthill (15) hes proved that for n
large and positive,

V(‘l‘) <

kn*’g"‘-

, O0ST T,

ol { e (8.2)
W ~ { e s Tirneay _
R'u“a"" Teg ,  where
(i) s is a negative monotonic increasing function of v, incressing
from -w at t=O0toocat rece ,

(ii) k end k' are constants,
2801 36
(ﬁi)'(t)-E%;—}%] ndiocbm&dtmetionoftvhat¢t..
Hence there exists a constant V such that 0 < V(¢) g V, for

octtt..

When the above expensions are differentiated, ssymptotic



2’&0

expsasions for ¢n(7), and ¢%(t) vhen t <« T, Are derived. VWnen t = L
n

an expansion for ‘n('s) was found from s result given by Frankl (10)’“’%.

The leading terms in the expansions for large positive n are

N(f)m." , os T,

“’) ~ {(n‘n"‘" ret,

(k.3)

+:(ﬂ ~ = WEynd™, ocTeT,

where W(t) = ! 5 v(x) ] , Which is positive and < W (a constant)
(1-v) ar

for v < ¢
s
mﬂ&hamtmt.

The gemeral solution (3.17) can de written in the form
‘r e 1’. - *3 - y] )

Y, = M(9) + g'_!r Z #& s, (n,7T) k‘(n,ﬂ)
ne\
avi 2B,

*hw:lomicadmbymh

7*(1‘) - 5 J..f_‘!!). ~ Aon.*-o A'n.. * ‘;n"h oo
" (%)
Together vith (4,2) for ¢, (v.), this yields

Q.'(‘t.) ~ (B,wqb¢ &w* + B‘w.',"i-w- )t.'w:

Bence on(t.).
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vhere
wn(a) = Q
W, (0) = Naﬂ(O) = .f’(l- So/m) , TeTe T, '1,q' i"
" ®) = Wy (6) = 3,.'59/"" , TeTeT,, reol,.. B
w(nr) w _dml0)

¥nt (7})

u';,("»f) » u;,%(no?) " a'n.‘ %':%)‘) - Lnﬂ?.:-‘a) ) T"f‘ ‘g

-“‘("‘."') . “3 (h7t) = ¢, " Wl . dn. M , Het orm
Vg U%y) Yat "-)
k(n0) = h, (wsn¥s, - cosn¥s,, ) sinnl0

k. (ﬂ, O) = sln nEe
ky(n,8) = sinn(™g-0) = ™" K (n 0)
mﬁrumw«mmor¢ s 1e0e
A—-ﬂ-——u (n.t)k (n,8).

-k

Bow 'Z k'cosnle,&nn‘nl & _'.L']_ when 0< w t{b'o"s 2

Sinu3)a, B+0,) ¥
and ¢ is any positive integer ; hence

(1) 'Z: K, (n, 6) % # , 040 W1, 0486,
. ﬂ‘n“lﬁ t-";‘":..
vere Ho= 23 iy

%, (8,¥) © 4, (Mo, (r)  ; from (K.2) this has asymptotic
expensions
V(f) . '\‘l" 8.) :

0§t &

v “ ’ b ]

winr) ~ -Y-z;.\ L “b-') 0&TET o,
"] X Gt , b % (.8)

—n'i- s N 1‘. - 1; “

It follows that



26.
(ii) thexre exiats sa integw n, , suck thet for n pa,, :x'.? v, (n,7)
is e pocitivi monotonic decreasing function of n for

0g tst.b(t'.md

“‘"G;im' ul(nlﬂ.t)s-‘-f;-,f s O&% TETY €T, vhere K is

the largest of the upper bounds of = Y{t) 'ma!-(,-;-l.ua-l- .
3 V(z) 7% £

From (1), (ii), (14i) and Abel's Inequality, vhen n 3 By, ¢ = 1,2,3,...

me

Z . u(nv) Kine) & T | e L DAY 8V,
ny (I\.H) sin &3

nes 2 O(Oﬁg, 84 6-

mmmmﬂn«-dnmolmmwum
mmmmmnmo-o’.
For all 0,

L w(n,7) k.(n,a)‘ « ul L w(n, ™
n¥ nt

-nX§
r"""-————: e R e

N

-n!r
HK ¢ 3 T wT
ne

k.m‘-.'l‘. : Tl?b‘-r’

Whean 3n, , vhere [s-¢| > |-_-|.b|50 > 0. The series

g - ”—-‘-‘ﬂ‘ converge vhen & > 0 mi‘um
- A > o B
z n i : i dean

Mth-ciufa.thmmmmld
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0& %<7t Comdining this with the previous result, the series

Mﬁiaml@mmmhmmmmm
0OftTé 7. O0g0g v/ excopt at the points (tb, op) (the singular

Amwmnmmmmmm
ctthnciuintznats. Thus, firstly
nit
Zki(h'e)

nel

m0¢cco<2t/tan;lhcnceforo<0¢tiz.1-2

&t @ LW T
$in w¥%/g, ’

mo«.¢%-9<?-;-mhuccm0¢o<v/c.i-s-

Te prove %‘- ui(n.t) monotonic decreasing, ssymptotic expansions for
the coefficients l‘.‘ ete. bave to be found first ; there are
A e'3(5‘— 3@{4)

1#! ) ‘rb"f‘
35.1 ~{ .A.“;N (n!)olbelﬂ(ﬂ'-agﬂ) 3 iy 1_‘} ‘L*Q-l
5 'F‘-l S0 ol A R e

e (o e NI s 1y, e,
4 = B, (" ety

agia i
vhere A, = (£, - 2 )Wl W(x) A= CAEE AL CR
(Mcmohihrmimtqen”man’r).

As a result
CER S ($ = 8q0) n3(s, ~3)
“-& k‘\w(n'q) { -l'\% iAVI e pite Aq’e ks }, T&T, & T
."‘%3 *‘.‘ . .,TIT..GTS~
These are bounded momotonie docmin; functions of n; hence the e
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conditions of Abel's Inequality hold here exactly as before.
mmnlththuim-mguceotthonrinintzin
the range 0 ¢ t ¢ ¢, OQOG'I!.‘mﬂoftsinO(tstb,' .
0g0 < /g
Again, for all 0,

—':E' Il;(n"l") ka.("o 5)' 4 n‘.l (ﬂ 1“)| 1' f§T & T‘" » (L-O,l,..i-i

-nig, -nXg, :
"r‘.'[“w‘ esiocs BT | v

I!-' . ’. T.Tb.
vhere |8 -8 )| 28 >0 for veq

and s -y > B >0 for T v

q
mmociuiuoe hMmmtinOcOstlc.

¢

Q‘Ctttvl ummmmmnmutemmm.-h

%thmhmmmw
&t the points (v, 0). (t...mmcma‘hm. III.4).
ammmmhv,mmmmwu
points (v,, v/¢) (the points R, of III.M).

nmmumm-m'mummthmm

sector 0 vgt, ,080¢ v/E, ¢, is o continuous fumetion of «

nomnmmmummv-%.mu

has & finite discontimuity (of h’ - h’_l at o ) H 0,(1.0)1- continuous

wu%WMut-o.Mgunhtth
hﬁdﬁo(t ‘.lltt);d’s(t,l)hmwn

mmcniitlt uh.mmmw the stream
wohsmMMdtmOhthWW



exéept st the singulaer points on the dboundary.
‘n:ovélocitv potential Oi.fsorrupondingto each ':l will now
be cbtained from (k.1). These equations, snd (3.17) give

A . Swiney o
%’ %l'- Z n§ (-7 -3-3 _ ‘(n,Q) (4.6)
fAs i

— l=(ape0r  dup _ j_n 1 1=t wy(n,T) Okiln, 6)
%L g 2 (1=v)A" 7? ™ ;nx T(1=¥ 20

.provided the infinite uriu‘oomriu in these equations are
wniformly convergent.

. du; (n) - : :
o (cfm g L
and _t_ 3ki(n8) o 4, (n0)
wEs . An
[Thes vium= $atl®) | v (nr)ea, a0 , b dab) g
Yo (%) i ' Yna(w) o Y i)

{‘(n,e) = cosnSO k.
Prom the ssymptotic expansions (4.2 end (4.3), it follows that far
large n,
Cn!u; (l\,‘l‘j s
E(n'l)‘h Wns) , wrx, (h.7)

otfi'l"d.'r‘

'&(‘lf) -~ {

Thus, using expansions (4.%) and (4.5) it can be easily shown that the
Mﬁu&omwmwum
m,m.:-:bcz.m-aii:; t-f‘mr-tw_m
cﬂrhtmn'hu'tnzzv-crm'-tﬂlmmw.
vhen { = 3, _

 Now, equstion (3.1), vhich fs satisfied by both 4 (r) end ¥ (r)
can be written in the form



LA ey - 5_[ mm]
T (1) # dr [ (TP dr
A

- o = gy e

n'g)*

—

The equations (h.6) can now be integrated with respect to ® and ¢
respectively to give
é' +|+ *a"' +ao‘

$,; = .s (1-)# - A RZ-.G—'!)’ v, (n,7) {; (n, ) (.8)
vhere
6 (‘l’) s 0

S (t) = S, ('r) 5 -‘,[(n-ﬂ‘ ?(M)‘ i(ﬂ {’)‘_,,.)& J.r:(..ﬂp}:
'rsvs-r”, 9=9,},

Sim = s, (1) = 9, {“_ﬂ, f,r(, a,,} Z_(& .‘L.){(,_,,n [fﬁ}

Vt(nv).. : usgn,f) ThET 4T, re0,1,.. . Fur,
l (n 0)-

(The constents in'se(f) and 84(Y) have been chosen 80 es to make these

functions continuous at T = 7 ' ® 1,2,0000=1, 804 Y = ¢ o ™ 100er=1
respectively).
mwmmmhwoﬂum-ﬁuh
(t.a)hmmmw-hmmmolmma
the relation (4.7). As a result, the series for ¢ is uniformly
couvergent for the same range of T end 0 as the series for ¢ except
“r'-s.‘.mmmmolhmmwutu
yohtl(f..er)- Thus, when v, < v_, ¢ is & continuous function of
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t and B excepk st the eimgular points om the boundary (where it
w infinite) ; when Ty ™ Tgo 4) is Qiscontinuous only at the
singular points on the coli% boundaries, and is continuous and
finite everywhere on the free boundary.

