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Abstract 

This study concerned developments and applications of attenuated total reflection 

(ATR) mid-infrared (MIR) insertion probes featuring novel polycrystalline silver 

halide fibres. Improvements in probe performance from the original design to the 

newer designs were observed; although some changes provided manufacturing 

benefits rather than performance improvements. Detailed evaluation of two 12 mm 

diameter probes and a 2.7 mm diameter single fibre probe was performed for 

analysis of mixtures of acetone, ethanol and ethyl acetate. Calibration transfer was 

attempted for situations when either the ATR probe or MIR spectrometer were 

changed. Direct transfer introduced severe calibration errors, so two standard 

calibration methods, direct standardisation (DS) and piecewise direct standardisation 

(PDS), and a new method spectral space standardisation (SST), were compared. The 

SST procedure incorporating a scaling factor demonstrated advantages over DS and 

PDS giving lower errors of prediction and simpler implementation over PDS. Two 

other application areas were also investigated: identification of counterfeit Scotch 

whisky and study of a fermentation reaction. The identification of counterfeit Scotch 

whiskies was based on the determination of ethanol concentration and the spectra of 

the dried residues of the suspect samples. The latter measurement also proved 

successful as a procedure to gain a greater understanding of the impact of 

manufacturing variables on the generation of the colour of whisky. Near-infrared 

(NIR) and MIR spectrometry were used to study a fermentation reaction; selected 

spectral regions of the NIR or MIR data can be used to monitor three properties of 

the fermentation process: optical density, glycerol and ammonium concentrations. 

PLS models built with NIR data produced better results than those using MIR data 

for the prediction of optical density and ammonium. However, the results for the 

predictions of glycerol were comparable; indications of the potential benefits of data 

fusion were apparent when the MIR and NIR data were combined. 
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1 Introduction 

1.1 An overview of process analysis 

The control of manufacturing processes in industry has become increasingly 

important in recent times. The product quality depends on two main aspects; raw 

material properties and the manufacturing process. The chemical industry is 

dependent on the development of analytical techniques that are capable of providing 

a route to cost-effective and consistent manufacture that will result in a higher quality 

product. The major challenge in controlling consistent manufacturing of batches is 

being able to identify the origin of any variations in the raw material, or process, and 

being able to take the necessary corrective action as early as possible.1-5 

 

Process analytical chemistry (PAC) can be described as the application of analytical 

skills and instrumentation to monitor and control manufacturing processes.6, 7 Initial 

work in PAC involved sampling the processes and transporting these samples to a 

central laboratory which could have safety implications and cause time delays. 

However, the ideal situation would be real-time in situ measurements with the ability 

of closed loop control and optimisation.8, 9 Utilising chemometric techniques, the 

relationship between measured values and the real properties could be modelled for 

control and optimisation. Process analytical technology (PAT) is a more recent term 

that is widely adopted in the pharmaceutical industry and is promoted by the Food 

and Drug Administration (FDA) as “A system for designing, analysing and 

controlling manufacturing through timely measurements of critical quality and 

performance attributes of raw and in-process materials and processes with the goal of 

ensuring final product quality”.10 PAT is fast becoming a key way to monitor and 

control the manufacturing process in the pharmaceutical industry where the 

specifications on drug manufacture are becoming tighter for final drug products. It 

allows the rapid detection of potential problems preventing the loss of time, money 

and precious feedstock during manufacture. 

 

There are many instrumental techniques used in process analytical systems, but 

spectroscopic methods are prevalent in many industries. Optical spectroscopic 
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techniques currently used in process analysis are mid-infrared (MIR), near-infrared 

(NIR), and ultra violet-visible (UV-visible) absorption spectrometries and Raman 

scattering spectrometry, each with their advantages and disadvantages for use in 

process analytical systems. 

 

The spectroscopic technique that will be used in a process analytical system is 

chosen ultimately because of the properties of the process to be monitored. The 

technique used will be the one that can give the most useful, reliable and 

reproducible data whilst encountering the least amount of problems for that specific 

process, at best cost. For example, if the process has a significant aqueous content, 

NIR spectrometry would not be as suitable as some of the signals may be obscured; 

although water can affect MIR spectra. The nature of the spectra and the opportunity 

to use e.g. ATR probes means that MIR spectrometry is less affected by the presence 

of significant amounts of water. 

 

NIR spectrometry is already acknowledged as an established technique for process 

analysis and, with increasing efforts being made to turn MIR spectrometry into a 

reliable process instrument, a wide range of applications can be monitored by at least 

one, if not both, of these techniques. 

 

The chemical industry is increasingly considering process analytical applications of 

at-, on- and in-line spectroscopic techniques to monitor chemical processes. These 

allow for the careful monitoring of parts of the process or in some cases, the whole 

process. Spectroscopic absorption techniques such as NIR and MIR are being used 

more often as they can be coupled to fibre optics. This allows e.g. a reaction to be 

monitored in real time quickly and easily. Additionally, the instrument can be 

isolated to minimise vibrational and electrical interferences from the process 

environment. Due to the ease and speed of spectroscopic measurements, these are 

viewed as a more efficient choice over traditional chromatographic techniques for 

process analysis, although the calibration models required are more complex. Being 

able to monitor chemical processes in real time with the use of spectroscopic 
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techniques allows the chemistry of the process to be monitored and understood, 

which can be of great benefit during process optimisation.1-5 

 

The objective of PAC is to generate reliable and timely quantitative and qualitative 

information about the process. This information can provide benefits in raw material 

analyses, in-process testing, monitoring of process streams, control of crystallisation 

processes, validation of vessel cleaning, as well as for process control and 

optimisation of drying and blending processes and product quality. With the use of 

spectroscopic techniques, industry can have a greater understanding of the chemical 

processes and can locate potential problems easier. PAC is applicable to and widely 

used in many fields, including, but not limited to the petrochemicals, food and 

pharmaceutical industries, as the following examples illustrate. NIR and MIR 

spectrometry have been successfully used for the monitoring and control of various 

processes in the food industry,11 including wine and cheese analysis.12-14 Karoui et al. 

completed a feasibility study on the use of NIR and MIR spectra to determine 

different properties of soft cheeses such as fat content and pH.12 Both techniques 

were used successfully to analyse some of the properties of the soft cheese samples, 

however, more samples would be required to improve the accuracy of the methods 

for process control. The application of MIR spectrometry in wine analysis was 

investigated by Patz et al.14 MIR spectrometry was used to analyse several properties 

of the wine samples with short analysis times, generating good information about the 

quality of sample. With the exception of degassing of sparkling samples, the method 

required no preparation for the samples and provided reproducible results. PAC is 

also well established in the pharmaceuticals industry, known as PAT, and is used to 

help keep drug products within specification throughout the manufacture.15, 16 

Spectroscopy has been used by the petrochemicals industry for process control 

including examples of NIR for monitoring and characterisation of crude petroleum.17 

Falla et al.17 proposed a method to estimate from NIR spectra the properties of crude 

petroleum with simulated distillation. The simulated distillation approach has an 

advantage in speed of analysis over traditional true boiling point determination for 

the control and characterisation of the crude product; also, it requires no sample 

preparation before analysis. Applications of MIR spectrometry are also being 
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considered; Andrade et al.18 used MIR spectroscopy to analyse the total aromaticity 

to characterise the weathering process of oil spillages. 

 

Due to the increase in implementation of PAC, it is vital that in-process 

instrumentation is robust, reliable and can withstand a variety of extreme process 

conditions, as well as still maintaining the ability to produce fast, reproducible and 

reliable data. This will allow the stages in the process to proceed more efficiently, 

while maintaining confidence in the results obtained. 
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1.2 Sampling and analytical approaches in process analysis 

There are many approaches to sampling and monitoring of a chemical process and 

these can be split into six main categories.7-9, 19-24 Some sampling approaches appear 

better than others for the use of process control in manufacturing, but each have 

advantages and disadvantages: 

 

Off-line analysis – involves the manual collection of a sample from the process 

stream. The sample is then transported to a remote or centralised laboratory for 

analysis. Typical examples of this type of analysis include gas chromatography - 

mass spectrometry (GC-MS) and high performance liquid chromatography (HPLC). 

This is often a laborious and time consuming type of analysis. However, it can allow 

for complex sample preparation to be carried out if required and can have economic 

benefits from the use of shared facilities. 

 

At-line analysis – also involves the manual collection of a sample from the process 

stream, however, the sample is then transported to a dedicated instrument usually 

located in the manufacturing area. Typical examples here are gas chromatography 

(GC) and visible spectrometry. Having a dedicated system nearby allows for quicker 

analysis to be carried out, but often requires simpler sample preparations as the 

operators are not usually skilled analysts. As the instrument is dedicated to the 

manufacturing area it has to be robust and reliable. This is a faster method than off-

line analysis, although it is not as flexible in the use of instrumentation. 

 

On-line analysis – involves automated sampling techniques where the sample is 

collected by an automated system and transported through a sample line to the 

automated analyser. A typical example of this type of analysis is on-line GC. Again 

as the analyser is near the process line, it has to be robust and reliable. The signal can 

be intermittent or continuous depending on the analyser process or if there is a 

requirement for any sample preparation; although this is not normally completed for 

on-line analysis. On-line analysis can give fast turnaround times, but the 

infrastructure for sampling and sample transfer can be very expensive. 
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Process analytical systems can be very useful in the chemicals and chemistry-using 

industries, but they are not without their problems. It has been noted that about 90% 

of process analyser failures are ultimately attributable to problems with the sampling 

system.19 Sampling is the most critical stage in the analysis of the process; a poorly 

collected sample will lead to poor quality in the results obtained, and it may lead to 

the wrong decision being made about a specific operation. It is vital that any sample 

taken is representative of the bulk to ensure that the information derived is 

appropriate for decisions that are to be made about the status of the process. 

 

In-line analysis – involves an analyser located close enough to the process to allow 

the use of an in situ probe to take measurements of the processes. As the probe is in 

situ no sample collection is required with this type of analysis, also there is no need 

for a separate sampling line, making this a faster and potentially less expensive type 

of analysis over on-line. Typical examples of in-line analysis are NIR and MIR 

spectrometry. The in-line analyser has to be very robust and reliable as it sits near to 

the manufacturing process. A known disadvantage of in-line analysis is fouling of the 

probe, which can affect the results obtained. 

 

Non-invasive analysis – can be viewed as the ideal situation in process analysis as it 

requires no sample collection and there is no requirement for probe insertion to the 

process being monitored, avoiding possible contamination problems. The aim of this 

type of analysis is to take non-contact measurements; therefore, there is no physical 

contact with the sample, although there may be contact with the vessel/reactor 

containing the sample. An example of this type of analysis is the use of a NIR 

spectrometer that can be operated through a sight glass in the manufacturing 

equipment. A disadvantage of non-invasive analysis such as NIR spectrometry is that 

the sight glass window may become fouled. 

 

Inferential analysis – the analysis can be inferred through measurements such as 

temperature, flow rate and viscosity, or spectral measurements if they are affected by 

the parameter for which information is required, e.g. monitoring the viscosity of a 
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process, if the viscosity of the liquid increases this indicates there is a greater number 

of higher boiling components present in the sample. 

 

Every process analysis system needs to be designed in a way that will allow the most 

meaningful results to be obtained in the most efficient way. During the design 

process both the advantages and the disadvantages of the different types of analysis 

must be considered along with some other important points.25 

 

The reactor type: is it going to be a batch or continuous process? 

The scale of the operation. 

The sampling required: how and where will the samples be measured and how 

frequent will the measurements be taken? 

The design of the analyser: the analyser has to be right for the process and ensure it 

produces results which are meaningful and reproducible. 

Any calibration requirements. 

Data interpretation: what information will be required and how long will it take? 

Diagnostics, e.g. fault indications and analysis. 

Use of data: will there be a feedback loop to control the process? 

 

All of the above points are important in the design and must be considered in the 

development of each process analytical system, in order to optimise the conditions 

and obtain the best results. For example, if you compare the sampling points needed 

for a batch or a continuous process, a batch process will require one or two sampling 

points, where as a continuous process may require numerous sampling points and at 

different times. This shows that PAC is a useful way to achieve process control. 

However, it requires a great deal of time and cost to design and implement. 

Consequently, in-process measurement systems are used for process control only if it 

can be shown that the information gained and the benefits derived will outweigh the 

cost of design and implementation. PAC can help to understand the process more 

thoroughly allowing for more efficient step changes in process manufacture, as well 

as allowing the earlier detection of potential manufacturing problems. This can aid in 

time saving by achieving more efficient processes with less wastage. 
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1.3 Collaboration with Fibre Photonics and scope of thesis 

The research described in this thesis was funded under the Scottish Funding 

Council’s SPIRIT scheme. The SPIRIT scheme promotes collaboration between a 

university group and a small to medium enterprise (SME) in Scotland, with the 

specific target of underpinning the research of that SME. Fibre Photonics, an SME 

based in Livingston, Scotland, manufacture and supply fibre optic probe technology 

and have developed MIR transmitting materials such as polycrystalline silver halide 

for fibre-optic immersion probes. Whereas spectroscopic techniques that use silica 

based fibres are commonly used for in situ process measurements, there have been 

fewer applications of MIR spectrometry, owing to problems in finding suitably 

robust fibres that transmit in this region. However, the advent of robust silver halide 

fibres for use with attenuated total reflection (ATR) probes has opened up new 

opportunities for in situ and rapid analysis by MIR spectrometry. To determine 

specific application areas where MIR immersion probes could be useful for process 

control, an assessment of the literature was carried out. The assessment reviewed the 

use of in-line MIR and NIR spectrometry in different application areas to determine 

where in-line probes could be beneficial for analysis and determine application areas 

where the development of future combined probes may provide greater information 

about the processes being monitored. Using the information from the assessment, an 

indication of where the development of in-line probes could best suit the needs of the 

users in different industrial sectors could be passed on to the SME to aid their 

research and development. Since the introduction of MIR materials for fibre-optic 

immersion probes, the company has focused on the development of ATR MIR 

probes, implementing design changes to improve the performance and robustness of 

the probes. A selection of probes were investigated to determine how the design 

changes altered the performance and predictive ability of the probes. The results of 

this study should help the company with future work in the design and development 

of fibre optic based probes. 

 

With the increased use of in-line probes for process control, there is a need for robust 

calibration models and the ability to transfer these between instruments or when 

probes are replaced. Many examples of NIR calibration transfer exist in the 
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literature; however, minimal research has been completed for the use of calibration 

transfer for MIR calibration models. Fibre Photonics not only needs to produce high 

quality products, but needs to make sure there is a use for these products in industry. 

For this reason, an investigation into the use of a selection of calibration transfer 

algorithms for the transfer of calibration models between ATR MIR probes and 

spectrometers has been completed. The ability to use calibration model transfer 

algorithms with the ATR MIR probes can increase the implementation of these 

probes for process control, for example when multiplexing multiple probes for one 

process. 

 

As Fibre Photonics is interested in determining the possible application areas where 

in-line MIR probes could potentially be used in process analysis, part of this research 

investigated two application areas. Firstly, ATR MIR spectrometry was assessed for 

the analysis of whisky, in particular for the determination of authenticity. The second 

application area was in fermentation monitoring; MIR and NIR spectroscopy were 

used to analyse samples at different stages throughout a reaction using off-line 

methods to investigate the potential benefits of the combination of MIR and NIR 

regions for monitoring fermentation reactions. If the combination of MIR and NIR 

spectra can provide advantages for the analysis of fermentation reactions it will 

indicate the potential future benefit in the development of a combined MIR-NIR 

probe for process analysis. 

 
The aims of the research described in this thesis can, therefore, be summarised as 

follows: 

• Research the design, development and application of MIR probes for in situ 

process analysis. 

• Study the use of calibration models for analyte prediction and specifically the 

use of calibration transfer algorithms for MIR analysis with in situ probes. 

• Apply MIR spectroscopy for the analysis of Scotch whisky including the 

determination of authenticity. 

• Complete initial studies into the combined use of MIR and NIR in situ 
measurements for synergistic benefit in process analysis.  
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2 Background and Theory 

2.1 Principles of infrared spectrometry1-5 

Infrared spectroscopy can be used to gather information about the structure of a 

compound by examining its vibrational properties. The sample will absorb energy 

from the incident radiation causing vibrations to occur; when a molecule vibrates, all 

of the bonds will stretch and relax in combination. The difference in the incident and 

detected energy at each frequency will lead to absorption bands. The strongest 

absorptions occur in the mid-infrared (MIR) range caused by fundamental vibrations. 

Weaker absorptions occur in the near-infrared (NIR) range which are caused by 

overtones and combinations of fundamental vibrations. Table 2.1 details the 

characteristic transitions in the MIR and NIR infrared regions. 

Table 2.1: MIR and NIR infrared radiation character istic transitions. 

Radiation 
Wavenumber 

range (cm-1) 

Wavelength 

range (nm) 

Characteristic 

transitions 

Near-infrared 14300 – 4000 700 – 2500 

Overtones and 

combinations mostly due 

to X-H, where X = C, O 

and N. 

Mid-infrared 4000 – 500 2500 – 5 x104 

Fundamental vibrations, 

overtones and 

combinations. 

 

The bond vibrations that occur in a molecule can be compared to a simple diatomic 

molecule and the potential energy (�) of this molecule can be described by the 

harmonic oscillator model (Equation 2.1); where � is the force constant, � is the 

inter-nuclear distance, �� is the equilibrium distance and � is the displacement 

coordinate. 

� = 12�	� − ��� = 12��� Equation 2.1 

The potential energy curve for the compression and extension of the bond is a 

parabola (Figure 2.1); the minimum is observed when the bond is at the equilibrium 
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distance (��). The equilibrium is established between the repulsive and attractive 

forces of the two atoms. If the bond is compressed or extended away from the 

equilibrium point, a sharp increase in the potential energy will occur. 

 

Figure 2.1: Potential energy diagram for a diatomic molecule. 
�� is the energy of dissociation 

of the atoms and �� is the equilibrium bond length. 

When there is an increase in the potential energy the diatomic molecule will oscillate 

and the frequency of vibration (�) is described by Equation 2.2. The frequency is 

dependent on the reduced mass of the diatomic molecule (�) and the force constant 

(�). 

� = 12���� 																				�ℎ���	� = ������ +�� Equation 2.2 

�� and �� correspond to the mass of the individual atoms in the diatomic molecule. 

Equally spaced energy levels exist and are given by Equation 2.3: where h is 

Planck’s constant, � is the vibration frequency defined above and v is the vibrational 

quantum number, which can only have positive integer values. 

��� = h� !v + 12# Equation 2.3 
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Diatomic molecules, therefore, can never have zero vibrational energy; as when 

v = 0, ��� = �� h�, implying that the atoms present in a diatomic molecule are never 

completely at rest relative to one another. The energy levels, G(v), can be expressed 

in wavenumber units (cm-1) by Equation 2.4, where �̅ is the wavenumber vibrational 

transition. 

G	v� = ��� h( = �̅ !v + 12# Equation 2.4 

The vibrational energy levels corresponding to different values of v are represented 

in Figure 2.2 as equally spaced horizontal lines. The selection rules for transitions 

between energy levels indicate that transitions are allowed for non-zero values of the 

transition moment. This occurs if the vibration is accompanied by a net change in 

dipole moment; therefore, a vibrational-spectral transition can only occur in 

heteronuclear diatomic molecules.  

 

Figure 2.2: Vibrational energy levels of the harmonic oscillator. 

A further restriction can be imposed from the quantum mechanical harmonic 

oscillator where the vibrational quantum number (v) can only change by a single 

unit. So, allowed transitions can only occur across one energy level for example, 

v = 0 → v = 1 is allowed but v = 0 → v = 2 is forbidden. The first transition 

v = 0 → v = 1 is called the fundamental transition which is the strongest transition. 

Boltzman distribution dictates that at room temperature most molecules will exist in 

the ground vibrational level 	v = 0�. Therefore, transitions occurring from levels 

greater than zero will be much weaker as there will be a lower population of 

molecules occupying those vibrational levels. 

 

Ground vibrational level

G(v) (cm-1)
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In reality all molecules do not follow this simple harmonic motion; they are known 

as anharmonic oscillators. There are two reasons for the occurrence of anharmonic 

oscillators: the first is due to an accumulation of the repulsive forces that arise as the 

bonds in the molecule compress; the second is due to the weakening of the bonds as 

they stretch. On compression the electron clouds of the two atoms limit the approach 

of the nuclei, resulting in the potential energy rising rapidly. During extension the 

bond between the atoms will eventually break when the vibrational energy level 

reaches the dissociation energy, the potential energy levels off, see Figure 2.1. 

Therefore, the relationship between the potential energy and displacement is not as 

simple as that for simple harmonic motion. Experimentally there are two effects that 

indicate that molecules are not ideal oscillators: the vibrational energy levels are not 

equally spaced, and the overtone transitions are observed. Equation 2.5 can be used 

to describe the energy levels of the allowed states of the anharmonic oscillator. 

G	v� = ��� h( = �̅ !v + 12# − ���̅ !v + 12# − * !v + 12#
�
 Equation 2.5 

Where �� is the anharmonicity constant and	* = ���̅. The energy levels are no 

longer evenly spaced as they were in the harmonic oscillator (see figure X); the space 

gradually decreases as the energy increases. The allowed change in vibrational 

quantum number for an anharmonic oscillation is not limited to ± 1. 

 

Figure 2.3: Energy levels and transitions for harmonic and anharmonic oscillator. 
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2.2 Optical fibres for use in infrared spectrometry 

The optical fibres allow data acquisition from otherwise inaccessible locations in the 

process as well as removing the need for any form of extractive sampling. Although 

optical fibres are very useful in spectroscopic analysers the employment of these 

fibres has some difficulties. Spectroscopic fibre optics require a high transmittance to 

polychromatic radiation, whilst ensuring that there are no interactions in the form of 

absorbance or scattering. Care must always be taken in the use of optical fibres to 

prevent physical shocking and overstressing of the fibres, as it can lead to long term 

damage of the optical fibres.6 

 

An optical fibre is made up of a cylindrical core with a refractive index, +�, which is 

higher than the refractive index of the annular outer cladding, +�. These types of 

fibres are referred to as step-index optical fibres as the refractive index in each of the 

core and cladding regions are uniform. See Figure 2.4 for a cross section of a step 

index optical fibre.6, 7 

 

 

Figure 2.4: A cross section through a step index optical fibre. 6 

The angle of refraction, ,-, of the ray can be related to the angle of incidence, ,�, at 

the air/core interface by: 

./+	,� 	= 	+�	./+	,- 	 Equation 2.6 

The refracted ray will strike the core/cladding interface at an angle of incidence	,, 

this will be equal to	90	 −	,-. In order for the ray to continue propagating along the 

Cladding (n2) 
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fibre, the ray must be totally reflected at the core/cladding interface. For total internal 

reflectance to occur the minimum value of	, is given by: 

+�	./+	,1�2 =	+�	 Equation 2.7 

In the years since fibre optics were first constructed to transmit infrared radiation, a 

range of different types of optical fibre exist. Each optical fibre has its advantages 

and disadvantages and so they are chosen for their suitability for a particular 

application. The different core materials have different transmission performances 

and so the fibres are chosen to give the optimum transmission at the wavelengths 

required for each application, Table 2.2 details some examples of fibre optic 

materials and their properties.6, 8-11 

Table 2.2: Properties of fibre optic materials.6 

Wavelength range Fibre material Maximum 

length 

Comments 

MIR 

550 - 6500 cm-1 

(18 – 1.5 µm) 

As2S3 

Chalcogenide 

A few m The fibres have a low 

frequency cut-off at 1000 cm-1 

and absorb at 3300 and 2500 

cm-1. Also these fibres can be 

quite expensive and fragile. 

Silver halide < 10 m These are visible light 

sensitive; however, their 

robustness has been greatly 

improved. 

NIR  

3850 – 28500 cm-1 

(2.6 – 0.35 µm) 

Low OH silica > 1000 m Low cost fibres with excellent 

transmission. The silica must 

be “dry” to avoid strong OH 

absorption. 

 

Table 2.2 shows that silica based fibres are suitable for use in the NIR region, 

however, silica fibres are not transparent in the MIR region and so special materials 

are required. Figure 2.5 shows the spectral attenuation increasing towards 2600 nm 

(3850 cm-1) for NIR silica fibres. 
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Figure 2.5: Typical spectral attenuation of NIR fibres from Fibre Photonics.12 

Studies on the applications of MIR optical fibres have been on-going since the 

1980s.13-15 Optical fibres using materials such as chalcogenide and silver halide have 

been shown to have some applications, but they both have disadvantages. Fibre 

optics constructed of chalcogenide have been commercially available for a number of 

years, but their applications are limited as chalcogenide fibres are fragile and toxic, 

and show limited transparency beyond 8 µm (<1250 cm-1). Other fibres consisting of 

silver halide material are non-toxic and are transparent in the wavelength range from 

3 to 18 µm (3300 – 550 cm-1). This advancement has allowed the construction of 

flexible silver halide fibre optics that can be coupled with attenuated total reflection 

probes.13 

 

Although silver halide based fibres have advantages over chalcogenide fibres, 

developments are still on going in an attempt to increase the length of fibres to allow 

greater use of MIR spectrometry for in situ measurements. Polycrystalline silver 

halide infrared fibres (PIR) and chalcogenide infrared fibres (CIR) are both currently 

being used in MIR spectroscopy. The features of PIR and CIR fibres are compared 

with NIR silica fibres in Table 2.3.12 

3850 28500 
Wavenumber, cm-1 
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Table 2.3: Details of key properties of chalcogenide (CIR), polycrystalline silver halide (PIR) 

and silica fibres (from Fibre Photonics).12 

Parameter CIR Fibre PIR Fibre Silica fibre (NIR) 

Core/clad 

structure 

materials 

Chalcogenide As2S3 

glasses 

AgCl:AgBr solid 

solution crystals 

Pure fused silica (low 

OH-) / fluorine doped 

fused silica 

Typical 

transmission 

range 

1.5 – 6.0 µm 

(~ 6650– 1650 cm-1) 

3 – 18 µm 

(~ 3300 – 550 cm-1) 

0.35 – 2.6 µm  

(~ 28500 – 3850 cm-1) 

Specific 

features 

Toxic, fragile and 

non-hygroscopic. 

Non-toxic, 

non-hygroscopic, 

very flexible and 

UV sensitive 

Radiation resistant, 

flexible, laser 

damage resistant and 

operate in high 

vacuum 

Temperature 

range 

270 K – 370 K Up to 420 K 83K – 658Ka 

a depending on coating used 

 

Table 2.3 shows a difference in the typical transmission ranges between the two MIR 

fibres; the typical transmission spectra of PIR and CIR fibres in Fibre Photonics 

probes are given in Figure 2.6.12  
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Figure 2.6: Typical transmission spectra of 1.5 m long PIR and CIR fibres in Fibre Photonics 

probes.12 

Although the typical transmission range for CIR fibres from Fibre Photonics is in the 

range 1650 cm-1 to 6650 cm-1, there are examples of CIR fibres which can transmit 

beyond this range. The SpectraProbe system consists of CIR fibres which transmit in 

the range 1000 cm-1 to 2000 cm-1, although the upper range was determined by the 

design of the spectrometer rather than the fibre.16 

PIR fibre CIR fibre 

4000 500 
Wavenumber, cm-1 
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2.3 Probe designs in infrared spectrometry 

There are four main optical probe designs available for in situ monitoring: 

transmission probes, transflection probes, reflectance probes and attenuated total 

reflection (ATR) probes.17, 18 

 

A transmission probe (Figure 2.7)6, 17 allows radiation to pass down the length of the 

probe through the excitation fibre before being bent through 180° by a retroreflector. 

The radiation passes through a small sample gap filled with sample, and then will 

pass through the collection fibre back to the spectrometer. Typical pathlengths for 

these probes are around 1-2 mm for the NIR, however due to the small pathlengths 

required by MIR the sample gap would normally be too small to allow a sample 

flow. 

 

Figure 2.7: Schematic of a transmission probe adapted from references 6 and 17. 

The transflection probe (Figure 2.8)6, 17 operates slightly differently from the 

transmission probe. The radiation from the excitation fibre passes through the sample 

and is then reflected back via a mirror through the sample again and then into the 

collection fibre. These probes are easy to manufacture and the simple design allows 

changes of the optical pathlength. 
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Figure 2.8: Schematic of a transflection probe adapted from references 6 and 17. 

Reflectance probes (Figure 2.9)17 are generally used for powders and slurries or any 

samples that have significant diffuse reflectance. The amount of radiation returned 

by this diffuse reflectance is much less than for transmission. Therefore, it is usual 

for larger core diameter fibres (600 – 1000 µm) or multiple fibres to be used to 

collect the maximum amount of diffusely reflected radiation. The radiation travels 

down the probe via the excitation fibre or fibres in the bundle to the tip of the probe 

where the radiation is focussed onto the sample. The back-scattered radiation is 

focussed onto the collection fibre or fibres in the bundle for transmission to the 

spectrometer. Figure 2.9 shows an example of a six excitation fibre, one collection 

fibre reflection probe; however, different arrangements and numbers of fibres can be 

used. 
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Figure 2.9: Schematic of a reflectance probe adapted from reference 17. 

A newer development in in situ probe design is the ATR probe used in MIR 

spectrometry. A schematic of an ATR probe can be viewed in Figure 2.10.6, 7, 17 The 

radiation in an ATR probe is sent through a transmitting crystal at the end of the 

probe where the spectroscopic information will be collected from the sample/crystal 

interface. 

 

Figure 2.10: Schematic of an ATR probe adapted from references 6, 7 and 17. 

Under certain conditions the radiation passing through a prism of high refractive 

index material will be totally internally reflected. The radiation passed down the 

fibres of the ATR probe does not physically leave the probe, but instead interacts 
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with the sample via an evanescent wave at the sample/crystal interface. The angle at 

which total internal reflection occurs is called the critical angle 	,3� and is calculated 

by Equation 2.8, where +� is the refractive index of the ATR crystal and +� is the 

refractive index of the sample. 

,3 	= 	 ./+4�+�/+� 				 Equation 2.8 

When the sample solution is brought into contact with the crystal the evanescent 

wave will be attenuated in the regions of the spectrum at which the sample absorbs. 

The depth of penetration 	67� for a single reflection is given by Equation 2.9, where 

, is the angle of incidence and 8 is the wavelength of the incident light. 

67 	= 	8/	2�+�[./+�,	 −		+�/+���];.=	 Equation 2.9 

A relationship also exists between the number of reflections, the penetration depth 

and the pathlength, given in Equation 2.10, where > is the pathlength. 

> = 67 × @A. ��BC�(D/A+.	ED	Dℎ�	(�F.DEC	 Equation 2.10 

In MIR spectrometry, a ZnSe element (refractive index about 2.4) is often used and 

depending on the number of internal reflections, provides a pathlength of 1 – 10 µm. 

For many process applications, however, more robust materials such as diamond 

(refractive index 2.42) are used for the ATR crystal as they can cope with harsher 

conditions and have a similar refractive index to ZnSe.19 ATR probes can be useful 

for analysing strongly absorbing compounds owing to the small pathlength, which 

can be varied through different numbers of reflections within the crystal. 

Consequently, ATR probes are becoming more useful for in situ analysis by MIR 

(and also UV-visible) spectrometry.  



   

25 

 

 

 

 

2.4 Overview of chemometrics and multivariate regression 

Chemometrics was defined by B. M. Wise and B. R. Kowalski as; 

 

“..the science of relating measurements made on a chemical system to the state of the 

system via application of mathematical or statistical methods.” 20 

 

Chemometrics is being used more extensively to understand the data produced by 

spectroscopic techniques in process monitoring. Although infrared spectra can show 

a lot of structural information of a pure material, usually this involves the analysis of 

fully resolved peaks and measurement of their absorbances. For process monitoring, 

this usually involves more complex mixtures and requires quantitative multi-

component analysis. Often the spectra of individual components of the complex 

mixtures overlap and so the individual analytes cannot be easily identified. Using 

chemometric applications such as multivariate calibration allows the correlation 

between the sample spectra and the known analyte values to be determined.20 

2.4.1 Principal component analysis (PCA) 

PCA is one of the main chemometric applications used when analysing complex 

process control spectra. PCA is used to find the combination of variables or factors 

that describe any major trends in the data.20 The basic concept is to describe the data 

set using a small number of abstract variables that are known as principal 

components (PC). These principal components are generally referred to as ‘latent’ 

variables. The PCs obtained from the original data set must describe the underlying 

structure, in terms of the relationships between different samples and between 

different measurement variables. 

 

Looking at PCA mathematically, a given data set can be represented as a matrix X 

with m rows and n columns, where each variable is in a column and each sample in a 

row. The data matrix is considered as being made up of two separate components: 

the underlying structure (systematic variation) in the data and random fluctuations, or 

“noise”, due to the measurement process. The data matrix X can then be represented 

as: 
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X = M + E 

where the M  matrix represents the underlying structure or ‘model’ of the data and E 

is the random fluctuations (‘noise’) matrix. 

 

As a result of PCA, the model matrix M is further divided into two smaller matrices, 

T and P, represented as: 

M = T P 

Therefore, 

X = T P + E 

T is known as the scores matrix and will indicate any similarities or dissimilarities 

between samples. P is known as the loadings matrix and it describes the relationships 

between the individual measurement variables. If E contains only ‘noise’ the score 

matrix, T and the loadings matrix, P will describe all of the structure of the original 

data matrix. PCA therefore allows the data produced from chemical process 

monitoring to be described by less factors than the original number of variables, with 

no significant loss of information.20 

2.4.2 Partial Least Squares (PLS) regression 

PLS was developed by H. Wold;21 the method involves PCA decomposition and 

inverse least squares regression (ILS) in one stage. PLS is related to both principal 

component regression (PCR) and ILS-multiple linear regression (ILS-MLR) and is 

seen as the procedure that combines the two. PCR is a two stage process and is 

primarily used to find factors that describe the greatest amount of variance in the 

predictor variables, e.g. the spectra. PCR assumes that the concentration estimates 

are error free. Whereas ILS-MLR is designed to seek out a single factor that can best 

correlate the predictor variables (spectra) with the predicted variables 

(concentrations).20 FOR ILS-MLR, the user chooses which variable contains the 

error. The purpose of PLS regression is to establish a linear model that links the 

spectral data and the reference values. The technique will model both the spectral 

data and the reference values to determine the variable in the spectral data that will 

best describe the reference values. PLS assumes that the error is equally distributed 

in both the spectral data and the reference values. 22, 23 
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In PLS regression, the matrices containing the spectral data, X, and the known 

concentrations, Y, are decomposed in a manner similar to PCA resulting in two 

model matrices which are further divided into smaller matrices: 

X = TP where T and P are the scores and loadings, respectively for X 

Y = UQ where U and Q are the scores and loadings, respectively for Y 

The scores from the decomposition of each starting matrix, T and U, are related. 

During an iterative calculation process, the scores matrices from the T and U are 

exchanged to improve the relationship between the principal components for each 

dataset; the X matrix information is used to adjust the Y matrix principal components 

and vice versa. The PLS algorithm defines a relationship between the scores of the 

two starting matrices from the decomposition and ILS-MLR. This relationship can be 

defined as: 

U = TB 

Where T and U are the scores for X and Y, respectively and B represents the 

regression coefficients. In the PLS model, it is assumed that the model error is in 

both the concentrations and the spectral responses. The regression coefficients, B, are 

determined in the PLS model by measurement of the spectra of a set of calibration 

solutions. Once the regression coefficients have been calculated, they can then be 

used to determine the concentrations of analytes in the ‘unknown’ samples. 

2.4.3 Design of Experiment manager software (DoEman) 

In chemometric analysis of spectral data, good calibration models are essential in 

order to achieve accurate predictive results. Reviewing the regression methods such 

as PLS regressions, explained in section 2.4.2, the number of possible calibration 

models that can be built with all the possible factors is very high. The major 

challenge is to identify the best model that will give accurate and reliable predictions. 

Generally two methods of approach can be adopted, one being good fitting abilities 

and the other being good prediction abilities, but these can sometimes be referred to 

as contradictory methods.24 An example defining this could be a model with a 

precise fit to the calibration samples although it would not be able to predict any 
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samples that differ from the calibration samples; this is a case of over-fitting. 

Therefore, for calibration model applications, it is necessary to have a balance 

between good fit and good predictive ability. The issue surrounding the best 

calibration model can be attributed in part to the optimisation of many input factors 

and one or more response factors. To review these many factors and to aid optimal 

calibration model building, a design of experiment approach was described by Flåten 

and Walmsley.24 This approach starts with identifying the significant factors for the 

data set and then determining their levels. The factors can include different kinds of 

pre-treatment, type of regression method and number of principal components. With 

the significant factors and their levels identified, the experimental design can be set 

up. This information can be used with the CPACT, DoEman graphical user interface 

software25 where information about the factors and their levels are input along with 

the spectral data for analysis. The software is designed to look at the main factors 

included in the experimental design as well as the interaction effects between factors. 

The software produces plots with respect to the root mean square error of calibration 

(RMSEC) and root mean square error of prediction (RMSEP) values; the information 

contained within the plots can help identify the optimal settings for the factors 

selected. These plots can be analysed and the parameters that minimise the RMSEC 

and RMSEP selected to build the calibration model. 

 

RMSEC is used to determine how well the model fits the data and RMSEP is used to 

determine how well the model predicts data that was not present in the original 

model. Both RMSEC and RMSEP can be calculated using the same equation, see 

below. 

RMSE		C	or	V� = �∑ 	FP� − F���2�Q� + 	 Equation 2.11 

Where in Equation 2.11, 

 FP�= predicted value 

 F� = known value 

 + = number of samples 
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For RMSEC, FP� are the predicted values of all the samples that were used in the 

model formation and F� are the known values of these samples. Whereas for RMSEP, 

FP� are the predicted values of a new set of samples that were not included in the 

original model formation and F� are the known values of the new data that is being 

predicted. 
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3 Use of MIR and NIR spectrometry for process analysis 

3.1 Introduction 

Infrared spectrometry is one of the most widely used spectroscopic techniques 

because of its ability to not only identify, but quantify chemical species regardless of 

their state. Infrared spectrometry has been widely used in laboratories for many 

years, but recent developments have seen this technique being applied increasingly 

for process control in chemical manufacturing and in industrial plants. 

 

NIR spectrometry is known for its ease of use and is well established in PAC, with 

numerous reviews1, 2 and publications3-5 on its application for on/in – line 

monitoring. The reason for the establishment of NIR spectroscopy over MIR 

spectroscopy in PAC is not because of NIR spectroscopy being any better for process 

control, but more because of the ability to use cheap silica fibres that allow the 

spectrometer to be placed up to hundreds of meters away from the process. These 

silica fibres have also been available for use with optical probes, such as 

transmittance and reflection probes, to allow in situ monitoring of processes. 

Although MIR spectroscopy is generally harder to interface than NIR spectroscopy, 

it can offer more information on the chemical species. The interfacing issues of MIR 

spectrometry are due to the fibre limitations, whereby cheap silica fibres cannot be 

used for MIR spectrometry, as discussed in chapter 2. Therefore, MIR spectrometry 

has been less commonly used in PAC than NIR spectrometry. 

 

In recent years, there has been an increase in the use of infrared spectroscopic 

techniques for monitoring and control in a range of applications such as bio-

analytical applications,6-9 fermentation processes,10-13 esterification reactions,14, 15 

powder blending,16 polymerisation reactions17, 18 and also raw material testing.9, 19 

The following examples give an indication of the types of analysis that have been 

reported.  

 

Petersen et al.20 described the use of in situ NIR spectrometry to monitor glucose and 

ammonium in Streptomyces coelicolor fermentations. Off-line NIR measurements 
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were also carried out to compare and highlight the issues of in situ monitoring of 

fermentations. Petersen et al.20 were able to make suitable predictions for glucose; 

however, the results for ammonium were not satisfactory. The main reason for the 

poor ammonium prediction was due to the signal attenuation of the optical fibres 

above 2000 nm. In situ NIR spectrometry has also been applied for the quantification 

of microcarrier animal cell cultures, Petiot et al.13 were able to monitor the 

concentrations of glucose and lactate during the process. As well as in situ 

immersion probe measurements, NIR spectroscopy has been used non-invasively; 

Yang et al.21 described the use of a portable fibre optic visible-NIR reflectance 

system to determine the growth stages of tomato fruits. Hassan Refat22 used non-

invasive NIR spectroscopy to identify drugs such as diazepam and methadone 

hydrochloride. Using non-invasive NIR measurements reduced the time required for 

drug analysis and required no sample pre-treatment. Recently advances have also 

been made in NIR imaging and Suda et al.23 described the use of NIR imaging to 

monitor the brain activation in subjects when involved in face to face conversation. 

 

Applications of MIR spectrometry in PAC have been more limited, although there 

have been notable successes in monitoring process streams; for example MIR 

spectrometry was used as an on-line technique for the real-time monitoring of 

analytes in gas phase effluent streams,24 where a low resolution MIR spectrometer 

(Bomem MB-155 FT-IR spectrometer) was used with a quartz gas cell to analyse 

organic containing effluents from an industrial process. With the use of PLS a region 

of spectral data was selected that removed the effect of CO2 on the quantitative 

analysis. Another example involved a study of the kinetics of nitrile 

biotransformation reactions by real-time MIR spectroscopy.7 The biocatalysis of 

whole cell suspensions of the bacterium Rhodococcus rhodochrous LL100-21 was 

monitored in real-time using a React IR spectrophotometer. Due to the absorption of 

nitrile arising in the region where diamond is cut-off (1900 – 2200 cm-1) a silicon 

ATR probe was used instead of a diamond probe. ATR MIR spectrometric 

techniques are also becoming increasingly important in the control of crystallisation 

processes, aiding a reduction in the process time for manufacture of batches.25 In this 

study it was found that monitoring the liquid phase concentration and hence the 
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supersaturation level in production can indicate the starting point and the potential 

yield of the process, as well as areas where problems may occur. MIR spectrometry 

has also been observed in applications for the rapid determination of several coal 

properties.26 A sample set consisting of 142 raw coals from different suppliers were 

analysed by ATR MIR spectrometry by applying a close contact between the surface 

of the coal and the diamond crystal using a Golden Gate-Specac ATR accessory 

connected to the interferometer. The ATR MIR system was able to provide relative 

error determination similar to the reference transmission mode with the advantage of 

no sample preparation. Here fast classification of coal samples based on mineral 

matter composition and kaolinite content were achieved with the prospect of future 

on-line methods apparent. 
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3.2 An assessment of the applications of infrared spectrometry 

With NIR spectrometry well established in PAC and applications of MIR 

spectrometry increasing, a wide range of processes could now be monitored by at 

least one if not both of these techniques. John Coates provides a table of example 

applications for process infrared spectroscopy27 which has been used in this research 

as the basis for an evaluation of the different process application areas, where MIR 

and NIR spectrometry could be used for analysis. The main focus of this evaluation 

was on in-line applications; however there are some references to other methods. 

Some processes may only be monitored by one of the techniques, but there are some 

application areas that might have the potential for analysis by a combination of both 

MIR and NIR spectroscopy, with benefit achieved by fusing the data. As well as 

evaluating the potential techniques for each application area, an assessment has been 

made regarding the most appropriate mode of measurement (transmission, 

reflectance and ATR) for each application. The evaluation of MIR and NIR 

spectrometry for the different process application areas is summarised in Table 3.1. 

