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Abstract

In this PhD thesis an Isogeometric Boundary Element Method (IGA-BEM) for three-

dimensional steady lifting flows based on Morino’s [50] formulation is presented. A

potential flow assumption is used and the unknown perturbation potential satisfies

Laplace’s equation. Application of Green’s identities leads to a Boundary Integral

Equation (BIE) that is enhanced with kinematic and dynamic boundary conditions.

Analysis suitable T-splines are used for the representation of all boundary surfaces and

the unknown perturbation potential is approximated by the same T-spline basis as the

one used for the geometry. The BIE is discretised by enforcing it on the generalised

version of Greville points for unstructured T-meshes. A novel numerical application of

the so-called Kutta condition is introduced that utilises the advantages of IGA with

regard to the smoothness of the trailing edge curve basis functions. This leads to a

quadratic system that is solved by a Newton-Raphson iterative scheme. The method

is applied for three different test cases and shows good agreement with existing exper-

imental results and superior behaviour when compared to a low order panel method.

The effect of the tip singularity on Kutta condition is also investigated for different

levels of refinement and positions of the trailing edge collocation points.
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Chapter 1

Introduction

Accurate and efficient calculation of the pressure distribution of lifting surfaces like

wings and propellers has been a popular topic of interest since the beginning of the

20th century in the fields of aerodynamics and hydrodynamics. Lifting forces acting on

a wing, which are calculated through pressure integration on its surface, are essential in

determining its aeroelastic and acoustic behaviour. Torque and thrust characteristics

are calculated in a similar way for a propeller and are of equal importance to its smooth

design and operation. At the same time, accurate evaluation of the minimum pressure

value near a propeller tip allows correct identification of the region and extend of

cavitation.

Early attempts on determining the pressure distribution of two and three dimensional

airfoils focused on lifting surface theory and an overview of methods based on this

approach can be found for example in [25] and [61]. Numerical implementation of these

methods was fast and efficient but lead to reduced accuracy due to the fundamental

simplifications that were made, with zero thickness of the lifting surface being the

most critical one. In recent times, Computational Fluid Dynamics (CFD) methods

and especially the ones solving full-blown Reynolds Averaged Equations (RANS) have

become the new standard in many applications. Examples of such methods include [65]

2



Chapter 1. Introduction

for wings and airfoils and [54] for ducted propellers. They offer high accuracy at the

cost of increased computational resources. RANS methods are also sensitive to the

mesh (or grid) that is used and thus, proper mesh generation is of great importance

but it can also be a time-consuming process.

Boundary Element Methods (BEM) have existed since the 60s and strike a balance

between Lifting Surface and CFD methods. They use a boundary representation of the

lifting surface that can adequately model complex geometries (e.g. propeller blades or

wings with geometric discontinuities) but at the same time follow a simplified potential

flow approach that is significantly faster to implement numerically than RANS. Hess

and Smith [29] in 1964 were the first ones that attempted to numerically solve the

boundary value problem of a body of arbitrary geometry in potential flow by introducing

the so called “panel” methods. Hess [38] in 1972 extended that method to include lifting

forces on a lifting body and later Morino [50] in 1974 introduced a different continuous

formulation based on the perturbation potential. In the years that followed Morino’s

approach became the norm. Consequently, it is evident that boundary element methods

for lifting flows have been developed for decades and have reached a level of maturity.

There is still interest though in improving their numerical robustness and accuracy,

especially in the region of the trailing edge of the wing. As a result, research is still

being carried out mainly in the topic of Kutta condition and wake alignment.

In this work, the main aim is to utilise the benefits of the concept of Isogeometric Anal-

ysis (IGA) [82] and develop an IGA-based Boundary Element Method for the problem

of an external three-dimensional steady uniform flow around a wing that produces sat-

isfactory results with few degrees of freedom. The method is implemented through

an in-house solver developed in C++. IGA offers an alternative to traditional panel

methods by removing the need for geometry approximation (meshing, panelling etc.)

and allowing a smooth representation of the unknown solution field. A novel numerical

implementation of Kutta condition is introduced that aims to offer superior accuracy

when compared to existing methods. Unstructured, analysis-suitable T-splines are used

for the representation of the boundary geometry and their local refineability is used

3



Chapter 1. Introduction

in order to model complex parts of the involved geometries and enhance the perfor-

mance of Kutta condition by refining the trailing edge curve basis. The solver is also

tightly integrated with CAD and that sets the groundwork for future efficient wing

shape optimisers.

This thesis is subdivided into 5 sections: Chapter 2 gives a brief review of existing works

in the fields of BEM for lifting flows and Isogeometric Analysis with special emphasis

on IGA-BEM and T-splines. Chapter 3 describes the formulation as a PDE problem

accompanied by boundary conditions. It includes the description of the perturbation

potential approach and the process of producing a weak form of Laplace’s equation.

A brief introduction to analysis suitable T-splines along with the concepts of Bézier

extraction and generalised Greville’s abscissae are given in Chapter 4. In Chapter 5,

the discrete formulation of the problem using isogeometric analysis is presented. The

novel numerical implementation of Kutta condition which leads to a non-linear system

is also given; along with older versions of it based on panel methods. In Chapter 6,

numerical results of the method are presented for three different cases:

1. An unswept wing with a NACA0012 airfoil profile

2. A swept wing with a 20o sweep angle and a NACA0012 airfoil profile

3. A cambered unswept wing with a NACA4412 airfoil profile

These results are discussed and compared with experiments and a low-order panel

method. The behaviour of the IGA-based Kutta condition on the trailing edge is also

investigated, in conjunction with the existence of a tip singularity. The last two chapters

include conclusions based on the results of this work and suggestions for future work

with main considerations on the problem of propeller flow and wake alignment.

Lastly, three appendices are also included in the final pages of this thesis. The first

appendix includes an introduction to vortex sheets and proof of some equations that

are used in Chapter 3. The second appendix describes the approach for the treatment

4



Chapter 1. Introduction

of nearly singular integrals that occur in the Boundary Integral Equation. Appendix 3

serves as a user manual for the in-house developed IGA-BEM solver.
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Chapter 2

Literature Review

1 Boundary Element Methods for Lifting Flows

Formulations based on boundary integral equations (BIEs) for potential lifting flows can

be traced back to the first half of the 20th century. According to [49], Prandtl [69] was

probably the first who, in 1921, developed his lifting line theory for three dimensional,

steady, incompressible flows around wings with high-aspect ratios. Munk [62] in 1924

used a similar approach to analyse the lift characteristics of two-dimensional airfoils

in steady, incompressible flows. The series required for analytic solutions of those two

methods were introduced by [24] and an inversion formula that associates the vorticity

distribution with the flow velocity was given by [76] and [77].

It wasn’t though until 1964 and the pioneering work of Hess and Smith [29] that set

the groundwork for boundary element methods (BEM) for lifting flows by introducing

the so called “panel” methods. They used a BIE produced from Green’s theorem for

an unknown potential distribution on the body surface. Getting the normal derivative

of this BIE with regard to the perturbation potential led to a velocity formulation with

a source and dipole distribution on the body surface. The dipole density was set equal

to zero and only the source distribution remained to be found. These unknown sources
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Chapter 2. Literature Review

satisfied Laplace’s equation and were determined by solving the BIE after applying a

Neumann type condition on the body surface. The BIE was discretised by dividing

the body surface in quadrilateral panels and satisfying the BIE at the centroid of each

panel and the unknown source coefficients were calculated by solving a linear system.

Then, the potential of every point of the external flow domain (including the body

surface) was calculated through its integral representation. This approach could work

on bodies of complex geometries but lifting forces could not be predicted since they are

attributed to viscous phenomena.

In order to counter this, Hess [38] improved his original method to calculate lift forces

on a lifting body by adding a wake surface leaving the trailing edge of the body and

a numerical implementation of the so called Kutta condition. The wake was assumed

to be a surface of zero thickness that was shed from the trailing edge and extended to

infinity. A continuous set of dipoles was distributed on the wake surface in an effort to

simulate the trailing vorticity of the wing which is essential for the existence of lift. This

approach was based on the principle that a surface distribution of dipoles is equivalent

to a distribution of vortices on the boundary curves of that surface. Consequently,

the dipole distribution was no longer set equal to zero and the extra unknown dipole

coefficients could be determined by the extra number of equations that occurred due to

the application of Kutta condition. According to this, the velocities of the upper and

lower parts of the body surface should have a common limit on the trailing edge. In the

discrete setting, this led to a quadratic system that was solved numerically by applying

a Newton-Raphson iterative scheme. Numerical implementation of the method showed

good agreement between numerical and experimental results of pressure coefficients

with the exception of thin wings and especially in the neighbourhood of the trailing

edge.

Later, Morino [50] followed a different approach by attempting to solve the BIE based

on the perturbation potential formulation without differentiating it. This led to an

unknown potential distribution on the body which could be determined by applying a

Neumann boundary condition on the body and wake and a Kutta condition of equal

7
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pressure (same as Hess) on the trailing edge. Morino’s Kutta condition assumed that

the perturbation potential difference between the upper and lower sides of the wake

(potential jump) is equal to the corresponding perturbation potential difference between

the upper and lower parts of the wing on the trailing edge. In the discrete setting of this

approach, the potential jump remained constant along “ strips” of chord-wise panels

and only the perturbation potential coefficients had to be found which led to simply

solving a linear system that was produced after satisfying the BIE on the centroids of

the panels. Numerical application of this method showed that it was superior to Hess’

for thin wings and it seemed to produce reasonable results near the trailing edge too.

Its main downside was that it could not satisfy the zero pressure jump condition on the

trailing edge near the tips of the wing. This was due to the fact that crossflow effects

happen in that region and Morino’s Kutta condition could only work when the velocity

had chord-wise components.

Lee [40] in 1987 compared five different boundary integral formulations for the lifting

problem:

• Potential-Based Formulations

– Perturbation Potential Approach

– Total Potential Approach

• Velocity-Based Formulations

– Dipole Distribution

– Vortex Distribution

– Source Distribution

with the Perturbation Potential being Morino’s and the Source Distribution being Hess’

approaches respectively. These formulations use different singularity distributions on

the body surface but describe identical external flows and yield the same results in the

8



Chapter 2. Literature Review

continuous setting. Lee investigated the numerical behaviour of each of these formu-

lations by solving them for a two-dimensional airfoil in uniform flow. He came to the

conclusion that the perturbation potential approach by Morino was superior to the rest

since it worked well with very thin airfoil sections and potential-based formulations pro-

duced one degree less singular kernels compared to the velocity-based ones. Potential

formulations also came with some practical benefits like faster calculation of influence

coefficients and reduced computer storage requirements since they are based on a scalar

field unlike velocity-based formulations (that require thrice as much space). Lee was

interested in steady propeller flows so he decided to choose the perturbation potential

approach since the difficulty in defining the total velocity potential for rotational flows

made the total potential formulation hard to apply on propeller flows.

As mentioned earlier, the weakness of Morino’s method was its Kutta condition that

didn’t satisfy the zero pressure jump on the trailing edge of the wing near the tips. In

order to counter this, Lee applied an iterative Kutta condition, the so-called “ Itera-

tive Pressure Kutta ” (IPK) condition. Details of the formulation of IPK can be found

in [35]. As a first iteration step, Morino’s problem was solved and the unknown per-

turbation potential coefficients were acquired. These coefficients were used to calculate

a new value for the potential jump values on the trailing edge based on a Newton-

Raphson forward scheme. Then the linear system of the discrete form of Morino’s BIE

was solved again for the new potential jump values. This process was repeated until

convergence. The Jacobian of the Newton-Raphson scheme was calculated numerically

by applying a finite difference scheme. Application of this method showed good agree-

ment between numerical and experimental results for three-dimensional wings, body

and fuselage configurations and propellers in [40]. A further description of this method

with an emphasis on the effects of a duct for propeller flows was presented in [35]. A

similar iterative Kutta condition was also used by [27] based on an approach intro-

duced by [93]. There has also been a more recent attempt to improve IPK by [79] in

2017. They introduced a method that allows the analytic calculation of the Jacobian

components of the Newton-Raphson scheme, in an effort to improve the robustness of

9
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the method.

An alternative approach that was based on a distribution of surface vortices was in-

troduced by Belibasakis and Politis in 1995 [42]. This method used a velocity-based

formulation and led to a more singular kernel when compared to potential methods.

It showed encouraging results and offered some significant advantages when it came to

applying a pressure type Kutta condition on the trailing edge. It was later implemented

on steady and unsteady propeller problems in [43] and demonstrated good accuracy

and efficiency even for complex body shapes.

All works mentioned so far assumed the existence of a known wake surface. For uniform

flows of rectangular wings the wake surface had the shape of a simple plane surface

parallel to the uniform flow velocity or at an angle included between the dihedral line

of the upper and lower parts of the trailing edge. For propeller flows the wake surface

had a helicoidal shape consisting of two parts according to [33]:

• A transition region where the contraction and slip stream phenomena happen.

• An ultimate region with helical tip and hub vortices.

The geometry of these regions was fully determined by a set of parameters:

• The ultimate radius of the contracted slipstream.

• the radius of the hub vortex at the end of the transition wake.

• The length of the transition wake region.

• The contraction angle of the tip vortex as it leaves the tip.

The values of these parameters could only be evaluated through experimental observa-

tions though, which made this whole approach unreliable for propeller types that had

no experimental data. At the same time the effect of tip vortices for both uniform and
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rotational flows could not be taken into account. This effect would mean the appear-

ance of a “roll-up” of the wake surface in the BEM setting. While the exact pressure

distribution on the wake is of no importance, the tip vortex behaviour has an impact on

the calculated pressure distribution of lifting body which can be significant, especially

in rotational flows.

A major challenge with predicting the geometry of the trailing wake was the fact that

the wake, being a material surface [64], moves with the velocity of the fluid at any

given point. However this velocity is not a priori known and requires solution of the

boundary value problem before it can be evaluated. In an attempt to treat this issue,

many researchers in the past developed iterative schemes that would help determine the

exact geometry of the wake. The first attempt was by Suciu and Morino [14] in 1976

who determined the wake geometry by enforcing the condition that the induced velocity

is tangent to the wake surface and the potential jump remains constant streamwise.

Similar attempts were also made by [18] and [28]. Greeley [9] in 1982 developed an

iterative process for determining the trailing vortex lines of the wake for a lifting surface

method. This approach avoided the direct computation of the induced velocities on the

wake in order to avoid excessive computational cost. Instead, he prescribed a radius

function for each vortex line, calculated the velocities accurately only on a small set of

points and then used an interpolation scheme to compute the velocities at every point

on the wake.

