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Abstract 

There is great potential for the implementation of machine learning to aid in 

pharmaceutical process development. Machine learning (ML) algorithms can be 

applied to increase the speed with which high-value drug products are developed 

for the market while reducing the utilisation of material, minimising wastage and 

assuring the desired quality attributes are achieved. This thesis illustrates the 

application of ML techniques in aspects of crystallisation process design assessing 

the ability to predict crystallisation outcomes, including crystal habit and non-

aqueous solubility of pharmaceutical drugs in a diverse range of solvents.  

High throughput screening for analysing crystallisation outcomes and crystal habit 

of paracetamol in a diverse range of solvents was developed using Technobis 

Crystalline.  Out of 94 solvents, paracetamol was observed to crystallise in 44 

solvents, remain in solution at set conditions in 11 solvents, never solubilise in 36 

solvents and show signs of degradation in 3 solvents. Based on these experimental 

data, a ML classification model was constructed for predicting the crystallisation 

outcomes and crystal habit of paracetamol with ~77.78 % prediction accuracy. 

Analysis of the ML model revealed that the physicochemical descriptors and 

predictive capabilities were more directed towards defining solubility of 

paracetamol rather than its nucleation behaviour. A rapid and efficient solvent 

selection tool based on relative solubility was developed using ML algorithms. The 

tool was not only successful in aid of rational selection of solvent but also reduce the 

number of screening experiments in the laboratory and thus limit material cost and 

usage. The regression and classification models built to predict non-aqueous 

solubility on 247 drug and drug-like molecules in seven commonly used solvents 

demonstrated that the molecular descriptors calculated using MOE were better at 

predicting solubility compared to structural fingerprint descriptors. Furthermore, 

both the regression and classification models successful predicted solubility of 

drugs in alcohols compared to other organic solvents.  
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1.1 Introduction 

Crystallisation is a widely used unit operation applied mainly as separation and 

purification technology in various major sectors of the chemical process industries 

such as pharmaceuticals, agrochemicals, microelectronics, food and petrochemicals. 

In the pharmaceutical industry, crystallisation mainly serves as a separation process 

for intermediates and often as the final step in the manufacture of active 

pharmaceutical ingredients (API), ideally yielding a pure, finely divided free-

flowing crystalline powder (Mullin, 2001b). Operating conditions of the 

crystallisation process determine the properties of the crystalline product including 

crystal purity, particle size and shape distribution, surface properties as well as a 

solid-state structure including the occurrence of polymorphism or solvate 

formation. These essential quality attributes of the crystalline product greatly affect 

the efficiencies of the downstream operations such as filtration, drying, washing, 

flow and compaction for example. The physical properties of the APIs are also 

responsible for altering the bio-performance of the drug, dissolution rate, stability as 

well as its shelf life (Khadka et al., 2014). For pharmaceuticals that exhibit various 

polymorphs the crystallisation process also affects the polymorph produced. The 

solid-state phase and purity of the product in turn may affect drug dissolution, 

efficacy or potential toxicity, which are critical from a consumer safety and 

regulatory point of view. Thus, most pharmaceutical manufacturing processes 

include a series of crystallisation processes with controlled critical process 

parameters (e.g. cooling rate, supersaturation and impurity level) to achieve the 

desired crystalline product of high purity and desired final crystal form (Aamir, 

Nagy, Rielly, Kleinert, & Judat, 2009). 

The pharmaceutical industry is continuously challenged by the need to comply with 

more stringent and detailed product requirements which leads to the high cost and 

longer development times. The design of the crystallisation process can be complex 

in comparison to other processes given the need to achieve multiple objectives in 

terms of purity, particle shape and size distribution and polymorphic form. Not 
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only can these impacts on performance in patients but these attributes also affect the 

performance and ease of manufacture of the material in downstream processes such 

as filtration, drying, blending and compaction (Fujiwara, Nagy, Chew, & Braatz, 

2005). A key challenge for the pharmaceutical industry faced with bringing a wider 

variety of smaller volume products to the market is to improve the efficiency of 

process development (Badman & Trout, 2015). This applies particularly to 

continuous processes, where it is essential to develop comprehensive process 

understanding to design and implement robust processes (Baumann & Baxendale, 

2015). 

There is an increasing effort to develop mechanistic models to describe key rate 

processes used in pharmaceutical manufacturing to inform process design and 

control better. While significant progress has been achieved for important unit 

operations such as wet granulation (e.g. Litster and Iverson’s work on growth 

regime maps for liquid-bound granules (Iveson & Litster, 1998)), industrial 

crystallisation of molecular solids presents considerable challenges. Classical 

nucleation theory and simple power-law growth rate expression do not capture the 

complex interactions between nucleation, growth, attrition, agglomeration and a 

potentially wide range of practically important process parameters including 

composition, temperature, pressure, flow, undissolved solids, materials of 

construction or reactor geometry. Data drove approaches including machine 

learning (ML) are of considerable interest for their potential to model such complex 

interactions.  

Around 90% of the world’s data were generated in the last five years and the 

number of data is getting bigger every day (Baker, Pena, Jayamohan, & Jerusalem, 

2018). ML can provide the opportunity to efficiently understand the relationships 

between parameters impacting complex process mechanisms and moreover, 

provide the basis for predicting process outcomes. This requires the utilisation of 

sets of data to develop and train the models over a sufficiently wide range of 

conditions. However, if successful, ML has the potential to minimise the traditional 
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reliance on purely experimental efforts. Implementation of ML algorithms in the 

field of crystallisation process design is therefore of significant potential interest. 

1.2 Fundamental crystallisation process parameters 

Crystallisation involves the formation of a solid crystalline phase from solution, 

melt or gas. The resulting structure is one in which the atoms or molecules are 

arranged in a highly regular periodic array described by the crystal lattice. This 

ordered ‘crystalline’ state differs from ‘amorphous’ solids which lack long-range 

structural order (Fahlman, 2002). These well-defined internal structural features are 

reflected in their external morphology with clearly defined faces and sharply 

defined inter-facet angles and consistent physical properties including melting point 

and solubility. Crystallisation from solutions is extensively used in the 

pharmaceutical industries for the manufacture of solid bulk APIs as almost 90% of 

them are delivered in the crystalline state (Shekunov & York, 2000). Crystallisation 

confers purity and stability rendering the API in a form that can typically be 

handled, processed and administered to patients with relative ease. Crystallisation 

from solution is the most widely used industrial process and involves the 

dissolution of crystalline APIs in a solvent and crystallisation is induced by 

inducing a thermodynamic driving force e.g. by changing temperature, pressure or 

solvent fraction. Solution crystallisation can generally be described to be in three 

successive stages:  supersaturation of the solution, the formation of the crystal nuclei 

(nucleation) and crystal growth. These are described in the sections below.  

1.2.1 Solubility and supersaturation 

Solubility and supersaturation are two fundamental concepts that need to be 

considered when characterising the dynamics of a crystallisation system. Solubility 

is an important physical property and is defined as the maximum concentration of a 

substance in a solvent at equilibrium under a given set of temperature and pressure 

conditions (Myerson & Ginde, 2002). In most cases, the solubility of solute rises by 

increasing the temperature within the bulk and therefore it is typically considered 
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as a function of temperature  (Schwartz & Myerson, 2002). Nevertheless, a few 

systems present an inverted behaviour, such as anhydrous sodium sulphate which 

shows a reduction in aqueous solubility on increasing temperature (Mullin, 2001b). 

A graphical representation of a typical solubility curve is shown in Figure 1.1. The 

solubility line defines the boundary between the stable undersaturated region of the 

solution phase diagram and the metastable region of the phase diagram. 

Figure 1.1 Graphical representation of the solubility – supersaturation phase 

diagram (J. M. Hughes, Aherne, & Coleman, 2012) 

Supersaturation, describes the thermodynamic driving force of crystallisation 

arising from solute being dissolved in concentrations in excess of the 

thermodynamic equilibrium solubility (Kim & Mersmann, 2001). The extent of 

supersaturation dictates the kinetics of the key crystallisation rate processes and 

therefore impacts the achieved quality attributes including yield, size, shape, purity 

and polymorphic form. Supersaturation can be calculated as a function of the 

difference between the chemical potential of the solute molecules in solution 

(µsolution) and in the solid (µsolid) state. There are a number of commonly used 

expressions to describe supersaturation (Mangin, Puel, & Veesler, 2009). 

Supersaturation = exp(
μsolution − μsolid

RT
) Equation 1.1 

where, R is gas constant (8.314 J mol-1 K-1) and T is temperature. 
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However, defining supersaturation based on solute concentration (c) and the 

saturated/equilibrium concentration (csat) are typically used for process engineering 

applications.  

Absolute concentration (Δc) = c – csat Equation 1.2 

Supersaturation ratio (S) = 
𝑐

𝑐𝑠𝑎𝑡
= 𝜎 + 1  Equation 1.3 

Relative Supersaturation (σ)  =  
𝑐

𝑐𝑠𝑎𝑡
= S − 1 Equation 1.4 

In general, supersaturation can be practically generated in the following ways (Su, 

Nagy, & Rielly, 2015): 

i. By chemical reaction – reactive crystallisation: High supersaturation is 

generated due to chemical reaction between two highly complex organic 

compounds mixed under stirring which produces product exhibiting a 

solubility several orders of magnitude lower than that of the reactants. 

ii. By cooling crystallisation: By cooling a solution, the solution moves from an 

undersaturated to a supersaturated state whether into the metastable or 

labile regions. Primary nucleation can only occur in the labile region. The 

metastable zone is typically where seeded crystallisations are carried out to 

control growth rates whilst avoiding uncontrolled nucleation.     

iii. By evaporative crystallisation: Due to evaporation, the solvent mass fraction 

can be significantly decreased driving an undersaturated or saturated 

solution to a metastable state. 

iv. By changing the pH: Variations of the pH can also generate supersaturation 

by altering the ionisation state and solubility of the solvent that drives the 

solution to a metastable state. 

v. By anti-solvent crystallisation: The addition of an anti-solvent can reduce the 

solubility of the API, driving the solution from a stable to a metastable 

region. An anti-solvent is a solvent in which the target compound is highly 

insoluble.     This is widely used in industrial processes as can achieve the 
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best yields although dilution by antisolvent to produce large process 

volumes and associated consumption of large volumes of solvent are 

practical considerations. 

Although several approaches have been utilised for the correlation and computation 

of molecular solubility, none of them has proven to be of general applicability. Even 

thermodynamic models, such as UNIFAQ and SAFT models, fail to accurately 

predict the solubility of complex systems (e.g. polymorphs, multi-component 

systems etc.). Data generated for these models are often of poor quality or are 

obtained under varied experimental conditions. A small change in pH, temperature, 

presence of impurities etc can provide variability in solubility data. Thus, due to the 

lack of fully reliable characterised solubility data has let to the solubility being 

typically determined experimentally by using either the polythermal or the 

gravimetric method (Llinàs, Glen, & Goodman, 2008). 

1.2.2 Nucleation 

Nucleation is the process by which new crystals are formed in a crystallising 

environment. The first particles formed upon nucleation are referred to as 

nuclei/embryos. Nuclei are typically shortlived and only a few nanometres in size 

and occur due to the aggregation and clustering of molecules or ions in a 

supersaturated solution, melt or vapour. According to classical nucleation theory 

nuclei have to reach a critical size above which they will grow rather than re-

dissolve. Nucleation can be spontaneous or induced by external stimuli e.g. 

mechanical shock, ultrasound, laser stimulation, electric and magnetic fields 

(Mullin, 2001b). 

Two main types of nucleation processes are important considerations in 

crystallisation: primary nucleation and secondary nucleation.  Primary nucleation is 

when a system nucleates without the presence of any crystalline material and refers 

to the first formation of crystallites whereas secondary nucleation is where 

nucleation occurs in an environment that already contains crystalline particles and 
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is therefore influenced by their presence. Primary nucleation is further subdivided 

into homogeneous and heterogeneous nucleation. A homogeneous primary 

nucleation is a form of nucleation that occurs spontaneously without external 

stimuli or influence whereas heterogeneous nucleation is induced by a foreign 

particle whether an interface or undissolved solids particles or fibres in the 

supersaturated solution.  Table 1.1 describes examples of the three different 

nucleation modes for ice and the different conditions under which they would be 

expected to occur (Jones, 2002). 

Table 1.1 Examples of water-ice systems to illustrate different nucleation modes and 

the conditions under which they apply 

Mode of 

nucleation 
Example 

Primary 

homogeneous 

Crystallisation of carefully purified water (i.e. distilled and 

filtered). This would require cooling the water to below -30°C 

before ice forms. 

Primary 

heterogeneous 
Crystallisation of tap water, ice would appear at about -6°C 

Secondary 

Continuous crystallisation of ice in a retained bed crystalliser. 

Operating conditions for temperature would range between -2 

and -3°C. 

 

1.2.2.1 Primary Nucleation 

Primary nucleation is the classical form of nucleation and typically occurs at very 

high levels of supersaturation. In unseeded crystallisation processes, primary 

nucleation is the prevalent process and will dictate the rate at which nuclei are 

formed and the growth surface is established for subsequent deposition of excess 
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solute. The nucleation rate generated by a primary homogeneous nucleation 

mechanism is expressed in Equation 1.5 below. 

𝐵ℎ𝑜𝑚
0 = 𝐴𝑒𝑥𝑝[−

16𝜋𝛾3𝑣2

3𝑘3𝑇3(𝑙𝑛𝑆)2
] 

Equation 1.5 

where, 𝐵ℎ𝑜𝑚
0  is the rate of homogeneous nucleation e.g. the number of 

nuclei formed per unit time per unit volume, A is a pre-exponential factor, T is 

temperature, 𝛾  is the interfacial tension, 𝑣  is the molecular volume, 𝑘   is the 

Boltzmann constant,  S is the supersaturation ratio c/csat, c is the solution 

concentration and csat is the equilibrium saturation concentration. 

Equation 1.5 mentioned earlier can also be expressed in the form of an Arrhenius-

type rate equation as shown in Equation 1.6 below, 

𝐵ℎ𝑜𝑚
0 = 𝐴𝑒𝑥𝑝[−𝐾(𝑙𝑛𝑆)2] Equation 1.6 

Most primary nucleation that occurs in real processes tends to be heterogeneous 

rather than homogenous given the difficulty in removing all potential sources of 

contaminating surfaces or particulates. Heterogeneous nucleation occurs due to the 

presence of heteronuclei that lower the interfacial tension. The rate of primary 

heterogeneous nucleation is illustrated below in Equation 1.7. The presence of inert 

particles in the saturated solution causes nucleation to occur at a much lower level 

of supersaturation than in their absence. 

𝐵ℎ𝑒𝑡
0 = 𝐴𝑒𝑥𝑝[−

16𝜋𝜎3𝑣2𝑓(𝜑)

3𝑘3𝑇3(𝑙𝑛𝑆)2
] 

Equation 1.7 

where, the factor f (φ) also known as the Zeldovich factor, accounts for 

the decreased energy barrier to nucleation due to the presence of foreign solid 

particles (Vehkamäki, 2007).  

Although expressions for both primary nucleation modes exist and are widely used, 

they are theoretical and whilst show the application in describing experimental 

process up to a point, they have very limited practical application in predicting the 

nucleation rate. Hence the nucleation rate and kinetic parameters must be measured 
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and correlated empirically for each system under each specific set of experimental 

conditions.  

1.2.2.2 Secondary Nucleation 

Nucleation that takes place only in the presence of crystals of the compound being 

crystallised is termed as secondary nucleation (N.S. Tavare, 2013). In industrial 

crystallisation, seed crystals in suspension induce the formation of smaller particles 

and as a result enhance the rate of production of small crystals (Jones, 2002). The 

new crystals formed during secondary nucleation resemble crystals generated as a 

result of attrition but differ in the sense that they occur only in supersaturated 

solutions.  Although a lot of work has been undertaken to uncover the mechanism 

by which secondary nucleation occurs (Agrawal & Paterson, 2015; Garside & Jančić, 

1979), precise definitions remain unclear and indeed multiple sub-mechanisms have 

been described. Some of the known modes by which secondary nucleation occurs 

include: initial breeding; needle breeding; polycrystalline breeding; shear 

nucleation; and collision breeding (Jones, 2002). 

The crystal surfaces at the solid-liquid interface play a significant part in driving 

secondary nucleation. The nucleation rate, B is expressed as the number of nuclei 

per mass of solvent per unit time and is represented by the semi-empirical equation 

below (Equation 1.8) (Narayan S. Tavare, 1995); 

𝐵 = 𝑘𝑏𝜇𝑘
𝑗
∆𝑐𝑏 Equation 1.8 

where, kb is the empirical secondary nucleation rate constant and a 

function of many variables e.g. temperature, hydrodynamics and presence of 

impurities, 𝜇𝑘
𝑗
 is the kth moment of the crystal size distribution present in the 

crystalliser, ∆𝑐𝑏 is supersaturation. The kth moment of crystal size distribution is 

defined as: 
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𝜇𝑘
𝑗
= ∫ 𝐿𝑖𝑛(𝐿, 𝑡)𝑑𝐿,

∞

0

𝑖 = 0,1,…. 
Equation 1.9 

where, L is the characteristic length of crystal and t is the time.  

The use of a 3rd moment, i.e., magma (slurry) density which could also be defined as 

the volume of crystals in the solution, is found to be suitable to account for the 

secondary nucleation effects as secondary nucleation rate is known to increase in 

magma density. Therefore, when k=3, Equation 1.10, becomes the secondary 

nucleation rate equation (Kobari, Kubota, & Hirasawa, 2012; Narayan S. Tavare, 

1995); 

𝐵 = 𝑘𝑏𝑀𝜏
𝑗
∆𝑐𝑏 Equation 1.10 

Studies have shown that primary nucleation is more dependent on supersaturation 

than secondary nucleation (Jones, 2002). Denk and Bortsaris (1972) used left- and 

right-handed optical properties of sodium chlorate to discriminate between the 

crystal surface and solution properties as the causes of secondary nucleation. The 

study found that at higher supersaturation rates, the crystal product formed 

consisted of 50% of both optic forms suggesting primary nucleation was occurring. 

However, at lower supersaturation, all the nuclei were of the same form. Chirality 

helps distinguish between primary and secondary nucleation as the study assumes 

that secondary nucleation will give rise to a product of the same chirality as the seed 

crystals whereas primary nucleation will give rise to a product of both types. The 

overall nucleation rate in a crystalliser depends on the interaction of the secondary 

nucleation characteristics of the material being crystallised and the hydrodynamics 

of the crystal suspension and expressions to account for particle-particle; particle-

vessel and particle-impeller collisions have been developed. Hence, when 

crystallising a given material, crystallisers of different size, agitation rate and flow 

pattern will tend to produce different nucleation rates. 
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1.2.3 Crystal Growth 

A number of theoretical expressions have been developed in an attempt to represent 

the crystal growth process taking place either at the atomic scale or macroscopic 

scale. A simple empirical power law shown in Equation 1.11, can be used to 

represent the overall growth rate R, and can be sufficient for use in engineering 

purposes in crystal design and operation; 

𝑅 =
1

𝐴𝜏

𝑑𝑊

𝑑𝑡
= 𝑘𝑔∆𝑐

𝑔 
Equation 1.11 

where g is the overall order of the growth process, kg is the overall 

growth rate constant which depends on the temperature, crystal size, 

hydrodynamics and the presence of impurities, AT is the total crystal surface area 

[m2] and W is the crystal weight [kg] and t is time [s]. The slurry density and 

intensity of mixing can impact the local mixture and relative crystal solution 

velocity in suspension hence the overall collision rate and occurrence of 

secondary nucleation. 

The size dependence of kg is likely due to hydrodynamic characteristics because 

solid molecules reach the growing surface by diffusion through the liquid phase 

(Jones, 2002).  Once at the surface, molecules must orient and become organised into 

the lattice through an absorbing layer. As with nucleation, all these steps require 

supersaturation to occur and the extent of S will dictate the overall bulk kinetics. In 

addition, for molecular solids where low symmetry packing of molecules results in 

anisotropic cells, it is often the case that different crystallographic faces will have 

different linear growth rates. This leads to a variation in crystal shapes as different 

faces of the same crystal may have different growth rates, with the slowest growing 

face determining the crystal habit (Mullin, 2001). 

For all crystal growth mechanism, the overall growth rate depends upon the 

following (Lewis, Seckler, Kramer, & van Rosmalen, 2015) : 

i. the lateral bonds in the growing crystal face i.e. a material-specific property, 



 

   13 

ii. interaction with the solvent and 

iii. the number of growth units impinging on the crystal surfaces (related to 

solubility).  

Crystal growth from a solution is characterised by two significant processes one of 

which is subdivided into three steps (Jones, 2002): 

i. Mass transport from the solution to the crystal surface via diffusion, 

convection or a combination of both. 

ii. Incorporation of material into the crystal lattice through the surface 

integration 

- First is the adsorption of the growth unit onto the crystal surface 

- Second is the release of its solvation shell after which the growth unit 

diffuses into the adsorption layer until it is either incorporated into 

the crystal lattice or pushed back out into the solution. 

- Finally, if the growth unit reaches a point where it can be built into 

the lattice, it loses the remainder of its solvation shell before it is fully 

incorporated into the crystal lattice.  

In most crystallisation processes, more than one mechanism influences the crystal 

growth. However, if different mechanisms take place in parallel, the kinetics will be 

dictated by the faster growing mechanism. 
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1.3 Machine learning (ML) in chemoinformatics 

1.3.1 An overview of chemoinformatics 

Chemoinformatics is a broad field that utilises computer and information 

techniques to facilitate the collection, storage, analysis and manipulation of large 

quantities of chemical data like chemical formulae, molecular structures, chemical 

properties, chemical spectra or biochemical activities. To some extent, chemical 

informatics is the chemical counterpart of bioinformatics (Faulon & Bender, 2010; 

Gasteiger, 2003; Varnek & Baskin, 2011). According to Frank Brown, the term 

‘chemoinformatics’’ can be generically defined as ‘the mixing of information resources 

to transform data into information and information into knowledge, for the intended purpose 

of making decisions faster in the arena of drug lead identification and optimisation’ (F. K. 

Brown, 1998; Engel & Gasteiger, 2018). The field of chemoinformatics have been 

established for a long period of time and its roots can be traced back in Annalen der 

Pharmacie by Justus Liebig (1832) and in Chemical Abstracts (1907) (C. Smith, 2002) 

where it was understood simply as the application of information technology to 

chemistry. These documents consisted of textual and two dimensional descriptions 

of compounds, reaction mechanism and methods of synthesis and identification (C. 

Smith, 2002). Machine learning (ML) algorithms are a fundamental tool in 

chemoinformatics and have seen an incremental rise in usage over recent decades 

(Varnek & Baskin, 2012).  Unlike quantum chemistry or molecular simulations that 

rely heavily on mathematical equations to model physical reality, chemoinformatics 

utilises ML algorithms to develop models that can simulate, analyse, manipulate 

and predict physical and chemical properties using either the two-dimensional or 

both two- and three-dimensional structures of a molecule (J. B. Mitchell, 2014). 

Furthermore, ML algorithms are much more efficient, can detect complex non-linear 

relationships in data and easily be scaled to big datasets without the need for 

extensive computational resources.  

The application of chemoinformatics as defined above is heavily focused on the 

application of statistical/ML algorithms to a set of chemical data in order to derive 
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predictive models and thus is broad and not limited to a specific field. The list of 

computational methodologies and infrastructures that describes the broadness of 

the field is shown in Table 1.2.  

Table 1.2 List of computational methodologies available in the spectrum of 

chemoinformatics (Bunin, Siesel, Morales, & Bajorath, 2006).  

Assemble, analyse and management of chemical data 

Data management and communication 

Design and organization of chemical databases 

Chemical structure and property prediction (including drug-likeness) 

Molecular similarity and diversity analysis 

Compound or library design and optimization 

Database mining 

Compound classification and selection 

Qualitative and Quantitative Structure-Activity (QSAR) or –Property Relationships 

(QSPR) 

Information theory applied to chemical problems 

Statistical/Machine learning models and both numerical or fingerprint descriptors in 

chemistry 

Prediction of in vivo compound characteristics 
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The field of chemoinformatics is highly predominant in drug discovery. However, 

major applications can also be found in the field of agricultural research, food 

chemistry and material science. Some of these significant applications of 

chemoinformatics include: 

i. Exploration and analysis of the chemical space (Hall, Mortenson, & Murray, 

2014; Reymond, van Deursen, Blum, & Ruddigkeit, 2010) 

ii. Implementing ML models in investing and predicting the relationship 

between the desired physicochemical properties, potency and efficacy or off-

target effects of compounds (M. Liu et al., 2014; V. Svetnik et al., 2003).  

iii. Similarly, develop models for predicting undesired properties of compounds 

relating to toxicity or Absorption, Distribution, Metabolism and Excretion 

(ADME), predicting plasma protein bindings and using it as an aid in 

improving virtual screening methods, (Maltarollo, Gertrudes, Oliveira, & 

Honorio, 2015; N.-N. Wang et al., 2016) and  

iv. Matched molecular pair analysis where every pair of molecules that differ 

only by a particular, well-defined, structural transformation in a database of 

measured properties is identified and the corresponding change in property 

is computed (Leach et al., 2006; Tyrchan & Evertsson, 2016).  

1.3.2  Molecular representation 

Numerous formats for machine-readable molecular representation have been 

developed for various applications ranging from web searching, text mining, and 

chemical identification. The most widely used method for representing the chemical 

structure in chemoinformatics is line notations which represent chemical 

compounds by encoding its connection table and stereochemistry as a linear string 

of symbolic characters. Linear notations are popular because they are human-

readable, can be effectively and efficiently processed for characterization and 

identification functions as the data is structured in linear form rather than tabular 

form and maybe canonical (O'Boyle, 2012).  Examples of line notations are 
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Wiswesser Line-Formula Notation (WLN), Representation of Organic Structure 

Descriptions Arranged Linearly (ROSDAL), Sybyl Line Notation (SLN), Simplified 

Molecular-Input Line-Entry System (SMILES) and IUPAC International Chemical 

Identifier (InChl). Examples of the different line notations for the structure diagram 

of paracetamol is shown in Table 1.3. 

Table 1.3 Different line notations for the structure diagram of phenylalanine 

(Gasteiger & Engel, 2006). 

Molecular Structure 

 

WLN VQYZ1R 

ROSDAL 1O-2-3O,2-4-5N,4-6-7=-12-7 

SLN C[1]H:CH:CH:CH:CH:C(:@1)CH2CH(NH2)C(=O)OH 

SMILES N[C@@H](CC1=CC=CC=C1)C(O)=O 

InChl 
InChI=1S/C9H11NO2/c10-8(9(11)12)6-7-4-2-1-3-5-7/h1-

5,8H,6,10H2,(H,11,12)/t8-/m0/s1 

 

Among the line notations shown in Table 1.3, SMILES is most widely used as the 

universal chemical nomenclature for representing the chemical structure of 

compounds. This is due to the fact: that SMILES are easier to read; more compact 

than other formats; is the simplest linear code; supports Markush, stereochemistry 

and reaction coding in an intuitive way. However, it presents certain drawbacks 

such as a lack of availability for handling aromaticity, a limited array of 

stereochemistry, no standard way to generate canonical representation and is not 

unique (Gasteiger & Engel, 2006; O'Boyle, 2012).  
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1.3.3 Molecular descriptors 

Molecular descriptors are numerical, vectors, bit strings or quantitative 

representations of molecules that capture the physicochemical nature of the 

investigated molecule. The information content of molecular descriptors is mainly 

dependent upon the molecular representation of the compound and the 

mathematical algorithm used to calculate them. More than 5000 molecular 

descriptors derived from different theories and approaches have been reported in 

the literature (Todeschini, Consonni, & Mannhold, 2009). Furthermore, there are a 

plethora of available open-source and proprietary software that have been 

developed for calculating molecular descriptors such as DRAGON (Mauri, 

Consonni, Pavan, & Todeschini, 2006), RDKit (Landrum, 2006), MOE (Paul Labute, 

2000), PaDEL (Yap, 2011), CDK and ChemoPy (D.-S. Cao, Q.-S. Xu, Q.-N. Hu, & Y.-

Z. J. B. Liang, 2013). Molecular descriptors can be classified either by the data type 

of the descriptors (as shown in Table 1.4) or on the basis of the dimensionality of the 

structural representation (as shown in Table 1.5). 

Table 1.4 Classification of molecular descriptors based on data type (adapted from 

(Bunin et al., 2006)).  

Data Type Examples 

Boolean The compound has at least one ring 

Integer number Number of heteroatoms, carbon atoms 

Floating number Log P, molecular weight 

Vector Dipole moment 

Tensor (3 x 3 matrix) Electronic polarizability 

Scalar field Electrostatic potential 

Vector field The gradient of the electrostatic potential, i.e., force 
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Table 1.5 Classification of molecular descriptors based on the dimensionality of the 

structural representation (adapted from (Bunin et al., 2006; Sliwoski, Mendenhall, & 

Meiler, 2016)).  

Molecular 

Representations 

Descriptors Examples 

0-D Derived from the 

molecular Formula; 

Atom counts, bond 

counts, molecular 

weight, a sum of atomic 

properties 

Molecular weight, average molecular 

weight, number of carbon atoms, 

hydrogen atoms, double bonds, 

aromatic bonds, a sum of atomic van 

der Waals volumes 

1-D captures information on 

bulk properties, 

Fragment counts 

the number of H-bond donor/acceptor 

atoms, unsaturation index, hydrophilic 

factor, molar refractivity, fragment 

based polar surface are  

2-D Topological Descriptors Zagreb index, Wiener index, Balaban J 

index, connectivity indices chi, kappa 

shape indices, molecular walk counts, 

BCUT descriptors 

3-D Geometrical descriptors Molecular eccentricity, the radius of 

gyration, E-state topological parameter, 

WHIM descriptors 

3-D Surface 

properties 

Mean molecular electrostatic potential, 

hydrophobicity potential, hydrogen-

bonding potential 

3-D grid 

properties 

Comparative Molecular Field Analysis 

(CoMFA) 

4-D  It includes the conformational 
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flexibility and the freedom of 

alignment by ensemble averaging in 

the conventional three dimensional 

descriptors (Andrade, Pasqualoto, 

Ferreira, & Hopfinger, 2010) 

 

Molecular descriptors are deemed useful when they provide understandable 

information about the compounds whilst adding minimum noise. Thus the most 

useful molecular descriptors are the ones with the greatest degree of information 

density (amount of information utilised by the model divided by the total 

information) (Sliwoski et al., 2016). Descriptors containing redundant correlated 

information should be removed from the model as they often contribute to its poor 

performance (Shahlaei, 2013).  

1.3.4 Machine learning algorithms 

ML algorithms can be grouped into three distinctive types: unsupervised, 

supervised and reinforcement ML models. These three ML models are described in 

the following sections.  

1.3.4.1 Unsupervised ML algorithms 

The main goal of unsupervised machine learning is to learn the mapping of the 

input variables without any prior knowledge of similar outcomes and bring order to 

the dataset. These algorithms tend to derive insights directly from the input 

variables and attempt to summarise or cluster the data in order to utilise the insights 

learnt to make data-driven decisions. Thus, these types of algorithms are beneficial 

in exploratory analysis for extracting valuable insights where it is either too 

complicated or impractical for humans to propose trends in the data (Cios, 

Swiniarski, Pedrycz, & Kurgan, 2007). A schematic workflow of an unsupervised 

ML model is presented in Figure 1.2.  
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Figure 1.2 Schematic workflow of an unsupervised ML model 

Unsupervised ML models apply to two main techniques i.e. clustering and 

dimensional reduction.  

1.3.4.1.1 Clustering algorithms 

The goal of this unsupervised ML is to find similarities in data points and group 

them into clusters based on the inherent structure within the dataset. Data points 

grouped in the same cluster should have similar properties or features while data 

points in different groups should have highly diverse properties or features. Some 

of the popular clustering algorithms include k-means, hierarchical or agglomerative 

clustering, affinity propagation, mean-shift clustering and Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) to name a few. An example of a k-

means clustering algorithm showing two clusters and the location of their centroids 

is presented in Figure 1.3.    
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Figure 1.3 Example of a simple k-means clustering showing two distinctive clusters. 

1.3.4.1.2 Dimensional reduction 

Dimensional reduction aims to derive a set of new artificial variables which is 

smaller than the original set while still retaining most of the variance of the original 

data. Dimensional reduction techniques are essential as a raw dataset with high 

dimensional data are laced with layers of noise, becomes very sparse and thus the 

analysis suffers from the curse of dimensionality. Furthermore, data analysis is 

much less computationally intensive on a small dimensional dataset. Examples of 

dimensional reduction techniques include Principal Component Analysis (PCA), 

Multi-Dimensional Scaling (MDS), Singular Value Decomposition (SVD), Projection 

Pursuit (PP) and Sammon mapping (Dash, Liu, & Yao, 1997; Gollapudi, 2016). 

1.3.4.1.2.1 Principal Component Analysis (PCA) 

High-dimensional data are very common with the rapid growth of 

chemoinformatics, bioinformatics, healthcare and e-commerce applications. 

However, data analysis of high dimensional dataset suffers from the curse of 

dimensionality - finding meaningful similarity measures in the high dimensional 

space and high demand on computational and memory storage requirements (J. D. 

Li & Liu, 2017). Principal component analysis (PCA) is an unsupervised ML 

technique that helps to visualise and reduce the high dimensionality in a dataset 
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whilst retaining the maximum amount of variance. It searches for linear 

combinations with the most variance from a multivariate data set and expresses this 

information in a set of new variables known as Principal Components (PC). The 

amount of variation retained by each principal component in a dataset is indicated 

by eigenvalue measures. The first principal component accounts for the largest 

variability in the data and each succeeding component, placed orthogonally, 

accounts for as much of the remaining variability as possible. The number of 

principal components is usually less than the number of original variables in the 

dataset. If the number of principal components is made equal to the dimensionality 

of the original data, then no reduction is achieved, and the original data set is 

simply rotated relative to the new PC space (this is not normally useful). The 

ultimate goal of PCA is to reduce dimensionality of a multivariate data with 

minimum loss of information by removing noise and redundancy in the data, 

identify hidden trends or patterns in the dataset, simplify the description of the 

dataset, extract most important information from the dataset and identify correlated 

variables (Husson, Le, & Pagès, 2017). Disadvantages of PCA include the lack of 

interpretability of the results after analysis, its sensitivity to the scale of 

measurement which could be fixed by standardizing the variables and the difficulty 

in evaluating the covariance matrix in an accurate manner. The underlying structure 

of the data must also be linear as PCA might miss non-linear data patterns. Overall, 

PCA is a fast and powerful tool for data analysis as it identifies the main axes of 

variance within a dataset, allows for data exploration in order to understand the key 

variables in the data as well as spot outliers in the dataset (Abdi & Williams, 2010; 

Jake Lever, Krzywinski, & Altman, 2017). The graphical representation of PCA is 

shown in Figure 1.4. 
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Figure 1.4 Illustration of PCA analysis steps indicated by the purple arrow on a 

dataset. The data are initially represented on the x-y co-ordinates. Dimensional 

reduction is performed by identifying the directions in which variance is maximum. 

PC1 is the first principal component (longest blue, double headed arrow) which 

captures the maximum variance in the data points followed by the second principal 

component (PC2) placed orthogonally to capture the next largest variance in points. 

(Adapted from: Principal Component Methods in R (Kassambara, 2017).  
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1.3.4.2 Supervised ML algorithm 

Supervised ML models take known datasets consisting of both the input and 

associated target variables, learn the relationship between the features and the 

target variables and make reasonable predictions for the output to a new dataset. 

Prediction made by the model is usually validated by utilising an external 

validation set. A schematic diagram of how supervised ML models use labelled data 

to fit and prepare themselves to make a prediction on unseen cases is illustrated in 

Figure 1.5.  

Figure 1.5 Schematic diagram of supervised ML models 

Supervised ML models are often known as predictive analytic models based on 

their ability to predict the future based on the past.  Supervised machine learning 

helps convert raw data into actionable insights. This in turn helps researchers to 

utilise the data to understand and prevent unwanted outcomes, and in some cases 

make decisions faster. In supervised ML, each row in the dataset is known as a 

training instance, the target feature is known as labels or outcomes and the overall 

dataset used to train the model is referred to as a training set. A simplified 

supervised ML algorithm can be described by an equation shown in Equation 1.12.  

Y = f(x) Equation 1.12 

where, x is the known input variables and Y is the output.  

The two fundamental categories of supervised ML are regression and classification. 
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1.3.4.2.1 Regression 

Regression supervised models aim to predict a continuous measurement for an 

observation. The predicted results are represented by a quantity or number that can 

be flexibly determined based on the inputs of the model rather than being confined 

to a set of possible discrete labels. Some of the commonly used regression 

supervised algorithms include: (regularised) linear regression, regression trees, 

support vector machines and ordinary least squares to name a few. 

1.3.4.2.2 Classification 

Classification supervised models aim to assign labels from a set of finite labels to an 

observation. In simple terms, classification models attempt to predict a categorical 

response, such as “blue” or “black”, “disease” or “no disease” or “spam” or “no 

spam”. Classification models with two categories or labels are known as binary 

classification and more than two labels are known as multiclass classification. Some 

of the commonly used supervised algorithms for classification include decision 

trees, random forest classification models, gradient boosted trees, Support Vector 

Machine (SVM), logistic regression, k-nearest neighbour and naïve Bayes to name a 

few. An example of a supervised SVM classification is shown in Figure 1.6 

presenting two species (versicolour and virginica) as labels from the multivariate 

iris dataset and the algorithms attempt to classify the samples into these two 

categories (Andrews & Herzberg, 1985).  
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Figure 1.6 Example of an SVM supervised classification model built on the iris 

dataset showing the resultant classification of the two labels: versicolour and 

virginica.  

1.3.4.2.2.1 Decision tree 

Decision trees are one of the most useful and powerful supervised ML algorithms. It 

is an efficient non-parametric supervised approach that is mostly used for 

classification and regression of variables. It is a hierarchical model, encoded as a 

tree, for supervised learning where the local region is identified in a sequence of 

recursive splits in a number of smaller steps (Alpaydin, 2004). A simple illustration 

of decision trees is shown in Figure 1.7. From Figure 1.7, it can be observed that the 

decision trees consist of various internal decision nodes that represent an attribute 

or feature. These internal decision nodes specify all possible tests on a single 

attribute-value, with one branch and sub-tree for each possible outcome of the test 

(Chahal, 2013). These internal decision nodes were first obtained by splitting the 

overall data points at the root node into two homogeneous sets. The decision nodes 

undergo further splitting to form terminal nodes or leaf nodes which represents a 

classification or decision. If the outcomes are continuous, the internal decision nodes 

can test the value of an attribute against a threshold. The general algorithm of 

decision trees starts with picking the attribute which is the one that best classifies 
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the training data. The algorithm then keeps asking relevant questions to split the 

training items into even smaller subsets resulting in a “tree”. The questions are 

asked until it has no effect on the purity of the subsets or the leaf nodes can no 

longer be further subdivided. The basic algorithm utilised in decision trees is the 

Iterative Dichotomizer 3 (ID3)  algorithm by J.R. Quinlan which builds the trees 

using a top-down greedy approach to create the shallowest decision tree that is 

consistent with the dataset (Kingsford & Salzberg, 2008). 

The goal while building a decision tree is to split the attributes in order to create the 

purest child nodes possible. To identify the best-suited attributes, some of the 

measures utilised are entropy, information gain, gain index and gain ratio. As the 

goal of decision trees is to classify the data, information gain and entropy are used 

by ID3 to identify the best split of the attributes and thus calculate the homogeneity 

of a sample.  

Entropy in terms of machine learning is the measure of disorder, uncertainty or 

randomness. It is an indicator of how messy the data is. For a given dataset of ‘N’ 

number of samples, with two categories of Class A (n) and Class B (m = N - n), 

entropy is given by the equation shown in Equation 1.13.  

E = −plog2(p) − qlog2(q) Equation 1.13 

where, p is the ratio of n divided by N (p = n/N) and q is the ratio of m 

divided by N (q = m/N or, q = 1 – p).  

Entropy is an absolute measure with values ranging between 0 and 1. The entropy 

value of 0 indicates that the sample is completely homogeneous while the value of 1 

indicates an equally divided sample (Quinlan, 1986). Similarly, information gain 

measures how much information a feature gives us about the class or labels. 