It now remains to find the coordinastes in the physical plane
as a function of Tand © . Let 3 be the complex position variable ;
then z is relatedto'rmd 9bythe equation

- dé + ;
dz 1 [ ¢ m,, f]
Meking use of (k.1) and (k.6), 5= and 3% can be found in terms of
infinite series which can be integrated term by term. The final
result is

2= %+3%, +2,, ; _ : - 9)

Z, = T .‘.9 L * L.
R e [+ 2] A

where ¥3i = Z ‘u;’(ﬂ,“') K;(n,0),
+Z.£ - _2(| 1-)’ ZJ _?_ V (n’r) )\ (n 9)

(nh- OT 1 -(n‘S-I)OA
P+ ) {

K, (n,8)= Z I-.P(Mn‘!e cosn'$Q

ns * -I ’
(n‘iﬂ)GA. -(n'E-N0:
K, (n, ©)= A e whigh BP0 YS d
nS+1 nE=|
“l ("7 3) " e'(’"nw‘ “a (l'l) 9)

“and A,(n.n is the funetion Kt(n,o) vith a positive insteed of a

negative sign Detveen the exponmentials; also '

d| =0; G=0

‘ " - Z iy & 5
4= A e 2 (f - {'\r')q‘o-r 3 ¥y
d, = dye * 4., ¢ » Ca.‘. < —cosec 2(5' 3',_)_1.:1__); re0,. R,
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(c.q
ey 0; Oidmuﬂththcmmofcsr,:shminmuat
tev, 08 "5,]

'I—u,(-.o)-cai(n.o)mmhmmmmhdm
m.hhmmmuﬂum ’ﬁmpm
hm--r-muquo,mw !hughscoutinm
mdtﬂowmmmmutu
dlulnwhhuﬂnbm (slhwludi-mtiudﬁuont-tb.
Spon 8 =0andzyond=T/g),

Further examinstion of (4.9) shows that at the singular points on
O-o.ﬁmt<1..mmmwsmhﬁniu(Qcadivu-g«),
vhile the imeginary part has & finite discomtinuity ..

(of “fl"f)ql(l-tl)' st t;).  Similarly at the singular points
omo=¥Eg, <, mmmdoi*suvm.mnothmh
-mumwmummumm. On the
free boundary, however, the real pert of e s becomes infinite st
0,0 only vhen ¢, <t (vhenys, diverges); vhen t = v, 43 is
mummwvhmmamn‘ﬁ,
thh.nhmhol'.hﬁdu. This interesting result for sonic
mm—umaammmumhmm.

mc‘hoaeninmhamutonkesamtimatr-tqvheu




CHAPTER V

RETHY PLOWS : DRAG CORFFICIENT

An interesting special case of the flows considered in.ehe
grevious chepters is a Réthy flow. Tt is defined by & circulsr sector
hodograph with two singularities, one of which ii on a solid boundary
and the other on the free boundary ; and comprises such flows as the
f1ow through en eperture, the flov from a funnel, jet flow sgainst &
wall or past s symetricslly placed vedge (finite or infinite), flov
frona.ehmclputanatplmnc.

A typicn Rctlv Plov. the flov from an infinite ehumel past a
lymtricau: Placed vedge is sketched in Figure V.l

g5 -~

e .Yy
Pb 3‘—-“3’ z 32%5,‘£

:[.K - : -

. FIGRE V. >~
%o set uwp this Flow the folloving initiel conditions are required:-
(1) An Mist\lrbod ttrm with mciﬁe hest ratic v end at pressure
(tﬁsmmwmmﬂmmsmmimof
the fres Jet); ,
(11) o welge of lemgth L and engle 2w/ symmetrieally placed st o
distance 8 from an infinite cheamel of width 24; |



- b

(iii) a flow of density p;, pressure p, end velocity g, parallel to the
channel st infinity upstream, and making sn angle of ¥/u with the
mwu.tWQym.

These 10 constants, however, are not all independent. From the
formula for 3 (4.9), L and 8 can be found iz terms of the other
constents. Thus, with & gas of given specific heat mio (v), there
are st most 7 degrees of freedom in setting up a Réthy Mow. (B, */¢,
4, 9, Q,.v,'/u o P, L, /&, 8, 4 and any two of 9, Qs Pys “/u).

From the sbove constants, Bermoulli's equation and the adisbatic
gas equation determine the folloving boundary conditions immedistely:-
(a) the pressure p, and density o, st steguation (¢=0),

(b) the velocity q, snd density p, on the free stream boundary,

(¢) the velocity function v (= o¥/g® ) st infinity wpetremn (,),
end on free stream bowndery (<),

(2) the comstant value of  on the free stream vis. K (= dq;0,/, ).
The boundary conditions in the hodogrsph plane are shown in

Piguwe V.2 belov

§y=0 ;':O) y=K

FIGURE V.2
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Relations for §,$, and s can now be written dovn immedistely from
(3.17), (k.8) and (.9). The results vhich sstisfy the boundary
condition of V.2 are:-

' *l - *ﬁ?. v (5.1)
- _ﬂ 2 _Ji_ w,(n, 'r)(l- mn!‘r) Sinn%0

"4 f‘( i ) + Eﬁl Z Low, (n v) sinnl0 | -r$¢.-r “ q,-q:
* o +l - *a. (5. 2)
‘ e <=b&K} K 2 v (n,T) (1- m_}z)mn‘so

- - _‘L. - (“ ¢o ﬂ‘!e
f-. E. = " oy (T(..t)’] - Z;" Nyl cot
x o z. . & & (5 3)

b, a2 Z(n me_){u«-..ﬂn(- 0) - m'v.(nmno)}

‘M. 'h&[n' Couo'% ‘.-1-" "L',;-—’ 60]
+ g ;t-z,» 5" {inglorIk(0,0) = 2l o) Ao f

vhere
whare w,(n,v) o jﬂ‘_‘
; %‘t(“'b) : )
ls'. (0,7) = ‘ { "l‘l(“‘ Qn'l(\) 4'.1(1;\?.1("0} !:“E' ‘ - '
4y, (1) = —= {'M(") Yy (%) = Vi ('\1-,.,(1'.)} i!li"l

*-uh) Ny
the fanstions v;(n,t) are cbtained from u (n,t) by replacing tu(t)

" ( ﬂ' o) e IQ“".) L = ".‘..) ‘t.

ntel n't =| :
An @) = oUB080  thael
nt+) ns -1 :

-lf‘-OMq-outta‘-l.



The s-coordinate, as given above, is measured from the stagnation
point (-:‘ O“(t) end ;11- Qn‘(t) are both mero vhen t = 0) ; hence
various functions in the physical plane (e.g. wedge lemgth L and standofy
8) can be found from (5.3) by substituting the sppropriate values of T
end 8. To find the drag coefficient, it is convenient to have a

space coordinate measured along the edge of the wedge. This coordinate
(1) is given from (5.3) as

{ = |z.(1-,1r/1’)+ 1‘;@("'““)' ; 'r.'s-rc-r.’" A c‘ca,a,

The remainder of this chapter will bde devoted to a study of the
arag coefficient for Réthy Flows, em exmet expression for which cen
be found from the adove solutions of the Chaplygin equation. For the
special case of small wedge angle and sonic free-stream velocity, this
drag coefficient will be compared with the corresponding results
obteined by using the (sppreximate) equations of Tricomi and Tomotike
end Temada; with this in mind it is found more comvenient at this

stage 0 change the veloecity variable from ¢ ¢o0 ¢ as definmed in (1.2)

{so that the sguation of motion takes the genmeral form (1.3)), and to
dofine

L(C’. R} = w %(?)/Q“(«r.) (
R R U DCARE AT VN CA !