Pyo [74] in 1995 developed a panel method with a new wake alignment scheme based on

a higher order panel representation of the wake surface. First, the BVP was solved by

using a known wake, based on Lee’s previous work. Then, Pyo assumed that the velocity

of a point on the trailing wake is induced by the dipole distribution of the wake only

(and thus, ignored the effect of the singularity distribution of the wing). The induced

velocity at each wake point was evaluated by differentiating the wake integral of the BIE

and the calculation was simplified by assuming constant dipole strength over each wake

panel. Then the new locations of the wake panels were determined by forcing them to

be tangent to the induced velocity vector. The BVP was solved again with the new

11



Chapter 2. Literature Review

wake geometry and the process was repeated until convergence. The benefits of this

method lied in the fact that higher order wake elements could approximate the wake

roll-up region better than the low order ones. The latter showed unstable behaviour

due to generated gaps in the geometry of the wake and caused the iterative procedure

to diverge in some cases. This method was also coupled with the Flow Adapted Grid

(FLAG) approach based on [75]. A FLAG is aligned with the wake geometry around

the trailing edge and can be used to detect the point on the from where the tip vortices

are shed. This approach provided the existing panel methods with some interesting

benefits like improved convergence rates for the Iterative Pressure Kutta condition and

improved accuracy for pressure coefficients near the tips.

Pyo’s wake alignment method was capable of simulating the roll-up effect of the wake

geometry but its dependency on higher order wake panels made it require a significantly

higher computational cost compared to previous low order panel methods. The devel-

opment of an efficient alignment scheme has since then, been an active topic of interest

for the scientific community and notable works include Lee and Kinnas 2004 [26], Politis

2004 [21] and 2016 [23], Gaggero and Brizzolara 2007 [73], Tian and Kinnas 2012 [92],

Kim et al. 2015 [20] and Abdel-Maksoud and Song 2016 [78].

2 Isogeometric Analysis and T-splines

In the meantime, the introduction of Isogeometric Analysis (IGA) [82] by T.J. Hughes

in 2005 offered an alternative approach to traditional problems in numerical methods

like Finite and Boundary Element Methods (FEM and BEM). The IGA concept is

based on using the same basis for both the geometric model and the unknown solution

field. Moreover, the domain discretisation is produced from the underlying geometric

representation. This has the benefit of eliminating the geometrically inaccurate, time-

consuming and error-prone process of meshing the geometrical model. There have

also been observed significant benefits of IGA related to the smoothness of the basis

functions in FEM like increased accuracy for reduced degrees of freedom and faster
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convergence. These were demonstrated in [32] and [31].

IGA applications, due to the nature of the method, require a geometric modelling tool

that is flexible enough for both modelling and analysis. Non-Uniform Rational B-

Splines (NURBS) constitute the de facto standard for representing curves and surfaces

in CAD packages and have already been used in many IGA applications. Examples

include [88] and [89] in fluid dynamics, [90] and [81] in fluid-structure interaction (FSI),

[3] and [52] in vibrations and [30] and [67] in shells and plates. NURBS however, are

not ideal for IGA due to their global tensor product structure and come with a set of

disadvantages as stated in [57]:

• NURBS modelling requires multi-patch representations in order to model complex

geometries that come with the following issues:

– Gaps and overlaps may appear at the interface between two patches.

– Continuity can only be C0 on the interface between two patches. This a

problem especially in IGA, where the smoothness of the representation also

affects the smoothness of the solution.

• A large number of control points may be superfluous in the sense that they do

not offer significant geometric information. This means increased computational

cost in IGA applications.

• Refinement techniques create full rows or columns of control points that may not

be needed and, as a result, increase computational cost.

Many alternatives have been developed in the last decade that aim to remedy the

deficiencies of NURBS. Examples of these include hierarchical splines [8], THB [5],

LR-Splines [80] and T-splines [83], [91].

In this paper unstructured, analysis-suitable T-splines are used. T-splines form a gen-

eralisation of NURBS and were introduced in 2003 by T.W Sederberg [83]. The linear

independence requirements of their basis functions were demonstrated in 2012 by Li et
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al. [86]. A T-spline surface that satisfies these requirements is called analysis suitable

and may be used for IGA. T-splines allow the existence of extraordinary vertices and

T-junctions which offer some interesting advantages in both geometric modelling and

analysis:

• Complex geometries may be modelled by a single T-spline patch

• Local refinement is possible

• Fewer superfluous points are required compared to NURBS

• Multiple NURBS may be merged into a single T-spline patch

A local refinement algorithm for analysis suitable T-splines was developed in 2012 by

Scott et al. [59]. The issue of extraordinary vertices in IGA with T-splines is presented

in [57]. In that work, the process of defining a T-spline basis on an unstructured T-mesh

is described along with the definition of Generalised Greville points which are necessary

for collocation methods. Treatment of the reduced smoothness on the neighbourhood

of extraordinary vertices is also discussed by applying a fairing process on the Bézier

patches that surround the extraordinary vertex in question and are retrieved through

a Bézier decomposition. The Bézier decomposition of a spline surface is called Bézier

extraction and was first introduced in 2010 by Borden et al. [60] for NURBS and then

in 2011 by Scott et al. [56] for T-splines.

Early attempts in coupling BEM with CAD may be found in [11] and [12] where shape

optimisation is performed with NURBS representing the geometry and polynomials

representing the solution field. IGA-enhanced BEM was introduced in [32] and early

applications are included in [6] and [70]. It has become more popular in recent years

with works in different fields like acoustics [94], elastostatics [72], cracks [4], heat trans-

fer [63], electromagnetics [71], heat conduction [45], [47] etc.

In the field of hydrodynamics, Belibassakis et al. in 2013 [44] developed an IGA-BEM

solver for the ship wave resistance problem. They solved the Neumman-Kelvin problem
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based on a potential flow formulation by using a NURBS representation for the sub-

merged body geometries. Numerical results showed good agreement with experiments

and faster convergence for fully submerged bodies when compared with traditional low

order panel methods. Later in 2014, Ginnis et al. [1] solved the same problem by using

a single patch T-spline representation for both the geometry and the unknown solution

field. The T-spline method produced superior convergence to the reference solution

compared to the NURBS one due to the local refineability properties of T-splines. At

one of the examples, the same error was achieved for 62.5 % fewer degrees of freedom

for the T-spline model. The more efficient T-spline solver was later coupled with a T-

spline parametric modeller by [48] in order to perform ship-hull shape optimisation. In

that work, bicubic T-splines with extraordinary points were used for the representation

of the ship-hull models. The representation had C2 continuity nearly everywhere with

the exception of the neighbourhood of extraordinary vertices where the continuity is

G1. Two different examples were tested; one for the bulbous area of the ship and one

for the full hull. Results showed that the method was robust enough and could be used

in real life applications in ship building.

IGA-BEM for two dimensional lifting flows was introduced by Politis et al. [7] in 2014.

In that work, the exterior Neumann problem was solved for a steady lifting flow around

an airfoil. A perturbation potential formulation was followed and a Boundary Integral

Equation (BIE) was produced based on Morino’s [50] approach. The circulation on

the trailing wake was assumed to be equal to the potential jump on the trailing edge

of the airfoil. A NURBS representation was used for the geometry of the airfoil and

the unknown pertubation potential field. The wake was assumed to be a straight

line lying on the bisector of the dihedral line of the trailing edge and extending to

infinity. A collocation scheme was applied and the location of the collocation points

was determined by the Greville abscissae of the underlying geometric representation.

Numerical results for the velocity potential and pressure coefficient distributions of

an airfoil showed good accuracy for fewer degrees of freedom compared to traditional

low-order panel methods.

15



Chapter 2. Literature Review

The previous NURBS-based IGA-BEM method for the airfoil flow was used later in 2016

by Kostas et al. [41] in order to perform shape optimisation on an airfoil geometry. The

existing solver was coupled with a NURBS parametric modeller that generated airfoil

geometries based on eight parameters. The optimiser employed a controlled elitist

genetic algorithm. Two criteria were used as objective functions:

• Maximum Lift Coefficient

• Minimum Deviation of the Hydrofoil Area from a Reference Area

The optimisation procedure first produced an optimised airfoil based on allowing small

parameter deviations from a NACA 4412 profile. The resulting profile showed a 3%

improvement on the lift coefficient compared to NACA 4412. A pareto front of all

airfoil shapes without parameter restrictions was also produced, based on an average

lift coefficient calculated for three different angles of attack.

The next reasonable step would be to develop a similar IGA-BEM method for three-

dimensional flows which is the aim of this thesis.
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Formulation of the Problem

1 Perturbation Potential

Let Oxyz be a left-handed coordinate system, with its origin at the centre of a full span

wing and the y−axis directed upwards; see, Figure 3.1. Now consider a flow with linear

velocity Vl and angular velocity Ω of an ideal fluid incident on the wing. The total

undisturbed velocity at a point with a position vector r is V∞ = Vl+Ω×r. For uniform

flows (such as the ones investigated in this work) V∞ = Vl. The flow, except from a free

vortex sheet emanating from the trailing edge of the wing, is considered irrotational.

Under these assumptions, the flow can be described by the total potential Φ = φ∞+ φ

comprising the undisturbed flow potential φ∞ and the perturbation potential φ, which

represents the disturbance of the undisturbed uniform flow due to the presence of the

wing. The perturbation potential satisfies Laplace’s equation.

∇2φ(x) = 0, x ∈ Ω. (3.1)

Here Ω denotes the open fluid domain bounded by its boundary ∂Ω := S = SB ∪ SW ,

where SB denotes the boundary surface of the wing and SW denotes the trailing vortex
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n

n

Figure 3.1: Boundary surfaces and coordinate system

wake; see Figure 3.1. The existence of SW is essential for it enables the potential

approach to take into account the circulation that is necessary for the existence of

lifting forces on the wing [64]. In general SW is not known a priori and its final form is

part of the solution of the problem. The next step is to provide the boundary conditions

that hold true on ∂Ω.

On the wing surface SB the following non-penetrating boundary condition is applied

∂φ

∂n
(x) = −V∞ · n(x), x ∈ SB, (3.2)

where V∞ = ∇φ∞ is the undisturbed inflow velocity and n(x) is the outward-pointing

unit normal vector of SB.

The wake sheet is regarded as a regular surface of discontinuity in Ω, where tangential

velocity components exhibit discontinuity, although the same is not true for the normal

velocity components. According to [51], the boundary conditions for the wake surface

can be obtained by applying the mass and momentum conservation equations. Mass
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conservation yields:

∆
∂φ

∂n
≡ ∂φu

∂n
− ∂φl
∂n

= 0 on SW (3.3)

where •l,u denote the lower and upper side of the wake, respectively, and n(x) is the

unit normal of SW .

Momentum conservation gives:

pu − pl = 0 on SW , (3.4)

which can be further manipulated, using Bernoulli’s equation:

| Vu |2=| Vl |2
× 1

2==⇒ 1

2
(Vu −Vl)

1

2
(Vu + Vl) = 0⇒ Vd ·Vm = 0. (3.5)

This last result means that Vd and Vm should be orthogonal. Condition (3.5) is

satisfied via Kutta condition and an appropriate wake surface. In its general form,

Kutta condition requires the velocity to remain bounded, |∇φ| < ∞, at the trailing

edge (TE).

Finally, the perturbation velocity must vanish at an infinite distance from the wing,

∇φ→ 0, when
√
x2 + y2 + z2 →∞. (3.6)
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2 Weak Form of Laplace’s Equation

In this section, a weak form of Laplace’s equation is produced. The first step is to

apply the method of weighted residuals (as described for example in [2]). If φ is an

approximate solution of (3.1) then the residual error is:

R = ∇2φ (3.7)

where R=0 when φ is an exact solution and the differentiation variables of the Laplacian

operator ∇2 correspond to Cartesian coordinates x, y, z. The aim is to find a proper

weight function ω that will evenly distribute R over a domain of integration. The choice

of this weight function determines whether a Finite Element or Boundary Element

method is implemented. Integrating R over the fluid domain Ω yields:

∫
Ω
RωdΩ =

∫
Ω
∇2φωdΩ = 0 (3.8)

In order to solve this integral equation Green’s first identity will be applied first, which,

in its general form, is:

∫
Ω

(f∇ · ∇g +∇f · ∇g)dΩ =

∫
S
f
∂g

∂n
dS (3.9)

Applying this for f = ω and g = φ and since
∫

Ω ω∇
2φdΩ = 0 yields:

∫
Ω
∇ω · ∇φdΩ =

∫
S

∂φ

∂n
ωdS (3.10)

Before proceeding with the solution of the integral equation (3.10) one should first

find the fundamental solution of the 3D Laplace equation. It is widely known (see
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for example [22]) that this corresponds to a source located at a point P with (ξ, η, ζ)

coordinates and is given by:

G(P,Q) =
1

4πr(P,Q)
(3.11)

where r(P,Q) is the distance between points P and Q(x, y, z) ∈ <3.

This fundamental solution will be used as the weighting function of the integral equation

(3.10) or ω = G(P,Q). Applying Green’s first identity again on the left hand side of

(3.10) for f = φ and g = ω gives:

−
∫

Ω
φ∇2ωdΩ +

∫
S
φ
∂ω

∂n
dS =

∫
S

∂φ

∂n
ωdS (3.12)

At this point, the properties of the fundamental solution ω dictate the behaviour of

the domain integral of (3.12) based on the relative position of P with respect to the

domain Ω (for proof see [66]).

• When P lies inside the domain Ω:
∫

Ω φ∇
2ωdΩ = −φ(ξ, η, ζ). In this way a point

value replaces the domain integral.

• When P lies outside the domain then the integral is zero everywhere.

• When P lies on the boundary surface S the domain Ω can be enlarged by a small

sphere of radius ε. The new boundary is S′ = S−ε ∪ Sε where S−ε and S−ε are

shown in Figure 3.2. P is still inside the enlarged domain so (3.12) becomes:

φ(P ) +

∫
S′
φ
∂ω

∂n
dS =

∫
S′

∂φ

∂n
ωdS (3.13)

In order to proceed, four new integrals must be evaluated for very small values of ε.