Attributes with the highest information gain will split first.  The equation for 

measuring information gain is presented in Equation 1.14. (Kotsiantis, 2013). 
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Inforamation gain = entropy (parent) – average entropy (child) Equation 1.14 

One of the main advantages of decision trees is the easiness in the interpretability of 

the model’s output. The graphical illustration is very intuitive and presents the 

visual representation of all possible outcomes, rewards and decisions in a single 

document. The model also assigns specific values to problems and outcomes of each 

decision which reduces ambiguity in decision making. Furthermore, the models also 

make a comprehensive analysis of the consequences of each possible decision, thus 

making it a very good predictive model. Decision trees are very efficient models as 

no normalisation of the input variables is required and they are thus resistant to 

outliers and missing values. The models are also capable of handling both 

categorical and continuous variables as well as non-linear dataset (Brijain, Patel, 

Kushik, & Rana, 2014; Somvanshi & Chavan, 2016).  

However, decision tree models can become computationally complex if proper 

control and regulation measures are not taken during the growing stage. The 

biggest disadvantage of decision tree models is that it is prone to overfitting. 

Overfitting is when the model fits the training set very well but fails to make an 

accurate prediction on the test set. Various reasons such as having large 

dimensional data containing meaningless or irrelevant variables and having a small 

training set size can lead to overfitting. However, problems of overfitting in decision 

trees can be solved by either pre-pruning or post-pruning methods. The pruning 

process involves cutting down the trees which are done by stopping the algorithm 

before growing the trees to a full model. The model is usually stopped if all the 

attributes belong to the same class or if all the attributes’ values are the same. 

Decision trees can also be stopped from growing if the number of instances is less 

than a defined threshold or growing the nodes does not improve purity. Post-

pruning is more popular than pre-pruning. It involves growing the decision tree to 

its entirety. The data is then split into training and internal validation sets. One node 

is removed at a time and tested on the validation data to see if the performance 
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improves. Nodes that increase the decrease in performance are removed. This 

method usually produces the smallest trees (Bramer, 2013). 

Figure 1.7 Illustration of a decision tree classification model. Here A is the parent 

node of B and C (child nodes). The decision node A along with the terminal nodes B 

and C is known as the branch of the decision tree.  

1.3.4.2.2.2 Random forest (RF) 

Random forest (RF) is an ensemble supervised method introduced by Leo Briemann 

and Adele Cutler (Breiman, Cutler, Liaw, & Wiener, 2015).  Ensemble methods 

utilise a divide-and-conquer approach to improve performance. The main idea 

behind ensemble methods is the grouping of ‘weak learners’ together to form ‘a 

strong learner’. As mentioned in Section 1.3.4.2.2.1, decision trees are susceptible to 

suffer from being a high-variance estimator i.e. making small incremental changes 

in the training observations can drastically alter the predictive performance of the 

learned tree. This problem can be mitigated by utilising bootstrap aggregation or the 

bagging method. Bagging ensemble method randomly samples subsets of the 

training dataset with replacement, fitting a decision tree to each and aggregating 

their result thus reducing variance. Furthermore, the bagging method utilises the 
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entire set of variables when creating splits in the nodes which allows the decision 

trees to grow without pruning and thus aids in reducing tree-depth size and 

variance. However, it is to be noted that utilisation of the entire set of variables 

creates a risk of correlation between the decision trees which can increase bias in the 

model.  This problem of correlation between the decision trees is reduced by 

Random Forest which selects only a subsample of the variables at each node split. 

The random forest algorithm is in itself primarily based on the bagging and random 

subspace paradigm. RF models work by taking the dataset and creating random 

samples with replacement to build a decision tree using each sample as the training 

set. Each tree is trained on roughly 2/3rd of the total training data (63.2%) while the 

remainder is used for the calculation of the Out-Of-Bag (OOB) error rate. The 

number of trees (ntree) grown during the building of the random forest model is 

raised incrementally until there is no further improvement observed on the model. 

At each node of the tree, some predictor variables (mtry) are selected at random out 

of all the predictor variables. The best split of mtry is then used to split the nodes 

and is held constant while the forest is being grown. The default value of mtry in the 

RF model is defined by the square root of the total number of predictor variables for 

classification and the total number of predictor variables divided by 3 for regression 

models (T. Hastie, Tibshirani, & Friedman, 2005). Using both the 2/3rd (bootstrap 

data) and the remaining 1/3rd (OOB error data) of the dataset, each tree in the 

random forest model gives a classification or regression. ‘nodesize’ refers to the 

minimum number of terminal nodes below which leaves are no further sub-divided. 

The default values are different for classification and regression which are 1 and 5 

respectively (Breiman, 2001b). Setting the seed in the random forest model enables 

reproducibility as it is the non-zero integer number that controls the random 

number generator (Bhardwaj, 2016). The misclassification rate or the Out-Of-Bag 

(OOB) error rate, is used to determine the strength of the random forest model and 

thus is used as a guide during the training of the model. RF models have proven 

very successful and are widely used in the field of chemoinformatics.  
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RF models have successfully been used in a diverse range of biological, physical and 

life science applications such as gene selection (Díaz-Uriarte & Andrés, 2006), tumor 

classification (Shi, Seligson, Belldegrun, Palotie, & Horvath, 2005), prediction of 

protein-protein interactions (Sikic, Tomic, & Vlahovicek, 2009), fault diagnosis in 

centrifugal pumps (Y. Wang, Lu, Liu, & Wang, 2016), quantitative structure 

property relationship (QSPR) (V. Svetnik et al., 2003) and predicting aqueous 

solubility, hydrate and solvate formations (Johnston, Johnston, Kennedy, & 

Florence, 2008; Palmer, O'Boyle, Glen, & Mitchell, 2007; Taldeddin, Khimyak, & 

Fabian, 2016). There are many advantages of implementing RF algorithms as it is 

highly accurate in solving both classification and regression problems and runs 

efficiently on large datasets. RF models can also handle datasets with high 

dimensions without any variable deletion. Furthermore, the model outputs 

variables according to their importance which is one of its main advantages. The 

model has the capability of generating an internal unbiased estimate of the 

generalization error as the forest building progresses. RF models can also be utilised 

in unlabelled datasets leading to unsupervised clustering. Even for labelled 

datasets, RF models can compute proximities between pairs of classes which can 

then be used in clustering and outlier detection. Even though RF models have many 

advantages over other ML algorithms, there are some disadvantages too. RF models 

are difficult to interpret and are sometimes referred to as ‘black box’ models. The 

models have also been observed to overfit for some datasets with noisy 

classification or regression problems. If the dataset is highly imbalanced then RF 

models can be biased in favour of the majority classed labels. This can result in 

unreliable variable importance scores.  (Y. J. Qi, 2012; Sullivan, 2018; Wilson, 2017). 

Random forest model built on an ensemble of decision trees is illustrated in Figure 

1.8.  
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Figure 1.8 Illustration of many decision trees forming a random forest model. 

1.3.4.3 Reinforcement ML algorithm 

Reinforcement learning algorithms, also known as semi-supervised machine 

learning algorithms, are goal-oriented machine learning models that learn from the 

interactive environment through trial and error as feedbacks from their own actions 

and experiences. A systematic workflow of the reinforcement algorithm is presented 

in Figure 1.9. Various applications of reinforcement learning algorithms include self-

navigating vacuum cleaners, driverless cars, traffic light controls etc. Reinforcement 

ML algorithms are not simple to build and the problems are tackled by a plethora of 

algorithms (Sutton & Barto, 2018; Z. P. Zhou, Li, & Zare, 2017). 
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Figure 1.9 Illustration of reinforcement ML algorithm 

1.3.5 The performance measure of ML algorithms 

Determining an absolute measure of prediction is greatly dependent upon the 

selected machine learning algorithm as well as well as the dataset. Different 

statistical metrics can help to ensure that the trained classification and regressions 

models are unbiased and capable of accurate predictions. 

1.3.5.1 Classification evaluation metrics 

There are many metrics available for evaluating classification supervised models. 

Some of the popular metrics include accuracy, confusion matrix, Area under the 

ROC Curve (AUC), precision and log-loss to name a few. Some of the classification 

metrics utilised in the thesis are explained in detail in the following sections. 

1.3.5.1.1 Classification accuracy (ACC) 

Classification accuracy is simply the measure of the fraction of correct predictions 

made by the classifier. It is formally defined as the ratio between the numbers of 

correct predictions to the total number of predictions as shown in Equation 1.15.  

Accuracy =
Numberofcorrectpredictions

Totalnumberofpredictions
 

Equation 1.15 

1.3.5.1.2 Confusion matrix  

The confusion matrix, n x n where n is the number of labels, is a table that helps in 

summarizing and visualising the predictive performance of the classification 

supervised model.  It is also known as an error matrix. The rows of the confusion 
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matrix present the actual classes that were observed while the columns present the 

model’s predicted outcomes (Table 1.6). 

Table 1.6 Example of a 2 x 2 confusion matrix 
P

re
d

ic
te

d
 

Actual Class 

 Class A Class B 

Class A True Positive (TP) False Negative (FN) 

Class B False Positive (FP) True Negative (TN) 

 

The confusion matrix helps visualise how accurate the classification model is by 

exposing how frequently the model confuses or mislabels the two classes. It not only 

provides insight into the errors being made by the classification model but also 

shows the types of errors being made. For a classification model with two possible 

outcomes as shown in Table 1.6, a True Positive (TP) is the outcome where the 

model correctly predicts the positive class (Class A) while True Negative (TN) is the 

outcomes where the model correctly predicts the negative class (Class B). Similarly, 

False Positive (FP) is the outcome where the model incorrectly predicts the positive 

class and False Negative (FN) is when the model incorrectly predicts the negative 

class (Max Kuhn & Johnson, 2013). Sensitivity or recall is the ability of the 

classification model to correctly identify all the positively classified values while 

specificity or True Negative Rate (TNR) is the ability of the RF classification model 

to correctly identify all the negatively classified values. The best value for both 

sensitivity and specificity is 1 while the worst value is 0. Precision or Positive 

Predictive Value (PPV) is the ratio of correctly detected positive instances. Higher 

the precision score, the higher is the confidence in the capability of the model to 

classify. Equations defining sensitivity, specificity and precision are presented in 

Equation 16, Equation 17 and Equation 18 respectively.  
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Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 1.16 

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Equation 1.17 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Equation 1.18 

1.3.5.1.3 Cohen’s kappa (ƙ) 

Cohen’s kappa (ƙ) is a robust statistical measure of how well the classification model 

performed as compared to how well it would have performed simply by chance. 

Cohen’s kappa can range from 0 to 1. Table 1.7 presents the interpretation of 

Cohen’s kappa. The value of ƙ at 1 indicates a perfect agreement between the raters 

while value at 0 indicates that the agreement is equivalent to random chance.  It is to 

be noted that there is a possibility for the value of ƙ to be negative but it is very 

unlikely to be negative in practice (Marston, 2010).  

Table 1.7 Logical interpretation of Cohen’s Kappa (ƙ) (McHugh, 2012) 

Cohen’s Kappa (ƙ) Level of agreement 

0 Agreement equivalent to random chance 

0.1 – 0.2 Slight agreement 

0.21 – 0.40 Fair agreement 

0.41 – 0.60 Moderate agreement 

0.61 – 0.80 Substantial agreement 

0.81 – 0.99 Near perfect agreement 

1 Perfect agreement 
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Equation 1.19 presents the formula to calculate Cohen’s kappa (Berry & Mielke, 

1988). 

ƙ =
𝑝0 − 𝑝𝑒
1 −𝑝𝑒

= 1 −
1 − 𝑝0
1 −𝑝𝑒

 
Equation 1.19 

where, po is the relative observed agreement among raters while pe is the 

hypothetical probability of chance agreement 

1.3.5.2 Regression evaluation metrics 

In order to measure and assess the performance of regression models, three 

standard metrics i.e. Root Mean Square Error (RMSE), Mean Absolute Error (MAE) 

and R-squared (R2) are used. RMSE is the measure of the average deviation of the 

predicted data from the experimental observations (residuals), MAE is the absolute 

difference between the predicted data and the experimental observations while R-

squared is the relative measure of how close the predicted data from the RF model 

are to the fitted regression line (Chirico & Gramatica, 2011). A picture of a good 

predictive model is dictated by relatively low values of RMSE and MAE whilst 

higher values of R-squared. The values of both RMSE and MAE range from 0 to 

infinity. Between the two metrics, MAE acts as a better indicator of average model 

performance over RMSE. This is because higher values of RMSE are influenced by 

the presence of the small number of high error predictions as squaring the higher 

prediction error will add more weight than the lower prediction errors. MAE, 

however are devoid of such complex parameterization and provides a straight 

forward determinant of prediction errors (Willmott & Matsuura, 2005). Contrary to 

Willmott and Matsura, Chai and Draxler (2014) stated that one cannot simply 

choose MAE whilst avoiding RMSE as RMSE are more appropriate when large 

errors are particularly undesirable (Chai & Draxler, 2014). RMSE, MAE and R2 are 

mathematically defined by the following equations shown in Equation 1.20, 

Equation 1.21 and Equation 1.22 respectively. 
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RMSE = √
1

𝑛
∑(𝑌𝑖 − �̂�𝑖)

2
𝑛

𝑖=1

 

Equation 1.20 

MAE =
1

𝑛
∑|𝑌𝑖 − �̂�𝑖|

𝑛

𝑖=1

 
Equation 1.21 

R2 = 1 −
∑ (𝑌𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑌𝑖 − �̅�)2𝑛
𝑖=1

 
Equation 1.22 

where, n is the number of observations, Yi is the experimentally observed 

outcome for the ith compound, �̂�𝑖  is the predicted outcome for the ith compound 

and �̅� is the average response of the training compounds 
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Chapter 2. Aims and objectives 
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2.1 Aims 

The aim of this project is to develop and implement predictive machine learning 

models at the earlier stages of the continuous crystallization workflows (C. J. Brown 

et al., 2018) in order to reduce the number of experiments necessary for full process 

design, understand the relationship between API properties of interest and readily-

calculated physicochemical descriptors and help to automate the screening and 

crystallisation process development. The work also aims to widen the application of 

ML in the field of crystallisation by investigating the optimal training set required to 

build reliable predictive models, develop a rapid and efficient solvent selection tool 

for recommending suitable solvents for crystallisation process design and predict 

non-aqueous solubility of drugs and drug-like compounds in a range of diverse 

solvents. 

i. Using ML, is it possible to reliably predict the crystallisation outcomes and 

crystal habit of a drug API using a set of calculated molecular descriptors? 

ii. Can ML be used to identify the optimum number of experiments required to 

build a robust model for solvent selection? Is there a rapid and efficient way 

of recommending solvents for the crystallisation process design? 

iii. Can ML be used to develop an in-silico method for estimating non-aqueous 

solubility of the drug and drug-like compounds in a diverse range of 

solvents? 
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2.2 Objectives 

i. Develop experimental methodologies to investigate crystallisation behaviour 

and crystal habit of an API by performing small-scale cooling crystallisation 

experiments on a diverse range of organic solvents. 

ii. Using Technobis Crystalline reactor system to determine solubilisation and 

nucleation and optical Leica microscope and Morphologi G3 to assess the 

obtained crystal habit. 

iii. Develop a machine learning model pipeline to predict the various 

crystallisation outcomes and crystal habit of an API in a diverse range of 

solvents. 

iv. Using Technobis Crystal16 to analyse solubilisation of paracetamol, 

carbamazepine and carvedilol on the diverse range of solvents at two 

temperature points. Qualitative solubility outcomes, i.e. soluble and 

practically insoluble were determined from transmissivity observations in 

Crystal16. 

v. Using the experimental database to develop a rapid and efficient solvent 

selection tool using ML algorithms. Investigate the ‘optimal’ number of 

experimental data-points by assessment of the training set size required to 

build a reliable and robust predictive ML model for solvent selection. 

vi. Create a non-aqueous solubility database of drug and drug-like compounds 

by curating data from various literature sources and publicly available 

databases. Solubility datapoints were collected for compounds on commonly 

used solvents at laboratory temperature.  

vii. With the set of calculated physicochemical descriptors, both regression and 

classification models were built to predict the non-aqueous solubility of 

drugs and drug-like compounds in a diverse range of solvents. 
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Chapter 3. Material and methods 
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3.1 Materials 

Paracetamol (Form I, CAS ID: 103-90-2) was purchased from Molekula Ltd, UK 

while carbamazepine (Form III, CAS ID: 298-46-4) and carvedilol (Form I, CAS ID: 

72956-09-3) were purchased from Sigma Aldrich, UK. The physical properties of the 

three compounds are presented in Table 3.1. X-ray powder diffraction (XRPD) was 

used to confirm the phase identification and purity of all the purchased three 

compounds used in this thesis. 

Table 3.1 Physical properties of the compounds selected in this thesis (Haynes, 2016; 

Whitesell, 1998). 

Compound 
Molecular 

Formula 

Molecular 

Weight (g/mol) 
Melting Point (0C) 

Paracetamol C8H9NO2 151.163 168 

Carbamazepine C15H12N2O 236.27 190.2 

Carvedilol C24H26N2O4 406.47 114.5 

 

Paracetamol is a potent antipyretic and analgesic agent widely used for the relief of 

headaches and other minor pains. It exists in five reported polymorphic forms I, II, 

III, IV and V as well as a number of solvates (Heng & Williams, 2006; Lee, 2014; S. J. 

Smith, Bishop, Montgomery, Hamilton, & Vohra, 2014). Paracetamol Form I is used 

commercially and is the thermodynamically stable form. Whilst form I crystallises 

as a monoclinic lattice, both the metastable Form II and the highly unstable 

polymorphic form III exist in orthorhombic systems. Polymorphic Form IV and V 

are only obtained under high pressure (Espeau et al., 2005; Hiendrawan et al., 2016; 

S. J. Smith et al., 2014). Paracetamol has low solubility in non-polar and chlorinated 

hydrocarbons and high solubility in solvents with medium polarity. Its solubility in 

water is lower compared to other polar solvents. (Granberg & Rasmuson, 1999; 

Romero, Reillo, Escalera, & Bustamante, 1996). The solubility of Form II is slightly 
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higher than that of Form I (Joiris, Di Martino, Berneron, Guyot-Hermann, & Guyot, 

1998). 

Carbamazepine is a first-generation anticonvulsant drug that has been used in the 

treatment of partial seizures, trigeminal neuralgia, manic-depressive illness, and 

explosive aggression (W. J. Liu, L. P. Dang, S. Black, & H. Y. Wei, 2008). Over the 

years, it has been a widely studied model system in the investigation of crystal 

polymorphism and co-crystallisation.  It has been reported in the literature to 

crystallise in five anhydrous polymorphs and a dihydrate as well as many other 

solvates (Arlin, Price, Price, & Florence, 2011; Florence, 2016). Form III (monoclinic) 

is the commercially available and thermodynamic stable form of carbamazepine. 

Carbamazepine is reported to be poorly soluble in water, sparingly soluble in 

ethanol, isopropanol, butanol and acetone and readily soluble in methanol, 

dichloromethane and tetrahydrofuran (Alrashood, 2016; Kumar & Siril, 2014; W. J. 

Liu et al., 2008). 

Carvedilol, a weak base, comes under the class of alpha and beta blockers and is 

widely used for the treatment of cardiovascular diseases such as hypertension, 

congestive heart failure, cardiac arrhythmias, myocardial infarction and angina 

pectoris (Feuerstein & Ruffolo, 1995; Wen, Tan, Jing, & Liu, 2004). Many 

polymorphic and pseudo polymorphic forms of carvedilol have been reported in 

literature and patents including its three polymorphic non-solvates forms I, form II, 

and form III. All the polymorphic non-solvates forms of carvedilol crystallise in the 

monoclinic system. Form I was identified as the most thermodynamically stable 

form of Carvedilol (Pataki, Markovits, Vajna, Nagy, & Marosi, 2012; Prado, Rocha, 

Resende, Ferreira, & de Figuereido Teixeira, 2014).  Carvedilol was reported to be 

practically insoluble in water, sparingly soluble in ethanol and isopropanol and 

readily soluble in dimethyl sulfoxide, methanol and methylene chloride (Beattie, 

Phadke, & Novakovic, 2013; Brittain, 2013; Menon, Mistry, Joshi, Modi, & Shashtri, 

2012; Planinsek, Kovacic, & Vrecer, 2011). These compounds were chosen in line 

with a greater piece of work as part of the Continuous Manufacturing and 
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Crystallisation Future Manufacturing research hub. Molecular structures of 

paracetamol, carbamazepine and carvedilol are shown in Figure 3.1. 

The solvents utilised for the cooling crystallisation experiments in this thesis were of 

analytical grade and were all purchased from both Sigma Aldrich, UK and Fisher 

Scientific, UK (Table 3.2). The key driver for the choice of organic solvents was 

based on chemical diversity and availability in the laboratory; the choice was not 

limited to pharmaceutically acceptable solvents to create a larger dataset. 

Figure 3.1 Molecular structure of A. paracetamol, B. carbamazepine and C. 

carvedilol  

Table 3.2 List of 94 solvents and their respective family class used for cooling 

crystallisation. 

Solvent Family List of solvents 

Alcohols 

methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 

2-pentanol, 1-octanol, 1-decanol, 2-phenylethanol, benzyl alcohol, 

2,2,2-trifluoroethanol, isoamyl alcohol, 2-methyl-1-propananol, 

cyclohexanol, 3-pentanol, 1-nonanol 

Acids acetic acid, formic acid, trifluoroacetic acid 

Ester 
ethyl acetate, butyl acetate, isobutyl acetate, diethyl carbonate, 

formamide, pentyl acetate, ethyl lactate 

Ether 
anisole, 1,4-dioxane, 2-phenoxyethanol, 2-butoxyethanol,  

2-methoxyethanol, methoxyethane, 2-ethoxyethanol, 1,2-
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dimethoxyethane, 2-methoxy-2-methylpropane, cyclopentane, 

diisopropyl ether, dibutyl ether, diethyl ether, 2-methoxyethyl 

ether (Diglyme) 

Ketone acetone, 2-butanone, 3-pentanone, 4-methyl-2-pentanone 

Polar Aprotic 

acetonitrile, n, n-dimethylacetamide,  

n, n-dimethylformamide, tetrahydrofuran, dimethyl sulfoxide, n-

methyl-2-pyrrolidone 

Halogenated 

1-bromo-2-chloroethane, diiodomethane, 1-bromobutane, 2-

bromobutane, bromoform, bromobenzene, chloroform, 1-

chlorobutane, chlorobenzene, 1,2-dichloroethane, 

dichloromethane, iodomethane, carbon tetrachloride, 

tetrachloroethene, trichloroethylene 

Nitro nitrobenzene, nitromethane 

Aromatics 
aniline, cumene, 1-methylnaphthalene, benzene, toluene, m-

xylene 

Diols 1,2-propanediol, 1,4-butanediol 

Water water 

Amines phenethylamine, pyridine, triethylamine, 2-amino-1-butanol 

Hydrocarbons 
2,2,4-trimethylpentane, 2-methyl butane, hexane, iso-hexane, 

methyl cyclohexane, n-dodecane, cyclohexane, heptane 

Thiols ethanethiol, 1-propanethiol 

Organosulfur 3-methylthiophene, sulfolane, tetrahydrothiophene 
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3.2 Experimental methodology 

3.2.1 Crystallisation techniques 

To investigate the crystallisation outcomes, crystal morphology and to determine 

qualitative solubility, the cooling crystallisation technique was used. The main 

reasons for this was that temperature can be accurately controlled and secondly it 

has a wider applicability to the processes within the pharmaceutical industry. Even 

though evaporative crystallisation requires less apparatus and material, it presents 

challenges around controlling the evaporation rate and as a result was not selected.  

3.2.1.1 Controlled cooling crystallisation for assessing crystallisation outcomes 

XRPD was carried out at the end of the experiment to verify that only the 

morphology of the crystal had changed during the crystallisation process and that 

the API was at its thermodynamically stable form. A fixed weight of the target 

compound was initially measured at 5 wt/wt % and dissolved in the chosen solvent 

at laboratory temperature of 250 C. The suspension was placed inside Technobis 

Crystalline Reactor systems (Avantium, The Netherlands), a multi-reactor parallel 

crystalliser containing both turbidity sensors and real-time particle viewers for 

visualisation of the complete crystallisation process (Figure 3.2).  The in-built 

turbidity sensors allowed the determination of clear and cloud points while the 

crystalline cameras provided real-time visualisation of the crystallisation process. 

The suspension was left to agitate at set stirring speed for an hour. The temperature 

was then gradually increased to 100 C below the boiling point of the respective 

solvent at a slow and constant heating rate.  The temperature at which the 

suspension turned clear (transmissivity observed near 100% and no suspension was 

observed in the particle viewer) was assumed to be the saturation temperature. 

Once the solution was clear, the supersaturated solution was then slowly cooled to 

200 C at a slow cooling rate of 0.10C/min and stored to allow maximum recovery of 

the crystals. Thus, the obtained crystals were gently filtered and dried in a vacuum 

oven. The experiment was repeated four times for reproducibility. If the 
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suspension did not dissolve, when the temperature was increased, the concentration 

of the target compound was reduced to half by doubling the volume of the solvent, 

and the crystallisation steps were repeated. Similarly, if the suspension was found 

to be readily soluble at lab temperature, the weight of the target API was doubled in 

the respective solvent and the crystallisation steps repeated. 

Figure 3.2 Cooling crystallisation performed on Technobis Crystalline Reactor system 

for observing crystallisation outcomes and crystal habit of an API  

3.2.1.2 Controlled cooling crystallisation for solubility measurement 

Various methods are available in the literature for measuring the solubility of solids 

in liquids, and the methodologies are mainly dependent upon the solvent’s 

properties, availability of the compound and analytical instruments, the precision 

required or the need for additional solid phase characterisation (Mullin, 2001a). In 

this thesis, a simple qualitative assessment of solubility measurement was 

performed on the assessment of whether the compound was soluble or practically 

insoluble in the particular solvent at a given temperature point. Measurement of 

solubility was performed using Crystal16 Reactor systems (similar to Technobis 
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Crystalline), a multi-reactor benchtop parallel crystallizer which can accommodate 

16 HPLC sample vials in one run (Figure 3.3). Each reactor is equipped with 

turbidity transmission sensors which detect the dissolution process for derivation of 

saturated temperatures (clear point). Calibration of the instrument was performed 

using vials filled with just the respective solvents before every experiment to reduce 

any noise or errors during the measurement.  To measure solubility, a set measured 

volume of solvent and solid were placed in a sample vial. Measurements are 

performed in a closed sample vial and covered with paraffin to prevent loss of 

solvent by evaporation. The suspension was then stirred at a moderate rate and a set 

constant temperature. The temperature was initially set at laboratory temperature of 

250 C and the suspension stirred for a set time. If the suspension at set lab 

temperature is found to be clear (transmissivity observed 100%), the solution is 

determined to be under-saturated and thus qualitatively categorised as soluble.  If 

the suspension is still present after an hour of stirring in lab temperature 

(transmissivity observed ≥ 100%), the solution is determined to be insoluble and 

thus qualitatively categorised as practically insoluble. If the suspension was still 

present at low temperatures, a slow controlled stepwise heating was performed. The 

temperature increment was set to 100C below the boiling point of the solvent. The 

temperature point where the suspension of known concentration dissolves marks 

the point of the solubility line and is known as the saturation temperature. The 

temperature when increased was not allowed to exceed 1000 C for health and safety 

reasons. 
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Figure 3.3 Cooling crystallisation experiment performed on Technobis Crystal16 for 

the solvent screening study.  

3.2.2 Zinsser automated platform 

Precise solid loading and solvent dispensing steps were performed on the custom-

built robotic platform acquired from Zinsser Analytics (http://www.zinsser-

analytic.com). Though slightly different in the platform layout, the automated 

platform has been introduced and described in detail by Schuldt et al. (Schuldt & 

Schembecker, 2013). Powder dispensing was performed using the REDI 2002 plus, 

an X, Y, Z dispensing system consisting of a powder pipette and fitted with REDI 

VARIX©, a software controlled variable volume tip which can be adjusted for the 

required weight. These tips can be picked up and exchanged for each powder to 

prevent cross-contamination. The platform consisted of a gripper tool capable of 

transporting single vials of 1.5 ml and 8 ml vials as well as complete racks where up 

to 24 vials can be placed. The gripper tool would transport each vial to the balance 

where the required weight of the powder was precisely dispensed. For liquid 

handling, the pipetting arm was equipped with three standard pipettes and a 

pipette containing a filter to prevent the draw-in of solids. All operations and 

methods were programmed and launched via the Zinsser WinLissy Software 

Version 8.1.0. 
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3.2.3 Optical microscopy 

Various crystal morphologies of paracetamol obtained from cooling crystallisation 

experiments were observed using the Leica DM6000M microscope (Leica, 

Buckinghamshire, UK). The images were visualized and captured using the LAS-AF 

software version 2.6.0 (Leica). 

3.2.4 Malvern Morphologi G3-ID 

Quantitative morphological characterization of paracetamol obtained from cooling 

crystallisation on various solvents (Section 3.2.2) was analysed using the Malvern 

Morphologi® G3 with Automated Particle Characterization System (Malvern 

Instruments Ltd, UK). It provides the ability to analyse, measure and characterise 

the size and shape of thousands of particles at a given time. The instrument 

comprised of a sample dispersion unit (SDU) where compressed air was supplied to 

disperse the sample at a set pressure, a glass plate to collect the dispersed sample, a 

CCD FirewireTM camera for capturing images and four optical microscopes of 

different magnifications (5x, 10x, 20 x and 50x) for particle analysis. Analysis of the 

crystal morphologies was performed using the Morphologi software version 8.12. 

The Morphologi software also allows the user to set up a standard operating 

procedure (SOP) where dispersion pressure, injection time, sample scan area and 

required sample characterisation can be tailored according to specific needs for 

analysis.  The software presents the analysis in various scattergram plots which 

presents particle size distribution, class and filter information and particle images. 

There is also a comparison tab which provides the comparison of all the 

morphological distribution of multiple measurements.  
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3.3 Machine learning methodology 

3.3.1 Molecular structure representation 

Both the compounds and solvents in this thesis were expressed in SMILES which 

uniquely encodes the structure of a molecule in a single line using standard text 

characters. 

3.3.2 Molecular descriptors 

For this thesis, 340 2-D and 3-D molecular descriptors of both the solvents and APIs 

were calculated using the Chemical Computing Group’s Molecular Operating 

Environment (MOE) software version 2014.09 (Boyd, 2005).  The 340 descriptors 

consisted of a list of spatial, electronic, thermodynamic, conformational, topological, 

quantum mechanical and structural descriptors. Before calculating the molecular 

descriptors, the 3-D molecular structures of either the solvents or compounds 

(depending upon the study) were constructed from their canonical SMILES in 

Discovery Studio’s Biovia Pipeline pilot 2017 software. The calculated 2-D 

descriptors help define the fundamental numerical properties which were 

calculated from the connection table representation of molecule such as formal 

charges and valence bonds but not atomic coordinates. These 2-D descriptors 

include the calculated physical properties, sub-divided surface areas, atom counts 

and bond counts, Kier and Hall connectivity and kappa shape indices, adjacency 

and distance matrix descriptors, partial charge and pharmacophore feature 

descriptors.  Calculated 3-D descriptors, however, are dependent upon the 

conformation of the molecule and include the potential energy, surface area, shape 

and volume and the conformation-dependent charge (Vilar, Ferino, Quezada, 

Santana, & Friedman, 2012). Table 3.3 listed the list of the 2D and 3D molecular 

descriptors calculated by MOE. The workflow designed to calculate the molecular 

descriptors of the 63 organic solvents is shown in Figure 3.4. 
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Table 3.3 List of the calculated 2D and 3D molecular descriptors with a brief 

description (P. Labute, 2000) 

2D Descriptors 

Physical 

Properties 

AM1_dipole, AM1_E, 

AM1_Eele, AM1_HF, 

AM1_HF, AM1_IP, 

AM1_LUMO, AM1_HOMO, 

apol, bpol, fcharge, mr, smr, 

weight, logP(o/w), SLogP, 

vds_vol, density, vdw_area 

Physical properties are calculated 

from the connection table (with 

no dependence on conformation) 

of a solvent/molecule 

Subdivided 

surface areas 

SlogP_VSA0 to 

SlogP_VSA9, SMR_VSA0 to 

SMR_VSA7 

The Subdivided Surface Areas 

are descriptors based on an 

approximate accessible van der 

Waals surface area calculation 

for each atom, vi along with 

some other atomic property, pi 

Atom Counts 

and Bond Counts 

a_aro, a_count, a_heavy, 

a_ICM, a_IC, a_nH,a_nB, 

a_nC, a_nN, a_nO, a_nF, 

a_nP, a_nS, a_nCl, a_nBr, 

a_nI, b_1rotN, b_1rotR, 

b_ar, b_count, b_double, 

b_heavy, b_rotN, b_rotR, 

b_single, b_triple, VAdjMa, 

VAdjEq 

The atom count and bond count 

descriptors are functions of the 

counts of atoms and bonds. 

Kier&Hall 

Connectivity and 

Kappa Shape 

Indices 

hi0, chi0_C, chi1, chi1_C, 

chi0v, chi0v_C, chi1v, 

chi1v_C, Kier1 to Kier3, 

KierA1 to KierA3, KierFlex, 

The Kier and Hall kappa 

molecular shape indices compare 

the molecular graph with 

minimal and maximal molecular 
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zagreb graphs, and are intended to 

capture different aspects of 

molecular shape 

Adjacency and 

Distance Matrix 

Descriptors 

BalabanJ, diameter, 

petitjean, radius, VDistEq, 

VDistMa, weinerPath, 

weinerPol  

The adjacency matrix, M, of a 

chemical structure is defined by 

the elements [Mij] where Mij is 1 

if atoms i and j are bonded and 

zero otherwise. The distance 

matrix, D, of a chemical structure 

is defined by the elements [Dij] 

where Dij is the length of the 

shortest path from atoms i to j; 

zero is used if atoms i and j are 

not part of the same connected 

component 

Pharmacophore 

Feature 

Descriptors 

a_acc, a_acid, a_base, a_don, 

a_hyd, vsa_acc, vsa_acid, 

vsa_base, vsa_don, vsa_hyd, 

vsa_other, vsa_pol 

The Pharmacophore Atom Type 

descriptors consider only the 

heavy atoms of a molecule and 

assign a type to each atom 

Partial Charge 

Descriptors 

Q_PC+, Q_PC-, Q_RPC+, 

Q_PRC-, Q_VSA_POS, 

Q_VSA_NEG, 

Q_VSA_PPOS, 

Q_VSA_PNEG, 

Q_VSA_HYD, Q_VSA_POL, 

Q_VSA_FPOS, 

Q_VSA_FNEG, 

Q_VSA_FPPOS, 

Q_VSA_FPNEG, 

Descriptors that depend on the 

partial charge of each atom of a 

chemical structure require 

calculation of those partial 

charges. 
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Q_VSA_FHYD, 

Q_VSA_FPOL, PEOE_VSA-

6 to 

PEOE_VSA+6 

3D Descriptors 

Potential Energy 

Descriptors 

E, E_ang, E_ele, E_nb, 

E_oop, E_sol, E_stb, E_str, 

E_strain, E_tor, E_vdw, 

E_rele, E_rsol, E_rvdw,  

The energy descriptors use the 

MOE potential energy model to 

calculate energetic quantities 

from stored 3D conformations. 

Surface Area, 

Volume and 

Shape 

Descriptors 

ASA, dens, glob, pmi, pmiX, 

pmiY, pmiZ, rgyr, std_dim1 

To std_dim3, vol, VSA 

Descriptors depend on the 

structure connectivity and 

conformation 

Conformation 

Dependent 

Charge 

Descriptors 

ASA+, ASA-, ASA_H, 

ASA_P, DASA, CASA+, 

CASA-, DCASA, dipole, 

dipoleX, dipole, dipoleZ, 

FASA+, FASA-, FCASA+, 

FCASA-, FASA_H, FASA_P 

Descriptors depend upon the 

stored partial charges of the 

molecules and their 

conformations. 



 

56   

Figure 3.4 Schematic workflow designed to calculate the 2D and 3D molecular 

descriptors of the organic solvents/compounds. The individually coloured brown 

and blue boxes indicate the software used for the specific parameters. 

3.3.3 Molecular descriptors 

Molecular fingerprints are a string representation of molecular structures that 

directly encodes the structure onto a series of binary bits. Molecular fingerprints are 

commonly used in substructure searching as the fragments of the molecule are 

expressed in bit sequences 0 and 1 where 1 indicates the presence of the fragment 

while 0 indicates the absence of the fragment as shown in Figure 3.5 (Warr, 2011) 

(D.-S. Cao, Q. Xu, Q. Hu, & Y.-Z. Liang, 2013). There are various types of 

fingerprints that are categorised broadly into four groups: binary circular 

fingerprints, circular fingerprints considering counts, path-based and keyed 

fingerprints, and pharmacophore-based fingerprints (Yuan Wang, 2009). The key 

type fingerprint, MACCS fingerprint, were utilised in this thesis as structural 

descriptors to predict the non-aqueous solubility of the drug and drug-like 

compounds in a diverse range of solvents alongside numerical descriptors 

calculated using MOE for comparison purposes. MACCS key based fingerprints 
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were developed by Molecular Design Limited (MDL) and are based on pattern 

matching of molecular structure to a predefined set of 166 fragments which have 

been set by domain experts (Wale, Watson, & Karypis, 2008) (W. L. Chen, 2006).  

The MACCS key fingerprints used in this thesis were calculated using MOE 

following similar steps as shown in Figure 3.5. 

Figure 3.5 Schematic representation of MACCS key based fingerprints 

representation of the chemical structure. Each position in the vector indicated the 

presence (1) or absence (0) of fragments.  

3.3.4 ML algorithms 

Both regression and classification random forest models developed in this thesis 

were implemented using the ‘randomForest’ and ‘caret’ packages on the statistical 

computing environment R (version 3.3.1). PCA was constructed utilising the built-in 

package ‘prcomp’ in R and the commercially available multivariate analytical Excel 

add-on, XLSTAT ® (XLSTAT, 2017). 

3.3.4.1 Data pre-processing 

Machine learning models are dependent upon data as the algorithms learn from it. 

Thus, it is important to feed accurate data to develop an accurate model for 

prediction. Data cleaning or pre-processing is an important step in the development 

of machine learning models to obtain consistent and better predictive results. Pre-

processing was performed on the dataset containing the 340 calculated molecular 

descriptors. The first stage was the identification of missing data in the dataset as it 
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can have an impact on the accuracy. Missing data values below 5% of the sample 

can be omitted as the number is extremely small (Schafer, 1999). Similarly, Bennett 

(2001) proposed that statistical analysis is likely to be biased when 10% of the data 

are missing. For the research study, some of the molecular descriptors for the 

compounds were missing and the descriptors were omitted from the dataset. The 

descriptors were removed instead of the compounds in order to maintain a larger 

number of compounds for the model. Furthermore, random forest algorithms do 

not support null values. After missing data values were removed, descriptors with 

constant values across the dataset, i.e. zero variance, were removed. In this study, 

near-zero variance descriptors were included and the descriptors were not 

normalised since the random forest algorithm can handle both these kinds of 

descriptors. Duplicate samples in the dataset were also removed.  

3.3.4.2 Cross validation 

Cross-validation is an important statistical technique in evaluating the predictive 

capability of a model by partitioning the original dataset into a training set (to train 

the model) and test set (to evaluate it) (Wolpert, 1992). It is also utilised to compare 

various machine learning models and select the best model for a given problem. 

Cross-validation is easy to implement, and the cross-validated results generally 

have lower bias compared to other techniques (Y. L. Zhang & Yang, 2015). A few 

methods available for performing cross-validations are the validation set approach, 

leave-one-out-cross-validation (LOOCV), k-fold cross-validation, stratified k-fold 

cross-validation and adversarial validation. In this thesis, k-fold cross-validation 

was carried out on the training set where the value of k, which refers to the number 

of groups that the given data sample is split into, is set at 10. Choosing a lower value 

of k is more biased while a higher value of k suffers from large variability in overall 

prediction accuracy (James, Witten, Hastie, & Tibshirani, 2013). A common standard 

value for k is 10, with the process also known as 10-fold cross-validation. To 

perform 10-fold cross-validation, as mentioned earlier, the dataset was randomly 

split into 10 folds. For each fold in the dataset, the RF model was built on the 



 

   59 

remaining 9 folds of the dataset and tested against it. The method was repeated 

until each fold served as the test set once. The average error of the 10 models is the 

cross-validated error and is utilised as a performance metric for the RF model. 