The notes given after Table 3.1 discuss the measurement mode options and where 

appropriate suggest applications where in-line spectrometry may be beneficial. 
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Table 3.1: Evaluation of potential applications of process MIR and NIR spectrometry 

 

 

Application Sample type 500 14300

Refinery production Gases

Fuels Gases

Speciality gas products Gases

Combustion gases Gases

Ambient air monitoring Gases

Aerosol products Gases

Refrigeration Gases

Semiconductors Gases

Refinery production
Liquids            

(very viscous)

Plastics & polymers
Liquids            

(very viscous)

Polymer products
Liquids            

(very viscous)

Food products
Liquids            

(very viscous)

Fuels
Liquids 

(viscous)

Oil & lubricants
Liquids 

(viscous)

Solvents Liquids

General chemicals Liquids

Chemical reaction monitoring 
Liquid 

processes

Wavenumber range (cm-1)

4000

Transmission Transmission

Transmission Transmission

Transmission 

Transmission Transmission

Transmission Transmission

Transmission Transmission

Transmission Transmission

Transmission cell

ATR
Transmission or 

reflectance

Reflectance Reflectance

Reflectance
Transmission or 

reflectance

Reflectance Reflectance

ATR
Transmission or 

reflectance

ATR
Transmission or 

reflectance

ATR Transmission

ATR (impurities) Transmission (bulk)

ATR                 
(specific compounds)

Transmission (general 
reaction monitoring)
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Sample type 500 14300

Consumer products Liquids

Specialised products Liquids

Environmental Liquids

Food products Liquids

Pharmaceutical products & 
development Liquids

Food products Fermentations

General chemicals Powders

Specialised products Powders

General chemicals Solids 

Plastics & polymers Solids 

Polymer products Solids 

Specialised products Solids 

Environmental Solids 

Pharmaceutical products & 
development Solids 

Packaging Solids Reflectance Reflectance

ATR or reflectance 
(additives & impurities)

Reflectance or 
transmission (bulk  & 

specialist group 
monitoring)

Reflectance Reflectance

Reflectance

Reflectance Reflectance

Reflectance Reflectance

Reflectance Reflectance

Reflectance Reflectance

ATR
Transmission or 

reflectance

Reflectance Reflectance

Reflectance Reflectance

ATR

ATR or reflectance 
Transmission or 

reflectance

ATR Transmission

Application

Wavenumber range (cm-1)

4000

ATR (trace) Reflectance (bulk)
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Refinery production - Separate examples of the use of immersion MIR28 and NIR5 

probes for the analysis and characterisation of crude products are given in the 

literature. Dearing et al.28 described the use of ATR MIR immersion probes to 

characterise crude oil products using data fusion of process techniques. Although 

ATR MIR spectrometry was successfully used in the characterisation by data fusion, 

errors were introduced into the model due to the inability of IR to capture the 

variations for the higher boiling fractions. Falla et al.5 used a NIR transmission 

immersion probe for the rapid estimation of the simulated distillation properties of 

crude petroleum. In refinery production the general sample types are gases and 

liquids; transmission infrared spectrometry would be the appropriate technique for 

gas sample analysis, while the possibility of transmission or ATR techniques could 

be used for any liquid samples. This application area has some potential for either 

MIR or NIR spectrometry, each useful in different ways. As the NIR spectra would 

be dominated by CH components in the samples it would be useful for high 

concentration analysis. For some samples, e.g. blending, MIR analysis could be 

beneficial by providing additional functional group capability when monitoring 

specific compounds. In-line probes seem to have potential scope for the analysis of 

refinery production samples. There are, however, some issues with compatibility of 

the probes with the physical form of the samples as some material may be very 

viscous. Also, probe fouling could be an issue. 

 

Fuels - A comparative study of diesel analysis by FTIR, FTNIR and FT-Raman 

spectroscopy completed by Santos et al.29 explained the use of an immersion 

transflectance accessory for FTNIR analysis and an ATR cell and ATR immersion 

probe for FTIR analysis. The results indicated that the use of a conventional ATR 

cell, instead of an immersion probe, was preferable even though it was more time 

consuming due to cell cleaning and sample exchanges. One reason was due to the 

spectral regions selected for the modelling: the region below 1000 cm-1 was shown to 

be significant for modelling diesel, but was only accessible using the conventional 

ATR cell and not the ATR probe, because of fibre limitations. Santos et al.29 

discussed the issues surrounding MIR spectroscopy as an analysis tool for fuels, 

however, examples for fuel quality control have been reported. A study on the 
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prediction of the properties of diesel/biodiesel blends by NIR and MIR spectroscopy 

was completed by de Fátima Bezerra de Lira et al.;30 spectra were acquired in the 

NIR region using a quartz flow cell and in the MIR region using an ATR probe. The 

results indicated that each of the NIR and MIR models could be used individually to 

predict the distillation temperatures and sulfur content, while NIR spectroscopy was 

favoured for the prediction of density in the blend samples. 

 

Speciality gas products - Generally most applications involve the use of a gas cell for 

the IR measurement.31, 32 However, there is an example, described by Laviolette et 

al.,33 where an in situ MIR transmission probe was used to measure simultaneously 

the solids volume fraction and gaseous species composition in a gas – solid system. 

In this study, the in situ probe was inserted into a fluidized bed, where absorbance 

spectra were acquired to analyse the molar fraction of a tracer gas in the emulsion 

and bubble phases of gas tracer experiments. Several limitations of the use of the 

MIR fibre-optic probe were discussed by the authors: the fibre probe was limited to 

ambient temperature due to the nature of fluoride glass used in the fibre optics; the 

measurement was limited by the modulation frequency; and the IR beam must be of 

the highest possible signal-to-noise ratio. Although there were limitations, many of 

these could possibly be overcome with the use of more modern spectrometers and 

fibre-optic probes other than the ones used in the study. The research discussed by 

Laviolette et al. has shown the possibility for MIR transmission spectometry for gas 

phase monitoring in situ. 

 

Combustion gases – An example by Stec et al.34 described the use of an FTIR 

spectrometer - gas cell set up for the on-line quantification of gaseous fire effluents 

that contain mixtures of components, where different procedures for calibrating the 

system were investigated. FTIR was investigated for the analysis of fire gases as it 

had the potential to identify and quantify a large number of chemical species over 

short time periods, which was not easily attainable with other measurements which 

are made off-line on standard physical fire models, known as fire tests. There is no 

real application for the use of probe analysis in this area; multi-pass gas cell 

monitoring in the transmission mode will give better results. 
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Ambient air monitoring – Most commonly, samples taken in this application area are 

analysed using multi-pass gas cells in the MIR region;35-37 either through use of static 

gas fills where the cell is filled with sample, analysed and then the cell is emptied 

before the new sample fills the cell, or through a continuous flow of sample passed 

through the cell. Transmission NIR spectroscopy could be used for monitoring major 

components in the sample; however, there is little use for in situ infrared 

measurements. 

 

Aerosol products - The propellant gas consists of two different sample types, namely 

droplets and particles. Analysis of the direct composition of the aerosol samples 

would be difficult. Nasibulin et al.38 described the use of FTIR using an on-line gas 

analyser and other techniques to analyse the aerosol products and decomposition of 

ferrocene vapour that are used in the formation of carbon nanotubes. However, FTIR 

was only used to analyse gaseous products in a gas analyser after the aerosol 

particles had first been removed. 

 

Refrigeration - This application area would give rise mainly to gaseous samples with 

measurement being made in the transmission mode for the NIR and MIR regions, 

with perhaps more application being seen for the MIR region. There is not much 

scope here for in situ infrared analysis. 

 

Semiconductors - Semiconductor applications will require gas composition analysis, 

so MIR spectrometry using a gas transmission cell may be useful. Specialist cells 

would be required to give multiple paths for gases unless the sample was a 

concentrated gas and the analyte was the main component rather than the trace 

component. Substrate analysis for contaminants by reflectance NIR could be difficult 

depending on the levels that are required to be quantified. 

 

Plastics and polymers – Several studies of plastics and polymer samples analysed by 

infrared spectrometry have been reported.39-42 However, some of the research, for 

example by Ghebremeskel40 has been completed off-line when analysing cast 
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polymer films to study the interactions of polymer blends. Conversely, Fischer et 

al.39 described the use of NIR spectroscopy for the continuous monitoring of 

extrusion processes of polymers. The study included the use of both transmission and 

diffuse reflection NIR spectroscopy to quantify the composition of polymer blends 

and the content of filler in polymer matrices. In-line NIR transmission spectrometry 

was used to monitor the transparent systems to measure the copolymer in the melt 

and off-line NIR reflectance spectroscopy was used for the quantification of the non-

transparent filler chalk samples. NIR spectroscopy was chosen by Fischer et al. as it 

allowed in-line real-time quantitative analysis; the lack of stability and high energy 

losses of MIR optical fibre probes at the time of this research meant that this 

technique was discounted. The authors touched on previous work with an in-line 

ATR MIR system; however, they stated that careful consideration of the wetting and 

adhesion processes between the polymer melt and the ATR crystal is needed for 

accurate quantification. Shield and Ghebremeskel41 illustrated the use of MIR and 

NIR spectroscopy to study and characterise blends of copolymers. In this research, 

NIR measurements were made in situ with a diffuse reflectance fibre optic probe, 

however, the MIR measurements, used to monitor the absorbance of the 

characteristic components as a function of concentration, were acquired off-line by 

either pressing thin films of material and mounting them on an IR card for analysis or 

placing some material directly on the ATR crystal and applying some pressure. The 

combination of off-line ATR-FTIR and in-line NIR spectrometry was used to 

determine accurately the polymer composition of the elastoblends, however, due to 

the viscosity of the samples it would be difficult to use in-line measurements of MIR. 

Even so, there have been some applications of in-line ATR MIR spectrometry for 

monitoring of copolymerization reactions.43-45 In these studies the resultant 

copolymer was analysed off-line. 

 

Polymer products - Dumitrescu et al.46 described a set up of two NIR optical fibre 

probes which were attached to the injection moulding machine and connected to a 

FTIR spectrometer. The set up allowed the in-line process monitoring of the material 

as it was passing through the injection moulder. The preliminary results indicated the 

potential to detect different materials and the moisture of the materials. Other 
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examples of spectrometric analysis of polymer products have been reported. For 

example, Mirschel et al.47 described the use of NIR reflection spectroscopy to 

analyse the coating thickness of UV-cured acrylate coatings. Witschnigg et al.48 

discussed the use of NIR spectroscopy for the in-line characterisation of 

nanocomposite materials. This research indicated good correlation between the 

Young’s Modulus, the layer distance and the drawing force with the NIR spectra and 

PLS algorithms. 

 

Food products – This is an application area where NIR measurements have been well 

used,1, 49 and there may be some analysis where MIR spectrometry may be 

applicable. An area that has seen extensive research using off-line NIR 

measurements is the analysis of wine products and fermentations by Cozzolino et 

al.50-56 This area is also being researched for analysis by MIR spectrometry, with 

reports on the analysis of wines by off-line57 and flow-through cell58 absorption 

measurements. The research into the analysis of beverages using MIR and NIR 

spectrometry is widespread and as such Cozzolino and Dambergs59 presented a 

chapter detailing the application of the techniques at different steps in the production 

of beer and wine. Research has also progressed in the analysis of whisky by NIR and 

MIR spectrometry; a review of the literature in this area can be found in chapter 6. A 

feasibility study of off-line NIR and MIR analysis of soft cheeses was completed by 

Karoui et al.,60 showing the possible use of NIR spectrometry for bulk content 

analysis of total nitrogen and MIR spectrometry for the determination of fat content. 

This shows there are some applications where a probe that features a combination of 

the two techniques could be useful. Examples of in-line diffuse reflectance NIR 

probes for analysis of solid food products occur in the literature: Collell et al.61 

described the use of a diffuse reflectance NIR probe to predict the moisture and salt 

content of fermented pork sausages and Berardinelli et al.62 characterised apricots 

using a NIR diffuse reflectance probe. Kupper et al.63 described the use of an in-line 

ATR MIR immersion probe for the authentication and quantification of extra virgin 

olive oils. Flavours, fragrances and fermentation processes have the potential to be 

analysed using a combination of NIR and MIR spectrometry. Fermentation samples 

can originate from food product applications52, 64 as well as other bioprocess 
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reactions10, 65-67 and bioethanol production.68 There are many examples in the 

literature where NIR4, 52, 65, 68, 69 and MIR7, 8, 10, 66, 70-73 spectrometry have been used 

successfully for in-line fermentation analysis. 

 

Oils and lubricants – Many examples of this application area in the literature are off-

line measurements of oil and lubricant products. Both NIR and MIR spectrometry 

have been used to quantify the moisture levels in samples;74-76 MIR spectrometry has 

also been routinely used for the analysis of oils and lubricants to determine service 

condition77-81 and oxidation products.82, 83 

 

Solvents - Solvent analysis by MIR spectrometry can be used for compositional 

monitoring especially of mixtures and for detecting impurities. Some regions can 

potentially be identified for specific measurements using limited range customised 

instruments. It is concluded, however, that there would be limited applicability for a 

combined NIR – MIR probe in this application area. 

 

General chemicals – Solid sample analysis would be hard to achieve using ATR MIR 

or transmission NIR probes. However reflectance probes for each of the wavelength 

regions have greater potential for analysis of solid materials. The use of non-invasive 

or in some cases insertion probes would be suitable for powder samples. 

 

Chemical reaction monitoring - Currently there are many examples in the literature 

of the use of in situ MIR14, 17, 84-88 or NIR15, 69, 89-91 spectrometry for the monitoring of 

chemical reactions. An example where both MIR and NIR spectrometry have been 

used in situ to monitor the same reaction was described by Amari and Ozaki.92 In 

their study, an ATR MIR probe and a NIR transmission probe were immersed into 

the solution in the reaction vessel to monitor the initial oligomerization of 

Bis(hydroxyethyl terephthalate). ATR MIR spectrometry was used to monitor the 

OH end groups and the free ethylene glycol, parameters that can aid the 

understanding of polymerisation. NIR spectrometry was also used with some success 

to predict the OH end groups and free ethylene glycol. Acquiring data with MIR and 

NIR spectrometry simultaneously and using 2D correlations, information relating to 
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the polymerisation and the amount of water in the reaction could be determined. As 

water has the potential for side reactions such as hydrolysis in an oligomerization 

reaction and the understanding of the polymerisation of the reaction is important, the 

combination of MIR and NIR spectrometry could be valuable in reaction monitoring 

of this kind. MIR spectrometry has advantages over NIR spectrometry for analysing 

functional groups of liquid processes. 

 

Consumer products - There are currently measurements to determine surfactants and 

chelating agents of liquid detergents and soaps by off-line MIR spectrometry, 

incorporating ATR cells.93-95 Ventura-Gayete et al.93 developed a fully mechanised 

procedure implementing an ATR MIR flow through accessory for the determination 

of sodium alpha-olefin sulfonate, an ionic surfactant widely used in liquid detergent 

formulations. Utilisation of this procedure allowed the analysis to be less expensive 

with greater flexibility for the determination of surfactants. Ventura-Gayete et al.94 

also assessed the use of ATR MIR spectrometry for the determination of chelating 

agents in liquid detergents. In this study they described the possibility of ATR MIR 

probes for quality control measurements. The use of an in-line ATR MIR immersion 

probe has the potential to improve this analysis further by allowing simpler analysis 

and cleaning procedures. 

 

Specialised products – This application area includes water treatment products, dyes 

and pigments, textiles, pulp and paper and also agrochemicals. Samples for this 

application area are mainly solids and liquids taken during production. Barton et al.96 

described the use of off-line NIR reflectance measurements to analyse the fibre 

content in flax stems; in contrast to previous research, the authors analysed the flax 

stems when they were intact allowing the analysis process to be more efficient. 

Canals et al.97 determined the practicality of using in-line NIR and off-line MIR 

measurements in the characterisation of paper finishes. The samples were 

successfully classified using either the NIR or MIR spectra. However, as the NIR 

radiation penetrates deeper into the paper surface than does MIR radiation, 

information about the paper matrix interferes with information about the paper finish, 

therefore extra care needs to be taken when processing the spectra and building 
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models with the NIR data. Moros et al.98 discussed the applicability of MIR and NIR 

spectrometry for the quality control of agrochemical formulations and noted that NIR 

spectrometry has been used to a lesser degree. Therefore, they developed and 

compared an off-line transmission NIR method to a procedure that used flow-through 

transmission MIR measurements for the quality control of pesticides in 

agrochemicals. Both procedures were able to generate comparable results to those 

obtained with the HPLC reference method. The spectrometric procedures had 

advantages over the HPLC method in increasing the sample throughput and reducing 

the volume of organic solvent required for the analysis. 

 

Environmental - There are examples describing the use of MIR spectrometry for the 

analysis of soil samples.99-103 For solid samples, such as soils, reflectance 

measurements are widely used. Vohra et al.102 describe a remote MIR reflection 

detection method for measuring organic contaminants in soil samples; the method 

was able to detect trace amounts of the chlorinated hydrocarbon trichloroethylene. 

Reeves103 compares the use of NIR and MIR reflectance methods in a review of the 

routine analysis of soil samples in the laboratory and on-site. For liquid samples, 

ATR MIR measurements are more useful and many applications have been reported. 

Pejcic et al.104 reviewed the use of MIR spectrometry for analysis of organic 

pollutants in aqueous environments and found that ATR MIR spectrometry had 

greater selectivity over other technologies and could be routinely used to screen a 

wide range of compounds and contaminants. A novel ATR-FTIR sensor was 

developed by Acha et al.105 to measure non-invasively the concentration of 

chlorinated species in the aqueous effluent of a de-chlorinating bioreactor. NIR 

analysis will not contribute a lot of information to sample analysis. There may be 

sensitivity issues around ATR MIR spectrometry which could limit opportunities for 

certain sample types. 

 

Pharmaceutical products and development – NIR spectrometry has been widely used 

to analyse development samples and products for a number of years, leading to a 

number of reviews of the application of NIR spectrometry in the pharmaceutical 

industry.2, 19, 106 NIR spectrometry has been used successfully in the monitoring of 
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powder blending processes,16, 107 to gain understanding of high shear granulation 

processes,108 and to monitor content uniformity of pharmaceutical tablets.109, 110 MIR 

analysis is also widely used in pharmaceutical product and development applications 

with examples arising for the on-line monitoring of batch cooling crystallisations85 

and chemical imaging of pharmaceutical tablets.111 Druy112 described some of the 

applications for MIR spectrometry for the pharmaceutical process environment. 

Also, Févotte113 outlined the use of MIR and NIR spectrometry for in situ monitoring 

of pharmaceutical crystallisation processes. 

 

Packaging - Identification of plastics and films using MIR and NIR114 spectrometry 

is possible. An example of ATR-FTIR imaging was described by van Dalen et al.115 

to identify and locate different layers in multilayer plastic packaging material. NIR 

reflectance measurements were used by Feldhoff et al.116 for the on-line monitoring 

and identification of waste consumer packaging. The NIR reflectance set up allowed 

the collection of NIR spectra of waste packaging materials located on an industrial 

conveyer belt when the belt is moving at 1 m/s. With the use of a decision algorithm 

a distinction could be made between packaging of polyethyleneterephthalate (PET), 

polystyrene (PS) or polyvinylchloride (PVC) and cardboard beverage containers; 

although, some misclassifications were observed for products of polyethelene (PE) 

and polypropylene (PP). Improvements suggested by the authors could allow on-line 

monitoring by NIR spectrometry of waste consumer packaging with the conveyer 

belt at a speed of 2 m/s.  



47 

 

 

 

 

3.3 Conclusions 

The review of the literature has demonstrated that there are numerous examples 

where in-line MIR or NIR probes have been implemented or could provide benefits 

if used for process analysis. However, some applications are more suited to using gas 

cells for process monitoring, for example analyses involving combustion gases, 

speciality gas products, ambient air monitoring and semiconductors. Aerosol 

products could potentially be analysed by transmission infrared spectrometry, 

however, the possibility of reflection and lots of scattering at the particle interface 

could lead to complicated measurements. Analysis is best completed after the aerosol 

particles are first removed. The issues surrounding the analysis of direct samples, 

suggests that in-line analysis would be difficult. 

 

There are some areas where use of combined probes could be beneficial such as the 

combination of ATR MIR and transmission NIR spectrometry. For refinery 

production there is potential scope for a combination probe where the NIR 

transmission mode is used for major component analysis and the ATR MIR mode for 

minor component analysis. There are, however, some issues with compatibility of the 

probes with the physical form of the samples as some material may be very viscous. 

Fuel samples in general tend to be less viscous and therefore insertion probes may be 

more compatible. NIR transmission spectrometry would be useful for the calculation 

of octane numbers for the bulk components and MIR spectrometry may have some 

potential in limited wavenumber ranges for analysis of additives present in the 

samples. The application area of food products (including fermentation processes) 

already utilises in-line NIR and MIR spectrometry a great deal, however, there could 

be some benefits from the use of a combined ATR MIR and transmission NIR probe 

for the analysis of liquid samples. There may even be some advantages in combining 

(fusing) the MIR and NIR data as well, especially for fermentation samples. The 

combination of NIR spectrometry for the analysis of bulk components and MIR 

spectrometry to analyse additives or impurities could also be beneficial within the oil 

and lubricants area, similarly, there is also an opportunity for the analysis of liquid 

samples in the general chemical area. Another area where this type of combined 

probe could have some benefits is in chemical reaction monitoring. A combined 
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probe could allow the product formation to be monitored by NIR spectrometry and 

use MIR spectrometry to monitor specific compounds (e.g. intermediates or by-

products) to allow more information about reaction mechanisms. For monitoring of 

heterogeneous reactions where the liquid contains small amounts of particulate 

material, measurements using a combined probe could be useful. For example, MIR 

spectra could be useful for the de-convolution of contributions of scattering and 

absorption while NIR spectrometry could be used for the analysis of bulk samples. In 

the area of consumer products, in-line MIR spectrometry may be useful for the 

analysis of complex blends of liquid samples. However, there may be some 

applications for use of a combined probe; where NIR spectrometry could analyse the 

bulk components and MIR spectrometry could monitor trace components. 

Pharmaceutical products and development and speciality products could also be 

areas where the use of a combined ATR MIR – transmission NIR probe could be of 

benefit in process monitoring. 

 

Another type of combined probe that may provide some potential benefit is a  

MIR – NIR reflectance probe, which would be particularly useful for analysing 

viscous liquids and solids samples. Production samples of plastics and polymers tend 

to be very viscous or even solid materials, so insertion probes will be of limited use 

for analysis. Some assessment would be required to determine if a combination of 

non-invasive reflection measurements of NIR and MIR spectra, over NIR 

measurements alone, gives some benefits in the analysis of copolymer samples, 

polymer melts and polymer blends. Some of the comments on monitoring of plastic 

and polymer applications are also appropriate to polymer products. Solid polymer 

production would be best studied through reflection measurements, whereas NIR 

transmission measurements could possibly be used for flow-through measurements 

of molten material. A combined reflectance probe may be more appropriate for the 

analysis of viscous liquids and solids samples from the food products area, such as 

dairy products, oils and fats. There may also be some opportunity for a combined 

probe in reflectance mode for solid or powder general chemical samples. Solid 

samples of speciality products are most likely to be monitored using non-invasive 

reflectance measurements; however, in this area the majority of analysis would be 
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made using NIR spectrometry rather than MIR spectrometry. Conversely, the area of 

pharmaceutical products and development could be beneficial for composition 

monitoring; NIR spectrometry would be useful for blend control and major 

component analysis of tablets and powders and MIR spectrometry would be used for 

monitoring minor components. Packaging samples are essentially solid materials 

which require reflection measurements, with specific compounds and additives being 

analysed by MIR spectrometry and NIR spectrometry being used to monitor the 

process. 

 

From the assessment of the literature and evaluation of application opportunities, it is 

apparent that development in probe technology would be beneficial in many areas of 

process analysis. The research described in this project focussed mainly on 

developments in ATR-MIR probe design and opportunities. However, the analysis of 

application areas has provided Fibre Photonics with incentives to develop combined 

NIR – MIR probes that could extend their product range. One of the areas where a 

combined probe could be useful is in fermentation monitoring and a preliminary 

evaluation of the possible benefits in this area has been included in the research 

programme. 
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4 ATR MIR probe development 

4.1 Introduction 

4.1.1 ATR MIR probes for in situ analysis 

The advancements in in situ MIR spectrometry over the years have been significant 

and have seen this technique being successfully implemented in industry. MIR 

spectroscopy has not been as commonly employed as an in situ technique due to the 

limitations in optical fibres; more often NIR spectroscopy is implemented as it uses 

cheap silica fibres which allow a process to be monitored up to hundreds of meters 

away. However, MIR spectroscopy cannot make use of silica fibres as they do not 

transmit in this region and so special materials are required. Due to this limitation a 

large amount of research has been devoted to the development of both optical fibres 

and probe designs to increase the use of in situ MIR spectrometry. Chapter 2 details 

the different optical fibres that can be used for in situ infrared spectrometry and the 

improvements that have been made to allow greater use of MIR for in situ 

measurements. Different probe designs can be used to allow in situ measurements by 

infrared spectrometry; this research looks at the development of ATR MIR probes 

that couple with polycrystalline silver halide fibres. 

 

Since the implementation of ATR probes for in situ analysis, various developments 

have been made and currently there are many manufacturers of in situ ATR probes 

for MIR spectrometry with slight differences in their design. The ATR probe design 

used by Fibre Photonics1, 2 is adapted from a patent by Day and Poulter3 which 

described an optical fibre probe for ATR measurements, see Figure 4.1 for a 

schematic of the Fibre Photonics ATR probe. The design consists of two parallel 

polycrystalline silver halide fibres that run from a diamond crystal tip to the end of 

the assembly at the sma connectors. A hastelloy bodied shaft protects the fibres and 

allows the fibres to be positioned at the edge of the crystal tip. The shaft is 

completely sealed allowing immersion into the samples for analysis. The rest of the 

fibre from the end of the shaft to the sma connectors is sealed in a protective conduit 

material. There is a split introduced to separate each fibre which allows one fibre to 

be attached to the source and the other to the detector. The radiation passes through 
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the excitation fibre connected to the source by total internal reflection to the diamond 

crystal tip; at the crystal the evanescent wave will interact with the sample at the 

sample/crystal interface where the wave will be attenuated in the regions of the 

spectrum at which the sample absorbs. 

 

 

 

 

 

Figure 4.1: Schematic of ATR probe design adapted from information supplied by Fibre 

Photonics.1 

 

Other manufacturers of ATR probes include Remspec Corporation4, 5, Bruker 

Optics6, 7 and Mettler Toledo8 and with the exception of the probe from Remspec 

Corporation, they appear to use a dual fibre design similar to that of Fibre Photonics. 

The Remspec Corporation probes differ from the other manufacturers by using fibre 

optic bundles in their ATR probes, detailed in a patent by Berard et al.5 The bundle 

of infrared transmitting fibres is fitted next to the ATR crystal, where the radiation 

enters the ATR crystal from one or more excitation fibres and is reflected in the 

crystal and transferred to the detector through multiple collection fibres. 

 

Each manufacturer incorporates different geometries of ATR crystal in the design of 

their ATR probes; Fibre Photonics uses a single face cone geometry (Figure 4.2a), 

Remspec Corporation uses a multiple face cone geometry (Figure 4.2b), Bruker 
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Optics uses a prism geometry (Figure 4.2c) and Mettler Toledo uses a disk geometry 

(Figure 4.2d). 

 

Figure 4.2: Schematics of diamond crystal geometries used in (a) Fibre Photonics, (b) Remspec 

Corporation, (c) Bruker Optics and (d) Mettler Toledo ATR probe designs. 

The different crystal geometries permit different numbers of reflections at the crystal 

interface, which will affect the pathlength and the performance of the probes. In 

addition, other design features can affect the performance and robustness of ATR 

probes and as such, there is a constant effort by probe manufacturing companies to 

improve their design and manufacturing procedures to produce better quality and 

more robust probes. 

4.1.2 Design features 

Design alterations can have two main impacts, firstly, to deliver better performance 

for the end user and secondly, to improve the cost and efficiency to manufacture the 

probes for the company. The make-up of the fibre optic probe is complex and there 

are many design features associated with the manufacture that can be altered in an 

attempt to improve the overall performance of the probe. Some of the design features 

that have been addressed by Fibre Photonics include: the fibre selection, the 
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geometry and size of the diamond crystal tip, the alignment of the fibres within the 

probe shaft, the use of modular components for manufacture of the probes, and also 

the implementation of a mono fibre design for smaller diameter probes. These design 

features are discussed in more detail below. 

 Fibre selection 4.1.2.1

The fibre selection can have a large impact on the performance of the final 

manufactured probe, where both the length of the fibre and the quality of the fibre 

can affect the attenuation. In general, the longer the length of the fibre the greater the 

potential losses of radiation will be as it travels along the length of the fibre; small 

losses will occur at each internal reflection within the probe. Due to the standard dual 

fibre design of Fibre Photonics probes, any change in the fibre length will affect both 

the excitation and collection fibres. For example, the difference in the total amount of 

fibre between a 1 m probe and a 1.5 m probe is 1 m. The quality of the fibre can also 

affect the performance of the probe; polycrystalline silver halide fibres are produced 

through an extrusion process and the spectral quality of the fibres can vary during 

production. In recent years, Fibre Photonics has introduced an extra step in their 

manufacturing process to test for the spectral quality of the output fibre from the 

extrusion process to determine the most suitable fibres for use in probe manufacture. 

The fibres can be divided into two classes, standard grade fibre and spectral grade 

fibre; it is spectral grade fibre which is used for the manufacture of the ATR probes. 

The main difference in quality between the two classes is in the attenuation 

characteristics; the spectral grade fibre has lower attenuation at the edges of the MIR 

region and, therefore, is better suited for use in ATR probes to allow better 

performance across the whole operating region. 

 Seals 4.1.2.2

Seals are inserted around the diamond crystal tip and are used to seal the probe end 

when the probe is fully manufactured. If the seal is fitted correctly it will create a 

complete seal around the diamond crystal, preventing any liquids or substances 

infiltrating into the inside of the probe and damaging the fibres. Different materials 

can be used to make the seal, however, care must be taken to ensure the quality and 
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ruggedness of the seal is not compromised when the entire probe is fitted together; as 

elevated pressures are used at this stage. Fibre Photonics found that their original 

seals made of polytetrafluoroethylene (PTFE) could occasionally crack under this 

pressure, therefore, allowing leaks to occur in the probes. In addition, a PTFE peak 

could be seen in the spectra of all probes manufactured with the PTFE seal. The 

company currently use polyether ether ketone (PEEK) seals in their manufacturing 

production, which have been found to be more robust and can withstand the higher 

pressures required during manufacture. The main advantage of this design feature 

change is to aid the production of more robust probes rather than increasing 

performance, however, it is still important to the manufacture of these probes. 

 Geometry and size of crystal 4.1.2.3

The design of the diamond crystal can impact on the overall performance of the 

probes as well as manufacturing costs. The diamond crystal tip is an expensive part 

of the manufacture of these ATR probes, therefore, a reduction in size can provide 

cost saving benefits to the company. In addition, if the geometry and size of the 

diamond crystal is optimised, improvements to the performance can be made. The 

size and geometry of the crystal tip are important in the manufacture of ATR probes 

as they can impact on both the angle of incidence of the radiation as well as the 

number of internal reflections at the crystal. When these two properties are altered it 

can affect the pathlength of the probe and hence the overall performance. It is, 

therefore, critical that when changes are made to the size and geometry of the 

diamond crystal tip, that they do not have a detrimental effect on the path length of 

the probe. Fibre Photonics originally produced probes with a 3 mm diamond cone 

crystal, but have since moved to a 2.4 mm diamond cone with a slight change in 

geometry, a schematic of the two diamond cones are given in Figure 4.3 a and b, 

respectively. 
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Figure 4.3: Schematic of two diamond crystal geometries used by Fibre Photonics, supplied by 

Fibre Photonics.1 

The reduction in size and alteration in geometry are thought to reduce the cost of 

manufacturing, whilst maintaining the overall performance of the ATR probes. The 

geometry of the crystal used with the mono fibre probe is the same as Figure 4.3a, 

however, it is only 1.2 mm in size. 

 

Fibre Photonics completed an investigation of diamond sizes using a ray tracing 

program to determine the optimal dimensions to obtain the highest transmission 

output; Figure 4.4, gives an schematic of the diamond cone and fibres with the ray 

tracing lines. 
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Figure 4.4: Schematic of ray tracing lines exiting one fibre, reflecting off the diamond crystal 

twice back into the collecting fibre; where the diameter (D) and length (L) were investigated, 

adapted from figure supplied by Fibre Photonics.1 

Figure 4.4 shows the radiation having two points of contact with the diamond crystal, 

but due to the cone shape the incident radiation, which will diverge as it exits the 

fibre, will actually reflect off the curve of the crystal at many points; some of the 

radiation will be reflected as shown in Figure 4.4, however, some will also be 

reflected around the cone in a helical manner with some radiation being lost and 

some transferred to the detector through the collection fibre. Therefore, Fibre 

Photonics estimate their diamond cones as being 2 – 3 reflections. The two 

dimensions that have been investigated are the diameter (D) of the widest point of 

the crystal cone and the length (L) of the angled base section of the diamond crystal. 

The ray tracing program simulated the effect on the radiation trace when the two 

dimensions were altered. Many different combinations were analysed and the 

% transmission was plotted against the dimensions D and L in mm; the plotted 

results supplied by Fibre Photonics are given in Figure 4.5. 

L D
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Figure 4.5: Plot of % transmission vs. diamond crystal diameter (D) and length (L) as depicted 

in Figure 4.4, supplied by Fibre Photonics.1 

The results indicated that a higher transmission was reached as the dimensions of 

both D and L were reduced. Using this information and the ray tracing images 

similar to Figure 4.4, the dimensions of the current diamond crystal, given in Figure 

4.3b were derived: D was set at 2.4 mm and L at 0.2 mm. This investigation only 

highlighted the perceived advantages of the probe design in terms of optical 

throughput rather that the effect on pathlength. 

 Alignment 4.1.2.4

The alignment of the fibres is a crucial step in the manufacturing of ATR probes. If 

the fibres are out of alignment, total internal reflection may not occur in the crystal as 

the radiation may not be guided into the crystal at an appropriate angle or position for 

total internal reflection to occur, therefore, no signal will be produced. Another 

possibility is that the collection fibre is out of alignment and much of the reflected 

radiation will not be detected by the collection fibre. To prevent misalignment and 

provide a more repeatable manufacturing process, the fibres are placed in a titanium 



   

63 

 

 

 

 

ferrule and then pushed up against the base of the diamond crystal. The ferrule is 

designed with channels for the precise alignment required for the fibres and the 

diamond cone selected. Another effect occurs when the fibres are not correctly lined 

up against the crystal, known as fringing. The main cause is from incorrect cutting of 

the fibre ends; if there is an angled gap between the end of the fibre and the crystal 

base, fringing will occur. Ensuring that the fibres are cut straight can minimize the 

effect of fringing. In addition, a malleable non-IR active material can be placed at the 

end of the crystal between the crystal base and the ends of the fibres. Therefore, 

when the fibres are pressed up against this material it will mould around the fibre end 

preventing any gaps and, therefore, impeding the fringing effect, see Figure 4.6. 

 

Figure 4.6: Schematic diagram of fibres placed in ferrule and pressed up against the crystal 

base, showing the effect of fringing when no malleable material is used and no fringing when 

material is used. 

To ensure good performance, it is still important to have straight fibre ends and to 

keep the amount of the softer material to a minimum. Care must also be taken when 

using this extra material as refraction of the light will occur at the interface between 

each different material and so, the probe must be designed in a way that total internal 

reflection in the crystal is still possible. Fibre Photonics used AgCl as the soft 

malleable material for earlier manufactured probes, however, during the 

manufacturing process when the parts were pushed together to gain good contact, 

fibre breakage or seal breakage could occur. For that reason, Fibre Photonics opted to 

remove the AgCl material from production and instead have improved the cutting of 

the fibre ends to minimise the fringing, while preventing seal and fibre breakage. 

Ferrule

Fringing

Crystal base

Ferrule

Crystal base

Malleable 
material

Fringing occurs No Fringing occurs
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 Use of modular components for manufacture 4.1.2.5

One of the major challenges to the manufacturing of probes is achieving a 

consistently robust product. A way to improve the manufacturing process is the use 

of modular components, where the aim is to standardise the opto-mechanical parts. 

The modular components consist of standardised parts that have been fitted together 

before assembly of the probe. Each modular component is designed to fit together 

using simple connections. Through the standardisation of the different parts of the 

probes, assembly should be more repeatable, providing robust probes with consistent 

performance. An added advantage of the use of modular components is faster 

assembly of the probes without loss of quality. Before the use of modular 

components, the probes consisted of several parts that required fitting and welding 

together in specific ways to produce the final product. This process can affect the 

repeatability and robustness of the probes, as the parts may be fitted together by 

different people leading to slight differences in the final product. In addition, the 

process of fitting together the individual parts could lead to twisting or breakage of 

the fibres inside the probe. The use of modular components should help standardise 

the manufacturing process and minimise the occurrence of twisting or breakage of 

fibres. A potential limitation to using this universal design approach is that small 

adjustments are difficult to make, however, the requirement to make any adjustments 

should be minimal and the overall repeatability and robustness of the probes should 

be improved. 

 Mono fibre design 4.1.2.6

Sometimes there may be a requirement to analyse a very small amount of sample or 

insert a probe into a small vessel, therefore standard sized probes may be too large. 

Due to the dual fibre design of Fibre Photonics’ standard probes, it is difficult to 

reduce the probe dimensions to less than 6 mm outside diameter. Fibre Photonics 

have, therefore, implemented a design change to produce smaller diameter probes, by 

using a single fibre for both the excitation and collection of radiation. The mono fibre 

design incorporates a 2.7 mm outside diameter probe with a 1.2 mm diamond crystal 

tip. The design has the advantages of using a smaller diamond crystal tip, less optical 

fibre and less material for the probe shaft, reducing the cost of manufacture, whilst 
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maintaining good spectral performance and allowing sample monitoring in small 

vessels and samples. 

4.1.3 Basis of study 

Many probe design features can be altered to improve the product quality and 

performance and the above review details some of the changes in design features that 

have been implemented by Fibre Photonics when manufacturing their probes. In this 

study, six probes were selected, where changes had been made to the design of the 

probe, to investigate the performance of the ATR MIR probes. The probes were used 

to acquire spectra of a set of ternary mixtures and calibration models were built to 

predict the concentration of the three analytes present in the mixtures. The root mean 

square error of prediction (RMSEP) statistic and percentage relative standard 

deviation (%RSD) were used to assess if the performance of the probes was altered 

when changes to the probe design were made. Furthermore, an investigation into the 

determination of the pathlength of the six probes was completed. A better 

understanding of how the pathlengths of the probes changed over the spectral range 

may help in understanding any differences in the spectra when modifications were 

made to the design of the probe. 
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4.2 Experimental 

4.2.1 Samples 

A set of mixtures of acetone, ethanol and ethyl acetate were prepared to assess the 

performance of the ATR MIR probes. The mixtures were prepared using the method 

described by Holden,9 outlined below. 

- Each mixture was prepared in a glass vial that had been rinsed in acetone and 

allowed to dry before use. 

- The weights of each component were measured out using a balance with an 

accuracy of 4 decimal places; readings were recorded to 2 decimal places. 

Appendix 4.1 contains a table representing the weights of each of the three 

components for each of the 16 mixtures prepared. 

- All weights were recorded with the lid on the sample bottles, so as to help 

prevent evaporation of the liquids. Pasteur pipettes were used to fill the vials 

to reduce the error and maintain weight values accurate to 2 decimal places. 

All measurements were taken using the tare button and the total weight 

calculated using a difference by weight approach (see Appendix 4.1 for an 

example calculation). 

The concentrations of each component in the mixtures were then calculated as a 

weight percentage; these values can be viewed in Table 4.1. Mixtures 1 – 10 

represent the calibration samples and mixtures 11 – 16 represent the test samples. 
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Table 4.1: Concentrations of acetone, ethanol and ethyl acetate present in each mixture. 

 Concentrations as weight percentage (%w/w) 

Mixture number Acetone Ethanol Ethyl acetate 

1 – calibration 1 0.0 100.0 0.0 

2 – calibration 2 100.0 0.0 0.0 

3 – calibration 3 0.0 0.0 100 

4 – calibration 4 51.3 48.7 0.0 

5 – calibration 5 49.8 0.0 50.2 

6 – calibration 6 0.0 49.9 50.1 

7 – calibration 7 34.1 33.9 32.0 

8 – calibration 8 65.5 17.2 17.3 

9 – calibration 9 18.0 65.7 16.3 

10 – calibration 10 17.2 18.0 64.8 

11 –test 1 6.1 84.6 9.3 

12 –test 2 28.4 58.1 13.5 

13 –test 3 42.5 32.2 25.3 

14 –test 4 82.6 10.6 6.8 

15 –test 5 47.4 6.9 45.7 

16 –test 6 10.8 18.3 70.9 

4.2.2 MIR spectrometry 

MIR spectra were acquired with a resolution of 16 cm-1 in the 400 – 4000 cm-1 range 

using an ABB MB3000 FTIR spectrometer, coupled with polycrystalline silver 

halide fibres to hastelloy bodied probes with diamond cone crystals (Fibre Photonics 

Ltd, Livingston, UK) of different design features (see section 4.2.3 for details of the 

different probes assessed in this study). The spectrometer was fitted with a fibre optic 

interface to allow the attachment of the different ATR probes. Spectra were acquired 

using Horizon MB™ FTIR software version 3.0.13.1 (ABB, Canada) and GRAMS 

(Graphic Relational Array Management System) /AI software version 7.00 (Galactic 

Industries Corporation, Salem, USA). The spectra were exported as text files from 

Horizon software and as SPC files from GRAMS software and imported into Matlab 

data analysis software. 
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4.2.3 Probes assessed 

Six ATR MIR probes were selected where alterations had been made to the design 

features. Table 4.2 lists the six probes assessed in this study; details of the 

differences in design and the change in manufacturing process are provided in the 

table. 

Table 4.2: Details of Fibre Photonics ATR probes assessed in this study; the major change to the 

design feature during manufacture is listed. 

Probe Outer diameter 

(mm) 

Probe body 

length (cm) 

Fibre length 

(m)◊ 

Diamond 

size (mm) 

1 

12 30 1.8 3 

New diamond cone sealing introduced, other features remained the same as 

the original design. AgCl used between the optical fibres and crystal base. 

2 

12 15 2.8 3 

Fibre alignment altered; also incorporates new diamond cone sealing. AgCl 

used between the optical fibres and crystal base. 

3 

12 30 1.0 2.4 

Different diamond cone size and geometry with the altered fibre alignment 

and the new diamond cone sealing. No AgCl used. 

4 

6 50 1.5 2.4 

Use of modular components, incorporates the change in design features made 

to probes 1 – 3. No AgCl used. 

5 
2.7 10 1.1 1.2 

Reduction of probe size including a mono fibre design.* No AgCl used. 

6 

12 30 2.0 3 

Original design features. AgCl used between the optical fibres and crystal 

base. 
◊This is the length of the fibre when measured from diamond tip to sma connectors; the actual length 

of polycrystalline fibre within the probe and connected cable will be double, see section 4.1.1 and 

4.1.2.1. 
*Different design to other 5 dual fibre probes, see section 4.1.2.6. 
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4.2.4 Methods of analysis 

 Probe performance 4.2.4.1

The probe was inserted into each solvent mixture in a vial and sealed with sealing 

film before analysis; when not in use, the sample vials were sealed to prevent any 

evaporation. The probe was washed and cleaned with water and acetone and allowed 

to dry prior to each analysis. An air background reference single beam spectrum was 

collected and the sample single beam spectrum ratioed against this to produce a 

transmission spectrum, which was then converted to an absorbance spectrum. 51 

scans were accumulated for each measurement (acquisition time of 51 s), with six 

repeat measurements made for each sample. 