The limiting values of these integrals as ε→ 0 are:

21



Chapter 3. Formulation of the Problem

Figure 3.2: Enlarged domain

limε→0

∫
Sε

φ
∂ω

∂n
dS = −−φ(P)

2

limε→0

∫
Sε

ω
∂φ

∂n
dS = 0

limε→0

∫
S−ε

ω
∂φ

∂n
=

∫
S

∂φ

∂n

limε→0

∫
S−ε

φ
∂ω

∂n
φdS =

∫
S

∂ω

∂n
φdS

For further information and proofs on the procedures required to produce and evaluate

these integrals one could have a look at [66] or [19].
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Combining the above results leads to the final form of the Boundary Integral Equation

(BIE):

c(P)φ(P) +

∫
S
φ(Q)

∂

∂n

(
− 1

4πr(P,Q)

)
dS =

∫
S

∂φ(Q)

∂n

(
− 1

4πr(P,Q)

)
dS (3.14)

where

c(P) =



1 P ∈ Ω

1
2 P ∈ S and S smooth at P

α
2π P ∈ S and S not smooth at P

0 P outside Ω

(3.15)

and α is the inner solid angle that originates at P when S is not smooth at P. Fur-

thermore r is the euclidean distance between point P and boundary point Q and φ

corresponds to the potential distribution on the boundary surface.

3 Boundary Integral Equation and Boundary Conditions

The boundary integral equation (3.14) for a point P on the boundary surface S is:

2πφ(P) +

∫
S
φ(Q)

∂

∂n(Q)

(
− 1

r(P,Q)

)
dS(Q) =

∫
S

∂φ(Q)

∂n(Q)

(
− 1

r(P,Q)

)
dS(Q)

(3.16)

It should be noted that in this work P never lies on edges of the geometry and, thus,

c(P) = 1
2 . Recalling the boundary conditions (3.2) and (3.3) described in Section 1 of
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this chapter and substituting them in (3.16) yields:

2πφ(P)−
∫
SB

φ(Q)
∂

∂n(Q)

1

r(P,Q)
dS(Q)−

∫
SW

∆φ(Q)
∂

∂n(Q)

1

r(P,Q)
dS(Q)

=

∫
SB

V∞ · n(Q)

(
1

r(P,Q)

)
dS(Q) (3.17)

where ∆φ(Q) = φu(Q) − φl(Q) is the so-called potential jump with φu(Q), φl(Q)

denoting the values of φ on the point Q for the upper and lower parts of the wake,

respectively. It has been proven (see [34] and Appendix A) that the potential jump on

the wake varies only along its span-wise direction and its value is determined by the

value on the trailing edge of the wing. As a result, equation (3.17) may be written:

2πφ(P)−
∫
SB

φ(Q)
∂G(P,Q)

∂n(Q)
dS(Q)−

∫
SW

∆φ|SW,TE
∂G(P,Q)

∂n(Q)
dS(Q)

=

∫
SB

V∞ · n(Q)G(P,Q)dS(Q) (3.18)

where G(P,Q) = 1
r(P,Q) and ∆φ|SW,TE denotes the restriction of the potential jump on

the wake’s edge that coincides with the Trailing Edge (TE). The far-field condition of

(3.6) is satisfied automatically. The zero-pressure jump condition of (3.4) is satisfied

through a zero-pressure jump on the trailing edge (Kutta condition) and an appropriate

wake geometry. This condition will be further discussed in Chapters 5 and 6.
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Analysis Suitable T-Splines

1 T-Mesh and Basis Functions

The geometric models of the wings are created using T-splines 1. This chapter describes

the necessary process for the creation of an analysis-suitable bicubic T-spline surface

based on [55].

A T-spline surface can be created from a T-mesh. A T-mesh is a quadrilateral mesh

which allows the existence of T-junctions and extraordinary vertices. An example of a

T-mesh with T-junctions is shown in Figure 4.1. Each number in Figure 4.1 corresponds

to a T-mesh vertex to which, a basis function is anchored 2 [91]. The use of anchors

helps create an one-to-one correspondence between the basis functions and parametric

space entities. Each vertex is assigned to a control point di ∈ <ds and a weight wi ∈ <

where 1 ≤ i ≤ A, A is the total number of global control points and ds is the dimension

of the spline space.

Each quadrilateral element on a T-mesh is called a T-mesh element (shaded in Figure

1One could use for example, Autodesk’s Fusion 360 https://www.autodesk.com/products/

fusion-360/.
2This applies only when both degrees are odd. When they are both even basis functions are anchored

to faces and when one of them is odd and the other one is even, they are anchored to edges.
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(a) T-mesh control points (figure courtesy of Michael Scott [55])

(b) Knot intervals on a T-mesh (figure courtesy of Michael Scott
[55])

Figure 4.1: Example of a T-mesh
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4.1). In order to properly define a T-spline basis, a proper knot interval configuration

must be applied first. Such a configuration can be found in Figure 4.1 where the sum

of all knot intervals on one side must be equal to the ones on the opposite side. Now a

knot interval vector can be assigned to each vertex i ∈ A such that ∆Ξi = {∆Ξji}
ds
j=1.

Then a local knot vector can be assigned to each control point: Ξi = {Ξji}
ds
j=1. These

knot vectors can be formed by assigning an origin value for each parametric direction.

In T-spline formulations, the knot interval approach is mostly preferred. Most existing

B-spline algorithms are based on a knot vector structure but they can be easily modified

to use knot interval vectors too.

Each local knot vector ∆Ξi defines a function domain Ω̂i ⊂ <ds :

Ω̂i = ⊗dsj=1Ω̂j
i (4.1)

where Ω̂j
i = [0,∆Ξji,1 + ∆Ξji,2 + ∆Ξji,3 + ∆Ξji,4] ⊂ < for the bicubic case and each

domain has its each own coordinate system ξi = (ξ1
i , ξ

2
i ). The procedure for finding

∆Ξji,1,∆Ξji,2,∆Ξji,3,∆Ξji,4 is shown in Figure 4.2.

A T-spline basis function can now be defined through the tensor product of the uni-

variate basis functions {N j
i (ξji |Ξ

j
i )}

ds
j=1 where:

Ni(ξi|Ξi) ≡
ds∏
j=1

N j
i (ξji |Ξ

j
i ) (4.2)

and the univariate basis function N j
i (ξji |Ξ

j
i ) can be evaluated using the Cox-de Boor

recursion formula. The resulting basis functions are C∞ between knots and have re-

duced smoothness (Cp−1, where p is the degree of the basis function) when evaluated

exactly on knot values.

At this stage it should be noted that when no T-junctions exist in the T-mesh the

resulting T-spline basis corresponds to a B-spline one. A smooth B-spline surface can

then be created by assigning a control point di to each basis function:
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Figure 4.2: Creation of knot interval vector for N33: Starting by d33 march to the left
until p-1 vertices or perpendicular edges are encountered and add the knot interval
values traversed to the knot interval vector. Then march to the right and follow the
same steps. This creates the knot interval vector for the first parametric direction
(figure courtesy of Michael Scott [55]).
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x(ξ) =

nA∑
i=1

diRi(ξ) (4.3)

Ri(ξ) =
wiNi(ξ)∑nA
i=1wiNi(ξ)

(4.4)

where Ri are the rational B-spline basis functions and ξ = (ξ1, ξ2) are parametric values

that correspond to a global knot vector created by combining all local knot vectors.

The procedure for making an analysis suitable T-spline surface is presented in the next

section.

2 T-Splines for Analysis

Before a T-spline surface can be defined, the concept of T-Spline elements which are

necessary for the application of finite/boundary element methods is given.

A T-Spline element Ωe is a region in the physical space which is bounded by lines of

reduced continuity (knot lines). T-spline basis functions have reduced continuity on

these lines and C∞ between them.

For each vertex di the local basis function mesh Ti is given by:

Ti = ⊗dsj=1Ξji (4.5)

An example of a local basis function mesh can be seen in Figure 4.7. The T-mesh can

be enhanced by augmenting all the local basis function meshes, as shown in Figure

4.3. Then the elemental T-mesh is created. The elemental T-mesh may include lines

of reduced continuity which are not included in the T-mesh, as for example shown in

Figure 4.3. An example of an elemental T-mesh can be found in Figure 4.4.

When the lines of reduced continuity that originate from T-junctions do not intersect
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Figure 4.3: T-mesh T (black) enhanced with T33 (red) (figure courtesy of Michael
Scott [55]).

Figure 4.4: Elemental T-mesh with numbering of elements. The elements on the bound-
ary are not numbered because their area is zero (figure courtesy of Michael Scott [55]).
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with each other the T-spline surface is called analysis suitable. An example for the

comparison between analysis suitable and unsuitable element meshes can be seen in

Figure 4.5. [87] and [13] proved the existence of many interesting properties of analysis

suitable T-splines, such as:

• The basis functions of analysis suitable T-splines are locally linearly independent

• The basis functions of analysis suitable T-splines form a complete basis for the

space of polynomials of degree p.

Each T-spline element supports a number of basis functions which are non-zero for this

element’s domain. In order to determine which of these functions are non-zero the IEN

array (Table 4.1) can be used which maps the local basis function α for element e to the

global control point index i ∈ A and, as a result, α = 1, . . . , ne ≤ nA. Each element may

support a different number of basis functions while in NURBS each element supports

(p+ 1)ds functions.

Traditionally, shape functions in FEM/BEM are defined within a parent element do-

main. Then let Se = {Φ̃e, {Φ̂na
α=1} be a set of affine mappings for element e where

• Φ̃e : Ω̃→ Ω̂e is an one-to-one and onto affine map from the parent element domain

to the element domain:

ξe = Φ̃e(ξ̃) (4.6)

• Φ̂e
α : Ω̃e → Ω̂i for α = 1, ...., na is a one-to-one affine mapping from the element

domain to the local basis function domain for basis function i = IEN(α, e):

ξi = Φ̂e
α(ξe) (4.7)

These aforementioned mappings map from the parent element domain to the local basis

function domain where the local basis functions are defined (Figure 4.6). Now element-

based basis functions can be created which correspond to shape function in FEM/BEM
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(a) Analysis unsuitable

(b) Analysis suitable

Figure 4.5: Analysis suitability condition - T junction extensions (red) must not inter-
sect
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Figure 4.6: Mapping from parent element domain to local basis domain for element 17
(figure courtesy of Michael Scott [55]).
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analysis.

Ni(ξi)|e = Ni(Φ̂
e
α(ξe))|e = Ni(Φ̂

e
α(Φ̃e(ξ̃)))|e = N e

α(ξ̃) (4.8)

where |e refers to element e. Now the T-spline geometric mapping from the parent

element domain to the physical domain can be produced.

x̃e(ξ̃) =

∑nα
α=1 deαw

e
αN

e
α(ξ̃)∑nα

α=1w
e
αN

e
α(ξ̃)

=

nα∑
α=1

deαR
e
α(ξ̃) (4.9)

where deα = dIEN(α,e) and weα = wIEN(α,e) are the control points and weights respec-

tively that correspond to the α− th basis function of the e− th element and are given

by the IEN array and Reα(ξ̃) are the rational T-spline basis functions. Equation (4.9)

can also be written in matrix form.

x̃e(ξ̃) =
(de)TWeNe(ξ̃)

(we)TNe(ξ̃)
= (de)TRe(ξ̃) (4.10)

where de is a nα×3 array which includes the control points for element e, we is weight

vector for element e, We = diag(we) and Ne = {N e
α}

nα
α=1, Re = {Reα}

nα
α=1 are vectors

of the polynomial and rational T-spline basis functions.

3 Bézier Extraction

The T-splines elements created in the previous section must be further simplified before

they can be used in traditional FEM/BEM algorithms. For this purpose a Bézier

extraction operator will be applied which maps the T-spline basis to the Bernstein

polynomial space. The main idea behind this is to apply knot insertion until the

Bézier decomposition of the the T-spline surface is acquired. Then, each T-spline basis

function can be written as:
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Figure 4.7: From upper left and clockwise: Creation of local knot vector, local basis
mesh, local basis domain and basis function in the physical domain (figure courtesy of
Michael Scott [55]).
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Table 4.1: IEN array for the given T-mesh (table courtesy of Michael Scott [55]).
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N e
α(ξ̃) =

(p+1)ds∑
b=1

ceα,bBb(ξ̃) (4.11)

where Bb(ξ̃) are Bernstein polynomial functions and ceα,b are the Bézier extraction

coefficients. The method for calculating these coefficients can be found for example

in [55]. Equation (4.11) can also be written in matrix form:

(a) T-spline surface

(b) Bézier decomposition

Figure 4.8: Example of Bézier extraction

Ne(ξ̃) = CeB(ξ̃) (4.12)
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where Ce is the so-called Bézier extraction operator. Then the rational T-spline basis

functions become:

Re(ξ̃) =

nα∑
α=1

weαN
e
α(ξ̃)∑nα

α1=1w
e
αN

e
α(ξ̃)

=

nα∑
α=1

weα
∑(p+1)ds

b=1 ceα,bBb(ξ̃)∑nα
α1=1w

e
α

∑(p+1)ds

b=1 ceα,bBb(ξ̃)
(4.13)

and in matrix form

Re(ξ̃) =
WeCeB(ξ̃)

(we)TCeB(ξ̃)
(4.14)

where B(ξ̃) is a set of Bernstein polynomials. Bézier extraction lets all Bézier elements

have a constant number (16 in the case of bicubics) of the same basis functions which

is compatible with the use of shape functions in FEM/BEM.

4 Unstructured T-mesh

The approach that has been described so far in the previous sections mentioned struc-

tured T-meshes only. Unstructured T-meshes are also viable and offer more flexibility

in geometric modelling by supporting both T-junctions and extraordinary vertices, i.e.,

vertices with a valence of 3, 5 and above; see for example the two vertices depicted

with red squares in Figure 4.9 and Figure 4.10. All elements touching an extraordinary

vertex constitute its one-ring neighbourhood and similarly, the elements neighbouring

this one-ring area form the two-ring neighbourhood of the same vertex, and so on.

A valid knot interval configuration must be applied on the unstructured T-mesh before

the T-spline bases and surface can be defined. A similar approach is followed as for

the structured ones; a non-negative knot interval value is assigned on every edge of the

T-mesh while making sure that knot intervals on opposite edges of the same element
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Figure 4.9: Example of a T-mesh part demonstrating T-junctions (black squares) and
an extraordinary vertex (red square) of valence 3
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Figure 4.10: Example of a T-mesh part demonstrating a single T-junction (black
square) and an extraordinary vertex (red square) of valence 5
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sum to the same value. Additionally, it is assumed that the assigned values for the

knot intervals along the spoke edges of each extraordinary vertex are all, either zero or

non-zero.

T-spline basis functions are linearly independent when the unstructured T-mesh satis-

fies the following topological requirements, as stated in [57]:

1. T-junction extensions should not intersect with each other.

2. no one-bay3 face extension spans an element in the three-ring neighbourhood of

an extraordinary point.

3. no extraordinary point should lie within the three-ring neighbourhood of another

extraordinary point.

This ensures that the resulting T-spline surface is analysis suitable. Then, the unstruc-

tured T-spline basis can be defined in the same way as for structured T-meshes.