Visualisation of 10-fold cross validation is shown in Figure 3.6. 

Figure 3.6 Schematic diagram of 10-fold cross-validation. The dataset is divided into 

10-folds where one-fold is designated as test set while 9 folds are designated as the 

training set. The average accuracy of the ten test sets is the final cross-validated 

accuracy 

3.3.4.3 RF model parameters 

The value of the training parameters mtry and nodesize were kept at default values. 

Reducing the value of mtry to a small number decreased the predictive accuracy of 

the RF model while increasing the value of mtry above the default value made no 

change in the predictive accuracy of the model. Increasing the value of ntree 

increased the workload on the computational process. However, it made no 

significant change in the predictive accuracy of the RF models on the three 

compounds. Thus, an optimum value of ntree was chosen at 1,500 for the majority of 

RF models generated in this project, unless stated otherwise.  
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Chapter 4. Application of ML 

algorithms for predicting 

crystallisation outcomes and crystal 

habit of API in a diverse range of 

organic solvents 
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4.1 Introduction 

Crystallisation is a necessary separation and purification method extensively used 

in the pharmaceutical industry (Jie Chen, Sarma, Evans, & Myerson, 2011). 

However, designing crystallisation processes is complex and challenging due to the 

determining molecular processes that make crystalline compounds exhibit different 

crystallisation behaviour. The crystallisation process is governed by the interaction 

between the different processes (e.g. nucleation, crystal growth) and process 

conditions (e.g. solution properties, and supersaturation) which determine the 

product quality defined by the polymorphic form, crystal size distribution, crystal 

shape, and purity. While extensive research has furthered the understanding of the 

relationship between the crystalline solid with the product quality attributes; it is 

still complex to predict accurately based on theoretical knowledge alone. 

Furthermore, with an increasing number of drug candidates and their complexity, 

the challenge to thoroughly understand the relationship between the crystalline 

solid with the required product attributes is ever more present. Limitations in 

predictability have been attributed to the limited level of understanding of critical 

processes in industrial crystallisation, e.g. nucleation  (ter Horst, Schmidt, & Ulrich, 

2015).  

Applying systematic design strategies endeavours to develop sustainable 

crystallisation processes that help reduce experimental time and cost as well as limit 

waste generation, energy and usage of raw materials. One such method to achieve 

this would be through the implementation of ML algorithms (Figure 4.1). Machine 

learning has gained an increasing amount of interest in the field of crystallisation 

which includes areas such as investigating crystallisability of organic molecules, 

predicting various physicochemical properties (Delaney, 2005; McDonagh, van 

Mourik, & Mitchell, 2016; Palmer et al., 2007), protein crystallisation (Rupp & Wang, 

2004; L. Y. Wei & Zou, 2016), predicting co-crystal and polymorph formation 

respectively (Johnston et al., 2008; Musil et al., 2018; Wicker et al., 2017). The 

reported advantages gained by the application of ML were an overall reduction in 
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experimental time, cost of raw materials and process optimisation. ML has also 

played an important role in identifying and understanding the relationship between 

the features and the investigated property (Gasteiger & Engel, 2006). 

Figure 4.1 Schematic workflow of the implementation of the machine learning 

model in recommending suitable solvents for the crystallisation process.  

The work described in this chapter aimed to gather experimental data from cooling 

crystallisation of an API in a diverse set of solvents which would then form the basis 

for the development and application of a machine learning algorithm capable of 

predicting various crystallisation outcomes (crystallisability, chemical degradation 

and crystal habit). This work has been further complemented by investigating the 

relationship between the calculated physicochemical molecular descriptors of the 

solvent with its influence on the crystallisation outcomes selected for this study. 

4.2 Methodology 

4.2.1 Experimental methods 

4.2.1.1 Controlled cooling crystallisation 

Following the methodology outined in Section 3.2.1.1, the influence of solvent on 

the crystallisation outcomes and shape of paracetamol was investigated on 94 

solvents.The choice of organic solvents selected for this study was based on 
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chemical diversity and availability in the laboratory and was not limited to 

pharmaceutically acceptable solvents. A solution containing 5 wt./wt% 

concentration of paracetamol was prepared by weighing a respective mass of 

paracetamol on a fixed volume of solvent set at 3ml. Precise, solid loading and 

solvent dispensing were performed using the automated Zinsser Platform. Cooling 

crystallisation was performed using Technobis Crystalline system (Figure 3.2). The 

solution containing paracetamol was stirred at 1000 rpm for an hour at 200C. The 

solution was then gradually increased to 100C below the boiling point of the solvent 

and left to agitate for an hour before being cooled down at a slow cooling rate of 

0.10C/min. The cooled solution was then stored for a few days to allow maximum 

recovery of crystals.   If the solution when heated remained in suspension, the 

concentration of paracetamol in the solution was reduced to half by doubling the 

volume of the respective solvent and the process was repeated. Similarly, if 

paracetamol was found to readily dissolve in the solvent at 200C, the concentration 

of paracetamol was doubled, and the process was repeated. The experiment was 

repeated four times for reproducibility. Crystallisation behaviour of paracetamol 

was observed and categorised into four outcomes. If paracetamol crystallised out in 

the solvent on cooling, it was categorised as ‘crystallised out’. If paracetamol 

remained in solution even after cooled for a set period of time, it was categorised as 

being ‘non nucleated’. If it remained as a suspension even after increasing the 

temperature, it was categorised as being ‘practically insoluble’ and if change in 

colouration (dark brown or light pink) was observed it was categorised as 

‘degradation´ in the respective solvent. These categories of crystallisation outcomes 

were then utilised as response for the supervised ML model. 

4.2.1.2 Crystal shape analysis 

For all cases of the procedure detailed in Section 4.2.1.1 where paracetamol 

successfully dissolved and crystallised out, the crystals were filtered and dried in a 

vacuum oven for 12 hours before analysis. The dried crystals were then placed 

under XRPD to confirm any change in polymorphic form. Crystal shapes were 
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observed using the Leica DM6000M optical microscopy, and the mean aspect ratio 

of the dried crystals was measured using the Morphologi Software provided in the 

automated particle image analyser Malvern Morphologi G3.  Crystal shapes were 

qualitatively divided and categorised according to the combined observations made 

using both the optical microscope and the measured aspect ratio (AR). 

4.2.1.3 ML workflow 

This study aimed to implement machine learning to predict the crystallisation 

outcome as well as the crystal habit of paracetamol in a diverse range of solvents. 

This was achieved by constructing a systematic model pipeline which involved 

various stages. The first stage involved the calculation of the molecular descriptors 

of the 94 solvents in which paracetamol was crystallised. 3D molecular structures of 

the solvents were built using the Biovia Pipeline Pilot 2017 software and were based 

on their canonical SMILES obtained from the ChemSpider database. Energy 

minimisation on these structures was then performed using the Clean force-field in 

Pipeline pilot 2017 (Hahn, 1995). The 3D molecular structures in SDF format were 

imported into Molecular Operating Environment. MOE was used to calculate 340 

physicochemical descriptors of which 192 descriptors were 2-D, and 148 descriptors 

were 3-D descriptors. The list of the 2-D and 3-D calculated molecular descriptors 

obtained from MOE are categorised and listed in Section 3.3, as well as in the 

literature (P. Labute, 2000). These molecular descriptors, combined with the 

experimentally obtained controlled cooling crystallisation outcomes, were used to 

build the datasets for this project. In total, two datasets referred to as Dataset A and 

Dataset B were generated. Dataset A consisted of the 94 various solvents along with 

their molecular descriptors and their cooling crystallisation outcomes. The four 

experimental outcomes were labelled as crystallised out, non-nucleated, practically 

insoluble and degradation. Dataset B was a subset of Dataset A, including only the 

solvents where paracetamol was found to have crystallised out. The crystal shapes 

observed were qualitatively categorised as Shape A, and Shape B. The categorisation 

for dataset B was based on both the measured aspect ratio and the visual 
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observation under the optical microscope. The workflow showing the generation of 

Dataset A and Dataset B is shown in Figure 4.2. The built dataset was then imported 

into the statistical computing environment R (Version 3.3.1) (R Development Core 

Team, 2013). The second stage involved the implementation of the machine learning 

classification models aimed at understanding the relationship between the 

physicochemical descriptors and the crystallisation outcomes and crystal habit of 

paracetamol. Both Dataset A and Dataset B were subjected to the machine learning 

workflow as outlined in Figure 4.3.  

Figure 4.2 Workflow presenting the implementation of machine learning models to 

understand the relationship between the molecular descriptors and the 

crystallisation outcomes and crystal habit.  
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Pre-processing of the dataset was performed using the “caret” package (M. Kuhn, 

2008) on the statistical computing environment R (version 3.3.1) where descriptors 

containing zero variance, missing values and highly correlated descriptors (>0.95) 

were removed. This reduced the total number of descriptors from 340 to 270 

descriptors. Both unsupervised (PCA) and supervised (random forest) ML 

algorithms were applied independently to both the datasets. PCA was constructed 

utilising the commercially available multivariate analytical Excel add-on, XLSTAT 

(XLSTAT, 2017). PCA was performed to reduce the dimensionality of the dataset 

while potentially identifying the patterns or trends relating to the influence of the 

solvent structure on the crystallisation outcome and crystal habit of paracetamol in 

the respective solvents. PCA operates by reducing the number of descriptors into a 

set of fewer, new descriptors with minimal loss of information called principal 

components (J. Lever, Krzywinski, & Atman, 2017). The number of principal 

components to be considered is determined by the eigenvalues which measure the 

amount of variation retained by each principal component. Using the “factoextra” 

package (Le, Josse, & Husson, 2008) in R, the total contribution of each descriptor 

accounting for the variability of the selected principal components was determined. 

A biplot of the molecular descriptors and the solvents was constructed at the end of 

the analysis which allowed investigation of the direction of the descriptors with the 

position of the solvent in the factor map. Examples of these biplots can be seen in 

Figure 4.15 and Figure 4.16 respectively. 

Similarly, the “randomForest” package (Andy Liaw & Matthew Wiener, 2002) in R, 

based on the original FORTAN code of Brieman and Cutler (Breiman, 2001b), was 

used to build the random forest classification models. RF classification models are 

robust to datasets containing descriptors larger than the sample size, perform 

internal cross-validation (i.e. using Out-Of-Bag samples) and their parameterisation 

only consists of few internal tuning parameters. The dataset used for the supervised 

classification model was randomly split in the ratio of 80:20 where 80% of the 

dataset was used as a training set and 20% of the dataset was used as the test set. To 
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create an unbiased supervised classification model, 10-fold cross-validation (CV) 

was performed on the training set using the ‘caret’ function in R (M. Kuhn, 2008). 

RF classification models for both Dataset A and Dataset B were constructed using the 

following parameters: ntree=1500 trees and mtry = square root of the total number of 

descriptors. RF models have been proven in various literature to be quite insensitive 

to alteration in its internal parameters. (Cannon, Bender, Palmer, & Mitchell, 2006; 

L. D. Hughes, Palmer, Nigsch, & Mitchell, 2008; Palmer et al., 2007; V. Svetnik et al., 

2003). The trained RF model after cross-validation was used to predict the outcomes 

of an external test set. The schematic workflow of the whole process from data pre-

processing to the implementation of ML is presented in Figure 4.3. Both PCA and 

RF were discussed in detail in Chapter 1. 

 

Figure 4.3 Workflow presenting the implementation of machine learning models to 

understand the relationship between the molecular descriptors and the 

crystallisation outcomes and crystal habit.  
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4.3 Results and discussions 

4.3.1 Controlled cooling experiments 

Solubility measured qualitatively from controlled cooling crystallisation 

experiments indicated that in a diverse range of 94 solvents, paracetamol was found 

to dissolve in 58 solvents, of which most were polar, and was found to be insoluble 

in 36 solvents, of which most were non-polar, as seen in Table 4.2. Solubility studies 

of paracetamol were performed in 26 solvents by Gransberg and Rasmuson (1999) 

and in 15 solvents by Lee et al (2006) where paracetamol was reported to be soluble 

in polar solvents, insoluble in non-polar and chlorinated halogenated solvents and 

highly soluble in dimethylsulphoxide, diethylamine and N,N dimethylformamide 

(Granberg & Rasmuson, 1999; Tu, Chung Shin, & Ying Hsiu, 2006). The relative 

solubility data obtained from the cooling crystallisation experiments were found to 

complement the previously referenced literature data. 

Out of the 58 solvents in which it dissolved, paracetamol was found to crystallise 

from 44 solvents. According to the conditions set in Section 3.2.1.1 and Section 

4.2.1.1 of this chapter, paracetamol failed to crystallise out from 14 solvents and 

remained in clear solution as shown in Table 4.2. This could be because paracetamol 

was highly soluble in the respective solvent and so required a lower cooling 

temperature than 200C, or because a longer induction time was needed to drive 

crystallisation. The solvents that paracetamol failed to crystallise in were also highly 

viscous. It has been reported in the literature that the supersaturation interval 

increases with increasing viscosity of the solution as it severely reduces the mobility 

of drug molecules in solution. Hence more time is required to align into a critical 

nucleus (Storm, Hazleton, & Lahti, 1970). It is to be noted that the purpose of the 

cooling crystallisations was to observe the appearance of crystals in the respective 

solvent rather than to analyse the time of the crystal’s appearance. Among these 14 

solvents, paracetamol was found to show degradation in the form of discolouration 

in 3 solvents: ethyl lactate, trifluoroacetic acid and 2-amino-1-butanol. A solution of 

paracetamol in ethyl lactate turned light pink while the solution of trifluoroacetic 
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acid and 2-amino-1-butanol   turned into a dark brown solution. Table 4.1 presents 

the list of solvents showing the various crystallisation outcomes. Overall, these four 

crystallisation outcomes on the 94 solvents are labelled as Dataset A and 

summarised in Table 4.2. 

Table 4.1 Shown is the list of solvents categorised according to their family class and 

their respective crystallisation outcomes with paracetamol. The solvents are labelled 

numerically from 1 to 94. 

Crystallisation 

Outcome 
Solvent Family List of solvents 

Crystallised 

Out 

Alcohols 

1) methanol 2) ethanol 3) 1-propanol  

4) 2-propanol 5) 1-butanol 6) 2-butanol  

7) 2-pentanol 8) 1-octanol 9) 1-decanol  

10) 2-phenylethanol 11) benzyl alcohol  

12) 2,2,2 trifluoroethanol  

13) isoamyl alcohol  

14) 2-methyl-1-propananol  

15) cyclohexanol 

Acids 16) acetic acid 17) formic acid 

Ester 

18) ethyl acetate 19) butyl acetate  

20) isobutyl acetate  

21) diethyl carbonate 22) formamide 

Ether 

23) anisole 24) 1,4-dioxane  

25) 2-phenoxyethanol 26) 2-butoxyethanol  

27) 2-methoxyethanol 28) methoxyethane  

Ketone 
29) acetone 30) 2-butanone 31) 3-pentanone  

32) 4-methyl-2-pentanone 

Polar Aprotic 

33) acetonitrile  

34) n, n-dimethylacetamide  

35) n, n-dimethylformamide  
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36) tetrahydrofuran  

Halogenated 
37) 1-bromo-2-chloroethane 

38) diiodomethane 

Nitro 39) nitrobenzene 40) nitromethane 

Organosulfur 41) tetrahydrothiophene 

Aromatics 42) aniline 

Diols 43) 1,2-propanediol 

Water 44) water 

Non-

Nucleated 

Ether 

45) 2-ethoxyethanol  

46) 1,2-dimethoxyethane  

47) 2-methoxyethyl ether  

Alcohols 48) 3-pentanol 49) 1-nonanol 

Amines 50) phenethylamine 51) pyridine 

Polar Aprotic 
52) dimethyl sulfoxide  

53) N-methyl-2-pyrrolidone 

Ester 54) pentyl acetate 

Diols 55) 1,4-butanediol 

Practically 

Insoluble 

Halogenated 

56) 1-bromobutane 57) 2-bromobutane  

58) bromoform 59) bromobenzene  

60) chloroform 61) 1-chlorobutane  

62) chlorobenzene 63) 1,2-dichloroethane  

64) dichloromethane 65) iodomethane  

66) carbon tetrachloride 67) tetrachloroethene   

68) trichloroethylene   

Hydrocarbons 

69) 2,2,4 trimethylpentane (i-octane) 

70) 2-methylbutane 71) hexane 72) iso-hexane  

73) methyl cyclohexane 74) n-dodecane 

 75) cyclohexane 76) heptane 

Aromatics 77) cumene 78) 1-methylnaphthalene  
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79) benzene 80) toluene 81) m-xylene 

Ether 

82) 2-methoxy-2-methylpropane 

83) cyclopentane 

84) diisopropyl ether 85) dibutyl ether  

86) diethyl ether 

Thiols 87) ethanethiol 88) 1-propanethiol 

Organosulfur 89) 3-methylthiophene 90) sulfolane 

Amines 91) triethylamine 

Degradation 

Acids 92) trifluoroacetic acid 

Amines 93) 2-amino-1-butanol 

Ester 94) ethyl lactate 

 

Table 4.2 Summary of the four crystallisation outcomes of paracetamol observed in 

94 solvents 

Dataset A 

Crystallisation Outcomes Number of solvents 

Crystallised out 44 

Non-nucleated 11 

Practically Insoluble 36 

Degradation 3 
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The mean aspect ratios measured for the crystallised-out crystals in the 44 solvents 

are presented in Table 4.3. The predicted morphology of monoclinic paracetamol 

(Form I) based on the Bravais-Friedel-Donnay-Harker (BFDH) model was calculated 

in Mercury (Version 3.9) from its crystal structure and is shown in Figure 4.4. From 

the cooling crystallisation experiments, paracetamol was observed to form mainly 

three crystal shapes: truncated cube or blocks (e.g. methoxyethane, 2-butoxyethanol, 

diethyl carbonate, etc.), prismatic and parallelepiped (e.g. methanol, benzyl alcohol, 

nitrobenzene, etc.) and lath or rod shapes (e.g. formic acid, n, n- dimethylacetamide, 

3-pentanone etc.). For the purpose of this study truncated cube and prismatic shapes 

were grouped under one category as aspect ratio is unable to differentiate between 

these two shapes.  The optical micrograph of varying crystal shapes of paracetamol 

produced from 44 solvents in order of their decreasing mean aspect ratios is 

illustrated in Figure 4.5. 

Figure 4.4  BFDH morphology prediction of monoclinic paracetamol. 
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Table 4.3 Measured aspect ratio of paracetamol crystallised in 44 organic solvents by 

cooling crystallisation.  

Label Solvent Mean AR Label Solvent Mean AR 

1 2-phenylethanol 0.861 23 1-butanol 0.651 

2 methoxyethane 0.854 24 2-phenoxyethanol 0.648 

3 tetrahydrofuran 0.850 25 nitromethane 0.632 

4 2-pentanol 0.848 26 nitrobenzene 0.632 

5 water 0.827 27 acetic acid 0.631 

6 benzyl alcohol 0.815 28 ethanol 0.628 

7 acetone 0.801 29 isoamyl alcohol 0.622 

8 2-butanol 0.800 30 1-octanol 0.618 

9 1,4-dioxane 0.782 31 cyclohexanol 0.617 

10 diethyl carbonate 0.775 32 1-decanol 0.595 

11 anisole 0.762 33 1-propanol 0.593 

12 2-butoxyethanol 0.755 34 4-methyl-2-pentanone 0.587 

13 2-ethoxyethanol 0.752 35 2-methyl-1-propanol 0.586 

14 aniline 0.747 36 n, n-dimethylacetamide 0.577 

15 1,2-propanediol 0.706 37 1-bromo-2-chloroethane 0.498 

16 2-propanol 0.703 38 formamide 0.478 

17 butyl acetate 0.698 39 formic Acid 0.444 

18 acetonitrile 0.681 40 n, n-dimethylformamide 0.437 

19 methanol 0.673 41 diiodomethane 0.430 

20 ethyl acetate 0.671 42 isobutyl acetate 0.421 

21 2-butanone 0.665 43 3-pentanone 0.410 

22 2,2,2-trifluoroethanol  0.659 44 tetrahydrothiophene 0.381 
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Figure 4.5 Optical micrographs of the crystal shape of paracetamol grown in 44 solvents 

by controlled cooling crystallisation arranged in the order of their decreasing mean 

aspect ratios: 1) 2-phenylethanol 2) methoxyethane 3) tetrahydrofuran 4) 2-pentanol 5) 

water 6) benzyl alcohol 7) acetone 8) 2-butanol 9) 1,4-dioxane 10) diethyl carbonate 11) 

anisole 12) 2-butoxyethanol 13) 2-methoxyethanol 14) aniline 15) 1,2-propanediol 16) 2-

propanol 17) butyl acetate 18) acetonitrile 19) methanol 20) ethyl acetate 21) 2-butanone 

22) 2,2,2-trifluoroethanol 23) 1-butanol 24) 2-phenoxyethanol 25) nitromethane 26) 

nitrobenzene 27) acetic Acid 28) ethanol 29) isoamyl alcohol 30) 1-octanol 31) 

cyclohexanol 32) 1-decanol 33) 1-propanol 34) 4-methyl-2-pentanone 35) 2-methyl-1-

propanol 36) n, n-dimethylacetamide 37) 1-bromo-2-chloroethane 38) formamide 39) 

formic Acid 40) n, n-dimethylformamide 41) diiodomethane 42) isobutyl acetate  43) 3-

pentanone 44) tetrahydrothiophene 
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It is generally assumed that for cooling crystallisation, the influence of the solvent 

effect on the crystal habit is mainly via the preferential adsorption of solvent 

molecules on the specific crystal faces and that removal of solvent molecules before 

the deposition of oncoming solute molecules causes retardation of crystal growth 

(Wells, 1946). Using the relative polarities of the various crystal faces obtained from 

electrostatic potential maps calculated at closest approach distances, the extent of 

solvation of a crystal face can be qualitatively understood (Berkovitch-Yellin, 1985). 

As the purpose of this project was to implement ML models to understand the 

relationship between the solvents’ calculated physicochemical properties and their 

respective crystal shapes, final crystal habit at the end of the cooling experiments 

was considered. The technique allowed a faster preliminary approach to crystal 

habit screening on a broader set of solvents. The crystal habits observed were 

generalised into two main distinctive shape categories, i.e. Shape A and Shape B. 

Crystal habits observed as being truncated cubes and prismatic were all grouped as 

Shape A while crystal shapes observed as either lath or rod were categorised as shape 

B.  These two categories were made based on the visualisation of the crystals when 

observed through the Leica optical microscope and on their basis of the measured 

mean aspect ratio.  As the mean aspect ratios for Shape A ranged from 0.861 to 0.586 

while the mean aspect ratios for Shape B ranged from 0.577 to 0.381.  Even though 

the crystal shapes were visually different (Figure 4.5), their mean aspect ratios were 

found to be in close range such as in the case of 2-methyl-1-propanol and n n-

dimethylacetamide. This is because mean aspect ratios for each solvent were 

measured over several particles and not just a single crystal. It is possible that there 

was the presence of two or more shape variants which could have affected the 

overall measurement of mean aspect ratio. Overall, out of the 44 solvents that 

paracetamol was found to crystallise in, 35 of the crystal habits were categorised as 

being Shape A, and the remaining 9 crystals were categorised as being shape B. This 

dataset was labelled as Dataset B and summarised in Table 4.4. 
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Table 4.4 Summary of the two crystal shape outcomes of paracetamol observed in 44 

solvents. 

Dataset B 

Shapes Observed Number of Solvents 

Shape A 35 

Shape B 9 

4.3.2 ML Algorithm 

4.3.2.1 Unsupervised ML (PCA) 

PCA was performed on both Dataset A and Dataset B for understanding and 

explaining the total variation of the datasets. Their eigenvalues indicated the 

amount of variation retained by each principal component (PC). Eigenvalues are 

most extensive for the first PC and small for the subsequent components. Table 4.5 

and Table 4.6 display the eigenvalues, percent of variance and cumulative percent of 

variance from the observed Dataset A and Dataset B respectively. 

Table 4.5 The first 5 principal components of the built PCA models for Dataset A 

containing 94 solvents displaying the eigenvalues, percent of variance and the 

cumulative percent of the variance. 

Principal 

Components (PC) 
Eigenvalue Variance (%) Cumulative % 

PC 1 73.461 26.425 26.425 

PC 2 58.003 20.864 47.289 

PC 3 26.163 9.411 56.701 

PC 4 18.082 6.504 63.205 

PC 5 12.698 4.568 67.772 
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Table 4.6 The first 5 principal components of the built PCA models for Dataset B 

displaying the eigenvalues, percent of variance and the cumulative percent of the 

variance 

Principal 

Components (PC) 
Eigenvalue Variance (%) Cumulative % 

PC 1 85.835 31.326 31.326 

PC 2 40.418 14.751 46.078 

PC 3 27.610 10.077 56.154 

PC 4 21.549 7.865 64.019 

PC 5 15.455 5.641 69.659 

A common way to decide on the number of PCs to retain is by constructing a scree 

plot which plots each component’s percentage of explained variance against the 

associated component and identifies breaks or gaps between PCs of a large and 

smaller percentage of explained variance as shown in Figure 4.6 and Figure 4.7. 

Components that appear before the gap are retained as being meaningful, and those 

after the gap are not retained (Cattell, 1983). 

Figure 4.6 Scree plot of the extracted PC for Dataset A showing the fraction of total 

variance represented by each principal component.  
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Figure 4.7 Scree plot of the extracted PC for Dataset B showing the fraction of total 

variance represented by each principal component.  

The first two PCs for Dataset A account for 47.29% of the variation in the input. 

There is a significant decrease between the second and the third PCs, so the scree 

plot would lead us to retain only the first two components. Similarly, for Dataset B 

the first two PCs accounted for 45.73% of the variation, albeit with a much reduced 

fall off from PC2 to subsequent PCs. 

4.3.2.1.1 Score plots for Dataset A 

The scores of the first two PCs were plotted against each other for Dataset A 

containing 94 solvents as shown in Figure 4.8. The experimental outcomes coloured 

each point. Solvents, where paracetamol was found to have not dissolved, 

crystallised out, failed to nucleate or degraded, were outlined by the red, blue, 

yellow and green circles respectively.  
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Figure 4.8 Scatter Plot based on the score values of 94 solvents in Dataset A projected 

to the first two PCs displaying the four-crystallisation outcome. Three significant 

clusters that were observed are outlined by the green, blue and red regions for 

visualisation. The solvents in the chemical space are labelled as 1 to 94 accordingly 

as numbered in Table 4.1.  

Examining the graphical distribution of the solvents on the 2D score plot indicated 

three significant clusters of experimental outcomes: degradation, practically 

insoluble and a combined clustering between the crystallised out and non-

nucleated.  The solvents where paracetamol showed degradation were clustered in 

the top left quadrant; the solvents where paracetamol was found to have either 

crystallised or lacked nucleation were overlapped with each other and spread 

mainly among the left and right top quadrant and the solvents that paracetamol was 

found to be insoluble in were spread at the lower quadrant of the PCA model. Each 

cluster was outlined by green, blue and red regions as shown in Figure 4.8. Five of 

the practically insoluble labelled solvents were found to be spread in the blue 

clustering regions. These solvents were found to be mainly of the ether solvent 



 

80   

family, i.e. 2-methoxy-2-methylpropane (82), diisopropyl ether (84), dibutyl ether 

(85), diethyl ether (86) as well as triethylamine (91).  

Similarly, three solvents labelled as crystallised out were found to spread in the red 

clustering region. These solvents included 1-bromo-2-chloroethane (37), 

methoxyethane (38) and tetrahydrothiophene (41). Even though paracetmol 

crystallised out of these three solvents, its solubility these solvents was 

experimentally found to be very low. The lack of clustering observed between the 

non-nucleated and the crystallised-out solvents could be due to the possibility that 

besides the physicochemical descriptors of the solvents, there were other significant 

factors influencing nucleation of paracetamol in these solvents. Along with some of 

the significant factors discussed earlier in Section 4.3.1, supersaturation is one of the 

major driving forces behind nucleation and is not captured in the calculated 

physicochemical descriptors of each solvent (Myerson & Ginde, 2002). 

A 3-D score plot was constructed for Dataset A by utilising the first three PCs 

obtained from Table 4.5 as adding the third PC explained 56.69% of variation 

compared to 47.30% of variation explained by only two PCs components. Adding a 

third PC also helped produce a better visualisation of the clustering than the scatter 

plot in Figure 4.8 as shown in Figure 4.9. 

To investigate if the chosen API crystallises or not (or is degraded) in the respective 

solvent, the API must dissolve in the solvent. If the three crystallisation outcomes, 

i.e. crystallised out, non-nucleated and degradation were to be grouped as one outcome 

of soluble, then it can be observed from Figure 4.9 that there is a significant and near-

perfect clustering between the soluble and practically insoluble outcomes. These are 

highlighted by the green region indicating the soluble and the red region indicating 

the practically insoluble regions. Thus, clustering indicates that the calculated 

molecular descriptors are significantly related to the relative solubility classification 

of paracetamol on these 94 solvents. 
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Figure 4.9 3-D Scatter Plot of the score values of 94 solvents projected to the first 

three PCs displaying the four crystallisation outcomes. The green region indicated 

the solvent clusters showing the soluble outcomes and the red region indicated the 

solvent clusters showing the practically insoluble outcomes.  

94 solvents were categorised according to their respective functional groups (Table 

4.1). Similar categories of solvents can be observed in various solvent selection 

guides presented in the literature. (Henderson et al., 2011; Prat et al., 2016). They 

were then plotted as projections on the first two PCS to visualise the diversity of the 

solvents in the solvent space as shown in Figure 4.10. It was observed from Figure 

4.10 that solvent clusters of halogenated and thiols solvent family class were mainly 

observed at the lower quadrant of the scatter plot. Similarly, at the upper quadrant 

of the scatter plot, the clustering of diols, esters and acids was observed. Ether, polar 

aprotic and amine clusters occupied the middle section of the PCA scatter plot. 

Hydrocarbons, ketones and aromatics and primary alcohols (methanol to 1-

dodecanol) formed a near-linear arrangement in the PCA score plot. Similar trends 

of solvent clusters observed in this chapter were reported in other studies (Diorazio, 

Hose, & Adlington, 2016; Johnston et al., 2017; Morten et al., 2008).  
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Figure 4.10 Projection of the scatter plot for 94 solvents based on the scores of the 

first two PCs. The solvents were labelled according to their respective solvent family 

class to identify trends within the PCA model. 

A solvent’s polarity can be estimated from its dielectric constant (ε). The higher the 

dielectric value, the more polar the solvent. Solvent polarity is related to the 

capacity of a solvent for solvating dissolved charged species. There is no unique 

method for quantitatively measuring polarity. Possible interaction between various 

solvents and solutes are too complex to be dictated by a single measurement (Alan 

R. Katritzky et al., 2004). Generally, solvents with dielectric constants greater than 5 

are considered polar and those with dielectric constant less than 5 are regarded as 

being non-polar (Loudon, 2001). If the 94 solvents in this chapter were to be 

classified as polar and non-polar according to the mentioned criteria, the following 
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trends were observed in the PCA scatter plot. From the PCA scatter plot, it can also 

be observed that solvents that are mainly polar are found on the upper half of the 

quadrant of the score plot, and the non-polar solvents mainly occupied the lower 

half of the score plot. Even though ethers are essentially non-polar, they are found 

to cluster mainly at the middle section of the score plot close to polar solvent family 

groups such as ketones, alcohols and diols.  This is because even though they lack 

the strongly polarised O-H bond which makes hydrogen bonding possible, ethers 

can accept hydrogen bonds and are also able to solvate cations but not anions. (add 

ref) Furthermore, oxygen is more polar than carbon but not as polar as alcohols and 

thus there is a degree of polarity in ethers which explains why they are closer to 

polar groups (15).  Paracetamol is a polar molecule due to the variation of 

electronegativity and the presence of lone electron pairs. Its molecular structure 

further lack lines of symmetry resulting in an unsymmetrical distribution of 

electrical charges. This prevents the charges within the structure to cancel each other 

out. This behaviour thus results in paracetamol to be a polar molecule.  Thus, it 

tends to dissolve in polar solvents and is insoluble in non-polar solvents (Figure 

4.11). This pattern of polarity is seen in the scatter map in Figure 4.8. 

Figure 4.11 Score plot based on the score values of 94 solvents in Dataset A projected 

to the first two PCs and displaying the solvents based on their polarity. 
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4.3.2.1.2 Score plots for Dataset B 

Similarly, the score plot for the PCA model of Dataset B for 44 solvents was plotted 

as shown in Figure 4.12 

Figure 4.12 Scatter Plot based on the score values of 44 solvents in Dataset B 

projected to the first two PCs displaying the two crystal habit outcomes. The 

solvents in the chemical space are labelled as 1 to 44 accordingly (Table 4.3). 

The score plot for the 44 solvents in Dataset B indicated the concentration of the 

classified Shape A crystals along the first PC. Shape B crystals were scattered around 

the chemical space. Unlike Dataset A (Figure 4.8), there was little evidence of an 

active cluster structure in Figure 4.12. The outliers observed on the far left of the 

PCA scatter plot labelled as (39) and (38) were formic acid and its amide derivative, 

formamide respectively. The solubility of paracetamol in the solvents that formed 

Shape B at the lower half of the scatter plot, i.e. (44) tetrahydrothiophene, (37) 1-

bromo-2-chloroethane and (41) diiodomethane was experimentally found to be 

relatively poor. The solvents n, n-dimethylformamide, n, n-dimethylacetamide, 

isobutyl acetate and 3-pentanone labelled as (40), (36), (42) and (43) respectively also 
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presented Shape B crystal habit for paracetamol. These solvents mainly clustered 

around the origin point of the score plot. The solubility of paracetamol in these 

solvents was experimentally found to be relatively higher compared to the other rod 

forming solvents scatter around the plot. 

4.3.2.1.3 Variables factor loading map of the solvents in Dataset A and Dataset B 

The descriptors’ factor loading map was plotted between the first two PCs which 

depicts the interrelation among the calculated molecular descriptors as well as the 

influence of them on each principal component as shown in Figure 4.13 for Dataset A 

and Figure 4.14 for Dataset B. The correlation mono-plot not only represents the 

variance between the 270 descriptors but also indicates how much each variable 

contributes to each PC. The length of the vectors pointing away from the origin and 

its closeness to the correlation circle is proportional to its contribution to the PC 

while the angle between any two vectors is inversely proportional to the correlation 

between them. From Figure 4.13 and Figure 4.14, some of the most contributing 

descriptors to the PCs can be observed. A colour code indicates these with red being 

the most contributing variable and turquoise being the least.  However, due to a 

large number of descriptors present (270 descriptors), it is challenging to visualise 

from the correlation mono-plot clearly and can only be distinguished by their 

correlation in the presented Figure 4.13 and Figure 4.14. To better visualise 

descriptors that contributed the most in explaining the variance in both principal 

components for Dataset A and Dataset B, a table containing the top 20 variables in 

order of their decreasing contribution factor was constructed as shown in Table 4.7 

and Table 4.8 respectively. It is to be noted that these contributing descriptors do not 

relate to the experimental response labels and are attained purely based on the 

unsupervised PCA models.  
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Figure 4.13 Variable factor map of the calculated molecular descriptors of 94 solvents from Dataset A  
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Figure 4.14 Variable factor map of the calculated molecular descriptors of 44 solvents from Dataset B  



 

88   

Table 4.7 Partial list of top 20 variables that contributed the most to the first two PCs 

for Dataset A. The larger the value, the more the variable contributed to the 

component. 

Variables PC1 Variables PC2 

SMR 1.260  PEOE_PC+ 1.430 

PEOE_VSA_HYD 1.249 PEOE_PC- 1.430 

mr 1.243 vsurf_HB1 1.262 

vsurf_V 1.236 vsurf_W3 1.262 

vsa_hyd 1.228 vsurf_W4 1.261 

vol 1.228 vsurf_HB2 1.241 

h_mr 1.222 vsurf_HB4 1.239 

vdw_vol 1.210 vsurf_HB3 1.220 

chi0v 1.188 vsurf_W2 1.181 

apol 1.188 vsurf_EWmin1 1.157 

vsurf_D3 1.187 vsurf_EWmin3 1.156 

vsurf_D4 1.163 vsurf_EWmin2 1.149 

a_hyd 1.153 a_acc 1.129 

vsurf_S 1.153 vsurf_HB5 1.111 

vsurf_R 1.150 vsurf_W5 1.110 

VSA 1.142 a_nO 1.086 

ASA 1.133 lip_acc 1.085 

vsurf_D5 1.103 h_emd 1.084 

Q_VSA_HYD 1.101 PEOE_VSA_POS 1.075 

Q_VSA_POS 1.101 a_don 1.022 

……..  …………  



 

   89 

Table 4.8 Partial list of top 20 variables that contributed the most to the first two PCs 

for Dataset B. 

Variables PC1 Variables PC2 

vol 1.145 vsurf_W4 2.026 

vdw_vol 1.144 vsurf_HB4 1.983 

vsurf_V 1.140 vsurf_HB5 1.940 

ASA 1.128 vsurf_W5 1.910 

vsurf_S 1.128 vsurf_EWmin1 1.890 

apol 1.126 vsurf_EWmin3 1.865 

VSA 1.124 vsurf_EWmin2 1.859 

h_mr 1.114 vsurf_W3 1.821 

mr 1.102 vsurf_HB3 1.682 

Q_VSA_HYD 1.100 vsurf_HB1 1.525 

Q_VSA_POS 1.100 vsurf_HB2 1.525 

vdw_area 1.100 vsurf_CW4 1.504 

SMR 1.093 h_emd 1.470 

chi0v 1.072 PM3_HF 1.451 

PEOE_VSA_HYD 1.072 vsurf_CW5 1.416 

vsa_hyd 1.064 AM1_HF 1.305 

rgyr 1.037 vsurf_CW3 1.261 

a_nC 1.031 PEOE_PC+ 1.257 

chi0_C 1.030 PEOE_PC- 1.257 

chi0v_C 1.028 PEOE_VSA_POL 1.218 

……..  …………  

From Table 4.7 for Dataset A, the first PC was found to mainly contain the 

descriptors defining the solvent’s physical properties such as molecular refractivity 

(e.g. SMR, mr, h_MR), atom polarizabilities (apol), interaction field volumes 
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(vsurf_V, vsurf_S, vsurf_R), surface area volume and shape descriptors which 

defined the hydrophobic parameters (vsa_hyd, vdw_vol, number of hydrophobic 

atoms and molecular surface rugosity. The second PC was found to mainly associate 

with the surface area, volume and shape descriptors which defined the hydrophilic 

parameters such as hydrophilic volume, hydrophilic energies, H-bond donor 

capacity etc and partial charge descriptors (PEOE_PC, PEOE_VSA_POS).  Similarly, 

in Table 4.8 for Dataset B, the first PC was dominated by descriptors defining the 

solvents’ van der Waals volume (vol, vdw_vol), van der Waals surface area (VSA), 

interaction field volume and surface area (vdw_V, vdw_S), solvent accessible 

surface area (ASA), sum of atomic polarizabilities (apol), molecular refractivity 

(h_mr, mr) etc. The second PC was mainly dominated by descriptors defining the 

hydrophilic properties of the solvent (vsurf_W, Vsurf_HB, vsurf_EWmin, 

vusurf_CW) and the H-bond donor capacity of the solvent. However, as PC1 

accounted for 31.33% (Figure 4.7) of the variance compared to PC2, the most 

contributing variables for PC1 defined the solvent better in the chemical space 

plotted in Figure 4.12. Since the PCA for Dataset B did not significantly separate the 

two classes, no descriptors could be identified that correspond to paracetamol’s 

crystal shape. 