as the independent solutions of Chaplygin's equation. (These funetions

vill be shown in Chapter VII to be identical with those defined by

Mackio. (16) ). The solutions of the other two equations cen then

be vritten down immediately from the Cheplygin solution by giving
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L{o,n) and R(o,n) the appropriate interpretation.
The expression for the f-coordinate in terms of L(o,n) and R(o,n)

is given m‘(5-3) and (5.5) as:
Ky 2 7:' Z sgpar f :3: — Ri(e,n 0] [cler, mY) - ;Z..(cm} vy

(5.6)
o3 |
conle (1) - eu-(rn‘z)j (e, YR a)- 4 R .@

G’DC"D'"

A=

osec

Rl

RIP

uld

= L
L c,

¢os
‘!‘|

+ KE
™

al\/_\; 2|2

T
4
2
e

F—q

i
%
(The 'dash' denotes differentiation with respect to o). In the simpli-
fication of the above series, the Wronskian was used in the form
Rie,a) L', o) = Rz m)Llzmm) =

The above series can be expressed as an integral, taken over a contour
C parallel to the imaginary axis and cutting the real axis between 1
and .2. (since the integrand is an analytic function of z except for
simple poles at z = nf , and is exponentially small for large z). Thus

. rz)- & LR o3
i#%:% j‘ {usx}!“._g‘(,“,:)i{d(,z)' TL(' )};,n'? .;‘!_:-i_ , @» k

{' (5.7)

¢yomy 1%’ 1%l

R [[eglei gt vt gk, &

i»T3o0

mmnhamw

b . ﬂ
t [ ]

‘ %{[KL “ f.%tm“i] : by Bernoulli's Theorem.




By usiag (5.7)
J Aoy = & % J{coszw e'(q,,.)}ua"{u(«r,z)—%L(c,a)ie L e
!ln inner integral -

sj {L"a-,g) - % L(C‘,z)} %9 de

e -—Q.ci'l.(e'.,t) (fyom (1.2)

L:{ﬁiz . - _‘_‘%‘_Qo%, L{cosg?ﬂ_’ P k‘(f.,z)} {-:. z)

Similarly it can be shown that

J {etd"b = -K_}_Q'% {% com% e l}

ﬁ&‘i.j[{ ,-:.)+ LI cas w — R{a, :.)L(o;,s):‘;‘t_?_q;'_,

On adding these two expressions and simplifying,

- 8 - < Yol (% - L

e glnt- genfoy - BB gy -]
If the pressure is referred to that at boundary weloecity, the

dreg coefficient is defined as

¢, = Snw/3 I(P-Ml , D~ sin"iBL

th‘b l_ *e.%b“ L
From (5.7)
L= [’(]r- o,
: ~K3 O ). 09 ¥ cotecn &b_l Uley, o)+ 1-Lig,al L de
i <Lt~ F A 20T e Rt (e
Hence (5. 9)
cb-. l“ﬂg “.q}-—mt*f ot /"."“’3 ; %7 (5.9)

LR R [ gl - e
6
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An interesting special case is obtained by displacing the
wwmo-oummaﬁomm.i.o.
by putting v, = . This gives the flow of & jet past a symmetric

wolge. (mmmmrcm-numrmahmtn.)
l-'.ul.'b = ] and hence

Ls &0- L g{ % ,2)+ .&.“\-mu. A T

s W SnZ8(g 2%
! dz
G, = 2sink _-[L{‘- ik l Sn¥Tly T ! dr (3.10)
VoLl gl gel iR =

Msmiejupb-p.nlc‘-ohthuom. For this
sizple case the drag has been derived from first principles, by
starting with the series for § generalised from the corresponding

series in incompressidble flow; the method used for finding the

dreg folloved closely thet employed by Mackie end Pack (17) for
ﬁnmd.ﬂphnmum. mnmum
mﬁt(s.m)(ﬁﬁph-p.mcb-o)dmnebctn
the more complicated amelysis of this chapter.
h-ﬂl'ltfﬂ&h“t«“«.ﬂum-).
the comtour integrals in (5.8) amd (5.9) can De evalusted
spproximately end L and C, expressed as series in ascending powers of
. The methol consists of deforming the contour C (without
MWWﬂu)“tmmmcluma



ko,
R{z)> % and is therefore large; the expression l I(sz-l) cen then
be expanded in series and the functions L(o,8) ete. occurring im the
dencminator be replaced by their asymptotic expensions for large %.
The result vill be compared with the corresponding one found from
the Tricomi epproximstion (in which the velocity everywhere is near
sonic); hence only the @cm case for vhichﬁo i.e. tL-lLvin

be considered.
By using asymptotic formmlae for #,(r) asd ¥,/ (x) given by
Cherry (T), it can De deduced that, for large |z| , and o, = O,
e z)~(.'_-.‘_‘i_)’ Lat)l{gm-]z + )]+ L a{g @+ 0l]
rl T o) [ee 0] ¢ T0)[ (g go(Ta)} + o)

vhere ¢ ic & function of ¢ (and hence of ¢ ) defined by the equation
tak {06 = J(1-) = ok sl - el )

nﬂhmhtmocttlvbd0<rst.,nilethcq'lmnnctions
.24

of 11hichhmbc¢ntm10 Cherry's paper. Typical values,
fol'ycl.b(t'-%) ere:

¥ 'lc' o | 4

0 1,000 0.361 0.361
0.08 1.028 0.3%6 0.384
0.16 1.060 0.350 0.k28

In particular Qo.('l" can be expressed analytically as

3:(1-) : {";__61_?‘_)*/(._:;)'[& :

Vhen T, = %. this gives 3: (v) = ((':_l)h .
%



hl.
The Bessel functions in (5.11) can in turn be expanded

asymptotically by the series

. S(tﬂlh"‘) -ils = 3fa,
J,’(zt) ‘;zthnﬁﬁ [ Pl ' ,]
R S
]" (2) ~ T(4) oh _ 2P 3%1“%) 2" % o(‘l:‘h)
Jrl "') L M z_"‘ e *..:‘T “‘"‘ + o ( L "‘)
. 2B 3317937 ;

vhere l{l’x is large and positive, 0 = uch"'t. 0<06<%/2gnd 0is
not %00 near sero. The exact condition on 0 is tash 6 > 0(s™2/3),
i.e.() - ¢t)> 0(:'2/3) (ef. Appendix). The first and third of these
formulae ere given by Watson (27) end (26€) respectively; also the
first term in the expansion of J:'(s) (the second term was derived
using Watson's methot). The expansion for 3./ (st) is found in the
Appendix.

‘When the results of (5.12) are substituted in (5.11) the
required expeansions, for use in (5.9) are .

i p olando8) g Lo sk q o)
v ot DY SN J(g)amh@a ™ 4+ U2
B T¢) (' ':) J(awtanhd,) [:' sl ](5.13)

Loz + 1~ b"r]%\) «,}tf.\f" g {w'.'(f.b-tg:(";)}*o(z')
These expensions, and the enalysis which follows, are valid in
0 < ¢ <1 provided 1 - ¢ > 0(s™2/9),

The integrals inm (5.9) can now be written as a sum of integrals
of the form

- 4% -t
o ;T and .LJ‘.Q._& de. , m?|
Sl'n‘-% S !

o cind



b2,
vhere c" is the contour parallel to C as mentioned earlier. In the
second integrsl, a = Ol-tuhﬂ - (1 - tl. )3/2> o(s™ ). Therefors
as > 0(s°) and ¢** 2™ is mmhuy small for all values of m.
The integrals can de evaluated by expressing them as infinite
series; the first is equivalent to

_..;.‘.'.‘ 2 cosnw COSPRY i = - o f(m, 9)
were (., ) .{3(._.., ) & S(t-m,L%!)J/zn-nr(m)‘“.% :

v = g/y and g(s, a) is the generalised Riemann Zeta Function, 'hilo'
the second integral is equal to
L )
?

-MI..
et cosnre n o= -‘b(.l.) F(e ’
™ &
vhere F(s,s) = 23- for |z| < 1 is the function defined by
n=l

Truesdell (25). It is clear from the remarks made sbove that the
terms of the second series are infinitesimally small compared with
those of the first series; so the second integral can be ignored in
thcuﬁ.umnnd.cb.

After some simplification, the above analysis gives the following
results for « small:-

Le R + Qf(ﬂa,v)u.h 4 [R"' Sf(a,V)je& + o(w) (5.1%)
Cy» Ao+ Bf(¥s, P [e+Dfa,n]« + of«?) 518
wheee P =_Kes (148) Q= Koo ¢8300) ¢'(x
Qs B TR < .
R=s . 5 S s Koe {gq(r o9
. %% Q"‘-s{i 1) }
A = ali+ad) 8 = Aﬁ
I+b,
€+ iransek Bw -z[u»h (rad{gitra -5 G0l

30+n) AP o

SIS oI e T s P T T e S M




k3.
[Tt follows from the continuity equation that b, < - 1; hence the

coefficient P is alwvays ponitin].

It should be noted that in these series the coefficients P,Q ete.
depend on the relative values of the source velocity and sonic velocity;
m.mmthumuumtwmntiotllt.hnotnm
the value 1 (i.e.P,A etc. 80 near 0O) as to change the order of signific-
ance of the terms of the series. It will be shown in the next chapter
that P and Q depend on @ in such a way that the order of terms in o is
wm1-clh“o(c‘); hence in the analysis which follows only
values of T, vhich satisfy the condition 1-vy/y > O(a}) wid) ve
considered.