5 Generalised Greville Points

Greville’s abscissae have been a concept of major interest in the field of B-splines and

CAD in general. In their original form they refer to knot averages which lie close

to the maximum of each B-spline basis function, as described for example in [17].

Although they have traditionally been associated mostly with spline approximations,

they have also become popular in IGA-based collocation methods. In these methods,

a Boundary Integral Equation is discretely satisfied on a chosen set of points; the so-

called collocation points. Greville’s abscissae have proven to be a robust choice as

collocation points and come with many advantages which may be found for example

in [15] and [16].

3The portion of a face extension lying in the face immediately adjacent to the T-junction is called
a one-bay face extension.
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In this section the concept of Greville’s abscissae is generalised for T-meshes and ex-

traordinary points, as described in [57]. For each vertex, an n-ring collocation point

depends on its n-ring knot interval vectors. An n-ring knot interval vector for vertex A,

KA,n = {Ki
A,n}Ni=1 where N is the valence of vertex A and Ki

A,n = {kiA,1, kiA,2, ..., kiA,n},

can be found my marching through each direction until n edges or vertices have been

encountered. Then, the collocation point coordinates on the local basis domain are

given by:

αA,n =


∑N
j=1−(n−j+1)k3A,j+

∑n
j=1(n−j+1)k1A,j

2n+1∑N
j=1−(n−j+1)k4A,j+

∑n
j=1(n−j+1)k2A,j

2n+1

 (4.15)

For smooth surfaces e.g. ship hulls [1], 1-ring collocation points are adequate. It should

be noted that if the T-mesh has no T-junctions or extraordinary points then 1-ring

collocation points are equal to the corresponding Greville points. For more complex

surfaces e.g. with edges like the wingtips, 2-ring collocation points are used. Local

basis coordinates in the local basis domain for a 2-ring collocation point are given by:

αA,2 =


2k1A,1+k1A,2−2k3A,1−k

3
A,2

5
2k2A,1+k2A,2−2k4A,1−k

4
A,2

5

 (4.16)

Then the physical coordinates of the collocation point can be found by using the T-

spline geometric map from the local basis domain to the physical domain given by

(4.10).
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Isogeometric Boundary Element

Method

This chapter presents the implementation of the isogeometric approach on the Bound-

ary Integral Equation (3.18). The first section presents the developed IGA-BEM for

a single T-spline patch representation of the associated wing-body boundary SB. It

also includes a brief description of older versions of Kutta condition based on low order

panel methods and the introduction of a novel IGA-based implementation of it. The

second section extends the method for a multi-patch representation of SB that consists

(in the general case) of NP patches. This is useful for rectangular wings and specifically

for NP = 2 and when the wing consists of two surfaces (main wing and cap surfaces -

see Chapter 6) that are not smoothly connected.

1 Single-Patch Representation

As a first approach, each of the wing-body and wake boundary surfaces SB and SW

are represented as single patch bicubic T-spline surfaces which consist of neB and neW
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T-spline elements respectively:

SB = ∪neBe=1S
e
B, SW = ∪neWe=1 S

e
W (5.1)

where each of the T-spline elements Se[·], [·] ∈ {B,W} are given by the general expression

which was described in the previous chapter:

Se[·] = x̃e(ξ̃) =
(de)TWeCeB(ξ̃)

(we)TCeB(ξ̃)
= (de)TRe(ξ̃) (5.2)

By application of the Isogeometric Analysis approach, the unknown potential distribu-

tion on the wing body may be expressed using the exact same basis functions employed

for the geometric representation of its boundary surface:

φ(P) =

nWB∑
i=1

φiR̃i(P), P ∈ SB (5.3)

where nWB is the number of control points di of the wing-body surface, φi is the i-th

control coefficient and R̃i(P) = Re(ξ̃(P)), P ∈ SB.

Now let the spanwise and chordwise coordinates of (3.18) be identical with the para-

metric directions η, ξ respectively. By inserting (5.3) in (3.18) and assuming that the

wing surface consists of nB Bézier elements:

2π

nWB∑
i=1

φiR̃i(P)−
nWB∑
i=1

φi

nB∑
e=1

∫
S(B),e

R̃i(Q)
∂G(P,Q)

∂n(Q)
dS(Q)

−
∫
SW

∆φ(η)
∂G(P,Q)

∂n(Q)
dS(Q) =

nB∑
e=1

∫
S(B),e

V∞ · n(Q)G(P,Q)dS(Q) (5.4)
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The value of ∆φ(η) that satisfies (3.4) on the trailing edge can be found by applying the

so-called Kutta condition. Various implementations of Kutta condition are explored in

the next subsections.

1.1 Low Order Morino Kutta condition

One of the earliest implementations of Kutta condition can be attributed to Morino.

[50]. Following his approach, the potential jump on the trailing edge can be regarded

as the difference between the potential values on the upper and lower parts of the wing

on the trailing edge:

∆φ(η) = φ(ξu,TE , η)− φ(ξl,TE , η) (5.5)

where ξu,TE , ξl,TE are the parametric values that correspond to the trailing edge on

the upper and lower parts of the wing respectively. In the spirit of low order panel

methods, Morino also assumed that the potential jump remains constant along each

pair of upper and lower elements of the trailing edge and, thus, it also remains constant

along the corresponding strips starting from the TE and extending all along the wake

surface. Applying this simplification removes the need for integrating the wing basis

functions on the wake. Then, Morino Kutta condition in the IGA setting becomes:

∆φ(η) = ∆φiw =

nWB∑
i=1

φi
(
R̃i(ξu,iw,mid, ηu,iw,mid)− R̃i(ξl,iw,mid, ηl,iw,mid)

)
(5.6)

where iw corresponds to the iw-th strip on the wake starting from the TE and mid is

a reference to the parametric value that corresponds to a point which lies on the TE

and in the middle of the iw-th element on the TE. Then, (5.4) becomes:
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2π

nWB∑
i=1

φiR̃i(P)−
nWB∑
i=1

φi

nB∑
e=1

∫
Se,B

R̃i(Q)
∂G(P,Q)

∂n(Q)
dS(Q)

−
nWB∑
i=1

φi

jmax∑
jw=1

imax∑
iw=1

(
R̃i(ξu,iw,mid, ηu,iw,mid)−R̃i(ξl,iw,mid, ηl,iw,mid)

) ∫
Se,iw,jw

∂G(P,Q)

∂n(Q)
dS(Q) =

nB∑
e=1

∫
Se,B

V∞ · n(Q)G(P,Q)dS(Q) (5.7)

Equation (5.7) is collocated on nWB points which are chosen to be the Generalised

Greville points described in the previous chapter. Then, a linear system is formed:

2π

nWB∑
i=1

φiR̃i(Pj)−
nWB∑
i=1

φi

nB∑
e=1

∫
Se,B

R̃i(Q)
∂G(Pj ,Q)

∂n(Q)
dS

−
nWB∑
i=1

φi

jmax∑
jw=1

imax∑
iw=1

(
R̃i(ξu,iw,mid, ηu,iw,mid)−R̃i(ξl,iw,mid, ηl,iw,mid)

) ∫
Se,iw,jw

∂G(Pj ,Q)

∂n(Q)
dS

=

nB∑
e=1

∫
Se,B

V∞ · n(Q)G(Pj ,Q)dS(Q) (5.8)

which can be also written as:

nWB∑
i=1

φiAij = Bj , j = 1, ..., nWB (5.9)

where

Aij = 2πR̃i(Pj)−
nB∑
e=1

∫
Se,B

R̃i(Q)
∂G(Pj ,Q)

∂n(Q)
dS(Q)

−
jmax∑
jw=1

imax∑
iw=1

(
R̃i(ξu,iw,mid, ηu,iw,mid)−R̃i(ξl,iw,mid, ηl,iw,mid)

) ∫
Se,iw,jw

∂G(Pj ,Q)

∂n(Q)
dS(Q)

(5.10)
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Bj =

nB∑
e=1

∫
Se,B

V∞ · n(Q)G(Pj ,Q)dS(Q) (5.11)

The linear system (5.9) is solved and the values of the unknown coefficients φi are

acquired. The velocity potential can then be calculated on any point on the wing

surface from (5.3).

1.2 Non-linear Low Order Kutta condition

It is well known that Morino’s Kutta condition, due to its linear nature, neglects three

dimensional effects. As a result, it is not capable of ensuring a zero-pressure jump on

the trailing edge near the tip of the wing where cross flow phenomena occur. In order

to counter this, [75] introduced an iterative Kutta condition that attempted to enforce

a zero pressure jump ∆p = 0 on the trailing edge. The challenge that arose in this

setting came from the fact that the pressure is non-linearly related to the potential φ.

In order to avoid the implications that come with this, an iterative Newton-Raphson

scheme was used that allowed the calculation of the total potential jump at the trailing

edge, as shown by [74].

The Newton-Rahpson method for non-linear systems of equations F(x) and a vector of

variables x gives:

F(x + δx) = F(x) + J · δx (5.12)

Where J is the Jacobian of the system matrix and δx a correction. By setting F(x +

δx) = 0, a set of linear equations is obtained for the correction that moves each function

closer to zero:

− J−1 · F(x) = δx (5.13)

Then, the new solution vector becomes:

xnew = xold + δx = xold − J−1 · F(x) (5.14)
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by applying this on niw points on the trailing edge a system of nimax non-linear equa-

tions (with regard to φ) is formed:

∆pi = 0, i = 1, ..., nimax (5.15)

By applying the Newton-Raphson scheme, a discrete form of Kutta condition was

created:

∆φ(k) = ∆φ(k−1) − J−1(∆p)(k−1) (5.16)

where ∆φ = [∆φ1, ...,∆φnimax ], ∆p = [∆p1, ...,∆pnimax ] and k corresponds to k-th

iteration. The pressure difference can be calculated by using Bernoulli’s law between

the upper and lower points on the trailing edge. The Jacobian matrix was defined as

Jij = ∂(∆pi)
∂(∆φj)

and the values of the partial derivatives were approximated numerically

by employing a finite difference scheme:

∂(∆pi)

∂(∆φj)
≈

∆p
(β)
i −∆p

(0)
i

∆φ
(β)
j −∆φ

(0)
j

(5.17)

where ∆p
(β)
i was calculated by solving the problem again for a slightly perturbed

∆φ
(β)
i = (1 − β)∆φ

(0)
i where β = 0.01. It’s worth noting that the Jacobian was as-

sumed to remain constant at each iteration. For the first iteration a Morino 2D Kutta

approximation was used:

∆φ(0) = (φu − φl)
(0) (5.18)

Then for the k-th iteration:

∆φ(k) = ∆φ(0) −
k∑

m=0

J−1(∆p)(m) (5.19)
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Applying this approach in the IGA setting and in BIE (5.4) yields:

2π

nWB∑
i=1

φiR̃i(P)−
nWB∑
i=1

φi

nB∑
e=1

∫
Se,B

R̃i(Q)
∂G(P,Q)

∂n(Q)
dS(Q)

−
nWB∑
i=1

φi

jmax∑
jw=1

imax∑
iw=1

(
R̃i(ξu,iw,mid, ηu,iw,mid)−R̃i(ξl,iw,mid, ηl,iw,mid)

) ∫
Se,iw,jw

∂G(P,Q)

∂n(Q)
dS(Q) =

nB∑
e=1

∫
Se,B

V∞·n(Q)G(P,Q)dS(Q)+
k∑

m=0

imax∑
iw=1

jmax∑
jw=1

J−1
iw,jw∆p

(m)
iw

∫
Se,iw,jw

∂G(P,Q)

∂n(Q)
dS(Q)

(5.20)

By assigning nWB collocation points again in BIE (5.7) the linear system is formed:

2π

nWB∑
i=1

φiR̃i(Pj)−
nWB∑
i=1

φi

nB∑
e=1

∫
Se,B

R̃i(Q)
∂G(Pj,Q)

∂n(Q)
dS(Q)−

nWB∑
i=1

φi

jmax∑
jw=1

imax∑
iw=1

(
R̃i(ξu,iw,mid, ηu,iw,mid)−R̃i(ξl,iw,mid, ηl,iw,mid)

) ∫
Se,iw,jw

∂G(Pj,Q)

∂n(Q)
dS(Q) =

nB∑
e=1

∫
Se,B

V∞·n(Q)G(Pj ,Q)dS(Q)+

k∑
m=0

imax∑
iw=1

jmax∑
jw=1

J−1
iw,jw∆p

(m)
iw

∫
Se,iw,jw

∂G(Pj,Q)

∂n(Q)
dS(Q)

(5.21)

which can be also written as:

nWB∑
i=1

φiAij = Bj , j = 1, ..., nWB (5.22)
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where

Aij = 2πR̃i(Pj)−
nB∑
e=1

∫
Se,B

R̃i(Q)
∂G(Pj,Q)

∂n(Q)
dS(Q)

−
jmax∑
jw=1

imax∑
iw=1

(
R̃i(ξu,iw,mid, ηu,iw,mid)− R̃i(ξl,iw,mid, ηl,iw,mid)

) ∫
Se,iw,jw

∂G(Pj,Q)

∂n(Q)
dS(Q)

(5.23)

Bj =

nB∑
e=1

∫
Se,B

V∞ · n(Q)G(Pj,Q)dS(Q)

+
k∑

m=0

imax∑
iw=1

jmax∑
jw=1

J−1
iw,jw∆p

(m)
iw

∫
Se,iw,jw

∂G(Pj,Q)

∂n(Q)
dS(Q) (5.24)

The linear system of (5.21) is solved k times and the values of the unknown coefficients

φi are acquired and updated at each step.

1.3 IGA-based Kutta Condition

The implementations of Kutta condition mentioned so far have been adopted from

traditional low order panel methods. At this stage a novel IGA-based Kutta condition

will be introduced that utilises the benefits of IGA by removing the need for “ strip”-

wise application and numerical finite difference approximations used in the iterative

method.

As mentioned earlier, Kutta condition states that the pressure jump on the trailing edge

must be equal to zero. The total velocity on body can be analysed into a tangential

component Vt and a normal component Vn. However, due to the Neumann boundary

condition on the body: Vn = V∞ ·n+ ∂φ
∂n = 0. Then the application of Kutta condition

enforces the zero-pressure jump on the trailing edge:

∆p = pu − pl =
1

2
ρV2

t,u −
1

2
ρV2

t,l = 0 (5.25)
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where Vt,u,Vt,l are the upper and lower tangential velocities on the trailing edge re-

spectively. In order to proceed, the tangential pressure Vt on a point P lying on an

Bézier element xe(ξ, η) on the wing must be evaluated. In general, the ξ and η para-

metric directions will not be orthogonal. In order to get the vector of the total tangent

velocity, an orthogonal coordinate system with unit vectors e1, e3 on a tangent plane

T (P ) with a point P on the surface being the origin of this system is needed, as shown

in Figure 5.1.