 Pathlength determination 4.2.4.2

To understand the pathlength differences of the six probes and how the pathlength 

changes over the spectral range, an investigation was carried out to determine the 

pathlengths of the probes at a selection of wavenumbers in the range 560 –  

1790 cm-1. The data used for calculation of the molar absorptivity coefficient was 

provided for the investigation, but for confidentiality reasons, the identity of the 

source cannot be disclosed. The first part of this investigation involved the 

determination of the molar absorptivity coefficient of a solvent at a range of 

wavenumbers across the spectral range of interest. To do this, measurements were 

taken of an empty cell (Specac variable pathlength liquid cell with ZnSe windows, 

32 scans at 4 cm-1) to obtain a sine wave pattern, which is a result of interference 

phenomena within the cell, see Figure 4.7.10 
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Figure 4.7: The formation of the spectral interference pattern. The conditions are easier to 

explain with the slanted incident beam, however, are identical to a perpendicular incident beam. 

A part of beam 1 is reflected at point A and, again, a fraction of this is reflected at point B. At 

position B, this fraction of beam will interfere with beam 2 resulting in constructive or 

destructive interferences; figure reproduced from IR Spectroscopy.10 

The difference in refractive index between the air and window material was great 

enough to reflect the radiation back and forth. Constructive and destructive 

interference occurred and the spectrum indicates at which wavelengths this occurred. 

The spectral interference depended on the pathlength, �, between the cell windows. 

Using the maxima or minima of the interference in the spectrum, the pathlength, �, 

could be calculated using Equation 4.1.10 

� = �2 1�̅� − �̅
 Equation 4.1 

The number of maxima (or minima) between the selected wavenumbers �̅� and �̅
 is 

denoted by �. The units of � from Equation 4.1 are cm. This procedure was used to 

calculate the pathlengths of the variable pathlength cell when set at six nominal 

pathlengths (80, 90, 100, 110, 120 and 150 µm) to determine the actual pathlength of 

the cell at these settings. When the cell was in each of the six settings it was also 

filled with acetone and a spectrum acquired (32 scans at 16 cm-1) for calculation of 

the molar absorptivity coefficient of this solvent. The calculated pathlengths for the 

six settings were plotted against the absorbance values of the acetone spectrum 

acquired at the same pathlength. The gradient of the trendline constrained through 

zero is equivalent to the molar absorptivity coefficient, �, multiplied by the 

1
2

1
1 + 2

A
B

Cell windows
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concentration, �, of the solvent, from the Lambert-Beer-Bouguer law in Equation 

4.2, where 
 is the absorbance and � is the pathlength. 


 = ��� Equation 4.2 

The equation of the trendline is � = ��, where � is the absorbance and � is the 

pathlength, therefore � = ��. 
 

The second part of the investigation was to use the calculated molar absorptivity 

coefficient to determine the pathlength of the six ATR MIR probes at the same 

selection of wavenumbers used for part 1. To do this the absorbance spectra of 

acetone acquired with each of the six probes as per section 4.2.4.1 were used with the 

calculated molar absorptivity coefficient at the selection of wavenumbers to calculate 

the pathlength of the probes at that specific wavenumber. 

4.2.5 Data analysis 

Data were imported into Matlab versions 7.5.0.342 (R2007b) and 7.11.0.584 

(R2010b) (Mathworks Inc., Natick, MA, USA) with PLS_Toolbox version 4.1 

(Eigenvector Research Inc., WA, USA). Spectra were analysed and regions in the 

data that would provide information about the samples were used to construct 

calibration models. The spectra from the calibration solutions and their concentration 

values were used to produce multivariate partial least squares (PLS) calibration 

models. All models were constructed using the spectral region 560 to 1790 cm-1 and 

mean centred absorbance data. The average predicted concentrations from the 

models were compared with the expected concentrations of the three analytes and the 

root mean square error of prediction (RMSEP) values were calculated within Excel 

2007/2010 (Microsoft Corporation) using the function given in Equation 4.3 

(replicate of Equation 2.11 in chapter 2, for convenience) to determine numerically 

the level of error associated with each of the predictions. 

����� = �∑ ���� − ���
���� �  Equation 4.3 
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Where, 

 ���= predicted value  

��= known value 

 � = number of samples 

 

The relative standard deviation (%RSD) was calculated for the prediction of each test 

mixture for each analyte using Equation 4.4, where � is the standard deviation and �̅ 

is the average of the six repeat measurements. 

%�� = ��̅ × 100 Equation 4.4 

The average %RSD was then calculated for the predicted concentration of the six test 

samples for each analyte. The RMSEP value and %RSD were compared and used to 

determine if the performance of the probes had been improved when design changes 

were implemented.  
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4.3 Results 

4.3.1 Probe performance 

 Spectral interpretation 4.3.1.1

To investigate the performance of the six probes the spectra acquired were compared 

to determine any changes or improvements when different probes were used to 

analyse the samples. The acquired pure component spectra of ethanol, acetone and 

ethyl acetate from the six probes were compared to determine if there were any 

differences present. The overlaid average absorbance spectra for ethanol (calibration 

1) acquired using the six ATR MIR probes are given in Figure 4.8. The most notable 

difference is the change in absorbance between the spectra; this can be seen clearly 

in Figure 4.9 in the range 950-1200 cm-1. The differences in the absorbance between 

the six probes change with wavenumber over the spectral range; the greatest 

difference is observed for the peak around 1040 cm-1. Apart from the differences in 

absorbance, the six ATR MIR probes produce similar spectra. 
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Figure 4.9: Overlaid average (n=6) ATR MIR absorbance spectra of ethanol (Calibration 1) 

acquired in the range 950 – 1200 cm-1 using probes 1 – 6. 

The overlaid average absorbance spectra for acetone (calibration 2) acquired using 

the six ATR MIR probes are given in Figure 4.10. As for ethanol, a difference in the 

absorbance between the spectra of acetone from the six probes can be observed. The 

difference in absorbance is larger at higher wavenumbers than at lower 

wavenumbers; this is easily observed when comparing the change in absorbance for 

peaks around 900 cm-1 and 1700 cm-1. In addition, there appears to be a change in the 

ratio of the larger peaks, as illustrated for two peaks in the range 1190 – 1400 cm-1 in 

Figure 4.11. The ratio of the three larger peaks of the acetone spectrum (1219 cm-1, 

1358 cm-1 and 1713 cm-1) were calculated and compared, see Table 4.3. The peak at 

1219 cm-1 was assigned a value of one and the relative ratio of the other peaks was 

determined. 
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Table 4.3: Table of calculated ratio of the three largest peaks present in the acetone spectra 

(Calibration 2) acquired with the six ATR MIR probes. 

 Wavenumber (cm-1) 

 1219 1358 1713 

Probe 1 1.0 0.8 1.1 

Probe 2 1.0 0.9 1.3 

Probe 3 1.0 0.9 1.2 

Probe 4 1.0 0.8 1.1 

Probe 5 1.0 1.0 0.4 

Probe 6 1.0 1.1 1.9 

 

In general for probes 1 – 4 the absorbance of the peak at 1358 cm-1 is the smallest, 

then it is the peak at 1219 cm-1 and finally the largest absorbance is observed for the 

peak at 1713 cm-1. Probes 5 and 6 do not follow this pattern; for probe 5 the two 

peaks at 1219 cm-1 and 1358 cm-1 are equivalent and the absorbance of the peak 

observed at 1713 cm-1 is considerably smaller. For probe 6, the absorbance of the 

peak at 1358 cm-1 is larger than that of the peak at 1219 cm-1. These results indicate 

that there is a difference between the six probes; the reason for the difference in 

probe 5 is most likely due to the change in the design of the probe as this is a mono 

fibre design with a smaller diamond cone size than the other probes. Probe 6 was the 

original manufacturing design; therefore the changes incorporated in probes 1 – 5 

appear to have altered the spectrum of acetone. 
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Figure 4.11: Overlaid average (n=6) ATR MIR absorbance spectra of acetone (Calibration 2) 

acquired in the range 1190 – 1400 cm-1 using probes 1 – 6. 

The overlaid average absorbance spectra for ethyl acetate (calibration 3) acquired 

using the six ATR MIR probes are given in Figure 4.12. As for ethanol and acetone, 

the main observation is the difference in the absorbance with wavenumber over the 

spectral range. However, in the spectral range 560 – 1000 cm-1, there is a smaller 

difference in the absorbance values of approximately 0.1 or less for the six ATR MIR 

probes, as illustrated in Figure 4.13. From 1000 – 1790 cm-1 larger differences occur 

with the largest absorbance difference observed for the peak at 1735 cm-1, as shown 

in Figure 4.14, where a difference in absorbance greater than 0.8 is observed. For all 

three analytes, probes 1 – 4 give more similar absorbances when compared with 

probes 5 and 6. 

  

1200 1250 1300 1350 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

Wavenumber (cm-1)

A
b

so
rb

an
ce

 

 
Probe 6
Probe 3
Probe 2
Probe 4
Probe 1
Probe 5



   

79 

 

 

 

 

  

F
ig

ur
e 

4.
12

: O
ve

rla
id

 a
ve

ra
ge

 (
n=

6)
 A

T
R

 M
IR

 a
bs

or
ba

nc
e 

sp
ec

tr
a 

of
 e

th
yl

 a
ce

ta
te

 (
C

al
ib

ra
tio

n 
3)

 

ac
qu

ire
d 

 in
 th

e 
ra

ng
e 

56
0 

– 
17

90
 c

m-1
 u

si
ng

 p
ro

be
s 

1 
– 

6. 

60
0

80
0

10
00

12
00

14
00

16
00

0

0.
51

1.
5

W
av

en
um

be
r 

(c
m-1

)

Absorbance

 

 

P
ro

b
e 

6
P

ro
b

e 
4

P
ro

b
e 

3
P

ro
b

e 
2

P
ro

b
e 

1
P

ro
b

e 
5



   

80 

 

 

 

 

 

Figure 4.13: Overlaid average (n=6) ATR MIR absorbance spectra of ethyl acetate (Calibration 

3) acquired in the range 560 – 1000 cm-1 using probes 1 – 6. 

 

Figure 4.14: Overlaid average (n=6) ATR MIR absorbance spectra of ethyl acetate (Calibration 

3) acquired in the range 1680 – 1780 cm-1 using probes 1 – 6. 

Reviewing the spectra acquired using the six ATR MIR probes; the design changes 

to the probes have not altered the general quality of the spectra. However, 

absorbance differences occur between the spectra of the probes, and in the case of 

acetone there are also some peak ratio differences. According to the Lambert-Beer-
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Bouguer law (Equation 4.2) there is a linear relationship between the absorbance, 

and the concentration and pathlength. In this research, the sample mixtures remained 

the same, therefore, the concentration and molar absorptivity coefficient are constant. 

In this instance, any change in absorbance is dependent on a change in pathlength. 

So, there must be pathlength differences between the six probes, see section 4.3.2 for 

the investigation into the pathlength of these probes. There is a further relationship 

between the pathlength and the number of reflections, given in Equation 4.5, where 

#$ is the penetration depth. 

� = #$ × %&. ()*+)�,-&�.	0,	,ℎ)	�(�.,0+ Equation 4.5 

Therefore, the change in pathlength can be associated with a change in the number of 

reflections at the crystal and/or a change in penetration depth. The penetration depth 

for a single reflection is related to the wavelength of the incident light, 2, and the 

angle of incidence at the crystal surface, 3, through Equation 4.6, where �� is the 

refractive index of the ATR crystal and �
 is the refractive index of the sample. 

#$ 	= 	2/	25��[.-�
3	 −	��
/���
]8.9	 Equation 4.6 

So, a change in absorbance can be associated with a change in the angle of incidence 

at a specific wavelength, through the influence on #$. 

 

A change in 3 and the number of reflections at the crystal could occur when the size 

and geometry of the diamond crystal are changed. A change in 3 will also be caused 

by differences in the alignment of the optical fibre to the crystal surface. Probes 1, 2 

and 6 have the original size and geometry of diamond, see Figure 4.3a. Probes 3 and 

4 incorporate a different diamond crystal shape and design (Figure 4.3b), Probe 5 

contains a smaller diamond crystal size, but uses the original geometry given in 

Figure 4.3a. 

 

Due to the helical nature of these cone designs discussed in section 4.1.2.3, it is 

difficult to determine what the number of reflections are and, therefore, it is possible 

that there is a difference between the two cone geometries. In addition, the 

dimensions of the two diamond crystals have different angles, therefore, the angle of 

incidence at the crystal will be different and a change in the penetration depth will 
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occur between the two crystals. As the manufacturing process consisted of manually 

fitting together many different parts, differences in alignment can be expected. 

However, with the use of modular components and mechanically stable clamp 

arrangements to hold the fibres in place to maintain their accurate position, fewer 

variations will occur in more recently manufactured probes. 

 

The differences in absorbance observed between the six probes are, therefore, most 

likely a combination of effects caused by the change in fibre alignment and diamond 

cone size and geometry. From this assessment, it is unclear why there is such a large 

change in absorbance between the original manufacturing process for probe 6 to the 

production of probe 1, where the design change was a new cone sealing, as it is 

unlikely that this will have an effect on the performance of the probe. 

 Predictions of concentrations of acetone, ethanol and ethyl acetate in 4.3.1.2

ternary mixtures 

PLS calibration models were built using the acquired spectra for the calibration 

samples in the region 560 – 1790 cm-1; the data were mean centered with no 

derivation. The number of latent variables required was determined from the model 

that produced the minimum value of the root mean square error of cross-validation 

(RMSECV) obtained using leave-one-out cross validation. Separate calibration 

models were built using the spectra acquired from each probe; the models were then 

applied to predict the concentrations of the three analytes in the test samples acquired 

on the same system as the data used for the calibration model. 

 

The accuracy of the concentration predictions of each component obtained with each 

probe were then compared to indicate any advantages of the design changes 

implemented in the probe manufacture. The expected and predicted concentrations of 

the three analytes were tabulated and the RMSEP and %RSD values were calculated 

to determine numerically the level of error associated with each of the predictions. 

The results for ethanol, acetone and ethyl acetate are given in Table 4.4, Table 4.5 

and Table 4.6, respectively. 
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Table 4.4: Expected and predicted concentrations for ethanol from PLS calibration models for 

probes 1 – 6. 

Mixture 
number 

Expected 
concentration 

(% w/w) 

Concentration predictions (% w/w) 

Probe 
1 

Probe 
2 

Probe 
3 

Probe 
4 

Probe 
5 

Probe 
6 

Test 1 84.6 84.7 84.9 84.9 83.8 82.2 83.5 

Test 2 58.1 58.0 57.4 57.8 58.1 57.4 58.7 

Test 3 32.2 31.5 30.7 31.1 30.2 30.1 32.4 

Test 4 10.6 10.4 9.6 10.5 10.5 9.9 9.2 

Test 5 6.9 5.2 4.0 4.7 4.4 5.0 5.7 

Test 6 18.3 18.1 17.6 17.6 17.8 17.9 17.7 

 RMSEP 0.7 1.4 1.1 1.4 1.6 1.0 

 %RSD 0.3 0.7 0.2 0.9 1.5 4.5 

 

Table 4.5: Expected and predicted concentrations for acetone from PLS calibration models for 

probes 1 – 6. 

Mixture 
number 

Expected 
concentration 

(% w/w) 

Concentration predictions (% w/w) 

Probe 
1 

Probe 
2 

Probe 
3 

Probe 
4 

Probe 
5 

Probe 
6 

Test 1 6.1 6.0 6.4 6.0 7.1 7.9 6.2 

Test 2 28.4 28.6 28.8 28.3 27.4 28.2 27.8 

Test 3 42.5 42.8 43.1 42.9 43.5 43.0 43.5 

Test 4 82.6 83.2 83.4 83.1 82.9 82.5 83.7 

Test 5 47.4 47.8 48.0 48.0 48.1 46.5 48.8 

Test 6 10.8 11.4 11.8 11.6 10.8 11.8 12.6 

 RMSEP 0.4 0.7 0.5 0.8 0.9 1.1 

 %RSD 0.2 0.3 0.1 0.8 2.2 1.8 
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Table 4.6: Expected and predicted concentrations for ethyl acetate from PLS calibration models 

for probes 1 – 6. 

Mixture 
number 

Expected 
concentration 

(% w/w) 

Concentration predictions (% w/w) 

Probe 
1 

Probe 
2 

Probe 
3 

Probe 
4 

Probe 
5 

Probe 
6 

Test 1 9.3 9.3 8.7 9.1 9.1 9.9 10.3 

Test 2 13.5 13.4 13.8 13.9 14.5 14.4 13.5 

Test 3 25.8 25.8 26.2 26.0 26.3 26.9 24.1 

Test 4 6.4 6.4 7.0 6.4 6.6 7.5 7.2 

Test 5 46.9 46.9 47.9 47.3 47.4 48.5 45.6 

Test 6 70.5 70.5 70.7 70.8 71.4 70.3 69.7 

 RMSEP 0.6 1.0 0.8 0.9 1.4 0.8 

 %RSD 0.2 0.4 0.1 0.2 2.7 1.2 

 

On assessing the results for the concentration predictions achieved with the six ATR 

MIR probes, several conclusions can be made: 

• Low RMSEP values were determined for probes 1 – 4 for the three analytes, 

with values less than 1.5% w/w. Small differences in the RMSEP values were 

observed, however, when considering the magnitude of the errors these 

differences are relatively insignificant. 

• Good %RSD values were also observed for probe 1 – 4 for the three analytes, 

with values less than 1%. 

• The RMSEP results for probe 5 were slightly greater than observed for 

probes 1 – 4, with values between 0.9 and 1.6% w/w. 

• The %RSD values were also greater for probe 5 than probes 1 – 4, with 

values between 1.5 and 2.7%. 

• The RMSEP results for probe 6 were similar to those observed for probes 1 – 

4, however, the %RSD values were greater than those observed for all the 

other probes. 

• Overall probes 1 and 3 give the best performance when the results for 

RMSEP and %RSD are considered. 
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Probe 5 implements a different probe design where a single fibre is used instead of a 

dual fibre design and also incorporates a smaller diamond crystal giving a smaller 

pathlength in comparison to the other probes. The signal to noise of this probe will, 

therefore, be smaller than achieved with the other probes and so more variation in the 

acquired spectra can be expected, which will result in larger %RSD results. 

However, even though probe 5 has a reduced sensitivity it can still be used 

successfully to analyse samples in combination with the MB3000 spectrometer, with 

RMSEP values less than 2% w/w and %RSD values less than 3%. Probe 6 has higher 

%RSD values in comparison to the other dual fibre probes, especially for the 

prediction of ethanol; this is most likely caused by the poor predictions for the low % 

w/w concentrations of this analyte. Probe 6 was the original manufacturing design, 

therefore, the results obtained with probes 1 – 4 suggest that the manufacturing 

alterations adopted had improved the performance of the probes. 

4.3.2 Pathlength investigation 

The spectrum of an empty variable pathlength cell was acquired and used to 

determine the actual pathlength of the cell at six settings. Figure 4.15 gives an 

example of the sine wave generated from this acquisition when the pathlength was 

set at 150 µm. The number of maxima was counted between the two points indicated 

in Figure 4.15 and used in Equation 4.1, given in section 4.2.4.2 to calculate the 

actual pathlength. 
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Figure 4.15: Spectral interference sine wave acquired when measurement of an empty variable 

pathlength cell set at 150 µm was made. 

The spectral interference sine waves were analysed for six set pathlength values: 80, 

90, 100, 110, 120 and 150 µm and the results are given in Table 4.7. The pathlength 

values are given here in cm as it allowed for a more accurate determination of the 

gradient of the trendline and so further calculations of the molar absorptivity would 

also be more accurate. 
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Table 4.7: Tabulated results for the calculation of the pathlength of the variable cell at six 

settings and the absorbance values for acetone at 1095 cm-1 at the same six settings. 

Set 
pathlength 

value 
(cm) 

�̅� (cm-1) �̅
 (cm-1) � �̅� − �̅
 
(cm-1) 

Calculated 
pathlength 

(cm) 

Absorbance 
at peak 

1095 cm-1 

0.008 1188 700 7 488 0.007 0.770 

0.009 1182 739 7 444 0.008 0.874 

0.01 1175 717 8 457 0.009 0.967 

0.011 1178 708 9 471 0.010 1.050 

0.012 1175 696 10 478 0.010 1.136 

0.015 1327 727 16 600 0.013 1.423 

 

The calculated pathlengths for the six settings were then plotted against the 

absorbance values at a range of wavenumbers across the spectral range analysed 

using the same settings. Nine wavenumbers were selected in total across the range 

787 – 1767 cm-1, as indicated in Figure 4.16. As many of the acetone peaks were off 

scale using the transmission cell, points were selected near to where the acetone 

peaks arise, where absorbance values could be detected. Ideally, points would be 

selected that give absorbance values less than 1.0, however, for this data, it would 

not have been possible to calculate the pathlengths of the in situ probes as the 

absorbance values would be too low at these wavenumber points. Therefore, the R2 

value for the trendline was evaluated to determine the closeness of fit of the data 

points to the trendline that had been constrained through zero. Table 4.7 and Figure 

4.17 show the results for the peak at 1095 cm-1 as an example. The absorbance vs. 

pathlength plots for the other eight wavenumbers selected are given in Appendix 4.2, 

where the equation of the straight line and R2 value were calculated and are tabulated 

in Table 4.8. 
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Figure 4.17: Absorbance values for a peak at 1095 cm-1 acquired using the variable pathlength 

cell vs. the calculated pathlength of the cell. The trendline indicates the linear relationship and 

the equation of the line can be used to determine the molar absorptivity coefficient. 

 

Table 4.8: Equation of the trendline and R2 values for nine selected wavenumbers in the acetone 

spectrum. 

Wavenumber (cm-1) Equation of line R2 value 

787 � = 18.689� 0.9112 

903 � = 75.285� 0.9816 

1095 � = 108.61� 0.9946 

1196 � = 108.28� 0.9953 

1242 � = 113.79� 0.9932 

1327 � = 119.32� 0.9938 

1474 � = 117.25� 0.9923 

1674 � = 132.95� 0.9967 

1767 � = 138.79� 0.9976 

 

As defined earlier in section 4.2.4.2, the gradient of the line in Figure 4.17 is 

equivalent to ��. Therefore, the molar absorptivity coefficient at 1095 cm-1 is 

calculated as follows: 
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� = m�  

� = 108.61�  

For acetone, the concentration is 13.619 mol/L, so, � =7.97 L mol-1 cm-1. This 

calculation was carried out for nine selected wavenumbers and the results are given 

in Table 4.9. 

Table 4.9: Calculated molar absorptivity coefficient for nine selected wavenumbers in the 

acetone spectrum. 

Wavenumber (cm-1) Molar absorptivity coefficient (L mol-1 cm-1) 

787 1.37 

903 5.53 

1095 7.97 

1196 7.95 

1242 8.36 

1327 8.76 

1474 8.61 

1674 9.76 

1767 10.19 

 

The calculated molar absorptivity values were then used with the acquired 

absorbance values for acetone for the six ATR MIR probes to determine the 

pathlength for each probe at the nine selected wavenumbers. Six replicate 

measurements of acetone were acquired using all six in situ ATR MIR probes, the 

pathlength was determined for each measurement and then the average was 

calculated. An example calculation for one measurement acquired using probe 1 at 

1095 cm-1 is given below: 

� = 
�� 
� = 0.06957.97 × 13.619 
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Therefore the pathlength is 6.399 × 10-4 cm or 6.399 µm at 1095 cm-1. The average 

pathlength results for the six probes at the nine wavenumbers in the acetone 

spectrum, indicated in Figure 4.18, are given in Table 4.10 after conversion to µm. 

 

Figure 4.18: Average (n=6) ATR MIR absorbance spectra of acetone (calibration 2) in the range 

560 – 1810 cm-1 using probe 6. 

 

Table 4.10: Calculated average pathlengths for six ATR MIR probes at nine selected 

wavenumbers. 

Wavenumber 

(cm-1) 

Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 Probe 6 

Pathlength (µm) 

787 6.6 7.6 9.6 5.9 6.7 8.7 

903 5.1 5.6 6.6 5.5 4.3 7.2 

1095 6.4 6.2 7.2 6.8 4.0 8.3 

1196 8.1 7.0 8.3 7.1 4.5 9.2 

1242 4.9 4.7 5.0 5.0 3.0 5.2 

1327 4.5 4.4 5.4 5.0 3.4 5.9 

1474 2.7 2.5 3.1 3.8 1.7 3.5 

1674 4.0 3.7 4.6 4.9 0.8 5.0 

1767 2.2 1.8 2.3 3.0 * 2.7 

*Absorbance values too low to calculate pathlength. 
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Variations in the pathlength over the spectral range can be observed for the ATR 

probes and the trends for probes 1 and 5 are given in Figure 4.19; the points relate to 

the actual calculated pathlengths and the lines between the points are there only to 

make the general trend easier to view. The trends for probes 2 and 6, and 3 and 4 are 

given in Figure 4.20 and Figure 4.21, respectively. 

 

Figure 4.19: Pathlength vs. selected wavenumber for probes 1 and 5 with lines between points to 

highlight the increasing and decreasing trend in the pathlength of the probes. 

 

Figure 4.20: Pathlength vs. selected wavenumber for probes 2 and 6 with lines between points to 

indicate the increasing and decreasing trend in the pathlength of the probes. 
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Figure 4.21: Pathlength vs. selected wavenumber for probes 3 and 4 with lines between points to 

indicate the increasing and decreasing trend in the pathlength of the probes. 

Reviewing the results of the pathlength determinations for the six ATR probes, 

several conclusions can be made: 

• Probes 1 – 3 and 6 follow similar trends where there are large pathlengths at 

787 cm-1, these decrease at 903 cm-1 before increasing again to the maximum 

pathlength observed at 1196 cm-1. From this point the pathlength decreases 

considerably to 1474 cm-1 and remains small with the exception of a minor 

increase at 1674 cm-1. 

• It is difficult to determine if the pathlength increases at 1196 and 1674 cm-1 

are anomalies in the data, however as the trend is similar between 4 of the 

dual fibre probes, it is likely that these increases are real. Comparing the 

trends in pathlength to Figure 4.18, the increase in pathlength occurs when 

there is an increase in absorbance, where an acetone peak arises; therefore the 

increase may be due to acetone absorbing more strongly in these regions. 

• A slight difference in trend is observed for probe 4, higher pathlengths at 

1196 and 1674 cm-1 still occur, however, lower pathlengths are observed at 

lower wavenumbers for this probe. 

• Probes 3 and 6 have larger pathlengths at lower wavenumbers in comparison 

to the other probes. 
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• At higher wavenumbers, probe 4 and 6 have longer pathlengths, however, 

probe 3 is not that much lower. 

• The single fibre probe, probe 5, follows a different trend to the dual fibre 

probes, with a steady decrease from the maximum pathlength at 787 cm-1 to 

its lowest pathlength at 1674 cm-1. No pathlength was determined at  

1767 cm-1 as the absorbance values were too low. 

• Considering the pathlength results, probe 6 provides the largest pathlength, 

with probe 3 providing similar results. 
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4.4 Conclusions 

The six ATR MIR probes were all able to be used to analyse and produce good 

quality spectra for the sample mixtures. The most prominent difference observed 

between the spectra of the different probes was the change in absorbance, which can 

be related to a change in pathlength caused by differences in the angle of incidence at 

the crystal surface, causing changes in the penetration depth, or by the number of 

reflections within the diamond crystal. Due to the design of the probes it is difficult 

to determine exactly where these changes originated from and it is most likely that a 

few factors in the design of the probe affect both the angle of incidence and the 

number of reflections in the crystal. A difference in peak ratios was observed for 

acetone for the original probe design, probe 6, and the mono fibre design, probe 5. 

The difference in the ratios of the peaks in probe 5 can be explained by the change in 

the pathlength, as the investigation revealed that the pathlength steadily decreases 

from 787 – 1674 cm-1, so this probe has small pathlengths of less than 1 µm around 

1700 cm-1 in comparison to the dual fibre probes which see an increase in pathlength 

around the same region. The decrease in pathlength for the single fibre probe 5 is 

most likely due to the implementation of a smaller diamond cone crystal when the 

smaller diameter design was incorporated. It is more difficult to explain the 

absorbance differences observed with probe 6 at different wavenumbers; higher 

pathlengths are observed around wavenumbers where acetone peaks occur, however, 

when comparing the spectra of all the probes, these results do not reflect the results 

of the pathlength determination study. The main reason for this, is because the 

pathlengths were not determined for the actual acetone peaks for reasons discussed 

previously, therefore, for example, the acetone peak at 1219 cm-1 has the largest 

absorbance with probe 4. However, the pathlength results for 1196 cm-1 suggest that 

probe 6 has the largest pathlength and, therefore, the higher absorbance; observing 

the overlaid spectra of all the probes at 1196 cm-1, there is a higher absorbance for 

probe 6 at this wavenumber, but not for the acetone peak at 1219 cm-1. The 

difference in the peak ratios of probe 6 versus the other dual fibre designs, suggests 

that the design changes implemented have had an effect on the spectra. However, the 

trends observed for the pathlength determinations show different results; the trends 
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for the dual fibre probes are similar, indicating similarities between the probes. The 

ratio differences observed in the spectra for probe 6 cannot, therefore, be explained 

with the results from the pathlength determinations. It is likely that more information 

could be deduced if pathlengths could be determined for the wavenumbers where 

acetone peaks occur. 

 

The predictions of analyte concentrations indicated that all six probes could be used 

to successfully predict the concentrations of the analytes. Probes 1 and 3 have the 

best performance when RMSEP and %RSD are considered. Probe 1 introduced a 

new diamond cone sealing; it is clear that the design change from the original probe, 

probe 6, has made an improvement, however, it may be possible that other design 

differences that may have been incorporated, such as fibre selection may have caused 

the change in performance rather than the use of new diamond cone seals. Probe 3 

incorporated the new diamond cone sealing and fibre alignments, as well as the new 

size and geometry of diamond crystal. From the increased performance and good 

pathlength results obtained with probe 3, it is evident that the changes have made an 

improvement, as probe 3 provided better overall performance than probe 1 and 2. 

The results observed for probe 2 were very similar to those of probes 1, 3 and 4 

indicating that the fibre alignment had provided an improvement over the original 

manufactured design and allowed good performance to be maintained between the 

other dual fibre probes. The spectra acquired using probe 4 were very similar to those 

measured with probes 1, 2 and 3, as was the performance for predicting the 

concentration of analytes; it seems, therefore, that the use of modular components for 

the manufacture of the probes did not adversely affect performance. However, there 

was a pathlength decrease observed at lower wavenumbers for this probe when 

compared to the other dual fibre probes. 

 

Overall, the design changes implemented have improved the performance of the 

probes in comparison to the original design with the best results being obtained by 

probe 3. The observations indicate that the size and geometry of the diamond crystal 

have a large impact on the probe performance. It was also interesting to note that the 
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modular component design approach to probe manufacturing, with its production 

advantages, did not adversely affect probe performance. 

 

The results of this study have indicated that changing the size and geometry of the 

diamond crystal in the probe have made improvements to the overall performance of 

the ATR MIR probes, therefore, future recommendations to Fibre Photonics would 

be to implement the newer diamond cone design and to ensure repeatable 

manufacture of the crystal, to increase the consistency between probes. In addition, 

the use of modular components was shown not to adversely affect the performance of 

the probes; if Fibre Photonics adopt this manufacturing procedure they should be 

able to efficiently produce robust ATR MIR probes that give consistently good 

performance. The removal of the non-IR active malleable material, AgCl, and 

improvement of the fibre end cutting and fibre alignment procedures appears to have 

also improved the overall performance of the probes, indicating that the AgCl 

material is no longer required; therefore, the number of seal breakages and leakages 

should be minimised, consequently improving the robustness of the probes. 
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5 Calibration models for analyte prediction 

5.1 Introduction 

5.1.1 The use of calibration models 

Multivariate calibration models are widely used in industry for a variety of 

techniques, especially for spectroscopic measurements. They are used successfully to 

determine quantitative information from complex analytical data and, therefore, 

widely used in optical spectroscopy. In particular, NIR spectroscopy is dependent 

upon multivariate calibration for quantitative analysis and advances have been made 

in the applications of NIR spectrometry due to the capability of the multivariate 

calibration models. A multivariate calibration can take a lot of effort to build and, 

therefore, it is intended for use over a long time period; in comparison, univariate 

calibration can be simpler to implement, but may require recalibration on a day-to-

day basis. Generally, multivariate models are based on a large number of real 

samples collected over a period of time and hence it is time intensive to develop 

robust calibration models. 

 

Although calibration models are designed primarily to be used for an extended 

period of time, if any changes to the initial process conditions or equipment are 

introduced, the robustness of the model may be affected, reducing the accuracy of the 

results obtained. A number of situations can arise where the multivariate calibration 

model may become invalid: if the instrument used for development of the original 

calibration has been replaced; if there have been temperature fluctuations and 

measurements have been taken at an altered temperature; if there has been 

instrumental drift in the instrument over time; if there has been a shift in the 

instrumental response; or if there has been a physical change to the composition of 

the samples under analysis.1 In these circumstances a full recalibration would 

normally be required, incurring extra costs and downtime while this is completed. To 

avoid preparing completely new multivariate models from scratch, various 

calibration transfer methods have been devised to reduce the likelihood of erroneous 

measurements or limit the number of additional experiments that need to be carried 

out to allow the model to still be appropriate. 
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5.1.2 Calibration transfer methods in infrared spectrometry 

The transfer of calibration models is seen as a major challenge in industry as the 

models can be very sensitive to small variations in both the wavelength and 

absorbance in the spectrum.2 These small variations can cause a calibration model to 

become invalid for prediction of concentrations based on spectra taken with e.g. a 

new analyser system. The direct transfer of calibration models does not usually 

provide satisfactory results owing to minor differences between instruments and 

changes in performance characteristics over time. For this reason, instrument 

standardisation methods were developed to deal with the problem and aid the transfer 

of calibration models.2 

 

Since the implementation of PAC and chemometric analysis, there have been a range 

of articles relating to the use of calibration transfer and instrument standardisation in 

NIR spectrometry. As MIR spectrometry has been used less frequently in process 

analysis than NIR spectrometry (owing to the aforementioned problems with optical 

fibres), there are fewer examples of MIR calibration model transfer. However, many 

of the advancements made in the NIR model transfer could be applicable to MIR 

analysis. 

 

De Noord,1 Feudale et al.,3 and van den Berg et al.4 have discussed the issues 

surrounding calibration transfer and the various methods in place for instrument 

standardisation. Different strategies that can be used before a given calibration model 

is implemented were discussed and the main ideas that have been brought forward 

from these reviews are outlined below. 

 

Instrument matching involves the careful control of the experimental parameters in 

order to keep the two instruments as similar as possible. To achieve this, the analyst 

is required to identify the parameters which are most critical for the transferability of 

the model. Adhihetty et al.5 described a method for the matching of two FTIR 

spectrometers through the control of experimentally dependant variables. It was 

expressed that the experimental variables that can affect the model transfer must be 

identified. Therefore, there is high importance on the control of these variables to 
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allow the model to be transferred successfully. The major caveat to this strategy is 

that the analyst is required to have simultaneous access to both instruments. De 

Noord1 also noted that instrument matching could only be used if two instruments of 

the same manufacturer and type were being used. Instrument matching does have 

merit in some applications; however, the inherent restrictions make this method 

impractical in every day industrial applications. 

 

Robust calibration models are designed to withstand changes between instruments, 

temperatures etc., and different approaches have been developed. The first approach, 

referred to as global models, seeks to include the different sources of variation in the 

design to develop a universal model. Global models contain the expected variation 

for a wide range of experimental conditions and, therefore, will have less sources of 

variation that need to be strictly controlled in future data. To develop an accurate 

global model, the analyst must be able to anticipate any new sources of variance and 

also the full degree of the variability within the data. Ozdemir et al.6 discussed the 

performance of genetic regression (GR) for optimum wavelength selection to correct 

for instrumental drift. GR has been shown to compensate for wavelength shifts of up 

to 4 nm for multi-instrument calibration. The predictions of the models improved 

when the shifted data was incorporated in the model. Global models can be very 

complicated; however, they have been shown to provide reliable predictions. 

Despagne and Massart7 indicated that the predictions from a global model were not 

as accurate as from a local model if there were non-modelled variations present in 

the data. It is clear that if there is a possibility of any future variability in the 

experimental conditions, it should be reduced where possible to ensure better 

predictions. 

 

A second approach discussed for the development of robust calibration models is 

based upon the variables used for model building. Robust models can be built when 

variables that are insensitive or have reduced sensitivity to the variations in 

instrumental changes or experimental conditions are incorporated in the model.8 

Therefore, when variations do occur in the spectra, because of changes to 

experimental conditions or a change in instrument, then the variables will present 
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little change in the regression coefficients. There are a number of examples of this 

approach in the literature9-12 and some involve the use of orthogonal methods.13-15 

Ozdemir et al.16 described a procedure for the calibration of multiple instruments 

where the spectra from each were used during the construction of the calibration 

models. Genetic algorithms enabled the discovery of the variables that allowed the 

calibration model to be used for two near-infrared systems. Robust models were built 

which required minimal data collection from the second instrument, providing time 

saving benefits for calibration transfer. No pre-treatment was required for 

implementation; also the method did not require the same resolution for both 

instruments. The success of this approach is undoubtedly dependent on finding 

suitable variables that are insensitive to variation, but sensitive to quantifying the 

analyte. 

 

Model updating accounts for new variations by rebuilding the model with the 

addition of a small number of test samples to the existing calibration set. The 

samples that are added must accurately describe the variability of the new instrument 

in a way that the model is applicable to both the new and the old instrument and is 

valid for both. The addition of these new samples will make the model more robust 

to the new measurement conditions and so will lead to better predictions. Some 

different approaches have been explored including sample selection,17, 18 

weighting,19, 20 the blank augmentation protocol21 and Tikhonov regularisation.22-24 

Greensill et al.17 completed an assessment of a number of chemometric techniques 

for calibration transfer between spectrometers including model updating. The 

selected spectra, determined by the Kenard-Stone method, were used to successfully 

transfer calibration models between the spectrometers providing good predictions 

and in some cases better RMSEP results. A problem exists with model updating in 

that only a few new samples are added to the original model and so there may be a 

large difference noted between the new and old samples, causing an increase in the 

error of the model. Setarehdan et al.18 addressed this issue by developing a strategy, 

based on PCA and PLS multivariate techniques, to help decide which new samples 

should be added to the calibration set. With the use of these multivariate techniques, 

a new sample can be defined by how “similar” it is to the samples that were currently 
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used in the calibration dataset. This is completed by residual analysis after PCA is 

performed. If the sample under consideration has a spectrum “similar” to the spectra 

of the calibration samples in the dataset, then an assumption is made that the current 

model can predict the analyte concentration of that sample. However, if the sample 

under consideration is defined as being “dissimilar”, it indicates that this sample 

contains new information that is not modelled by the current calibration dataset. This 

sample is then added to the calibration data set to improve the model. Stork and 

Kowalski19 investigated the theoretical weighting scheme for updating regression 

models. They discussed the issue around the calibration set being dominated by 

samples collected from the original model before any changes arose. By 

implementing a weighting scheme and hence increasing the contribution of the new 

component to the model, the error can be reduced; this will result in a decrease in the 

prediction error. Model updating has the advantage of not requiring the measurement 

of standardisation samples on both spectrometers. Although, it has the inherent 

disadvantage that for complex systems a considerable number of samples are 

required to capture the new variance and so the model updating method tends 

towards full recalibration.3 

 

As well as the strategies mentioned above, de Noord1 and Feudale et al.3 also 

discussed the different standardisation methods that are available for the transfer of 

calibration models after they have been built. In the standardisation methods 

reviewed, the response function of a secondary system is modified to match the 

response function of the primary system. In general, there are three ways to achieve 

this: standardise the regression coefficients,25-27 the spectral responses25, 28 or the 

predicted values using mathematical manipulation.29 

 

Standardisation of the regression coefficients 

The standardisation of the regression coefficients for the model can be completed by 

a method that was proposed by Wang et al.25 The transfer method involves the 

transformation of the original model into a new model that will be suitable for the 

new system. This method can be defined for both classical and inverse calibration 
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models. The classical method is expressed with two main assumptions being implied 

throughout:  

- the linear relationship of the response of the instruments; 

- the concentrations for all of the analytes that contribute to the response 

are known. 

The inverse calibration models differ from classical model standardisation as only 

the concentration of the analyte of interest needs to be known. Wang et al.25 noted 

that inverse model standardisation worked well when applied to comparatively large 

sample sets. Also, it was observed that classical model standardisation can be 

restricted in its modelling ability, nevertheless it has the ability to work with fewer 

samples than that of the full calibration set. 

 

Standardisation of the spectral responses 

Standardisation of the spectral responses models the instrumental differences using 

regression of the spectral responses of a set of samples measured on the primary 

instrument against the same set of samples measured on the secondary instrument. 

As a result, any changes in the response between the two instruments can be 

corrected for, and then the initial model can be used for prediction on the secondary 

instrument without the need to formulate new regression coefficients. In the 

literature, there have been examples of both univariate and multivariate methods 

which have been proposed to standardise spectral responses from a secondary 

instrument. 

 

Feudale et al.3 discussed the univariate standardisation approach that was developed 

by Shenk and Westerhaus,28 which comprises a single correction factor at every 

wavelength channel to correct for the intensity differences between spectra. The 

Shenk and Westerhaus algorithm has been ustilised for calibration transfer across 

NIR instruments in a number of examples.25, 30-33 Bouveresse et al.30 employed the 

algorithm for calibration transfer across NIR instruments where different 

standardisation samples were used. Using this algorithm they were able to determine 

the best standardisation sample set that would gain the best predictions. They 

discovered that the best results were achieved when using samples that covered the 
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same range as the prediction samples, or at least a subset of this range. The algorithm 

provides poorer results if the standardisation samples employed are of a different 

nature to those samples being analysed. Bouveresse and Massart31 investigated 

different alterations to the spectral intensity correction step of the Shenk and 

Westerhaus algorithm in an attempt to improve the results when the nature of the 

samples is different; applying locally weighted regression in the spectral intensity 

correction step produced better results in comparison to simple linear regression. The 

modified algorithm allows standardisation with samples of a different nature to those 

being analysed and does not require analysis of the standardisation samples on both 

instruments. 

 

As the majority of spectral data requires the use of multivariate analysis there has 

been some important developments made in this area. Two well-known and 

commonly used standardisation methods that were developed by Wang et al.25 are 

direct standardisation (DS) and piecewise direct standardisation (PDS). Since their 

introduction for calibration transfer, a considerable amount of effort has been 

extended to improve their application.8, 17, 29, 34-55 The DS method corrects the spectra 

acquired on the second instrument to match the spectra that were collected on the 

primary instrument, while the original calibration model remains unchanged. The 

responses from the two instruments are related to one another by a transform 

function. The spectra measured on the second instrument are then standardised to 

match the spectra collected on the primary instrument using the transform function. 