The series (5.15) will now be compared with the corresponding series
obtained using the approximate equations of Tomotika and Tamads end of

Tricomi. The solution for & of these equations for Réthy flows of sonic
free-stream velocity ean be written in the form (5.6) vhere L(o,n) and
R(o,n) are defined not as in (5.5), but as independent solutions of the
appropriste (Tomotike and Tamads or Tricomi) equation. The analysis for
Mmmmmmmm-uumw.m.mcbu
given by (5.9) with o, = 0.
bﬁuthonﬂumcbithmm.umuﬂnam

ssymptotic expansion for L'(0o,s). For the Tomotikea and Tamads equation,
(cf. P3) L(o,n) is defined as

o) = = To(mt) 7 )

Thus L'(c. q) =

me do(n/xK) e,

) <

akt T '(wt) [ To(»)

vhich, when combined with formulae (5.12), yields the asymptotic expansions



.
&’lﬁi‘ °

s -[c. : (@/n)n(lanhd, =) sle wihe

L .2) ~ 23 tanh + 0z

b T‘(‘/;) - J(amtanhd) [(J ) + :{
L(o,z) | b .11:{(% " (E) Z + ( t") - ( )

v!unmhol tlmmmomdidcnuatlhhpoudubcrm
These are of the same form as the expressions in (5.13); hence the

whmwmumudnﬁm(mwo),

G, = Au + 8{("3,\!)«* + {C'# D,{(:,v‘)}us + o(o)
(5.16)

MCA.BMO@“W&(S.B)“

D, = —a[(i+b) = (+a){i- J,(lglﬂ]/(,,,ms
Por the Tricomi equation, (of. p.3)
Ligm) = 3 B 0w 7R K (1)
< E
Ul sy = 3% readeeea® o® {gn K, (307%) - TRK (7))
giving immediately
tio,) +1 = 3'5 % ("“" e l
The asymptotic expansion for 1'(o,s) is du-ind by mtimioa of
the expansion for K (s) given by Vatson (27), vis.

(‘)n(!.yig-'[l 4 E.::;..‘ 4%-&- . '] ; larst\‘g"

This gives

Vi e) = 3"‘ M) ven™ 9% o -t "{ * + ol "")}
Again, mrmummwumm._mum.mmo.

the series for C) can be fowd immedistely as

(o= Aw + Bf(*s,v) Ao {c-o b,{(a,u)}a’ + ofed) (5a7)

b, = -aflen) = (%] /ap




he

It is interesting to mote that im (5.15), (5.16) and (5.17) the
first two terms are in complete agreement; also, the error involved
in retaining the third term is of the same order for the Tricomi case
as for the (better) approximation of Tomotiks and Temsda. A similer
result vas obtained by Mackie (16) for Helmholts flow. This suggests
that, at least for drag computation, the error introduced by the poor
fit of the Tricomi approximetion at the stagnation point is not as
m.ummmw.

To complete the chapter a similar analysis was carried out for

a vedge in & sonic free Jet. As (5.1%) amd (5.15) are not uniformly

murcmrl.m-dumnmcnmuhmmm
(5.20). The results obtained were

Ls af.(ifls, DHa® &+ Sf,(a.v)q + o(a)
vhere

f(mv) = f(m,v) + .'m'_""_ (=2"") S(mw)

end Q and 8 are the eoefficients defined in (5.15); and

Q- ehs) L, F ["(a'o)]:"t + o(a™)

e et

§. (% v) 16 ()
e . " :
vhere £ 3/ :_(‘% % (5)
Foe -4 {‘:‘p‘) XN € (from Chaplygin equation)
'

s ' AU 4 0gP)et (Tomotive ent Tamate)

R (Tricomi).
- %

(5.18)



LT

Inthothm:ciuowdmdforcn,moaminthoﬁrnum
ere identical. The order of the second term is the same in all three
cases, and for v = 1.h, the coefficients are in the ratio 22 : 40 : 100
for the series derived from the Chaplygin, Tomotike and Temeds, and
Tricomi equations of motion respectively.

As 4 +»® and v + O the sonic jet flov past & wedge tends to
Eelsholts flov, for which the drag coefficient has been found by
Meckie (16). The sdove results will be checked against those of
Mackie in Chapter VII.
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CEAPTER VI

RETHY PLOW OF A SONIC JET PAST A THIN WEDGE
It has already been stated (in the last chapter) that a Réthy
Mmbomwu‘rorm9mtm.l'.L.vlc.e.l.pl.
pi.ql. v/u ere preseribed. mmlm!nmqqttmicjum
.mm(mhswmmaql).mmmn
was found in terms of the other constants; 1tha.;nwm
series

L= Pa™ + Q{(v/;,v)ah +. 0() (5+15)

Mothmﬂieimrmﬁdwumm!oqllq..

‘Several interesting questions emerge from this relationship.
!hhu?h‘-il(Mqlhucq.),l.iloraiorc'lmmt
therefors be large (no matter vhat the value of the other constants).
This means thet L cannot be prescribed in an erbitrary menner. 1Is
ﬂno.tmvhnqlhwq'? Just how much freedom is there in
the chofce of L 7 And if the length of the wedge is so determined
by @, is its distance from the cheammel (i.e. 8) also restricted?

o consider these questions fully, it is clearly desirable to have
an expansion for L that is uniformly valid for all possible source
velosities wp to and incluling sonie veloeity,  (5.15) is valia
mnnvnmoccl.mummmhhmr..mu
to the restrictions on the asymptotic mimati’(‘n)nll"(n)
used in its derivetion. To obtain & uniformly valid series it now
becomes necessary to look for other expensions of the Bessel Functions



h8.
vhich hold ir a wider ramge of t; suct expansions were in faect
derived by Olver (18) (just before the completion of Chapter V).
Olver's expansions, valid for jarg z| < ¥/2, ere

568 ~ () [A_('s_s) Z-"‘— A..L".::LZ m] -
v - - gl e 560 53 8 0]

A1(s2/32) ene Ai'(s2/3g) are the M.n Penction and its derivative
defined is the usual vay as

. Y 3 ;
A (z) = éﬁ Kg({" "‘) : As'(z) a -izTi K%(%z’h)';
S is a function of ¢t defined by
ig“ = tanh™ J(1-t*) — JO-t?)

and the coefficients A.(:) eotc., are defined by the recurremce
relations

Ao(S) = 1
Be(s) = & o j‘ SR $(3)Ag(3) - AS(5) ] 4T

b($) = 589 + & [HOIE®IaE A, 9 -2
‘s&“t ;!?
{(I) l;l .-(t‘."‘
wd vy

(&) = WA (x) « A(B) + BB(%)

D(¥) = A + Xx(3)8,(¥) + 3..'. (%) (6.2)

*here £ 15 RGN RN v \'h
) AS -L(F"‘?"/)

Before these axpansions are substituted in the integral for L, their
mhmmwd't.d:.o<telﬂnhm.
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The oanly possidle point of simgularity of the coefficients
A, (5) etc. as detined in (5.2) is * st {'= O (vhich corresponds to
¢t =1). However, substitution in (6.2) of the expressions (quoted
from Olver's paper)
Els) « 1= 2%3 » % T e 0%,
fg) = 2 4+ o),
vhen { is nesr O, reveals x(t), A (5), B (C), G (5) and D (Z) all to
be of order one near { = 0. Thus the coefficients are all comntinucus
(end finite) functions of ¢ in the range -» < ¢ £ 0 (i.e. 0 < ¢ g 1).
It follows that
i ":‘9 e MA@+ o(x) e,

Swo

end the infinite sums in (6.1) m.tomﬁntm. equivalent to
A (%), B (), € (t) and D () respectively.Near ¢ = O, the above
exialysis shovs these to have the value |

(6.3)

AR =1, B(8)e 3‘;,\ o) , G e Lo +olt), Rt (60

The dehaviour of the Airy Pumetions in (6.1) depends on the order
of magnitude of s°/3; .  Here (vhere the Bessel Puncticas are %o be
mamhmmmv(c,s).uﬁ-hup-unq.
contour on vhich |s| > ¥/2s), [s| ® O(a™) and the value of ¢
n«lﬂlhﬁnummdw(i.o.cl).mwuﬂn
ratio v/t .. 8o, for any given flow, the Airy funetions comcerned
ﬂduﬁ.rﬂaﬁnmdo-ﬁ&h‘. Ithllmm
seen (in 5.15) that the order of magnitule of the firet term of L is
sffected also by the relative values of the same fumetions. A relation
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between @ and 11/1. is clearly going to de fundamental to the emalysis;

it cen most conveniently be defined by introducing & reel number m.
such that, for small @,

LY

- § = |- 1’/-,»‘ (60’)

end considering all m in the range 0 < m & @ (vhiech corresponds to
0¢y 51

medtl.mmhmldhtc-otc.
From the definition of ¢ and ¢,

15" e tanhTa(-1Y) - J0-g)

= tanh” Mb:.) - 7 * tanh™ xa-_u.)