Figure 5.2 demonstrates how this orthogonal system is created and how the total ve-

locity is calculated on T (P ). Let m1 = ∂xe(ξ,η)
∂ξ and m2 = ∂xe(ξ,η)

∂η be tangent vectors

parallel to the η and ξ isoparametric curves respectively. Let also n = m1 ×m2 be a

normal vector on P and m3 = n ×m1 a vector orthogonal to m1. The unit vectors

e1, e2, e3 parallel to those tangent vectors are given by:

e1 =
m1

|m1 |
, e2 =

m2

|m2 |
, e3 =

m3

|m3 |
(5.26)

The projections of the tangential perturbation velocity vt on the η and ξ parametric

directions are given by:

vt,ξ̄ =
∂φ(ξ, η)

∂ξ
· 1

|m1 |
, vt,η̄ =

∂φ(ξ, η)

∂η
· 1

|m2 |
(5.27)

Then the projection vt,ζ̄ on the ζ̄ direction, as shown in Figure 5.2 is given by:

vt,ζ̄ =
vt,η̄ − vt,ξ̄ · cosθ

sinθ
(5.28)

in a similar way as presented in [57], where θ 6= 0 is the angle between m1 and m2 and

cosθ = m1·m2
|m1|·|m2| . Now the tangential perturbation velocity vector is given by:

vt = vt,ξ̄e1 + vt,ζ̄e3 (5.29)
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Substituting (5.27) and (5.28) in (5.29) gives:

vt =
e1
|m1 |

∂φ(ξ, η)

∂ξ
+

e3
|m2 | sinθ

∂φ(ξ, η)

∂η
− cosθ e3
|m1 | sinθ

∂φ(ξ, η)

∂ξ
(5.30)

Similarly the tangential undisturbed velocity vector is given by:

V∞,t = (V∞ · e1)e1 + (V∞ · e3)e3 (5.31)

Now, recalling (5.3) and (5.25), the pressure difference on the trailing edge can be

calculated as follows:

 

m
2

 

e
3
 

e
1
 

m1 η= constant 

ξ= constant T (P) 

Figure 5.1: Tangent plane T of point P and initial velocity decomposition on non-
orthogonal coordinates
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Figure 5.2: Calculation of Vt on tangent plane T (P )
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∆p = ∆p(ξTE,u, ξTE,l, η) =

1

2
ρ
(
V∞,u,t +

e1,u

|m1,u |

nWB∑
i=1

φi
∂R̃i(ξTE,u, η)

∂ξ
+

e3,u

|m2,u | ·sinθu

nWB∑
i=1

φi
∂R̃i(ξTE,u, η)

∂η

− cosθue3,u

|m1,u | sinθu

nWB∑
i=1

φi
∂R̃i(ξTE,u, η)

∂ξ

)2

− 1

2
ρ
(
V∞,l,t +

e1,l

|m1,l |

nWB∑
i=1

φi
∂R̃i(ξTE,l, η)

∂ξ
+

e3,l

|m2,l | ·sinθl

nWB∑
i=1

φi
∂R̃i(ξTE,l, η)

∂η

−
cosθle3,l

|m1,l | sinθl

nWB∑
i=1

φi
∂R̃i(ξTE,l, η)

∂ξ

)2
(5.32)

where, once again, ξTE corresponds to the parametric values on the trailing edge and

u, l correspond to the upper and lower parts of the trailing edge respectively. If this is

applied on nTE points on the trailing edge a system of nTE non-linear equations (with

regard to φi) is formed:

∆p(ξTE,u, ξTE,l, ηj) = 0, j = 1, ..., nTE (5.33)
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or

V2
∞,t,u,j −V2

∞,t,l,j+

nWB∑
i=1

φi

(
Rjξ,u,i

(2V∞,t,u,j · e1,u,j

|m1,u,j |
− 2V∞,t,u,j · e3,u,jcosθu

|m1,u,j | sinθu

)
+Rjη,u,i

2V∞,t,u,j · e3,u,j

|m2,u,j | sinθu,j

+Rjξ,l,i

(2V∞,t,l,j · e3,l,jcosθl
|m1,l,j | sinθl,j

−
2V∞,t,l,j · e1,l,j

|m1,l,j |

)
−Rjη,l,i

2V∞,t,l,j · e3,l,j

|m2,l,j | sinθl,j

)
+

nWB∑
i=i

nWB∑
k=1

φiφk

(
Rjξ,u,iR

j
ξ,u,k

( 1

|m1,u,j |2
+

cos2θu,j
|m1,u,j |2 sin2θu,j

)
+Rjη,u,iR

j
η,u,k

1

|m2,u,j |2 sin2θu,j
−Rjη,u,iR

j
ξ,u,k

2cosθu,j
|m1,u,j ||m2,u,j | sin2θu,j

−Rjξ,l,iR
j
ξ,l,k

( 1

|m1,l,j |2
−

cos2θl,j
|m1,l,j |2 sin2θl,j

)
−Rjη,l,iR

j
η,l,k

1

|m2,l,j |2 sin2θl,j
+Rjη,l,iR

j
ξ,l,k

2cosθl,j
|m1,l,j ||m2,l,j | sin2θl,j

)
= 0,

j = 1, ..., nTE . (5.34)

where

Rjξ,i =
∂R̃i(ξTE,u, ηj)

∂ξ
, Rjη,i =

∂R̃i(ξTE,u, ηj)

∂η
. (5.35)

Recalling BIE (5.4):

2π

nWB∑
i=1

φiR̃i(P)−
nWB∑
i=1

φi

nB∑
e=1

∫
SB,e

R̃i(Q)
∂G(P,Q)

∂n(Q)
dS(Q)

−
∫
SW

∆φ(ξTE , η)
∂G(P,Q)

∂n(Q)
dS(Q) =

nB∑
e=1

∫
SB,e

V∞ · n(Q)G(P,Q)dS(Q) (5.36)

The unknown potential jump on the trailing edge can be projected on the spline space
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defined by the upper part of the trailing edge curve or:

nTE∑
i=1

∆φiRi(ξTE , η) (5.37)

By substituting (5.37) in (5.36) and collocating it at nWB Greville points, nWB equa-

tions are formed:

2π

nWB∑
i=1

φiRi(Pj)−
nWB∑
i=1

φi

nB∑
e=1

∫
SB,e

Ri(Q)
∂G(Pj ,Q)

∂n(Q)
dS(Q)

−
nTE∑
i=1

∆φi

∫ η2

η1

Ri(ξTE , η)

∫ ξ∞

ξTE

∂G(Pj ,Q)

∂n(Q)
dS(Q) =

nB∑
e=1

∫
SB,e

V∞ · n(Q)G(Pj ,Q)dS(Q), j = 1, ..., nWB. (5.38)

where ξTE , ξ∞ correspond to the parametric values of the trailing edge and a point far

away from the wing up to which the wake surface extends. This point is associated

with the length of the wake which, in this work, is assumed to be 14 times larger than

the chord of the wing.

The discretised BIE and the zero pressure jump on the TE can be expressed as a single

system of non-linear equations of the form:

Pj(Φ) = 0, j = 1, · · · , n, n = nWB + nTE , Φ = (φ1, · · · , φnWB ,∆φ1, · · · ,∆φnTE )T ,

(5.39)

56



Chapter 5. Isogeometric Boundary Element Method

where the linear part of the system is:

Pj(Φ) =

nWB∑
i=1

Aijφi +

nTE∑
i=1

Bij∆φi + cj , j = 1, · · · , nWB, (5.40a)

Aij = 2πRi(Pj)−
nB∑
e=1

∫
SB,e

Ri(Q)
∂G(Pj ,Q)

∂n(Q)
dS(Q), (5.40b)

Bij = −
∫ η2

η1

Ri(ξTE , η)

∫ ξ∞

ξTE

∂G(Pj ,Q)

∂n(Q)
dS(Q), (5.40c)

cj =

nB∑
e=1

∫
SB,e

V∞ · n(Q)G(Pj ,Q)dS(Q). (5.40d)

and the non-linear part:

Pj+nWB (Φ) =

nWB∑
i=1

Dijφi +

nWB∑
i=1

nWB∑
k=1

Eikjφiφk + gj , j = 1, · · · , nTE , (5.41a)

Dij = Rjξ,u,i

(2V∞,t,u,j · e1,u,j

|m1,u,j |
− 2V∞,t,u,j · e3,u,j

|m1,u,j | sinθu,j

)
+Rjη,u,i

2V∞,t,u,j · e3,u,jcosθu,j
|m2,u,j | sinθu,j

+Rjξ,l,i

(2V∞,t,l,j · e3,l,jcosθl,j
|m1,l,j | sinθl,j

−
2V∞,t,l,j · e1,l,j

|m1,l,j |

)
−Rjη,l,i

2V∞,t,l,j · e3,l,j

|m2,l,j | sinθl,j
, (5.41b)

Eikj = Rjξ,u,iR
j
ξ,u,k

( 1

|m1,u,j |2
+

cos2θu,j
|m1,u,j |2 sin2θu,j

)
+Rjη,u,iR

j
η,u,k

1

|m2,u,j |2 sin2θu,j

−Rjη,u,iR
j
ξ,u,k

2cosθu,j
|m1,u,j ||m2,u,j | sin2θu,j

−Rjξ,l,iR
j
ξ,l,k

( 1

|m1,l,j |2
−

cos2θl,j
|m1,l,j |2 sin2θl,j

)
−Rjη,l,iR

j
η,l,k

1

|m2,l,j |2 sin2θl,j
+Rjη,l,iR

j
ξ,l,k

2cosθl,j
|m1,l,j ||m2,l,j | sin2θl,j

, (5.41c)

gj = V2
∞,t,u,j −V2

∞,t,l,j . (5.41d)

In order to solve the non-linear system of (5.40a) and (5.41a) an Iterative Newton-

Raphson scheme will be applied:
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Φr+1 = Φr − J−1
r P(Φr) (5.42)

where r corresponds to the r-th iteration and J−1
r is the inverse of the Jacobian matrix

of (5.40a) and (5.41a) of step r. The elements of the Jacobian matrix for each step are

given by the following set of equations:

Jj,l =
∂Pj(Φ)

∂φl
= Alj , j = 1, ..., nWB, l = 1, ..., nWB (5.43)

Jj,nWB+l =
∂Pj(Φ)

∂∆φl
= Blj , j = 1, ..., nWB, l = 1, ..., nTE (5.44)

Jj,l =
∂Pj(Φ)

∂φl
= Dlj+

nWB∑
i=1

(Elij+Eilj)φi, j = nWB+1, ..., nWB+nTE , l = 1, ..., nWB

(5.45)

Jj,nWB+l =
∂Pj(Φ)

∂∆φl
= 0, j = nWB + 1, ..., nWB + nTE , l = 1, ..., nTE (5.46)

It’s worth mentioning here that the Jacobian matrix is updated at each iteration due

to its dependency on φi.

The Newton-Raphson scheme of (5.42) requires a 0th iteration Φ0 vector. Following

Morino’s approach and assuming that the potential jump on the trailing edge of (5.4)

is equal to the difference between the upper and the lower potentials gives:

∆φ(ξTE , η) =

nWB∑
i=1

φ0
i R̃i(ξu,TE , η)−

nWB∑
i=1

φ0
i R̃i(ξl,TE , η) (5.47)

where φ0
i are the unknown potential coefficients of the 0th iteration. Then (5.4) be-
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comes:

2π

nWB∑
i=1

φ0
i R̃i(P)−

nWB∑
i=1

φ0
i

nB∑
e=1

∫
SB,e

R̃i(Q)
∂G(P,Q)

∂n(Q)
dS(Q)

−
nWB∑
i=1

φ0
i

∫ η2

η1

(R̃i(ξu,TE , η)− R̃i(ξl,TE , η)

∫ ξ∞

ξTE

∂G(P,Q)

∂n(Q)
dS(Q) =

nB∑
e=1

∫
SB,e

V∞ · n(Q)G(P,Q)dS(Q) (5.48)

And by collocating (5.48) at nWB Greville points the following linear system is formed:

2π

nWB∑
i=1

φ0
i R̃i(Pj)−

nWB∑
i=1

φ0
i

nB∑
e=1

∫
SB,e

R̃i(Q)
∂G(Pj ,Q)

∂n(Q)
dS(Q)

−
nWB∑
i=1

φ0
i

∫ η2

η1

(R̃i(ξu,TE , η)− R̃i(ξl,TE , η)

∫ ξ∞

ξTE

∂G(Pj ,Q)

∂n(Q)
dS(Q)

=

nB∑
e=1

∫
SB,e

V∞ · n(Q)G(Pj ,Q)dS(Q), j = 1, ..., nWB. (5.49)

The unknown coefficients φ0
i are acquired by solving (5.49). The unknown potential

jump coefficients of the 0th iteration ∆φ0
i can be acquired by solving an interpolation

problem on the trailing edge. Let there be j = 1, ..., nTE points on the trailing edge

where the potential jump of the 0th iteration is given by:

∆φ(ξTE , ηj) =

nWB∑
i=1

φ0
i (R̃i(ξu,TE , ηj)− R̃i(ξl,TE , ηj)) (5.50)

Then the unknown ∆φ0
i s can be found by solving the following linear system:

nTE∑
i=1

∆φ0
iRi(ξTE , ηj) =

nWB∑
i=1

φ0
i (R̃i(ξu,TE , ηj)− R̃i(ξl,TE , ηj)) j = 1, ..., nTE (5.51)
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and the 0th iteration solution vector is given by:

Φ0 = (φ0
1, · · · , φ0

nWB
,∆φ0

1, · · · ,∆φ0
nTE

)T (5.52)

2 Multi-patch Representation

The previous section was based on a single-patch representation of the wing-body

boundary surface SB. In an extension to this, now let the wing geometry consist

of NP T-spline patches. Hence,

SB =

NP⋃
l=1

nel⋃
e=1

SleB , SW =

1⋃
l=1

qel⋃
e=1

SleW ,

with each of the T-spline elements Sle[·], [·] ∈ {B,W}, given by the general expression:

Sle = x̃le(ξ̃) =
(de

l)TWe
lCe

lB(ξ̃)

(we
l)TCe

lB(ξ̃)
= (de

l)TRe
l(ξ̃). (5.53)

It is also assumed that the trailing edge is included in one of the wing single T-spline

patches only. Then the projection of φ in the multi-patch T-spline space is given by:

φ(P) =

nWB,l∑
i=1

φliR̃
l
i(P), P ∈ Sl, l = 1, ..., NP (5.54)