The standardised spectra can then be used along with the original unchanged 

calibration model to predict the unknown concentrations of the samples from the 

secondary instrument. A problem with this approach and with PDS is around the 

additive background. When this additive background term is unaccounted for, 

incomplete transfer of calibration models between instruments can be seen. Wang et 

al.37 addressed this issue and proposed additive background correction measures. The 

correction consisted of mean-centring each set of transfer samples to remove any 

constant baseline differences present. Another difficulty is the number of 

standardisation samples chosen for the transform is usually smaller than the number 

of variables. Therefore, if the selected subset of standardisation samples does not 
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cover the whole experimental space, not all of the spectral information contained in 

the spectrum of the test sample measured on the secondary instrument will be 

transferred by DS. The spectral information that is orthogonal to the space spanned 

by the spectra of the standardisation samples measured on the secondary instrument 

will be lost during transformation leading to poor results. A large number of 

standardisation samples are needed to avoid this problem. Other solutions to this 

issue include estimation of the transform function by means of PLS regression or a 

reduction in the number of variables involved in the regression; this lays the 

foundation for PDS. PDS is similar to DS, however, it aims to recreate each spectral 

point on the primary instrument from several measurements in small channel 

windows on the secondary instrument. The calculation of the transform function in 

PDS differs from DS in that it does not use the entire spectrum of the transfer 

samples to correct each wavelength on the secondary instrument. Instead PDS uses 

variables in the local window around the channel of interest; this is because when the 

responses on one instrument are shifted to the other, information about the shift is 

most likely to be found in restrictive local regions in the second instrument.34 This 

window size can be varied and should be optimised before use for calibration model 

building. As PDS uses a moving window, edge effects can occur where there is 

insufficient data to be able to form a complete window. In these cases, the ends of 

the spectra are either removed or estimated by extrapolation.8, 35 PDS is one of the 

most widely used transfer methods due to its capability at enabling the simultaneous 

correction of intensity differences and wavelength shifts. Wang et al. described a 

study where transfer results with PDS were better than those of the full set 

recalibration.36 Although PDS is commonly used for calibration transfer it is not 

without problems. One of the main issues associated with PDS has been the 

observation of artefacts in the transferred spectra. Bouveresse et al.38 described the 

occurrence of artefacts when subsets of samples which are not representative of the 

entire experimental domain are used. If the subset of samples are selected using 

algorithms such as the Kennard and Stone algorithm or leverage algorithm, which 

aim to select samples which are representative of the entire experimental domain, 

then a reduction in the artefacts present in the transferred spectra were observed. 
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Newer standardisation procedures have now been developed and their performance 

compared to that of other standardisation methods.56-59 Chen et al.56 implemented a 

procedure that could correct for temperature-induced spectral variations, named 

loading space standardisation (LSS). The main feature of LSS is a correction 

procedure which standardises the loading space. To build the LSS correction model, 

two parameters must be known: the degree of the polynomials and the number of 

factors that describe the information in the spectra. The degree of the polynomials is 

dependent on the non-linearity of the temperature effects and it is this that allows this 

standardisation method to correct for temperature-induced variations. The number of 

factors should be no less than the number of chemical components contained in the 

samples. As well as the two parameters required to build the LSS correction model, 

another parameter must be optimised during the process to allow this procedure to 

effectively model the temperature effects. This parameter is the number of 

standardisation samples included in the procedure. Chen et al. were able to show the 

LSS standardisation method successfully corrected the effects of temperature 

variations in NIR spectra of ternary mixtures of ethanol, water, and 2-propanol. If the 

calibration model is built on the temperature closest to that of the test samples then 

more accurate predictions will result. Limitations of LSS are the requirement to 

measure the temperature for every spectrum and that the same training samples must 

be used to acquire the spectra at the different training temperatures. Chen and 

Morris57 further developed the LSS procedure to incorporate an optical path-length 

estimation and correction method (OPLEC) to address the problems of multiplicative 

influential mode and composition-related influential mode, which can jointly affect 

spectral measurements. This new procedure, termed extended loading space 

standardisation (ELSS) proposed to linearize spectroscopic data which had changes 

in external variables. ELSS was able to monitor both the temperature-induced 

spectral variations as well as the multiplicative effects from the variations in the 

measurement conditions. The ELSS procedure outperformed both the original LSS 

and global PLS procedures providing better predictive performance. ELSS has been 

implemented in the on-line monitoring of batch cooling crystallisation of organic 

compounds using ATR-FTIR spectroscopy,60 providing enhanced predictive ability 

over the other models assessed. 
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Papers by Chen et al.59 and Du et al.58 highlight the need for methods which are 

easier to implement and at the same time can handle complex situations and provide 

better performance. Each set of authors has proposed a new strategy for calibration 

standardisation. Chen et al.59 offered the systematic prediction error correction 

(SPEC) method; this includes a transformation which is a special case of LSS. The 

concentration of the target analyte in the test samples can be predicted from its 

standardisation spectrum by a multivariate linear calibration model built using the 

spectra of the calibration samples measured at the calibration conditions. The 

standardisation includes the systematic prediction error of the multivariate linear 

calibration model caused by spectral differences due to variations in the 

measurement conditions or changes in instrument. Chen et al. compared their SPEC 

method to other calibration standardisation procedures for two different data sets and 

found that SPEC improved the predictive results when changes in instrument and 

experimental conditions occurred. A benefit of SPEC is that implementation is 

relatively uncomplicated, with only one model parameter requiring optimisation. The 

number of chemical variation sources in the spectral data must be known; this can be 

set to the number of significant singular values of the spectral data. The simple 

implementation of SPEC has advantages over procedures like PDS which require 

multiple parameters to be optimised to gain the best prediction results. The proposed 

method by Du et al.58 involves the spectral standardisation by spectral space 

transformation (SST). SST follows on from previous methods whereby spectra that 

are measured on a secondary instrument are corrected to match the spectra acquired 

by the primary instrument while the model remains unchanged. The SST procedure 

eliminates, where possible, any spectral differences caused by the change in 

instrument or experimental conditions, by a transformation between two spectral 

spaces spanned by the related spectra of a subset of standardisation samples 

measured on both instruments. SST was tested with a set of NIR and MIR data and 

the results were compared with other standardisation methods. In both the NIR and 

MIR examples, SST produced better predictions than PDS, univariate slope and bias 

correction (SBC), and global PLS, providing evidence that SST can be used to 

correct for spectral variations caused by changes in instrumental or experimental 



   

109 

 

 

 

 

conditions maintaining the predictive ability of the original model. SST does require 

the analysis of the standardisation samples to be analysed with both sets of 

conditions, as with PDS. However, SST is easier to implement requiring the 

optimisation of only one parameter, the number of principal components that 

represent the spectral information in the data of the standardisation samples. Du et al. 

have shown that in practice this can be set equal to or slightly larger than the number 

of significant singular values of the combined data. SST can provide better predictive 

results than the other standardisation methods with the advantage of its simple 

implementation. 

 

Standardisation of the predicted variables 

Standardisation of the predicted variables is commonly achieved by using univariate 

slope and bias correction (SBC).29 In this method the spectra of a calibration sample 

set measured on the primary instrument are predicted with the calibration model that 

was developed using the secondary instrument, which allows a univariate linear 

model to be developed to correct the predicted values.29 SBC thereby assumes that 

there is a linear relationship between the predictions measured on the secondary 

instrument to those predictions that would have been attained if the samples were 

measured on the primary instrument. The test spectra measured on the primary 

instrument were then predicted using the calibration model developed on the 

secondary instrument and the predictions were then corrected using the univariate 

linear slope and bias correction model developed in the previous step. Bouveresse et 

al.29, 61 were able to demonstrate that for simple univariate corrections of the 

predicted values, the SBC method was a success when identical instrumentation was 

used. However, if unrelated instruments were used the differences between the 

instrumental responses are more complex and SBC will be less likely to obtain 

satisfactory corrections with non-standardised spectra. Furthermore, de Noord1 does 

not recommend this approach if the calibration models that are to be used are more 

complex than univariate or simple multiple linear regression (MLR). Pereira et al.52 

completed a study comparing seven transfer methods and two pre-treatment 

procedures for calibration transfer between three NIR spectrometers, for the 

determination of compounds in a broad set of gasoline samples. SBC was found to 
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provide the worst results of the seven transfer methods investigated when a transfer 

was made between two instruments of the same or different manufacturer and type. 

This work supports the idea of SBC being difficult to use successfully for the transfer 

of models other than those that involve simple univariate corrections. Bergman et 

al.47 described a comparison of standardisation methods for model transfers, 

indicating for their models that SBC has the ability to be used for transfer of 

calibration models between instruments of similar type, e.g. from one dispersive 

instrument to another and between instruments of different types, e.g. from a 

dispersive instrument to a FT instrument. For the SBC method, the individual 

concentrations of active ingredient within the samples used for the transfer had to 

have a variance of at least 2.5% to achieve acceptable results. To obtain the best 

results, the samples used for the correction were required to have individual 

concentration variances between 5-8% in the active material content. This method 

also required a larger number of samples to be involved in the correction to generate 

good results. In this study by Bergman et al.,47 although SBC was used successfully 

in the transfer between different instrument types, the other methods investigated had 

perceivable advantages over SBC for the calibration transfer. 

 

Other standardisation methods 

The calibration transfer methods described thus far have been used successfully for a 

variety of applications in industry, however in addition to these there has been some 

literature on other methods for standardisation and calibration transfer.62-67 For the 

most part, standardisation methods are used to model the relationship between the 

spectra in the original measurement space. However, these models can also be used 

to model the differences between spectra that have been transformed to another 

domain. It was Walczak et al.62 that proposed that standardisation be done in the 

wavelet domain (WD) and compared the performance to that of the PDS and SBC 

methods for two different data sets. This method relates the wavelet transform 

coefficients of a small subset of standard samples, which have been acquired on two 

instruments, with univariate linear models. These models are then used to transfer the 

wavelet coefficients of the new spectra, after which conversion back to the 

wavelength domain is completed.42, 62 Standardisation can also be completed in 
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principal component (PC) space, whereby the PC scores for the samples are 

transferred from the secondary to the primary instrument and then converted back to 

the original variable space. For both methods, any spectral variation is compressed 

and, therefore, can lead to greater stability when the transfer is taking place. As a 

consequence of this compression along the wavelength axis, any window-based 

standardisation methods such as PDS cannot be used as the local information is not 

retained and, therefore, compression is difficult. For that reason the transfer in these 

domains is limited only to univariate models or to direct standardisation methods.68, 

69 Further discussions by Liu et al.70 described the use of wavelet regression in 

multivariate calibration and calibration transfer for data fusion detailing the 

advantages and disadvantages. 

 

There has been work in the area of artificial neural networks (ANNs) for 

standardisation.66, 67, 71-73 The major caveats to ANNs for standardisation are around 

the fact that ANNs generally experience over-fitting problems; this is because a 

reasonably sized ANN will have far more parameters to be estimated than there will 

be transfer samples available. Also, ANN models are optimised on the ability of the 

network to produce a spectrum instead of the ability to minimise prediction errors. 

Consequently, ANNs are still not commonly used as standardisation methods, 

although work completed by Fei et al.67 has shown some possibility that ANNs 

combined with genetic algorithms can provide smaller prediction errors than PLS 

models. 

 

In addition to the ongoing work into ANNs standardisation and wavelet hybrid 

standardisation methods, there has been work published in the area of non 

standardisation methods such as Gaussian process regression for multivariate 

spectroscopic calibration.74 Gaussian process regression is a different method for the 

development of a calibration model derived from the perspective of Bayesian 

regression analysis. It was shown that this method could achieve reliable and 

acceptable results for both linear and non-linear data sets. Gaussian process 

regression looks promising to the future work of calibration transfer although there 

are still some issues present: the multiple component calibration requires separate 
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models for each response variable and at the time of publication the solution 

involved significant computational power. Further work developed possibilities in 

the use of Gaussian process regression for calibration transfer with multivariate 

regression.75-77 Another method, that has been about for a number of years, is 

orthogonal signal correction (OSC), which is a procedure used in the pre-processing 

stages of modelling.78, 79 Sjöblom et al.78 evaluated the use of orthogonal signal 

correction when applied to calibration transfers of NIR spectra. It was shown that 

OSC gave comparable results when compared with PDS methods. Canonical 

correlation analysis (CCA) was discussed and compared with traditional PDS 

methods by Fan et al.80 The results showed that the method based on CCA could be 

used successfully to correct for the differences noted between the spectra measured 

on different instruments. When compared with PDS, it can be observed that when 

there is a great deal of information known about the variability between the 

instruments, then the CCA method can outperform PDS. However, in some 

instances, gaining enough knowledge about the between-instrument variations is not 

always possible, and in the cases where the information is limited and the sample 

subset is small, PDS is superior. 

 

The majority of the methods discussed have been successfully applied to various 

calibration transfer problems. No one method can be selected as being able to 

provide the best results for calibration transfer of complex systems, however some 

standardisation methods such as PDS are, by and large, the accepted method. Some 

positive results have also been shown in the areas of ANNs and non standardisation 

methods. In spite of all of this, the choice of calibration transfer methodology will 

ultimately depend upon the application for which it is required, as no method is 

successful in all situations. 
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5.1.3 Basis of this study 

The above review has indicated that since the introduction of direct standardisation 

and piecewise direct standardisation by Wang et al.,25 procedures such as LSS, SPEC 

and SST have been developed that provide advantages in easier implementation and 

the ability to obtain equal or better predictive results than some of the commonly 

used methods. The majority of applications have been directed at NIR calibration 

transfers owing to the routine use of this technique in industry. However, with 

advances in fibre and probe technology more applications involving MIR 

spectrometry can now be found. 

 

In this study, the widely used standardisation methods DS and PDS have been 

investigated for their use in calibration transfer of MIR calibration models where the 

spectrometer, probe or both have been altered. The newer procedure SST has also 

been investigated and compared to the predictive results of DS and PDS to assess the 

claims of Du et al.58 that SST is easier to implement and has the ability to complete 

calibration transfers using a reduced number of standardisation samples. In process 

analysis, it is often necessary to scale up systems when moving from development to 

manufacturing. This can involve a change in the size of in situ probes used for 

spectral measurements. So, an additional part of this study involved the building of a 

calibration model using spectra acquired with a smaller probe (imitating a laboratory 

set-up) with transfer to predict the concentrations of analytes from the spectra 

analysed with a larger probe (imitating scale-up). The performance of DS, PDS and 

SST based on the root mean square error of prediction (RMSEP), was compared 

when different numbers of standardisation samples were used in the standardisation 

procedures. 
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5.2 Experimental 

5.2.1 Solvent mixture sample preparation 

Previous work carried out by M. Holden81 selected mixtures of acetone, ethyl acetate 

and ethanol as model systems to assess the MIR ATR probes and spectrometers. A 

solvent mixture design was created to determine the concentrations of the three 

components that should be present in each of the calibration and test samples (Figure 

5.1). This mixture design was used for comparison with PCA scores plots to 

determine the similarities and differences in the data obtained. 

 

Figure 5.1: Schematic of the sample mixture design for acetone, ethanol and ethyl acetate. 
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Mixtures for this study had been prepared beforehand by Megan Holden using the 

method described in section 4.2.1. The weights of each of the three components for 

the 16 mixtures prepared are tabulated in Appendix 5.1. The concentrations of each 

component in the mixtures were calculated as a weight percentage; these values can 

be viewed in Table 5.1. 

Table 5.1: Concentrations of acetone, ethanol and ethyl acetate present in each mixture. 

 Concentrations as weight percentage (%w/w) 

Mixture number Acetone Ethanol Ethyl acetate 

1 – calibration 1 0.0 100.0 0.0 

2 – calibration 2 100.0 0.0 0.0 

3 – calibration 3 0.0 0.0 100.0 

4 – calibration 4 50.0 50.0 0.0 

5 – calibration 5 50.0 0.0 50.0 

6 – calibration 6 0.0 49.9 50.1 

7 – calibration 7 33.3 33.4 33.3 

8 – calibration 8 65.6 17.4 17.0 

9 – calibration 9 17.1 66.0 17.0 

10 – calibration 10 17.0 17.0 66.0 

11 –test 1 6.0 85.0 9.0 

12 –test 2 26.0 61.0 13.0 

13 –test 3 42.0 33.0 25.0 

14 –test 4 83.0 10.0 7.0 

15 –test 5 47.0 7.0 46.0 

16 –test 6 11.0 18.0 71.0 

5.2.2 MIR spectrometry 

MIR spectra were acquired with a resolution of 16 cm-1 in the 400 – 4000 cm-1 range 

using three infrared spectrometer systems (ABB MB3000 FTIR, ABB BOMEM 

MB155 in MIR mode, and an ABB FTLA2000 series FTIR). The MB3000 

spectrometer system incorporated a 2 port high-throughput double pivot Michelson 

fully jacketed interferometer mechanism with a ZnSe beamsplitter and a deuterium 

triglycine sulphate (DTGS) detector and redesigned electronics. The MB155 system 
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incorporates a different interferometer design, namely a 4 port patented double 

pendulum interferometer design with a KCl beamsplitter and a DTGS detector. The 

FTLA 2000 series spectrometer was on loan to the department for a short period of 

time and therefore, the exact specifications are not available. However, this series 

incorporated a 4 port patented Michelson-type design with 2 corner-cube 

retroreflectors mounted on a wish-bone scan arm with either KBr or ZnSe optics and 

a DTGS detector. The data from the FTLA2000 series instrument was acquired by 

Megan Holden prior to the start of this study. Each spectrometer was coupled with 

polycrystalline silver halide fibres to hastelloy bodied probes with diamond cone 

crystals (Fibre Photonics Ltd, Livingston, UK) of different diameters (see Table 5.2 

for details of the three probes investigated in this study). 

Table 5.2: Details of three Fibre Photonics probes investigated. 

Probe 
Outer diameter of 

probe shaft (mm) 

Silver halide fibre 

length (m)* 

Diamond crystal 

size (mm) 

Probe 1 12 1.5 3 

Probe 2 12 1.7 3 

Probe 3 2.7 1.1 1.2 

*This is the length of the fibre when measured from diamond tip to sma connectors; 

the actual length of polycrystalline fibre within the probe will be double, see chapter 

4. 

Each spectrometer was fitted with a fibre optic interface to allow the attachment of 

the ATR probes. Spectra were acquired using Horizon MB™ FTIR software version 

2.1.9.0 (produced by ABB, analytical business unit, Canada) and GRAMS 

(Graphical Relational Array Management System) /AI software version 4.04 

(produced by Galactic Industries Corporation, Salem, USA). The spectra were 

exported as text files from Horizon software and as SPC files from GRAMS software 

and imported into Matlab data analysis software. 

5.2.3 Data analysis 

Data were imported into Matlab versions 7.5.0.342 (R2007b) and 7.11.0.584 

(R2010b) (Mathworks Inc., Natick, MA, USA) with PLS_Toolbox version 4.1 
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(Eigenvector Research Inc., WA, USA). Spectra were plotted and analysed to 

identify regions in the data that would provide information about the samples and 

remove the regions that only contribute noise to the measurements. 

 

Principal component analysis (PCA) was used to find the combination of variables 

that described any major trends in the data. The principal components obtained from 

the spectra described the underlying structure and allowed any trends between 

samples, spectrometers or probes to be determined. 

 

The spectra from the calibration solutions and their concentration values were used 

to produce multivariate partial least squares (PLS) calibration models. All models 

were constructed using the spectral region 579 to 1844 cm-1. As an aid in the 

determination of the optimal PLS calibration models, DoEman analysis was 

completed using the DoEman toolbox (DoEmanGUI, produced by University of 

Strathclyde, UK, 2004) integrated within the Matlab software.82, 83 The predicted 

concentrations from the models were compared with the expected concentrations of 

the three analytes and the root mean square error of prediction (RMSEP) values were 

calculated within Excel 2007/2010 (Microsoft Corporation) using the function given 

in Equation 5.1 (replicate of Equation 2.11 in chapter 2, for convenience) to 

determine numerically the level of error associated with each of the predictions. 

����� = �∑ 	
�� − 
������� �  Equation 5.1 

Where, 

 
��= predicted value 

 
� = known value 

 � = number of samples 

5.2.4 Calibration transfer algorithms 

In the direct standardisation (DS) method,25 the spectra measured on the secondary 

instrument are corrected to match the spectra collected on the primary instrument 

while the calibration model remains unchanged. The response matrices of the two 
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instruments are related to one another by a transformation matrix F as described in 

Equation 5.2. 

S1=	S2F Equation 5.2 

Where S1 and S2 are the response matrices of the standardisation samples acquired 

from the primary and secondary instruments, respectively. Rearranging Equation 5.2 

for F gives the following expression; 

F=	S2
+S1 Equation 5.3 

Where S2
+ is the pseudo-inverse of S2. The response of an unknown sample measured 

on the secondary instrument, r2
T is standardised to the response r�1

T expected from the 

primary instrument, as shown in Equation 5.4. 

r�1	T =	r2	T F Equation 5.4 

The model constructed using S1, along with the concentrations on the primary 

instrument, are used for the prediction of the unknown concentrations on the 

secondary instrument. It is assumed in direct standardisation that the relationship 

between the responses is linear, although some non-linearity can be endured in the 

multivariate regression. 

 

Piecewise direct standardisation (PDS)25, 36 recreates each spectral point on the 

primary instrument from several measurements in small channel windows on the 

secondary instrument. The calculation of the transfer matrix, F, in PDS differs from 

DS in that it does not use the entire spectrum of all the transfer samples to correct 

each wavelength on the secondary instrument. Instead PDS uses variables in the local 

window around the channel of interest; this is because when the responses on one 

instrument are shifted to the other, information about the shift is most likely to be 

found in restrictive local regions in the second instrument.34 This window size can be 

varied and should be optimised before use for calibration model building. In PDS, a 

subset of calibration transfer samples are measured on the primary and secondary 

instruments, producing two response matrices related to each other by a 

transformation matrix, F, which is assembled from a set of calculated regression 

vectors.  For a subset measurement r1,i, at a wavelength, i, on the primary instrument, 
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subset measurements on the secondary instrument r2,i-j…r2,i+k at wavelengths 

surrounding i from wavelengths i-j to i+k are chosen to put into a matrix, X i. A 

multivariate regression equation can be calculated as 

r1,i=X ibi Equation 5.5 

This multivariate regression can be used to determine a reasonable approximation for 

the non-linearity intensity change. The regression vector, bi can be calculated via 

various multivariate calibration methods such as PLS and then subsequently used to 

transfer the unknown sample measured on the secondary instrument, r2
T, piece by 

piece into the spectrum, as if it were analysed on the primary instrument. 

 

SST follows on from DS and PDS whereby the spectra measured on a secondary 

instrument are corrected to match the spectra on the primary instrument while the 

original calibration model remains unchanged. The rows of the spectral matrices X1 

and X2 correspond to the spectra of the subset of standardisation samples measured 

on both the primary and secondary instruments, which are used for the 

standardisation procedure. The combined spectral matrix then becomes Xcomb = [X1, 

X2]. Completing singular value decomposition of Xcomb will provide the expression 

detailed in Equation 5.6, 

Xcomb=�Us, Un� �Σs 0
0 Σn

� [V s, Vn]T=TsPs
T+E=Ts�P1

T, P2
T�+E Equation 5.6 

where, Ts				=				UsΣs; Ps				=				Vs; E				=				UnΣnVn
T. The superscript ‘T’ indicates the transpose 

and the subscripts ‘s’ and ‘n’ correspond to the spectral information and noise, 

respectively. If the actual number of spectroscopically active chemical components 

in the spectra is r, then �� will have r columns. The sub-matrices of 

Ps
T �Ps

T=�P1
T, P2

T�� will have the same number of columns as in X1 and X2, 

respectively. Allowing for the Beer-Lambert law, Xcomb can also be expressed as 

follows: 

Xcomb	=	�X1, X2�	=	C�S1
T, S2

T�+E Equation 5.7 

where C is the concentration and S1 and S2 are the pure spectral matrices. The 

columns of S1 and S2 contain the pure spectra of the chemical components in the 



   

120 

 

 

 

 

standardisation samples on the primary and secondary instruments, respectively. 

When Equation 5.6 and Equation 5.7 are combined the following equations will 

result: 

CS1
T	=	TsP1

T,   CS2
T	=	TsP2

T Equation 5.8 

S1
T	=	�CTC�-1

CTTsP1	T =	RP1
T,  S2

T	=	�CTC�-1
CTTsP2

T	=	RP2
T 

Equation 5.9 

 

 

Where �	=�CTC�-1
CTTs is a full rank square matrix and the superscript ‘-1’ 

represents the matrix inverse. If the spectrum of a test sample (xtest) is measured on 

the secondary instrument, the concentration vector (ctest) of the component in that 

sample can be estimated by  ̂=	xtest�S2
T�+

, where the superscript ‘+’ symbolises the 

Moore-Penrose generalised inverse. The difference between xtest and its related 

spectrum (xtrans), as if it were measured on the primary instrument, can be expressed 

as xtest	-	xtrans	=	c��S2
T-S1

T�. Therefore, xtrans can be calculated using Equation 5.10. 

xtrans	=	ctest	S1
T	+	xtest	-	ctest	S2

T	=	xtest	�S2
T�+

S1
T	+	xtest	-	xtest	�S2

T�+	S2
T Equation 5.10 

Through the substitution of Equation 5.9 into Equation 5.10, Equation 5.11 will 

form. 

xtrans	=	xtest	�P2
T�+	P1

T	+	xtest	-	xtest	�P2
T�+

P2
T	 Equation 5.11 

To complete the transfer, the multivariate calibration built using the initial spectra 

acquired on the primary instrument is used to predict the components in the test 

spectra from the transform spectra created in the SST procedure. 
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5.3 Results 

Various combinations of the three Fibre Photonics ATR probes and three MIR 

spectrometer systems were used to analyse the 10 calibration samples and 6 test 

samples. Detailed in Table 5.3 are the seven different combinations of spectrometer 

and probe that were investigated. 

Table 5.3: Combinations of spectrometer system and ATR probe used to analyse the calibration 

and test samples of acetone, ethanol and ethyl acetate. 

Combination number Spectrometer Probe* 

1 MB155 Probe 1 

2 MB155 Probe 2 

3 MB3000 Probe 2 

4 MB3000 Probe 3 

5 MB3000 Probe 1 

6 FTLA2000 Probe 1 

7 FTLA2000 Probe 2 

* Probes 1 and 2: 12 mm outer diameter, Probe 3: 2.7 mm outer diameter. 

PCA and optimised PLS calibration models were prepared using the spectral data 

acquired with the different combinations of instrument arrangements. The 

multivariate calibration models were transferred and used to predict the 

concentrations for the test spectra acquired using different instrumental 

arrangements. The effect on the error of prediction was assessed when transferring 

these calibration models and implementing calibration transfer algorithms to aid the 

transfer. 

5.3.1 Analysis of solvent mixtures  

5.3.1.1 Determination of trends in data 

Spectra were plotted and analysed to identify regions in the data that would provide 

information about the samples and remove the regions that only contribute noise to 

the measurements. The region 579 to 1844 cm-1 was identified as being most useful 

for the analysis of the sample mixtures; Figure 5.2 indicates the areas where only 
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noise or non-transmitting regions of the spectra appear. Also highlighted in Figure 

5.2 is the area of specific interest for this work based on previous work by Holden.81 

 

Figure 5.2: Overlaid MIR absorbance spectra of acetone, ethanol and ethyl acetate showing the 

regions of specific interest  as well as ‘noise’  and non-transmitting  areas of the 

spectra. 

Figure 5.3 shows the overlaid absorbance spectra for each of the three pure 

components for the selected region, 579 – 1844 cm-1. 
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Figure 5.3: ATR MIR absorbance spectra of acetone, ethanol and ethyl acetate in the range  

579 – 1844 cm-1; obtained using instrument combination 5 (See Table 5.3). 

Principal component analysis (PCA) was used to find the combination of variables 

that described any major trends in the data. The PCA scores plot was used to assess if 

the spectral data produced results similar to the mixture design (Figure 5.1). Initially 

PCA was carried out on each spectral data set collected from the different 

combination of instrumental systems. Scores on PC1 were plotted against scores on 

PC2 for each data set and compared to the mixture design; see Figure 5.4 for the 

scores plot determined from the data collected using the MB3000 spectrometer and 

probe 1 (combination 5). The overall structure is fairly similar with most of the 

points arising in the same spectral space. However, there are some differences, 

namely points 8 and 12 - 16 that are shifted in comparison to their position in the 

mixture design plot owing to experimental fluctuations in the spectra. A similar 

evaluation can be made of the PCA scores for the other six data sets. 
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Figure 5.4: Scores on PC1 vs. scores on PC2 for spectral data collected on MB3000 spectrometer 

with the probe 1 (combination 5; see also Figure 5.3). 

The spectral data for all seven data sets obtained with the various probe –

spectrometer systems were combined into one matrix and subjected to PCA to 

determine if there were any trends between the data sets. Plots of scores on PC1 vs. 

scores on PC2 for the samples, probes and spectrometers were analysed for 

similarities and differences (Figure 5.5, Figure 5.6, and Figure 5.7, respectively). 

Figure 5.5 displays the changes in the scores for all the samples analysed, indicating 

the variation seen for each sample when the probe – spectrometer combinations are 

changed. Some samples appear to have a larger variation than others, for example 

calibration sample 3 and 10 and test sample 6 (all circled in red) in comparison to 

calibration sample 1 and 2 and test sample 4 (all circled in blue). Only the samples 

from the 12 mm probe – spectrometer combinations have been circled. Figure 5.6 

displays the variation seen for the different probes; the points for probe 3 appear 

closest together in scores space, whereas, the points for probe 2 have the greatest 

variation with the points more spread out. Figure 5.7 indicates the similarity of the 

three spectrometers, where the major variation observed is the cluster of green points 

for the MB3000 spectrometer; this is due to the effect from the 2.7 mm probe rather 

than a difference in the spectrometer system.  
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On assessing the PCA scores plots for the samples, probes and spectrometers several 

conclusions can be made: 

- There is a greater variation between the two 12 mm probes shown for the 

pure ethyl acetate sample in comparison with the ethanol and acetone samples 

(calibration samples 1, 2 and 3 represent ethanol, acetone and ethyl acetate), 

see Figure 5.5 and Figure 5.6. A similar conclusion can be derived from the 

spectra, however, it is more difficult to observe. 

- All three probes convey similar structures in space with the largest variation 

seen for the 12 mm probe 2, see Figure 5.6. 

- The data for three spectrometers all display similar structures in space with 

little differences noted (see Figure 5.7). 

- There is a greater variation shown between the probes than between the 

spectrometers, see Figure 5.6 and Figure 5.7. 

In industry it can be common to require more than one probe for the analysis of a 

process, e.g. multiplexing multiple probes to a spectrometer or scaling up a process 

requiring a smaller probe for the small scale analysis and a larger probe as the 

process is scaled up. The results here show that changing between probes or using 

multiple probes will cause variations in the analysis, which can be problematic when 

monitoring a process for which calibration models have been established, but the 

probe needs to be altered. For this reason research has increased in the area of robust 

calibration model building and the use of calibration model transfer to allow the 

same model to be used even when probes or spectrometers are changed. 

5.3.1.2 Calibration model optimisation using DoEman software 

In the analysis of spectral data, good calibration models are essential in order to 

achieve accurate predictive results. CPACT design of experiment software, DoEman, 

was used to select the pre-processing conditions for the spectra that would give the 

best predictive and robust calibration models. The different factors that can influence 

the model that were reviewed are listed in Table 5.4. 
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Table 5.4: Table of the factors assessed in DoEman that can influence the model for the MIR 

data. 

Factors Regression method Derivatives Mean centring 
Principal 

components 

Levels 

PLS No derivatisation No mean 

centring 

1 - 10 

PCR 1st derivative Mean centring  

 2nd derivative   

 

Using the DoEman graphical user interface through Matlab software, the spectral 

data were loaded and the factors and their levels were input for analysis. Design of 

experiment software analyses each independent factor (e.g. derivatives) as well as the 

interaction of pairs of factors (derivatives vs. mean centring) to produce root mean 

square error of calibration (RMSEC) and root mean square error of prediction 

(RMSEP) plots for interpretation. The level that minimises the RMSEC and RMSEP 

values will contribute to the best predictive and robust model. Shown in Figure 5.8 

and Figure 5.9 are the RMSEC and RMSEP plots, respectively, for the spectral data 

collected with the MB3000 spectrometer and probe 1 (combination 5), analysed 

using the DoEman graphical user interface. 
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Figure 5.8: The effects of the different factors on the RMSEC values for the spectral data 

acquired with the MB3000 spectrometer and 12 mm probe 1. [The plots along the main diagonal 

of the plot matrix show the main effect, and the other plots show interaction effects between 

pairs of factors. The levels indicated by the column labels correspond to the different lines in the 

plots (blue, green and red relate to levels 1, 2 and 3, respectively), while the levels for the row 

labels are found along the x-axis in the plots.] 
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Figure 5.9: The effects of the different factors on the RMSEP values for the spectral data 

acquired on MB3000 spectrometer with 12 mm probe 1. [The plots along the main diagonal of 

the plot matrix show the main effect, and the other plots show interaction effects between pairs 

of factors. The levels indicated by the column labels correspond to the different lines in the plots 

(blue, green and red relate to levels 1, 2 and 3, respectively), while the levels for the row labels 

are found along the x-axis in the plots.] 

In Figure 5.8 and Figure 5.9, the notation (q, r), where q gives the row number and r 

gives the column number, is used. The number on the x axis relates to each level of 

the variable for the row; e.g. in plot (1, 1) of Figure 5.8 refers to the regression 

methods, where point 1 relates to PLS and 2 relates to PCR. In addition, the different 

coloured lines relate to the levels of the factor for the column; e.g.in plot (3, 2) of 

Figure 5.9, points 1 and 2 on the x axis relate to no mean centring and mean centring, 

respectively, and the blue, green and red lines relate to no derivation, 1st derivative 

and 2nd derivative, respectively. 

 

On interpretation of both the RMSEC and RMSEP plots, the optimal conditions for 

the spectral data collected with the MB3000 spectrometer and 12 mm probe 1 were: 
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PLS regression, with mean centring and no derivation of the spectra. The output 

conditions from the DoEman analysis are transferred with the spectral data into PLS 

Toolbox for PLS calibration to be completed. From the DoEman plot (4, 3) of Figure 

5.9, the green line referring to the use of mean centring suggests that including two 

principal components/latent variables will give the best predictive model, however, 

this interpretation was only used as a guideline. The principle behind DoEman 

assumes that there is an independent test set, however this is not always the case, 

therefore, the actual number of latent variables required was re-evaluated in the PLS 

Toolbox from the model that produced the minimum value of the root mean square 

error of cross-validation (RMSECV) obtained using leave-one-out cross validation. 

 

RMSEC and RMSEP plots were produced for each set of spectral data collected from 

the MIR analysis, using the DoEman graphical user interface to determine the 

optimal conditions. The conditions were found to be the same for each spectral data 

set analysed by MIR spectroscopy: PLS regression, with mean centring and no 

derivation of the spectra. To investigate how well the DoEman software can help to 

determine the best conditions that led to the best predictive and most robust models, 

two non-optimal conditions were also tested where the levels for pre-processing 

factors were altered (Table 5.5). 

Table 5.5: Table of two non-optimum sets of conditions tested for the MIR spectral data. 

 
Non-optimum 1 Non-optimum 2 

Regression method PLS PLS 

Derivative 1st derivative No derivative 

Mean centring Mean centred No centring 

 

The spectra and each set of pre-processing conditions were transferred to PLS 

Toolbox in Matlab and used to build multivariate PLS calibration models. The 

models were then used to predict the concentrations of each separate component 

present in the test samples. The accuracy of the concentration predictions of each 

component obtained with each set of conditions were then compared to indicate any 
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advantages of using design of experiments for multivariate calibration model 

building in this example. The expected and predicted concentrations of the three 

analytes were tabulated and the RMSEP values were calculated to determine 

numerically the level of error associated with each of the predictions. This approach 

was used to obtain concentration predictions for the samples from the spectra 

measured with all the spectrometer – probe combinations (Table 5.6 to Table 5.12) 

and several conclusions can be made: 

- Whilst some predictions are good, in each data set there are poorer 

predictions, even for the optimal pre-processing conditions. 

- Overall, there is no clear advantage of the optimal set versus the other 2 sets 

of pre-processing conditions which suggests that for this example the 

selection of the parameters is not critical. 

- The best RMSEP values are shown for ethyl acetate and the worst are for 

ethanol. The main reason is due to the overlapping of the component spectra; 

the bands of ethanol overlap with most of the ethyl acetate and acetone bands. 

Therefore, when low concentrations of ethanol are present in high 

concentrations of the other components, a lot of the ethanol information is 

obscured. Although the ethyl acetate bands also overlap with the other bands, 

there are more ethyl acetate bands across the range of the spectrum and these 

are well represented in the regression coefficient for the ethyl acetate models 

and so easier to model. 

- The FTLA2000 spectrometer results give the best RMSEP values. 

- Probe 1 RMSEP values are better than probe 2 results when used for analysis 

with the MB3000 spectrometer and MB155 spectrometer. However, probe 2 

provides better RMSEP values than probe 1 when used for analysis with the 

FTLA2000 spectrometer; reviewing the spectra and regression coefficients it 

is unclear why this is the case. 

- Overall the best set of predictions resulted from the use of a FTLA2000 

spectrometer with probe 2. 
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Referring back to the RMSEP plot from the DoEman study (Figure 5.9) it is not 

surprising that there was not a big effect when the pre-processing conditions such as 

derivatives and mean centring were changed, as there are no big differences shown in 

the plots. Although the optimal model was not always determined as having the 

lowest RMSEP value, this study has shown some merits in the use of DoEman as a 

tool for future model building. Using the DoEman software can save time in model 

building, as for more complex spectral data, the analyst would be required to analyse 

several options independently to determine the best model. DoEman software saves 

this time by indicating to the analyst a good choice of pre-processing conditions to 

use for the calibration model building. It must also be noted that using the DoEman 

software does not give a conclusive result, it produces plots of RMSEC and RMSEP 

that can then be interpreted by the analyst and, therefore, there is a margin for error 

in the interpretation of the plots. 

5.3.2 Comparison of calibration transfer algorithms 

The optimisation of multivariate calibration models is extremely important in 

determining reliable quantitative results for a given process. Equally important are 

the maintenance and durability of the optimised model. Multivariate models require a 

lot of time and effort to instill the robustness that is required of them and usually they 

are intended for use over a long period of time. However, small instrumental changes 

can cause multivariate models to become invalid, often requiring full model 

recalibration. Different methods have been employed to aid the lifetime and validity 

of these calibration models if instrumental changes occur. Two well used spectral 

response standardisation approaches (DS and PDS) as well as a newer procedure 

(SST) have been investigated for the transfer of the calibration model for the solvents 

analysis. 

5.3.2.1 Multiplexing of two probes – transfer of calibration model 

The multiplexing of two probes to the same instrument has been investigated as a 

potential industrial example. This example was chosen to show the impact of using 

two similar probes to simultaneously analyse the same system in different vessels 

with the probes multiplexed to the same instrument when the calibration is based on 
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only one of the probes. The use of calibration standardisation algorithms can be of 

great benefit in industry for this type of example as only one full calibration would 

be required and the algorithms can be used to transfer the reference calibration to 

other set-ups. In this example, two 12 mm probes, probe 1 and 2, were used to 

acquire spectra of calibration and test samples when coupled with the FTLA2000 

spectrometer. The two probes used in this example have the same outside diameter; 

however the manufacturing process used to build each probe was subtly different. 

Therefore, there is the possibility of slight differences in the spectra, which as Figure 

5.10 illustrates involved differences in the intensity of the peaks. 

 

Figure 5.10: Overlaid calibration spectra (calibration 3) acquired on the FTLA2000 

spectrometer with two 12 mm probes. 

This means it would be difficult to build a reference calibration based on 

FTLA2000 - 12 mm probe 2 and get adequate results when used to predict spectra 

acquired with FTLA2000 - 12 mm probe 1. The spectral data was transferred to 

Matlab where the pre-processing conditions selected in section 5.3.1.2 were 

completed and the calibration model built. Table 5.13 shows the RMSEP values 
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when the calibration model was transferred, where the secondary test spectra were 

acquired with the probe 1 - FTLA2000 combination. 

Table 5.13: Comparison of RMSEP values for acetone, ethanol and ethyl acetate when the test 

spectra are acquired with a different probe than that used when the reference calibration was 

built. (Spectrometer FTLA2000, Reference – probe 2 and Secondary – probe 1) 

 Reference model: FTLA 2000 - 12 mm probe 2 

Acetone Ethanol Ethyl acetate 
Reference calibration/ 
Reference test 

1.0 1.2 0.4 

Reference calibration/ 
Secondary test 

7.3 3.5 4.4 

 

The effect of transferring the reference calibration to use with test spectra collected 

with an alternative probe is a marked increase in the RMSEP value; this is especially 

the case for acetone and ethyl acetate. If standardisation algorithms such as DS, PDS 

and SST are used where all of the calibration standards are involved in the 

standardisation, improvements can be seen. Table 5.14 shows the RMSEP values for 

this transfer when DS, PDS and SST have been employed. For the PDS algorithm the 

window size had to be optimised to determine the best RMSEP values. SST required 

the optimisation of the number of singular values; this is a simple and relatively 

efficient process in comparison to the optimisation of the window size of PDS. 
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Table 5.14: Comparison of RMSEP values for acetone, ethanol and ethyl acetate when the test 

spectra are acquired with a different probe than that used when the reference calibration was 

built and DS, PDS and SST are applied. (Spectrometer FTLA2000, Reference – probe 2 and 

Secondary – probe 1) 

 Reference model: FTLA 2000 - 12 mm probe 2 

Acetone Ethanol Ethyl acetate 

Reference calibration/ 

Reference test 

1.0 1.2 0.4 

Reference calibration/ 

Secondary test 

7.3 3.5 4.4 

Reference calibration/ 

Secondary test – DS used 

1.4 0.9 0.7 

Reference calibration/ 

Secondary test – PDS used 

(window size....) 

1.9 

(9) 

1.1 

(11) 

1.2 

(9) 

Reference calibration/ 

Secondary test – SST used 

1.6 1.0 1.0 

All three algorithms have been used successfully to improve the RMSEP when the 

transfer of the reference model was completed. The RMSEP values for all three 

analytes have been significantly reduced when compared to a direct transfer with no 

algorithms implemented, see Table 5.14. The test spectra that are to be quantified are 

corrected and made to look like they had been acquired on the system used for the 

original model building process. The transformation of the test spectra acquired with 

probe 1 corrected to look like they have been acquired on probe 2 can be seen in 

Figure 5.11, Figure 5.12 and Figure 5.13, where the algorithms DS, PDS and SST 

have been used, respectively. The corrected spectra, originally acquired on probe 1, 

should now look more like probe 2 than the original probe 1 spectra. 
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Figure 5.11: Test spectra (test 6) acquired on the FTLA2000 spectrometer with two 12 mm 

probes 1 and 2 overlaid with transformed corrected test spectra determined using DS. 

 

Figure 5.12: Test spectra (test 6) acquired on the FTLA2000 spectrometer with two 12 mm 

probes 1 and 2 overlaid with transformed corrected test spectra determined using PDS (window 

size 9). 
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Figure 5.13: Test spectra (test 6) acquired on the FTLA2000 spectrometer with two 12 mm 

probes 1 and 2 overlaid with transformed corrected test spectra determined using SST. 