4.3.2.1.4 Biplots 

Biplots were constructed to simultaneously display the scores of the solvents with 

the variable loading on the first two principal components. Superimposing both the 

score plot and the loading plot helps provide additional information about the 

relationship between the variables and the solvents that are absent in either of the 

individual plots (Jolliffe, 2002). Biplots of the first two PCs from the PCA performed 

on the interaction matrix of the solvents, and its calculated molecular descriptors for 

both Dataset A and Dataset B are presented in Figure 4.15 and Figure 4.16 

respectively. 
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Figure 4.15 Biplot constructed using the first two PCs of Dataset A showing the overlay of the score plot and the factor map. 
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Figure 4.16 Biplot constructed using the first two PCs for Dataset B showing the overlay of the score plot and the factor map.  
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From the variables loading plot drawn in Figure 4.13 and Table 4.7, it was observed 

that the top contributing variables in PC1 for Dataset A were the various calculated 

descriptors defining molecular refractivity (SMR, h_mr, mr). The solvents lying on 

the right side of PC1 were found to complement this with higher values of 

molecular refractivity. Molecular refractivity and the viscosity of solvents are 

known to be functionally related which can also be observed from the biplot as 

solvents such as n-dodecane (74), 1-decanol (9), 1-methylnaphthalene (78), 1-

nonanol (49), 1-octanol (8) and dibutyl ether (85) lay close to PC1 and are known to 

be viscous solvents (Lagemann, 1945). Most of the contributing variables explaining 

the first PC represented the hydrophobicity and lipophilicity parameters (vsa_hyd, 

vdw_vol, number of hydrophobic atoms and molecular surface rugosity). These 

parameters indicated the lack of hydrogen-bond accepting ability of the solvents 

and thus explained why non- polar solvents were mainly clustered at the lower half 

of the PCA score plot. Similarly, the contributing variables explaining the second PC 

in Figure 4.13 and Table 4.7 mainly described the hydrophilic parameters 

(vsurf_HB, vsurf_W, vsurf_EWmin1 etc.). Hydrophilic solvents are classified as 

polar solvents by IUPAC due to their ability to form intermolecular hydrogen bonds 

(McNaught, Wilkinson, Jenkins, International Union of, & Applied, 2006). 

Crystallisation outcomes were dependent upon the solubility of paracetamol in 

these 94 solvents. The influence of solubility and polarity can be visualised in Figure 

4.8 and Figure 4.11 respectively. Most of the polar solvents present in the green 

region were capable of dissolving paracetamol compared to the non-polar solvents 

present in the red region.  

Similarly, for Dataset B, the first component was dominated by the descriptors 

defining the solvent’s van der Waals volume and the solvent’s accessible surface 

area (vol, vdw_vol, VSA, ASA etc.) as shown in Table 4.8. The van der Waals 

volume and accessible surface areas for the 44 solvents decreased from right to left 

along the biplot with 1-decanol having the high values of van der Waals volume 

and accessible surface area compared to water. The trends observed for Dataset B 
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were similar to those observed in Dataset A as it was a subset of Dataset A and 

contained the same molecular descriptors.  The PCA analysis for Dataset B failed to 

provide any useful information about the crystal habit of paracetamol as the 

correlations of the variables in the dataset were either non-linear or showed no 

relationship with the investigated property. Thus, no further investigation was done 

and instead a non-linear ML algorithm was applied. 

Finally, as PCA analysis is an unsupervised ML model, the patterns and trends 

observed are a clear indication of the ability of the calculated molecular descriptors 

to describe solubilisation behaviour rather than nucleation behaviour.  The PCA 

model failed to distinctively cluster the solvents between the non-nucleated and 

crystallised out outcomes. Furthermore, clustering among the crystal habits indicated 

the lack of relative information within the calculated molecular descriptors to define 

these properties as well as insufficient data to build a comprehensive PCA model. A 

non-linear supervised ML algorithm, i.e. random forest was further applied to both 

datasets in the next section. 

4.3.2.2 Supervised ML  

4.3.2.2.1 RF Classification models trained on Dataset A 

4.3.2.2.1.1 Classification accuracy and parameter tuning 

Dataset A was randomly split into 80% as the training set and the remaining 20% as 

a test set. Table 4.9 presented the detailed breakdown of the dataset into the training 

and test sets for dataset A. To train the RF classification model; the crystallisation 

outcomes were labelled as A = crystallised out, B = non-nucleated, C = practically 

insoluble and D = degradation. 
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Table 4.9 Breakdown of Dataset A in the ratio of 80:20 with 80% as training set and 

20% as a test set 

 

Dataset A 

A B C D Total 

Training Set 37 7 29 2 75 

Test Set 7 4 7 1 19 

Total 44 11 36 3 94 

 

From Table 4.9, it can be observed that outcome D only represents a minor 

proportion (3%) of the overall data. Having such a small number of labels will have 

no effect on the classification performance of the model and hence could be omitted 

from the overall dataset. Thus the breakdown of the updated Dataset A   in the ratio 

of 80:20 as a training set and test set is shown in Table 4.10. 

Table 4.10 Breakdown of updated Dataset A in the ratio of 80:20 with 80% as training 

set and 20% as a test set 

 
Dataset A 

A B C Total 

Training Set 37 7 29 73 

Test Set 7 4 7 18 

Total 44 11 36 91 

 

The RF model was built on the dataset using 270 molecular descriptors. The internal 

parameters ntree and mtry were kept at default values to create a baseline for 

comparison, i.e. ntree = 500 and mtry = 16 (square root of the number of descriptors). 

10-fold cross-validation was performed on the training set using the ‘caret’ function 
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in R. RF classification model trained after performing 10-fold CV gave an average 

accuracy across the holdout predictions of 76.65% with an average Cohen’s kappa 

statistics of 0.592. The obtained value of kappa, 0.592 fell within the range 0.4 to 0.6 

which indicated that when validated the predicted outcomes from the trained 

model were in moderate agreement with the experimental outcomes (Altman, 1999). 

After implementing the CV process, ntree and mtry were tuned to see if the 

performance of the RF model could be further improved. Increasing the number of 

trees (ntree) from its default value can result in better accuracy. However, it also 

leads to an increase in computational cost. After growing a certain number of trees, 

the improvement was found to be negligible as seen in Figure 4.17. According to 

Oshiro et al. (2012), after 128 trees, there was no significant improvement in the 

accuracy of the model tested on 29 data sets (Oshiro, Perez, & Baranauskas, 2012). 

Overall, the required number of trees depends upon the task and the total number 

of variables that are used. For this chapter, the value of ntree was set at 1500 trees. 

 

Figure 4.17 Average classification accuracy of the trained RF model with an 

increasing number of trees 
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Grid search approach on the mtry parameter was performed using the caret package 

in R which provided an excellent tool for tuning the mtry of the RF model.  The best 

parameter value was then chosen based on the cross-validation results.  

Figure 4.18 Average classification accuracy of the RF model with an increasing 

number of mtry 

From Figure 4.18, it can be observed that the classification accuracy of the RF model 

did not vary significantly between the various values of mtry. The most accurate 

value for mtry was 22 with a classification accuracy of 77.17%. However, when 

compared with the default value of mtry at 16, the RF model gave a classification 

accuracy of 76.65%, which was not far off from the optimum value. As the varying 

value of mtry did not really make a drastic effect on the classification accuracy of the 

RF model, the best option was to keep the value of mtry for classification at its 

default value. Based on these analyses, the parameters for the RF classification 

models were selected with a value of mtry = 16, node size = 1 and ntree = 1500.  

The confusion matrix in Table 4.11 showed the summary of the classification 

accuracy of the final RF model after 10-fold cross-validation with three 

crystallisation outcomes.  
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Table 4.11 Confusion Matrix describing the performance of the final RF model 

trained on the training set after 10-fold cross validation for Dataset A containing the 

three crystallisation outcomes 
P

re
d

ic
te

d
 D

at
a 

Reference Data 

 A B C Class Error (%) 

Crystallised Out (A) 32 1 4 13.514 

Non-Nucleated (B) 6 1 0 85.714 

Practically Insoluble (C) 4 0 25 13.793 

 

The confusion matrix in Table 4.11 represented an OOB accuracy of 79.45 % for the 

three crystallisation outcomes. It was observed that the labels crystallised out and 

practically insoluble were correctly classified with an accuracy of 86.49% and 86.21% 

respectively by the RF model. However, the model failed to accurately classify the 

solvents where paracetamol was found to be non-nucleated (B) with 85.71% error. 

In growing the RF model, a proximity matrix was computed between each pair of 

outcomes for the training dataset which can be useful in constructing Multi-

Dimensional (MDS) plot. Like PCA, MDS is a dimension reduction technique aimed 

at projecting high dimensional data down to 2D or 3D dimensions while still 

preserving relative distances between the observations. Based on the prediction 

outputs from the trained RF model, MDS plots help in visualising clustering among 

the observations and identifying which ones are effectively close to one another 

based on their outcomes and how dissimilar each of the outcomes is with each other 

(Trevor Hastie, Tibshirani, & Friedman, 2009). MDS plot of the RF proximities was 

computed on the 75-training set based on the classification performance as shown in 

Figure 4.19.  
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Figure 4.19 Illustration of the MDS plot on the training set obtained from the RF 

proximity matrix for Dataset A with its classified three crystallisation outcomes. The 

shaded oval regions A and B outlined the observed two separate clusters 

The MDS plots in Figure 4.19 revealed two distinctive clusters in region A 

(practically insoluble solvents) and region B (crystallised out and non-nucleated 

solvents). The clustering observed from the MDS plot were similar to ones in the 

PCA score plot in Figure 4.8. The lack of clustering between the non-nucleated and 

crystallised out solvents is because both the RF model and the PCA models were 

trained using the same calculated molecular descriptors.  Both the ML models failed 

to cluster as the descriptors used did not carry enough information to relate the 

properties of the solvent to these two outcomes. However, as RF is a supervised ML 

technique and is trained with the knowledge of the set outcomes, the separation 

between red coloured Region A and blue coloured Region B was larger compared to 

the unsupervised PCA. 

The RF model was then applied to predict the crystallisation outcomes on the 

randomly selected 20% external test set which is shown by the confusion matrix in 

Table 4.12.  
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Table 4.12 Confusion matrix of the predictions made on the external test set 

P
re

d
ic

te
d

 D
at

a 

Reference Data 

 A B C Class Error (%) 

Crystallised Out (A) 7 0 0 0 

Non-Nucleated (B) 4 0 0 100 

Practically Insoluble (C) 0 0 7 0 

 

The confusion matrix in Table 4.12 represented the prediction made on the 20% 

external test set. The overall prediction accuracy on the unknown test set was found 

to be 77.78%. Among the three crystallisation outcomes, both crystallised out (A) and 

practically insoluble (C) outcomes were predicted with 100% accuracy whist the label 

Non-Nucleated(B) was found to be predicted with 0% accuracy. Instead of similar to 

the classification in the training set, these labels were misclassified as being under 

the crystallised out category. These findings were discussed in more detail later in 

the section. 

There are various strategies available that can be applied to solve a highly 

imbalanced dataset. These can be  divided into three broad categories: data 

stratification processing based on sampling method such as ‘stratified random 

sampling’, ‘random oversampling’, ‘random undersampling’ and ‘cluster-based 

oversampling’,  data stratification by modifying the existing machine learning 

algorithm and by application of cost-sensitive methods (Anyfamis, 

Karagiannopoulos, Kotsiantis, & Pintelas, 2007; Chawla, Bowyer, & Hall, 2002; 

Galar, Fernandez, Barrenechea, Bustince, & Herrera, 2012).  When faced with an 

imbalanced dataset, there is no standard method for improving the accuracy of the 

prediction model. The effectiveness of these techniques is dependent upon the 

characteristics of the imbalanced dataset.  
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For the imbalanced new dataset with three crystallisation outcomes, the ‘stratified 

random sampling’ method was applied. This stratification method aimed to balance 

the outcome distribution by dividing the sample population into smaller groups 

called ‘strata’ which is based on the samples shared molecular descriptors. Random 

sampling is then applied within each stratum. One of the significant advantages of 

this method is that it can capture key sample characteristics (Ye, Wu, Huang, Ng, & 

Li, 2013). The confusion matrix of the RF model after performing stratified sampling 

was presented in Table 4.13. 

Table 4.13 Confusion Matrix describing the performance of the stratified RF 

classification model on the training set for the new dataset containing the three 

crystallisation outcomes. 

P
re

d
ic

te
d

 D
at

a 

Reference Data 

 A B C Class Error (%) 

Crystallised Out (A) 25 8 4 0.324 

Non-Nucleated (B) 5 2 0 0.714 

Practically Insoluble (C) 2 1 26 0.103 

 

The stratified random sampling method was deemed ineffective as it did not 

improve the classification accuracy of outcome B by much as observed in Table 4.13. 

As outcome B kept being misclassified even after performing stratified sampling on 

the dataset, the focus turned to develop binary classifiers for each possible pair of 

outcomes and built an ensemble. Instead of training a single RF model using all the 

three crystallisation outcomes, One-Vs-One (OVO) binarization strategy was 

implemented. As the name suggests, OVO technique involved picking a pair of 

outcomes from a set of outcomes and training the RF model on every possible pair 

of outcomes (Furnkranz, 2002; Rifkin & Klautau, 2004). For the new dataset 

containing three crystallisation outcomes A, B and C, 3 pairs of binary outcomes 
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were composed i.e. A against B, A against C and B against C as shown in Figure 

4.20. Three RF models (RF1, RF2 and RF3) were then constructed using these binary 

combinations. OVO binarization strategy could help understand whether outcome B 

was misclassified due to class imbalance in the dataset or due to the choice of 

molecular descriptors used to train the model. The confusion matrix generated by 

the three RF models (RF1, RF2, RF3) after utilising OVO binarization technique is 

presented in Table 4.14. 

Figure 4.20 Illustration of the One-versus-One binarization strategy applied to the 

new dataset with three crystallisation outcomes. 
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Table 4.14 Confusion matrix generated by the three RF models (RF1, RF2 and RF3) 

after applying OVO binarization technique on the three crystallisation multi-

outcomes. 

 

A Vs B [RF1] B Vs C [RF2] A Vs C [RF3] 

A B 
Class 

Error  
B C 

Class 

Error  
A C 

Class 

Error  

Crystallised 

Out (A) 
37 0 0    33 4 0.108 

Non- 

Nucleated (B) 
6 1 0.857 5 2 0.286    

Practically 

Insoluble (C) 
   1 28 0.034 5 24 0.172 

OOB 

Accuracy 
0.86 0.916 0.863 

Cohen Kappa 

for training 

set 

0.2189 0.722 0.739 

 

It can be generalised from the confusion matrices presented in Table 4.14 that the RF 

model was most accurate in classifying the solvents on binary outcomes A vs C and 

on the outcomes B vs C. The model however was least accurate in classifying the 

solvents on outcomes A and B as most of outcome B was misclassified as A. The 

conclusion that can be generalised from the confusion matrix is that the RF model 

with the calculated descriptors was able to accurately classify the solvents that 

crystallised and those that never nucleated against the practically insoluble solvents. 

In other words, the RF models were capable of predicting solubility of the 

compounds in the respective solvents rather than its nucleating behaviour.  The 
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confusion matrix also indicates that Cohen’s kappa is a better classification metric 

for accurately pointing out the poor performance of the RF models rather than the 

OOB accuracy as all the three RF models had high OOB accuracy. The lower kappa 

value of RF1 compared to RF2 and RF3 indicates that the classification made in RF1 

model was in poor agreement with the experimental outcomes.  

4.3.2.2.1.2 Variable importance 

OVO outcome binarisation strategy was also adopted for investigating outcome-

specific variable importance to understand the relationship between the calculated 

molecular descriptors with the respective crystallisation property. Variable 

importance was assessed on only the two RF classification models: RF2 and RF3 as 

shown in Figure 4.21. The RF classifier RF1 which was trained to classify the 

outcomes crystallised out (A) and non-nucleated (B) was omitted for variable 

importance selection due to having a high misclassification rate for outcome B. 

Figure 4.21 Graphical representation of the ten most important descriptors obtained 

for the RF model: i) RF2 model trained using outcomes non-nucleated (B) and 

practically insoluble (C) and ii) RF3 model trained using outcomes. 
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Table 4.15 Description of the ten most important molecular descriptors obtained 

from both RF2 and RF3 classification models calculated using MOE (Boyd, 2005) 

Descriptor Category Molecular Descriptor Descriptor Description 

Partial Charge 

Descriptors that 

combines the shape 

and electronic 

information to 

characterise the 

solvents 

 

PEOE_VSA_FHYD 
Fractional hydrophobic van der 

Waals surface area 

PEOE_VSA_FPNEG 
Factional negative polar 

van der Waals surface area. 

PEOE_VSA_FPOL 
Fractional polar 

van der Waals surface area 

PEOE_VSA_POL 
Total polar van der Waals surface 

area 

Adjacency and 

Distance Matrix 

Descriptors 

GCUT_SLOGP_0 

Descriptors calculated using the 

atomic contribution to logP and 

quantify lipophilicity 

Semi-Empirical 

Quantum descriptors 
h_emd 

the sum of Extended Huckel 

Theory (EHT) donor strengths 

Potential Energy 

Descriptors 
E_sol Solvation energy 

Surface Area, 

Volume, and shape 

descriptors 

 

vsurf_CW3, 

vsurf_CW5 

The capacity factor of the 

molecules calculated at different 

energies. It provides information 

on the number of hydrophilic 

regions per unit surface area 

vsurf_EWmin2, 

vsurf_EWmin3 

Lowest hydrophilic energy of the 

solvent 

vsurf_HB1 H-bond donor capacity 

vsurf_HL1 Hydrophilic-lipophilic ratio 
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vsurf_IW1, 

vsurf_IW2 
Hydrophilic integy moment 

vsurf_W4 Hydrophilic volume 

 

Both the RF models were retrained by iteratively removing a portion of the least 

important molecular descriptors. The average predictive accuracy and its Cohen’s 

Kappa after 10-fold cross validation on the training set with the reduced descriptors 

were evaluated. This process was continued until only the top ten molecular 

descriptors remained. Table 4.16 presented the average predicted accuracy obtained 

from 10-fold cross validation of both the RF models RF2 and RF3 respectively along 

with their calculated Cohen Kappa.  

Table 4.16 Performance measure of the 10-fold CV models calculated by iteratively 

removing the least important molecular descriptors for both RF2 and RF3 

classification model 

 RF2 model RF3 model 

Number of Variables 

in Dataset 

Average CV 

accuracy (%) 
Kappa 

Average CV 

Accuracy (%) 
Kappa 

278 94.44 0.823 86.36 0.739 

139 94.44 0.823 86.36 0.739 

70 94.44 0.823 86.36 0.739 

25 94.44 0.823 87.88 0.754 

15 94.44 0.823 87.88 0.754 

10 94.44 0.823 87.88 0.754 

 

It was observed that removal of the least important molecular descriptors did not 

affect the predictive accuracy of the RF classification accuracy for both the RF 
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models RF2 and RF3. The model trained using only the top 10 molecular descriptors 

provided the same average predictive accuracy as the ones trained using all the 

calculated molecular descriptors. This further proves the predictive capability of the 

ensemble algorithm and its ability to handle relatively high dimensional data and 

small sample sizes. This has also been proved and tested in various studies where 

RF built classification models have shown good predictive accuracy when trained 

on small sample size and high dimensions (C. Li, 2016; Schwarz, König, & Ziegler, 

2010; Svetnik et al., 2003; B. X. Xu, Huang, Williams, Wang, & Ye, 2012). 

Even though reducing the variables showed no change in the average predictive 

accuracy of the CV RF model, it is rather unwise to simply remove the molecular 

descriptors with less importance. Reduction in the molecular descriptors does not 

really make a big reduction in computation time (Banfield, Hall, Bowyer, & 

Kegelmeyer, 2007; Breiman, 2001a; Palmer et al., 2007).  Furthermore, there exists 

intercorrelation between some of the calculated molecular descriptors which have 

an influence in the order of importance. For example, if two molecular descriptors 

were highly correlated, either one of the two can be selected to make a highly 

similar split in a decision tree. Since, RF model indiscriminately uses either one of 

the descriptors to yield the optimum split regardless of their intercorrelation, the 

order of the calculated variable importance for the ensemble model can be distorted. 

It is therefore difficult to pinpoint the exact order of the important molecular 

descriptors contributing to the prediction accuracy of the model. 

4.3.2.2.1.3 Assessment of important molecular descriptors 

The top ten descriptors for the classification model RF2 built on outcomes non-

nucleated (B) against practically insoluble (C) mainly consisted of vsurf_ descriptors 

(vsurf_CW5, vsurf_HB1, vsurf_HL1, vsurf_W5, vsurf_HB2 and vsurf_W4). As 

mentioned in Table 4.16, the vsurf_ descriptors define the surface area, volume and 

shape properties depending upon the structural connectivity and the conformation 

of the drug molecules. Similar to the volsurf descriptors, the vsurf_ descriptors help 

describe the interaction of the drug molecule with the hydrophobic and hydrophilic 
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part of the solvent through surface properties such as shape, electrostatic, hydrogen-

bonding and hydrophobicity (Cruciani, Crivori, Carrupt, & Testa, 2000; Omkvist et 

al., 2010). Solvents possessing higher values of these vsurf_ descriptors and lower 

values of the partial charge descriptors (PEOE_VSA_FHYD, PEOE_VSA_FPNEG 

and PEOE_VSA_PNEG) were found to favour outcome B i.e. non-nucleated. 

vsurf_HB descriptor represents the hydrogen bonding capabilities of the solvents.  

Finally, the solvation energy descriptor E_sol contributed negatively to the outcome 

B. Like the RF2 model, the top ten descriptors for the classification model RF3 built 

on outcomes ‘crystallised out’ against ‘practically insoluble’ mainly consisted of the 

vsurf_ and partial charge descriptors (Figure 4.21). Both the RF2 and RF3 models 

showed similar top molecular descriptors with the addition of adjacency and 

distance matrix descriptors (GCUT_SLOGP_0). 

Since solvents with outcomes crystallised out and non-nucleated must have initially 

solubilised paracetamol, they can be merged and grouped as soluble (i.e. the 

difference is due to the nucleation (or lack of) and not dissolution). The similarity in 

the variable importance between the two RF models (RF2 and RF3) indicates this 

statement as these descriptors describe solubilisation of paracetamol better than 

nucleation. Thus, this explains why there were persisting misclassification and a 

lack of separation between the outcomes crystallised out against non-nucleated in both 

supervised and unsupervised ML models. 

Even though these listed important molecular descriptors obtained from RF2 and 

RF3 classification models help understand the relationship between the descriptors 

and the crystallisation outcomes A, B and C, it is to be noted that these descriptors 

are mainly representative of the paracetamol crystallisation model and will vary 

depending upon the choice of drug molecule selected for the study. However, these 

descriptors still act as an important factor in understanding the solute-solvent 

interaction and provides vital information on predicting the crystallisation 

outcomes. 
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4.3.2.2.2 RF Classification models trained on Dataset B 

Similar methods as mentioned in section 4.3.2.2.1 were followed for dataset B. As 

dataset B is a subset of Dataset A i.e. only the solvents that paracetamol crystallised 

out from were chosen, the total sample size is comparatively small. The crystal 

shape outcomes for Dataset B were labelled as Shape A and Shape B to train the RF 

classification model. A random stratified split of the dataset into 80% as a training 

set and the remaining 20% as test set was performed as the dataset was imbalanced. 

Table 4.17 Breakdown of Dataset A in the ratio of 80:20 with 80% as a training set 

and 20% as a test set 

Dataset B 

 Shape A Shape B Total 

Training Set 30 5 35 

Test Set 5 4 9 

Total 35 9 44 

 

The RF classification model after performing ten repeats of 10-fold cross-validation 

on the training set gave the performances across holdout predictions to have an 

average OOB accuracy of 91.43 % with an average Cohen's Kappa statistic of 0.4. 

The average classification accuracy of the 10-fold CV RF model here was high but 

misleading. This is because the value of Cohen's Kappa indicated a poor level of 

agreement between the model and the experimental outcomes which can be further 

investigated using the confusion matrix of the RF model. The RF classification 

model was trained using the default value of mtry and 1500 trees. The confusion 

matrix in Table 4.18 and Table 4.19 showed the classification accuracy of the RF 

model on the training set and the prediction accuracy on the unknown test set 

respectively.  
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Table 4.18 Confusion Matrix describing the performance of the RF classification 

model on the training set for Dataset B containing the two crystal shape outcomes 

P
re

d
ic

te
d

 D
at

a 
Reference Data 

 Shape A Shape B Class Error (%) 

Shape A  30 0 0 

Shape B  3 2 60 

 

Table 4.19 Confusion Matrix describing the predictive accuracy of the RF 

classification model on the test set for Database B containing the two crystal shape 

outcomes 

P
re

d
ic

te
d

 D
at

a 

Reference Data 

 Shape A Shape B Class Error (%) 

Shape A  24 6 20 

Shape B  2 3 40 

 

The confusion matrix presented in Table 4.18 showed an OOB classification 

accuracy of the RF model as 91.43 % for the two crystal shape outcomes. The Cohen 

Kappa value was calculated as 0.4. Shape B crystal shapes were accurately classified 

while only 2 out of the 5 Shape A crystals were correctly classified by the RF 

classifier. Similarly, when predicted on the unknown test set, the prediction 

accuracy was obtained as 55.56% with a kappa value of 0 (Table 4.19). From the 

confusion matrices, it can be confirmed that the RF model simply failed to correctly 

predict the crystal habit of paracetamol on organic solvents. This could be due to the 

small size of the dataset (44 samples). The smaller dataset doesn’t have the 

capability to provide meaningful performance estimates and ML models trained on 

small datasets are more prone towards overfitting (especially on the validation set). 
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Furthermore, due to the small dataset size for crystal shapes, the molecular 

descriptors utilised could potentially not provide relevant information for 

prediction.  

‘Stratified random sampling’ method as applied in 4.3.2.2.1.1, of the chapter for 

Dataset A was applied to improve the RF model on the imbalanced Dataset B. It can 

be observed from Table 4.20 that applying stratification did improve the 

classification accuracy but not by much. This indicates that, along with the very 

small sample size, the RF model could not find trends between the calculated 

variables and the crystal habit of paracetamol in the respective solvent. Thus, when 

the model was trained for Dataset B, the predictions were simply biased toward the 

majority outcome i.e. shape A. No further statistical analysis was done on Dataset B 

as no relationship between the variables and crystal habit could be observed. 

Table 4.20 Confusion Matrix describing the performance of the stratified RF 

classification model on the training set for Dataset B containing the two crystal shape 

outcomes. 

P
re

d
ic

te
d

 D
at

a 

Reference Data 

 Shape A Shape B Class Error (%) 

Shape A  24 6 20 

Shape B  2 3 40 
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4.4 Summary 

Machine learning algorithms were applied to predict the crystallisation outcomes of 

paracetamol on 94 solvents and crystal habit on 44 organic solvents where it has 

crystallised. Controlled cooling crystallisation was performed to generate the 

dataset for the ML algorithm. Four crystallisation outcomes: crystallised out, non-

nucleated, practically insoluble and degradation were observed from the controlled 

cooling crystallisation on 94 solvents. Out of the 94 solvents, paracetamol was 

crystallised in 44 solvents. These observed crystals were categorised as Shape A and 

Shape B according to their observed crystal habit on the respective solvent. Both 

unsupervised (PCA) and supervised (RF) machine learning algorithms were utilised 

to aid in the prediction of both the crystallisation outcome and crystal habit.  

The score plot obtained from the PCA on the crystallisation outcomes of 94 solvents 

presented two distinctive clusters of degradation and practically insoluble and a 

third cluster comprising the crystallised out and non-nucleated solvents (Figure 4.8). 

The MDS plot obtained from the RF classification model showed similar clustering 

to PCA with two distinctive cluster regions: Region A (practically insoluble) and 

Region B (crystallised out and non-nucleated) (Figure 4.19). Solvents where 

paracetamol showed degradation were removed from the RF model as this response 

represented a small minority (3%) in the overall dataset. The trained RF model 

classified the three crystallisation outcomes of paracetamol in 91 solvents with an 

average classification accuracy of 79.45% and kappa value of 0.63. The trained 

model was capable of predicting the outcomes on the 20% external test set with 

accuracy of 77.78% and kappa value of 0.64.  

Even though, both the classification accuracy and predictive accuracy of the trained 

RF model were relatively high, it was observed from the confusion matrices that the 

RF model had accurately predicted the crystallisation outcomes: crystallised out and 

practically insoluble but failed to accurately classify and predict the response: non-

nucleated.  The accuracy of the model came mostly from the two well represented 

classes: crystallised out and practically insoluble.  
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As the dataset was imbalanced with the response Non-Nucleated a minority in the 

overall dataset, stratified sampling and one-vs-one binarisation techniques were 

further applied on Dataset A to deal with the imbalanced dataset and understand the 

precise distinctions between classes the model succeeded and failed to capture. It 

was observed that performing stratification did not improve the classification nor 

prediction on the minority response (Non-Nucleated). Performing the OVO 

binarisation techniques further concluded that the trained RF model was indeed 

capable of accurately classifying and predicting the outcomes: ‘crystallised out’ and 

‘practically insoluble’ but the model simply failed to predict the non-nucleating 

behaviour of paracetamol in the respective solvents.  

As only 12% of the outcomes was non-nucleated, it was originally assumed that the 

model failed to simply represent the minority outcomes. However, upon 

performing stratification and the OVO binarisation techniques concluded that small 

sample size was not the only problem but rather the choice of the molecular 

descriptors utilised to train the model could have failed to clearly classify the 

outcome non-nucleated. It is well known from literature that external factors such as 

supersaturation, impurities, process time and operating conditions are known to 

have more dominant roles in inducing nucleation (Myerson & Ginde, 2002). It has 

also been reported that physical properties such as viscosity, molecular weight and 

density of solvents were found to directly affect the onset of nucleation while 

surface tension, dielectric constant and concentration were reported to indirectly 

affect the onset of nucleation (Storm et al., 1970). These properties were not included 

in the model and thus could have contributed to the error in misclassification.  

Both unsupervised and supervised ML algorithms failed to predict the nucleating 

behaviour of paracetamol in 91 solvents. However, an observation was made whilst 

training the ML algorithms. The outcome non-nucleated were constantly 

misclassified as being ‘crystallised out’ rather than ‘practically insoluble’ by the 

algorithms. Both the PCA score plot and the MDS plot from the RF model also 

clustered these two outcomes together.  According to the predictions made by the 
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algorithms, had the solution been left to crystallise out for an unspecific infinite 

amount of time, paracetamol may have eventually crystallised. It is not impossible 

for this to happen as the set induction time for the experiments were controlled. 

However, in reality, it is impracticable to leave the solution to crystallise for an 

infinite amount of time.   

Since the outcome ‘non-nucleated’ was constantly misclassified as ‘crystallised out’, it 

can simply be combined and classified as one outcome ‘soluble’. This category is true 

as in order for the compounds to crystallise out, it must first dissolve in the 

respective solvent. Thus, it can be concluded that the ML algorithms were actually 

capable of accurately predicting the solubilisation behaviour of paracetamol in the 

respective solvent rather than its the nucleating behaviour. This is an important 

observation as it can also confirm that the molecular descriptors utilised for the 

project were defining the solubility of paracetamol in 91 solvents and thus along 

with the ML algorithms can be utilised to develop a rapid and efficient solvent 

selection tool.   

For the model trained to predict the crystal habit of paracetamol, the score plot 

obtained from PCA on the crystal habit outcomes of 44 solvents showed no 

significant clustering between the two outcomes, Shape A and Shape B. The Shape A 

outcomes were mostly clustered along PC1 while the shape B outcome was spread 

around the scatter plot (Figure 4.12). The RF model was not successful in accurately 

classifying the outcomes Shape B as the size of Dataset B was very small and highly 

imbalanced. Collating crystal habit data on a particular API can prove challenging 

as only the number of solvents are quite limited compared to the abundance in a 

number of drug APIs. It would be wiser to perform this study orthogonally, i.e. 

predicting a dataset containing crystal habit observations of various drug 

compounds on a single solvent. 



 

   115 

Chapter 5. Development of a rapid 

and efficient solvent selection tool 

  



 

116   

5.1 Introduction 

The selection of solvent is a fundamental step in the design of an efficient and 

effective solvent-based crystallisation process that can have a significant influence 

on the product quality and the manufacturing process. Physical properties such as 

solubility, polymorphism, crystal shape, size and habit of a crystalline product are 

all influenced by the choice of a solvent selected. These properties, in turn, will 

influence the downstream processing of the drug product and its quality 

(Maghsoodi, 2015; Variankaval, Cote, & Doherty, 2008). The use of solvents also 

accounts for greater than 70% of the total waste from the pharmaceutical process as 

reported from a study carried out by Jimenez-Gonzalez and co-authors at 

GlaxoSmithKline (Jimenez-Gonzalez, Ponder, Broxterman, & Manley, 2011). Thus, 

the solvent selection is not only crucial for the manufacture of high-value drug 

products but also fundamental in the design of an efficient and sustainable chemical 

process. 

Solvent selection is normally performed at the early stages in the design for a 

crystallisation process development. There are various systematically designed tools 

available to aid in solvent selection for a crystallisation process. Most of them are 

based either on thermodynamic criteria or upon the solvent’s impact on Safety, 

Health and the Environment (SHE). Major pharmaceutical companies such as 

GlaxoSmithKline, AstraZeneca, Pfizer and Sanofi-Aventis have published their own 

solvent selection guides where the solvents are ranked based on their impact on 

SHE, economic criteria, regulatory concerns and on some physical properties of the 

solvent such as polarity, melting point and boiling points (Curzons, Constable, & 

Cunningham, 1999; Henderson et al., 2011; Prat et al., 2016). However, a recent 

publication on solvent selection by AstraZeneca has moved away from its original 

SHE-only focus to more of a comprehensive process design solvent selection tool 

that covers chemical reactivity, tautomerization and molecular conformation 

(Diorazio et al., 2016). There are many publications highlighting and comparing the 

various available predictive methods based on thermodynamic models for solvent 
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selection. Gani et al (2006) published an article comparing the various solvent 

selection approaches, detailing tools and software databases used in both laboratory 

and industry environments (Gani et al., 2006).   

Solvent selection for any given crystallisation process is not a straight forward 

process as most pharmaceutical drug products are multifunctional, polarizable and 

can form specific interactions with the solvent (Kolar et al., 2002). The change from 

using one solvent to another remains a major challenge as the new solvent brings 

significant changes in several of the chemical properties of the solution. 

Furthermore, there are hundreds of solvents to choose from and new solvents being 

introduced which makes the selection process tedious and computationally 

challenging. The choice of solvent selected is also determined by many other factors 

such as literature precedent, pharmaceutically acceptable solvents, solubility, trial 

and error or simply a favourite solvent of the chemist and the solvent’s availability 

in the laboratory.  Thus, there is a need for the development of an efficient and 

effective solvent selection tool.  

The model developed for predicting the crystallisation behaviour of paracetamol in 

various solvents indicated that the trained models were capable of predicting 

solubility rather than nucleation behaviour (Chapter 4). Thus, this finding led to the 

implementation of ML algorithms in the development of a rapid and efficient 

solvent selection tool for continuous crystallisation process. The chapter also 

investigates on the minimum number of data points required to train an effective 

ML model, attempts on filtering specific solvents from the solvent database which 

are involved in the training set of a highly accurate predictive model and accesses 

the important molecular descriptors which played an important role in predicting 

relative solubility.   
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5.2 Methodology 

A diverse range of 63 solvents selected for the screening study and their molecular 

structures are presented in Figure 5.1. Solvents were selected based on their 

availability in the laboratory and were not limited to pharmaceutically accepted 

solvents. Paracetamol, carbamazepine and carvedilol were the chosen compounds 

on which the solvent screening was studied. These compounds and solvents were 

chosen in line with a greater piece of work as part of the Continuous Manufacturing 

and Crystallisation Future Manufacturing research hub (C. J. Brown et al., 2018). 

All the cooling crystallizations performed for this study were conducted in uniform 

conditions which included a constant weight for the chosen compounds, constant 

volume for the solvents and the utilization of the same instrument. Standardization 

was performed in order to collect comparable data. For each target compound, 50 

mg was weighed precisely and added to 1ml of the respective solvent in an HPLC 

vial using the Zinsser Automated platform. Cooling crystallisation was then 

performed on Crystal16 Reactor systems (Technobis) following the steps mentioned 

in Section 3.2.3 (Material and Methods). Operating conditions such as heating rate, 

cooling rate and stirring speed were kept constant throughout the experiment for all 

three APIs. Transmissivity observed at the end of each temperature cycle was noted 

for each solvent.  Compounds with transmissivity observed at 100% were labelled 

as being soluble in the respective solvent as no floating particles were visible in the 

solution at the end of the cycle while compounds with transmissivity observed 

below 100 % were labelled as being practically insoluble. These two experimental 

responses were used as the class labels for the random forest model. The experiment 

conditions for this study are summarized in Table 5.1. 
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acetate Acetate 

 

 

 

 

 

benzene nitrobenzene 
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methylnapthalene 
m- xylene toluene 
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4-methyl-2-

pentanone 
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Figure 5.1 Molecular structure of the solvents selected for this study 
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Table 5.1 Summary of the experimental conditions and classification for obtaining 

the relative solubility of the chosen APIs 

Weight of the target compound 50mg 

The volume took for each solvent 1 ml 

Stirring Speed 1000 rpm 

Low-temperature point 200C 

Elevated temperature point 

100 C below the boiling point of the 

solvent and capped at 1000 C for 

solvents with higher boiling points 

Heating and Cooling rate 0.10C per minute 

Transmissivity at 100% soluble 

Transmissivity below 100% Practically insoluble 

5.3 ML workflow 

The first stage involved the calculation of the molecular descriptors of the 63 

solvents. 2D structure of the solvents based on their canonical SMILES were 

constructed using the Biovia Pipeline pilot 2017 software. Energy minimisations on 

these structures were than performed using the Clean force-field in Pipeline pilot 

2017 (Hahn, 1995).  Molecular Operating Environment (MOE), an all-in-one 

molecular modelling and visualization tool was used to calculate 340 

physicochemical 2-D and 3-D molecular descriptors. The list of the 2-D and 3-D 

calculated molecular descriptors obtained from MOE are categorised and listed in 

Chapter 3: Material and Methodology (P. Labute, 2000). Pre-processing was performed 

on the dataset containing the calculated molecular descriptors and the solubility. 

Pre-processing involved the removal of the descriptors with zero variance and 

highly correlated descriptors (>0.95) using the statistical computing environment R 

(version 3.3.1) (Andy Liaw & Matthew Wiener, 2002).  The final reduced number of 

molecular descriptors after pre-processing was 170 molecular descriptors. The 
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Random forest model was built using the randomForest package in R. The overall 

dataset for the three APIs contained the 250 calculated molecular descriptors and 63 

solubility outcomes. 

A good solvent selection tool promotes the need for fewer screening experiments to 

reduce time and expense in the laboratory. Similarly, the success of a machine 

learning model is highly dependent upon both the quantity and quality of the data 

available. The larger the number of data points, the better the performance of the 

machine learning algorithm and thus delivery of accurate results. The quality of the 

dataset is dependent upon the accuracy of the experimental observations, choice of 

observations in the training dataset and how balanced the dataset was for the 

classification model (Witten, Frank, & Hall, 2011). 

In order to balance the desire for fewer experiments with the need for an effective 

machine learning predictive model, the first objective was to identify the optimum 

number of training sample size (ntrain) required to train an effective random forest 

classification model. Even though any good algorithm available struggles with a 

small dataset, one of the many unique advantages of random forest is its ability to 

deal with small sample sizes, high-dimensional feature spaces and complex data 

structures which makes it very suitable for this process (GÃŠrard Biau, 2012; G. Biau 

& Scornet, 2016; Y. Qi, 2012). Thus, to find the optimum training set size (ntrain), the 

RF model is trained using default parameters of mtry (number of variables available 

for splitting at each tree node) and ntree (number of trees grown) with varying 

training set sizes between 8 to 32 samples while keeping the hold-out test set fixed 

at 28 samples. Resampling – taking random samples from the dataset, with 

replacement – is performed for each training set to evaluate the performance of the 

predictive model. For this study, 10,000 resampling iterations were performed per 

value of training set as outlined in the workflow in Figure 5.2. The consistency of the 

classification models at each size of training sets was evaluated, revealing the level 

of accuracy that was expected for a given value of the training set.  Each model was 

tested on a randomized test set of 28 solvents. The mean value of the prediction 
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error rate at each size of the training set was plotted along with quartile ranges of 

the error rate. The actual prediction (AP) error rate is the total number of correct 

classifications predicted over the total number of samples in the dataset as 

compared to the out-of-bag (OOB) error rate which is the fraction of the number of 

incorrect classifications over the total number of out of bag samples. Between the 

two, the OOB error rates are mainly useful for determining hyper-parameters while 

AP is preferred for estimation of the actual performance of the trained RF model. 

The data from the training set sizes with low mean prediction error rates were then 

mined using an in-house python code to determine the optimum number of training 

set size and a method for recommending suitable solvents in the training set to 

build a robust and accurate RF model. 