The projection of ∆φ on the spline space of the trailing edge curve is given by:

nTE∑
i=1

∆φiR
lTE
i (ξTE , η) (5.55)

where the superscript lTE corresponds to the the T-spline patch that includes the

trailing edge. By collocating (5.4) at M =
∑NP

l=1 nWB,l generalised Greville points for
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NP wing T-spline patches, the same number of linear equations are formed:

2π

nWB,l∑
i=1

φliR
l
i(Pm)−

NP∑
q=1

nWB,q∑
i=1

φqi

ne,q∑
e=1

∫
Se

Rqi (Q)
∂G(Pm,Q)

∂n(Q)
dS(Q)

−
nTE∑
i=1

∆φi

∫ η2

ηlTE

RlTEi (ξTE , η)

∫ ξ∞

ξTE

∂G(Pm,Q)

∂n(Q)
dS(Q)

=

NP∑
q=1

ne,q∑
e=1

∫
Se

V∞ · n(Q)G(Pm,Q)dS(Q),

l ∈ {1, . . . , NP } : Pm ∈ SlB, m = 1, . . . ,M. (5.56)

The application of the IGA-based Kutta condition will remain almost identical to the

single patch approach since the trailing edge is part of a single T-spline patch. By

assuming again that this patch corresponds to the index l = lTE the zero pressure

jump requirement from (5.25) for nTE collocation points on the trailing edge becomes:

V2
∞,t,up,j −V2

∞,t,lo,j+

nWB,lTE∑
i=1

φlTEi

(
Rj,lTEξ,up,i

(2V∞,t,up,j · e1,up,j

|m1,up,j |
− 2V∞,t,up,j · e3,up,jcosθup

|m1,up,j | sinθup

)
+Rj,lTEη,up,i

2V∞,t,up,j · e3,up,j

|m2,up,j | sinθup,j

+Rj,lTEξ,lo,i

(2V∞,t,lo,j · e3,lo,jcosθlo
|m1,lo,j | sinθlo,j

−
2V∞,t,lo,j · e1,lo,j

|m1,lo,j |

)
−Rj,lTEη,lo,i

2V∞,t,lo,j · e3,lo,j

|m2,lo,j | sinθlo,j

)
+

nWB,lTE∑
i=1

nWB,lTE∑
k=1

φlTEi φlTEk

(
Rj,lTEξ,up,iR

j,lTE
ξ,up,k

( 1

|m1,up,j |2
+

cos2θup,j
|m1,up,j |2 sin2θup,j

)
+Rj,lTEη,up,iR

j,lTE
η,up,k

1

|m2,up,j |2 sin2θup,j
−Rj,lTEη,up,iR

j,lTE
ξ,up,k

2cosθup,j
|m1,up,j ||m2,up,j | sin2θup,j

−Rj,lTEξ,lo,iR
j,lTE
ξ,lo,k

( 1

|m1,lo,j |2
−

cos2θlo,j
|m1,lo,j |2 sin2θlo,j

)
−Rj,lTEη,lo,iR

j,lTE
η,lo,k

1

|m2,lo,j |2 sin2θlo,j
+Rj,lTEη,lo,iR

j,lTE
ξ,lo,k

2cosθlo,j
|m1,lo,j ||m2,lo,j | sin2θlo,j

)
= 0,

j = 1, ..., nTE . (5.57)
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where the subscripts up, lo correspond to the upper and lower parts of the trailing edge

respectively. Then a new system of M + nTE non-linear equations can be formed:

Pm(Φ) = 0, m = m(l, j) =
l−1∑
h=1

nWB,h + j, (5.58)

j = 1, . . . , nWB,l, l = 1, . . . , NP + 1, nWB,NP+1 = nTE ,

Φ = (φ1
1, . . . , φ

1
nWB,1

, . . . , φNP1 , . . . , φNPnWB,NP
,∆φ1, . . . ,∆φnTE )T (5.59)

where m = M when l = NP and j = nWB,NP . The resulting system consists of a linear

and non-linear part. The linear part of the system is:

Pm(Φ) =

NP∑
q=1

nWB ,q∑
i=1

Aiqmφ
q
i +

nTE∑
i=1

Bim∆φi + cm, (5.60a)

m =

l−1∑
h=1

nWB,h + j, j = 1, . . . , nWB,l, l = 1, . . . , NP ,

Aiqm = 2πδlqR
l
i(Pm)−

nH,B∑
e=1

∫
S(H,B),e

Rqi (Q)
∂G(Pm,Q)

∂n(Q)
dS(Q), (5.60b)

Bim = −
∫ η2

η1

RlTEi (ξTE , η)

∫ ξ∞

ξTE

∂G(Pm,Q)

∂n(Q)
dS(Q), (5.60c)

cm =

nH,B∑
e=1

∫
S(H,B),e

V∞ · n(Q)G(Pm,Q)dS(Q). (5.60d)
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The non-linear part of the system is:

Pm(Φ) =

nWB,lTE∑
i=1

Dijφ
lTE
i +

nWB,lTE∑
i=1

nWB,lTE∑
k=1

Eikjφ
lTE
i φlTEk + gj , (5.61a)

m = m(j) =

NP∑
h=1

nWB,h + j, j = 1, . . . , nTE ,

Dij = Rj,lTEξ,up,i

(2V∞,t,up,j · e1,up,j

|m1,up,j |
− 2V∞,t,up,j · e3,up,j

|m1,up,j | sinθup,j

)
+Rj,lTEη,up,i

2V∞,t,up,j · e3,up,jcosθup,j
|m2,up,j | sinθup,j

+Rj,lTEξ,lo,i

(2V∞,t,lo,j · e3,lo,jcosθlo,j
|m1,lo,j | sinθlo,j

−
2V∞,t,lo,j · e1,lo,j

|m1,lo,j |

)
−Rj,lTEη,lo,i

2V∞,t,lo,j · e3,lo,j

|m2,lo,j | sinθlo,j
,

(5.61b)

Eikj = Rj,lTEξ,up,iR
j,lTE
ξ,up,k

( 1

|m1,up,j |2
+

cos2θup,j
|m1,up,j |2 sin2θup,j

)
+

Rj,lTEη,up,iR
j,lTE
η,up,k

1

|m2,up,j |2 sin2θup,j

−Rj,lTEη,up,iR
j,lTE
ξ,up,k

2cosθup,j
|m1,up,j ||m2,up,j | sin2θup,j

−

Rj,lTEξ,lo,iR
j,lTE
ξ,lo,k

( 1

|m1,lo,j |2
−

cos2θlo,j
|m1,lo,j |2 sin2θlo,j

)
−Rj,lTEη,lo,iR

j,lTE
η,lo,k

1

|m2,lo,j |2 sin2θlo,j
+Rj,lTEη,lo,iR

j,lTE
ξ,lo,k

2cosθlo,j
|m1,lo,j ||m2,lo,j | sin2θlo,j

,

(5.61c)

gj = V2
∞,t,up,j −V2

∞,t,lo,j (5.61d)

and δlq is Kronecker’s delta δlq =


1, if l = q,

0, if l 6= q.

.

In order to solve the non-linear system of (5.60a) and (5.61a) an iterative Newton-

Raphson scheme is applied again:

Φr+1 = Φr − J−1
r P(Φr) (5.62)
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where r corresponds to the r-th iteration and J−1
r is the inverse of the Jacobian matrix

of (5.60a) and (5.61a) of step r. The elements of the Jacobian matrix Jm1m2 =
∂Pm1 (Φ)
∂φm2

where φm2 corresponds to the mth
2 component of vector Φ for each iterative step are

given by the following set of equations:

Jm1m2 = Aj1m1j2m2 ,

m1 = m1(l1, j1) =

l1−1∑
h=1

nWB,h + j1, m2 = m2(l2, j2) =

l2−1∑
h=1

nWB,h + j2,

j1 = 1, . . . , nWB,l1 , j2 = 1, . . . , nWB,l2 , l1 = 1, . . . , NP , l2 = 1, . . . , NP . (5.63)

Jm1m2 = Bj2m1 ,

m1 =

l1−1∑
h=1

nWB,h + j1, m2 =

NP∑
h=1

nWB,h + j2,

j1 = 1, . . . , nWB,l1 , j2 = 1, . . . , nTE , l1 = 1, . . . , NP . (5.64)

Jm1m2 = Dj2j1 +

nWB,lTE∑
i=1

(Ej2ij1 + Eij2j1)φi,

m1 =

NP∑
h=1

nWB,h + j1, m2 =

lTE−1∑
h=1

nWB,h + j2,

j1 = 1, . . . , nTE , j2 = 1, . . . , nWB,lTE . (5.65)

Jm1m2 = 0,

m1 =

NP∑
h=1

nWB,h + j1, m2 =

l2−1∑
h=1

nWB,h + j2,

j1 = 1, . . . , nTE , j2 = 1, . . . , nWB,l2 with l2 6= lTE . (5.66)
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Jm1m2 = 0,

m1 =

NP∑
h=1

nWB,h + j1, m2 =

NP∑
h=1

nWB,h + j2,

j = 1, . . . , nTE , m = 1, . . . , nTE . (5.67)

Morino’s approach will be employed again as a 0th iteration for the Newton-Raphson

scheme of (5.62). Assuming that the potential jump on the trailing edge is equal to

the difference between the perturbation potential values of the upper and lower parts

of the trailing edge gives:

∆φ(ξTE , η) =

nWB,lTE∑
i=1

φlTE ,0i R̃lTEi (ξu,TE , η)−
nWB,lTE∑
i=1

φlTE ,0i R̃lTEi (ξl,TE , η) (5.68)

where φlTE ,0i are the unknown potential coefficients of the 0th iteration and the super-

script lTE corresponds to T-spline patch of the wing that includes the trailing edge.

Then substituting (5.68) in the multiple patch version of (5.4) gives:

2π

nWB,l∑
i=1

φl,0i R
l
i(P)−

NP∑
q=1

nWB,q∑
i=1

φq,0i

ne,q∑
e=1

∫
Se

Rqi (Q)
∂G(P,Q)

∂n(Q)
dS(Q)

−
nWB,lTE∑
i=1

φlTE ,0i

∫ η2

η1

(R̃lTEi (ξu,TE , η)− R̃lTEi (ξl,TE , η)

∫ ξ∞

ξTE

∂G(P,Q)

∂n(Q)
dS(Q)

=

NP∑
q=1

ne,q∑
e=1

∫
Se

V∞ · n(Q)G(P,Q)dS(Q),

j = 1, ..., nWB,l, l = 1, ..., NP . (5.69)
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By collocating (5.69) at nWB Greville points the following linear system is formed:

2π

nWB,l∑
i=1

φl,0i R
l
i(Pj)−

NP∑
q=1

nWB,q∑
i=1

φq,0i

ne,q∑
e=1

∫
Se

Rqi (Q)
∂G(Pj ,Q)

∂n(Q)
dS(Q)

−
nWB,lTE∑
i=1

φlTE ,0i

∫ η2

η1

(R̃lTEi (ξu,TE , η)− R̃lTEi (ξl,TE , η)

∫ ξ∞

ξTE

∂G(P,Q)

∂n(Q)
dS(Q)

=

NP∑
q=1

ne,q∑
e=1

∫
Se

V∞ · n(Q)G(Pj ,Q)dS(Q),

j = 1, ..., nWB,l, l = 1, ..., NP . (5.70)

The unknown perturbation potential coefficients are acquired by solving (5.70). The

unknown potential jump coefficients of the 0th iteration ∆φ0
i can be acquired by solving

the same interpolation problem on the trailing edge as described in the previous section.

Let there be j = 1, ..., nTE points on the trailing edge where the potential jump of the

0th iteration is given by:

nWB,lTE∑
i=1

φlTE ,0i (R̃lTEi (ξu,TE , ηj)− R̃lTEi (ξl,TE , ηj)) (5.71)

Then the unknown ∆φ0
i s can be found by solving the following linear system:

nTE∑
i=1

∆φ0
iR

lTE
i (ξTE , ηj) =

nWB,lTE∑
i=1

φlTE ,0i (R̃lTEi (ξu,TE , ηj)−R̃lTEi (ξl,TE , ηj)) j = 1, ..., nTE

(5.72)
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Numerical Results

In this chapter, numerical results of the newly developed IGA-BEM method described in

the previous chapter are presented. The method employs a multi-patch representation

of the underlying wing geometry and an application of the IGA-based Kutta condition.

In the first two sections numerical results for three different test cases are presented and

compared against existing experiments and numerical results from a low order panel

method. The last section of this chapter focuses on investigating the behaviour of the

novel IGA-based Kutta condition with special regard to the singular behaviour of the

velocity near the tip.

1 Wings with constant NACA0012 airfoil section

In this section, the developed method is tested for two constant-section wing cases: a

rectangular unswept wing and a swept one with a 20 degrees sweep angle. Both wings

have a semi-span of length s = 3m, a chord of length c = 1m and are generated by

translating a NACA0012 profile, represented via the parametrisation described in [46].

A NACA0012 profile is shown in Figure 6.1 and its coordinates are given in table

6.1. The B-spline model of this symmetric airfoil is shown in Figure 6.2 along with

67



Chapter 6. Numerical Results

its curvature graph and control point structure. The flow is uniform along the x-axis

and the angle of attack is equal to 6.75o. The geometric models of the wings and

their respective wakes have been generated using the T-Spline plug-in for Rhinoceros

3D1. Views of these models are included in Figure 6.3. Each model consists of the

main wing (238 control points), cap (75 control points) and wake (133 control points)

surfaces. This leads to a total of 320 DoFs for each example. No T-junctions or

extraordinary points exist in the main wing part, and hence, these parts assume a

NURBS representation. However, as can be seen by the close-up of the cap surface in

Figure 6.4b, T-junctions and extraordinary vertices exist there.