| - -,
Mmhmnm;ncti;lmmh;hs’. this gives,
after scms analysis, |
L = a'm(l-v,)"" [u"‘ 4 Mgt o™ . O(u"")] (6.6)
vhere 6 = 1/(v-1). “
Substitution of (6.5) in (6.3) gives

- - " %em ;
4 ' ;(n:t.)" a + 0(a™) (6.7)
hence

b fs .
('{%.‘) il S | (6.8)

%o return now to the Airy Punctions, hhm&-(ﬁ.‘)'ﬂmt&
_.q—t(l.o. u'ﬂ(‘)hetmc’!n.'hﬂhmmaamu.
eccording as m is less then or grester than 2/3.
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(i) m < 2/3
From the inequalities given by Olver, %
Ai(z) ¢ A1+ wi®) |e” 3® l

A') < A(1+ 19" |e” “[
it can bde deduced that at the most,
gLnn o el et N0

t ndhs! (z."" §) o [ “"ﬁ(‘hf"') /‘md. ‘("'%“)]'

It follows from (6.1) that the functions J_(st,) end I '(st,) ave

2/30 -(1-3/2 m)
of order 1/¢°/3° , and are thus exponentially small when @
: i small.
(ii) m > 2/3
41(!) = * K " )
i‘n s
‘i[*"" $ Tyle %‘)"0- A L)
.EZ'.!. 3 o™ e 292 . O(z.vlk)
™(%) (%) '37‘(

when the Bessel Functions are expended in series, provided |s| < 1.
m.u.’zn'

bi(z%s) = 32— 3T S 4 oy

' T(*) T("Is) _ (6.9)
An expapsion mn"(c‘/S;) ealn found in a similar msmmer; it is
dlhyy o _ 3B s> Mixys
2 (; ) %(B "w;) I oS} g0

Vhen = -'-2/3.‘ |i2’3c| = 0(1) ; hence in this case also the Airy

and its.aérivative are 0(1).

Far the particular case of m infinite (i.e. (N = 0),
Ai(0) = 372/3/r(2/3) ana A1*(0) = - "’"311'(-’3*). Using these, also



(6.4) and (6.8) the expansions (6.1) are reduced to
b - 33 -Si3
~ 2 | e 1 F ] “+~ © I.
o\l ™ ) o)

! -tls -
J;(z) ~ G'Hk i () ’”%\ + ofz™®)

mmmmimtmeomumw (from Watson)
hm'c

It follows from the above analysis that for the purposes
required here, and in the range 0 < t & 1, the expansions (6.1)
ean be written in the somevhat simpler form
I (&t) ~ z*[h(-:.‘“!){z ¢ oz} + L'(&“S){B,(S)r- +o(z®)
I'(xt) ~ = “\ (&"'S){G(S)z"‘ ¥ o= + & W)Y+ ofx® )g ("“)
(mthtthourymieuhmtobehfthmmlmto
maintein their umiform validity).

The required series for L, wniformly valid in 0 < tl( Ty (for

small @) can now be obtained, starting from the integral foram (5.7)
with " = T.’ (io.o ',; - .).

L= -Ba*{is huemcea} + § L[c.‘(q,z)-{a.'«, )] ;‘L'i & (o)
Were bx -Q% |, anda Be K® o -
¢S Qs b,

(vhere @ is the balfvidsh of the jet).

Pirstly, the cootﬂ.dmo B and ul,nm depend on q,0en be expressed

as functions of O, by'niu the relation (6.5). Expressing by first
as a function of Tys

. (._?‘)"&) v (; v SHY lenit
hence =b = | & Iyu. +  O(a®)
and B v df1= g™ 40 (s"")].




Q‘.!;
nocMCicnwchmgedtosparmglcoatmclonvhich

3-0(":1)01an3 the integrand can then be replaced by
its asymptotic form. The part L{L (o.g)ﬁ}m_ i &

i lin“’ts -1
csn be evaluated in terms of the Riemann Zeta Function exaetly as in

Chapter V; in the remainder of the integral

(5;,2) ( L&&)ﬂ&(‘ﬂ'k* 0(x]+ I (st)gotmra’s 0z]
t=%] T (=)[z+ 0@+ Lg%~ W“o( )]

(as = (5. Il))
~ R REPL 4 o] — gy K'GRE) (™ o o],

on substituting expansions (6.11),

were flr) = 3 1'(%)(-') [f(ﬁ) -1 = %‘G(t.)ﬁm]

R IR R O {E M
mmb(:l) ete. ocourring in this expansion cem bde expanded,
for v, mear t_, as pover series in (A~v,/v )/(3~7,) (ef. Cherxy (7) );
it follows that g (t)) = g lt,) * 0(a™),vith similer expressions for
the other g-functions. From this, together with (6.4), (6.5) and
(6.6), £(v,) and g(t,) can de expressed as functions of o, vis.

) = 3"‘1‘("&\ [{,(f.} -4 %‘ﬂ,) -1] + 0(a%)

qle) + % 2% r(W) g 4 o),

l f x.(ol,s)-d—:ag:%-'- can nov be expressed as & sum of

integrals of the form

G L SR N S e

B[ EN) T o e d

-
&1%:.’. i Ag.{(nﬂt)""( n Teosnr.
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(The series are valid since the Airy Function and its derivative are

integral functions of their srgument, and are bounded as [z| + = ).

The final result, the series for I in ascending powers of a,
wniformly valid for O < HET is

t R O(a™=) + & ['F(“’S-")" z'l("n‘)} al®
¢ . Ham
¢ O(d."‘ an) + {3‘ + Qf(&,d) * (8-0 &('S.,ﬂ}u " O(ek )(5,13)

5 " ! - w il et ;
vhere A = b %%)‘ 30“&) N 8 ll(‘rl) ?30(1‘) )

Z..(‘.M " ?Ag—w-:ﬁ) z os o Ai'{(m,‘)lb ‘S,} m'“‘,
Za (3,,8) = &i"{lﬁﬂ Z Gos v A {(nf/d.)’“ Ly~

w

nw)

and the Airy Punctions oceurring inm (6.13) are of order less than or
equal to one.

The order of importance of the terms of this series depends on the
value of m.

Ammshuediumorcmhmuﬂnm
vay. Starting with

§ = R{z(g,0 + ¢, (%, 0)}
in (5.3), the series

S » -ga” (r+ bcoten] + aBol” i.;"?a{mﬂ% (H-L'(o.u!)) —l.'(c., n\)}
esn de derived, giving finally, for small a,
i o ;t:';,\ e + 0™ o Q{'ﬂ%,v) - 2.(5““)}«*

+ 0" )e (o + 8B« @DF, 5,0} + 0T

o (G
Were ;(Pﬂ?) s 2 {S(l-u,%)q- 3(“"',"""’}/1“(-;)“:n‘l‘/;_.
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2.("5.,00 = .'23 r‘(}‘,l i “'{("“In)"‘l‘}n"*"

el
o0

w F(3,4) = .aagsm § K [z}

The first observation to be made from (6.13) and (6.1h) is that
an,nandamotthommornmituc. The actual
‘magnitude required depends upon -,.1.0. upon the source velocity

» in the following way.
(i)&0¢n<l ie. 0 <1y ¢(1—¢‘)1’.

L Qiy 2 Tkl brgie 3'*) ola=t"™y .

- s S s -+ ( )

this means that, for small o, L and S have to de equal and large
compared with 4, i.e. & long wedge placed a long distance from
the channel is required to ensble the flov to reach sonie

velocity at the shoulder.

(i) Vhenm= § , i.e 5" (1-0')1.,
-%—--%-.s -—!i-l- i o(‘.h):
mnms,wmn,muofa--mmor-pitae
88 the channel width d.
(434) When § < m ¢i s S48 (l-cl)t. < < (142’3)1.,
< St bagr _l*‘.'_u"““ + o(=®)

i} d
ﬂnnmsmqnltotﬂm.nnd-ﬁu.mﬁlﬁu

they are small compared with d.