Figure 5.2 Schematic workflow of the RF model developed in order to predict the 

qualitative solubility of three target APIs. 10,000 resampling iterations were 

performed.  
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5.4 Results and Discussions 

5.4.1 Solvent screening of paracetamol, carbamazepine and carvedilol 

Following the method outlined in Section 3.2.1.2 and 5.2, solvent screening was 

performed on paracetamol, carbamazepine and carvedilol on 63 diverse organic 

solvents at two respective temperature points (low and high). Cooling 

crystallisation for each target compound on each solvent was repeated four times 

for validation and reproducibility. Table 5.2 presents the total number of solvents in 

which the compounds were found to be soluble and practically insoluble at two set 

temperature points. A list of the solvents detailing the observed experimental 

responses at the two set temperature points are presented in Table 5.3 for lab 

temperature and high temperature point respectively (see methodology 3.2.1.2). The 

soluble outcomes are indicated by the ‘S’ while the practically insoluble outcomes 

are indicated by the PI for all the three compounds at two temperature points (Table 

5.3). The qualitative data obtained from the cooling crystallisation were also 

visualized in a histogram where transmissivity of the target compounds in 63 

solvents was plotted at two temperature points as shown in Figure 5.3, Figure 5.4 

and Figure 5.5 respectively. 

Table 5.2 Total number of solvents found to be soluble and practically soluble in 

paracetamol, carbamazepine and carvedilol at two temperature points 

 Low temperature High temperature 

Compounds Soluble Practically Insoluble Soluble Practically Insoluble 

Paracetamol 24 39 33 30 

Carbamazepine 15 48 36 27 

Carvedilol 15 48 42 21 

 

  



 

126   

Table 5.3 List of solvents with their respective qualitative solubility for paracetamol 

(PCM), carbamazepine (CBZ) and carvedilol (CRV) at two temperature points 

Solvent Name 

Paracetamol Carbamazepine Carvedilol 

Low 

Temp 

High 

Temp 

Low 

Temp 

High 

Temp 

Low 

Temp 

High 

Temp 

water PI S PI PI PI PI 

nitromethane PI S PI S PI S 

methanol S S S S PI S 

formamide S S PI S PI S 

dichloromethane PI PI S S PI PI 

iodomethane PI PI PI PI PI PI 

1,2-dichloroethane PI PI PI S PI S 

acetonitrile PI S PI S PI S 

acetone S S PI S PI PI 

trifluoroethanol S S S S PI S 

n-methyl-2-

pyrrolidone 
S S S S 

S S 

propanediol S S S S PI S 

pyridine S S S S S S 

1,4-dioxane PI S PI S S S 

2-methoxyethanol S S S S S S 

ethylacetate PI PI PI PI PI S 

tetrachloroethene PI PI PI PI S S 

2-bromobutane PI PI PI PI PI PI 

bromobenzene PI PI PI S PI PI 

cyclopentane PI PI PI PI PI PI 

dibutyl ether PI PI PI PI S S 
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1-butanol S S PI S PI S 

1-methylnapthalene PI PI PI S PI S 

2,2,4-trimethylpentane PI PI PI PI PI PI 

acetic Acid S S PI S S S 

bromoform PI PI S S PI S 

ethane thiol PI PI PI PI PI PI 

dimethylsulphoxide S S PI PI S S 

trifluoroacetic acid S S S S S S 

n, n-

dimethylformamide 
S S S S 

S S 

ethanol S S PI PI PI S 

nitrobenzene PI S S S PI PI 

tetrahydrofuran S S PI PI S S 

2-methoxyethylether S S PI S S S 

4-methyl-2-pentanone PI S PI PI PI S 

trichloroethylene PI PI PI PI PI PI 

1-bromobutane PI PI PI PI PI PI 

xylene PI PI PI PI PI S 

cyclohexane PI PI PI PI PI PI 

2-methoxy-2-

methylpropane 
PI PI PI PI 

PI PI 

triethylamine PI PI PI PI PI PI 

hexane PI PI PI PI PI PI 

1,2-dimethoxyethane S S PI S S S 

1-pentanol PI S PI S PI S 

1-propanol S S PI S PI S 

2-butanol S S PI S PI S 
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2-butanone S S PI PI PI S 

2-ethoxyethanol S S S S S S 

2-methyl-1-propanol PI S PI S PI S 

2-propane thiol PI PI PI PI PI PI 

2-propanol S S S S PI S 

3-methyl-1-butanol S S PI S PI S 

anisole PI PI PI S PI S 

benzene PI PI PI PI PI S 

butyl acetate PI PI PI S PI S 

carbon tetrachloride PI PI PI PI PI PI 

chloroform PI PI S S PI S 

diethyl ether PI PI PI PI PI PI 

heptane PI PI PI PI PI PI 

isobutyl acetate PI PI PI PI PI S 

methyl acetate PI S PI S PI PI 

n, n-

dimethylacetamide 
S S S S 

S S 

toluene PI PI PI S PI S 
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Figure 5.3  Plot of qualitative transmissivity of paracetamol (PCM) in 63 organic solvents at two temperature points 
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Figure 5.4  Plot of qualitative transmissivity of carbamazepine (CBZ) in 63 organic solvents at two temperature points 
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Figure 5.5 Plot of quality ative transmissivity of carvedilol (CRV) in 63 organic solvents at two temperature points 
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5.4.2 Deciding optimum training set for an effective RF classification model 

For developing a successful predictive model with this solubility data, it was of 

interest to know, a) how many solubility data points were required to train an 

accurate model to predict the rest, b) whether the choice of solvents for the training 

set had a major effect on the results, and c) if this were the case, which solvents were 

important to include in the training set to maximise accuracy.  To answer these 

questions, a large battery of RF models was generated, varying both training set size 

and composition. 

While it was not computationally feasible to investigate every possible combination 

of training set at every possible training set size, a reasonable compromise was 

settled upon. 10,000 RF classification models were constructed for each compound 

using the following parameters:  ntree = 1,500, mtry = 15 (default value), randomly 

selecting the training set from the pool of available data for each repeat. The size of 

the training set (ntrain) was then varied, generating 10,000 models in the same 

manner at each value.  This procedure was performed for each compound, at both 

low and high temperature points. The results are summarised as a series of box 

plots: the three compounds at low temperatures are visualized in Figure 5.6, Figure 

5.7 and Figure 5.8 while the box plots for the three compounds at high temperatures 

are visualized in Figure 5.9, Figure 5.10 and Figure 5.11. 

The box plots provide a useful way of understanding the sensitivity of the accuracy 

of the RF predictions both to the solvents sampled for inclusion in the training set 

and the training set size.  The mean and median prediction error rate (AP) for the 

three compounds was reasonably low at around 30% even at a small training 

sample size at both temperature points. It was observed from the box plots that both 

the mean and median error rate gradually decreases with the increasing number in 

training sets which indicates that the bigger the training set size, the lesser the 

prediction error rate. At higher temperatures, the mean prediction error rate was 

observed to be even lower than compared to low temperature for paracetamol as it 



 

   133 

tends to dissolve in most solvents when the temperature is increased. However, for 

carvedilol and carbamazepine, the error rates were observed to be slightly higher 

than those at low temperatures. This could be due to the ability of these compounds 

to form various polymorphic forms and solvates in different solvents and thus the 

transformation could have happened during the initial stage where the compound 

was stirred in the solvent for an hour at lab temperature or when the temperature 

was increased. This has an adverse effect on the solubility of the compound. As the 

models do not take these polymorphic form changes into consideration, this could 

have contributed to the high error rates at high temperatures. 

From the series of box plots shown in Figure 5.6 to Figure 5.11, the conclusion 

drawn was that even by randomly selecting the solvents without any prior 

knowledge on its suitability for the model, there was a significant chance of 

constructing a RF classification model with an estimated error rate below 30% for 

binary classes at training sample size as small as 8 solvents for all the three 

compounds. As the training set size increases, it can be noticed that the size of the 

box plots was relatively shorter as well as their whiskers. The reduction in the 

whiskers indicates the decrease in the variability of the prediction error rate. The 

reduction in the box plot size as ntrain increases indicates that the data points are 

more clustered around the median value. This is a good indication as with smaller 

box sizes the majority of the data points indicate a lower prediction error rate. For 

paracetamol at low temperature point in Figure 5.6, it can be observed that the 

median of the prediction error rate is consistent after ntrain =16. However, box sizes 

are the smallest between ntrain = 21 to 28. This indicates that the majority of the data 

points after ntrain=21 were in agreement with the median and mean prediction error 

rate below 25%.  This also indicates that the chances of getting a lower prediction 

error rate were higher when randomly selecting 21 solvents in the training set than 

compared to ntrain less than 21. For carbamazepine at low temperature point, the 

smallest box sizes are observed at ntrain = 13 however the median value was 

consistent until after ntrain = 28 where it reduced to 0.2 (Figure 5.7). Similarly, for 
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carvedilol at low temperature, the low median value was observed to be consistent 

after ntrain = 20 (Figure 5.8) while the trend of a shorter condensed box plot was 

observed at ntrain = 20. Similarly, at high temperature points, for paracetamol and 

carvedilol, the condensed small box plots were observed at ntrain=20 and 23 

respectively while the median value was consistent after ntrain = 20 for paracetamol 

and ntrain=17 for carvedilol. Similarly, for carbamazepine at high temperature point, 

small condensed box plots were observed a bit later at ntrain=25 and the median 

value was consistent at ntrain=20. A trend can be observed between all these six box 

plots (Figure 5.6, Figure 5.7, Figure 5.8, Figure 5.9, Figure 5.10 and Figure 5.11) that 

if solvents were to be randomly selected to build a classification model, the smallest 

ntrain size with a relatively low prediction error rate (i.e. for all the three 

compounds at two temperature points, the box plots were the most condensed 

around the region indicating that the majority of the data points with low prediction 

error rate lied close to the median and mean value) would be estimated between 20 

to 24. Thus, this estimate was chosen as the optimum number of training set sizes 

for building future RF classification models.  
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Figure 5.6 10,000 RF classification models trained for paracetamol at low temperature and at varying training set sizes. 
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Figure 5.7  10,000 RF classification models trained for carbamazepine at low temperature and at varying training set sizes 



 

   137 

Figure 5.8 10,000 RF classification models trained for carvedilol at low temperature and at varying training set sizes 
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Figure 5.9 10,000 RF classification models trained for paracetamol at high temperature and at varying training set sizes 
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Figure 5.10  10,000 RF classification models trained for carbamazepine at high temperature and at varying training set sizes 



 

140   

Figure 5.11 10,000 RF classification models trained for carvedilol at high temperature and at varying training set sizes 



 

   141 

5.4.3 A rational way of selecting the solvents 

As observed from the analysis of the box plots in Section 5.4.2, the optimum value of 

the training set size was estimated to be between 20 to 24 solvents for this study. 

However, the figures between Figure 5.6 to Figure 5.11 also demonstrated that there 

is a wide variance in model accuracy for any given training set size which was 

dependent on the choice of the solvents on the training set. The question arises as to 

which 20 to 24 solvents can be chosen from a database of 63 solvents for consistently 

attaining a low prediction error rate. Thus, there was a need for a rational method 

for selecting solvents in the training set. Two methods were applied in this chapter 

for rational selection of solvents in the database follows.  

5.4.3.1 Method I: Extracting the most frequent solvents observed in high-

performing models 

The aim here was to identify the list of solvents that, when selected in the training 

set, contributed to a relatively low error rate of prediction from the trained 10,000 

RF models. For each model in the 4th quartile region from the preceding analysis (i.e. 

the lowest error rates), the list of solvents forming its training set was extracted. This 

was performed for all training set sizes (8 to 32), compounds and temperatures. The 

next step was to calculate the expected frequency of each solvent being randomly 

sampled at each training set size using Equation 5.1. 

The expected frequency is calculated using the probability theory of random 

selection and is given by (Corcoran, 2006). 

𝑓𝑒 =
𝑛𝑡
𝑇𝑠

 Equation 5.1 

where, fe is the expected frequency, nt is the number of solvents in the 

training set size and Ts is the total number of solvents used for the model 

The actual (observed) frequency was then obtained by counting the number of times 

each solvent actually appeared in the extracted lists for each training set size. The 

difference between the observed expected frequencies gave the deviation from the 
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expected frequency of selection for each solvent. Appearing more often than chance 

could indicate that the solvent was important for a high-performing predictive 

model. 

Since the optimum number for the training set size to build an effective RF model 

was estimated between ntrain=20 to 24, the most frequent solvents for these training 

set sizes were determined for each compound at the two temperature points. Figure 

5.12 and Figure 5.13 presented the plot of the deviation from the expected frequency 

of the solvents for paracetamol at the training set size 20 and 24 respectively for low 

temperature.  Similarly, Figure 5.14 and 5.15 present the plot relative change in the 

frequency of the solvents for paracetamol at the training set size 20 and 24 

respectively for high temperature. The higher the positive deviation of the solvent in 

each diagram, the more important its role was in the training set and thus more 

accurate the predictive capability of the trained RF model.  

The process of mining the most frequently attained solvents was repeated for both 

carbamazepine and carvedilol between training set sizes 20 to 24 at two temperature 

points. The results from the extraction of the solvents for all the three compounds 

between training set sizes 20 to 24 at two temperature points were analysed and the 

top ten frequent solvents in order of their frequency from each training sets were 

taken which are summarized in Table 5.4, Table 5.5, Table 5.6, Table 5.7, Table 5.8 

and Table 5.9 respectively. The frequency of solvents where the difference between 

the observed and expected frequencies was calculated to near 0% or less than 0% 

(negative) was omitted from the selection process. This is because the low or 

negative value reflects the impact of the solvent as being low or irrelevant to the 

lower predicted error rate. 
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Figure 5.12 Graphical plot showing the absolute deviation from expected frequency of the solvents in training set size 20 for 

paracetamol at low-temperature point.  
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Figure 5.13 Graphical plot showing the absolute deviation from expected frequency of the solvents in training set size 24 for 

paracetamol at low-temperature point. 
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Figure 5.14 Graphical plot showing the absolute deviation from expected frequency of the solvents in training set size 20 for 

paracetamol at high-temperature point 
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Figure 5.15 Graphical plot showing the absolute deviation from expected frequency of the solvents in training set size 24 for 

paracetamol at high-temperature point  
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Table 5.4 Top ten most frequently observed solvents in the training set sizes 

between 20 and 24 which contributed to low error rate in paracetamol at low 

temperature points 

 

 

ntrain = 20 ntrain = 21 ntrain = 22 

2-butanol 2-butanone 2-butanol 

pyridine 2-butanol 2-butanone 

1, 2- dichloroethane pyridine 1,2-dimethoxyethane 

diglyme tetrahydrofuran tetrahydrofuran 

1-butanol water pyridine 

2-butanone 1,2-dimethoxyethane water 

water isoamyl alcohol diglyme 

tetrahydrofuran diglyme isoamyl alcohol 

bromoform 1-butanol nitromethane 

bromobenzene nitromethane acetic acid 

ntrain = 23 ntrain = 24  

tetrahydrofuran pyridine  

1,2-dimethoxyethane 2-butanone  

pyridine 1,2-dimethoxyethane  

2-butanone tetrahydrofuran  

water nitromethane  

2-butanol 2-butanol  

isoamyl alcohol water  

diglyme isoamyl alcohol  

bromoform diglyme  

bromobenzene 1-butanol  
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Table 5.5 Top ten most frequently observed solvents in the training set sizes 

between 20 and 24 which contributed to low error rate in paracetamol at high 

temperature points 

 

ntrain = 20 ntrain = 21 ntrain = 22 

ethyl acetate ethylacetate ethylacetate 

methyl isobutyl ketone methyl isobutyl ketone nitrobenzene 

nitrobenzene nitrobenzene methyl isobutyl ketone 

methyl isobutyl ketone methyl isobutyl ketone diethyl ether 

pyridine diethyl ether methyl isobutyl ketone 

2-propanethiol 1,4-dioxane 1,2-dimethoxyethane 

diethyl ether dibutyl ether ethanethiol 

ethane thiol diglyme 1,4-dioxane 

1,2-dimethoxyethane 2-propanethiol dibutyl ether 

dichloromethane methyl isobutyl ketone 2-propane thiol 

ntrain = 23 ntrain = 24  

ethylacetate ethylacetate  

nitrobenzene methyl isobutyl ketone  

methyl isobutyl ketone nitrobenzene  

diethyl ether methyl isobutyl ketone  

dibutyl ether diethyl ether  

1,2-dimethoxyethane 1,4-dioxane  

methyl isobutyl ketone diglyme  

methyl isobutyl ketone 1,2-dimethoxyethane  

diglyme dibutyl ether  

1, 2- dichloroethane ethane thiol  
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Table 5.6 Top ten most frequently observed solvents in the training set sizes 

between 20 and 24 which contributed to low error rate in carbamazepine at low 

temperature points  

 

  

ntrain = 20 ntrain = 21 ntrain = 22 

ethanethiol Ethanethiol ethanethiol 

n, n-dimethylacetamide n, n-dimethylacetamide n, n-dimethylacetamide 

ethanol Bromobenzene 2-butanol 

Bromobenzene ethanol ethanol 

methyl tert-butyl ether methyl tert-butyl ether Bromobenzene 

heptane acetone propanediol 

1-propanol dibutyl ether dibutyl ether 

acetone propanediol methyl tert-butyl ether 

dibutyl ether 2-butanol n-methyl-2-pyrrolidone 

propanediol heptane 1-propanol 

ntrain = 23 ntrain = 24  

ethanethiol ethanethiol  

n, n-dimethylacetamide ethanol  

ethanol n, n-dimethylacetamide  

methyl tert-butyl ether bromobenzene  

bromobenzene acetone  

2-butanol 2-butanol  

Heptane heptane  

dibutyl ether dibutyl ether  

acetone propanediol  

1-butanol methyl tert-butyl ether  
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Table 5.7 Top ten most frequently observed solvents in the training set sizes 

between 20 and 24 which contributed to low error rate in carbamazepine at high 

temperature points 

 

ntrain = 20 ntrain = 21 ntrain = 22 

formamide formamide formamide 

ethylacetate tetrahydrofuran 2-butanone 

tetrahydrofuran 2-propanethiol tetrahydrofuran 

heptane 2-butanone ethylacetate 

2-butanone heptane heptane 

2-propanethiol ethyl acetate iodomethane 

methyl tert-butyl ether toluene 1-methylnapthalene 

ethanethiol 1, 2- dichloroethane ethanol 

1-methylnapthalene trichloroethylene toluene 

iodomethane cyclohexane ethanethiol 

ntrain = 23 ntrain = 24  

tetrahydrofuran 2-butanone  

formamide formamide  

ethanol tetrahydrofuran  

2-butanone heptane  

heptane Iodomethane  

cyclohexane ethanol  

2-propanethiol toluene  

ethyl acetate 1, 2- dichloroethane  

cyclopentane 2-propanethiol  

methyl isobutyl ketone 1-methylnapthalene  
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Table 5.8 Top ten most frequently observed solvents in the training set sizes 

between 20 and 24 which contributed to low error rate in carvedilol at low-

temperature points 

 

ntrain = 20 ntrain = 21 ntrain = 22 

tetrahydrofuran tetrahydrofuran tetrahydrofuran 

formamide ethanethiol acetic acid 

acetone formamide formamide 

ethanethiol acetic acid acetone 

acetic acid 2-ethoxyethanol ethanethiol 

2-ethoxyethanol acetone 2-ethoxyethanol 

2-methoxyethanol 1,2-dimethoxyethane acetonitrile 

1,2-dimethoxyethane acetonitrile 1,4-dioxane 

1,4-dioxane 2-methoxyethanol 1,2-dimethoxyethane 

acetonitrile isobutyl acetate benzene 

ntrain = 23 ntrain = 24  

tetrahydrofuran tetrahydrofuran  

formamide formamide  

ethanethiol ethanethiol  

isobutyl acetate acetic acid  

acetic acid isobutyl acetate  

acetone pyridine  

acetonitrile 1,2-dimethoxyethane  

2-ethoxyethanol acetone  

1,2-dimethoxyethane 2-ethoxyethanol  

1,4-dioxane 2-methoxyethanol  
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Table 5.9 Top ten most frequently observed solvents in the training set sizes 

between 20 and 24 which contributed to low error rate in carvedilol at high 

temperature points 

ntrain = 20 ntrain = 21 ntrain = 22 

ethyl acetate ethyl acetate ethyl acetate 

methyl tert-butyl ether methyl tert-butyl ether methyl tert-butyl ether 

heptane 2-propanethiol 2-propanethiol 

2-propanethiol heptane heptane 

toluene toluene toluene 

m-xylene carbon Tetrachloride water 

methanol 1-methylnapthalene carbon Tetrachloride 

Carbon Tetrachloride 1-bromobutane iso-octane 

1-methylnapthalene methyl acetate 2-bromobutane 

water pyridine m-xylene 

ntrain = 23 ntrain = 24  

ethyl acetate ethyl acetate  

methyl tert-butyl ether methyl tert-butyl ether  

2-propanethiol 2-propanethiol  

heptane heptane  

toluene toluene  

carbon Tetrachloride water  

water chloroform  

1-methylnapthalene carbon Tetrachloride  

ethanol m-xylene  

iso-octane trichloroethylene  
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It can be observed from all the summarised tables (Table 5.4, Table 5.5, Table 5.6, 

Table 5.7, Table 5.8 and Table 5.9), that there is a recurring trend among the 

solvents’ frequencies in the varying training set sizes for the three compounds.  The 

most frequently appearing classes of solvents for all the three compounds in these 

selected training set sizes were found to be ethers and alcohols. This suggests that 

these classes of solvents were most important for producing a high-performing RF 

model. 52 solvents appeared in the top ten list of solvents for all the three target 

compounds within training set sizes 20 to 24. The solvents appearing with the 

frequency of 5 or less were removed as their presence in the training set would not 

have a large impact on the prediction accuracy compared to solvents with higher 

frequency. This resulted in a final list of 18 solvents recommended for inclusion in a 

training set in order to build a RF model with high prediction accuracy for the three 

target compounds; these are shown in Table 5.10. 

Table 5.10 Final list of the recommended solvents for training the RF model on the 

three target compounds based on their frequency of observation 

SN Solvent SN Solvent 

1 1,4-dioxane 10 ethanol 

2 1-methylnapthalene 11 ethyl acetate 

3 2-butanol 12 formamide 

4 2-butanone 13 heptane 

5 2-propane thiol 14 isoamyl alcohol 

6 acetone 15 2-methoxy-2-methylpropane 

7 dibutyl ether 16 tetrahydrofuran 

8 2-methoxyethyl ether 17 toluene 

9 ethanethiol 18 water 
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5.4.3.2 Method II: Selecting solvents using a cluster map (Strathclyde24) 

Analysing and mining the data for finding a trend in the frequency of solvents in 

the training set for the 10,000 RF models was found to be computationally 

demanding and time consuming. The list of frequently observed solvents was also 

found to vary with the changing temperature points and the choice of a compound. 

This makes it challenging to recommend solvents for a new compound. Thus, an 

alternative way of recommending suitable solvents for building a RF model with 

high prediction accuracy was performed using a cluster map.  Various reports of 

solvent clustering based on calculated molecular descriptors can be found in the 

literature (Chastrette, Rajzmann, Chanon, & Purcell, 1985; Cleophas, 2012; Gu, Li, 

Gandhi, & Raghavan, 2004; D. Xu & Redman-Furey, 2007). Most of these cluster 

maps share a common theme i.e. an unsupervised learning algorithm combined 

with a clustering algorithm to form clusters. A novel in-house solvent clustering 

method was attempted where the solvents were clustered based on 250 calculated 

physicochemical molecular descriptors and clustering was performed using the 

ClusterSim package in R and multidimensional scaling. In this approach, 94 solvents 

were clustered into 24 individual clusters based on their similarity in 

thermodynamic, electronic, topological, spatial and feature-count molecular 

descriptors and distance criterion. The cluster map is known as Strathclyde24 

(Johnston et al., 2017) and is visualised in Figure 5.16. For solvent screening, one 

solvent from each individual cluster can be selected for the training dataset thus 

resulting in the value of ntrain = 24. The list of solvents randomly selected using the 

Strathclyde24 cluster map with the criteria of at least one per solvent cluster is 

shown in Table 5.11.  
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Figure 5.16  Visualizations of Strathclyde24 illustrating 24 individual clusters.   Each cluster is an MDS plot illustrating the similarity 

and dissimilarity within and between the clusters of solvents (Johnston et al., 2017).   
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Table 5.11 Selected list of solvents using Strathclyde24. Selection criteria were that at 

least one solvent must be included from each solvent cluster 

Clusters Solvent Selected Clusters Solvent Selected 

1 Water 13 pyridine 

2 Nitromethane 14 1,4-dioxane 

3 Methanol 15 2-methoxyethanol 

4 Formamide 16 Ethyl acetate 

5 dichloromethane 17 Tetrachloroethene 

6 Iodomethane 18 2-bromobutane 

7 1,2-dichloroethane 19 Bromobenzene 

8 Acetonitrile 20 Cyclopentane 

9 Acetone 21 Dibutylether 

10 224-trifluoroethanol 22 1-butanol 

11 N-methyl-2-pyrrolidone 23 1-methylnapthalene 

12 1,2 propanediol 24 2,2,4-trimethylpentane 

5.4.4 RF Classification model and performance comparison 

The random forest models for all the three compounds were trained using all the 

250 calculated molecular descriptors with the recommended solvents obtained from 

method I (Table 5.10) and method II (Table 5.11) as training dataset and remaining 

solvents as the test set with two qualitative solubility outcomes. The trained RF 

model was then used to predict the qualitative solubility in solvents in the test 

dataset and thus obtained predicted responses were validated using the 

experimental dataset. The predictive performance of the trained binary classification 

RF models was then evaluated for models obtained from both the methods. From 
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the confusion matrix obtained from the classification models, true positive (TP), true 

negative (TN), false positive (FP) and false negative (FN) were extracted and used to 

measure sensitivity (Sn), specificity (Sp), classification accuracy (ACC) and Cohen’s 

kappa (κ) parameters which help analyses the performance of the classification 

model. Sn is the ability of the classification model to correctly identify the solvents 

that the target compounds are soluble in while Sp is the measurement of the model 

to correctly recognize the solvents that the target compounds are practically insoluble 

in. For a classification model, high values of Sn and Sp are desirable but usually 

there is a tradeoff.  The predictive performance of the classification model trained 

using both methods I and II are presented in Table 5.12 and Table 5.13 respectively.  

Table 5.12 Performance of the RF classification model trained using solvents 

selected from method I. 

Low Temperature  

 κ Sn (%) Sp (%) ACC (%) OOB (%) 

Mean 

accuracy at 

ntrain =18 

Paracetamol 0.633 79.31 87.5 82.2 61.11 78 % 

Carbamazepine invalid invalid invalid invalid invalid 75 % 

Carvedilol 0.362 27.27 100 82.22 83.33 80% 

High Temperature  

 κ Sn (%) Sp (%) ACC (%) OOB (%) 

Mean 

accuracy at 

ntrain =18 

Paracetamol 0.911 91.30435 100 95.556 72.22 90% 

Carbamazepine 0.419 67.9 76.5 71.11 55.56 70% 

Carvedilol 0.5 83.33 66.7 77.8 61.11 70% 
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Table 5.13 Performance of the RF classification model trained using solvents 

selected from method II. 

Low Temperature  

 κ Sn (%) Sp (%) ACC (%) OOB (%) 
Mean accuracy at 

ntrain =24 

Paracetamol 0.67 80 87.5 84.6 66.67 80 % 

Carbamazepine 0.614 50 100 89.74 62.5 75 % 

Carvedilol 0.658 55.56 100 89.74 66.67 80 % 

High Temperature  

 κ Sn (%) Sp (%) ACC (%) OOB (%) 
Mean accuracy at 

ntrain =24 

Paracetamol 0.796 80 100 89.74 95.83 92 % 

Carbamazepine 0.43 90 47.37 71.8 79.17 75% 

Carvedilol 0.25 84.62 38.47 69.23 66.67 70% 

 

It can be seen from both the tables (Table 5.12 and table 5.13) that the RF model 

trained for paracetamol had the best predictive performance among the three 

compounds with ACC value of 82.2 % and 95.56% at low and high temperatures 

respectively using solvents selected from method I and 84.6% and 89.74% at both 

temperature points using solvents selected from method II. Carbamazepine and 

carvedilol had ACC values of above 65% from both methods. Even though the 

overall ACC value obtained from both methods is above 65%, using only ACC as an 

appropriate metric for performance measure is not recommended as it can be 

misleading especially when there is an imbalance of the classes in the dataset. It can 

be observed from the table that the OOB accuracy does not correspond to the ACC 

accuracy. In method I, the OOB accuracy is underestimated than the value of ACC in 
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all the three target compounds at both temperature points. Even though the OOB 

error rate is the unbiased estimate of the mean prediction error rate, it is reported to 

be overestimated when the value of n<<p (M. W. Mitchell, 2011). 

The analysis presented in the method I was carried out assuming that over the 

10,000 models there was a good correlation between the composition of the training 

set and the model’s performance i.e. the choice of solvents that appeared in the 

training set of the high performing model contributed to its high performance. 

However, if the cause of the high performance was due to the composition of the 

solvents in the test set and not the training set, there would be little or no trend in 

the expected model’s performance as selecting the final training set based on such 

analysis would not improve the model. Looking at Table 5.12, the overall prediction 

accuracy of the model trained with the final selected solvents were found to be 

better than the mean average accuracy at low temperature points and significantly 

close to the mean value for carbamazepine and carvedilol at high temperature. 

Although, the study has not ruled anything out in terms of the test set composition, 

it has shown that choosing the training set in this way led to an above-average 

performance.  However, the value of Sn was found to be 0% and the value of Sp as 

100% for carbamazepine at low temperature.  On analysis of the responses of the 

solvents in the training set, it was found that the training set consisted of only one 

class label in the training set and thus the model was invalid and unsuitable. For 

carvedilol at lab temperature, the labels in the training set obtained from the method 

I was highly unbalanced with 14 solvents labeled as ‘Practically Insoluble’ and only 

4 solvents labelled as ‘soluble’. This resulted in the low value of Sn. It can be clearly 

seen that class imbalanced in the training set can have an impact on the performance 

of the classification model. Class imbalance and its impact on model performance 

have been well researched in literature and the solution of tacking this problem is 

recommended either by sampling techniques such as down-sampling by reducing 

the majority or up sampling by increasing the minority or by cost sensitive learning 

techniques (C. Chen & Breiman, 2004). However, even with the availability of these 
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techniques to tune for better model performance, it is to be noted that the 

performance of the best model is not based on the performance evaluation of the 

training set but rather of the test set. For a solvent selection model, it is difficult to 

know the true misclassification of the dataset at the learning stage without 

performing all the experiments in the lab. This is further problematic when the 

target compound is only soluble or practically soluble in most or all of the solvents 

in the training set which was the case for carbamazepine at low temperature in 

method I. Sample size also has an effect on the class imbalance. As for solvent 

selection, a minimum number of experiments is desired. This leads to a smaller 

sample size and the possibility of less information on the minority class.  As the 

solvents selected using method I is purely based on the frequency of the solvent’s 

appearance on the best models, it can be hard to generalize a stable set of solvents 

for selection as well as a set number. This is because the frequency is proportional to 

the choice of target compound selected for the screen.  

Issues related to solvents selected by method I was readily solved by method II as the 

method of the solvent selected in method II was one solvent per cluster. The solvents 

in the cluster map were clustered according to the similarity in the calculated 

molecular descriptors, covered a diverse range of solvents and the distance between 

each solvent was set according to their dissimilarity in molecular properties 

(Johnston et al., 2017). 

The Cohen’s kappa parameter measured for the target compounds at two 

temperature points for both method I and method II helps evaluate the performance 

of the model by comparing the observed accuracy with the expected accuracy 

(random chance) (McHugh, 2012). The value of κ obtained for paracetamol from 

method I was very high which indicates a good agreement between the model’s 

prediction and the actual labels. However, the value of κ was 0 for carbamazepine 

due to an invalid model at low temperature point (Table 5.12). The value of κ was 

found to be quite consistent above 0.6 for all target compounds at low temperatures 

for method II (Table 5.13). However, at high temperature, the value of κ for 
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carbamazepine and especially for carvedilol were low which indicates a poor 

agreement between the actual experimental and model’s classification labels. 

The high misclassification for these two target compounds could potentially be due 

to the nature of these compounds to form various enantiotropic polymorphs and 

pseudo-polymorphs (Defossemont, Randzio, & Legendre, 2007; Hiendrawan, 

Widjojokusumo, Veriansyah, & Tjandrawinata, 2017). Paracetamol on the other 

hand has not been reported to change in polymorphism under the experimental 

conditions done on this study. Oiling out is found to occur on carvedilol in certain 

solvents when the temperature is increased. This affects the accuracy of the 

turbidity measurements and provides unreliable experimental data. Fouling and 

degradation were also observed at the end of the experiments in both 

carbamazepine and carvedilol at high temperature which could have contributed to 

experimental errors. 

Once the RF classification models were trained for the target compounds, a 

proximity matrix was constructed which quantifies the similarity between the 

solvents. Only the proximity of the solvents selected using method II was drawn as 

there were greater class imbalance and poor or invalid model performance using 

method I in carbamazepine and carvedilol.  The proximity measures between two 

solvents is the measurement of the frequency of the placement of the two solvents at 

the same terminal node of the same RF tree divided by the number of trees built.  

Treating the proximity matrix as a set of point to point distances, multidimensional 

scaling (MDS) can be performed to allow the visualization of the data in two 

dimensions, with spatially-proximal data points having high proximity in the 

model.  Ideally, well-separated clusters of points corresponding to each class should 

be observed. The proximities of solvents for the three target compounds are 

presented as MDS plots at low temperature points in Figure 5.17, Figure 5.19 and 

Figure 5.21 and at high temperature points in Figure 5.18, Figure 5.20 and Figure 

5.22. The MDS plots show a general clustering of the solvent belonging to each 

solubility outcome of soluble and practically insoluble. 
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Figure 5.17 MDS plot obtained from the RF classification proximity matrix showing 

clustering at low temperature for paracetamol in 24 solvents (Method II).  

Figure 5.18 MDS plot obtained from the RF classification proximity matrix showing 

clustering at high temperature for paracetamol in 24 solvents (Method II). 
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Figure 5.19 MDS plot obtained from the RF classification proximity matrix showing 

clustering at low temperature for carbamazepine in 24 solvents (Method II)..  

Figure 5.20 MDS plot obtained from the RF classification proximity matrix showing 

clustering at high temperature for carbamazepine in 24 solvents (Method II). 
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Figure 5.21MDS plot obtained from the RF classification proximity matrix showing 

clustering at low temperature for carvedilol in 24 solvents (Method II). 

Figure 5.22 MDS plot obtained from the RF classification proximity matrix showing 

clustering at high temperature for carvedilol in 24 solvents (Method II). 
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5.4.5 Optimisation attempts on the trained RF classification model 

An important feature of the RF model is its ability to directly measure the impact of 

each variable on the prediction accuracy of the model. Consistency in the selection 

of the molecular descriptors by the RF model for each run is of great importance 

which indicates the stability of the trained classification model. The analysis and 

interpretation of these important molecular descriptors can help extract relative 

information on the molecular structure of the organic solvents and its effect on the 

relative solubility of paracetamol, carvedilol and carbamazepine in the organic 

solvents. The top ten molecular descriptors obtained from the variable importance 

of the RF classification models trained using solvents selected by method II for all 

the three target compounds at two temperature points are shown in Figure 5.23.  
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Figure 5.23 The top ten important molecular descriptors for the selected RF classification model of the three target compounds taken at 

low and high temperatures and sorted accordingly to its average variable importance in descending order 
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The RF model was retrained by selecting only one quarter of the 250 molecular 

descriptors (62 descriptors) while removing the least important descriptors in the 

order of their mean decrease accuracy. The ACC, Sn, Sp and κ were then evaluated 

and compared with the model trained with 250 variables. The value of ACC, Sn, Sp 

and κ obtained with 62 variables were exactly the same as the original trained 

model with 250 variables. This process was repeated with the top 30 variables and 

the results again did not vary. This indicates that the remaining variables had little 

to no influence in the prediction of relative solubility and that only 30 variables 

were enough to develop a robust classification model. 

5.4.6 Assessment of the important molecular descriptors 

Table 5.14 Most important molecular descriptors extracted from the trained RF 

classification model for the three target compounds at two temperature points 

(Boyd, 2005) 

Descriptors Category 

BCUT_PEOE_2, BCUT_SLOGP_0, GCUT_PEOE_1, 

GCUT_PEOE_2, CUT_SLOGP_0, GCUT_SLOGP_1, weinerPath 

Adjacency and distance 

matrix descriptors 

CASA, FASA, FCASA, chi1 

Conformation 

Dependent Charge 

Descriptors 

Chi1, KierA1 

Kier & Hall 

Connectivity and Kappa 

Shape Indices 

AM1_HOMO, MNDO_HOMO MOPAC descriptors 

PC, PC+, PC-, PEOE_PC+, PEOE_PC-, PEOE_VSA_FHYD, 

PEOE_VSA_FPNEG, PEOE_VSA_FPOL, PEOE_VSA_FPOS, 

PEOE_VSA_PNEG, PEOE_VSA_POS, PEOE_VSA4, Q_PC, 

Q_PC-, Q_VSA_PPOS 

Partial Charge 

Descriptors 

vsa_hyd Pharmacophore Feature 
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Descriptors 

logP.o.w, logS, slogP, TPSA Physical Properties 

E_sol, E_tor, E_vdw 
Potential Energy 

Descriptors 

SlogP_VSA5, SMR_VSA1 
Subdivided Surface 

Areas 

Pmi3, Vsurf_A, vsurf_cw1, vsurf_CW2, Vsurf_CW3, Vsurf_CW4, 

Vsurf_CW5 

 

Surface Area, Volume 

and Shape Descriptors 

 

The important variables obtained from Figure 5.23 were categorized in Table 5.14. 

For paracetamol at low and high temperature points, the top descriptors responsible 

for solubilisation were observed to be capacity factors (Vsurf_CW) which describes 

the amount of hydrophilic regions per unit surface area, vsa_pol which shows the 

polar groups such as hydrogen bond donor and acceptor groups in the van der 

Waals surface of the molecule, the partial charge descriptors which calculates partial 

charge on the van der Waals surface area (PEOE_VSA_FHYD) and the log of 

aqueous solubility (Baurin et al., 2004; Hari Narayana Moorthy, Ramos, & 

Fernandes, 2011). Similarly, for carbamazepine, the top important descriptors 

included the partial charge descriptors, conformation dependent charge descriptors, 

the adjacency and distance matrix descriptors, log of aqueous solubility, third 

largest principle moment of inertia (pmi3), first alpha modified shape index 

(KierA3), capacity factors, subdivided surface area descriptors and approximation 

to the sum of the van der Waals surface areas of hydrophobic atoms. Similarly, for 

carvedilol at two temperature points, the important variables included the MOPAC 

descriptors, the adjacency and distance matrix descriptors, atomic connectivity 

index, torsion and van der Waals component of the potential energy, partial charge 

descriptors, capacity factors and the Wiener path number. It is difficult to gain a 

deeper chemical understanding relating to qualitative solubility simply by looking 
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at the importance of molecular descriptors; however, some general trends can be 

drawn. There is precedent for these descriptors contributing to solubility prediction 

such as the Kier and Hall connectivity and kappa shape indices, partial charge 

descriptors and the pharmacophore descriptors (A. R. Katritzky, Fara, Kuanar, Hur, 

& Karelson, 2005; A. R. Katritzky et al., 2003).  The top ten descriptors calculated for 

paracetamol at two temperature points obtained in this chapter was found to be 

similar and shared some of the descriptors predicting crystallisation outcome in 

previous studies (Section 4.3.2.2.1.2).  

5.5 Summary 

There are many examples in the literature where RF is shown to outperform other 

machine learning algorithms (Caruana & Niculescu-Mizil, 2006; Martin et al., 2013; 

Ogutu, Piepho, & Schulz-Streeck, 2011; Palmer et al., 2007), which led to choosing 

RF for this study.  Furthermore, from Chapter 4, models trained using RF 

algorithms showed success in predicting solubility of paracetamol in diverse 

organic solvents. The aim was to develop a rapid and efficient solvent selection tool. 

The trained RF model was able to achieve that goal by predicting qualitative 

solubility of paracetamol, carvedilol and carbamazepine with an accuracy of ~85%, 

~71% and ~69%, respectively. The purpose of the model was to reduce the number 

of screening experiments in the laboratory, and so reduce material cost and usage. 