The corrected spectra where DS and PDS were used, compare relatively well with 

those obtained with probe 2. The corrected spectrum where SST was used still has 

significant areas of the spectrum that resemble probe 1; however, there are some 

areas that compare well with probe 2. The spectra corrected using the DS algorithm 

provided a better spectral comparison to probe 1 than the PDS and SST corrected 

spectra and hence lower RMSEP values were found for this transformation, see 

Table 5.14. 

5.3.2.2 Transfer of all multivariate calibration models with all calibration 

samples 

The multiplexing of two probes to one spectrometer can occur in industry and the 

above example indicates the benefits of using multivariate calibration transfer 

algorithms as an aid to transferring one model between two probes. However, there 

are many reasons for implementing these transfer algorithms in practice. Therefore 

the spectral data that was collected using the seven combinations of MIR instrument 
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and probe, (Table 5.15) have been used to assess the problems that arise when 

transferring calibration models between these sets of conditions. 

Table 5.15: List of different combinations of spectrometers and probes (replicate of Table 5.3, 

for convenience).  

Combination number Spectrometer Probe* 

1 MB155 Probe 1 

2 MB155 Probe 2 

3 MB3000 Probe 2 

4 MB3000 Probe 3 

5 MB3000 Probe 1 

6 FTLA2000 Probe 1 

7 FTLA2000 Probe 2 

* Probes 1 and 2: 12 mm outer diameter, Probe 3: 2.7 mm outer diameter. 

The spectral data were transferred to Matlab, pre-processing was carried out and 

models were built using the optimal conditions determined from DoEman. Each 

calibration model was transferred and used to predict the concentrations of the three 

components acetone, ethanol and ethyl acetate present in the six test mixtures 

analysed by a different instrumental set up; Table 5.16 details the transfers that were 

assessed. For example, a reference calibration model that was built using spectral 

data obtained from analysing calibration samples on the MB3000 spectrometer fitted 

with the 12 mm ATR probe 1 was transferred and used to predict the concentrations 

of the components in the six test samples that had been analysed using a secondary 

instrument – probe combination, e.g. FTLA2000 spectrometer fitted with 12 mm 

ATR probe 2. Using a column and row notation (x, y) where x are the columns and y 

are the rows then the aforementioned example would be (5, 7) in Table 5.16. The 

blue boxes represent predictions where no transfer had taken place, i.e. the 

calibration model was built with spectra collected on the same instrument as the test 

samples were analysed and predicted. 
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Table 5.16: Matrix table representing the model transfers. 

  Reference model 
1 2 3 4 5 6 7 

S
ec

on
da

ry
 in

st
ru

m
en

t 

1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 

2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 

3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 

4 1,4 2,4 3,4 4,4 5,4 6,4 7,4 

5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 

6 1,6 2,6 3,6 4,6 5,6 6,6 7,6 

7 1,7 2,7 3,7 4,7 5,7 6,7 7,7 

 

For each model transfer combination, RMSEP values were calculated and the results 

were compared with the RMSEP values that had been previously obtained when no 

model transfer had taken place (see Table 5.6 – Table 5.12). The comparison was 

used to determine if the RMSEP value increased and if so by how much. Similarly, 

to assess the calibration transfer algorithms, direct standardisation (DS), piecewise 

direct standardisation (PDS) and the newer procedure spectral space transformation 

(SST) were carried out in Matlab. The results were compared to the RMSEP values 

previously calculated to determine where DS, PDS and SST algorithms could aid 

calibration model transfers. 

 

PDS differs from DS methods in the use of the spectrum, DS requires the use of the 

entire spectrum, whereas PDS uses small channel windows around the channel of 

interest and therefore a window size is required. This window size can be optimised 

and in the case of this research a set of standardisation transforms were calculated 

using various window sizes for all of the spectral data sets to determine a suitable 

window size. The RMSEP values that were calculated for all the spectral data were 

reviewed to determine the optimal window size for the PDS transfer. A stipulation 

for the selection of the window size for PDS is that it can only be an odd number. 

Comparing the RMSEP values for the entire set of window sizes (1, 3, 5…165) for 

all of the transfers, there does not appear to be any sizable changes in the RMSEP 

values as the window sizes were changed. As there is no sizable change in the 

RMSEP values when a large window size is chosen compared to a small window 

size, the RMSEP values for the first ten window sizes (1, 3, 5… 19) were inspected 
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further to determine which window size from this selection was most suitable. The 

mean of the RMSEP values was taken for the results of each of the secondary 

instrument configurations and then plotted to show what the optimal window size 

was. This was completed for each of the three analytes and can be viewed in 

Appendix 5.2. The window sizes determined were 9, 11 and 9 for acetone, ethanol 

and ethyl acetate, respectively. Another parameter which requires optimisation in 

PDS is also required by SST, namely the number of principal components (PCs). In 

PDS the principal components are involved in the calculation of the transform 

matrix; for this study this was not optimised manually, however, the default setting in 

Matlab was used. In SST the principal components represent the spectral information 

which is retained after the singular value decomposition step. Du et al.58 observed 

that using a large number of principal components made no significant impact on the 

predictive accuracy. It was suggested that this parameter could be set to a value equal 

to or slightly larger than the number of significant singular values. Therefore, DS and 

SST have advantages of easy implementation over the PDS algorithm. After the 

necessary optimisation and implementation of the three algorithms the model 

transfers were completed and the RMSEP statistic calculated. The numerical results 

for the RMSEP calculation for the model transfers, with and without the aid of 

calibration model transfer algorithms, can be viewed in the following tables. 

 

Table 5.17, Table 5.18, Table 5.19 and Table 5.20 provide the results of acetone for 

the model transfers without the use of algorithms and with the use of DS, PDS and 

SST, respectively. 
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Table 5.17: Acetone RMSEP values for all calibration model transfers completed by MIR 

analysis. 

Reference model 

Acetone 1 2 3 4 5 6 7 

S
ec

on
da

ry
 in

st
ru

m
en

t 
1 4.4 20.3 10.4 65.3 6.1 7.1 6.9 

2 10.3 4.9 5.1 91.1 15.8 17.7 10.4 

3 11.5 11.5 4.4 92.3 13.7 15.7 8.5 

4 19.1 61.6 24.4 3.7 19.1 20.0 22.9 

5 7.6 17.0 7.8 78.4 2.0 1.9 6.4 

6 7.8 18.3 8.5 77.7 2.2 1.7 7.3 

7 7.9 8.1 5.0 87.2 6.0 6.4 1.0 

 

Table 5.18: Acetone RMSEP values for all calibration model transfers completed by MIR 

analysis with DS algorithms applied. 

Reference model 

Acetone 1 2 3 4 5 6 7 

S
ec

on
da

ry
 in

st
ru

m
en

t 

1 4.4 1.9 4.1 2.4 4.4 4.8 4.3 

2 5.3 4.9 9.7 8.5 7.4 6.7 6.8 

3 6.4 4.9 4.4 3.2 4.8 6.3 5.5 

4 4.1 2.9 4.4 3.7 3.5 3.8 3.7 

5 4.9 3.1 2.2 2.5 2.0 2.7 2.5 

6 8.4 3.2 9.4 10.1 2.4 1.7 1.4 

7 9.9 5.6 2.3 5.3 0.7 2.0 1.0 
 

Table 5.19: Acetone RMSEP values for all calibration model transfers completed by MIR 

analysis with PDS algorithms applied. 

Reference model 

Acetone 1 2 3 4 5 6 7 

S
ec

on
da

ry
 in

st
ru

m
en

t 

1 4.4 2.2 4.5 5.2 4.9 5.1 5.1 

2 5.5 4.9 5.6 5.5 5.4 5.5 5.4 

3 4.9 3.4 4.4 4.6 4.4 4.5 4.5 

4 4.7 5.2 4.5 3.7 3.6 3.7 3.7 

5 2.6 1.9 2.2 2.0 2.0 1.7 1.7 

6 3.6 2.9 2.6 2.1 2.0 1.7 1.9 

7 2.9 2.9 2.6 1.3 1.5 1.0 1.0 
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Table 5.20: Acetone RMSEP values for all calibration model transfers completed by MIR 

analysis with SST algorithms applied. 

Reference model 

Acetone 1 2 3 4 5 6 7 

S
ec

on
da

ry
 in

st
ru

m
en

t 
1 4.4 2.0 4.4 7.1 4.9 5.1 5.2 

2 6.0 4.9 5.5 8.1 5.9 5.8 5.8 

3 6.5 3.6 4.4 16.5 5.4 5.0 4.8 

4 4.6 2.2 4.1 3.7 4.8 5.0 5.1 

5 2.5 1.9 1.7 5.7 2.0 1.9 1.9 

6 3.0 4.4 2.0 5.4 1.9 1.7 1.6 

7 3.1 3.6 2.3 4.4 1.7 1.1 1.0 
 

Table 5.21, Table 5.22, Table 5.23 and Table 5.24 provide the results of ethanol for 

the model transfers without the use of algorithms, and with the use of DS, PDS and 

SST, respectively. 

 

Table 5.21: Ethanol RMSEP values for all calibration model transfers completed by MIR 

analysis. 

Reference model 

Ethanol 1 2 3 4 5 6 7 

S
ec

on
da

ry
 in

st
ru

m
en

t 

1 5.1 8.5 10.2 93.4 6.6 8.1 7.2 

2 8.1 5.5 4.3 117.7 12.9 12.9 9.3 

3 5.8 3.9 3.1 111.2 10.4 11.8 8.3 

4 20.9 21.8 35.4 3.0 23.8 25.1 24.6 

5 6.6 9.9 7.4 103.0 2.0 2.8 3.2 

6 8.1 11.2 8.2 106.1 2.1 1.0 3.5 

7 8.1 9.5 3.4 124.8 4.8 4.0 1.2 
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Table 5.22: Ethanol RMSEP values for all calibration model transfers completed by MIR 

analysis with DS algorithms applied. 

Reference model 

Ethanol 1 2 3 4 5 6 7 

S
ec

on
da

ry
 in

st
ru

m
en

t 
1 5.1 5.9 3.1 3.1 4.8 5.7 5.4 

2 5.6 5.5 6.1 9.2 8.8 9.4 9.1 

3 9.2 9.7 3.1 2.9 3.9 4.8 4.7 

4 5.2 5.1 3.0 3.0 3.1 2.8 2.7 

5 5.4 6.5 3.4 2.0 2.0 2.0 1.8 

6 10.3 11.3 2.1 6.7 1.8 1.0 0.9 

7 12.4 13.1 3.0 3.9 1.4 1.7 1.2 
 

Table 5.23: Ethanol RMSEP values for all calibration model transfers completed by MIR 

analysis with PDS algorithms applied. 

Reference model 

Ethanol 1 2 3 4 5 6 7 

S
ec

on
da

ry
 in

st
ru

m
en

t 

1 5.1 5.0 4.4 5.5 5.0 5.0 4.9 

2 5.5 5.5 5.7 5.9 5.4 5.4 5.4 

3 4.6 4.1 3.1 5.3 3.8 4.0 3.8 

4 3.7 4.1 5.6 3.0 3.9 4.1 4.1 

5 2.1 2.0 2.5 1.9 2.0 2.0 2.0 

6 2.5 2.3 2.4 2.1 1.1 1.0 1.1 

7 1.9 1.7 2.6 1.6 1.0 1.0 1.2 
 

Table 5.24: Ethanol RMSEP values for all calibration model transfers completed by MIR 

analysis with SST algorithms applied. 

Reference model 

Ethanol 1 2 3 4 5 6 7 

S
ec

on
da

ry
 in

st
ru

m
en

t 

1 5.1 5.1 4.3 5.8 5.1 5.0 5.1 

2 5.5 5.5 5.7 7.4 5.8 5.8 5.8 

3 4.1 4.0 3.1 7.8 3.8 3.8 3.8 

4 3.5 3.5 3.5 3.0 3.6 3.6 3.6 

5 2.0 2.0 2.5 2.5 2.0 2.0 2.0 

6 1.6 1.4 2.5 2.5 1.0 1.0 1.0 

7 1.2 1.1 3.0 2.8 1.1 1.2 1.2 
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Table 5.25, Table 5.26, Table 5.27 and Table 5.28 provide the results of ethyl acetate 

for the model transfers without the use of algorithms, and with the use of DS, PDS 

and SST, respectively. 

Table 5.25: Ethyl acetate RMSEP values for all calibration model transfers completed by MIR 

analysis. 

Reference model 

Ethyl acetate 1 2 3 4 5 6 7 

S
ec

on
da

ry
 in

st
ru

m
en

t 

1 2.5 9.2 7.7 45.9 1.6 3.1 5.4 

2 13.0 3.4 4.2 56.9 6.0 7.7 2.7 

3 10.0 3.9 3.8 48.5 4.2 4.9 1.9 

4 30.1 32.8 31.0 1.1 23.2 29.0 25.1 

5 1.6 8.5 7.0 45.5 1.1 2.0 4.6 

6 1.7 8.5 7.2 48.0 1.2 1.5 4.4 

7 8.9 2.8 2.2 62.1 5.2 5.4 0.4 

 

Table 5.26: Ethyl acetate RMSEP values for all calibration model transfers completed by MIR 

analysis with DS algorithms applied. 

Reference model 

Ethyl acetate 1 2 3 4 5 6 7 

S
ec

on
da

ry
 in

st
ru

m
en

t 

1 2.5 0.9 5.5 1.8 2.0 2.6 2.5 

2 4.5 3.4 4.5 2.8 3.2 4.7 3.9 

3 2.2 1.5 3.8 1.7 1.9 2.2 2.1 

4 2.8 1.0 2.4 1.1 1.4 1.4 1.6 

5 2.5 0.9 3.5 0.8 1.1 1.9 1.7 

6 2.9 1.1 4.1 2.7 1.2 1.5 0.7 

7 2.5 1.1 3.4 1.4 0.7 0.7 0.4 
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Table 5.27: Ethyl acetate RMSEP values for all calibration model transfers completed by MIR 

analysis with PDS algorithm applied. 

Reference model 

Ethyl Acetate 1 2 3 4 5 6 7 

S
ec

on
da

ry
 in

st
ru

m
en

t 
1 2.5 2.6 2.1 1.9 1.6 2.0 1.9 

2 3.4 3.4 3.2 2.9 2.6 3.0 2.7 

3 4.3 4.1 3.8 4.4 3.5 3.8 3.4 

4 4.5 4.2 3.8 1.1 2.1 2.9 2.5 

5 1.2 1.4 0.9 1.7 1.1 0.9 0.9 

6 1.7 1.7 1.7 1.7 1.3 1.5 1.2 

7 1.1 1.2 0.7 1.3 0.3 0.3 0.4 
 

Table 5.28: Ethyl acetate RMSEP values for all calibration model transfers completed by MIR 

analysis with SST algorithm applied. 

Reference model 

Ethyl Acetate 1 2 3 4 5 6 7 

S
ec

on
da

ry
 in

st
ru

m
en

t 

1 2.5 2.5 2.3 6.4 1.2 1.9 1.7 

2 3.6 3.4 3.1 6.2 2.5 3.3 2.7 

3 4.2 3.9 3.8 10.0 3.7 4.0 3.4 

4 5.1 5.0 4.9 1.1 3.9 4.5 4.2 

5 1.2 1.3 1.2 6.7 1.1 0.9 0.8 

6 1.5 1.4 1.4 5.8 1.8 1.5 1.0 

7 1.3 1.2 0.9 5.9 1.2 0.3 0.4 
 

On assessing the results for the transfer of calibration models with and without the 

use of calibration model transfer algorithms several conclusions can be made: 

- Transfer of calibration models when the spectrometer, probe or both are 

changed causes an increase in the RMSEP values when compared with the 

original models. 

- Changing the probe appears to have a greater effect on the predictive ability 

of a model than when the spectrometer is changed; this is not surprising when 

the results of section 5.3.1.1 are considered. Larger errors were shown when 

transferring models that were developed with a different probe diameter to 

that of the data acquired on the secondary instrument, e.g. column 4 in Table 

5.18, Table 5.22 and Table 5.26 where no algorithms were used to aid the 
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transfer; the reference model was acquired with a 2.7 mm probe, however, the 

secondary instruments included 12 mm probes. 

- The RMSEP values increased considerably when no algorithm was used to 

aid the transfer, especially in the case of ethanol, see Table 5.21. The use of 

DS, PDS or SST algorithms successfully decreased the RMSEP values in 

comparison with the transfer of calibration models without the use of the 

algorithms. In the case of ethanol, there was a large decrease in the RMSEP 

value when DS, PDS or SST was used. 

- Some of the results when the algorithms were used for the transfer give better 

RMSEP values than the results when no transfer has taken place. It is 

possible that the difference between the results is within the variation of these 

models if spectra collected at multiple time points were used. For example, if 

spectra were acquired on the reference instrument several times throughout 

the day and the RMSEP calculated when no transfer has taken place for each 

time point, the variation between the errors may be the same as observed 

here; it would be useful to test this theory out in the future. 

- Some DS transfers resulted in an increase in RMSEP values in comparison to 

the transfer of calibration models without the use of algorithms, for example 

the DS results in 1,6 and 1,7 in Table 5.18 have larger errors than the 

equivalent 1,6 and 1,7 in Table 5.17 where no algorithms were used. This is 

due to poor transform spectra being produced by applying the DS algorithm 

for these examples, resulting in poorer predictions and larger RMSEP values, 

The number of occurrences was reduced when PDS or SST was applied, as 

the transform spectra looked more like the spectra that were acquired with the 

original system that the calibration model was built upon. 

- The use of SST algorithm resulted in similar results to those obtained when 

using DS and PDS; an exception occurred when the original model was built 

using the MB3000 and 2.7 mm probe (column 4 in the tables). For example 

the SST results for ethyl acetate in Table 5.28 are similar to the DS and PDS 

results for ethyl acetate given in Table 5.26 and Table 5.27, with the 

exception of column 4. 
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- The results produced with the MB155 spectrometer are generally poorer, 

suggesting that the spectrometer performance is having a major impact on the 

quality of the results obtained. For example, compare the results in 5,1 with 

5,5 and 5,6 in Table 5.21; the RMSEP for the original model with no transfer 

(5,5) is similar to the results from a transfer to the FTLA2000 series 

spectrometer (5,6), however the results for the transfer to the MB155 

spectrometer (5,1) have larger errors. 

5.3.3 Investigation using a subset of calibration samples 

Previously in section 5.3.2.2, transfers between different spectrometers and probes 

were investigated when all calibration samples were involved in the transfer. The 

results showed that SST provided comparable results to DS and PDS with the 

exception of when the reference model was originally built from data collected on 

the MB3000 spectrometer with the smaller 2.7 mm probe. This issue was 

investigated to determine if the SST algorithm could be improved to provide better 

results for this transfer. 

 

The transfer of a reference model for a 2.7 mm probe to predict analyte 

concentrations for spectra acquired with a 12 mm probe is potentially quite an 

important example for industry, as it may arise when scaling up a process. So, the 

results obtained for this example were considered further. In particular, different 

numbers of calibration samples involved in the calibration transfer process were 

investigated and the RMSEP values compared for the three algorithms discussed. 

5.3.3.1 Improvement to SST algorithm 

The absorbance values collected by the 12 mm probe are far larger than those 

acquired by the 2.7 mm probe, see Figure 5.14. The reason for the absorbance 

difference is due to changes in the manufacturing design; probe 1 is the standard 

12 mm dual fibre probe design in comparison to probe 3 which is a mono fibre 

design which incorporates a smaller diamond cone. These changes will influence the 

pathlength and hence the absorbance of the probes, and are described in more detail 

in chapter 4. 



   

154 

 

 

 

 

 

Figure 5.14: Overlaid spectra acquired on the MB3000 spectrometer with 12 mm probe 1 and a 

2.7 mm probe. 

The singular value decomposition of the combined spectra part of the SST algorithm 

will tend to explain the variations of the minor factors of the larger 12 mm probe 

rather than describing the major factors in the smaller 2.7 mm probe. This then leads 

to inaccuracies when completing the transfer and so the RMSEP values are not 

reduced as much as with DS or PDS for this particular transfer. For example, 

consider the situation when calibration transfer was completed when the reference is 

probe 3 and the secondary set-up is probe 1 ((4, 5) in Table 5.17 - Table 5.28); the 

results have been extracted and are re-presented in Table 5.29. 
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Table 5.29: Comparison of RMSEP values for acetone, ethanol and ethyl acetate when the test 

spectra are acquired with a different probe than that used when the reference calibration was 

built and DS, PDS and SST are applied. (Spectrometer MB3000 Reference – probe 3 and 

Secondary –probe 1) 

 Reference model : MB3000 probe 3 

Acetone Ethanol Ethyl acetate 

Reference calibration/ Secondary test 78.4 103.0 45.5 

Reference calibration/ Secondary test 

– DS used 

2.5 2.0 0.8 

Reference calibration/ Secondary test 

– PDS used (Window size...) 

2.0 

(9) 

1.9 

(11) 

1.7 

(9) 

Reference calibration/ Secondary test 

– SST used 

4.2 2.2 3.5 

 

To overcome the issue with SST, an improvement was made whereby the spectral 

data sets to be standardised were scaled. This scaling eliminated the major 

differences in absorbance observed between the spectra obtained with the 12 mm 

probe and the 2.7 mm probe. The spectral data that are to be standardised are scaled 

by a factor of Var 1/ Var 2, where Var 1 and Var 2 are the standard variation of the 

bigger diameter probe and the smaller diameter probe, respectively. The calibration 

transfer described in Table 5.29 was completed using the SST algorithm 

incorporating scaling and the results are compared with the previous RMSEP values 

obtained, see Table 5.30. 
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Table 5.30: Comparison of RMSEP values for acetone, ethanol and ethyl acetate when the test 

spectra are acquired with a different probe than that used when the reference calibration was 

built and DS, PDS and SST are applied. (Spectrometer MB3000 Reference – probe 2.7 mm 

probe and Secondary – 12 mm probe 1) 

 Reference model : MB3000 probe 3 

Acetone Ethanol Ethyl acetate 

Reference calibration/ Reference test 3.7 3.0 1.1 

Reference calibration/ Secondary test 78.4 103.0 45.5 

Reference calibration/ Secondary test 

– DS used 

2.5 2.0 0.8 

Reference calibration/ Secondary test 

– PDS used (Window size...) 

2.0 

(9) 

1.9 

(11) 

1.7 

(9) 

Reference calibration/ Secondary test 

– SST used 

4.2 2.2 3.5 

Reference calibration/ Secondary test 

–SST incorporating scaling 

1.6 1.5 0.9 

 

The improvement to the SST algorithm was shown to be successful, with the 

RMSEP values reduced for all three analytes when compared with the original SST 

algorithm. The improved SST algorithm is now comparable to or better than the DS 

and PDS algorithms for this transfer. Employing the same scaling method to the data 

for the DS and PDS algorithm has no effect on the final transformed spectra and so 

will not have an influence on the RMSEP values. This is due to the way the 

transform is created, as detailed in section 5.2.4. The use of the scaling method was 

also investigated for the other transfers when SST was employed, as these spectra do 

not vary greatly in intensity, scaling has little effect; therefore, no improvement can 

be gained if scaling was to be used for transfers other than those where there is a 

large difference in intensity. 
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5.3.3.2 Leverage – sample selection 

The purpose of using calibration standardisation algorithms for transfer of models is 

to limit the need for a full recalibration if the model becomes invalid. The three 

standardisation algorithms investigated in this work require samples to be analysed 

on both the reference and the secondary system. This can still be quite time 

consuming if there are a large number of calibration samples in the reference 

calibration and so ideally a smaller subset would be used when applying these 

standardisation algorithms. Using a smaller selected subset of calibration samples 

will reduce the time involved in the transfer. To determine the selection of samples 

that were to be used in the standardisation, leverage analysis was completed. 

Leverage is a measure of the influence of a given sample on the regression. The 

samples were selected in order of furthest away from the multivariate mean of the 

calibration samples. The sample selection order was 3, 2, 1, 4, 5, 8, 10, 6, 7 and 9. 

 

With the sub-set of samples selected, calculations using DS, PDS and SST were 

completed for the simulated process scale-up example. The number of calibration 

samples included in the sub-set was altered from 6 up to 10 and the RMSEP values 

were reviewed. The PDS algorithm required the window size to be optimised each 

time the sub-set of calibration samples was altered and this was completed for each 

analyte. RMSEP values for window sizes 1, 3, 5…21 were investigated and the 

optimum window size for each analyte and transfer set was selected. For the SST 

algorithm, the number of singular values was selected to obtain the optimum result, 

as suggested by Du et al.58 

5.3.3.3 Process scale-up – calibration transfer example 

The DS, PDS and improved SST algorithms were investigated when the number of 

calibration samples involved in the transfer was altered from 6 – 10. The samples 

were selected using the leverage method and the optimised algorithms were 

implemented. Plots of RMSEP vs. Number of samples included in the transform 

were analysed to determine the effect that changing the number of samples has on 

the final RMSEP value. Figure 5.15, Figure 5.16 and Figure 5.17 provide the results 

for the transfers for acetone, ethanol and ethyl acetate, respectively. 
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Figure 5.15: Comparison of RMSEP values for DS, PDS and improved SST when number of 

samples involved in the transform are altered for acetone (sample order 3, 2, 1, 4, 5, 8, 10, 6, 7 

and 9). 

 

Figure 5.16: Comparison of RMSEP values for DS, PDS and improved SST when number of 

samples involved in the transform are altered for ethanol (sample order 3, 2, 1, 4, 5, 8, 10, 6, 7 

and 9). 
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Figure 5.17: Comparison of RMSEP values for DS, PDS and improved SST when number of 

samples involved in the transform are altered for ethyl acetate (sample order 3, 2, 1, 4, 5, 8, 10, 

6, 7 and 9). 

The RMSEP results for the DS algorithm show an increase when 9 samples are 

involved in the transform for acetone and ethanol. The sample selection order was 3, 

2, 1, 4, 5, 8, 10, 6, 7 and 9, indicating that the addition of sample 7 in the transform 

means the spectra are not transformed as well with the DS algorithm; both PDS and 

SST appear unaffected. The RMSEP values lower again after the addition of the 

tenth sample, calibration sample 9, suggesting that this sample contains information 

that allows better transformed spectra and hence DS can perform better. The overlaid 

transformed spectra from DS, SST and PDS when 8, 9 or 10 samples are involved in 

the transform are given in Figure 5.18, Figure 5.19 and Figure 5.20. Reviewing the 

spectra in Figure 5.19 there are regions, 600 – 800 cm-1, 1200 – 1300 cm-1 and 1600 

– 1800 cm-1, where there are differences in the DS transformed spectra when 

compared to PDS and SST. Referring to the overlaid pure component spectra of the 

three analytes in Figure 5.3, two of the regions where DS performs poorly include 

areas where there are no bands present for acetone (600 – 800 cm-1) or ethanol (1600 

– 1800 cm-1). It could be that when sample 7, which is a 1:1:1 mixture of the three 

components, is included in the transform it is more difficult to ascertain the bands 
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from the acetone and ethanol in the regions discussed and so the final predictions for 

acetone and ethanol are worse than for ethyl acetate when 9 samples are included in 

the transform. With the addition of the tenth sample (Figure 5.20), the transform 

improves and hence the RMSEP results are better. 

 

Figure 5.18: Overlay of transformed test spectra (test 1) from DS, SST and PDS (window size 

15) when eight calibration samples were included in the transfer. 
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Figure 5.19: Overlay of transformed test spectra (test 1) from DS, SST and PDS (window size 

15) when nine calibration samples were included in the transfer. 

 

Figure 5.20: Overlay of transformed test spectra (test 1) from DS, SST and PDS (window size 

15) when ten calibration samples were included in the transfer. 
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If the final order of the ninth and tenth samples were reversed so that sample 7 was 

added last (3, 2, 1, 4, 5, 8, 10, 6, 9 and 7), the RMSEP results improve when 9 

samples are included in the transform. Figure 5.21, Figure 5.22 and Figure 5.23 

provide the results for the transfers for acetone, ethanol and ethyl acetate when the 

order of the last two samples is changed. 

 

Figure 5.21: Comparison of RMSEP values for DS, PDS and improved SST when number of 

samples involved in the transform are altered for acetone (sample order 3, 2, 1, 4, 5, 8, 10, 6, 9 

and 7). 
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Figure 5.22: Comparison of RMSEP values for DS, PDS and improved SST when number of 

samples involved in the transform are altered for ethanol (sample order 3, 2, 1, 4, 5, 8, 10, 6, 9 

and 7). 

 

Figure 5.23: Comparison of RMSEP values for DS, PDS and improved SST when number of 

samples involved in the transform are altered for ethyl acetate (sample order 3, 2, 1, 4, 5, 8, 10, 

6, 9 and 7). 
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On assessing the results for the transfer of the calibration model when the number of 

calibration samples involved in the transform is altered, some conclusions can be 

made: 

- DS shows the greatest sensitivity, with fluctuations in RMSEP values when 

the number of calibration samples used in the transfer is altered, however this 

difference is small. 

- Both PDS and improved SST provide similar and consistent results when the 

number of samples used for the transfer is altered, however SST has the 

advantage of simpler implementation over PDS. SST requires the 

optimisation of one parameter in comparison with PDS which requires the 

optimisation of multiple parameters including the window size which must be 

optimised each time a change is made, which can be time consuming. 

- As the number of samples included in the transfer is increased the RMSEP 

values are similar for all three transfers if the order of the last two samples is 

changed. 

- If SST with no scaling incorporated is used, then the RMSEP values are 

much greater and DS and PDS provide better results when fewer samples are 

included in the transfer. Again the results are similar for all three transfers 

when larger numbers of samples are involved in the transfer. 
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5.4 Conclusions 

The Fibre Photonics ATR probes were able to analyse the solvent mixtures and 

provide good quality spectra for use in calibration model building. It was observed in 

this research that the use of good spectrometers is required to gain the best results 

from these probes; for example, if a spectrometer has a poorer detector or a detector 

that is not optimised specifically for the MIR range then the results will be worse 

than those from a spectrometer that contains optimised components. The straight 

transfer of calibration models resulted in large RMSEP values being observed; 

changing the probe had a greater effect on the error of prediction than changing the 

spectrometer. When the algorithms DS, PDS and SST were applied to the transfer of 

the calibration models, the RMSEP values were seen to decrease by at least a factor 

of 2 in the majority of cases and in some instances by a factor of greater than 10. SST 

was shown to have issues in transferring a reference model for a 2.7 mm probe to 

predict concentrations for spectra acquired with a 12 mm probe; although the 

algorithm could be used to reduce the errors in comparison to the straight transfer, 

the errors in some instances were double that obtained by DS and PDS for this 

transfer example. By incorporating a scaling factor into the SST algorithm better 

results were obtained for the transfer between a 2.7 mm and a 12 mm probe, with the 

results being comparable to or better than those obtained from DS and PDS. 

Implementing a scaling factor will only improve the results for SST when there are 

large intensity differences; scaling factors will not influence the results if there are 

only small intensity differences for SST or for the use of DS and PDS. 

 

Overall DS showed a greater sensitivity to change when the number of samples 

involved in the transfer was altered; PDS and SST incorporating scaling provided 

similar and consistent results when the number of calibration samples was altered for 

the example discussed. An advantage of SST is that it only requires the optimisation 

of one parameter, making this algorithm easy to implement and achieve good results 

with lower numbers of calibration samples included in the transfer. PDS has multiple 

parameters which can be optimised, but only the window size was optimised in this 

study; however, this is a very time consuming process. SST can get comparable or 

better results more efficiently than PDS.  
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6 Whisky analysis 

6.1 Introduction 

6.1.1 Scotch whisky 

Whisky is the name given to the distilled product from the fermentation of cereals 

that has been matured in oak casks. A whisky that is matured in Scotland is termed a 

Scotch whisky. However, for a whisky to be considered as a genuine Scotch whisky 

it must adhere to the guidelines set out in the Scotch Whisky Regulations 2009 

(SWR).1 The legislation covers the ingredients used: the water source (which must be 

in Scotland), the process of production, the distillation and the maturation processes. 

Scotch whisky must be distilled at a distillery in Scotland from water and malted 

barley (to which only whole grains of other cereals may be added). In this research, 

samples referred to as malt indicate the use of only malted barley in the production of 

whisky, whereas, samples referred to as grain indicate the use of malted barley, and 

other malted and un-malted cereals in the production of whisky. 

 

The classifications of Scotch whisky defined in law and set out in the SWR are as 

follows: 

- “Single Malt Scotch Whisky”: is a Scotch whisky that is distilled in batches 

at a single distillery from water and malted barley in pot stills. There cannot 

be addition of any other cereals. 

- “Single Grain Scotch Whisky”: is a Scotch whisky that is distilled at a single 

distillery from water and malted barley. It can have the addition of other 

malted or un-malted cereals but does not comply with the definition of Single 

Malt Scotch Whisky or Blended Scotch Whisky. 

- “Blended Malt Scotch Whisky”: is a blend of two or more Single Malt Scotch 

Whiskies, which have been distilled at more than one distillery. 

- “Blended Grain Scotch Whisky”: is a blend of two or more Single Grain 

Scotch Whiskies, which have been distilled at more than one distillery. 

- “Blended Scotch Whisky”: is a blend of one or more Single Malt Scotch 

Whiskies with one or more Single Grain Scotch Whiskies. 
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The only ingredient that can be added other than cereal/grain, yeast and water is a 

specified grade of plain spirited caramel colorant. 

6.1.2 Manufacturing of Scotch whisky 

There are five main stages in the manufacture of Scotch whisky: malting 

(germination), mashing (extraction), fermentation, distillation and maturation. 

 

Malting 

The malting stage converts the plain barley grain into malted barley. The process 

involves the immersion of the barley grain in water and leaving for two to three days, 

a process called ‘steeping’. During this process the water will activate the growth 

mechanism of the barley. The barley is laid out to germinate on malting floors for 

seven to fourteen days and turned regularly to allow even germination and prevent a 

build-up of heat. The temperature of the germination must be controlled to avoid the 

barley killing itself. More modern techniques involve drum maltings, where the 

barley is slowly turned in large drums cooled by air. During the malting process the 

enzymes which are activated convert the starches in the barley grain into sugars.2, 3 

 

The malt is then transferred to kilns for drying; the temperature inside the kilns must 

be increased gradually and must not exceed 70℃ to avoid the destruction of the malt 

enzymes. Traditionally in the Highlands and Islands most drying was over peat fires, 

however, over the years the majority of the peat was gradually replaced by 

alternatives, such as coal. Although, some small amounts of peat were still added at 

the start and end of the drying to create the recognisable smoky flavours in the 

whisky. Whiskies produced from malt dried in a peat kiln have a smokier flavour to 

whiskies produced from malt dried in coal kilns. In the Lowlands where coal 

production was common and peat was not available, coal kilns were used; this gave 

the whisky a lighter un-smoked flavour. After drying in the kiln, the malt is ready for 

the next stage in the manufacture of whisky.2-4 
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Mashing 

In the mashing stage, the malt is ground into coarse flour, known as malt grist, and 

mixed with hot water in different stages. The water and malt grist mixture, 

commonly known as mash, is transferred into a mash tun and stirred to allow the 

enzymes in the malt to release the starches still remaining in the malt into sugars. 

After the mashing process, the liquid, called the wort is released from the mash tun 

into a vessel called the underback. The process is repeated, adding hot water, stirring 

and draining the liquid several times. The solid mash of spent grain left at the end of 

this process is called draff; this by-product is sold on for cattle feed. The wort is 

cooled and used in the fermentation stage.2, 5 

 

Fermentation 

The wort is transferred from the underback through a cooler, reducing the 

temperature from around 63 - 68℃ to around 22 - 24℃. It is then transferred into the 

fermenting vessels, termed wash backs, where yeast can be added and the 

fermentation started. The yeast converts the sugars present in the wort to ethanol 

(alcohol) and small quantities of other components. These other components are 

known as congeners and they include a range of compounds including esters, 

aldehydes, acids, phenols, hydrocarbons and other high order alcohols. Whiskies can 

contain multiple congeners that are important as they add to their unique flavour and 

character. Acetaldehyde is produced from the oxidation of ethanol and makes up 

90% of the total aldehyde content in whisky. The aldehydes can give a strong odour 

and contribute to the distinctive taste of a whisky, even in small quantities. The 

fermentation stage converts the sugars into an alcohol with approximately 8 –

10% v/v ethanol content. This low alcohol liquid is termed the wash and is used in 

the distillation stage of the manufacture of whisky.2, 6-9 

 

Distillation 

Traditionally in pot-still distilleries a double batch distillation process is used, 

although there a couple of distilleries that practice triple distillation to ensure a 

lighter spirit with a higher natural strength. The triple distillation process is similar to 

the distillation processes used in Ireland and is generally found in lowland 
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distilleries, although it is less common than the double batch distillation approach. 

The wash from the fermentation is charged into the first pot still, termed wash still, to 

separate the alcohol from the water and waste in the wash. This still is heated and 

maintained just below the boiling point of water, allowing the alcohol and other 

compounds which are more volatile to pass over the still neck and condense in the 

condenser known as the worm. The distillate from the wash still which is termed low 

wines is collected in the low wines charger. After all the alcohol vapours are distilled 

through the wash stills the process is stopped and the waste and water are discharged. 

The low wines are then transferred into the low wines or spirit still where a further 

distillation process is completed in a similar manner to the wash still, however, at a 

more controlled level. The most volatile components which are distilled first are 

directed back to the low wines charger for further distillation. At the point where the 

distillate is at the desired strength and quality the distillate is collected, known as the 

centre cut. This new spirit which is normally around 60% v/v is directed to the spirit 

vessel. When the process is near completion the remaining volatile components are 

directed back to the low wines charger for further distillation with a new batch of low 

wines. The copper pot stills vary in both size and shape from one distillery to another 

and can have an impact on the characteristics of the whisky. The copper pot-still 

double batch distillation approach can be expensive, therefore, continuous distillation 

was developed by Stein and Coffey.10 However, it was realised with development of 

continuous distillation that lower levels of flavour congeners were produced 

irrespective of the quality of malt that was used. Therefore, it was unnecessary to use 

expensive malt to produce the inevitable milder flavour produced from continuously 

distilled spirit, as a mash that has mostly un-malted cereal would provide an 

acceptable product. So grain whiskies and blended whiskies are mostly derived from 

continuous distillation.2, 10, 11 

 

Maturation 

After the distillation process, the colourless whisky can be transferred to oak casks 

for maturation. The oak cask is acknowledged as one of the most important factors to 

influence the final quality of the whisky. In the time the whisky spends inside the 

cask, changes to the chemical composition occur, and the powerful aromas of the 
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distillate will convert into the mellow characteristics found in the whisky product. 

The colour also changes in this process, from the colourless distillate to a golden 

brown whisky. The casks used for maturation can either be new or have been 

previously used for Scotch whisky, Sherry or Bourbon maturation. The cask can vary 

in size, but cannot exceed 700 L in volume, in accordance with the SWR. Also, the 

maturation must proceed for a minimum of three years for a whisky to be classified 

as a Scotch whisky.2, 12 

 

Heat treatment of the casks can have an important role for maturing the distillate. 

There are two methods of heating; first is toasting the wood, this is a milder form of 

heat treatment and is a prolonged process; the second is charring of the wood, this is 

a faster process which involves heating the inside of the cask until it catches fire and 

becomes carbonised, leaving a layer of carbon on the inner surface. There are two 

main goals from heat treatment;12 

- The degradation of the polymers in the wood to produce flavour compounds 

which will be extracted into the product during maturation. 

- The destruction of the unpleasant aroma compounds present in the wood to 

prevent these being transferred to the product. 

 

During maturation, several reactions occur and generally fall into two classifications; 

additive and subtractive. Additive reactions will introduce or produce new aroma 

compounds in the product, whilst subtractive reactions will remove or modify 

components of the spirit. An important example of an additive action is the 

extraction of congeners from the cask, for example, the thermal degradation of wood 

polymers during the heat treatment process. Interactions between the wood and the 

components of the distillate can form new aroma compounds. Congener addition can 

occur through the reaction of ethanol with lignin in the wood to produce ethanol-

lignin which can subsequently produce lignin degradation products. Lactones are 

volatile components that are extracted from oak, known as oak or whisky lactone and 

their concentration is thought to increase during the maturation process.8, 12-14 

Subtractive reactions usually include evaporation of low boiling compounds or the 

degradation of components by the carbonised surface of the wood.12 
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As briefly mentioned above, maturation can take place in casks which have been 

previously used for maturation. The repeated use of casks in this way will decrease 

the quantity of wood compounds affecting the maturation and hence will change the 

mature character of the whisky. If a cask becomes exhausted, e.g. no real benefit will 

come of maturing a whisky in the cask, and then it can be regenerated by removing 

the old carbon layer and completing the heat treatment process again. This process 

will not completely regenerate a cask but give higher levels of extractive compounds 

compared to casks of other sources.12 

 

Other important variables that are involved in the maturation stages include; 

maturation time and fill strength. A longer maturation time can potentially allow a 

greater change in chemical composition and produce mature whisky products. The 

spirit strength can have an effect on the extraction and formation of flavour 

congeners in the cask. However, it is difficult to know exactly which reactions occur, 

when they occur, and for how long during the maturation. There are limitations for 

modelling the reactions in the laboratory due to the timescales involved.2, 12 

 

The whisky product is ready after the maturation stage and can proceed to the 

bottling stage if the product is a Single Malt Scotch Whisky or a Single Grain Scotch 

Whisky; or a number of products can be blended together and then bottled to produce 

a Blended Malt Scotch Whisky, Blended Grain Scotch Whisky or a Blended Scotch 

Whisky. Due to some of the processes discussed so far, whisky batches can vary in 

colour, therefore, to provide consistency in colour, plain spirit caramel – E150a is 

legally allowed to be added to whisky product as set out in the SWR. 

6.1.3 Counterfeiting of Scotch whisky 

Authentic Scotch whisky must follow the strict guidelines set out in the SWR. There 

are, however, places around the world where products are produced, bottled and sold 

as Scotch whisky with a disregard for these guidelines. These illegal products are 

termed counterfeits and can have detrimental effects to the reputation of Scotch 

whisky. 
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The Scotch whisky industry has annual exports in excess of £3 billion and is one of 

the UK’s leading exporters.15 Therefore, authenticating and being able to detect 

counterfeit whiskies is highly important for financial reasons and for the protection 

of brand reputation. Counterfeit whiskies can have a dramatic impact on the sales 

and profits of the Scotch whisky industry. It is estimated by the Scotch Whisky 

Association (SWA)16 that over a two year period 150 million counterfeit bottles 

claiming to be Scotch whisky were sold worldwide. The estimated impact on sales 

was £100 million per annum and the lost profit was in the range £10-30 million.16 

These figures are speculative as the exact impact of counterfeiting is hard to estimate 

as many cases will go undetected. 

 

There are different forms of counterfeiting Scotch whisky including brand imitation, 

where a cheaper product is sold as a higher quality whisky.17 Another form of 

counterfeiting is generic imitation, where the whisky being sold as Scotch is 

produced outside Scotland and does not conform to the legal requirements in the 

SWR. Generic imitation can also include the adulteration of an authentic Scotch 

whisky by adding ethanol so that a cheaper whisky may be sold as a higher value 

product. In some instances, colorant is added to another alcoholic product which is 

sold illegally as a genuine Scotch whisky. 