(iv) ¥hen n > % v fee 1 > (1-a ’3)1 o

Lo« AL#US,9) -2(5.,«)]#’ . g‘(:)"")j;:;;
4 * 2 Li(*.») - 2(‘.,«)]& + &

I, and T, can be simplified by substituting for A (s%/3¢)) from

I —
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(6.20); as a result
: _,h
(3,0) = =2 (-2®) 5 (o)
Z. v (6.15)

we (s = - 20 0K

Again & short vedge and smell standoff are required, but in this case
& grester range of values of L and 8 is possible; this is due ©o the
fact thet for the first time L and S depend to the first order on the
sdditional function v (the ratio of the final direction of the flow
to the vedge angle). The varistionof L with v ean most easily de
nu.wmiuntwmmammrﬁeimofc*m
Qifferent values of v , the results for v = 1.5 are shown in the
tadble below

v 0.2 0.4 0.6 0.8

/aas 0.029 0.118 0.28% 0.5T7
From these four cases, certain gemeral cbservations concerning
n‘ynmotmammmnmmhm. Pirstly,
itam-h-uwdthm'vdodtrmnnﬁ«u-c‘)t..
there is a certain minimm vedge length, depending on & amd 4,
Becessary to maintain the flow, vis. 18 o (BpR)e® Yy | 1¢ 4ne
wedge is shorter tham this eritical lemgth I*, 8 will have to be
made equal to L and the initial velocity will have to be incressed
in order to accommolate the pressure differences, i.e. if &, 4, snd
L €18. are given, 8 and q; canmot De chosen arbitrerily. 1¢

n»v.mcwvvmuwa-mwvm

the nose of the wedge; ma-v,nwﬂumnongthe
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wedge and will not change in direction at the shoulder. Thus, if

¢, 4, and L > L® (vhich is determined by either S or q,(m) ) are given,
¥/u is predetermined (= a). rornmgthuhmionhciw
(1'1’(1-.%)1.) on the other hand, L can be chosen in a completely
arbitrary manner, since ¥/p can adjust itself to make L of the correct
magnitude. (It can be shown, using relations for t(s.}) end its
second derivative in terms of (m) that the coefficient of o3 in the
ncinfuh/diaotmvzmmlv. ncneoLId-'O(c’bv')". e
the given wedge length is short, say o(.’éﬂ). then v assunes a value

-O(Q"‘?)mmnmmm). If 8 is chosen independently of

L(-nlnrothqu.dmuqm).thnqliom.
The chanter will be concluded with the series for L for the
special case of a sonic free jet flow past a wedge. This case is

represented by n = » (1’ -t)hﬁo.bmum-io;mm
(6.13) '

L o= At ) - 7, (5,0} + [ + 8+ EHT 0, )

. + o(x)
L) (%),0)" s given by (6.15) ; similarly it cen be shown that

2, (%,%) .'..‘ S(2) = + .
v
Tous
bes MO, e® o i + ofw),
vhere £, (m,v) is the function defined in (5.18). This is in agreement

uuu-cmrcnmmmnmmipmhwvu
quoted in (5.18).
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CHAPTER VII

SPECIAL CASES FROM THE LITERATURE

In the last decade several Russian pepers have been published
on flows vhich are particular cases of the genaral class considered
in the previous chapters. In sddition interesting links can de
found with the work of A.G. Mackie (16) on the Roshko Model Cavity
Problem and on Helmholts Flow.

mmu:m’wm.vts. the flov of a gas jet out of
a channel and past a flat plate, was stulied by Troshin (23). The
disgrems for this flow are sketched belov.

FIGURE VII.l
The solution of the Chaplygin equation for this flow, as given
bty Troshin, is

2y L [-wsd 4% (<) = & v (ot ] 1aald sin2eb
i rZ L [f-os mn & L& (%) ¥,,(5) = he )Y m}] G

vhere

.L(q) = Cmﬂnuﬂ‘ﬂ_ i

*an (1;)

LGINARENODALIE 8

4
n



v

5.9-

and the ratio of the half-length of the plate to the half-width of
the jet is

m Al -)_kn M) ]
J-R m d ‘( Z 1’,&\\'“
TR
vhere a(T) = * ""(f‘/*.(f)‘

The solution for § can be found from the general solution (5.1) for
R:twnm.wmthmtimtmx-%. E =2, Y/yun,
Ty ® Toe The result is

(ALl LR - K o) dinzns

Yanth) oceer,

\&( -: - _&Z\_}_ﬂ-}“(ﬂ&naﬂ o EWEER )
n () - * o) banles

Ware L7 = sl SRR L [T (2 = Vel )} %%

m-mewﬂumm.miummfc.rm%
vhere wnderlined. This discrepancy will be discussed later.
mrmoU¢uummm(s.6).wmuuv-0,m
vriting L(o,n) and R(o,n) as functions of t by means of (5.5) ; the
result agrees exactly with that of Troshin quoted sbove.
koiﬂthmdmm.mmﬂmmd

& free gas jot flov past & flat plate ; the result (tlﬁt'h('fol))
is

*- _3_ Tt‘_(.-m:»)%ﬁ)_ Sin dn0
; )
This agrees with the series for ¢ found in (3.4) (vhen § = 2),
NMWS-Oh('T-I) solves two prodlems - the flow
MOMhCMdW“M“mn“WQf.

meunuuvuuuhﬂuum.
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These flovs are sketched below in Pigure VII.2 (2) and (b) ; (e¢)

represents their (common) hodograph diagram.

i

§ .
" ]

(a)
QMO 0 g A

(9

BN,
VI N . B

(5

FIGURE VII.2

The solution of this problem was actually found before the publication
of Troshin's papers, by Fal'kovich (9) in 1957 and the result has been
quoted by Aslanov end Legkova (2). Again a diserepent factor of >
occurs in both Russian papers. Ashnovnd!ogkmimtontom
that for a sonic free stream emitting from the vessel ia VII.2 (v),
s miforn parallel flov is attained st s finite distance (which they
calculate) from the vessel mouth ; +this is a particular ease of the
general theorem on sonic jets which will be proved in the next chapter.

An exmmple of a flov with three singularites on the hodograph
boundary is the flow of a gas jet through an opening in a chamnel wall
(Troshin (24) ).



é1.

A
*®
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’
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FIGURE VII.3

%o obtain the general solution, substitute ,
tel, Twsn, =0, = -q, f.t‘,:_‘\.ci.,h,-o. glw)=o0

in (3.17). 'aornnt,mshmptlst(t,mmto

{= $(|- ’)_ 3& ‘i._k{“(v)&'nﬂa

T Q AARTIN - *;)
) = ot it o (R0 e, i) At -wtrOME
Yot again there is & diserepancy vith Troshin's work; in this case
hihusfu&lhh“tmdt.(ﬂo

in investigation of this rether disturbing difference with the
Russien euthors reveals the root of the trouble ¢o be the evalustion
of the Wronskian W9 (1), 9.%(¥)} . (In cases vhere the Wronskimn
Mﬂm.o.c.hhﬁh'on&tn!&blmm‘nwtdmw

the theory of this thesis agrees completely with that of the Ruesien).
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Tt was shown in Chapter III that
W' @), tam) = %600 - 'O = KO-
The comstant K will now be evaluated in detail.
By definition, ¥ (t) & ¥/2P(a , b ; 21 5 ¥) = */2p, oay
and, for n a positive integer;

Wim) = lim (w0 + 2o ¥nln)

mean m=n m)a
= lim {‘r'""F(an-n, b-n ; I=n;T) + ugn%_nﬁ}
men i
~ ~h
= lim {1' "‘F._ + !‘—C-u”%'_-n-f'l e

Mean
Por all other values of n, $,%(r) = ¢_(r) = ¢ /2 ¥,

Thus v{ Qn.("’), *n(ﬂ}

(‘?T“.'Fl B -t-"""'&"')('r""‘l'Fa + QC,T"‘"F,)

e lim
e n : S m=n L
~t"hF (— or E o+ "rE s :E_an_('i? “"F‘* \

= .B.F‘F; ol O(fo)
T
Benoe K(i-7)® = nfR + 0(~)

Teking the limit as ¢ tends ¢to zero, X = n, and

N[ Q:('r) . 1.(1')} TN (l-'r)‘ /.
MMWwQuMManmm
functions

2,(7) = Fu () ad 0 Y,(7),
vhich is the solution defined by Cherry (6), and vhich behaves noar
v = 0 1ike 42 (1), '
ma W T(e), (0]} = N{¥n(0), BR)] I
Fal'kovich has stated explicitly (and the others have used his result)
that

W5, nm} = nlemie,
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This error explains the discrepancies noted above. (It is interesting
to note that Aslanov, in & paper in which he uses the ¢ functions
instesll of s and g, (1) derives the value of the Wronskian as adove,
thus disagreeing vith his own work im his joiat psper vith Zegkova.)
The above result hes also been confirmed by Mackie (16).

Nnckic; in & paper entitled 'The solution of boundary value
problems for & general hodograph equation' (16), has illustrated his
theory by solving the Roshko model cavity problem, first for a
generalised equation of type (1.3) (i.e. general k(¢) ) and then for
the Chaplygin equstion. The Roshko modsl represents the flow of an
infinite stresm past & symmetricelly placed wedge as in Pigure VII.h;
thnlmnhnvohcivflct.sthﬂdtymm-‘(ﬂ).&o&jm
from the vedge shoulder with sonic velocity at B, retains sonic speed
nmmmmimnmmmuantomdil.u
infinity downstresm (¢'). ‘The hodograph diagram for this flow
(umvn.m))mmm-ww..m.n-cl
on the boundary 0 = 0. (This corresponds to the fact that all the
Mm,u-mmm:-cxnhuuvmgg
downstrean in the physical plane).

A Q! 8

aet L oenng

a-.;.-.q
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The Hoshko model, since it does not represent a jet flovw does not
belong to the category of flows considered in this thesis.
Fovertholess it is interesting to show that the methods of Chepter III
can be applied here to reconstruct Mackie's solution of the Chaplygin
equation for this flow.

mu-mmumm-mmamormrm
2(x) -c‘(t-tl). g(t) 8 »a(0) ® O, ﬁ«. in equation (3.5), the
funotion F(t) is given by

F(r) = "‘.C_‘_“.'l_‘:.ﬂ f(-r-t)n‘: = - 4‘<v-t)n3, say.

brty (1-7)M
Substitwting this valuve into (3.11), (with T, ® t.), the solution

is given immedistely by inverse transform as
«
P= 20 Z ‘n$ G('r,‘r,) sinnto

vhere, from (3.10)

{ %L') {'ﬂ( V() = Ya(W ]
3] [ (™ 15(%) ~ Yaul5) du(o}.