Thus, in order to balance the desire for fewer experiments with the need for an 

effective machine learning predictive model, 10,000 RF classification models with 

randomly-sampled training sets were trained at varying training set sizes for each 

compound and temperature, and the spread results analysed. Doing so helped set 

the optimum training set size between 20 and 24 solvents. However, selecting the 

optimum training set size was not sufficient as the accuracy of the RF models 

depended upon the selection of solvents for the training sets. Two methods were 

suggested in order to rationally select these solvents. Method I, where data mining 

was performed on the built 10,000 RF models with low error rate in order to observe 

the trend of the solvent’s frequency in the good models and Method II, where the 
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solvents were clustered accordingly to the similarity in the physicochemical 

properties (Johnston et al., 2017).  Method II was preferred over method I. The RF 

models trained using the selected solvents from method I not only suffered from 

class-imbalance but a major problem was that experimental knowledge was still 

required to identify the frequently occurring solvents. Moreover, data mining was 

computationally demanding and complex. However, method II was comparatively 

trivial, allowing the researcher to simply select the solvents randomly from each 

cluster and develop RF models with a relatively low prediction error rate. 

Even though predictions made using Method II gave relatively high prediction 

accuracy, further improvements could still be made to make the model even more 

accurate. Prediction accuracy could have been influenced by human error during 

data recording in the laboratory. Since the model was based on calculated molecular 

descriptors, it ignored the effect of impurities, change in compound’s solid forms 

and the reaction of the API with the solvent.  As mentioned previously, it is difficult 

to gain a deeper chemical understanding from examining only the molecular 

descriptors. However, analysis of descriptor importance highlighted the partial 

charge descriptors, Kier and Hall connectivity and kappa shape indices, and the 

pharmacophore descriptors as the most important for characterising intermolecular 

interactions in solution. Similar descriptors (partial charge descriptors and Surface 

Area, Volume, and shape descriptors) were also observed as being the most 

important molecular descriptors describing the solubility in paracetamol in Chapter 

4 (Figure 4.21).  This leads to the conclusion that these top descriptors describe the 

solubility behaviour of drug and drug like compounds in organic solvents and their 

relationship with solubility can be further investigated.  

Finally, it can be concluded that RF was successfully utilised as a rapid and efficient 

predictive tool for recommending solvents for the initial stages of crystallisation 

process design which helped reduce computational cost and experimental time. 

This method helps in quickly eliminating solvents not suitable for the crystallisation 

process and recommends solvents for further analysis of precise solubility 
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measurements. Addition of Safety, Health and Environment (SHE) information of 

the solvents to the modelling tool adds further value to the screening platform in 

recommending a suitable solvent for a crystallisation process design. 
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Chapter 6. Application of machine 

learning to predict solubility of drug 

and drug-like compounds in organic 

solvents 
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6.1 Introduction 

Numerous chemoinformatics methods have been applied for estimating the 

aqueous solubility of various drug and drug-like compounds in water (S. J. Ali & 

Rajini, 2012; Delaney, 2005; Hewitt et al., 2009; Lusci, Pollastri, & Baldi, 2013; 

McDonagh, Nath, De Ferrari, van Mourik, & Mitchell, 2014; Palmer et al., 2007; 

Shayanfar, Fakhree, & Jouyban, 2010). The application of chemoinformatics has also 

been widely reported in the estimation of various other physicochemical properties 

(melting points, boiling points, logP) which aid in the prediction of aqueous 

solubility (Bhat, Merchant, & Bhagwat, 2008; Tetko, Lowe, & Williams, 2016). 

However, when compared to aqueous solubility studies, far fewer studies reporting 

the application of ML for solubility estimation of drug compounds in organic 

solvents can be found. This is likely to be in large part due to the lack of sufficient 

publicly available data for training ML algorithms, as well as the reliability of what 

solubility data is available. Even though companies do tend to screen thousands of 

molecules, these data are rarely made public. In 2015, Buanaiuto and Lang 

implemented a RF regression model to predict the solubility of 261 compounds in 1-

octanol with an out-of-bag (OOB) mean squared error of 0.34 M (Buonaiuto & Lang, 

2015). Similarly, in 2013 Tetko et al. compared various classification ML algorithms 

to estimate the solubility of 163000 molecules obtained from UCB and Enamine Ltd 

in DMSO (Balakin, Savchuk, & Tetko, 2006); however, the data used for the analysis 

was not made available. 

The aim of the chapter was to curate solubility data from the literature to develop 

and implement an ML-based model capable of predicting the solubility of drug-like 

compounds in common organic solvents. This approach, collecting solubility data 

for a large number of drug-like compounds in a small selection of solvents, is 

“orthogonal” to the approach presented in Chapter 5, which focussed on the 

development of models on an all-solvent, per-solute basis. Both classification and 

regression models were constructed for comparison purposes and to allow a deeper 

understanding of the most accurate way of predicting non-aqueous solubility. 
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6.2 Methodology 

6.2.1 Solubility database 

A solubility database of drug and drug-like molecules was compiled to train and 

test the RF model. The data were chiefly gathered from two sources: the Handbook 

of solubility data for pharmaceuticals (Jouyban, 2009) and text mining of the 

American Chemistry Society and ScienceDirect journal archives (this was performed 

with tools available in KNIME).  The Handbook of solubility data for 

pharmaceuticals consisted of approximately 5000 solubility data points of 

pharmaceutical compounds in pure solvents, measured mainly in mole fraction or 

g/L at temperatures in the range of -5 to 70°C. Compilation of the solubility data 

from the journal archives was on the basis that solubility measurements determined 

for the pharmaceutical compounds were consistent, compounds were structurally 

diverse and present as solid-phase at room temperature. For this study, solubility 

measurements on seven common organic solvents at laboratory temperature (25°C) 

were collated for the solubility database. These solvents were chosen for the study 

because they were the frequently occurring solvents used in the crystallisation of 

pharmaceuticals in the Cambridge Structural Database (CSD). During the curation 

process, more than one solubility datum for the same compound was observed 

depending upon the number of its polymorphic forms, the number of studies done 

on the same compound by different researchers and the choice of measurement 

technique applied. It was observed that most of the thermodynamic solubility 

measurements in the literature were determined using synthetic methods. In 

synthetic methods, the composition of the saturated solution is determined by 

overall weight or measuring the individual components and the solubility is 

determined by the state in which the solid phase just disappears.  The 

disappearance of the solid phase is induced by the change in temperature or by the 

addition of a known amount of solvent. High definition camera is utilised to 

visualise the disappearance of the solid phase in solution at a given temperature. 

Synthetic methods overcome the limitations of analytical methods such as HPLC 
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and UV methods which are tedious and time consuming (Alves, Condotta, & 

Giulietti, 2001; N. Tang, Shi, & Yan, 2016; Y. N. Wang, Fu, Jia, Qian, & Chen, 2013). 

Thus, solubility measurements performed using these methods were preferred for 

the curated database. Similarly, for compounds existing with various polymorphs, 

the solubility of only the most stable polymorph was considered. For example, three 

polymorphic forms of Lamivudine (Form I, II and III) are reported in the literature, 

with Form II being the most thermodynamically stable form (Chadha, Arora, & 

Bhandari, 2012); only form II was only considered in the solubility dataset. 

Furthermore, salts, hydrates and solvates were omitted from the selection and a 

Lipinski filter was performed (Gimenez, Santos, Ferrarini, & Fernandes, 2010; 

Lipinski, Lombardo, Dominy, & Feeney, 1997; Pickett, 2007). A list of the number of 

solubility measurements for each solvent at laboratory temperature is presented in 

Table 6.1. Among the seven solvents, ethanol was observed to be the most 

commonly used solvent (no. of occurrences:30,462) according to a CSD data search 

performed in March 2008 (Brittain, 2009). Similar findings were reported by 

Hosakawa et al. in 2005 where, from a list of 6397 compounds in the Cambridge 

Structural Database (CSD), 1328 compounds were crystallised in ethanol 

(Hosokawa, Goto, & Hirayama, 2005). Overall, the final solubility database featured 

solubility measurements of 247 unique compounds in seven solvents, expressed in 

mole fraction at 25°C. These measurements of compounds are listed for each 

solvents in Appendix 1.  
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Table 6.1 Shown are the number of compiled solubility data points  

Solvent name Number of solubility data points 

Ethanol 181 

Methanol 148 

1-butanol 113 

Acetonitrile 104 

Acetone 102 

Ethyl acetate 125 

1,4-dioxane 47 

 

There was no upper bound to the ideal dataset size for this task. However, the 

prescribed constraints on solutes (drug-like) solvents (one of seven specific organic 

solvents), temperature (25°C) and experimental protocol (synthetic method) were 

necessary to ensure that the dataset was fit for purpose. There are also only a sparse 

number of non-aqueous solubility databases available for public access beyond the 

Handbook of solubility data for pharmaceuticals, such as the Open Notebook Science 

Solubility Database (Bradley et al., 2010), NIST solubility database (Acree, 2014) and 

the OCHEM chemical database (Sushko et al., 2011). These datasets were considered 

for inclusion in this project, but there were too many instances of incomplete data, 

incorrectly specified parameters (e.g. temperature) or lack of reference to the 

original study. Moreover, there were many overlapping data points with the 

Handbook of solubility data for pharmaceuticals. Thus, the compiled data shown in 

Table 6.1 are still an adequate and reasonable starting point for developing and 

testing a predictive ML model. 

6.2.2 Molecular descriptors and model development 

340 physicochemical molecular descriptors (both 2D and 3D descriptors) were 

calculated for the 247 unique compounds using the Molecular Operating 
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Environment (MOE, 2014.09 release). These numerical physicochemical descriptors 

were pre-processed by removing any missing values and descriptors with zero-

variance which reduced the variables from 340 to 270. MOE software was also used 

to calculate Molecular ACCess System (MACCS) structural fingerprints, a classical 

fingerprint developed mainly for substructure and similarity screening studies in 

chemoinformatics. The 166 public MACCS fingerprints containing 1500 binary 

vectors were used as raw descriptors for in silico prediction of solubility in this 

chapter (Fernandez-de Gortari, Garcia-Jacas, Martinez-Mayorga, & Medina-Franco, 

2017). Both the numerical and complex fingerprint descriptors were calculated from 

their respective 3D molecular structures of the compounds based on canonical 

SMILES and converted using Pipeline pilot 2017 (Hahn, 1995). (Section 3.3.2). 

6.2.3 Model development 

Both RF regression and classification models were developed in this study to predict 

the non-aqueous solubility of compounds. The RF regression model was developed 

to predict non-aqueous solubility as a continuous, numerical value. Solubility was 

expressed as the logarithmic transformation of mole fractions at laboratory 

temperature. The mole fractions were expressed in the logarithmic form to handle 

the non-linear relationship between the independent and dependent descriptors 

(Benoit, 2011). On the other hand, RF classification was used to predict the range of 

non-aqueous solubility as a categorical value. For this, solubility was qualitatively 

divided into regions in accordance with the solubility ranges specified on the Merck 

Solubility Index (Whitesell, 1998). The Merck Index provides a qualitative 

description of drug solubility rather than a specific value of solubility as shown in 

Table 6.2. Similar solubility ranges were also utilised to correlate the solubility of 

common organic compounds (Qiu & Albrecht, 2018).  The unit of solubility for the 

Merck Index is mg/ml; the collected data, expressed in mole fractions, were 

therefore converted to mg/ml using each solvent’s density at 25°C. 
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Table 6.2 Solubility definitions taken as per the Merck Index (Wolk, Agbaria, & 

Dahan, 2014) 

Descriptive term (solubility definition) Solubility range (mg/ml) 

Very soluble ≥ 1,000 

Freely soluble 100 to 1000 

Soluble 33 to 100 

Sparingly soluble 10 to 33 

Slightly soluble 1 to 10 

Very slightly soluble 0.1 to 1 

Practically insoluble < 0.1 

 

For this study, two different sets of solubility regions were defined. Initially, only 

two solubility regions, i.e. soluble region and insoluble region were defined using the 

Merck Solubility Index. Compounds with solubility > 33 mg/ml were regarded as 

being in the soluble region while compounds with solubility ≤ 33 mg/ml were 

regarded as being in the insoluble region. This threshold was chosen because, as well 

as being an intuitive place to start, it produced a reasonably balanced split between 

the two classes, as presented in Table 6.3.  
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Table 6.3 Number of solubility data points classified in each of the binary qualitative 

solubility regions for each organic solvent based on a solubility threshold of 33 

mg/ml 

List of solvents  

‘Soluble’ region 

(> 33mg/ml) 

‘Insoluble’ region 

(≤ 33 mg/ml) 

Ethanol 88 93 

Methanol 60 88 

1-butanol 61 52 

Acetone 46 56 

Acetonitrile 38 66 

Ethyl acetate 73 52 

1,4-dioxane 15 32 

Nevertheless, class imbalance varied across solvents.  It can be observed from Table 

6.3, solubility dataset for methanol, acetonitrile, ethyl acetate and especially 1, 4-

dioxane were more imbalanced compared to the solubility dataset for ethanol, 1-

butanol and acetone. Beside these binary solubility regions, a further attempt was 

made to classify the solubility data by creating three solubility regions: practically 

insoluble, soluble and highly soluble, defined, respectively, as solubility less than 10 

mg/ml; solubility between 10 mg/ml and 100 mg/ml, and solubility above 100 

mg/ml. Table 6.4, showed the number of solubility data points set at these three 

solubility regions for each solvent. 
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Table 6.4 Number of solubility data points classified in each of the binary qualitative 

solubility regions for each organic solvent based on the solubility criteria shown in 

Table 6.3. 

List of solvents Practically Insoluble Soluble Highly Soluble 

Ethanol 57 71 53 

Methanol 39 48 61 

1-butanol 37 51 25 

Acetone 27 39 36 

Acetonitrile 25 33 46 

Ethyl acetate 50 47 28 

1,4-dioxane 10 13 24 

 

6.2.4 ML model workflow 

Solubility dataset containing the compounds and their calculated numerical and 

fingerprint descriptors were randomly divided into 80:20 ratios, from which 80% 

were used as the training set and the remaining 20% were used as the external 

validation set. 10-fold cross validation was performed on the training set with the 

calculated descriptors in order to evaluate the performance of the RF models. It 

evaluates performance and stability by randomly splitting the dataset into 10 

groups, training a model with 9/10 groups and testing it on the remaining 1/10. This 

procedure is performed 10 times, sequentially leaving out each group for testing 

and aggregating the results (Bengio & Grandvalet, 2004). 10-fold cross validation on 

the training set was performed using the ‘caret’ package in R (Version 3.5.1) (A. 

Liaw & M. Wiener, 2002). After evaluating model performance by 10-fold cross 

validation, a final model was trained on the full training set to predict non-aqueous 

solubility on the remaining 20% external validation set. For the RF classification 
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model, the default value of mtry (number of randomly selected descriptors) was 

used (square root of the total number of predictors).  The default value of mtry was 

also used for the RF regression model, where it is a third of the number of 

predictors. The number of trees generated for the RF classification model was set at 

1500 trees while that for the RF regression model was set at 500 trees. Both 

regression and classification RF models were trained using the ‘randomForest’ 

package in R (Version 3.5.1) (Ihaka & Gentleman, 1996). A schematic workflow of 

the model development showing the various stages is shown in Figure 6.1. 

Figure 6.1 Workflow of the RF machine learning algorithm to predict non-aqueous 

solubility of drug and drug like compounds at laboratory temperature. 10-fold cross 

validation was performed to evaluate the performance of the RF model. The trained 

RF model was then used to predict the non-aqueous solubility on the validation set. 

6.2.5 Model performance metrics 

In order to measure and assess the performance of the RF regression model, three 

standard metrics i.e. root mean square error (RMSE), mean absolute error (MAE) 

and the square of the Pearson correlation coefficient or R-squared (R2) were used. 

RMSE is the measure of the average deviation of the predicted data from the 

experimental observations (residuals), MAE is the absolute difference between the 

predicted data and the experimental observations while R-squared is the relative 

measure of how close the predicted data from the RF model are to the fitted 
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regression line (Chirico & Gramatica, 2011). A picture of a good predictive model is 

dictated by relatively low values of RMSE and MAE and higher values of R-

squared. The values of both RMSE and MAE range from 0 to infinity. There are no 

universal threshold values of RMSE and MAE to reflect a model’s predictive ability. 

Similarly, the performance of the RF classification models was evaluated using the 

accuracy of the statistical measure (ACC), sensitivity (Sn), specificity (Sp), precision or 

positive predictive value (PPV), Cohen’s kappa (к) and summarised by a confusion 

matrix. These performance metrics for both the RF regression and classification 

models are further explained in detail, along with their respective equations, in 

Section 1.3.5. 

6.3 Results and discussions 

6.3.1 RF regression models 

Results obtained from the RF regression model constructed by performing 10-fold 

cross validation using both numerical and MACCS fingerprints are summarised in 

Table 6.5 and their regression plots are visualised in Appendix 2A. It can be 

observed that, overall, the predictive ability of the regression models built using 

MOE descriptors was superior compared to the models built using MACCS 

fingerprints. The RMSE and MAE values of acetonitrile, 1-butanol and ethanol were 

found to be relatively lower compared to the values found for methanol, acetone, 

ethyl acetate and 1,4-dioxane. The RF regression model built on acetonitrile with 

MOE physicochemical descriptors had the best average prediction accuracy 

according to the cross-validation results with the lowest RMSE value of 0.67 LogS 

and MAE value of 0.506 LogS. This indicates a good fit of the RF model to the 

acetonitrile data compared to other solvents i.e. the observed data was close to the 

model’s predicted values. The random forest regression model predicted the non-

aqueous solubility of 247 compounds in the following order of their average 

predictive performance: acetonitrile > 1-butanol > ethanol > methanol > acetone > 

ethyl acetate > 1, 4-dioxane. RF models trained using both the numerical descriptors 
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and fingerprints were then selected for validation on the 20% external test set. The 

predictive performance of the trained model using both descriptors on the 

validation set is summarised in Table 6.6 and their regression plots are visualised in 

Appendix 2B. 

Table 6.5 Comparison of the prediction performance of RF regression model using 

10-fold cross validation on seven solvents built using MOE molecular descriptors 

and MACCS molecular fingerprints 

 MOE descriptors MACCS descriptors 

Solvents RMSE R2 MAE RMSE R2 MAE 

Ethanol 0.721 0.578 0.541 0.765 0.516 0.584 

Methanol 0.734 0.562 0.565 0.799 0.469 0.636 

1-butanol 0.674 0.582 0.513 0.571 0.669 0.441 

Acetonitrile 0.670 0.628 0.506 0.722 0.584 0.525 

Acetone 0.757 0.363 0.585 0.773 0.337 0.591 

Ethyl acetate 0.964 0.400 0.732 0.939 0.428 0.721 

1,4-dioxane 0.959 0.008 0.685 0.998 -0.209 0.725 
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Table 6.6 Comparison of the prediction performance of RF regression model on the 

20% external validation set on seven solvents 

 MOE descriptors MACCS descriptors 

Solvents RMSE R2 MAE RMSE R2 MAE 

Ethanol 0.650 0.522 0.479 0.704 0.412 0.551 

Methanol 0.657 0.497 0.505 0.618 0.538 0.468 

1-butanol 0.524 0.609 0.375 0.781 0.471 0.65 

Acetonitrile 0.805 0.374 0.570 0.563 0.516 0.438 

Acetone 0.794 0.614 0.608 0.898 0.365 0.688 

Ethyl acetate 0.689 0.602 0.545 0.744 0.508 0.607 

1,4-dioxane 0.839 0.692 0.559 0.849 0.445 0.577 

 

If the evaluation metric values were significantly better for the training set (i.e. 

lower value of RMSE and MAE while higher value of R2) than that of the validation 

set, this would indicate one of two things; either the model has highly over-fitted 

where the model learns patterns highly specific to the training set and then 

struggles to maintain performance on independent validation sets or the validation 

set size is too small and not enough for the model to identify trends (Domingos, 

2012). Even though similar predicted values between the training and validation set 

indicates a stable and valid model, the predictive capability of the model is 

determined by low values of both RMSE and MAE and higher values of R2.  

Results summarised in Table 6.6 suggested that the regression model built using 

MOE descriptors was moderately good at predicting solubility in alcohols whilst the 

model struggled to predict accurately in acetone, acetonitrile and 1,4 dioxane. This 

was indicated by higher values of RMSE and MAE. However, models built using 

MACCS fingerprints were good at predicting solubility in acetonitrile, methanol 

and ethanol while failed with high errors for ethyl acetate, 1-butanol and acetone.  
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The prediction metrics of acetonitrile were the best among the seven solvents in the 

cross-validation model using MOE descriptors, however the metrics were poor for 

the external validation set. As suggested by Hewitt et al (2009), this is a clear sign 

that the trained model underwent overfitting. The training set for acetonitrile thus 

did not contain enough information to generalise the trends to predict non-aqueous 

solubility for compounds in the test set (Hewitt et al., 2009).  It can also be observed 

from Table 6.5 that model for 1, 4-dioxane, acetone and ethylacetate had high values 

of RMSE and lower values of R2 in the training set. Lower values of R2 indicates that 

the model explains none of the variability of the solubility data around its mean and 

that the predicted data points fall further from the regression line. Thus a poor fit of 

the model. This can also be observed from their regression plots in Appendix 2B.  

This could either be due to the extremely small dataset size for 1,4- dioxane (47 data 

points) or the inability of the models to fully capture the relationship between the 

molecular descriptors and the target property for ethylacetate, acetone and 1,4-

dioxane.  

The RF regression model built to predict non-aqueous solubility of the drug and 

drug-like compounds on seven organic solvents was compared with RF solubility 

predictions available in the literature. Buonaiuto and Lang (2015) created a similar 

random forest regression model using 86 physicochemical descriptors to predict the 

solubility of 259 compounds in 1-octanol with an R2 value of 0.63 and RMSE of 0.616 

LogS (Buonaiuto & Lang, 2015). These values were comparable in performance to 

the cross-validation results of the presented alcohol datasets (ethanol, methanol and 

1-butanol) in Table 6.5. As mentioned earlier in the chapter, RF regression models 

have been extensively researched in the prediction of aqueous solubility rather than 

non-aqueous solubility in literature. Aqueous solubility data are found in 

abundance in public databases and are thus larger in number. For example, Palmer 

et al. developed a RF model to predict aqueous solubility on 988 compounds with an 

RMSE value of 0.685 which was comparable to the RMSE results obtained on non-

aqueous solvents in this study (Palmer et al., 2007). However, R2 value from this 
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study was lower compared to the value reported by Palmer et al (0.896). This could 

be due to the significantly smaller solubility dataset size used in this study which 

prevented the models to fully capture the underlying trends between the molecular 

descriptors and the dependent variable property of interest, potentially be due to 

the failure in the algorithms themselves or due to the incomplete set of descriptors.  

Overall, the built RF regression models on the external test set produced moderately 

good predictions of non-aqueous solubility for drug and drug-like compounds in 

alcohols (methanol, ethanol and 1-butanol) but failed for ethyl acetate, acetone, 

acetonitrile and 1,4-dioxane. This remains a significant finding given the 

comparatively small sample size compared to aqueous solubility databases; the 

regression models were nevertheless able to correlate some information obtained 

from the molecular descriptors with the experimental solubility data for some 

solvents. Rather than aiming to predict continuous and quantitative values of 

solubility of compounds on respective solvents, classification modelling with 

discretized labels was applied.  

6.3.2 RF Classification model 

The same non-aqueous solubility prediction problem was treated as a classification 

task. RF classification models (in classification mode) was were evaluated to map 

out where the solubility of drug and drug like compounds would map out under a 

finite set of possible outcomes. RF Classification model was initially built on the 

criteria set in section 6.2.3, of the chapter i.e. with two classification outcomes, 

where compounds with solubility > 33 mg/ml were regarded as being in the Soluble 

region and compounds with solubility < 33 mg/ml were regarded as being in the 

Insoluble region (Table 6.3). The dataset was randomly split into 80% as a training 

set and 20% as the external validation set. 10-fold cross validation was performed on 

the training set as shown in Table 6.7. Performance measures of the classification 

model after 10-fold cross validation are summarised in the following Table 6.8. 
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Table 6.7 Breakdown of the solubility dataset in the ratio of 80:20 with 80% as a 

training set and 20% as an external validation set 

Solvent  Soluble Region Insoluble Region 

Ethanol 

Training Set 69 75 

Validation Set 19 18 

Methanol 

Training Set 49 69 

Validation Set 11 19 

1-butanol 

Training Set 52 38 

Validation Set 11 12 

Acetone 

Training Set 38 43 

Validation Set 8 13 

Acetonitrile 

Training Set 29 54 

Validation Set 7 14 

Ethyl acetate 

Training Set 59 41 

Validation Set 14 11 

1,4-dioxane 

Training Set 13 24 

Validation Set 2 8 
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Table 6.8 Average prediction accuracy after 10-fold cross validation on seven 

organic solvents (binary classification) 

Solvent Sensitivity Specificity Cohen kappa Precision Accuracy 

Ethanol 0.8000 0.7848 0.5816 0.7536 79.17 

Methanol 0.7500 0.7838 0.5218 0.6735 77.20 

1-butanol 0.7391 0.6364 0.3762 0.68 68.89 

Acetonitrile 0.6786 0.8182 0.4924 0.6552 77.11 

Acetone 0.6316 0.7674 0.4015 0.7059 70.37 

Ethyl acetate 0.8182 0.6889 0.5112 0.7627 76.00 

1,4-dioxane 0.5455 0.6953 0.2204 0.4286 64.86 

 

It can be observed from Table 6.8 that, on the whole, the RF binary classifiers after 

10-fold cross validation on the seven solvents performed reasonably well, with 

classification accuracy above 64%. The average predictive accuracy obtained from 

performing cross validation was highest in the ethanol model and lowest for the 1, 

4-dioxane model. The Cohen’s kappa values indicate that the predictions made for 

the ethanol model were in moderate agreement with the experimental outcomes 

while those for 1, 4-dioxane had an only slight agreement with the experimental 

outcomes.  Sensitivity and specificity indicate how well the model identities the two 

outcomes, with higher values indicate the ability of the model to correctly identity 

the compounds with the correct outcome. The training sets for acetonitrile, 

methanol, ethyl acetate and 1,4-dioxane were imbalanced (Table 6.7), though for 

acetonitrile, methanol and ethyl acetate models were fairly accurate in classification 

the respective outcome with high accuracy of above 76%.  Sensitivity and specificity 

for 1, 4-dioxane were low, indicating that the RF model was not capable of 

accurately classifying the compounds according to their respective outcomes. 

Confusion matrices drawn on Table 6.9 and Table 6.10 helps to understand the 
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classification of the RF trained models for which the performance metrics are based 

on. 

Table 6.9 Confusion matrix of the classification model of the alcohol models 
P

re
d

ic
te

d
 D

at
a 

Reference Data 

 

Ethanol Methanol 1-Butanol 

Soluble Insoluble Soluble Insoluble Soluble Insoluble 

Soluble 52 17 33 16 34 16 

Insoluble 13 62 11 58 12 28 

 

Table 6.10 Confusion matrix of the classification model of acetone, acetonitrile, ethyl 

acetate and 1, 4-dioxane 

P
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d
ic

te
d

 D
at

a 

Reference Data 

 

Acetone Acetonitrile 

Soluble Insoluble Soluble Insoluble 

Soluble 26 12 19 10 

Insoluble 12 31 9 45 

P
re

d
ic

te
d

 D
at

a 

Reference Data 

 

Ethyl acetate 1,4-dioxane 

Soluble Insoluble Soluble Insoluble 

Soluble 45 14 6 8 

Insoluble 10 31 5 18 
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From the confusion matrices (Table 6.9 and Table 6.10), RF model for ethanol had 

shown the least misclassification when compared to the other solvents and thus 

high specificity and sensitivity and specificity. The 1, 4- dioxane model struggled to 

correctly classify the soluble outcome with an error rate of 57.14%.  This 

misclassification is due to the small sample size as well as the imbalance in the 

outcomes; the much better result for the insoluble outcome is equally an artefact of 

the class imbalance. Aside from 1, 4-dioxane, it was observed that the RF model the 

models were able to classify the outcomes in the six other solvents with less 

misclassification and fairly high accuracy. The prediction was then performed in the 

remaining 20% external validation set. The performance of the RF classification 

model when tested on the external validation set is shown in Table 6.11. Confusion 

matrices of the predicted model on the external validation set are presented to 

interpret the classification of the seven organic solvents (Table 6.12 and Table 6.13). 

Table 6.11 Predictive performance of the RF model on the 20% external validation 

set for the seven organic solvents (binary classification) 

Solvent Sensitivity Specificity 
Cohen 

kappa 
Precision Accuracy 

Ethanol 0.790 0.833 0.622 0.833 0.811 

Methanol 0.727 0.842 0.569 0.727 0.800 

1-butanol 0.636 0.583 0.219 0.583 0.609 

Acetonitrile 0.333 1.000 0.364 1.000 0.714 

Acetone 0.750 0.846 0.596 0.750 0.810 

Ethyl 

acetate 
0.714 0.546 0.262 0.667 0.640 

1,4-dioxane 0.500 1.000 0.615 1.000 0.900 
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Table 6.12 Confusion matrix on the external validation set of the alcohols models 

P
re

d
ic

te
d

 D
at

a 

Reference Data 

 

Ethanol Methanol 1-Butanol 

Soluble Insoluble Soluble Insoluble Soluble Insoluble 

Soluble 14 5 5 6 7 4 

Insoluble 3 15 7 12 5 7 

Table 6.13 Similarly, Confusion matrix on the external validation set of acetone, 

acetonitrile, ethyl acetate and 1, 4-dioxane 

P
re

d
ic

te
d

 D
at

a 

Reference Data 

 

Acetone Acetonitrile 

Soluble Insoluble Soluble Insoluble 

Soluble 6 2 3 4 

Insoluble 2 11 5 9 

P
re

d
ic

te
d

 D
at

a 

Reference Data 

 

Ethyl acetate 1,4-dioxane 

Soluble Insoluble Soluble Insoluble 

Soluble 10 4 1 1 

Insoluble 5 6 0 8 

 

Overall, it was observed that, when tested on the validation set, the models 

classified the outcomes on all the seven solvents with prediction accuracy of above 

60%. The ethanol model had the most accurate prediction of the binary outcomes 

with the overall prediction accuracy of 81.08% and Cohen’s kappa at 0.6219 

interpreting the model as having a substantial agreement with the experimental 
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outcomes (Table 6.11 and Table 6.12). The confusion matrix showed a good 

prediction between the two outcomes with fewer errors. RF model failed to 

accurately predict the soluble outcome for compounds in acetonitrile and 1, 4-

dioxane. Predictions on 1-butanol and ethyl acetate models were also not strong, 

with significant error rates and low Cohen’s kappa values. Soluble outcomes were 

predicted in the acetonitrile validation set with an accuracy of 42.86% while that for 

1,4-dioxane was 50%.  The validation set for both acetonitrile and 1, 4-dioxane were 

highly imbalanced which led to the RF to be more biased toward the majority cases. 

However, for 1-butanol and ethyl acetate, the validation sets were balanced yet a lot 

of compounds were misclassified. This confirms that the training data set for these 

two compounds do not represent the problem space. Similar high errors were 

observed in the regression models for these two solvents described earlier in this 

chapter, especially ethyl acetate (Table 6.5 and Table 6.6). In summary, the trained 

RF classification models were accurate in classifying drug-like compounds into a 

binary soluble/insoluble outcome for ethanol, methanol and acetone, whilst proving 

inaccurate for ethyl acetate, 1,4-dioxane, 1-butanol and acetonitrile models. 

The solubility dataset was reclassified into three outcomes instead of two in order to 

investigate whether the extreme ends of the solubility spectrum (termed highly 

soluble and practically insoluble) could be well separated when considered apart from 

the central region. As mentioned in section 6.2.3, the dataset was divided into three 

solubility regions i.e. compounds with solubility less than 10 mg/ml were classified 

as practically insoluble (PI). Compounds with solubility between 10 mg/ml to 100 

mg/ml were classified as soluble (S) and compounds with solubility above 100 

mg/ml were classified as highly soluble (HS). The same workflow was followed as 

with the binary outcomes: the dataset was randomly split into 80% as a training set 

and 20% as the external validation set and 10-fold cross validation was performed 

on the training set, as shown in Table 6.14. Table 6.15 and Table 6.16 present the 

confusion matrices of the cross-validation classification model. 
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Table 6.14 Breakdown of the solubility dataset on the basis of the three solubility 

regions in the ratio of 80:20 with 80% as a training set and 20% as an external 

validation set 

Solvent  
Highly Soluble 

(HS) 

Soluble 

(S) 

Practically Insoluble 

(PI) 

Ethanol 

Training Set 19 27 37 

Validation Set 6 6 9 

Methanol 

Training Set 31 37 50 

Validation Set 8 11 11 

1-butanol 

Training Set 32 41 17 

Validation Set 5 10 8 

Acetone 

Training Set 23 26 32 

Validation Set 4 13 4 

Acetonitrile 

Training Set 19 27 37 

Validation Set 6 6 9 

Ethyl acetate 

Training Set 38 39 23 

Validation Set 11 9 5 

1,4-dioxane 

Training Set 8 8 21 

Validation Set 2 5 3 
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Table 6.15 Average prediction accuracy after 10-fold cross validation on seven 

organic solvents (Three label classification) 

 Sensitivity Specificity 

Solvent 
ACC 

(%) 
Kappa HS S PI HS S PI 

Ethanol 63.19 0.443 0.781 0.540 0.625 0.874 0.753 0.808 

Methanol 58.47 0.370 0.606 0.460 0.667 0.847 0.741 0.786 

1-butanol 72.22 0.538 0.815 0.667 0.778 0.841 0.861 0.877 

Acetonitrile 61.45 0.407 0.600 0.462 0.730 0.841 0.754 0.826 

Acetone 43.21 0.129 0.429 0.200 0.550 0.767 0.639 0.751 

Ethyl 

acetate 
56 0.324 0.667 0.500 0.500 0.813 0.714 0.8 

1,4-dioxane 56.76 0.1801 0.500 0 0.7037 0.8182 0.3710 0.752 

 

Table 6.16 Confusion matrix of the classification model of the alcohol models with 

three outcomes 

P
re

d
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a 

Reference Data 

 
Ethanol Methanol 1-Butanol 

HS  S PI HS  S PI HS  S PI 

H. S 15 3 1 19 8 4 26 5 1 

Soluble 5 15 8 9 17 11 7 27 7 

PI 2 12 23 4 13 33 0 2 15 
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Table 6.17 Similarly, Confusion matrix of the classification model of acetone, 

acetonitrile, ethyl acetate and 1, 4-dioxane model with three solubility outcomes 

P
re

d
ic

te
d

 D
at

a 
Reference Data 

 
Acetone Acetonitrile 

HS  S PI HS  S PI 

H. S 11 11 3 11 6 2 

Soluble 10 6 10 8 12 6 

PI 5 13 14 2 8 27 

P
re

d
ic

te
d

 D
at

a 

Reference Data 

 
Ethyl acetate 1,4-dioxane 

HS  S PI HS  S PI 

H. S 25 10 3 2 4 2 

Soluble 8 20 12 2 0 6 

PI 3 8 12 0 2 19 

 

From Table 6.15, it can be observed from the performance metrics of the cross 

validated model that 1-butanol, ethanol and acetonitrile had the least misclassified 

outcomes out of the seven compounds whilst acetone, ethyl acetate and especially 

1,4-dioxane gave the worst classification of the compounds. This overall trend is 

similar to the regression models and binary classification models. From the 

confusion matrices (Table 6.16 and Table 6.17), it can be observed that acetone and 1, 

4-dioxane models failed to accurately classify the outcome Soluble. Instead, most of 

the soluble compounds in acetone were classified as either being highly soluble or 

practically insoluble. Similarly, the majority of the compounds labelled as soluble 

were misclassified as being practically insoluble in 1, 4-dioxane model.   
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Following the 10-fold cross-validation, a final model for each solvent was then 

trained on the training set and tested on the remaining 20% external validation set. 

The results are shown in Table 6.18. The confusion matrices are also shown to help 

interpret the classification of the seven organic solvents (Table 6.19 and Table 6.20). 

Table 6.18 Predictive performance on the external validation set of the RF model on 

seven organic solvents with three qualitative solubility outcomes 

 Sensitivity Specificity 

Solvent ACC (%) Kappa HS S PI HS S PI 

Ethanol 64.86 0.460 0.667 0.647 0.625 0.840 0.800 0.808 

Methanol 66.67 0.460 0.500 0.700 0.714 1.000 0.700 0.786 

1-butanol 82.61 0.720 0.800 1.000 0.625 1.000 0.692 0.877 

Acetonitrile 80.95 0.702 1.000 0.714 0.818 0.833 0.929 0.826 

Acetone 47.62 0.260 0.750 0.308 0.750 0.824 0.875 0.756 

Ethyl acetate 60.00 0.343 0.539 0.600 1.000 0.833 0.600 0.8 

1,4-dioxane 70.00 0.167 0.000 0.000 1.000 0.889 1.000 0.769 

 

Table 6.19 Confusion matrix for prediction on the external validation set of alcohol 

models with three solubility outcomes 
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Reference Data 

 
Ethanol Methanol 1-Butanol 

HS  S PI HS  S PI HS  S PI 

H. S 4 1 1 8 0 0 5 0 0 

Soluble 8 29 3 2 6 3 1 7 2 

PI 1 4 5 1 2 8 0 0 8 
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Table 6.20 Confusion matrix for prediction on an external validation set of acetone, 

acetonitrile, ethyl acetate and 1, 4-dioxane models with three solubility outcomes 

P
re

d
ic

te
d

 D
at

a 
Reference Data 

 
Acetone Acetonitrile 

HS  S PI HS  S PI 

H. S 2 1 1 3 2 1 

Soluble 3 10 0 0 5 1 

PI 0 3 1 0 0 9 

P
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d
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d
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a 

Reference Data 

 
Ethyl acetate 1,4-dioxane 

HS  S PI HS  S PI 

H. S 9 2 0 1 0 1 

Soluble 5 5 0 2 2 2 

PI 0 3 3 0 2 1 

 

For the external validation set, the classification models predicted the outcomes 

accurately for 1-butanol, ethanol and methanol. The acetonitrile model performed 

slightly better than on the cross-validation set. Compounds labelled as practically 

insoluble were largely misclassified as soluble in the acetone model. Similarly, for 

ethyl acetate and 1, 4-dioxane models, the majority of the compounds labelled as 

soluble were misclassified as highly soluble and practically insoluble, respectively. This 

was not surprising given that both the models had a poor performance in regression 

and in binary classification models too. It was interesting to observe that, with the 

three defined solubility regions, the compounds labelled at the extreme ends of the 

solubility spectrum i.e. highly soluble and practically insoluble were generally 

predicted correctly or misclassified as soluble.  In other words, the two ends of the 
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solubility spectrum were well-separated by the classification model. If the ‘middle’ 

class of soluble were to be treated as an unknown category that required 

experimental confirmation, this methodology could feasibly be used to reduce the 

number of solubility tests that must be performed, using the high accuracy of the 

highly soluble and practically insoluble classes to filter out unnecessary combinations 

and only testing anything predicted as soluble. 

6.4 Summary 

This study reports the application of random forest to predict non-aqueous 

solubility of 247 unique drug and drug-like molecules in seven commonly used 

solvents. The maximum number of solubility data points curated for this study for 

any one solvent was 181 (for ethanol) which is a relatively small number when 

compared to aqueous solubility datasets, some of which have over 1000 data points. 

Furthermore, solubility data was taken at a specific temperature which limited the 

number of data points that could be utilised. However, in spite of this, both 

regression and classification models built using physicochemical molecular 

descriptors were successfully implemented to predict non-aqueous solubility. As 

indicated by the results, the RF regression models were able to predict solubility 

with relatively low values of RMSE and MAE whilst maintaining high R2 values in 

ethanol, 1-butanol and methanol. The regression models however failed to predict 

accurately in ethyl acetate, acetone, acetonitrile and 1, 4-dioxane. Equivalent 

regression models built using MACCS fingerprints showed relatively poor 

performance compared to the ones built using numerical descriptors using MOE. 