6.1.4 Identification of counterfeit whisky 

Different techniques have been used by the Scotch whisky industry since the early 

1900s for authentication and detection of counterfeit samples, ranging from bench 

reagent chemistry to the use of advanced analytical instrumentation.17-20 In general, a 

whisky can be characterised by three properties: the ethanol content (a Scotch 

whisky must adhere to a minimum alcohol content of 40% v/v); the congener profile 

(the whisky contains a range of congeners formed during the fermentation and 

maturation processes); the colour consistency (whisky can only be altered with the 

use of plain spirited caramel of a specified grade).1 
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6.1.4.1 Ethanol determination 

Determination of ethanol content has the potential to provide a fast and efficient way 

to assess if a sample is within the specification for a particular product. A number of 

techniques can be employed for the determination of ethanol including density 

measurements, spectroscopic techniques and chromatographic techniques. Gas 

chromatography (GC) can provide information on both the ethanol content and 

higher alcohol profiles in whisky, differentiate between different alcoholic 

beverages, and distinguish between malt and grain whiskies based on differences in 

the congener profile.17 However, GC analysis times can be more than 10 minutes. 

Density measurements are commonly used to determine the ethanol content of 

whisky and produce accurate results although the sample must be distilled before 

analysis.8, 21 Spectroscopic techniques can be used to determine ethanol content 

through fast simple analysis methods. Procedures based on NIR spectrometry have 

been reported for determination of ethanol in alcoholic beverages;22-27 ethanol 

fuels;27 28 and fermentation processes.29, 30 Generally, multivariate calibration 

algorithms are required with NIR spectrometry, which adds to the complexity of 

method development. Liebmann et al.28 used a transflectance NIR probe to determine 

the ethanol concentration in bioethanol productions. To obtain optimal and robust 

calibration models, the use of genetic algorithms and large data sets were required. 

Mendes et al.27 reported an NIR spectrometric method for the determination of 

ethanol in fuel ethanol and beverage samples. For the analysis of beverage samples 

the NIR results were better than those from GC. Gallignani et al. described a 

procedure for the determination of ethanol in alcoholic beverages by NIR 

spectrometry23 and MIR spectrometry.31 Off-line analysis by NIR spectrometry was 

successful in determining the ethanol content in beer, wine, whisky, gin and rum 

samples. In the MIR study, the ethanol content of beer, vodka, gin, rum and whisky 

samples was determined using a micro flow transmission cell. In both the NIR and 

MIR studies, 1st derivative spectra were analysed to avoid the effects of baseline 

drift. Other MIR spectrometry applications have been reported for determination of 

ethanol in bioprocess monitoring32 and in a range of alcoholic beverages.31, 33-36 

Sivakesava et al.32 described methods for monitoring a bioprocess using MIR and 

Raman spectrometries. In this study, an ATR accessory was attached to a FTIR 
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spectrometer to determine the concentration of ethanol without the need for any 

sample preparation. Raman spectrometry was used to observe the ethanol functional 

groups as the reaction progressed, however the quantitative results were not as 

accurate as those of MIR spectrometry. Nordon et al.37 compared non-invasive NIR 

and Raman spectrometries for the determination of ethanol content in spirits, 

highlighting the potential advantages and limitations of both techniques. All of these 

procedures involve lab-based analysis, which is not ideal if a rapid indication of 

authenticity of a sample is required. 

6.1.4.2 Congener determination 

Some research has surrounded the maturation process of whisky production; a range 

of congeners are formed during the maturation process through leaching and 

extraction from the oak casks. The range and concentrations of the congeners can be 

unique to a brand of whisky. The major congeners can be readily determined by GC 

using a polar stationary phase and are useful in the differentiation of categories of 

spirits as well as between malt and grain whiskies.17 Aylott et al.17 produced a paper 

reviewing different analytical strategies detailing studies into capillary column GC 

for determination of volatile trace congeners and volatile phenols, if the sample was 

first chemically derivatised. 

 

High performance liquid chromatography (HPLC) has also proved useful for the 

analysis of non-volatile cask-extracted congeners.38 These congeners are a result of 

the degradation of oak lignin caused by toasting or charring prior to use or the 

hydrolysis by ethanol and water during maturation.13 

6.1.4.3 Colorant analysis 

Colour consistency of Scotch whisky is highly important and therefore is monitored 

throughout the production process. Most commonly measurements are taken at the 

blending and bottling stage and involve analysis by visible spectrometry. Mackenzie 

and Aylott19 described a hand held instrument based on UV-visible spectrometry that 

can be used to confirm the authenticity of Scotch whisky samples on location, 

without the need to send specimens to a laboratory. Samples were analysed by 
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introducing the liquid into the flow cell of the handheld spectrometer and collecting 

the absorbance spectra. Reference data for genuine Scotch whiskies were uploaded to 

the device using its electronic interface; here the internal software was used to 

determine if the suspect sample was within the acceptable limits of the genuine 

brand. Establishing an acceptable range for a selection of authentic brands was 

difficult to achieve as these can vary from brand to brand. Therefore, acceptance 

limits have to be defined for each brand of whisky prior to use. If a sample was 

deemed as a suspect counterfeit it could be sent for further testing by GC for 

confirmation. The method has analysis times of less than 1 minute and allowed the 

rapid screening of suspect samples enabling only those samples which failed the 

acceptance criteria to be sent for confirmatory testing saving time and analysis costs. 

There is a growing need for methods like this that can provide simple and fast 

identification of counterfeit Scotch whisky samples. 

 

There is also potential for analytical methods to detect counterfeits based on caramel 

composition. According to the SWR1 only the addition of plain spirited caramel, 

E150a, is allowed. There are four grades of spirited caramel, E150a, E150b, E150c 

and E150d, their production is regulated by the European Union (E.U.) Directive 

95/45.39 The four grades of caramel are produced by “the controlled heat treatment of 

carbohydrates (commercially available food grade nutritive sweeteners which are the 

monomers glucose and fructose and/or polymers thereof, e.g. glucose syrups, 

sucrose, and/or invert syrups, and dextrose)”.39 Although, additional reactants other 

than glucose and fructose can be used in the production of the caramels, these differ 

between each grade of caramel, see Table 6.1. If counterfeit samples were to contain 

other grades of caramel other than the legally allowed E150a, then distinguishing 

between different caramel colorants could provide a way to detect counterfeit 

samples. 
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Table 6.1: Regulations for the preparation of different types of caramel, information taken from 

E.U. Directive 95/45.39 

Caramel grade and description Regulations 

E150a: Plain caramel Ammonium compounds and sulfites 

prohibited 

E150b: Caustic sulfite caramel Caramel is prepared in the presence of 

sulfite compounds but ammonium 

compounds are prohibited. 

E150c: Ammonia caramel Caramel is prepared in the presence of 

ammonium compounds but sulfite 

compounds are prohibited. 

E150d: Sulfite ammonia caramel Caramel is prepared in the presence of 

ammonium and sulfite compounds. 

6.1.4.4 Miscellaneous methods of counterfeit identification 

Adam et al.40 tested if copper and other metals in whisky could be used as an 

indicator of authenticity. The principle of this analysis was derived from the basis of 

whisky production; by law malt whiskies are required to be produced in copper stills, 

blended whiskies and other distilled spirits are not. Therefore, malt whisky samples 

should have a higher copper content. This method was successful at differentiation of 

malt whiskies from blended whiskies and other distilled spirits. However, it cannot 

confirm if a whisky was produced authentically in Scotland. 

 

Harrison et al.4 described a method for the differentiation of peats used in the 

preparation of malt for Scotch whisky production. In this study FTIR reflectance 

spectra were acquired but differences between the spectra collected were difficult to 

see. However, with the use of cluster analysis the peats were classified according to 

their geographical origin. 
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6.1.5 Basis of this study 

Analysing and being able to detect counterfeit samples is very important to the 

Scotch whisky industry. The above review indicates different techniques and 

methods that have previously been used to detect counterfeits. ATR MIR 

spectrometry has been used in this study primarily to distinguish between authentic 

whisky samples and counterfeit whisky products. Whisky is a very complex matrix 

and therefore many different factors can be analysed to determine information about 

a given whisky sample. Therefore, a secondary objective is to investigate MIR 

spectrometry as a tool to understand how the manufacturing and maturation variables 

can influence the colour of whisky. 

 

Picque et al.20 detailed the analysis and discrimination of cognacs and other distilled 

drinks using MIR spectrometry. Direct analysis of the samples was achieved using an 

ATR cell with a zinc selenide crystal to determine ethanol content. Aliquots of the 

samples were also dried onto membranes and analysed by transmission MIR 

spectrometry. These methods showed potential for the discrimination of cognacs and 

other distilled drinks when used with multivariate data analysis. 

 

A similar approach has been adopted in this study, where a combination of methods 

based on MIR spectrometry has been used to categorise whisky samples as either 

authentic or counterfeit products. The methodology described is an advance on the 

work of Picque et al. as it uses a combination of novel silver halide optical fibres and 

diamond ATR probes to determine the ethanol concentration in whisky samples and 

investigate the colorant added. The use of in situ measurements by MIR spectrometry 

allows development of simpler and faster methods of analysis than the procedures 

described by Picque et al. One of the primary aims of the study was to assess the 

feasibility of developing MIR spectrometric methods that could potentially be used 

outside the laboratory during field investigations of whisky counterfeiting. The 

methods used by Picque et al. relied on laboratory based equipment and procedures, 

and so, are less useful for such investigations. 
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Whiskies can be matured in new oak casks or more commonly in casks which have 

already been used for the maturation of Scotch whisky, sherry or bourbon. 

Depending on the type of cask used and the cask history, differences in whisky 

colour arise. Knowledge of how manufacturing and maturation variables influence 

whisky colour could provide a greater understanding of the maturation process. The 

ability to identify colour or differences between natural and artificial maturation 

could also be used in counterfeit detection. Therefore, an additional part of this study 

involved the initial investigation of a number of cask samples with differing 

maturation variables, using ATR MIR spectrometry. 
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6.2 Experimental 

6.2.1 Samples 

6.2.1.1 Blend authenticity 

Seventeen authentic and counterfeit samples of one brand of blended whisky were 

analysed in a blind study using the methods outlined below. Multiple batches of four 

grades of caramel (five batches of caramel A, one batch of caramel B, four batches of 

caramel C and four batches of caramel D) were also analysed to aid determination of 

the colorant used in the whisky samples. 

 

After conducting the blind trial, the company that supplied the whisky samples 

provided the ethanol content of each sample and an indication of the authenticity of 

the samples. The method that was used by the company to obtain the ethanol 

concentrations was based on NIR analysis. The instrument used was a Foss NIR 

spectrometer (model 5000) with a beverage module, which had a 3 mm pathlength. 

An average of 32 scans from 1100-2500 nm was used to obtain the spectrum from 

which the alcohol strength was derived. A multivariate PLS model was built using 

the region between 1550 and 1700 nm. The typical overall accuracy of the analysis 

was reported to be ±0.05% (v/v) (based on one standard deviation). 

6.2.1.2 Cask investigation 

Thirty one cask samples with different maturation variables were analysed using the 

colorant determination method outlined below; a description of the samples and the 

changing factors are given in Table 6.2. Pure samples of different components that 

can be found in whisky were also analysed to aid determination of the spectra 

obtained from the cask samples, details are in Table 6.3. When counterfeiting 

whisky, attempts are sometimes made to extract components from wood to simulate 

features of whisky that occur by natural maturation. In this study, three solutions 

were used to extract components from toasted American wood prior to evaporating 

the solvent and dissolving the residue in 40% ethanol. These samples are referred to 
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as simulated maturation samples (Table 6.4). The spectra of dried residues of these 

samples were compared to those of the cask samples and counterfeit whisky samples. 

Table 6.2: List of cask whisky samples with details of the different factors. 

 

 

  

Sample No. Distillery Number Malt/Grain/Blend Cask Type Fill Years Peated
1 4 Grain Bourbon Refill 3 No
2 4 Grain Sherry Refill 8 No
3 4 Grain Bourbon Refill 12 No
4 4 Grain Bourbon Refill 7 No
5 4 Grain Sherry Refill 3 No
6 4 Grain Bourbon Refill 12 No
7 4 Grain Bourbon Refill 9 No
8 4 Grain Sherry Refill 11 No
9 6 Grain Bourbon First 8 No
10 1 Malt Bourbon First 12 Yes
11 1 Malt Sherry First 11 Yes
12 1 Malt Bourbon First 8 Yes
13 1 Malt Sherry First 7 Yes
14 2 Malt Sherry Refill 6 No
15 2 Malt Sherry First 7 No
16 2 Malt Sherry Refill 5 No
17 3 Malt Bourbon Refill 9 No
18 3 Malt Bourbon First 9 No
19 3 Malt Sherry Refill 7 No
20 3 Malt Sherry First 6 No
21 3 Malt Bourbon First 5 No
22 6 Grain Sherry Refill 11 No
23 6 Grain Bourbon First 11 No
24 6 Grain Bourbon First 4 No
25 4 Grain Unspecified Unspecified 3 No
26 1 Malt Bourbon Refill 4 Yes
27 1 Malt Sherry First 4 Yes
28 1 Malt Bourbon First 3 Yes
29 3 Malt Sherry First 3 No
30 NA* Blend - - - No
31 5 Malt Bourbon Unspecified 4 No

*Not available (NA)

Cask whisky samples
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Table 6.3: List of eleven pure component samples commonly found in whisky and the 

concentrations analysed in this study. 

 

 

Table 6.4: Description of three simulated maturation samples. 

 

 

6.2.2 Mid-infrared spectrometry 

MIR spectra were acquired with a resolution of 16 cm-1 in the 400–4000 cm-1 region 

using an ABB MB3000 FTIR spectrometer (Clairet Scientific, Northampton, UK) 

coupled with polycrystalline silver halide fibres to a hastelloy bodied ATR Fibre 

Photonics probe with a diamond cone (Fibre Photonics Ltd, Livingston, UK). Two 

probes were used to complete the work, the differences are outlined in Table 6.5; 

probe A was used for the blend authenticity work and probe B was used for the cask 

Sample name Sample concentration* (µg ml
-1
)

Coniferaldehyde 589.3
Ellagic acid 95.9
Gallic acid 606.6

Hydroxymethylfurfural (HMF) 609.7
Lactones 0.5

Scopoletin 599.5
Sinapaldehyde 600.7
Syringaldehyde 601.8
Syringic acid 599.2

Vanillic acid 601.6

Vanillin 601.8

Pure component samples

*Supplied concentrations; amounts in whisky are normally < 20 

µg ml
-1

Sample number Wood type Extraction solvent
1 Toasted American wood Solvent extract ethyl acetate
2 Toasted American wood Solvent extract ethanol
3 Toasted American wood Solvent extract water

Simulated maturation samples
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investigation study. Spectra were acquired using Horizon MB™ FTIR software 

version 3.0.13.1 (ABB, Canada) and GRAMS (Graphic Relational Array 

Management System) /AI software version 7.00 (Galactic Industries Corporation, 

Salem, USA). The spectra were exported as text files from Horizon software and 

SPC files from GRAMS software then imported into Matlab data analysis software. 

Table 6.5: Details of Fibre Photonics ATR probes used. 

Probe 
Outer diameter of 

probe shaft (mm) 

Silver halide fibre 

length (m)* 

Diamond crystal 

size (mm) 

Probe A 12 1.5 3 

Probe B 12 0.7 2.4 

*This is the length of the fibre when measured from diamond tip to sma connectors; 

the actual length of polycrystalline fibre within the probe and connected cable will be 

double, see chapter 4. 

6.2.3 Methods of analysis 

6.2.3.1 Ethanol content determination 

A specimen of each whisky sample was transferred to a glass vial into which the 

probe was inserted and sealed with sealing film before analysis; when not in use, the 

samples were sealed to prevent any evaporation of the volatile components in 

whisky. The probe was washed and cleaned with water and acetone and allowed to 

dry prior to each analysis. The spectra of the whisky samples or calibration solutions 

were acquired with an air background. Calibration solutions in the range 35-45% v/v 

ethanol were prepared by diluting an appropriate amount of ethanol (absolute puriss. 

p.a., Sigma-Aldrich®, UK) with distilled water. 15 scans were accumulated for each 

measurement (about 15 s) with three and six repeat measurements made for each 

calibration and sample solution, respectively. When the first derivative spectrum of a 

typical whisky sample was measured six times without removing the probe, the 

repeatability (%RSD) for intensity measurements at 1026 cm-1 (ethanol peak) was 

0.17%. When the probe was removed, cleaned and then reinserted six times, the 

measurement precision (%RSD) was only slightly increased to 0.21%. 
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6.2.3.2 Colorant determination 

The probe was inverted, an air background spectrum obtained and a small aliquot  

(10 µL) of sample was injected onto the diamond crystal; a heat lamp was used to 

evaporate the droplet for 4 min and leave a thin film over the crystal for analysis. The 

probe was allowed to cool to ambient temperature and the procedure was repeated a 

further five times so that the dried residue from 60 µL of sample was analysed. The 

cask samples analysed as part of this study ranged in colour intensity, therefore, 

samples with a weaker colour required the addition of 90 or 120 µL of sample. For 

the analysis of the caramel samples, solutions were prepared in 40% v/v ethanol to 

give a colour similar to that of the whiskies. These solutions were injected onto the 

diamond crystal for analysis similar to the whisky samples. 51 scans were 

accumulated for each measurement (about 51 s). Normalised first derivative spectra 

were produced for analysis. When three replicate spectra were recorded for the 

deposit obtained from 60 µL of a solution of batch 3 of caramel A, the average 

%RSD of the intensity at the eight most intense peaks in the range 1150-1700 cm-1 

was 1.0%. When spectra were obtained from three separate depositions of 60 µL of 

this solution of caramel A, the %RSD was 4.5%. The results presented for analysis of 

dried deposits of the samples are based on the spectra obtained for three separate 

depositions. The results presented as part of the cask investigation are based on the 

spectra obtained for the six replicates of three separate depositions. 

6.2.4 Data analysis 

All data were imported into Matlab versions 7.5.0.342 (R2007b) and 7.11.0.584 

(R2010b) (Mathworks Inc., Natick, MA, USA) and PLS_Toolbox version 4.1 

(Eigenvector Research Inc., WA, USA). MIR data were processed using a Savitsky-

Golay first derivative filter, which employed a width of 7 data points and a second 

order polynomial. Spectra were analysed to identify regions in the data that would 

provide information about the samples and remove the regions that only contribute 

noise to the measurements. 
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6.2.4.1 Blend authenticity 

The concentrations and spectra of the ethanol calibration solutions were used to 

produce univariate and multivariate PLS calibration models. The MIR spectra 

collected from the whisky samples were analysed using these models to predict the 

concentration of ethanol for comparison with values supplied at the end of the study. 

Univariate calibration models were produced from the ethanol signal at 1026 cm-1 in 

the 1st derivative spectra, using Microsoft Excel (Microsoft, USA). PLS calibration 

models were constructed using different spectral regions; there was relatively little 

difference in the errors associated with each model. Therefore, all models discussed 

herein were constructed using the spectral region 694-1782 cm-1. Data were mean 

centred prior to analysis. The number of latent variables required (4) was determined 

from the model that produced the minimum value of the root mean square error of 

cross validation (RMSECV) obtained using leave-one-out cross validation. 

 

To investigate the colorant in whisky samples, principal component analysis (PCA) 

was carried out on 155 variables in the 625-1813 cm-1 region of the triplicate first 

derivative spectra of the dried residues obtained for the seventeen whisky samples 

and fourteen caramel samples (caramel A × 5 batches, caramel B × 1 batch, caramel 

C × 4 batches and caramel D × 4 batches). Data were normalised to the largest peak 

(in the range 950-1050 cm-1) and mean centred before PCA was performed. The first 

two principal components described 74.7% of the variation in the data. 

6.2.4.2 Cask investigation 

To investigate the similarities and differences between the cask whisky samples, the 

colorant caramel A, simulated maturation samples and the counterfeit samples, 

principal component analysis was completed. Numerous PCA models were used to 

explore different relationships. PCA was carried out on 155 variables in the 625-

1813 cm-1 region of the first derivative spectra of the dried residues obtained for the 

samples. Data were normalised to the largest peak and mean centred before PCA was 

performed. 
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As part of this study, design of experiment (DoE) analysis was completed using 

Design-Expert (DX7) version 7.1.6 (Stat-Ease Inc., MN, USA) to determine which 

of the six variables (distillery number, malt/grain whisky, cask type, cask history, 

maturation age and the use of peat) have an impact on the spectra of the dried residue 

of the cask whisky samples. To complete this analysis DoE models were built to 

assess the variables and their levels of variance. A description of the six variables 

and their levels are given in Table 6.6. PCA scores of the MIR spectra of the twenty 

eight selected cask samples were used as the response for each sample. 

Table 6.6: Details of the variables and associated levels of variance for investigation in DoE 

analysis. 

 

 

 

  

Variables
Distillery 
number

Malt/grain 
whisky 

Cask 
type

Cask 
history

Maturation 
age Peat

1 Grain Bourbon First fill 3 - 5 years Yes
2 Malt Sherry Refill 6 - 9 years No
3 10 - 12 years
4
6

Levels
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6.3 Results 

6.3.1 Blend authenticity 

6.3.1.1 Determination of ethanol concentration 

A typical MIR absorbance spectrum of a whisky sample (sample 13) is given in 

Figure 6.1a. When the spectra of all the samples were compared small differences 

were identified in the regions 1150-1400 cm-1 and 1500-1850 cm-1. Strong 

absorption signals at 630 cm-1 and 1640 cm-1 arise from the O-H bending modes. The 

stretching mode of C-O is evident at around 1000-1100 cm-1. The region 1950-2250 

cm-1 is obscured because of the diamond tip in the ATR probe and no differences 

between spectra could be seen in the region beyond 2250 cm-1. The first derivative 

spectrum of whisky sample 13 is shown in Figure 6.1b. 

 

A linear response curve was obtained over the range 35-45% (v/v) ethanol when 

using univariate calibration (r2 = 0.9966; y = 0.0009x – 0.0010, where y is the first 

derivative of absorbance at 1026 cm-1 and x is the ethanol concentration (% (v/v)). 

When the univariate model was used to analyse the whisky samples, the ethanol 

concentrations given in Table 6.7 were obtained. The ethanol concentrations 

obtained with the multivariate PLS calibration model are also given in Table 6.7. The 

regression coefficients for the multivariate calibration model are given in Figure 

6.1c. 
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Figure 6.1: Typical MIR spectrum of a whisky sample (sample 13) in the region 600-1850 cm-1, 

(a) absorbance and (b) first derivative of absorbance, and (c) the regression coefficients for the 

multivariate PLS calibration model. 
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Table 6.7: Mean concentrations of ethanol determined by in situ ATR MIR spectrometry using 

univariate and multivariate PLS calibration models compared with supplied concentrations. 

  In situ MIR spectrometry 

Whisky 

sample no. 

Supplied 

concentrationsb 

Univariate  

(% (v/v))a 

PLS  

(% (v/v))a 

1 37.3 37.8 ± 0.22 37.8 ± 0.11 

2 31.6 32.1 ± 0.11 31.8 ± 0.03 

3 34.0 34.8 ± 0.20 34.6 ± 0.09 

4 42.4 42.2 ± 0.15 42.2 ± 0.09 

5 31.0 31.6 ± 0.08 31.5 ± 0.09 

6 42.5 41.6 ± 0.07 42.5 ± 0.09 

7 34.6 34.8 ± 0.09 34.8 ± 0.07 

8 34.6 35.3 ± 0.13 35.1 ± 0.08 

9 34.2 35.0 ± 0.09 34.9 ± 0.08 

10 40.0 40.5 ± 0.08 40.5 ± 0.08 

11 42.1 40.8 ± 0.09 41.9 ± 0.05 

12 40.9 40.8 ± 0.13 40.9 ± 0.08 

13 42.7 42.7 ± 0.15 42.8 ± 0.06 

14 42.7 42.8 ± 0.12 42.7 ± 0.03 

15 40.0 40.0 ± 0.11 39.9 ± 0.11 

16 43.1 42.9 ± 0.17 43.2 ± 0.10 

17 40.1 39.7 ± 0.22 39.8 ± 0.17 
a Mean ± 99% confidence interval (n = 6). 
b Provided after MIR analysis was completed; obtained by NIR analysis. 

 

It was shown using a paired t-test41 that there was no statistical difference (at the 

99% confidence limit) between the supplied and predicted (univariate or multivariate 

PLS) ethanol concentrations. The relative error, defined as the difference between the 

predicted and supplied ethanol concentration expressed as a percentage of the 

supplied concentration, was calculated for each of the seventeen samples. It was 

possible to predict the concentration of ethanol in the whisky samples using 
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univariate and multivariate calibration with an average relative error of 1.2% and 

0.8%, respectively. 

 

The average relative errors obtained with either calibration method are lower than 

those reported by Tipparat et al.25 for the determination of ethanol in liquor by flow 

injection NIR spectrometry (approx. 8%) and by Nordon et al.37 for non-invasive 

analysis of whisky, vodka and sugary alcoholic drinks in bottles by NIR 

spectrometry (2.1%) and Raman spectrometry (2.9%). Further, the MIR method 

described gives comparable average errors to the methods of Gallignani et al.,23, 31, 33 

but does not require sample dilution. 

 

Analysis of whisky samples by MIR spectrometry using an in situ ATR probe 

appears to offer some advantages over alternative techniques for rapid estimation of 

the concentration of ethanol, with an accuracy that would be suitable for initial 

authenticity screening. Statistical analysis of the predicted concentrations using t-

tests (assuming equal variances)41 suggested that the concentrations obtained using 

univariate and multivariate PLS models are the same for ten of the seventeen samples 

at the 99% confidence limit. Even though the results obtained for seven of the 

samples are statistically different, when the average relative error is used to compare 

the two regression methods for the entire dataset there is reasonable agreement 

between the two methods. Consequently, univariate calibration, which avoids the 

complexity and costs associated with multivariate calibration, is adequate for the 

purpose of initial authenticity screening. 

6.3.1.2 Analysis of dried residues 

As previously mentioned, only plain (spirit) caramel can legally be added to Scotch 

whisky; this colorant is covered by the E.U. Directive 95/45 and, therefore, it must 

adhere to purity criteria.39 It is likely that the spectra of the dried residues of whisky 

will be dominated by the colorant, which arises from the cask and/or the addition of 

plain (spirit) caramel. The MIR absorbance spectra of dried residues for three of the 

whisky samples are given in Figure 6.2, which indicates differences between the 

samples. 
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Figure 6.2: ATR MIR absorbance spectra of the dried residues of three whisky samples detailed 

in Table 6.7. 

Dried residues of solutions of different caramel samples were also analysed to aid 

interpretation of the spectra obtained from the whiskies. The MIR spectra of four 

different types of caramel are given in Figure 6.3 and some similarities are apparent 

with the spectra shown in Figure 6.2. 

 

Figure 6.3: ATR MIR absorbance spectra of the dried residues of four caramel colorants. 
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PCA was carried out on the 625-1813 cm-1 region of the first derivative spectra of the 

dried residues obtained for the seventeen whisky samples and fourteen caramel 

samples (caramel A × 5 batches, caramel B × 1 batch, caramel C × 4 batches and 

caramel D × 4 batches). The scores plot for principal component 1 (PC1) and 

principal component 2 (PC2) in Figure 6.4 indicates that the within-batch and 

between-batch variability was much less than the spectral differences between the 

caramels. 

 

Figure 6.4: PC1 vs. PC2 scores plot from PCA of triplicate MIR spectra of seventeen whisky 

samples and fourteen caramel colorants. 

Figure 6.4 indicates that there is a clear differentiation between the four types of 

caramel along the PC1 axis. Also, there is a distinguishing split in the whisky 

samples along the PC2 axis. A cluster of points for replicate measurements of some 

whisky samples occupy the same space as those of caramel A; there are also points 

for a number of whisky samples that are located well away from all the caramels in 

the scores plot, suggesting that other colorants may have been added to these 

samples. 
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6.3.1.3 Identification of counterfeit whisky 

The derived ethanol concentrations were compared with the legal minimum ethanol 

content of whisky of 40% (v/v). Through use of a one sided t-test41 at the 99% 

confidence limit, it was shown that seven samples had ethanol concentrations below 

the legal minimum of 40% (v/v) and so were potentially counterfeit (samples 1-3, 5, 

7-9 and 18). Samples 4, 6 and 10-16 had ethanol concentrations above the legal 

minimum and so could be authentic whisky. Sample 17 just failed the t-test, but if the 

average relative error (1.2%) of the univariate MIR method is taken into account, this 

sample could have an ethanol concentration above the legal minimum and so was 

tentatively assigned as authentic. Further analysis of this sample is required to 

confirm the accuracy of this assignment. However, as shown below, the ethanol 

concentration alone is not a sufficient indicator of authenticity. 

 

Caramel A is the plain (spirit) caramel that is legally allowed to be used in the 

production of Scotch whisky. With respect to Figure 6.4, the following procedure,42 

completed by Dr. Alison Nordon, was used to assess which whisky samples were in 

the PC1 vs. PC2 scores space for caramel A. The first two principal components of 

the PCA model in Figure 6.4 were retained. The dataset, comprising the PC1 and 

PC2 scores for the caramel and whisky samples, were then split into calibration 

(caramel A) and test (whisky) sets; the data for caramels B, C and D were discarded. 

A second PCA model was then built on the PC1 and PC2 scores values (after mean 

centring) for caramel A and two PCs were retained. To classify the whisky samples 

on the basis of their caramel content, the PC1 and PC2 score values for the whisky 

samples (calculated in the first PCA model) were projected into the subspace defined 

by the caramel A model. The 99% confidence limits for the caramel A model were 

calculated and any whisky samples that were out with these limits were assigned as 

counterfeit (see Figure 6.5). 
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Figure 6.5: Projection of the PC1 and PC2 scores values, from Figure 6.4, for the whisky 

samples into the PC1 vs. PC2 subspace defined by the caramel A model. The model was 

constructed from PCA of the PC1 and PC2 scores, from Figure 6.4, for caramel A and the 

ellipse indicates the 99% confidence limits for the caramel A model. 

On the basis of this assessment, samples 7 and 11-17 were considered authentic 

while samples 1-6 and 8-10 are likely to be counterfeit. It can be seen from Figure 

6.5 that the PC1 and/or PC2 score can be used to classify whisky samples as 

authentic or counterfeit based on caramel A content. 

 

Although each MIR method indicates potential counterfeit samples, examining the 

combined set of results can elucidate more reliable information. A plot of the PC1 

scores from Figure 6.5 vs. the predicted ethanol concentration from the univariate 

model is given in Figure 6.6 and shows clearly those samples which have been 

identified as authentic based on both their ethanol concentration and caramel 

colorant. 
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Figure 6.6: PC1 scores, from Figure 6.5, vs. predicted ethanol concentration (%(v/v)) using the 

univariate model for samples 1-17. Error bars represent the mean value ±99% confidence 

interval (n = 6 for predicted ethanol concentration and n = 3 for PC1 scores) for each variable. 

The solid horizontal line indicates the minimum allowed concentration of ethanol in Scotch 

whisky; the dashed horizontal line indicates the lowest predicted ethanol concentration that 

could still be acceptable given the average relative error (1.2%) of the univariate method. The 

solid vertical lines are the 99% confidence limits of the PC1 score values for the caramel A 

model shown in Figure 6.5. 
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which would be consistent with a counterfeit produced by diluting an authentic 

product. Sample 17 is also located in this quadrant, but as discussed earlier, given the 

average relative error (1.2%) of the univariate MIR method this sample may have an 
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ethanol concentration nor permitted colorant. So, in the blind study using the 

combined methods, samples 1 – 10 were identified as counterfeit whisky and 

samples 11 – 17 as authentic whisky. These conclusions were confirmed by the 

whisky company that supplied the samples. In their analysis, using a combination of 

spectroscopic and chromatographic techniques, it was established that the counterfeit 

samples were either locally produced spirit, genuine product with either added 

ethanol or water, or a mixture of a whisky type product and ethanol. 

6.3.2 Cask analysis investigation 

The work carried out for the blend authentication shows that the dried residues of the 

whisky samples are dominated by the colorant present. The whisky samples were 

shown to have spectra similar to that produced from caramel A colorant. However, 

caramel A is not always added, therefore, it is also important to understand the 

features in the cask samples where no additive colorant has been used. The MIR 

absorbance spectra of dried residues for four bourbon-cask samples and three sherry-

cask samples are given in Figure 6.7 and Figure 6.8, respectively, which indicates the 

differences between the cask samples. 

 

Figure 6.7: The average (n=18) ATR MIR absorbance spectra of the dried residues of four 

bourbon-cask whisky samples. 
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Figure 6.8: The average (n=18) ATR MIR absorbance spectra of the dried residues of three 

sherry-cask whisky samples. 

As congeners are formed during the fermentation stage of whisky production, it is 

possible some of these compounds may be seen in the ATR MIR spectra. Dried 

residues of solutions of eleven pure component congeners that are commonly found 

in authentic whisky were also analysed to aid the interpretation of the spectra 

obtained from the cask whisky samples. Due to the high concentration of nine of the 

samples (around 600 µg ml-1), only 10 µL of each sample was analysed, the 

remaining two samples had low concentrations (95.9 µg ml-1 for ellagic acid and 

0.5 µg ml-1 for lactones) and so 120 µL of each sample was analysed. The MIR 

spectra of the eleven samples are given in Figure 6.9, Figure 6.10 and Figure 6.11, 

respectively. 

600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

Wavenumber (cm-1)

A
b

so
rb

an
ce

 

 

Cask whisky 13
Cask whisky 8
Cask whisky 16



   

201 

 

 

 

 

 

Figure 6.9: The average (n=18) ATR MIR absorbance spectra of the dried residues of four pure 

component samples. 

 

Figure 6.10: The average (n=18) ATR MIR absorbance spectra of the dried residues of five pure 

component samples. 
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Figure 6.11: The average (n=18) ATR MIR absorbance spectra of the dried residues of two pure 

component samples. 

Figure 6.9 and Figure 6.10 show only small variations in the spectra between the 

nine concentrated pure components. The greatest difference can be observed between 

ellagic acid and the lactones sample (Figure 6.11); however obtaining reproducible 

results for these two samples proved difficult due to the low concentrations. Each of 

the individual components analysed here will vary depending on the cask used, the 

heat treatment carried out and how many times the cask has been used before. 

Typically the concentrations will range from 0-10 µg ml-1 for most of the 

components; however, some components such as ellagic acid and syringaldehyde 

may occur in higher amounts, e.g. up to 20 µg ml-1. Given the relative difficulty in 

analysing and detecting a 95.5 µg ml-1 sample of ellagic acid, it is only reasonable to 

assume that these components are going to be very difficult to analyse by ATR MIR 

spectrometry. Therefore, it is believed in the analysis of the cask whisky samples the 

spectra will be dominated by the colorant which arises from the cask during 

manufacture and information regarding the components in Table 6.3 will have no or 

little effect on the spectra. 

 

600 800 1000 1200 1400 1600 1800
0

0.02

0.04

0.06

0.08

0.1

Wavenumber (cm-1)

A
b

so
rb

an
ce

 

 

Ellagic acid
Lactones



   

203 

 

 

 

 

As part of this initial study, discussions with the Scottish Whisky Research Institute 

were held to determine what the desired outcomes would be. A list of questions 

regarding how ATR MIR spectrometry could aid in gaining a greater understanding 

of cask whisky samples was posed. This section will look into the feasibility of ATR 

MIR spectrometry for cask analysis and if it can be used to answer any of the 

following questions: 

 

Q1 Can ATR MIR spectrometry determine differences in whisky manufacture 

variables? such as: 

- cask type, e.g. bourbon and sherry 

- cask history, e.g. first fill casks and refilled casks 

- maturation age 

- malt and grain whisky 

- the use of peat 

Q2 Is ATR MIR spectrometry able to differentiate between authentic maturation 

spectra and simulated maturation spectra? 

Q3 Analysing some of the known counterfeits from the blend authenticity study, 

do their spectra relate to either of the authentic maturation or simulated maturation 

spectra? 

Q4 Is there a difference between the spectra of dried residues of natural 

maturation samples and caramel colorant A? 

Q5 If colorant was added to a cask sample, does it mask all of the spectral 

information of the spectra of the dried residue of natural maturation? 

 

1. Determination of whisky manufacture variables 

To establish if ATR MIR spectrometry can be used to distinguish between different 

manufacturing variables, PCA was carried out on the 625-1813 cm-1 region of the 

first derivative spectra of the dried residues obtained for the cask whisky samples. As 

three of the thirty one cask samples have missing information regarding the 

manufacturing variables, they have been discounted from this part of the study and 

only twenty eight of the cask whisky samples have been assessed. The MIR 

absorbance spectra for the three depositions of each cask sample were analysed in a 
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random order on different days to minimise any occurrence of systematic errors. 

Figure 6.12 displays the PCA scores plot of PC1 vs. PC2 that describes 64% of the 

variance; the cask samples have been classified according to their cask type, bourbon 

or sherry. With the exception of two sherry-cask samples (numbers 5 and 22) and a 

single deposition of a bourbon-cask sample 17 (classed as an outlier as the points for 

the other two depositions of sample 17 appear in the same space as the other 

bourbon-cask samples) there appears to be a divide along the PC1 axis between the 

bourbon-cask and sherry-cask samples (depicted with the ovals in Figure 6.12), 

which suggests that there is the potential to differentiate whisky samples by their 

cask type. To try and ascertain why the sherry-cask samples 5 and 22 were located in 

the same scores space as the bourbon-cask whiskies, all of the factors of these 

samples were compared with samples located in similar space in the scores plot to 

determine if there were any similarities. Sherry-cask sample 5 lay close in scores 

space to bourbon-cask sample 1, when compared all the factors were the same with 

the exception of the cask type. The spectra of sample 5 had more similarity to sample 

1 than other grain sherry-cask samples. Sherry-cask sample 22 was harder to 

compare as it lay close to many of the bourbon-cask samples in the PCA scores 

space; as there seems to be a divide in the three depositions of this sample, those 

samples that lay closest to the two depositions that were most similar were compared 

to determine if any similarities could be found. Two bourbon-cask samples that lay 

close in scores space to sherry-cask samples 22 are bourbon-cask whisky samples 6 

and 23, they are all grain whisky samples that are non-peated and have similar 

maturation ages as cask whisky sample 22; cask whisky sample 23 also has the same 

distillery in common. The loadings plot for PC1 (not shown), indicates that this 

principal component describes variation in the ranges 1000 – 1300 cm-1 and 1600 – 

1800 cm-1, where differences could be observed between bourbon- and sherry-cask 

samples in Figure 6.7 and Figure 6.8, respectively. However, the PCA scores plot 

suggests that the divide in the cask samples in PC1 is not solely attributable to a 

difference in cask type. Further investigations and a larger sample set including 

multiple batches of the same type of samples would be required to determine the 

variance described by PC1. 
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As there was a defined divide between the bourbon-cask and sherry-cask samples 

when PCA was completed (with the exception of the two samples mentioned) new 

PCA models were built including the sherry-cask samples (thirteen samples) in one 

model and the bourbon-cask samples (fifteen samples) in the other model before 

further classification was carried out. This was to allow the major variation that was 

found in the first PCA model to be removed, allowing further potential 

determinations to be made. 

 

The MIR absorbance spectra of the dried residues for two bourbon-cask whiskies are 

given in Figure 6.13 (same distillery, age, etc. with only difference in first fill or 

refill). It is apparent from the spectra of the first fill and refill whisky samples 

presented in Figure 6.13 that there are no differences in the spectra. Figure 6.14 

displays the PCA scores plots of PC1 vs. PC2 that describe the variance in all the 

bourbon-cask samples (differences in distillery, age etc. are present between the 

bourbon-cask samples). The samples have been classified with respect to their cask 

history; if the cask was used for whisky manufacture for the first time, it has been 

classed as first fill, however, if it has been used for manufacture of whisky 

previously, it is termed refill. With the exception of sample 1 and one deposition of 

sample 17, the points representing the cask samples that are first fill appear in similar 

scores space as those points representing refill cask samples, emphasising that there 

is little difference in the spectra between a first fill cask whisky and a refill cask 

whisky. The PCA scores plot in Figure 6.14 has one deposition of sample 17 in a 

separate scores space to the other depositions similar to the PCA scores for all of the 

cask samples, suggesting that this deposition is an outlier and that this sample should 

be repeated again in any future studies to be sure that the spectra for this sample are 

representative. In addition, sample 1 has again been located in a scores space away 

from the other bourbon-cask samples as in the previous PCA scores plot (Figure 

6.12), suggesting there is something different about this sample. Reviewing the 

information given about the manufacturing factors there is nothing to suggest a 

reason for this sample being located in different scores space. 
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Figure 6.13: The average (n=18) ATR MIR absorbance spectra of the dried residues of a refill 

bourbon-cask whisky sample (number 17) and a first fill bourbon-cask whisky sample (number 

18).

 

Figure 6.14: PC1 vs. PC2 scores plot from PCA of MIR spectra of fifteen bourbon-cask whisky 

samples, classified by cask history (first fill or refill). 

The MIR absorbance spectra of the dried residues for two sherry-cask whiskies of 
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whisky is similar to that of the refill sherry-cask whisky, with the exception of the 

region 1000 – 1150 cm-1 where some small differences can be observed. 

 

Figure 6.15: The average (n=18) ATR MIR absorbance spectra of the dried residues of a refill 

sherry-cask whisky sample (number 19) and a first fill sherry-cask whisky sample (number 20). 

 

Figure 6.16: PC1 vs. PC2 scores plot from PCA of MIR spectra of thirteen sherry-cask whisky 

samples. 
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Figure 6.16 displays the PCA scores plots of PC1 vs. PC2 that describe the variance 

in the thirteen sherry-cask whisky samples. The cask samples have been classified as 

first fill or refill. Some of the points for the first fill and refill whiskies overlap, but 

others are in different scores space: the upper left quadrant in Figure 6.16 is 

populated by refill points and the upper right quadrant by first fill points. 

 

From the results it appears that there are minimal differences in the spectra of 

bourbon-cask samples if they have been matured in first fill or refilled casks, 

however, there is the possibility that there are some differences between the spectra 

of sherry-cask samples. Although, the differences observed in the PCA scores plot 

(Figure 6.16) are likely to be a result of more than one maturation variable. 

 

Another variable that was investigated to determine if it could impact on the spectra 

of dried residues of cask samples was the use of malt or grain in the manufacture of 

the whisky. The spectra of two similarly manufactured cask whisky samples, where 

there is a difference in the use of malt or grain, are given in Figure 6.17; the spectra 

are almost identical. Figure 6.18 displays the PCA scores plots of PC1 vs. PC2 of the 

bourbon-cask samples; here the samples have been classified based on the use of 

malt or grain. The PCA results reinforce the observations in Figure 6.17 as there is 

little distinction between grain and malt cask whisky samples. Equivalent 

information for sherry-cask samples are given in Figure 6.19 and Figure 6.20. In this 

case, there is greater separation of the malt and grain points in the PCA scores plot, 

although the points for grain samples 2 and 8 overlap the space occupied by the malt 

samples. Comparing the information known about the samples no similarities could 

be found that link grain samples 2 and 8 with the malt samples which they are close 

to in scores space. 
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Figure 6.17: The average (n=18) ATR MIR absorbance spectra of the dried residues of a grain 

bourbon-cask whisky sample (number 7) and a malt bourbon-cask whisky sample (number 17). 

 

Figure 6.18: PC1 vs. PC2 scores plot from PCA of MIR spectra of fifteen bourbon-cask whisky 

samples, classified by malt or grain whisky. 
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Figure 6.19: The average (n=18) ATR MIR absorbance spectra of the dried residues of a grain 

sherry-cask whisky sample (number 2) and a malt sherry-cask whisky sample (number 19). 