(The comstant C depends on the wedge length and cen be determined es
shova by Mackie). :

. In Meckie's work, the fundsmental Chaplygin functicus have been
taken as 9,(1) and 2(y (v.) 9 (v)4 (t)9 (1)) (instend of
9,(t) and 9 °(7) as used here). The second of his fumctions can be
shows %o be identical with the functien 2ty (v.) ¢ #(t)- ¢ (v} *(x,))
occwrring in the Green's function above. For n mot a positive
integer, they are identical by definition (ol""(t) J)e VWhenn is a
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positive integer, (= m say), since vn(t) and tn'(t) are regular

functions of n,
ol AR ANOERYO DO
s B [Q"('r) fdatm) + nﬂ:ﬁﬁl} = ¥ {0 +4&\Mﬂﬂ

N-ym "
by definition

Ca dim [0 L% - ) )
nNam

This 1imit is finite as the function within the breckets is an integral
function of n. Hence the two functions are identiecal for ell n.
This establishes agreement between (T.2) and the Mackie sclution of
the Roshko model eavity problem.

nmimm.nﬁumionrwunlcmwedru
cMMMﬁ:,ﬂumw. Mackie used in turn the
Chaplygin, Tomotike and Temads and Tricomi equations of motion and
compared his results. It vill now be shown that thess sories eenm be
derived as limiting cases of the similar series for more general flovs
derived (by Mackie's method) in Chapter V.

Heluholts flov is the flov of a sonic infinite stresm past a
velge, bresking avay vith sonic velocity frem the shoulder; it is
therefore the linit as & + = and ¥/u + 0 of the sonie Jet flov past o
vedge.

AS the end of Chapter V the drag coeffioient of a somic jet past
o wedge, obtained by the Chaplygin equation of motion, was given, for
snall @ , a8

s E H(2,v s £l fl9 * s (5.10
& ﬂf,(%,v) o + '[{-,(%,v)]“ +  ofu™) 5.10)
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vhere
« 2 DR 4 . . () -1q" .
e gm0 ilie-nele
(provided L ¢ 0(a™8) ).
Iet ®/pva , {.00 v+0.

g lin &2 TR b"ﬂ:lu) /v

va0  $,("%9) Va0 3N, (%77 20~

= ¥ (%) lim &[Z(-'. f)"“‘"n "_'i_i)_l ;
A IR
¢(-1,8) ean be expressed as a Bemnoulli Polynomial (ef.(8) ) vis.

5(<a) = e S 8. (a)
.'.%S(—l,a) * =4 8(a) = ~Bfa)s - (a-y) | %_ I1,a)s -,
Hence the mmwrator of the limit is equal to -} .

hmmdm.omMWuu
¢(s,a) (for s not on integer) is used. This, taken again from

Brdelyi (8), is ’)
2w z(l.c) e = T(i-5) f # @ &'(“)’oa |“3('"l‘“

o 21-.'.'.3"_‘.3 (5¢) « - r(i-s) -LMM“
G 3

=<
2 Tl=s)  aps T(s+2, o)

‘ Pleie9)
> LQ‘_‘ 8('.1-)]“.& = s(sedy(a™t o)) 3(s+ 2)

- dek) . (%030,

R LS T S R S T
mia bt o !!* "‘%m I

Vo {. “, v) e
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Substituting in (5.18) and inverting, the series gives by Mackie, vis.
a0 L BRI iR ("
& 3B M) rt ah

is obtained.

R ~ + 0O “.h).
a0

Similar results mhfmdbytninglhitsinthcnseriu
for the Tomotika and Tamada and the Tricomi cases. The first term
is the same as for the Chaplygin case; the coefficients of the
second term (in the series for Cp) vhen evaluated for v = 1.b are
found to be in the retio 22 : 40 : 100 (as found in Chapter V).
This again agrees with numerical results caleuated by Mackie.
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CHAPTER VIXX

A THEOREM ON SONIC JET FLOWS

The thesis is concluded with a theorem which is true (when the
free stresm velocity is sonic) for all the different types of flow
that have deen discussed in earlier chapters, and which vas suggested
by certain results vhich aroee in Chapter IV (loc.sit). The theorem
states that for all sonic jet flows with hodograph planes as defined
in Pigure IX1.2, the physicel changes due to the yresence of solid
boundaries in the flov are ccmpleted within a finite distence in
those directions in which sonic jet flow prevails. It is cheracteristic
of subsonic flows that they tend monotonically to their final form
at an infinite distance, while supersonic jets develop gquasi-periodic
properties. This property of sonic jets is thus an intermediate
m.

For the special case of a sonic jet flow through a hole in an
infinite wall (for vhich the theorsm has been proved dy Ouderley (1h)
and others), the theorem states that the free stresmline issuing from
the wall at A (in Figure VIII.1 (a) ) Decomes parallel to the stresmline
0'3' after a finite distance AB, after which the flow is a uniform
parallel sonie jet. Again, for the Réthy Flow in VIII.1 (b), the flow
at C, vhere CB is finite becomes a parallel stream inclined at angle
¥/u to the horisomtal.
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FIGURE VIII.1

bmth.tmitiimtoowmminotﬂn
physical coordinate z(t,0) as v and @ vary on the hodograph boundary OAB.
It vas shown in Chapter IV that along each of AB, OA and OB, one of
%s 5, and 5, has singularities vhile the other two are finite and
continuous. Further, between any two singular points, the discontinuous
Mhiadﬁchnhimiuwmm; this can be
Mbymimiucmlmuu.o.g.mmmo?-t.

since y is constant,

§EELE et ﬂéa‘ e

DO
oIy Wy

+ a7, ’ n v
SR 2NN 3 :‘"“-"‘1

bt ‘\
G S e '
/‘a‘q‘”%t\ AN AR



70.
Pp on T = T {The other singular points Qq and Pir on A0 and OB

respectively vhen ¢ < T, represent sources, sinks or doublets at
subsonic speeds and are therefore of no great interest here). Take
rcron-phtholimpointrl (vhere s is discontinuous), and
consider the value of % woving along the hodograph boundary towards
P, from the nesrest singularity on either side, vix. the last
mmauumr,un.

8

P

¥+
A
v= h,

0 s,
FIGURE XIX
(1) 0.+A+P

MN(OlO).ﬁnﬂlsmmﬁhw; s, is purely real
and increases steadily from -= .

At A, vhere there is a free-stream breakaway, ¢ is finite. (If
there is a singularity at A, s has a finite discontinuity there).
nm”(t-t').s!mdlammtim; :lincrcuuvith
one-Ator,.m'slm.u-emimuw.m
Just belov F, i.e. 8 = 0, -

[ §

. o : e ~{rY-09¢
= D 0, hy(cesn3p —cosntg ) (£ _ =
LR r-. %
e T 3[R @sgea)+ S hfe§-0)- o)
k4 =7
neking use of the formulae
03 T N 2 P ik @
Z{-&——- P ‘-—-—} - - . ]
nter ni-| sinT/y
Z \..)o. ;(n‘t«)bi g e e
) AT § Ssinv)y

L]

s, is continuous.
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both of which ave valid for O < 6 < 2v/E .

um.uooolnum

& gg_gﬂ_[h.[l .-u.(;- ,)} Z‘k [cu(t-o')-MG 8.4+ ]

(8.1)
vhere { = _‘;_t.m%[v.‘ oz o+ 1,].....

’ll.:,ndssmﬂdtodcmhmnolz thus ¢, is finite.
The first two terms also being finite, the above value of s is
finite. (Hote that this is only true of a sonic jet; it was
Mhmﬂmtm%<t...ﬁumatr1).

(11) Py =+ Py

mhs,mnsmemhm; slmuMﬂtht
from P, to P, vhere .5, has & discontinuity. Just above P,

i 0m0, ¢+ , it can be deduced in the same way s before
that i -

B = Lese g e bontmoe - Ry + Thjaly-a)

So as O-oaln'-m e "““'""lﬂ

R R B Y
Wl-up +% ] ()
which again is infinite.

(144) as ®
The values of s given in (8.1) [s (0,-)] wnd (8.2) [s(0,4)] cen
be compared by writing them in the form



T2.

z(s. -) = _lh_.b.l._ 3‘"9 > z.
Q¢ (1-1)*

2(6+) = ilh-he) cos8 + 2
Ul

: =
z . ;_f.}), [rae™ ¢ (h-hlen§ems ~hon(g-a)¢ 7. o §-4)-cws(§ 1]
Consider s small are P'P" about P. 4

é "
NP‘P". dv = _‘LC‘:' d'“

% 'u-'?

since ¢, O!udt.,meuﬁmnr.
o+ At any point of the are,

zZ = ‘ §, + constant
ol
vhere B, < 4y < by <mn’h.)
Now let the length of the arc tend to sero.
Then the point P, in the hodograph plane is the image of the line

by= $n®@ + 2, ¢z ¢ dilh=b) sy +
“(. (] ] '_T‘Y ‘i z.
in the physical plane, a line perpendicular to the free streamline

at a finite distance from the solid boundary lines. It follows
that after this line, the flow bdecomes & uniform parallel somnic jet
st angle 8, to the real axis. A similar result can be proved for
the other singuler points P, on T = 1, (of vhich, as shown in
Chapter II, there are at most three in all).