Similarly, RF was successfully implemented in developing classification models 

capable of accurately classifying which compounds lie in the respective solubility 

regions. A binary classification response with set outcomes soluble and insoluble 

based on the Merck Index was initially used. The binary classification models 

worked well in ethanol, methanol and acetone whilst failing to accurately classify 

compounds in 1-butanol, ethyl acetate, acetonitrile and 1,4-dioxane. The binary 

response was then replaced by three solubility regions to be able to identify 
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compounds on the far extremes of the solubility spectrum i.e. highly soluble and 

practically insoluble regions. RF classification models trained using three outcomes 

were accurate for the alcohol models (ethanol, methanol and 1-butanol) and 

acetonitrile models but failed to accurately predict on ethyl acetate, acetone and 1,4-

dioxane. Predicting the solubility of compounds in ethyl acetate failed for both 

regression and classification models which could indicate that the calculated 

descriptors were incomplete and thus the model failed to learn the underlying 

patterns between the descriptors and the outcomes within the training set in order 

to make accurate predictions in the external validation set or that the algorithm 

implemented was unable to identify the underlying trends. Similarly, 1, 4-dioxane 

model was relatively poor due to its small sample size (47 samples) and the 

descriptors could not fully explain the targeted outcomes.  

It is worth noting that, if all cases predicted as the central class (soluble) in the three-

way classification setup were to be considered as unknowns requiring further 

testing, the remaining classes on either side of the solubility spectrum were rarely 

misclassified as one another.  This means that this method could be used to filter out 

many solvent-solute combinations that are very high or very low, reducing the 

number required to be taken forward to the experimental screening.  

This study covers a wider range of industrially acceptable solvents than what is 

reported in the literature and demonstrates that machine learning can be used as a 

predictive tool in recommending solvents for solubility studies during 

crystallisation process design. Perhaps most importantly, this method is purely 

based on literature data and as such it can help reduce experimental cost and time 

needed in the laboratory. 
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Chapter 7. Conclusion and Future 

work 
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7.1 Conclusion 

The work performed in this thesis demonstrates the ability of machine learning 

algorithms in predicting various essential parameters required at the initial stages of 

crystallisation process design such as crystallisation outcomes and crystal habit 

which helps reduce experimental time, cost and wastage. The research not only 

successfully implemented predictive machine learning models but also provided an 

understanding of the relationship between the calculated 2D and 3D numerical 

descriptors and the investigated properties.  A solvent selection tool was developed 

to help recommend solvents for rapid and efficient screening at early stage of a 

crystallisation process with an average prediction accuracy of ~75%. An in-house 

solubility database consisting of 247 unique drug and drug-like compounds was 

utilised to predict non-aqueous solubility in seven common organic solvents 

(methanol, ethanol, 1-butanol, acetone, acetonitrile, ethyl acetone, 1, 4-dioxane) with 

an average predictive accuracy of ~74 %. 

Cooling crystallisation was utilised throughout the research to collect experimental 

data required for training the machine learning algorithm. Overall, the experimental 

and predictive computational methods have provided an understanding of the 

various influences of organic solvents in the crystallisation process. 

The conclusions for each of the study done in the thesis are summarised as follows: 

Chapter4: Implementing the RF algorithm for predicting crystallisation outcomes 

and crystal habit of paracetamol in a diverse range of organic solvents 

The studies investigated the implementation of machine learning algorithms in the 

prediction of crystallisation outcomes of paracetamol on 94 organic solvents and the 

crystal habit on 44 solvents on which paracetamol crystallised out. The 

crystallisation outcomes obtained from controlled cooling crystallisation 

experiments were qualitatively categorised as crystallised out, non-nucleated, 

practically insoluble and degradation. The models developed in this study can help 

provide valuable assistance in making quick decisions about suitable solvents for 



 

202   

the selected drug at the initial stage of a crystallisation process by providing initial 

information about the drug’s crystallisability and crystal habit. 

The results obtained from the unsupervised machine learning technique, PCA, 

provided an efficient visualisation of dominant patterns in the solvent chemical 

space. The experimental outcomes when painted over the first two principal 

components provided two distinctive clustering: a cluster of the solvents showing 

outcomes practically insoluble and combined clustering of crystallised out, non-

nucleated and degradation. The cluster pattern observed from the unsupervised ML 

model demonstrated solubility behaviour as the solvents in combined clusters of 

crystallised out, non-nucleated and degradation all solubilises paracetamol while the 

solvents in the other cluster did not. The PCA model also provided further 

information on the distribution of the solvents and its clusters according to its 

polarity and functional groups in the chemical space. Similarly, the RF classification 

model successfully predicted the solubility outcomes but failed to correctly classify 

and predict the behaviour of paracetamol in solvents where it failed to nucleate i.e. 

non-nucleated outcome and on those that it degraded in i.e. degradation. Furthermore, 

the number of solvents that paracetamol degraded were very few in the dataset and 

had no influence in the prediction of the model. Thus, solvents showing 

degradation were omitted from the dataset. Overall, the classification accuracy of 

the trained model was observed to be 77.33% with kappa as 0.594 and prediction 

accuracy on the validation sets of 73.68% with kappa as 0.583. The classification and 

prediction accuracy came mostly from the two well-represented classes i.e. 

crystallised out and practically insoluble. The Cohen’s kappa indicated the presence of 

misclassification in the model with a moderate agreement value of between 0.55 and 

0.6. Stratified sampling and One-vs-one binarisation techniques when applied 

further provided a better understanding that the trained models were capable of 

only predicting whether paracetamol is soluble in the solvent or not. The results 

presented the limitation of the selected molecular descriptors to provide enough 

information to the RF models in order to accurately classify and predict solvents 
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where paracetamol failed to nucleate and degrade. This is because nucleation is not 

only dependent upon the physicochemical properties but is also influenced by 

supersaturation, temperature and process control parameters. However, as the 

chapter presented that the ML algorithms built using these same molecular 

descriptors were able to accurately classify the solvents into two distinct clusters, i.e. 

solvent clusters where paracetamol solubilised in and the clusters containing 

solvents where paracetamol was found to be insoluble in.  This indicated that the 

trained classification models could provide a valuable tool for rapidly predicting 

solubility of compounds and thus aid in solvent selection. 

The trained ML models were also unable to predict the crystal habit of paracetamol 

in 44 solvents. This could be due to the small and highly unbalanced dataset size of 

the crystallised paracetamol. Small dataset sizes decrease statistical power as it is 

incapable of fully detecting the relationship between the outcomes and the 

descriptors.   

Overall, as mentioned earlier the built machine learning models provided great 

potential as a rational solvent selection tool for predicting the solubilisation 

behaviour of the drug (i.e. whether the drug will dissolve in the respective solvent 

and which solvents the drug was insoluble) with a good degree of confidence. The 

model, however, failed to provide relevant information on the drug’s nucleation 

and degradation as well as crystal habit.  

Chapter 5: Development of a rapid and efficient solvent selection tool 

The work in this chapter focused on utilising the ability of the ML algorithm and the 

calculated molecular descriptors of the solvents to predict solubility in order to 

develop a rapid and efficient solvent selection tool for crystallisation process design. 

The method explored reducing the number of screening experiments in the 

laboratory and the number of materials used for screening studies by investigating 

the optimum number of the sample sizes required for building a robust random 

forest model. Data mining approaches utilised in the study also help extract the 

frequent and important solvents which when selected on the training set would 
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provide an accurate predictive model. The RF solvent selection approach, when 

combined with the Strathclyde24 Solvent cluster map, proved an even more 

effective solvent selection tool for screening with an average predictive accuracy 

above 80% (Johnston et al., 2017). The developed approach for solvent selection 

provided an efficient way of eliminating unsuitable solvents at early stage of the 

crystallisation process. Furthermore, solvents in which the compounds were 

predicted as insoluble by the model could be recommended as wash solvents or as 

an antisolvent in the crystallisation process design.  

Chapter 6: RF models to predict non-aqueous solubility of the drug and drug-like 

compounds in organic solvents 

The work performed in the chapter focused on the development of random forest 

models purely based on collated literature data to predict the non-aqueous 

solubility of the drug and drug-like compounds on common organic solvents. The 

trained model was the first of its kind as most of the predictions in literature is done 

on aqueous solubility. A dataset was curated consisting of solubility data of 247 

unique compounds in seven organic solvents. Both the regression and classification 

model built on calculated 2D and 3D molecular properties provided good 

predictions of non-aqueous solubility on alcohols except 1,4-dioxane and ethyl 

acetate. The size of dataset curated for 1, 4-dioxane was limited in number, and thus 

the RF model struggled to predict solubility accurately. However, in the case of 

ethyl acetate, even though the number of data set size was similar to other solvents, 

the model failed to make predictions and find trends between the descriptors and 

the solubility outcomes. The solubility predictions made by the trained random 

forest model were found to be comparable with similar studies done in literature 
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7.2 Future works 

7.2.1 Chapter 4 

The research on predicting crystallisation outcomes and crystal habit were 

performed on 94 solvents for only one drug compound. The chosen API, 

Paracetamol, was a good starting point as a lot of research has been heavily 

performed on the compound. Furthermore, paracetamol is a stable API and does 

not change polymorphic form in the set experimental conditions. It is also ideal for 

crystal habit studies as it is reported its crystal habit is dependent upon the solvent 

used. However, more crystallisation experiments performed on a number of diverse 

drug compounds could help better understanding of the crystallisation behavior on 

the drug compounds in a diverse range of solvents. This could also in turn provide 

more data for the machine learning algorithms and a thus better understanding of 

the relationship between the molecular descriptors and the targeted outcomes. The 

choice of calculated molecular descriptors failed to sufficiently correlate with the 

nucleation and degradation outcomes of the drug compound. Investigating and 

including descriptors that define these outcomes better would help improve the 

quality of the machine learning model. The number of solvents in which 

paracetamol was crystallised in was few in number thus resulting in a small dataset 

size for the ML model. This could potentially be solved by crystallising various drug 

compounds on one solvent using constant cooling crystallisation conditions rather 

than crystallising one drug compound on a diverse range of solvents. As the 

number of drug compounds is in the range of hundreds of thousands compared to 

the number of solvents, this could help solve the issues with dataset size. Also, 

utilizing databases such as Cambridge Structural Database (CSD) in the future to 

data mine crystal habits to develop predictive machine learning models would be 

the better route to build reliable models as the CSD database in 2016 consists of over 

800,000   crystal structure (Groom, Bruno, Lightfoot, & Ward, 2016). Cooling 

crystallisation was the preferred crystallisation technique utilised in this study. The 

addition of other techniques such as evaporation, antisolvent crystallisation, solvent 
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diffusion etc would help generate more data and thus further understand the 

crystallisation outcomes and habit of drug compounds in various solvents.  

Implementing robotic platforms such as the Zinsser automated platform for high 

throughput screening studies could help generate a large number of experimental 

data points on a number of diverse organic solvents in a more accurate and efficient 

way which in turn will help increase the number of data points for the ML model. 

7.2.2 Chapter 5 

The solvent selection tool was tested on paracetamol, carbamazepine and carvedilol. 

The next step would be to investigate the efficiency of the solvent selection tool on 

salts and co-crystals. This would add cover a diverse range of compounds and add 

more value to the solvent selection tool. The solvent cluster map consisted of only 63 

solvents. Adding more solvents to the cluster map would also help cover a wider 

solvent chemical space.  The result from the current study presented the random 

forest model capable of accurately predicting whether the drug was soluble or 

insoluble in the respective solvent at two temperature points which helped filter out 

the unsuitable solvents for the crystallisation process. Safety, toxicology/health and 

environment criteria utilised by various industries in their solvent selection tool can 

be added either as descriptors during model training or later to further filter out the 

solvents. Doing so can add more value to the solvent selection tool (Alder et al., 

2016; Prat et al., 2013). Similarly, properties such as polymorphic change of the drug 

in the respective solvent as well as a chemical reaction, oiling out, degradation etc 

were not included in the solvent selection tool and if included could help 

recommend suitable solvents with high accuracy. The solvent selection tool was 

developed for pure solvents. However, this approach can also be utilised on solvent 

mixtures by incorporating experimental outcomes and relevant molecular 

descriptors of solvent mixtures in the training set. 
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7.2.3 Chapter 6 

Random forest models were successfully developed to predict the solubility of drug 

and drug like compounds. Implementing other supervised and unsupervised 

machine learning algorithms or even combining with RF models would help 

investigate the predictive accuracy. A comparison of machine learning algorithms 

has been done previously in the literature (Ahmad, Mourshed, & Rezgui, 2017; 

Banfield et al., 2007).  Even though the random forest was successful in predicting 

non-aqueous solubility as well as the RF model being easy to train, flexible and 

highly accurate, it is to be noted that there is no perfect algorithm and that all 

algorithms are dependent upon the quality and quantity of the data. Similarly, 

besides MACCS fingerprint, various other fingerprints such as circular Morgan 

fingerprints, RDKit fingerprints and e-state count fingerprints and numerical 

descriptors from RDKit could also be implements. Furthermore, clustering of the 

drug structures based on their molecular structural fingerprint or numerical 

descriptors using clustering algorithms could aid in selecting suitable drug 

compounds for developing accurate RF models.  247 unique compounds were 

present in the dataset curated in this chapter. More data under the set parameters 

such as stable polymorphic form, same temperature and same solubility 

measurement techniques could be mined from literature and electronic laboratory 

notebooks. The same method could be applied to the limited number of solubility 

databases available in the literature and compared with the developed RF model in 

this study. 
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10.1 APPENDIX 1 

Table 10.1 Solubility data collated from literature of various drug compounds in 

ethanol taken at lab temperature  

Compound Mol. F Reference 

1,5-dinitronaphthalene 0.0078 (G. Zhou et al., 2015) 

2,4-dihydro-5-methyl-2-(4-methylphenyl)-

3H-pyrazol-3-one 
0.0294 (Jouyban, 2009) 

1,3-Dimethylurea 0.3960 (Jouyban, 2009) 

2-amino-4-chloro-6-methoxypyrimidine 0.0040 (Jouyban, 2009) 

2-Amino-4-chlorobenzoic acid 0.0191 (Jouyban, 2009) 

2-Chlorophenothiazine 0.0055 (J. Wang, R. Xu, & A. Xu, 2017c) 

2-Isopropylimidazole 0.2528 
(Jiao Chen, Chen, Cong, Du, & Zhao, 

2017) 

2-methyl-4-nitroaniline 0.0152 (X. Li, Cong, Du, & Zhao, 2017) 

2-methyl-6-nitroaniline 0.0233 (Jouyban, 2009) 

2-Naphthaldehyde 0.0653 
(F. Zhang, Tang, Wang, Xu, & Liu, 

2015) 

2-nitro-p-phenylenediamine 0.0089 (J. Wang, A. Xu, & R. Xu, 2017b) 

3-methyl-4-nitrobenzoic acid 0.0102 (Wu, Di, Zhang, & Zhang, 2016) 

3-nitro-o-toluic acid 0.0286 (Jouyban, 2009) 

4-Amino-3,6-Dichloropyridazine 0.0154 (Jouyban, 2009) 

4-methyl-2-nitroaniline 0.0194 (X. Li, Y. Cong, et al., 2017) 

4-nitrobenzaldehyde 0.0310 (Jouyban, 2009) 

5,5-Diethylbarbituric acid (Barbital) 0.0292 (Jouyban, 2009) 

5-Ethyl-5-(1-methylpropyl)-barbituric acid 

(Butabarbital) 
0.0215 (Jouyban, 2009) 

5-Ethyl-5-(2-methylbutyl)-barbituric acid 

(Pentobarbital) 
0.0572 (Jouyban, 2009) 

5-Ethyl-5-(3-methylbutyl)-barbituric acid 

(Amobarbital) 
0.0526 (Jouyban, 2009) 

5-Ethyl-5-isopropylbarbituric acid 

(Probarbital) 
0.0188 (Jouyban, 2009) 

5-Ethyl-5-pentylbarbituric acid 0.1028 (Jouyban, 2009) 

5-Ethyl-5-phenylbarbituric acid 

(Phenobarbital) 
0.0309 (Jouyban, 2009) 

Acetylsalicylic acid 0.0855 (Tully, Hou, & Glennon, 2016) 

Aloe-emodin 0.0001 (Jouyban, 2009) 

Anhydrous citric acid 0.1436 (Jouyban, 2009) 

Apigenin 0.0003 (Jouyban, 2009) 
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apremilast 0.0001 (Jouyban, 2009) 

Artemisnin 0.0048 (Jouyban, 2009) 

Aspartame 0.0001 (Jouyban, 2009) 

Atractylenolide III 0.0081 (Jouyban, 2009) 

Atrazine 0.0034 (Jia, Li, Li, & Li, 2013) 

Benzoic acid 0.1789 (Perlovich & Bauer-Brandl, 2003) 

Betulin 0.0009 (Jouyban, 2009) 

Butyl paraben 0.3600 (H. Yang & Rasmuson, 2010) 

Caffeic acid 0.0184 (Ji, Meng, Ding, et al., 2016) 

Caffeine (form 1) 0.0017 (A. Shalmashi & Golmohammad, 2010) 

Carbamazepine 0.0059 
(W. Liu, L. Dang, S. Black, & H. Wei, 

2008) 

Cefradine Form I 0.0003 
(X. Hu, Wang, Xie, Wang, & Hao, 

2013) 

Cefuroxime Acid 0.0034 (Zhao, Jiang, & Hou, 2010) 

Coumarin 0.0533 (X. Huang et al., 2015) 

Daidzein 0.0004 (Jouyban, 2009) 

Danazol 0.0039 
(Fathi-Azarbayjani, Abbasi, Vaez-

Gharamaleki, & Jouyban, 2016) 

Dehydroepiandrosterone acetate 0.0057 (Jouyban, 2009) 

Diclofenac 0.0087 (Jouyban, 2009) 

Diflunisal 0.0191 (Jouyban, 2009) 

Diphenyl Carbonate 0.0134 (D. Wei & Pei, 2008) 

Eflucimibe (form A) 0.0007 (Jouyban, 2009) 

eszopiclone 0.0004 (Jouyban, 2009) 

ferulic acid Form I 0.0241 
(Shakeel, Salem-Bekhit, Haq, & 

Siddiqui, 2017) 

Flurbiprofen 0.0612 (Jouyban, 2009) 

Gallic acid 0.0604 (Vilas Boas, 2017) 

Haloperidol 0.0057 (Jouyban, 2009) 

Ibuprofen 0.1422 (Jouyban, 2009) 

isatin 0.0041 (J.-Q. Liu, Chen, & Ji, 2014) 

Isonicotinamide (form II) 0.0316 (B. Li et al., 2016) 

Ketoprofen 0.0640 (Jouyban, 2009) 

l-(+)-Ascorbic acid 0.0027 (Anvar Shalmashi & Eliassi, 2008) 

Lactose 0.0001 (Jouyban, 2009) 

Lamivudine (form 2) 0.0029 (Jouyban, 2009) 

linezolid form II 0.0017 (Zheng, Han, Zhang, & Li, 2017) 

Loratadine 0.0232 (Jouyban, 2009) 

Lovastatin 0.0035 (H. Sun, Gong, & Wang, 2005) 

Luteolin 0.0019 (Jouyban, 2009) 
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Maltitol 0.0001 (Z. Li et al., 2016) 

Mannitol 0.0001 (Jouyban, 2009) 

Mefenamic acid 0.0019 
(Abdul Mudalip, Abu Bakar, Jamal, & 

Adam, 2013) 

Meloxicam 0.0001 (Jouyban, 2009) 

Methyl D-(-)-4-hydroxy-phenylglycinate 0.0032 (Jouyban, 2009) 

Methyl paraben 0.1470 (Jouyban, 2009) 

Naproxen 0.0201 (Jouyban, 2009) 

Nifedipine 0.0042 (Jouyban, 2009) 

Niflumic acid 0.0110 
NIIST database (Domańska, 

Pobudkowska, & Pelczarska, 2011) 

Nimesulide 0.0006 (Jouyban, 2009) 

Norfloxacin 0.0001 (C.-L. Zhang, Li, & Wang, 2010) 

N-phenylanthranilic acid 0.0153 (Yao, Li, Xia, & Yao, 2016) 

Oleanolic acid 0.0008 (Jouyban, 2009) 

Oxcarbazepine 0.0004 (Nam et al., 2017) 

paclobutrazol 0.0149 (Jouyban, 2009) 

Paracetamol 0.0601 (Jouyban, 2009) 

para-tert Butylbenzoic acid 0.0882 
(Aniya, De, Mohammed, Thella, & 

Satyavathi, 2017) 

Phenacetinum 0.0184 (Chang, Li, Wang, & Tian, 2007) 

Phenothiazine 0.0089 (Gracin & Rasmuson, 2002) 

p-Hydroxybenzoic acid 0.1261 (Jouyban, 2009) 

p-Hydroxyphenylacetic acid 0.3074 (Jouyban, 2009) 

Pimetic Acid 0.1208 (H. Li et al., 2010) 

Pimozide 0.0012 (Jouyban, 2009) 

Piroxicam 0.0001 (Jouyban, 2009) 

pronamide 0.0131 (Jouyban, 2009) 

pyraclostrobin 0.0117 (Jouyban, 2009) 

risperidone form I 0.0020 (Mealey, Svärd, & Rasmuson, 2014) 

Salicylamide 0.0333 (Nordström & Rasmuson, 2006) 

Salicylic acid 0.1100 (Matsuda et al., 2009) 

sorbic acid 0.0643 (Fang et al., 2015) 

Spironolactone Form II 0.0039 (J. Zhang et al., 2014) 

Sulfadiazine 0.0001 (Mauger, Paruta, & Gerraughty, 1972) 

Sulfadimethoxine 0.0007 (C.-L. Zhang, Wang, & Wang, 2007) 

Sulfamethoxypyridazine 0.0013 (Y. Hu et al., 2014) 

Sulfisomidine 0.0006 (El-Badry, Haq, Fetih, & Shakeel, 2014) 

tebuconazole 0.0299 
(Shakeel, Haq, Shazly, Alanazi, & 

Alsarra, 2015) 

Temazepam 0.0030 (W. Li, Chen, Han, Du, & Zhao, 2016) 
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Tetraethyl ranelate 0.0018 (Jouyban, 2009) 

Triclosan 0.4490 (W. Tang et al., 2015) 

tridecanedioic acid 0.0044 (Q.-S. Li, Li, & Wang, 2008) 

Trimethoprim 0.0009 NIIST database 

Vanillic Acid 0.0345 (Y. Zhang et al., 2016) 

Xanthene 0.0062 
(MonÁrrez, Stovall, Woo, Taylor, & 

Acree, 2002) 

Dodecanedioic acid 0.0145 (H. Zhang et al., 2014) 

3,5-dimethylpyrazole 0.1626 (Yao, Yao, Xia, & Li, 2017) 

5-amino-3-methyl-1-phenylpyrazole 0.1068 (G. Chen, Chen, Jian, & Zhao, 2017) 

5-phenyltetrazole 0.0200 
(G. Chen, J. Chen, C. Cheng, Y. Cong, 

P. Jian, et al., 2017) 

Dibenzothiophene 0.0075 (Q. Zhang et al., 2014) 

4-hydroxybenzaldehyde 0.1146 (J. Wang, A. Xu, & R. Xu, 2017a) 

Betaine 0.0372 (S. Wang, Qin, Zhou, & Wang, 2012) 

Ampelopsin 0.0001 (Jouyban, 2009) 

2-Cyanoguanidine 0.0059 (Ren, Duan, & Yang, 2014) 

l-malic acid 0.1872 (Kai et al., 2013) 

thiomalic acid 0.2046 
(DELGADO, R. HOLGUIN, & 

MARTÍNEZ, 2012) 

chlocyphos 0.0069 
(F. Sun, Kang, Zhang, Liu, & Zhang, 

2012) 

itaconic acid 0.0782 (W. Yang et al., 2012) 

N-methyl-3,4,5-trinitropyrazole 0.0180 (Guo et al., 2017) 

Flufenamic acid 0.0681 (Alshehri & Shakeel, 2017) 

Lornoxicam 0.0001 
(Shakeel, Haq, Alanazi, & Alsarra, 

2015) 

4-Cyanobenzoic acid 0.0214 (H. Wang & Zhang, 2009) 

2,4-Dichlorobenzoic acid 0.0581 (H. Wang & Zhang, 2009) 

3,4-Dimethoxybenzoic acid 0.0072 (Jouyban, 2009) 

Lansoprazole 0.0221 (Hong, Xu, Ren, Chen, & Qi, 2012) 

cytarabine 0.0003 (J. Yang et al., 2017) 

pyrazinamide 0.0028 (Jouyban, 2009) 

Syringic Acid 0.0169 (Jouyban, 2009) 

Tenoxicam 0.0001 (Jouyban, 2009) 

Benzoin 0.0025 (Y. Yang et al., 2017) 

4-Nitrophthalimide 0.0020 (Jouyban, 2009) 

p-Toluenesulfonamide 0.0005 (Jouyban, 2009) 

o-Toluenesulfonamide 0.0003 (Jouyban, 2009) 

Theobromine 0.0001 (Meng et al., 2013) 

Theophylline 0.0012 (Zhu et al., 2016) 
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Protocatechuic Acid 0.1425 (Vilas Boas, 2017) 

Gentisic Acid 0.0376 (Vilas Boas, 2017) 

S-Hesperetin 0.0044 (Jouyban, 2009) 

Ethyl Paraben 0.9098 (Jouyban, 2009) 

Phenylacetic acid 0.4112 (A. Liang, Wang, & Qu, 2017) 

p-Aminophenylacetic acid 0.0005 (Gracin & Rasmuson, 2002) 

Triclocarban 0.0015 (W. Tang et al., 2015) 

4-(4-aminophenyl)-3-morpholinone 0.0032 (W. Yang et al., 2016) 

hyodeoxycholic acid 0.0472 (H. Li et al., 2016) 

4-Aminobenzoic acid 0.0506 (Jouyban, 2009) 

Vanillin 0.0794 (Jouyban, 2009) 

4-Acetoxybenzoic Acid 0.0249 (H. Wang & Zhang, 2009) 

3,5-Diaminobenzoic Acid 0.0033 (Jouyban, 2009) 

3,5-Dimethoxybenzoic Acid 0.0049 (H. Wang & Zhang, 2009) 

(1-benzyl-1H-1,2,3-triazole-4-yl)methanol 0.0833 (S. Liang et al., 2016) 

1,3-diphenylguanidine 0.0315 (R. Xu, Wang, Du, et al., 2016) 

2,4-dinitroaniline 0.0028 (R. Xu, Xu, Du, Cong, & Wang, 2016) 

Clopidogrel 0.0107 (Song, Li, & Gong, 2010) 

Dipyrone 0.0037 (Ding et al., 2017) 

Metaxalone (Form B) 0.0062 (Hong, Wu, Qi, & Ren, 2016) 

p-Coumaric Acid 0.0456 (Ji, Meng, Li, et al., 2016) 

phthalimide 0.0024 (R. Xu, Wang, Han, et al., 2016) 

Propylparaben 0.1970 (Jouyban, 2009) 

Pyridazine-3-amine 0.0237 (Cao et al., 2012) 

Salol 0.1272 (D. Wei, Pei, & Yan, 2009) 

thymol 0.6361 (DELGADO et al., 2012) 

3-amino-1,2,4-triazole 0.0240 (X. Li, Du, Cong, & Zhao, 2017) 

2-amino-5-methylthiazole 0.0950 
(G. Chen, J. Chen, C. Cheng, Y. Cong, 

C. Du, et al., 2017) 

Difloxacin 0.0507 
(Baluja, Bhalodia, Gajera, Vekariya, & 

Bhatt, 2009) 

Flunixin meglumine 0.0058 (Qin et al., 2015) 

Formononetin 0.0003 (Dong et al., 2017) 

Irbesartan (form A) 0.0011 (L. Wang, Wang, Bao, & Li, 2007) 

L-Carnitine 0.0483 (D. Sun et al., 2014) 

Piracetam (Form III) 0.0550 (Jouyban, 2009) 

Sulfanilic Acid 0.0003 (Mauger et al., 1972) 

Xylitol 0.0024 (S. Wang, Li, Li, & Su, 2007) 

4',5,7-Triacetoxyflavanone 0.0013 (Shan, Fu, & Yan, 2017) 

4-Methylsulfonylacetophenone 0.0197 (Hao et al., 2017) 

Cefoxitin acid 0.0009 (Yuan et al., 2016) 
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Febuxostat 0.0018 
(L. Zhang, Huang, Wan, Li, & Liu, 

2012) 

levofloxacin 0.0011 
(J. Zhang, Yang, Han, Li, & Wang, 

2012) 

D-Pantolactone 0.5062 (C. Huang et al., 2015) 

Rhein 0.0001 (Cheng, Wang, Zhang, & Wang, 2015) 

 

Table 10.2 Solubility data collated from literature of various drug compounds in 

methanol taken at lab temperature  

Compound Mol. F Reference  

1,5-dinitronaphthalene 0.0008 (G. Zhou et al., 2015) 

2,4-dihydro-5-methyl-2-(4-methylphenyl)-3H-

pyrazol-3-one 
0.0312 

(Jouyban, 2009) 

1,3-Dimethylurea 0.4480 (Jouyban, 2009) 

2-amino-4-chloro-6-methoxypyrimidine 0.0037 (Jouyban, 2009) 

2-Chlorophenothiazine 0.0059 (J. Wang et al., 2017c) 

2-Isopropylimidazole 0.0826 (J. Chen et al., 2017) 

2-methyl-4-nitroaniline 0.0168 
(X. Li, Cong, Cunbin, & 

Hongkun, 2016) 

2-methyl-6-nitroaniline 0.0172 (Jouyban, 2009) 

2-Naphthaldehyde 0.0274 (F. Zhang et al., 2015) 

2-nitro-p-phenylenediamine 0.0104 (J. Wang et al., 2017b) 

3-methyl-4-nitrobenzoic acid 0.0104 (Wu et al., 2016) 

3-nitro-o-toluic acid 0.0319 (Jouyban, 2009) 

4-Amino-3,6-Dichloropyridazine 0.0153 (Jouyban, 2009) 

4-methyl-2-nitroaniline 0.0169 
(X. Li, Wang, Cong, Du, & Zhao, 

2017) 

4-nitrobenzaldehyde 0.0731 (Jouyban, 2009) 

5,5-Diethylbarbituric acid (Barbital) 0.0352 (Jouyban, 2009) 

5-Ethyl-5-(1-methylpropyl)-barbituric acid 

(Butabarbital) 
0.0246 

(Jouyban, 2009) 

5-Ethyl-5-(2-methylbutyl)-barbituric acid 

(Pentobarbital) 
0.0531 

(Jouyban, 2009) 

5-Ethyl-5-(3-methylbutyl)-barbituric acid 

(Amobarbital) 
0.0498 

(Jouyban, 2009) 

5-Ethyl-5-isopropylbarbituric acid (Probarbital) 0.0257 (Jouyban, 2009) 

5-Ethyl-5-pentylbarbituric acid 0.0901 (Jouyban, 2009) 

5-Ethyl-5-phenylbarbituric acid (Phenobarbital) 0.0421 (Jouyban, 2009) 

Acetylsalicylic acid 0.0719 (Maia & Giulietti, 2008) 

Aloe-emodin 0.0001 (Jouyban, 2009) 
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Anhydrous citric acid 0.1575 (Jouyban, 2009) 

Apigenin 0.0001 (Jouyban, 2009) 

apremilast  0.0001 (Jouyban, 2009) 

Artemisnin 0.0014 (Jouyban, 2009) 

Aspartame 0.0008 (Jouyban, 2009) 

Atrazine 0.0033 (Jia et al., 2013) 

Benzoic acid 0.1632 
(Thati, Nordström, & Rasmuson, 

2010) 

Betulin 0.0004 (Jouyban, 2009) 

Butyl paraben 0.3360 (H. Yang & Rasmuson, 2010) 

Caffeic acid 0.0178 (Ji, Meng, Ding, et al., 2016) 

Caffeine (form 1) 0.0020 
(A. Shalmashi & 

Golmohammad, 2010) 

Carbamazepine  0.0129 (W. Liu et al., 2008) 

Cefradine Form I 0.0008 (X. Hu et al., 2013) 

Coumarin 0.0802 (X. Huang et al., 2015) 

Daidzein 0.0003 (Jouyban, 2009) 

Dehydroepiandrosterone acetate 0.0036 (Jouyban, 2009) 

Diclofenac 0.0059 (Jouyban, 2009) 

Diflunisal 0.0151 (Jouyban, 2009) 

Diphenyl Carbonate 0.0153 (D. Wei & Pei, 2008) 

ferulic acid Form I 0.0249 (Shakeel et al., 2017) 

Flurbiprofen 0.0478 (Jouyban, 2009) 

Gallic acid 0.0678 (Vilas Boas, 2017) 

Haloperidol 0.0015 (Jouyban, 2009) 

Ibuprofen 0.0247 (Jouyban, 2009) 

isatin 0.0057 (J.-Q. Liu et al., 2014) 

Ketoprofen 0.0428 (Jouyban, 2009) 

l-(+)-Ascorbic acid 0.0108 
(Anvar Shalmashi & Eliassi, 

2008) 

Lactose 0.0001 (Jouyban, 2009) 

linezolid form II 0.0031 (Zheng et al., 2017) 

Loratadine 0.0339 (Jouyban, 2009) 

Lovastatin 0.0031 (H. Sun et al., 2005) 

Luteolin 0.0005 (Jouyban, 2009) 

Maltitol 0.0003 (Z. Li et al., 2016) 

Mannitol 0.0004 (Jouyban, 2009) 

Meloxicam 0.0001 (Jouyban, 2009) 

Methyl D-(-)-4-hydroxy-phenylglycinate 0.0042 (Jouyban, 2009) 

Methyl paraben 0.1210 (Jouyban, 2009) 

Naproxen 0.0126 (Jouyban, 2009) 
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Niflumic acid 0.0076 NIIST database 

Nimesulide 0.0011 (Jouyban, 2009) 

N-phenylanthranilic acid 0.0083 (Yao et al., 2016) 

Oxcarbazepine 0.0008 (Nam et al., 2017) 

Paracetamol 0.0658 (Jouyban, 2009) 

para-tert Butylbenzoic acid 0.0622 (Aniya et al., 2017) 

Phenacetinum 0.0203 (Chang et al., 2007) 

Phenothiazine 0.0051 (Gracin & Rasmuson, 2002) 

p-Hydroxybenzoic acid 0.1142 (Jouyban, 2009) 

p-Hydroxyphenylacetic acid 0.3589 (Jouyban, 2009) 

Pimozide 0.0008 (Jouyban, 2009) 

Piroxicam 0.0001 (Jouyban, 2009) 

pronamide 0.0124 (Jouyban, 2009) 

risperidone form I 0.0040 (Mealey et al., 2014) 

Salicylamide 0.0406 (Nordström & Rasmuson, 2006) 

Salicylic acid 0.1280 (Matsuda et al., 2009) 

sorbic acid 0.0553 (Fang et al., 2015) 

Spironolactone Form II 0.0006 (J. Zhang et al., 2014) 

Sulfadiazine 0.0002 (C.-L. Zhang et al., 2007) 

Sulfadimethoxine 0.0012 (C.-L. Zhang et al., 2007) 

Sulfamethoxypyridazine 0.0029 (Y. Hu et al., 2014) 

Sulfisomidine 0.0011 (Mauger et al., 1972) 

tebuconazole 0.0400 (Y. Hu et al., 2014) 

Temazepam 0.0055 (W. Li et al., 2016) 

Tetraethyl ranelate 0.0039 (Jouyban, 2009) 

Triclosan 0.4265 (W. Tang et al., 2015) 

tridecanedioic acid 0.0045 (Q.-S. Li et al., 2008) 

Trimethoprim 0.0017 (Yin et al., 2016) 

Xanthene 0.0045 (MonÁrrez et al., 2002) 

3,5-dimethylpyrazole 0.1434 (Yao et al., 2017) 

5-amino-3-methyl-1-phenylpyrazole 0.1150 
(G. Chen, J. Chen, P. Jian, et al., 

2017) 

5-phenyltetrazole 0.0209 
(G. Chen, J. Chen, C. Cheng, Y. 

Cong, P. Jian, et al., 2017) 

Dibenzothiophene 0.0029 (Q. Zhang et al., 2014) 

4-hydroxybenzaldehyde 0.0969 (J. Wang et al., 2017a) 

Betaine 0.1308 (S. Wang et al., 2012) 

2-Cyanoguanidine 0.0231 (Ren et al., 2014) 

thiomalic acid 0.2032  (DELGADO et al., 2012) 

chlocyphos 0.0071 (F. Sun et al., 2012) 

itaconic acid 0.1093 (W. Yang et al., 2012) 
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N-methyl-3,4,5-trinitropyrazole 0.0326 (Guo et al., 2017) 

Flufenamic acid 0.0439 (Alshehri & Shakeel, 2017) 

Lornoxicam 0.0001 
(Shakeel, Haq, Alanazi, et al., 

2015) 

cytarabine 0.0011 (J. Yang et al., 2017) 

pyrazinamide 0.0047 (Jouyban, 2009) 

Syringic Acid 0.0190 (Jouyban, 2009) 

Tenoxicam 0.0001 (Jouyban, 2009) 

Benzoin 0.0031 (J. Yang et al., 2017) 

4-Nitrophthalimide 0.0032 (Jouyban, 2009) 

p-Toluenesulfonamide 0.0006 (Jouyban, 2009) 

o-Toluenesulfonamide 0.0004 (Jouyban, 2009) 

Theobromine 0.0001 
(Zhong, Tang, Asadzadeh, & 

Yan, 2017) 

Theophylline 0.0137 (Zhu et al., 2016) 

Genistein 0.0015 (Jouyban, 2009) 

Protocatechuic Acid 0.1414 (Vilas Boas, 2017)b 

Gentisic Acid 0.0827 (Vilas Boas, 2017) 

S-Hesperetin 0.0038 (Jouyban, 2009) 

Ethyl Paraben 0.9256 (Jouyban, 2009) 

Phenylacetic acid 0.4069 (Gracin & Rasmuson, 2002) 

p-Aminophenylacetic acid 0.0010 (Gracin & Rasmuson, 2002) 

Triclocarban 0.0006 (DELGADO et al., 2012) 

4-(4-aminophenyl)-3-morpholinone 0.0046 (W. Yang et al., 2016) 

hyodeoxycholic acid 0.0518 (H. Li et al., 2016) 

4-Aminobenzoic acid 0.0539 (Jouyban, 2009) 

(1-benzyl-1H-1,2,3-triazole-4-yl)methanol 0.1715 (S. Liang et al., 2016) 

2,4-dinitroaniline 0.0028 (R. Xu, Xu, et al., 2016) 

Dipyrone 0.0318 (Ding et al., 2017) 

p-Coumaric Acid 0.0395 (Ji, Meng, Li, et al., 2016) 

phthalimide 0.0026 (R. Xu, Wang, Han, et al., 2016) 

Propylparaben 0.1720 (Jouyban, 2009) 

Pyridazine-3-amine 0.0455 (Cao et al., 2012) 

Salol 0.0946 (D. Wei et al., 2009) 

thymol 0.6708 (Zhu et al., 2016) 

 3-amino-1,2,4-triazole 0.0471 (X. Li, C. Du, et al., 2017) 

2-amino-5-methylthiazole 0.1075 
(G. Chen, J. Chen, C. Cheng, Y. 