Figure 6.1: NACA0012 Profile

The pressure coefficient distributions on the pressure and suction sides of each wing

are shown in Figures 6.5 and 6.6, respectively. It is worth noting that around the

tips of both wings and the mid section of the unswept wing three-dimensional effects

(or spanwise velocity components) occur. The velocity vectors for these regions are

presented in Figure 6.7. Sectional chordwise pressure coefficients are calculated for each

wing and compared with experimental results from [53], and simulation results from the

open-source low-order panel method xflr52. The corresponding xflr5 model has 3050

DoFs. Seven sections for each wing are selected and shown in Figures 6.8 to 6.11 for the

unswept wing, and Figures 6.12 to 6.15 for the swept one. Good agreement is achieved

between the IGA-BEM approach and experimental results for much fewer DoFs, when

compared to the low-order simulation. At the same time, the IGA-enhanced Kutta

1http://www.rhino3d.com
2http://www.xflr5.tech/xflr5.htm
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x y

1 0

0.9994161 -0.0013419

0.9976658 -0.001587

0.9947532 -0.0019938

0.990685 -0.0025595

0.9854709 -0.0032804

0.9791229 -0.0041519

0.9716559 -0.0051685

0.9630873 -0.0063238

0.9534372 -0.0076108

0.942728 -0.0090217

0.9309849 -0.0105485

0.9182351 -0.0121823

0.9045085 -0.0139143

0.8898372 -0.0157351

0.8742554 -0.0176353

0.8577995 -0.0196051

0.8405079 -0.0216347

0.8224211 -0.0237142

0.8035813 -0.0258337

0.7840324 -0.0279828

0.7638202 -0.0301515

0.7429917 -0.0323294

0.7215958 -0.0345058

0.6996823 -0.03667

0.6773025 -0.0388109

0.6545085 -0.0409174

0.6313537 -0.0429778

0.6078921 -0.0449802

0.5841786 -0.0469124

0.5602683 -0.0487619

0.5362174 -0.0505161

0.5120819 -0.052162

x y

0.4879181 -0.0536866

0.4637826 -0.0550769

0.4397317 -0.05632

0.4158215 -0.0574033

0.3921079 -0.0583145

0.3686463 -0.0590419

0.3454915 -0.0595747

0.3226976 -0.0599028

0.3003177 -0.0600172

0.2784042 -0.0599102

0.2570083 -0.0595755

0.2361799 -0.0590081

0.2159676 -0.0582048

0.1964187 -0.057164

0.1775789 -0.0558856

0.1594921 -0.0543715

0.1422005 -0.0526251

0.1257446 -0.0506513

0.1101628 -0.0484567

0.0954915 -0.0460489

0.0817649 -0.0434371

0.0690152 -0.040631

0.057272 -0.0376414

0.0465628 -0.0344792

0.0369127 -0.0311559

0.0283441 -0.0276827

0.0208771 -0.0240706

0.0145291 -0.02033

0.0093149 -0.0164706

0.0052468 -0.0125011

0.0023342 -0.0084289

0.0005839 -0.0042603

0 0

Table 6.1: Coordinates of a symmetric NACA0012 profile
(source: http://airfoiltools.com/airfoil/details?airfoil=n0012-il)
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Figure 6.2: NACA0012 airfoil curvature and control point structure

condition shows superior accuracy on the trailing edge in comparison with xflr5. This

is illustrated in Figure 6.16 for the mid section of the unswept wing. It is clear that

the IGA-BEM method satisfies the zero pressure jump on the trailing edge while xflr5

doesn’t. At the same time, xflr5 shows an oscillatory behaviour that deteriorates for

higher DoFs.

Deviations between IGA-BEM and experimental results are exhibited only for sections

near the wing tip, as illustrated in Figure 6.11. This occurs due to the existence of a

wing tip vortex near that region which cannot be modelled in the context of potential

flow theory, as stated, for example, in [85]. A further investigation of the pressure

coefficient behaviour at the tip is discussed in detail in the following section.

Finally, the effect of refinement on the sectional pressure distribution of the unswept

wing is presented in Figure 6.17. It is evident that for the two investigated sections

only minor deviations occur for different DoFs- especially the finer ones. An interesting

behaviour is encountered when comparing the spanwise circulation, as it is presented

in Figure 6.18. The two coarse representations seem to deviate significantly from the
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Wing Body

Wake
x

z

(a) Unswept

o

20

Wing Body

Wake

x

z

(b) Swept

Figure 6.3: Wing and wake surfaces of tested wings
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(a) Full Cap

(b) T-junctions and Extraordinary Point of valence 3

Figure 6.4: Wing Cap Surface

two finer ones. At the same time, the two finer representations seem to agree mostly

around the mid section area and have minor deviations when approaching the tips. An

investigation and explanation of this behaviour is included in the next section.
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(a) Suction side

(b) Pressure side

Figure 6.5: Pressure coefficient distribution for an unswept wing

(a) Suction side

(b) Pressure side

Figure 6.6: Pressure coefficient distribution for a swept wing
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(a) Tip region of unswept wing

(b) Mid region of swept wing

Figure 6.7: Velocity vectors in regions where three-dimensional phenomena occur
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Figure 6.8: Pressure Coefficients for the Unswept Wing
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Figure 6.9: Pressure Coefficients for the Unswept Wing
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Figure 6.10: Pressure Coefficients for the Unswept Wing
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Figure 6.11: Pressure Coefficients for the Unswept Wing
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Figure 6.12: Pressure Coefficients for the Swept Wing
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Figure 6.13: Pressure Coefficients for the Swept Wing
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Figure 6.14: Pressure Coefficients for the Swept Wing
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Figure 6.15: Pressure Coefficients for the Swept Wing
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Figure 6.16: Kutta condition accuracy comparison near the mid section of the unswept
wing
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Figure 6.17: Effect of refinement on sectional pressure coefficient
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Figure 6.18: Effect of refinement on spanwise circulation

2 A Cambered Unswept Wing with a NACA4412 Airfoil

Profile

In this section the method is applied on a rectangular unswept cambered wing with a

NACA4412 airfoil profile, chord length c = 1m and semi span s = 3m. Once again, the

airfoil is generated by translating a NACA4412 profile, represented via the parametrisa-

tion described in [46]. A NACA4412 profile is shown in Figure 6.19 and its coordinates

are given in able 6.2. The B-spline model of this cambered airfoil is shown in Figure

6.20 along with its curvature graph and control point structure. The flow is uniform

along the x-axis with an angle of attack of 0 degrees. The model consists of the main

wing (196 control points), cap (83 control points) and wake (133 control points) sur-

faces. This leads to a total of 286 DoFs. The model has a similar parametrisation

to the one of the wings described in the previous section. The main wing part has a

NURBS representation while T-junctions and extraordinary vertices exist only on the
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cap surface which is shown in Figure 6.22 with a close-up in Figure 6.22b.

Figure 6.19: NACA4412 Profile

Figure 6.20: NACA4412 airfoil curvature and control point structure
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1 0

0.95 0.0147

0.9 0.0271

0.8 0.0489

0.7 0.0669

0.6 0.0814

0.5 0.0919

0.4 0.098

0.3 0.0976

0.25 0.0941

0.2 0.088

0.15 0.0789

0.1 0.0659

0.075 0.0576

0.05 0.0473

0.025 0.0339

0.0125 0.0244

0 0

0 0

0.0125 -0.0143

0.025 -0.0195

0.05 -0.0249

0.075 -0.0274

0.1 -0.0286

0.15 -0.0288

0.2 -0.0274

0.25 -0.025

0.3 -0.0226

0.4 -0.018

0.5 -0.014

0.6 -0.01

0.7 -0.0065

0.8 -0.0039

0.9 -0.0022

0.95 -0.0016

1 0

Table 6.2: Coordinates of NACA4412 profile for upper (left) and lower (right) sides
(source: http://airfoiltools.com/airfoil/details?airfoil=naca4412-il)

Figure 6.21: NACA4412 wing and wake models
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(a) Full Cap

(b) T-junctions and Extraordinary Point of valence 3

Figure 6.22: NACA4412 Wing Cap Surface
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The pressure coefficient distribution on the suction side of the wing is demonstrated in

6.23. Numerical results for pressure coefficients are compared with the ones from xflr5

for a low order model of 3050 degrees of freedom and are shown in Figures 6.24 to 6.28.

Once again the two methods seem to be in agreement for the biggest part of the chord

with the IGA-BEM method providing equivalent results for much fewer DoFs. At the

same time, the low order panel method demonstrates a similar oscillatory behaviour

near the trailing edge as to the one mentioned in the previous section.

(a) Suction side

(b) Pressure side

Figure 6.23: Pressure coefficient distribution for the cambered wing
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Figure 6.24: Pressure Coefficients for the Cambered NACA 4412 Wing
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Figure 6.25: Pressure Coefficients for the Cambered NACA 4412 Wing
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Figure 6.26: Pressure Coefficients for the Cambered NACA 4412 Wing
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Figure 6.27: Pressure Coefficients for the Cambered NACA 4412 Wing
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Figure 6.28: Pressure Coefficients for the Cambered NACA 4412 Wing
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3 IGA-based Kutta Condition and Flow near the Trailing

Edge

In this section the behaviour of the IGA-based solution of the problem at the trailing

edge (TE) and especially near its tip is investigated. In this connection, the accuracy

and influence of Kutta condition, formulated as a zero pressure-jump condition on the

TE (see (5.25) ) and numerically implemented via (5.32), is assessed and discussed.

Figure 6.29 depicts the 0th order iterations, i.e, initial estimations, employed, for differ-

ent levels of refinement, in the Newton-Raphson scheme used for solving the non-linear

system in (5.32). It is clear from this figure that there is an increasing error in the

estimation of the actual zero pressure-jump requirement, especially near the wing tip

of the TE, for an increasing number of DoFs. It is also worth noticing that a small

but constant error persists along the whole TE. This deviation can be explained by

the fact that the initial estimation corresponds to the solution of the non-linear system

(5.32) with the so-called Morino’s condition. This condition states that the potential

jump on the wake can be approximated by the difference between the potential values

on the upper and lower parts of the wing on the TE. The linear nature of Morino’s

condition prevents the 0th order iteration from revealing the observed span-wise cross

flow, especially near the tip.

Figure 6.29 also indicates that the deviation of the pressure jump from zero becomes

more severe as the DoFs of the problem increase. This behaviour is related to the

existence of a singularity of the velocity ∇φ at the intersection of the trailing edge

with the tip, where the flow encounters two sharp edges with dihedral angles greater

than π. There has been extensive research in the general field of potential theory as

well as in aerodynamic lifting flows for non-smooth domains including sharp edges; see,

e.g., [84], [10], and [39], [51]. This analysis concludes that in the vicinity of an edge the
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Figure 6.29: Pressure jump along the trailing edge at the 0th iteration
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gradient of the solution φ(P) of 3D Laplace equation exhibits the following asymptotic

behaviour:

∇φ(P) = O
(
r−(1−π)/α

)
, (6.1)

where r denotes the Euclidean distance of the field point P from the edge and α is the

magnitude of the exterior of the dihedral angle formed at the edge of the body.

Figure 6.30 illustrates the configuration for the wing case by taking a plane P(x), which

intersects vertically both edges where the wing surface meets the wing cap. For the

wing geometries considered in this paper (see Figure 6.3) it is evident that, as long

as the longitudinal coordinate x of P(x) is different from that of the trailing edge,

α = 3π/2 at both the suction and the pressure edge of the wing-cap. Then, (6.1) gives:

∇φ(P) = O(r−1/3), x 6=TEx. (6.2)

However, when P(x) reaches the trailing edge, x = TEx, a discontinuity occurs: the

two equal dihedral angles at the pressure and suction intersection collapse to a single

one equal to α = 2π, leading to the estimate:

∇φ(P) = O(r−1/2), x=TEx, (6.3)

which indicates that the singularity of the velocity at the TE-tip is stronger than that

along the remaining cap-edge.

On the basis of the above discussion it seems legitimate to expect that a higher number

of DoFs will have the capacity to reveal the velocity singularity at the tip of TE more

accurately. As a result, the error of the initial estimation increases with DoFs, yielding
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Figure 6.30: An intersecting plane P(x) sliding towards the trailing edge TE

slower convergence in the employed iterative scheme; see Figure 6.31.

The effect of tip singularity described in (6.2) is of local character, as it is clearly seen in

Figure 6.29. This local character of the tip singularity is also depicted in Figures 6.32

to 6.35 where the chordwise distribution of Cp at the tip location (z/s = 1) and in

three sections near the tip (z/s = 0.99, 0.95, 0.9) are presented. However, starting from

the section at z/s = 0.95 and for the remaining wing sections, the initial (0th) and final

iterations are almost identical.
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Figure 6.32: Tip chordwise Cp distribution for different refinement levels
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Figure 6.33: z/s = 0.99 chordwise Cp distribution for different refinement levels
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Figure 6.34: z/s = 0.95 chordwise Cp distribution for different refinement levels
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Figure 6.35: z/s = 0.9 chordwise Cp distribution for different refinement levels

In the light of the singular character of the solution in the vicinity of the tip, another

critical parameter to be assessed for its influence on the accuracy of Kutta condition

is the position of the collocation points, especially those near the tip. To assess the

performance of Kutta condition we use L1 and L∞ norms, defined as:

||∆cp(η)||L1 =

∫ ηtip

ηmid

| ∆cp(η) | dη (6.4)

‖∆cp(η)‖L∞ = max{∆cp(η), ηtip ≤ η ≤ ηmid} (6.5)

where ηtip and ηmid are the parametric values of the trailing edge curve that correspond

to the tip and mid sections respectively. The wing used for this analysis is the original

configuration, shown in Figure 6.3a, but with local refinement at the trailing edge

region, as shown in Figure 6.36.

Results for the pressure jump on the trailing edge are presented when the last collocation

point is on the tip (z = −3) and after shifting it by 0.01, 0.04, 0.07 and 0.09; see

Figure 6.37. The rest of the collocation points are also shifted in a way that prevents
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Figure 6.36: Wing under investigation with TE DoF=35

adjacent ones from being too close to each other, in the sense that the distance between

them should not exceed a minimum threshold, while they still remain inside the support

of each basis function of the TE curve. The corresponding L1 and L∞ norms are

presented in Figure 6.38. It is clear that, regarding the accuracy of Kutta condition,

the best practice is a small shifting of the last collocation point (on the tip); in our

case, the best shifting is 0.01. This result remains valid, independently of the level of

refinement of the trailing edge region.
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Conclusions and Future Steps

In this work a new Boundary Element Method (BEM) for steady lifting flows, based

on Isogeometric Analysis (IGA) was presented. T-splines were used for the representa-

tion of all involved geometries and the approximation of the associated field (trace of

the velocity potential on the wing). Adopting IGA enables the enforcement of Kutta

condition (zero-pressure jump) exactly on the trailing edge (TE) as well as revealing

the singular behaviour of the solution at the TE tip and the wing cap.

The method was applied for three different test cases:

• A rectangular wing with a NACA0012 profile.

• A swept wing with a sweep angle of 20 degrees and a NACA0012 profile.

• A cambered rectangular wing with a NACA4412 profile.

The calculated pressure coefficients show good agreement with experiments and supe-

rior behaviour when compared to a low order panel method in terms of the required

DoFs (Degrees of Freedom) for a given level of accuracy. The iterative scheme, that was

applied for the solution of the resulting quadratic system, exhibits fast convergence (5-

6 iterations) for different levels of refinement. Furthermore, a numerical investigation
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was carried out regarding the effect of the tip singularity on Kutta condition for differ-

ent refinement levels and different locations of the collocation points along the trailing

edge. This study revealed that, as the number of DoFs increases, the unboundedness

of pressure near the tip becomes evident. Moreover, the zero pressure jump along the

trailing edge shows a low L1 error, especially by slightly shifting the last collocation

point from the tip. Note that, since T-splines were used, local refinement has been

employed in the trailing edge region in an effort to investigate the behaviour of Kutta

condition without introducing redundant DoFs.