 

 

Figure 6.20: PC1 vs. PC2 scores plot from PCA of MIR spectra of thirteen sherry-cask whisky 

samples, classified by malt or grain whisky. 
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To investigate if peat has an influence on the spectra of the dried residues of cask 

whisky samples, the spectra of peated and non-peated samples have been compared 

for both bourbon-cask and sherry-cask samples; see Figure 6.21 and Figure 6.23 

respectively. The corresponding PCA scores plot for the bourbon-cask and sherry-

cask samples are given in Figure 6.22 and Figure 6.24, respectively. The spectra of 

the peated and non-peated samples seem to be comparable for both the bourbon-

casks and the sherry-casks. Figure 6.22 shows that there is greater variation in the 

distribution of the non-peated than peated bourbon-cask samples, but they essentially 

occupy the same scores space. If sample 1 and the outlier for sample 17 are 

discounted here, the distribution of the non-peated samples does not appear so large, 

indicating that there is little difference between peat and non-peated bourbon-cask 

samples. A similar observation can be made for the sherry-cask samples, although 

nearly all the peated samples are in the upper right quadrant. It is unclear why the 

non-peated samples are more widely distributed than peated samples, although some 

of the spread in the sherry-cask samples can be explained. The samples that occupy 

the scores space in the upper left quadrant are sherry-cask whisky samples 5 and 22, 

these samples occupied the same scores space as bourbon-cask whisky samples 

rather than with the other sherry-cask whisky samples in Figure 6.12. This suggests 

that perhaps the reason for the distribution in Figure 6.24 for these samples is due to 

factors other than just being non-peated. 
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Figure 6.21: The average (n=18) ATR MIR absorbance spectra of the dried residues of a peated 

bourbon-cask whisky sample (number 12) and a non-peated bourbon-cask whisky sample 

(number 18). 

 

Figure 6.22: PC1 vs. PC2 scores plot from PCA of MIR spectra of fifteen bourbon-cask whisky 

samples, classified by the use of peat in manufacture. 
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Figure 6.23: The average ATR MIR absorbance spectra of the dried residues of a peated sherry-

cask whisky sample (number 27) and a non-peated sherry-cask whisky sample (number 29). 

 

Figure 6.24: PC1 vs. PC2 scores plot from PCA of MIR spectra of thirteen sherry-cask whisky 

samples, classified by the use of peat in manufacture. 
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One maturation variable that would be useful to assess is the maturation age of a cask 

whisky. It is illegal to sell a whisky as Scotch whisky if it has been matured for less 

than 3 years and also it is illegal if a whisky is sold at the wrong maturation age. 

Spectra of bourbon-cask and sherry-cask whisky samples of different maturation 

ages have been compared and PCA has been completed to determine if differences 

can be observed. MIR absorbance spectra of three bourbon-cask whisky samples that 

span the three age ranges considered in this study are given in Figure 6.25; there is 

no significant observable difference in the spectra of the three whiskies. These results 

suggest that there are no spectral differences introduced due to the different 

maturation ages; this is supported by the classification of the age groups in the PCA 

scores plot of PC1 vs. PC2, Figure 6.26. The points representing the three age groups 

lie in the same scores space, the points that do occur in space away from the others 

are most likely a result of the influence of another variable or the combined influence 

of multiple variables. 

 

The equivalent spectra and PCA plot for the sherry-cask samples are given in Figure 

6.27 and Figure 6.28, respectively. The spectra are similar, with the main difference 

occurring in the region 1000 – 1250 cm-1, where the relative intensities of the three 

major peaks differ between the three samples. The PCA scores plot in Figure 6.28 

shows that there is more of a separation of the points for the different ages for the 

sherry-cask samples than for the bourbon-cask samples, however, there is not a 

unique space for any of the age ranges, suggesting that the differences observed are 

due to the combined influences of multiple maturation variables. 
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Figure 6.25: The average (n=18) ATR MIR absorbance spectra of the dried residues of 

bourbon-cask whisky samples of different maturation ages; ages 3 – 5 years (number 28), ages 6 

– 9 years (number 12) and ages 10 – 12 years (number 10). 

 

Figure 6.26: PC1 vs. PC2 scores plot from PCA of MIR spectra of fifteen bourbon-cask whisky 

samples, classified by their maturation ages. 

800 1000 1200 1400 1600 1800
0

0.05

0.1

0.15

0.2

Wavenumber (cm-1)

A
b

so
rb

an
ce

 

 

3 - 5 years
6 - 9 years
10 - 12 years

-2 -1.5 -1 -0.5 0 0.5 1

-0.5

0

0.5

1

Scores on PC 1 (37.73%)

S
co

re
s 

on
 P

C
 2

 (
1

4.
83

%
)

 

 

3 - 5 years
6 - 9 years
10 - 12 years
Sample 10
Sample 12
Sample 28



   

217 

 

 

 

 

 

Figure 6.27: The average (n=18) ATR MIR absorbance spectra of the dried residues of sherry-

cask whisky samples of different maturation ages; ages 3 – 5 years (number 27), ages 6 – 9 years 

(number 13) and ages 10 – 12 years (number 11). 

 

Figure 6.28: PC1 vs. PC2 scores plot from PCA of MIR spectra of thirteen sherry-cask whisky 

samples, classified by their maturation ages. 
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Evaluating the results of the PCA and spectral analysis of a range of samples where 

there are different manufacturing variables, a number of conclusions can be made: 

- ATR MIR spectrometry could potentially be used to differentiate between 

bourbon-cask and sherry-cask samples. 

- Differences are apparent in the PCA scores plots for both the bourbon-cask 

and the sherry-cask models; however, it appears as if they may result from 

the effects of a number of manufacturing variables. 

 

The samples analysed as part of this study had many variables and as a result the 

analysis is relatively difficult. To determine which variables have an impact on the 

spectra of the dried residue of the cask whisky samples, design of experiment (DoE) 

analysis was completed using DX7 software. Different DoE models were built to 

include the manufacturing variables that change between the cask samples and used 

to determine which variables impact on the PC scores and of those, which have the 

greatest influence. Five models were assessed; the details are given in Table 6.8, 

indicating the number of factors that were included in each model. Multiple levels 

were used in the models and the levels associated with each factor were described 

previously in Table 6.6. 

Table 6.8: Details of five DoE models assessed in this study. 

 

When models 1 – 4 were built in DX7, problems arose: either the model’s results 

could not be assessed due to the number of terms that were aliased with one another, 

or terms had to be added into the model to allow it to be hierarchical; the results were 

Model number 

Number of 
factors 

included Name of Factors

1 6
Distillery number, Malt / Grain, Cask type, Cask history, 

Maturation age and Peat

2 5
Distillery number, Malt / Grain, Cask type, Cask history, 

Maturation age

3 4 Malt / Grain, Cask type, Cask history, Maturation age

4 4
Distillery number, Cask type, Cask history, Maturation 

age

5 3 Cask type, Cask history, Maturation age
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either misleading or the software could not provide any results. The main reason for 

this problem was the limited data set: many combinations of factors were not present 

and, therefore, could not be modelled. As a result, only model 5 could produce a 

hierarchical DoE model with no aliasing present and so, only this model will be 

discussed further. A limitation of model 5 is that only information regarding three 

manufacturing variables can be evaluated; cask type, cask history and the maturation 

age. The multi-level factorial design is illustrated in Figure 6.29 for model 5. 

 

Figure 6.29: Schematic of multi-level factorial design for model 5 assessed in DX7. 

PCA was completed for the twenty eight cask whisky samples that contained 

information about cask history, cask type and maturation age. The principal 

component scores were input as the response in DX7 and the effect of the factors and 

levels were assessed. Reviewing the results when PC1 scores were used as the 

response in the DoE analysis, all the model terms were deemed significant, 

suggesting that all three variables and their interactions have a significant impact on 

the resultant PC1 scores response. Main effects and interaction plots are produced in 

DX7 and these can be analysed to determine the effects on the PC1 response; as the 

main effects were all involved in interactions, the effect on the response could be 

best interpreted from the interaction plots, for this reason only the interaction plots 

have been discussed further. Details on the interaction AB (between cask type and 

cask history (fill)) for the three age groups, 3 – 5, 6 – 9, and 10 – 12 years are given 

in Figure 6.30, Figure 6.31 and Figure 6.32. For all three age groups it appears there 

is a greater difference between a first fill and refill sherry-cask than for bourbon-
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casks, especially for the 3 – 5 year age group, this supports the findings found in the 

spectral analysis and PCA, where some changes between the spectra of whisky from 

first fill and refill sherry-casks could be observed. The differences observed for the 

sherry-cask are less for the 6 – 9 year age group in comparison to the other two age 

groups which have greater differences between first fill and refill. This is also true 

for the bourbon-cask samples, although the differences noticed here are minimal in 

comparison to those observed for the sherry-casks. 

 

 

Figure 6.30: Interaction between cask type and cask history for the age group 3 – 5 years for the 

response PC1 scores. 
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Figure 6.31: Interaction between cask type and cask history for the age group 6 – 9 years for the 

response PC1 scores. 

 

Figure 6.32: Interaction between cask type and cask history for the age group 10 – 12 years for 

the response PC1 scores. 
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outside the ‘I beam’ bars, the differences are unlikely to be caused by error alone and 

so, the differences can be attributed to factor effects. If the ‘I beams’ overlap then 

there is not a significant difference between those points. Therefore, there appears to 

be no interaction between the cask type and maturation age for first fill cask samples. 

However, there is an interaction between cask type and maturation age for refill 

sherry-casks where there is a change in response for the 3-5 year age range and the 

upper two age ranges producing higher and similar PC1 scores. 

 

Figure 6.33: Interaction between cask type and maturation age for first fill casks for the 

response PC1 scores. 
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Figure 6.34: Interaction between cask type and maturation age for refill casks for the response 

PC1 scores. 

The interaction BC, between cask history and maturation age for the bourbon-cask 

and sherry-casks are given in Figure 6.35 and Figure 6.36, respectively. The results 

from this interaction support those from the first two interactions, with a greater 

difference occurring for sherry-casks than for bourbon-casks and there is a lower 

PC1 score for the 3-5 year age range for the refill sherry-casks (Figure 6.36). Overall, 

the cask type appears to affect the PC1 scores response, however little to no effect 

was observed from first fill casks for all maturation ages. Whereas, for refill sherry-

casks there appears to be an interaction with maturation age which affects the PC1 

scores response, but only for the 3 – 5 year age group. 
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Figure 6.35: Interaction between cask history and maturation age for bourbon-casks for the 

response PC1 scores. 

 

 

Figure 6.36: Interaction between cask type and maturation age for sherry-casks for the response 

PC1 scores. 
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for PC1 response, the main effects were involved in interactions and, therefore, only 

the interaction plots have been discussed further. The interaction plots of AC for the 

first fill and refill samples are given in Figure 6.37 and Figure 6.38, respectively. The 

overlap of the ‘I beams’ for the bourbon-cask types suggests that differences in the 

response for PC2 scores for first fill and refill bourbon-casks is not significant for 

different age groups. There does appear to be an effect for sherry-casks in the age 

group 6 – 9 years for both the first and refill cask samples, with a higher PC2 score 

being observed for this age range. For the first fill sherry-casks, the age range 6 – 9 

years differs from the other two providing a higher PC2 score, however from the 

DoE analysis this age range will produce a lower PC1 score in comparison to the 

other age groups. The refill sherry-cask results indicate that the age ranges 3 – 5 year 

and 10 – 12 year will produce similar PC2 scores, however they will be lower than 

the 6-9 year age range. 

 

Figure 6.37: Interaction between cask type and maturation age for first fill casks for the 

response PC2 scores. 
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Figure 6.38: Interaction between cask type and maturation age for refill casks for the response 

PC2 scores. 

Overall, the DoE analysis has shown that there is a smaller variation to the PC1 and 

PC2 scores for bourbon-cask samples than for sherry-cask samples, this is consistent 

with the results of the spectral study and PCA, where little changes could be 

determined; the majority of samples appeared in one cluster in the PC scores plot. A 

greater variation was observed for the sherry-cask samples for both PC1 and PC2 

scores. The DoE analysis indicated that there was a large difference between first fill 

and refill sherry-casks, especially for the age ranges 3 – 5 years for PC1 and 6 – 9 

years for PC2. The differences between first fill and refill sherry-casks could be 

observed when comparing spectra or completing PCA as were differences due to age. 

However, the DoE analysis could be used to determine the interaction between the 

cask history and maturation age, a task that was difficult using spectral analysis or 

even PCA. 

 

2. Authentic maturation vs. simulated maturation 

To determine if ATR MIR spectrometry can differentiate between authentic and 

simulated maturation spectra, three samples were produced by SWRI using a method 

to simulate the features of whisky that occur by natural maturation. To make the 

samples, three solvents (ethyl acetate, ethanol and water) were used individually to 

Design-Expert® Software
Original Scale
PC2 Score

C1 3-5
C2 6-9
C3 10-12

X1 = A: Cask Type
X2 = C: Age

Actual Factor
B: Fill = Re Fill

C: Age

Bourbon Sherry

Interaction

A: Cask Type

P
C

2 
S

co
re

-0.021

-0.007

0.007

0.021

0.035



   

227 

 

 

 

 

extract components from the shavings of toasted American oak. In each case the 

extraction involved use of the solvent close to its boiling point for a large proportion 

of the eight hour extraction time. The coloured solutions were then evaporated to 

dryness to remove the extraction solvent, and then re-dissolved in 40% v/v ethanol / 

60% v/v water before analysis. The three solvents used for the procedure, produced 

different results in terms of colour. The ethyl acetate extraction produced a very 

weakly straw coloured solution; ethanol extraction produced a stronger more golden 

colour, and water extraction produced a dark orange-brown colour. The three 

samples were analysed using the dried residue analysis method and the spectra were 

compared to those of authentically matured cask samples. The spectra of the three 

simulated maturation samples are compared with those of the two cask samples in 

Figure 6.39 and the differences between the spectra of the authentic samples and 

simulated maturation samples can be observed. 

 

Figure 6.39: The average ATR MIR absorbance spectra of the dried residues of three cask 

whisky samples and three simulated maturation samples. 

PCA was carried out on the 625-1813 cm-1 region of the first derivative spectra of the 

dried residues obtained for the thirty one cask whisky samples and the three 

simulated maturation samples to demonstrate the differences between the samples. 
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Data were normalised to the largest peak and mean centred before PCA was 

performed. The scores plot of PC1 vs. PC2 (describing a total of 59% of the 

variance) is given in Figure 6.40. 

 

Figure 6.40: PC1 vs. PC2 scores plot from PCA of MIR spectra of thirty one cask whisky 

samples and three simulated maturation samples. 

The difference between the authentically matured cask samples and the simulated 

maturation samples can be clearly seen. Looking at the absorbance spectra of the 

samples and the PCA scores plot it is possible to differentiate between the 

authentically matured cask samples and the simulated maturation samples. In the 

future, if samples suspected of not being authentically matured were to be 

investigated, comparison of ATR MIR spectra of dried residues should give an 

indication as to authenticity. However, to accommodate a range of authentic cask 

samples, a more robust process is required. Therefore, a PCA model was built using 

only the authentic cask samples; the simulated maturation samples were then 

analysed using this PCA model to determine if the differences between the samples 

could be ascertained. The scores plot of PC1 vs. PC2 describing 62% of the variance 

for the cask samples, with the analysis of the simulated maturation samples, is given 

in Figure 6.41. 
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Figure 6.41: PC1 vs. PC2 scores plot from PCA of MIR spectra of thirty one cask whisky 

samples with the analysis of three simulated maturation samples. 

Reviewing the results of the PCA given in Figure 6.41, the simulated maturation 

samples appear in the same space as some of the cask samples. This is not surprising; 

although some differences could be found in the spectra in Figure 6.39, all the 

samples shared the majority of the same peaks; it was in the relative intensities of the 
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 1300 cm-1 and 1600 – 1800 cm-1, where a lot of the variation is minimised due to the 

normalisation processing step. The loading for PC2 describes similar regions to PC1 

but also includes the 925 – 1000 cm-1 range and the region around 1400 cm-1. 

Although PC1 and PC2 can be used to differentiate the cask samples, no differences 

could be found to distinguish the simulated maturation samples from some of the 

cask samples, suggesting that the spectra are quite similar. The loading for PC3 

mainly describes variation in the range 1600 – 1800 cm-1; reviewing the spectra in 

Figure 6.39 there is very little differences observed in this range and so the results of 

PC1 vs. PC3 in Figure 6.42 are not unexpected. The loading for PC4 describes some 

variation across the range of the spectra, but appears to describe the variation in the 

range 625 – 900 cm-1 more than the other PCs. Therefore, differences between the 
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cask samples and the simulated maturation samples can still be determined if the 

scores of PC1 vs. PC4 are considered (Figure 6.43). 

 

Figure 6.42: PC1 vs. PC3 scores plot from PCA of MIR spectra of thirty one cask whisky 

samples with the analysis of three simulated maturation samples. 
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Figure 6.43: PC1 vs. PC4 scores plot from PCA of MIR spectra of thirty one cask whisky 

samples with the analysis of three simulated maturation samples. 

MIR spectrometry has the ability to differentiate between the authentic cask whisky 

and simulated maturation samples analysed as part of this study. Analysing the 

simulated maturation samples with a PCA model previously built on only authentic 

cask whisky samples, it was still possible to establish the differences between the 

sample sets, indicating the potential for future determination of counterfeit samples 

based on differences in the maturation of the suspect samples. 

 

3. Counterfeit sample spectra vs. maturation spectra 

Five samples that were categorised as counterfeit from the blend authenticity work 

were selected and analysed to determine if their spectra were similar to either the 

authentic maturation cask whisky samples or the simulated maturation samples. 

Comparing the spectra of the counterfeit samples to the spectra of the cask samples 

and the simulated maturation sample, differences were apparent. PCA was completed 

on the 625-1813 cm-1 region of the normalised first derivative spectra of the dried 

residues obtained for the thirty one cask whisky samples, the three simulated 
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maturation samples and the five counterfeit whisky samples. The scores plot of PC1 

vs. PC2 describing 62% of the variance is given in Figure 6.44. 

 

Figure 6.44: PC1 vs. PC2 scores plot from PCA of MIR spectra of thirty one cask whisky 

samples, three simulated maturation samples and five counterfeit whisky samples. 

Reviewing the results of the scores plot of PC1 vs. PC2, the counterfeit samples all 

appear in scores space away from either the cask samples or the simulated maturation 

samples, suggesting that differences can be seen when comparing the spectra of these 

samples. In the case of the five counterfeit samples analysed as part of this study, the 

spectra do not appear to relate to either the authentic maturation of the cask samples 

or the simulated maturation samples, suggesting that the methods used to produce 

these counterfeit samples did not successfully mimic the features of whisky that 

normally occur by natural maturation. 

 

4. Caramel colorant spectra vs. maturation spectra 

The MIR absorbance spectra obtained from the dried residues for one batch of 

caramel A colorant and four cask whisky samples are given in Figure 6.45, where the 

differences can be observed. The cask whisky samples were chosen to compare the 

spectral features of different cask whisky samples to determine if the caramel A 

colorant had similarities to any of those cask whisky samples. Cask whisky samples 
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1 and 8 are examples of grain bourbon-cask and sherry-cask whiskies, respectively, 

and the cask whisky samples 13 and 28 represent malt sherry-cask and bourbon-cask 

whiskies, respectively. 

 

Figure 6.45: The average ATR MIR absorbance spectra of the dried residues of caramel 

colorant A and cask whisky samples 1, 8, 13 and 27. Cask whisky samples 1 and 8 are examples 

of grain bourbon-cask and sherry-cask whiskies, respectively, and the cask whisky samples 13 

and 28 represent malt sherry-cask and bourbon-cask whiskies, respectively. 

PCA was performed on the dried residues of the caramel A sample and the thirty one 

cask whisky samples to determine any similarities or differences between the natural 

maturation spectra of the cask samples and the spectra of the caramel colorant. The 

scores plot of PC1 vs. PC2 describing 60% of the data is given in Figure 6.46. The 

loadings plots for PCs 1 and 2 are given in Figure 6.47 and Figure 6.48, respectively. 

The loadings plot for PC1 (Figure 6.47) appears to describe the region 1000 –

 1300 cm-1 well, in addition it describes some of the variation up to 700 cm-1 and 

after 1650 cm-1. The loadings for PC2 (Figure 6.48) seems to describe the variation 

over a wider range with the 900-1100 cm-1 range having a larger weighting. The 

points in the scores plot representing caramel A appear in a single cluster, though 

they appear close to some of the cask samples. It is possible that the spectra have 
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some similarities in the regions of the spectra described by the loadings in Figure 

6.47 and Figure 6.48. 

 

Figure 6.46: PC1 vs. PC2 scores plot from PCA of MIR spectra of thirty one cask whisky 

samples, and one batch of caramel A colorant. 

 

Figure 6.47: Loadings plot for PC1 from PCA of MIR spectra of thirty one cask samples and 

caramel colorant A. 
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Figure 6.48: Loadings plot for PC2 from PCA of MIR spectra of thirty one cask samples and 

caramel colorant A. 

The scores plot of PC1 vs. PC3 was also generated to compare the samples; this plot 

describes 52% of the data, Figure 6.49. The points representing caramel A in Figure 

6.49 occur in a single cluster, separated away from all of the points representing the 

cask samples, indicating differences between the colorant and the cask samples. The 

points representing caramel A are split along the PC3 axis suggesting that this 

principal component describes the variance between the cask samples and the 

colorant well. The loadings plot for PC 3 is given in Figure 6.50; the variation 

described is over a wide range, however the range 1400 – 1800 cm-1 has a larger 

weighting in the loadings plot of PC3 than for PC1 and PC2, suggesting that this 

region contains differences between the spectra that can separate the samples. 

Examining the spectra in Figure 6.45, the cask whiskies have many spectral features; 

around 1550 cm-1 the cask samples have a peak that the caramel A sample does not 

exhibit. 
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Figure 6.49: PC1 vs. PC3 scores plot from PCA of MIR spectra of thirty one cask whisky 

samples, and one batch of caramel A colorant. 

 

Figure 6.50: Loadings plot for PC3 from PCA of MIR spectra of thirty one cask samples and 

caramel colorant A. 
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The results shown indicate that there is a difference in the spectra between caramel 

colorant A and cask whisky samples of natural maturation. Some differences can be 

observed in the absorbance spectra; though the differences can also be determined by 

PCA. The caramel A points do appear in their own cluster when PC1 vs. PC2 scores 

plot is analysed, however, a clearer separation of the points representing caramel A 

can be determined in the scores plot of PC1 vs. PC3, as this reflects better spectral 

differences in the region around 1550 cm-1. 

 

5. Effect of addition of caramel colorant to a cask sample 

Previously, it has been discussed that the spectrum of the dried residue of a whisky 

sample will be dominated by the colorant components of the sample, e.g. the addition 

of caramel colorant or from natural colour from the maturation stages. However, it is 

unknown if through the addition of caramel to a sample, the spectral features found 

from the maturation are obscured due to the dominant caramel spectra. To investigate 

the addition of caramel colorant, a sub-sample of a cask whisky sample (number 7) 

had a small amount of caramel A colorant added to slightly darken the colour of the 

whisky. The dried residue of this prepared sample was analysed by ATR MIR 

spectrometry and the spectra acquired were compared to the ATR MIR spectra of the 

individual samples of caramel A and original cask sample 7. The overlaid MIR 

absorbance spectra of the three samples are given in Figure 6.51. 
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Figure 6.51: The average ATR MIR absorbance spectra of the dried residues of caramel 

colorant A, cask sample 7 and cask sample 7 with caramel A colorant added. 

The spectrum of the sample of whisky and caramel colorant is similar to the caramel 

A spectrum in the regions 600-1150 cm-1 and 1550-1825 cm-1. The region 1150-

1550 cm-1 displays a greater resemblance to the spectrum of original cask sample 7 

than that of the caramel colorant. As a result of adding colorant to a sample of 

authentically matured whisky it is still possible to see some spectral features that 

relate to the components present in the whisky from maturation. In this case PCA 

was not used to analyse the data; to determine any differences by PCA, a greater 

number of samples would need to be analysed to allow the analysis to be 

representative. 
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6.4 Conclusions 

MIR spectrometry with a diamond ATR immersion probe and polycrystalline silver 

halide fibres has been used for the direct and simple determination of the ethanol 

concentration in whisky and the identification of counterfeit samples. The predicted 

concentrations of ethanol were comparable to the supplied concentrations, 

confirming the accuracy of the method. Univariate and multivariate calibration 

models were compared with no significant differences demonstrated from the results 

of both procedures. By analysing dried residues of whisky and caramel samples on 

the ATR probe it was possible, using PCA, to distinguish between different caramel 

colorants and different whisky samples. 

 

A combination of the results of both MIR methods allows rapid and simple 

assessment of suspect samples and provides advantages over alternative techniques 

for identification of counterfeit whisky, especially for the rapid and simple 

assessment of suspect samples through random spot checks out of the laboratory. For 

example, Aylott et al.17 described procedures based on direct-injection GC and 

chemical derivatisation GC-MS that could be used to confirm the authenticity of 

Scotch whisky. These procedures require lab based instrumentation which is 

expensive and involve longer analysis times than the MIR methods described here. 

However, GC and GC-MS can provide more detailed information about a sample, 

such as higher alcohol profile and trace congeners present. NIR methods23, 37 have 

comparable analysis times to MIR spectrometry, but often the analysis is more 

complex requiring the use of multivariate calibration procedures for ethanol 

determination. The MIR methods described here offer simple analysis procedures 

and also provide more spectral information than comparable NIR methods. Density 

measurements8, 21 are used to determine the alcohol strength of whisky and can 

produce accurate results, although, the ethanol must be removed from the sample 

before a measurement can be taken. Even though this technique can be applied on-

line in distilleries it provides limited information about the sample, e.g. no 

information on colorant used is provided for authenticity testing. 
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The methodology has the potential to be developed into a portable instrument similar 

to the device for UV-visible spectrometry described by Mackenzie and Aylott.19 

Although the MIR methods require a longer total analysis time, they have the 

advantage of providing more comprehensive spectral information than UV-visible 

spectrometry. Development of the MIR methodology into a portable instrument 

would permit screening of suspect samples in the field, with any samples identified 

as potentially counterfeit being brought back to the laboratory for more extensive 

investigation based on, e.g., congener analysis. 

 

An initial investigation of a number of cask samples with different maturation 

variables was completed to assess the feasibility of ATR MIR spectrometry to 

answer a number of questions:  

 

Q1 Can ATR MIR spectrometry determine differences in whisky manufacture 

variables? 

It is possible to determine differences in the ATR MIR spectra of cask whisky 

samples that have originated from different cask types, e.g. bourbon or sherry. There 

are smaller variations in the PCA for bourbon-cask whisky samples than for sherry-

cask whisky samples; therefore, being able to differentiate between bourbon-cask 

whisky samples is difficult. Greater variations were seen for the sherry-cask whisky 

samples where differences in cask history, the use of malt or grain, maturation age 

and use of peat occurred. However, it has been determined that colour of the whisky 

samples and hence the scores in PCA are influenced by multiple factors. The work 

completed in this research suggests that the manufacturing variables, cask type, cask 

history and maturation age all affect the scores. DoE analysis supported the findings 

from the spectral analysis and PCA, where minimal variations could be determined 

for bourbon-cask samples. Spectral analysis and PCA were successfully used to 

determine variations in sherry-cask samples; however, DoE analysis could be used to 

aid in determination of the interaction between manufacturing variables. It is unlikely 

that discrimination of bourbon-cask samples would be possible using this method. 
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Q2 Is ATR MIR spectrometry able to differentiate between authentic maturation 

spectra and simulated maturation spectra? 

This research has demonstrated the ability of ATR MIR spectrometry to differentiate 

between the authentic cask whisky samples and the simulated maturation samples. It 

was possible to build a robust PCA model on the authentic cask whisky samples and 

use this model to analyse and establish the differences between the simulated 

maturation samples and the authentic maturation samples. These results indicate the 

potential for future determination of counterfeit samples based on differences in the 

maturation of the suspect samples. 

 

Q3 Analysing some of the known counterfeits from the blend authenticity study, 

do their spectra relate to either of the authentic maturation or simulated maturation 

spectra? 

The spectra of the counterfeit samples analysed as part of this study do not appear to 

relate to either the authentic maturation of the cask whisky samples or the simulated 

maturation samples, indicating that the features of the counterfeit samples differ from 

the features in whisky that occur by natural maturation or the features in the 

simulated maturation samples. 

 

Q4 Is there a difference between the spectra of dried residues of natural 

maturation samples and caramel colorant A? 

ATR MIR spectrometry was successfully used to analyse the spectra of dried 

residues of cask samples and caramel colorant A. The results indicate that there is a 

difference in the spectra between caramel colorant A and cask whisky samples of 

natural maturation which can be observed in the absorbance spectra or by PCA. 

 

Q5 If colorant was added to a cask sample, does it mask all of the spectral 

information of the spectra of the dried residue of natural maturation? 

The addition of colorant caramel A to a cask sample does mask the spectral 

information in regions of the spectra; however, one region retained the spectral 

features from the original cask whisky sample. These results indicate that not all the 
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features of the spectra of the dried residue of natural maturation will be masked after 

the addition of caramel colorant A. 

 

This investigation has shown that it may be possible to distinguish between sherry-

cask whisky samples based on their manufacturing variables; however, a more 

advanced study would be required to fully understand the effect that the different 

variables will have on the PC scores. The methodology described could be used to 

distinguish between authentic whiskies containing no caramel and counterfeit 

samples by comparison of spectra of dried residues of suspect samples with a 

spectral library of authentic products. 

 

This research has demonstrated the great potential for ATR MIR spectrometry to be 

used for the identification of counterfeit Scotch whiskies based on the determination 

of ethanol concentration and the spectra of the dried residues of the samples. The 

latter measurement has also been shown to have scope as a procedure to gain a 

greater understanding of the impact of manufacturing variables on the generation of 

the colour of whisky. 
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7 MIR and NIR spectrometry for fermentation analysis 

7.1 Introduction 

7.1.1 Monitoring fermentation processes 

Fermentation processes are generally recognized as the use of a submerged liquid 

culture of selected strains of microorganisms, plant or animal cells, for the 

manufacture of product(s) or to gain a better insight into the physiology of the 

different cell types. In the modern fermentation industry, aerobic cultivations 

dominate and are used to produce a range of high value products. With the continued 

drive for fermentation processes to produce high quality, high value products, it is 

important that the processes can be better understood and controlled.1 The 

implementation of monitoring and control procedures can result in increased 

efficiency, productivity and reproducibility, reduced costs and improved quality 

control. The active compound in a fermentation process is very sensitive to changes 

in its environmental conditions; therefore, a small uncontrolled change can cause a 

major variation in the process efficiency and productivity and in some instances can 

result in a failed product.2 To be able to achieve adequate control it is necessary to 

make accurate and reliable measurements of the process at timely intervals. 

Commonly, off-line measurements are performed on samples that are taken from the 

bulk medium in the process and then analysed at the end of the process. Although 

this approach does allow for accurate measurements, the main drawback is the delay 

between when the sample is taken and when the results from the measurement are 

determined.2 It is clear that this form of analysis cannot be used for process 

monitoring and control as in the majority of cases the process would have been 

completed before the results are known. Another limitation to off-line measurements 

surrounds the sampling; fermentation processes are highly dependent on sterility, 

therefore, it is critical when taking the sample for the off-line measurement there is 

sufficient prevention of contamination.3 However, even with the limitations 

discussed, off-line measurements are still prevalent in the fermentation industry. In 

contrast, in-line techniques can be used to measure directly the process in the reactor 

providing real-time information; the requirement of this type of measurement is the 

ability to sterilize in advance with the reactor. This approach allows for early 
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detection of possible problems and allows immediate action to resolve the problem. 

In-line monitoring has the advantage of allowing process monitoring and control in 

real time. In practice the most common in-line control measurements that are used in 

fermentation processes are pH and dissolved oxygen, due to the successful 

implementation of insertion probes which can be sterilised with the reactor.1-3 

 

Roychoudhury et al.4 discussed the characteristics required for the “ideal” 

monitoring technology for bioprocesses including fermentation processes; some of 

these characteristics include: rapid, non-destructive, multi-analyte monitoring, 

operable in (near) real time, capable of automation and robust. There are few 

technologies which can meet all of these characteristics, however, vibrational 

spectroscopy is observed as approaching the ideal. Both NIR and MIR spectrometry 

can offer multi-analyte information in a few minutes or less; therefore, a vast amount 

of research into the use of NIR and MIR spectrometry for analysis of fermentation 

samples has taken place. Research in NIR and MIR spectrometry applied to 

fermentation processes has evolved from analyzing and monitoring less challenging 

systems to more complex ones. Likewise, there has also been the tendency to 

implement off/at-line or ex situ systems first and then move towards the more 

challenging in situ measurements.5 Some examples of each approach are described 

below. 

 

NIR spectrometry examples 

Arnold et al.,6 Scarff et al.7 and Cervera et al.5 reviewed the use of NIR spectrometry 

for monitoring and control of fermentation processes, highlighting some of the 

challenges. One main challenge with NIR spectrometry surrounds the chemical 

complexity of the fermentation process, as it is difficult to relate the spectral 

variations observed to changes in concentration levels of the individual constituents. 

In addition, challenges arise for in situ NIR spectrometry, where the probe is subject 

to the conditions present in the bioreactor, including vigorous agitation and aeration. 

Also, these probes must be able to withstand the sterilization procedures and cope 

with large variations in the biomass concentration and hence, scattering conditions. 

Off-line NIR measurements of shake flasks were used by Macaloney et al.8 to 
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indicate the feasibility of NIR spectrometry for the quantitative determination of 

biomass and glycerol in E. coli fermentation processes. Even with the relative 

difficulty of relating spectral variations to specific constituents, this study showed the 

possibility for the quantification of individual constituents through the use of 

multivariate calibration. Yano et al.9 described the use of off-line NIR spectrometry 

to quantitatively predict the concentrations of individual constituents in rice vinegar 

fermentation. Off-line studies implementing NIR spectrometry were completed by 

Arnold et al.10 and Crowley et al.11 in more complex fermentation processes, where 

large changes in the matrix or viscosity were observed. Examples of at-line NIR 

spectrometry for analysis of fermentation processes are also apparent.12, 13 Although 

at-line measurements can provide quicker results and are, therefore, more suited to 

process monitoring and control than off-line measurements, they still have the 

limitation of requiring sampling from the reactor without the disruption to the 

process or causing contamination. Gonzàlez-Vara et al.14 implemented the use of 

NIR spectrometry with full automation for the process optimization of L-(+)-lactic 

acid. In this study, an external circulation loop was successfully used allowing 

continuous feed back into the reactor after microfiltration and lactate extraction. The 

use of external circulation loops require careful set-up including the use of in situ 

sterilization to prevent contamination; even with this in place the risk of 

compromising the sterility of the system is quite high. Many examples of in-line 

analysis using in situ NIR transmission15, 16 or transflectance17-20 probes or non-

invasive NIR reflectance21-23 probes have been reported. Arnold et al.16 compared the 

use of at-line and in situ NIR measurements to monitor the biomass of an industrial 

fed-batch E. coli process. The NIR transmission probes were able to be steam 

sterilized and successfully used to monitor the complex aerated fed-batch process. 

However, the at-line and in-line modes were used to different success and, therefore, 

the suitability of each mode must be considered when choosing between them. 

Differences were observed in the available wavelength regions between the two 

modes, the in-line NIR transmission probe was more suited to the region 400 – 

2000 nm, due to the adverse signal to noise in the region 2000 – 2500 nm. The probe 

also suffers from gas phase effects and vibrational effects caused by the agitation and 

aeration, respectively; in addition, the probe can be affected by fouling. However, 
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even with these possible effects, in situ models for the monitoring of biomass were 

still achievable. The issues of in situ NIR probes are less evident for mammalian cell 

culture processes, as these involve lower agitation rates, gas phases create less of an 

impact, and they are generally clean homogenous non-viscous broths. Therefore, the 

problems discussed above are less of a hindrance for in situ analysis of mammalian 

cell culture processes. Roychoudhury et al.20 used in situ NIR transflectance probes 

for single probe analysis and multiple probes in multiple reactors to monitor an 

industrial mammalian cell culture process. The probes used in the study were custom 

designed for their application and, therefore, were able to undergo sterilization with 

the reactor. Calibration models were developed to predict the concentration of 

glucose and lactate using the single probe and multiple probes; both sets of models 

produced low standard error of predictions. The use of reflectance probes attached to 

the side of the reactor vessel can monitor the process non-invasively; as the probe is 

placed outside of the process environment it can be put in place after sterilization. 

Nordon et al.23 discussed the use of non-invasive NIR spectrometry to monitor the 

seed stage of a fermentation process. Although, changes observed for the biomass 

signal could be attributed to growth and fragmentation, which indicated changes in 

the metabolic activity, variations in the spectral response were observed when 

changes in stir rate, biomass concentration and morphology occurred. These results 

indicated that quantitative models for the prediction of biomass concentration will be 

less reliable unless information on stir rate and variations in light scattering, etc. can 

be incorporated into the model. 

 

MIR spectrometry examples 

As with NIR spectrometry, there is great interest in the use of MIR spectrometry for 

monitoring and control of fermentation processes. Roychoudhury et al.4 reviewed the 

literature and discussed the advantages and limitations of MIR spectrometry for real-

time measurements of bioprocess monitoring. One of the major challenges with 

implementing MIR spectrometry for monitoring and control of fermentation 

processes is that it is often used as the secondary technique, therefore, the accuracy 

can only be as good as that of the selected reference method. Yet, advantages in 

terms of ease of use, fast measurement times, possibility of multi-analyte analysis 
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and non-destructive measurements have seen this technique implemented for 

fermentation analysis. Similarly to in situ NIR spectrometry, in situ MIR probes are 

required to undergo sterilization with the reactor. Many examples of off-line24-31, at-

line32, 33, on-line34-36 and in situ37-43 MIR spectrometry exist for the analysis of 

various fermentation processes. Crowley et al.24 discussed the use of off-line MIR 

analysis with an ATR accessory to monitor a Pichia pastoris fed-batch process after 

the process was complete. PLS models were built with reference assays for two 

substrates, glycerol and methanol, as well as the product; these models were 

validated using spectral data from further fermentations. Predictions with low root 

mean square errors were possible and minimal to no pre-processing was required 

depending if it was the substrates or product models. However, all samples used in 

this study were filtered, hence the reason for completing off-line analysis. Fayolle et 

al.25 used an off-line transmission flow-through cell for the analysis of samples from 

a fermentation process producing lactic acid; here the samples did not require 

filtration before analysis. The models produced were successfully used to determine 

the concentrations of substrate, major metabolites and lactic acid. Roychoudhury et 

al.32, 33 described the use of at-line MIR spectrometry for monitoring antibiotic 

fermentation processes; at-line had clear advantages over off-line MIR measurements 

as information about the process could be determined during the process. In addition, 

the use of at-line for this process was advantageous as it allowed the samples to be 

filtered before analysis; a process that cannot be completed in situ. Examples of on-

line MIR analysis to monitor and control fermentation processes have been reported 

by Schenk et al.34, 35 using flow-through cells connected to the reactor and a 

computer system which allowed automated control of the feeding rate. With the 

advances in ATR probe design and optical fibres for use in MIR spectrometry, a vast 

amount of research using in situ ATR MIR spectrometry has been reported for many 

applications. However, one of the main challenges of in situ probes for fermentation 

analysis has been the ability to sterilise the probe along with the reactor; with the 

development of ATR probes such as those described by Doak and Phillips,44 where 

the tip and shaft could be steam sterilized in situ, many more instances where in situ 

ATR MIR spectrometry has been used for the monitoring and control of fermentation 

process have been observed. Doak and Phillips44 indicated in their research that their 
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in situ MIR probe set-up was unaffected by agitation or aeration rates, which has a 

clear advantage over the in situ NIR probes described by Arnold et al.16 Kornmann et 

al.37-39 evaluated the use of in situ ATR probes for fermentation processes; in situ 

ATR MIR spectrometry was successfully implemented to monitor and control a 

highly viscous Gluconacetobacter xylinus fed-batch culture process and offered 

many advantages over on-line methods, such as rapid analysis, ease of operation and 

no requirement for sample removal.38 

7.1.2 Use of combined data 

As previously mentioned, there are a great number of reports into the use of 

spectroscopy for in situ monitoring of processes with many perceived advantages. 

This increased use of in-line analysis has led to rapidly increasing quantities of data. 

To capture the different sources of variation, multiple calibrations must be 

performed, which mean a significant amount of work to find the best calibration 

from each individual technique for the specific process. Occasionally NIR and MIR 

spectrometry can be used to provide different information about a process: as Karoui 

et al.45 reported, MIR and NIR methods were used to determine different parameters 

in emmental cheese; NIR spectrometry was useful for the determination of the fat 

content and the total nitrogen content, and MIR spectrometry was useful for the 

quantitative determination of sodium chloride. In this instance, combining the 

spectral data did not provide any improvement over using the two techniques 

separately. However, there are instances where the combination of the spectral data 

from separate techniques may provide calibration models with better overall 

performance or allow the determination of certain properties in the system. 

Therefore, research has progressed into the use of data combination for these 

purposes. Dearing et al.46 described a simple process of scaling and fusing the 

spectra from different techniques into one contiguous system. The data from Raman 

and MIR spectrometry as well as nuclear magnetic resonance spectrometry were 

fused together to produce a resultant calibration model that provided a reduction in 

the RMSEP in comparison to models built using the separate spectra. A similar 

procedure was completed by Iñón et al.47 for the combination of MIR and NIR 

spectral data to produce a calibration model that improved the predictive 
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performance compared with that of separate models; however, it was commented 

that the improvements were not significant. Cuadrado et al.48 investigated the use of 

combined MIR and NIR spectral data for the determination of wine parameters. 

Reviewing the results of each technique separately, the NIR region produced 

statistically better models than those from the MIR region. However, the 

combination of the two data sets improved the determination for glycerol and total 

sulfur dioxide. The improvement for the determination of these parameters proved 

significant in this research, as it provided a quantitative method rather than just a 

screening method that was available when the spectral regions were used separately. 

Cozzolino et al.49 successfully used the concatenation of MIR and NIR spectral data 

with PLS discriminant analysis models to correctly identify the geographical origin 

of 93% of Australian wines in comparison to 73% and 86% by NIR or MIR analysis, 

respectively. Another example where the use of combined NIR and MIR spectral 

data has been beneficial was in the analysis of temperature dependent protein 

structural transitions. Navea et al.50 incorporated combined MIR and NIR spectral 

data with multivariate curve resolution to aid the understanding of the temperature 

dependent evolution of β-lactoglobulin. Only the combined analysis of the NIR and 

MIR data allowed the detection and modeling of the three protein conformations 

involved in the process. These three proteins otherwise could not have been resolved 

if MIR or NIR spectrometry were used separately due to the similarity in the pure 

spectral shapes. With this success, the intermediate conformation, which cannot be 

isolated experimentally, was able to be fully characterised from a mechanistic and 

structural point of view. 

7.1.3 Basis of this study 

The above review has shown the extensive use of NIR and MIR spectrometry for 

monitoring and control of fermentation processes. In addition, the benefits of the 

combination of NIR and MIR spectral data have been shown in different 

applications. The use of a combined probe which incorporates NIR and MIR 

capability could provide potential benefits. Most simply, a combined probe would 

allow the simultaneous analysis of both NIR and MIR spectra through a single point 

in the process. This would save space in terms of the number of probes needed to be 
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inserted into the process as well as allowing NIR and MIR spectral measurements to 

taken from the same point in the process. This would allow some constituents to be 

analysed by one technique and others by the second technique. Other benefits from 

the use of a combined probe would most likely come from the combination of the 

data itself, such as the examples discussed above. 