Having proved this theorem for ‘simple flovs past vedges', the
question naturally arises as to vhether or not the result can de
made even more gemeral and bde extended to jet flows with curved
boundaries. Recent work by Sedov (21) indicates that in fact this




T3.
Be shows that, for the particular case of a jJet
emerging from a slit in a wall (studied by Ovsismmikov (19) ), the

will be the case.

effect of curving the surface of the wall is only to add to the
solution 9(v,0) & function $*(t,0) vhich is analytic and continuous
nesr the point of free-stream breskaway (i.e. the singuler point on

the maximm velocity hodograph boundary). The velocity potential
and space coordinate can be found in the ususl way; the results
again have the added functions $*(t,8) and =%(t,0) respectively,
vhich are both econtimuous and finite st the singuler point. Thus
the theorem can easily bde proved for this flov also. It seems
probable that Sedov's analysis could be applied to other similar

flows and perhaps be extended to make the theorem generally true
for all sonic jet flows.
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APPENDIX

AN ASYMPTOTIC EXPANSION OF %{T(zc)j
FOR O < & < 1 AWD R(s) LARGE AND POSTTIVE
muylptotic expansion ofJ'(st) (where 'dash’ denotes
differentiation with respect to t), will be found Ly means of the

recurrence relation
JoL 8t _'EJ;(:.L') - T, (2t) (1)

Wo expensions m:.(n)mmxmmnmbm
given in several treatises on Bessel Punctions; the main part of
the analysis therefore consists in finding an expmlon for J, n(st).

The method used is that given by Watson (27) in §8.6 of his
book on Bessel Functions, vhere Debye's results are extended to the
case of Bessel Punctions of (large) complex order and argument.

T™his consists in expanding the relevant ‘:hmction, J '(s) say, in
terss of tvo gemeral functions 81)(s) ent 8{14)(x) (aetinea for an1
v and 8) for vhich asymptotic expansions have been given. Briefly,
these functicns are defined by considering the integral

I t:smhw-w‘“ 5 L e.--_:.-E(m) dw,
¢

where f£(v) = v cosh y - sish v, cosh y= V/g :

the comtour C is chosen as the 'Mhot"Wt descent,' i.e.
SE('i -JE‘(Y)]. ¥ being a stationary point of f(v), so that an
asysptotic expansion can be derived by expanding the integrand in the
neighbourhood of s = vy . Writing v =u ¢ iv and vy = a¢ i8, the
contour has equation
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(v-p) coshet cosp + (w- w)siche SiaB = coshw Sinv + cosha sinf = 0 (2)

Sketches of this eurve have been mede by Wateon to cover all possible
values of @ and B ; in all cases it has two branches (i) and (ii)
say, meeting at (a,8) (i.e. v @ y), vhere they have gradients

(1) /% + 6 and (i1) -w/b + & whare |6] < /2. and moving off to
infinity in both directioms.
Tracing the contours in the
direction shown in the
disgrem, the functions
sv(:)mdcﬂudu

4 e () L]
s - L I Pyl . S:ﬁ(z.) . -4 f g
t 5 w )
snd have asymptotic expansions
Sf) @) ~ gv(“m")' il Z T'(n+4) Am (3)
J(= 4y toshy) P(E) (4 Vlanhv)"
Svm(z) i _;m“".ﬂ* g 2 M(med) Am
(=g tanhy) , T(R) (-4 b (%)

where arg(-ivei temb v) = arg s ¢ arg(-i sinh v) (s)

and -u/2 < arg(-i simh v) < /e : (6)

a-ﬂrnm«m%'-'mmm
2 2
A.-l e Ve .%»- ,.%},“"'V-
mummmmm.mw
(valid here sinece |arg s| < v/2)is

OB ek = (ae)V
Lalt] = L] & dw

)
avL

Wem
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which, in sccordance with the sbove caa de vritten in the form

A 4 f‘"‘ c.:.t.’f(w)dw

L L} :
m:(v)-vmv--mu,mmvo(sﬂ?n. Por 0 <t <],

(1)

R(s) large requires that # be small; if § is restricted to

positive values, there is & 1-1 m«m%MMV,
and @ % O sccording as I(s) § O. With these restrictions on a and
8, the shape of the eontow (2) is given (following Watsom) in

yig.l for a > 0 and in Fig. 2 for @ < O,
v

B e W




Thus the comtour integral (7) can be idemtified with the funetion
]sﬁ}_(n) vhen X(z) < O and with 18&{’(“) vhen I(s) > O.

Consider first the case vhen I(s) < 0. Conditica (%)
requires that in the asymptotic expansion of :”l(st),

arg [= (z+N)itanh Y] ¢ argzl + arg (~isinhY)

Por R(s) large this requires arg(-i tanh y) = arg(-i sinh y). Wow

e>0and 840+ ; hence arg(sinh y) = 0 ¢, and from (6),

arg(i sinh v) = ~w/2 ¢ . Hence it is necessary that arg(-i tanh y)

= -u/2 ¢, a condition satisfied by choosing arg (tanh y) = 0 ¢
aod arg(-i) = -jw. With these requirements (3) gives
I‘" ) t‘)(tuﬁv-v) z T‘@n-_k_l_ ",
J[3lzey tanh v) s TRY  [h(zedtent]”
- This expression is identical with the well-known formula for = real;
hence the following results hold for I(s) § O.

uthmmmx.mmm«mummtm

MMmhqﬂoﬂhuﬁudduenuumofn
first of al)

ftanhy = 2 [l- M'V]"
e tfi-~ (;-‘:...)‘t‘]*

- t‘ -t‘ ¢ -|- a kS -l
(] )[11»_.:?.:. "i'a:-?(s*it-‘:\ z -t-]
mm»miﬁnﬁnhmu-ﬁnm(mﬂ-0ﬁm

C'ﬁuuo-thmmmmtnochi-t.m-dm
finally
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(2+ ) tanhY ~ zlanh® + coth® - L2'casech™Ocothd + OF) (9)

so-l

Also, since cosh A R

b Aoy
= § [ 0 e 0 ) F b, ]

As |e"| = «® > 1, the positive sign has to be taken, giving

¥ e d0-tt) [ | ) g et | oA
e s M o T e S ]
and eventually, since log {1¢ /(1-¢*)}/t is positive and equal to

(2r0Y ~ 20 + [0ecthd] + = {atho -Leoth'o] 4+ Oz") (20)

Substituting expansions (9) and (10) into (8) and using the fact

that ;
A = .'. ;_eothY - .l‘.-écoﬂs‘o + 0(1") :

it is finally found after some algedra, that for R(s) large and I(z) < O
a(tmﬁoo)-o

L -th . 2 - =3h
I,Jzt) ..r—“'m) [1. -{%uﬂuo+i.toth0+£uth‘0}z +(o(a )]

Amwct:m(n)rex(-bo-mcmuu
necessary to take arg(+i) = ¢jv and arg(-tanh y) = 0- , and hence, from
)

-bNMV-r) =

(I’. ) ~ r"’” "‘) Aw
J(-a(w\'MY] (o PlR) (e tannv}®

The functions ocewrring in this formuls are expanded as sbove. This
time the negative sign is required in the series for tanh y and e’ ; the
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latter yields in the subsequent analysis the function log {1-v(1-t%)}/¢
vhich bag the value -0 . As & result, the series given in (9) snd
(10) ia this case represent -(s+l) tanh ¥ and -(391)Y respectively,
and the resulting series for J . (st) is as in (21). Thus (11) is
the required asymptotic expansion of 3.’1(31:) for R(s) lerge and
all values of I(s). '

Using this result and the similer result for J (st), (given vy
Watson among others), vis.

T z Pneh) Ao
~ 2z tanho) T(h)  (fte~he)”

in relation (1), it is finally obtained that for 0 < ¢ < 1 and R(z)

large and positive,

4 z(tank® - 9) + - G 5
T (zt) ~ m [0 + 2 "cosho (3 ctheo-3) + oz )Juz)

where 0 is the acute angle such that sechd = ¢,

Tis formuls, and the Vatson formuls for J (st), obviously
fail to give an adequate representation of the funetions whem ¢ is
t00 near 1. Ithhoma:lonforJ’(st) is valid only if
. <0 (1). From the definitions given by Watson, it is

(s tanh 0)® -
soen that A_= O(coth™ 0) for small o .

Thus the required condition on 0 is tamh 0 > O(s); tnis is
equivalent to 1 - ¢ > 0(s™B). With this limitation on @ , a1 the
expansions used in the derivation of J.'(st) ere Jmiﬂod and hence

(1!) is valid.
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