This work is, to the author’s best knowledge, the first attempt in employing Isogeo-

metric Analysis for the problem of three dimensional potential lifting flows. The main

benefits of IGA that have been discussed in previous works in other applications are

also present here:

• Higher accuracy for fewer DoFs when compared to traditional BEM methods is

achieved.

• The original geometry of the CAD model is maintained for analysis and the

refinement process is as simple as using knot insertion on the underlying spline

basis. No re-meshing is ever required.

There are also benefits that are specific to this application:

• The projection of φ on the spline space of the underlying geometry allows the

enforcement of Kutta condition exactly on the trailing edge.

• The use of Greville abscissae as collocation points creates a well-conditioned ma-

trix and no numerical instabilities occur. Not even near the trailing edge which

has been a region that requires special treatment in traditional BEM (see for

example [51].

Lastly, it’s worth noting that the choice of T-splines for the underlying wing geometry
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offered some significant advantages:

• Geometric modelling of the wing was achieved with much fewer control points

than using NURBS. For example, the cap surface of the NACA4412 wing was

created with a single T-spline surface with only 83 control points. The same

model would consist of 459 control points and 3 NURBS patches if NURBS were

used.

• Local refinement was applied without introducing too many redundant DoFs. In

this work, it was mainly employed to investigate the behaviour of Kutta condition

on the trailing edge.

For all the above reasons, the developed method tightly integrates CAD and analysis.

A next reasonable step would be to use the solver within a shape optimisation loop

for wing geometries. Due to the nature of IGA, no re-meshing would be required for

each new shape that is generated. This is expected to make the resulting tool highly

efficient.

Another thing to consider is that the aforementioned method was based on the assump-

tion of an a-priori known plane wake geometry, which served as a good approximation

for the cases that were investigated (wings in uniform flows). A potential future step

would be to extend this method to treat propeller flows. The main challenge there is

that a-priori wake approximations do not work equally well due to the nature of the

flow; trailing wakes shed from the blades are at a small distance from them and can

affect their pressure distributions. This is especially important when the advance ratio

is quite low which means that one of the blades could operate within the flow of the

wake of another blade, as stated for example in [92].

This would call for the development of an IGA-based wake alignment scheme, similar to

the ones described in Chapter 2. The scheme could use an initial approximation of the

wake surface (i.e. a helical surfaces based on the propeller’s geometric characteristics)
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and then correct it at each iteration step based on the solution field of the previous

step. The iterative process would stop when the wake geometry converges. More

details of the implementation of such a scheme in the IGA setting are not known right

now. However, it would be safe to assumed that the geometric flexibility offered by T-

splines could prove pivotal in representing complex wake surfaces. Moreover, choosing

Greville’s abscissae as points where the wake alignment condition is enforced would be

a good starting point.

Lastly, it would be interesting to extend this method to include more complex configura-

tions, such as multiple wings that interact with each other, wing-fuselage configurations

and time-dependent problems.
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Appendix A

Fundamentals of Vortex Sheets

The wake surface is regarded as a force-free vortex sheet that emanates from the trailing

edge and extends to infinity. This appendix includes an introduction to vortex sheets

and some interesting properties of them are presented here. The proofs of why the

potential jump on the wake varies only along its span-wise direction and why its value

is determined by the value on the trailing edge of the wing (see Chapter 3) are also

produced.

1 Force-Free Vortex Sheet

A vortex sheet is a thin surface with a distribution of vorticity. Let a vortex sheet exist

inside an irrotational, incompressible and inviscid fluid field. Then for a point P on the

sheet the velocities on the upper and lower parts of the sheet(Vu,Vl) must be tangent

to the sheet surface but not necessarily equal in either magnitude or direction. If Vd

is the difference between the velocities and Vm is the mean velocity then the following

relations occur:
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Vm =
1

2
(Vu + Vl)

Vd =
1

2
(Vu −Vl)

When the difference between the upper and lower velocities is not equal to zero a vortex

sheet exists with strength [34] given by:

γ = 2 · [n×Vd] (A.1)

where n is the vector normal to the vortex sheet. The pressure jump between the two

sides of the vortex surface is given by Bernoulli’s law:

∆p =
1

2
ρ(Vu

2 −Vl
2) (A.2)

If δ is the angle between the mean velocity and the vorticity vector then by using law

of cosines (A.2) becomes:

∆p =
1

2
ρVmγsinδ (A.3)

The vorticity vector can be analysed into two components along and normal to the mean

flow, γb = γsinδ, γf = γcosδ which are called bound and free vorticity respectively.

When the mean velocity is parallel to the vorticity vector then the pressure jump

becomes zero (Figure A.1) and only free vorticity exists. In this event the vortex sheet

is called force-free.

Now let an airfoil be represented as a vortex sheet and its wake as a force-free vortex
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sheet. This is shown in Figure A.2. The vorticity vectors on the foil and wake can be

also seen in Figure A.2. Only bound vorticity exists on the foil and only free vorticity

on the wake. According to Kelvin’s theorem the circulation around a closed contour

inside a potential flow field is equal to zero. Following the approach of [34] and using

the contour of Figure A.2:

Γ1(s2 = sW ) =

∫ sT

sL

γb(s1; s2 = sW )ds1 (A.4)

and for the wake:

Γ2(s2 = sW ) = −
∫ sE

sW

γf (s2)ds2 (A.5)

where s1 is a coordinate system parallel to the mean flow, s2 is normal to s1, sW is

the intersection between s1 and s2 and sL, sT and sE correspond to the leading edge,

trailing edge and the boundary of the wake respectively.

The part of the contour which consists of the two lines parallel to the wake does not

create any circulation since both lines are tangent to the vorticity vector. Then Kelvin’s

theorem gives:

Γ1 + Γ2 = 0⇒ Γ1 =

∫ sE

sW

γf (s2)ds2 (A.6)

2 Circulation and Potential Jump

The wake of a wing can be regarded as a force-free vortex sheet surface. The strength

of the free vorticity γf is connected to the circulation around the wing. It is proven [34]

that:
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Vl

dV

Vu

P

Vm
γ

(a) General case, Vm ∦ γ

mV

- dd

l

V

VuV

P

γ

(b) Force-free condition, Vm ‖ γ

Figure A.1: Velocities on a force-free vortex sheet
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Figure A.2: 3D Foil and Wake Vortex Sheets
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dΓ1

dsW
= γf (sW ) (A.7)

where sW is the spanwise curvilinear coordinate (which is normal to the chordwise

coordinate and parallel to the mean flow) on the wake and Γ(sW ) is the circulation

around the corresponding airfoil. But since the wake is force free:

dΓ1

dsW
= 2Vd = Vu,sW − Vl,sW (A.8)

Under the assumption that the flow is irrotational, incompressible and inviscid the fluid

velocity can be written as a function of the velocity potential φ:

V =
(∂φ
∂x
,
∂φ

∂y
,
∂φ

∂z

)
(A.9)

Then by substituting the velocity values of (A.8) with respect to the potential (A.8)

becomes:
dΓ1

dsW
=
∂φu
∂sW

− ∂φl
∂sW

⇒ Γ(sW ) = ∆φ(sW ) (A.10)

where ∆φ(sW ) = φu − φl and φu, φl are the velocity potential values on the upper

and lower sides of the wake respectively. This means that the potential jump ∆φ(sW )

is constant along a line of constant mean flow (mean streamline) and equal to the

circulation around the corresponding hydrofoil and varies only along the span of the

wake.
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Evaluating Weakly Singular

Integrals

The kernel of (5.4) is weakly singular and special treatment of the integrals is required

when Pj and Q lie significantly close to each other. In this appendix the approach to

tackle this issue is presented.

1 Types of Integrals

Three different types of integrals may be considered depending on the distance between

these two points:

• Far-field case: Let Q lie on a Bézier patch xe with convxe denoting the convex

hull of its control points . When Pk and Q do not lie on the same surface element

and the Euclidean distance d(Pk, convxe) between Pk and convxe is greater than

two times the diagonal of convxe , i.e., d(Pk, convxe) > 2diag(convxe), Gauss -

Kronrod quadrature with 15 quadrature points is applied.

• Near-field case: When Pk and Q do not lie on the same surface element but
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d(Pk, convxe) < 2diag(convxe), Telles’ transformation is applied as introduced

in [36], [37], with the preimage of ξ̃(Pk) of Pk regarded as the singular point of

the transformation. Then Gauss - Kronrod quadrature with 31 quadrature points

is applied on the transformed integral afterwards.

• In-field case: When Pk and Q lie on the same surface element the corresponding

parametric domain is partitioned into 4 sub-domains from I to IV as demonstrated

in Fig. B.1. Telles transformation is applied again for each sub-domain with ξ̃(Pk)

being the singular point of the transformation for each of them. Afterwards, Gauss

- Kronrod quadrature with 31 quadrature points is applied on each transformed

sub-domain.

Figure B.1: Domain partition for the in field case
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2 Telles’ Transformation

A linear transformation of variables is applied on the in field and near field cases:

∫ ηB

ηWB

∫ ξB

ξWB

f(ξ, η)dξdη =

∫ 1

−1

∫ 1

−1
f∗(t1, t2)dt1dt2, f∗ =| dξ/dt | f (B.1)

Then, Telles’ non-linear Transformation is applied for each variable of the resulting

integrals:

ξ(s1) = α1s
3
1 + b1s

2
1 + c1s1 + d1, (B.2)

ξ(s2) = α2s
3
2 + b2s

2
2 + c2s2 + d2, (B.3)

where αk = Qk, bk = −3sPk Qk, ck = 3(sPk )2Qk, dk = −bk, Q−1
k = 1 + 3(sPk )2

for k = 1, 2 and the point (sP1 , s
P
2 ) corresponds to the nearly singular point P .

Consequently, the right hand side of equation (B.1) becomes:

∫ 1

−1

∫ 1

−1
f∗(ξ1(s1), ξ2(s2))(9α1α2(s1 − sP1 )2(s2 − sP2 )2)ds1ds2 (B.4)

Then the integral of (B.4) can be calculated by using standard quadrature techniques.

Telles’ transformation has a lumping effect on integration points approaching the sin-

gularity and produces superlinear convergence at the very least. However, according

to [68], it works best when the singular point lies on the endpoints or midpoint of

the integration interval while significant errors may be encountered when the singular

point lies anywhere else. In order to counter this the interval of the in field case is

partitioned in the way described in the previous section to ensure that P always lies

on the endpoints of the four sub-intervals shown in Figure (B.1)
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IGA-BEM Solver Software

This appendix serves as a user manual for the in-house IGA-BEM solver used in this

work. The solver was developed in a C++11 programming environment. It can be

run in parallel processes utilising a Message Passing Iinterface (MPI) standard and

occupies all the available memory of the machine it is run on by employing shared

memory matrices.

The following libraries are required as dependencies in order to compile the solver:

• Open MPI: “The Open MPI Project is an open source Message Passing Interface

implementation that is developed and maintained by a consortium of academic,

research, and industry partners.”, (from https://www.open-mpi.org/)

• Global Arrays by Pacific Nothwest National Laboratory: “Global Arrays (GA)

is a Partitioned Global Address Space (PGAS) programming model. It provides

primitives for one-sided communication (Get, Put, Accumulate) and Atomic Op-

erations (read increment). It supports blocking and non-blocking primtives, and

supports location consistency.,

(from https://hpc.pnl.gov/globalarrays/)

• GoTools by SINTEF: “GoTools is a collection of C++ libraries related to geome-
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try targeting Computer Aided Design (CAD), Isogeometric Analysis (IgA) and big

data approximation and analysis.” , (from https://www.sintef.no/en/software/gotools/)

• SINTEF Spline Library (SISL) by SINTEF: “SISL is a comprehensive NURBS

library for the modeling and interrogation of curves and surfaces. It is imple-

mented in C and has been under continuous development over three decades.”,

(from https://www.sintef.no/en/software/sisl/)

Once compiled the solver can run by providing the following input files:

• A wing.iga file that includes all the required information about the main wing

T-spline surface.

• A cap.iga file that includes all the required information about the wing cap T-

spline surface.

• A wake.iga file that includes all the required information about the wake T-spline

surface.

• A wake ids.dat file that contains the Bézier element ids of the wake in matrix

form.

• A input.dat file that includes the fluid velocity under investigation.

• A folder location where all the output files will be created.

The .iga file format is created by the T-spline plug-in for Rhinoceros 3D and contains

control point and Bézier extraction information required for creating a T-spline class

in the solver. The structure of .iga files may be found in [58]. The wake ids.dat file

is required in order to match the wake elements with their corresponding ones on the

trailing edge of the wing.

The user can start the solver from the command window by opening the directory of

the solver executable and using the following line:
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./iga bem solver TSPLINE wing.iga wake.iga cap.iga wake ids.dat

input.dat /path-to-results

or if the user wishes the program to run in multiple cores:

mpirun -np x iga bem solver TSPLINE wing.iga wake.iga cap.iga

wake ids.dat input.dat /path-to-results

where x is the number of parallel processes. The application will then run in batch

mode until it solves the problem and will produce the following output files:

• A.dat: Contains the A matrix of the non-linear system.

• b.dat: Contains the right hand side vector of the non-linear system.

• phi on surface.csv: Contains the field value of φ for a set of output points with

x,y,z coordinates on the main wing surface

• phi on surface cap.csv: Contains the field value of φ for a set of output points

with x,y,z coordinates on the cap surface

• phiCPs.dat: Contains the solution of the non-linear system (values of all the

initially unknown coefficients φi and ∆φi) including all steps of the Newton-

Raphson iterative scheme

• pressure.csv: Contains the field value of pressure coefficient Cp for a set of output

points with x,y,z coordinates on the main wing surface

• pressure cap.csv: Contains the field value of pressure coefficient Cp for a set of

output points with x,y,z coordinates on the cap surface

• velocity on body.csv: Contains the velocity components Vx, Vy, Vz for a set of

output points with x,y,z coordinates on the main wing surface

• velocity on cap.csv: Contains the velocity components Vx, Vy, Vz for a set of out-

put points with x,y,z coordinates on the cap surface
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The number of output points is equal to 100 points per Bézier element for each surface.

The output .csv files can be used to visualise the resulting field quantities. In this work

ParaView (https://www.paraview.org/) is used for creating all the colour maps.
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