 

In this research, a feasibility study has been completed to investigate the use of NIR 

and MIR spectrometry for the prediction of three properties of a Pichia pastoris 

fermentation process. The NIR and MIR measurements of the batch phase and 

continuous steady state phase of the fermentation were completed off-line after the 

reaction was complete. Separate PLS calibration models built using the NIR and 

MIR spectral data from the batch phase were used to determine the predictive ability 

of each spectral technique for the analysis of glycerol, ammonium ions and optical 

density (OD). Samples from the continuous steady state phase were used to spike 

known concentrations of glycerol and ammonium sulfate to aid with the analysis. 

The results were compared to determine any possible advantages of producing a 

combined NIR-MIR probe for in situ analysis of fermentation processes. 
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7.2 Experimental 

7.2.1 Samples 

Fermentation broth samples were provided by Mariana Fazenda, a post-doctoral 

research assistant in the Strathclyde Institute of Pharmaceutical and Biomedical 

Sciences, who carried out the fermentation and collected the samples. The 

fermentation broth samples were removed from the fermenter and a small quantity of 

each sample was separated out into a container and frozen for analysis at the end of 

the process. To determine the concentration in the broth samples, reference assays 

were completed by Mariana and the data passed on for use in this investigation. The 

glycerol and ammonium ion concentrations were obtained using enzymatic reference 

assay kits and the optical density was measured using a spectrophotometer at 

600 nm. Samples were removed from the reaction vessel and diluted before analysis. 

The absorbance determined for the diluted samples was then multiplied by the 

dilution factor to determine the optical density value for the original sample. The 

results from the reference measurements for the fermentation samples of the batch 

phase are given in Table 7.1 (samples 1 – 7). Twelve samples were selected from the 

continuous steady state phase, where the concentrations remained fairly constant, and 

used to spike in known concentrations of glycerol and ammonium sulfate, for use in 

the PLS model building process. The concentration of the added analytes were 

calculated and added to the reference measurement concentration; the total 

concentrations for ammonium ions and glycerol are also given in Table 7.1 (samples 

8 – 19). 
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Table 7.1: Reference and calculated values of optical density, glycerol and ammonium ion 

concentrations. 

Sample 
number 

Description Optical 
density (OD) 

Glycerol 
(g / L) 

Ammonium 
ion (g / L) 

1 Fermentation sample 0.1 50.2 4.4 

2 Fermentation sample 1.2 50.8 4.7 

3 Fermentation sample 14.7 38.4 4.6 

4 Fermentation sample 15.8 27.7 4.7 

5 Fermentation sample 16.7 4.4 5.1 

6 Fermentation sample 17.8 3.8 5.4 

7 Fermentation sample 18.3 0.0 5.8 

8 Spiked sample n / a 26.0 6.0 

9 Spiked sample n / a 20.4 6.7 

10 Spiked sample n / a 51.2 7.8 

11 Spiked sample n / a 38.7 9.2 

12 Spiked sample n / a 38.0 7.8 

13 Spiked sample n / a 3.2 5.7 

14 Spiked sample n / a 26.3 8.6 

15 Spiked sample n / a 52.7 4.6 

16 Spiked sample n / a 14.3 5.6 

17 Spiked sample n / a 22.4 7.3 

18 Spiked sample n / a 13.6 4.4 

19 Spiked sample n / a 1.6 6.7 

n / a = not applicable 

7.2.2 NIR spectrometry 

NIR spectra were acquired with a resolution of 2 nm in the 1100 – 2500 nm range 

using a Model 6500 NIR spectrometer (Foss-NIR Systems, Silver Spring, MD, USA) 

in transmission mode with a 0.5 mm pathlength cuvette using the sample transport 

module. 32 co-added scans of the samples were analysed with an air background. 

Samples were equilibrated to room temperature and scanned in triplicate; the spectra 

were exported as Excel files and imported into Matlab, where the spectra were 

averaged (n = 3) before data analysis. 
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7.2.3 MIR spectrometry 

MIR spectra were acquired with a resolution of 16 cm-1 in the 400–4000 cm-1 region 

using an ABB MB3000 FTIR spectrometer (Clairet Scientific, Northampton, UK) 

coupled with a 1 m polycrystalline silver halide fibre to a 30 cm long, 12 mm o.d. 

hastelloy bodied ATR probe with a diamond cone (Fibre Photonics Ltd, Livingston, 

UK). 51 co-added scans of the samples were analysed with an air or water 

background. Samples were equilibrated to room temperature before analysis; the 

probe was immersed into the sample and six repeat measurements were acquired. 

The probe was removed, cleaned and reinserted for analysis using the same 

procedure to complete two further measurements. Spectra were acquired using 

Horizon MB™ FTIR software version 3.0.13.1 (ABB, Canada); the spectra were 

exported as text files and then imported into Matlab data analysis software, where the 

spectra were averaged (n = 18) before data analysis. 

7.2.4 Data analysis 

All spectral data were imported into Matlab version 7.11.0.584 (R2010b) 

(Mathworks Inc., Natick, MA, USA) and PLS_Toolbox version 4.1 (Eigenvector 

Research Inc., WA, USA). MIR and NIR data were processed using a Savitsky-

Golay first or second derivative filter, which employed a width of 15 data points and 

a second order polynomial. Spectra were plotted and analysed to identify regions in 

the data that would provide information about the samples and remove the regions 

that only contribute noise to the measurements. 

 

The optical density and concentrations of glycerol and ammonium ions determined 

from the reference assays were used along with the average spectral data from the 

fermentation samples for each of the techniques to produce multivariate PLS 

calibration models. The PLS calibration models were constructed using different 

spectral regions discussed in section 7.3. Data were mean centred prior to analysis 

and the number of latent variables were determined for each model that produced the 

minimum value of the root mean square error of cross validation (RMSECV) 

obtained using leave-one-out cross validation; the number of latent variables selected 

for each model are also detailed in section 7.3. 
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7.3 Results 

The seven samples collected from the batch phase of the fermentation show an 

increase in the optical density and a decrease in the glycerol concentration, see 

Figure 7.1. The ammonium ion concentration was kept constant and as such the 

concentration differences are much smaller between the samples. During the 

continuous steady state phase of the fermentation, concentrations of glycerol and 

ammonium ion were kept around the same level to allow the fermentation to 

proceed. 

 

Figure 7.1: Profile of supplied reference assay results for the fermentation reaction. 

PLS models were built to predict the optical density, glycerol and ammonium ions 

present in the batch phase of the fermentation reaction using the NIR and MIR 

spectral data (discussed further in sections 7.3.1, 7.3.2 and 7.3.3). As there were only 

seven samples and one reaction completed for this study, a leave one out approach 

was selected as the most appropriate method to obtain the predictions for the 

samples, whereby a model was built with all but one sample and used to predict the 

concentration of the sample left out. Therefore, the sample being predicted was not 

contained within the model building process, but all other samples were, with the 

exception that the samples with the lowest and highest concentrations were always 
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contained within the model and, therefore, these samples were not predicted. 

Reviewing the reference results of OD and glycerol in Table 7.1 for samples 1 – 7, 

there is a large change in the values between samples 2 and 3 for OD and 4 and 5 for 

glycerol. To generate samples with intermediate concentrations, samples were spiked 

with known amounts of the analyte to provide extra samples for model building that 

extend over the full range of concentrations. This was not possible for optical density 

and, therefore, only the seven fermentation broth samples were used for the model 

building process. As the concentrations of the samples from the continuous steady 

state phase were fairly similar, this allowed a selection of twelve samples to be used 

to spike with known concentrations of glycerol to aid PLS model building and 

prediction. For the glycerol predictions, the twelve spiked samples and seven batch 

samples were used in the model building process. 

 

The concentrations of ammonium ion for the batch fermentation samples covered a 

small concentration range; this can also provide difficulties when building calibration 

models for prediction. To overcome this potential issue, the same samples selected 

for the spiking of glycerol, were also spiked with known concentrations of 

ammonium sulfate; this increased the total number of samples used for building the 

model to include the batch and spiked samples and, therefore, also widened the 

concentration range to improve the predictive ability of the model. Absorbance, first 

derivative and second derivative spectral data were used in the modelling for each 

analyte and compared to determine the best results. 

7.3.1 Optical density prediction 

The overlaid NIR absorbance spectra for samples 1 – 7 are given in Figure 7.2. An 

increase in absorbance can be observed from sample 1 through to 7, with the largest 

observed increase between samples 2 and 3, consistent with the increase in optical 

density. 
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Figure 7.2: Overlaid NIR absorbance spectra in the range 1100 – 2500 nm for samples 1 – 7 

taken from fermentation reaction. 

As the change in absorbance was observed across the entire spectral region, PLS 

models were built to predict optical density using the largest spectral region possible. 

When building the PLS model, ideally the spectral areas where absorbance values are 

below 1.0 should be used; therefore, regions of the spectra were selected on this 

principle and used to build a PLS model for the prediction of optical density. The 

overlaid MIR absorbance spectra for samples 1 – 7 are given in Figure 7.3 and only 

small changes can be observed between the spectra. To build calibration models for 

the prediction of optical density, the same principle that was used for the NIR data 

was adopted for the MIR data. So, the data for the whole spectral range under an 

absorbance of 1.0 was included in the model, namely, 617 – 1836 cm-1 as shown in 

Figure 7.3.  
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Figure 7.3: Overlaid MIR absorbance spectra in the range 617 – 1836 cm-1 for samples 1 – 7. 

Absorbance, first derivative and second derivative data were used to build models 

and predict the optical density of the batch samples and the results from the NIR and 

MIR analysis are given in Table 7.2. Using the leave one out approach, the samples 

with the lowest (sample 1) and highest (sample 7) values remained in the model and, 

therefore, were not predicted, so for optical density only samples 2 – 6 were 

analysed. 
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The results for the prediction of optical density were good when NIR data was used, 

with RMSEP values of 0.2 or less and R2 values of 0.99 or greater. The predictions 

from the models built with the 2nd derivative data produced the best results; however, 

the differences between the results for each model are minimal. An example of the 

measured vs. predicted plot using 2nd derivative data is given in Figure 7.4 (other 

plots are not shown but provide similar results). 

 

Figure 7.4: Measured vs. predicted optical density determined using PLS model with 2nd 

derivative NIR data. 

The results for the prediction of optical density when MIR data was used in the 

model building were not as good as those obtained with the NIR data. Considering 

the R2 values for the MIR results in Table 7.2, absorbance and 1st derivative data 

provide better results for the prediction of optical density than using 2nd derivative 

data. The predictions for sample 2 appear to be poor for all three models for the MIR 

results. There are large differences in optical density between samples 2 and 3 and it 

is possible that the variation in the data is not well described in the model due to the 

small number of samples. If more samples were analysed across the range of the 

optical density, better results may be observed. However, unfortunately it was not 

possible to collect any further samples and test this theory for this data set. 
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7.3.2 Glycerol concentration prediction 

For the predictions of glycerol concentration from NIR data, specific regions of the 

spectra were selected where changes in glycerol may be found and they are listed in 

Table 7.3. 

Table 7.3: Assignment of regions where bands associated with glycerol may appear in NIR. 

Region number Functional group Approximate 

wavelength region 

(nm) 

Comments 

1 CH 1175 – 1225 2nd overtone band 

2 CH 1425 – 1475 1st overtone of 

combination band 

3 CH 1680 – 1775 1st overtone band 

4 CH 2275 – 2445 Combination band 

5 CH2 1145 – 1220 2nd overtone band 

6 CH2 1390 – 1440 1st overtone of 

combination band 

7 CH2 1675 – 1750 1st overtone band 

8 CH2 2250 – 2415 Combination band 

9 OH 1410 – 1475 1st overtone band 

10 OH 2060 – 2090 Combination band 

 

Region numbers 2, 6, 9 and 10 will all be masked by strong water bands, therefore, 

the ranges selected to build models for the prediction of glycerol included the region 

numbers 1, 3-5 and 7-8. Some changes in the regions selected were observed as 

indicated in Figure 7.5 and Figure 7.6 for first and second derivative data, 

respectively; noticeable changes were also noted in the range 2198 – 2398 nm for the 

second derivative data (not shown). 
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Figure 7.5: Overlaid NIR 1st derivative of absorbance spectra in the range 2198 – 2398 nm for 

samples 1 – 7 taken from fermentation reaction, used for prediction of glycerol concentration. 

 

Figure 7.6: Overlaid NIR 2nd derivative of absorbance spectra in the range 1640 – 1760 nm for 

samples 1 – 7 taken from fermentation reaction, used for prediction of glycerol concentration. 
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To determine where glycerol bands occur in the MIR region, the spectra of pure 

glycerol was acquired, see Figure 7.7. 

 

Figure 7.7: ATR MIR absorbance spectra of pure glycerol in the range 617 – 1836 cm-1. 

Overlaying a spectrum of pure glycerol and sample 1, see Figure 7.8, only small 

regions can be associated with glycerol in the broth samples. The main reason for 

this is that the intensity of the glycerol bands reduce significantly when dissolved in 

water, also many of the bands of glycerol are masked by the broad band of sulfate 

from the ammonium sulfate present in the samples. Only one free glycerol band in 

the range 1304 – 1512 cm-1, due to the CH deformations of the CH2, could be 

observed and was used to build the calibration model (see Figure 7.8). 
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Figure 7.8: Overlaid ATR MIR absorbance spectra in the range 617 – 1836 cm-1 of glycerol and 

fermentation broth sample 1. 

A similar scenario existed for the glycerol concentration as that for the optical 

density: there are a few samples at lower concentrations and then a large gap where 

higher concentrations are observed. To compensate for the lack of a range of 

concentrations and aid the development of the models for prediction, twelve 

continuous steady state samples spiked with known concentrations of glycerol were 

analysed by NIR and MIR spectrometry and used in the model building process. 

Using the leave one out approach, one sample was left out and the other eighteen 

samples (batch and spiked samples) included in the model building. The samples 

with the lowest and highest concentration for the glycerol models were respectively, 

sample 7 from the batch phase and sample 15, a sample with spiked glycerol 

concentration. These two samples always remained in the model and so this allowed 

the prediction of the rest of the samples. Absorbance, first derivative and second 

derivative data were used to build models and predict the glycerol concentration of 

the batch samples (samples 1 – 6) and the results from the NIR and MIR analysis are 

given in Table 7.4. Predictions for the remaining spiked samples (samples 8-14 and 

16-19) were also predicted during the analysis; the predicted results for these 

samples are not shown, however, for NIR analysis the RMSEP values were less than 
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3.5 g/L and the R2 values of the trendlines for the measured vs. predicted plots were 

0.95 or greater; for MIR analysis the RMSEP values were less than 4.8 g/L and the 

R2 values of the trendlines for the measured vs. predicted plots were 0.91 or greater. 
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Overall the results for the prediction of glycerol are reasonable. For NIR analysis, 2nd 

derivative data gave the best results, whereas, it was 1st derivative data that produced 

the best results for MIR analysis. When reviewing the predictions for each individual 

batch sample it is apparent that the prediction for sample 5 is very poor for both the 

NIR and MIR regions. The NIR and MIR spectra for this sample do not appear 

different to the other samples and so at this stage it is unclear why this prediction is 

poorer than the rest. 

 

If sample 5 is removed from the data set entirely and the leave one out approach 

completed again to build calibration models and predict the concentration of glycerol 

then the RMSEP values are reduced and the R2 values move closer to unity, see 

Table 7.5. This indicates that PLS models built on the selected spectral regions show 

promise for future predictions of glycerol concentrations in fermentation samples. 

The predictions from the models built with absorbance, 1st derivative and 2nd 

derivative data provided comparable results when NIR data were used, however, for 

the MIR spectra better results were obtained if 1st derivative data were used. 
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7.3.3 Ammonium ion concentration prediction 

For the predictions of the ammonium ion concentration, specific parts of the NIR 

spectra were selected based on regions that could be associated with the ammonium 

ions, as indicated in Table 7.6. 

Table 7.6: Assignment of regions where bands associated with the ammonium ions may appear 

in NIR. 

Region number Functional group Approximate 

wavelength region 

(nm) 

Comments 

1 NH 1480 – 1520 1st overtone band 

2 NH 2120 – 2210 Combination band 

 

When considering the spectra, it is likely that the 1st overtone N-H band will be 

masked by water, therefore, PLS models were built on region 2 only; where small 

changes could be observed (see Figure 7.9). 

 

Figure 7.9: Overlaid NIR 2nd derivative of absorbance spectra in the range 2100 – 2240 nm for 

samples 1 – 7 taken from fermentation reaction, used for prediction of ammonium ion 

concentration. 
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Unfortunately in the MIR region, the N-H bands for the ammonium ions were 

masked by the water peaks and as such the ammonium ion concentration could not 

be determined when an air background was used, as was employed for all other 

predictions. However, reviewing the spectra of a sample spiked with a known 

concentration of ammonium sulfate when a water background was used, the N-H 

bend could be observed, see Figure 7.10. 

 

Figure 7.10: ATR MIR absorbance spectra in the range 617 – 1836 cm-1 of spiked sample 8 when 

a water background was used. 

Looking at the spectra of the seven batch samples in this selected region, small 

changes can be observed; see Figure 7.11 for the changes in the second derivative 

data of the batch samples. 
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Figure 7.11: Overlaid MIR 2nd derivative of absorbance spectra in the range 1543 – 1798 cm-1 

for samples 1 – 7 taken from fermentation reaction, used for prediction of ammonium ion 

concentration. 

As the concentration of ammonium ions changed over a small range (between 4.4 

and 5.8 g/L) the twelve spiked samples used for the glycerol concentration 

predictions were also spiked with known amounts of ammonium sulfate to widen the 

concentration range (between 4.4 and 9.2 g/L). As before, a leave one out approach 

was used and the samples with the lowest and highest concentration of ammonium 

ions always remained in the model (spiked samples 18 and 11, respectively). The 

concentrations of ammonium ions in batch samples 1-7 and spiked samples 8-10, 12-

17 and 19 were predicted using absorbance, first derivative and second derivative 

NIR or MIR data and the results are given in Table 7.7 for the batch samples. 
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The results for the prediction of ammonium ions seem acceptable for the fed batch 

samples. For both the NIR and the MIR data, the RMSEP values were low for all 

models. Predictions from models built with 2nd derivative data produced better R2 

values for the trendline of the measured concentrations vs. the predicted 

concentrations of the batch samples. When the predicted concentrations of the batch 

and spiked samples were considered the RMSEP and R2 values for NIR analysis 

improved, see Table 7.8. However, for the MIR data no improvement was obtained, 

and little correlation between measured and predicted concentrations could be 

determined. 

Table 7.8: Comparison of RMSEP and R2 values for prediction of ammonium ion concentration 

for selected samples using NIR data. 

 Batch samples (1-7) Batch and spiked samples (1-10, 

12-17 and 19) 

 Absorbance 1st 

derivative 

data 

2nd 

derivative 

data 

Absorbance 1st 

derivative 

data 

2nd 

derivative 

data 

RMSEP 0.2 0.1 0.1 0.1 0.1 0.1 

R2 value 0.8751 0.9229 0.9399 0.9902 0.9943 0.9932 

 

These results suggest that the selected region of the NIR spectra may be suitable for 

the prediction of ammonium ion concentration. Further work is required with larger 

data sets to determine if the selected region of the MIR spectra can provide accurate 

predictions of ammonium ion concentrations. 

 

Overall, PLS calibration models were used to successfully predict the optical density 

and concentrations of glycerol and ammonium ions from NIR data and predict the 

concentration of glycerol using MIR data. 

  



   

275 

 

 

 

 

7.3.4 Combination of MIR and NIR data for the prediction of glycerol 

Examples of data fusion to improve the predictions of analytes have been discussed 

in section 7.1.2. The results obtained so far for this study have shown that calibration 

models built from MIR or NIR data can be used for the prediction of glycerol 

concentrations. However, it may be possible to observe some improvements of the 

predictions of glycerol concentrations if the MIR and NIR data are fused together. 

The predictions of glycerol concentrations using each technique separately suggested 

using first derivative MIR data provided better results, whereas, absorbance, first 

derivative and second derivative NIR data provided comparable results. Therefore, as 

an initial investigation into the use of fused data for the prediction of glycerol 

concentrations, the first derivative data of MIR and NIR regions were concatenated 

into one data matrix. As the scales were similar to one another, the data could be 

fused directly with no other pre-treatment. The concatenated data matrix was then 

used with the glycerol reference data for the batch and spiked samples using the 

leave one out approach to predict the concentrations of glycerol in the samples. The 

lowest (sample 7) and the highest (sample 15) concentrations always remained in the 

model, allowing the prediction of the glycerol concentrations in the batch and spiked 

samples (samples 1-4, 6, 8-14 and 16-19). For reasons discussed previously in 

section 7.3.2, sample 5 was left out of this process. The results from the combined 

data are given in Table 7.9 alongside the results for the predictions of glycerol when 

MIR and NIR data were used individually. 

  



   

276 

 

 

 

 

Table 7.9: Results for the prediction of glycerol for samples 1-4, 6, 8-14 and 16-19 using fused 

MIR (1304 – 1512 cm-1) and NIR (1178-1226, 1640-1760 and 2198-2398 nm) data. 

 MIR 1st 

derivative data 

NIR 1st derivative 

data 

Fused MIR and 

NIR 1st derivative 

data 

Sample 

number 

Measured 

concentration 

(g/L) 

Predicted 

concentration 

(g/L) [7]* 

Predicted 

concentration 

(g/L) [7]* 

Predicted 

concentration 

(g/L) [6]* 

1 50.2 50.8 51.1 51.4 

2 50.8 52.7 49.8 49.5 

3 38.4 37.4 38.0 38.5 

4 27.7 25.2 28.6 27.1 

5 4.4 - - - 

6 3.8 6.3 4.2 5.1 

7 0.0 - - - 

8 26.0 24.0 26.9 26.6 

9 20.4 25.4 19.7 20.1 

10 51.2 48.6 51.0 51.3 

11 38.7 38.2 37.6 37.4 

12 38.0 39.1 39.4 39.9 

13 3.2 4.0 4.0 3.4 

14 26.3 28.2 26.5 26.5 

15 52.7 - - - 

16 14.3 12.8 14.4 13.2 

17 22.4 19.0 21.0 21.3 

18 13.6 14.4 12.1 14.3 

19 1.6 1.8 2.5 1.9 

RMSEP 2.1 0.9 0.9 

R2 of trendline for 
measured vs. predicted 

plot 
0.9826 0.9975 0.997 

*[Number of principal components selected for model]  
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Reviewing the prediction of the glycerol concentrations given in Table 7.9 the 

overall RMSEP and R2 results for the fused data are comparable to those obtained 

with the NIR data individually; the MIR data gave poorer results. This suggests the 

possibility that the model may be weighted more by the NIR data and hence the 

reason for the similar results. However, when the predictions for each sample are 

studied, some of the predictions are improved when compared to the NIR results, 

suggesting that the fused data does influence the predictions. To ascertain if the PLS 

model is dominated by the NIR data, the regression coefficients were plotted against 

the variable number, see Figure 7.12. 

 

Figure 7.12: Regression coefficients for the PLS model built with the fused MIR and NIR data. 

Reviewing the regression coefficients for the PLS model using the fused data, the 

MIR and NIR regions are both clearly used in the model and will contribute to the 

overall predictions. The regression coefficients for the combined PLS model were 

compared with the regression coefficients of the individual MIR and NIR PLS 

models, see Figure 7.13 and Figure 7.14, respectively. 
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Figure 7.13: Regression coefficients for the PLS model built with only the MIR data; subplot 

displays overlaid regression coefficient and 1st derivative of absorbance data for sample 1. 

 

Figure 7.14: Regression coefficients for the PLS model built with only the NIR data. 
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The regression coefficients for the PLS model built with only NIR data are similar to 

the regression coefficients for the NIR region for the PLS model built with the fused 

data, suggesting that both calibration models are similar for the NIR region. The 

regression coefficients for the PLS model built with only MIR data, however, are 

different from the regression coefficients for the MIR region of the PLS model built 

with the fused data. If the regression coefficients from the PLS models for the MIR 

regions are compared with a spectrum of a fermentation sample (Figure 7.15), then 

the regression coefficients for the PLS model built with only MIR data (Figure 7.13) 

appear to describe noise, whereas, the regression coefficients for the PLS model from 

the fused data (subplot of Figure 7.15) are more similar to a spectrum of a 

fermentation sample, demonstrating an anti-correlated relationship, although it is 

slightly shifted. 

 

 

Figure 7.15: First derivative of absorbance spectrum of a batch fermentation sample (sample 1), 

subplot displays overlaid regression coefficient of MIR region of fused data from Figure 7.12 

and 1st derivative of absorbance data for sample 1. 
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These results suggest that by fusing the data together and building a PLS model on 

the combined MIR and NIR data, the NIR region has helped to improve the MIR 

calibration in the fused data model. The MIR data, which provided slightly poorer 

results, did not degrade the NIR calibration. Overall, the results from the fused data 

were comparable with the NIR results and improved on the MIR results indicating 

the potential for data fusion to aid in model building. Future investigation of the 

benefits of fusing spectral data may best concentrate on examples where MIR and 

NIR data provide alternative complementary information about a process. 
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7.4 Conclusions 

Both NIR and MIR spectrometry have been used to varying degrees of success to 

analyse and predict the optical density and the concentrations of glycerol and 

ammonium ions in batch fermentation samples. As there was only a small number of 

samples from the batch phase, samples from the continuous steady state phase were 

spiked with known amounts of glycerol and ammonium sulfate to aid the predictions 

of the concentrations of these substrates. 

 

For the predictions of optical density, the results were better when NIR data were 

used in comparison to MIR data, however, it may be possible to improve the MIR 

predictions if more samples were available. Based on the results at this stage, 

indications are that NIR spectrometry may be more suitable for the prediction of 

optical density. There were only small differences between the predictions when 

absorbance, first derivative or second derivative data were used in the model, 

indicating the use of absorbance data in model building may provide acceptable 

results. 

 

For the glycerol concentration predictions, sample 5 was poorly predicted by either 

NIR or MIR spectrometry. When sample 5 was removed from the calibration, the 

overall predictions were improved. For the MIR region, 1st derivative data provided 

the best results, whereas, for the NIR region, 2nd derivative data produced the best 

results; however, the differences between each model were minimal. This can be 

explained by the baseline offset of the spectra; there was a greater offset in the NIR 

data than the MIR data. Therefore, taking the 1st derivative of the MIR spectral data 

removed the majority of any baseline offset; however, NIR data required the 2nd 

derivative to further remove the effect of sloping baseline offsets. The predicted 

glycerol concentrations are comparable for MIR and NIR data; indicating the 

possibility of either or both techniques being used for the determination of glycerol. 

 

The prediction of ammonium ion concentration was more difficult than for glycerol 

and optical density, as the water in the fermentation sample masks most of the bands 

associated with the ammonium ions. For NIR spectra, a small region was determined 
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where the N-H combination band may be found, however, only small changes were 

observed, even when reviewing the spectra of the samples spiked with a higher 

ammonium ion concentration. In spite of this, it was still possible to obtain 

reasonable predictions for the concentration of ammonium ions using NIR spectra, 

with the best results produced when second derivative data were used. In contrast, in 

the MIR region the N-H band is masked substantially by water, therefore, predictions 

cannot be obtained when using an air background. To overcome this, a water 

background was used, revealing the N-H band. As with NIR spectrometry, only 

small changes could be observed between the spectra and the results produced using 

MIR data were very poor if all samples (batch and spiked) were assessed; if only the 

batch samples are considered then the predictions appear better. Comparing the 

results obtained from the NIR and MIR regions, the NIR data may provide better 

models for the predictions of ammonium ion concentration. 

 

Based on the results from this study, there may be some potential for the combination 

of the two techniques in one probe for the prediction of the concentration of the three 

properties discussed. Simplistically, the combination of transmission NIR and ATR 

MIR spectrometry into one probe would allow the spectra in each region to be 

acquired simultaneously at the same point in the reactor. The NIR absorbance and 

derivative data could be used to monitor the optical density and ammonium ion 

concentration, respectively, of the fermentation broth as the reaction progressed and 

derivative data of either NIR or MIR could be used for the prediction of glycerol 

concentrations. As NIR spectrometry can be used solely for the determination of the 

three properties it is plausible to suggest that using only an in situ NIR probe would 

provide satisfactory information. However, these results are based purely on off-line 

samples and the effects of agitation and aeration on the ability of NIR models to 

provide reasonable results have been discussed in the literature. ATR MIR 

spectrometry is not affected by agitation and aeration to the same extent as 

transmission NIR spectrometry; therefore, the combination of the two techniques 

could overcome any potential issues that may arise from in situ analysis. To be able 

to predict the concentrations of ammonium ions by NIR spectrometry in situ, the 

probe must contain silica fibres that allow analysis in the range between 2000 –
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 2500 nm. In addition, any probe used for in situ analysis of fermentation samples is 

required to be sterilised with the reactor, therefore, the combined probe design would 

have to incorporate this requirement. Polycrystalline silver halide fibres are produced 

through an extrusion process at around 180°C and, therefore, once the fibres are 

extruded they cannot be exposed to these temperatures or the fibres will degrade. 

Consequently, the fibres must be protected from prolonged exposure to high 

temperatures to permit sterilisation. If a combined probe were developed for in situ 

fermentation analysis benefits may be realised for some substrates through fusion of 

the two spectral data sets, especially if the contributions to the quantification by each 

technique were complementary. 
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8 Conclusions and suggestions for future work 

8.1 Conclusions 

The aims set out at the start of this investigation, were to: 

• Research the design, development and application of MIR probes for in situ 

process analysis. 

• Study the use of calibration models for analyte prediction and specifically the 

use of calibration transfer algorithms for MIR analysis with in situ probes. 

• Apply MIR spectrometry for the analysis of Scotch whisky including the 

determination of authenticity. 

• Complete initial studies into the combined use of MIR and NIR in situ 

measurements for synergistic benefit in process analysis. 

 

Many application areas are apparent for the potential use of in-line MIR or NIR 

spectrometry. Where some areas have already successfully implemented in-line 

analysis, other areas could see benefits from the implementation of in-line analysis. 

The literature survey indicated the potential of combined probes for in-line analysis: 

the combination of ATR MIR and transmission NIR spectrometry would be useful 

for the analysis of liquids, whereas, for solids and powder analysis a combination of 

MIR and NIR reflectance measurements may be beneficial. Application areas were 

found where currently manufactured probes, like the ATR MIR probes discussed in 

this thesis, could be used for in situ analysis to aid process monitoring and control. In 

addition, the potential scope for future developments of single or combined probes 

has been identified and could extend the product range for Fibre Photonics. 

 

The main focus of the research discussed in this thesis was on the development and 

application of the ATR MIR probe for process analysis, therefore, an assessment of 

the performance of six ATR MIR probes was completed where design features had 

been altered between probes. The assessment highlighted differences in the 

absorbance of the spectra, the errors of prediction and the pathlength of the probes. 

Altering the size and geometry of the diamond crystal was established as a 

significant design feature, where the probe that incorporated changes in the geometry 
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and size of the diamond crystal (probe 3) had improved performance over the probe 

with original design features. Probe 3, which also incorporated the new fibre 

alignment and cone sealing, provided the best results when compared to the other 

probes tested. Another important design feature alteration was the use of modular 

components for the manufacture of the probes; during the study it was concluded that 

this change had maintained the performance of the probe, but in terms of 

manufacturing will provide a simpler manufacturing procedure that should provide 

more robust probes. The results obtained for the single fibre 2.7 mm o.d. ATR probe 

indicated the potential of this probe for the analysis of small sample volumes. The 

ATR MIR probes assessed, all produced good quality spectra and improvements 

were evident when comparing the results of more recently manufactured probes to 

those of the original design. Information regarding the development and 

improvement in ATR MIR probe manufacture can be used alongside potential 

application areas for in-line spectrometry to further develop and enhance the 

specifications of these probes. 

 

Many examples of NIR calibration transfer exist in the literature; however, fewer 

examples of calibration transfer in MIR spectrometry are found. The research 

investigated the use of two well-known transfer algorithms and a newer procedure 

for the transfer of calibration models in MIR spectrometry. Transfers were completed 

where the spectrometer, probe or both had been changed and if no algorithm was 

used, significant errors were observed when the transfer was made. However, when 

implementing either of the established algorithms or the newer procedure, 

improvements were noticeable. Also highlighted in this study, was the potential to 

use calibration transfer algorithms when imitating multiplexing (between two similar 

probes) or imitating scale-up (between a smaller diameter probe and a larger 

diameter probe). In both examples all three transfer algorithms were able to transfer 

the calibration models successfully and reduce the errors of prediction when 

compared to the transfer when no algorithm was used. In the case of the newer 

procedure, SST, a scaling factor should be introduced when there are large 

differences between the spectra that are involved in the transfer. If the number of 

samples involved in the transfer were altered, both PDS and SST were shown to 
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produce good results; more variable results were observed for DS. SST provided an 

advantage over PDS in terms of simplicity of use. The successful use of the transfer 

algorithms in MIR spectrometry can aid its use for process analysis in many 

application areas and has indicated the benefits of using smaller diameter probes for 

use in scale-up. 

 

One application area that was assessed with ATR MIR probes was the analysis of 

whisky; the research indicated the potential of ATR MIR spectrometry for the 

identification of counterfeit Scotch whiskies based on the determination of ethanol 

content and the spectra of dried residues of the samples. A study using the 

measurement of the spectra of the dried residues of cask samples has shown some 

scope as a procedure to gain a greater understanding of the impact of manufacturing 

variables on the generation of the colour of whisky. The second application area that 

was assessed was in the area of fermentation. The literature survey had indicated the 

potential use of a MIR-NIR combined probe; an initial study was completed to assess 

the use of NIR and MIR spectrometry for the analysis of the fermentation samples of 

a Pichia pastoris fermentation reaction. When specific regions were selected, the 

calibration models were able to predict the concentration of optical density, glycerol 

and ammonium. NIR spectrometry provided better results for the prediction of the 

optical density and ammonium, whereas, both NIR and MIR spectrometry produced 

comparable results for the prediction of glycerol. Potential benefits could arise from 

the combination of NIR and MIR spectrometry in the ability to analyse the three 

properties in situ, where MIR spectrometry is less susceptible to the effects from 

agitation than NIR spectrometry. For NIR spectrometry to monitor the ammonium 

concentration effectively, the in situ probe would be required to analyse in the region 

2000 – 2500 nm. Fusing the NIR and MIR data together for the prediction of 

glycerol concentrations provided evidence that the NIR region helped to improve the 

MIR calibration in the fused model, while the MIR region did not degrade the NIR 

calibration. Examples where NIR and MIR spectrometry can provide alternative but 

complementary information about a process could provide further benefits when the 

two sets of data are fused together. 
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8.2 Suggestions for future work 

The results of this research have indicated the potential of ATR MIR probes for a 

range of application areas and the potential benefits of a combined MIR-NIR probe. 

Further development and improvement of the ATR MIR probes to enhance the 

robustness and repeatability would be worthwhile. One way to achieve this would be 

to complete design of experiments on a wide range of the design features for the 

probe manufacture. This way, more design features can be investigated and a greater 

understanding of how each feature influences the performance of the probe can be 

ascertained. The results of a design of experiment approach to development should 

provide better and higher performance probes. A way to determine the repeatability 

of manufacture would be to manufacture multiple identical ATR MIR probes and 

compare the results. Further studies to test the robustness of Fibre Photonics probes 

are required if they are to be used in a range of application areas, as some areas 

require specific conditions. For example, for in situ fermentation analysis, the probe 

will have to undergo sterilisation which requires the probe to withstand specific 

temperatures and pressures. In terms of a combined MIR-NIR probe, development 

would be required to produce a single probe that can have both MIR and NIR optical 

fibres in place. From the research, for in situ liquid analysis ATR MIR and 

transmission NIR spectrometry appeared to be a suitable choice and, therefore, the 

probe would need to be able to incorporate an ATR crystal and transmission gap as 

well as two sets of optical fibres. This would require work in terms of the optical 

design to achieve the desired combination; if this is possible then performance 

testing would also be required of the developed probe. 

 

In terms of applications, initial work has suggested that the measurement of the dried 

residue of cask whisky samples may be useful for the determination of the effect of 

manufacturing variables on the colour of the whisky. The effects determined thus far, 

appear to be very subtle and it is difficult to distinguish exactly how all the different 

factors are influencing the final colour; part of the reason was the limited sample set. 

Increasing the sample set to include samples with more of the factors would allow a 

more comprehensive design of experiments study to be carried out. In addition the 

determination of counterfeit samples was only carried out on blended samples that 
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would normally contain caramel; it would be useful to carry out an investigation with 

samples that do not ordinarily contain caramel and determine authenticity based on a 

spectral library. An on-going part of the counterfeit identification would also be to 

investigate a range of caramel samples from different manufacturers and establish 

any differences with the caramels used in this study. 

 

MIR and NIR spectrometry have been shown in this research to predict the 

concentration of optical density, glycerol and ammonium for a fermentation reaction 

using off-line samples. The possible advantages of using a combination of MIR and 

NIR spectroscopy in a single probe have been discussed, however, further benefits 

may be realised through the combination of the data, as indicated with the initial 

study into the prediction of glycerol with fused MIR and NIR data. Further work is 

required to ascertain the accuracy of predictions of ammonium concentration using 

MIR data, as well as potentially investigating the use of fused MIR and NIR data for 

predictions of ammonium concentration. If this is successful, the next step would be 

to complete more fermentation reactions using in situ NIR and MIR probes, where 

models could then be built on multiple fermentations and used to predict other 

fermentation reactions that were not involved in the original model building. The 

learning from this work could be used to aid the development of a combined MIR-

NIR probe. 
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Appendices 

Appendix 4.1: Weights of acetone, ethanol and ethyl acetate present in each mixture. 

Mixture number 
Weight of 

acetone (g) 

Weight of 

ethanol (g) 

Weight of ethyl 

acetate (g) 

Total 

weight (g) 

1 – calibration 1 0.00 19.72 0.00 19.72 

2 – calibration 2 19.98 0.00 0.00 19.98 

3 – calibration 3 0.00 0.00 19.23 19.23 

4 – calibration 4 10.07 9.58 0.00 19.65 

5 – calibration 5 9.54 0.00 9.61 19.15 

6 – calibration 6 0.00 9.87 9.90 19.77 

7 – calibration 7 6.46 6.41 6.05 18.92 

8 – calibration 8 12.13 3.19 3.20 18.52 

9 – calibration 9 3.20 11.70 2.90 17.80 

10 – calibration 10 3.17 3.31 11.92 18.40 

11 –test 1 1.00 13.93 1.53 16.46 

12 –test 2 4.36 8.93 2.07 15.36 

13 –test 3 8.64 6.56 5.15 20.35 

14 –test 4 24.24 3.11 2.01 29.36 

15 –test 5 13.68 2.00 13.20 28.88 

16 –test 6 1.97 3.32 12.90 18.19 

 

Example calculation of difference by weight approach used: 

E.g. For mixture 1: Weight of ethanol     =  19.72g 

 

Weight of full vial + lid           = 105.27g 

Weight of empty vial + lid    =  85.55g 

→ Weight of ethanol                =  19.72g 
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Appendix 4.2: Determination of trendlines to calculate the molar absorptivity coefficient of 

acetone at eight selected wavenumbers 

 

 

Figure 4.22: Absorbance values for a peak at 787 cm-1 acquired using the variable pathlength 

cell vs. the calculated pathlength of the cell. The trendline indicates the linear relationship and 

the equation of the line can be used to determine the molar absorptivity coefficient. 

 

 

Figure 4.23: Absorbance values for a peak at 903 cm-1 acquired using the variable pathlength 

cell vs. the calculated pathlength of the cell. The trendline indicates the linear relationship and 

the equation of the line can be used to determine the molar absorptivity coefficient. 
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Figure 4.24: Absorbance values for a peak at 1196 cm-1 acquired using the variable pathlength 

cell vs. the calculated pathlength of the cell. The trendline indicates the linear relationship and 

the equation of the line can be used to determine the molar absorptivity coefficient. 

 

 

Figure 4.25: Absorbance values for a peak at 1242 cm-1 acquired using the variable pathlength 

cell vs. the calculated pathlength of the cell. The trendline indicates the linear relationship and 

the equation of the line can be used to determine the molar absorptivity coefficient. 
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Figure 4.26: Absorbance values for a peak at 1327 cm-1 acquired using the variable pathlength 

cell vs. the calculated pathlength of the cell. The trendline indicates the linear relationship and 

the equation of the line can be used to determine the molar absorptivity coefficient. 

 

 

Figure 4.27: Absorbance values for a peak at 1474 cm-1 acquired using the variable pathlength 

cell vs. the calculated pathlength of the cell. The trendline indicates the linear relationship and 

the equation of the line can be used to determine the molar absorptivity coefficient. 
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Figure 4.28: Absorbance values for a peak at 1674 cm-1 acquired using the variable pathlength 

cell vs. the calculated pathlength of the cell. The trendline indicates the linear relationship and 

the equation of the line can be used to determine the molar absorptivity coefficient. 

 

 

Figure 4.29: Absorbance values for a peak at 1767 cm-1 acquired using the variable pathlength 

cell vs. the calculated pathlength of the cell. The trendline indicates the linear relationship and 

the equation of the line can be used to determine the molar absorptivity coefficient. 
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Appendix 5.1: Weights of acetone, ethanol and ethyl acetate present in each mixture. 

Mixture number 
Weight of 

acetone (g) 

Weight of 

ethanol (g) 

Weight of ethyl 

acetate (g) 

Total 

weight (g) 

1 – calibration 1 0.00 20.93 0.00 20.93 

2 – calibration 2 19.24 0.00 0.00 19.24 

3 – calibration 3 0.00 0.00 21.12 21.12 

4 – calibration 4 8.07 8.07 0.00 16.14 

5 – calibration 5 10.01 0.00 10.00 20.01 

6 – calibration 6 0.00 10.00 10.06 20.06 

7 – calibration 7 5.77 5.79 5.77 17.33 

8 – calibration 8 11.64 3.09 3.01 17.74 

9 – calibration 9 3.01 11.64 2.98 17.63 

10 – calibration 10 3.00 3.01 11.64 17.65 

11 –test 1 1.00 14.17 1.50 16.67 

12 –test 2 4.00 9.38 2.00 15.38 

13 –test 3 8.41 6.61 5.00 20.02 

14 –test 4 23.71 2.87 1.99 28.57 

15 –test 5 13.43 2.00 13.14 28.57 

16 –test 6 2.00 3.28 12.90 18.18 

 

Example calculation of difference by weight approach used: 

E.g. For mixture 1: Weight of ethanol     =  20.93g 

 

Weight of full vial + lid           = 106.37g 

Weight of empty vial + lid    =  85.44g 

→ Weight of ethanol                =  20.93g  
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Appendix 5.2: PDS window size determinations of acetone, ethanol and ethyl acetate for use in 

calibration transfers 

 

 

Figure 5.24: Plot of the mean RMSEP values for window sizes 1, 3, 5…19 for all models 

transferred to secondary instrument configurations for acetone. 

 

Figure 5.25: Plot of the mean RMSEP values for window sizes 1, 3, 5…19 for all models 

transferred to secondary instrument configurations for ethanol. 
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Figure 5.26: Plot of the mean RMSEP values for window sizes 1, 3, 5…19 for all models 

transferred to secondary instrument configurations for ethyl acetate. 
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