Cong, C. Du, et al., 2017) 

Difloxacin 0.0073 (Baluja et al., 2009) 

Dimethyl 1,4-Cyclohexanedione-2,5-

dicarboxylate 
0.0004 

(Jouyban, 2009) 
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Flunixin meglumine 0.0349 (Qin et al., 2015) 

Formononetin 0.0002 (Dong et al., 2017) 

L-Carnitine 0.1190 (D. Sun et al., 2014) 

Sulfanilic Acid 0.0003 (Y. Hu et al., 2014)v 

4',5,7-Triacetoxyflavanone 0.0022 (Shan et al., 2017) 

4-Methylsulfonylacetophenone 0.0246 (Hao et al., 2017) 

Cefoxitin acid 0.0110 (Yuan et al., 2016) 

Febuxostat 0.0009 (L. Zhang et al., 2012) 

D-Pantolactone 0.3553 (C. Huang et al., 2015) 

Rhein 0.0001 (Cheng et al., 2015) 

 

Table 10.3 Solubility data collated from literature of various drug compounds in 1-

butanol taken at lab temperature  

Compound Mol. F Reference 

2,4-dihydro-5-methyl-2-(4-

methylphenyl)-3H-pyrazol-3-one 
0.0378 

(Jouyban, 2009) 

1,3-Dimethylurea 0.3690 (Jouyban, 2009) 

2-Amino-4-chlorobenzoic acid 0.0157 (Jouyban, 2009) 

2-Chlorophenothiazine 0.0044 (J. Wang et al., 2017c) 

2-methyl-4-nitroaniline 0.0118 (X. Li et al., 2016) 

2-Naphthaldehyde 0.0561 (F. Zhang et al., 2015) 

3-methyl-4-nitrobenzoic acid 0.0108 (Wu et al., 2016) 

4-methyl-2-nitroaniline 0.0253 (X. Li, M. Wang, et al., 2017) 

4-nitrobenzaldehyde 0.0200 (Jouyban, 2009) 

5,5-Diethylbarbituric acid 

(Barbital) 
0.0200 

(Jouyban, 2009) 

5-Ethyl-5-(1-methylpropyl)-

barbituric acid (Butabarbital) 
0.0119 

(Jouyban, 2009) 

5-Ethyl-5-(2-methylbutyl)-

barbituric acid (Pentobarbital) 
0.0576 

(Jouyban, 2009) 

5-Ethyl-5-(3-methylbutyl)-

barbituric acid (Amobarbital) 
0.0514 

(Jouyban, 2009) 

5-Ethyl-5-isopropylbarbituric acid 

(Probarbital) 
0.0060 

(Jouyban, 2009) 

5-Ethyl-5-pentylbarbituric acid 0.1159 (Jouyban, 2009) 

5-Ethyl-5-phenylbarbituric acid 

(Phenobarbital) 
0.0208 

(Jouyban, 2009) 

Acetylsalicylic acid 0.0453 (Maia & Giulietti, 2008) 

Aloe-emodin 0.0001 (Jouyban, 2009) 
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Apigenin 0.0006 (Jouyban, 2009) 

apremilast  0.0002 (Jouyban, 2009) 

Artemisnin 0.0025 (Jouyban, 2009) 

Atractylenolide III 0.0602 (Jouyban, 2009) 

Atrazine 0.0056 (Jia et al., 2013) 

Benzoic acid 0.2016 (Thati et al., 2010) 

Betulin 0.0024 (Jouyban, 2009) 

Butyl paraben 0.3640 (H. Yang & Rasmuson, 2010) 

Caffeic acid 0.0103 (Ji, Meng, Ding, et al., 2016) 

Carbamazepine  0.0005 (W. Liu et al., 2008) 

Cefradine Form I 0.0005 (X. Hu et al., 2013) 

Dehydroepiandrosterone acetate 0.0107 (Jouyban, 2009) 

Diflunisal 0.0266 (Jouyban, 2009) 

Diphenyl Carbonate 0.0155 (D. Wei & Pei, 2008) 

ferulic acid Form I 0.0161 (Shakeel et al., 2017) 

Flurbiprofen 0.0667 (Jouyban, 2009) 

Haloperidol 0.0078 (Jouyban, 2009) 

isatin 0.0049 (J.-Q. Liu et al., 2014) 

Isonicotinamide (form II) 0.0421 (B. Li et al., 2016) 

Ketoprofen 0.0868 (Jouyban, 2009) 

Lactose 0.0514 (Jouyban, 2009) 

Lamivudine (form 2) 0.0022 (Jouyban, 2009) 

Loratadine 0.0416 (Jouyban, 2009) 

Luteolin 0.0018 (Jouyban, 2009) 

Meloxicam 0.0001 (Jouyban, 2009) 

Methyl D-(-)-4-hydroxy-

phenylglycinate 
0.0164 

(Jouyban, 2009) 

Methyl paraben 0.1460 (Jouyban, 2009) 

Naproxen 0.0142 (Jouyban, 2009) 

Nimesulide 0.0006 (Jouyban, 2009) 

N-phenylanthranilic acid 0.0187 (Yao et al., 2016) 

Oleanolic acid 0.0035 (Jouyban, 2009) 

Oxcarbazepine 0.0004 (Nam et al., 2017) 

paclobutrazol 0.0224 (Jouyban, 2009) 

Paracetamol 0.0392 (Jouyban, 2009) 

Phenacetinum 0.0289 (Chang et al., 2007) 

Phenothiazine 0.0110 (Chang et al., 2007) 

Pimozide 0.0039 (Jouyban, 2009) 

Piroxicam 0.0514 (Jouyban, 2009) 

pyraclostrobin 0.0132 (Jouyban, 2009) 

risperidone form I 0.0035 (Mealey et al., 2014) 
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sorbic acid 0.0973 (Fang et al., 2015) 

Spironolactone Form II 0.0047 (J. Zhang et al., 2014) 

Sulfadiazine 0.0001 (C.-L. Zhang et al., 2007) 

Sulfadimethoxine 0.0004 (C.-L. Zhang et al., 2007) 

Sulfamethoxypyridazine 0.0007 (C.-L. Zhang et al., 2007) 

Sulfisomidine 0.0003 (Mauger et al., 1972) 

Temazepam 0.0049 (Jouyban, 2009) 

Tetraethyl ranelate 0.0014 (Jouyban, 2009) 

Trimethoprim 0.0006 (Q.-S. Li et al., 2008) 

Vanillic Acid 0.0263 (Y. Zhang et al., 2016) 

Xanthene 0.0176 (MonÁrrez et al., 2002) 

3,5-dimethylpyrazole 0.1869 (Yao et al., 2017) 

Dibenzothiophene 0.0132 (Q. Zhang et al., 2014) 

4-hydroxybenzaldehyde 0.1303 (J. Wang et al., 2017a) 

Betaine 0.0125 (S. Wang et al., 2012) 

l-malic acid 0.1397 (Kai et al., 2013) 

thiomalic acid 0.1526  (Meng et al., 2013) 

N-methyl-3,4,5-trinitropyrazole 0.0087 (Guo et al., 2017) 

Flufenamic acid 0.1190 (Alshehri & Shakeel, 2017) 

Lornoxicam 0.0001 (Shakeel, Haq, Alanazi, et al., 2015) 

Lansoprazole 0.0027 (Hong et al., 2012) 

pyrazinamide 0.0024 (Jouyban, 2009) 

Syringic Acid 0.0052 (Jouyban, 2009) 

Tenoxicam 0.0001 (Jouyban, 2009) 

Benzoin 0.0020 (Y. Yang et al., 2017) 

p-Toluenesulfonamide 0.0004 (Jouyban, 2009) 

o-Toluenesulfonamide 0.0003 (Jouyban, 2009) 

Theophylline 0.0013 (Zhong et al., 2017) 

Agomelatin (Form II) 0.0451 (Y. Liu, Gao, Ren, & Ren, 2015) 

S-Hesperetin 0.0001 (Jouyban, 2009) 

Ethyl Paraben 0.9082 (Jouyban, 2009) 

Triclocarban 0.0029 (DELGADO et al., 2012) 

hyodeoxycholic acid 0.0351 (H. Li et al., 2016) 

4-Aminobenzoic acid 0.0314 (Jouyban, 2009) 

Vanillin 0.0647 (Jouyban, 2009) 

(1-benzyl-1H-1,2,3-triazole-4-

yl)methanol 
0.0481 

(S. Liang et al., 2016) 

1,3-diphenylguanidine 0.0378 (R. Xu, Wang, Du, et al., 2016) 

2,4-dinitroaniline 0.0033 (R. Xu, Xu, et al., 2016) 

Clonazepam 0.0008 (Jouyban, 2009) 

Clopidogrel  0.0016 (Song et al., 2010) 
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Dipyrone 0.0004 (Ding et al., 2017) 

p-Coumaric Acid 0.0371 (Ji, Meng, Li, et al., 2016) 

phthalimide 0.0029 (R. Xu, Wang, Han, et al., 2016) 

Propylparaben 0.2060 (Jouyban, 2009) 

Pyridazine-3-amine 0.0170 (Cao et al., 2012) 

Salol 0.1817 (D. Wei et al., 2009) 

Sulfanilamide 0.0189 (Jouyban, 2009) 

thymol 0.5471 (Zhu et al., 2016) 

4',5,7-Triacetoxyflavanone 0.0005 (Shan et al., 2017) 

4-Methylsulfonylacetophenone 0.0140 (Hao et al., 2017) 

levofloxacin 0.0022 (J. Zhang et al., 2012) 

Rhein 0.0001 (Cheng et al., 2015) 

Rutin 0.0003 (Zi, Peng, & Yan, 2007) 

Propyl p-hydroxybenzoate 0.2110 (Jouyban, 2009) 

Sulfisoxazole 0.0015 (Y. Li, Li, Cong, Du, & Zhao, 2017) 

 

Table 10.4 Solubility data collated from literature of various drug compounds in 

Acetonitrile taken at lab temperature  

Compound Mol. F Reference 

1,5-dinitronaphthalene 0.0102 (G. Zhou et al., 2015) 

2,4-dihydro-5-methyl-2-(4-methylphenyl)-3H-

pyrazol-3-one 0.0128 (Jouyban, 2009) 

2-amino-4-chloro-6-methoxypyrimidine 0.0043 (Jouyban, 2009) 

2-Amino-4-chlorobenzoic acid 0.0030 (Jouyban, 2009) 

2-Chlorophenothiazine 0.0053 (J. Wang et al., 2017c) 

2-methyl-4-nitroaniline 0.0566 (X. Li et al., 2016) 

2-nitro-p-phenylenediamine 0.0286 (J. Wang et al., 2017b) 

3-methyl-4-nitrobenzoic acid 0.0041 (Wu et al., 2016) 

4-nitrobenzaldehyde 0.1025 (Jouyban, 2009) 

Acetylsalicylic acid 0.0185 (Maia & Giulietti, 2008) 

Artemisnin 0.0018 (Jouyban, 2009) 

Benzoic acid 0.0539 (Thati et al., 2010) 

Butyl paraben 0.1899 (H. Yang & Rasmuson, 2010) 

Deferiprone 0.0005 
(Fathi-Azarbayjani et al., 

2016) 
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Dehydroepiandrosterone acetate 0.0083 (Jouyban, 2009) 

Diflunisal 0.0015 (Jouyban, 2009) 

Gallic acid 0.0012 (Vilas Boas, 2017) 

isatin 0.0067 (J.-Q. Liu et al., 2014) 

l-(+)-Ascorbic acid 0.0002 
(Anvar Shalmashi & Eliassi, 

2008) 

Lamivudine (form 2) 0.0002 (Jouyban, 2009) 

Loratadine 0.0058 (Jouyban, 2009) 

N-phenylanthranilic acid 0.0037 (Yao et al., 2016) 

Oxcarbazepine 0.0008 (Nam et al., 2017) 

paclobutrazol 0.0054 (Jouyban, 2009) 

Paracetamol 0.0074 (Jouyban, 2009) 

Phenothiazine 0.0117 (J. Wang et al., 2017c) 

Salicylamide 0.0333 
(Nordström & Rasmuson, 

2006) 

Salicylic acid 0.0294 (Maia & Giulietti, 2008) 

sorbic acid 0.0112 (Fang et al., 2015) 

tebuconazole 0.0134 (Y. Li et al., 2017) 

Temazepam 0.0110 (W. Li et al., 2016) 

Tetraethyl ranelate 0.0334 (Jouyban, 2009) 

Triclosan 0.4840 (DELGADO et al., 2012) 

Trimethoprim 0.0004 (Yin et al., 2016) 

Xanthene 0.0197 (MonÁrrez et al., 2002) 

3,5-dimethylpyrazole 0.0568 (Yao et al., 2017) 

5-amino-3-methyl-1-phenylpyrazole 0.1642 
(G. Chen, J. Chen, P. Jian, et 

al., 2017) 

Dibenzothiophene 0.0157 (Q. Zhang et al., 2014) 

4-hydroxybenzaldehyde 0.0782 (J. Wang et al., 2017a) 

l-malic acid 0.0608 (Kai et al., 2013) 

thiomalic acid 0.0392 (Meng et al., 2013) 

itaconic acid 0.0055 (W. Yang et al., 2012) 
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pyrazinamide 0.0029 (Jouyban, 2009) 

4-Nitrophthalimide 0.0062 (Jouyban, 2009) 

p-Toluenesulfonamide 0.0011 (Jouyban, 2009) 

o-Toluenesulfonamide 0.0005 (Jouyban, 2009) 

Protocatechuic Acid 0.0155 (Vilas Boas, 2017) 

Gentisic Acid 0.0086 (Vilas Boas, 2017) 

S-Hesperetin 0.0021 (Jouyban, 2009) 

Ethyl Paraben 0.0634 (Jouyban, 2009) 

Triclocarban 0.0004 (DELGADO et al., 2012) 

hyodeoxycholic acid 0.0006 (Y. Yang et al., 2015) 

1,3-diphenylguanidine 0.0214 (R. Xu, Wang, Du, et al., 2016) 

2,4-dinitroaniline 0.0149 (R. Xu, Xu, et al., 2016) 

phthalimide 0.0030 
(R. Xu, Wang, Han, et al., 

2016) 

thymol 0.7535 (Zhu et al., 2016) 

3-amino-1,2,4-triazole 0.0019 (X. Li, C. Du, et al., 2017) 

2-amino-5-methylthiazole 0.0586 
(G. Chen, J. Chen, C. Cheng, 

Y. Cong, C. Du, et al., 2017) 

Dimethyl 1,4-Cyclohexanedione-2,5-dicarboxylate 0.0023 (Jouyban, 2009) 

Flunixin meglumine 0.0001 

https://www.sciencedirect.co

m/science/article/pii/S0378381

215003453#sec0030 

Succinic Anhydride 0.1462 (Jouyban, 2009) 

Sulfanilic Acid 0.0002 (Y. Hu et al., 2014) 

Cefoxitin acid 0.0006 (Yuan et al., 2016) 

2,3-Dichlorophenol 0.5400 (Jouyban, 2009) 

2,3-Dimethylphenol 0.3795 (Jouyban, 2009) 

2,4,5-Trichlorophenol 0.5124 (Jouyban, 2009) 

2,4,6-Trichlorophenol 0.5095 (Jouyban, 2009) 

2,5-Dimethylphenol 0.3355 (Jouyban, 2009) 

2,6-Dichlorophenol 0.4723 (Jouyban, 2009) 

2-Iodophenol 0.7533 (Jouyban, 2009) 
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2-Nitrophenol 0.5819 (Jouyban, 2009) 

3,4-Dichlorophenol 0.6362 (Jouyban, 2009) 

3,5-Dimethylphenol 0.5024 (Jouyban, 2009) 

3-Cyanophenol 0.3827 (Jouyban, 2009) 

3-Nitroaniline 0.1080 (Jouyban, 2009) 

3-Nitrophenol 0.4009 (Jouyban, 2009) 

4-Aminoacetophenone 0.0215 (Jouyban, 2009) 

4-Bromophenol 0.5294 (Jouyban, 2009) 

4-Fluorophenol 0.6106 (Jouyban, 2009) 

4-Isopropylphenol 0.3842 (Jouyban, 2009) 

4-Methoxyphenol 0.5672 (Jouyban, 2009) 

4-Nitroaniline 0.0674 (Jouyban, 2009) 

4-Nitrophenol 0.3795 (Jouyban, 2009) 

4-Nitrotoluene 0.4677 (Jouyban, 2009) 

4-Phenylphenol 0.0507 (Jouyban, 2009) 

4-tert-Butylphenol 0.2931 (Jouyban, 2009) 

Benzamide 0.0266 (Jouyban, 2009) 

Carbamazepine 0.0086 (W. Liu et al., 2008) 

Cortexolone 0.0009 (Jouyban, 2009) 

Cortisone 0.0011 (Jouyban, 2009) 

Estradiol 0.0008 (Jouyban, 2009) 

Estriol 0.8264 (Jouyban, 2009) 

Estrone 0.0007 (Jouyban, 2009) 

Flubiprofen 0.0308 (Jouyban, 2009) 

Hydrocortisone 0.0005 (H. S. M. Ali et al., 2010) 

Lidocaine 0.8252 (Jouyban, 2009) 

Methyl 4-aminobenzoate 0.0978 (Jouyban, 2009) 

n-Butyl 4-aminobenzoate 0.2618 (Jouyban, 2009) 

Pentachlorophenol 0.0236 (Jing, Wang, & Wang, 2010) 

Phenol 0.7777 (Jouyban, 2009) 
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Phenyl benzoate 0.1637 (Jouyban, 2009) 

Prednisone 0.0005 (Jouyban, 2009) 

Propyl paraben 0.0674 (Jouyban, 2009) 

 

Table 10.5 Solubility data collated from literature of various drug compounds in 

Acetone taken at lab temperature  

Compound Mol. F Reference 

1,5-dinitronaphthalene 0.0223 (G. Zhou et al., 2015) 

2-Amino-4-chlorobenzoic acid 0.0307 
(Jouyban, 2009) 

2-Chlorophenothiazine 0.0378 
(J. Wang et al., 

2017c)v 

2-methyl-4-nitroaniline 0.1266 (X. Li et al., 2016) 

3-methyl-4-nitrobenzoic acid 0.0260 (Wu et al., 2016) 

3-nitro-o-toluic acid 0.0684 
(Jouyban, 2009) 

4-Amino-3,6-Dichloropyridazine 0.0258 
(Jouyban, 2009) 

4-nitrobenzaldehyde 0.1344 
(Jouyban, 2009) 

5-Ethyl-5-phenylbarbituric acid (Phenobarbital) 0.0138 
(Jouyban, 2009) 

Acetylsalicylic acid 0.0828 
(Maia & Giulietti, 

2008) 

Artemisnin 0.0085 
(Jouyban, 2009) 

Benzoic acid 0.1857 (Thati et al., 2010) 

Betulin 0.0016 
(Jouyban, 2009) 

Caffeic acid 0.0380 
(Ji, Meng, Ding, et al., 

2016) 

Caffeine (form 1) 0.0045 

(A. Shalmashi & 

Golmohammad, 

2010) 

Carbamazepine  0.0037 (W. Liu et al., 2008) 

Daidzein 0.0009 
(Jouyban, 2009) 

Dehydroepiandrosterone acetate 0.0282 
(Jouyban, 2009) 

Diclofenac 0.0302 
(Jouyban, 2009) 

eszopiclone 0.0019 
(Jouyban, 2009) 
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Haloperidol 0.0031 
(Jouyban, 2009) 

Ibuprofen 0.3508 
(Jouyban, 2009) 

isatin 0.0140 (J.-Q. Liu et al., 2014) 

l-(+)-Ascorbic acid 0.0003 
(Anvar Shalmashi & 

Eliassi, 2008) 

Lactose 0.0001 
(Jouyban, 2009) 

Lamivudine (form 2) 0.0003 
(Jouyban, 2009) 

Loratadine 0.0229 
(Jouyban, 2009) 

Lovastatin 0.0123 (H. Sun et al., 2005) 

Luteolin 0.0016 
(Jouyban, 2009) 

Naproxen 0.0692 
(Jouyban, 2009) 

Niflumic acid 0.0010 (Jouyban, 2009) 

Norfloxacin 0.0001 
(C.-L. Zhang et al., 

2010) 

N-phenylanthranilic acid 0.0335 (Yao et al., 2016) 

Oleanolic acid 0.0010 
(Jouyban, 2009) 

Oxcarbazepine 0.0013 (Nam et al., 2017) 

paclobutrazol 0.0239 
(Jouyban, 2009) 

Paracetamol 0.0368 
(Jouyban, 2009) 

p-Hydroxybenzoic acid 0.1194 
(Jouyban, 2009) 

p-Hydroxyphenylacetic acid 0.2213 
(Jouyban, 2009) 

Piroxicam 0.0028 
(Jouyban, 2009) 

risperidone form I 0.0018 (Mealey et al., 2014) 

Salicylamide 0.1294 
(Nordström & 

Rasmuson, 2006) 

Salicylic acid 0.1792 (Matsuda et al., 2009) 

sorbic acid 0.0701 (Fang et al., 2015) 

Sulfadiazine 0.0010 
(C.-L. Zhang et al., 

2007) 

Sulfamethoxypyridazine 0.0092 
(C.-L. Zhang et al., 

2007) 

tebuconazole 0.0668 (Y. Li et al., 2017) 
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Temazepam 0.0207 (W. Li et al., 2016) 

Tetraethyl ranelate 0.0582 
(Jouyban, 2009) 

Triclosan 0.5780 
(DELGADO et al., 

2012) 

tridecanedioic acid 0.0041 (W. Tang et al., 2015) 

Trimethoprim 0.0009 (Q.-S. Li et al., 2008) 

Vanillic Acid 0.0661 (Y. Zhang et al., 2016) 

Dodecanedioic acid 0.0050 (H. Zhang et al., 2014) 

3,5-dimethylpyrazole 0.1164 (Yao et al., 2017) 

5-phenyltetrazole 0.0217 

(G. Chen, J. Chen, C. 

Cheng, Y. Cong, P. 

Jian, et al., 2017) 

4-hydroxybenzaldehyde 0.1591 (J. Wang et al., 2017a) 

2-Cyanoguanidine 0.0110 (Ren et al., 2014) 

l-malic acid 0.1703 (Meng et al., 2013) 

thiomalic acid 0.1681 (Meng et al., 2013) 

itaconic acid 0.0514  (W. Yang et al., 2012) 

Lansoprazole 0.0039 (Hong et al., 2012) 

pyrazinamide 0.0049 
(Jouyban, 2009) 

Benzoin 0.0159 (Y. Yang et al., 2017) 

4-Nitrophthalimide 0.0271 
(Jouyban, 2009) 

Theobromine 0.0001 (Zhong et al., 2017) 

Theophylline 0.0009 (Zhong et al., 2017) 

Agomelatin (Form II) 0.0429 (Y. Liu et al., 2015) 

S-Hesperetin 0.0237 
(Jouyban, 2009) 

Phenylacetic acid 0.4232 
(Gracin & Rasmuson, 

2002) 

p-Aminophenylacetic acid 0.0036 
(Gracin & Rasmuson, 

2002) 

Triclocarban 0.0077 
(DELGADO et al., 

2012) 

hyodeoxycholic acid 0.0022 (Y. Yang et al., 2015) 

4-Aminobenzoic acid 0.0527 
(Jouyban, 2009) 
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1,3-diphenylguanidine 0.0928 
(R. Xu, Wang, Du, et 

al., 2016) 

2,4-dinitroaniline 0.0497 
(R. Xu, Xu, et al., 

2016) 

Clopidogrel  0.0007 (Song et al., 2010) 

Dipyrone 0.0001 (Ding et al., 2017) 

p-Coumaric Acid 0.0428 
(Ji, Meng, Li, et al., 

2016) 

phthalimide 0.0128 
(R. Xu, Wang, Han, et 

al., 2016) 

Sulfanilamide 0.0944 
(Jouyban, 2009) 

 3-amino-1,2,4-triazole 0.0079 
(X. Li, C. Du, et al., 

2017) 

2-amino-5-methylthiazole 0.0979 

(G. Chen, J. Chen, C. 

Cheng, Y. Cong, C. 

Du, et al., 2017) 

Difloxacin 0.0067 (Baluja et al., 2009) 

Dimethyl 1,4-Cyclohexanedione-2,5-dicarboxylate 0.0046 
(Jouyban, 2009) 

Fenofibrate (formI I) 0.1922 

(Watterson, Hudson, 

Svärd, & Rasmuson, 

2014) 

Flunixin meglumine 0.0016 (Qin et al., 2015) 

Formononetin 0.0006 (Dong et al., 2017) 

Irbesartan (form A) 0.0007 (L. Wang et al., 2007) 

L-Carnitine 0.0001 (D. Sun et al., 2014) 

Succinic Anhydride 0.1426 
(Jouyban, 2009) 

Sulfanilic Acid 0.0003 (Y. Hu et al., 2014) 

Sulfatiazole 0.0724 (Y. Hu et al., 2014) 

Xylitol 0.0002 (S. Wang et al., 2007) 

4',5,7-Triacetoxyflavanone 0.1100 (Shan et al., 2017) 

Febuxostat 0.0074 (L. Zhang et al., 2012) 

Flubiprofen 0.1240 
(Jouyban, 2009) 

p-Aminobenzoic acid 0.0527 
(Jouyban, 2009) 

Puerarin 0.0280 
(L.-H. Wang & 

Cheng, 2005) 
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Rutin 0.0003 (Zi et al., 2007) 

Stearic acid 0.0077 (W. Yang et al., 2013) 

Sulfaguanidine 0.0054 
(Jouyban, 2009) 

 

Table 10.6 Solubility data collated from literature of various drug compounds in 

Ethylacetate taken at lab temperature  

Compound Mol. F Reference 

1,5-dinitronaphthalene 0.0088 (G. Zhou et al., 2015) 

2,4-dihydro-5-methyl-2-(4-methylphenyl)-3H-pyrazol-3-one 0.0349 (Jouyban, 2009) 

2-amino-4-chloro-6-methoxypyrimidine 0.0155 (Jouyban, 2009) 

2-Amino-4-chlorobenzoic acid 0.0241 (Jouyban, 2009) 

2-Chlorophenothiazine 0.0291 (J. Wang et al., 2017c) 

2-Isopropylimidazole 0.3102 (J. Chen et al., 2017) 

2-methyl-4-nitroaniline 0.1100 (X. Li et al., 2016) 

2-methyl-6-nitroaniline 0.1675 (Jouyban, 2009) 

2-nitro-p-phenylenediamine 0.0342 (J. Wang et al., 2017b) 

3-methyl-4-nitrobenzoic acid 0.0140 (Wu et al., 2016) 

3-nitro-o-toluic acid 0.0406 (Jouyban, 2009) 

4-Amino-3,6-Dichloropyridazine 0.0013 (Jouyban, 2009) 

4-methyl-2-nitroaniline 0.1280 (X. Li et al., 2016) 

4-nitrobenzaldehyde 0.0870 (Jouyban, 2009) 

Acetylsalicylic acid 0.0448 (Maia & Giulietti, 2008) 

Anhydrous citric acid 0.0062 (Jouyban, 2009) 

Apigenin 0.0002 (Jouyban, 2009) 

apremilast  0.0001 (Jouyban, 2009) 

Artemisnin 0.0142 (Jouyban, 2009) 

Atractylenolide III 0.0242 (Jouyban, 2009) 

Atrazine 0.0125 (Jia et al., 2013) 

Benzoic acid 0.1649 (Thati et al., 2010) 



 

   277 

Betulin 0.0003 (Jouyban, 2009) 

Caffeic acid 0.0015 
(Ji, Meng, Ding, et al., 

2016) 

Caffeine (form 1) 0.0040 
(Cruz-Monteagudo et 

al., 2017) 

Carbamazepine  0.5110 (W. Liu et al., 2008) 

Daidzein 0.0001 (Jouyban, 2009) 

Deferiprone 0.0001 
(Fathi-Azarbayjani et al., 

2016) 

Dehydroepiandrosterone acetate 0.0449 (Jouyban, 2009) 

Diclofenac 0.0229 (Jouyban, 2009) 

ferulic acid Form I 0.0207 (Shakeel et al., 2017) 

Flurbiprofen 0.1110 (Jouyban, 2009) 

Gallic acid 0.0051 (Vilas Boas, 2017) 

Haloperidol 0.0101 (Jouyban, 2009) 

Ibuprofen 0.3348 (Jouyban, 2009) 

isatin 0.0057 (J.-Q. Liu et al., 2014) 

Isonicotinamide (form II) 0.0082 (B. Li et al., 2016) 

Ketoprofen 0.1530 (Jouyban, 2009) 

l-(+)-Ascorbic acid 0.0001 
(Anvar Shalmashi & 

Eliassi, 2008) 

Lactose 0.0001 (Jouyban, 2009) 

Lamivudine (form 2) 0.0001 (Jouyban, 2009) 

Loratadine 0.0293 (Jouyban, 2009) 

Lovastatin 0.0057 (H. Sun et al., 2005) 

Luteolin 0.0026 (Jouyban, 2009) 

Mannitol 0.0001 (Jouyban, 2009) 

Mefenamic acid 0.0039 
(Abdul Mudalip et al., 

2013) 

Meloxicam 0.0001 (Jouyban, 2009) 
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Methyl D-(-)-4-hydroxy-phenylglycinate 0.0008 (Jouyban, 2009) 

Naproxen 0.0355 (Jouyban, 2009) 

Niflumic acid 0.0001 (Domańska et al., 2011) 

N-phenylanthranilic acid 0.0267 (Yao et al., 2016) 

paclobutrazol 0.0228 (Jouyban, 2009) 

Paracetamol 0.0001 (Jouyban, 2009) 

Phenacetinum 0.0115 (Chang et al., 2007) 

p-Hydroxybenzoic acid 0.0698 (Jouyban, 2009) 

p-Hydroxyphenylacetic acid 0.0961 (Jouyban, 2009) 

Pimozide 0.0021 (Jouyban, 2009) 

Piroxicam 0.0024 (Jouyban, 2009) 

risperidone form I 0.0022 (Mealey et al., 2014) 

Salicylamide 0.0755 
(Nordström & 

Rasmuson, 2006) 

sorbic acid 0.0045 (Fang et al., 2015) 

Spironolactone Form II 0.0281 (J. Zhang et al., 2014) 

Sulfadiazine 0.0001 (C.-L. Zhang et al., 2007) 

Sulfamethoxypyridazine 0.0021 (C.-L. Zhang et al., 2007) 

tebuconazole 0.0564 (Y. Li et al., 2017) 

Temazepam 0.0145 (W. Li et al., 2016) 

Tetraethyl ranelate 0.0509 (Jouyban, 2009) 

Triclosan 0.5650 (DELGADO et al., 2012) 

tridecanedioic acid 0.0015 (W. Tang et al., 2015) 

Trimethoprim 0.0003 (Q.-S. Li et al., 2008) 

Dodecanedioic acid 0.0024 (H. Zhang et al., 2014) 

3,5-dimethylpyrazole 0.1125 (Yao et al., 2017) 

5-phenyltetrazole 0.0077 

(G. Chen, J. Chen, C. 

Cheng, Y. Cong, P. Jian, 

et al., 2017) 

4-hydroxybenzaldehyde 0.1549 (J. Wang et al., 2017a) 
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l-malic acid 0.0134 (Kai et al., 2013) 

thiomalic acid 0.0595 (Meng et al., 2013) 

itaconic acid 0.0110 (W. Yang et al., 2012) 

Lornoxicam 0.0001 
(Shakeel, Haq, Alanazi, 

et al., 2015) 

Lansoprazole 0.0025 (Hong et al., 2012) 

pyrazinamide 0.0035 (Jouyban, 2009) 

Syringic Acid 0.0013 (Jouyban, 2009) 

Tenoxicam 0.0007 (Jouyban, 2009) 

Benzoin 0.0129 (Y. Yang et al., 2017) 

4-Nitrophthalimide 0.0163 (Jouyban, 2009) 

p-Toluenesulfonamide 0.0009 (Jouyban, 2009) 

o-Toluenesulfonamide 0.0006 (Jouyban, 2009) 

Theobromine 0.0001 (Zhong et al., 2017) 

Theophylline 0.0007 (Zhong et al., 2017) 

Genistein 0.0024 (Jouyban, 2009) 

Protocatechuic Acid 0.0432 (Vilas Boas, 2017) 

Gentisic Acid 0.0186 (Vilas Boas, 2017) 

S-Hesperetin 0.0069 (Jouyban, 2009) 

Phenylacetic acid 0.3482 
(Gracin & Rasmuson, 

2002) 

p-Aminophenylacetic acid 0.0104 
(Gracin & Rasmuson, 

2002) 

Triclocarban 0.0033 (DELGADO et al., 2012) 

4-(4-aminophenyl)-3-morpholinone 0.0020 (W. Yang et al., 2016) 

hyodeoxycholic acid 0.0016 (Y. Yang et al., 2015) 

4-Aminobenzoic acid 0.0576 (Jouyban, 2009) 

Vanillin 0.1230 (Jouyban, 2009) 

1,3-diphenylguanidine 0.0566 
(R. Xu, Wang, Du, et al., 

2016) 
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2,4-dinitroaniline 0.0221 (R. Xu, Xu, et al., 2016) 

Dipyrone 0.0001 (Ding et al., 2017) 

Metaxalone (Form B) 0.0085 (Hong et al., 2016) 

p-Coumaric Acid 0.0128 (Ji, Meng, Li, et al., 2016) 

phthalimide 0.0075 
(R. Xu, Wang, Han, et 

al., 2016) 

Pyridazine-3-amine 0.0032 (Cao et al., 2012) 

 3-amino-1,2,4-triazole 0.0029 (S. Liang et al., 2016) 

2-amino-5-methylthiazole 0.1008 

(G. Chen, J. Chen, C. 

Cheng, Y. Cong, C. Du, 

et al., 2017) 

Dimethyl 1,4-Cyclohexanedione-2,5-dicarboxylate 0.0075 (Jouyban, 2009) 

Succinic Anhydride 0.0771 (Jouyban, 2009) 

4',5,7-Triacetoxyflavanone 0.0450 (Shan et al., 2017) 

4-Methylsulfonylacetophenone 0.0361 (Hao et al., 2017) 

Cefoxitin acid 0.0003 (Yuan et al., 2016) 

Febuxostat 0.0046 (L. Zhang et al., 2012) 

levofloxacin 0.0022 (J. Zhang et al., 2012) 

D-Pantolactone 0.3854 (C. Huang et al., 2015) 

Hydrocortisone 0.0008 (H. S. M. Ali et al., 2010) 

p-Aminobenzoic acid 0.0576 (Jouyban, 2009) 

Rutin 0.0011 (Zi et al., 2007) 

1H-1,2,4-Triazole 0.0410 (S. Liang et al., 2016) 

2-Hydroxybenzoic acid 0.1425 
(Gracin & Rasmuson, 

2002) 

β-Sitosteryl maleate 0.0059 
(D. Wei, Wang, Liu, & 

Wang, 2010) 

Methyl p-hydroxybenzoate 0.1270 (Jouyban, 2009) 

Ricobendazole 0.0001 (Jouyban, 2009) 

Saccharose 0.0001 (Jouyban, 2009) 
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Table 10.7 Solubility data collated from literature of various drug compounds in 1,4-

dioxane taken at lab temperature  

Compound Mol. F Reference 

2,4-dihydro-5-methyl-2-(4-

methylphenyl)-3H-pyrazol-3-

one 

0.0549 (Jouyban, 2009) 

2-amino-4-chloro-6-

methoxypyrimidine 
0.0367 (Jouyban, 2009) 

2-Amino-4-chlorobenzoic acid 0.0271 (Jouyban, 2009) 

2-nitro-p-phenylenediamine 0.0593 (J. Wang et al., 2017b) 

3-methyl-4-nitrobenzoic acid 0.0545 (Wu et al., 2016) 

3-nitro-o-toluic acid 0.0779 (Jouyban, 2009) 

4-Amino-3,6-

Dichloropyridazine 
0.0043 (Jouyban, 2009) 

4-methyl-2-nitroaniline 0.0794 (R. Xu, Xu, et al., 2016) 

Acetylsalicylic acid 0.0516 (Perlovich & Bauer-Brandl, 2003) 

Anhydrous citric acid 0.1413 (Jouyban, 2009) 

Benzoic acid 0.2853 (Thati et al., 2010) 

Deferiprone 0.0002 (Fathi-Azarbayjani et al., 2016) 

Diclofenac 0.1055 (Jouyban, 2009) 

Flurbiprofen 0.1750 (Jouyban, 2009) 

Haloperidol 0.0056 (Jouyban, 2009) 

Ibuprofen 0.0372 (Jouyban, 2009) 

isatin 0.0188 (J.-Q. Liu et al., 2014) 

Ketoprofen 0.1530 (Jouyban, 2009) 

Lactose 0.0001 (Jouyban, 2009) 

Mannitol 0.0001 (Jouyban, 2009) 

Meloxicam 0.0018 (Jouyban, 2009) 

Naproxen 0.1040 (Jouyban, 2009) 

Niflumic acid 0.0483 (Jouyban, 2009) 

paclobutrazol 0.0324 (Jouyban, 2009) 

Paracetamol 0.0314 (Jouyban, 2009) 

Phenothiazine 0.1026 (J. Wang et al., 2017c) 

p-Hydroxybenzoic acid 0.0844 (Jouyban, 2009) 

Pimozide 0.0113 (Jouyban, 2009) 

Piroxicam 0.0049 (Jouyban, 2009) 

Salicylamide 0.1373 (Nordström & Rasmuson, 2006) 

Salicylic acid 0.2610 (Matsuda et al., 2009) 

Sulfadiazine 0.0005 (Mauger et al., 1972) 

Sulfamethoxypyridazine 0.0239 (Mauger et al., 1972) 
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5-amino-3-methyl-1-

phenylpyrazole 
0.2104 (G. Chen, J. Chen, P. Jian, et al., 2017) 

5-phenyltetrazole 0.0125 
(G. Chen, J. Chen, C. Cheng, Y. Cong, P. Jian, 

et al., 2017) 

4-hydroxybenzaldehyde 0.1227 (J. Wang et al., 2017a) 

Lornoxicam 0.0002 (Shakeel, Haq, Alanazi, et al., 2015) 

4-Nitrophthalimide 0.0295 (Jouyban, 2009) 

Nabumetone 0.0053 (Jouyban, 2009) 

4-(4-aminophenyl)-3-

morpholinone 
0.0102 (W. Yang et al., 2016) 

4-Aminobenzoic acid 0.0700 (Jouyban, 2009) 

 3-amino-1,2,4-triazole 0.0051 (S. Liang et al., 2016) 

2-amino-5-methylthiazole 0.0806 
(G. Chen, J. Chen, C. Cheng, Y. Cong, C. Du, et 

al., 2017) 

Irbesartan (form A) 0.0008 (L. Wang et al., 2007) 

p-Aminobenzoic acid 0.0632 (Jouyban, 2009) 

2-Hydroxybenzoic acid 0.2945 (Gracin & Rasmuson, 2002) 

Saccharose 0.0001 (Jouyban, 2009) 
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10.2 APPENDIX 2 A 

Figure 10.1 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using molecular descriptors on the training set 

compounds in ethanol. 

Figure 10.2 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using molecular descriptors on the external test 

compounds in ethanol. 
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Figure 10.3 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using molecular descriptors on the training set 

compounds in methanol. 

Figure 10.4 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using molecular descriptors on the external test 

compounds in methanol. 
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Figure 10.5 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using molecular descriptors on the training set 

compounds in 1-butanol. 

Figure 10.6 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using molecular descriptors on the external test 

compounds in 1-butanol. 
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Figure 10.7 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using molecular descriptors on the training set 

compounds in acetonitrile. 

Figure 10.8 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using molecular descriptors on the external test 

compounds in acetonitrile. 
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Figure 10.9 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using molecular descriptors on the training set 

compounds in acetone. 

Figure 10.10 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using molecular descriptors on the external test 

compounds in acetone. 
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Figure 10.11 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using molecular descriptors on the training set 

compounds in ethylacetate. 

Figure 10.12 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using molecular descriptors on the external test 

compounds in ethylacetate. 
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Figure 10.13 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using molecular descriptors on the training set 

compounds in 1,4-dioxane. 

Figure 10.14 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using molecular descriptors on the external test 

compounds in 1,4-dioxane. 

 



 

290   

10.3 APPENDIX 2 B 

Figure 10.15 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using MACCS fingerprint on the training set 

compounds in ethanol. 

Figure 10.16 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using MACCS fingerprint on the external test 

compounds in ethanol. 
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Figure 10.17 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using MACCS fingerprint on the training set 

compounds in methanol. 

Figure 10.18 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using MACCS fingerprint on the external test 

compounds in methanol. 
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Figure 10.19 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using MACCS fingerprint on the training set 

compounds in 1-butanol. 

Figure 10.20 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using molecular descriptors on the external test 

compounds in 1-butanol. 

 



 

   293 

Figure 10.21 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using MACCS fingerprint on the training set 

compounds in acetonitrile. 

Figure 10.22 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using MACCS fingerprint on the external test 

compounds in acetonitrile. 
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Figure 10.23 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using MACCS fingerprint on the training set 

compounds in acetone. 

Figure 10.24 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using MACCS fingerprint on the external test 

compounds in acetone. 
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Figure 10.25 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using MACCS fingerprint on the training set 

compounds in ethylacetate. 

Figure 10.26 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using MACCS fingerprint on the external test 

compounds in ethylacetate. 
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Figure 10.27 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using MACCS fingerprint on the training set 

compounds in 1,4-dioxane. 

Figure 10.28 Regression plot of the experimental vs predicted solubility data (LogS) 

obtained from the RF model trained using MACCS fingerprint on the external test 

compounds in 1,4-dioxane. 

 


